WorldWideScience

Sample records for empirical likelihood methods

  1. Empirical likelihood

    CERN Document Server

    Owen, Art B

    2001-01-01

    Empirical likelihood provides inferences whose validity does not depend on specifying a parametric model for the data. Because it uses a likelihood, the method has certain inherent advantages over resampling methods: it uses the data to determine the shape of the confidence regions, and it makes it easy to combined data from multiple sources. It also facilitates incorporating side information, and it simplifies accounting for censored, truncated, or biased sampling.One of the first books published on the subject, Empirical Likelihood offers an in-depth treatment of this method for constructing confidence regions and testing hypotheses. The author applies empirical likelihood to a range of problems, from those as simple as setting a confidence region for a univariate mean under IID sampling, to problems defined through smooth functions of means, regression models, generalized linear models, estimating equations, or kernel smooths, and to sampling with non-identically distributed data. Abundant figures offer vi...

  2. Generalized empirical likelihood methods for analyzing longitudinal data

    KAUST Repository

    Wang, S.; Qian, L.; Carroll, R. J.

    2010-01-01

    Efficient estimation of parameters is a major objective in analyzing longitudinal data. We propose two generalized empirical likelihood based methods that take into consideration within-subject correlations. A nonparametric version of the Wilks

  3. Generalized empirical likelihood methods for analyzing longitudinal data

    KAUST Repository

    Wang, S.

    2010-02-16

    Efficient estimation of parameters is a major objective in analyzing longitudinal data. We propose two generalized empirical likelihood based methods that take into consideration within-subject correlations. A nonparametric version of the Wilks theorem for the limiting distributions of the empirical likelihood ratios is derived. It is shown that one of the proposed methods is locally efficient among a class of within-subject variance-covariance matrices. A simulation study is conducted to investigate the finite sample properties of the proposed methods and compare them with the block empirical likelihood method by You et al. (2006) and the normal approximation with a correctly estimated variance-covariance. The results suggest that the proposed methods are generally more efficient than existing methods which ignore the correlation structure, and better in coverage compared to the normal approximation with correctly specified within-subject correlation. An application illustrating our methods and supporting the simulation study results is also presented.

  4. Adjusted Empirical Likelihood Method in the Presence of Nuisance Parameters with Application to the Sharpe Ratio

    Directory of Open Access Journals (Sweden)

    Yuejiao Fu

    2018-04-01

    Full Text Available The Sharpe ratio is a widely used risk-adjusted performance measurement in economics and finance. Most of the known statistical inferential methods devoted to the Sharpe ratio are based on the assumption that the data are normally distributed. In this article, without making any distributional assumption on the data, we develop the adjusted empirical likelihood method to obtain inference for a parameter of interest in the presence of nuisance parameters. We show that the log adjusted empirical likelihood ratio statistic is asymptotically distributed as the chi-square distribution. The proposed method is applied to obtain inference for the Sharpe ratio. Simulation results illustrate that the proposed method is comparable to Jobson and Korkie’s method (1981 and outperforms the empirical likelihood method when the data are from a symmetric distribution. In addition, when the data are from a skewed distribution, the proposed method significantly outperforms all other existing methods. A real-data example is analyzed to exemplify the application of the proposed method.

  5. Essays on empirical likelihood in economics

    NARCIS (Netherlands)

    Gao, Z.

    2012-01-01

    This thesis intends to exploit the roots of empirical likelihood and its related methods in mathematical programming and computation. The roots will be connected and the connections will induce new solutions for the problems of estimation, computation, and generalization of empirical likelihood.

  6. An alternative empirical likelihood method in missing response problems and causal inference.

    Science.gov (United States)

    Ren, Kaili; Drummond, Christopher A; Brewster, Pamela S; Haller, Steven T; Tian, Jiang; Cooper, Christopher J; Zhang, Biao

    2016-11-30

    Missing responses are common problems in medical, social, and economic studies. When responses are missing at random, a complete case data analysis may result in biases. A popular debias method is inverse probability weighting proposed by Horvitz and Thompson. To improve efficiency, Robins et al. proposed an augmented inverse probability weighting method. The augmented inverse probability weighting estimator has a double-robustness property and achieves the semiparametric efficiency lower bound when the regression model and propensity score model are both correctly specified. In this paper, we introduce an empirical likelihood-based estimator as an alternative to Qin and Zhang (2007). Our proposed estimator is also doubly robust and locally efficient. Simulation results show that the proposed estimator has better performance when the propensity score is correctly modeled. Moreover, the proposed method can be applied in the estimation of average treatment effect in observational causal inferences. Finally, we apply our method to an observational study of smoking, using data from the Cardiovascular Outcomes in Renal Atherosclerotic Lesions clinical trial. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  7. Moment Conditions Selection Based on Adaptive Penalized Empirical Likelihood

    Directory of Open Access Journals (Sweden)

    Yunquan Song

    2014-01-01

    Full Text Available Empirical likelihood is a very popular method and has been widely used in the fields of artificial intelligence (AI and data mining as tablets and mobile application and social media dominate the technology landscape. This paper proposes an empirical likelihood shrinkage method to efficiently estimate unknown parameters and select correct moment conditions simultaneously, when the model is defined by moment restrictions in which some are possibly misspecified. We show that our method enjoys oracle-like properties; that is, it consistently selects the correct moment conditions and at the same time its estimator is as efficient as the empirical likelihood estimator obtained by all correct moment conditions. Moreover, unlike the GMM, our proposed method allows us to carry out confidence regions for the parameters included in the model without estimating the covariances of the estimators. For empirical implementation, we provide some data-driven procedures for selecting the tuning parameter of the penalty function. The simulation results show that the method works remarkably well in terms of correct moment selection and the finite sample properties of the estimators. Also, a real-life example is carried out to illustrate the new methodology.

  8. Bayesian interpretation of Generalized empirical likelihood by maximum entropy

    OpenAIRE

    Rochet , Paul

    2011-01-01

    We study a parametric estimation problem related to moment condition models. As an alternative to the generalized empirical likelihood (GEL) and the generalized method of moments (GMM), a Bayesian approach to the problem can be adopted, extending the MEM procedure to parametric moment conditions. We show in particular that a large number of GEL estimators can be interpreted as a maximum entropy solution. Moreover, we provide a more general field of applications by proving the method to be rob...

  9. Empirical Likelihood in Nonignorable Covariate-Missing Data Problems.

    Science.gov (United States)

    Xie, Yanmei; Zhang, Biao

    2017-04-20

    Missing covariate data occurs often in regression analysis, which frequently arises in the health and social sciences as well as in survey sampling. We study methods for the analysis of a nonignorable covariate-missing data problem in an assumed conditional mean function when some covariates are completely observed but other covariates are missing for some subjects. We adopt the semiparametric perspective of Bartlett et al. (Improving upon the efficiency of complete case analysis when covariates are MNAR. Biostatistics 2014;15:719-30) on regression analyses with nonignorable missing covariates, in which they have introduced the use of two working models, the working probability model of missingness and the working conditional score model. In this paper, we study an empirical likelihood approach to nonignorable covariate-missing data problems with the objective of effectively utilizing the two working models in the analysis of covariate-missing data. We propose a unified approach to constructing a system of unbiased estimating equations, where there are more equations than unknown parameters of interest. One useful feature of these unbiased estimating equations is that they naturally incorporate the incomplete data into the data analysis, making it possible to seek efficient estimation of the parameter of interest even when the working regression function is not specified to be the optimal regression function. We apply the general methodology of empirical likelihood to optimally combine these unbiased estimating equations. We propose three maximum empirical likelihood estimators of the underlying regression parameters and compare their efficiencies with other existing competitors. We present a simulation study to compare the finite-sample performance of various methods with respect to bias, efficiency, and robustness to model misspecification. The proposed empirical likelihood method is also illustrated by an analysis of a data set from the US National Health and

  10. A Non-standard Empirical Likelihood for Time Series

    DEFF Research Database (Denmark)

    Nordman, Daniel J.; Bunzel, Helle; Lahiri, Soumendra N.

    Standard blockwise empirical likelihood (BEL) for stationary, weakly dependent time series requires specifying a fixed block length as a tuning parameter for setting confidence regions. This aspect can be difficult and impacts coverage accuracy. As an alternative, this paper proposes a new version...... of BEL based on a simple, though non-standard, data-blocking rule which uses a data block of every possible length. Consequently, the method involves no block selection and is also anticipated to exhibit better coverage performance. Its non-standard blocking scheme, however, induces non......-standard asymptotics and requires a significantly different development compared to standard BEL. We establish the large-sample distribution of log-ratio statistics from the new BEL method for calibrating confidence regions for mean or smooth function parameters of time series. This limit law is not the usual chi...

  11. Block Empirical Likelihood for Longitudinal Single-Index Varying-Coefficient Model

    Directory of Open Access Journals (Sweden)

    Yunquan Song

    2013-01-01

    Full Text Available In this paper, we consider a single-index varying-coefficient model with application to longitudinal data. In order to accommodate the within-group correlation, we apply the block empirical likelihood procedure to longitudinal single-index varying-coefficient model, and prove a nonparametric version of Wilks’ theorem which can be used to construct the block empirical likelihood confidence region with asymptotically correct coverage probability for the parametric component. In comparison with normal approximations, the proposed method does not require a consistent estimator for the asymptotic covariance matrix, making it easier to conduct inference for the model's parametric component. Simulations demonstrate how the proposed method works.

  12. Generalized Empirical Likelihood-Based Focused Information Criterion and Model Averaging

    Directory of Open Access Journals (Sweden)

    Naoya Sueishi

    2013-07-01

    Full Text Available This paper develops model selection and averaging methods for moment restriction models. We first propose a focused information criterion based on the generalized empirical likelihood estimator. We address the issue of selecting an optimal model, rather than a correct model, for estimating a specific parameter of interest. Then, this study investigates a generalized empirical likelihood-based model averaging estimator that minimizes the asymptotic mean squared error. A simulation study suggests that our averaging estimator can be a useful alternative to existing post-selection estimators.

  13. A Reliability Test of a Complex System Based on Empirical Likelihood

    OpenAIRE

    Zhou, Yan; Fu, Liya; Zhang, Jun; Hui, Yongchang

    2016-01-01

    To analyze the reliability of a complex system described by minimal paths, an empirical likelihood method is proposed to solve the reliability test problem when the subsystem distributions are unknown. Furthermore, we provide a reliability test statistic of the complex system and extract the limit distribution of the test statistic. Therefore, we can obtain the confidence interval for reliability and make statistical inferences. The simulation studies also demonstrate the theorem results.

  14. Phylogenetic analysis using parsimony and likelihood methods.

    Science.gov (United States)

    Yang, Z

    1996-02-01

    The assumptions underlying the maximum-parsimony (MP) method of phylogenetic tree reconstruction were intuitively examined by studying the way the method works. Computer simulations were performed to corroborate the intuitive examination. Parsimony appears to involve very stringent assumptions concerning the process of sequence evolution, such as constancy of substitution rates between nucleotides, constancy of rates across nucleotide sites, and equal branch lengths in the tree. For practical data analysis, the requirement of equal branch lengths means similar substitution rates among lineages (the existence of an approximate molecular clock), relatively long interior branches, and also few species in the data. However, a small amount of evolution is neither a necessary nor a sufficient requirement of the method. The difficulties involved in the application of current statistical estimation theory to tree reconstruction were discussed, and it was suggested that the approach proposed by Felsenstein (1981, J. Mol. Evol. 17: 368-376) for topology estimation, as well as its many variations and extensions, differs fundamentally from the maximum likelihood estimation of a conventional statistical parameter. Evidence was presented showing that the Felsenstein approach does not share the asymptotic efficiency of the maximum likelihood estimator of a statistical parameter. Computer simulations were performed to study the probability that MP recovers the true tree under a hierarchy of models of nucleotide substitution; its performance relative to the likelihood method was especially noted. The results appeared to support the intuitive examination of the assumptions underlying MP. When a simple model of nucleotide substitution was assumed to generate data, the probability that MP recovers the true topology could be as high as, or even higher than, that for the likelihood method. When the assumed model became more complex and realistic, e.g., when substitution rates were

  15. Comparisons of likelihood and machine learning methods of individual classification

    Science.gov (United States)

    Guinand, B.; Topchy, A.; Page, K.S.; Burnham-Curtis, M. K.; Punch, W.F.; Scribner, K.T.

    2002-01-01

    Classification methods used in machine learning (e.g., artificial neural networks, decision trees, and k-nearest neighbor clustering) are rarely used with population genetic data. We compare different nonparametric machine learning techniques with parametric likelihood estimations commonly employed in population genetics for purposes of assigning individuals to their population of origin (“assignment tests”). Classifier accuracy was compared across simulated data sets representing different levels of population differentiation (low and high FST), number of loci surveyed (5 and 10), and allelic diversity (average of three or eight alleles per locus). Empirical data for the lake trout (Salvelinus namaycush) exhibiting levels of population differentiation comparable to those used in simulations were examined to further evaluate and compare classification methods. Classification error rates associated with artificial neural networks and likelihood estimators were lower for simulated data sets compared to k-nearest neighbor and decision tree classifiers over the entire range of parameters considered. Artificial neural networks only marginally outperformed the likelihood method for simulated data (0–2.8% lower error rates). The relative performance of each machine learning classifier improved relative likelihood estimators for empirical data sets, suggesting an ability to “learn” and utilize properties of empirical genotypic arrays intrinsic to each population. Likelihood-based estimation methods provide a more accessible option for reliable assignment of individuals to the population of origin due to the intricacies in development and evaluation of artificial neural networks. In recent years, characterization of highly polymorphic molecular markers such as mini- and microsatellites and development of novel methods of analysis have enabled researchers to extend investigations of ecological and evolutionary processes below the population level to the level of

  16. Maximum Likelihood and Restricted Likelihood Solutions in Multiple-Method Studies.

    Science.gov (United States)

    Rukhin, Andrew L

    2011-01-01

    A formulation of the problem of combining data from several sources is discussed in terms of random effects models. The unknown measurement precision is assumed not to be the same for all methods. We investigate maximum likelihood solutions in this model. By representing the likelihood equations as simultaneous polynomial equations, the exact form of the Groebner basis for their stationary points is derived when there are two methods. A parametrization of these solutions which allows their comparison is suggested. A numerical method for solving likelihood equations is outlined, and an alternative to the maximum likelihood method, the restricted maximum likelihood, is studied. In the situation when methods variances are considered to be known an upper bound on the between-method variance is obtained. The relationship between likelihood equations and moment-type equations is also discussed.

  17. Use of empirical likelihood to calibrate auxiliary information in partly linear monotone regression models.

    Science.gov (United States)

    Chen, Baojiang; Qin, Jing

    2014-05-10

    In statistical analysis, a regression model is needed if one is interested in finding the relationship between a response variable and covariates. When the response depends on the covariate, then it may also depend on the function of this covariate. If one has no knowledge of this functional form but expect for monotonic increasing or decreasing, then the isotonic regression model is preferable. Estimation of parameters for isotonic regression models is based on the pool-adjacent-violators algorithm (PAVA), where the monotonicity constraints are built in. With missing data, people often employ the augmented estimating method to improve estimation efficiency by incorporating auxiliary information through a working regression model. However, under the framework of the isotonic regression model, the PAVA does not work as the monotonicity constraints are violated. In this paper, we develop an empirical likelihood-based method for isotonic regression model to incorporate the auxiliary information. Because the monotonicity constraints still hold, the PAVA can be used for parameter estimation. Simulation studies demonstrate that the proposed method can yield more efficient estimates, and in some situations, the efficiency improvement is substantial. We apply this method to a dementia study. Copyright © 2013 John Wiley & Sons, Ltd.

  18. Evaluating Fast Maximum Likelihood-Based Phylogenetic Programs Using Empirical Phylogenomic Data Sets

    Science.gov (United States)

    Zhou, Xiaofan; Shen, Xing-Xing; Hittinger, Chris Todd

    2018-01-01

    Abstract The sizes of the data matrices assembled to resolve branches of the tree of life have increased dramatically, motivating the development of programs for fast, yet accurate, inference. For example, several different fast programs have been developed in the very popular maximum likelihood framework, including RAxML/ExaML, PhyML, IQ-TREE, and FastTree. Although these programs are widely used, a systematic evaluation and comparison of their performance using empirical genome-scale data matrices has so far been lacking. To address this question, we evaluated these four programs on 19 empirical phylogenomic data sets with hundreds to thousands of genes and up to 200 taxa with respect to likelihood maximization, tree topology, and computational speed. For single-gene tree inference, we found that the more exhaustive and slower strategies (ten searches per alignment) outperformed faster strategies (one tree search per alignment) using RAxML, PhyML, or IQ-TREE. Interestingly, single-gene trees inferred by the three programs yielded comparable coalescent-based species tree estimations. For concatenation-based species tree inference, IQ-TREE consistently achieved the best-observed likelihoods for all data sets, and RAxML/ExaML was a close second. In contrast, PhyML often failed to complete concatenation-based analyses, whereas FastTree was the fastest but generated lower likelihood values and more dissimilar tree topologies in both types of analyses. Finally, data matrix properties, such as the number of taxa and the strength of phylogenetic signal, sometimes substantially influenced the programs’ relative performance. Our results provide real-world gene and species tree phylogenetic inference benchmarks to inform the design and execution of large-scale phylogenomic data analyses. PMID:29177474

  19. An empirical likelihood ratio test robust to individual heterogeneity for differential expression analysis of RNA-seq.

    Science.gov (United States)

    Xu, Maoqi; Chen, Liang

    2018-01-01

    The individual sample heterogeneity is one of the biggest obstacles in biomarker identification for complex diseases such as cancers. Current statistical models to identify differentially expressed genes between disease and control groups often overlook the substantial human sample heterogeneity. Meanwhile, traditional nonparametric tests lose detailed data information and sacrifice the analysis power, although they are distribution free and robust to heterogeneity. Here, we propose an empirical likelihood ratio test with a mean-variance relationship constraint (ELTSeq) for the differential expression analysis of RNA sequencing (RNA-seq). As a distribution-free nonparametric model, ELTSeq handles individual heterogeneity by estimating an empirical probability for each observation without making any assumption about read-count distribution. It also incorporates a constraint for the read-count overdispersion, which is widely observed in RNA-seq data. ELTSeq demonstrates a significant improvement over existing methods such as edgeR, DESeq, t-tests, Wilcoxon tests and the classic empirical likelihood-ratio test when handling heterogeneous groups. It will significantly advance the transcriptomics studies of cancers and other complex disease. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. Empirical Correction to the Likelihood Ratio Statistic for Structural Equation Modeling with Many Variables.

    Science.gov (United States)

    Yuan, Ke-Hai; Tian, Yubin; Yanagihara, Hirokazu

    2015-06-01

    Survey data typically contain many variables. Structural equation modeling (SEM) is commonly used in analyzing such data. The most widely used statistic for evaluating the adequacy of a SEM model is T ML, a slight modification to the likelihood ratio statistic. Under normality assumption, T ML approximately follows a chi-square distribution when the number of observations (N) is large and the number of items or variables (p) is small. However, in practice, p can be rather large while N is always limited due to not having enough participants. Even with a relatively large N, empirical results show that T ML rejects the correct model too often when p is not too small. Various corrections to T ML have been proposed, but they are mostly heuristic. Following the principle of the Bartlett correction, this paper proposes an empirical approach to correct T ML so that the mean of the resulting statistic approximately equals the degrees of freedom of the nominal chi-square distribution. Results show that empirically corrected statistics follow the nominal chi-square distribution much more closely than previously proposed corrections to T ML, and they control type I errors reasonably well whenever N ≥ max(50,2p). The formulations of the empirically corrected statistics are further used to predict type I errors of T ML as reported in the literature, and they perform well.

  1. Empirical likelihood based detection procedure for change point in mean residual life functions under random censorship.

    Science.gov (United States)

    Chen, Ying-Ju; Ning, Wei; Gupta, Arjun K

    2016-05-01

    The mean residual life (MRL) function is one of the basic parameters of interest in survival analysis that describes the expected remaining time of an individual after a certain age. The study of changes in the MRL function is practical and interesting because it may help us to identify some factors such as age and gender that may influence the remaining lifetimes of patients after receiving a certain surgery. In this paper, we propose a detection procedure based on the empirical likelihood for the changes in MRL functions with right censored data. Two real examples are also given: Veterans' administration lung cancer study and Stanford heart transplant to illustrate the detecting procedure. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  2. Maximum-likelihood method for numerical inversion of Mellin transform

    International Nuclear Information System (INIS)

    Iqbal, M.

    1997-01-01

    A method is described for inverting the Mellin transform which uses an expansion in Laguerre polynomials and converts the Mellin transform to Laplace transform, then the maximum-likelihood regularization method is used to recover the original function of the Mellin transform. The performance of the method is illustrated by the inversion of the test functions available in the literature (J. Inst. Math. Appl., 20 (1977) 73; Math. Comput., 53 (1989) 589). Effectiveness of the method is shown by results obtained through demonstration by means of tables and diagrams

  3. Application of the method of maximum likelihood to the determination of cepheid radii

    International Nuclear Information System (INIS)

    Balona, L.A.

    1977-01-01

    A method is described whereby the radius of any pulsating star can be obtained by applying the Principle of Maximum Likelihood. The relative merits of this method and of the usual Baade-Wesselink method are discussed in an Appendix. The new method is applied to 54 well-observed cepheids which include a number of spectroscopic binaries and two W Vir stars. An empirical period-radius relation is constructed and discussed in terms of two recent period-luminosity-colour calibrations. It is shown that the new method gives radii with an error of no more than 10 per cent. (author)

  4. Empirical likelihood-based confidence intervals for the sensitivity of a continuous-scale diagnostic test at a fixed level of specificity.

    Science.gov (United States)

    Gengsheng Qin; Davis, Angela E; Jing, Bing-Yi

    2011-06-01

    For a continuous-scale diagnostic test, it is often of interest to find the range of the sensitivity of the test at the cut-off that yields a desired specificity. In this article, we first define a profile empirical likelihood ratio for the sensitivity of a continuous-scale diagnostic test and show that its limiting distribution is a scaled chi-square distribution. We then propose two new empirical likelihood-based confidence intervals for the sensitivity of the test at a fixed level of specificity by using the scaled chi-square distribution. Simulation studies are conducted to compare the finite sample performance of the newly proposed intervals with the existing intervals for the sensitivity in terms of coverage probability. A real example is used to illustrate the application of the recommended methods.

  5. The equivalence of information-theoretic and likelihood-based methods for neural dimensionality reduction.

    Directory of Open Access Journals (Sweden)

    Ross S Williamson

    2015-04-01

    Full Text Available Stimulus dimensionality-reduction methods in neuroscience seek to identify a low-dimensional space of stimulus features that affect a neuron's probability of spiking. One popular method, known as maximally informative dimensions (MID, uses an information-theoretic quantity known as "single-spike information" to identify this space. Here we examine MID from a model-based perspective. We show that MID is a maximum-likelihood estimator for the parameters of a linear-nonlinear-Poisson (LNP model, and that the empirical single-spike information corresponds to the normalized log-likelihood under a Poisson model. This equivalence implies that MID does not necessarily find maximally informative stimulus dimensions when spiking is not well described as Poisson. We provide several examples to illustrate this shortcoming, and derive a lower bound on the information lost when spiking is Bernoulli in discrete time bins. To overcome this limitation, we introduce model-based dimensionality reduction methods for neurons with non-Poisson firing statistics, and show that they can be framed equivalently in likelihood-based or information-theoretic terms. Finally, we show how to overcome practical limitations on the number of stimulus dimensions that MID can estimate by constraining the form of the non-parametric nonlinearity in an LNP model. We illustrate these methods with simulations and data from primate visual cortex.

  6. Ringing Artefact Reduction By An Efficient Likelihood Improvement Method

    Science.gov (United States)

    Fuderer, Miha

    1989-10-01

    In MR imaging, the extent of the acquired spatial frequencies of the object is necessarily finite. The resulting image shows artefacts caused by "truncation" of its Fourier components. These are known as Gibbs artefacts or ringing artefacts. These artefacts are particularly. visible when the time-saving reduced acquisition method is used, say, when scanning only the lowest 70% of the 256 data lines. Filtering the data results in loss of resolution. A method is described that estimates the high frequency data from the low-frequency data lines, with the likelihood of the image as criterion. It is a computationally very efficient method, since it requires practically only two extra Fourier transforms, in addition to the normal. reconstruction. The results of this method on MR images of human subjects are promising. Evaluations on a 70% acquisition image show about 20% decrease of the error energy after processing. "Error energy" is defined as the total power of the difference to a 256-data-lines reference image. The elimination of ringing artefacts then appears almost complete..

  7. Elemental composition of cosmic rays using a maximum likelihood method

    International Nuclear Information System (INIS)

    Ruddick, K.

    1996-01-01

    We present a progress report on our attempts to determine the composition of cosmic rays in the knee region of the energy spectrum. We have used three different devices to measure properties of the extensive air showers produced by primary cosmic rays: the Soudan 2 underground detector measures the muon flux deep underground, a proportional tube array samples shower density at the surface of the earth, and a Cherenkov array observes light produced high in the atmosphere. We have begun maximum likelihood fits to these measurements with the hope of determining the nuclear mass number A on an event by event basis. (orig.)

  8. Likelihood ratio data to report the validation of a forensic fingerprint evaluation method

    NARCIS (Netherlands)

    Ramos, Daniel; Haraksim, Rudolf; Meuwly, Didier

    2017-01-01

    Data to which the authors refer to throughout this article are likelihood ratios (LR) computed from the comparison of 5–12 minutiae fingermarks with fingerprints. These LRs data are used for the validation of a likelihood ratio (LR) method in forensic evidence evaluation. These data present a

  9. A guideline for the validation of likelihood ratio methods used for forensic evidence evaluation

    NARCIS (Netherlands)

    Meuwly, Didier; Ramos, Daniel; Haraksim, Rudolf

    2017-01-01

    This Guideline proposes a protocol for the validation of forensic evaluation methods at the source level, using the Likelihood Ratio framework as defined within the Bayes’ inference model. In the context of the inference of identity of source, the Likelihood Ratio is used to evaluate the strength of

  10. Empirical evaluation methods in computer vision

    CERN Document Server

    Christensen, Henrik I

    2002-01-01

    This book provides comprehensive coverage of methods for the empirical evaluation of computer vision techniques. The practical use of computer vision requires empirical evaluation to ensure that the overall system has a guaranteed performance. The book contains articles that cover the design of experiments for evaluation, range image segmentation, the evaluation of face recognition and diffusion methods, image matching using correlation methods, and the performance of medical image processing algorithms. Sample Chapter(s). Foreword (228 KB). Chapter 1: Introduction (505 KB). Contents: Automate

  11. Methods for Calculating Empires in Quasicrystals

    Directory of Open Access Journals (Sweden)

    Fang Fang

    2017-10-01

    Full Text Available This paper reviews the empire problem for quasiperiodic tilings and the existing methods for generating the empires of the vertex configurations in quasicrystals, while introducing a new and more efficient method based on the cut-and-project technique. Using Penrose tiling as an example, this method finds the forced tiles with the restrictions in the high dimensional lattice (the mother lattice that can be cut-and-projected into the lower dimensional quasicrystal. We compare our method to the two existing methods, namely one method that uses the algorithm of the Fibonacci chain to force the Ammann bars in order to find the forced tiles of an empire and the method that follows the work of N.G. de Bruijn on constructing a Penrose tiling as the dual to a pentagrid. This new method is not only conceptually simple and clear, but it also allows us to calculate the empires of the vertex configurations in a defected quasicrystal by reversing the configuration of the quasicrystal to its higher dimensional lattice, where we then apply the restrictions. These advantages may provide a key guiding principle for phason dynamics and an important tool for self error-correction in quasicrystal growth.

  12. Further Evaluation of Covariate Analysis using Empirical Bayes Estimates in Population Pharmacokinetics: the Perception of Shrinkage and Likelihood Ratio Test.

    Science.gov (United States)

    Xu, Xu Steven; Yuan, Min; Yang, Haitao; Feng, Yan; Xu, Jinfeng; Pinheiro, Jose

    2017-01-01

    Covariate analysis based on population pharmacokinetics (PPK) is used to identify clinically relevant factors. The likelihood ratio test (LRT) based on nonlinear mixed effect model fits is currently recommended for covariate identification, whereas individual empirical Bayesian estimates (EBEs) are considered unreliable due to the presence of shrinkage. The objectives of this research were to investigate the type I error for LRT and EBE approaches, to confirm the similarity of power between the LRT and EBE approaches from a previous report and to explore the influence of shrinkage on LRT and EBE inferences. Using an oral one-compartment PK model with a single covariate impacting on clearance, we conducted a wide range of simulations according to a two-way factorial design. The results revealed that the EBE-based regression not only provided almost identical power for detecting a covariate effect, but also controlled the false positive rate better than the LRT approach. Shrinkage of EBEs is likely not the root cause for decrease in power or inflated false positive rate although the size of the covariate effect tends to be underestimated at high shrinkage. In summary, contrary to the current recommendations, EBEs may be a better choice for statistical tests in PPK covariate analysis compared to LRT. We proposed a three-step covariate modeling approach for population PK analysis to utilize the advantages of EBEs while overcoming their shortcomings, which allows not only markedly reducing the run time for population PK analysis, but also providing more accurate covariate tests.

  13. Stability of maximum-likelihood-based clustering methods: exploring the backbone of classifications

    International Nuclear Information System (INIS)

    Mungan, Muhittin; Ramasco, José J

    2010-01-01

    Components of complex systems are often classified according to the way they interact with each other. In graph theory such groups are known as clusters or communities. Many different techniques have been recently proposed to detect them, some of which involve inference methods using either Bayesian or maximum likelihood approaches. In this paper, we study a statistical model designed for detecting clusters based on connection similarity. The basic assumption of the model is that the graph was generated by a certain grouping of the nodes and an expectation maximization algorithm is employed to infer that grouping. We show that the method admits further development to yield a stability analysis of the groupings that quantifies the extent to which each node influences its neighbors' group membership. Our approach naturally allows for the identification of the key elements responsible for the grouping and their resilience to changes in the network. Given the generality of the assumptions underlying the statistical model, such nodes are likely to play special roles in the original system. We illustrate this point by analyzing several empirical networks for which further information about the properties of the nodes is available. The search and identification of stabilizing nodes constitutes thus a novel technique to characterize the relevance of nodes in complex networks

  14. An Empirical Method for Particle Damping Design

    Directory of Open Access Journals (Sweden)

    Zhi Wei Xu

    2004-01-01

    Full Text Available Particle damping is an effective vibration suppression method. The purpose of this paper is to develop an empirical method for particle damping design based on extensive experiments on three structural objects – steel beam, bond arm and bond head stand. The relationships among several key parameters of structure/particles are obtained. Then the procedures with the use of particle damping are proposed to provide guidelines for practical applications. It is believed that the results presented in this paper would be helpful to effectively implement the particle damping for various structural systems for the purpose of vibration suppression.

  15. Preliminary application of maximum likelihood method in HL-2A Thomson scattering system

    International Nuclear Information System (INIS)

    Yao Ke; Huang Yuan; Feng Zhen; Liu Chunhua; Li Enping; Nie Lin

    2010-01-01

    Maximum likelihood method to process the data of HL-2A Thomson scattering system is presented. Using mathematical statistics, this method maximizes the possibility of the likeness between the theoretical data and the observed data, so that we could get more accurate result. It has been proved to be applicable in comparison with that of the ratios method, and some of the drawbacks in ratios method do not exist in this new one. (authors)

  16. Regularization parameter selection methods for ill-posed Poisson maximum likelihood estimation

    International Nuclear Information System (INIS)

    Bardsley, Johnathan M; Goldes, John

    2009-01-01

    In image processing applications, image intensity is often measured via the counting of incident photons emitted by the object of interest. In such cases, image data noise is accurately modeled by a Poisson distribution. This motivates the use of Poisson maximum likelihood estimation for image reconstruction. However, when the underlying model equation is ill-posed, regularization is needed. Regularized Poisson likelihood estimation has been studied extensively by the authors, though a problem of high importance remains: the choice of the regularization parameter. We will present three statistically motivated methods for choosing the regularization parameter, and numerical examples will be presented to illustrate their effectiveness

  17. Average Likelihood Methods of Classification of Code Division Multiple Access (CDMA)

    Science.gov (United States)

    2016-05-01

    subject to code matrices that follows the structure given by (113). [⃗ yR y⃗I ] = √ Es 2L [ GR1 −GI1 GI2 GR2 ] [ QR −QI QI QR ] [⃗ bR b⃗I ] + [⃗ nR n⃗I... QR ] [⃗ b+ b⃗− ] + [⃗ n+ n⃗− ] (115) The average likelihood for type 4 CDMA (116) is a special case of type 1 CDMA with twice the code length and...AVERAGE LIKELIHOOD METHODS OF CLASSIFICATION OF CODE DIVISION MULTIPLE ACCESS (CDMA) MAY 2016 FINAL TECHNICAL REPORT APPROVED FOR PUBLIC RELEASE

  18. Cox regression with missing covariate data using a modified partial likelihood method

    DEFF Research Database (Denmark)

    Martinussen, Torben; Holst, Klaus K.; Scheike, Thomas H.

    2016-01-01

    Missing covariate values is a common problem in survival analysis. In this paper we propose a novel method for the Cox regression model that is close to maximum likelihood but avoids the use of the EM-algorithm. It exploits that the observed hazard function is multiplicative in the baseline hazard...

  19. Validation of Likelihood Ratio Methods Used for Forensic Evidence Evaluation: Application in Forensic Fingerprints

    NARCIS (Netherlands)

    Haraksim, Rudolf

    2014-01-01

    In this chapter the Likelihood Ratio (LR) inference model will be introduced, the theoretical aspects of probabilities will be discussed and the validation framework for LR methods used for forensic evidence evaluation will be presented. Prior to introducing the validation framework, following

  20. Likelihood-based methods for evaluating principal surrogacy in augmented vaccine trials.

    Science.gov (United States)

    Liu, Wei; Zhang, Bo; Zhang, Hui; Zhang, Zhiwei

    2017-04-01

    There is growing interest in assessing immune biomarkers, which are quick to measure and potentially predictive of long-term efficacy, as surrogate endpoints in randomized, placebo-controlled vaccine trials. This can be done under a principal stratification approach, with principal strata defined using a subject's potential immune responses to vaccine and placebo (the latter may be assumed to be zero). In this context, principal surrogacy refers to the extent to which vaccine efficacy varies across principal strata. Because a placebo recipient's potential immune response to vaccine is unobserved in a standard vaccine trial, augmented vaccine trials have been proposed to produce the information needed to evaluate principal surrogacy. This article reviews existing methods based on an estimated likelihood and a pseudo-score (PS) and proposes two new methods based on a semiparametric likelihood (SL) and a pseudo-likelihood (PL), for analyzing augmented vaccine trials. Unlike the PS method, the SL method does not require a model for missingness, which can be advantageous when immune response data are missing by happenstance. The SL method is shown to be asymptotically efficient, and it performs similarly to the PS and PL methods in simulation experiments. The PL method appears to have a computational advantage over the PS and SL methods.

  1. An empirical method for dynamic camouflage assessment

    Science.gov (United States)

    Blitch, John G.

    2011-06-01

    As camouflage systems become increasingly sophisticated in their potential to conceal military personnel and precious cargo, evaluation methods need to evolve as well. This paper presents an overview of one such attempt to explore alternative methods for empirical evaluation of dynamic camouflage systems which aspire to keep pace with a soldier's movement through rapidly changing environments that are typical of urban terrain. Motivating factors are covered first, followed by a description of the Blitz Camouflage Assessment (BCA) process and results from an initial proof of concept experiment conducted in November 2006. The conclusion drawn from these results, related literature and the author's personal experience suggest that operational evaluation of personal camouflage needs to be expanded beyond its foundation in signal detection theory and embrace the challenges posed by high levels of cognitive processing.

  2. Estimation Methods for Non-Homogeneous Regression - Minimum CRPS vs Maximum Likelihood

    Science.gov (United States)

    Gebetsberger, Manuel; Messner, Jakob W.; Mayr, Georg J.; Zeileis, Achim

    2017-04-01

    Non-homogeneous regression models are widely used to statistically post-process numerical weather prediction models. Such regression models correct for errors in mean and variance and are capable to forecast a full probability distribution. In order to estimate the corresponding regression coefficients, CRPS minimization is performed in many meteorological post-processing studies since the last decade. In contrast to maximum likelihood estimation, CRPS minimization is claimed to yield more calibrated forecasts. Theoretically, both scoring rules used as an optimization score should be able to locate a similar and unknown optimum. Discrepancies might result from a wrong distributional assumption of the observed quantity. To address this theoretical concept, this study compares maximum likelihood and minimum CRPS estimation for different distributional assumptions. First, a synthetic case study shows that, for an appropriate distributional assumption, both estimation methods yield to similar regression coefficients. The log-likelihood estimator is slightly more efficient. A real world case study for surface temperature forecasts at different sites in Europe confirms these results but shows that surface temperature does not always follow the classical assumption of a Gaussian distribution. KEYWORDS: ensemble post-processing, maximum likelihood estimation, CRPS minimization, probabilistic temperature forecasting, distributional regression models

  3. Maximum Likelihood Method for Predicting Environmental Conditions from Assemblage Composition: The R Package bio.infer

    Directory of Open Access Journals (Sweden)

    Lester L. Yuan

    2007-06-01

    Full Text Available This paper provides a brief introduction to the R package bio.infer, a set of scripts that facilitates the use of maximum likelihood (ML methods for predicting environmental conditions from assemblage composition. Environmental conditions can often be inferred from only biological data, and these inferences are useful when other sources of data are unavailable. ML prediction methods are statistically rigorous and applicable to a broader set of problems than more commonly used weighted averaging techniques. However, ML methods require a substantially greater investment of time to program algorithms and to perform computations. This package is designed to reduce the effort required to apply ML prediction methods.

  4. The unfolding of NaI(Tl) γ-ray spectrum based on maximum likelihood method

    International Nuclear Information System (INIS)

    Zhang Qingxian; Ge Liangquan; Gu Yi; Zeng Guoqiang; Lin Yanchang; Wang Guangxi

    2011-01-01

    NaI(Tl) detectors, having a good detection efficiency, are used to detect gamma rays in field surveys. But the poor energy resolution hinders their applications, despite the use of traditional methods to resolve the overlapped gamma-ray peaks. In this paper, the maximum likelihood (ML) solution is used to resolve the spectrum. The ML method,which is capable of decomposing the peaks in energy difference of over 2/3 FWHM, is applied to scale NaI(Tl) the spectrometer. The result shows that the net area is in proportion to the content of isotopes and the precision of scaling is better than the stripping ration method. (authors)

  5. Efficient simulation and likelihood methods for non-neutral multi-allele models.

    Science.gov (United States)

    Joyce, Paul; Genz, Alan; Buzbas, Erkan Ozge

    2012-06-01

    Throughout the 1980s, Simon Tavaré made numerous significant contributions to population genetics theory. As genetic data, in particular DNA sequence, became more readily available, a need to connect population-genetic models to data became the central issue. The seminal work of Griffiths and Tavaré (1994a , 1994b , 1994c) was among the first to develop a likelihood method to estimate the population-genetic parameters using full DNA sequences. Now, we are in the genomics era where methods need to scale-up to handle massive data sets, and Tavaré has led the way to new approaches. However, performing statistical inference under non-neutral models has proved elusive. In tribute to Simon Tavaré, we present an article in spirit of his work that provides a computationally tractable method for simulating and analyzing data under a class of non-neutral population-genetic models. Computational methods for approximating likelihood functions and generating samples under a class of allele-frequency based non-neutral parent-independent mutation models were proposed by Donnelly, Nordborg, and Joyce (DNJ) (Donnelly et al., 2001). DNJ (2001) simulated samples of allele frequencies from non-neutral models using neutral models as auxiliary distribution in a rejection algorithm. However, patterns of allele frequencies produced by neutral models are dissimilar to patterns of allele frequencies produced by non-neutral models, making the rejection method inefficient. For example, in some cases the methods in DNJ (2001) require 10(9) rejections before a sample from the non-neutral model is accepted. Our method simulates samples directly from the distribution of non-neutral models, making simulation methods a practical tool to study the behavior of the likelihood and to perform inference on the strength of selection.

  6. FPGA Acceleration of the phylogenetic likelihood function for Bayesian MCMC inference methods

    Directory of Open Access Journals (Sweden)

    Bakos Jason D

    2010-04-01

    Full Text Available Abstract Background Likelihood (ML-based phylogenetic inference has become a popular method for estimating the evolutionary relationships among species based on genomic sequence data. This method is used in applications such as RAxML, GARLI, MrBayes, PAML, and PAUP. The Phylogenetic Likelihood Function (PLF is an important kernel computation for this method. The PLF consists of a loop with no conditional behavior or dependencies between iterations. As such it contains a high potential for exploiting parallelism using micro-architectural techniques. In this paper, we describe a technique for mapping the PLF and supporting logic onto a Field Programmable Gate Array (FPGA-based co-processor. By leveraging the FPGA's on-chip DSP modules and the high-bandwidth local memory attached to the FPGA, the resultant co-processor can accelerate ML-based methods and outperform state-of-the-art multi-core processors. Results We use the MrBayes 3 tool as a framework for designing our co-processor. For large datasets, we estimate that our accelerated MrBayes, if run on a current-generation FPGA, achieves a 10× speedup relative to software running on a state-of-the-art server-class microprocessor. The FPGA-based implementation achieves its performance by deeply pipelining the likelihood computations, performing multiple floating-point operations in parallel, and through a natural log approximation that is chosen specifically to leverage a deeply pipelined custom architecture. Conclusions Heterogeneous computing, which combines general-purpose processors with special-purpose co-processors such as FPGAs and GPUs, is a promising approach for high-performance phylogeny inference as shown by the growing body of literature in this field. FPGAs in particular are well-suited for this task because of their low power consumption as compared to many-core processors and Graphics Processor Units (GPUs 1.

  7. Maximum Simulated Likelihood and Expectation-Maximization Methods to Estimate Random Coefficients Logit with Panel Data

    DEFF Research Database (Denmark)

    Cherchi, Elisabetta; Guevara, Cristian

    2012-01-01

    with cross-sectional or with panel data, and (d) EM systematically attained more efficient estimators than the MSL method. The results imply that if the purpose of the estimation is only to determine the ratios of the model parameters (e.g., the value of time), the EM method should be preferred. For all......The random coefficients logit model allows a more realistic representation of agents' behavior. However, the estimation of that model may involve simulation, which may become impractical with many random coefficients because of the curse of dimensionality. In this paper, the traditional maximum...... simulated likelihood (MSL) method is compared with the alternative expectation- maximization (EM) method, which does not require simulation. Previous literature had shown that for cross-sectional data, MSL outperforms the EM method in the ability to recover the true parameters and estimation time...

  8. Generalized Likelihood Uncertainty Estimation (GLUE) Using Multi-Optimization Algorithm as Sampling Method

    Science.gov (United States)

    Wang, Z.

    2015-12-01

    For decades, distributed and lumped hydrological models have furthered our understanding of hydrological system. The development of hydrological simulation in large scale and high precision elaborated the spatial descriptions and hydrological behaviors. Meanwhile, the new trend is also followed by the increment of model complexity and number of parameters, which brings new challenges of uncertainty quantification. Generalized Likelihood Uncertainty Estimation (GLUE) has been widely used in uncertainty analysis for hydrological models referring to Monte Carlo method coupled with Bayesian estimation. However, the stochastic sampling method of prior parameters adopted by GLUE appears inefficient, especially in high dimensional parameter space. The heuristic optimization algorithms utilizing iterative evolution show better convergence speed and optimality-searching performance. In light of the features of heuristic optimization algorithms, this study adopted genetic algorithm, differential evolution, shuffled complex evolving algorithm to search the parameter space and obtain the parameter sets of large likelihoods. Based on the multi-algorithm sampling, hydrological model uncertainty analysis is conducted by the typical GLUE framework. To demonstrate the superiority of the new method, two hydrological models of different complexity are examined. The results shows the adaptive method tends to be efficient in sampling and effective in uncertainty analysis, providing an alternative path for uncertainty quantilization.

  9. Development of likelihood estimation method for criticality accidents of mixed oxide fuel fabrication facilities

    International Nuclear Information System (INIS)

    Tamaki, Hitoshi; Yoshida, Kazuo; Kimoto, Tatsuya; Hamaguchi, Yoshikane

    2010-01-01

    A criticality accident in a MOX fuel fabrication facility may occur depending on several parameters, such as mass inventory and plutonium enrichment. MOX handling units in the facility are designed and operated based on the double contingency principle to prevent criticality accidents. Control failures of at least two parameters are needed for the occurrence of criticality accident. To evaluate the probability of such control failures, the criticality conditions of each parameter for a specific handling unit are necessary for accident scenario analysis to be clarified quantitatively with a criticality analysis computer code. In addition to this issue, a computer-based control system for mass inventory is planned to be installed into MOX handling equipment in a commercial MOX fuel fabrication plant. The reliability analysis is another important issue in evaluating the likelihood of control failure caused by software malfunction. A likelihood estimation method for criticality accident has been developed with these issues been taken into consideration. In this paper, an example of analysis with the proposed method and the applicability of the method are also shown through a trial application to a model MOX fabrication facility. (author)

  10. Maximum-likelihood methods for array processing based on time-frequency distributions

    Science.gov (United States)

    Zhang, Yimin; Mu, Weifeng; Amin, Moeness G.

    1999-11-01

    This paper proposes a novel time-frequency maximum likelihood (t-f ML) method for direction-of-arrival (DOA) estimation for non- stationary signals, and compares this method with conventional maximum likelihood DOA estimation techniques. Time-frequency distributions localize the signal power in the time-frequency domain, and as such enhance the effective SNR, leading to improved DOA estimation. The localization of signals with different t-f signatures permits the division of the time-frequency domain into smaller regions, each contains fewer signals than those incident on the array. The reduction of the number of signals within different time-frequency regions not only reduces the required number of sensors, but also decreases the computational load in multi- dimensional optimizations. Compared to the recently proposed time- frequency MUSIC (t-f MUSIC), the proposed t-f ML method can be applied in coherent environments, without the need to perform any type of preprocessing that is subject to both array geometry and array aperture.

  11. Maximum Likelihood-Based Methods for Target Velocity Estimation with Distributed MIMO Radar

    Directory of Open Access Journals (Sweden)

    Zhenxin Cao

    2018-02-01

    Full Text Available The estimation problem for target velocity is addressed in this in the scenario with a distributed multi-input multi-out (MIMO radar system. A maximum likelihood (ML-based estimation method is derived with the knowledge of target position. Then, in the scenario without the knowledge of target position, an iterative method is proposed to estimate the target velocity by updating the position information iteratively. Moreover, the Carmér-Rao Lower Bounds (CRLBs for both scenarios are derived, and the performance degradation of velocity estimation without the position information is also expressed. Simulation results show that the proposed estimation methods can approach the CRLBs, and the velocity estimation performance can be further improved by increasing either the number of radar antennas or the information accuracy of the target position. Furthermore, compared with the existing methods, a better estimation performance can be achieved.

  12. Efficient method for computing the maximum-likelihood quantum state from measurements with additive Gaussian noise.

    Science.gov (United States)

    Smolin, John A; Gambetta, Jay M; Smith, Graeme

    2012-02-17

    We provide an efficient method for computing the maximum-likelihood mixed quantum state (with density matrix ρ) given a set of measurement outcomes in a complete orthonormal operator basis subject to Gaussian noise. Our method works by first changing basis yielding a candidate density matrix μ which may have nonphysical (negative) eigenvalues, and then finding the nearest physical state under the 2-norm. Our algorithm takes at worst O(d(4)) for the basis change plus O(d(3)) for finding ρ where d is the dimension of the quantum state. In the special case where the measurement basis is strings of Pauli operators, the basis change takes only O(d(3)) as well. The workhorse of the algorithm is a new linear-time method for finding the closest probability distribution (in Euclidean distance) to a set of real numbers summing to one.

  13. Likelihood ratio data to report the validation of a forensic fingerprint evaluation method

    Directory of Open Access Journals (Sweden)

    Daniel Ramos

    2017-02-01

    Full Text Available Data to which the authors refer to throughout this article are likelihood ratios (LR computed from the comparison of 5–12 minutiae fingermarks with fingerprints. These LRs data are used for the validation of a likelihood ratio (LR method in forensic evidence evaluation. These data present a necessary asset for conducting validation experiments when validating LR methods used in forensic evidence evaluation and set up validation reports. These data can be also used as a baseline for comparing the fingermark evidence in the same minutiae configuration as presented in (D. Meuwly, D. Ramos, R. Haraksim, [1], although the reader should keep in mind that different feature extraction algorithms and different AFIS systems used may produce different LRs values. Moreover, these data may serve as a reproducibility exercise, in order to train the generation of validation reports of forensic methods, according to [1]. Alongside the data, a justification and motivation for the use of methods is given. These methods calculate LRs from the fingerprint/mark data and are subject to a validation procedure. The choice of using real forensic fingerprint in the validation and simulated data in the development is described and justified. Validation criteria are set for the purpose of validation of the LR methods, which are used to calculate the LR values from the data and the validation report. For privacy and data protection reasons, the original fingerprint/mark images cannot be shared. But these images do not constitute the core data for the validation, contrarily to the LRs that are shared.

  14. Empirical methods for estimating future climatic conditions

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    Applying the empirical approach permits the derivation of estimates of the future climate that are nearly independent of conclusions based on theoretical (model) estimates. This creates an opportunity to compare these results with those derived from the model simulations of the forthcoming changes in climate, thus increasing confidence in areas of agreement and focusing research attention on areas of disagreements. The premise underlying this approach for predicting anthropogenic climate change is based on associating the conditions of the climatic optimums of the Holocene, Eemian, and Pliocene with corresponding stages of the projected increase of mean global surface air temperature. Provided that certain assumptions are fulfilled in matching the value of the increased mean temperature for a certain epoch with the model-projected change in global mean temperature in the future, the empirical approach suggests that relationships leading to the regional variations in air temperature and other meteorological elements could be deduced and interpreted based on use of empirical data describing climatic conditions for past warm epochs. Considerable care must be taken, of course, in making use of these spatial relationships, especially in accounting for possible large-scale differences that might, in some cases, result from different factors contributing to past climate changes than future changes and, in other cases, might result from the possible influences of changes in orography and geography on regional climatic conditions over time

  15. Searching for degenerate Higgs bosons using a profile likelihood ratio method

    CERN Document Server

    Heikkilä, Jaana

    ATLAS and CMS collaborations at the Large Hadron Collider have observed a new resonance con- sistent with the standard model Higgs boson. However, it has been suggested that the observed signal could also be produced by multiple nearly mass-degenerate states that couple differently to the standard model particles. In this work, a method to discriminate between the hypothesis of a single Higgs boson and that of multiple mass-degenerate Higgs bosons was developed. Using the matrix of measured signal strengths in different production and decay modes, parametrizations for the two hypotheses were constructed as a general rank 1 matrix and the most general $5 \\times 4$ matrix, respectively. The test statistic was defined as a ratio of profile likelihoods for the two hypotheses. The method was applied to the CMS measurements. The expected test statistic distribution was estimated twice by generating pseudo-experiments according to both the standard model hypothesis and the single Higgs boson hypothesis best fitting...

  16. A guideline for the validation of likelihood ratio methods used for forensic evidence evaluation.

    Science.gov (United States)

    Meuwly, Didier; Ramos, Daniel; Haraksim, Rudolf

    2017-07-01

    This Guideline proposes a protocol for the validation of forensic evaluation methods at the source level, using the Likelihood Ratio framework as defined within the Bayes' inference model. In the context of the inference of identity of source, the Likelihood Ratio is used to evaluate the strength of the evidence for a trace specimen, e.g. a fingermark, and a reference specimen, e.g. a fingerprint, to originate from common or different sources. Some theoretical aspects of probabilities necessary for this Guideline were discussed prior to its elaboration, which started after a workshop of forensic researchers and practitioners involved in this topic. In the workshop, the following questions were addressed: "which aspects of a forensic evaluation scenario need to be validated?", "what is the role of the LR as part of a decision process?" and "how to deal with uncertainty in the LR calculation?". The questions: "what to validate?" focuses on the validation methods and criteria and "how to validate?" deals with the implementation of the validation protocol. Answers to these questions were deemed necessary with several objectives. First, concepts typical for validation standards [1], such as performance characteristics, performance metrics and validation criteria, will be adapted or applied by analogy to the LR framework. Second, a validation strategy will be defined. Third, validation methods will be described. Finally, a validation protocol and an example of validation report will be proposed, which can be applied to the forensic fields developing and validating LR methods for the evaluation of the strength of evidence at source level under the following propositions. Copyright © 2016. Published by Elsevier B.V.

  17. Likelihood ratio meta-analysis: New motivation and approach for an old method.

    Science.gov (United States)

    Dormuth, Colin R; Filion, Kristian B; Platt, Robert W

    2016-03-01

    A 95% confidence interval (CI) in an updated meta-analysis may not have the expected 95% coverage. If a meta-analysis is simply updated with additional data, then the resulting 95% CI will be wrong because it will not have accounted for the fact that the earlier meta-analysis failed or succeeded to exclude the null. This situation can be avoided by using the likelihood ratio (LR) as a measure of evidence that does not depend on type-1 error. We show how an LR-based approach, first advanced by Goodman, can be used in a meta-analysis to pool data from separate studies to quantitatively assess where the total evidence points. The method works by estimating the log-likelihood ratio (LogLR) function from each study. Those functions are then summed to obtain a combined function, which is then used to retrieve the total effect estimate, and a corresponding 'intrinsic' confidence interval. Using as illustrations the CAPRIE trial of clopidogrel versus aspirin in the prevention of ischemic events, and our own meta-analysis of higher potency statins and the risk of acute kidney injury, we show that the LR-based method yields the same point estimate as the traditional analysis, but with an intrinsic confidence interval that is appropriately wider than the traditional 95% CI. The LR-based method can be used to conduct both fixed effect and random effects meta-analyses, it can be applied to old and new meta-analyses alike, and results can be presented in a format that is familiar to a meta-analytic audience. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Philosophy and phylogenetic inference: a comparison of likelihood and parsimony methods in the context of Karl Popper's writings on corroboration.

    Science.gov (United States)

    de Queiroz, K; Poe, S

    2001-06-01

    Advocates of cladistic parsimony methods have invoked the philosophy of Karl Popper in an attempt to argue for the superiority of those methods over phylogenetic methods based on Ronald Fisher's statistical principle of likelihood. We argue that the concept of likelihood in general, and its application to problems of phylogenetic inference in particular, are highly compatible with Popper's philosophy. Examination of Popper's writings reveals that his concept of corroboration is, in fact, based on likelihood. Moreover, because probabilistic assumptions are necessary for calculating the probabilities that define Popper's corroboration, likelihood methods of phylogenetic inference--with their explicit probabilistic basis--are easily reconciled with his concept. In contrast, cladistic parsimony methods, at least as described by certain advocates of those methods, are less easily reconciled with Popper's concept of corroboration. If those methods are interpreted as lacking probabilistic assumptions, then they are incompatible with corroboration. Conversely, if parsimony methods are to be considered compatible with corroboration, then they must be interpreted as carrying implicit probabilistic assumptions. Thus, the non-probabilistic interpretation of cladistic parsimony favored by some advocates of those methods is contradicted by an attempt by the same authors to justify parsimony methods in terms of Popper's concept of corroboration. In addition to being compatible with Popperian corroboration, the likelihood approach to phylogenetic inference permits researchers to test the assumptions of their analytical methods (models) in a way that is consistent with Popper's ideas about the provisional nature of background knowledge.

  19. Bias correction for estimated QTL effects using the penalized maximum likelihood method.

    Science.gov (United States)

    Zhang, J; Yue, C; Zhang, Y-M

    2012-04-01

    A penalized maximum likelihood method has been proposed as an important approach to the detection of epistatic quantitative trait loci (QTL). However, this approach is not optimal in two special situations: (1) closely linked QTL with effects in opposite directions and (2) small-effect QTL, because the method produces downwardly biased estimates of QTL effects. The present study aims to correct the bias by using correction coefficients and shifting from the use of a uniform prior on the variance parameter of a QTL effect to that of a scaled inverse chi-square prior. The results of Monte Carlo simulation experiments show that the improved method increases the power from 25 to 88% in the detection of two closely linked QTL of equal size in opposite directions and from 60 to 80% in the identification of QTL with small effects (0.5% of the total phenotypic variance). We used the improved method to detect QTL responsible for the barley kernel weight trait using 145 doubled haploid lines developed in the North American Barley Genome Mapping Project. Application of the proposed method to other shrinkage estimation of QTL effects is discussed.

  20. Nonuniform Illumination Correction Algorithm for Underwater Images Using Maximum Likelihood Estimation Method

    Directory of Open Access Journals (Sweden)

    Sonali Sachin Sankpal

    2016-01-01

    Full Text Available Scattering and absorption of light is main reason for limited visibility in water. The suspended particles and dissolved chemical compounds in water are also responsible for scattering and absorption of light in water. The limited visibility in water results in degradation of underwater images. The visibility can be increased by using artificial light source in underwater imaging system. But the artificial light illuminates the scene in a nonuniform fashion. It produces bright spot at the center with the dark region at surroundings. In some cases imaging system itself creates dark region in the image by producing shadow on the objects. The problem of nonuniform illumination is neglected by the researchers in most of the image enhancement techniques of underwater images. Also very few methods are discussed showing the results on color images. This paper suggests a method for nonuniform illumination correction for underwater images. The method assumes that natural underwater images are Rayleigh distributed. This paper used maximum likelihood estimation of scale parameter to map distribution of image to Rayleigh distribution. The method is compared with traditional methods for nonuniform illumination correction using no-reference image quality metrics like average luminance, average information entropy, normalized neighborhood function, average contrast, and comprehensive assessment function.

  1. Empirical projection-based basis-component decomposition method

    Science.gov (United States)

    Brendel, Bernhard; Roessl, Ewald; Schlomka, Jens-Peter; Proksa, Roland

    2009-02-01

    Advances in the development of semiconductor based, photon-counting x-ray detectors stimulate research in the domain of energy-resolving pre-clinical and clinical computed tomography (CT). For counting detectors acquiring x-ray attenuation in at least three different energy windows, an extended basis component decomposition can be performed in which in addition to the conventional approach of Alvarez and Macovski a third basis component is introduced, e.g., a gadolinium based CT contrast material. After the decomposition of the measured projection data into the basis component projections, conventional filtered-backprojection reconstruction is performed to obtain the basis-component images. In recent work, this basis component decomposition was obtained by maximizing the likelihood-function of the measurements. This procedure is time consuming and often unstable for excessively noisy data or low intrinsic energy resolution of the detector. Therefore, alternative procedures are of interest. Here, we introduce a generalization of the idea of empirical dual-energy processing published by Stenner et al. to multi-energy, photon-counting CT raw data. Instead of working in the image-domain, we use prior spectral knowledge about the acquisition system (tube spectra, bin sensitivities) to parameterize the line-integrals of the basis component decomposition directly in the projection domain. We compare this empirical approach with the maximum-likelihood (ML) approach considering image noise and image bias (artifacts) and see that only moderate noise increase is to be expected for small bias in the empirical approach. Given the drastic reduction of pre-processing time, the empirical approach is considered a viable alternative to the ML approach.

  2. EQPlanar: a maximum-likelihood method for accurate organ activity estimation from whole body planar projections

    International Nuclear Information System (INIS)

    Song, N; Frey, E C; He, B; Wahl, R L

    2011-01-01

    Optimizing targeted radionuclide therapy requires patient-specific estimation of organ doses. The organ doses are estimated from quantitative nuclear medicine imaging studies, many of which involve planar whole body scans. We have previously developed the quantitative planar (QPlanar) processing method and demonstrated its ability to provide more accurate activity estimates than conventional geometric-mean-based planar (CPlanar) processing methods using physical phantom and simulation studies. The QPlanar method uses the maximum likelihood-expectation maximization algorithm, 3D organ volume of interests (VOIs), and rigorous models of physical image degrading factors to estimate organ activities. However, the QPlanar method requires alignment between the 3D organ VOIs and the 2D planar projections and assumes uniform activity distribution in each VOI. This makes application to patients challenging. As a result, in this paper we propose an extended QPlanar (EQPlanar) method that provides independent-organ rigid registration and includes multiple background regions. We have validated this method using both Monte Carlo simulation and patient data. In the simulation study, we evaluated the precision and accuracy of the method in comparison to the original QPlanar method. For the patient studies, we compared organ activity estimates at 24 h after injection with those from conventional geometric mean-based planar quantification using a 24 h post-injection quantitative SPECT reconstruction as the gold standard. We also compared the goodness of fit of the measured and estimated projections obtained from the EQPlanar method to those from the original method at four other time points where gold standard data were not available. In the simulation study, more accurate activity estimates were provided by the EQPlanar method for all the organs at all the time points compared with the QPlanar method. Based on the patient data, we concluded that the EQPlanar method provided a

  3. Evolutionary analysis of apolipoprotein E by Maximum Likelihood and complex network methods

    Directory of Open Access Journals (Sweden)

    Leandro de Jesus Benevides

    Full Text Available Abstract Apolipoprotein E (apo E is a human glycoprotein with 299 amino acids, and it is a major component of very low density lipoproteins (VLDL and a group of high-density lipoproteins (HDL. Phylogenetic studies are important to clarify how various apo E proteins are related in groups of organisms and whether they evolved from a common ancestor. Here, we aimed at performing a phylogenetic study on apo E carrying organisms. We employed a classical and robust method, such as Maximum Likelihood (ML, and compared the results using a more recent approach based on complex networks. Thirty-two apo E amino acid sequences were downloaded from NCBI. A clear separation could be observed among three major groups: mammals, fish and amphibians. The results obtained from ML method, as well as from the constructed networks showed two different groups: one with mammals only (C1 and another with fish (C2, and a single node with the single sequence available for an amphibian. The accordance in results from the different methods shows that the complex networks approach is effective in phylogenetic studies. Furthermore, our results revealed the conservation of apo E among animal groups.

  4. THE GENERALIZED MAXIMUM LIKELIHOOD METHOD APPLIED TO HIGH PRESSURE PHASE EQUILIBRIUM

    Directory of Open Access Journals (Sweden)

    Lúcio CARDOZO-FILHO

    1997-12-01

    Full Text Available The generalized maximum likelihood method was used to determine binary interaction parameters between carbon dioxide and components of orange essential oil. Vapor-liquid equilibrium was modeled with Peng-Robinson and Soave-Redlich-Kwong equations, using a methodology proposed in 1979 by Asselineau, Bogdanic and Vidal. Experimental vapor-liquid equilibrium data on binary mixtures formed with carbon dioxide and compounds usually found in orange essential oil were used to test the model. These systems were chosen to demonstrate that the maximum likelihood method produces binary interaction parameters for cubic equations of state capable of satisfactorily describing phase equilibrium, even for a binary such as ethanol/CO2. Results corroborate that the Peng-Robinson, as well as the Soave-Redlich-Kwong, equation can be used to describe phase equilibrium for the following systems: components of essential oil of orange/CO2.Foi empregado o método da máxima verossimilhança generalizado para determinação de parâmetros de interação binária entre os componentes do óleo essencial de laranja e dióxido de carbono. Foram usados dados experimentais de equilíbrio líquido-vapor de misturas binárias de dióxido de carbono e componentes do óleo essencial de laranja. O equilíbrio líquido-vapor foi modelado com as equações de Peng-Robinson e de Soave-Redlich-Kwong usando a metodologia proposta em 1979 por Asselineau, Bogdanic e Vidal. A escolha destes sistemas teve como objetivo demonstrar que o método da máxima verosimilhança produz parâmetros de interação binária, para equações cúbicas de estado capazes de descrever satisfatoriamente até mesmo o equilíbrio para o binário etanol/CO2. Os resultados comprovam que tanto a equação de Peng-Robinson quanto a de Soave-Redlich-Kwong podem ser empregadas para descrever o equilíbrio de fases para o sistemas: componentes do óleo essencial de laranja/CO2.

  5. Failed refutations: further comments on parsimony and likelihood methods and their relationship to Popper's degree of corroboration.

