WorldWideScience

Sample records for emmer wheat triticum

  1. Evolution and dispersal of emmer wheat (Triticum sp.) from novel haplotypes of Ppd-1 (photoperiod response) genes and their surrounding DNA sequences.

    Science.gov (United States)

    Takenaka, Shotaro; Kawahara, Taihachi

    2012-09-01

    The sequence data from 5' UTR, intronic, coding and 3' UTR regions of Ppd-A1 and Ppd-B1 were investigated for a total of 158 accessions of emmer wheat landraces comprising 19 of wild emmer wheat (Triticum dicoccoides), 45 of hulled emmer wheat (T. dicoccum) and 94 of free-threshing (FT) emmer wheat (T. durum etc.). We detected some novel types of deletions in the coding regions from 22 hulled emmer accessions and 20 FT emmer accessions. Emmer wheat accessions with these deletions could produce predicted proteins likely to lack function. We also observed some novel mutations in Ppd-B1. Sixty-seven and forty-one haplotypes were found in Ppd-A1 and Ppd-B1, respectively. Some mutations found in this study have not been known, so they have potential for useful genetic resources for wheat breeding. On the basis of sequence data from the 5' UTR region, both Ppd-A1 and Ppd-B1 haplotypes were divided into two groups (Type AI/AII and Type BI/BII). Types AI and AII of Ppd-A1 suggested gene flow between wild and hulled emmer. On the other hand, Types BI and BII of Ppd-B1 suggested gene flow between wild and FT emmer. More than half of hulled emmer accessions were Type AII/BI but few FT emmer accessions were of this type. Therefore, over half of the hulled emmer did not contribute to evolution of FT emmer.

  2. Genome-wide association mapping reveals a rich genetic architecture of stripe rust resistance loci in emmer wheat (Triticum turgidum ssp. dicoccum).

    Science.gov (United States)

    Liu, Weizhen; Maccaferri, Marco; Chen, Xianming; Laghetti, Gaetano; Pignone, Domenico; Pumphrey, Michael; Tuberosa, Roberto

    2017-11-01

    SNP-based genome scanning in worldwide domesticated emmer germplasm showed high genetic diversity, rapid linkage disequilibrium decay and 51 loci for stripe rust resistance, a large proportion of which were novel. Cultivated emmer wheat (Triticum turgidum ssp. dicoccum), one of the oldest domesticated crops in the world, is a potentially rich reservoir of variation for improvement of resistance/tolerance to biotic and abiotic stresses in wheat. Resistance to stripe rust (Puccinia striiformis f. sp. tritici) in emmer wheat has been under-investigated. Here, we employed genome-wide association (GWAS) mapping with a mixed linear model to dissect effective stripe rust resistance loci in a worldwide collection of 176 cultivated emmer wheat accessions. Adult plants were tested in six environments and seedlings were evaluated with five races from the United States and one from Italy under greenhouse conditions. Five accessions were resistant across all experiments. The panel was genotyped with the wheat 90,000 Illumina iSelect single nucleotide polymorphism (SNP) array and 5106 polymorphic SNP markers with mapped positions were obtained. A high level of genetic diversity and fast linkage disequilibrium decay were observed. In total, we identified 14 loci associated with field resistance in multiple environments. Thirty-seven loci were significantly associated with all-stage (seedling) resistance and six of them were effective against multiple races. Of the 51 total loci, 29 were mapped distantly from previously reported stripe rust resistance genes or quantitative trait loci and represent newly discovered resistance loci. Our results suggest that GWAS is an effective method for characterizing genes in cultivated emmer wheat and confirm that emmer wheat is a rich source of stripe rust resistance loci that can be used for wheat improvement.

  3. Taste-active Components of Beers from Emmer Wheat (Triticum dicoccum Malt

    Directory of Open Access Journals (Sweden)

    Benedetti P.

    2016-06-01

    Full Text Available Emmer wheat (EW, Triticum dicoccum grows under adverse climatic and soil conditions in the hilly areas of Italy and other temperate regions. So far, EW has been used for pasta or bakery products. The malt obtained from EW was used to produce a light beer, a double malt beer, and beers with 50% (B50 and 30% (B30 EW malt combined with barley malt. These top-fermented beers showed a sweet, fruity, citrus character. The different sensory impact and chemical composition (betaglucans and flavanoids of the beers was related to the germinative energy of EW and the different proportions of malted EW and barley malt. The light beer combines the moderate alcohol (3% vol. with a good intake of natural antioxidants (total phenolic content, TPC, 85 mg l−1, whereas B50 showed a high TPC (109 mg l−1 and the highest beta-glucan content (27 mg l−1.

  4. Characterization of reduced height mutant of emmer wheat var. NP200 (Triticum dicoccum)

    International Nuclear Information System (INIS)

    Suman, Sud; Nayeem, K.A.; Bhagwat, S.G.

    2006-01-01

    Full text: Emmer wheat commonly known as Khapli is cultivated on limited area in Tamil Nadu, Andhra Pradesh, Karnataka, Maharashtra and Gujarat. Although cultivation of emmer wheat is confirmed to a small area, improvement work in this species is gaining importance because of its potential for diabetic patients and high dietary fibre in comparison to durum and bread wheats. Emmer wheat cultivar NP200 is a selection from local wheats of Andhra Pradesh. The cultivar NP200 is tall and is prone to lodging leading to yield loss. Therefore, systematic effort to improve cultivar NP200 is needed with the objective to reduce height and introduce lodging tolerance and to improve harvest index. The cultivar NP200 was irradiated with γ-rays. A reduced height mutant with vigorous growth and high tillering was found in M2 population. The mutant was designated as HW1095. The progeny of mutant in M3 showed 35.7 percent reduction in height as compared to parent. The HW1095 mutant was subjected to gibberellic acid treatment at seedling stage and was found to be insensitive to gibberellic acid. An allele specific marker for major dwarfing gene Rht B1b was used to check the status of dwarfing gene in semi dwarf emmer (DDK1009, DDK1025, HW5013, HW5301 and MACS2961) and tall emmer (Np200 and NP201), semi dwarf durums (HD4502, HD4530, MACS2846) along with dwarf mutant (HW1095). The validity of primer in semi dwarf durums and emmer for Rht B 1b gene was found to be perfect. The parent variety NP200 showed presence of wild type allele (Rht B1a) with the primer pair BF-WR1. All semi dwarf emmer showed a band of 237 bp with primer pair BF-MR1. However, mutant (HW1095) showed absence of amplification for both Rht B1a and Rht B1b alleles with respective primer pairs. The results indicated that the reduced height mutant carried a mutation different than from the existing allele (Rht B1b)

  5. Ancestral QTL alleles from wild emmer wheat improve drought resistance and productivity in modern wheat cultivars

    Directory of Open Access Journals (Sweden)

    Lianne eMerchuk-Ovnat

    2016-04-01

    Full Text Available Wild emmer wheat (Triticum turgidum ssp. dicoccoides is considered a promising source for improving stress resistances in domesticated wheat. Here we explored the potential of selected quantitative trait loci (QTLs from wild emmer wheat, introgressed via marker-assisted selection, to enhance drought resistance in elite durum (T. turgidum ssp. durum and bread (T. aestivum wheat cultivars. The resultant near-isogenic lines (BC3F3 and BC3F4 were genotyped using SNP array to confirm the introgressed genomic regions and evaluated in two consecutive years under well-watered (690–710 mm and water-limited (290–320 mm conditions. Three of the introgressed QTLs were successfully validated, two in the background of durum wheat cv. Uzan (on chromosomes 1BL and 2BS, and one in the background of bread wheat cvs. Bar Nir and Zahir (chromosome 7AS. In most cases, the QTL x environment interaction was validated in terms of improved grain yield and biomass - specifically under drought (7AS QTL in cv. Bar Nir background, under both treatments (2BS QTL, and a greater stability across treatments (1BL QTL. The results provide a first demonstration that introgression of wild emmer QTL alleles can enhance productivity and yield stability across environments in domesticated wheat, thereby enriching the modern gene pool with essential diversity for the improvement of drought resistance.

  6. Transposable elements generate population-specific insertional patterns and allelic variation in genes of wild emmer wheat (Triticum turgidum ssp. dicoccoides).

    Science.gov (United States)

    Domb, Katherine; Keidar, Danielle; Yaakov, Beery; Khasdan, Vadim; Kashkush, Khalil

    2017-10-27

    Natural populations of the tetraploid wild emmer wheat (genome AABB) were previously shown to demonstrate eco-geographically structured genetic and epigenetic diversity. Transposable elements (TEs) might make up a significant part of the genetic and epigenetic variation between individuals and populations because they comprise over 80% of the wild emmer wheat genome. In this study, we performed detailed analyses to assess the dynamics of transposable elements in 50 accessions of wild emmer wheat collected from 5 geographically isolated sites. The analyses included: the copy number variation of TEs among accessions in the five populations, population-unique insertional patterns, and the impact of population-unique/specific TE insertions on structure and expression of genes. We assessed the copy numbers of 12 TE families using real-time quantitative PCR, and found significant copy number variation (CNV) in the 50 wild emmer wheat accessions, in a population-specific manner. In some cases, the CNV difference reached up to 6-fold. However, the CNV was TE-specific, namely some TE families showed higher copy numbers in one or more populations, and other TE families showed lower copy numbers in the same population(s). Furthermore, we assessed the insertional patterns of 6 TE families using transposon display (TD), and observed significant population-specific insertional patterns. The polymorphism levels of TE-insertional patterns reached 92% among all wild emmer wheat accessions, in some cases. In addition, we observed population-specific/unique TE insertions, some of which were located within or close to protein-coding genes, creating allelic variations in a population-specific manner. We also showed that those genes are differentially expressed in wild emmer wheat. For the first time, this study shows that TEs proliferate in wild emmer wheat in a population-specific manner, creating new alleles of genes, which contribute to the divergent evolution of homeologous genes

  7. Ethnic food perspective of North Dakota Common Emmer Wheat and relevance for health benefits targeting type 2 diabetes

    Directory of Open Access Journals (Sweden)

    Ashish Christopher

    2018-03-01

    Full Text Available Background: Ancient grains with ethnic food origins are gaining renewed interest in contemporary food design due to its balanced nutritional profiles and health benefits. The “North Dakota Common Emmer Wheat” (Triticum dicoccum, a tetraploid species, had ethnic origins with German immigrants from Russia migrating to North Dakota in late 19th century. Targeting such grains with ethnic origins that are rich in fibers, amino acids, minerals, and other bioactive compounds has significant merit for advancing health benefits against emerging diet-linked chronic diseases. Based on this rationale, phenolic-linked antioxidant and antihyperglycemic properties of North Dakota Common Emmer Wheat was compared with those of other commercial wheat cultivars in order to integrate it into a health-targeted food design based on past ethnic food insights. Methods: Aqueous extracts of the North Dakota Common Emmer Wheat (with and without hull and two other commercial wheat varieties, Barlow and Coteau, were analyzed before and after milling. The total soluble phenolic content, phenolic acid profile, protein content, antioxidant activity, type 2 diabetes relevant α-amylase, and α-glucosidase enzyme inhibitory activities were determined using in vitro assay models. Results: North Dakota Common Emmer Wheat with hull had highest total soluble phenolic content and associated antioxidant and antihyperglycemic properties (before and after milling when compared to the other commercial wheat cultivars. Conclusion: Results indicated that North Dakota Common Emmer Wheat with hull can be integrated into a health-targeted contemporary food design as a part of dietary support against chronic hyperglycemia and oxidative stress associated with early stages type 2 diabetes. Keywords: Antioxidant, Enzyme inhibitors, Ethnic wheat, North Dakota Common Emmer, Phenolics, Type 2 diabetes

  8. Characterization of an Integrated Active Glu-1Ay Allele in Common Wheat from Wild Emmer and Its Potential Role in Flour Improvement

    Directory of Open Access Journals (Sweden)

    Zhenzhen Wang

    2018-03-01

    Full Text Available Glu-1Ay, one of six genes encoding a high molecular weight glutenin subunit (HMW-GS, is frequently silenced in hexaploid common wheat. Here, an active allele of Glu-1Ay was integrated from wild emmer wheat (Triticum turgidum ssp. dicoccoides accession D97 into the common wheat (Triticum aestivum cultivar Chuannong 16 via the repeated self-fertilization of the pentaploid interspecific hybrid, culminating in the selection of a line TaAy7-40 shown to express the wild emmer Glu-1Ay allele. The open reading frame of this allele was a 1830 bp long sequence, demonstrated by its heterologous expression in Escherichia coli to encode a 608-residue polypeptide. Its nucleotide sequence was 99.2% identical to that of the sequence within the wild emmer parent. The TaAy7-40 introgression line containing the active Glu-1Ay allele showed higher protein content, higher sodium dodecyl sulfate (SDS sedimentation value, higher content of wet gluten in the flour, higher grain weight, and bigger grain size than Chuannong 16. The end-use quality parameters of the TaAy7-40 were superior to those of the medium gluten common wheat cultivars Mianmai 37 and Neimai 9. Thus, the active Glu-1Ay allele might be of potential value in breeding programs designed to improve wheat flour quality.

  9. Wild emmer genome architecture and diversity elucidate wheat evolution and domestication.

    Science.gov (United States)

    Avni, Raz; Nave, Moran; Barad, Omer; Baruch, Kobi; Twardziok, Sven O; Gundlach, Heidrun; Hale, Iago; Mascher, Martin; Spannagl, Manuel; Wiebe, Krystalee; Jordan, Katherine W; Golan, Guy; Deek, Jasline; Ben-Zvi, Batsheva; Ben-Zvi, Gil; Himmelbach, Axel; MacLachlan, Ron P; Sharpe, Andrew G; Fritz, Allan; Ben-David, Roi; Budak, Hikmet; Fahima, Tzion; Korol, Abraham; Faris, Justin D; Hernandez, Alvaro; Mikel, Mark A; Levy, Avraham A; Steffenson, Brian; Maccaferri, Marco; Tuberosa, Roberto; Cattivelli, Luigi; Faccioli, Primetta; Ceriotti, Aldo; Kashkush, Khalil; Pourkheirandish, Mohammad; Komatsuda, Takao; Eilam, Tamar; Sela, Hanan; Sharon, Amir; Ohad, Nir; Chamovitz, Daniel A; Mayer, Klaus F X; Stein, Nils; Ronen, Gil; Peleg, Zvi; Pozniak, Curtis J; Akhunov, Eduard D; Distelfeld, Assaf