    Science.gov (United States)

    de Queiroz, Kevin; Poe, Steven

    2003-06-01

    Kluge's (2001, Syst. Biol. 50:322-330) continued arguments that phylogenetic methods based on the statistical principle of likelihood are incompatible with the philosophy of science described by Karl Popper are based on false premises related to Kluge's misrepresentations of Popper's philosophy. Contrary to Kluge's conjectures, likelihood methods are not inherently verificationist; they do not treat every instance of a hypothesis as confirmation of that hypothesis. The historical nature of phylogeny does not preclude phylogenetic hypotheses from being evaluated using the probability of evidence. The low absolute probabilities of hypotheses are irrelevant to the correct interpretation of Popper's concept termed degree of corroboration, which is defined entirely in terms of relative probabilities. Popper did not advocate minimizing background knowledge; in any case, the background knowledge of both parsimony and likelihood methods consists of the general assumption of descent with modification and additional assumptions that are deterministic, concerning which tree is considered most highly corroborated. Although parsimony methods do not assume (in the sense of entailing) that homoplasy is rare, they do assume (in the sense of requiring to obtain a correct phylogenetic inference) certain things about patterns of homoplasy. Both parsimony and likelihood methods assume (in the sense of implying by the manner in which they operate) various things about evolutionary processes, although violation of those assumptions does not always cause the methods to yield incorrect phylogenetic inferences. Test severity is increased by sampling additional relevant characters rather than by character reanalysis, although either interpretation is compatible with the use of phylogenetic likelihood methods. Neither parsimony nor likelihood methods assess test severity (critical evidence) when used to identify a most highly corroborated tree(s) based on a single method or model and a

  6. MEGA5: Molecular Evolutionary Genetics Analysis Using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods

    Science.gov (United States)

    Tamura, Koichiro; Peterson, Daniel; Peterson, Nicholas; Stecher, Glen; Nei, Masatoshi; Kumar, Sudhir

    2011-01-01

    Comparative analysis of molecular sequence data is essential for reconstructing the evolutionary histories of species and inferring the nature and extent of selective forces shaping the evolution of genes and species. Here, we announce the release of Molecular Evolutionary Genetics Analysis version 5 (MEGA5), which is a user-friendly software for mining online databases, building sequence alignments and phylogenetic trees, and using methods of evolutionary bioinformatics in basic biology, biomedicine, and evolution. The newest addition in MEGA5 is a collection of maximum likelihood (ML) analyses for inferring evolutionary trees, selecting best-fit substitution models (nucleotide or amino acid), inferring ancestral states and sequences (along with probabilities), and estimating evolutionary rates site-by-site. In computer simulation analyses, ML tree inference algorithms in MEGA5 compared favorably with other software packages in terms of computational efficiency and the accuracy of the estimates of phylogenetic trees, substitution parameters, and rate variation among sites. The MEGA user interface has now been enhanced to be activity driven to make it easier for the use of both beginners and experienced scientists. This version of MEGA is intended for the Windows platform, and it has been configured for effective use on Mac OS X and Linux desktops. It is available free of charge from http://www.megasoftware.net. PMID:21546353

  7. Empirical pillar design methods review report: Final report

    International Nuclear Information System (INIS)

    1988-02-01

    This report summarizes and evaluates empirical pillar design methods that may be of use during the conceptual design of a high-level nuclear waste repository in salt. The methods are discussed according to category (i.e, main, submain, and panel pillars; barrier pillars; and shaft pillars). Of the 21 identified for main, submain, and panel pillars, one method, the Confined Core Method, is evaluated as being most appropriate for conceptual design. Five methods are considered potentially applicable. Of six methods identified for barrier pillars, one method based on the Load Transfer Distance concept is considered most appropriate for design. Based on the evaluation of 25 methods identified for shaft pillars, an approximate sizing criterion is proposed for use in conceptual design. Aspects of pillar performance relating to creep, ground deformation, interaction with roof and floor rock, and response to high temperature environments are not adequately addressed by existing empirical design methods. 152 refs., 22 figs., 14 tabs

  8. Application of the Method of Maximum Likelihood to Identification of Bipedal Walking Robots

    Czech Academy of Sciences Publication Activity Database

    Dolinský, Kamil; Čelikovský, Sergej

    (2017) ISSN 1063-6536 R&D Projects: GA ČR(CZ) GA17-04682S Institutional support: RVO:67985556 Keywords : Control * identification * maximum likelihood (ML) * walking robots Subject RIV: BC - Control Systems Theory Impact factor: 3.882, year: 2016 http://ieeexplore.ieee.org/document/7954032/

  9. Approximate Likelihood

    CERN Multimedia

    CERN. Geneva

    2015-01-01

    Most physics results at the LHC end in a likelihood ratio test. This includes discovery and exclusion for searches as well as mass, cross-section, and coupling measurements. The use of Machine Learning (multivariate) algorithms in HEP is mainly restricted to searches, which can be reduced to classification between two fixed distributions: signal vs. background. I will show how we can extend the use of ML classifiers to distributions parameterized by physical quantities like masses and couplings as well as nuisance parameters associated to systematic uncertainties. This allows for one to approximate the likelihood ratio while still using a high dimensional feature vector for the data. Both the MEM and ABC approaches mentioned above aim to provide inference on model parameters (like cross-sections, masses, couplings, etc.). ABC is fundamentally tied Bayesian inference and focuses on the “likelihood free” setting where only a simulator is available and one cannot directly compute the likelihood for the dat...

  10. Empirical Evidence or Intuition? An Activity Involving the Scientific Method

    Science.gov (United States)

    Overway, Ken

    2007-01-01

    Students need to have basic understanding of scientific method during their introductory science classes and for this purpose an activity was devised which involved a game based on famous Monty Hall game problem. This particular activity allowed students to banish or confirm their intuition based on empirical evidence.

  11. Discrimination method of large log-likelihood study in differential diagnosis of pulmonary diffuse mild micro-nodule

    International Nuclear Information System (INIS)

    Chen Budong; Ma Daqing; He Wen; Tang Hongqu; Qian Linxue; Zhou Ronglin

    2001-01-01

    Objective: To analyze HRCT and thin-slice CT scan findings in 150 patients with pulmonary diffuse mild micro-nodule, and to find the features with the purpose of identifying random micro-nodule, peri-lymphatic micro-nodule, and centrilobular micro-nodule. Methods: The useful features i 150 patients with pulmonary diffuse mild micro-nodule were translated into scores by means of discrimination method of large log-likelihood to identify the micro-nodular category. Results: The accuracy of diagnosis was 94.0% for random micro-nodule, 76.0% for peri-lymphatic micro-nodule, and 90.0% for centrilobular micro-nodule. Conclusion: HRCT and thin-slice CT scans were helpful in differential diagnosis of pulmonary diffuse mild micro-nodule. The discrimination method of large log-likelihood was propitious to diagnosis and differential diagnosis

  12. Empirical training for conditional random fields

    NARCIS (Netherlands)

    Zhu, Zhemin; Hiemstra, Djoerd; Apers, Peter M.G.; Wombacher, Andreas

    2013-01-01

    In this paper (Zhu et al., 2013), we present a practi- cally scalable training method for CRFs called Empir- ical Training (EP). We show that the standard train- ing with unregularized log likelihood can have many maximum likelihood estimations (MLEs). Empirical training has a unique closed form MLE

  13. New BFA Method Based on Attractor Neural Network and Likelihood Maximization

    Czech Academy of Sciences Publication Activity Database

    Frolov, A. A.; Húsek, Dušan; Polyakov, P.Y.; Snášel, V.

    2014-01-01

    Roč. 132, 20 May (2014), s. 14-29 ISSN 0925-2312 Grant - others:GA MŠk(CZ) ED1.1.00/02.0070; GA MŠk(CZ) EE.2.3.20.0073 Program:ED Institutional support: RVO:67985807 Keywords : recurrent neural network * associative memory * Hebbian learning rule * neural network application * data mining * statistics * Boolean factor analysis * information gain * dimension reduction * likelihood-maximization * bars problem Subject RIV: IN - Informatics, Computer Science Impact factor: 2.083, year: 2014

  14. Climate reconstruction analysis using coexistence likelihood estimation (CRACLE): a method for the estimation of climate using vegetation.

    Science.gov (United States)

    Harbert, Robert S; Nixon, Kevin C

    2015-08-01

    • Plant distributions have long been understood to be correlated with the environmental conditions to which species are adapted. Climate is one of the major components driving species distributions. Therefore, it is expected that the plants coexisting in a community are reflective of the local environment, particularly climate.• Presented here is a method for the estimation of climate from local plant species coexistence data. The method, Climate Reconstruction Analysis using Coexistence Likelihood Estimation (CRACLE), is a likelihood-based method that employs specimen collection data at a global scale for the inference of species climate tolerance. CRACLE calculates the maximum joint likelihood of coexistence given individual species climate tolerance characterization to estimate the expected climate.• Plant distribution data for more than 4000 species were used to show that this method accurately infers expected climate profiles for 165 sites with diverse climatic conditions. Estimates differ from the WorldClim global climate model by less than 1.5°C on average for mean annual temperature and less than ∼250 mm for mean annual precipitation. This is a significant improvement upon other plant-based climate-proxy methods.• CRACLE validates long hypothesized interactions between climate and local associations of plant species. Furthermore, CRACLE successfully estimates climate that is consistent with the widely used WorldClim model and therefore may be applied to the quantitative estimation of paleoclimate in future studies. © 2015 Botanical Society of America, Inc.

  15. Towards Multi-Method Research Approach in Empirical Software Engineering

    Science.gov (United States)

    Mandić, Vladimir; Markkula, Jouni; Oivo, Markku

    This paper presents results of a literature analysis on Empirical Research Approaches in Software Engineering (SE). The analysis explores reasons why traditional methods, such as statistical hypothesis testing and experiment replication are weakly utilized in the field of SE. It appears that basic assumptions and preconditions of the traditional methods are contradicting the actual situation in the SE. Furthermore, we have identified main issues that should be considered by the researcher when selecting the research approach. In virtue of reasons for weak utilization of traditional methods we propose stronger use of Multi-Method approach with Pragmatism as the philosophical standpoint.

  16. Semi-Parametric Maximum Likelihood Method for Interaction in Case-Mother Control-Mother Designs: Package SPmlficmcm

    Directory of Open Access Journals (Sweden)

    Moliere Nguile-Makao

    2015-12-01

    Full Text Available The analysis of interaction effects involving genetic variants and environmental exposures on the risk of adverse obstetric and early-life outcomes is generally performed using standard logistic regression in the case-mother and control-mother design. However such an analysis is inefficient because it does not take into account the natural family-based constraints present in the parent-child relationship. Recently, a new approach based on semi-parametric maximum likelihood estimation was proposed. The advantage of this approach is that it takes into account the parental relationship between the mother and her child in estimation. But a package implementing this method has not been widely available. In this paper, we present SPmlficmcm, an R package implementing this new method and we propose an extension of the method to handle missing offspring genotype data by maximum likelihood estimation. Our choice to treat missing data of the offspring genotype was motivated by the fact that in genetic association studies where the genetic data of mother and child are available, there are usually more missing data on the genotype of the offspring than that of the mother. The package builds a non-linear system from the data and solves and computes the estimates from the gradient and the Hessian matrix of the log profile semi-parametric likelihood function. Finally, we analyze a simulated dataset to show the usefulness of the package.

  17. Detecting the contagion effect in mass killings; a constructive example of the statistical advantages of unbinned likelihood methods.

    Science.gov (United States)

    Towers, Sherry; Mubayi, Anuj; Castillo-Chavez, Carlos

    2018-01-01

    When attempting to statistically distinguish between a null and an alternative hypothesis, many researchers in the life and social sciences turn to binned statistical analysis methods, or methods that are simply based on the moments of a distribution (such as the mean, and variance). These methods have the advantage of simplicity of implementation, and simplicity of explanation. However, when null and alternative hypotheses manifest themselves in subtle differences in patterns in the data, binned analysis methods may be insensitive to these differences, and researchers may erroneously fail to reject the null hypothesis when in fact more sensitive statistical analysis methods might produce a different result when the null hypothesis is actually false. Here, with a focus on two recent conflicting studies of contagion in mass killings as instructive examples, we discuss how the use of unbinned likelihood methods makes optimal use of the information in the data; a fact that has been long known in statistical theory, but perhaps is not as widely appreciated amongst general researchers in the life and social sciences. In 2015, Towers et al published a paper that quantified the long-suspected contagion effect in mass killings. However, in 2017, Lankford & Tomek subsequently published a paper, based upon the same data, that claimed to contradict the results of the earlier study. The former used unbinned likelihood methods, and the latter used binned methods, and comparison of distribution moments. Using these analyses, we also discuss how visualization of the data can aid in determination of the most appropriate statistical analysis methods to distinguish between a null and alternate hypothesis. We also discuss the importance of assessment of the robustness of analysis results to methodological assumptions made (for example, arbitrary choices of number of bins and bin widths when using binned methods); an issue that is widely overlooked in the literature, but is critical

  18. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0.

    Science.gov (United States)

    Guindon, Stéphane; Dufayard, Jean-François; Lefort, Vincent; Anisimova, Maria; Hordijk, Wim; Gascuel, Olivier

    2010-05-01

    PhyML is a phylogeny software based on the maximum-likelihood principle. Early PhyML versions used a fast algorithm performing nearest neighbor interchanges to improve a reasonable starting tree topology. Since the original publication (Guindon S., Gascuel O. 2003. A simple, fast and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst. Biol. 52:696-704), PhyML has been widely used (>2500 citations in ISI Web of Science) because of its simplicity and a fair compromise between accuracy and speed. In the meantime, research around PhyML has continued, and this article describes the new algorithms and methods implemented in the program. First, we introduce a new algorithm to search the tree space with user-defined intensity using subtree pruning and regrafting topological moves. The parsimony criterion is used here to filter out the least promising topology modifications with respect to the likelihood function. The analysis of a large collection of real nucleotide and amino acid data sets of various sizes demonstrates the good performance of this method. Second, we describe a new test to assess the support of the data for internal branches of a phylogeny. This approach extends the recently proposed approximate likelihood-ratio test and relies on a nonparametric, Shimodaira-Hasegawa-like procedure. A detailed analysis of real alignments sheds light on the links between this new approach and the more classical nonparametric bootstrap method. Overall, our tests show that the last version (3.0) of PhyML is fast, accurate, stable, and ready to use. A Web server and binary files are available from http://www.atgc-montpellier.fr/phyml/.

  19. APPLICATION OF A GENERALIZED MAXIMUM LIKELIHOOD METHOD IN THE REDUCTION OF MULTICOMPONENT LIQUID-LIQUID EQUILIBRIUM DATA

    Directory of Open Access Journals (Sweden)

    L. STRAGEVITCH

    1997-03-01

    Full Text Available The equations of the method based on the maximum likelihood principle have been rewritten in a suitable generalized form to allow the use of any number of implicit constraints in the determination of model parameters from experimental data and from the associated experimental uncertainties. In addition to the use of any number of constraints, this method also allows data, with different numbers of constraints, to be reduced simultaneously. Application of the method is illustrated in the reduction of liquid-liquid equilibrium data of binary, ternary and quaternary systems simultaneously

  20. The phylogenetic likelihood library.

    Science.gov (United States)

    Flouri, T; Izquierdo-Carrasco, F; Darriba, D; Aberer, A J; Nguyen, L-T; Minh, B Q; Von Haeseler, A; Stamatakis, A

    2015-03-01

    We introduce the Phylogenetic Likelihood Library (PLL), a highly optimized application programming interface for developing likelihood-based phylogenetic inference and postanalysis software. The PLL implements appropriate data structures and functions that allow users to quickly implement common, error-prone, and labor-intensive tasks, such as likelihood calculations, model parameter as well as branch length optimization, and tree space exploration. The highly optimized and parallelized implementation of the phylogenetic likelihood function and a thorough documentation provide a framework for rapid development of scalable parallel phylogenetic software. By example of two likelihood-based phylogenetic codes we show that the PLL improves the sequential performance of current software by a factor of 2-10 while requiring only 1 month of programming time for integration. We show that, when numerical scaling for preventing floating point underflow is enabled, the double precision likelihood calculations in the PLL are up to 1.9 times faster than those in BEAGLE. On an empirical DNA dataset with 2000 taxa the AVX version of PLL is 4 times faster than BEAGLE (scaling enabled and required). The PLL is available at http://www.libpll.org under the GNU General Public License (GPL). © The Author(s) 2014. Published by Oxford University Press, on behalf of the Society of Systematic Biologists.

  1. Can Machines Learn Respiratory Virus Epidemiology?: A Comparative Study of Likelihood-Free Methods for the Estimation of Epidemiological Dynamics

    Directory of Open Access Journals (Sweden)

    Heidi L. Tessmer

    2018-03-01

    Full Text Available To estimate and predict the transmission dynamics of respiratory viruses, the estimation of the basic reproduction number, R0, is essential. Recently, approximate Bayesian computation methods have been used as likelihood free methods to estimate epidemiological model parameters, particularly R0. In this paper, we explore various machine learning approaches, the multi-layer perceptron, convolutional neural network, and long-short term memory, to learn and estimate the parameters. Further, we compare the accuracy of the estimates and time requirements for machine learning and the approximate Bayesian computation methods on both simulated and real-world epidemiological data from outbreaks of influenza A(H1N1pdm09, mumps, and measles. We find that the machine learning approaches can be verified and tested faster than the approximate Bayesian computation method, but that the approximate Bayesian computation method is more robust across different datasets.

  2. Use of (D, MUF) and maximum-likelihood methods for detecting falsification and diversion in data-verification problems

    International Nuclear Information System (INIS)

    Goldman, A.S.; Beedgen, R.

    1982-01-01

    The investigation of data falsification and/or diversion is of major concern in nuclear materials accounting procedures used in international safeguards. In this paper, two procedures, denoted by (D,MUF) and LR (Likelihood Ratio), are discussed and compared when testing the hypothesis that neither diversion nor falsification has taken place versus the one-sided alternative that at least one of these parameters is positive. Critical regions and detection probabilities are given for both tests. It is shown that the LR method outperforms (D,MUF) when diversion and falsification take place

  3. Analytical maximum-likelihood method to detect patterns in real networks

    International Nuclear Information System (INIS)

    Squartini, Tiziano; Garlaschelli, Diego

    2011-01-01

    In order to detect patterns in real networks, randomized graph ensembles that preserve only part of the topology of an observed network are systematically used as fundamental null models. However, the generation of them is still problematic. Existing approaches are either computationally demanding and beyond analytic control or analytically accessible but highly approximate. Here, we propose a solution to this long-standing problem by introducing a fast method that allows one to obtain expectation values and standard deviations of any topological property analytically, for any binary, weighted, directed or undirected network. Remarkably, the time required to obtain the expectation value of any property analytically across the entire graph ensemble is as short as that required to compute the same property using the adjacency matrix of the single original network. Our method reveals that the null behavior of various correlation properties is different from what was believed previously, and is highly sensitive to the particular network considered. Moreover, our approach shows that important structural properties (such as the modularity used in community detection problems) are currently based on incorrect expressions, and provides the exact quantities that should replace them.

  4. Performance and separation occurrence of binary probit regression estimator using maximum likelihood method and Firths approach under different sample size

    Science.gov (United States)

    Lusiana, Evellin Dewi

    2017-12-01

    The parameters of binary probit regression model are commonly estimated by using Maximum Likelihood Estimation (MLE) method. However, MLE method has limitation if the binary data contains separation. Separation is the condition where there are one or several independent variables that exactly grouped the categories in binary response. It will result the estimators of MLE method become non-convergent, so that they cannot be used in modeling. One of the effort to resolve the separation is using Firths approach instead. This research has two aims. First, to identify the chance of separation occurrence in binary probit regression model between MLE method and Firths approach. Second, to compare the performance of binary probit regression model estimator that obtained by MLE method and Firths approach using RMSE criteria. Those are performed using simulation method and under different sample size. The results showed that the chance of separation occurrence in MLE method for small sample size is higher than Firths approach. On the other hand, for larger sample size, the probability decreased and relatively identic between MLE method and Firths approach. Meanwhile, Firths estimators have smaller RMSE than MLEs especially for smaller sample sizes. But for larger sample sizes, the RMSEs are not much different. It means that Firths estimators outperformed MLE estimator.

  5. Practical aspects of a maximum likelihood estimation method to extract stability and control derivatives from flight data

    Science.gov (United States)

    Iliff, K. W.; Maine, R. E.

    1976-01-01

    A maximum likelihood estimation method was applied to flight data and procedures to facilitate the routine analysis of a large amount of flight data were described. Techniques that can be used to obtain stability and control derivatives from aircraft maneuvers that are less than ideal for this purpose are described. The techniques involve detecting and correcting the effects of dependent or nearly dependent variables, structural vibration, data drift, inadequate instrumentation, and difficulties with the data acquisition system and the mathematical model. The use of uncertainty levels and multiple maneuver analysis also proved to be useful in improving the quality of the estimated coefficients. The procedures used for editing the data and for overall analysis are also discussed.

  6. Empirical method for simulation of water tables by digital computers

    International Nuclear Information System (INIS)

    Carnahan, C.L.; Fenske, P.R.

    1975-09-01

    An empirical method is described for computing a matrix of water-table elevations from a matrix of topographic elevations and a set of observed water-elevation control points which may be distributed randomly over the area of interest. The method is applicable to regions, such as the Great Basin, where the water table can be assumed to conform to a subdued image of overlying topography. A first approximation to the water table is computed by smoothing a matrix of topographic elevations and adjusting each node of the smoothed matrix according to a linear regression between observed water elevations and smoothed topographic elevations. Each observed control point is assumed to exert a radially decreasing influence on the first approximation surface. The first approximation is then adjusted further to conform to observed water-table elevations near control points. Outside the domain of control, the first approximation is assumed to represent the most probable configuration of the water table. The method has been applied to the Nevada Test Site and the Hot Creek Valley areas in Nevada

  7. Efficient Detection of Repeating Sites to Accelerate Phylogenetic Likelihood Calculations.

    Science.gov (United States)

    Kobert, K; Stamatakis, A; Flouri, T

    2017-03-01

    The phylogenetic likelihood function (PLF) is the major computational bottleneck in several applications of evolutionary biology such as phylogenetic inference, species delimitation, model selection, and divergence times estimation. Given the alignment, a tree and the evolutionary model parameters, the likelihood function computes the conditional likelihood vectors for every node of the tree. Vector entries for which all input data are identical result in redundant likelihood operations which, in turn, yield identical conditional values. Such operations can be omitted for improving run-time and, using appropriate data structures, reducing memory usage. We present a fast, novel method for identifying and omitting such redundant operations in phylogenetic likelihood calculations, and assess the performance improvement and memory savings attained by our method. Using empirical and simulated data sets, we show that a prototype implementation of our method yields up to 12-fold speedups and uses up to 78% less memory than one of the fastest and most highly tuned implementations of the PLF currently available. Our method is generic and can seamlessly be integrated into any phylogenetic likelihood implementation. [Algorithms; maximum likelihood; phylogenetic likelihood function; phylogenetics]. © The Author(s) 2016. Published by Oxford University Press, on behalf of the Society of Systematic Biologists.

  8. An empirical method to estimate bulk particulate refractive index for ocean satellite applications

    Digital Repository Service at National Institute of Oceanography (India)

    Suresh, T.; Desa, E.; Mascarenhas, A.A.M.Q.; Matondkar, S.G.P.; Naik, P.; Nayak, S.R.

    An empirical method is presented here to estimates bulk particulate refractive index using the measured inherent and apparent optical properties from the various waters types of the Arabian Sea. The empirical model, where the bulk refractive index...

  9. Estimation of Cumulative Absolute Velocity using Empirical Green's Function Method

    International Nuclear Information System (INIS)

    Park, Dong Hee; Yun, Kwan Hee; Chang, Chun Joong; Park, Se Moon

    2009-01-01

    In recognition of the needs to develop a new criterion for determining when the OBE (Operating Basis Earthquake) has been exceeded at nuclear power plants, Cumulative Absolute Velocity (CAV) was introduced by EPRI. The concept of CAV is the area accumulation with the values more than 0.025g occurred during every one second. The equation of the CAV is as follows. CAV = ∫ 0 max |a(t)|dt (1) t max = duration of record, a(t) = acceleration (>0.025g) Currently, the OBE exceedance criteria in Korea is Peak Ground Acceleration (PGA, PGA>0.1g). When Odesan earthquake (M L =4.8, January 20th, 2007) and Gyeongju earthquake (M L =3.4, June 2nd, 1999) were occurred, we have had already experiences of PGA greater than 0.1g that did not even cause any damage to the poorly-designed structures nearby. This moderate earthquake has motivated Korea to begin the use of the CAV for OBE exceedance criteria for NPPs. Because the present OBE level has proved itself to be a poor indicator for small-to-moderate earthquakes, for which the low OBE level can cause an inappropriate shut down the plant. A more serious possibility is that this scenario will become a reality at a very high level. Empirical Green's Function method was a simulation technique which can estimate the CAV value and it is hereby introduced

  10. Employing a Monte Carlo algorithm in Newton-type methods for restricted maximum likelihood estimation of genetic parameters.

    Directory of Open Access Journals (Sweden)

    Kaarina Matilainen

    Full Text Available Estimation of variance components by Monte Carlo (MC expectation maximization (EM restricted maximum likelihood (REML is computationally efficient for large data sets and complex linear mixed effects models. However, efficiency may be lost due to the need for a large number of iterations of the EM algorithm. To decrease the computing time we explored the use of faster converging Newton-type algorithms within MC REML implementations. The implemented algorithms were: MC Newton-Raphson (NR, where the information matrix was generated via sampling; MC average information(AI, where the information was computed as an average of observed and expected information; and MC Broyden's method, where the zero of the gradient was searched using a quasi-Newton-type algorithm. Performance of these algorithms was evaluated using simulated data. The final estimates were in good agreement with corresponding analytical ones. MC NR REML and MC AI REML enhanced convergence compared to MC EM REML and gave standard errors for the estimates as a by-product. MC NR REML required a larger number of MC samples, while each MC AI REML iteration demanded extra solving of mixed model equations by the number of parameters to be estimated. MC Broyden's method required the largest number of MC samples with our small data and did not give standard errors for the parameters directly. We studied the performance of three different convergence criteria for the MC AI REML algorithm. Our results indicate the importance of defining a suitable convergence criterion and critical value in order to obtain an efficient Newton-type method utilizing a MC algorithm. Overall, use of a MC algorithm with Newton-type methods proved feasible and the results encourage testing of these methods with different kinds of large-scale problem settings.

  11. An Accurate Method for Inferring Relatedness in Large Datasets of Unphased Genotypes via an Embedded Likelihood-Ratio Test

    KAUST Repository

    Rodriguez, Jesse M.

    2013-01-01

    Studies that map disease genes rely on accurate annotations that indicate whether individuals in the studied cohorts are related to each other or not. For example, in genome-wide association studies, the cohort members are assumed to be unrelated to one another. Investigators can correct for individuals in a cohort with previously-unknown shared familial descent by detecting genomic segments that are shared between them, which are considered to be identical by descent (IBD). Alternatively, elevated frequencies of IBD segments near a particular locus among affected individuals can be indicative of a disease-associated gene. As genotyping studies grow to use increasingly large sample sizes and meta-analyses begin to include many data sets, accurate and efficient detection of hidden relatedness becomes a challenge. To enable disease-mapping studies of increasingly large cohorts, a fast and accurate method to detect IBD segments is required. We present PARENTE, a novel method for detecting related pairs of individuals and shared haplotypic segments within these pairs. PARENTE is a computationally-efficient method based on an embedded likelihood ratio test. As demonstrated by the results of our simulations, our method exhibits better accuracy than the current state of the art, and can be used for the analysis of large genotyped cohorts. PARENTE\\'s higher accuracy becomes even more significant in more challenging scenarios, such as detecting shorter IBD segments or when an extremely low false-positive rate is required. PARENTE is publicly and freely available at http://parente.stanford.edu/. © 2013 Springer-Verlag.

  12. A Maximum-Likelihood Method to Correct for Allelic Dropout in Microsatellite Data with No Replicate Genotypes

    Science.gov (United States)

    Wang, Chaolong; Schroeder, Kari B.; Rosenberg, Noah A.

    2012-01-01

    Allelic dropout is a commonly observed source of missing data in microsatellite genotypes, in which one or both allelic copies at a locus fail to be amplified by the polymerase chain reaction. Especially for samples with poor DNA quality, this problem causes a downward bias in estimates of observed heterozygosity and an upward bias in estimates of inbreeding, owing to mistaken classifications of heterozygotes as homozygotes when one of the two copies drops out. One general approach for avoiding allelic dropout involves repeated genotyping of homozygous loci to minimize the effects of experimental error. Existing computational alternatives often require replicate genotyping as well. These approaches, however, are costly and are suitable only when enough DNA is available for repeated genotyping. In this study, we propose a maximum-likelihood approach together with an expectation-maximization algorithm to jointly estimate allelic dropout rates and allele frequencies when only one set of nonreplicated genotypes is available. Our method considers estimates of allelic dropout caused by both sample-specific factors and locus-specific factors, and it allows for deviation from Hardy–Weinberg equilibrium owing to inbreeding. Using the estimated parameters, we correct the bias in the estimation of observed heterozygosity through the use of multiple imputations of alleles in cases where dropout might have occurred. With simulated data, we show that our method can (1) effectively reproduce patterns of missing data and heterozygosity observed in real data; (2) correctly estimate model parameters, including sample-specific dropout rates, locus-specific dropout rates, and the inbreeding coefficient; and (3) successfully correct the downward bias in estimating the observed heterozygosity. We find that our method is fairly robust to violations of model assumptions caused by population structure and by genotyping errors from sources other than allelic dropout. Because the data sets

  13. Estimation of flashover voltage probability of overhead line insulators under industrial pollution, based on maximum likelihood method

    International Nuclear Information System (INIS)

    Arab, M.N.; Ayaz, M.

    2004-01-01

    The performance of transmission line insulator is greatly affected by dust, fumes from industrial areas and saline deposit near the coast. Such pollutants in the presence of moisture form a coating on the surface of the insulator, which in turn allows the passage of leakage current. This leakage builds up to a point where flashover develops. The flashover is often followed by permanent failure of insulation resulting in prolong outages. With the increase in system voltage owing to the greater demand of electrical energy over the past few decades, the importance of flashover due to pollution has received special attention. The objective of the present work was to study the performance of overhead line insulators in the presence of contaminants such as induced salts. A detailed review of the literature and the mechanisms of insulator flashover due to the pollution are presented. Experimental investigations on the behavior of overhead line insulators under industrial salt contamination are carried out. A special fog chamber was designed in which the contamination testing of insulators was carried out. Flashover behavior under various degrees of contamination of insulators with the most common industrial fume components such as Nitrate and Sulphate compounds was studied. Substituting the normal distribution parameter in the probability distribution function based on maximum likelihood develops a statistical method. The method gives a high accuracy in the estimation of the 50% flashover voltage, which is then used to evaluate the critical flashover index at various contamination levels. The critical flashover index is a valuable parameter in insulation design for numerous applications. (author)

  14. Likelihood devices in spatial statistics

    NARCIS (Netherlands)

    Zwet, E.W. van

    1999-01-01

    One of the main themes of this thesis is the application to spatial data of modern semi- and nonparametric methods. Another, closely related theme is maximum likelihood estimation from spatial data. Maximum likelihood estimation is not common practice in spatial statistics. The method of moments

  15. Searching for degenerate Higgs bosons a profile likelihood ratio method to test for mass-degenerate states in the presence of censored data and uncertainties

    CERN Document Server

    David, André; Petrucciani, Giovanni

    2015-01-01

    Using the likelihood ratio test statistic, we present a method which can be employed to test the hypothesis of a single Higgs boson using the matrix of measured signal strengths. This method can be applied in the presence of censored data and takes into account uncertainties on the measurements. The p-value against the hypothesis of a single Higgs boson is defined from the expected distribution of the test statistic, generated using pseudo-experiments. The applicability of the likelihood-based test is demonstrated using numerical examples with uncertainties and missing matrix elements.

  16. The Socratic Method: Empirical Assessment of a Psychology Capstone Course

    Science.gov (United States)

    Burns, Lawrence R.; Stephenson, Paul L.; Bellamy, Katy

    2016-01-01

    Although students make some epistemological progress during college, most graduate without developing meaning-making strategies that reflect an understanding that knowledge is socially constructed. Using a pre-test-post-test design and a within-subjects 2 × 2 mixed-design ANOVA, this study reports on empirical findings which support the Socratic…

  17. Enhancing resolution and contrast in second-harmonic generation microscopy using an advanced maximum likelihood estimation restoration method

    Science.gov (United States)

    Sivaguru, Mayandi; Kabir, Mohammad M.; Gartia, Manas Ranjan; Biggs, David S. C.; Sivaguru, Barghav S.; Sivaguru, Vignesh A.; Berent, Zachary T.; Wagoner Johnson, Amy J.; Fried, Glenn A.; Liu, Gang Logan; Sadayappan, Sakthivel; Toussaint, Kimani C.

    2017-02-01

    Second-harmonic generation (SHG) microscopy is a label-free imaging technique to study collagenous materials in extracellular matrix environment with high resolution and contrast. However, like many other microscopy techniques, the actual spatial resolution achievable by SHG microscopy is reduced by out-of-focus blur and optical aberrations that degrade particularly the amplitude of the detectable higher spatial frequencies. Being a two-photon scattering process, it is challenging to define a point spread function (PSF) for the SHG imaging modality. As a result, in comparison with other two-photon imaging systems like two-photon fluorescence, it is difficult to apply any PSF-engineering techniques to enhance the experimental spatial resolution closer to the diffraction limit. Here, we present a method to improve the spatial resolution in SHG microscopy using an advanced maximum likelihood estimation (AdvMLE) algorithm to recover the otherwise degraded higher spatial frequencies in an SHG image. Through adaptation and iteration, the AdvMLE algorithm calculates an improved PSF for an SHG image and enhances the spatial resolution by decreasing the full-width-at-halfmaximum (FWHM) by 20%. Similar results are consistently observed for biological tissues with varying SHG sources, such as gold nanoparticles and collagen in porcine feet tendons. By obtaining an experimental transverse spatial resolution of 400 nm, we show that the AdvMLE algorithm brings the practical spatial resolution closer to the theoretical diffraction limit. Our approach is suitable for adaptation in micro-nano CT and MRI imaging, which has the potential to impact diagnosis and treatment of human diseases.

  18. Dealing with noise and physiological artifacts in human EEG recordings: empirical mode methods

    Science.gov (United States)

    Runnova, Anastasiya E.; Grubov, Vadim V.; Khramova, Marina V.; Hramov, Alexander E.

    2017-04-01

    In the paper we propose the new method for removing noise and physiological artifacts in human EEG recordings based on empirical mode decomposition (Hilbert-Huang transform). As physiological artifacts we consider specific oscillatory patterns that cause problems during EEG analysis and can be detected with additional signals recorded simultaneously with EEG (ECG, EMG, EOG, etc.) We introduce the algorithm of the proposed method with steps including empirical mode decomposition of EEG signal, choosing of empirical modes with artifacts, removing these empirical modes and reconstructing of initial EEG signal. We show the efficiency of the method on the example of filtration of human EEG signal from eye-moving artifacts.

  19. Measurement of the Top Quark Mass by Dynamical Likelihood Method using the Lepton + Jets Events with the Collider Detector at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Kubo, Taichi [Univ. of Tsukuba (Japan)

    2008-02-01

    We have measured the top quark mass with the dynamical likelihood method. The data corresponding to an integrated luminosity of 1.7fb-1 was collected in proton antiproton collisions at a center of mass energy of 1.96 TeV with the CDF detector at Fermilab Tevatron during the period March 2002-March 2007. We select t$\\bar{t}$ pair production candidates by requiring one high energy lepton and four jets, in which at least one of jets must be tagged as a b-jet. In order to reconstruct the top quark mass, we use the dynamical likelihood method based on maximum likelihood method where a likelihood is defined as the differential cross section multiplied by the transfer function from observed quantities to parton quantities, as a function of the top quark mass and the jet energy scale(JES). With this method, we measure the top quark mass to be 171.6 ± 2.0 (stat.+ JES) ± 1.3(syst.) = 171.6 ± 2.4 GeV/c2.

  20. A Penalized Likelihood Framework For High-Dimensional Phylogenetic Comparative Methods And An Application To New-World Monkeys Brain Evolution.

    Science.gov (United States)

    Julien, Clavel; Leandro, Aristide; Hélène, Morlon

    2018-06-19

    Working with high-dimensional phylogenetic comparative datasets is challenging because likelihood-based multivariate methods suffer from low statistical performances as the number of traits p approaches the number of species n and because some computational complications occur when p exceeds n. Alternative phylogenetic comparative methods have recently been proposed to deal with the large p small n scenario but their use and performances are limited. Here we develop a penalized likelihood framework to deal with high-dimensional comparative datasets. We propose various penalizations and methods for selecting the intensity of the penalties. We apply this general framework to the estimation of parameters (the evolutionary trait covariance matrix and parameters of the evolutionary model) and model comparison for the high-dimensional multivariate Brownian (BM), Early-burst (EB), Ornstein-Uhlenbeck (OU) and Pagel's lambda models. We show using simulations that our penalized likelihood approach dramatically improves the estimation of evolutionary trait covariance matrices and model parameters when p approaches n, and allows for their accurate estimation when p equals or exceeds n. In addition, we show that penalized likelihood models can be efficiently compared using Generalized Information Criterion (GIC). We implement these methods, as well as the related estimation of ancestral states and the computation of phylogenetic PCA in the R package RPANDA and mvMORPH. Finally, we illustrate the utility of the new proposed framework by evaluating evolutionary models fit, analyzing integration patterns, and reconstructing evolutionary trajectories for a high-dimensional 3-D dataset of brain shape in the New World monkeys. We find a clear support for an Early-burst model suggesting an early diversification of brain morphology during the ecological radiation of the clade. Penalized likelihood offers an efficient way to deal with high-dimensional multivariate comparative data.

  1. Performance and sensitivity analysis of the generalized likelihood ratio method for failure detection. M.S. Thesis

    Science.gov (United States)

    Bueno, R. A.

    1977-01-01

    Results of the generalized likelihood ratio (GLR) technique for the detection of failures in aircraft application are presented, and its relationship to the properties of the Kalman-Bucy filter is examined. Under the assumption that the system is perfectly modeled, the detectability and distinguishability of four failure types are investigated by means of analysis and simulations. Detection of failures is found satisfactory, but problems in identifying correctly the mode of a failure may arise. These issues are closely examined as well as the sensitivity of GLR to modeling errors. The advantages and disadvantages of this technique are discussed, and various modifications are suggested to reduce its limitations in performance and computational complexity.

  2. Filtration of human EEG recordings from physiological artifacts with empirical mode method

    Science.gov (United States)

    Grubov, Vadim V.; Runnova, Anastasiya E.; Khramova, Marina V.

    2017-03-01

    In the paper we propose the new method for dealing with noise and physiological artifacts in experimental human EEG recordings. The method is based on analysis of EEG signals with empirical mode decomposition (Hilbert-Huang transform). We consider noises and physiological artifacts on EEG as specific oscillatory patterns that cause problems during EEG analysis and can be detected with additional signals recorded simultaneously with EEG (ECG, EMG, EOG, etc.) We introduce the algorithm of the method with following steps: empirical mode decomposition of EEG signal, choosing of empirical modes with artifacts, removing empirical modes with artifacts, reconstruction of the initial EEG signal. We test the method on filtration of experimental human EEG signals from eye-moving artifacts and show high efficiency of the method.

  3. Computational RNA secondary structure design: empirical complexity and improved methods

    Directory of Open Access Journals (Sweden)

    Condon Anne

    2007-01-01

    Full Text Available Abstract Background We investigate the empirical complexity of the RNA secondary structure design problem, that is, the scaling of the typical difficulty of the design task for various classes of RNA structures as the size of the target structure is increased. The purpose of this work is to understand better the factors that make RNA structures hard to design for existing, high-performance algorithms. Such understanding provides the basis for improving the performance of one of the best algorithms for this problem, RNA-SSD, and for characterising its limitations. Results To gain insights into the practical complexity of the problem, we present a scaling analysis on random and biologically motivated structures using an improved version of the RNA-SSD algorithm, and also the RNAinverse algorithm from the Vienna package. Since primary structure constraints are relevant for designing RNA structures, we also investigate the correlation between the number and the location of the primary structure constraints when designing structures and the performance of the RNA-SSD algorithm. The scaling analysis on random and biologically motivated structures supports the hypothesis that the running time of both algorithms scales polynomially with the size of the structure. We also found that the algorithms are in general faster when constraints are placed only on paired bases in the structure. Furthermore, we prove that, according to the standard thermodynamic model, for some structures that the RNA-SSD algorithm was unable to design, there exists no sequence whose minimum free energy structure is the target structure. Conclusion Our analysis helps to better understand the strengths and limitations of both the RNA-SSD and RNAinverse algorithms, and suggests ways in which the performance of these algorithms can be further improved.

  4. An empirical comparison of several recent epistatic interaction detection methods.

    Science.gov (United States)

    Wang, Yue; Liu, Guimei; Feng, Mengling; Wong, Limsoon

    2011-11-01

    Many new methods have recently been proposed for detecting epistatic interactions in GWAS data. There is, however, no in-depth independent comparison of these methods yet. Five recent methods-TEAM, BOOST, SNPHarvester, SNPRuler and Screen and Clean (SC)-are evaluated here in terms of power, type-1 error rate, scalability and completeness. In terms of power, TEAM performs best on data with main effect and BOOST performs best on data without main effect. In terms of type-1 error rate, TEAM and BOOST have higher type-1 error rates than SNPRuler and SNPHarvester. SC does not control type-1 error rate well. In terms of scalability, we tested the five methods using a dataset with 100 000 SNPs on a 64 bit Ubuntu system, with Intel (R) Xeon(R) CPU 2.66 GHz, 16 GB memory. TEAM takes ~36 days to finish and SNPRuler reports heap allocation problems. BOOST scales up to 100 000 SNPs and the cost is much lower than that of TEAM. SC and SNPHarvester are the most scalable. In terms of completeness, we study how frequently the pruning techniques employed by these methods incorrectly prune away the most significant epistatic interactions. We find that, on average, 20% of datasets without main effect and 60% of datasets with main effect are pruned incorrectly by BOOST, SNPRuler and SNPHarvester. The software for the five methods tested are available from the URLs below. TEAM: http://csbio.unc.edu/epistasis/download.php BOOST: http://ihome.ust.hk/~eeyang/papers.html. SNPHarvester: http://bioinformatics.ust.hk/SNPHarvester.html. SNPRuler: http://bioinformatics.ust.hk/SNPRuler.zip. Screen and Clean: http://wpicr.wpic.pitt.edu/WPICCompGen/. wangyue@nus.edu.sg.

  5. Empirical evaluation of data normalization methods for molecular classification.

    Science.gov (United States)

    Huang, Huei-Chung; Qin, Li-Xuan

    2018-01-01

    Data artifacts due to variations in experimental handling are ubiquitous in microarray studies, and they can lead to biased and irreproducible findings. A popular approach to correct for such artifacts is through post hoc data adjustment such as data normalization. Statistical methods for data normalization have been developed and evaluated primarily for the discovery of individual molecular biomarkers. Their performance has rarely been studied for the development of multi-marker molecular classifiers-an increasingly important application of microarrays in the era of personalized medicine. In this study, we set out to evaluate the performance of three commonly used methods for data normalization in the context of molecular classification, using extensive simulations based on re-sampling from a unique pair of microRNA microarray datasets for the same set of samples. The data and code for our simulations are freely available as R packages at GitHub. In the presence of confounding handling effects, all three normalization methods tended to improve the accuracy of the classifier when evaluated in an independent test data. The level of improvement and the relative performance among the normalization methods depended on the relative level of molecular signal, the distributional pattern of handling effects (e.g., location shift vs scale change), and the statistical method used for building the classifier. In addition, cross-validation was associated with biased estimation of classification accuracy in the over-optimistic direction for all three normalization methods. Normalization may improve the accuracy of molecular classification for data with confounding handling effects; however, it cannot circumvent the over-optimistic findings associated with cross-validation for assessing classification accuracy.

  6. Extended likelihood inference in reliability

    International Nuclear Information System (INIS)

    Martz, H.F. Jr.; Beckman, R.J.; Waller, R.A.

    1978-10-01

    Extended likelihood methods of inference are developed in which subjective information in the form of a prior distribution is combined with sampling results by means of an extended likelihood function. The extended likelihood function is standardized for use in obtaining extended likelihood intervals. Extended likelihood intervals are derived for the mean of a normal distribution with known variance, the failure-rate of an exponential distribution, and the parameter of a binomial distribution. Extended second-order likelihood methods are developed and used to solve several prediction problems associated with the exponential and binomial distributions. In particular, such quantities as the next failure-time, the number of failures in a given time period, and the time required to observe a given number of failures are predicted for the exponential model with a gamma prior distribution on the failure-rate. In addition, six types of life testing experiments are considered. For the binomial model with a beta prior distribution on the probability of nonsurvival, methods are obtained for predicting the number of nonsurvivors in a given sample size and for predicting the required sample size for observing a specified number of nonsurvivors. Examples illustrate each of the methods developed. Finally, comparisons are made with Bayesian intervals in those cases where these are known to exist

  7. Receiver-operating characteristic curves and likelihood ratios: improvements over traditional methods for the evaluation and application of veterinary clinical pathology tests

    DEFF Research Database (Denmark)

    Gardner, Ian A.; Greiner, Matthias

    2006-01-01

    Receiver-operating characteristic (ROC) curves provide a cutoff-independent method for the evaluation of continuous or ordinal tests used in clinical pathology laboratories. The area under the curve is a useful overall measure of test accuracy and can be used to compare different tests (or...... different equipment) used by the same tester, as well as the accuracy of different diagnosticians that use the same test material. To date, ROC analysis has not been widely used in veterinary clinical pathology studies, although it should be considered a useful complement to estimates of sensitivity...... and specificity in test evaluation studies. In addition, calculation of likelihood ratios can potentially improve the clinical utility of such studies because likelihood ratios provide an indication of how the post-test probability changes as a function of the magnitude of the test results. For ordinal test...

  8. Community of Inquiry Method and Language Skills Acquisition: Empirical Evidence

    Science.gov (United States)

    Preece, Abdul Shakhour Duncan

    2015-01-01

    The study investigates the effectiveness of community of inquiry method in preparing students to develop listening and speaking skills in a sample of junior secondary school students in Borno state, Nigeria. A sample of 100 students in standard classes was drawn in one secondary school in Maiduguri metropolis through stratified random sampling…

  9. What Happened to Remote Usability Testing? An Empirical Study of Three Methods

    DEFF Research Database (Denmark)

    Stage, Jan; Andreasen, M. S.; Nielsen, H. V.

    2007-01-01

    The idea of conducting usability tests remotely emerged ten years ago. Since then, it has been studied empirically, and some software organizations employ remote methods. Yet there are still few comparisons involving more than one remote method. This paper presents results from a systematic...... empirical comparison of three methods for remote usability testing and a conventional laboratorybased think-aloud method. The three remote methods are a remote synchronous condition, where testing is conducted in real time but the test monitor is separated spatially from the test subjects, and two remote...

  10. Empirical method for matrix effects correction in liquid samples

    International Nuclear Information System (INIS)

    Vigoda de Leyt, Dora; Vazquez, Cristina

    1987-01-01

    A simple method for the determination of Cr, Ni and Mo in stainless steels is presented. In order to minimize the matrix effects, the conditions of liquid system to dissolve stainless steels chips has been developed. Pure element solutions were used as standards. Preparation of synthetic solutions with all the elements of steel and also mathematic corrections are avoided. It results in a simple chemical operation which simplifies the method of analysis. The variance analysis of the results obtained with steel samples show that the three elements may be determined from the comparison with the analytical curves obtained with the pure elements if the same parameters in the calibration curves are used. The accuracy and the precision were checked against other techniques using the British Chemical Standards of the Bureau of Anlysed Samples Ltd. (England). (M.E.L.) [es

  11. A likelihood ratio-based method to predict exact pedigrees for complex families from next-generation sequencing data.

    Science.gov (United States)

    Heinrich, Verena; Kamphans, Tom; Mundlos, Stefan; Robinson, Peter N; Krawitz, Peter M

    2017-01-01

    Next generation sequencing technology considerably changed the way we screen for pathogenic mutations in rare Mendelian disorders. However, the identification of the disease-causing mutation amongst thousands of variants of partly unknown relevance is still challenging and efficient techniques that reduce the genomic search space play a decisive role. Often segregation- or linkage analysis are used to prioritize candidates, however, these approaches require correct information about the degree of relationship among the sequenced samples. For quality assurance an automated control of pedigree structures and sample assignment is therefore highly desirable in order to detect label mix-ups that might otherwise corrupt downstream analysis. We developed an algorithm based on likelihood ratios that discriminates between different classes of relationship for an arbitrary number of genotyped samples. By identifying the most likely class we are able to reconstruct entire pedigrees iteratively, even for highly consanguineous families. We tested our approach on exome data of different sequencing studies and achieved high precision for all pedigree predictions. By analyzing the precision for varying degrees of relatedness or inbreeding we could show that a prediction is robust down to magnitudes of a few hundred loci. A java standalone application that computes the relationships between multiple samples as well as a Rscript that visualizes the pedigree information is available for download as well as a web service at www.gene-talk.de CONTACT: heinrich@molgen.mpg.deSupplementary information: Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press.

  12. An Accurate Method for Inferring Relatedness in Large Datasets of Unphased Genotypes via an Embedded Likelihood-Ratio Test

    KAUST Repository

    Rodriguez, Jesse M.; Batzoglou, Serafim; Bercovici, Sivan

    2013-01-01

    , accurate and efficient detection of hidden relatedness becomes a challenge. To enable disease-mapping studies of increasingly large cohorts, a fast and accurate method to detect IBD segments is required. We present PARENTE, a novel method for detecting

  13. Earthquake likelihood model testing

    Science.gov (United States)

    Schorlemmer, D.; Gerstenberger, M.C.; Wiemer, S.; Jackson, D.D.; Rhoades, D.A.

    2007-01-01

    INTRODUCTIONThe Regional Earthquake Likelihood Models (RELM) project aims to produce and evaluate alternate models of earthquake potential (probability per unit volume, magnitude, and time) for California. Based on differing assumptions, these models are produced to test the validity of their assumptions and to explore which models should be incorporated in seismic hazard and risk evaluation. Tests based on physical and geological criteria are useful but we focus on statistical methods using future earthquake catalog data only. We envision two evaluations: a test of consistency with observed data and a comparison of all pairs of models for relative consistency. Both tests are based on the likelihood method, and both are fully prospective (i.e., the models are not adjusted to fit the test data). To be tested, each model must assign a probability to any possible event within a specified region of space, time, and magnitude. For our tests the models must use a common format: earthquake rates in specified “bins” with location, magnitude, time, and focal mechanism limits.Seismology cannot yet deterministically predict individual earthquakes; however, it should seek the best possible models for forecasting earthquake occurrence. This paper describes the statistical rules of an experiment to examine and test earthquake forecasts. The primary purposes of the tests described below are to evaluate physical models for earthquakes, assure that source models used in seismic hazard and risk studies are consistent with earthquake data, and provide quantitative measures by which models can be assigned weights in a consensus model or be judged as suitable for particular regions.In this paper we develop a statistical method for testing earthquake likelihood models. A companion paper (Schorlemmer and Gerstenberger 2007, this issue) discusses the actual implementation of these tests in the framework of the RELM initiative.Statistical testing of hypotheses is a common task and a

  14. Electronic structure prediction via data-mining the empirical pseudopotential method

    Energy Technology Data Exchange (ETDEWEB)

    Zenasni, H; Aourag, H [LEPM, URMER, Departement of Physics, University Abou Bakr Belkaid, Tlemcen 13000 (Algeria); Broderick, S R; Rajan, K [Department of Materials Science and Engineering, Iowa State University, Ames, Iowa 50011-2230 (United States)

    2010-01-15

    We introduce a new approach for accelerating the calculation of the electronic structure of new materials by utilizing the empirical pseudopotential method combined with data mining tools. Combining data mining with the empirical pseudopotential method allows us to convert an empirical approach to a predictive approach. Here we consider tetrahedrally bounded III-V Bi semiconductors, and through the prediction of form factors based on basic elemental properties we can model the band structure and charge density for these semi-conductors, for which limited results exist. This work represents a unique approach to modeling the electronic structure of a material which may be used to identify new promising semi-conductors and is one of the few efforts utilizing data mining at an electronic level. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  15. Evaluation of an Improved Branch-Site Likelihood Method for Detecting Positive Selection at the Molecular Level

    DEFF Research Database (Denmark)

    Zhang, Jianzhi; Nielsen, Rasmus; Yang, Ziheng

    2005-01-01

    of interest, while test 2 had acceptable false-positive rates and appeared robust against violations of model assumptions. As test 2 is a direct test of positive selection on the lineages of interest, it is referred to as the branch-site test of positive selection and is recommended for use in real data......Detecting positive Darwinian selection at the DNA sequence level has been a subject of considerable interest. However, positive selection is difficult to detect because it often operates episodically on a few amino acid sites, and the signal may be masked by negative selection. Several methods have...... been developed to test positive selection that acts on given branches (branch methods) or on a subset of sites (site methods). Recently, Yang, Z., and R. Nielsen (2002. Codon-substitution models for detecting molecular adaptation at individual sites along specific lineages. Mol. Biol. Evol. 19...

  16. Modified Maxium Likelihood Estimation Method for Completely Separated and Quasi-Completely Separated Data for a Dose-Response Model

    Science.gov (United States)

    2015-08-01

    Software] Ross Ihaka and Robert Gentleman, University of Auckland , New Zealand), which are used to estimate an intercept and a slope using the BR method...Stuart A. The Advanced Theory of Statistics, 3rd ed.; Griffin and Company, Ltd.: London, 1969; Vol. 1. 11. Jefferys, H. An Invariant Form for

  17. Likelihood of Brine and CO2 Leak Detection using Magnetotellurics and Electrical Resistivity Tomography Methods

    Energy Technology Data Exchange (ETDEWEB)

    Yang, X. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Buscheck, T. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Mansoor, K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Carroll, S. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-09-11

    The US DOE National Risk Assessment Partnership (NRAP), funded through the Office of Fossil Energy and NETL, is developing methods to evaluate the effectiveness of monitoring techniques to detect brine and CO2 leakage from legacy wells into underground sources of drinking water (USDW) overlying a CO2 storage reservoir. As part of the NRAP Strategic Monitoring group, we have generated 140 simulations of aquifer impact data based on the Kimberlina site in California’s southern San Joaquin Basin, Kimberlina Rev. 1.1. CO2 buoyancy allows some of the stored CO2 to reach shallower permeable zones and is detectable with surface geophysical sensors. We are using this simulated data set to evaluate effectiveness of electrical resistivity tomography (ERT) and magnetotellurics (MT) for leak detection. The evaluation of additional monitoring methods such as pressure, seismic and gravity is underway through a multi-lab collaboration.

  18. An Empirical Review of Research Methodologies and Methods in Creativity Studies (2003-2012)

    Science.gov (United States)

    Long, Haiying

    2014-01-01

    Based on the data collected from 5 prestigious creativity journals, research methodologies and methods of 612 empirical studies on creativity, published between 2003 and 2012, were reviewed and compared to those in gifted education. Major findings included: (a) Creativity research was predominantly quantitative and psychometrics and experiment…

  19. Critical factors in the empirical performance of temporal difference and evolutionary methods for reinforcement learning

    NARCIS (Netherlands)

    Whiteson, S.; Taylor, M.E.; Stone, P.

    2010-01-01

    Temporal difference and evolutionary methods are two of the most common approaches to solving reinforcement learning problems. However, there is little consensus on their relative merits and there have been few empirical studies that directly compare their performance. This article aims to address

  20. Comparison of two interpolation methods for empirical mode decomposition based evaluation of radiographic femur bone images.

    Science.gov (United States)

    Udhayakumar, Ganesan; Sujatha, Chinnaswamy Manoharan; Ramakrishnan, Swaminathan

    2013-01-01

    Analysis of bone strength in radiographic images is an important component of estimation of bone quality in diseases such as osteoporosis. Conventional radiographic femur bone images are used to analyze its architecture using bi-dimensional empirical mode decomposition method. Surface interpolation of local maxima and minima points of an image is a crucial part of bi-dimensional empirical mode decomposition method and the choice of appropriate interpolation depends on specific structure of the problem. In this work, two interpolation methods of bi-dimensional empirical mode decomposition are analyzed to characterize the trabecular femur bone architecture of radiographic images. The trabecular bone regions of normal and osteoporotic femur bone images (N = 40) recorded under standard condition are used for this study. The compressive and tensile strength regions of the images are delineated using pre-processing procedures. The delineated images are decomposed into their corresponding intrinsic mode functions using interpolation methods such as Radial basis function multiquadratic and hierarchical b-spline techniques. Results show that bi-dimensional empirical mode decomposition analyses using both interpolations are able to represent architectural variations of femur bone radiographic images. As the strength of the bone depends on architectural variation in addition to bone mass, this study seems to be clinically useful.

  1. Evaluation of registration methods on thoracic CT : the EMPIRE10 challenge

    NARCIS (Netherlands)

    Murphy, K.; Ginneken, van B.; Reinhardt, J.M.; Kabus, S.; Ding, K.; Deng, Xiang; Cao, K.; Du, K.; Christensen, G.E.; Garcia, V.; Vercauteren, T.; Ayache, N.; Commowick, O.; Malandain, G.; Glocker, B.; Paragios, N.; Navab, N.; Gorbunova, V.; Sporring, J.; Bruijne, de M.; Han, Xiao; Heinrich, M.P.; Schnabel, J.A.; Jenkinson, M.; Lorenz, C.; Modat, M.; McClelland, J.R.; Ourselin, S.; Muenzing, S.E.A.; Viergever, M.A.; Nigris, De D.; Collins, D.L.; Arbel, T.; Peroni, M.; Li, R.; Sharp, G.; Schmidt-Richberg, A.; Ehrhardt, J.; Werner, R.; Smeets, D.; Loeckx, D.; Song, G.; Tustison, N.; Avants, B.; Gee, J.C.; Staring, M.; Klein, S.; Stoel, B.C.; Urschler, M.; Werlberger, M.; Vandemeulebroucke, J.; Rit, S.; Sarrut, D.; Pluim, J.P.W.

    2011-01-01

    EMPIRE10 (Evaluation of Methods for Pulmonary Image REgistration 2010) is a public platform for fair and meaningful comparison of registration algorithms which are applied to a database of intrapatient thoracic CT image pairs. Evaluation of nonrigid registration techniques is a nontrivial task. This

  2. Climate Prediction for Brazil's Nordeste: Performance of Empirical and Numerical Modeling Methods.

    Science.gov (United States)

    Moura, Antonio Divino; Hastenrath, Stefan

    2004-07-01

    Comparisons of performance of climate forecast methods require consistency in the predictand and a long common reference period. For Brazil's Nordeste, empirical methods developed at the University of Wisconsin use preseason (October January) rainfall and January indices of the fields of meridional wind component and sea surface temperature (SST) in the tropical Atlantic and the equatorial Pacific as input to stepwise multiple regression and neural networking. These are used to predict the March June rainfall at a network of 27 stations. An experiment at the International Research Institute for Climate Prediction, Columbia University, with a numerical model (ECHAM4.5) used global SST information through February to predict the March June rainfall at three grid points in the Nordeste. The predictands for the empirical and numerical model forecasts are correlated at +0.96, and the period common to the independent portion of record of the empirical prediction and the numerical modeling is 1968 99. Over this period, predicted versus observed rainfall are evaluated in terms of correlation, root-mean-square error, absolute error, and bias. Performance is high for both approaches. Numerical modeling produces a correlation of +0.68, moderate errors, and strong negative bias. For the empirical methods, errors and bias are small, and correlations of +0.73 and +0.82 are reached between predicted and observed rainfall.

  3. Comparison of artificial intelligence methods and empirical equations to estimate daily solar radiation

    Science.gov (United States)

    Mehdizadeh, Saeid; Behmanesh, Javad; Khalili, Keivan

    2016-08-01

    In the present research, three artificial intelligence methods including Gene Expression Programming (GEP), Artificial Neural Networks (ANN) and Adaptive Neuro-Fuzzy Inference System (ANFIS) as well as, 48 empirical equations (10, 12 and 26 equations were temperature-based, sunshine-based and meteorological parameters-based, respectively) were used to estimate daily solar radiation in Kerman, Iran in the period of 1992-2009. To develop the GEP, ANN and ANFIS models, depending on the used empirical equations, various combinations of minimum air temperature, maximum air temperature, mean air temperature, extraterrestrial radiation, actual sunshine duration, maximum possible sunshine duration, sunshine duration ratio, relative humidity and precipitation were considered as inputs in the mentioned intelligent methods. To compare the accuracy of empirical equations and intelligent models, root mean square error (RMSE), mean absolute error (MAE), mean absolute relative error (MARE) and determination coefficient (R2) indices were used. The results showed that in general, sunshine-based and meteorological parameters-based scenarios in ANN and ANFIS models presented high accuracy than mentioned empirical equations. Moreover, the most accurate method in the studied region was ANN11 scenario with five inputs. The values of RMSE, MAE, MARE and R2 indices for the mentioned model were 1.850 MJ m-2 day-1, 1.184 MJ m-2 day-1, 9.58% and 0.935, respectively.

  4. Logic of likelihood

    International Nuclear Information System (INIS)

    Wall, M.J.W.

    1992-01-01

    The notion of open-quotes probabilityclose quotes is generalized to that of open-quotes likelihood,close quotes and a natural logical structure is shown to exist for any physical theory which predicts likelihoods. Two physically based axioms are given for this logical structure to form an orthomodular poset, with an order-determining set of states. The results strengthen the basis of the quantum logic approach to axiomatic quantum theory. 25 refs

  5. Calibrating a combined energy systems analysis and controller design method with empirical data

    International Nuclear Information System (INIS)

    Murphy, Gavin Bruce; Counsell, John; Allison, John; Brindley, Joseph

    2013-01-01

    The drive towards low carbon constructions has seen buildings increasingly utilise many different energy systems simultaneously to control the human comfort of the indoor environment; such as ventilation with heat recovery, various heating solutions and applications of renewable energy. This paper describes a dynamic modelling and simulation method (IDEAS – Inverse Dynamics based Energy Assessment and Simulation) for analysing the energy utilisation of a building and its complex servicing systems. The IDEAS case study presented in this paper is based upon small perturbation theory and can be used for the analysis of the performance of complex energy systems and also for the design of smart control systems. This paper presents a process of how any dynamic model can be calibrated against a more empirical based data model, in this case the UK Government's SAP (Standard Assessment Procedure). The research targets of this work are building simulation experts for analysing the energy use of a building and also control engineers to assist in the design of smart control systems for dwellings. The calibration process presented is transferable and has applications for simulation experts to assist in calibrating any dynamic building simulation method with an empirical based method. - Highlights: • Presentation of an energy systems analysis method for assessing the energy utilisation of buildings and their complex servicing systems. • An inverse dynamics based controller design method is detailed. • Method of how a dynamic model can be calibrated with an empirical based model

  6. A note on the relationships between multiple imputation, maximum likelihood and fully Bayesian methods for missing responses in linear regression models.

    Science.gov (United States)

    Chen, Qingxia; Ibrahim, Joseph G

    2014-07-01

    Multiple Imputation, Maximum Likelihood and Fully Bayesian methods are the three most commonly used model-based approaches in missing data problems. Although it is easy to show that when the responses are missing at random (MAR), the complete case analysis is unbiased and efficient, the aforementioned methods are still commonly used in practice for this setting. To examine the performance of and relationships between these three methods in this setting, we derive and investigate small sample and asymptotic expressions of the estimates and standard errors, and fully examine how these estimates are related for the three approaches in the linear regression model when the responses are MAR. We show that when the responses are MAR in the linear model, the estimates of the regression coefficients using these three methods are asymptotically equivalent to the complete case estimates under general conditions. One simulation and a real data set from a liver cancer clinical trial are given to compare the properties of these methods when the responses are MAR.

  7. Tourism forecasting using modified empirical mode decomposition and group method of data handling

    Science.gov (United States)

    Yahya, N. A.; Samsudin, R.; Shabri, A.

    2017-09-01

    In this study, a hybrid model using modified Empirical Mode Decomposition (EMD) and Group Method of Data Handling (GMDH) model is proposed for tourism forecasting. This approach reconstructs intrinsic mode functions (IMFs) produced by EMD using trial and error method. The new component and the remaining IMFs is then predicted respectively using GMDH model. Finally, the forecasted results for each component are aggregated to construct an ensemble forecast. The data used in this experiment are monthly time series data of tourist arrivals from China, Thailand and India to Malaysia from year 2000 to 2016. The performance of the model is evaluated using Root Mean Square Error (RMSE) and Mean Absolute Percentage Error (MAPE) where conventional GMDH model and EMD-GMDH model are used as benchmark models. Empirical results proved that the proposed model performed better forecasts than the benchmarked models.