    2017-07-07

    Wheat ( Triticum spp.) is one of the founder crops that likely drove the Neolithic transition to sedentary agrarian societies in the Fertile Crescent more than 10,000 years ago. Identifying genetic modifications underlying wheat's domestication requires knowledge about the genome of its allo-tetraploid progenitor, wild emmer ( T. turgidum ssp. dicoccoides ). We report a 10.1-gigabase assembly of the 14 chromosomes of wild tetraploid wheat, as well as analyses of gene content, genome architecture, and genetic diversity. With this fully assembled polyploid wheat genome, we identified the causal mutations in Brittle Rachis 1 ( TtBtr1 ) genes controlling shattering, a key domestication trait. A study of genomic diversity among wild and domesticated accessions revealed genomic regions bearing the signature of selection under domestication. This reference assembly will serve as a resource for accelerating the genome-assisted improvement of modern wheat varieties. Copyright © 2017, American Association for the Advancement of Science.

  10. NUTRITIONAL CHARACTERISTICS OF EMMER WHEAT VARIETIES

    Directory of Open Access Journals (Sweden)

    Magdaléna Lacko - Bartošová

    2015-02-01

    Full Text Available The objective of this study was to evaluate the nutritional compounds (fat, sugars, crude protein, soluble fiber, ash and starch of four emmer wheat varieties grown under the conditions of organic farming system. The experiment was established on Scientific Research base Dolná Malanta, near Nitra in Slovakia during 2010 – 2011 and 2011 – 2012 growing seasons. Nutritional parameters, except crude protein content, were not influenced by the variety and weather conditions. Agnone variety had the highest content of fat, crude protein and starch but the lowest content of soluble dietary fiber. The lowest values of fat, crude protein had Molise sel Colli variety; Farvento variety had the lowest sugars and starch content. Emmer wheat as ancient wheat has a unique composition in secondary components, such as starch, which may play a role as functional food ingredients.

  11. Adaptive evolution of benzoxazinoids in wild emmer wheat, Triticum dicoccoides, at "Evolution Canyon", Mount Carmel, Israel.

    Science.gov (United States)

    Ben-Abu, Yuval; Beiles, Avigdor; Flom, Dvir; Nevo, Eviatar

    2018-01-01

    "Evolution Canyon" (ECI) at Lower Nahal Oren, Mount Carmel, Israel, is an optimal natural microscale model for unraveling evolution-in-action, highlighting the evolutionary processes of biodiversity evolution, adaptation, and incipient sympatric speciation. A major model organism in ECI is the tetraploid wild emmer wheat, Triticum dicoccoides (TD), the progenitor of cultivated emmer and durum wheat. TD displays dramatic interslope adaptive evolutionary divergence on the tropical, savannoid-hot and dry south-facing, "African" slope (AS), and on the temperate, forested, cool and humid, north-facing, "European" slope (ES), separated on average by 250 m. From the perspective of chemical evolution and metabolomics, it is important to unravel interslope divergence in biologically relevant secondary metabolites between the abutting slope populations. Here, in TD we examined hydroxamic acid (Hx), which is a family of secondary cereal metabolites, and plays a major role in defending the plant against fungi, insects and weeds. Our examination revealed that higher concentrations of DIBOA and DIMBOA were found in seedlings growing in the same greenhouse from seeds collected from the cool and humid forested ES, whereas the seedlings of seeds collected from the savannoid AS (both in root and shoot tissues), showed no DIMBOA. Remarkably, only DIBOA appears in both shoots and roots of the AS seedlings. It rises to a peak and then decreases in both organs and in seedlings from both slopes. The DIMBOA, which appears only in the ES seedlings, rises to a peak and decreases in the shoot, but increased and remained in a plateau in the root, till the end of the experiment. The results suggest stronger genetic resistance of defense compounds DIBOA and DIMBOA against biotic stresses (fungi and other pathogens) by ES seedlings. However, AS seedlings responded earlier but were to the same biotic stresses. The genetic difference found in AS seedlings was caused by the main adaptive selection

  12. Adaptive evolution of benzoxazinoids in wild emmer wheat, Triticum dicoccoides, at "Evolution Canyon", Mount Carmel, Israel.

    Directory of Open Access Journals (Sweden)

    Yuval Ben-Abu

    Full Text Available "Evolution Canyon" (ECI at Lower Nahal Oren, Mount Carmel, Israel, is an optimal natural microscale model for unraveling evolution-in-action, highlighting the evolutionary processes of biodiversity evolution, adaptation, and incipient sympatric speciation. A major model organism in ECI is the tetraploid wild emmer wheat, Triticum dicoccoides (TD, the progenitor of cultivated emmer and durum wheat. TD displays dramatic interslope adaptive evolutionary divergence on the tropical, savannoid-hot and dry south-facing, "African" slope (AS, and on the temperate, forested, cool and humid, north-facing, "European" slope (ES, separated on average by 250 m. From the perspective of chemical evolution and metabolomics, it is important to unravel interslope divergence in biologically relevant secondary metabolites between the abutting slope populations. Here, in TD we examined hydroxamic acid (Hx, which is a family of secondary cereal metabolites, and plays a major role in defending the plant against fungi, insects and weeds.Our examination revealed that higher concentrations of DIBOA and DIMBOA were found in seedlings growing in the same greenhouse from seeds collected from the cool and humid forested ES, whereas the seedlings of seeds collected from the savannoid AS (both in root and shoot tissues, showed no DIMBOA. Remarkably, only DIBOA appears in both shoots and roots of the AS seedlings. It rises to a peak and then decreases in both organs and in seedlings from both slopes. The DIMBOA, which appears only in the ES seedlings, rises to a peak and decreases in the shoot, but increased and remained in a plateau in the root, till the end of the experiment.The results suggest stronger genetic resistance of defense compounds DIBOA and DIMBOA against biotic stresses (fungi and other pathogens by ES seedlings. However, AS seedlings responded earlier but were to the same biotic stresses. The genetic difference found in AS seedlings was caused by the main adaptive

  13. A High-Density Genetic Map of Wild Emmer Wheat from the Karaca Dağ Region Provides New Evidence on the Structure and Evolution of Wheat Chromosomes

    Directory of Open Access Journals (Sweden)

    Chad Jorgensen

    2017-10-01

    Full Text Available Wild emmer (Triticum turgidum ssp. dicoccoides is a progenitor of all cultivated wheat grown today. It has been hypothesized that emmer was domesticated in the Karaca Dağ region in southeastern Turkey. A total of 445 recombinant inbred lines of T. turgidum ssp. durum cv. ‘Langdon’ x wild emmer accession PI 428082 from this region was developed and genotyped with the Illumina 90K single nucleotide polymorphism Infinium assay. A genetic map comprising 2,650 segregating markers was constructed. The order of the segregating markers and an additional 8,264 co-segregating markers in the Aegilops tauschii reference genome sequence was used to compare synteny of the tetraploid wheat with the Brachypodium distachyon, rice, and sorghum. These comparisons revealed the presence of 15 structural chromosome rearrangements, in addition to the already known 4A-5A-7B rearrangements. The most common type was an intra-chromosomal translocation in which the translocated segment was short and was translocated only a short distance along the chromosome. A large reciprocal translocation, one small non-reciprocal translocation, and three large and one small paracentric inversions were also discovered. The use of inversions for a phylogeny reconstruction in the Triticum–Aegilops alliance was illustrated. The genetic map was inconsistent with the current model of evolution of the rearranged chromosomes 4A-5A-7B. Genetic diversity in the rearranged chromosome 4A showed that the rearrangements might have been contemporary with wild emmer speciation. A selective sweep was found in the centromeric region of chromosome 4A in Karaca Dağ wild emmer but not in 4A of T. aestivum. The absence of diversity from a large portion of chromosome 4A of wild emmer, believed to be ancestral to all domesticated wheat, is puzzling.