  8. Probabilistic Requirements (Partial) Verification Methods Best Practices Improvement. Variables Acceptance Sampling Calculators: Empirical Testing. Volume 2

    Science.gov (United States)

    Johnson, Kenneth L.; White, K. Preston, Jr.

    2012-01-01

    The NASA Engineering and Safety Center was requested to improve on the Best Practices document produced for the NESC assessment, Verification of Probabilistic Requirements for the Constellation Program, by giving a recommended procedure for using acceptance sampling by variables techniques as an alternative to the potentially resource-intensive acceptance sampling by attributes method given in the document. In this paper, the results of empirical tests intended to assess the accuracy of acceptance sampling plan calculators implemented for six variable distributions are presented.

  9. Evaluating Method Engineer Performance: an error classification and preliminary empirical study

    Directory of Open Access Journals (Sweden)

    Steven Kelly

    1998-11-01

    Full Text Available We describe an approach to empirically test the use of metaCASE environments to model methods. Both diagrams and matrices have been proposed as a means for presenting the methods. These different paradigms may have their own effects on how easily and well users can model methods. We extend Batra's classification of errors in data modelling to cover metamodelling, and use it to measure the performance of a group of metamodellers using either diagrams or matrices. The tentative results from this pilot study confirm the usefulness of the classification, and show some interesting differences between the paradigms.

  10. A semi-empirical method for measuring thickness of pipe-wall using gamma scattering technique

    International Nuclear Information System (INIS)

    Vo Hoang Nguyen; Hua Tuyet Le; Le Dinh Minh Quan; Hoang Duc Tam; Le Bao Tran; Tran Thien Thanh; Tran Nguyen Thuy Ngan; Chau Van Tao; VNUHCM-University of Science, Ho Chi Minh City; Huynh Dinh Chuong

    2016-01-01

    In this work, we propose a semi-empirical method for determining the thickness of pipe-wall, of which the determination is performed by combining the experimental and Monte Carlo simulation data. The testing measurements show that this is an efficient method to measure the thickness of pipe-wall. In addition, this work also shows that it could use a NaI(Tl) scintillation detector and a low activity source to measure the thickness of pipe-wall, which is simple, quick and high accuracy method. (author)

  11. Mapping the Information Trace in Local Field Potentials by a Computational Method of Two-Dimensional Time-Shifting Synchronization Likelihood Based on Graphic Processing Unit Acceleration.

    Science.gov (United States)

    Zhao, Zi-Fang; Li, Xue-Zhu; Wan, You

    2017-12-01

    The local field potential (LFP) is a signal reflecting the electrical activity of neurons surrounding the electrode tip. Synchronization between LFP signals provides important details about how neural networks are organized. Synchronization between two distant brain regions is hard to detect using linear synchronization algorithms like correlation and coherence. Synchronization likelihood (SL) is a non-linear synchronization-detecting algorithm widely used in studies of neural signals from two distant brain areas. One drawback of non-linear algorithms is the heavy computational burden. In the present study, we proposed a graphic processing unit (GPU)-accelerated implementation of an SL algorithm with optional 2-dimensional time-shifting. We tested the algorithm with both artificial data and raw LFP data. The results showed that this method revealed detailed information from original data with the synchronization values of two temporal axes, delay time and onset time, and thus can be used to reconstruct the temporal structure of a neural network. Our results suggest that this GPU-accelerated method can be extended to other algorithms for processing time-series signals (like EEG and fMRI) using similar recording techniques.

  12. Efficiency indicators versus forntier methods: an empirical investigation of italian public hospitals

    Directory of Open Access Journals (Sweden)

    Lorenzo Clementi

    2013-05-01

    Full Text Available Efficiency has a key-role in the measurement of the impact of the National Health Service (NHS reforms. We investigate the issue of inefficiency in health sector and provide empirical evidence derived from Italian public hospitals. Despite the importance of efficiency measurement in health care services, only recently advanced econometric methods have been applied to hospital data. We provide a synoptic survey of few empirical analyses of efficiency measurement in health care services. An estimate of the cost efficiency level in Italian public hospitals during 2001-2003 is obtained through a sample. We propose an efficiency indicator and provide cost frontiers for such hospitals, using stochastic frontier analysis (SFA for longitudinal data.

  13. Band structure calculation of GaSe-based nanostructures using empirical pseudopotential method

    International Nuclear Information System (INIS)

    Osadchy, A V; Obraztsova, E D; Volotovskiy, S G; Golovashkin, D L; Savin, V V

    2016-01-01

    In this paper we present the results of band structure computer simulation of GaSe- based nanostructures using the empirical pseudopotential method. Calculations were performed using a specially developed software that allows performing simulations using cluster computing. Application of this method significantly reduces the demands on computing resources compared to traditional approaches based on ab-initio techniques and provides receiving the adequate comparable results. The use of cluster computing allows to obtain information for structures that require an explicit account of a significant number of atoms, such as quantum dots and quantum pillars. (paper)

  14. The scale-dependent market trend: Empirical evidences using the lagged DFA method

    Science.gov (United States)

    Li, Daye; Kou, Zhun; Sun, Qiankun

    2015-09-01

    In this paper we make an empirical research and test the efficiency of 44 important market indexes in multiple scales. A modified method based on the lagged detrended fluctuation analysis is utilized to maximize the information of long-term correlations from the non-zero lags and keep the margin of errors small when measuring the local Hurst exponent. Our empirical result illustrates that a common pattern can be found in the majority of the measured market indexes which tend to be persistent (with the local Hurst exponent > 0.5) in the small time scale, whereas it displays significant anti-persistent characteristics in large time scales. Moreover, not only the stock markets but also the foreign exchange markets share this pattern. Considering that the exchange markets are only weakly synchronized with the economic cycles, it can be concluded that the economic cycles can cause anti-persistence in the large time scale but there are also other factors at work. The empirical result supports the view that financial markets are multi-fractal and it indicates that deviations from efficiency and the type of model to describe the trend of market price are dependent on the forecasting horizon.

  15. Semi-empirical Determination of Detection Efficiency for Voluminous Source by Effective Solid Angle Method

    Energy Technology Data Exchange (ETDEWEB)

    Kang, M. Y.; Kim, J. H.; Choi, H. D. [Seoul National Univ., Seoul (Korea, Republic of); Sun, G. M. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    In the field of γ-ray measurements, the determination of full energy (FE) absorption peak efficiency for a voluminous sample is difficult, because the preparation of the certified radiation source with the same chemical composition and geometry for the original voluminous sample is not easy. In order to solve this inconvenience, simulation or semi-empirical methods are preferred in many cases. Effective Solid Angle (ESA) Code which includes semi-empirical approach has been developed by the Applied Nuclear Physics Group in Seoul National University. In this study, we validated ESA code by using Marinelli type voluminous KRISS (Korea Research Institute of Standards and Science) CRM (Certified Reference Materials) sources and IAEA standard γ-ray point sources. And semi-empirically determined efficiency curve for voluminous source by using the ESA code is compared with the experimental value. We calculated the efficiency curve of voluminous source from the measured efficiency of standard point source by using the ESA code. We will carry out the ESA code validation by measurement of various CRM volume sources with detector of different efficiency.

  16. The metabolic network of Clostridium acetobutylicum: Comparison of the approximate Bayesian computation via sequential Monte Carlo (ABC-SMC) and profile likelihood estimation (PLE) methods for determinability analysis.

    Science.gov (United States)

    Thorn, Graeme J; King, John R

    2016-01-01

    The Gram-positive bacterium Clostridium acetobutylicum is an anaerobic endospore-forming species which produces acetone, butanol and ethanol via the acetone-butanol (AB) fermentation process, leading to biofuels including butanol. In previous work we looked to estimate the parameters in an ordinary differential equation model of the glucose metabolism network using data from pH-controlled continuous culture experiments. Here we combine two approaches, namely the approximate Bayesian computation via an existing sequential Monte Carlo (ABC-SMC) method (to compute credible intervals for the parameters), and the profile likelihood estimation (PLE) (to improve the calculation of confidence intervals for the same parameters), the parameters in both cases being derived from experimental data from forward shift experiments. We also apply the ABC-SMC method to investigate which of the models introduced previously (one non-sporulation and four sporulation models) have the greatest strength of evidence. We find that the joint approximate posterior distribution of the parameters determines the same parameters as previously, including all of the basal and increased enzyme production rates and enzyme reaction activity parameters, as well as the Michaelis-Menten kinetic parameters for glucose ingestion, while other parameters are not as well-determined, particularly those connected with the internal metabolites acetyl-CoA, acetoacetyl-CoA and butyryl-CoA. We also find that the approximate posterior is strongly non-Gaussian, indicating that our previous assumption of elliptical contours of the distribution is not valid, which has the effect of reducing the numbers of pairs of parameters that are (linearly) correlated with each other. Calculations of confidence intervals using the PLE method back this up. Finally, we find that all five of our models are equally likely, given the data available at present. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Robust fluence map optimization via alternating direction method of multipliers with empirical parameter optimization

    International Nuclear Information System (INIS)

    Gao, Hao

    2016-01-01

    For the treatment planning during intensity modulated radiation therapy (IMRT) or volumetric modulated arc therapy (VMAT), beam fluence maps can be first optimized via fluence map optimization (FMO) under the given dose prescriptions and constraints to conformally deliver the radiation dose to the targets while sparing the organs-at-risk, and then segmented into deliverable MLC apertures via leaf or arc sequencing algorithms. This work is to develop an efficient algorithm for FMO based on alternating direction method of multipliers (ADMM). Here we consider FMO with the least-square cost function and non-negative fluence constraints, and its solution algorithm is based on ADMM, which is efficient and simple-to-implement. In addition, an empirical method for optimizing the ADMM parameter is developed to improve the robustness of the ADMM algorithm. The ADMM based FMO solver was benchmarked with the quadratic programming method based on the interior-point (IP) method using the CORT dataset. The comparison results suggested the ADMM solver had a similar plan quality with slightly smaller total objective function value than IP. A simple-to-implement ADMM based FMO solver with empirical parameter optimization is proposed for IMRT or VMAT. (paper)

  18. Empirical methods for the estimation of Southern Ocean CO2: support vector and random forest regression

    CSIR Research Space (South Africa)

    Gregor, Luke

    2017-12-01

    Full Text Available understanding with spatially integrated air–sea flux estimates (Fay and McKinley, 2014). Conversely, ocean biogeochemical process models are good tools for mechanis- tic understanding, but fail to represent the seasonality of CO2 fluxes in the Southern Ocean... of including coordinate variables as proxies of 1pCO2 in the empirical methods. In the inter- comparison study by Rödenbeck et al. (2015) proxies typi- cally include, but are not limited to, sea surface temperature (SST), chlorophyll a (Chl a), mixed layer...

  19. The performance of selected semi-empirical and DFT methods in studying C60 fullerene derivatives

    Science.gov (United States)

    Sikorska, Celina; Puzyn, Tomasz

    2015-11-01

    The capability of reproducing the open circuit voltages (V oc) of 15 representative C60 fullerene derivatives was tested using the selected quantum mechanical methods (B3LYP, PM6, and PM7) together with the two one-electron basis sets. Certain theoretical treatments (e.g. PM6) were found to be satisfactory for preliminary estimates of the open circuit voltages (V oc), whereas the use of the B3LYP/6-31G(d) approach has been proven to assure highly accurate results. We also examined the structural similarity of 19 fullerene derivatives by employing principle component analysis (PCA). In order to express the structural features of the studied compounds we used molecular descriptors calculated with semi-empirical (PM6 and PM7) and density functional (B3LYP/6-31G(d)) methods separately. In performing PCA, we noticed that semi-empirical methods (i.e. PM6 and PM7) seem satisfactory for molecules, in which one can distinguish the aromatic and the aliphatic parts in the cyclopropane ring of PCBM (phenyl-C61-buteric acid methyl ester) and they significantly overestimate the energy of the highest occupied molecular orbital (E HOMO). The use of the B3LYP functional, however, is recommended for studying methanofullerenes, which closely resemble the structure of PCBM, and for their modifications.

  20. The performance of selected semi-empirical and DFT methods in studying C60 fullerene derivatives

    International Nuclear Information System (INIS)

    Sikorska, Celina; Puzyn, Tomasz

    2015-01-01

    The capability of reproducing the open circuit voltages (V oc ) of 15 representative C 60 fullerene derivatives was tested using the selected quantum mechanical methods (B3LYP, PM6, and PM7) together with the two one-electron basis sets. Certain theoretical treatments (e.g. PM6) were found to be satisfactory for preliminary estimates of the open circuit voltages (V oc ), whereas the use of the B3LYP/6-31G(d) approach has been proven to assure highly accurate results. We also examined the structural similarity of 19 fullerene derivatives by employing principle component analysis (PCA). In order to express the structural features of the studied compounds we used molecular descriptors calculated with semi-empirical (PM6 and PM7) and density functional (B3LYP/6-31G(d)) methods separately. In performing PCA, we noticed that semi-empirical methods (i.e. PM6 and PM7) seem satisfactory for molecules, in which one can distinguish the aromatic and the aliphatic parts in the cyclopropane ring of PCBM (phenyl-C 61 -buteric acid methyl ester) and they significantly overestimate the energy of the highest occupied molecular orbital (E HOMO ). The use of the B3LYP functional, however, is recommended for studying methanofullerenes, which closely resemble the structure of PCBM, and for their modifications. (paper)

  1. An empirical method for approximating stream baseflow time series using groundwater table fluctuations

    Science.gov (United States)

    Meshgi, Ali; Schmitter, Petra; Babovic, Vladan; Chui, Ting Fong May

    2014-11-01

    Developing reliable methods to estimate stream baseflow has been a subject of interest due to its importance in catchment response and sustainable watershed management. However, to date, in the absence of complex numerical models, baseflow is most commonly estimated using statistically derived empirical approaches that do not directly incorporate physically-meaningful information. On the other hand, Artificial Intelligence (AI) tools such as Genetic Programming (GP) offer unique capabilities to reduce the complexities of hydrological systems without losing relevant physical information. This study presents a simple-to-use empirical equation to estimate baseflow time series using GP so that minimal data is required and physical information is preserved. A groundwater numerical model was first adopted to simulate baseflow for a small semi-urban catchment (0.043 km2) located in Singapore. GP was then used to derive an empirical equation relating baseflow time series to time series of groundwater table fluctuations, which are relatively easily measured and are physically related to baseflow generation. The equation was then generalized for approximating baseflow in other catchments and validated for a larger vegetation-dominated basin located in the US (24 km2). Overall, this study used GP to propose a simple-to-use equation to predict baseflow time series based on only three parameters: minimum daily baseflow of the entire period, area of the catchment and groundwater table fluctuations. It serves as an alternative approach for baseflow estimation in un-gauged systems when only groundwater table and soil information is available, and is thus complementary to other methods that require discharge measurements.

  2. Application of empirical mode decomposition method for characterization of random vibration signals

    Directory of Open Access Journals (Sweden)

    Setyamartana Parman

    2016-07-01

    Full Text Available Characterization of finite measured signals is a great of importance in dynamical modeling and system identification. This paper addresses an approach for characterization of measured random vibration signals where the approach rests on a method called empirical mode decomposition (EMD. The applicability of proposed approach is tested in one numerical and experimental data from a structural system, namely spar platform. The results are three main signal components, comprising: noise embedded in the measured signal as the first component, first intrinsic mode function (IMF called as the wave frequency response (WFR as the second component and second IMF called as the low frequency response (LFR as the third component while the residue is the trend. Band-pass filter (BPF method is taken as benchmark for the results obtained from EMD method.

  3. Empirical Performance of Cross-Validation With Oracle Methods in a Genomics Context.

    Science.gov (United States)

    Martinez, Josue G; Carroll, Raymond J; Müller, Samuel; Sampson, Joshua N; Chatterjee, Nilanjan

    2011-11-01

    When employing model selection methods with oracle properties such as the smoothly clipped absolute deviation (SCAD) and the Adaptive Lasso, it is typical to estimate the smoothing parameter by m-fold cross-validation, for example, m = 10. In problems where the true regression function is sparse and the signals large, such cross-validation typically works well. However, in regression modeling of genomic studies involving Single Nucleotide Polymorphisms (SNP), the true regression functions, while thought to be sparse, do not have large signals. We demonstrate empirically that in such problems, the number of selected variables using SCAD and the Adaptive Lasso, with 10-fold cross-validation, is a random variable that has considerable and surprising variation. Similar remarks apply to non-oracle methods such as the Lasso. Our study strongly questions the suitability of performing only a single run of m-fold cross-validation with any oracle method, and not just the SCAD and Adaptive Lasso.

  4. Aircraft directional stability and vertical tail design: A review of semi-empirical methods

    Science.gov (United States)

    Ciliberti, Danilo; Della Vecchia, Pierluigi; Nicolosi, Fabrizio; De Marco, Agostino

    2017-11-01

    Aircraft directional stability and control are related to vertical tail design. The safety, performance, and flight qualities of an aircraft also depend on a correct empennage sizing. Specifically, the vertical tail is responsible for the aircraft yaw stability and control. If these characteristics are not well balanced, the entire aircraft design may fail. Stability and control are often evaluated, especially in the preliminary design phase, with semi-empirical methods, which are based on the results of experimental investigations performed in the past decades, and occasionally are merged with data provided by theoretical assumptions. This paper reviews the standard semi-empirical methods usually applied in the estimation of airplane directional stability derivatives in preliminary design, highlighting the advantages and drawbacks of these approaches that were developed from wind tunnel tests performed mainly on fighter airplane configurations of the first decades of the past century, and discussing their applicability on current transport aircraft configurations. Recent investigations made by the authors have shown the limit of these methods, proving the existence of aerodynamic interference effects in sideslip conditions which are not adequately considered in classical formulations. The article continues with a concise review of the numerical methods for aerodynamics and their applicability in aircraft design, highlighting how Reynolds-Averaged Navier-Stokes (RANS) solvers are well-suited to attain reliable results in attached flow conditions, with reasonable computational times. From the results of RANS simulations on a modular model of a representative regional turboprop airplane layout, the authors have developed a modern method to evaluate the vertical tail and fuselage contributions to aircraft directional stability. The investigation on the modular model has permitted an effective analysis of the aerodynamic interference effects by moving, changing, and

  5. Prediction of shear wave velocity using empirical correlations and artificial intelligence methods

    Science.gov (United States)

    Maleki, Shahoo; Moradzadeh, Ali; Riabi, Reza Ghavami; Gholami, Raoof; Sadeghzadeh, Farhad

    2014-06-01

    Good understanding of mechanical properties of rock formations is essential during the development and production phases of a hydrocarbon reservoir. Conventionally, these properties are estimated from the petrophysical logs with compression and shear sonic data being the main input to the correlations. This is while in many cases the shear sonic data are not acquired during well logging, which may be for cost saving purposes. In this case, shear wave velocity is estimated using available empirical correlations or artificial intelligent methods proposed during the last few decades. In this paper, petrophysical logs corresponding to a well drilled in southern part of Iran were used to estimate the shear wave velocity using empirical correlations as well as two robust artificial intelligence methods knows as Support Vector Regression (SVR) and Back-Propagation Neural Network (BPNN). Although the results obtained by SVR seem to be reliable, the estimated values are not very precise and considering the importance of shear sonic data as the input into different models, this study suggests acquiring shear sonic data during well logging. It is important to note that the benefits of having reliable shear sonic data for estimation of rock formation mechanical properties will compensate the possible additional costs for acquiring a shear log.

  6. Empirical Bayes ranking and selection methods via semiparametric hierarchical mixture models in microarray studies.

    Science.gov (United States)

    Noma, Hisashi; Matsui, Shigeyuki

    2013-05-20

    The main purpose of microarray studies is screening of differentially expressed genes as candidates for further investigation. Because of limited resources in this stage, prioritizing genes are relevant statistical tasks in microarray studies. For effective gene selections, parametric empirical Bayes methods for ranking and selection of genes with largest effect sizes have been proposed (Noma et al., 2010; Biostatistics 11: 281-289). The hierarchical mixture model incorporates the differential and non-differential components and allows information borrowing across differential genes with separation from nuisance, non-differential genes. In this article, we develop empirical Bayes ranking methods via a semiparametric hierarchical mixture model. A nonparametric prior distribution, rather than parametric prior distributions, for effect sizes is specified and estimated using the "smoothing by roughening" approach of Laird and Louis (1991; Computational statistics and data analysis 12: 27-37). We present applications to childhood and infant leukemia clinical studies with microarrays for exploring genes related to prognosis or disease progression. Copyright © 2012 John Wiley & Sons, Ltd.

  7. Prediction of shear wave velocity using empirical correlations and artificial intelligence methods

    Directory of Open Access Journals (Sweden)

    Shahoo Maleki

    2014-06-01

    Full Text Available Good understanding of mechanical properties of rock formations is essential during the development and production phases of a hydrocarbon reservoir. Conventionally, these properties are estimated from the petrophysical logs with compression and shear sonic data being the main input to the correlations. This is while in many cases the shear sonic data are not acquired during well logging, which may be for cost saving purposes. In this case, shear wave velocity is estimated using available empirical correlations or artificial intelligent methods proposed during the last few decades. In this paper, petrophysical logs corresponding to a well drilled in southern part of Iran were used to estimate the shear wave velocity using empirical correlations as well as two robust artificial intelligence methods knows as Support Vector Regression (SVR and Back-Propagation Neural Network (BPNN. Although the results obtained by SVR seem to be reliable, the estimated values are not very precise and considering the importance of shear sonic data as the input into different models, this study suggests acquiring shear sonic data during well logging. It is important to note that the benefits of having reliable shear sonic data for estimation of rock formation mechanical properties will compensate the possible additional costs for acquiring a shear log.

  8. Developing a Clustering-Based Empirical Bayes Analysis Method for Hotspot Identification

    Directory of Open Access Journals (Sweden)

    Yajie Zou

    2017-01-01

    Full Text Available Hotspot identification (HSID is a critical part of network-wide safety evaluations. Typical methods for ranking sites are often rooted in using the Empirical Bayes (EB method to estimate safety from both observed crash records and predicted crash frequency based on similar sites. The performance of the EB method is highly related to the selection of a reference group of sites (i.e., roadway segments or intersections similar to the target site from which safety performance functions (SPF used to predict crash frequency will be developed. As crash data often contain underlying heterogeneity that, in essence, can make them appear to be generated from distinct subpopulations, methods are needed to select similar sites in a principled manner. To overcome this possible heterogeneity problem, EB-based HSID methods that use common clustering methodologies (e.g., mixture models, K-means, and hierarchical clustering to select “similar” sites for building SPFs are developed. Performance of the clustering-based EB methods is then compared using real crash data. Here, HSID results, when computed on Texas undivided rural highway cash data, suggest that all three clustering-based EB analysis methods are preferred over the conventional statistical methods. Thus, properly classifying the road segments for heterogeneous crash data can further improve HSID accuracy.

  9. Comparison of a semi-empirical method with some model codes for gamma-ray spectrum calculation

    Energy Technology Data Exchange (ETDEWEB)

    Sheng, Fan; Zhixiang, Zhao [Chinese Nuclear Data Center, Beijing, BJ (China)

    1996-06-01

    Gamma-ray spectra calculated by a semi-empirical method are compared with those calculated by the model codes such as GNASH, TNG, UNF and NDCP-1. The results of the calculations are discussed. (2 tabs., 3 figs.).

  10. Prediction of Physicochemical Properties of Organic Molecules Using Semi-Empirical Methods

    International Nuclear Information System (INIS)

    Kim, Chan Kyung; Kim, Chang Kon; Kim, Miri; Lee, Hai Whang; Cho, Soo Gyeong

    2013-01-01

    Prediction of physicochemical properties of organic molecules is an important process in chemistry and chemical engineering. The MSEP approach developed in our lab calculates the molecular surface electrostatic potential (ESP) on van der Waals (vdW) surfaces of molecules. This approach includes geometry optimization and frequency calculation using hybrid density functional theory, B3LYP, at the 6-31G(d) basis set to find minima on the potential energy surface, and is known to give satisfactory QSPR results for various properties of organic molecules. However, this MSEP method is not applicable to screen large database because geometry optimization and frequency calculation require considerable computing time. To develop a fast but yet reliable approach, we have re-examined our previous work on organic molecules using two semi-empirical methods, AM1 and PM3. This new approach can be an efficient protocol in designing new molecules with improved properties

  11. Interpretation and method: Empirical research methods and the interpretive turn, 2nd ed.

    NARCIS (Netherlands)

    Yanow, D.; Schwartz-Shea, P.

    2014-01-01

    This book demonstrates the relevance, rigor, and creativity of interpretive research methodologies for the social and human sciences. The book situates methods questions within the context of broader methodological questions--specifically, the character of social realities and their "know-ability."

  12. On the Reliability of Source Time Functions Estimated Using Empirical Green's Function Methods

    Science.gov (United States)

    Gallegos, A. C.; Xie, J.; Suarez Salas, L.

    2017-12-01

    The Empirical Green's Function (EGF) method (Hartzell, 1978) has been widely used to extract source time functions (STFs). In this method, seismograms generated by collocated events with different magnitudes are deconvolved. Under a fundamental assumption that the STF of the small event is a delta function, the deconvolved Relative Source Time Function (RSTF) yields the large event's STF. While this assumption can be empirically justified by examination of differences in event size and frequency content of the seismograms, there can be a lack of rigorous justification of the assumption. In practice, a small event might have a finite duration when the RSTF is retrieved and interpreted as the large event STF with a bias. In this study, we rigorously analyze this bias using synthetic waveforms generated by convolving a realistic Green's function waveform with pairs of finite-duration triangular or parabolic STFs. The RSTFs are found using a time-domain based matrix deconvolution. We find when the STFs of smaller events are finite, the RSTFs are a series of narrow non-physical spikes. Interpreting these RSTFs as a series of high-frequency source radiations would be very misleading. The only reliable and unambiguous information we can retrieve from these RSTFs is the difference in durations and the moment ratio of the two STFs. We can apply a Tikhonov smoothing to obtain a single-pulse RSTF, but its duration is dependent on the choice of weighting, which may be subjective. We then test the Multi-Channel Deconvolution (MCD) method (Plourde & Bostock, 2017) which assumes that both STFs have finite durations to be solved for. A concern about the MCD method is that the number of unknown parameters is larger, which would tend to make the problem rank-deficient. Because the kernel matrix is dependent on the STFs to be solved for under a positivity constraint, we can only estimate the rank-deficiency with a semi-empirical approach. Based on the results so far, we find that the

  13. The effect of empirical potential functions on modeling of amorphous carbon using molecular dynamics method

    International Nuclear Information System (INIS)

    Li, Longqiu; Xu, Ming; Song, Wenping; Ovcharenko, Andrey; Zhang, Guangyu; Jia, Ding

    2013-01-01

    Empirical potentials have a strong effect on the hybridization and structure of amorphous carbon and are of great importance in molecular dynamics (MD) simulations. In this work, amorphous carbon at densities ranging from 2.0 to 3.2 g/cm 3 was modeled by a liquid quenching method using Tersoff, 2nd REBO, and ReaxFF empirical potentials. The hybridization, structure and radial distribution function G(r) of carbon atoms were analyzed as a function of the three potentials mentioned above. The ReaxFF potential is capable to model the change of the structure of amorphous carbon and MD results are in a good agreement with experimental results and density function theory (DFT) at low density of 2.6 g/cm 3 and below. The 2nd REBO potential can be used when amorphous carbon has a very low density of 2.4 g/cm 3 and below. Considering the computational efficiency, the Tersoff potential is recommended to model amorphous carbon at a high density of 2.6 g/cm 3 and above. In addition, the influence of the quenching time on the hybridization content obtained with the three potentials is discussed.

  14. Highly comparative time-series analysis: the empirical structure of time series and their methods.

    Science.gov (United States)

    Fulcher, Ben D; Little, Max A; Jones, Nick S

    2013-06-06

    The process of collecting and organizing sets of observations represents a common theme throughout the history of science. However, despite the ubiquity of scientists measuring, recording and analysing the dynamics of different processes, an extensive organization of scientific time-series data and analysis methods has never been performed. Addressing this, annotated collections of over 35 000 real-world and model-generated time series, and over 9000 time-series analysis algorithms are analysed in this work. We introduce reduced representations of both time series, in terms of their properties measured by diverse scientific methods, and of time-series analysis methods, in terms of their behaviour on empirical time series, and use them to organize these interdisciplinary resources. This new approach to comparing across diverse scientific data and methods allows us to organize time-series datasets automatically according to their properties, retrieve alternatives to particular analysis methods developed in other scientific disciplines and automate the selection of useful methods for time-series classification and regression tasks. The broad scientific utility of these tools is demonstrated on datasets of electroencephalograms, self-affine time series, heartbeat intervals, speech signals and others, in each case contributing novel analysis techniques to the existing literature. Highly comparative techniques that compare across an interdisciplinary literature can thus be used to guide more focused research in time-series analysis for applications across the scientific disciplines.

  15. A hybrid filtering method based on a novel empirical mode decomposition for friction signals

    International Nuclear Information System (INIS)

    Li, Chengwei; Zhan, Liwei

    2015-01-01

    During a measurement, the measured signal usually contains noise. To remove the noise and preserve the important feature of the signal, we introduce a hybrid filtering method that uses a new intrinsic mode function (NIMF) and a modified Hausdorff distance. The NIMF is defined as the difference between the noisy signal and each intrinsic mode function (IMF), which is obtained by empirical mode decomposition (EMD), ensemble EMD, complementary ensemble EMD, or complete ensemble EMD with adaptive noise (CEEMDAN). The relevant mode selecting is based on the similarity between the first NIMF and the rest of the NIMFs. With this filtering method, the EMD and improved versions are used to filter the simulation and friction signals. The friction signal between an airplane tire and the runaway is recorded during a simulated airplane touchdown and features spikes of various amplitudes and noise. The filtering effectiveness of the four hybrid filtering methods are compared and discussed. The results show that the filtering method based on CEEMDAN outperforms other signal filtering methods. (paper)

  16. A novel signal compression method based on optimal ensemble empirical mode decomposition for bearing vibration signals

    Science.gov (United States)

    Guo, Wei; Tse, Peter W.

    2013-01-01

    Today, remote machine condition monitoring is popular due to the continuous advancement in wireless communication. Bearing is the most frequently and easily failed component in many rotating machines. To accurately identify the type of bearing fault, large amounts of vibration data need to be collected. However, the volume of transmitted data cannot be too high because the bandwidth of wireless communication is limited. To solve this problem, the data are usually compressed before transmitting to a remote maintenance center. This paper proposes a novel signal compression method that can substantially reduce the amount of data that need to be transmitted without sacrificing the accuracy of fault identification. The proposed signal compression method is based on ensemble empirical mode decomposition (EEMD), which is an effective method for adaptively decomposing the vibration signal into different bands of signal components, termed intrinsic mode functions (IMFs). An optimization method was designed to automatically select appropriate EEMD parameters for the analyzed signal, and in particular to select the appropriate level of the added white noise in the EEMD method. An index termed the relative root-mean-square error was used to evaluate the decomposition performances under different noise levels to find the optimal level. After applying the optimal EEMD method to a vibration signal, the IMF relating to the bearing fault can be extracted from the original vibration signal. Compressing this signal component obtains a much smaller proportion of data samples to be retained for transmission and further reconstruction. The proposed compression method were also compared with the popular wavelet compression method. Experimental results demonstrate that the optimization of EEMD parameters can automatically find appropriate EEMD parameters for the analyzed signals, and the IMF-based compression method provides a higher compression ratio, while retaining the bearing defect

  17. Effect of tidal triggering on seismicity in Taiwan revealed by the empirical mode decomposition method

    Directory of Open Access Journals (Sweden)

    H.-J. Chen

    2012-07-01

    Full Text Available The effect of tidal triggering on earthquake occurrence has been controversial for many years. This study considered earthquakes that occurred near Taiwan between 1973 and 2008. Because earthquake data are nonlinear and non-stationary, we applied the empirical mode decomposition (EMD method to analyze the temporal variations in the number of daily earthquakes to investigate the effect of tidal triggering. We compared the results obtained from the non-declustered catalog with those from two kinds of declustered catalogs and discuss the aftershock effect on the EMD-based analysis. We also investigated stacking the data based on in-phase phenomena of theoretical Earth tides with statistical significance tests. Our results show that the effects of tidal triggering, particularly the lunar tidal effect, can be extracted from the raw seismicity data using the approach proposed here. Our results suggest that the lunar tidal force is likely a factor in the triggering of earthquakes.

  18. Empirical method to measure stochasticity and multifractality in nonlinear time series

    Science.gov (United States)

    Lin, Chih-Hao; Chang, Chia-Seng; Li, Sai-Ping

    2013-12-01

    An empirical algorithm is used here to study the stochastic and multifractal nature of nonlinear time series. A parameter can be defined to quantitatively measure the deviation of the time series from a Wiener process so that the stochasticity of different time series can be compared. The local volatility of the time series under study can be constructed using this algorithm, and the multifractal structure of the time series can be analyzed by using this local volatility. As an example, we employ this method to analyze financial time series from different stock markets. The result shows that while developed markets evolve very much like an Ito process, the emergent markets are far from efficient. Differences about the multifractal structures and leverage effects between developed and emergent markets are discussed. The algorithm used here can be applied in a similar fashion to study time series of other complex systems.

  19. Empirical source strength correlations for rans-based acoustic analogy methods

    Science.gov (United States)

    Kube-McDowell, Matthew Tyndall

    JeNo is a jet noise prediction code based on an acoustic analogy method developed by Mani, Gliebe, Balsa, and Khavaran. Using the flow predictions from a standard Reynolds-averaged Navier-Stokes computational fluid dynamics solver, JeNo predicts the overall sound pressure level and angular spectra for high-speed hot jets over a range of observer angles, with a processing time suitable for rapid design purposes. JeNo models the noise from hot jets as a combination of two types of noise sources; quadrupole sources dependent on velocity fluctuations, which represent the major noise of turbulent mixing, and dipole sources dependent on enthalpy fluctuations, which represent the effects of thermal variation. These two sources are modeled by JeNo as propagating independently into the far-field, with no cross-correlation at the observer location. However, high-fidelity computational fluid dynamics solutions demonstrate that this assumption is false. In this thesis, the theory, assumptions, and limitations of the JeNo code are briefly discussed, and a modification to the acoustic analogy method is proposed in which the cross-correlation of the two primary noise sources is allowed to vary with the speed of the jet and the observer location. As a proof-of-concept implementation, an empirical correlation correction function is derived from comparisons between JeNo's noise predictions and a set of experimental measurements taken for the Air Force Aero-Propulsion Laboratory. The empirical correlation correction is then applied to JeNo's predictions of a separate data set of hot jets tested at NASA's Glenn Research Center. Metrics are derived to measure the qualitative and quantitative performance of JeNo's acoustic predictions, and the empirical correction is shown to provide a quantitative improvement in the noise prediction at low observer angles with no freestream flow, and a qualitative improvement in the presence of freestream flow. However, the results also demonstrate

  20. A comparison of usability methods for testing interactive health technologies: methodological aspects and empirical evidence.

    Science.gov (United States)

    Jaspers, Monique W M

    2009-05-01

    Usability evaluation is now widely recognized as critical to the success of interactive health care applications. However, the broad range of usability inspection and testing methods available may make it difficult to decide on a usability assessment plan. To guide novices in the human-computer interaction field, we provide an overview of the methodological and empirical research available on the three usability inspection and testing methods most often used. We describe two 'expert-based' and one 'user-based' usability method: (1) the heuristic evaluation, (2) the cognitive walkthrough, and (3) the think aloud. All three usability evaluation methods are applied in laboratory settings. Heuristic evaluation is a relatively efficient usability evaluation method with a high benefit-cost ratio, but requires high skills and usability experience of the evaluators to produce reliable results. The cognitive walkthrough is a more structured approach than the heuristic evaluation with a stronger focus on the learnability of a computer application. Major drawbacks of the cognitive walkthrough are the required level of detail of task and user background descriptions for an adequate application of the latest version of the technique. The think aloud is a very direct method to gain deep insight in the problems end users encounter in interaction with a system but data analyses is extensive and requires a high level of expertise both in the cognitive ergonomics and in computer system application domain. Each of the three usability evaluation methods has shown its usefulness, has its own advantages and disadvantages; no single method has revealed any significant results indicating that it is singularly effective in all circumstances. A combination of different techniques that compliment one another should preferably be used as their collective application will be more powerful than applied in isolation. Innovative mobile and automated solutions to support end-user testing have

  1. Value and depreciation of mineral resources over the very long run: An empirical contrast of different methods

    OpenAIRE

    Rubio Varas, M. del Mar

    2005-01-01

    The paper contrasts empirically the results of alternative methods for estimating the value and the depreciation of mineral resources. The historical data of Mexico and Venezuela, covering the period 1920s-1980s, is used to contrast the results of several methods. These are the present value, the net price method, the user cost method and the imputed income method. The paper establishes that the net price and the user cost are not competing methods as such, but alternative adjustments to diff...

  2. Levels of reduction in van Manen's phenomenological hermeneutic method: an empirical example.

    Science.gov (United States)

    Heinonen, Kristiina

    2015-05-01

    To describe reduction as a method using van Manen's phenomenological hermeneutic research approach. Reduction involves several levels that can be distinguished for their methodological usefulness. Researchers can use reduction in different ways and dimensions for their methodological needs. A study of Finnish multiple-birth families in which open interviews (n=38) were conducted with public health nurses, family care workers and parents of twins. A systematic literature and knowledge review showed there were no articles on multiple-birth families that used van Manen's method. Discussion The phenomena of the 'lifeworlds' of multiple-birth families consist of three core essential themes as told by parents: 'a state of constant vigilance', 'ensuring that they can continue to cope' and 'opportunities to share with other people'. Reduction provides the opportunity to carry out in-depth phenomenological hermeneutic research and understand people's lives. It helps to keep research stages separate but also enables a consolidated view. Social care and healthcare professionals have to hear parents' voices better to comprehensively understand their situation; they need further tools and training to be able to empower parents of twins. This paper adds an empirical example to the discussion of phenomenology, hermeneutic study and reduction as a method. It opens up reduction for researchers to exploit.

  3. Intermolecular interactions in the condensed phase: Evaluation of semi-empirical quantum mechanical methods.

    Science.gov (United States)

    Christensen, Anders S; Kromann, Jimmy C; Jensen, Jan H; Cui, Qiang

    2017-10-28

    To facilitate further development of approximate quantum mechanical methods for condensed phase applications, we present a new benchmark dataset of intermolecular interaction energies in the solution phase for a set of 15 dimers, each containing one charged monomer. The reference interaction energy in solution is computed via a thermodynamic cycle that integrates dimer binding energy in the gas phase at the coupled cluster level and solute-solvent interaction with density functional theory; the estimated uncertainty of such calculated interaction energy is ±1.5 kcal/mol. The dataset is used to benchmark the performance of a set of semi-empirical quantum mechanical (SQM) methods that include DFTB3-D3, DFTB3/CPE-D3, OM2-D3, PM6-D3, PM6-D3H+, and PM7 as well as the HF-3c method. We find that while all tested SQM methods tend to underestimate binding energies in the gas phase with a root-mean-squared error (RMSE) of 2-5 kcal/mol, they overestimate binding energies in the solution phase with an RMSE of 3-4 kcal/mol, with the exception of DFTB3/CPE-D3 and OM2-D3, for which the systematic deviation is less pronounced. In addition, we find that HF-3c systematically overestimates binding energies in both gas and solution phases. As most approximate QM methods are parametrized and evaluated using data measured or calculated in the gas phase, the dataset represents an important first step toward calibrating QM based methods for application in the condensed phase where polarization and exchange repulsion need to be treated in a balanced fashion.

  4. Intermolecular interactions in the condensed phase: Evaluation of semi-empirical quantum mechanical methods

    Science.gov (United States)

    Christensen, Anders S.; Kromann, Jimmy C.; Jensen, Jan H.; Cui, Qiang

    2017-10-01

    To facilitate further development of approximate quantum mechanical methods for condensed phase applications, we present a new benchmark dataset of intermolecular interaction energies in the solution phase for a set of 15 dimers, each containing one charged monomer. The reference interaction energy in solution is computed via a thermodynamic cycle that integrates dimer binding energy in the gas phase at the coupled cluster level and solute-solvent interaction with density functional theory; the estimated uncertainty of such calculated interaction energy is ±1.5 kcal/mol. The dataset is used to benchmark the performance of a set of semi-empirical quantum mechanical (SQM) methods that include DFTB3-D3, DFTB3/CPE-D3, OM2-D3, PM6-D3, PM6-D3H+, and PM7 as well as the HF-3c method. We find that while all tested SQM methods tend to underestimate binding energies in the gas phase with a root-mean-squared error (RMSE) of 2-5 kcal/mol, they overestimate binding energies in the solution phase with an RMSE of 3-4 kcal/mol, with the exception of DFTB3/CPE-D3 and OM2-D3, for which the systematic deviation is less pronounced. In addition, we find that HF-3c systematically overestimates binding energies in both gas and solution phases. As most approximate QM methods are parametrized and evaluated using data measured or calculated in the gas phase, the dataset represents an important first step toward calibrating QM based methods for application in the condensed phase where polarization and exchange repulsion need to be treated in a balanced fashion.

  5. Maximum likelihood of phylogenetic networks.

    Science.gov (United States)

    Jin, Guohua; Nakhleh, Luay; Snir, Sagi; Tuller, Tamir

    2006-11-01

    Horizontal gene transfer (HGT) is believed to be ubiquitous among bacteria, and plays a major role in their genome diversification as well as their ability to develop resistance to antibiotics. In light of its evolutionary significance and implications for human health, developing accurate and efficient methods for detecting and reconstructing HGT is imperative. In this article we provide a new HGT-oriented likelihood framework for many problems that involve phylogeny-based HGT detection and reconstruction. Beside the formulation of various likelihood criteria, we show that most of these problems are NP-hard, and offer heuristics for efficient and accurate reconstruction of HGT under these criteria. We implemented our heuristics and used them to analyze biological as well as synthetic data. In both cases, our criteria and heuristics exhibited very good performance with respect to identifying the correct number of HGT events as well as inferring their correct location on the species tree. Implementation of the criteria as well as heuristics and hardness proofs are available from the authors upon request. Hardness proofs can also be downloaded at http://www.cs.tau.ac.il/~tamirtul/MLNET/Supp-ML.pdf

  6. Probabilistic performance estimators for computational chemistry methods: The empirical cumulative distribution function of absolute errors

    Science.gov (United States)

    Pernot, Pascal; Savin, Andreas

    2018-06-01

    Benchmarking studies in computational chemistry use reference datasets to assess the accuracy of a method through error statistics. The commonly used error statistics, such as the mean signed and mean unsigned errors, do not inform end-users on the expected amplitude of prediction errors attached to these methods. We show that, the distributions of model errors being neither normal nor zero-centered, these error statistics cannot be used to infer prediction error probabilities. To overcome this limitation, we advocate for the use of more informative statistics, based on the empirical cumulative distribution function of unsigned errors, namely, (1) the probability for a new calculation to have an absolute error below a chosen threshold and (2) the maximal amplitude of errors one can expect with a chosen high confidence level. Those statistics are also shown to be well suited for benchmarking and ranking studies. Moreover, the standard error on all benchmarking statistics depends on the size of the reference dataset. Systematic publication of these standard errors would be very helpful to assess the statistical reliability of benchmarking conclusions.

  7. CO2 capture in amine solutions: modelling and simulations with non-empirical methods

    Science.gov (United States)

    Andreoni, Wanda; Pietrucci, Fabio

    2016-12-01

    Absorption in aqueous amine solutions is the most advanced technology for the capture of CO2, although suffering from drawbacks that do not allow exploitation on large scale. The search for optimum solvents has been pursued with empirical methods and has also motivated a number of computational approaches over the last decade. However, a deeper level of understanding of the relevant chemical reactions in solution is required so as to contribute to this effort. We present here a brief critical overview of the most recent applications of computer simulations using ab initio methods. Comparison of their outcome shows a strong dependence on the structural models employed to represent the molecular systems in solution and on the strategy used to simulate the reactions. In particular, the results of very recent ab initio molecular dynamics augmented with metadynamics are summarized, showing the crucial role of water, which has been so far strongly underestimated both in the calculations and in the interpretation of experimental data. Indications are given for advances in computational approaches that are necessary if meant to contribute to the rational design of new solvents.

  8. CO2 capture in amine solutions: modelling and simulations with non-empirical methods

    International Nuclear Information System (INIS)

    Andreoni, Wanda; Pietrucci, Fabio

    2016-01-01

    Absorption in aqueous amine solutions is the most advanced technology for the capture of CO 2 , although suffering from drawbacks that do not allow exploitation on large scale. The search for optimum solvents has been pursued with empirical methods and has also motivated a number of computational approaches over the last decade. However, a deeper level of understanding of the relevant chemical reactions in solution is required so as to contribute to this effort. We present here a brief critical overview of the most recent applications of computer simulations using ab initio methods. Comparison of their outcome shows a strong dependence on the structural models employed to represent the molecular systems in solution and on the strategy used to simulate the reactions. In particular, the results of very recent ab initio molecular dynamics augmented with metadynamics are summarized, showing the crucial role of water, which has been so far strongly underestimated both in the calculations and in the interpretation of experimental data. Indications are given for advances in computational approaches that are necessary if meant to contribute to the rational design of new solvents. (topical review)

  9. Studying Regional Wave Source Time Functions Using the Empirical Green's Function Method: Application to Central Asia

    Science.gov (United States)

    Xie, J.; Schaff, D. P.; Chen, Y.; Schult, F.

    2013-12-01

    Reliably estimated source time functions (STFs) from high-frequency regional waveforms, such as Lg, Pn and Pg, provide important input for seismic source studies, explosion detection and discrimination, and minimization of parameter trade-off in attenuation studies. We have searched for candidate pairs of larger and small earthquakes in and around China that share the same focal mechanism but significantly differ in magnitudes, so that the empirical Green's function (EGF) method can be applied to study the STFs of the larger events. We conducted about a million deconvolutions using waveforms from 925 earthquakes, and screened the deconvolved traces to exclude those that are from event pairs that involved different mechanisms. Only 2,700 traces passed this screening and could be further analyzed using the EGF method. We have developed a series of codes for speeding up the final EGF analysis by implementing automations and user-graphic interface procedures. The codes have been fully tested with a subset of screened data and we are currently applying them to all the screened data. We will present a large number of deconvolved STFs retrieved using various phases (Lg, Pn, Sn and Pg and coda) with information on any directivities, any possible dependence of pulse durations on the wave types, on scaling relations for the pulse durations and event sizes, and on the estimated source static stress drops.

  10. On Bayesian Testing of Additive Conjoint Measurement Axioms Using Synthetic Likelihood.

    Science.gov (United States)

    Karabatsos, George

    2018-06-01

    This article introduces a Bayesian method for testing the axioms of additive conjoint measurement. The method is based on an importance sampling algorithm that performs likelihood-free, approximate Bayesian inference using a synthetic likelihood to overcome the analytical intractability of this testing problem. This new method improves upon previous methods because it provides an omnibus test of the entire hierarchy of cancellation axioms, beyond double cancellation. It does so while accounting for the posterior uncertainty that is inherent in the empirical orderings that are implied by these axioms, together. The new method is illustrated through a test of the cancellation axioms on a classic survey data set, and through the analysis of simulated data.

  11. Interface of the polarizable continuum model of solvation with semi-empirical methods in the GAMESS program

    DEFF Research Database (Denmark)

    Svendsen, Casper Steinmann; Blædel, Kristoffer L.; Christensen, Anders Steen

    2013-01-01

    An interface between semi-empirical methods and the polarized continuum model (PCM) of solvation successfully implemented into GAMESS following the approach by Chudinov et al (Chem. Phys. 1992, 160, 41). The interface includes energy gradients and is parallelized. For large molecules such as ubiq......An interface between semi-empirical methods and the polarized continuum model (PCM) of solvation successfully implemented into GAMESS following the approach by Chudinov et al (Chem. Phys. 1992, 160, 41). The interface includes energy gradients and is parallelized. For large molecules...

  12. Benchmarking of a T-wave alternans detection method based on empirical mode decomposition.

    Science.gov (United States)

    Blanco-Velasco, Manuel; Goya-Esteban, Rebeca; Cruz-Roldán, Fernando; García-Alberola, Arcadi; Rojo-Álvarez, José Luis

    2017-07-01

    T-wave alternans (TWA) is a fluctuation of the ST-T complex occurring on an every-other-beat basis of the surface electrocardiogram (ECG). It has been shown to be an informative risk stratifier for sudden cardiac death, though the lack of gold standard to benchmark detection methods has promoted the use of synthetic signals. This work proposes a novel signal model to study the performance of a TWA detection. Additionally, the methodological validation of a denoising technique based on empirical mode decomposition (EMD), which is used here along with the spectral method, is also tackled. The proposed test bed system is based on the following guidelines: (1) use of open source databases to enable experimental replication; (2) use of real ECG signals and physiological noise; (3) inclusion of randomized TWA episodes. Both sensitivity (Se) and specificity (Sp) are separately analyzed. Also a nonparametric hypothesis test, based on Bootstrap resampling, is used to determine whether the presence of the EMD block actually improves the performance. The results show an outstanding specificity when the EMD block is used, even in very noisy conditions (0.96 compared to 0.72 for SNR = 8 dB), being always superior than that of the conventional SM alone. Regarding the sensitivity, using the EMD method also outperforms in noisy conditions (0.57 compared to 0.46 for SNR=8 dB), while it decreases in noiseless conditions. The proposed test setting designed to analyze the performance guarantees that the actual physiological variability of the cardiac system is reproduced. The use of the EMD-based block in noisy environment enables the identification of most patients with fatal arrhythmias. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Empirical methods for controlling false positives and estimating confidence in ChIP-Seq peaks

    Directory of Open Access Journals (Sweden)

    Courdy Samir J

    2008-12-01

    Full Text Available Abstract Background High throughput signature sequencing holds many promises, one of which is the ready identification of in vivo transcription factor binding sites, histone modifications, changes in chromatin structure and patterns of DNA methylation across entire genomes. In these experiments, chromatin immunoprecipitation is used to enrich for particular DNA sequences of interest and signature sequencing is used to map the regions to the genome (ChIP-Seq. Elucidation of these sites of DNA-protein binding/modification are proving instrumental in reconstructing networks of gene regulation and chromatin remodelling that direct development, response to cellular perturbation, and neoplastic transformation. Results Here we present a package of algorithms and software that makes use of control input data to reduce false positives and estimate confidence in ChIP-Seq peaks. Several different methods were compared using two simulated spike-in datasets. Use of control input data and a normalized difference score were found to more than double the recovery of ChIP-Seq peaks at a 5% false discovery rate (FDR. Moreover, both a binomial p-value/q-value and an empirical FDR were found to predict the true FDR within 2–3 fold and are more reliable estimators of confidence than a global Poisson p-value. These methods were then used to reanalyze Johnson et al.'s neuron-restrictive silencer factor (NRSF ChIP-Seq data without relying on extensive qPCR validated NRSF sites and the presence of NRSF binding motifs for setting thresholds. Conclusion The methods developed and tested here show considerable promise for reducing false positives and estimating confidence in ChIP-Seq data without any prior knowledge of the chIP target. They are part of a larger open source package freely available from http://useq.sourceforge.net/.

  14. Maximum likelihood estimation for integrated diffusion processes

    DEFF Research Database (Denmark)

    Baltazar-Larios, Fernando; Sørensen, Michael

    We propose a method for obtaining maximum likelihood estimates of parameters in diffusion models when the data is a discrete time sample of the integral of the process, while no direct observations of the process itself are available. The data are, moreover, assumed to be contaminated...... EM-algorithm to obtain maximum likelihood estimates of the parameters in the diffusion model. As part of the algorithm, we use a recent simple method for approximate simulation of diffusion bridges. In simulation studies for the Ornstein-Uhlenbeck process and the CIR process the proposed method works...... by measurement errors. Integrated volatility is an example of this type of observations. Another example is ice-core data on oxygen isotopes used to investigate paleo-temperatures. The data can be viewed as incomplete observations of a model with a tractable likelihood function. Therefore we propose a simulated...

  15. Mathematical method to build an empirical model for inhaled anesthetic agent wash-in

    Directory of Open Access Journals (Sweden)

    Grouls René EJ

    2011-06-01

    Full Text Available Abstract Background The wide range of fresh gas flow - vaporizer setting (FGF - FD combinations used by different anesthesiologists during the wash-in period of inhaled anesthetics indicates that the selection of FGF and FD is based on habit and personal experience. An empirical model could rationalize FGF - FD selection during wash-in. Methods During model derivation, 50 ASA PS I-II patients received desflurane in O2 with an ADU® anesthesia machine with a random combination of a fixed FGF - FD setting. The resulting course of the end-expired desflurane concentration (FA was modeled with Excel Solver, with patient age, height, and weight as covariates; NONMEM was used to check for parsimony. The resulting equation was solved for FD, and prospectively tested by having the formula calculate FD to be used by the anesthesiologist after randomly selecting a FGF, a target FA (FAt, and a specified time interval (1 - 5 min after turning on the vaporizer after which FAt had to be reached. The following targets were tested: desflurane FAt 3.5% after 3.5 min (n = 40, 5% after 5 min (n = 37, and 6% after 4.5 min (n = 37. Results Solving the equation derived during model development for FD yields FD=-(e(-FGF*-0.23+FGF*0.24*(e(FGF*-0.23*FAt*Ht*0.1-e(FGF*-0.23*FGF*2.55+40.46-e(FGF*-0.23*40.46+e(FGF*-0.23+Time/-4.08*40.46-e(Time/-4.08*40.46/((-1+e(FGF*0.24*(-1+e(Time/-4.08*39.29. Only height (Ht could be withheld as a significant covariate. Median performance error and median absolute performance error were -2.9 and 7.0% in the 3.5% after 3.5 min group, -3.4 and 11.4% in the 5% after 5 min group, and -16.2 and 16.2% in the 6% after 4.5 min groups, respectively. Conclusions An empirical model can be used to predict the FGF - FD combinations that attain a target end-expired anesthetic agent concentration with clinically acceptable accuracy within the first 5 min of the start of administration. The sequences are easily calculated in an Excel file and simple to

  16. Empirical method to calculate Clinch River Breeder Reactor (CRBR) inlet plenum transient temperatures

    International Nuclear Information System (INIS)

    Howarth, W.L.

    1976-01-01

    Sodium flow enters the CRBR inlet plenum via three loops or inlets. An empirical equation was developed to calculate transient temperatures in the CRBR inlet plenum from known loop flows and temperatures. The constants in the empirical equation were derived from 1/4 scale Inlet Plenum Model tests using water as the test fluid. The sodium temperature distribution was simulated by an electrolyte. Step electrolyte transients at 100 percent model flow were used to calculate the equation constants. Step electrolyte runs at 50 percent and 10 percent flow confirmed that the constants were independent of flow. Also, a transient was tested which varied simultaneously flow rate and electrolyte. Agreement of the test results with the empirical equation results was good which verifies the empirical equation

  17. It's DE-licious: A Recipe for Differential Expression Analyses of RNA-seq Experiments Using Quasi-Likelihood Methods in edgeR.

    Science.gov (United States)

    Lun, Aaron T L; Chen, Yunshun; Smyth, Gordon K

    2016-01-01

    RNA sequencing (RNA-seq) is widely used to profile transcriptional activity in biological systems. Here we present an analysis pipeline for differential expression analysis of RNA-seq experiments using the Rsubread and edgeR software packages. The basic pipeline includes read alignment and counting, filtering and normalization, modelling of biological variability and hypothesis testing. For hypothesis testing, we describe particularly the quasi-likelihood features of edgeR. Some more advanced downstream analysis steps are also covered, including complex comparisons, gene ontology enrichment analyses and gene set testing. The code required to run each step is described, along with an outline of the underlying theory. The chapter includes a case study in which the pipeline is used to study the expression profiles of mammary gland cells in virgin, pregnant and lactating mice.

  18. Measurement of the top quark mass with the dynamical likelihood method using lepton plus jets events with b-tags in p anti-p collisions at s**(1/2) = 1.96-TeV

    Energy Technology Data Exchange (ETDEWEB)

    Abulencia, A.; Acosta, D.; Adelman, Jahred A.; Affolder, Anthony A.; Akimoto, T.; Albrow, M.G.; Ambrose, D.; Amerio, S.; Amidei, D.; Anastassov, A.; Anikeev, K.; /Taiwan,

    2005-12-01

    This report describes a measurement of the top quark mass, M{sub top}, with the dynamical likelihood method (DLM) using the CDF II detector at the Fermilab Tevatron. The Tevatron produces top/anti-top (t{bar t}) pairs in p{bar p} collisions at a center-of-mass energy of 1.96 TeV. The data sample used in this analysis was accumulated from March 2002 through August 2004, which corresponds to an integrated luminosity of 318 pb{sup -1}. They use the t{bar t} candidates in the ''lepton+jets'' decay channel, requiring at least one jet identified as a b quark by finding an displaced secondary vertex. The DLM defines a likelihood for each event based on the differential cross section as a function of M{sub top} per unit phase space volume of the final partons, multiplied by the transfer functions from jet to parton energies. The method takes into account all possible jet combinations in an event, and the likelihood is multiplied event by event to derive the top quark mass by the maximum likelihood method. Using 63 t{bar t} candidates observed in the data, with 9.2 events expected from background, they measure the top quark mass to be 173.2{sub -2.4}{sup +2.6}(stat.) {+-} 3.2(syst.) GeV/c{sup 2}, or 173.2{sub -4.0}{sup +4.1} GeV/c{sup 2}.

  19. Composite likelihood estimation of demographic parameters

    Directory of Open Access Journals (Sweden)

    Garrigan Daniel

    2009-11-01

    Full Text Available Abstract Background Most existing likelihood-based methods for fitting historical demographic models to DNA sequence polymorphism data to do not scale feasibly up to the level of whole-genome data sets. Computational economies can be achieved by incorporating two forms of pseudo-likelihood: composite and approximate likelihood methods. Composite likelihood enables scaling up to large data sets because it takes the product of marginal likelihoods as an estimator of the likelihood of the complete data set. This approach is especially useful when a large number of genomic regions constitutes the data set. Additionally, approximate likelihood methods can reduce the dimensionality of the data by summarizing the information in the original data by either a sufficient statistic, or a set of statistics. Both composite and approximate likelihood methods hold promise for analyzing large data sets or for use in situations where the underlying demographic model is complex and has many parameters. This paper considers a simple demographic model of allopatric divergence between two populations, in which one of the population is hypothesized to have experienced a founder event, or population bottleneck. A large resequencing data set from human populations is summarized by the joint frequency spectrum, which is a matrix of the genomic frequency spectrum of derived base frequencies in two populations. A Bayesian Metropolis-coupled Markov chain Monte Carlo (MCMCMC method for parameter estimation is developed that uses both composite and likelihood methods and is applied to the three different pairwise combinations of the human population resequence data. The accuracy of the method is also tested on data sets sampled from a simulated population model with known parameters. Results The Bayesian MCMCMC method also estimates the ratio of effective population size for the X chromosome versus that of the autosomes. The method is shown to estimate, with reasonable

  20. SiFTO: An Empirical Method for Fitting SN Ia Light Curves

    Science.gov (United States)

    Conley, A.; Sullivan, M.; Hsiao, E. Y.; Guy, J.; Astier, P.; Balam, D.; Balland, C.; Basa, S.; Carlberg, R. G.; Fouchez, D.; Hardin, D.; Howell, D. A.; Hook, I. M.; Pain, R.; Perrett, K.; Pritchet, C. J.; Regnault, N.

    2008-07-01

    We present SiFTO, a new empirical method for modeling Type Ia supernova (SN Ia) light curves by manipulating a spectral template. We make use of high-redshift SN data when training the model, allowing us to extend it bluer than rest-frame U. This increases the utility of our high-redshift SN observations by allowing us to use more of the available data. We find that when the shape of the light curve is described using a stretch prescription, applying the same stretch at all wavelengths is not an adequate description. SiFTO therefore uses a generalization of stretch which applies different stretch factors as a function of both the wavelength of the observed filter and the stretch in the rest-frame B band. We compare SiFTO to other published light-curve models by applying them to the same set of SN photometry, and demonstrate that SiFTO and SALT2 perform better than the alternatives when judged by the scatter around the best-fit luminosity distance relationship. We further demonstrate that when SiFTO and SALT2 are trained on the same data set the cosmological results agree. Based on observations obtained with MegaPrime/MegaCam, a joint project of CFHT and CEA/DAPNIA, at the Canada-France-Hawaii Telescope (CFHT) which is operated by the National Research Council (NRC) of Canada, the Institut National des Sciences de l'Univers of the Centre National de la Recherche Scientifique (CNRS) of France, and the University of Hawaii. This work is based in part on data products produced at the Canadian Astronomy Data Centre as part of the Canada-France-Hawaii Telescope Legacy Survey, a collaborative project of NRC and CNRS.

  1. Empirical validation of a real options theory based method for optimizing evacuation decisions within chemical plants.

    Science.gov (United States)

    Reniers, G L L; Audenaert, A; Pauwels, N; Soudan, K

    2011-02-15

    This article empirically assesses and validates a methodology to make evacuation decisions in case of major fire accidents in chemical clusters. In this paper, a number of empirical results are presented, processed and discussed with respect to the implications and management of evacuation decisions in chemical companies. It has been shown in this article that in realistic industrial settings, suboptimal interventions may result in case the prospect to obtain additional information at later stages of the decision process is ignored. Empirical results also show that implications of interventions, as well as the required time and workforce to complete particular shutdown activities, may be very different from one company to another. Therefore, to be optimal from an economic viewpoint, it is essential that precautionary evacuation decisions are tailor-made per company. Copyright © 2010 Elsevier B.V. All rights reserved.

  2. Sensitivity of ab Initio vs Empirical Methods in Computing Structural Effects on NMR Chemical Shifts for the Example of Peptides.

    Science.gov (United States)

    Sumowski, Chris Vanessa; Hanni, Matti; Schweizer, Sabine; Ochsenfeld, Christian

    2014-01-14

    The structural sensitivity of NMR chemical shifts as computed by quantum chemical methods is compared to a variety of empirical approaches for the example of a prototypical peptide, the 38-residue kaliotoxin KTX comprising 573 atoms. Despite the simplicity of empirical chemical shift prediction programs, the agreement with experimental results is rather good, underlining their usefulness. However, we show in our present work that they are highly insensitive to structural changes, which renders their use for validating predicted structures questionable. In contrast, quantum chemical methods show the expected high sensitivity to structural and electronic changes. This appears to be independent of the quantum chemical approach or the inclusion of solvent effects. For the latter, explicit solvent simulations with increasing number of snapshots were performed for two conformers of an eight amino acid sequence. In conclusion, the empirical approaches neither provide the expected magnitude nor the patterns of NMR chemical shifts determined by the clearly more costly ab initio methods upon structural changes. This restricts the use of empirical prediction programs in studies where peptide and protein structures are utilized for the NMR chemical shift evaluation such as in NMR refinement processes, structural model verifications, or calculations of NMR nuclear spin relaxation rates.

  3. The influence of SO4 and NO3 to the acidity (pH) of rainwater using minimum variance quadratic unbiased estimation (MIVQUE) and maximum likelihood methods

    Science.gov (United States)

    Dilla, Shintia Ulfa; Andriyana, Yudhie; Sudartianto

    2017-03-01

    Acid rain causes many bad effects in life. It is formed by two strong acids, sulfuric acid (H2SO4) and nitric acid (HNO3), where sulfuric acid is derived from SO2 and nitric acid from NOx {x=1,2}. The purpose of the research is to find out the influence of So4 and NO3 levels contained in the rain to the acidity (pH) of rainwater. The data are incomplete panel data with two-way error component model. The panel data is a collection of some of the observations that observed from time to time. It is said incomplete if each individual has a different amount of observation. The model used in this research is in the form of random effects model (REM). Minimum variance quadratic unbiased estimation (MIVQUE) is used to estimate the variance error components, while maximum likelihood estimation is used to estimate the parameters. As a result, we obtain the following model: Ŷ* = 0.41276446 - 0.00107302X1 + 0.00215470X2.

  4. Bioactive conformational generation of small molecules: A comparative analysis between force-field and multiple empirical criteria based methods

    Directory of Open Access Journals (Sweden)

    Jiang Hualiang

    2010-11-01

    Full Text Available Abstract Background Conformational sampling for small molecules plays an essential role in drug discovery research pipeline. Based on multi-objective evolution algorithm (MOEA, we have developed a conformational generation method called Cyndi in the previous study. In this work, in addition to Tripos force field in the previous version, Cyndi was updated by incorporation of MMFF94 force field to assess the conformational energy more rationally. With two force fields against a larger dataset of 742 bioactive conformations of small ligands extracted from PDB, a comparative analysis was performed between pure force field based method (FFBM and multiple empirical criteria based method (MECBM hybrided with different force fields. Results Our analysis reveals that incorporating multiple empirical rules can significantly improve the accuracy of conformational generation. MECBM, which takes both empirical and force field criteria as the objective functions, can reproduce about 54% (within 1Å RMSD of the bioactive conformations in the 742-molecule testset, much higher than that of pure force field method (FFBM, about 37%. On the other hand, MECBM achieved a more complete and efficient sampling of the conformational space because the average size of unique conformations ensemble per molecule is about 6 times larger than that of FFBM, while the time scale for conformational generation is nearly the same as FFBM. Furthermore, as a complementary comparison study between the methods with and without empirical biases, we also tested the performance of the three conformational generation methods in MacroModel in combination with different force fields. Compared with the methods in MacroModel, MECBM is more competitive in retrieving the bioactive conformations in light of accuracy but has much lower computational cost. Conclusions By incorporating different energy terms with several empirical criteria, the MECBM method can produce more reasonable conformational

  5. Some features and applications of an empirical approach to the treatment of measurement data (DoD-method)

    International Nuclear Information System (INIS)

    Beyrich, W.; Golly, W.; Spannagel, G.

    1981-01-01

    An empirical method of data evaluation is described which allows the derivation of meaningful estimates of the variances of data groups even if they comprise extreme values (outliers). It can be applied to problems usually treated by variance analysis and seems to be suitable to investigate and describe the state of the art of the various analytical methods applied in international safeguards. Some examples are given to illustrate this procedure; they are based on data of the SALE program

  6. An empirical Bayes method for updating inferences in analysis of quantitative trait loci using information from related genome scans.

    Science.gov (United States)

    Zhang, Kui; Wiener, Howard; Beasley, Mark; George, Varghese; Amos, Christopher I; Allison, David B

    2006-08-01

    Individual genome scans for quantitative trait loci (QTL) mapping often suffer from low statistical power and imprecise estimates of QTL location and effect. This lack of precision yields large confidence intervals for QTL location, which are problematic for subsequent fine mapping and positional cloning. In prioritizing areas for follow-up after an initial genome scan and in evaluating the credibility of apparent linkage signals, investigators typically examine the results of other genome scans of the same phenotype and informally update their beliefs about which linkage signals in their scan most merit confidence and follow-up via a subjective-intuitive integration approach. A method that acknowledges the wisdom of this general paradigm but formally borrows information from other scans to increase confidence in objectivity would be a benefit. We developed an empirical Bayes analytic method to integrate information from multiple genome scans. The linkage statistic obtained from a single genome scan study is updated by incorporating statistics from other genome scans as prior information. This technique does not require that all studies have an identical marker map or a common estimated QTL effect. The updated linkage statistic can then be used for the estimation of QTL location and effect. We evaluate the performance of our method by using extensive simulations based on actual marker spacing and allele frequencies from available data. Results indicate that the empirical Bayes method can account for between-study heterogeneity, estimate the QTL location and effect more precisely, and provide narrower confidence intervals than results from any single individual study. We also compared the empirical Bayes method with a method originally developed for meta-analysis (a closely related but distinct purpose). In the face of marked heterogeneity among studies, the empirical Bayes method outperforms the comparator.

  7. SENSITIVITY ANALYSIS IN FLEXIBLE PAVEMENT PERFORMANCE USING MECHANISTIC EMPIRICAL METHOD (CASE STUDY: CIREBON–LOSARI ROAD SEGMENT, WEST JAVA

    Directory of Open Access Journals (Sweden)

    E. Samad

    2012-02-01

    Full Text Available Cirebon – Losari flexible pavement which is located on the North Coast of Java, Indonesia, is in the severe damage condition caused by overloading vehicles passing the road. The need for developing improved pavement design and analysis methods is very necessary. The increment of loads and quality of material properties can be evaluated through Mechanistic-Empirical (M-E method. M-E software like KENLAYER has been developed to facilitate the transition from empirical to mechanistic design methods. From the KENLAYER analysis, it can be concluded that the effect of overloading to the pavement structure performance is difficult to minimize even though the first two layers have relatively high modulus of elasticity. The occurrence of 150%, 200%, and 250% overloading have a very significant effect in reducing 84%, 95%, and 98% of the pavement design life, respectively. For the purpose of increasing the pavement service life, it is more effective to manage the allowable load.

  8. Updated logistic regression equations for the calculation of post-fire debris-flow likelihood in the western United States

    Science.gov (United States)

    Staley, Dennis M.; Negri, Jacquelyn A.; Kean, Jason W.; Laber, Jayme L.; Tillery, Anne C.; Youberg, Ann M.

    2016-06-30

    Wildfire can significantly alter the hydrologic response of a watershed to the extent that even modest rainstorms can generate dangerous flash floods and debris flows. To reduce public exposure to hazard, the U.S. Geological Survey produces post-fire debris-flow hazard assessments for select fires in the western United States. We use publicly available geospatial data describing basin morphology, burn severity, soil properties, and rainfall characteristics to estimate the statistical likelihood that debris flows will occur in response to a storm of a given rainfall intensity. Using an empirical database and refined geospatial analysis methods, we defined new equations for the prediction of debris-flow likelihood using logistic regression methods. We showed that the new logistic regression model outperformed previous models used to predict debris-flow likelihood.

  9. X-ray spectrum analysis of multi-component samples by a method of fundamental parameters using empirical ratios

    International Nuclear Information System (INIS)

    Karmanov, V.I.

    1986-01-01

    A type of the fundamental parameter method based on empirical relation of corrections for absorption and additional-excitation with absorbing characteristics of samples is suggested. The method is used for X-ray fluorescence analysis of multi-component samples of charges of welded electrodes. It is shown that application of the method is justified only for determination of titanium, calcium and silicon content in charges taking into account only corrections for absorption. Irn and manganese content can be calculated by the simple method of the external standard

  10. Theoretical vs. empirical discriminability: the application of ROC methods to eyewitness identification.

    Science.gov (United States)

    Wixted, John T; Mickes, Laura

    2018-01-01

    Receiver operating characteristic (ROC) analysis was introduced to the field of eyewitness identification 5 years ago. Since that time, it has been both influential and controversial, and the debate has raised an issue about measuring discriminability that is rarely considered. The issue concerns the distinction between empirical discriminability (measured by area under the ROC curve) vs. underlying/theoretical discriminability (measured by d' or variants of it). Under most circumstances, the two measures will agree about a difference between two conditions in terms of discriminability. However, it is possible for them to disagree, and that fact can lead to confusion about which condition actually yields higher discriminability. For example, if the two conditions have implications for real-world practice (e.g., a comparison of competing lineup formats), should a policymaker rely on the area-under-the-curve measure or the theory-based measure? Here, we illustrate the fact that a given empirical ROC yields as many underlying discriminability measures as there are theories that one is willing to take seriously. No matter which theory is correct, for practical purposes, the singular area-under-the-curve measure best identifies the diagnostically superior procedure. For that reason, area under the ROC curve informs policy in a way that underlying theoretical discriminability never can. At the same time, theoretical measures of discriminability are equally important, but for a different reason. Without an adequate theoretical understanding of the relevant task, the field will be in no position to enhance empirical discriminability.

  11. Interface of the polarizable continuum model of solvation with semi-empirical methods in the GAMESS program

    DEFF Research Database (Denmark)

    Svendsen, Casper Steinmann; Blædel, Kristoffer; Christensen, Anders S

    2013-01-01

    An interface between semi-empirical methods and the polarized continuum model (PCM) of solvation successfully implemented into GAMESS following the approach by Chudinov et al (Chem. Phys. 1992, 160, 41). The interface includes energy gradients and is parallelized. For large molecules such as ubiq......An interface between semi-empirical methods and the polarized continuum model (PCM) of solvation successfully implemented into GAMESS following the approach by Chudinov et al (Chem. Phys. 1992, 160, 41). The interface includes energy gradients and is parallelized. For large molecules...... such as ubiquitin a reasonable speedup (up to a factor of six) is observed for up to 16 cores. The SCF convergence is greatly improved by PCM for proteins compared to the gas phase....

  12. Interface of the polarizable continuum model of solvation with semi-empirical methods in the GAMESS program.

    Directory of Open Access Journals (Sweden)

    Casper Steinmann

    Full Text Available An interface between semi-empirical methods and the polarized continuum model (PCM of solvation successfully implemented into GAMESS following the approach by Chudinov et al (Chem. Phys. 1992, 160, 41. The interface includes energy gradients and is parallelized. For large molecules such as ubiquitin a reasonable speedup (up to a factor of six is observed for up to 16 cores. The SCF convergence is greatly improved by PCM for proteins compared to the gas phase.

  13. AN EMPIRICAL METHOD FOR MATERIALITY: WOULD CONFLICT OF INTEREST DISCLOSURES CHANGE PATIENT DECISIONS?

    Science.gov (United States)

    Spece, Roy; Yokum, David; Okoro, Andrea-Gale; Robertson Christopher

    2014-01-01

    The law has long been concerned with the agency problems that arise when advisors, such as attorneys or physicians, put themselves in financial relationships that create conflicts of interest. If the financial relationship is "material" to the transactions proposed by the advisor, then non-disclosure of the relationship may be pertinent to claims of malpractice, informed consent, and even fraud, as well as to professional discipline. In these sorts of cases, materiality is closely related to the question of causation, roughly turning on whether the withheld information might have changed the decision of a reasonable advisee (i.e., a patient). The injured plaintiff will predictably testify that the information would have impacted his or her choice, but that self-serving testimony may be unreliable. The fact finder is left to speculate about the counterfactual world in which the information was disclosed. This Article shows how randomized vignette-based experimentation may create a valuable form of evidence to address these questions, for both litigation and policymaking. To demonstrate this method and investigate conflicts of interest in healthcare in particular, we recruited 691 human subjects and asked them to imagine themselves as patients facing a choice about whether to undergo a cardiac stenting procedure recommended by a cardiologist. We manipulated the vignettes in a 2 x 3 between-subjects design, where we systematically varied the appropriateness of the proposed treatment, which was described in terms of patient risk without the procedure (low or high), and manipulated the type of disclosure provided by the physician (none, standard, or enhanced). We used physician ownership of the specialty hospital where the surgery would be performed as the conflict of interest, disclosed or not, and the "enhanced" disclosure included notice that such relationships have been associated with biases in prescribing behavior. We found that the mock patients were

  14. Creating a memory of causal relationships an integration of empirical and explanation-based learning methods

    CERN Document Server

    Pazzani, Michael J

    2014-01-01

    This book presents a theory of learning new causal relationships by making use of perceived regularities in the environment, general knowledge of causality, and existing causal knowledge. Integrating ideas from the psychology of causation and machine learning, the author introduces a new learning procedure called theory-driven learning that uses abstract knowledge of causality to guide the induction process. Known as OCCAM, the system uses theory-driven learning when new experiences conform to common patterns of causal relationships, empirical learning to learn from novel experiences, and expl

  15. Obtaining reliable Likelihood Ratio tests from simulated likelihood functions

    DEFF Research Database (Denmark)

    Andersen, Laura Mørch

    It is standard practice by researchers and the default option in many statistical programs to base test statistics for mixed models on simulations using asymmetric draws (e.g. Halton draws). This paper shows that when the estimated likelihood functions depend on standard deviations of mixed param...

  16. Empirical Hamiltonians

    International Nuclear Information System (INIS)

    Peggs, S.; Talman, R.

    1987-01-01

    As proton accelerators get larger, and include more magnets, the conventional tracking programs which simulate them run slower. The purpose of this paper is to describe a method, still under development, in which element-by-element tracking around one turn is replaced by a single man, which can be processed far faster. It is assumed for this method that a conventional program exists which can perform faithful tracking in the lattice under study for some hundreds of turns, with all lattice parameters held constant. An empirical map is then generated by comparison with the tracking program. A procedure has been outlined for determining an empirical Hamiltonian, which can represent motion through many nonlinear kicks, by taking data from a conventional tracking program. Though derived by an approximate method this Hamiltonian is analytic in form and can be subjected to further analysis of varying degrees of mathematical rigor. Even though the empirical procedure has only been described in one transverse dimension, there is good reason to hope that it can be extended to include two transverse dimensions, so that it can become a more practical tool in realistic cases

  17. A New Statistical Method to Determine the Degree of Validity of Health Economic Model Outcomes against Empirical Data.

    Science.gov (United States)

    Corro Ramos, Isaac; van Voorn, George A K; Vemer, Pepijn; Feenstra, Talitha L; Al, Maiwenn J

    2017-09-01

    The validation of health economic (HE) model outcomes against empirical data is of key importance. Although statistical testing seems applicable, guidelines for the validation of HE models lack guidance on statistical validation, and actual validation efforts often present subjective judgment of graphs and point estimates. To discuss the applicability of existing validation techniques and to present a new method for quantifying the degrees of validity statistically, which is useful for decision makers. A new Bayesian method is proposed to determine how well HE model outcomes compare with empirical data. Validity is based on a pre-established accuracy interval in which the model outcomes should fall. The method uses the outcomes of a probabilistic sensitivity analysis and results in a posterior distribution around the probability that HE model outcomes can be regarded as valid. We use a published diabetes model (Modelling Integrated Care for Diabetes based on Observational data) to validate the outcome "number of patients who are on dialysis or with end-stage renal disease." Results indicate that a high probability of a valid outcome is associated with relatively wide accuracy intervals. In particular, 25% deviation from the observed outcome implied approximately 60% expected validity. Current practice in HE model validation can be improved by using an alternative method based on assessing whether the model outcomes fit to empirical data at a predefined level of accuracy. This method has the advantage of assessing both model bias and parameter uncertainty and resulting in a quantitative measure of the degree of validity that penalizes models predicting the mean of an outcome correctly but with overly wide credible intervals. Copyright © 2017 International Society for Pharmacoeconomics and Outcomes Research (ISPOR). Published by Elsevier Inc. All rights reserved.

  18. Maximum-likelihood model averaging to profile clustering of site types across discrete linear sequences.

    Directory of Open Access Journals (Sweden)

    Zhang Zhang

    2009-06-01

    Full Text Available A major analytical challenge in computational biology is the detection and description of clusters of specified site types, such as polymorphic or substituted sites within DNA or protein sequences. Progress has been stymied by a lack of suitable methods to detect clusters and to estimate the extent of clustering in discrete linear sequences, particularly when there is no a priori specification of cluster size or cluster count. Here we derive and demonstrate a maximum likelihood method of hierarchical clustering. Our method incorporates a tripartite divide-and-conquer strategy that models sequence heterogeneity, delineates clusters, and yields a profile of the level of clustering associated with each site. The clustering model may be evaluated via model selection using the Akaike Information Criterion, the corrected Akaike Information Criterion, and the Bayesian Information Criterion. Furthermore, model averaging using weighted model likelihoods may be applied to incorporate model uncertainty into the profile of heterogeneity across sites. We evaluated our method by examining its performance on a number of simulated datasets as well as on empirical polymorphism data from diverse natural alleles of the Drosophila alcohol dehydrogenase gene. Our method yielded greater power for the detection of clustered sites across a breadth of parameter ranges, and achieved better accuracy and precision of estimation of clusters, than did the existing empirical cumulative distribution function statistics.

  19. Methodological and Methodical Principles of the Empirical Study of Spiritual Development of a Personality

    Directory of Open Access Journals (Sweden)

    Olga Klymyshyn

    2017-06-01

    Full Text Available The article reveals the essence of the methodological principles of the spiritual development of a personality. The results of the theoretical analysis of psychological content of spirituality from the positions of system and structural approach to studying of a personality, age patterns of the mental personality development, the sacramental nature of human person, mechanisms of human spiritual development are taken into consideration. The interpretation of spirituality and the spiritual development of a personality is given. Initial principles of the organization of the empirical research of the spiritual development of a personality (ontogenetic, sociocultural, self-determination, system are presented. Such parameters of the estimation of a personality’s spiritual development as general index of the development of spiritual potential, indexes of the development of ethical, aesthetical, cognitive, existential components of spirituality, index of religiousness of a personality are described. Methodological support of psychological diagnostic research is defined.

  20. An empirical method for peak-to-total ratio computation of a gamma-ray detector

    International Nuclear Information System (INIS)

    Cesana, A.; Terrani, M.

    1989-01-01

    A simple expression for peak-to-total ratio evaluation of gamma-ray detectors in the energy range 0.3-10 MeV is proposed. The quantities one needs to know for the computation are: Detector dimensions and chemical composition, photon corss sections and an empirical energy dependent function which is valid for all the detector materials considered. This procedure seems able to produce peak-to-total values with an accuracy comparable with the most sophisticated Monte Carlo calculations. It has been tested using experimental peak-to-total values of Ge, NaI, CsI and BGO detectors but it is reasonable to suppose that it is valid for any detector material. (orig.)

  1. Analyses of reliability characteristics of emergency diesel generator population using empirical Bayes methods

    International Nuclear Information System (INIS)

    Vesely, W.E.; Uryas'ev, S.P.; Samanta, P.K.

    1993-01-01

    Emergency Diesel Generators (EDGs) provide backup power to nuclear power plants in case of failure of AC buses. The reliability of EDGs is important to assure response to loss-of-offsite power accident scenarios, a dominant contributor to the plant risk. The reliable performance of EDGs has been of concern both for regulators and plant operators. In this paper the authors present an approach and results from the analysis of failure data from a large population of EDGs. They used empirical Bayes approach to obtain both the population distribution and the individual failure probabilities from EDGs failure to start and load-run data over 4 years for 194 EDGs at 63 plant units

  2. A modified likelihood-method to search for point-sources in the diffuse astrophysical neutrino-flux in IceCube

    Energy Technology Data Exchange (ETDEWEB)

    Reimann, Rene; Haack, Christian; Leuermann, Martin; Raedel, Leif; Schoenen, Sebastian; Schimp, Michael; Wiebusch, Christopher [III. Physikalisches Institut, RWTH Aachen (Germany); Collaboration: IceCube-Collaboration

    2015-07-01

    IceCube, a cubic-kilometer sized neutrino detector at the geographical South Pole, has recently measured a flux of high-energy astrophysical neutrinos. Although this flux has now been observed in multiple analyses, no point sources or source classes could be identified yet. Standard point source searches test many points in the sky for a point source of astrophysical neutrinos individually and therefore produce many trials. Our approach is to additionally use the measured diffuse spectrum to constrain the number of possible point sources and their properties. Initial studies of the method performance are shown.

  3. Unbinned likelihood analysis of EGRET observations

    International Nuclear Information System (INIS)

    Digel, Seth W.

    2000-01-01

    We present a newly-developed likelihood analysis method for EGRET data that defines the likelihood function without binning the photon data or averaging the instrumental response functions. The standard likelihood analysis applied to EGRET data requires the photons to be binned spatially and in energy, and the point-spread functions to be averaged over energy and inclination angle. The full-width half maximum of the point-spread function increases by about 40% from on-axis to 30 degree sign inclination, and depending on the binning in energy can vary by more than that in a single energy bin. The new unbinned method avoids the loss of information that binning and averaging cause and can properly analyze regions where EGRET viewing periods overlap and photons with different inclination angles would otherwise be combined in the same bin. In the poster, we describe the unbinned analysis method and compare its sensitivity with binned analysis for detecting point sources in EGRET data

  4. Timing and Targeting of PSS Methods and Tools: An Empirical Study amongst Academic Contributors

    DEFF Research Database (Denmark)

    Nøhr Hinz, Hector; Bey, Niki; McAloone, Tim C.

    2013-01-01

    The emergence of product/service-systems has meant that development methods for such systems have emerged from academia. This paper investigates existing methods that are aimed at developing product/service-systems. Two aspects are determined for each examined method. The first aspect that has been...... surveyed is when a given method is meant to be used in the development of a product/service-system. This aspect has been determined through a qualitative assessment of each method. The second aspect surveyed is which persons in an organisation who are seen as the main drivers in the use of the methods....... To gain this insight a questionnaire for each method has been conducted with the authors of the methods as participants. The main finding indicates that current PSS methods cannot thoroughly support the development of product/ service-systems as their specificity is too low and that the methods need...

  5. Dissociating response conflict and error likelihood in anterior cingulate cortex.

    Science.gov (United States)

    Yeung, Nick; Nieuwenhuis, Sander

    2009-11-18

    Neuroimaging studies consistently report activity in anterior cingulate cortex (ACC) in conditions of high cognitive demand, leading to the view that ACC plays a crucial role in the control of cognitive processes. According to one prominent theory, the sensitivity of ACC to task difficulty reflects its role in monitoring for the occurrence of competition, or "conflict," between responses to signal the need for increased cognitive control. However, a contrasting theory proposes that ACC is the recipient rather than source of monitoring signals, and that ACC activity observed in relation to task demand reflects the role of this region in learning about the likelihood of errors. Response conflict and error likelihood are typically confounded, making the theories difficult to distinguish empirically. The present research therefore used detailed computational simulations to derive contrasting predictions regarding ACC activity and error rate as a function of response speed. The simulations demonstrated a clear dissociation between conflict and error likelihood: fast response trials are associated with low conflict but high error likelihood, whereas slow response trials show the opposite pattern. Using the N2 component as an index of ACC activity, an EEG study demonstrated that when conflict and error likelihood are dissociated in this way, ACC activity tracks conflict and is negatively correlated with error likelihood. These findings support the conflict-monitoring theory and suggest that, in speeded decision tasks, ACC activity reflects current task demands rather than the retrospective coding of past performance.

  6. Evaluation and Recalibration of Empirical Constant for Estimation of Reference Crop Evapotranspiration against the Modified Penman Method

    Science.gov (United States)

    Sasireka, K.; Jagan Mohan Reddy, C.; Charan Reddy, C.; Ramakrishnan, K.

    2017-07-01

    The major demand in our country is irrigation demand. Looking to the low irrigation potential and small water resources, it is felt necessary to see that water must be used economically and efficiently. This may be achieved by using latest methods of determination of water requirements for crops and applying the proper water management practices. Evapotranspiration (ET) is a basic for calculation of water requirement for crops. The various popular empirical equations for reference crop evapotranspiration (ETr) belong to three categories namely, Temperature, Radiation based methods and Combined methods. The above methods are site specific; hence it is necessary to recalibrate the coefficients for applying them in India. In the present paper, the standard combined method namely FAO modified Penman method was used to recalibrate the constants in temperature based (TB) methods and it can also be used to determine the ETr for the selected station. Four TB evapotranspiration models namely Blaney-Criddle, Romanenko, Kharrufa, and, Thronthwaite methods are recalibrated and the constant in each method are redefined for the data from Lekkur station, Cuddalore district in India. The result shows that, large error existed when ETr has been calculated with original constants. Hence regression equations were developed to minimise these variations in magnitude. It was found that out of four methods the Blaney-Criddle method suits better for the selected region.

  7. Multi-Channel Maximum Likelihood Pitch Estimation

    DEFF Research Database (Denmark)

    Christensen, Mads Græsbøll

    2012-01-01

    In this paper, a method for multi-channel pitch estimation is proposed. The method is a maximum likelihood estimator and is based on a parametric model where the signals in the various channels share the same fundamental frequency but can have different amplitudes, phases, and noise characteristics....... This essentially means that the model allows for different conditions in the various channels, like different signal-to-noise ratios, microphone characteristics and reverberation. Moreover, the method does not assume that a certain array structure is used but rather relies on a more general model and is hence...

  8. Investigation of optical effects in silicon quantum dots by using an empirical pseudopotential method

    Energy Technology Data Exchange (ETDEWEB)

    Ghoshal, S. K.; Sahar, M. R.; Rohani, M. S. [Universiti Teknologi Malaysia, Johor (Malaysia)

    2011-02-15

    A computer simulation using a pseudopotential approach has been carried out to investigate the band gap as a function of the size and the shape of small silicon (Si) dots having 3 to 44 atoms per dot with and without surface passivation. We used an empirical pseudo-potential Hamiltonian, a plane-wave basis expansion and a basic tetrahedral structure with undistorted local bonding configurations. In our simulation, the structures of the quantum dots were relaxed and optimized before and after passivation. We found that the gap increased more for an oxygenated surface than a hydrogenated one. Thus, both quantum confinement and surface passivation determined the optical and the electronic properties of Si quantum dots. Visible luminescence was probably due to radiative recombination of electrons and holes in the quantum-confined nanostructures. The effect of passivation of the surface dangling bonds by hydrogen and oxygen atoms and the role of surface states on the gap energy was also examined. We investigated the entire energy spectrum starting from the very low-lying ground state to the very high-lying excited states. The results for the sizes of the gap, the density of states, the oscillator strength and the absorption coefficient as functions of the size are presented. The importance of the confinement and the role of surface passivation on the optical effects are also discussed.

  9. Decision-oriented environmental assessment: An empirical study of its theory and methods

    International Nuclear Information System (INIS)

    Pischke, Frederik; Cashmore, Matthew

    2006-01-01

    The potential advantages of a decision-oriented theory of environmental assessment have long been recognised, but it is only in recent years that this topic has received concerted attention. This research advanced contemporary debate on environmental assessment through an empirically-informed evaluation of strategic theoretical and methodological issues associated with the practical application of decision-oriented theory. This was undertaken by critically analysing the decision-oriented Environmental Impact Assessment system of the German Development Cooperation (a bilateral development assistance agency) using a modified version of a recent conceptual and methodological development, Analytical Strategic Environmental Assessment. The results indicate that some aspects of decision-oriented theory offer considerable potential for environmental assessment process management, and should be employed routinely. Yet uncertainty remains about whether certain core concepts, notably the detailed a priori description of decision processes, can be achieved in practice. The analysis also indicates that there is considerably more common ground in many contemporary debates about environmental assessment than the literature, which has tended towards polarisation suggests. The significance of this research is that it recognises and highlights the contribution of decision-oriented theory to refocusing attention on the substantive intent of this globally significant policy tool

  10. The performance of selected semi-empirical and DFT methods in studying C₆₀ fullerene derivatives.

    Science.gov (United States)

    Sikorska, Celina; Puzyn, Tomasz

    2015-11-13

    The capability of reproducing the open circuit voltages (V(oc)) of 15 representative C60 fullerene derivatives was tested using the selected quantum mechanical methods (B3LYP, PM6, and PM7) together with the two one-electron basis sets. Certain theoretical treatments (e.g. PM6) were found to be satisfactory for preliminary estimates of the open circuit voltages (V(oc)), whereas the use of the B3LYP/6-31G(d) approach has been proven to assure highly accurate results. We also examined the structural similarity of 19 fullerene derivatives by employing principle component analysis (PCA). In order to express the structural features of the studied compounds we used molecular descriptors calculated with semi-empirical (PM6 and PM7) and density functional (B3LYP/6-31G(d)) methods separately. In performing PCA, we noticed that semi-empirical methods (i.e. PM6 and PM7) seem satisfactory for molecules, in which one can distinguish the aromatic and the aliphatic parts in the cyclopropane ring of PCBM (phenyl-C61-buteric acid methyl ester) and they significantly overestimate the energy of the highest occupied molecular orbital (E(HOMO)). The use of the B3LYP functional, however, is recommended for studying methanofullerenes, which closely resemble the structure of PCBM, and for their modifications.

  11. Ego involvement increases doping likelihood.

    Science.gov (United States)

    Ring, Christopher; Kavussanu, Maria

    2018-08-01

    Achievement goal theory provides a framework to help understand how individuals behave in achievement contexts, such as sport. Evidence concerning the role of motivation in the decision to use banned performance enhancing substances (i.e., doping) is equivocal on this issue. The extant literature shows that dispositional goal orientation has been weakly and inconsistently associated with doping intention and use. It is possible that goal involvement, which describes the situational motivational state, is a stronger determinant of doping intention. Accordingly, the current study used an experimental design to examine the effects of goal involvement, manipulated using direct instructions and reflective writing, on doping likelihood in hypothetical situations in college athletes. The ego-involving goal increased doping likelihood compared to no goal and a task-involving goal. The present findings provide the first evidence that ego involvement can sway the decision to use doping to improve athletic performance.

  12. Factors Associated with Young Adults’ Pregnancy Likelihood

    Science.gov (United States)

    Kitsantas, Panagiota; Lindley, Lisa L.; Wu, Huichuan

    2014-01-01

    OBJECTIVES While progress has been made to reduce adolescent pregnancies in the United States, rates of unplanned pregnancy among young adults (18–29 years) remain high. In this study, we assessed factors associated with perceived likelihood of pregnancy (likelihood of getting pregnant/getting partner pregnant in the next year) among sexually experienced young adults who were not trying to get pregnant and had ever used contraceptives. METHODS We conducted a secondary analysis of 660 young adults, 18–29 years old in the United States, from the cross-sectional National Survey of Reproductive and Contraceptive Knowledge. Logistic regression and classification tree analyses were conducted to generate profiles of young adults most likely to report anticipating a pregnancy in the next year. RESULTS Nearly one-third (32%) of young adults indicated they believed they had at least some likelihood of becoming pregnant in the next year. Young adults who believed that avoiding pregnancy was not very important were most likely to report pregnancy likelihood (odds ratio [OR], 5.21; 95% CI, 2.80–9.69), as were young adults for whom avoiding a pregnancy was important but not satisfied with their current contraceptive method (OR, 3.93; 95% CI, 1.67–9.24), attended religious services frequently (OR, 3.0; 95% CI, 1.52–5.94), were uninsured (OR, 2.63; 95% CI, 1.31–5.26), and were likely to have unprotected sex in the next three months (OR, 1.77; 95% CI, 1.04–3.01). DISCUSSION These results may help guide future research and the development of pregnancy prevention interventions targeting sexually experienced young adults. PMID:25782849

  13. An Algorithmic Comparison of the Hyper-Reduction and the Discrete Empirical Interpolation Method for a Nonlinear Thermal Problem

    Directory of Open Access Journals (Sweden)

    Felix Fritzen

    2018-02-01

    Full Text Available A novel algorithmic discussion of the methodological and numerical differences of competing parametric model reduction techniques for nonlinear problems is presented. First, the Galerkin reduced basis (RB formulation is presented, which fails at providing significant gains with respect to the computational efficiency for nonlinear problems. Renowned methods for the reduction of the computing time of nonlinear reduced order models are the Hyper-Reduction and the (Discrete Empirical Interpolation Method (EIM, DEIM. An algorithmic description and a methodological comparison of both methods are provided. The accuracy of the predictions of the hyper-reduced model and the (DEIM in comparison to the Galerkin RB is investigated. All three approaches are applied to a simple uncertainty quantification of a planar nonlinear thermal conduction problem. The results are compared to computationally intense finite element simulations.

  14. Different methods for ethical analysis in health technology assessment: an empirical study.

    Science.gov (United States)

    Saarni, Samuli I; Braunack-Mayer, Annette; Hofmann, Bjørn; van der Wilt, Gert Jan

    2011-10-01

    Ethical analysis can highlight important ethical issues related to implementing a technology, values inherent in the technology itself, and value-decisions underlying the health technology assessment (HTA) process. Ethical analysis is a well-acknowledged part of HTA, yet seldom included in practice. One reason for this is lack of knowledge about the properties and differences between the methods available. This study compares different methods for ethical analysis within HTA. Ethical issues related to bariatric (obesity) surgery were independently evaluated using axiological, casuist, principlist, and EUnetHTA models for ethical analysis within HTA. The methods and results are presented and compared. Despite varying theoretical underpinnings and practical approaches, the four methods identified similar themes: personal responsibility, self-infliction, discrimination, justice, public funding, and stakeholder involvement. The axiological and EUnetHTA models identified a wider range of arguments, whereas casuistry and principlism concentrated more on analyzing a narrower set of arguments deemed more important. Different methods can be successfully used for conducting ethical analysis within HTA. Although our study does not show that different methods in ethics always produce similar results, it supports the view that different methods of ethics can yield relevantly similar results. This suggests that the key conclusions of ethical analyses within HTA can be transferable between methods and countries. The systematic and transparent use of some method of ethics appears more important than the choice of the exact method.

  15. A new empirical method to predict carbon dioxide evasion from boreal lakes

    Science.gov (United States)

    Hastie, Adam; Lauerwald, Ronny; Weyhenmeyer, Gesa; Sobek, Sebastian; Regnier, Pierre

    2016-04-01

    Carbon dioxide evasion from lakes (F CO2) is an important component of the global carbon budget. In this study, empirical models have been developed to predict CO2 partial pressure (pCO2) in boreal lakes at the 0.5° grid scale, with the aim of producing the first map of F CO2 from these high latitude aquatic systems. Approximately 57,000 samples of lake pCO2 from Sweden and Finland were used to train the models. Significant seasonality in pCO2 was identified and thus data were split into two categories based on water temperature; 0-4.5° C and >4.5° C. The lake pCO2 data and various globally available, environmental parameters such as elevation, terrestrial net primary production (NPP) and climate (temperature T, rainfall R) were spatially aggregated to a 0.5° resolution. Preliminary results from multiple regression analyses suggest that a significant proportion of the variability in boreal lake pCO2 can be explained using these globally available parameters. For water temperatures above 4.5° C, the explained proportion of the variability in lake pCO2 is particularly high (r2= 0.7). Following further refinement and validation, a map of estimated lake pCO2 for the entire boreal region will be established. This map will then be combined with lake surface area data from the GLObal WAter BOdies database (GLOWABO, Verpoorter et al., 2014), and a calculation of gas exchange velocity k to produce the first map of boreal lake F CO2. Finally, IPCC projections of the selected environmental predictors (T, NPP, and R) will be used to estimate future F CO2 from boreal lakes and their sensitivity to climate change.

  16. Revision of the South African flexible pavement design method; mechanistic-empirical components

    CSIR Research Space (South Africa)

    Theyse, HL

    2007-09-01

    Full Text Available and damage models or transfer functions. This method was implemented in a number of software packages since the late 1990s which exposed the method to a wide user group. The method therefore came under increasing scrutiny and criticism in the recent past...-intuitive results in some cases, provides unrealistic structural capacity estimates for certain pavement types and does not assess all materials equally, based on their true performance potential. In addition to these problems the method also focuses largely...

  17. Empirical comparison of four baseline covariate adjustment methods in analysis of continuous outcomes in randomized controlled trials

    Directory of Open Access Journals (Sweden)

    Zhang S

    2014-07-01

    Full Text Available Shiyuan Zhang,1 James Paul,2 Manyat Nantha-Aree,2 Norman Buckley,2 Uswa Shahzad,2 Ji Cheng,2 Justin DeBeer,5 Mitchell Winemaker,5 David Wismer,5 Dinshaw Punthakee,5 Victoria Avram,5 Lehana Thabane1–41Department of Clinical Epidemiology and Biostatistics, 2Department of Anesthesia, McMaster University, Hamilton, ON, Canada; 3Biostatistics Unit/Centre for Evaluation of Medicines, St Joseph's Healthcare - Hamilton, Hamilton, ON, Canada; 4Population Health Research Institute, Hamilton Health Science/McMaster University, 5Department of Surgery, Division of Orthopaedics, McMaster University, Hamilton, ON, CanadaBackground: Although seemingly straightforward, the statistical comparison of a continuous variable in a randomized controlled trial that has both a pre- and posttreatment score presents an interesting challenge for trialists. We present here empirical application of four statistical methods (posttreatment scores with analysis of variance, analysis of covariance, change in scores, and percent change in scores, using data from a randomized controlled trial of postoperative pain in patients following total joint arthroplasty (the Morphine COnsumption in Joint Replacement Patients, With and Without GaBapentin Treatment, a RandomIzed ControlLEd Study [MOBILE] trials.Methods: Analysis of covariance (ANCOVA was used to adjust for baseline measures and to provide an unbiased estimate of the mean group difference of the 1-year postoperative knee flexion scores in knee arthroplasty patients. Robustness tests were done by comparing ANCOVA with three comparative methods: the posttreatment scores, change in scores, and percentage change from baseline.Results: All four methods showed similar direction of effect; however, ANCOVA (-3.9; 95% confidence interval [CI]: -9.5, 1.6; P=0.15 and the posttreatment score (-4.3; 95% CI: -9.8, 1.2; P=0.12 method provided the highest precision of estimate compared with the change score (-3.0; 95% CI: -9.9, 3.8; P=0

  18. Sediment yield estimation in mountain catchments of the Camastra reservoir, southern Italy: a comparison among different empirical methods

    Science.gov (United States)

    Lazzari, Maurizio; Danese, Maria; Gioia, Dario; Piccarreta, Marco

    2013-04-01

    Sedimentary budget estimation is an important topic for both scientific and social community, because it is crucial to understand both dynamics of orogenic belts and many practical problems, such as soil conservation and sediment accumulation in reservoir. Estimations of sediment yield or denudation rates in southern-central Italy are generally obtained by simple empirical relationships based on statistical regression between geomorphic parameters of the drainage network and the measured suspended sediment yield at the outlet of several drainage basins or through the use of models based on sediment delivery ratio or on soil loss equations. In this work, we perform a study of catchment dynamics and an estimation of sedimentary yield for several mountain catchments of the central-western sector of the Basilicata region, southern Italy. Sediment yield estimation has been obtained through both an indirect estimation of suspended sediment yield based on the Tu index (mean annual suspension sediment yield, Ciccacci et al., 1980) and the application of the Rusle (Renard et al., 1997) and the USPED (Mitasova et al., 1996) empirical methods. The preliminary results indicate a reliable difference between the RUSLE and USPED methods and the estimation based on the Tu index; a critical data analysis of results has been carried out considering also the present-day spatial distribution of erosion, transport and depositional processes in relation to the maps obtained from the application of those different empirical methods. The studied catchments drain an artificial reservoir (i.e. the Camastra dam), where a detailed evaluation of the amount of historical sediment storage has been collected. Sediment yield estimation obtained by means of the empirical methods have been compared and checked with historical data of sediment accumulation measured in the artificial reservoir of the Camastra dam. The validation of such estimations of sediment yield at the scale of large catchments

  19. Empirical evaluation of decision support systems: Needs, definitions, potential methods, and an example pertaining to waterfowl management

    Science.gov (United States)

    Sojda, R.S.

    2007-01-01

    Decision support systems are often not empirically evaluated, especially the underlying modelling components. This can be attributed to such systems necessarily being designed to handle complex and poorly structured problems and decision making. Nonetheless, evaluation is critical and should be focused on empirical testing whenever possible. Verification and validation, in combination, comprise such evaluation. Verification is ensuring that the system is internally complete, coherent, and logical from a modelling and programming perspective. Validation is examining whether the system is realistic and useful to the user or decision maker, and should answer the question: “Was the system successful at addressing its intended purpose?” A rich literature exists on verification and validation of expert systems and other artificial intelligence methods; however, no single evaluation methodology has emerged as preeminent. At least five approaches to validation are feasible. First, under some conditions, decision support system performance can be tested against a preselected gold standard. Second, real-time and historic data sets can be used for comparison with simulated output. Third, panels of experts can be judiciously used, but often are not an option in some ecological domains. Fourth, sensitivity analysis of system outputs in relation to inputs can be informative. Fifth, when validation of a complete system is impossible, examining major components can be substituted, recognizing the potential pitfalls. I provide an example of evaluation of a decision support system for trumpeter swan (Cygnus buccinator) management that I developed using interacting intelligent agents, expert systems, and a queuing system. Predicted swan distributions over a 13-year period were assessed against observed numbers. Population survey numbers and banding (ringing) studies may provide long term data useful in empirical evaluation of decision support.

  20. A Physically Motivated and Empirically Calibrated Method to Measure the Effective Temperature, Metallicity, and Ti Abundance of M Dwarfs

    Science.gov (United States)

    Veyette, Mark J.; Muirhead, Philip S.; Mann, Andrew W.; Brewer, John M.; Allard, France; Homeier, Derek

    2017-12-01

    The ability to perform detailed chemical analysis of Sun-like F-, G-, and K-type stars is a powerful tool with many applications, including studying the chemical evolution of the Galaxy and constraining planet formation theories. Unfortunately, complications in modeling cooler stellar atmospheres hinders similar analyses of M dwarf stars. Empirically calibrated methods to measure M dwarf metallicity from moderate-resolution spectra are currently limited to measuring overall metallicity and rely on astrophysical abundance correlations in stellar populations. We present a new, empirical calibration of synthetic M dwarf spectra that can be used to infer effective temperature, Fe abundance, and Ti abundance. We obtained high-resolution (R ˜ 25,000), Y-band (˜1 μm) spectra of 29 M dwarfs with NIRSPEC on Keck II. Using the PHOENIX stellar atmosphere modeling code (version 15.5), we generated a grid of synthetic spectra covering a range of temperatures, metallicities, and alpha-enhancements. From our observed and synthetic spectra, we measured the equivalent widths of multiple Fe I and Ti I lines and a temperature-sensitive index based on the FeH band head. We used abundances measured from widely separated solar-type companions to empirically calibrate transformations to the observed indices and equivalent widths that force agreement with the models. Our calibration achieves precisions in T eff, [Fe/H], and [Ti/Fe] of 60 K, 0.1 dex, and 0.05 dex, respectively, and is calibrated for 3200 K < T eff < 4100 K, -0.7 < [Fe/H] < +0.3, and -0.05 < [Ti/Fe] < +0.3. This work is a step toward detailed chemical analysis of M dwarfs at a precision similar to what has been achieved for FGK stars.

  1. Interim revision of the South African Mechanistic-Empirical pavement design method for flexible pavements

    CSIR Research Space (South Africa)

    Theyse, HL

    2011-09-01

    Full Text Available Pavement design methods, in combination with network level management systems must enable road authorities to develop reliable long-term financial plans based on the estimated structural capacity of the road network. Inaccurate design models...

  2. THE EMPIRICAL METHOD OF INVESTIGATING THE CHILDHOOD SUBCULTURE: GROUP OF CHILDREN BEHAVIOR OBSERVATION IN THE GUESTHOUSE POOL

    Directory of Open Access Journals (Sweden)

    Ms. Yelena N. Suvorkina

    2016-12-01

    Full Text Available The article deals with one of the empirical research methods investigating the childhood sub-culture. The method is called observation. The author marked general theoretical position, recommendations on its implementation. Based on observations of the group of children behavior in the guesthouse pool it is found out that such category, as honesty is very important in the organization of the order, taking into account that the subculture of childhood is an open, self-organizing system. In the pool, the children come up with a wide variety of games. The adjacent areas are also involved. The author identified two borders, taking place for the child: a clear (fixed border is the side of the pool and unclear border as the transitional designation of states, qualities (dangerous – safe.

  3. A new multivariate empirical mode decomposition method for improving the performance of SSVEP-based brain-computer interface

    Science.gov (United States)

    Chen, Yi-Feng; Atal, Kiran; Xie, Sheng-Quan; Liu, Quan

    2017-08-01

    Objective. Accurate and efficient detection of steady-state visual evoked potentials (SSVEP) in electroencephalogram (EEG) is essential for the related brain-computer interface (BCI) applications. Approach. Although the canonical correlation analysis (CCA) has been applied extensively and successfully to SSVEP recognition, the spontaneous EEG activities and artifacts that often occur during data recording can deteriorate the recognition performance. Therefore, it is meaningful to extract a few frequency sub-bands of interest to avoid or reduce the influence of unrelated brain activity and artifacts. This paper presents an improved method to detect the frequency component associated with SSVEP using multivariate empirical mode decomposition (MEMD) and CCA (MEMD-CCA). EEG signals from nine healthy volunteers were recorded to evaluate the performance of the proposed method for SSVEP recognition. Main results. We compared our method with CCA and temporally local multivariate synchronization index (TMSI). The results suggest that the MEMD-CCA achieved significantly higher accuracy in contrast to standard CCA and TMSI. It gave the improvements of 1.34%, 3.11%, 3.33%, 10.45%, 15.78%, 18.45%, 15.00% and 14.22% on average over CCA at time windows from 0.5 s to 5 s and 0.55%, 1.56%, 7.78%, 14.67%, 13.67%, 7.33% and 7.78% over TMSI from 0.75 s to 5 s. The method outperformed the filter-based decomposition (FB), empirical mode decomposition (EMD) and wavelet decomposition (WT) based CCA for SSVEP recognition. Significance. The results demonstrate the ability of our proposed MEMD-CCA to improve the performance of SSVEP-based BCI.

  4. RNAontheBENCH: computational and empirical resources for benchmarking RNAseq quantification and differential expression methods

    KAUST Repository

    Germain, Pierre-Luc

    2016-06-20

    RNA sequencing (RNAseq) has become the method of choice for transcriptome analysis, yet no consensus exists as to the most appropriate pipeline for its analysis, with current benchmarks suffering important limitations. Here, we address these challenges through a rich benchmarking resource harnessing (i) two RNAseq datasets including ERCC ExFold spike-ins; (ii) Nanostring measurements of a panel of 150 genes on the same samples; (iii) a set of internal, genetically-determined controls; (iv) a reanalysis of the SEQC dataset; and (v) a focus on relative quantification (i.e. across-samples). We use this resource to compare different approaches to each step of RNAseq analysis, from alignment to differential expression testing. We show that methods providing the best absolute quantification do not necessarily provide good relative quantification across samples, that count-based methods are superior for gene-level relative quantification, and that the new generation of pseudo-alignment-based software performs as well as established methods, at a fraction of the computing time. We also assess the impact of library type and size on quantification and differential expression analysis. Finally, we have created a R package and a web platform to enable the simple and streamlined application of this resource to the benchmarking of future methods.

  5. RNAontheBENCH: computational and empirical resources for benchmarking RNAseq quantification and differential expression methods

    KAUST Repository

    Germain, Pierre-Luc; Vitriolo, Alessandro; Adamo, Antonio; Laise, Pasquale; Das, Vivek; Testa, Giuseppe

    2016-01-01

    RNA sequencing (RNAseq) has become the method of choice for transcriptome analysis, yet no consensus exists as to the most appropriate pipeline for its analysis, with current benchmarks suffering important limitations. Here, we address these challenges through a rich benchmarking resource harnessing (i) two RNAseq datasets including ERCC ExFold spike-ins; (ii) Nanostring measurements of a panel of 150 genes on the same samples; (iii) a set of internal, genetically-determined controls; (iv) a reanalysis of the SEQC dataset; and (v) a focus on relative quantification (i.e. across-samples). We use this resource to compare different approaches to each step of RNAseq analysis, from alignment to differential expression testing. We show that methods providing the best absolute quantification do not necessarily provide good relative quantification across samples, that count-based methods are superior for gene-level relative quantification, and that the new generation of pseudo-alignment-based software performs as well as established methods, at a fraction of the computing time. We also assess the impact of library type and size on quantification and differential expression analysis. Finally, we have created a R package and a web platform to enable the simple and streamlined application of this resource to the benchmarking of future methods.

  6. Likelihood estimators for multivariate extremes

    KAUST Repository

    Huser, Raphaë l; Davison, Anthony C.; Genton, Marc G.

    2015-01-01

    The main approach to inference for multivariate extremes consists in approximating the joint upper tail of the observations by a parametric family arising in the limit for extreme events. The latter may be expressed in terms of componentwise maxima, high threshold exceedances or point processes, yielding different but related asymptotic characterizations and estimators. The present paper clarifies the connections between the main likelihood estimators, and assesses their practical performance. We investigate their ability to estimate the extremal dependence structure and to predict future extremes, using exact calculations and simulation, in the case of the logistic model.

  7. Likelihood estimators for multivariate extremes

    KAUST Repository

    Huser, Raphaël

    2015-11-17

    The main approach to inference for multivariate extremes consists in approximating the joint upper tail of the observations by a parametric family arising in the limit for extreme events. The latter may be expressed in terms of componentwise maxima, high threshold exceedances or point processes, yielding different but related asymptotic characterizations and estimators. The present paper clarifies the connections between the main likelihood estimators, and assesses their practical performance. We investigate their ability to estimate the extremal dependence structure and to predict future extremes, using exact calculations and simulation, in the case of the logistic model.

  8. A comparison of usability methods for testing interactive health technologies: Methodological aspects and empirical evidence

    NARCIS (Netherlands)

    Jaspers, Monique W. M.

    2009-01-01

    OBJECTIVE: Usability evaluation is now widely recognized as critical to the success of interactive health care applications. However, the broad range of usability inspection and testing methods available may make it difficult to decide on a usability assessment plan. To guide novices in the

  9. Towards an empirical method of usability testing of system parts : a methodological study

    NARCIS (Netherlands)

    Brinkman, W.P.; Haakma, R.; Bouwhuis, D.G.

    2007-01-01

    Current usability evaluation methods are essentially holistic in nature. However, engineers that apply a component-based software engineering approach might also be interested in understanding the usability of individual parts of an interactive system. This paper examines the efficiency dimension of

  10. Empirical research in service engineering based on AHP and fuzzy methods

    Science.gov (United States)

    Zhang, Yanrui; Cao, Wenfu; Zhang, Lina

    2015-12-01

    Recent years, management consulting industry has been rapidly developing worldwide. Taking a big management consulting company as research object, this paper established an index system of service quality of consulting, based on customer satisfaction survey, evaluated service quality of the consulting company by AHP and fuzzy comprehensive evaluation methods.

  11. An Empirical Method to Fuse Partially Overlapping State Vectors for Distributed State Estimation

    NARCIS (Netherlands)

    Sijs, J.; Hanebeck, U.; Noack, B.

    2013-01-01

    State fusion is a method for merging multiple estimates of the same state into a single fused estimate. Dealing with multiple estimates is one of the main concerns in distributed state estimation, where an estimated value of the desired state vector is computed in each node of a networked system.

  12. An Empirical Comparison of Five Linear Equating Methods for the NEAT Design

    Science.gov (United States)

    Suh, Youngsuk; Mroch, Andrew A.; Kane, Michael T.; Ripkey, Douglas R.

    2009-01-01

    In this study, a data base containing the responses of 40,000 candidates to 90 multiple-choice questions was used to mimic data sets for 50-item tests under the "nonequivalent groups with anchor test" (NEAT) design. Using these smaller data sets, we evaluated the performance of five linear equating methods for the NEAT design with five levels of…

  13. Optical absorption spectra and g factor of MgO: Mn2+explored by ab initio and semi empirical methods

    Science.gov (United States)

    Andreici Eftimie, E.-L.; Avram, C. N.; Brik, M. G.; Avram, N. M.

    2018-02-01

    In this paper we present a methodology for calculations of the optical absorption spectra, ligand field parameters and g factor for the Mn2+ (3d5) ions doped in MgO host crystal. The proposed technique combines two methods: the ab initio multireference (MR) and the semi empirical ligand field (LF) in the framework of the exchange charge model (ECM) respectively. Both methods of calculations are applied to the [MnO6]10-cluster embedded in an extended point charge field of host matrix ligands based on Gellé-Lepetit procedure. The first step of such investigations was the full optimization of the cubic structure of perfect MgO crystal, followed by the structural optimization of the doped of MgO:Mn2+ system, using periodic density functional theory (DFT). The ab initio MR wave functions approaches, such as complete active space self-consistent field (CASSCF), N-electron valence second order perturbation theory (NEVPT2) and spectroscopy oriented configuration interaction (SORCI), are used for the calculations. The scalar relativistic effects have also been taken into account through the second order Douglas-Kroll-Hess (DKH2) procedure. Ab initio ligand field theory (AILFT) allows to extract all LF parameters and spin-orbit coupling constant from such calculations. In addition, the ECM of ligand field theory (LFT) has been used for modelling theoptical absorption spectra. The perturbation theory (PT) was employed for the g factor calculation in the semi empirical LFT. The results of each of the aforementioned types of calculations are discussed and the comparisons between the results obtained and the experimental results show a reasonable agreement, which justifies this new methodology based on the simultaneous use of both methods. This study establishes fundamental principles for the further modelling of larger embedded cluster models of doped metal oxides.

  14. Empirical evaluation of a practical indoor mobile robot navigation method using hybrid maps

    DEFF Research Database (Denmark)

    Özkil, Ali Gürcan; Fan, Zhun; Xiao, Jizhong

    2010-01-01

    This video presents a practical navigation scheme for indoor mobile robots using hybrid maps. The method makes use of metric maps for local navigation and a topological map for global path planning. Metric maps are generated as occupancy grids by a laser range finder to represent local information...... about partial areas. The global topological map is used to indicate the connectivity of the ‘places-of-interests’ in the environment and the interconnectivity of the local maps. Visual tags on the ceiling to be detected by the robot provide valuable information and contribute to reliable localization...... that the method is implemented successfully on physical robot in a hospital environment, which provides a practical solution for indoor navigation....

  15. Computer-Based Methods for Collecting Peer Nomination Data: Utility, Practice, and Empirical Support.

    Science.gov (United States)

    van den Berg, Yvonne H M; Gommans, Rob

    2017-09-01

    New technologies have led to several major advances in psychological research over the past few decades. Peer nomination research is no exception. Thanks to these technological innovations, computerized data collection is becoming more common in peer nomination research. However, computer-based assessment is more than simply programming the questionnaire and asking respondents to fill it in on computers. In this chapter the advantages and challenges of computer-based assessments are discussed. In addition, a list of practical recommendations and considerations is provided to inform researchers on how computer-based methods can be applied to their own research. Although the focus is on the collection of peer nomination data in particular, many of the requirements, considerations, and implications are also relevant for those who consider the use of other sociometric assessment methods (e.g., paired comparisons, peer ratings, peer rankings) or computer-based assessments in general. © 2017 Wiley Periodicals, Inc.

  16. SOFTWARE EFFORT PREDICTION: AN EMPIRICAL EVALUATION OF METHODS TO TREAT MISSING VALUES WITH RAPIDMINER ®

    OpenAIRE

    OLGA FEDOTOVA; GLADYS CASTILLO; LEONOR TEIXEIRA; HELENA ALVELOS

    2011-01-01

    Missing values is a common problem in the data analysis in all areas, being software engineering not an exception. Particularly, missing data is a widespread phenomenon observed during the elaboration of effort prediction models (EPMs) required for budget, time and functionalities planning. Current work presents the results of a study carried out on a Portuguese medium-sized software development organization in order to obtain a formal method for EPMs elicitation in development processes. Thi...

  17. Hydrodynamic Modeling for Autonomous Underwater Vehicles Using Computational and Semi-Empirical Methods

    OpenAIRE

    Geisbert, Jesse Stuart

    2007-01-01

    Buoyancy driven underwater gliders, which locomote by modulating their buoyancy and their attitude with moving mass actuators and inflatable bladders, are proving their worth as efficient long-distance, long-duration ocean sampling platforms. Gliders have the capability to travel thousands of kilometers without a need to stop or recharge. There is a need for the development of methods for hydrodynamic modeling. This thesis aims to determine the hydrodynamic parameters for the governing equat...

  18. Empirical quantification of lacustrine groundwater discharge - different methods and their limitations

    Science.gov (United States)

    Meinikmann, K.; Nützmann, G.; Lewandowski, J.

    2015-03-01

    Groundwater discharge into lakes (lacustrine groundwater discharge, LGD) can be an important driver of lake eutrophication. Its quantification is difficult for several reasons, and thus often neglected in water and nutrient budgets of lakes. In the present case several methods were applied to determine the expansion of the subsurface catchment, to reveal areas of main LGD and to identify the variability of LGD intensity. Size and shape of the subsurface catchment served as a prerequisite in order to calculate long-term groundwater recharge and thus the overall amount of LGD. Isotopic composition of near-shore groundwater was investigated to validate the quality of catchment delineation in near-shore areas. Heat as a natural tracer for groundwater-surface water interactions was used to find spatial variations of LGD intensity. Via an analytical solution of the heat transport equation, LGD rates were calculated from temperature profiles of the lake bed. The method has some uncertainties, as can be found from the results of two measurement campaigns in different years. The present study reveals that a combination of several different methods is required for a reliable identification and quantification of LGD and groundwater-borne nutrient loads.

  19. Consideration of relativistic effects in band structure calculations based on the empirical tight-binding method

    International Nuclear Information System (INIS)

    Hanke, M.; Hennig, D.; Kaschte, A.; Koeppen, M.

    1988-01-01

    The energy band structure of cadmium telluride and mercury telluride materials is investigated by means of the tight-binding (TB) method considering relativistic effects and the spin-orbit interaction. Taking into account relativistic effects in the method is rather simple though the size of the Hamilton matrix doubles. Such considerations are necessary for the interesting small-interstice semiconductors, and the experimental results are reflected correctly in the band structures. The transformation behaviour of the eigenvectors within the Brillouin zone gets more complicated, but is, nevertheless, theoretically controllable. If, however, the matrix elements of the Green operator are to be calculated, one has to use formula manipulation programmes in particular for non-diagonal elements. For defect calculations by the Koster-Slater theory of scattering it is necessary to know these matrix elements. Knowledge of the transformation behaviour of eigenfunctions saves frequent diagonalization of the Hamilton matrix and thus permits a numerical solution of the problem. Corresponding results for the sp 3 basis are available

  20. An empirical method for calculating thermodynamic parameters for U(6) phases, applications to performance assessment calculations

    International Nuclear Information System (INIS)

    Ewing, R.C.; Chen, F.; Clark, S.B.

    2002-01-01

    Uranyl minerals form by oxidation and alteration of uraninite, UO 2+x , and the UO 2 in used nuclear fuels. The thermodynamic database for these phases is extremely limited. However, the Gibbs free energies and enthalpies for uranyl phases may be estimated based on a method that sums polyhedral contributions. The molar contributions of the structural components to Δ f G m 0 and Δ f H m 0 are derived by multiple regression using the thermodynamic data of phases for which the crystal structures are known. In comparison with experimentally determined values, the average residuals associated with the predicted Δ f G m 0 and Δ f H m 0 for the uranyl phases used in the model are 0.08 and 0.10%, respectively. There is also good agreement between the predicted mineral stability relations and field occurrences, thus providing confidence in this method for the estimation of Δ f G m 0 and Δ f H m 0 of the U(VI) phases. This approach provides a means of generating estimated thermodynamic data for performance assessment calcination and a basic for making bounding calcination of phase stabilities and solubilities. (author)

  1. Empirical studies on informal patient payments for health care services: a systematic and critical review of research methods and instruments

    Directory of Open Access Journals (Sweden)

    Pavlova Milena

    2010-09-01

    Full Text Available Abstract Background Empirical evidence demonstrates that informal patient payments are an important feature of many health care systems. However, the study of these payments is a challenging task because of their potentially illegal and sensitive nature. The aim of this paper is to provide a systematic review and analysis of key methodological difficulties in measuring informal patient payments. Methods The systematic review was based on the following eligibility criteria: English language publications that reported on empirical studies measuring informal patient payments. There were no limitations with regard to the year of publication. The content of the publications was analysed qualitatively and the results were organised in the form of tables. Data sources were Econlit, Econpapers, Medline, PubMed, ScienceDirect, SocINDEX. Results Informal payments for health care services are most often investigated in studies involving patients or the general public, but providers and officials are also sample units in some studies. The majority of the studies apply a single mode of data collection that involves either face-to-face interviews or group discussions. One of the main methodological difficulties reported in the publication concerns the inability of some respondents to distinguish between official and unofficial payments. Another complication is associated with the refusal of some respondents to answer questions on informal patient payments. We do not exclude the possibility that we have missed studies that reported in non-English language journals as well as very recent studies that are not yet published. Conclusions Given the recent evidence from research on survey methods, a self-administrated questionnaire during a face-to-face interview could be a suitable mode of collecting sensitive data, such as data on informal patient payments.

  2. Semi-empirical spectrophotometric (SESp) method for the indirect determination of the ratio of cationic micellar binding constants of counterions X⁻ and Br⁻(K(X)/K(Br)).

    Science.gov (United States)

    Khan, Mohammad Niyaz; Yusof, Nor Saadah Mohd; Razak, Norazizah Abdul

    2013-01-01

    The semi-empirical spectrophotometric (SESp) method, for the indirect determination of ion exchange constants (K(X)(Br)) of ion exchange processes occurring between counterions (X⁻ and Br⁻) at the cationic micellar surface, is described in this article. The method uses an anionic spectrophotometric probe molecule, N-(2-methoxyphenyl)phthalamate ion (1⁻), which measures the effects of varying concentrations of inert inorganic or organic salt (Na(v)X, v = 1, 2) on absorbance, (A(ob)) at 310 nm, of samples containing constant concentrations of 1⁻, NaOH and cationic micelles. The observed data fit satisfactorily to an empirical equation which gives the values of two empirical constants. These empirical constants lead to the determination of K(X)(Br) (= K(X)/K(Br) with K(X) and K(Br) representing cationic micellar binding constants of counterions X and Br⁻). This method gives values of K(X)(Br) for both moderately hydrophobic and hydrophilic X⁻. The values of K(X)(Br), obtained by using this method, are comparable with the corresponding values of K(X)(Br), obtained by the use of semi-empirical kinetic (SEK) method, for different moderately hydrophobic X. The values of K(X)(Br) for X = Cl⁻ and 2,6-Cl₂C6H₃CO₂⁻, obtained by the use of SESp and SEK methods, are similar to those obtained by the use of other different conventional methods.

  3. VLE measurements using a static cell vapor phase manual sampling method accompanied with an empirical data consistency test

    International Nuclear Information System (INIS)

    Freitag, Joerg; Kosuge, Hitoshi; Schmelzer, Juergen P.; Kato, Satoru

    2015-01-01

    Highlights: • We use a new, simple static cell vapor phase manual sampling method (SCVMS) for VLE (x, y, T) measurement. • The method is applied to non-azeotropic, asymmetric and two-liquid phase forming azeotropic binaries. • The method is approved by a data consistency test, i.e., a plot of the polarity exclusion factor vs. pressure. • The consistency test reveals that with the new SCVMS method accurate VLE near ambient temperature can be measured. • Moreover, the consistency test approves that the effect of air in the SCVMS system is negligible. - Abstract: A new static cell vapor phase manual sampling (SCVMS) method is used for the simple measurement of constant temperature x, y (vapor + liquid) equilibria (VLE). The method was applied to the VLE measurements of the (methanol + water) binary at T/K = (283.2, 298.2, 308.2 and 322.9), asymmetric (acetone + 1-butanol) binary at T/K = (283.2, 295.2, 308.2 and 324.2) and two-liquid phase forming azeotropic (water + 1-butanol) binary at T/K = (283.2 and 298.2). The accuracy of the experimental data was approved by a data consistency test, that is, an empirical plot of the polarity exclusion factor, β, vs. the system pressure, P. The SCVMS data are accurate, because the VLE data converge to the same lnβ vs. lnP straight line determined from conventional distillation-still method and a headspace gas chromatography method

  4. An empirical method for estimating surface area of aggregates in hot mix asphalt

    Directory of Open Access Journals (Sweden)

    R.P. Panda

    2016-04-01

    Full Text Available Bitumen requirement in hot mix asphalt (HMA is directly dependent on the surface area of the aggregates in the mix, which in turn has effect on the asphalt film thickness and the flow characteristics. The surface area of aggregate blend in HMA is calculated using the specific surface area factors assigned to percentage passing through some specific standard sieve sizes and the imaging techniques. The first process is less capital intensive, but purely manual and labour intensive and prone to human errors. Imaging techniques though eliminating the human errors, still have limited use due to capital intensiveness and requirement of well-established laboratories with qualified technicians. Most of the developing countries like India are shortage of well-equipped laboratories and qualified technicians. To overcome these difficulties, the present mathematical model has been developed to estimate the surface area of aggregate blend of HMA from physical properties of aggregates evaluated using simple laboratory equipment. This model has been validated compared with the existing established methods of calculations and can be used as one of the tools in different developing and under developed countries for proper design of HMA.

  5. An empirical survey to investigate quality of men's clothing market using QFD method

    Directory of Open Access Journals (Sweden)

    Samira Golshan

    2012-08-01

    Full Text Available One of the most important techniques on improving customer satisfaction in clothing and textile industry is to increase the quality of goods and services. There are literally different methods for detecting important items influencing clothing products and the proposed model of this paper uses quality function deployment (QFD. The proposed model of this paper designs and distributes a questionnaire among some experts to detect necessary factors and using house of quality we determine the most important factors impacting the customer's clothing selection. The proposed study of this paper focuses men who are 15 to 45 years old living in Yazd/Iran. The brand we do the investigation sells the products in three shopping centers located in this city. We have distributed 100 questionnaires and collected 65 properly filled ones. Based on the results of our survey, suitable design, printing and packaging specifications, necessary requirements, optimization of production planning and appropriate sewing machine setting are considered as the most important characteristics influencing the purchase of a clothing products.