  14. Natural Selection Causes Adaptive Genetic Resistance in Wild Emmer Wheat against Powdery Mildew at ?Evolution Canyon? Microsite, Mt. Carmel, Israel

    OpenAIRE

    Yin, Huayan; Ben-Abu, Yuval; Wang, Hongwei; Li, Anfei; Nevo, Eviatar; Kong, Lingrang

    2015-01-01

    Background ?Evolution Canyon? (ECI) at Lower Nahal Oren, Mount Carmel, Israel, is an optimal natural microscale model for unraveling evolution in action highlighting the basic evolutionary processes of adaptation and speciation. A major model organism in ECI is wild emmer, Triticum dicoccoides, the progenitor of cultivated wheat, which displays dramatic interslope adaptive and speciational divergence on the tropical-xeric ?African? slope (AS) and the temperate-mesic ?European? slope (ES), sep...

  15. Mapping the glaucousness suppressor Iw1 from wild emmer wheat “PI 481521”

    Institute of Scientific and Technical Information of China (English)

    Zongchang; Xu; Cuiling; Yuan; Jirui; Wang; Daolin; Fu; Jiajie; Wu

    2015-01-01

    Many species of Triticeae display a glaucous phenotype. In wheat, glaucousness/waxiness on spikes, leaves and shoots is controlled by wax production genes(W loci) and epistatic inhibitors(Iw loci). In this study, a suppressor of glaucousness from wild emmer wheat(Triticum turgidum ssp. dicoccoides) accession "PI 481521" was investigated in a pair of durum(T. turgidum ssp. durum cv. "Langdon", LDN)—wild emmer wheat chromosome substitution lines, LDN and "LDNDIC521-2B". Genetic analysis revealed that the non-glaucous phenotype of LDNDIC521-2Bwas controlled by the dominant glaucous suppressor Iw1 on the short arm of chromosome 2B. In total, 371 2B-specific marker differences were identified between LDN and LDNDIC521-2B. The location of the Iw1 gene was mapped using an F2 population that stemmed from LDN and LDNDIC521-2B, generating a partial linkage map that included 19 simple sequence repeats(SSR) and ten gene-based markers. On the current map, the Iw1 gene was located within the Xgwm614–BE498111 interval, and cosegregated with BQ788707,CD893659, CD927782, CD938589, and Xbarc35. Mapping of Iw1 in LDNDIC521-2B, a publically accessible and widely distributed line, will provide valuable information for marker-assisted selection of the agronomically important trait of glaucousness.

  16. Antioxidant activity of free and bound compounds in quinoa (Chenopodium quinoa Willd.) seeds in comparison with durum wheat and emmer.

    Science.gov (United States)

    Laus, Maura N; Gagliardi, Anna; Soccio, Mario; Flagella, Zina; Pastore, Donato

    2012-11-01

    Antioxidant activity (AA) of quinoa (Chenopodium quinoa Willd.) seeds, as well as of durum wheat (Triticum turgidum L. ssp. durum Desf.) and of emmer (T. turgidum L. ssp. dicoccum Schübler) grains, was evaluated by studying hydrophilic (H), lipophilic (L), free-soluble (FSP) and insoluble-bound (IBP) phenolic extracts using the new lipoxygenase/4-nitroso-N,N-dimethylaniline (LOX/RNO) method, able to simultaneously detect different antioxidant mechanisms, as well as using the Oxygen Radical Absorbance Capacity (ORAC) and the Trolox Equivalent Antioxidant Capacity (TEAC) assays, which measure the scavenging activity against peroxyl and ABTS [2,2'-azino-bis-(3-ethylbenzothiazoline-6-sulfonate)] radicals, respectively. The species under study were compared with respect to the sum of AA values of H, L and FSP extracts (AA(H+L+FSP)), containing freely solvent-soluble antioxidants, and AA values of IBP extracts (AA(IBP)), representing the phenolic fraction ester-linked to insoluble cell wall polymers. The LOX/RNO and ORAC methods measured in quinoa flour a remarkable AA(H+L+FSP) higher than durum wheat, although lower than emmer; according to the same assays, the IBP component of quinoa resulted less active than the durum wheat and emmer ones. The TEAC protocol also revealed a high AA(H+L+FSP) for quinoa. Interestingly, the ratio AA(H+L+FSP)/AA(H+L+FSP+IBP), as evaluated by the LOX/RNO and ORAC assays, resulted in quinoa higher than that of both durum wheat and emmer, and much higher than durum wheat, according to the TEAC protocol. This may suggest that antioxidants from quinoa seeds may be more readily accessible with respect to that of both the examined wheat species. Quinoa seeds may represent an excellent source of natural antioxidant compounds and, in particular, of the free-soluble antioxidant fraction. These compounds may improve nutritive and health-beneficial properties of quinoa-based gluten-free products, thus expanding interest for quinoa utilization from

  17. Natural selection causes adaptive genetic resistance in wild emmer wheat against powdery mildew at "Evolution Canyon" microsite, Mt. Carmel, Israel.

    Science.gov (United States)

    Yin, Huayan; Ben-Abu, Yuval; Wang, Hongwei; Li, Anfei; Nevo, Eviatar; Kong, Lingrang

    2015-01-01

    "Evolution Canyon" (ECI) at Lower Nahal Oren, Mount Carmel, Israel, is an optimal natural microscale model for unraveling evolution in action highlighting the basic evolutionary processes of adaptation and speciation. A major model organism in ECI is wild emmer, Triticum dicoccoides, the progenitor of cultivated wheat, which displays dramatic interslope adaptive and speciational divergence on the tropical-xeric "African" slope (AS) and the temperate-mesic "European" slope (ES), separated on average by 250 m. We examined 278 single sequence repeats (SSRs) and the phenotype diversity of the resistance to powdery mildew between the opposite slopes. Furthermore, 18 phenotypes on the AS and 20 phenotypes on the ES, were inoculated by both Bgt E09 and a mixture of powdery mildew races. In the experiment of genetic diversity, very little polymorphism was identified intra-slope in the accessions from both the AS or ES. By contrast, 148 pairs of SSR primers (53.23%) amplified polymorphic products between the phenotypes of AS and ES. There are some differences between the two wild emmer wheat genomes and the inter-slope SSR polymorphic products between genome A and B. Interestingly, all wild emmer types growing on the south-facing slope (SFS=AS) were susceptible to a composite of Blumeria graminis, while the ones growing on the north-facing slope (NFS=ES) were highly resistant to Blumeria graminis at both seedling and adult stages. Remarkable inter-slope evolutionary divergent processes occur in wild emmer wheat, T. dicoccoides at EC I, despite the shot average distance of 250 meters. The AS, a dry and hot slope, did not develop resistance to powdery mildew, whereas the ES, a cool and humid slope, did develop resistance since the disease stress was strong there. This is a remarkable demonstration in host-pathogen interaction on how resistance develops when stress causes an adaptive result at a micro-scale distance.