  6. AN EMPIRICAL METHOD FOR IMPROVING THE QUALITY OF RXTE HEXTE SPECTRA

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, Javier A.; Steiner, James F.; McClintock, Jeffrey E. [Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138 (United States); Grinberg, Victoria [MIT Kavli Institute for Astrophysics and Space Research, MIT, 70 Vassar Street, Cambridge, MA 02139 (United States); Pottschmidt, Katja [Department of Physics and Center for Space Science and Technology, UMBC, Baltimore, MD 21250 (United States); Rothschild, Richard E., E-mail: javier@head.cfa.harvard.edu, E-mail: jem@cfa.harvard.edu, E-mail: jsteiner@mit.edu, E-mail: grinberg@space.mit.edu, E-mail: katja@milkyway.gsfc.nasa.gov, E-mail: rrothschild@ucsd.edu [Center for Astrophysics and Space Sciences, University of California at San Diego, La Jolla, CA (United States)

    2016-03-01

    We have developed a correction tool to improve the quality of Rossi X-ray Timing Explorer (RXTE) High Energy X-ray Timing Experiment (HEXTE) spectra by employing the same method we used earlier to improve the quality of RXTE Proportional Counter Array (PCA) spectra. We fit all of the hundreds of HEXTE spectra of the Crab individually to a simple power-law model, some 37 million counts in total for Cluster A and 39 million counts for Cluster B, and we create for each cluster a combined spectrum of residuals. We find that the residual spectrum of Cluster A is free of instrumental artifacts while that of Cluster B contains significant features with amplitudes ∼1%; the most prominent is in the energy range 30–50 keV, which coincides with the iodine K edge. Starting with the residual spectrum for Cluster B, via an iterative procedure we created the calibration tool hexBcorr for correcting any Cluster B spectrum of interest. We demonstrate the efficacy of the tool by applying it to Cluster B spectra of two bright black holes, which contain several million counts apiece. For these spectra, application of the tool significantly improves the goodness of fit, while affecting only slightly the broadband fit parameters. The tool may be important for the study of spectral features, such as cyclotron lines, a topic that is beyond the scope of this paper.

  7. Application of Generalized Student’s T-Distribution In Modeling The Distribution of Empirical Return Rates on Selected Stock Exchange Indexes

    Directory of Open Access Journals (Sweden)

    Purczyńskiz Jan

    2014-07-01

    Full Text Available This paper examines the application of the so called generalized Student’s t-distribution in modeling the distribution of empirical return rates on selected Warsaw stock exchange indexes. It deals with distribution parameters by means of the method of logarithmic moments, the maximum likelihood method and the method of moments. Generalized Student’s t-distribution ensures better fitting to empirical data than the classical Student’s t-distribution.

  8. Selection of an empirical detection method for determination of water-soluble carbohydrates in feedstuffs for application in ruminant nutrition

    Science.gov (United States)

    Water-soluble carbohydrates (WSC) are commonly measured in ruminant feedstuffs for use in diet formulation. However, we lack information as to which empirical detection assay most correctly measures WSC. The objective of this study was to determine which commonly used empirical assay was most approp...

  9. Transformation of an empirical distribution to normal distribution by the use of Johnson system of translation and symmetrical quantile method

    OpenAIRE

    Ludvík Friebel; Jana Friebelová

    2006-01-01

    This article deals with approximation of empirical distribution to standard normal distribution using Johnson transformation. This transformation enables us to approximate wide spectrum of continuous distributions with a normal distribution. The estimation of parameters of transformation formulas is based on percentiles of empirical distribution. There are derived theoretical probability distribution functions of random variable obtained on the base of backward transformation standard normal ...

  10. Empirical Flutter Prediction Method.

    Science.gov (United States)

    1988-03-05

    been used in this way to discover species or subspecies of animals, and to discover different types of voter or comsumer requiring different persuasions...respect to behavior or performance or response variables. Once this were done, corresponding clusters might be sought among descriptive or predictive or...jump in a response. The first sort of usage does not apply to the flutter prediction problem. Here the types of behavior are the different kinds of

  11. An Empirical Fitting Method for Type Ia Supernova Light Curves: A Case Study of SN 2011fe

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, WeiKang; Filippenko, Alexei V., E-mail: zwk@astro.berkeley.edu [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States)

    2017-03-20

    We present a new empirical fitting method for the optical light curves of Type Ia supernovae (SNe Ia). We find that a variant broken-power-law function provides a good fit, with the simple assumption that the optical emission is approximately the blackbody emission of the expanding fireball. This function is mathematically analytic and is derived directly from the photospheric velocity evolution. When deriving the function, we assume that both the blackbody temperature and photospheric velocity are constant, but the final function is able to accommodate these changes during the fitting procedure. Applying it to the case study of SN 2011fe gives a surprisingly good fit that can describe the light curves from the first-light time to a few weeks after peak brightness, as well as over a large range of fluxes (∼5 mag, and even ∼7 mag in the g band). Since SNe Ia share similar light-curve shapes, this fitting method has the potential to fit most other SNe Ia and characterize their properties in large statistical samples such as those already gathered and in the near future as new facilities become available.

  12. Determining individual variation in growth and its implication for life-history and population processes using the empirical Bayes method.

    Directory of Open Access Journals (Sweden)

    Simone Vincenzi

    2014-09-01

    Full Text Available The differences in demographic and life-history processes between organisms living in the same population have important consequences for ecological and evolutionary dynamics. Modern statistical and computational methods allow the investigation of individual and shared (among homogeneous groups determinants of the observed variation in growth. We use an Empirical Bayes approach to estimate individual and shared variation in somatic growth using a von Bertalanffy growth model with random effects. To illustrate the power and generality of the method, we consider two populations of marble trout Salmo marmoratus living in Slovenian streams, where individually tagged fish have been sampled for more than 15 years. We use year-of-birth cohort, population density during the first year of life, and individual random effects as potential predictors of the von Bertalanffy growth function's parameters k (rate of growth and L∞ (asymptotic size. Our results showed that size ranks were largely maintained throughout marble trout lifetime in both populations. According to the Akaike Information Criterion (AIC, the best models showed different growth patterns for year-of-birth cohorts as well as the existence of substantial individual variation in growth trajectories after accounting for the cohort effect. For both populations, models including density during the first year of life showed that growth tended to decrease with increasing population density early in life. Model validation showed that predictions of individual growth trajectories using the random-effects model were more accurate than predictions based on mean size-at-age of fish.

  13. Determining individual variation in growth and its implication for life-history and population processes using the empirical Bayes method.

    Science.gov (United States)

    Vincenzi, Simone; Mangel, Marc; Crivelli, Alain J; Munch, Stephan; Skaug, Hans J

    2014-09-01

    The differences in demographic and life-history processes between organisms living in the same population have important consequences for ecological and evolutionary dynamics. Modern statistical and computational methods allow the investigation of individual and shared (among homogeneous groups) determinants of the observed variation in growth. We use an Empirical Bayes approach to estimate individual and shared variation in somatic growth using a von Bertalanffy growth model with random effects. To illustrate the power and generality of the method, we consider two populations of marble trout Salmo marmoratus living in Slovenian streams, where individually tagged fish have been sampled for more than 15 years. We use year-of-birth cohort, population density during the first year of life, and individual random effects as potential predictors of the von Bertalanffy growth function's parameters k (rate of growth) and L∞ (asymptotic size). Our results showed that size ranks were largely maintained throughout marble trout lifetime in both populations. According to the Akaike Information Criterion (AIC), the best models showed different growth patterns for year-of-birth cohorts as well as the existence of substantial individual variation in growth trajectories after accounting for the cohort effect. For both populations, models including density during the first year of life showed that growth tended to decrease with increasing population density early in life. Model validation showed that predictions of individual growth trajectories using the random-effects model were more accurate than predictions based on mean size-at-age of fish.

  14. Empirical Method to Estimate Hydrogen Embrittlement of Metals as a Function of Hydrogen Gas Pressure at Constant Temperature

    Science.gov (United States)

    Lee, Jonathan A.

    2010-01-01

    High pressure Hydrogen (H) gas has been known to have a deleterious effect on the mechanical properties of certain metals, particularly, the notched tensile strength, fracture toughness and ductility. The ratio of these properties in Hydrogen as compared to Helium or Air is called the Hydrogen Environment Embrittlement (HEE) Index, which is a useful method to classify the severity of H embrittlement and to aid in the material screening and selection for safety usage H gas environment. A comprehensive world-wide database compilation, in the past 50 years, has shown that the HEE index is mostly collected at two conveniently high H pressure points of 5 ksi and 10 ksi near room temperature. Since H embrittlement is directly related to pressure, the lack of HEE index at other pressure points has posed a technical problem for the designers to select appropriate materials at a specific H pressure for various applications in aerospace, alternate and renewable energy sectors for an emerging hydrogen economy. Based on the Power-Law mathematical relationship, an empirical method to accurately predict the HEE index, as a function of H pressure at constant temperature, is presented with a brief review on Sievert's law for gas-metal absorption.

  15. A Cutting Pattern Recognition Method for Shearers Based on Improved Ensemble Empirical Mode Decomposition and a Probabilistic Neural Network

    Directory of Open Access Journals (Sweden)

    Jing Xu

    2015-10-01

    Full Text Available In order to guarantee the stable operation of shearers and promote construction of an automatic coal mining working face, an online cutting pattern recognition method with high accuracy and speed based on Improved Ensemble Empirical Mode Decomposition (IEEMD and Probabilistic Neural Network (PNN is proposed. An industrial microphone is installed on the shearer and the cutting sound is collected as the recognition criterion to overcome the disadvantages of giant size, contact measurement and low identification rate of traditional detectors. To avoid end-point effects and get rid of undesirable intrinsic mode function (IMF components in the initial signal, IEEMD is conducted on the sound. The end-point continuation based on the practical storage data is performed first to overcome the end-point effect. Next the average correlation coefficient, which is calculated by the correlation of the first IMF with others, is introduced to select essential IMFs. Then the energy and standard deviation of the reminder IMFs are extracted as features and PNN is applied to classify the cutting patterns. Finally, a simulation example, with an accuracy of 92.67%, and an industrial application prove the efficiency and correctness of the proposed method.

  16. Maximum likelihood versus likelihood-free quantum system identification in the atom maser

    International Nuclear Information System (INIS)

    Catana, Catalin; Kypraios, Theodore; Guţă, Mădălin

    2014-01-01

    We consider the problem of estimating a dynamical parameter of a Markovian quantum open system (the atom maser), by performing continuous time measurements in the system's output (outgoing atoms). Two estimation methods are investigated and compared. Firstly, the maximum likelihood estimator (MLE) takes into account the full measurement data and is asymptotically optimal in terms of its mean square error. Secondly, the ‘likelihood-free’ method of approximate Bayesian computation (ABC) produces an approximation of the posterior distribution for a given set of summary statistics, by sampling trajectories at different parameter values and comparing them with the measurement data via chosen statistics. Building on previous results which showed that atom counts are poor statistics for certain values of the Rabi angle, we apply MLE to the full measurement data and estimate its Fisher information. We then select several correlation statistics such as waiting times, distribution of successive identical detections, and use them as input of the ABC algorithm. The resulting posterior distribution follows closely the data likelihood, showing that the selected statistics capture ‘most’ statistical information about the Rabi angle. (paper)

  17. Algorithms of maximum likelihood data clustering with applications

    Science.gov (United States)

    Giada, Lorenzo; Marsili, Matteo

    2002-12-01

    We address the problem of data clustering by introducing an unsupervised, parameter-free approach based on maximum likelihood principle. Starting from the observation that data sets belonging to the same cluster share a common information, we construct an expression for the likelihood of any possible cluster structure. The likelihood in turn depends only on the Pearson's coefficient of the data. We discuss clustering algorithms that provide a fast and reliable approximation to maximum likelihood configurations. Compared to standard clustering methods, our approach has the advantages that (i) it is parameter free, (ii) the number of clusters need not be fixed in advance and (iii) the interpretation of the results is transparent. In order to test our approach and compare it with standard clustering algorithms, we analyze two very different data sets: time series of financial market returns and gene expression data. We find that different maximization algorithms produce similar cluster structures whereas the outcome of standard algorithms has a much wider variability.

  18. Maximum likelihood estimation of finite mixture model for economic data

    Science.gov (United States)

    Phoong, Seuk-Yen; Ismail, Mohd Tahir

    2014-06-01

    Finite mixture model is a mixture model with finite-dimension. This models are provides a natural representation of heterogeneity in a finite number of latent classes. In addition, finite mixture models also known as latent class models or unsupervised learning models. Recently, maximum likelihood estimation fitted finite mixture models has greatly drawn statistician's attention. The main reason is because maximum likelihood estimation is a powerful statistical method which provides consistent findings as the sample sizes increases to infinity. Thus, the application of maximum likelihood estimation is used to fit finite mixture model in the present paper in order to explore the relationship between nonlinear economic data. In this paper, a two-component normal mixture model is fitted by maximum likelihood estimation in order to investigate the relationship among stock market price and rubber price for sampled countries. Results described that there is a negative effect among rubber price and stock market price for Malaysia, Thailand, Philippines and Indonesia.

  19. Maximum Likelihood Reconstruction for Magnetic Resonance Fingerprinting.

    Science.gov (United States)

    Zhao, Bo; Setsompop, Kawin; Ye, Huihui; Cauley, Stephen F; Wald, Lawrence L

    2016-08-01

    This paper introduces a statistical estimation framework for magnetic resonance (MR) fingerprinting, a recently proposed quantitative imaging paradigm. Within this framework, we present a maximum likelihood (ML) formalism to estimate multiple MR tissue parameter maps directly from highly undersampled, noisy k-space data. A novel algorithm, based on variable splitting, the alternating direction method of multipliers, and the variable projection method, is developed to solve the resulting optimization problem. Representative results from both simulations and in vivo experiments demonstrate that the proposed approach yields significantly improved accuracy in parameter estimation, compared to the conventional MR fingerprinting reconstruction. Moreover, the proposed framework provides new theoretical insights into the conventional approach. We show analytically that the conventional approach is an approximation to the ML reconstruction; more precisely, it is exactly equivalent to the first iteration of the proposed algorithm for the ML reconstruction, provided that a gridding reconstruction is used as an initialization.

  20. Subtracting and Fitting Histograms using Profile Likelihood

    CERN Document Server

    D'Almeida, F M L

    2008-01-01

    It is known that many interesting signals expected at LHC are of unknown shape and strongly contaminated by background events. These signals will be dif cult to detect during the rst years of LHC operation due to the initial low luminosity. In this work, one presents a method of subtracting histograms based on the pro le likelihood function when the background is previously estimated by Monte Carlo events and one has low statistics. Estimators for the signal in each bin of the histogram difference are calculated so as limits for the signals with 68.3% of Con dence Level in a low statistics case when one has a exponential background and a Gaussian signal. The method can also be used to t histograms when the signal shape is known. Our results show a good performance and avoid the problem of negative values when subtracting histograms.

  1. Constraint likelihood analysis for a network of gravitational wave detectors

    International Nuclear Information System (INIS)

    Klimenko, S.; Rakhmanov, M.; Mitselmakher, G.; Mohanty, S.

    2005-01-01

    We propose a coherent method for detection and reconstruction of gravitational wave signals with a network of interferometric detectors. The method is derived by using the likelihood ratio functional for unknown signal waveforms. In the likelihood analysis, the global maximum of the likelihood ratio over the space of waveforms is used as the detection statistic. We identify a problem with this approach. In the case of an aligned pair of detectors, the detection statistic depends on the cross correlation between the detectors as expected, but this dependence disappears even for infinitesimally small misalignments. We solve the problem by applying constraints on the likelihood functional and obtain a new class of statistics. The resulting method can be applied to data from a network consisting of any number of detectors with arbitrary detector orientations. The method allows us reconstruction of the source coordinates and the waveforms of two polarization components of a gravitational wave. We study the performance of the method with numerical simulations and find the reconstruction of the source coordinates to be more accurate than in the standard likelihood method

  2. Inglorious Empire

    DEFF Research Database (Denmark)

    Khair, Tabish

    2017-01-01

    Review of 'Inglorious Empire: What the British did to India' by Shashi Tharoor, London, Hurst Publishers, 2017, 296 pp., £20.00......Review of 'Inglorious Empire: What the British did to India' by Shashi Tharoor, London, Hurst Publishers, 2017, 296 pp., £20.00...

  3. Empirical Hamiltonians

    International Nuclear Information System (INIS)

    Peggs, S.; Talman, R.

    1986-08-01

    As proton accelerators get larger, and include more magnets, the conventional tracking programs which simulate them run slower. At the same time, in order to more carefully optimize the higher cost of the accelerators, they must return more accurate results, even in the presence of a longer list of realistic effects, such as magnet errors and misalignments. For these reasons conventional tracking programs continue to be computationally bound, despite the continually increasing computing power available. This limitation is especially severe for a class of problems in which some lattice parameter is slowly varying, when a faithful description is only obtained by tracking for an exceedingly large number of turns. Examples are synchrotron oscillations in which the energy varies slowly with a period of, say, hundreds of turns, or magnet ripple or noise on a comparably slow time scale. In these cases one may with to track for hundreds of periods of the slowly varying parameter. The purpose of this paper is to describe a method, still under development, in which element-by-element tracking around one turn is replaced by a single map, which can be processed far faster. Similar programs have already been written in which successive elements are ''concatenated'' with truncation to linear, sextupole, or octupole order, et cetera, using Lie algebraic techniques to preserve symplecticity. The method described here is rather more empirical than this but, in principle, contains information to all orders and is able to handle resonances in a more straightforward fashion

  4. Corporate governance effect on financial distress likelihood: Evidence from Spain

    Directory of Open Access Journals (Sweden)

    Montserrat Manzaneque

    2016-01-01

    Full Text Available The paper explores some mechanisms of corporate governance (ownership and board characteristics in Spanish listed companies and their impact on the likelihood of financial distress. An empirical study was conducted between 2007 and 2012 using a matched-pairs research design with 308 observations, with half of them classified as distressed and non-distressed. Based on the previous study by Pindado, Rodrigues, and De la Torre (2008, a broader concept of bankruptcy is used to define business failure. Employing several conditional logistic models, as well as to other previous studies on bankruptcy, the results confirm that in difficult situations prior to bankruptcy, the impact of board ownership and proportion of independent directors on business failure likelihood are similar to those exerted in more extreme situations. These results go one step further, to offer a negative relationship between board size and the likelihood of financial distress. This result is interpreted as a form of creating diversity and to improve the access to the information and resources, especially in contexts where the ownership is highly concentrated and large shareholders have a great power to influence the board structure. However, the results confirm that ownership concentration does not have a significant impact on financial distress likelihood in the Spanish context. It is argued that large shareholders are passive as regards an enhanced monitoring of management and, alternatively, they do not have enough incentives to hold back the financial distress. These findings have important implications in the Spanish context, where several changes in the regulatory listing requirements have been carried out with respect to corporate governance, and where there is no empirical evidence regarding this respect.

  5. Tapered composite likelihood for spatial max-stable models

    KAUST Repository

    Sang, Huiyan

    2014-05-01

    Spatial extreme value analysis is useful to environmental studies, in which extreme value phenomena are of interest and meaningful spatial patterns can be discerned. Max-stable process models are able to describe such phenomena. This class of models is asymptotically justified to characterize the spatial dependence among extremes. However, likelihood inference is challenging for such models because their corresponding joint likelihood is unavailable and only bivariate or trivariate distributions are known. In this paper, we propose a tapered composite likelihood approach by utilizing lower dimensional marginal likelihoods for inference on parameters of various max-stable process models. We consider a weighting strategy based on a "taper range" to exclude distant pairs or triples. The "optimal taper range" is selected to maximize various measures of the Godambe information associated with the tapered composite likelihood function. This method substantially reduces the computational cost and improves the efficiency over equally weighted composite likelihood estimators. We illustrate its utility with simulation experiments and an analysis of rainfall data in Switzerland.

  6. Tapered composite likelihood for spatial max-stable models

    KAUST Repository

    Sang, Huiyan; Genton, Marc G.

    2014-01-01

    Spatial extreme value analysis is useful to environmental studies, in which extreme value phenomena are of interest and meaningful spatial patterns can be discerned. Max-stable process models are able to describe such phenomena. This class of models is asymptotically justified to characterize the spatial dependence among extremes. However, likelihood inference is challenging for such models because their corresponding joint likelihood is unavailable and only bivariate or trivariate distributions are known. In this paper, we propose a tapered composite likelihood approach by utilizing lower dimensional marginal likelihoods for inference on parameters of various max-stable process models. We consider a weighting strategy based on a "taper range" to exclude distant pairs or triples. The "optimal taper range" is selected to maximize various measures of the Godambe information associated with the tapered composite likelihood function. This method substantially reduces the computational cost and improves the efficiency over equally weighted composite likelihood estimators. We illustrate its utility with simulation experiments and an analysis of rainfall data in Switzerland.

  7. Ground-Motion Simulations of the 2008 Ms8.0 Wenchuan, China, Earthquake Using Empirical Green's Function Method

    Science.gov (United States)

    Zhang, W.; Zhang, Y.; Yao, X.

    2010-12-01

    On May 12, 2008, a huge earthquake with magnitude Ms8.0 occurred in the Wenhuan, Sichuan Province of China. This event was the most devastating earthquake in the mainland of China since the 1976 M7.8 Tangshan earthquake. It resulted in tremendous losses of life and property. There were about 90,000 persons killed. Due to occur in the mountainous area, this great earthquake and the following thousands aftershocks also caused many other geological disasters, such as landslide, mud-rock flow and “quake lakes” which formed by landslide-induced reservoirs. This earthquake occurred along the Longmenshan fault, as the result of motion on a northeast striking reverse fault or thrust fault on the northwestern margin of the Sichuan Basin. The earthquake's epicenter and focal-mechanism are consistent with it having occurred as the result of movement on the Longmenshan fault or a tectonically related fault. The earthquake reflects tectonic stresses resulting from the convergence of crustal material slowly moving from the high Tibetan Plateau, to the west, against strong crust underlying the Sichuan Basin and southeastern China. In this study, we simulate the near-field strong ground motions of this great event based on the empirical Green’s function method (EGF). Referring to the published inversion source models, at first, we assume that there are three asperities on the rupture area and choose three different small events as the EGFs. Then, we identify the parameters of the source model using a genetic algorithm (GA). We calculate the synthetic waveforms based on the obtained source model and compare with the observed records. Our result shows that for most of the synthetic waveforms agree very well with the observed ones. The result proves the validity and the stability of the method. Finally, we forward the near-field strong ground motions near the source region and try to explain the damage distribution caused by the great earthquake.

  8. The Laplace Likelihood Ratio Test for Heteroscedasticity

    Directory of Open Access Journals (Sweden)

    J. Martin van Zyl

    2011-01-01

    Full Text Available It is shown that the likelihood ratio test for heteroscedasticity, assuming the Laplace distribution, gives good results for Gaussian and fat-tailed data. The likelihood ratio test, assuming normality, is very sensitive to any deviation from normality, especially when the observations are from a distribution with fat tails. Such a likelihood test can also be used as a robust test for a constant variance in residuals or a time series if the data is partitioned into groups.

  9. MXLKID: a maximum likelihood parameter identifier

    International Nuclear Information System (INIS)

    Gavel, D.T.

    1980-07-01

    MXLKID (MaXimum LiKelihood IDentifier) is a computer program designed to identify unknown parameters in a nonlinear dynamic system. Using noisy measurement data from the system, the maximum likelihood identifier computes a likelihood function (LF). Identification of system parameters is accomplished by maximizing the LF with respect to the parameters. The main body of this report briefly summarizes the maximum likelihood technique and gives instructions and examples for running the MXLKID program. MXLKID is implemented LRLTRAN on the CDC7600 computer at LLNL. A detailed mathematical description of the algorithm is given in the appendices. 24 figures, 6 tables

  10. A maximum likelihood framework for protein design

    Directory of Open Access Journals (Sweden)

    Philippe Hervé

    2006-06-01

    Full Text Available Abstract Background The aim of protein design is to predict amino-acid sequences compatible with a given target structure. Traditionally envisioned as a purely thermodynamic question, this problem can also be understood in a wider context, where additional constraints are captured by learning the sequence patterns displayed by natural proteins of known conformation. In this latter perspective, however, we still need a theoretical formalization of the question, leading to general and efficient learning methods, and allowing for the selection of fast and accurate objective functions quantifying sequence/structure compatibility. Results We propose a formulation of the protein design problem in terms of model-based statistical inference. Our framework uses the maximum likelihood principle to optimize the unknown parameters of a statistical potential, which we call an inverse potential to contrast with classical potentials used for structure prediction. We propose an implementation based on Markov chain Monte Carlo, in which the likelihood is maximized by gradient descent and is numerically estimated by thermodynamic integration. The fit of the models is evaluated by cross-validation. We apply this to a simple pairwise contact potential, supplemented with a solvent-accessibility term, and show that the resulting models have a better predictive power than currently available pairwise potentials. Furthermore, the model comparison method presented here allows one to measure the relative contribution of each component of the potential, and to choose the optimal number of accessibility classes, which turns out to be much higher than classically considered. Conclusion Altogether, this reformulation makes it possible to test a wide diversity of models, using different forms of potentials, or accounting for other factors than just the constraint of thermodynamic stability. Ultimately, such model-based statistical analyses may help to understand the forces

  11. Modeling gene expression measurement error: a quasi-likelihood approach

    Directory of Open Access Journals (Sweden)

    Strimmer Korbinian

    2003-03-01

    Full Text Available Abstract Background Using suitable error models for gene expression measurements is essential in the statistical analysis of microarray data. However, the true probabilistic model underlying gene expression intensity readings is generally not known. Instead, in currently used approaches some simple parametric model is assumed (usually a transformed normal distribution or the empirical distribution is estimated. However, both these strategies may not be optimal for gene expression data, as the non-parametric approach ignores known structural information whereas the fully parametric models run the risk of misspecification. A further related problem is the choice of a suitable scale for the model (e.g. observed vs. log-scale. Results Here a simple semi-parametric model for gene expression measurement error is presented. In this approach inference is based an approximate likelihood function (the extended quasi-likelihood. Only partial knowledge about the unknown true distribution is required to construct this function. In case of gene expression this information is available in the form of the postulated (e.g. quadratic variance structure of the data. As the quasi-likelihood behaves (almost like a proper likelihood, it allows for the estimation of calibration and variance parameters, and it is also straightforward to obtain corresponding approximate confidence intervals. Unlike most other frameworks, it also allows analysis on any preferred scale, i.e. both on the original linear scale as well as on a transformed scale. It can also be employed in regression approaches to model systematic (e.g. array or dye effects. Conclusions The quasi-likelihood framework provides a simple and versatile approach to analyze gene expression data that does not make any strong distributional assumptions about the underlying error model. For several simulated as well as real data sets it provides a better fit to the data than competing models. In an example it also

  12. LDR: A Package for Likelihood-Based Sufficient Dimension Reduction

    Directory of Open Access Journals (Sweden)

    R. Dennis Cook

    2011-03-01

    Full Text Available We introduce a new mlab software package that implements several recently proposed likelihood-based methods for sufficient dimension reduction. Current capabilities include estimation of reduced subspaces with a fixed dimension d, as well as estimation of d by use of likelihood-ratio testing, permutation testing and information criteria. The methods are suitable for preprocessing data for both regression and classification. Implementations of related estimators are also available. Although the software is more oriented to command-line operation, a graphical user interface is also provided for prototype computations.

  13. Pendeteksian Outlier pada Regresi Nonlinier dengan Metode statistik Likelihood Displacement

    Directory of Open Access Journals (Sweden)

    Siti Tabi'atul Hasanah

    2012-11-01

    Full Text Available Outlier is an observation that much different (extreme from the other observational data, or data can be interpreted that do not follow the general pattern of the model. Sometimes outliers provide information that can not be provided by other data. That's why outliers should not just be eliminated. Outliers can also be an influential observation. There are many methods that can be used to detect of outliers. In previous studies done on outlier detection of linear regression. Next will be developed detection of outliers in nonlinear regression. Nonlinear regression here is devoted to multiplicative nonlinear regression. To detect is use of statistical method likelihood displacement. Statistical methods abbreviated likelihood displacement (LD is a method to detect outliers by removing the suspected outlier data. To estimate the parameters are used to the maximum likelihood method, so we get the estimate of the maximum. By using LD method is obtained i.e likelihood displacement is thought to contain outliers. Further accuracy of LD method in detecting the outliers are shown by comparing the MSE of LD with the MSE from the regression in general. Statistic test used is Λ. Initial hypothesis was rejected when proved so is an outlier.

  14. Modelling maximum likelihood estimation of availability

    International Nuclear Information System (INIS)

    Waller, R.A.; Tietjen, G.L.; Rock, G.W.

    1975-01-01

    Suppose the performance of a nuclear powered electrical generating power plant is continuously monitored to record the sequence of failure and repairs during sustained operation. The purpose of this study is to assess one method of estimating the performance of the power plant when the measure of performance is availability. That is, we determine the probability that the plant is operational at time t. To study the availability of a power plant, we first assume statistical models for the variables, X and Y, which denote the time-to-failure and the time-to-repair variables, respectively. Once those statistical models are specified, the availability, A(t), can be expressed as a function of some or all of their parameters. Usually those parameters are unknown in practice and so A(t) is unknown. This paper discusses the maximum likelihood estimator of A(t) when the time-to-failure model for X is an exponential density with parameter, lambda, and the time-to-repair model for Y is an exponential density with parameter, theta. Under the assumption of exponential models for X and Y, it follows that the instantaneous availability at time t is A(t)=lambda/(lambda+theta)+theta/(lambda+theta)exp[-[(1/lambda)+(1/theta)]t] with t>0. Also, the steady-state availability is A(infinity)=lambda/(lambda+theta). We use the observations from n failure-repair cycles of the power plant, say X 1 , X 2 , ..., Xsub(n), Y 1 , Y 2 , ..., Ysub(n) to present the maximum likelihood estimators of A(t) and A(infinity). The exact sampling distributions for those estimators and some statistical properties are discussed before a simulation model is used to determine 95% simulation intervals for A(t). The methodology is applied to two examples which approximate the operating history of two nuclear power plants. (author)

  15. Empirical Philosophy of Science

    DEFF Research Database (Denmark)

    Mansnerus, Erika; Wagenknecht, Susann

    2015-01-01

    knowledge takes place through the integration of the empirical or historical research into the philosophical studies, as Chang, Nersessian, Thagard and Schickore argue in their work. Building upon their contributions we will develop a blueprint for an Empirical Philosophy of Science that draws upon...... qualitative methods from the social sciences in order to advance our philosophical understanding of science in practice. We will regard the relationship between philosophical conceptualization and empirical data as an iterative dialogue between theory and data, which is guided by a particular ‘feeling with......Empirical insights are proven fruitful for the advancement of Philosophy of Science, but the integration of philosophical concepts and empirical data poses considerable methodological challenges. Debates in Integrated History and Philosophy of Science suggest that the advancement of philosophical...

  16. Maximum likelihood window for time delay estimation

    International Nuclear Information System (INIS)

    Lee, Young Sup; Yoon, Dong Jin; Kim, Chi Yup

    2004-01-01

    Time delay estimation for the detection of leak location in underground pipelines is critically important. Because the exact leak location depends upon the precision of the time delay between sensor signals due to leak noise and the speed of elastic waves, the research on the estimation of time delay has been one of the key issues in leak lovating with the time arrival difference method. In this study, an optimal Maximum Likelihood window is considered to obtain a better estimation of the time delay. This method has been proved in experiments, which can provide much clearer and more precise peaks in cross-correlation functions of leak signals. The leak location error has been less than 1 % of the distance between sensors, for example the error was not greater than 3 m for 300 m long underground pipelines. Apart from the experiment, an intensive theoretical analysis in terms of signal processing has been described. The improved leak locating with the suggested method is due to the windowing effect in frequency domain, which offers a weighting in significant frequencies.

  17. A New Statistical Method to Determine the Degree of Validity of Health Economic Model Outcomes against Empirical Data.

    NARCIS (Netherlands)

    Corro Ramos, Isaac; van Voorn, George A K; Vemer, Pepijn; Feenstra, Talitha L; Al, Maiwenn J

    2017-01-01

    The validation of health economic (HE) model outcomes against empirical data is of key importance. Although statistical testing seems applicable, guidelines for the validation of HE models lack guidance on statistical validation, and actual validation efforts often present subjective judgment of

  18. River channel and bar patterns explained and predicted by an empirical and a physics-based method

    NARCIS (Netherlands)

    Kleinhans, M.G.; Berg, J.H. van den

    2011-01-01

    Our objective is to understand general causes of different river channel patterns. In this paper we compare an empirical stream power-based classification and a physics-based bar pattern predictor. We present a careful selection of data from the literature that contains rivers with discharge and

  19. A note on estimating errors from the likelihood function

    International Nuclear Information System (INIS)

    Barlow, Roger

    2005-01-01

    The points at which the log likelihood falls by 12 from its maximum value are often used to give the 'errors' on a result, i.e. the 68% central confidence interval. The validity of this is examined for two simple cases: a lifetime measurement and a Poisson measurement. Results are compared with the exact Neyman construction and with the simple Bartlett approximation. It is shown that the accuracy of the log likelihood method is poor, and the Bartlett construction explains why it is flawed

  20. Robust Gaussian Process Regression with a Student-t Likelihood

    NARCIS (Netherlands)

    Jylänki, P.P.; Vanhatalo, J.; Vehtari, A.

    2011-01-01

    This paper considers the robust and efficient implementation of Gaussian process regression with a Student-t observation model, which has a non-log-concave likelihood. The challenge with the Student-t model is the analytically intractable inference which is why several approximative methods have

  1. Adaptive Unscented Kalman Filter using Maximum Likelihood Estimation

    DEFF Research Database (Denmark)

    Mahmoudi, Zeinab; Poulsen, Niels Kjølstad; Madsen, Henrik

    2017-01-01

    The purpose of this study is to develop an adaptive unscented Kalman filter (UKF) by tuning the measurement noise covariance. We use the maximum likelihood estimation (MLE) and the covariance matching (CM) method to estimate the noise covariance. The multi-step prediction errors generated...

  2. Deformation of log-likelihood loss function for multiclass boosting.

    Science.gov (United States)

    Kanamori, Takafumi

    2010-09-01

    The purpose of this paper is to study loss functions in multiclass classification. In classification problems, the decision function is estimated by minimizing an empirical loss function, and then, the output label is predicted by using the estimated decision function. We propose a class of loss functions which is obtained by a deformation of the log-likelihood loss function. There are four main reasons why we focus on the deformed log-likelihood loss function: (1) this is a class of loss functions which has not been deeply investigated so far, (2) in terms of computation, a boosting algorithm with a pseudo-loss is available to minimize the proposed loss function, (3) the proposed loss functions provide a clear correspondence between the decision functions and conditional probabilities of output labels, (4) the proposed loss functions satisfy the statistical consistency of the classification error rate which is a desirable property in classification problems. Based on (3), we show that the deformed log-likelihood loss provides a model of mislabeling which is useful as a statistical model of medical diagnostics. We also propose a robust loss function against outliers in multiclass classification based on our approach. The robust loss function is a natural extension of the existing robust loss function for binary classification. A model of mislabeling and a robust loss function are useful to cope with noisy data. Some numerical studies are presented to show the robustness of the proposed loss function. A mathematical characterization of the deformed log-likelihood loss function is also presented. Copyright 2010 Elsevier Ltd. All rights reserved.

  3. Sensitivity of Technical Efficiency Estimates to Estimation Methods: An Empirical Comparison of Parametric and Non-Parametric Approaches

    OpenAIRE

    de-Graft Acquah, Henry

    2014-01-01

    This paper highlights the sensitivity of technical efficiency estimates to estimation approaches using empirical data. Firm specific technical efficiency and mean technical efficiency are estimated using the non parametric Data Envelope Analysis (DEA) and the parametric Corrected Ordinary Least Squares (COLS) and Stochastic Frontier Analysis (SFA) approaches. Mean technical efficiency is found to be sensitive to the choice of estimation technique. Analysis of variance and Tukey’s test sugge...

  4. Asymptotic Likelihood Distribution for Correlated & Constrained Systems

    CERN Document Server

    Agarwal, Ujjwal

    2016-01-01

    It describes my work as summer student at CERN. The report discusses the asymptotic distribution of the likelihood ratio for total no. of parameters being h and 2 out of these being are constrained and correlated.

  5. Stope Stability Assessment and Effect of Horizontal to Vertical Stress Ratio on the Yielding and Relaxation Zones Around Underground Open Stopes Using Empirical and Finite Element Methods

    Science.gov (United States)

    Sepehri, Mohammadali; Apel, Derek; Liu, Wei

    2017-09-01

    Predicting the stability of open stopes can be a challenging task for underground mine engineers. For decades, the stability graph method has been used as the first step of open stope design around the world. However, there are some shortcomings with this method. For instance, the stability graph method does not account for the relaxation zones around the stopes. Another limitation of the stability graph is that this method cannot to be used to evaluate the stability of the stopes with high walls made of backfill materials. However, there are several analytical and numerical methods that can be used to overcome these limitations. In this study, both empirical and numerical methods have been used to assess the stability of an open stope located between mine levels N9225 and N9250 at Diavik diamond underground mine. It was shown that the numerical methods can be used as complementary methods along with other analytical and empirical methods to assess the stability of open stopes. A three dimensional elastoplastic finite element model was constructed using Abaqus software. In this paper a sensitivity analysis was performed to investigate the impact of the stress ratio "k" on the extent of the yielding and relaxation zones around the hangingwall and footwall of the understudy stope.

  6. Maximum-Likelihood Detection Of Noncoherent CPM

    Science.gov (United States)

    Divsalar, Dariush; Simon, Marvin K.

    1993-01-01

    Simplified detectors proposed for use in maximum-likelihood-sequence detection of symbols in alphabet of size M transmitted by uncoded, full-response continuous phase modulation over radio channel with additive white Gaussian noise. Structures of receivers derived from particular interpretation of maximum-likelihood metrics. Receivers include front ends, structures of which depends only on M, analogous to those in receivers of coherent CPM. Parts of receivers following front ends have structures, complexity of which would depend on N.

  7. A comparison of entropy balance and probability weighting methods to generalize observational cohorts to a population: a simulation and empirical example.

    Science.gov (United States)

    Harvey, Raymond A; Hayden, Jennifer D; Kamble, Pravin S; Bouchard, Jonathan R; Huang, Joanna C

    2017-04-01

    We compared methods to control bias and confounding in observational studies including inverse probability weighting (IPW) and stabilized IPW (sIPW). These methods often require iteration and post-calibration to achieve covariate balance. In comparison, entropy balance (EB) optimizes covariate balance a priori by calibrating weights using the target's moments as constraints. We measured covariate balance empirically and by simulation by using absolute standardized mean difference (ASMD), absolute bias (AB), and root mean square error (RMSE), investigating two scenarios: the size of the observed (exposed) cohort exceeds the target (unexposed) cohort and vice versa. The empirical application weighted a commercial health plan cohort to a nationally representative National Health and Nutrition Examination Survey target on the same covariates and compared average total health care cost estimates across methods. Entropy balance alone achieved balance (ASMD ≤ 0.10) on all covariates in simulation and empirically. In simulation scenario I, EB achieved the lowest AB and RMSE (13.64, 31.19) compared with IPW (263.05, 263.99) and sIPW (319.91, 320.71). In scenario II, EB outperformed IPW and sIPW with smaller AB and RMSE. In scenarios I and II, EB achieved the lowest mean estimate difference from the simulated population outcome ($490.05, $487.62) compared with IPW and sIPW, respectively. Empirically, only EB differed from the unweighted mean cost indicating IPW, and sIPW weighting was ineffective. Entropy balance demonstrated the bias-variance tradeoff achieving higher estimate accuracy, yet lower estimate precision, compared with IPW methods. EB weighting required no post-processing and effectively mitigated observed bias and confounding. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  8. Choosing the correct empirical antibiotic for urinary tract infection in pediatric: Surveillance of antimicrobial susceptibility pattern of Escherichia coli by E-Test method.

    OpenAIRE

    Iraj Sedighi; Abbas Solgi; Ali Amanati; Mohammad Yousef Alikhani

    2014-01-01

    Background and Objectives Urinary Tract Infections (UTIs) are of the most common bacterial diseases worldwide. We investigate the antibiotic susceptibility patterns of Escherichia coli (E. coli) strains isolated from pediatric patients with community acquired urinary tract infection (UTI) to find a clinical guidance for choosing a right empirical antibiotic in these patients. Materials and Methods In this cross sectional study, 100 urine specimens which were positive for E. coli had been inve...

  9. Dimension-independent likelihood-informed MCMC

    KAUST Repository

    Cui, Tiangang

    2015-10-08

    Many Bayesian inference problems require exploring the posterior distribution of high-dimensional parameters that represent the discretization of an underlying function. This work introduces a family of Markov chain Monte Carlo (MCMC) samplers that can adapt to the particular structure of a posterior distribution over functions. Two distinct lines of research intersect in the methods developed here. First, we introduce a general class of operator-weighted proposal distributions that are well defined on function space, such that the performance of the resulting MCMC samplers is independent of the discretization of the function. Second, by exploiting local Hessian information and any associated low-dimensional structure in the change from prior to posterior distributions, we develop an inhomogeneous discretization scheme for the Langevin stochastic differential equation that yields operator-weighted proposals adapted to the non-Gaussian structure of the posterior. The resulting dimension-independent and likelihood-informed (DILI) MCMC samplers may be useful for a large class of high-dimensional problems where the target probability measure has a density with respect to a Gaussian reference measure. Two nonlinear inverse problems are used to demonstrate the efficiency of these DILI samplers: an elliptic PDE coefficient inverse problem and path reconstruction in a conditioned diffusion.

  10. Reducing the likelihood of long tennis matches.

    Science.gov (United States)

    Barnett, Tristan; Alan, Brown; Pollard, Graham

    2006-01-01

    Long matches can cause problems for tournaments. For example, the starting times of subsequent matches can be substantially delayed causing inconvenience to players, spectators, officials and television scheduling. They can even be seen as unfair in the tournament setting when the winner of a very long match, who may have negative aftereffects from such a match, plays the winner of an average or shorter length match in the next round. Long matches can also lead to injuries to the participating players. One factor that can lead to long matches is the use of the advantage set as the fifth set, as in the Australian Open, the French Open and Wimbledon. Another factor is long rallies and a greater than average number of points per game. This tends to occur more frequently on the slower surfaces such as at the French Open. The mathematical method of generating functions is used to show that the likelihood of long matches can be substantially reduced by using the tiebreak game in the fifth set, or more effectively by using a new type of game, the 50-40 game, throughout the match. Key PointsThe cumulant generating function has nice properties for calculating the parameters of distributions in a tennis matchA final tiebreaker set reduces the length of matches as currently being used in the US OpenA new 50-40 game reduces the length of matches whilst maintaining comparable probabilities for the better player to win the match.

  11. Dimension-independent likelihood-informed MCMC

    KAUST Repository

    Cui, Tiangang; Law, Kody; Marzouk, Youssef M.

    2015-01-01

    Many Bayesian inference problems require exploring the posterior distribution of high-dimensional parameters that represent the discretization of an underlying function. This work introduces a family of Markov chain Monte Carlo (MCMC) samplers that can adapt to the particular structure of a posterior distribution over functions. Two distinct lines of research intersect in the methods developed here. First, we introduce a general class of operator-weighted proposal distributions that are well defined on function space, such that the performance of the resulting MCMC samplers is independent of the discretization of the function. Second, by exploiting local Hessian information and any associated low-dimensional structure in the change from prior to posterior distributions, we develop an inhomogeneous discretization scheme for the Langevin stochastic differential equation that yields operator-weighted proposals adapted to the non-Gaussian structure of the posterior. The resulting dimension-independent and likelihood-informed (DILI) MCMC samplers may be useful for a large class of high-dimensional problems where the target probability measure has a density with respect to a Gaussian reference measure. Two nonlinear inverse problems are used to demonstrate the efficiency of these DILI samplers: an elliptic PDE coefficient inverse problem and path reconstruction in a conditioned diffusion.

  12. Bias Correction for the Maximum Likelihood Estimate of Ability. Research Report. ETS RR-05-15

    Science.gov (United States)

    Zhang, Jinming

    2005-01-01

    Lord's bias function and the weighted likelihood estimation method are effective in reducing the bias of the maximum likelihood estimate of an examinee's ability under the assumption that the true item parameters are known. This paper presents simulation studies to determine the effectiveness of these two methods in reducing the bias when the item…

  13. Interpreting and responding to the Johannine feeding narrative: An empirical study in the SIFT hermeneutical method amongst Anglican ministry training candidates

    Directory of Open Access Journals (Sweden)

    Leslie J. Francis

    2012-08-01

    Full Text Available Drawing on Jungian psychological type theory, the SIFT method of biblical hermeneutics and liturgical preaching maintains that different psychological type preferences are associated with distinctive readings of scripture. In the present study this theory was tested amongst two groups of ministry training candidates (a total of 26 participants who were located within working groups according to their psychological type preferences, and invited to reflect on the Johannine feeding narrative (Jn 6:4−22, and to document their discussion. Analysis of these data provided empirical support for the theory underpinning the SIFT method.

  14. Uncovering Voter Preference Structures Using a Best-Worst Scaling Procedure: Method and Empirical Example in the British General Election of 2010

    DEFF Research Database (Denmark)

    Ormrod, Robert P.; Savigny, Heather

    Best-Worst scaling (BWS) is a method that can provide insights into the preference structures of voters. By asking voters to select the ‘best’ and ‘worst’ option (‘most important’ and ‘least important’ media in our investigation) from a short list of alternatives it is possible to uncover the rel...... the least information. We furthermore investigate group differences using an ANOVA procedure to demonstrate how contextual variables can enrich our empirical investigations using the BWS method....

  15. Likelihood inference for unions of interacting discs

    DEFF Research Database (Denmark)

    Møller, Jesper; Helisová, Katarina

    To the best of our knowledge, this is the first paper which discusses likelihood inference or a random set using a germ-grain model, where the individual grains are unobservable edge effects occur, and other complications appear. We consider the case where the grains form a disc process modelled...... is specified with respect to a given marked Poisson model (i.e. a Boolean model). We show how edge effects and other complications can be handled by considering a certain conditional likelihood. Our methodology is illustrated by analyzing Peter Diggle's heather dataset, where we discuss the results...... of simulation-based maximum likelihood inference and the effect of specifying different reference Poisson models....

  16. Empirical Bayes Approaches to Multivariate Fuzzy Partitions.

    Science.gov (United States)

    Woodbury, Max A.; Manton, Kenneth G.

    1991-01-01

    An empirical Bayes-maximum likelihood estimation procedure is presented for the application of fuzzy partition models in describing high dimensional discrete response data. The model describes individuals in terms of partial membership in multiple latent categories that represent bounded discrete spaces. (SLD)

  17. Quasi-experimental Methods in Empirical Regional Science and Policy Analysis – Is there a Scope for Application?

    DEFF Research Database (Denmark)

    Mitze, Timo; Paloyo, Alfredo R.; Alecke, Björn

    Applied econometrics has recently emphasized the identification of causal parameters for policy analysis. This revolution has yet to fully propagate to the field of regional science. We examine the scope for application of the matching approach – part of the modern applied econometrics toolkit...... – in regional science and highlight special features of regional data that make such an application difficult. In particular, our analysis of the effect of regional subsidies on labor-productivity growth in Germany indicates that such policies are effective, but only up to a certain maximum treatment intensity...... to be interpreted with some caution. The matching approach nevertheless can be of great value for regional policy analysis and should be the subject of future research efforts in the field of empirical regional science....

  18. An empirical investigation on different methods of economic growth rate forecast and its behavior from fifteen countries across five continents

    Science.gov (United States)

    Yin, Yip Chee; Hock-Eam, Lim

    2012-09-01

    Our empirical results show that we can predict GDP growth rate more accurately in continent with fewer large economies, compared to smaller economies like Malaysia. This difficulty is very likely positively correlated with subsidy or social security policies. The stage of economic development and level of competiveness also appears to have interactive effects on this forecast stability. These results are generally independent of the forecasting procedures. Countries with high stability in their economic growth, forecasting by model selection is better than model averaging. Overall forecast weight averaging (FWA) is a better forecasting procedure in most countries. FWA also outperforms simple model averaging (SMA) and has the same forecasting ability as Bayesian model averaging (BMA) in almost all countries.

  19. Maintaining symmetry of simulated likelihood functions

    DEFF Research Database (Denmark)

    Andersen, Laura Mørch

    This paper suggests solutions to two different types of simulation errors related to Quasi-Monte Carlo integration. Likelihood functions which depend on standard deviations of mixed parameters are symmetric in nature. This paper shows that antithetic draws preserve this symmetry and thereby...... improves precision substantially. Another source of error is that models testing away mixing dimensions must replicate the relevant dimensions of the quasi-random draws in the simulation of the restricted likelihood. These simulation errors are ignored in the standard estimation procedures used today...

  20. Likelihood inference for unions of interacting discs

    DEFF Research Database (Denmark)

    Møller, Jesper; Helisova, K.

    2010-01-01

    This is probably the first paper which discusses likelihood inference for a random set using a germ-grain model, where the individual grains are unobservable, edge effects occur and other complications appear. We consider the case where the grains form a disc process modelled by a marked point...... process, where the germs are the centres and the marks are the associated radii of the discs. We propose to use a recent parametric class of interacting disc process models, where the minimal sufficient statistic depends on various geometric properties of the random set, and the density is specified......-based maximum likelihood inference and the effect of specifying different reference Poisson models....

  1. Maximum Likelihood Estimation and Inference With Examples in R, SAS and ADMB

    CERN Document Server

    Millar, Russell B

    2011-01-01

    This book takes a fresh look at the popular and well-established method of maximum likelihood for statistical estimation and inference. It begins with an intuitive introduction to the concepts and background of likelihood, and moves through to the latest developments in maximum likelihood methodology, including general latent variable models and new material for the practical implementation of integrated likelihood using the free ADMB software. Fundamental issues of statistical inference are also examined, with a presentation of some of the philosophical debates underlying the choice of statis

  2. Empirical philosophy of science

    DEFF Research Database (Denmark)

    Wagenknecht, Susann; Nersessian, Nancy J.; Andersen, Hanne

    2015-01-01

    A growing number of philosophers of science make use of qualitative empirical data, a development that may reconfigure the relations between philosophy and sociology of science and that is reminiscent of efforts to integrate history and philosophy of science. Therefore, the first part...... of this introduction to the volume Empirical Philosophy of Science outlines the history of relations between philosophy and sociology of science on the one hand, and philosophy and history of science on the other. The second part of this introduction offers an overview of the papers in the volume, each of which...... is giving its own answer to questions such as: Why does the use of qualitative empirical methods benefit philosophical accounts of science? And how should these methods be used by the philosopher?...

  3. Approximate maximum likelihood estimation for population genetic inference.

    Science.gov (United States)

    Bertl, Johanna; Ewing, Gregory; Kosiol, Carolin; Futschik, Andreas

    2017-11-27

    In many population genetic problems, parameter estimation is obstructed by an intractable likelihood function. Therefore, approximate estimation methods have been developed, and with growing computational power, sampling-based methods became popular. However, these methods such as Approximate Bayesian Computation (ABC) can be inefficient in high-dimensional problems. This led to the development of more sophisticated iterative estimation methods like particle filters. Here, we propose an alternative approach that is based on stochastic approximation. By moving along a simulated gradient or ascent direction, the algorithm produces a sequence of estimates that eventually converges to the maximum likelihood estimate, given a set of observed summary statistics. This strategy does not sample much from low-likelihood regions of the parameter space, and is fast, even when many summary statistics are involved. We put considerable efforts into providing tuning guidelines that improve the robustness and lead to good performance on problems with high-dimensional summary statistics and a low signal-to-noise ratio. We then investigate the performance of our resulting approach and study its properties in simulations. Finally, we re-estimate parameters describing the demographic history of Bornean and Sumatran orang-utans.

  4. What 'empirical turn in bioethics'?

    Science.gov (United States)

    Hurst, Samia

    2010-10-01

    Uncertainty as to how we should articulate empirical data and normative reasoning seems to underlie most difficulties regarding the 'empirical turn' in bioethics. This article examines three different ways in which we could understand 'empirical turn'. Using real facts in normative reasoning is trivial and would not represent a 'turn'. Becoming an empirical discipline through a shift to the social and neurosciences would be a turn away from normative thinking, which we should not take. Conducting empirical research to inform normative reasoning is the usual meaning given to the term 'empirical turn'. In this sense, however, the turn is incomplete. Bioethics has imported methodological tools from empirical disciplines, but too often it has not imported the standards to which researchers in these disciplines are held. Integrating empirical and normative approaches also represents true added difficulties. Addressing these issues from the standpoint of debates on the fact-value distinction can cloud very real methodological concerns by displacing the debate to a level of abstraction where they need not be apparent. Ideally, empirical research in bioethics should meet standards for empirical and normative validity similar to those used in the source disciplines for these methods, and articulate these aspects clearly and appropriately. More modestly, criteria to ensure that none of these standards are completely left aside would improve the quality of empirical bioethics research and partly clear the air of critiques addressing its theoretical justification, when its rigour in the particularly difficult context of interdisciplinarity is what should be at stake.

  5. Gaussian copula as a likelihood function for environmental models

    Science.gov (United States)

    Wani, O.; Espadas, G.; Cecinati, F.; Rieckermann, J.

    2017-12-01

    Parameter estimation of environmental models always comes with uncertainty. To formally quantify this parametric uncertainty, a likelihood function needs to be formulated, which is defined as the probability of observations given fixed values of the parameter set. A likelihood function allows us to infer parameter values from observations using Bayes' theorem. The challenge is to formulate a likelihood function that reliably describes the error generating processes which lead to the observed monitoring data, such as rainfall and runoff. If the likelihood function is not representative of the error statistics, the parameter inference will give biased parameter values. Several uncertainty estimation methods that are currently being used employ Gaussian processes as a likelihood function, because of their favourable analytical properties. Box-Cox transformation is suggested to deal with non-symmetric and heteroscedastic errors e.g. for flow data which are typically more uncertain in high flows than in periods with low flows. Problem with transformations is that the results are conditional on hyper-parameters, for which it is difficult to formulate the analyst's belief a priori. In an attempt to address this problem, in this research work we suggest learning the nature of the error distribution from the errors made by the model in the "past" forecasts. We use a Gaussian copula to generate semiparametric error distributions . 1) We show that this copula can be then used as a likelihood function to infer parameters, breaking away from the practice of using multivariate normal distributions. Based on the results from a didactical example of predicting rainfall runoff, 2) we demonstrate that the copula captures the predictive uncertainty of the model. 3) Finally, we find that the properties of autocorrelation and heteroscedasticity of errors are captured well by the copula, eliminating the need to use transforms. In summary, our findings suggest that copulas are an

  6. Secondary Analysis under Cohort Sampling Designs Using Conditional Likelihood

    Directory of Open Access Journals (Sweden)

    Olli Saarela

    2012-01-01

    Full Text Available Under cohort sampling designs, additional covariate data are collected on cases of a specific type and a randomly selected subset of noncases, primarily for the purpose of studying associations with a time-to-event response of interest. With such data available, an interest may arise to reuse them for studying associations between the additional covariate data and a secondary non-time-to-event response variable, usually collected for the whole study cohort at the outset of the study. Following earlier literature, we refer to such a situation as secondary analysis. We outline a general conditional likelihood approach for secondary analysis under cohort sampling designs and discuss the specific situations of case-cohort and nested case-control designs. We also review alternative methods based on full likelihood and inverse probability weighting. We compare the alternative methods for secondary analysis in two simulated settings and apply them in a real-data example.

  7. Maximum Likelihood Compton Polarimetry with the Compton Spectrometer and Imager

    Energy Technology Data Exchange (ETDEWEB)

    Lowell, A. W.; Boggs, S. E; Chiu, C. L.; Kierans, C. A.; Sleator, C.; Tomsick, J. A.; Zoglauer, A. C. [Space Sciences Laboratory, University of California, Berkeley (United States); Chang, H.-K.; Tseng, C.-H.; Yang, C.-Y. [Institute of Astronomy, National Tsing Hua University, Taiwan (China); Jean, P.; Ballmoos, P. von [IRAP Toulouse (France); Lin, C.-H. [Institute of Physics, Academia Sinica, Taiwan (China); Amman, M. [Lawrence Berkeley National Laboratory (United States)

    2017-10-20

    Astrophysical polarization measurements in the soft gamma-ray band are becoming more feasible as detectors with high position and energy resolution are deployed. Previous work has shown that the minimum detectable polarization (MDP) of an ideal Compton polarimeter can be improved by ∼21% when an unbinned, maximum likelihood method (MLM) is used instead of the standard approach of fitting a sinusoid to a histogram of azimuthal scattering angles. Here we outline a procedure for implementing this maximum likelihood approach for real, nonideal polarimeters. As an example, we use the recent observation of GRB 160530A with the Compton Spectrometer and Imager. We find that the MDP for this observation is reduced by 20% when the MLM is used instead of the standard method.

  8. Efficient Bit-to-Symbol Likelihood Mappings

    Science.gov (United States)

    Moision, Bruce E.; Nakashima, Michael A.

    2010-01-01

    This innovation is an efficient algorithm designed to perform bit-to-symbol and symbol-to-bit likelihood mappings that represent a significant portion of the complexity of an error-correction code decoder for high-order constellations. Recent implementation of the algorithm in hardware has yielded an 8- percent reduction in overall area relative to the prior design.

  9. Likelihood-ratio-based biometric verification

    NARCIS (Netherlands)

    Bazen, A.M.; Veldhuis, Raymond N.J.

    2002-01-01

    This paper presents results on optimal similarity measures for biometric verification based on fixed-length feature vectors. First, we show that the verification of a single user is equivalent to the detection problem, which implies that for single-user verification the likelihood ratio is optimal.

  10. Likelihood Ratio-Based Biometric Verification

    NARCIS (Netherlands)

    Bazen, A.M.; Veldhuis, Raymond N.J.

    The paper presents results on optimal similarity measures for biometric verification based on fixed-length feature vectors. First, we show that the verification of a single user is equivalent to the detection problem, which implies that, for single-user verification, the likelihood ratio is optimal.

  11. Multiple Improvements of Multiple Imputation Likelihood Ratio Tests

    OpenAIRE

    Chan, Kin Wai; Meng, Xiao-Li

    2017-01-01

    Multiple imputation (MI) inference handles missing data by first properly imputing the missing values $m$ times, and then combining the $m$ analysis results from applying a complete-data procedure to each of the completed datasets. However, the existing method for combining likelihood ratio tests has multiple defects: (i) the combined test statistic can be negative in practice when the reference null distribution is a standard $F$ distribution; (ii) it is not invariant to re-parametrization; ...

  12. Bias correction in the hierarchical likelihood approach to the analysis of multivariate survival data.

    Science.gov (United States)

    Jeon, Jihyoun; Hsu, Li; Gorfine, Malka

    2012-07-01

    Frailty models are useful for measuring unobserved heterogeneity in risk of failures across clusters, providing cluster-specific risk prediction. In a frailty model, the latent frailties shared by members within a cluster are assumed to act multiplicatively on the hazard function. In order to obtain parameter and frailty variate estimates, we consider the hierarchical likelihood (H-likelihood) approach (Ha, Lee and Song, 2001. Hierarchical-likelihood approach for frailty models. Biometrika 88, 233-243) in which the latent frailties are treated as "parameters" and estimated jointly with other parameters of interest. We find that the H-likelihood estimators perform well when the censoring rate is low, however, they are substantially biased when the censoring rate is moderate to high. In this paper, we propose a simple and easy-to-implement bias correction method for the H-likelihood estimators under a shared frailty model. We also extend the method to a multivariate frailty model, which incorporates complex dependence structure within clusters. We conduct an extensive simulation study and show that the proposed approach performs very well for censoring rates as high as 80%. We also illustrate the method with a breast cancer data set. Since the H-likelihood is the same as the penalized likelihood function, the proposed bias correction method is also applicable to the penalized likelihood estimators.

  13. A biclustering algorithm for binary matrices based on penalized Bernoulli likelihood

    KAUST Repository

    Lee, Seokho; Huang, Jianhua Z.

    2013-01-01

    We propose a new biclustering method for binary data matrices using the maximum penalized Bernoulli likelihood estimation. Our method applies a multi-layer model defined on the logits of the success probabilities, where each layer represents a

  14. Empirical research through design

    NARCIS (Netherlands)

    Keyson, D.V.; Bruns, M.

    2009-01-01

    This paper describes the empirical research through design method (ERDM), which differs from current approaches to research through design by enforcing the need for the designer, after a series of pilot prototype based studies, to a-priori develop a number of testable interaction design hypothesis

  15. Empirical Music Aesthetics

    DEFF Research Database (Denmark)

    Grund, Cynthia M.

    The toolbox for empirically exploring the ways that artistic endeavors convey and activate meaning on the part of performers and audiences continues to expand. Current work employing methods at the intersection of performance studies, philosophy, motion capture and neuroscience to better understand...... musical performance and reception is inspired by traditional approaches within aesthetics, but it also challenges some of the presuppositions inherent in them. As an example of such work I present a research project in empirical music aesthetics begun last year and of which I am a team member....

  16. ARE METHODS USED TO INTEGRATE STANDARDIZED MANAGEMENT SYSTEMS A CONDITIONING FACTOR OF THE LEVEL OF INTEGRATION? AN EMPIRICAL STUDY

    Directory of Open Access Journals (Sweden)

    Merce Bernardo

    2011-09-01

    Full Text Available Organizations are increasingly implementing multiple Management System Standards (M SSs and considering managing the related Management Systems (MSs as a single system.The aim of this paper is to analyze if methods us ed to integrate standardized MSs condition the level of integration of those MSs. A descriptive methodology has been applied to 343 Spanish organizations registered to, at least, ISO 9001 and ISO 14001. Seven groups of these organizations using different combinations of methods have been analyzed Results show that these organizations have a high level of integration of their MSs. The most common method used, was the process map. Organizations using a combination of different methods achieve higher levels of integration than those using a single method. However, no evidence has been found to confirm the relationship between the method used and the integration level achieved.

  17. Comparison of direct and indirect methods of estimating health state utilities for resource allocation: review and empirical analysis.

    Science.gov (United States)

    Arnold, David; Girling, Alan; Stevens, Andrew; Lilford, Richard

    2009-07-22

    Utilities (values representing preferences) for healthcare priority setting are typically obtained indirectly by asking patients to fill in a quality of life questionnaire and then converting the results to a utility using population values. We compared such utilities with those obtained directly from patients or the public. Review of studies providing both a direct and indirect utility estimate. Papers reporting comparisons of utilities obtained directly (standard gamble or time tradeoff) or indirectly (European quality of life 5D [EQ-5D], short form 6D [SF-6D], or health utilities index [HUI]) from the same patient. PubMed and Tufts database of utilities. Sign test for paired comparisons between direct and indirect utilities; least squares regression to describe average relations between the different methods. Mean utility scores (or median if means unavailable) for each method, and differences in mean (median) scores between direct and indirect methods. We found 32 studies yielding 83 instances where direct and indirect methods could be compared for health states experienced by adults. The direct methods used were standard gamble in 57 cases and time trade off in 60(34 used both); the indirect methods were EQ-5D (67 cases), SF-6D (13), HUI-2 (5), and HUI-3 (37). Mean utility values were 0.81 (standard gamble) and 0.77 (time tradeoff) for the direct methods; for the indirect methods: 0.59(EQ-5D), 0.63 (SF-6D), 0.75 (HUI-2) and 0.68 (HUI-3). Direct methods of estimating utilities tend to result in higher health ratings than the more widely used indirect methods, and the difference can be substantial.Use of indirect methods could have important implications for decisions about resource allocation: for example, non-lifesaving treatments are relatively more favoured in comparison with lifesaving interventions than when using direct methods.

  18. A Parameter Identification Method for Helicopter Noise Source Identification and Physics-Based Semi-Empirical Modeling

    Science.gov (United States)

    Greenwood, Eric, II; Schmitz, Fredric H.

    2010-01-01

    A new physics-based parameter identification method for rotor harmonic noise sources is developed using an acoustic inverse simulation technique. This new method allows for the identification of individual rotor harmonic noise sources and allows them to be characterized in terms of their individual non-dimensional governing parameters. This new method is applied to both wind tunnel measurements and ground noise measurements of two-bladed rotors. The method is shown to match the parametric trends of main rotor Blade-Vortex Interaction (BVI) noise, allowing accurate estimates of BVI noise to be made for operating conditions based on a small number of measurements taken at different operating conditions.

  19. Modeling of the phase equilibria of polystyrene in methylcyclohexane with semi-empirical quantum mechanical methods I

    DEFF Research Database (Denmark)

    Wilczura-Wachnik, H.; Jonsdottir, Svava Osk

    2003-01-01

    for the repeating unit of the polymer, the intermolecular interaction energies between the solvent molecule and the polymer were simulated. The semiempirical quantum mechanical method AM1, and a method for sampling relevant internal orientations for a pair of molecules developed previously were used. Interaction...

  20. Social Phenomenological Analysis as a Research Method in Art Education: Developing an Empirical Model for Understanding Gallery Talks

    Science.gov (United States)

    Hofmann, Fabian

    2016-01-01

    Social phenomenological analysis is presented as a research method to study gallery talks or guided tours in art museums. The research method is based on the philosophical considerations of Edmund Husserl and sociological/social science concepts put forward by Max Weber and Alfred Schuetz. Its starting point is the everyday lifeworld; the…

  1. Statistical modelling of survival data with random effects h-likelihood approach

    CERN Document Server

    Ha, Il Do; Lee, Youngjo

    2017-01-01

    This book provides a groundbreaking introduction to the likelihood inference for correlated survival data via the hierarchical (or h-) likelihood in order to obtain the (marginal) likelihood and to address the computational difficulties in inferences and extensions. The approach presented in the book overcomes shortcomings in the traditional likelihood-based methods for clustered survival data such as intractable integration. The text includes technical materials such as derivations and proofs in each chapter, as well as recently developed software programs in R (“frailtyHL”), while the real-world data examples together with an R package, “frailtyHL” in CRAN, provide readers with useful hands-on tools. Reviewing new developments since the introduction of the h-likelihood to survival analysis (methods for interval estimation of the individual frailty and for variable selection of the fixed effects in the general class of frailty models) and guiding future directions, the book is of interest to research...

  2. An adaptive and tacholess order analysis method based on enhanced empirical wavelet transform for fault detection of bearings with varying speeds

    Science.gov (United States)

    Hu, Yue; Tu, Xiaotong; Li, Fucai; Li, Hongguang; Meng, Guang

    2017-11-01

    The order tracking method based on time-frequency representation is regarded as an effective tool for fault detection of bearings with varying rotating speeds. In the traditional order tracking methods, a tachometer is required to obtain the instantaneous speed which is hardly satisfied in practice due to the technical and economical limitations. Some tacholess order tracking methods have been developed in recent years. In these methods, the instantaneous frequency ridge extraction is one of the most important parts. However, the current ridge extraction methods are sensitive to noise and may easily get trapped in a local optimum. Due to the presence of noise and other unrelated components of the signal, bearing fault features are difficult to be detected from the envelope spectrum or envelope order spectrum. To overcome the abovementioned drawbacks, an adaptive and tacholess order analysis method is proposed in this paper. In this method, a novel ridge extraction algorithm based on dynamic path optimization is adopted to estimate the instantaneous frequency. This algorithm can overcome the shortcomings of the current ridge extraction algorithms. Meanwhile, the enhanced empirical wavelet transform (EEWT) algorithm is applied to extract the bearing fault features. Both simulated and experimental results demonstrate that the proposed method is robust to noise and effective for bearing fault detection under variable speed conditions.

  3. THESEUS: maximum likelihood superpositioning and analysis of macromolecular structures.

    Science.gov (United States)

    Theobald, Douglas L; Wuttke, Deborah S

    2006-09-01

    THESEUS is a command line program for performing maximum likelihood (ML) superpositions and analysis of macromolecular structures. While conventional superpositioning methods use ordinary least-squares (LS) as the optimization criterion, ML superpositions provide substantially improved accuracy by down-weighting variable structural regions and by correcting for correlations among atoms. ML superpositioning is robust and insensitive to the specific atoms included in the analysis, and thus it does not require subjective pruning of selected variable atomic coordinates. Output includes both likelihood-based and frequentist statistics for accurate evaluation of the adequacy of a superposition and for reliable analysis of structural similarities and differences. THESEUS performs principal components analysis for analyzing the complex correlations found among atoms within a structural ensemble. ANSI C source code and selected binaries for various computing platforms are available under the GNU open source license from http://monkshood.colorado.edu/theseus/ or http://www.theseus3d.org.

  4. Maximum likelihood as a common computational framework in tomotherapy

    International Nuclear Information System (INIS)

    Olivera, G.H.; Shepard, D.M.; Reckwerdt, P.J.; Ruchala, K.; Zachman, J.; Fitchard, E.E.; Mackie, T.R.

    1998-01-01

    Tomotherapy is a dose delivery technique using helical or axial intensity modulated beams. One of the strengths of the tomotherapy concept is that it can incorporate a number of processes into a single piece of equipment. These processes include treatment optimization planning, dose reconstruction and kilovoltage/megavoltage image reconstruction. A common computational technique that could be used for all of these processes would be very appealing. The maximum likelihood estimator, originally developed for emission tomography, can serve as a useful tool in imaging and radiotherapy. We believe that this approach can play an important role in the processes of optimization planning, dose reconstruction and kilovoltage and/or megavoltage image reconstruction. These processes involve computations that require comparable physical methods. They are also based on equivalent assumptions, and they have similar mathematical solutions. As a result, the maximum likelihood approach is able to provide a common framework for all three of these computational problems. We will demonstrate how maximum likelihood methods can be applied to optimization planning, dose reconstruction and megavoltage image reconstruction in tomotherapy. Results for planning optimization, dose reconstruction and megavoltage image reconstruction will be presented. Strengths and weaknesses of the methodology are analysed. Future directions for this work are also suggested. (author)

  5. Safe semi-supervised learning based on weighted likelihood.

    Science.gov (United States)

    Kawakita, Masanori; Takeuchi, Jun'ichi

    2014-05-01

    We are interested in developing a safe semi-supervised learning that works in any situation. Semi-supervised learning postulates that n(') unlabeled data are available in addition to n labeled data. However, almost all of the previous semi-supervised methods require additional assumptions (not only unlabeled data) to make improvements on supervised learning. If such assumptions are not met, then the methods possibly perform worse than supervised learning. Sokolovska, Cappé, and Yvon (2008) proposed a semi-supervised method based on a weighted likelihood approach. They proved that this method asymptotically never performs worse than supervised learning (i.e., it is safe) without any assumption. Their method is attractive because it is easy to implement and is potentially general. Moreover, it is deeply related to a certain statistical paradox. However, the method of Sokolovska et al. (2008) assumes a very limited situation, i.e., classification, discrete covariates, n(')→∞ and a maximum likelihood estimator. In this paper, we extend their method by modifying the weight. We prove that our proposal is safe in a significantly wide range of situations as long as n≤n('). Further, we give a geometrical interpretation of the proof of safety through the relationship with the above-mentioned statistical paradox. Finally, we show that the above proposal is asymptotically safe even when n(')methods. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Review of Elaboration Likelihood Model of persuasion

    OpenAIRE

    藤原, 武弘; 神山, 貴弥

    1989-01-01

    This article mainly introduces Elaboration Likelihood Model (ELM), proposed by Petty & Cacioppo, that is, a general attitude change theory. ELM posturates two routes to persuasion; central and peripheral route. Attitude change by central route is viewed as resulting from a diligent consideration of the issue-relevant informations presented. On the other hand, attitude change by peripheral route is viewed as resulting from peripheral cues in the persuasion context. Secondly we compare these tw...

  7. TYCHO Brahe's Empiric Methods, His Instruments, His Sudden Escape from Denmark and a New Theory About His Death

    Science.gov (United States)

    Thykier, C.

    1992-07-01

    Tycho Brahe (1546-1601) was born a noble being, a son of Otto Brahe, and a member of the Royal Danish Council. Very early he developed a great interest in science and especially astronomy. In 1575 Tycho visited the learned Prince Wilhelm II in Kassel. Here he was inspired by the famous instrument maker Burgi to build new precise astronomical instruments, and on the recommendation of Wilhelm King Frederic II of Denmark was given the island Hven (which at that time belonged to Denmark) as an entailed estate. At 26 years old, Tycho became famous for his work DE NOVA STELLA on the supernova that brightened up in 1572, and since this phenomenon kept its position fixed among the stars, it immediately invalidated the Aristotelian dogma of the invariability of the fixed-star world. In 1577 Tycho observed the great comet and followed its celestial motion by means of a quadrant and a sextant. He then came to the conclusion that the comet orbit moved far out among the planets, in contradiction to the Aristotelian dogma of the crystal spheres for the planets. However, Tycho's great contribution to science was his construction of the observatory buildings Uraniborg and Stjerneborg ("Star Castle") with their equipment of ancient sighting instruments and his use of these instruments without telescopes for observations of the planets over a period of almost 20 years. Tycho's work is collected in 15 volumes, OPERA OMNIA by J. L. E. Dreyer. Tycho also mapped Hven correctly and he triangulated both sides of Oresund relative to Hven. When Tycho moved to Prague in 1599 he lived there for a couple of years and met Kepler who became his assistant and collaborator. Kepler was the one who analyzed Tycho's material and derived the Keplerian laws for the motions of the planets. On this basis Newton derived the law of gravitation. Tycho Brahe has been considered the father of modern empirical science. In 1596 he was accused of negligence of his administrative duties and several other things

  8. Superfast maximum-likelihood reconstruction for quantum tomography

    Science.gov (United States)

    Shang, Jiangwei; Zhang, Zhengyun; Ng, Hui Khoon

    2017-06-01

    Conventional methods for computing maximum-likelihood estimators (MLE) often converge slowly in practical situations, leading to a search for simplifying methods that rely on additional assumptions for their validity. In this work, we provide a fast and reliable algorithm for maximum-likelihood reconstruction that avoids this slow convergence. Our method utilizes the state-of-the-art convex optimization scheme, an accelerated projected-gradient method, that allows one to accommodate the quantum nature of the problem in a different way than in the standard methods. We demonstrate the power of our approach by comparing its performance with other algorithms for n -qubit state tomography. In particular, an eight-qubit situation that purportedly took weeks of computation time in 2005 can now be completed in under a minute for a single set of data, with far higher accuracy than previously possible. This refutes the common claim that MLE reconstruction is slow and reduces the need for alternative methods that often come with difficult-to-verify assumptions. In fact, recent methods assuming Gaussian statistics or relying on compressed sensing ideas are demonstrably inapplicable for the situation under consideration here. Our algorithm can be applied to general optimization problems over the quantum state space; the philosophy of projected gradients can further be utilized for optimization contexts with general constraints.

  9. Maximum likelihood estimation and EM algorithm of Copas-like selection model for publication bias correction.

    Science.gov (United States)

    Ning, Jing; Chen, Yong; Piao, Jin

    2017-07-01

    Publication bias occurs when the published research results are systematically unrepresentative of the population of studies that have been conducted, and is a potential threat to meaningful meta-analysis. The Copas selection model provides a flexible framework for correcting estimates and offers considerable insight into the publication bias. However, maximizing the observed likelihood under the Copas selection model is challenging because the observed data contain very little information on the latent variable. In this article, we study a Copas-like selection model and propose an expectation-maximization (EM) algorithm for estimation based on the full likelihood. Empirical simulation studies show that the EM algorithm and its associated inferential procedure performs well and avoids the non-convergence problem when maximizing the observed likelihood. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  10. Numerical simulation of shear and the Poynting effects by the finite element method: An application of the generalised empirical inequalities in non-linear elasticity

    KAUST Repository

    Angela Mihai, L.

    2013-03-01

    Finite element simulations of different shear deformations in non-linear elasticity are presented. We pay particular attention to the Poynting effects in hyperelastic materials, complementing recent theoretical findings by showing these effects manifested by specific models. As the finite element method computes uniform deformations exactly, for simple shear deformation and pure shear stress, the Poynting effect is represented exactly, while for the generalised shear and simple torsion, where the deformation is non-uniform, the solution is approximated efficiently and guaranteed computational bounds on the magnitude of the Poynting effect are obtained. The numerical results further indicate that, for a given elastic material, the same sign effect occurs under different shearing mechanisms, showing the genericity of the Poynting effect under a variety of shearing loads. In order to derive numerical models that exhibit either the positive or the negative Poynting effect, the so-called generalised empirical inequalities, which are less restrictive than the usual empirical inequalities involving material parameters, are assumed. © 2012 Elsevier Ltd.

  11. Theoretical Proof and Empirical Confirmation of a Continuous Labeling Method Using Naturally 13C-Depleted Carbon Dioxide

    Institute of Scientific and Technical Information of China (English)

    Weixin Cheng; Feike A. Dijkstra

    2007-01-01

    Continuous isotope labeling and tracing is often needed to study the transformation, movement, and allocation of carbon in plant-soil systems. However, existing labeling methods have numerous limitations. The present study introduces a new continuous labeling method using naturally 13C-depleted CO2. We theoretically proved that a stable level of 13C-CO2 abundance In a labeling chamber can be maintained by controlling the rate of CO2-free air injection and the rate of ambient airflow with coupling of automatic control of CO2 concentration using a CO2 analyzer. The theoretical results were tested and confirmed in a 54 day experiment in a plant growth chamber. This new continuous labeling method avoids the use of radioactive 14C or expensive 13C-enriched CO2 required by existing methods and therefore eliminates issues of radiation safety or unaffordable isotope cost, as well as creating new opportunities for short- or long-term labeling experiments under a controlled environment.

  12. Modeling of the phase equilibria of polystyrene in methylcyclohexane with semi-empirical quantum mechanical methods I.

    Science.gov (United States)

    Wilczura-Wachnik, Hanna; Jónsdóttir, Svava Osk

    2003-04-01

    A method for calculating interaction parameters traditionally used in phase-equilibrium computations in low-molecular systems has been extended for the prediction of solvent activities of aromatic polymer solutions (polystyrene+methylcyclohexane). Using ethylbenzene as a model compound for the repeating unit of the polymer, the intermolecular interaction energies between the solvent molecule and the polymer were simulated. The semiempirical quantum chemical method AM1, and a method for sampling relevant internal orientations for a pair of molecules developed previously were used. Interaction energies are determined for three molecular pairs, the solvent and the model molecule, two solvent molecules and two model molecules, and used to calculated UNIQUAC interaction parameters, a(ij) and a(ji). Using these parameters, the solvent activities of the polystyrene 90,000 amu+methylcyclohexane system, and the total vapor pressures of the methylcyclohexane+ethylbenzene system were calculated. The latter system was compared to experimental data, giving qualitative agreement. Figure Solvent activities for the methylcylcohexane(1)+polystyrene(2) system at 316 K. Parameters aij (blue line) obtained with the AM1 method; parameters aij (pink line) from VLE data for the ethylbenzene+methylcyclohexane system. The abscissa is the polymer weight fraction defined as y2(x1)=(1mx1)M2/[x1M1+(1mx1)M2], where x1 is the solvent mole fraction and Mi are the molecular weights of the components.

  13. Study protocol: the empirical investigation of methods to correct for measurement error in biobanks with dietary assessment

    Directory of Open Access Journals (Sweden)

    Masson Lindsey F

    2011-10-01

    Full Text Available Abstract Background The Public Population Project in Genomics (P3G is an organisation that aims to promote collaboration between researchers in the field of population-based genomics. The main objectives of P3G are to encourage collaboration between researchers and biobankers, optimize study design, promote the harmonization of information use in biobanks, and facilitate transfer of knowledge between interested parties. The importance of calibration and harmonisation of methods for environmental exposure assessment to allow pooling of data across studies in the evaluation of gene-environment interactions has been recognised by P3G, which has set up a methodological group on calibration with the aim of; 1 reviewing the published methodological literature on measurement error correction methods with assumptions and methods of implementation; 2 reviewing the evidence available from published nutritional epidemiological studies that have used a calibration approach; 3 disseminating information in the form of a comparison chart on approaches to perform calibration studies and how to obtain correction factors in order to support research groups collaborating within the P3G network that are unfamiliar with the methods employed; 4 with application to the field of nutritional epidemiology, including gene-diet interactions, ultimately developing a inventory of the typical correction factors for various nutrients. Methods/Design Systematic review of (a the methodological literature on methods to correct for measurement error in epidemiological studies; and (b studies that have been designed primarily to investigate the association between diet and disease and have also corrected for measurement error in dietary intake. Discussion The conduct of a systematic review of the methodological literature on calibration will facilitate the evaluation of methods to correct for measurement error and the design of calibration studies for the prospective pooling of

  14. Zero-inflated Poisson model based likelihood ratio test for drug safety signal detection.

    Science.gov (United States)

    Huang, Lan; Zheng, Dan; Zalkikar, Jyoti; Tiwari, Ram

    2017-02-01

    In recent decades, numerous methods have been developed for data mining of large drug safety databases, such as Food and Drug Administration's (FDA's) Adverse Event Reporting System, where data matrices are formed by drugs such as columns and adverse events as rows. Often, a large number of cells in these data matrices have zero cell counts and some of them are "true zeros" indicating that the drug-adverse event pairs cannot occur, and these zero counts are distinguished from the other zero counts that are modeled zero counts and simply indicate that the drug-adverse event pairs have not occurred yet or have not been reported yet. In this paper, a zero-inflated Poisson model based likelihood ratio test method is proposed to identify drug-adverse event pairs that have disproportionately high reporting rates, which are also called signals. The maximum likelihood estimates of the model parameters of zero-inflated Poisson model based likelihood ratio test are obtained using the expectation and maximization algorithm. The zero-inflated Poisson model based likelihood ratio test is also modified to handle the stratified analyses for binary and categorical covariates (e.g. gender and age) in the data. The proposed zero-inflated Poisson model based likelihood ratio test method is shown to asymptotically control the type I error and false discovery rate, and its finite sample performance for signal detection is evaluated through a simulation study. The simulation results show that the zero-inflated Poisson model based likelihood ratio test method performs similar to Poisson model based likelihood ratio test method when the estimated percentage of true zeros in the database is small. Both the zero-inflated Poisson model based likelihood ratio test and likelihood ratio test methods are applied to six selected drugs, from the 2006 to 2011 Adverse Event Reporting System database, with varying percentages of observed zero-count cells.

  15. Elaboration likelihood and the perceived value of labels

    DEFF Research Database (Denmark)

    Poulsen, Carsten Stig; Juhl, Hans Jørn

    2001-01-01

    In this paper the increasingly popular method of choice based on conjoint analysis is used and data are collected by pairwise comparisons. A latent class model is formulated allowing that the resulting data can be analyzed with segmentation in mind. The empirical study is on food labeling...

  16. Selecting Measures to Evaluate Complex Sociotechnical Systems: An Empirical Comparison of a Task-based and Constraint-based Method

    Science.gov (United States)

    2013-07-01

    personnel selection, work methods, labour standards and an individual’s motivation to perform work. His work became less relevant as tasks became more...people were employed to do and was able to show that non-physical factors such as job satisfaction and the psychological states of workers contributed...all threats, flight conditions, consequences of their actions (for example, damaging the aircraft during a “hard” landing) and expressed satisfaction

  17. Symptom Clusters in Advanced Cancer Patients: An Empirical Comparison of Statistical Methods and the Impact on Quality of Life.

    Science.gov (United States)

    Dong, Skye T; Costa, Daniel S J; Butow, Phyllis N; Lovell, Melanie R; Agar, Meera; Velikova, Galina; Teckle, Paulos; Tong, Allison; Tebbutt, Niall C; Clarke, Stephen J; van der Hoek, Kim; King, Madeleine T; Fayers, Peter M

    2016-01-01

    Symptom clusters in advanced cancer can influence patient outcomes. There is large heterogeneity in the methods used to identify symptom clusters. To investigate the consistency of symptom cluster composition in advanced cancer patients using different statistical methodologies for all patients across five primary cancer sites, and to examine which clusters predict functional status, a global assessment of health and global quality of life. Principal component analysis and exploratory factor analysis (with different rotation and factor selection methods) and hierarchical cluster analysis (with different linkage and similarity measures) were used on a data set of 1562 advanced cancer patients who completed the European Organization for the Research and Treatment of Cancer Quality of Life Questionnaire-Core 30. Four clusters consistently formed for many of the methods and cancer sites: tense-worry-irritable-depressed (emotional cluster), fatigue-pain, nausea-vomiting, and concentration-memory (cognitive cluster). The emotional cluster was a stronger predictor of overall quality of life than the other clusters. Fatigue-pain was a stronger predictor of overall health than the other clusters. The cognitive cluster and fatigue-pain predicted physical functioning, role functioning, and social functioning. The four identified symptom clusters were consistent across statistical methods and cancer types, although there were some noteworthy differences. Statistical derivation of symptom clusters is in need of greater methodological guidance. A psychosocial pathway in the management of symptom clusters may improve quality of life. Biological mechanisms underpinning symptom clusters need to be delineated by future research. A framework for evidence-based screening, assessment, treatment, and follow-up of symptom clusters in advanced cancer is essential. Copyright © 2016 American Academy of Hospice and Palliative Medicine. Published by Elsevier Inc. All rights reserved.

  18. Likelihood functions for the analysis of single-molecule binned photon sequences

    Energy Technology Data Exchange (ETDEWEB)

    Gopich, Irina V., E-mail: irinag@niddk.nih.gov [Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892 (United States)

    2012-03-02

    Graphical abstract: Folding of a protein with attached fluorescent dyes, the underlying conformational trajectory of interest, and the observed binned photon trajectory. Highlights: Black-Right-Pointing-Pointer A sequence of photon counts can be analyzed using a likelihood function. Black-Right-Pointing-Pointer The exact likelihood function for a two-state kinetic model is provided. Black-Right-Pointing-Pointer Several approximations are considered for an arbitrary kinetic model. Black-Right-Pointing-Pointer Improved likelihood functions are obtained to treat sequences of FRET efficiencies. - Abstract: We consider the analysis of a class of experiments in which the number of photons in consecutive time intervals is recorded. Sequence of photon counts or, alternatively, of FRET efficiencies can be studied using likelihood-based methods. For a kinetic model of the conformational dynamics and state-dependent Poisson photon statistics, the formalism to calculate the exact likelihood that this model describes such sequences of photons or FRET efficiencies is developed. Explicit analytic expressions for the likelihood function for a two-state kinetic model are provided. The important special case when conformational dynamics are so slow that at most a single transition occurs in a time bin is considered. By making a series of approximations, we eventually recover the likelihood function used in hidden Markov models. In this way, not only is insight gained into the range of validity of this procedure, but also an improved likelihood function can be obtained.

  19. Empirical Phenomenology: A Qualitative Research Approach (The ...

    African Journals Online (AJOL)

    Empirical Phenomenology: A Qualitative Research Approach (The Cologne Seminars) ... and practical application of empirical phenomenology in social research. ... and considers its implications for qualitative methods such as interviewing ...

  20. Site classification for National Strong Motion Observation Network System (NSMONS) stations in China using an empirical H/V spectral ratio method

    Science.gov (United States)

    Ji, Kun; Ren, Yefei; Wen, Ruizhi

    2017-10-01

    Reliable site classification of the stations of the China National Strong Motion Observation Network System (NSMONS) has not yet been assigned because of lacking borehole data. This study used an empirical horizontal-to-vertical (H/V) spectral ratio (hereafter, HVSR) site classification method to overcome this problem. First, according to their borehole data, stations selected from KiK-net in Japan were individually assigned a site class (CL-I, CL-II, or CL-III), which is defined in the Chinese seismic code. Then, the mean HVSR curve for each site class was computed using strong motion recordings captured during the period 1996-2012. These curves were compared with those proposed by Zhao et al. (2006a) for four types of site classes (SC-I, SC-II, SC-III, and SC-IV) defined in the Japanese seismic code (JRA, 1980). It was found that an approximate range of the predominant period Tg could be identified by the predominant peak of the HVSR curve for the CL-I and SC-I sites, CL-II and SC-II sites, and CL-III and SC-III + SC-IV sites. Second, an empirical site classification method was proposed based on comprehensive consideration of peak period, amplitude, and shape of the HVSR curve. The selected stations from KiK-net were classified using the proposed method. The results showed that the success rates of the proposed method in identifying CL-I, CL-II, and CL-III sites were 63%, 64%, and 58% respectively. Finally, the HVSRs of 178 NSMONS stations were computed based on recordings from 2007 to 2015 and the sites classified using the proposed method. The mean HVSR curves were re-calculated for three site classes and compared with those from KiK-net data. It was found that both the peak period and the amplitude were similar for the mean HVSR curves derived from NSMONS classification results and KiK-net borehole data, implying the effectiveness of the proposed method in identifying different site classes. The classification results have good agreement with site classes

  1. The combined use of Green-Ampt model and Curve Number method as an empirical tool for loss estimation

    Science.gov (United States)

    Petroselli, A.; Grimaldi, S.; Romano, N.

    2012-12-01

    The Soil Conservation Service - Curve Number (SCS-CN) method is a popular rainfall-runoff model widely used to estimate losses and direct runoff from a given rainfall event, but its use is not appropriate at sub-daily time resolution. To overcome this drawback, a mixed procedure, referred to as CN4GA (Curve Number for Green-Ampt), was recently developed including the Green-Ampt (GA) infiltration model and aiming to distribute in time the information provided by the SCS-CN method. The main concept of the proposed mixed procedure is to use the initial abstraction and the total volume given by the SCS-CN to calibrate the Green-Ampt soil hydraulic conductivity parameter. The procedure is here applied on a real case study and a sensitivity analysis concerning the remaining parameters is presented; results show that CN4GA approach is an ideal candidate for the rainfall excess analysis at sub-daily time resolution, in particular for ungauged basin lacking of discharge observations.

  2. Pharmacological Classification and Activity Evaluation of Furan and Thiophene Amide Derivatives Applying Semi-Empirical ab initio Molecular Modeling Methods

    Directory of Open Access Journals (Sweden)

    Leszek Bober

    2012-05-01

    Full Text Available Pharmacological and physicochemical classification of the furan and thiophene amide derivatives by multiple regression analysis and partial least square (PLS based on semi-empirical ab initio molecular modeling studies and high-performance liquid chromatography (HPLC retention data is proposed. Structural parameters obtained from the PCM (Polarizable Continuum Model method and the literature values of biological activity (antiproliferative for the A431 cells expressed as LD50 of the examined furan and thiophene derivatives was used to search for relationships. It was tested how variable molecular modeling conditions considered together, with or without HPLC retention data, allow evaluation of the structural recognition of furan and thiophene derivatives with respect to their pharmacological properties.

  3. The "invention" of the working class as a discursive practice and the genesis of the empiric method of social sciences in France (1830-48

    Directory of Open Access Journals (Sweden)

    Federico Tomasello

    2016-12-01

    Full Text Available The essay explores some of the processes through which the ‘working class’ emerged both as a collective subjectivity and as a field of social science inquiry and public policies in 19th century France. Starting from the 1831 Canuts revolt, widely recognized as the stepping stone of the European workers’ movement, the first part retraces the process of the ‘making’ of a social and political subjectivity by stressing the relevance of its linguistic and discursive dimension. The second part examines the emergence of the empiric method of the modern social sciences through new strategies of inquiry on urban misery, which progressively focuses on the ‘working class’ and on labour conditions as a field of knowledge, rights, and governmental practices.

  4. Dimension-Independent Likelihood-Informed MCMC

    KAUST Repository

    Cui, Tiangang; Law, Kody; Marzouk, Youssef

    2015-01-01

    Many Bayesian inference problems require exploring the posterior distribution of high-dimensional parameters, which in principle can be described as functions. By exploiting low-dimensional structure in the change from prior to posterior [distributions], we introduce a suite of MCMC samplers that can adapt to the complex structure of the posterior distribution, yet are well-defined on function space. Posterior sampling in nonlinear inverse problems arising from various partial di erential equations and also a stochastic differential equation are used to demonstrate the e ciency of these dimension-independent likelihood-informed samplers.

  5. Dimension-Independent Likelihood-Informed MCMC

    KAUST Repository

    Cui, Tiangang

    2015-01-07

    Many Bayesian inference problems require exploring the posterior distribution of high-dimensional parameters, which in principle can be described as functions. By exploiting low-dimensional structure in the change from prior to posterior [distributions], we introduce a suite of MCMC samplers that can adapt to the complex structure of the posterior distribution, yet are well-defined on function space. Posterior sampling in nonlinear inverse problems arising from various partial di erential equations and also a stochastic differential equation are used to demonstrate the e ciency of these dimension-independent likelihood-informed samplers.

  6. Approximate maximum parsimony and ancestral maximum likelihood.

    Science.gov (United States)

    Alon, Noga; Chor, Benny; Pardi, Fabio; Rapoport, Anat

    2010-01-01

    We explore the maximum parsimony (MP) and ancestral maximum likelihood (AML) criteria in phylogenetic tree reconstruction. Both problems are NP-hard, so we seek approximate solutions. We formulate the two problems as Steiner tree problems under appropriate distances. The gist of our approach is the succinct characterization of Steiner trees for a small number of leaves for the two distances. This enables the use of known Steiner tree approximation algorithms. The approach leads to a 16/9 approximation ratio for AML and asymptotically to a 1.55 approximation ratio for MP.

  7. Semi-empirical equivalent field method for dose determination in midline block fields for cobalt - 60 beam

    International Nuclear Information System (INIS)

    Tagoe, S.N.A.; Nani, E.K.; Yarney, J.; Edusa, C.; Quayson-Sackey, K.; Nyamadi, K.M.; Sasu, E.

    2012-01-01

    For teletherapy treatment time calculations, midline block fields are resolved into two fields, but neglecting scattering from other fields, the effective equivalent square field size of the midline block is assumed to the resultant field. Such approach is underestimation, and may be detrimental in achieving the recommended uncertainty of ± 5 % for patient's radiation dose delivery. By comparison, the deviations of effective equivalent square field sizes by calculations and experiments were within 13.2 % for cobalt 60 beams of GWGP80 cobalt 60 teletherapy. Therefore, a modified method incorporating the scatter contributions was adopted to estimate the effective equivalent square field size for midline block field. The measured outputs of radiation beams with the block were compared with outputs of square fields without the blocks (only the block tray) at depths of 5 and 10 cm for the teletherapy machine employing isocentric technique, and the accuracy was within ± 3 % for the cobalt 60 beams. (au)

  8. Discourse Analysis of the Documentary Method as "Key" to Self-Referential Communication Systems? Theoretic-Methodological Basics and Empirical Vignettes

    Directory of Open Access Journals (Sweden)

    Gian-Claudio Gentile

    2010-09-01

    Full Text Available Niklas LUHMANN is well known for his deliberate departure from the classical focus on studying individual actions and directing attention on the actors' relatedness through so called (autopoietic communication systems. In contrast to the gain of a new perspective of observation his focus on autopoietic systems is simultaneously its biggest methodological obstacle for the use in social and management sciences. The present contribution considers the above shift on a theoretical level and with a specific qualitative method. It argues for a deeper understanding of systemic sense making and its enactment in a systematic and comprehensible way. Central to this approach is its focus on groups. Using group discussions as the method of data collection, and the "documentary method" by Ralf BOHNSACK (2003 as a method of data analysis, the article describes a methodologically grounded way to record the self-referential systems proposed by LUHMANN's system theory. The theoretical considerations of the paper are illustrated by empirical vignettes derived from a research project conducted in Switzerland concerning the social responsibility of business. URN: urn:nbn:de:0114-fqs1003156

  9. Non-linear multivariate and multiscale monitoring and signal denoising strategy using Kernel Principal Component Analysis combined with Ensemble Empirical Mode Decomposition method

    Science.gov (United States)

    Žvokelj, Matej; Zupan, Samo; Prebil, Ivan

    2011-10-01

    The article presents a novel non-linear multivariate and multiscale statistical process monitoring and signal denoising method which combines the strengths of the Kernel Principal Component Analysis (KPCA) non-linear multivariate monitoring approach with the benefits of Ensemble Empirical Mode Decomposition (EEMD) to handle multiscale system dynamics. The proposed method which enables us to cope with complex even severe non-linear systems with a wide dynamic range was named the EEMD-based multiscale KPCA (EEMD-MSKPCA). The method is quite general in nature and could be used in different areas for various tasks even without any really deep understanding of the nature of the system under consideration. Its efficiency was first demonstrated by an illustrative example, after which the applicability for the task of bearing fault detection, diagnosis and signal denosing was tested on simulated as well as actual vibration and acoustic emission (AE) signals measured on purpose-built large-size low-speed bearing test stand. The positive results obtained indicate that the proposed EEMD-MSKPCA method provides a promising tool for tackling non-linear multiscale data which present a convolved picture of many events occupying different regions in the time-frequency plane.

  10. A Walk on the Wild Side: The Impact of Music on Risk-Taking Likelihood

    Science.gov (United States)

    Enström, Rickard; Schmaltz, Rodney

    2017-01-01

    From a marketing perspective, there has been substantial interest in on the role of risk-perception on consumer behavior. Specific ‘problem music’ like rap and heavy metal has long been associated with delinquent behavior, including violence, drug use, and promiscuous sex. Although individuals’ risk preferences have been investigated across a range of decision-making situations, there has been little empirical work demonstrating the direct role music may have on the likelihood of engaging in risky activities. In the exploratory study reported here, we assessed the impact of listening to different styles of music while assessing risk-taking likelihood through a psychometric scale. Risk-taking likelihood was measured across ethical, financial, health and safety, recreational and social domains. Through the means of a canonical correlation analysis, the multivariate relationship between different music styles and individual risk-taking likelihood across the different domains is discussed. Our results indicate that listening to different types of music does influence risk-taking likelihood, though not in areas of health and safety. PMID:28539908

  11. A Walk on the Wild Side: The Impact of Music on Risk-Taking Likelihood.

    Science.gov (United States)

    Enström, Rickard; Schmaltz, Rodney

    2017-01-01

    From a marketing perspective, there has been substantial interest in on the role of risk-perception on consumer behavior. Specific 'problem music' like rap and heavy metal has long been associated with delinquent behavior, including violence, drug use, and promiscuous sex. Although individuals' risk preferences have been investigated across a range of decision-making situations, there has been little empirical work demonstrating the direct role music may have on the likelihood of engaging in risky activities. In the exploratory study reported here, we assessed the impact of listening to different styles of music while assessing risk-taking likelihood through a psychometric scale. Risk-taking likelihood was measured across ethical, financial, health and safety, recreational and social domains. Through the means of a canonical correlation analysis, the multivariate relationship between different music styles and individual risk-taking likelihood across the different domains is discussed. Our results indicate that listening to different types of music does influence risk-taking likelihood, though not in areas of health and safety.

  12. A Walk on the Wild Side: The Impact of Music on Risk-Taking Likelihood

    Directory of Open Access Journals (Sweden)

    Rickard Enström

    2017-05-01

    Full Text Available From a marketing perspective, there has been substantial interest in on the role of risk-perception on consumer behavior. Specific ‘problem music’ like rap and heavy metal has long been associated with delinquent behavior, including violence, drug use, and promiscuous sex. Although individuals’ risk preferences have been investigated across a range of decision-making situations, there has been little empirical work demonstrating the direct role music may have on the likelihood of engaging in risky activities. In the exploratory study reported here, we assessed the impact of listening to different styles of music while assessing risk-taking likelihood through a psychometric scale. Risk-taking likelihood was measured across ethical, financial, health and safety, recreational and social domains. Through the means of a canonical correlation analysis, the multivariate relationship between different music styles and individual risk-taking likelihood across the different domains is discussed. Our results indicate that listening to different types of music does influence risk-taking likelihood, though not in areas of health and safety.

  13. Reading and proclaiming the Advent call of John the Baptist: An empirical enquiry employing the SIFT method

    Directory of Open Access Journals (Sweden)

    Leslie J. Francis

    2014-10-01

    Full Text Available Drawing on Jungian psychological type theory, the SIFT method of biblical hermeneutics and liturgical preaching suggests that the reading and proclaiming of scripture reflects the psychological type preferences of the reader and preacher. This thesis is examined among a sample of clergy (training incumbents and curates serving in the one Diocese of the Church of England (N = 22. After completing the Myers-Briggs Type Indicator, the clergy worked in groups (designed to cluster individuals who shared similar psychological type characteristics to reflect on and to discuss the Advent call of John the Baptist. The Marcan account was chosen for the exercise exploring the perceiving functions (sensing and intuition in light of its rich narrative. The Lucan account was chosen for the exercise exploring the judging functions (thinking and feeling in light of the challenges offered by the passage. In accordance with the theory, the data confirmed characteristic differences between the approaches of sensing types and intuitive types, and between the approaches of thinking types and feeling types.

  14. Association of Empirically Derived Dietary Patterns with Cardiovascular Risk Factors: A Comparison of PCA and RRR Methods.

    Directory of Open Access Journals (Sweden)

    Nicolas Sauvageot

    Full Text Available Principal component analysis is used to determine dietary behaviors of a population whereas reduced rank regression is used to construct disease-related dietary patterns. This study aimed to compare both types of DP and theirs associations with cardiovascular risk factors (CVRF.Data were derived from the cross sectional NESCAV (Nutrition, Environment and Cardiovascular Health study, aiming to describe the cardiovascular health of the Greater region's population (Grand duchy of Luxembourg, Wallonia (Belgium, Lorraine (France. 2298 individuals were included for this study and dietary intake was assessed using a 134-item food frequency questionnaire.We found that CVRF-related patterns also reflect eating behaviours of the population. Comparing concordant food groups between both dietary pattern methods, a diet high in fruits, oleaginous and dried fruits, vegetables, olive oil, fats rich in omega 6 and tea and low in fried foods, lean and fatty meat, processed meat, ready meal, soft drink and beer was associated with lower prevalence of CVRF. In the opposite, a pattern characterized by high intakes of fried foods, meat, offal, beer, wine and aperitifs and spirits, and low intakes of cereals, sugar and sweets and soft drinks was associated with higher prevalence of CVRF.In sum, we found that a "Prudent" and "Animal protein and alcohol" patterns were both associated with CVRF and behaviourally meaningful. Moreover, the relationships of those dietary patterns with lifestyle characteristics support the theory that food choices are part of a larger pattern of healthy lifestyle.

  15. Sequence analysis of annually normalized citation counts: an empirical analysis based on the characteristic scores and scales (CSS) method.

    Science.gov (United States)

    Bornmann, Lutz; Ye, Adam Y; Ye, Fred Y

    2017-01-01

    In bibliometrics, only a few publications have focused on the citation histories of publications, where the citations for each citing year are assessed. In this study, therefore, annual categories of field- and time-normalized citation scores (based on the characteristic scores and scales method: 0 = poorly cited, 1 = fairly cited, 2 = remarkably cited, and 3 = outstandingly cited) are used to study the citation histories of papers. As our dataset, we used all articles published in 2000 and their annual citation scores until 2015. We generated annual sequences of citation scores (e.g., [Formula: see text]) and compared the sequences of annual citation scores of six broader fields (natural sciences, engineering and technology, medical and health sciences, agricultural sciences, social sciences, and humanities). In agreement with previous studies, our results demonstrate that sequences with poorly cited (0) and fairly cited (1) elements dominate the publication set; sequences with remarkably cited (3) and outstandingly cited (4) periods are rare. The highest percentages of constantly poorly cited papers can be found in the social sciences; the lowest percentages are in the agricultural sciences and humanities. The largest group of papers with remarkably cited (3) and/or outstandingly cited (4) periods shows an increasing impact over the citing years with the following orders of sequences: [Formula: see text] (6.01%), which is followed by [Formula: see text] (1.62%). Only 0.11% of the papers ( n  = 909) are constantly on the outstandingly cited level.

  16. Comparison and analysis of empirical equations for soil heat flux for different cropping systems and irrigation methods

    Science.gov (United States)

    Irmak, A.; Singh, Ramesh K.; Walter-Shea, Elizabeth; Verma, S.B.; Suyker, A.E.

    2011-01-01

    We evaluated the performance of four models for estimating soil heat flux density (G) in maize (Zea mays L.) and soybean (Glycine max L.) fields under different irrigation methods (center-pivot irrigated fields at Mead, Nebraska, and subsurface drip irrigated field at Clay Center, Nebraska) and rainfed conditions at Mead. The model estimates were compared against measurements made during growing seasons of 2003, 2004, and 2005 at Mead and during 2005, 2006, and 2007 at Clay Center. We observed a strong relationship between the G and net radiation (Rn) ratio (G/Rn) and the normalized difference vegetation index (NDVI). When a significant portion of the ground was bare soil, G/Rn ranged from 0.15 to 0.30 and decreased with increasing NDVI. In contrast to the NDVI progression, the G/Rn ratio decreased with crop growth and development. The G/Rn ratio for subsurface drip irrigated crops was smaller than for the center-pivot irrigated crops. The seasonal average G was 13.1%, 15.2%, 10.9%, and 12.8% of Rn for irrigated maize, rainfed maize, irrigated soybean, and rainfed soybean, respectively. Statistical analyses of the performance of the four models showed a wide range of variation in G estimation. The root mean square error (RMSE) of predictions ranged from 15 to 81.3 W m-2. Based on the wide range of RMSE, it is recommended that local calibration of the models should be carried out for remote estimation of soil heat flux.

  17. Extraction Method of Driver’s Mental Component Based on Empirical Mode Decomposition and Approximate Entropy Statistic Characteristic in Vehicle Running State

    Directory of Open Access Journals (Sweden)

    Shuan-Feng Zhao

    2017-01-01

    Full Text Available In the driver fatigue monitoring technology, the essence is to capture and analyze the driver behavior information, such as eyes, face, heart, and EEG activity during driving. However, ECG and EEG monitoring are limited by the installation electrodes and are not commercially available. The most common fatigue detection method is the analysis of driver behavior, that is, to determine whether the driver is tired by recording and analyzing the behavior characteristics of steering wheel and brake. The driver usually adjusts his or her actions based on the observed road conditions. Obviously the road path information is directly contained in the vehicle driving state; if you want to judge the driver’s driving behavior by vehicle driving status information, the first task is to remove the road information from the vehicle driving state data. Therefore, this paper proposes an effective intrinsic mode function selection method for the approximate entropy of empirical mode decomposition considering the characteristics of the frequency distribution of road and vehicle information and the unsteady and nonlinear characteristics of the driver closed-loop driving system in vehicle driving state data. The objective is to extract the effective component of the driving behavior information and to weaken the road information component. Finally the effectiveness of the proposed method is verified by simulating driving experiments.

  18. The Empirical Verification of an Assignment of Items to Subtests : The Oblique Multiple Group Method Versus the Confirmatory Common Factor Method

    NARCIS (Netherlands)

    Stuive, Ilse; Kiers, Henk A.L.; Timmerman, Marieke E.; ten Berge, Jos M.F.

    2008-01-01

    This study compares two confirmatory factor analysis methods on their ability to verify whether correct assignments of items to subtests are supported by the data. The confirmatory common factor (CCF) method is used most often and defines nonzero loadings so that they correspond to the assignment of

  19. Accelerated maximum likelihood parameter estimation for stochastic biochemical systems

    Directory of Open Access Journals (Sweden)

    Daigle Bernie J

    2012-05-01

    Full Text Available Abstract Background A prerequisite for the mechanistic simulation of a biochemical system is detailed knowledge of its kinetic parameters. Despite recent experimental advances, the estimation of unknown parameter values from observed data is still a bottleneck for obtaining accurate simulation results. Many methods exist for parameter estimation in deterministic biochemical systems; methods for discrete stochastic systems are less well developed. Given the probabilistic nature of stochastic biochemical models, a natural approach is to choose parameter values that maximize the probability of the observed data with respect to the unknown parameters, a.k.a. the maximum likelihood parameter estimates (MLEs. MLE computation for all but the simplest models requires the simulation of many system trajectories that are consistent with experimental data. For models with unknown parameters, this presents a computational challenge, as the generation of consistent trajectories can be an extremely rare occurrence. Results We have developed Monte Carlo Expectation-Maximization with Modified Cross-Entropy Method (MCEM2: an accelerated method for calculating MLEs that combines advances in rare event simulation with a computationally efficient version of the Monte Carlo expectation-maximization (MCEM algorithm. Our method requires no prior knowledge regarding parameter values, and it automatically provides a multivariate parameter uncertainty estimate. We applied the method to five stochastic systems of increasing complexity, progressing from an analytically tractable pure-birth model to a computationally demanding model of yeast-polarization. Our results demonstrate that MCEM2 substantially accelerates MLE computation on all tested models when compared to a stand-alone version of MCEM. Additionally, we show how our method identifies parameter values for certain classes of models more accurately than two recently proposed computationally efficient methods

  20. Person fit for test speededness: normal curvatures, likelihood ratio tests and empirical Bayes estimates

    NARCIS (Netherlands)

    Goegebeur, Y.; de Boeck, P.; Molenberghs, G.

    2010-01-01

    The local influence diagnostics, proposed by Cook (1986), provide a flexible way to assess the impact of minor model perturbations on key model parameters’ estimates. In this paper, we apply the local influence idea to the detection of test speededness in a model describing nonresponse in test data,

  1. Maximum likelihood estimation of the parameters of nonminimum phase and noncausal ARMA models

    DEFF Research Database (Denmark)

    Rasmussen, Klaus Bolding

    1994-01-01

    The well-known prediction-error-based maximum likelihood (PEML) method can only handle minimum phase ARMA models. This paper presents a new method known as the back-filtering-based maximum likelihood (BFML) method, which can handle nonminimum phase and noncausal ARMA models. The BFML method...... is identical to the PEML method in the case of a minimum phase ARMA model, and it turns out that the BFML method incorporates a noncausal ARMA filter with poles outside the unit circle for estimation of the parameters of a causal, nonminimum phase ARMA model...

  2. A Predictive Likelihood Approach to Bayesian Averaging

    Directory of Open Access Journals (Sweden)

    Tomáš Jeřábek

    2015-01-01

    Full Text Available Multivariate time series forecasting is applied in a wide range of economic activities related to regional competitiveness and is the basis of almost all macroeconomic analysis. In this paper we combine multivariate density forecasts of GDP growth, inflation and real interest rates from four various models, two type of Bayesian vector autoregression (BVAR models, a New Keynesian dynamic stochastic general equilibrium (DSGE model of small open economy and DSGE-VAR model. The performance of models is identified using historical dates including domestic economy and foreign economy, which is represented by countries of the Eurozone. Because forecast accuracy of observed models are different, the weighting scheme based on the predictive likelihood, the trace of past MSE matrix, model ranks are used to combine the models. The equal-weight scheme is used as a simple combination scheme. The results show that optimally combined densities are comparable to the best individual models.

  3. A non-destructive surface burn detection method for ferrous metals based on acoustic emission and ensemble empirical mode decomposition: from laser simulation to grinding process

    International Nuclear Information System (INIS)

    Yang, Zhensheng; Wu, Haixi; Yu, Zhonghua; Huang, Youfang

    2014-01-01

    Grinding is usually done in the final finishing of a component. As a result, the surface quality of finished products, e.g., surface roughness, hardness and residual stress, are affected by the grinding procedure. However, the lack of methods for monitoring of grinding makes it difficult to control the quality of the process. This paper focuses on the monitoring approaches for the surface burn phenomenon in grinding. A non-destructive burn detection method based on acoustic emission (AE) and ensemble empirical mode decomposition (EEMD) was proposed for this purpose. To precisely extract the AE features caused by phase transformation during burn formation, artificial burn was produced to mimic grinding burn by means of laser irradiation, since laser-induced burn involves less mechanical and electrical noise. The burn formation process was monitored by an AE sensor. The frequency band ranging from 150 to 400 kHz was believed to be related to surface burn formation in the laser irradiation process. The burn-sensitive frequency band was further used to instruct feature extraction during the grinding process based on EEMD. Linear classification results evidenced a distinct margin between samples with and without surface burn. This work provides a practical means for grinding burn detection. (paper)

  4. Empirical Methods for Detecting Regional Trends and Other Spatial Expressions in Antrim Shale Gas Productivity, with Implications for Improving Resource Projections Using Local Nonparametric Estimation Techniques

    Science.gov (United States)

    Coburn, T.C.; Freeman, P.A.; Attanasi, E.D.

    2012-01-01

    The primary objectives of this research were to (1) investigate empirical methods for establishing regional trends in unconventional gas resources as exhibited by historical production data and (2) determine whether or not incorporating additional knowledge of a regional trend in a suite of previously established local nonparametric resource prediction algorithms influences assessment results. Three different trend detection methods were applied to publicly available production data (well EUR aggregated to 80-acre cells) from the Devonian Antrim Shale gas play in the Michigan Basin. This effort led to the identification of a southeast-northwest trend in cell EUR values across the play that, in a very general sense, conforms to the primary fracture and structural orientations of the province. However, including this trend in the resource prediction algorithms did not lead to improved results. Further analysis indicated the existence of clustering among cell EUR values that likely dampens the contribution of the regional trend. The reason for the clustering, a somewhat unexpected result, is not completely understood, although the geological literature provides some possible explanations. With appropriate data, a better understanding of this clustering phenomenon may lead to important information about the factors and their interactions that control Antrim Shale gas production, which may, in turn, help establish a more general protocol for better estimating resources in this and other shale gas plays. ?? 2011 International Association for Mathematical Geology (outside the USA).

  5. Estimation of Model's Marginal likelihood Using Adaptive Sparse Grid Surrogates in Bayesian Model Averaging

    Science.gov (United States)

    Zeng, X.

    2015-12-01

    A large number of model executions are required to obtain alternative conceptual models' predictions and their posterior probabilities in Bayesian model averaging (BMA). The posterior model probability is estimated through models' marginal likelihood and prior probability. The heavy computation burden hinders the implementation of BMA prediction, especially for the elaborated marginal likelihood estimator. For overcoming the computation burden of BMA, an adaptive sparse grid (SG) stochastic collocation method is used to build surrogates for alternative conceptual models through the numerical experiment of a synthetical groundwater model. BMA predictions depend on model posterior weights (or marginal likelihoods), and this study also evaluated four marginal likelihood estimators, including arithmetic mean estimator (AME), harmonic mean estimator (HME), stabilized harmonic mean estimator (SHME), and thermodynamic integration estimator (TIE). The results demonstrate that TIE is accurate in estimating conceptual models' marginal likelihoods. The BMA-TIE has better predictive performance than other BMA predictions. TIE has high stability for estimating conceptual model's marginal likelihood. The repeated estimated conceptual model's marginal likelihoods by TIE have significant less variability than that estimated by other estimators. In addition, the SG surrogates are efficient to facilitate BMA predictions, especially for BMA-TIE. The number of model executions needed for building surrogates is 4.13%, 6.89%, 3.44%, and 0.43% of the required model executions of BMA-AME, BMA-HME, BMA-SHME, and BMA-TIE, respectively.

  6. Likelihood-Based Inference of B Cell Clonal Families.

    Directory of Open Access Journals (Sweden)

    Duncan K Ralph

    2016-10-01

    Full Text Available The human immune system depends on a highly diverse collection of antibody-making B cells. B cell receptor sequence diversity is generated by a random recombination process called "rearrangement" forming progenitor B cells, then a Darwinian process of lineage diversification and selection called "affinity maturation." The resulting receptors can be sequenced in high throughput for research and diagnostics. Such a collection of sequences contains a mixture of various lineages, each of which may be quite numerous, or may consist of only a single member. As a step to understanding the process and result of this diversification, one may wish to reconstruct lineage membership, i.e. to cluster sampled sequences according to which came from the same rearrangement events. We call this clustering problem "clonal family inference." In this paper we describe and validate a likelihood-based framework for clonal family inference based on a multi-hidden Markov Model (multi-HMM framework for B cell receptor sequences. We describe an agglomerative algorithm to find a maximum likelihood clustering, two approximate algorithms with various trade-offs of speed versus accuracy, and a third, fast algorithm for finding specific lineages. We show that under simulation these algorithms greatly improve upon existing clonal family inference methods, and that they also give significantly different clusters than previous methods when applied to two real data sets.

  7. Maximum Likelihood Approach for RFID Tag Set Cardinality Estimation with Detection Errors

    DEFF Research Database (Denmark)

    Nguyen, Chuyen T.; Hayashi, Kazunori; Kaneko, Megumi

    2013-01-01

    Abstract Estimation schemes of Radio Frequency IDentification (RFID) tag set cardinality are studied in this paper using Maximum Likelihood (ML) approach. We consider the estimation problem under the model of multiple independent reader sessions with detection errors due to unreliable radio...... is evaluated under dierent system parameters and compared with that of the conventional method via computer simulations assuming flat Rayleigh fading environments and framed-slotted ALOHA based protocol. Keywords RFID tag cardinality estimation maximum likelihood detection error...

  8. β-empirical Bayes inference and model diagnosis of microarray data

    Directory of Open Access Journals (Sweden)

    Hossain Mollah Mohammad

    2012-06-01

    Full Text Available Abstract Background Microarray data enables the high-throughput survey of mRNA expression profiles at the genomic level; however, the data presents a challenging statistical problem because of the large number of transcripts with small sample sizes that are obtained. To reduce the dimensionality, various Bayesian or empirical Bayes hierarchical models have been developed. However, because of the complexity of the microarray data, no model can explain the data fully. It is generally difficult to scrutinize the irregular patterns of expression that are not expected by the usual statistical gene by gene models. Results As an extension of empirical Bayes (EB procedures, we have developed the β-empirical Bayes (β-EB approach based on a β-likelihood measure which can be regarded as an ’evidence-based’ weighted (quasi- likelihood inference. The weight of a transcript t is described as a power function of its likelihood, fβ(yt|θ. Genes with low likelihoods have unexpected expression patterns and low weights. By assigning low weights to outliers, the inference becomes robust. The value of β, which controls the balance between the robustness and efficiency, is selected by maximizing the predictive β0-likelihood by cross-validation. The proposed β-EB approach identified six significant (p−5 contaminated transcripts as differentially expressed (DE in normal/tumor tissues from the head and neck of cancer patients. These six genes were all confirmed to be related to cancer; they were not identified as DE genes by the classical EB approach. When applied to the eQTL analysis of Arabidopsis thaliana, the proposed β-EB approach identified some potential master regulators that were missed by the EB approach. Conclusions The simulation data and real gene expression data showed that the proposed β-EB method was robust against outliers. The distribution of the weights was used to scrutinize the irregular patterns of expression and diagnose the model

  9. Accounting for center in the Early External Cephalic Version trials: an empirical comparison of statistical methods to adjust for center in a multicenter trial with binary outcomes.

    Science.gov (United States)

    Reitsma, Angela; Chu, Rong; Thorpe, Julia; McDonald, Sarah; Thabane, Lehana; Hutton, Eileen

    2014-09-26

    Clustering of outcomes at centers involved in multicenter trials is a type of center effect. The Consolidated Standards of Reporting Trials Statement recommends that multicenter randomized controlled trials (RCTs) should account for center effects in their analysis, however most do not. The Early External Cephalic Version (EECV) trials published in 2003 and 2011 stratified by center at randomization, but did not account for center in the analyses, and due to the nature of the intervention and number of centers, may have been prone to center effects. Using data from the EECV trials, we undertook an empirical study to compare various statistical approaches to account for center effect while estimating the impact of external cephalic version timing (early or delayed) on the outcomes of cesarean section, preterm birth, and non-cephalic presentation at the time of birth. The data from the EECV pilot trial and the EECV2 trial were merged into one dataset. Fisher's exact method was used to test the overall effect of external cephalic version timing unadjusted for center effects. Seven statistical models that accounted for center effects were applied to the data. The models included: i) the Mantel-Haenszel test, ii) logistic regression with fixed center effect and fixed treatment effect, iii) center-size weighted and iv) un-weighted logistic regression with fixed center effect and fixed treatment-by-center interaction, iv) logistic regression with random center effect and fixed treatment effect, v) logistic regression with random center effect and random treatment-by-center interaction, and vi) generalized estimating equations. For each of the three outcomes of interest approaches to account for center effect did not alter the overall findings of the trial. The results were similar for the majority of the methods used to adjust for center, illustrating the robustness of the findings. Despite literature that suggests center effect can change the estimate of effect in

  10. An empirical method for determination of elemental components of radiated powers and impurity concentrations from VUV and XUV spectral features in tokamak plasmas

    International Nuclear Information System (INIS)

    Lawson, K.; Peacock, N.; Gianella, R.

    1998-12-01

    The derivation of elemental components of radiated powers and impurity concentrations in bulk tokamak plasmas is complex, often requiring a full description of the impurity transport. A novel, empirical method, the Line Intensity Normalization Technique (LINT) has been developed on the JET (Joint European Torus) tokamak to provide routine information about the impurity content of the plasma and elemental components of radiated power (P rad ). The technique employs a few VUV and XUV resonance line intensities to represent the intrinsic impurity elements in the plasma. From a data base comprising these spectral features, the total bolometric measurement of the radiated power and the Z eff measured by visible spectroscopy, separate elemental components of P rad and Z eff are derived. The method, which converts local spectroscopic signals into global plasma parameters, has the advantage of simplicity, allowing large numbers of pulses to be processed, and, in many operational modes of JET, is found to be both reliable and accurate. It relies on normalizing the line intensities to the absolute calibration of the bolometers and visible spectrometers, using coefficients independent of density and temperature. Accuracies of the order of ± 15% can be achieved for the elemental P rad components of the most significant impurities and the impurity concentrations can be determined to within ±30%. Trace elements can be monitored, although with reduced accuracy. The present paper deals with limiter discharges, which have been the main application to date. As a check on the technique and to demonstrate the value of the LINT results, they have been applied to the transport modelling of intrinsic impurities carried out with the SANCO transport code, which uses atomic data from ADAS. The simulations provide independent confirmation of the concentrations empirically derived using the LINT technique. For this analysis, the simple case of the L-mode regime is considered, the chosen

  11. Targeted maximum likelihood estimation for a binary treatment: A tutorial.

    Science.gov (United States)

    Luque-Fernandez, Miguel Angel; Schomaker, Michael; Rachet, Bernard; Schnitzer, Mireille E

    2018-04-23

    When estimating the average effect of a binary treatment (or exposure) on an outcome, methods that incorporate propensity scores, the G-formula, or targeted maximum likelihood estimation (TMLE) are preferred over naïve regression approaches, which are biased under misspecification of a parametric outcome model. In contrast propensity score methods require the correct specification of an exposure model. Double-robust methods only require correct specification of either the outcome or the exposure model. Targeted maximum likelihood estimation is a semiparametric double-robust method that improves the chances of correct model specification by allowing for flexible estimation using (nonparametric) machine-learning methods. It therefore requires weaker assumptions than its competitors. We provide a step-by-step guided implementation of TMLE and illustrate it in a realistic scenario based on cancer epidemiology where assumptions about correct model specification and positivity (ie, when a study participant had 0 probability of receiving the treatment) are nearly violated. This article provides a concise and reproducible educational introduction to TMLE for a binary outcome and exposure. The reader should gain sufficient understanding of TMLE from this introductory tutorial to be able to apply the method in practice. Extensive R-code is provided in easy-to-read boxes throughout the article for replicability. Stata users will find a testing implementation of TMLE and additional material in the Appendix S1 and at the following GitHub repository: https://github.com/migariane/SIM-TMLE-tutorial. © 2018 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd.

  12. Missing data methods for dealing with missing items in quality of life questionnaires. A comparison by simulation of personal mean score, full information maximum likelihood, multiple imputation, and hot deck techniques applied to the SF-36 in the French 2003 decennial health survey.

    Science.gov (United States)

    Peyre, Hugo; Leplège, Alain; Coste, Joël

    2011-03-01

    Missing items are common in quality of life (QoL) questionnaires and present a challenge for research in this field. It remains unclear which of the various methods proposed to deal with missing data performs best in this context. We compared personal mean score, full information maximum likelihood, multiple imputation, and hot deck techniques using various realistic simulation scenarios of item missingness in QoL questionnaires constructed within the framework of classical test theory. Samples of 300 and 1,000 subjects were randomly drawn from the 2003 INSEE Decennial Health Survey (of 23,018 subjects representative of the French population and having completed the SF-36) and various patterns of missing data were generated according to three different item non-response rates (3, 6, and 9%) and three types of missing data (Little and Rubin's "missing completely at random," "missing at random," and "missing not at random"). The missing data methods were evaluated in terms of accuracy and precision for the analysis of one descriptive and one association parameter for three different scales of the SF-36. For all item non-response rates and types of missing data, multiple imputation and full information maximum likelihood appeared superior to the personal mean score and especially to hot deck in terms of accuracy and precision; however, the use of personal mean score was associated with insignificant bias (relative bias personal mean score appears nonetheless appropriate for dealing with items missing from completed SF-36 questionnaires in most situations of routine use. These results can reasonably be extended to other questionnaires constructed according to classical test theory.

  13. Empirical Research In Engineering Design

    DEFF Research Database (Denmark)

    Ahmed, Saeema

    2007-01-01

    Increasingly engineering design research involves the use of empirical studies that are conducted within an industrial environment [Ahmed, 2001; Court 1995; Hales 1987]. Research into the use of information by designers or understanding how engineers build up experience are examples of research...... of research issues. This paper describes case studies of empirical research carried out within industry in engineering design focusing upon information, knowledge and experience in engineering design. The paper describes the research methods employed, their suitability for the particular research aims...

  14. Massive optimal data compression and density estimation for scalable, likelihood-free inference in cosmology

    Science.gov (United States)

    Alsing, Justin; Wandelt, Benjamin; Feeney, Stephen

    2018-03-01

    Many statistical models in cosmology can be simulated forwards but have intractable likelihood functions. Likelihood-free inference methods allow us to perform Bayesian inference from these models using only forward simulations, free from any likelihood assumptions or approximations. Likelihood-free inference generically involves simulating mock data and comparing to the observed data; this comparison in data-space suffers from the curse of dimensionality and requires compression of the data to a small number of summary statistics to be tractable. In this paper we use massive asymptotically-optimal data compression to reduce the dimensionality of the data-space to just one number per parameter, providing a natural and optimal framework for summary statistic choice for likelihood-free inference. Secondly, we present the first cosmological application of Density Estimation Likelihood-Free Inference (DELFI), which learns a parameterized model for joint distribution of data and parameters, yielding both the parameter posterior and the model evidence. This approach is conceptually simple, requires less tuning than traditional Approximate Bayesian Computation approaches to likelihood-free inference and can give high-fidelity posteriors from orders of magnitude fewer forward simulations. As an additional bonus, it enables parameter inference and Bayesian model comparison simultaneously. We demonstrate Density Estimation Likelihood-Free Inference with massive data compression on an analysis of the joint light-curve analysis supernova data, as a simple validation case study. We show that high-fidelity posterior inference is possible for full-scale cosmological data analyses with as few as ˜104 simulations, with substantial scope for further improvement, demonstrating the scalability of likelihood-free inference to large and complex cosmological datasets.

  15. Likelihood analysis of the minimal AMSB model

    Energy Technology Data Exchange (ETDEWEB)

    Bagnaschi, E.; Weiglein, G. [DESY, Hamburg (Germany); Borsato, M.; Chobanova, V.; Lucio, M.; Santos, D.M. [Universidade de Santiago de Compostela, Santiago de Compostela (Spain); Sakurai, K. [Institute for Particle Physics Phenomenology, University of Durham, Science Laboratories, Department of Physics, Durham (United Kingdom); University of Warsaw, Faculty of Physics, Institute of Theoretical Physics, Warsaw (Poland); Buchmueller, O.; Citron, M.; Costa, J.C.; Richards, A. [Imperial College, High Energy Physics Group, Blackett Laboratory, London (United Kingdom); Cavanaugh, R. [Fermi National Accelerator Laboratory, Batavia, IL (United States); University of Illinois at Chicago, Physics Department, Chicago, IL (United States); De Roeck, A. [Experimental Physics Department, CERN, Geneva (Switzerland); Antwerp University, Wilrijk (Belgium); Dolan, M.J. [School of Physics, University of Melbourne, ARC Centre of Excellence for Particle Physics at the Terascale, Melbourne (Australia); Ellis, J.R. [King' s College London, Theoretical Particle Physics and Cosmology Group, Department of Physics, London (United Kingdom); CERN, Theoretical Physics Department, Geneva (Switzerland); Flaecher, H. [University of Bristol, H.H. Wills Physics Laboratory, Bristol (United Kingdom); Heinemeyer, S. [Campus of International Excellence UAM+CSIC, Madrid (Spain); Instituto de Fisica Teorica UAM-CSIC, Madrid (Spain); Instituto de Fisica de Cantabria (CSIC-UC), Cantabria (Spain); Isidori, G. [Physik-Institut, Universitaet Zuerich, Zurich (Switzerland); Luo, F. [Kavli IPMU (WPI), UTIAS, The University of Tokyo, Kashiwa, Chiba (Japan); Olive, K.A. [School of Physics and Astronomy, University of Minnesota, William I. Fine Theoretical Physics Institute, Minneapolis, MN (United States)

    2017-04-15

    We perform a likelihood analysis of the minimal anomaly-mediated supersymmetry-breaking (mAMSB) model using constraints from cosmology and accelerator experiments. We find that either a wino-like or a Higgsino-like neutralino LSP, χ{sup 0}{sub 1}, may provide the cold dark matter (DM), both with similar likelihoods. The upper limit on the DM density from Planck and other experiments enforces m{sub χ{sup 0}{sub 1}} 0) but the scalar mass m{sub 0} is poorly constrained. In the wino-LSP case, m{sub 3/2} is constrained to about 900 TeV and m{sub χ{sup 0}{sub 1}} to 2.9 ± 0.1 TeV, whereas in the Higgsino-LSP case m{sub 3/2} has just a lower limit >or similar 650 TeV (>or similar 480 TeV) and m{sub χ{sup 0}{sub 1}} is constrained to 1.12 (1.13) ± 0.02 TeV in the μ > 0 (μ < 0) scenario. In neither case can the anomalous magnetic moment of the muon, (g-2){sub μ}, be improved significantly relative to its Standard Model (SM) value, nor do flavour measurements constrain the model significantly, and there are poor prospects for discovering supersymmetric particles at the LHC, though there are some prospects for direct DM detection. On the other hand, if the χ{sup 0}{sub 1} contributes only a fraction of the cold DM density, future LHC E{sub T}-based searches for gluinos, squarks and heavier chargino and neutralino states as well as disappearing track searches in the wino-like LSP region will be relevant, and interference effects enable BR(B{sub s,d} → μ{sup +}μ{sup -}) to agree with the data better than in the SM in the case of wino-like DM with μ > 0. (orig.)