  18. Quantifying rooting at depth in a wheat doubled haploid population with introgression from wild emmer.

    Science.gov (United States)

    Clarke, Christina K; Gregory, Peter J; Lukac, Martin; Burridge, Amanda J; Allen, Alexandra M; Edwards, Keith J; Gooding, Mike J

    2017-09-01

    The genetic basis of increased rooting below the plough layer, post-anthesis in the field, of an elite wheat line (Triticum aestivum 'Shamrock') with recent introgression from wild emmer (T. dicoccoides), is investigated. Shamrock has a non-glaucous canopy phenotype mapped to the short arm of chromosome 2B (2BS), derived from the wild emmer. A secondary aim was to determine whether genetic effects found in the field could have been predicted by other assessment methods. Roots of doubled haploid (DH) lines from a winter wheat ('Shamrock' × 'Shango') population were assessed using a seedling screen in moist paper rolls, in rhizotrons to the end of tillering, and in the field post-anthesis. A linkage map was produced using single nucleotide polymorphism markers to identify quantitative trait loci (QTLs) for rooting traits. Shamrock had greater root length density (RLD) at depth than Shango, in the field and within the rhizotrons. The DH population exhibited diversity for rooting traits within the three environments studied. QTLs were identified on chromosomes 5D, 6B and 7B, explaining variation in RLD post-anthesis in the field. Effects associated with the non-glaucous trait on RLD interacted significantly with depth in the field, and some of this interaction mapped to 2BS. The effect of genotype was strongly influenced by the method of root assessment, e.g. glaucousness expressed in the field was negatively associated with root length in the rhizotrons, but positively associated with length in the seedling screen. To our knowledge, this is the first study to identify QTLs for rooting at depth in field-grown wheat at mature growth stages. Within the population studied here, our results are consistent with the hypothesis that some of the variation in rooting is associated with recent introgression from wild emmer. The expression of genetic effects differed between the methods of root assessment. © The Author 2017. Published by Oxford University Press on behalf of the

  19. Fusarium head blight resistance and mycotoxin profiles of four Triticum species genotypes

    Directory of Open Access Journals (Sweden)

    Tomasz GÓRAL

    2017-05-01

    Full Text Available Fusarium head blight (FHB resistance was evaluated for accessions of four Triticum species, including bread wheat (modern and old cultivars, spelt, emmer, and einkorn. Fusarium head infection, Fusarium kernel damage and accumulation of trichothecene toxins (deoxynivalenol, nivalenol in grains were analysed. Modern bread wheat cultivars were the most susceptible to head infection, and emmer and einkorn accessions were the most resistant. Kernel damage was the least for emmer and spelt and greatest for bread wheat. No significant differences between the four host species were observed for toxin accumulation. However, the greatest amounts of deoxynivalenol were detected in the grains of modern wheat cultivars and the least in old bread wheat cultivars. The greatest amount of nivalenol was detected in einkorn grains and the least in old bread wheat cultivars. Wide variability of resistance of all types in all four species was observed. Accessions resistant to FHB and toxin accumulation in grains were identified.

  20. Natural selection causes adaptive genetic resistance in wild emmer wheat against powdery mildew at "Evolution Canyon" microsite, Mt. Carmel, Israel.

    Directory of Open Access Journals (Sweden)

    Huayan Yin

    Full Text Available "Evolution Canyon" (ECI at Lower Nahal Oren, Mount Carmel, Israel, is an optimal natural microscale model for unraveling evolution in action highlighting the basic evolutionary processes of adaptation and speciation. A major model organism in ECI is wild emmer, Triticum dicoccoides, the progenitor of cultivated wheat, which displays dramatic interslope adaptive and speciational divergence on the tropical-xeric "African" slope (AS and the temperate-mesic "European" slope (ES, separated on average by 250 m.We examined 278 single sequence repeats (SSRs and the phenotype diversity of the resistance to powdery mildew between the opposite slopes. Furthermore, 18 phenotypes on the AS and 20 phenotypes on the ES, were inoculated by both Bgt E09 and a mixture of powdery mildew races.In the experiment of genetic diversity, very little polymorphism was identified intra-slope in the accessions from both the AS or ES. By contrast, 148 pairs of SSR primers (53.23% amplified polymorphic products between the phenotypes of AS and ES. There are some differences between the two wild emmer wheat genomes and the inter-slope SSR polymorphic products between genome A and B. Interestingly, all wild emmer types growing on the south-facing slope (SFS=AS were susceptible to a composite of Blumeria graminis, while the ones growing on the north-facing slope (NFS=ES were highly resistant to Blumeria graminis at both seedling and adult stages.Remarkable inter-slope evolutionary divergent processes occur in wild emmer wheat, T. dicoccoides at EC I, despite the shot average distance of 250 meters. The AS, a dry and hot slope, did not develop resistance to powdery mildew, whereas the ES, a cool and humid slope, did develop resistance since the disease stress was strong there. This is a remarkable demonstration in host-pathogen interaction on how resistance develops when stress causes an adaptive result at a micro-scale distance.

  1. Evolution and Adaptation of Wild Emmer Wheat Populations to Biotic and Abiotic Stresses.

    Science.gov (United States)

    Huang, Lin; Raats, Dina; Sela, Hanan; Klymiuk, Valentina; Lidzbarsky, Gabriel; Feng, Lihua; Krugman, Tamar; Fahima, Tzion

    2016-08-04

    The genetic bottlenecks associated with plant domestication and subsequent selection in man-made agroecosystems have limited the genetic diversity of modern crops and increased their vulnerability to environmental stresses. Wild emmer wheat, the tetraploid progenitor of domesticated wheat, distributed along a wide range of ecogeographical conditions in the Fertile Crescent, has valuable "left behind" adaptive diversity to multiple diseases and environmental stresses. The biotic and abiotic stress responses are conferred by series of genes and quantitative trait loci (QTLs) that control complex resistance pathways. The study of genetic diversity, genomic organization, expression profiles, protein structure and function of biotic and abiotic stress-resistance genes, and QTLs could shed light on the evolutionary history and adaptation mechanisms of wild emmer populations for their natural habitats. The continuous evolution and adaptation of wild emmer to the changing environment provide novel solutions that can contribute to safeguarding food for the rapidly growing human population.