  16. Choosing the correct empirical antibiotic for urinary tract infection in pediatric: Surveillance of antimicrobial susceptibility pattern of Escherichia coli by E-Test method.

    Science.gov (United States)

    Sedighi, Iraj; Solgi, Abbas; Amanati, Ali; Alikhani, Mohammad Yousef

    2014-12-01

    Urinary Tract Infections (UTIs) are of the most common bacterial diseases worldwide. We investigate the antibiotic susceptibility patterns of Escherichia coli (E. coli) strains isolated from pediatric patients with community acquired urinary tract infection (UTI) to find a clinical guidance for choosing a right empirical antibiotic in these patients. In this cross sectional study, 100 urine specimens which were positive for E. coli had been investigated for antibiotics susceptibility pattern. The susceptibility to Co-trimoxazol (25μg), Amikacin (30μg), Ceftriaxone (30μg), Nalidixic Acid (30μg), Cefixime (5μg), and Nitrofurantoin (300μg) tested with Disk diffusion agar and MIC determined with the E-test. Mean age of patients was 38 Months. Girls had greater proportion than boys (74 versus 26%). In Disk diffusion method, 26% of the isolates were susceptible to cotrimoxazole. Susceptibility to amikacin, ceftriaxone, nitrofurantoin, nalidixic acid and cefixime was 94%, 66%, 97%, 62% and 52%, respectively. By E-Test method and according to CLSI criteria susceptibility for co-trimoxazol, amikacin, ceftriaxone and nalidixic acid was 37%, 97%, 67% and 50%, respectively. The highest percentage of agreement between Disk diffusion and E-Test method was found for amikacin (96%) and the lowest percentage for co-trimoxazole (89%). Treatment failure, prolonged or repeated hospitalization, increased costs of care, and increased mortality are some consequence of bacterial resistance in UTIs. Misuse of antibiotics in each geographic location directly affects antibiotic resistance pattern. In the treatment of UTI, proper selection of antimicrobial agents should be relevant to the bacterial susceptibility testing surveillance. According to our results, amikacin as an injectable drug and nitrofurantoin as an oral agent could be used as a drug of choice in our region for children with UTIs.

  17. A Theoretical and Empirical Integrated Method to Select the Optimal Combined Signals for Geometry-Free and Geometry-Based Three-Carrier Ambiguity Resolution.

    Science.gov (United States)

    Zhao, Dongsheng; Roberts, Gethin Wyn; Lau, Lawrence; Hancock, Craig M; Bai, Ruibin

    2016-11-16

    Twelve GPS Block IIF satellites, out of the current constellation, can transmit on three-frequency signals (L1, L2, L5). Taking advantages of these signals, Three-Carrier Ambiguity Resolution (TCAR) is expected to bring much benefit for ambiguity resolution. One of the research areas is to find the optimal combined signals for a better ambiguity resolution in geometry-free (GF) and geometry-based (GB) mode. However, the existing researches select the signals through either pure theoretical analysis or testing with simulated data, which might be biased as the real observation condition could be different from theoretical prediction or simulation. In this paper, we propose a theoretical and empirical integrated method, which first selects the possible optimal combined signals in theory and then refines these signals with real triple-frequency GPS data, observed at eleven baselines of different lengths. An interpolation technique is also adopted in order to show changes of the AR performance with the increase in baseline length. The results show that the AR success rate can be improved by 3% in GF mode and 8% in GB mode at certain intervals of the baseline length. Therefore, the TCAR can perform better by adopting the combined signals proposed in this paper when the baseline meets the length condition.

  18. Measurement Method and Empirical Research on the Sustainable Development Capability of a Regional Industrial System Based on Ecological Niche Theory in China

    Directory of Open Access Journals (Sweden)

    Hang Yin

    2014-11-01

    Full Text Available From the analytical view of a recycling economy, the regional system achieves the goal of sustainable development through improving resource utilization efficiency, reducing energy consumption and ameliorating the quality of water and air. The regional economic system’s potential for sustainable development is significantly influenced by regional industrial operational efficiency, which measures the cost of ecology, environment, energy and resources accompanying the economic growth. It is vital for national and regional governments to accelerate harmonious development between products of industrial department, consumption of energy and pollutants discharged. Under the guidance of ecological niche theory and recycling economy theory, the theoretical analysis on efficient relations between regional industrial growth, energy consumption, resources utilization and environmental carrying capacity has been carried out from horizontal and vertical respects. Industrial operational efficiency and the sensitivity coefficient in response to the change of every input and output index can be calculated and critical factors, which restrict sustainable development capability, can be found out so that quantitative references could be provided for administrative decisions. As for the measurement method, a super efficiency mixed data envelopment analysis model, which wipes off self-limited condition and either contains both meeting cone characteristic indexes or not, has been established and applied. Statistics from 1993 to 2012 in China are collected to carry out empirical research. On the basis of further analysis, an adjustment strategy can be constituted to improve the capability for sustainable development.

  19. A novel method to produce nonlinear empirical physical formulas for experimental nonlinear electro-optical responses of doped nematic liquid crystals: Feedforward neural network approach

    Energy Technology Data Exchange (ETDEWEB)

    Yildiz, Nihat, E-mail: nyildiz@cumhuriyet.edu.t [Cumhuriyet University, Faculty of Science and Literature, Department of Physics, 58140 Sivas (Turkey); San, Sait Eren; Okutan, Mustafa [Department of Physics, Gebze Institute of Technology, P.O. Box 141, Gebze 41400, Kocaeli (Turkey); Kaya, Hueseyin [Cumhuriyet University, Faculty of Science and Literature, Department of Physics, 58140 Sivas (Turkey)

    2010-04-15

    Among other significant obstacles, inherent nonlinearity in experimental physical response data poses severe difficulty in empirical physical formula (EPF) construction. In this paper, we applied a novel method (namely layered feedforward neural network (LFNN) approach) to produce explicit nonlinear EPFs for experimental nonlinear electro-optical responses of doped nematic liquid crystals (NLCs). Our motivation was that, as we showed in a previous theoretical work, an appropriate LFNN, due to its exceptional nonlinear function approximation capabilities, is highly relevant to EPF construction. Therefore, in this paper, we obtained excellently produced LFNN approximation functions as our desired EPFs for above-mentioned highly nonlinear response data of NLCs. In other words, by using suitable LFNNs, we successfully fitted the experimentally measured response and predicted the new (yet-to-be measured) response data. The experimental data (response versus input) were diffraction and dielectric properties versus bias voltage; and they were all taken from our previous experimental work. We conclude that in general, LFNN can be applied to construct various types of EPFs for the corresponding various nonlinear physical perturbation (thermal, electronic, molecular, electric, optical, etc.) data of doped NLCs.

  20. A novel method to produce nonlinear empirical physical formulas for experimental nonlinear electro-optical responses of doped nematic liquid crystals: Feedforward neural network approach

    International Nuclear Information System (INIS)

    Yildiz, Nihat; San, Sait Eren; Okutan, Mustafa; Kaya, Hueseyin

    2010-01-01

    Among other significant obstacles, inherent nonlinearity in experimental physical response data poses severe difficulty in empirical physical formula (EPF) construction. In this paper, we applied a novel method (namely layered feedforward neural network (LFNN) approach) to produce explicit nonlinear EPFs for experimental nonlinear electro-optical responses of doped nematic liquid crystals (NLCs). Our motivation was that, as we showed in a previous theoretical work, an appropriate LFNN, due to its exceptional nonlinear function approximation capabilities, is highly relevant to EPF construction. Therefore, in this paper, we obtained excellently produced LFNN approximation functions as our desired EPFs for above-mentioned highly nonlinear response data of NLCs. In other words, by using suitable LFNNs, we successfully fitted the experimentally measured response and predicted the new (yet-to-be measured) response data. The experimental data (response versus input) were diffraction and dielectric properties versus bias voltage; and they were all taken from our previous experimental work. We conclude that in general, LFNN can be applied to construct various types of EPFs for the corresponding various nonlinear physical perturbation (thermal, electronic, molecular, electric, optical, etc.) data of doped NLCs.

  1. Likelihood Analysis of Supersymmetric SU(5) GUTs

    CERN Document Server

    Bagnaschi, E.

    2017-01-01

    We perform a likelihood analysis of the constraints from accelerator experiments and astrophysical observations on supersymmetric (SUSY) models with SU(5) boundary conditions on soft SUSY-breaking parameters at the GUT scale. The parameter space of the models studied has 7 parameters: a universal gaugino mass $m_{1/2}$, distinct masses for the scalar partners of matter fermions in five- and ten-dimensional representations of SU(5), $m_5$ and $m_{10}$, and for the $\\mathbf{5}$ and $\\mathbf{\\bar 5}$ Higgs representations $m_{H_u}$ and $m_{H_d}$, a universal trilinear soft SUSY-breaking parameter $A_0$, and the ratio of Higgs vevs $\\tan \\beta$. In addition to previous constraints from direct sparticle searches, low-energy and flavour observables, we incorporate constraints based on preliminary results from 13 TeV LHC searches for jets + MET events and long-lived particles, as well as the latest PandaX-II and LUX searches for direct Dark Matter detection. In addition to previously-identified mechanisms for bringi...

  2. Finite mixture model: A maximum likelihood estimation approach on time series data

    Science.gov (United States)

    Yen, Phoong Seuk; Ismail, Mohd Tahir; Hamzah, Firdaus Mohamad

    2014-09-01

    Recently, statistician emphasized on the fitting of finite mixture model by using maximum likelihood estimation as it provides asymptotic properties. In addition, it shows consistency properties as the sample sizes increases to infinity. This illustrated that maximum likelihood estimation is an unbiased estimator. Moreover, the estimate parameters obtained from the application of maximum likelihood estimation have smallest variance as compared to others statistical method as the sample sizes increases. Thus, maximum likelihood estimation is adopted in this paper to fit the two-component mixture model in order to explore the relationship between rubber price and exchange rate for Malaysia, Thailand, Philippines and Indonesia. Results described that there is a negative effect among rubber price and exchange rate for all selected countries.

  3. Simulation-based marginal likelihood for cluster strong lensing cosmology

    Science.gov (United States)

    Killedar, M.; Borgani, S.; Fabjan, D.; Dolag, K.; Granato, G.; Meneghetti, M.; Planelles, S.; Ragone-Figueroa, C.

    2018-01-01

    Comparisons between observed and predicted strong lensing properties of galaxy clusters have been routinely used to claim either tension or consistency with Λ cold dark matter cosmology. However, standard approaches to such cosmological tests are unable to quantify the preference for one cosmology over another. We advocate approximating the relevant Bayes factor using a marginal likelihood that is based on the following summary statistic: the posterior probability distribution function for the parameters of the scaling relation between Einstein radii and cluster mass, α and β. We demonstrate, for the first time, a method of estimating the marginal likelihood using the X-ray selected z > 0.5 Massive Cluster Survey clusters as a case in point and employing both N-body and hydrodynamic simulations of clusters. We investigate the uncertainty in this estimate and consequential ability to compare competing cosmologies, which arises from incomplete descriptions of baryonic processes, discrepancies in cluster selection criteria, redshift distribution and dynamical state. The relation between triaxial cluster masses at various overdensities provides a promising alternative to the strong lensing test.

  4. Narrow band interference cancelation in OFDM: Astructured maximum likelihood approach

    KAUST Repository

    Sohail, Muhammad Sadiq

    2012-06-01

    This paper presents a maximum likelihood (ML) approach to mitigate the effect of narrow band interference (NBI) in a zero padded orthogonal frequency division multiplexing (ZP-OFDM) system. The NBI is assumed to be time variant and asynchronous with the frequency grid of the ZP-OFDM system. The proposed structure based technique uses the fact that the NBI signal is sparse as compared to the ZP-OFDM signal in the frequency domain. The structure is also useful in reducing the computational complexity of the proposed method. The paper also presents a data aided approach for improved NBI estimation. The suitability of the proposed method is demonstrated through simulations. © 2012 IEEE.

  5. Optimized Large-scale CMB Likelihood and Quadratic Maximum Likelihood Power Spectrum Estimation

    Science.gov (United States)

    Gjerløw, E.; Colombo, L. P. L.; Eriksen, H. K.; Górski, K. M.; Gruppuso, A.; Jewell, J. B.; Plaszczynski, S.; Wehus, I. K.

    2015-11-01

    We revisit the problem of exact cosmic microwave background (CMB) likelihood and power spectrum estimation with the goal of minimizing computational costs through linear compression. This idea was originally proposed for CMB purposes by Tegmark et al., and here we develop it into a fully functioning computational framework for large-scale polarization analysis, adopting WMAP as a working example. We compare five different linear bases (pixel space, harmonic space, noise covariance eigenvectors, signal-to-noise covariance eigenvectors, and signal-plus-noise covariance eigenvectors) in terms of compression efficiency, and find that the computationally most efficient basis is the signal-to-noise eigenvector basis, which is closely related to the Karhunen-Loeve and Principal Component transforms, in agreement with previous suggestions. For this basis, the information in 6836 unmasked WMAP sky map pixels can be compressed into a smaller set of 3102 modes, with a maximum error increase of any single multipole of 3.8% at ℓ ≤ 32 and a maximum shift in the mean values of a joint distribution of an amplitude-tilt model of 0.006σ. This compression reduces the computational cost of a single likelihood evaluation by a factor of 5, from 38 to 7.5 CPU seconds, and it also results in a more robust likelihood by implicitly regularizing nearly degenerate modes. Finally, we use the same compression framework to formulate a numerically stable and computationally efficient variation of the Quadratic Maximum Likelihood implementation, which requires less than 3 GB of memory and 2 CPU minutes per iteration for ℓ ≤ 32, rendering low-ℓ QML CMB power spectrum analysis fully tractable on a standard laptop.

  6. An Empirical Fitting Method to Type Ia Supernova Light Curves. III. A Three-parameter Relationship: Peak Magnitude, Rise Time, and Photospheric Velocity

    Science.gov (United States)

    Zheng, WeiKang; Kelly, Patrick L.; Filippenko, Alexei V.

    2018-05-01

    We examine the relationship between three parameters of Type Ia supernovae (SNe Ia): peak magnitude, rise time, and photospheric velocity at the time of peak brightness. The peak magnitude is corrected for extinction using an estimate determined from MLCS2k2 fitting. The rise time is measured from the well-observed B-band light curve with the first detection at least 1 mag fainter than the peak magnitude, and the photospheric velocity is measured from the strong absorption feature of Si II λ6355 at the time of peak brightness. We model the relationship among these three parameters using an expanding fireball with two assumptions: (a) the optical emission is approximately that of a blackbody, and (b) the photospheric temperatures of all SNe Ia are the same at the time of peak brightness. We compare the precision of the distance residuals inferred using this physically motivated model against those from the empirical Phillips relation and the MLCS2k2 method for 47 low-redshift SNe Ia (0.005 Ia in our sample with higher velocities are inferred to be intrinsically fainter. Eliminating the high-velocity SNe and applying a more stringent extinction cut to obtain a “low-v golden sample” of 22 SNe, we obtain significantly reduced scatter of 0.108 ± 0.018 mag in the new relation, better than those of the Phillips relation and the MLCS2k2 method. For 250 km s‑1 of residual peculiar motions, we find 68% and 95% upper limits on the intrinsic scatter of 0.07 and 0.10 mag, respectively.

  7. A Noise Reduction Method for Dual-Mass Micro-Electromechanical Gyroscopes Based on Sample Entropy Empirical Mode Decomposition and Time-Frequency Peak Filtering.

    Science.gov (United States)

    Shen, Chong; Li, Jie; Zhang, Xiaoming; Shi, Yunbo; Tang, Jun; Cao, Huiliang; Liu, Jun

    2016-05-31

    The different noise components in a dual-mass micro-electromechanical system (MEMS) gyroscope structure is analyzed in this paper, including mechanical-thermal noise (MTN), electronic-thermal noise (ETN), flicker noise (FN) and Coriolis signal in-phase noise (IPN). The structure equivalent electronic model is established, and an improved white Gaussian noise reduction method for dual-mass MEMS gyroscopes is proposed which is based on sample entropy empirical mode decomposition (SEEMD) and time-frequency peak filtering (TFPF). There is a contradiction in TFPS, i.e., selecting a short window length may lead to good preservation of signal amplitude but bad random noise reduction, whereas selecting a long window length may lead to serious attenuation of the signal amplitude but effective random noise reduction. In order to achieve a good tradeoff between valid signal amplitude preservation and random noise reduction, SEEMD is adopted to improve TFPF. Firstly, the original signal is decomposed into intrinsic mode functions (IMFs) by EMD, and the SE of each IMF is calculated in order to classify the numerous IMFs into three different components; then short window TFPF is employed for low frequency component of IMFs, and long window TFPF is employed for high frequency component of IMFs, and the noise component of IMFs is wiped off directly; at last the final signal is obtained after reconstruction. Rotation experimental and temperature experimental are carried out to verify the proposed SEEMD-TFPF algorithm, the verification and comparison results show that the de-noising performance of SEEMD-TFPF is better than that achievable with the traditional wavelet, Kalman filter and fixed window length TFPF methods.

  8. A Noise Reduction Method for Dual-Mass Micro-Electromechanical Gyroscopes Based on Sample Entropy Empirical Mode Decomposition and Time-Frequency Peak Filtering

    Directory of Open Access Journals (Sweden)

    Chong Shen

    2016-05-01

    Full Text Available The different noise components in a dual-mass micro-electromechanical system (MEMS gyroscope structure is analyzed in this paper, including mechanical-thermal noise (MTN, electronic-thermal noise (ETN, flicker noise (FN and Coriolis signal in-phase noise (IPN. The structure equivalent electronic model is established, and an improved white Gaussian noise reduction method for dual-mass MEMS gyroscopes is proposed which is based on sample entropy empirical mode decomposition (SEEMD and time-frequency peak filtering (TFPF. There is a contradiction in TFPS, i.e., selecting a short window length may lead to good preservation of signal amplitude but bad random noise reduction, whereas selecting a long window length may lead to serious attenuation of the signal amplitude but effective random noise reduction. In order to achieve a good tradeoff between valid signal amplitude preservation and random noise reduction, SEEMD is adopted to improve TFPF. Firstly, the original signal is decomposed into intrinsic mode functions (IMFs by EMD, and the SE of each IMF is calculated in order to classify the numerous IMFs into three different components; then short window TFPF is employed for low frequency component of IMFs, and long window TFPF is employed for high frequency component of IMFs, and the noise component of IMFs is wiped off directly; at last the final signal is obtained after reconstruction. Rotation experimental and temperature experimental are carried out to verify the proposed SEEMD-TFPF algorithm, the verification and comparison results show that the de-noising performance of SEEMD-TFPF is better than that achievable with the traditional wavelet, Kalman filter and fixed window length TFPF methods.

  9. Monte Carlo Maximum Likelihood Estimation for Generalized Long-Memory Time Series Models

    NARCIS (Netherlands)

    Mesters, G.; Koopman, S.J.; Ooms, M.

    2016-01-01

    An exact maximum likelihood method is developed for the estimation of parameters in a non-Gaussian nonlinear density function that depends on a latent Gaussian dynamic process with long-memory properties. Our method relies on the method of importance sampling and on a linear Gaussian approximating

  10. Estimating rate of occurrence of rare events with empirical bayes: A railway application

    International Nuclear Information System (INIS)

    Quigley, John; Bedford, Tim; Walls, Lesley

    2007-01-01

    Classical approaches to estimating the rate of occurrence of events perform poorly when data are few. Maximum likelihood estimators result in overly optimistic point estimates of zero for situations where there have been no events. Alternative empirical-based approaches have been proposed based on median estimators or non-informative prior distributions. While these alternatives offer an improvement over point estimates of zero, they can be overly conservative. Empirical Bayes procedures offer an unbiased approach through pooling data across different hazards to support stronger statistical inference. This paper considers the application of Empirical Bayes to high consequence low-frequency events, where estimates are required for risk mitigation decision support such as as low as reasonably possible. A summary of empirical Bayes methods is given and the choices of estimation procedures to obtain interval estimates are discussed. The approaches illustrated within the case study are based on the estimation of the rate of occurrence of train derailments within the UK. The usefulness of empirical Bayes within this context is discussed

  11. Likelihood analysis of supersymmetric SU(5) GUTs

    Energy Technology Data Exchange (ETDEWEB)

    Bagnaschi, E.; Weiglein, G. [DESY, Hamburg (Germany); Costa, J.C.; Buchmueller, O.; Citron, M.; Richards, A.; De Vries, K.J. [Imperial College, High Energy Physics Group, Blackett Laboratory, London (United Kingdom); Sakurai, K. [University of Durham, Science Laboratories, Department of Physics, Institute for Particle Physics Phenomenology, Durham (United Kingdom); University of Warsaw, Faculty of Physics, Institute of Theoretical Physics, Warsaw (Poland); Borsato, M.; Chobanova, V.; Lucio, M.; Martinez Santos, D. [Universidade de Santiago de Compostela, Santiago de Compostela (Spain); Cavanaugh, R. [Fermi National Accelerator Laboratory, Batavia, IL (United States); University of Illinois at Chicago, Physics Department, Chicago, IL (United States); Roeck, A. de [CERN, Experimental Physics Department, Geneva (Switzerland); Antwerp University, Wilrijk (Belgium); Dolan, M.J. [University of Melbourne, ARC Centre of Excellence for Particle Physics at the Terascale, School of Physics, Parkville (Australia); Ellis, J.R. [King' s College London, Theoretical Particle Physics and Cosmology Group, Department of Physics, London (United Kingdom); Theoretical Physics Department, CERN, Geneva 23 (Switzerland); Flaecher, H. [University of Bristol, H.H. Wills Physics Laboratory, Bristol (United Kingdom); Heinemeyer, S. [Campus of International Excellence UAM+CSIC, Cantoblanco, Madrid (Spain); Instituto de Fisica Teorica UAM-CSIC, Madrid (Spain); Instituto de Fisica de Cantabria (CSIC-UC), Santander (Spain); Isidori, G. [Universitaet Zuerich, Physik-Institut, Zurich (Switzerland); Olive, K.A. [University of Minnesota, William I. Fine Theoretical Physics Institute, School of Physics and Astronomy, Minneapolis, MN (United States)

    2017-02-15

    We perform a likelihood analysis of the constraints from accelerator experiments and astrophysical observations on supersymmetric (SUSY) models with SU(5) boundary conditions on soft SUSY-breaking parameters at the GUT scale. The parameter space of the models studied has seven parameters: a universal gaugino mass m{sub 1/2}, distinct masses for the scalar partners of matter fermions in five- and ten-dimensional representations of SU(5), m{sub 5} and m{sub 10}, and for the 5 and anti 5 Higgs representations m{sub H{sub u}} and m{sub H{sub d}}, a universal trilinear soft SUSY-breaking parameter A{sub 0}, and the ratio of Higgs vevs tan β. In addition to previous constraints from direct sparticle searches, low-energy and flavour observables, we incorporate constraints based on preliminary results from 13 TeV LHC searches for jets + E{sub T} events and long-lived particles, as well as the latest PandaX-II and LUX searches for direct Dark Matter detection. In addition to previously identified mechanisms for bringing the supersymmetric relic density into the range allowed by cosmology, we identify a novel u{sub R}/c{sub R} - χ{sup 0}{sub 1} coannihilation mechanism that appears in the supersymmetric SU(5) GUT model and discuss the role of ν{sub τ} coannihilation. We find complementarity between the prospects for direct Dark Matter detection and SUSY searches at the LHC. (orig.)

  12. Likelihood analysis of supersymmetric SU(5) GUTs

    Energy Technology Data Exchange (ETDEWEB)

    Bagnaschi, E. [DESY, Hamburg (Germany); Costa, J.C. [Imperial College, London (United Kingdom). Blackett Lab.; Sakurai, K. [Durham Univ. (United Kingdom). Inst. for Particle Physics Phenomonology; Warsaw Univ. (Poland). Inst. of Theoretical Physics; Collaboration: MasterCode Collaboration; and others

    2016-10-15

    We perform a likelihood analysis of the constraints from accelerator experiments and astrophysical observations on supersymmetric (SUSY) models with SU(5) boundary conditions on soft SUSY-breaking parameters at the GUT scale. The parameter space of the models studied has 7 parameters: a universal gaugino mass m{sub 1/2}, distinct masses for the scalar partners of matter fermions in five- and ten-dimensional representations of SU(5), m{sub 5} and m{sub 10}, and for the 5 and anti 5 Higgs representations m{sub H{sub u}} and m{sub H{sub d}}, a universal trilinear soft SUSY-breaking parameter A{sub 0}, and the ratio of Higgs vevs tan β. In addition to previous constraints from direct sparticle searches, low-energy and avour observables, we incorporate constraints based on preliminary results from 13 TeV LHC searches for jets+E{sub T} events and long-lived particles, as well as the latest PandaX-II and LUX searches for direct Dark Matter detection. In addition to previously-identified mechanisms for bringing the supersymmetric relic density into the range allowed by cosmology, we identify a novel u{sub R}/c{sub R}-χ{sup 0}{sub 1} coannihilation mechanism that appears in the supersymmetric SU(5) GUT model and discuss the role of ν{sub T} coannihilation. We find complementarity between the prospects for direct Dark Matter detection and SUSY searches at the LHC.

  13. Mokken scale analysis of mental health and well-being questionnaire item responses: a non-parametric IRT method in empirical research for applied health researchers

    Directory of Open Access Journals (Sweden)

    Stochl Jan

    2012-06-01

    Full Text Available Abstract Background Mokken scaling techniques are a useful tool for researchers who wish to construct unidimensional tests or use questionnaires that comprise multiple binary or polytomous items. The stochastic cumulative scaling model offered by this approach is ideally suited when the intention is to score an underlying latent trait by simple addition of the item response values. In our experience, the Mokken model appears to be less well-known than for example the (related Rasch model, but is seeing increasing use in contemporary clinical research and public health. Mokken's method is a generalisation of Guttman scaling that can assist in the determination of the dimensionality of tests or scales, and enables consideration of reliability, without reliance on Cronbach's alpha. This paper provides a practical guide to the application and interpretation of this non-parametric item response theory method in empirical research with health and well-being questionnaires. Methods Scalability of data from 1 a cross-sectional health survey (the Scottish Health Education Population Survey and 2 a general population birth cohort study (the National Child Development Study illustrate the method and modeling steps for dichotomous and polytomous items respectively. The questionnaire data analyzed comprise responses to the 12 item General Health Questionnaire, under the binary recoding recommended for screening applications, and the ordinal/polytomous responses to the Warwick-Edinburgh Mental Well-being Scale. Results and conclusions After an initial analysis example in which we select items by phrasing (six positive versus six negatively worded items we show that all items from the 12-item General Health Questionnaire (GHQ-12 – when binary scored – were scalable according to the double monotonicity model, in two short scales comprising six items each (Bech’s “well-being” and “distress” clinical scales. An illustration of ordinal item analysis

  14. The External Performance Appraisal of China Energy Regulation: An Empirical Study Using a TOPSIS Method Based on Entropy Weight and Mahalanobis Distance.

    Science.gov (United States)

    Wang, Zheng-Xin; Li, Dan-Dan; Zheng, Hong-Hao

    2018-01-30

    In China's industrialization process, the effective regulation of energy and environment can promote the positive externality of energy consumption while reducing negative externality, which is an important means for realizing the sustainable development of an economic society. The study puts forward an improved technique for order preference by similarity to an ideal solution based on entropy weight and Mahalanobis distance (briefly referred as E-M-TOPSIS). The performance of the approach was verified to be satisfactory. By separately using traditional and improved TOPSIS methods, the study carried out the empirical appraisals on the external performance of China's energy regulation during 1999~2015. The results show that the correlation between the performance indexes causes the significant difference between the appraisal results of E-M-TOPSIS and traditional TOPSIS. The E-M-TOPSIS takes the correlation between indexes into account and generally softens the closeness degree compared with traditional TOPSIS. Moreover, it makes the relative closeness degree fluctuate within a small-amplitude. The results conform to the practical condition of China's energy regulation and therefore the E-M-TOPSIS is favorably applicable for the external performance appraisal of energy regulation. Additionally, the external economic performance and social responsibility performance (including environmental and energy safety performances) based on the E-M-TOPSIS exhibit significantly different fluctuation trends. The external economic performance dramatically fluctuates with a larger fluctuation amplitude, while the social responsibility performance exhibits a relatively stable interval fluctuation. This indicates that compared to the social responsibility performance, the fluctuation of external economic performance is more sensitive to energy regulation.

  15. Assessing Compatibility of Direct Detection Data: Halo-Independent Global Likelihood Analyses

    CERN Document Server

    Gelmini, Graciela B.

    2016-10-18

    We present two different halo-independent methods utilizing a global maximum likelihood that can assess the compatibility of dark matter direct detection data given a particular dark matter model. The global likelihood we use is comprised of at least one extended likelihood and an arbitrary number of Poisson or Gaussian likelihoods. In the first method we find the global best fit halo function and construct a two sided pointwise confidence band, which can then be compared with those derived from the extended likelihood alone to assess the joint compatibility of the data. In the second method we define a "constrained parameter goodness-of-fit" test statistic, whose $p$-value we then use to define a "plausibility region" (e.g. where $p \\geq 10\\%$). For any halo function not entirely contained within the plausibility region, the level of compatibility of the data is very low (e.g. $p < 10 \\%$). As an example we apply these methods to CDMS-II-Si and SuperCDMS data, assuming dark matter particles with elastic s...

  16. Mokken scale analysis of mental health and well-being questionnaire item responses: a non-parametric IRT method in empirical research for applied health researchers.

    Science.gov (United States)

    Stochl, Jan; Jones, Peter B; Croudace, Tim J

    2012-06-11

    Mokken scaling techniques are a useful tool for researchers who wish to construct unidimensional tests or use questionnaires that comprise multiple binary or polytomous items. The stochastic cumulative scaling model offered by this approach is ideally suited when the intention is to score an underlying latent trait by simple addition of the item response values. In our experience, the Mokken model appears to be less well-known than for example the (related) Rasch model, but is seeing increasing use in contemporary clinical research and public health. Mokken's method is a generalisation of Guttman scaling that can assist in the determination of the dimensionality of tests or scales, and enables consideration of reliability, without reliance on Cronbach's alpha. This paper provides a practical guide to the application and interpretation of this non-parametric item response theory method in empirical research with health and well-being questionnaires. Scalability of data from 1) a cross-sectional health survey (the Scottish Health Education Population Survey) and 2) a general population birth cohort study (the National Child Development Study) illustrate the method and modeling steps for dichotomous and polytomous items respectively. The questionnaire data analyzed comprise responses to the 12 item General Health Questionnaire, under the binary recoding recommended for screening applications, and the ordinal/polytomous responses to the Warwick-Edinburgh Mental Well-being Scale. After an initial analysis example in which we select items by phrasing (six positive versus six negatively worded items) we show that all items from the 12-item General Health Questionnaire (GHQ-12)--when binary scored--were scalable according to the double monotonicity model, in two short scales comprising six items each (Bech's "well-being" and "distress" clinical scales). An illustration of ordinal item analysis confirmed that all 14 positively worded items of the Warwick-Edinburgh Mental

  17. The behavior of the likelihood ratio test for testing missingness

    OpenAIRE

    Hens, Niel; Aerts, Marc; Molenberghs, Geert; Thijs, Herbert

    2003-01-01

    To asses the sensitivity of conclusions to model choices in the context of selection models for non-random dropout, one can oppose the different missing mechanisms to each other; e.g. by the likelihood ratio tests. The finite sample behavior of the null distribution and the power of the likelihood ratio test is studied under a variety of missingness mechanisms. missing data; sensitivity analysis; likelihood ratio test; missing mechanisms

  18. Neutron spectra unfolding with maximum entropy and maximum likelihood

    International Nuclear Information System (INIS)

    Itoh, Shikoh; Tsunoda, Toshiharu

    1989-01-01

    A new unfolding theory has been established on the basis of the maximum entropy principle and the maximum likelihood method. This theory correctly embodies the Poisson statistics of neutron detection, and always brings a positive solution over the whole energy range. Moreover, the theory unifies both problems of overdetermined and of underdetermined. For the latter, the ambiguity in assigning a prior probability, i.e. the initial guess in the Bayesian sense, has become extinct by virtue of the principle. An approximate expression of the covariance matrix for the resultant spectra is also presented. An efficient algorithm to solve the nonlinear system, which appears in the present study, has been established. Results of computer simulation showed the effectiveness of the present theory. (author)

  19. Preliminary attempt on maximum likelihood tomosynthesis reconstruction of DEI data

    International Nuclear Information System (INIS)

    Wang Zhentian; Huang Zhifeng; Zhang Li; Kang Kejun; Chen Zhiqiang; Zhu Peiping

    2009-01-01

    Tomosynthesis is a three-dimension reconstruction method that can remove the effect of superimposition with limited angle projections. It is especially promising in mammography where radiation dose is concerned. In this paper, we propose a maximum likelihood tomosynthesis reconstruction algorithm (ML-TS) on the apparent absorption data of diffraction enhanced imaging (DEI). The motivation of this contribution is to develop a tomosynthesis algorithm in low-dose or noisy circumstances and make DEI get closer to clinic application. The theoretical statistical models of DEI data in physics are analyzed and the proposed algorithm is validated with the experimental data at the Beijing Synchrotron Radiation Facility (BSRF). The results of ML-TS have better contrast compared with the well known 'shift-and-add' algorithm and FBP algorithm. (authors)

  20. H.264 SVC Complexity Reduction Based on Likelihood Mode Decision

    Directory of Open Access Journals (Sweden)

    L. Balaji

    2015-01-01

    Full Text Available H.264 Advanced Video Coding (AVC was prolonged to Scalable Video Coding (SVC. SVC executes in different electronics gadgets such as personal computer, HDTV, SDTV, IPTV, and full-HDTV in which user demands various scaling of the same content. The various scaling is resolution, frame rate, quality, heterogeneous networks, bandwidth, and so forth. Scaling consumes more encoding time and computational complexity during mode selection. In this paper, to reduce encoding time and computational complexity, a fast mode decision algorithm based on likelihood mode decision (LMD is proposed. LMD is evaluated in both temporal and spatial scaling. From the results, we conclude that LMD performs well, when compared to the previous fast mode decision algorithms. The comparison parameters are time, PSNR, and bit rate. LMD achieve time saving of 66.65% with 0.05% detriment in PSNR and 0.17% increment in bit rate compared with the full search method.

  1. H.264 SVC Complexity Reduction Based on Likelihood Mode Decision.

    Science.gov (United States)

    Balaji, L; Thyagharajan, K K

    2015-01-01

    H.264 Advanced Video Coding (AVC) was prolonged to Scalable Video Coding (SVC). SVC executes in different electronics gadgets such as personal computer, HDTV, SDTV, IPTV, and full-HDTV in which user demands various scaling of the same content. The various scaling is resolution, frame rate, quality, heterogeneous networks, bandwidth, and so forth. Scaling consumes more encoding time and computational complexity during mode selection. In this paper, to reduce encoding time and computational complexity, a fast mode decision algorithm based on likelihood mode decision (LMD) is proposed. LMD is evaluated in both temporal and spatial scaling. From the results, we conclude that LMD performs well, when compared to the previous fast mode decision algorithms. The comparison parameters are time, PSNR, and bit rate. LMD achieve time saving of 66.65% with 0.05% detriment in PSNR and 0.17% increment in bit rate compared with the full search method.

  2. Likelihood Approximation With Hierarchical Matrices For Large Spatial Datasets

    KAUST Repository

    Litvinenko, Alexander

    2017-09-03

    We use available measurements to estimate the unknown parameters (variance, smoothness parameter, and covariance length) of a covariance function by maximizing the joint Gaussian log-likelihood function. To overcome cubic complexity in the linear algebra, we approximate the discretized covariance function in the hierarchical (H-) matrix format. The H-matrix format has a log-linear computational cost and storage O(kn log n), where the rank k is a small integer and n is the number of locations. The H-matrix technique allows us to work with general covariance matrices in an efficient way, since H-matrices can approximate inhomogeneous covariance functions, with a fairly general mesh that is not necessarily axes-parallel, and neither the covariance matrix itself nor its inverse have to be sparse. We demonstrate our method with Monte Carlo simulations and an application to soil moisture data. The C, C++ codes and data are freely available.

  3. Marginal Maximum Likelihood Estimation of Item Response Models in R

    Directory of Open Access Journals (Sweden)

    Matthew S. Johnson

    2007-02-01

    Full Text Available Item response theory (IRT models are a class of statistical models used by researchers to describe the response behaviors of individuals to a set of categorically scored items. The most common IRT models can be classified as generalized linear fixed- and/or mixed-effect models. Although IRT models appear most often in the psychological testing literature, researchers in other fields have successfully utilized IRT-like models in a wide variety of applications. This paper discusses the three major methods of estimation in IRT and develops R functions utilizing the built-in capabilities of the R environment to find the marginal maximum likelihood estimates of the generalized partial credit model. The currently available R packages ltm is also discussed.

  4. Maximum likelihood estimation of phase-type distributions

    DEFF Research Database (Denmark)

    Esparza, Luz Judith R

    for both univariate and multivariate cases. Methods like the EM algorithm and Markov chain Monte Carlo are applied for this purpose. Furthermore, this thesis provides explicit formulae for computing the Fisher information matrix for discrete and continuous phase-type distributions, which is needed to find......This work is concerned with the statistical inference of phase-type distributions and the analysis of distributions with rational Laplace transform, known as matrix-exponential distributions. The thesis is focused on the estimation of the maximum likelihood parameters of phase-type distributions...... confidence regions for their estimated parameters. Finally, a new general class of distributions, called bilateral matrix-exponential distributions, is defined. These distributions have the entire real line as domain and can be used, for instance, for modelling. In addition, this class of distributions...

  5. The Likelihood of Recent Record Warmth.

    Science.gov (United States)

    Mann, Michael E; Rahmstorf, Stefan; Steinman, Byron A; Tingley, Martin; Miller, Sonya K

    2016-01-25

    2014 was nominally the warmest year on record for both the globe and northern hemisphere based on historical records spanning the past one and a half centuries. It was the latest in a recent run of record temperatures spanning the past decade and a half. Press accounts reported odds as low as one-in-650 million that the observed run of global temperature records would be expected to occur in the absence of human-caused global warming. Press reports notwithstanding, the question of how likely observed temperature records may have have been both with and without human influence is interesting in its own right. Here we attempt to address that question using a semi-empirical approach that combines the latest (CMIP5) climate model simulations with observations of global and hemispheric mean temperature. We find that individual record years and the observed runs of record-setting temperatures were extremely unlikely to have occurred in the absence of human-caused climate change, though not nearly as unlikely as press reports have suggested. These same record temperatures were, by contrast, quite likely to have occurred in the presence of anthropogenic climate forcing.

  6. Penalized Maximum Likelihood Estimation for univariate normal mixture distributions

    International Nuclear Information System (INIS)

    Ridolfi, A.; Idier, J.

    2001-01-01

    Due to singularities of the likelihood function, the maximum likelihood approach for the estimation of the parameters of normal mixture models is an acknowledged ill posed optimization problem. Ill posedness is solved by penalizing the likelihood function. In the Bayesian framework, it amounts to incorporating an inverted gamma prior in the likelihood function. A penalized version of the EM algorithm is derived, which is still explicit and which intrinsically assures that the estimates are not singular. Numerical evidence of the latter property is put forward with a test

  7. Analysis of Minute Features in Speckled Imagery with Maximum Likelihood Estimation

    Directory of Open Access Journals (Sweden)

    Alejandro C. Frery

    2004-12-01

    Full Text Available This paper deals with numerical problems arising when performing maximum likelihood parameter estimation in speckled imagery using small samples. The noise that appears in images obtained with coherent illumination, as is the case of sonar, laser, ultrasound-B, and synthetic aperture radar, is called speckle, and it can neither be assumed Gaussian nor additive. The properties of speckle noise are well described by the multiplicative model, a statistical framework from which stem several important distributions. Amongst these distributions, one is regarded as the universal model for speckled data, namely, the 𝒢0 law. This paper deals with amplitude data, so the 𝒢A0 distribution will be used. The literature reports that techniques for obtaining estimates (maximum likelihood, based on moments and on order statistics of the parameters of the 𝒢A0 distribution require samples of hundreds, even thousands, of observations in order to obtain sensible values. This is verified for maximum likelihood estimation, and a proposal based on alternate optimization is made to alleviate this situation. The proposal is assessed with real and simulated data, showing that the convergence problems are no longer present. A Monte Carlo experiment is devised to estimate the quality of maximum likelihood estimators in small samples, and real data is successfully analyzed with the proposed alternated procedure. Stylized empirical influence functions are computed and used to choose a strategy for computing maximum likelihood estimates that is resistant to outliers.

  8. Maximum likelihood positioning algorithm for high-resolution PET scanners

    International Nuclear Information System (INIS)

    Gross-Weege, Nicolas; Schug, David; Hallen, Patrick; Schulz, Volkmar

    2016-01-01

    Purpose: In high-resolution positron emission tomography (PET), lightsharing elements are incorporated into typical detector stacks to read out scintillator arrays in which one scintillator element (crystal) is smaller than the size of the readout channel. In order to identify the hit crystal by means of the measured light distribution, a positioning algorithm is required. One commonly applied positioning algorithm uses the center of gravity (COG) of the measured light distribution. The COG algorithm is limited in spatial resolution by noise and intercrystal Compton scatter. The purpose of this work is to develop a positioning algorithm which overcomes this limitation. Methods: The authors present a maximum likelihood (ML) algorithm which compares a set of expected light distributions given by probability density functions (PDFs) with the measured light distribution. Instead of modeling the PDFs by using an analytical model, the PDFs of the proposed ML algorithm are generated assuming a single-gamma-interaction model from measured data. The algorithm was evaluated with a hot-rod phantom measurement acquired with the preclinical HYPERION II D PET scanner. In order to assess the performance with respect to sensitivity, energy resolution, and image quality, the ML algorithm was compared to a COG algorithm which calculates the COG from a restricted set of channels. The authors studied the energy resolution of the ML and the COG algorithm regarding incomplete light distributions (missing channel information caused by detector dead time). Furthermore, the authors investigated the effects of using a filter based on the likelihood values on sensitivity, energy resolution, and image quality. Results: A sensitivity gain of up to 19% was demonstrated in comparison to the COG algorithm for the selected operation parameters. Energy resolution and image quality were on a similar level for both algorithms. Additionally, the authors demonstrated that the performance of the ML

  9. Likelihood inference of non-constant diversification rates with incomplete taxon sampling.

    Science.gov (United States)

    Höhna, Sebastian

    2014-01-01

    Large-scale phylogenies provide a valuable source to study background diversification rates and investigate if the rates have changed over time. Unfortunately most large-scale, dated phylogenies are sparsely sampled (fewer than 5% of the described species) and taxon sampling is not uniform. Instead, taxa are frequently sampled to obtain at least one representative per subgroup (e.g. family) and thus to maximize diversity (diversified sampling). So far, such complications have been ignored, potentially biasing the conclusions that have been reached. In this study I derive the likelihood of a birth-death process with non-constant (time-dependent) diversification rates and diversified taxon sampling. Using simulations I test if the true parameters and the sampling method can be recovered when the trees are small or medium sized (fewer than 200 taxa). The results show that the diversification rates can be inferred and the estimates are unbiased for large trees but are biased for small trees (fewer than 50 taxa). Furthermore, model selection by means of Akaike's Information Criterion favors the true model if the true rates differ sufficiently from alternative models (e.g. the birth-death model is recovered if the extinction rate is large and compared to a pure-birth model). Finally, I applied six different diversification rate models--ranging from a constant-rate pure birth process to a decreasing speciation rate birth-death process but excluding any rate shift models--on three large-scale empirical phylogenies (ants, mammals and snakes with respectively 149, 164 and 41 sampled species). All three phylogenies were constructed by diversified taxon sampling, as stated by the authors. However only the snake phylogeny supported diversified taxon sampling. Moreover, a parametric bootstrap test revealed that none of the tested models provided a good fit to the observed data. The model assumptions, such as homogeneous rates across species or no rate shifts, appear to be

  10. Geochemical wolframite fingerprinting - the likelihood ratio approach for laser ablation ICP-MS data.

    Science.gov (United States)

    Martyna, Agnieszka; Gäbler, Hans-Eike; Bahr, Andreas; Zadora, Grzegorz

    2018-05-01

    Wolframite has been specified as a 'conflict mineral' by a U.S. Government Act, which obliges companies that use these minerals to report their origin. Minerals originating from conflict regions in the Democratic Republic of the Congo shall be excluded from the market as their illegal mining, trading, and taxation are supposed to fuel ongoing violent conflicts. The German Federal Institute for Geosciences and Natural Resources (BGR) developed a geochemical fingerprinting method for wolframite based on laser ablation inductively coupled plasma-mass spectrometry. Concentrations of 46 elements in about 5300 wolframite grains from 64 mines were determined. The issue of verifying the declared origins of the wolframite samples may be framed as a forensic problem by considering two contrasting hypotheses: the examined sample and a sample collected from the declared mine originate from the same mine (H 1 ), and the two samples come from different mines (H 2 ). The solution is found using the likelihood ratio (LR) theory. On account of the multidimensionality, the lack of normal distribution of data within each sample, and the huge within-sample dispersion in relation to the dispersion between samples, the classic LR models had to be modified. Robust principal component analysis and linear discriminant analysis were used to characterize samples. The similarity of two samples was expressed by Kolmogorov-Smirnov distances, which were interpreted in view of H 1 and H 2 hypotheses within the LR framework. The performance of the models, controlled by the levels of incorrect responses and the empirical cross entropy, demonstrated that the proposed LR models are successful in verifying the authenticity of the wolframite samples. Graphical abstract Geochemical wolframite fingerprinting.

  11. Likelihood inference of non-constant diversification rates with incomplete taxon sampling.

    Directory of Open Access Journals (Sweden)

    Sebastian Höhna

    Full Text Available Large-scale phylogenies provide a valuable source to study background diversification rates and investigate if the rates have changed over time. Unfortunately most large-scale, dated phylogenies are sparsely sampled (fewer than 5% of the described species and taxon sampling is not uniform. Instead, taxa are frequently sampled to obtain at least one representative per subgroup (e.g. family and thus to maximize diversity (diversified sampling. So far, such complications have been ignored, potentially biasing the conclusions that have been reached. In this study I derive the likelihood of a birth-death process with non-constant (time-dependent diversification rates and diversified taxon sampling. Using simulations I test if the true parameters and the sampling method can be recovered when the trees are small or medium sized (fewer than 200 taxa. The results show that the diversification rates can be inferred and the estimates are unbiased for large trees but are biased for small trees (fewer than 50 taxa. Furthermore, model selection by means of Akaike's Information Criterion favors the true model if the true rates differ sufficiently from alternative models (e.g. the birth-death model is recovered if the extinction rate is large and compared to a pure-birth model. Finally, I applied six different diversification rate models--ranging from a constant-rate pure birth process to a decreasing speciation rate birth-death process but excluding any rate shift models--on three large-scale empirical phylogenies (ants, mammals and snakes with respectively 149, 164 and 41 sampled species. All three phylogenies were constructed by diversified taxon sampling, as stated by the authors. However only the snake phylogeny supported diversified taxon sampling. Moreover, a parametric bootstrap test revealed that none of the tested models provided a good fit to the observed data. The model assumptions, such as homogeneous rates across species or no rate shifts, appear

  12. Calibrating spectral images using penalized likelihood

    NARCIS (Netherlands)

    Heijden, van der G.W.A.M.; Glasbey, C.

    2003-01-01

    A new method is presented for automatic correction of distortions and for spectral calibration (which band corresponds to which wavelength) of spectral images recorded by means of a spectrograph. The method consists of recording a bar-like pattern with an illumination source with spectral bands

  13. Likelihood Ratio Based Mixed Resolution Facial Comparison

    NARCIS (Netherlands)

    Peng, Y.; Spreeuwers, Lieuwe Jan; Veldhuis, Raymond N.J.

    2015-01-01

    In this paper, we propose a novel method for low-resolution face recognition. It is especially useful for a common situation in forensic search where faces of low resolution, e.g. on surveillance footage or in a crowd, must be compared to a high-resolution reference. This method is based on the

  14. Maximum likelihood approach for several stochastic volatility models

    International Nuclear Information System (INIS)

    Camprodon, Jordi; Perelló, Josep

    2012-01-01

    Volatility measures the amplitude of price fluctuations. Despite it being one of the most important quantities in finance, volatility is not directly observable. Here we apply a maximum likelihood method which assumes that price and volatility follow a two-dimensional diffusion process where volatility is the stochastic diffusion coefficient of the log-price dynamics. We apply this method to the simplest versions of the expOU, the OU and the Heston stochastic volatility models and we study their performance in terms of the log-price probability, the volatility probability, and its Mean First-Passage Time. The approach has some predictive power on the future returns amplitude by only knowing the current volatility. The assumed models do not consider long-range volatility autocorrelation and the asymmetric return-volatility cross-correlation but the method still yields very naturally these two important stylized facts. We apply the method to different market indices and with a good performance in all cases. (paper)

  15. Planck intermediate results: XVI. Profile likelihoods for cosmological parameters

    DEFF Research Database (Denmark)

    Bartlett, J.G.; Cardoso, J.-F.; Delabrouille, J.

    2014-01-01

    We explore the 2013 Planck likelihood function with a high-precision multi-dimensional minimizer (Minuit). This allows a refinement of the CDM best-fit solution with respect to previously-released results, and the construction of frequentist confidence intervals using profile likelihoods. The agr...

  16. Planck 2013 results. XV. CMB power spectra and likelihood

    DEFF Research Database (Denmark)

    Tauber, Jan; Bartlett, J.G.; Bucher, M.

    2014-01-01

    This paper presents the Planck 2013 likelihood, a complete statistical description of the two-point correlation function of the CMB temperature fluctuations that accounts for all known relevant uncertainties, both instrumental and astrophysical in nature. We use this likelihood to derive our best...

  17. The modified signed likelihood statistic and saddlepoint approximations

    DEFF Research Database (Denmark)

    Jensen, Jens Ledet

    1992-01-01

    SUMMARY: For a number of tests in exponential families we show that the use of a normal approximation to the modified signed likelihood ratio statistic r * is equivalent to the use of a saddlepoint approximation. This is also true in a large deviation region where the signed likelihood ratio...... statistic r is of order √ n. © 1992 Biometrika Trust....

  18. LASER: A Maximum Likelihood Toolkit for Detecting Temporal Shifts in Diversification Rates From Molecular Phylogenies

    Directory of Open Access Journals (Sweden)

    Daniel L. Rabosky

    2006-01-01

    Full Text Available Rates of species origination and extinction can vary over time during evolutionary radiations, and it is possible to reconstruct the history of diversification using molecular phylogenies of extant taxa only. Maximum likelihood methods provide a useful framework for inferring temporal variation in diversification rates. LASER is a package for the R programming environment that implements maximum likelihood methods based on the birth-death process to test whether diversification rates have changed over time. LASER contrasts the likelihood of phylogenetic data under models where diversification rates have changed over time to alternative models where rates have remained constant over time. Major strengths of the package include the ability to detect temporal increases in diversification rates and the inference of diversification parameters under multiple rate-variable models of diversification. The program and associated documentation are freely available from the R package archive at http://cran.r-project.org.

  19. Approximate likelihood approaches for detecting the influence of primordial gravitational waves in cosmic microwave background polarization

    Science.gov (United States)

    Pan, Zhen; Anderes, Ethan; Knox, Lloyd

    2018-05-01

    One of the major targets for next-generation cosmic microwave background (CMB) experiments is the detection of the primordial B-mode signal. Planning is under way for Stage-IV experiments that are projected to have instrumental noise small enough to make lensing and foregrounds the dominant source of uncertainty for estimating the tensor-to-scalar ratio r from polarization maps. This makes delensing a crucial part of future CMB polarization science. In this paper we present a likelihood method for estimating the tensor-to-scalar ratio r from CMB polarization observations, which combines the benefits of a full-scale likelihood approach with the tractability of the quadratic delensing technique. This method is a pixel space, all order likelihood analysis of the quadratic delensed B modes, and it essentially builds upon the quadratic delenser by taking into account all order lensing and pixel space anomalies. Its tractability relies on a crucial factorization of the pixel space covariance matrix of the polarization observations which allows one to compute the full Gaussian approximate likelihood profile, as a function of r , at the same computational cost of a single likelihood evaluation.

  20. Likelihood analysis of parity violation in the compound nucleus

    International Nuclear Information System (INIS)

    Bowman, D.; Sharapov, E.

    1993-01-01

    We discuss the determination of the root mean-squared matrix element of the parity-violating interaction between compound-nuclear states using likelihood analysis. We briefly review the relevant features of the statistical model of the compound nucleus and the formalism of likelihood analysis. We then discuss the application of likelihood analysis to data on panty-violating longitudinal asymmetries. The reliability of the extracted value of the matrix element and errors assigned to the matrix element is stressed. We treat the situations where the spins of the p-wave resonances are not known and known using experimental data and Monte Carlo techniques. We conclude that likelihood analysis provides a reliable way to determine M and its confidence interval. We briefly discuss some problems associated with the normalization of the likelihood function

  1. Calibration of two complex ecosystem models with different likelihood functions

    Science.gov (United States)

    Hidy, Dóra; Haszpra, László; Pintér, Krisztina; Nagy, Zoltán; Barcza, Zoltán

    2014-05-01

    The biosphere is a sensitive carbon reservoir. Terrestrial ecosystems were approximately carbon neutral during the past centuries, but they became net carbon sinks due to climate change induced environmental change and associated CO2 fertilization effect of the atmosphere. Model studies and measurements indicate that the biospheric carbon sink can saturate in the future due to ongoing climate change which can act as a positive feedback. Robustness of carbon cycle models is a key issue when trying to choose the appropriate model for decision support. The input parameters of the process-based models are decisive regarding the model output. At the same time there are several input parameters for which accurate values are hard to obtain directly from experiments or no local measurements are available. Due to the uncertainty associated with the unknown model parameters significant bias can be experienced if the model is used to simulate the carbon and nitrogen cycle components of different ecosystems. In order to improve model performance the unknown model parameters has to be estimated. We developed a multi-objective, two-step calibration method based on Bayesian approach in order to estimate the unknown parameters of PaSim and Biome-BGC models. Biome-BGC and PaSim are a widely used biogeochemical models that simulate the storage and flux of water, carbon, and nitrogen between the ecosystem and the atmosphere, and within the components of the terrestrial ecosystems (in this research the developed version of Biome-BGC is used which is referred as BBGC MuSo). Both models were calibrated regardless the simulated processes and type of model parameters. The calibration procedure is based on the comparison of measured data with simulated results via calculating a likelihood function (degree of goodness-of-fit between simulated and measured data). In our research different likelihood function formulations were used in order to examine the effect of the different model

  2. Empirical Specification of Utility Functions.

    Science.gov (United States)

    Mellenbergh, Gideon J.

    Decision theory can be applied to four types of decision situations in education and psychology: (1) selection; (2) placement; (3) classification; and (4) mastery. For the application of the theory, a utility function must be specified. Usually the utility function is chosen on a priori grounds. In this paper methods for the empirical assessment…

  3. Quantifying uncertainty, variability and likelihood for ordinary differential equation models

    LENUS (Irish Health Repository)

    Weisse, Andrea Y

    2010-10-28

    Abstract Background In many applications, ordinary differential equation (ODE) models are subject to uncertainty or variability in initial conditions and parameters. Both, uncertainty and variability can be quantified in terms of a probability density function on the state and parameter space. Results The partial differential equation that describes the evolution of this probability density function has a form that is particularly amenable to application of the well-known method of characteristics. The value of the density at some point in time is directly accessible by the solution of the original ODE extended by a single extra dimension (for the value of the density). This leads to simple methods for studying uncertainty, variability and likelihood, with significant advantages over more traditional Monte Carlo and related approaches especially when studying regions with low probability. Conclusions While such approaches based on the method of characteristics are common practice in other disciplines, their advantages for the study of biological systems have so far remained unrecognized. Several examples illustrate performance and accuracy of the approach and its limitations.

  4. The fine-tuning cost of the likelihood in SUSY models

    International Nuclear Information System (INIS)

    Ghilencea, D.M.; Ross, G.G.

    2013-01-01

    In SUSY models, the fine-tuning of the electroweak (EW) scale with respect to their parameters γ i ={m 0 ,m 1/2 ,μ 0 ,A 0 ,B 0 ,…} and the maximal likelihood L to fit the experimental data are usually regarded as two different problems. We show that, if one regards the EW minimum conditions as constraints that fix the EW scale, this commonly held view is not correct and that the likelihood contains all the information about fine-tuning. In this case we show that the corrected likelihood is equal to the ratio L/Δ of the usual likelihood L and the traditional fine-tuning measure Δ of the EW scale. A similar result is obtained for the integrated likelihood over the set {γ i }, that can be written as a surface integral of the ratio L/Δ, with the surface in γ i space determined by the EW minimum constraints. As a result, a large likelihood actually demands a large ratio L/Δ or equivalently, a small χ new 2 =χ old 2 +2lnΔ. This shows the fine-tuning cost to the likelihood (χ new 2 ) of the EW scale stability enforced by SUSY, that is ignored in data fits. A good χ new 2 /d.o.f.≈1 thus demands SUSY models have a fine-tuning amount Δ≪exp(d.o.f./2), which provides a model-independent criterion for acceptable fine-tuning. If this criterion is not met, one can thus rule out SUSY models without a further χ 2 /d.o.f. analysis. Numerical methods to fit the data can easily be adapted to account for this effect.

  5. A maximum pseudo-likelihood approach for estimating species trees under the coalescent model

    Directory of Open Access Journals (Sweden)

    Edwards Scott V

    2010-10-01

    Full Text Available Abstract Background Several phylogenetic approaches have been developed to estimate species trees from collections of gene trees. However, maximum likelihood approaches for estimating species trees under the coalescent model are limited. Although the likelihood of a species tree under the multispecies coalescent model has already been derived by Rannala and Yang, it can be shown that the maximum likelihood estimate (MLE of the species tree (topology, branch lengths, and population sizes from gene trees under this formula does not exist. In this paper, we develop a pseudo-likelihood function of the species tree to obtain maximum pseudo-likelihood estimates (MPE of species trees, with branch lengths of the species tree in coalescent units. Results We show that the MPE of the species tree is statistically consistent as the number M of genes goes to infinity. In addition, the probability that the MPE of the species tree matches the true species tree converges to 1 at rate O(M -1. The simulation results confirm that the maximum pseudo-likelihood approach is statistically consistent even when the species tree is in the anomaly zone. We applied our method, Maximum Pseudo-likelihood for Estimating Species Trees (MP-EST to a mammal dataset. The four major clades found in the MP-EST tree are consistent with those in the Bayesian concatenation tree. The bootstrap supports for the species tree estimated by the MP-EST method are more reasonable than the posterior probability supports given by the Bayesian concatenation method in reflecting the level of uncertainty in gene trees and controversies over the relationship of four major groups of placental mammals. Conclusions MP-EST can consistently estimate the topology and branch lengths (in coalescent units of the species tree. Although the pseudo-likelihood is derived from coalescent theory, and assumes no gene flow or horizontal gene transfer (HGT, the MP-EST method is robust to a small amount of HGT in the

  6. The Logic of the Method of Agent-Based Simulation in the Social Sciences: Empirical and Intentional Adequacy of Computer Programs

    OpenAIRE

    Nuno David; Jaime Simão Sichman; Helder Coelho

    2005-01-01

    WOS:000235217900009 (Nº de Acesso Web of Science) The classical theory of computation does not represent an adequate model of reality for simulation in the social sciences. The aim of this paper is to construct a methodological perspective that is able to conciliate the formal and empirical logic of program verification in computer science, with the interpretative and multiparadigmatic logic of the social sciences. We attempt to evaluate whether social simulation implies an additional pers...

  7. Likelihood ratio model for classification of forensic evidence

    Energy Technology Data Exchange (ETDEWEB)

    Zadora, G., E-mail: gzadora@ies.krakow.pl [Institute of Forensic Research, Westerplatte 9, 31-033 Krakow (Poland); Neocleous, T., E-mail: tereza@stats.gla.ac.uk [University of Glasgow, Department of Statistics, 15 University Gardens, Glasgow G12 8QW (United Kingdom)

    2009-05-29

    One of the problems of analysis of forensic evidence such as glass fragments, is the determination of their use-type category, e.g. does a glass fragment originate from an unknown window or container? Very small glass fragments arise during various accidents and criminal offences, and could be carried on the clothes, shoes and hair of participants. It is therefore necessary to obtain information on their physicochemical composition in order to solve the classification problem. Scanning Electron Microscopy coupled with an Energy Dispersive X-ray Spectrometer and the Glass Refractive Index Measurement method are routinely used in many forensic institutes for the investigation of glass. A natural form of glass evidence evaluation for forensic purposes is the likelihood ratio-LR = p(E|H{sub 1})/p(E|H{sub 2}). The main aim of this paper was to study the performance of LR models for glass object classification which considered one or two sources of data variability, i.e. between-glass-object variability and(or) within-glass-object variability. Within the proposed model a multivariate kernel density approach was adopted for modelling the between-object distribution and a multivariate normal distribution was adopted for modelling within-object distributions. Moreover, a graphical method of estimating the dependence structure was employed to reduce the highly multivariate problem to several lower-dimensional problems. The performed analysis showed that the best likelihood model was the one which allows to include information about between and within-object variability, and with variables derived from elemental compositions measured by SEM-EDX, and refractive values determined before (RI{sub b}) and after (RI{sub a}) the annealing process, in the form of dRI = log{sub 10}|RI{sub a} - RI{sub b}|. This model gave better results than the model with only between-object variability considered. In addition, when dRI and variables derived from elemental compositions were used, this

  8. Likelihood ratio model for classification of forensic evidence

    International Nuclear Information System (INIS)

    Zadora, G.; Neocleous, T.