  2. Solar Radiation-Associated Adaptive SNP Genetic Differentiation in Wild Emmer Wheat, Triticum dicoccoides.

    Science.gov (United States)

    Ren, Jing; Chen, Liang; Jin, Xiaoli; Zhang, Miaomiao; You, Frank M; Wang, Jirui; Frenkel, Vladimir; Yin, Xuegui; Nevo, Eviatar; Sun, Dongfa; Luo, Ming-Cheng; Peng, Junhua

    2017-01-01

    Whole-genome scans with large number of genetic markers provide the opportunity to investigate local adaptation in natural populations and identify candidate genes under positive selection. In the present study, adaptation genetic differentiation associated with solar radiation was investigated using 695 polymorphic SNP markers in wild emmer wheat originated in a micro-site at Yehudiyya, Israel. The test involved two solar radiation niches: (1) sun, in-between trees; and (2) shade, under tree canopy, separated apart by a distance of 2-4 m. Analysis of molecular variance showed a small (0.53%) but significant portion of overall variation between the sun and shade micro-niches, indicating a non-ignorable genetic differentiation between sun and shade habitats. Fifty SNP markers showed a medium (0.05 ≤ F ST ≤ 0.15) or high genetic differentiation ( F ST > 0.15). A total of 21 outlier loci under positive selection were identified by using four different F ST -outlier testing algorithms. The markers and genome locations under positive selection are consistent with the known patterns of selection. These results suggested that genetic differentiation between sun and shade habitats is substantial, radiation-associated, and therefore ecologically determined. Hence, the results of this study reflected effects of natural selection through solar radiation on EST-related SNP genetic diversity, resulting presumably in different adaptive complexes at a micro-scale divergence. The present work highlights the evolutionary theory and application significance of solar radiation-driven natural selection in wheat improvement.

  3. Breeding bread wheat cultivars for high protein content by transfer of protein genes from Triticum dicoccoides

    International Nuclear Information System (INIS)

    Grama, A.; Gerechter-Amitai, Z.K.; Blum, A.; Rubenthaler, G.L.

    1984-01-01

    Triticum dicoccoides sel. G-25, a selection of wild emmer with a protein content of 20.5% and a kernel weight of 31.5 mg, was used as the donor of protein genes. Since this selection is highly resistant to stripe rust, the object of the crossing programme was to transfer this resistance, together with the high protein potential, to durum and bread wheat cultivars susceptible to the disease. In the tetraploid lines obtained from the T. dicoccoides/T. durum cross, the protein values ranged from 17 to 22%. These lines had resistance to stripe rust from the wild emmer and to stem rust from the durum. After two further crosses between these tetraploid lines and T. aestivum cultivars, several lines were selected which combined good yield, high protein level and resistance to rust diseases. These lines attained protein levels of 14 to 19% in the whole grain and 14 to 17% in the flour, combined with yields of 4.5 to 6.0 t/ha. They had also inherited resistance to stem rust, and in some instances also to leaf rust, from the cultivated wheat parental lines. (author)

  4. Bio-agronomic Evaluation of Old and Modern Wheat, Spelt and Emmer Genotypes for Low-input Farming in Mediterranean Environment

    Directory of Open Access Journals (Sweden)

    Pasquale Codianni

    2007-09-01

    Full Text Available Low-input cropping systems are characterised by the reduction of pesticides and chemical fertilizers and, often, by the use of old cultivars to realize sustainable crop production which can easily integrate in the European Union agricultural subsidies. Market prices and environmental concerns favour low-input wheat production systems, nevertheless protein standards become particularly difficult to achieve in these conditions due to a minimal nitrogen supply. This study assesses the efficiency of a specific breeding program dedicated to improve yield and quality in emmer and spelt wheat in low-input environments. Ten tetraploid (emmer and durum wheat and four hexaploid (spelt and bread wheat wheat genotypes (including parent cultivars and offspring breeding lines selected for adaptation to low-input conditions were investigated for 1 yr (2003-2004 in Italy in three locations in conventional and low-input cropping systems. The main agro-morphological and qualitative traits were recorded (HD, PH, GY, PC GPY, TKW, TW, GC. The results of this study show encouraging agronomic performances of new emmer and spelt genotypes under conventional and low-input cropping systems. The new genotypes are characterized by a yield potential similar to that of the modern wheat cultivar as well as by a protein content higher than old emmer and spelt accessions. The new genetic materials were also characterized by a higher responsiveness to improved environmental conditions. The results described in this study support the suitability of modern emmer and spelt genotypes, improved by introgressing wheat yield and quality traits, for organic farming in Mediterranean environments.

  5. Bio-agronomic Evaluation of Old and Modern Wheat, Spelt and Emmer Genotypes for Low-input Farming in Mediterranean Environment

    Directory of Open Access Journals (Sweden)

    Michele Fornara

    2011-02-01

    Full Text Available Low-input cropping systems are characterised by the reduction of pesticides and chemical fertilizers and, often, by the use of old cultivars to realize sustainable crop production which can easily integrate in the European Union agricultural subsidies. Market prices and environmental concerns favour low-input wheat production systems, nevertheless protein standards become particularly difficult to achieve in these conditions due to a minimal nitrogen supply. This study assesses the efficiency of a specific breeding program dedicated to improve yield and quality in emmer and spelt wheat in low-input environments. Ten tetraploid (emmer and durum wheat and four hexaploid (spelt and bread wheat wheat genotypes (including parent cultivars and offspring breeding lines selected for adaptation to low-input conditions were investigated for 1 yr (2003-2004 in Italy in three locations in conventional and low-input cropping systems. The main agro-morphological and qualitative traits were recorded (HD, PH, GY, PC GPY, TKW, TW, GC. The results of this study show encouraging agronomic performances of new emmer and spelt genotypes under conventional and low-input cropping systems. The new genotypes are characterized by a yield potential similar to that of the modern wheat cultivar as well as by a protein content higher than old emmer and spelt accessions. The new genetic materials were also characterized by a higher responsiveness to improved environmental conditions. The results described in this study support the suitability of modern emmer and spelt genotypes, improved by introgressing wheat yield and quality traits, for organic farming in Mediterranean environments.

  6. Sources of stem rust resistance in Ethiopian tetraploid wheat ...

    African Journals Online (AJOL)

    Stem or black rust of wheat caused by the fungus Puccinia graminis f. sp. tritici Ericks and Henn (Pgt) is an important disease on wheat worldwide. Pgt is an obligate biotroph, heteroceous in its life cycle and heterothallic in mating type. Seedlings of 41 emmer (Triticum dicoccum), 56 durum (T. durum) wheat accessions were ...

  7. Grinding up Wheat: a Massive Loss of Nucleotide Diversity Since Domestication

    DEFF Research Database (Denmark)

    Haudry, Anabelle; Cenci, Alberto; Ravel, Catherine

    2007-01-01

    Several demographic and selective events occurred during the domestication of wheat from the allotetraploid wild emmer (Triticum turgidum ssp. dicoccoides). Cultivated wheat has since been affected by other historical events. We analyzed nucleotide diversity at 21 loci in a sample of 101 individu...

  8. Multi-approaches analysis reveals local adaptation in the emmer wheat (Triticum dicoccoides) at macro- but not micro-geographical scale.