    2009-01-01

    One of the problems of analysis of forensic evidence such as glass fragments, is the determination of their use-type category, e.g. does a glass fragment originate from an unknown window or container? Very small glass fragments arise during various accidents and criminal offences, and could be carried on the clothes, shoes and hair of participants. It is therefore necessary to obtain information on their physicochemical composition in order to solve the classification problem. Scanning Electron Microscopy coupled with an Energy Dispersive X-ray Spectrometer and the Glass Refractive Index Measurement method are routinely used in many forensic institutes for the investigation of glass. A natural form of glass evidence evaluation for forensic purposes is the likelihood ratio-LR = p(E|H 1 )/p(E|H 2 ). The main aim of this paper was to study the performance of LR models for glass object classification which considered one or two sources of data variability, i.e. between-glass-object variability and(or) within-glass-object variability. Within the proposed model a multivariate kernel density approach was adopted for modelling the between-object distribution and a multivariate normal distribution was adopted for modelling within-object distributions. Moreover, a graphical method of estimating the dependence structure was employed to reduce the highly multivariate problem to several lower-dimensional problems. The performed analysis showed that the best likelihood model was the one which allows to include information about between and within-object variability, and with variables derived from elemental compositions measured by SEM-EDX, and refractive values determined before (RI b ) and after (RI a ) the annealing process, in the form of dRI = log 10 |RI a - RI b |. This model gave better results than the model with only between-object variability considered. In addition, when dRI and variables derived from elemental compositions were used, this model outperformed two other

  9. Multi-level restricted maximum likelihood covariance estimation and kriging for large non-gridded spatial datasets

    KAUST Repository

    Castrillon, Julio; Genton, Marc G.; Yokota, Rio

    2015-01-01

    We develop a multi-level restricted Gaussian maximum likelihood method for estimating the covariance function parameters and computing the best unbiased predictor. Our approach produces a new set of multi-level contrasts where the deterministic

  10. Empirical Test Case Specification

    DEFF Research Database (Denmark)

    Kalyanova, Olena; Heiselberg, Per

    This document includes the empirical specification on the IEA task of evaluation building energy simulation computer programs for the Double Skin Facades (DSF) constructions. There are two approaches involved into this procedure, one is the comparative approach and another is the empirical one. I....... In the comparative approach the outcomes of different software tools are compared, while in the empirical approach the modelling results are compared with the results of experimental test cases....

  11. Maximum-likelihood estimation of recent shared ancestry (ERSA).

    Science.gov (United States)

    Huff, Chad D; Witherspoon, David J; Simonson, Tatum S; Xing, Jinchuan; Watkins, W Scott; Zhang, Yuhua; Tuohy, Therese M; Neklason, Deborah W; Burt, Randall W; Guthery, Stephen L; Woodward, Scott R; Jorde, Lynn B

    2011-05-01

    Accurate estimation of recent shared ancestry is important for genetics, evolution, medicine, conservation biology, and forensics. Established methods estimate kinship accurately for first-degree through third-degree relatives. We demonstrate that chromosomal segments shared by two individuals due to identity by descent (IBD) provide much additional information about shared ancestry. We developed a maximum-likelihood method for the estimation of recent shared ancestry (ERSA) from the number and lengths of IBD segments derived from high-density SNP or whole-genome sequence data. We used ERSA to estimate relationships from SNP genotypes in 169 individuals from three large, well-defined human pedigrees. ERSA is accurate to within one degree of relationship for 97% of first-degree through fifth-degree relatives and 80% of sixth-degree and seventh-degree relatives. We demonstrate that ERSA's statistical power approaches the maximum theoretical limit imposed by the fact that distant relatives frequently share no DNA through a common ancestor. ERSA greatly expands the range of relationships that can be estimated from genetic data and is implemented in a freely available software package.

  12. Maximum likelihood pedigree reconstruction using integer linear programming.

    Science.gov (United States)

    Cussens, James; Bartlett, Mark; Jones, Elinor M; Sheehan, Nuala A

    2013-01-01

    Large population biobanks of unrelated individuals have been highly successful in detecting common genetic variants affecting diseases of public health concern. However, they lack the statistical power to detect more modest gene-gene and gene-environment interaction effects or the effects of rare variants for which related individuals are ideally required. In reality, most large population studies will undoubtedly contain sets of undeclared relatives, or pedigrees. Although a crude measure of relatedness might sometimes suffice, having a good estimate of the true pedigree would be much more informative if this could be obtained efficiently. Relatives are more likely to share longer haplotypes around disease susceptibility loci and are hence biologically more informative for rare variants than unrelated cases and controls. Distant relatives are arguably more useful for detecting variants with small effects because they are less likely to share masking environmental effects. Moreover, the identification of relatives enables appropriate adjustments of statistical analyses that typically assume unrelatedness. We propose to exploit an integer linear programming optimisation approach to pedigree learning, which is adapted to find valid pedigrees by imposing appropriate constraints. Our method is not restricted to small pedigrees and is guaranteed to return a maximum likelihood pedigree. With additional constraints, we can also search for multiple high-probability pedigrees and thus account for the inherent uncertainty in any particular pedigree reconstruction. The true pedigree is found very quickly by comparison with other methods when all individuals are observed. Extensions to more complex problems seem feasible. © 2012 Wiley Periodicals, Inc.

  13. Generalized linear models with random effects unified analysis via H-likelihood

    CERN Document Server

    Lee, Youngjo; Pawitan, Yudi

    2006-01-01

    Since their introduction in 1972, generalized linear models (GLMs) have proven useful in the generalization of classical normal models. Presenting methods for fitting GLMs with random effects to data, Generalized Linear Models with Random Effects: Unified Analysis via H-likelihood explores a wide range of applications, including combining information over trials (meta-analysis), analysis of frailty models for survival data, genetic epidemiology, and analysis of spatial and temporal models with correlated errors.Written by pioneering authorities in the field, this reference provides an introduction to various theories and examines likelihood inference and GLMs. The authors show how to extend the class of GLMs while retaining as much simplicity as possible. By maximizing and deriving other quantities from h-likelihood, they also demonstrate how to use a single algorithm for all members of the class, resulting in a faster algorithm as compared to existing alternatives. Complementing theory with examples, many of...

  14. Maximum likelihood positioning for gamma-ray imaging detectors with depth of interaction measurement

    International Nuclear Information System (INIS)

    Lerche, Ch.W.; Ros, A.; Monzo, J.M.; Aliaga, R.J.; Ferrando, N.; Martinez, J.D.; Herrero, V.; Esteve, R.; Gadea, R.; Colom, R.J.; Toledo, J.; Mateo, F.; Sebastia, A.; Sanchez, F.; Benlloch, J.M.

    2009-01-01

    The center of gravity algorithm leads to strong artifacts for gamma-ray imaging detectors that are based on monolithic scintillation crystals and position sensitive photo-detectors. This is a consequence of using the centroids as position estimates. The fact that charge division circuits can also be used to compute the standard deviation of the scintillation light distribution opens a way out of this drawback. We studied the feasibility of maximum likelihood estimation for computing the true gamma-ray photo-conversion position from the centroids and the standard deviation of the light distribution. The method was evaluated on a test detector that consists of the position sensitive photomultiplier tube H8500 and a monolithic LSO crystal (42mmx42mmx10mm). Spatial resolution was measured for the centroids and the maximum likelihood estimates. The results suggest that the maximum likelihood positioning is feasible and partially removes the strong artifacts of the center of gravity algorithm.

  15. Maximum likelihood positioning for gamma-ray imaging detectors with depth of interaction measurement

    Energy Technology Data Exchange (ETDEWEB)

    Lerche, Ch.W. [Grupo de Sistemas Digitales, ITACA, Universidad Politecnica de Valencia, 46022 Valencia (Spain)], E-mail: lerche@ific.uv.es; Ros, A. [Grupo de Fisica Medica Nuclear, IFIC, Universidad de Valencia-Consejo Superior de Investigaciones Cientificas, 46980 Paterna (Spain); Monzo, J.M.; Aliaga, R.J.; Ferrando, N.; Martinez, J.D.; Herrero, V.; Esteve, R.; Gadea, R.; Colom, R.J.; Toledo, J.; Mateo, F.; Sebastia, A. [Grupo de Sistemas Digitales, ITACA, Universidad Politecnica de Valencia, 46022 Valencia (Spain); Sanchez, F.; Benlloch, J.M. [Grupo de Fisica Medica Nuclear, IFIC, Universidad de Valencia-Consejo Superior de Investigaciones Cientificas, 46980 Paterna (Spain)

    2009-06-01

    The center of gravity algorithm leads to strong artifacts for gamma-ray imaging detectors that are based on monolithic scintillation crystals and position sensitive photo-detectors. This is a consequence of using the centroids as position estimates. The fact that charge division circuits can also be used to compute the standard deviation of the scintillation light distribution opens a way out of this drawback. We studied the feasibility of maximum likelihood estimation for computing the true gamma-ray photo-conversion position from the centroids and the standard deviation of the light distribution. The method was evaluated on a test detector that consists of the position sensitive photomultiplier tube H8500 and a monolithic LSO crystal (42mmx42mmx10mm). Spatial resolution was measured for the centroids and the maximum likelihood estimates. The results suggest that the maximum likelihood positioning is feasible and partially removes the strong artifacts of the center of gravity algorithm.

  16. Maximum Likelihood Blind Channel Estimation for Space-Time Coding Systems

    Directory of Open Access Journals (Sweden)

    Hakan A. Çırpan

    2002-05-01

    Full Text Available Sophisticated signal processing techniques have to be developed for capacity enhancement of future wireless communication systems. In recent years, space-time coding is proposed to provide significant capacity gains over the traditional communication systems in fading wireless channels. Space-time codes are obtained by combining channel coding, modulation, transmit diversity, and optional receive diversity in order to provide diversity at the receiver and coding gain without sacrificing the bandwidth. In this paper, we consider the problem of blind estimation of space-time coded signals along with the channel parameters. Both conditional and unconditional maximum likelihood approaches are developed and iterative solutions are proposed. The conditional maximum likelihood algorithm is based on iterative least squares with projection whereas the unconditional maximum likelihood approach is developed by means of finite state Markov process modelling. The performance analysis issues of the proposed methods are studied. Finally, some simulation results are presented.

  17. Maximum likelihood estimation of ancestral codon usage bias parameters in Drosophila

    DEFF Research Database (Denmark)

    Nielsen, Rasmus; Bauer DuMont, Vanessa L; Hubisz, Melissa J

    2007-01-01

    : the selection coefficient for optimal codon usage (S), allowing joint maximum likelihood estimation of S and the dN/dS ratio. We apply the method to previously published data from Drosophila melanogaster, Drosophila simulans, and Drosophila yakuba and show, in accordance with previous results, that the D...

  18. Robust Biometric Score Fusion by Naive Likelihood Ratio via Receiver Operating Characteristics

    NARCIS (Netherlands)

    Tao, Q.; Veldhuis, Raymond N.J.

    This paper presents a novel method of fusing multiple biometrics on the matching score level. We estimate the likelihood ratios of the fused biometric scores, via individual receiver operating characteristics (ROC) which construct the Naive Bayes classifier. Using a limited number of operation

  19. An Iterative Maximum a Posteriori Estimation of Proficiency Level to Detect Multiple Local Likelihood Maxima

    Science.gov (United States)

    Magis, David; Raiche, Gilles

    2010-01-01

    In this article the authors focus on the issue of the nonuniqueness of the maximum likelihood (ML) estimator of proficiency level in item response theory (with special attention to logistic models). The usual maximum a posteriori (MAP) method offers a good alternative within that framework; however, this article highlights some drawbacks of its…

  20. Experimental demonstration of the maximum likelihood-based chromatic dispersion estimator for coherent receivers

    DEFF Research Database (Denmark)

    Borkowski, Robert; Johannisson, Pontus; Wymeersch, Henk

    2014-01-01

    We perform an experimental investigation of a maximum likelihood-based (ML-based) algorithm for bulk chromatic dispersion estimation for digital coherent receivers operating in uncompensated optical networks. We demonstrate the robustness of the method at low optical signal-to-noise ratio (OSNR...

  1. ldr: An R Software Package for Likelihood-Based Su?cient Dimension Reduction

    Directory of Open Access Journals (Sweden)

    Kofi Placid Adragni

    2014-11-01

    Full Text Available In regression settings, a su?cient dimension reduction (SDR method seeks the core information in a p-vector predictor that completely captures its relationship with a response. The reduced predictor may reside in a lower dimension d < p, improving ability to visualize data and predict future observations, and mitigating dimensionality issues when carrying out further analysis. We introduce ldr, a new R software package that implements three recently proposed likelihood-based methods for SDR: covariance reduction, likelihood acquired directions, and principal fitted components. All three methods reduce the dimensionality of the data by pro jection into lower dimensional subspaces. The package also implements a variable screening method built upon principal ?tted components which makes use of ?exible basis functions to capture the dependencies between the predictors and the response. Examples are given to demonstrate likelihood-based SDR analyses using ldr, including estimation of the dimension of reduction subspaces and selection of basis functions. The ldr package provides a framework that we hope to grow into a comprehensive library of likelihood-based SDR methodologies.

  2. Maximum Likelihood Dynamic Factor Modeling for Arbitrary "N" and "T" Using SEM

    Science.gov (United States)

    Voelkle, Manuel C.; Oud, Johan H. L.; von Oertzen, Timo; Lindenberger, Ulman

    2012-01-01

    This article has 3 objectives that build on each other. First, we demonstrate how to obtain maximum likelihood estimates for dynamic factor models (the direct autoregressive factor score model) with arbitrary "T" and "N" by means of structural equation modeling (SEM) and compare the approach to existing methods. Second, we go beyond standard time…

  3. Evaluation of Smoking Prevention Television Messages Based on the Elaboration Likelihood Model

    Science.gov (United States)

    Flynn, Brian S.; Worden, John K.; Bunn, Janice Yanushka; Connolly, Scott W.; Dorwaldt, Anne L.

    2011-01-01

    Progress in reducing youth smoking may depend on developing improved methods to communicate with higher risk youth. This study explored the potential of smoking prevention messages based on the Elaboration Likelihood Model (ELM) to address these needs. Structured evaluations of 12 smoking prevention messages based on three strategies derived from…

  4. Assessing compatibility of direct detection data: halo-independent global likelihood analyses

    Energy Technology Data Exchange (ETDEWEB)

    Gelmini, Graciela B. [Department of Physics and Astronomy, UCLA,475 Portola Plaza, Los Angeles, CA 90095 (United States); Huh, Ji-Haeng [CERN Theory Division,CH-1211, Geneva 23 (Switzerland); Witte, Samuel J. [Department of Physics and Astronomy, UCLA,475 Portola Plaza, Los Angeles, CA 90095 (United States)

    2016-10-18

    We present two different halo-independent methods to assess the compatibility of several direct dark matter detection data sets for a given dark matter model using a global likelihood consisting of at least one extended likelihood and an arbitrary number of Gaussian or Poisson likelihoods. In the first method we find the global best fit halo function (we prove that it is a unique piecewise constant function with a number of down steps smaller than or equal to a maximum number that we compute) and construct a two-sided pointwise confidence band at any desired confidence level, which can then be compared with those derived from the extended likelihood alone to assess the joint compatibility of the data. In the second method we define a “constrained parameter goodness-of-fit” test statistic, whose p-value we then use to define a “plausibility region” (e.g. where p≥10%). For any halo function not entirely contained within the plausibility region, the level of compatibility of the data is very low (e.g. p<10%). We illustrate these methods by applying them to CDMS-II-Si and SuperCDMS data, assuming dark matter particles with elastic spin-independent isospin-conserving interactions or exothermic spin-independent isospin-violating interactions.

  5. Expert elicitation on ultrafine particles: likelihood of health effects and causal pathways

    Directory of Open Access Journals (Sweden)

    Brunekreef Bert

    2009-07-01

    Full Text Available Abstract Background Exposure to fine ambient particulate matter (PM has consistently been associated with increased morbidity and mortality. The relationship between exposure to ultrafine particles (UFP and health effects is less firmly established. If UFP cause health effects independently from coarser fractions, this could affect health impact assessment of air pollution, which would possibly lead to alternative policy options to be considered to reduce the disease burden of PM. Therefore, we organized an expert elicitation workshop to assess the evidence for a causal relationship between exposure to UFP and health endpoints. Methods An expert elicitation on the health effects of ambient ultrafine particle exposure was carried out, focusing on: 1 the likelihood of causal relationships with key health endpoints, and 2 the likelihood of potential causal pathways for cardiac events. Based on a systematic peer-nomination procedure, fourteen European experts (epidemiologists, toxicologists and clinicians were selected, of whom twelve attended. They were provided with a briefing book containing key literature. After a group discussion, individual expert judgments in the form of ratings of the likelihood of causal relationships and pathways were obtained using a confidence scheme adapted from the one used by the Intergovernmental Panel on Climate Change. Results The likelihood of an independent causal relationship between increased short-term UFP exposure and increased all-cause mortality, hospital admissions for cardiovascular and respiratory diseases, aggravation of asthma symptoms and lung function decrements was rated medium to high by most experts. The likelihood for long-term UFP exposure to be causally related to all cause mortality, cardiovascular and respiratory morbidity and lung cancer was rated slightly lower, mostly medium. The experts rated the likelihood of each of the six identified possible causal pathways separately. Out of these

  6. An improved likelihood model for eye tracking

    DEFF Research Database (Denmark)

    Hammoud, Riad I.; Hansen, Dan Witzner

    2007-01-01

    While existing eye detection and tracking algorithms can work reasonably well in a controlled environment, they tend to perform poorly under real world imaging conditions where the lighting produces shadows and the person's eyes can be occluded by e.g. glasses or makeup. As a result, pixel clusters...... associated with the eyes tend to be grouped together with background-features. This problem occurs both for eye detection and eye tracking. Problems that especially plague eye tracking include head movement, eye blinking and light changes, all of which can cause the eyes to suddenly disappear. The usual...... approach in such cases is to abandon the tracking routine and re-initialize eye detection. Of course this may be a difficult process due to missed data problem. Accordingly, what is needed is an efficient method of reliably tracking a person's eyes between successively produced video image frames, even...

  7. Posterior distributions for likelihood ratios in forensic science.

    Science.gov (United States)

    van den Hout, Ardo; Alberink, Ivo

    2016-09-01

    Evaluation of evidence in forensic science is discussed using posterior distributions for likelihood ratios. Instead of eliminating the uncertainty by integrating (Bayes factor) or by conditioning on parameter values, uncertainty in the likelihood ratio is retained by parameter uncertainty derived from posterior distributions. A posterior distribution for a likelihood ratio can be summarised by the median and credible intervals. Using the posterior mean of the distribution is not recommended. An analysis of forensic data for body height estimation is undertaken. The posterior likelihood approach has been criticised both theoretically and with respect to applicability. This paper addresses the latter and illustrates an interesting application area. Copyright © 2016 The Chartered Society of Forensic Sciences. Published by Elsevier Ireland Ltd. All rights reserved.

  8. Practical likelihood analysis for spatial generalized linear mixed models

    DEFF Research Database (Denmark)

    Bonat, W. H.; Ribeiro, Paulo Justiniano

    2016-01-01

    We investigate an algorithm for maximum likelihood estimation of spatial generalized linear mixed models based on the Laplace approximation. We compare our algorithm with a set of alternative approaches for two datasets from the literature. The Rhizoctonia root rot and the Rongelap are......, respectively, examples of binomial and count datasets modeled by spatial generalized linear mixed models. Our results show that the Laplace approximation provides similar estimates to Markov Chain Monte Carlo likelihood, Monte Carlo expectation maximization, and modified Laplace approximation. Some advantages...... of Laplace approximation include the computation of the maximized log-likelihood value, which can be used for model selection and tests, and the possibility to obtain realistic confidence intervals for model parameters based on profile likelihoods. The Laplace approximation also avoids the tuning...

  9. Attitude towards, and likelihood of, complaining in the banking ...

    African Journals Online (AJOL)

    aims to determine customers' attitudes towards complaining as well as their likelihood of voicing a .... is particularly powerful and impacts greatly on customer satisfaction and retention. ...... 'Cross-national analysis of hotel customers' attitudes ...

  10. Narrow band interference cancelation in OFDM: Astructured maximum likelihood approach

    KAUST Repository

    Sohail, Muhammad Sadiq; Al-Naffouri, Tareq Y.; Al-Ghadhban, Samir N.

    2012-01-01

    This paper presents a maximum likelihood (ML) approach to mitigate the effect of narrow band interference (NBI) in a zero padded orthogonal frequency division multiplexing (ZP-OFDM) system. The NBI is assumed to be time variant and asynchronous

  11. On the likelihood function of Gaussian max-stable processes

    KAUST Repository

    Genton, M. G.; Ma, Y.; Sang, H.

    2011-01-01

    We derive a closed form expression for the likelihood function of a Gaussian max-stable process indexed by ℝd at p≤d+1 sites, d≥1. We demonstrate the gain in efficiency in the maximum composite likelihood estimators of the covariance matrix from p=2 to p=3 sites in ℝ2 by means of a Monte Carlo simulation study. © 2011 Biometrika Trust.

  12. Incorporating Nuisance Parameters in Likelihoods for Multisource Spectra

    CERN Document Server

    Conway, J.S.

    2011-01-01

    We describe here the general mathematical approach to constructing likelihoods for fitting observed spectra in one or more dimensions with multiple sources, including the effects of systematic uncertainties represented as nuisance parameters, when the likelihood is to be maximized with respect to these parameters. We consider three types of nuisance parameters: simple multiplicative factors, source spectra "morphing" parameters, and parameters representing statistical uncertainties in the predicted source spectra.

  13. On the likelihood function of Gaussian max-stable processes

    KAUST Repository

    Genton, M. G.

    2011-05-24

    We derive a closed form expression for the likelihood function of a Gaussian max-stable process indexed by ℝd at p≤d+1 sites, d≥1. We demonstrate the gain in efficiency in the maximum composite likelihood estimators of the covariance matrix from p=2 to p=3 sites in ℝ2 by means of a Monte Carlo simulation study. © 2011 Biometrika Trust.

  14. Efficient algorithms for maximum likelihood decoding in the surface code

    Science.gov (United States)

    Bravyi, Sergey; Suchara, Martin; Vargo, Alexander

    2014-09-01

    We describe two implementations of the optimal error correction algorithm known as the maximum likelihood decoder (MLD) for the two-dimensional surface code with a noiseless syndrome extraction. First, we show how to implement MLD exactly in time O (n2), where n is the number of code qubits. Our implementation uses a reduction from MLD to simulation of matchgate quantum circuits. This reduction however requires a special noise model with independent bit-flip and phase-flip errors. Secondly, we show how to implement MLD approximately for more general noise models using matrix product states (MPS). Our implementation has running time O (nχ3), where χ is a parameter that controls the approximation precision. The key step of our algorithm, borrowed from the density matrix renormalization-group method, is a subroutine for contracting a tensor network on the two-dimensional grid. The subroutine uses MPS with a bond dimension χ to approximate the sequence of tensors arising in the course of contraction. We benchmark the MPS-based decoder against the standard minimum weight matching decoder observing a significant reduction of the logical error probability for χ ≥4.

  15. Maximum likelihood sequence estimation for optical complex direct modulation.

    Science.gov (United States)

    Che, Di; Yuan, Feng; Shieh, William

    2017-04-17

    Semiconductor lasers are versatile optical transmitters in nature. Through the direct modulation (DM), the intensity modulation is realized by the linear mapping between the injection current and the light power, while various angle modulations are enabled by the frequency chirp. Limited by the direct detection, DM lasers used to be exploited only as 1-D (intensity or angle) transmitters by suppressing or simply ignoring the other modulation. Nevertheless, through the digital coherent detection, simultaneous intensity and angle modulations (namely, 2-D complex DM, CDM) can be realized by a single laser diode. The crucial technique of CDM is the joint demodulation of intensity and differential phase with the maximum likelihood sequence estimation (MLSE), supported by a closed-form discrete signal approximation of frequency chirp to characterize the MLSE transition probability. This paper proposes a statistical method for the transition probability to significantly enhance the accuracy of the chirp model. Using the statistical estimation, we demonstrate the first single-channel 100-Gb/s PAM-4 transmission over 1600-km fiber with only 10G-class DM lasers.

  16. An Empirical Mass Function Distribution

    Science.gov (United States)

    Murray, S. G.; Robotham, A. S. G.; Power, C.

    2018-03-01

    The halo mass function, encoding the comoving number density of dark matter halos of a given mass, plays a key role in understanding the formation and evolution of galaxies. As such, it is a key goal of current and future deep optical surveys to constrain the mass function down to mass scales that typically host {L}\\star galaxies. Motivated by the proven accuracy of Press–Schechter-type mass functions, we introduce a related but purely empirical form consistent with standard formulae to better than 4% in the medium-mass regime, {10}10{--}{10}13 {h}-1 {M}ȯ . In particular, our form consists of four parameters, each of which has a simple interpretation, and can be directly related to parameters of the galaxy distribution, such as {L}\\star . Using this form within a hierarchical Bayesian likelihood model, we show how individual mass-measurement errors can be successfully included in a typical analysis, while accounting for Eddington bias. We apply our form to a question of survey design in the context of a semi-realistic data model, illustrating how it can be used to obtain optimal balance between survey depth and angular coverage for constraints on mass function parameters. Open-source Python and R codes to apply our new form are provided at http://mrpy.readthedocs.org and https://cran.r-project.org/web/packages/tggd/index.html respectively.

  17. Empirical data and moral theory. A plea for integrated empirical ethics.

    Science.gov (United States)

    Molewijk, Bert; Stiggelbout, Anne M; Otten, Wilma; Dupuis, Heleen M; Kievit, Job

    2004-01-01

    Ethicists differ considerably in their reasons for using empirical data. This paper presents a brief overview of four traditional approaches to the use of empirical data: "the prescriptive applied ethicists," "the theorists," "the critical applied ethicists," and "the particularists." The main aim of this paper is to introduce a fifth approach of more recent date (i.e. "integrated empirical ethics") and to offer some methodological directives for research in integrated empirical ethics. All five approaches are presented in a table for heuristic purposes. The table consists of eight columns: "view on distinction descriptive-prescriptive sciences," "location of moral authority," "central goal(s)," "types of normativity," "use of empirical data," "method," "interaction empirical data and moral theory," and "cooperation with descriptive sciences." Ethicists can use the table in order to identify their own approach. Reflection on these issues prior to starting research in empirical ethics should lead to harmonization of the different scientific disciplines and effective planning of the final research design. Integrated empirical ethics (IEE) refers to studies in which ethicists and descriptive scientists cooperate together continuously and intensively. Both disciplines try to integrate moral theory and empirical data in order to reach a normative conclusion with respect to a specific social practice. IEE is not wholly prescriptive or wholly descriptive since IEE assumes an interdepence between facts and values and between the empirical and the normative. The paper ends with three suggestions for consideration on some of the future challenges of integrated empirical ethics.

  18. Life Writing After Empire

    DEFF Research Database (Denmark)

    A watershed moment of the twentieth century, the end of empire saw upheavals to global power structures and national identities. However, decolonisation profoundly affected individual subjectivities too. Life Writing After Empire examines how people around the globe have made sense of the post...... in order to understand how individual life writing reflects broader societal changes. From far-flung corners of the former British Empire, people have turned to life writing to manage painful or nostalgic memories, as well as to think about the past and future of the nation anew through the personal...

  19. Theological reflections on empire

    Directory of Open Access Journals (Sweden)

    Allan A. Boesak

    2009-11-01

    Full Text Available Since the meeting of the World Alliance of Reformed Churches in Accra, Ghana (2004, and the adoption of the Accra Declaration, a debate has been raging in the churches about globalisation, socio-economic justice, ecological responsibility, political and cultural domination and globalised war. Central to this debate is the concept of empire and the way the United States is increasingly becoming its embodiment. Is the United States a global empire? This article argues that the United States has indeed become the expression of a modern empire and that this reality has considerable consequences, not just for global economics and politics but for theological refl ection as well.

  20. On-line validation of linear process models using generalized likelihood ratios

    International Nuclear Information System (INIS)

    Tylee, J.L.

    1981-12-01

    A real-time method for testing the validity of linear models of nonlinear processes is described and evaluated. Using generalized likelihood ratios, the model dynamics are continually monitored to see if the process has moved far enough away from the nominal linear model operating point to justify generation of a new linear model. The method is demonstrated using a seventh-order model of a natural circulation steam generator

  1. Empirical techniques in finance

    CERN Document Server

    Bhar, Ramaprasad

    2005-01-01

    This book offers the opportunity to study and experience advanced empi- cal techniques in finance and in general financial economics. It is not only suitable for students with an interest in the field, it is also highly rec- mended for academic researchers as well as the researchers in the industry. The book focuses on the contemporary empirical techniques used in the analysis of financial markets and how these are implemented using actual market data. With an emphasis on Implementation, this book helps foc- ing on strategies for rigorously combing finance theory and modeling technology to extend extant considerations in the literature. The main aim of this book is to equip the readers with an array of tools and techniques that will allow them to explore financial market problems with a fresh perspective. In this sense it is not another volume in eco- metrics. Of course, the traditional econometric methods are still valid and important; the contents of this book will bring in other related modeling topics tha...

  2. Empirical Evidence from Kenya

    African Journals Online (AJOL)

    FIRST LADY

    2011-01-18

    Jan 18, 2011 ... Empirical results reveal that consumption of sugar in. Kenya varies ... experiences in trade in different regions of the world. Some studies ... To assess the relationship between domestic sugar retail prices and sugar sales in ...

  3. Constructing valid density matrices on an NMR quantum information processor via maximum likelihood estimation

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Harpreet; Arvind; Dorai, Kavita, E-mail: kavita@iisermohali.ac.in

    2016-09-07

    Estimation of quantum states is an important step in any quantum information processing experiment. A naive reconstruction of the density matrix from experimental measurements can often give density matrices which are not positive, and hence not physically acceptable. How do we ensure that at all stages of reconstruction, we keep the density matrix positive? Recently a method has been suggested based on maximum likelihood estimation, wherein the density matrix is guaranteed to be positive definite. We experimentally implement this protocol on an NMR quantum information processor. We discuss several examples and compare with the standard method of state estimation. - Highlights: • State estimation using maximum likelihood method was performed on an NMR quantum information processor. • Physically valid density matrices were obtained every time in contrast to standard quantum state tomography. • Density matrices of several different entangled and separable states were reconstructed for two and three qubits.

  4. Profile-likelihood Confidence Intervals in Item Response Theory Models.

    Science.gov (United States)

    Chalmers, R Philip; Pek, Jolynn; Liu, Yang

    2017-01-01

    Confidence intervals (CIs) are fundamental inferential devices which quantify the sampling variability of parameter estimates. In item response theory, CIs have been primarily obtained from large-sample Wald-type approaches based on standard error estimates, derived from the observed or expected information matrix, after parameters have been estimated via maximum likelihood. An alternative approach to constructing CIs is to quantify sampling variability directly from the likelihood function with a technique known as profile-likelihood confidence intervals (PL CIs). In this article, we introduce PL CIs for item response theory models, compare PL CIs to classical large-sample Wald-type CIs, and demonstrate important distinctions among these CIs. CIs are then constructed for parameters directly estimated in the specified model and for transformed parameters which are often obtained post-estimation. Monte Carlo simulation results suggest that PL CIs perform consistently better than Wald-type CIs for both non-transformed and transformed parameters.

  5. Supervisor Autonomy and Considerate Leadership Style are Associated with Supervisors’ Likelihood to Accommodate Back Injured Workers

    Science.gov (United States)

    McGuire, Connor; Kristman, Vicki L; Williams-Whitt, Kelly; Reguly, Paula; Shaw, William; Soklaridis, Sophie

    2015-01-01

    PURPOSE To determine the association between supervisors’ leadership style and autonomy and supervisors’ likelihood of supporting job accommodations for back-injured workers. METHODS A cross-sectional study of supervisors from Canadian and US employers was conducted using a web-based, self-report questionnaire that included a case vignette of a back-injured worker. Autonomy and two dimensions of leadership style (considerate and initiating structure) were included as exposures. The outcome, supervisors’ likeliness to support job accommodation, was measured with the Job Accommodation Scale. We conducted univariate analyses of all variables and bivariate analyses of the JAS score with each exposure and potential confounding factor. We used multivariable generalized linear models to control for confounding factors. RESULTS A total of 796 supervisors participated. Considerate leadership style (β= .012; 95% CI: .009–.016) and autonomy (β= .066; 95% CI: .025–.11) were positively associated with supervisors’ likelihood to accommodate after adjusting for appropriate confounding factors. An initiating structure leadership style was not significantly associated with supervisors’ likelihood to accommodate (β = .0018; 95% CI: −.0026–.0061) after adjusting for appropriate confounders. CONCLUSIONS Autonomy and a considerate leadership style were positively associated with supervisors’ likelihood to accommodate a back-injured worker. Providing supervisors with more autonomy over decisions of accommodation and developing their considerate leadership style may aid in increasing work accommodation for back-injured workers and preventing prolonged work disability. PMID:25595332

  6. Likelihood ratio sequential sampling models of recognition memory.

    Science.gov (United States)

    Osth, Adam F; Dennis, Simon; Heathcote, Andrew

    2017-02-01

    The mirror effect - a phenomenon whereby a manipulation produces opposite effects on hit and false alarm rates - is benchmark regularity of recognition memory. A likelihood ratio decision process, basing recognition on the relative likelihood that a stimulus is a target or a lure, naturally predicts the mirror effect, and so has been widely adopted in quantitative models of recognition memory. Glanzer, Hilford, and Maloney (2009) demonstrated that likelihood ratio models, assuming Gaussian memory strength, are also capable of explaining regularities observed in receiver-operating characteristics (ROCs), such as greater target than lure variance. Despite its central place in theorising about recognition memory, however, this class of models has not been tested using response time (RT) distributions. In this article, we develop a linear approximation to the likelihood ratio transformation, which we show predicts the same regularities as the exact transformation. This development enabled us to develop a tractable model of recognition-memory RT based on the diffusion decision model (DDM), with inputs (drift rates) provided by an approximate likelihood ratio transformation. We compared this "LR-DDM" to a standard DDM where all targets and lures receive their own drift rate parameters. Both were implemented as hierarchical Bayesian models and applied to four datasets. Model selection taking into account parsimony favored the LR-DDM, which requires fewer parameters than the standard DDM but still fits the data well. These results support log-likelihood based models as providing an elegant explanation of the regularities of recognition memory, not only in terms of choices made but also in terms of the times it takes to make them. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Unbinned likelihood maximisation framework for neutrino clustering in Python

    Energy Technology Data Exchange (ETDEWEB)

    Coenders, Stefan [Technische Universitaet Muenchen, Boltzmannstr. 2, 85748 Garching (Germany)

    2016-07-01

    Albeit having detected an astrophysical neutrino flux with IceCube, sources of astrophysical neutrinos remain hidden up to now. A detection of a neutrino point source is a smoking gun for hadronic processes and acceleration of cosmic rays. The search for neutrino sources has many degrees of freedom, for example steady versus transient, point-like versus extended sources, et cetera. Here, we introduce a Python framework designed for unbinned likelihood maximisations as used in searches for neutrino point sources by IceCube. Implementing source scenarios in a modular way, likelihood searches on various kinds can be implemented in a user-friendly way, without sacrificing speed and memory management.

  8. Nearly Efficient Likelihood Ratio Tests of the Unit Root Hypothesis

    DEFF Research Database (Denmark)

    Jansson, Michael; Nielsen, Morten Ørregaard

    Seemingly absent from the arsenal of currently available "nearly efficient" testing procedures for the unit root hypothesis, i.e. tests whose local asymptotic power functions are indistinguishable from the Gaussian power envelope, is a test admitting a (quasi-)likelihood ratio interpretation. We...... show that the likelihood ratio unit root test derived in a Gaussian AR(1) model with standard normal innovations is nearly efficient in that model. Moreover, these desirable properties carry over to more complicated models allowing for serially correlated and/or non-Gaussian innovations....

  9. Nearly Efficient Likelihood Ratio Tests for Seasonal Unit Roots

    DEFF Research Database (Denmark)

    Jansson, Michael; Nielsen, Morten Ørregaard

    In an important generalization of zero frequency autore- gressive unit root tests, Hylleberg, Engle, Granger, and Yoo (1990) developed regression-based tests for unit roots at the seasonal frequencies in quarterly time series. We develop likelihood ratio tests for seasonal unit roots and show...... that these tests are "nearly efficient" in the sense of Elliott, Rothenberg, and Stock (1996), i.e. that their local asymptotic power functions are indistinguishable from the Gaussian power envelope. Currently available nearly efficient testing procedures for seasonal unit roots are regression-based and require...... the choice of a GLS detrending parameter, which our likelihood ratio tests do not....

  10. Likelihood ratio decisions in memory: three implied regularities.

    Science.gov (United States)

    Glanzer, Murray; Hilford, Andrew; Maloney, Laurence T

    2009-06-01

    We analyze four general signal detection models for recognition memory that differ in their distributional assumptions. Our analyses show that a basic assumption of signal detection theory, the likelihood ratio decision axis, implies three regularities in recognition memory: (1) the mirror effect, (2) the variance effect, and (3) the z-ROC length effect. For each model, we present the equations that produce the three regularities and show, in computed examples, how they do so. We then show that the regularities appear in data from a range of recognition studies. The analyses and data in our study support the following generalization: Individuals make efficient recognition decisions on the basis of likelihood ratios.

  11. Estimating likelihood of future crashes for crash-prone drivers

    Directory of Open Access Journals (Sweden)

    Subasish Das

    2015-06-01

    Full Text Available At-fault crash-prone drivers are usually considered as the high risk group for possible future incidents or crashes. In Louisiana, 34% of crashes are repeatedly committed by the at-fault crash-prone drivers who represent only 5% of the total licensed drivers in the state. This research has conducted an exploratory data analysis based on the driver faultiness and proneness. The objective of this study is to develop a crash prediction model to estimate the likelihood of future crashes for the at-fault drivers. The logistic regression method is used by employing eight years' traffic crash data (2004–2011 in Louisiana. Crash predictors such as the driver's crash involvement, crash and road characteristics, human factors, collision type, and environmental factors are considered in the model. The at-fault and not-at-fault status of the crashes are used as the response variable. The developed model has identified a few important variables, and is used to correctly classify at-fault crashes up to 62.40% with a specificity of 77.25%. This model can identify as many as 62.40% of the crash incidence of at-fault drivers in the upcoming year. Traffic agencies can use the model for monitoring the performance of an at-fault crash-prone drivers and making roadway improvements meant to reduce crash proneness. From the findings, it is recommended that crash-prone drivers should be targeted for special safety programs regularly through education and regulations.

  12. An iterative procedure for obtaining maximum-likelihood estimates of the parameters for a mixture of normal distributions, 2

    Science.gov (United States)

    Peters, B. C., Jr.; Walker, H. F.

    1976-01-01

    The problem of obtaining numerically maximum likelihood estimates of the parameters for a mixture of normal distributions is addressed. In recent literature, a certain successive approximations procedure, based on the likelihood equations, is shown empirically to be effective in numerically approximating such maximum-likelihood estimates; however, the reliability of this procedure was not established theoretically. Here, a general iterative procedure is introduced, of the generalized steepest-ascent (deflected-gradient) type, which is just the procedure known in the literature when the step-size is taken to be 1. With probability 1 as the sample size grows large, it is shown that this procedure converges locally to the strongly consistent maximum-likelihood estimate whenever the step-size lies between 0 and 2. The step-size which yields optimal local convergence rates for large samples is determined in a sense by the separation of the component normal densities and is bounded below by a number between 1 and 2.

  13. An iterative procedure for obtaining maximum-likelihood estimates of the parameters for a mixture of normal distributions

    Science.gov (United States)

    Peters, B. C., Jr.; Walker, H. F.

    1978-01-01

    This paper addresses the problem of obtaining numerically maximum-likelihood estimates of the parameters for a mixture of normal distributions. In recent literature, a certain successive-approximations procedure, based on the likelihood equations, was shown empirically to be effective in numerically approximating such maximum-likelihood estimates; however, the reliability of this procedure was not established theoretically. Here, we introduce a general iterative procedure, of the generalized steepest-ascent (deflected-gradient) type, which is just the procedure known in the literature when the step-size is taken to be 1. We show that, with probability 1 as the sample size grows large, this procedure converges locally to the strongly consistent maximum-likelihood estimate whenever the step-size lies between 0 and 2. We also show that the step-size which yields optimal local convergence rates for large samples is determined in a sense by the 'separation' of the component normal densities and is bounded below by a number between 1 and 2.

  14. Empirical Benchmarks of Hidden Bias in Educational Research: Implication for Assessing How well Propensity Score Methods Approximate Experiments and Conducting Sensitivity Analysis

    Science.gov (United States)

    Dong, Nianbo; Lipsey, Mark

    2014-01-01

    When randomized control trials (RCT) are not feasible, researchers seek other methods to make causal inference, e.g., propensity score methods. One of the underlined assumptions for the propensity score methods to obtain unbiased treatment effect estimates is the ignorability assumption, that is, conditional on the propensity score, treatment…

  15. A comparison of maximum likelihood and other estimators of eigenvalues from several correlated Monte Carlo samples

    International Nuclear Information System (INIS)

    Beer, M.

    1980-01-01

    The maximum likelihood method for the multivariate normal distribution is applied to the case of several individual eigenvalues. Correlated Monte Carlo estimates of the eigenvalue are assumed to follow this prescription and aspects of the assumption are examined. Monte Carlo cell calculations using the SAM-CE and VIM codes for the TRX-1 and TRX-2 benchmark reactors, and SAM-CE full core results are analyzed with this method. Variance reductions of a few percent to a factor of 2 are obtained from maximum likelihood estimation as compared with the simple average and the minimum variance individual eigenvalue. The numerical results verify that the use of sample variances and correlation coefficients in place of the corresponding population statistics still leads to nearly minimum variance estimation for a sufficient number of histories and aggregates

  16. Diagonal Likelihood Ratio Test for Equality of Mean Vectors in High-Dimensional Data

    KAUST Repository

    Hu, Zongliang; Tong, Tiejun; Genton, Marc G.

    2017-01-01

    We propose a likelihood ratio test framework for testing normal mean vectors in high-dimensional data under two common scenarios: the one-sample test and the two-sample test with equal covariance matrices. We derive the test statistics under the assumption that the covariance matrices follow a diagonal matrix structure. In comparison with the diagonal Hotelling's tests, our proposed test statistics display some interesting characteristics. In particular, they are a summation of the log-transformed squared t-statistics rather than a direct summation of those components. More importantly, to derive the asymptotic normality of our test statistics under the null and local alternative hypotheses, we do not require the assumption that the covariance matrix follows a diagonal matrix structure. As a consequence, our proposed test methods are very flexible and can be widely applied in practice. Finally, simulation studies and a real data analysis are also conducted to demonstrate the advantages of our likelihood ratio test method.

  17. Understanding the properties of diagnostic tests - Part 2: Likelihood ratios.

    Science.gov (United States)

    Ranganathan, Priya; Aggarwal, Rakesh

    2018-01-01

    Diagnostic tests are used to identify subjects with and without disease. In a previous article in this series, we examined some attributes of diagnostic tests - sensitivity, specificity, and predictive values. In this second article, we look at likelihood ratios, which are useful for the interpretation of diagnostic test results in everyday clinical practice.

  18. Comparison of likelihood testing procedures for parallel systems with covariances

    International Nuclear Information System (INIS)

    Ayman Baklizi; Isa Daud; Noor Akma Ibrahim

    1998-01-01

    In this paper we considered investigating and comparing the behavior of the likelihood ratio, the Rao's and the Wald's statistics for testing hypotheses on the parameters of the simple linear regression model based on parallel systems with covariances. These statistics are asymptotically equivalent (Barndorff-Nielsen and Cox, 1994). However, their relative performances in finite samples are generally known. A Monte Carlo experiment is conducted to stimulate the sizes and the powers of these statistics for complete samples and in the presence of time censoring. Comparisons of the statistics are made according to the attainment of assumed size of the test and their powers at various points in the parameter space. The results show that the likelihood ratio statistics appears to have the best performance in terms of the attainment of the assumed size of the test. Power comparisons show that the Rao statistic has some advantage over the Wald statistic in almost all of the space of alternatives while likelihood ratio statistic occupies either the first or the last position in term of power. Overall, the likelihood ratio statistic appears to be more appropriate to the model under study, especially for small sample sizes

  19. Maximum likelihood estimation of the attenuated ultrasound pulse

    DEFF Research Database (Denmark)

    Rasmussen, Klaus Bolding

    1994-01-01

    The attenuated ultrasound pulse is divided into two parts: a stationary basic pulse and a nonstationary attenuation pulse. A standard ARMA model is used for the basic pulse, and a nonstandard ARMA model is derived for the attenuation pulse. The maximum likelihood estimator of the attenuated...

  20. Planck 2013 results. XV. CMB power spectra and likelihood

    CERN Document Server

    Ade, P.A.R.; Armitage-Caplan, C.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.; Banday, A.J.; Barreiro, R.B.; Bartlett, J.G.; Battaner, E.; Benabed, K.; Benoit, A.; Benoit-Levy, A.; Bernard, J.P.; Bersanelli, M.; Bielewicz, P.; Bobin, J.; Bock, J.J.; Bonaldi, A.; Bonavera, L.; Bond, J.R.; Borrill, J.; Bouchet, F.R.; Boulanger, F.; Bridges, M.; Bucher, M.; Burigana, C.; Butler, R.C.; Calabrese, E.; Cardoso, J.F.; Catalano, A.; Challinor, A.; Chamballu, A.; Chiang, L.Y.; Chiang, H.C.; Christensen, P.R.; Church, S.; Clements, D.L.; Colombi, S.; Colombo, L.P.L.; Combet, C.; Couchot, F.; Coulais, A.; Crill, B.P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R.D.; Davis, R.J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Delouis, J.M.; Desert, F.X.; Dickinson, C.; Diego, J.M.; Dole, H.; Donzelli, S.; Dore, O.; Douspis, M.; Dunkley, J.; Dupac, X.; Efstathiou, G.; Elsner, F.; Ensslin, T.A.; Eriksen, H.K.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A.A.; Franceschi, E.; Gaier, T.C.; Galeotta, S.; Galli, S.; Ganga, K.; Giard, M.; Giardino, G.; Giraud-Heraud, Y.; Gjerlow, E.; Gonzalez-Nuevo, J.; Gorski, K.M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Gudmundsson, J.E.; Hansen, F.K.; Hanson, D.; Harrison, D.; Helou, G.; Henrot-Versille, S.; Hernandez-Monteagudo, C.; Herranz, D.; Hildebrandt, S.R.; Hivon, E.; Hobson, M.; Holmes, W.A.; Hornstrup, A.; Hovest, W.; Huffenberger, K.M.; Hurier, G.; Jaffe, T.R.; Jaffe, A.H.; Jewell, J.; Jones, W.C.; Juvela, M.; Keihanen, E.; Keskitalo, R.; Kiiveri, K.; Kisner, T.S.; Kneissl, R.; Knoche, J.; Knox, L.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lahteenmaki, A.; Lamarre, J.M.; Lasenby, A.; Lattanzi, M.; Laureijs, R.J.; Lawrence, C.R.; Le Jeune, M.; Leach, S.; Leahy, J.P.; Leonardi, R.; Leon-Tavares, J.; Lesgourgues, J.; Liguori, M.; Lilje, P.B.; Lindholm, V.; Linden-Vornle, M.; Lopez-Caniego, M.; Lubin, P.M.; Macias-Perez, J.F.; Maffei, B.; Maino, D.; Mandolesi, N.; Marinucci, D.; Maris, M.; Marshall, D.J.; Martin, P.G.; Martinez-Gonzalez, E.; Masi, S.; Matarrese, S.; Matthai, F.; Mazzotta, P.; Meinhold, P.R.; Melchiorri, A.; Mendes, L.; Menegoni, E.; Mennella, A.; Migliaccio, M.; Millea, M.; Mitra, S.; Miville-Deschenes, M.A.; Molinari, D.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Moss, A.; Munshi, D.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C.B.; Norgaard-Nielsen, H.U.; Noviello, F.; Novikov, D.; Novikov, I.; O'Dwyer, I.J.; Orieux, F.; Osborne, S.; Oxborrow, C.A.; Paci, F.; Pagano, L.; Pajot, F.; Paladini, R.; Paoletti, D.; Partridge, B.; Pasian, F.; Patanchon, G.; Paykari, P.; Perdereau, O.; Perotto, L.; Perrotta, F.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Popa, L.; Poutanen, T.; Pratt, G.W.; Prezeau, G.; Prunet, S.; Puget, J.L.; Rachen, J.P.; Rahlin, A.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Ricciardi, S.; Riller, T.; Ringeval, C.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Roudier, G.; Rowan-Robinson, M.; Rubino-Martin, J.A.; Rusholme, B.; Sandri, M.; Sanselme, L.; Santos, D.; Savini, G.; Scott, D.; Seiffert, M.D.; Shellard, E.P.S.; Spencer, L.D.; Starck, J.L.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sureau, F.; Sutton, D.; Suur-Uski, A.S.; Sygnet, J.F.; Tauber, J.A.; Tavagnacco, D.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Tuovinen, J.; Turler, M.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Varis, J.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L.A.; Wandelt, B.D.; Wehus, I.K.; White, M.; White, S.D.M.; Yvon, D.; Zacchei, A.; Zonca, A.

    2014-01-01

    We present the Planck likelihood, a complete statistical description of the two-point correlation function of the CMB temperature fluctuations. We use this likelihood to derive the Planck CMB power spectrum over three decades in l, covering 2 = 50, we employ a correlated Gaussian likelihood approximation based on angular cross-spectra derived from the 100, 143 and 217 GHz channels. We validate our likelihood through an extensive suite of consistency tests, and assess the impact of residual foreground and instrumental uncertainties on cosmological parameters. We find good internal agreement among the high-l cross-spectra with residuals of a few uK^2 at l <= 1000. We compare our results with foreground-cleaned CMB maps, and with cross-spectra derived from the 70 GHz Planck map, and find broad agreement in terms of spectrum residuals and cosmological parameters. The best-fit LCDM cosmology is in excellent agreement with preliminary Planck polarisation spectra. The standard LCDM cosmology is well constrained b...

  1. MAXIMUM-LIKELIHOOD-ESTIMATION OF THE ENTROPY OF AN ATTRACTOR

    NARCIS (Netherlands)

    SCHOUTEN, JC; TAKENS, F; VANDENBLEEK, CM

    In this paper, a maximum-likelihood estimate of the (Kolmogorov) entropy of an attractor is proposed that can be obtained directly from a time series. Also, the relative standard deviation of the entropy estimate is derived; it is dependent on the entropy and on the number of samples used in the

  2. A simplification of the likelihood ratio test statistic for testing ...

    African Journals Online (AJOL)

    The traditional likelihood ratio test statistic for testing hypothesis about goodness of fit of multinomial probabilities in one, two and multi – dimensional contingency table was simplified. Advantageously, using the simplified version of the statistic to test the null hypothesis is easier and faster because calculating the expected ...

  3. LIKELIHOOD ESTIMATION OF PARAMETERS USING SIMULTANEOUSLY MONITORED PROCESSES

    DEFF Research Database (Denmark)

    Friis-Hansen, Peter; Ditlevsen, Ove Dalager

    2004-01-01

    The topic is maximum likelihood inference from several simultaneously monitored response processes of a structure to obtain knowledge about the parameters of other not monitored but important response processes when the structure is subject to some Gaussian load field in space and time. The consi....... The considered example is a ship sailing with a given speed through a Gaussian wave field....

  4. Likelihood-based inference for clustered line transect data

    DEFF Research Database (Denmark)

    Waagepetersen, Rasmus; Schweder, Tore

    2006-01-01

    The uncertainty in estimation of spatial animal density from line transect surveys depends on the degree of spatial clustering in the animal population. To quantify the clustering we model line transect data as independent thinnings of spatial shot-noise Cox processes. Likelihood-based inference...

  5. Likelihood-based Dynamic Factor Analysis for Measurement and Forecasting

    NARCIS (Netherlands)

    Jungbacker, B.M.J.P.; Koopman, S.J.

    2015-01-01

    We present new results for the likelihood-based analysis of the dynamic factor model. The latent factors are modelled by linear dynamic stochastic processes. The idiosyncratic disturbance series are specified as autoregressive processes with mutually correlated innovations. The new results lead to

  6. Likelihood-based inference for clustered line transect data

    DEFF Research Database (Denmark)

    Waagepetersen, Rasmus Plenge; Schweder, Tore

    The uncertainty in estimation of spatial animal density from line transect surveys depends on the degree of spatial clustering in the animal population. To quantify the clustering we model line transect data as independent thinnings of spatial shot-noise Cox processes. Likelihood-based inference...

  7. Composite likelihood and two-stage estimation in family studies

    DEFF Research Database (Denmark)

    Andersen, Elisabeth Anne Wreford

    2004-01-01

    In this paper register based family studies provide the motivation for linking a two-stage estimation procedure in copula models for multivariate failure time data with a composite likelihood approach. The asymptotic properties of the estimators in both parametric and semi-parametric models are d...

  8. Reconceptualizing Social Influence in Counseling: The Elaboration Likelihood Model.

    Science.gov (United States)

    McNeill, Brian W.; Stoltenberg, Cal D.

    1989-01-01

    Presents Elaboration Likelihood Model (ELM) of persuasion (a reconceptualization of the social influence process) as alternative model of attitude change. Contends ELM unifies conflicting social psychology results and can potentially account for inconsistent research findings in counseling psychology. Provides guidelines on integrating…

  9. Counseling Pretreatment and the Elaboration Likelihood Model of Attitude Change.

    Science.gov (United States)

    Heesacker, Martin

    1986-01-01

    Results of the application of the Elaboration Likelihood Model (ELM) to a counseling context revealed that more favorable attitudes toward counseling occurred as subjects' ego involvement increased and as intervention quality improved. Counselor credibility affected the degree to which subjects' attitudes reflected argument quality differences.…

  10. Cases in which ancestral maximum likelihood will be confusingly misleading.

    Science.gov (United States)

    Handelman, Tomer; Chor, Benny

    2017-05-07

    Ancestral maximum likelihood (AML) is a phylogenetic tree reconstruction criteria that "lies between" maximum parsimony (MP) and maximum likelihood (ML). ML has long been known to be statistically consistent. On the other hand, Felsenstein (1978) showed that MP is statistically inconsistent, and even positively misleading: There are cases where the parsimony criteria, applied to data generated according to one tree topology, will be optimized on a different tree topology. The question of weather AML is statistically consistent or not has been open for a long time. Mossel et al. (2009) have shown that AML can "shrink" short tree edges, resulting in a star tree with no internal resolution, which yields a better AML score than the original (resolved) model. This result implies that AML is statistically inconsistent, but not that it is positively misleading, because the star tree is compatible with any other topology. We show that AML is confusingly misleading: For some simple, four taxa (resolved) tree, the ancestral likelihood optimization criteria is maximized on an incorrect (resolved) tree topology, as well as on a star tree (both with specific edge lengths), while the tree with the original, correct topology, has strictly lower ancestral likelihood. Interestingly, the two short edges in the incorrect, resolved tree topology are of length zero, and are not adjacent, so this resolved tree is in fact a simple path. While for MP, the underlying phenomenon can be described as long edge attraction, it turns out that here we have long edge repulsion. Copyright © 2017. Published by Elsevier Ltd.

  11. Multilevel maximum likelihood estimation with application to covariance matrices

    Czech Academy of Sciences Publication Activity Database

    Turčičová, Marie; Mandel, J.; Eben, Kryštof

    Published online: 23 January ( 2018 ) ISSN 0361-0926 R&D Projects: GA ČR GA13-34856S Institutional support: RVO:67985807 Keywords : Fisher information * High dimension * Hierarchical maximum likelihood * Nested parameter spaces * Spectral diagonal covariance model * Sparse inverse covariance model Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 0.311, year: 2016

  12. Empirical research in medical ethics: How conceptual accounts on normative-empirical collaboration may improve research practice

    Science.gov (United States)

    2012-01-01

    Background The methodology of medical ethics during the last few decades has shifted from a predominant use of normative-philosophical analyses to an increasing involvement of empirical methods. The articles which have been published in the course of this so-called 'empirical turn' can be divided into conceptual accounts of empirical-normative collaboration and studies which use socio-empirical methods to investigate ethically relevant issues in concrete social contexts. Discussion A considered reference to normative research questions can be expected from good quality empirical research in medical ethics. However, a significant proportion of empirical studies currently published in medical ethics lacks such linkage between the empirical research and the normative analysis. In the first part of this paper, we will outline two typical shortcomings of empirical studies in medical ethics with regard to a link between normative questions and empirical data: (1) The complete lack of normative analysis, and (2) cryptonormativity and a missing account with regard to the relationship between 'is' and 'ought' statements. Subsequently, two selected concepts of empirical-normative collaboration will be presented and how these concepts may contribute to improve the linkage between normative and empirical aspects of empirical research in medical ethics will be demonstrated. Based on our analysis, as well as our own practical experience with empirical research in medical ethics, we conclude with a sketch of concrete suggestions for the conduct of empirical research in medical ethics. Summary High quality empirical research in medical ethics is in need of a considered reference to normative analysis. In this paper, we demonstrate how conceptual approaches of empirical-normative collaboration can enhance empirical research in medical ethics with regard to the link between empirical research and normative analysis. PMID:22500496

  13. Maximum likelihood reconstruction in fully 3D PET via the SAGE algorithm

    International Nuclear Information System (INIS)

    Ollinger, J.M.; Goggin, A.S.

    1996-01-01

    The SAGE and ordered subsets algorithms have been proposed as fast methods to compute penalized maximum likelihood estimates in PET. We have implemented both for use in fully 3D PET and completed a preliminary evaluation. The technique used to compute the transition matrix is fully described. The evaluation suggests that the ordered subsets algorithm converges much faster than SAGE, but that it stops short of the optimal solution

  14. The Location-Scale Mixture Exponential Power Distribution: A Bayesian and Maximum Likelihood Approach

    OpenAIRE

    Rahnamaei, Z.; Nematollahi, N.; Farnoosh, R.

    2012-01-01

    We introduce an alternative skew-slash distribution by using the scale mixture of the exponential power distribution. We derive the properties of this distribution and estimate its parameter by Maximum Likelihood and Bayesian methods. By a simulation study we compute the mentioned estimators and their mean square errors, and we provide an example on real data to demonstrate the modeling strength of the new distribution.

  15. The Location-Scale Mixture Exponential Power Distribution: A Bayesian and Maximum Likelihood Approach

    Directory of Open Access Journals (Sweden)

    Z. Rahnamaei

    2012-01-01

    Full Text Available We introduce an alternative skew-slash distribution by using the scale mixture of the exponential power distribution. We derive the properties of this distribution and estimate its parameter by Maximum Likelihood and Bayesian methods. By a simulation study we compute the mentioned estimators and their mean square errors, and we provide an example on real data to demonstrate the modeling strength of the new distribution.

  16. A comparison of the performance of a fundamental parameter method for analysis of total reflection X-ray fluorescence spectra and determination of trace elements, versus an empirical quantification procedure

    Science.gov (United States)

    W(egrzynek, Dariusz; Hołyńska, Barbara; Ostachowicz, Beata

    1998-01-01

    The performance has been compared of two different quantification methods — namely, the commonly used empirical quantification procedure and a fundamental parameter approach — for determination of the mass fractions of elements in particulate-like sample residues on a quartz reflector measured in the total reflection geometry. In the empirical quantification procedure, the spectrometer system needs to be calibrated with the use of samples containing known concentrations of the elements. On the basis of intensities of the X-ray peaks and the known concentration or mass fraction of an internal standard element, by using relative sensitivities of the spectrometer system the concentrations or mass fractions of the elements are calculated. The fundamental parameter approach does not require any calibration of the spectrometer system to be carried out. However, in order to account for an unknown mass per unit area of a sample and sample nonuniformity, an internal standard element is added. The concentrations/mass fractions of the elements to be determined are calculated during fitting a modelled X-ray spectrum to the measured one. The two quantification methods were applied to determine the mass fractions of elements in the cross-sections of a peat core, biological standard reference materials and to determine the concentrations of elements in samples prepared from an aqueous multi-element standard solution.

  17. Benchmarking DFT and semi-empirical methods for a reliable and cost-efficient computational screening of benzofulvene derivatives as donor materials for small-molecule organic solar cells.

    Science.gov (United States)

    Tortorella, Sara; Talamo, Maurizio Mastropasqua; Cardone, Antonio; Pastore, Mariachiara; De Angelis, Filippo

    2016-02-24

    A systematic computational investigation on the optical properties of a group of novel benzofulvene derivatives (Martinelli 2014 Org. Lett. 16 3424-7), proposed as possible donor materials in small molecule organic photovoltaic (smOPV) devices, is presented. A benchmark evaluation against experimental results on the accuracy of different exchange and correlation functionals and semi-empirical methods in predicting both reliable ground state equilibrium geometries and electronic absorption spectra is carried out. The benchmark of the geometry optimization level indicated that the best agreement with x-ray data is achieved by using the B3LYP functional. Concerning the optical gap prediction, we found that, among the employed functionals, MPW1K provides the most accurate excitation energies over the entire set of benzofulvenes. Similarly reliable results were also obtained for range-separated hybrid functionals (CAM-B3LYP and wB97XD) and for global hybrid methods incorporating a large amount of non-local exchange (M06-2X and M06-HF). Density functional theory (DFT) hybrids with a moderate (about 20-30%) extent of Hartree-Fock exchange (HFexc) (PBE0, B3LYP and M06) were also found to deliver HOMO-LUMO energy gaps which compare well with the experimental absorption maxima, thus representing a valuable alternative for a prompt and predictive estimation of the optical gap. The possibility of using completely semi-empirical approaches (AM1/ZINDO) is also discussed.

  18. Benchmarking DFT and semi-empirical methods for a reliable and cost-efficient computational screening of benzofulvene derivatives as donor materials for small-molecule organic solar cells

    International Nuclear Information System (INIS)

    Tortorella, Sara; Talamo, Maurizio Mastropasqua; Cardone, Antonio; Pastore, Mariachiara; De Angelis, Filippo

    2016-01-01

    A systematic computational investigation on the optical properties of a group of novel benzofulvene derivatives (Martinelli 2014 Org. Lett. 16 3424–7), proposed as possible donor materials in small molecule organic photovoltaic (smOPV) devices, is presented. A benchmark evaluation against experimental results on the accuracy of different exchange and correlation functionals and semi-empirical methods in predicting both reliable ground state equilibrium geometries and electronic absorption spectra is carried out. The benchmark of the geometry optimization level indicated that the best agreement with x-ray data is achieved by using the B3LYP functional. Concerning the optical gap prediction, we found that, among the employed functionals, MPW1K provides the most accurate excitation energies over the entire set of benzofulvenes. Similarly reliable results were also obtained for range-separated hybrid functionals (CAM-B3LYP and wB97XD) and for global hybrid methods incorporating a large amount of non-local exchange (M06-2X and M06-HF). Density functional theory (DFT) hybrids with a moderate (about 20–30%) extent of Hartree–Fock exchange (HFexc) (PBE0, B3LYP and M06) were also found to deliver HOMO–LUMO energy gaps which compare well with the experimental absorption maxima, thus representing a valuable alternative for a prompt and predictive estimation of the optical gap. The possibility of using completely semi-empirical approaches (AM1/ZINDO) is also discussed. (paper)

  19. Exclusion probabilities and likelihood ratios with applications to mixtures.

    Science.gov (United States)

    Slooten, Klaas-Jan; Egeland, Thore

    2016-01-01

    The statistical evidence obtained from mixed DNA profiles can be summarised in several ways in forensic casework including the likelihood ratio (LR) and the Random Man Not Excluded (RMNE) probability. The literature has seen a discussion of the advantages and disadvantages of likelihood ratios and exclusion probabilities, and part of our aim is to bring some clarification to this debate. In a previous paper, we proved that there is a general mathematical relationship between these statistics: RMNE can be expressed as a certain average of the LR, implying that the expected value of the LR, when applied to an actual contributor to the mixture, is at least equal to the inverse of the RMNE. While the mentioned paper presented applications for kinship problems, the current paper demonstrates the relevance for mixture cases, and for this purpose, we prove some new general properties. We also demonstrate how to use the distribution of the likelihood ratio for donors of a mixture, to obtain estimates for exceedance probabilities of the LR for non-donors, of which the RMNE is a special case corresponding to L R>0. In order to derive these results, we need to view the likelihood ratio as a random variable. In this paper, we describe how such a randomization can be achieved. The RMNE is usually invoked only for mixtures without dropout. In mixtures, artefacts like dropout and drop-in are commonly encountered and we address this situation too, illustrating our results with a basic but widely implemented model, a so-called binary model. The precise definitions, modelling and interpretation of the required concepts of dropout and drop-in are not entirely obvious, and we attempt to clarify them here in a general likelihood framework for a binary model.

  20. Empire vs. Federation

    DEFF Research Database (Denmark)

    Gravier, Magali

    2011-01-01

    The article discusses the concepts of federation and empire in the context of the European Union (EU). Even if these two concepts are not usually contrasted to one another, the article shows that they refer to related type of polities. Furthermore, they can be used at a time because they shed light...... on different and complementary aspects of the European integration process. The article concludes that the EU is at the crossroads between federation and empire and may remain an ‘imperial federation’ for several decades. This could mean that the EU is on the verge of transforming itself to another type...