    Science.gov (United States)

    Volis, Sergei; Ormanbekova, Danara; Yermekbayev, Kanat; Song, Minshu; Shulgina, Irina

    2015-01-01

    Detecting local adaptation and its spatial scale is one of the most important questions of evolutionary biology. However, recognition of the effect of local selection can be challenging when there is considerable environmental variation across the distance at the whole species range. We analyzed patterns of local adaptation in emmer wheat, Triticum dicoccoides, at two spatial scales, small (inter-population distance less than one km) and large (inter-population distance more than 50 km) using several approaches. Plants originating from four distinct habitats at two geographic scales (cold edge, arid edge and two topographically dissimilar core locations) were reciprocally transplanted and their success over time was measured as 1) lifetime fitness in a year of planting, and 2) population growth four years after planting. In addition, we analyzed molecular (SSR) and quantitative trait variation and calculated the QST/FST ratio. No home advantage was detected at the small spatial scale. At the large spatial scale, home advantage was detected for the core population and the cold edge population in the year of introduction via measuring life-time plant performance. However, superior performance of the arid edge population in its own environment was evident only after several generations via measuring experimental population growth rate through genotyping with SSRs allowing counting the number of plants and seeds per introduced genotype per site. These results highlight the importance of multi-generation surveys of population growth rate in local adaptation testing. Despite predominant self-fertilization of T. dicoccoides and the associated high degree of structuring of genetic variation, the results of the QST - FST comparison were in general agreement with the pattern of local adaptation at the two spatial scales detected by reciprocal transplanting.

  9. Main varieties of bread (Triticum aestivum L.) and durum (Triticum durum Desf.) wheat.

    OpenAIRE

    М. П. Чебаков

    2008-01-01

    Results of systematization and morphological characteristics of two wheat species-bread (Triticum aestivum L.) and hard (Triticum durum Desf.) are given. Detail descriptions of 55 main varieties of bread wheat and 32 varieties of hard wheat arep- resented in table version. In practical application these result enable plant breeders, seed producers and variety testers to determine wheat varieties easily sinse it is method for morphological systematics of wheat.

  10. Main varieties of bread (Triticum aestivum L. and durum (Triticum durum Desf. wheat.

    Directory of Open Access Journals (Sweden)

    М. П. Чебаков

    2008-04-01

    Full Text Available Results of systematization and morphological characteristics of two wheat species-bread (Triticum aestivum L. and hard (Triticum durum Desf. are given. Detail descriptions of 55 main varieties of bread wheat and 32 varieties of hard wheat arep- resented in table version. In practical application these result enable plant breeders, seed producers and variety testers to determine wheat varieties easily sinse it is method for morphological systematics of wheat.

  11. Fine physical and genetic mapping of powdery mildew resistance gene MlIW172 originating from wild emmer (Triticum dicoccoides.

    Directory of Open Access Journals (Sweden)

    Shuhong Ouyang

    Full Text Available Powdery mildew, caused by Blumeria graminis f. sp. tritici, is one of the most important wheat diseases in the world. In this study, a single dominant powdery mildew resistance gene MlIW172 was identified in the IW172 wild emmer accession and mapped to the distal region of chromosome arm 7AL (bin7AL-16-0.86-0.90 via molecular marker analysis. MlIW172 was closely linked with the RFLP probe Xpsr680-derived STS marker Xmag2185 and the EST markers BE405531 and BE637476. This suggested that MlIW172 might be allelic to the Pm1 locus or a new locus closely linked to Pm1. By screening genomic BAC library of durum wheat cv. Langdon and 7AL-specific BAC library of hexaploid wheat cv. Chinese Spring, and after analyzing genome scaffolds of Triticum urartu containing the marker sequences, additional markers were developed to construct a fine genetic linkage map on the MlIW172 locus region and to delineate the resistance gene within a 0.48 cM interval. Comparative genetics analyses using ESTs and RFLP probe sequences flanking the MlIW172 region against other grass species revealed a general co-linearity in this region with the orthologous genomic regions of rice chromosome 6, Brachypodium chromosome 1, and sorghum chromosome 10. However, orthologous resistance gene-like RGA sequences were only present in wheat and Brachypodium. The BAC contigs and sequence scaffolds that we have developed provide a framework for the physical mapping and map-based cloning of MlIW172.

  12. The dead, hardened floral bracts of dispersal units of wild wheat function as storage for active hydrolases and in enhancing seedling vigor.

    Directory of Open Access Journals (Sweden)

    Buzi Raviv

    Full Text Available It is commonly assumed that the dead, hardened floral bracts of the dispersal unit of grasses have been evolved to protect seeds from predation and / or assist in fruit/caryopsis dispersal. While these structures have important agronomical and economical implications, their adaptive value has not been fully explored. We investigated the hypothesis that the maternally derived hardened floral bracts have been evolved not just as a means for caryopsis protection and dispersal, but also as storage for substances that might affect seed germination and seedling vigor. Dead glumes as well as lemmas and paleas of wild emmer wheat (Triticum turgidum var dicoccoides were found to store and release upon hydration active hydrolases including nucleases and chitinases. High nuclease activity was released upon hydration from glumes derived from wild strains of wheat including Triticum urartu and wild emmer wheat, while very low nuclease activity was detected in glumes derived from domesticated, free-threshing wheat cultivars (e.g., durum wheat. Germination from the intact dispersal unit of wild emmer wheat was delayed, but post germination growth was better than those of separated caryopses. Most notable was a significant increase in lateral root production on seedlings germinated from the intact dispersal unit. Proteome analysis of wild emmer wheat glumes revealed many proteins stored and released upon hydration including S1-type nucleases, peptidases, antifungal hydrolases such as chitinases and β-1,3-glucanase as well as pectin acetylesterase, a protein involved in cell wall degradation and remodeling. Also, reactive oxygen species (ROS-detoxifying enzymes such as superoxide dismutase and ascorbate peroxidase were overrepresented in dead glumes of wild emmer wheat. Thus our study highlighted previously unknown features of the dispersal unit in wild wheat in which the dead, hardened floral bracts enclosing the caryopsis store active hydrolases and

  13. Identification and characterization of resistance to yellow rust and powdery mildew in wild emmer wheat and their transfer to bread wheat

    NARCIS (Netherlands)

    Silfhout, van C.H.

    1989-01-01

    In wild emmer wheat three different kinds of genes for resistance to yellow rust were found, namely genes causing overall resistance, genes causing adult-plant resistance and genes which induce resistance detectable at higher temperatures. At least eleven different and probably novel major

  14. Wild emmer genome architecture and diversity elucidate wheat evolution and domestication

    Science.gov (United States)

    Wheat (Triticum spp.) is one of the founder crops that likely drove the Neolithic transition to sedentary agrarian societies in the Fertile Crescent over 10,000 years ago. Identifying genetic modifications underlying wheat's domestication requires knowledge of the genome of its allo-tetraploid proge...

  15. Genetic Diversity and Population Structure of Tetraploid Wheats (Triticum turgidum L. Estimated by SSR, DArT and Pedigree Data.

    Directory of Open Access Journals (Sweden)

    Giovanni Laidò

    Full Text Available Levels of genetic diversity and population genetic structure of a collection of 230 accessions of seven tetraploid Triticum turgidum L. subspecies were investigated using six morphological, nine seed storage protein loci, 26 SSRs and 970 DArT markers. The genetic diversity of the morphological traits and seed storage proteins was always lower in the durum wheat compared to the wild and domesticated emmer. Using Bayesian clustering (K = 2, both of the sets of molecular markers distinguished the durum wheat cultivars from the other tetraploid subspecies, and two distinct subgroups were detected within the durum wheat subspecies, which is in agreement with their origin and year of release. The genetic diversity of morphological traits and seed storage proteins was always lower in the improved durum cultivars registered after 1990, than in the intermediate and older ones. This marked effect on diversity was not observed for molecular markers, where there was only a weak reduction. At K >2, the SSR markers showed a greater degree of resolution than for DArT, with their identification of a greater number of groups within each subspecies. Analysis of DArT marker differentiation between the wheat subspecies indicated outlier loci that are potentially linked to genes controlling some important agronomic traits. Among the 211 loci identified under selection, 109 markers were recently mapped, and some of these markers were clustered into specific regions on chromosome arms 2BL, 3BS and 4AL, where several genes/quantitative trait loci (QTLs are involved in the domestication of tetraploid wheats, such as the tenacious glumes (Tg and brittle rachis (Br characteristics. On the basis of these results, it can be assumed that the population structure of the tetraploid wheat collection partially reflects the evolutionary history of Triticum turgidum L. subspecies and the genetic potential of landraces and wild accessions for the detection of unexplored alleles.

  16. A haplotype specific to North European wheat (Triticum aestivum L.)

    Czech Academy of Sciences Publication Activity Database

    Tsombalova, J.; Karafiátová, Miroslava; Vrána, Jan; Kubaláková, Marie; Peusa, H.; Jakobson, I.; Jarve, M.; Valárik, Miroslav; Doležel, Jaroslav; Jarve, K.

    2017-01-01

    Roč. 64, č. 4 (2017), s. 653-664 ISSN 0925-9864 R&D Projects: GA MŠk(CZ) LO1204; GA ČR(CZ) GA14-07164S Institutional support: RVO:61389030 Keywords : bread wheat * genetic diversity * polyploid wheat * introgression lines * molecular analysis * tetraploid wheat * hexaploid wheat * powdery mildew * spelta l. * map * Common wheat * Triticum aestivum L * Spelt * Triticum spelta L * Chromosome 4A * Zero alleles * Haplotype * Linkage disequilibrium Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Plant sciences, botany Impact factor: 1.294, year: 2016

  17. Augmenting the salt tolerance in wheat ( Triticum aestivum ) through ...

    African Journals Online (AJOL)

    Augmenting the salt tolerance in wheat ( Triticum aestivum ) through exogenously applied silicon. ... African Journal of Biotechnology ... physiology and biochemistry of wheat genotypes (salt sensitive; Auqab-2000 and salt tolerant; SARC-5) ...

  18. Genotype-dependent responses of wheat ( Triticum aestivum L ...

    African Journals Online (AJOL)

    Experiments were conducted under controlled conditions to investigate the growth and physiological - biochemical responses of wheat (Triticum aestivum L.) seedlings to UV-B, drought, and their combined stresses. Both UV-B and drought treatments retarded seedling growth with UV-B having worse impact on wheat plants ...

  19. Reciprocal Hosts' Responses to Powdery Mildew Isolates Originating from Domesticated Wheats and Their Wild Progenitor.

    Science.gov (United States)

    Ben-David, Roi; Dinoor, Amos; Peleg, Zvi; Fahima, Tzion

    2018-01-01

    The biotroph wheat powdery mildew, Blumeria graminis (DC.) E.O. Speer, f. sp. tritici Em. Marchal ( Bgt ), has undergone long and dynamic co-evolution with its hosts. In the last 10,000 years, processes involved in plant evolution under domestication, altered host-population structure. Recently both virulence and genomic profiling separated Bgt into two groups based on their origin from domestic host and from wild emmer wheat. While most studies focused on the Bgt pathogen, there is significant knowledge gaps in the role of wheat host diversity in this specification. This study aimed to fill this gap by exploring qualitatively and also quantitatively the disease response of diverse host panel to powdery mildew [105 domesticated wheat genotypes ( Triticum turgidum ssp. dicoccum, T. turgidum ssp. durum , and T. aestivum ) and 241 accessions of its direct progenitor, wild emmer wheat ( T. turgidum ssp. dicoccoides )]. A set of eight Bgt isolates, originally collected from domesticated and wild wheat was used for screening this wheat collection. The isolates from domesticated wheat elicited susceptible to moderate plant responses on domesticated wheat lines and high resistance on wild genotypes (51.7% of the tested lines were resistant). Isolates from wild emmer elicited reciprocal disease responses: high resistance of domesticated germplasm and high susceptibility of the wild material (their original host). Analysis of variance of the quantitative phenotypic responses showed a significant Isolates × Host species interaction [ P (F) < 0.0001] and further supported these findings. Furthermore, analysis of the range of disease severity values showed that when the group of host genotypes was inoculated with Bgt isolate from the reciprocal host, coefficient of variation was significantly higher than when inoculated with its own isolates. This trend was attributed to the role of major resistance genes in the latter scenario (high proportion of complete resistance). By

  20. Reciprocal Hosts' Responses to Powdery Mildew Isolates Originating from Domesticated Wheats and Their Wild Progenitor

    Directory of Open Access Journals (Sweden)

    Roi Ben-David

    2018-02-01

    Full Text Available The biotroph wheat powdery mildew, Blumeria graminis (DC. E.O. Speer, f. sp. tritici Em. Marchal (Bgt, has undergone long and dynamic co-evolution with its hosts. In the last 10,000 years, processes involved in plant evolution under domestication, altered host-population structure. Recently both virulence and genomic profiling separated Bgt into two groups based on their origin from domestic host and from wild emmer wheat. While most studies focused on the Bgt pathogen, there is significant knowledge gaps in the role of wheat host diversity in this specification. This study aimed to fill this gap by exploring qualitatively and also quantitatively the disease response of diverse host panel to powdery mildew [105 domesticated wheat genotypes (Triticum turgidum ssp. dicoccum, T. turgidum ssp. durum, and T. aestivum and 241 accessions of its direct progenitor, wild emmer wheat (T. turgidum ssp. dicoccoides]. A set of eight Bgt isolates, originally collected from domesticated and wild wheat was used for screening this wheat collection. The isolates from domesticated wheat elicited susceptible to moderate plant responses on domesticated wheat lines and high resistance on wild genotypes (51.7% of the tested lines were resistant. Isolates from wild emmer elicited reciprocal disease responses: high resistance of domesticated germplasm and high susceptibility of the wild material (their original host. Analysis of variance of the quantitative phenotypic responses showed a significant Isolates × Host species interaction [P(F < 0.0001] and further supported these findings. Furthermore, analysis of the range of disease severity values showed that when the group of host genotypes was inoculated with Bgt isolate from the reciprocal host, coefficient of variation was significantly higher than when inoculated with its own isolates. This trend was attributed to the role of major resistance genes in the latter scenario (high proportion of complete resistance. By

  1. Drought Tolerance in Modern and Wild Wheat

    Science.gov (United States)

    Budak, Hikmet; Kantar, Melda; Yucebilgili Kurtoglu, Kuaybe

    2013-01-01

    The genus Triticum includes bread (Triticum aestivum) and durum wheat (Triticum durum) and constitutes a major source for human food consumption. Drought is currently the leading threat on world's food supply, limiting crop yield, and is complicated since drought tolerance is a quantitative trait with a complex phenotype affected by the plant's developmental stage. Drought tolerance is crucial to stabilize and increase food production since domestication has limited the genetic diversity of crops including wild wheat, leading to cultivated species, adapted to artificial environments, and lost tolerance to drought stress. Improvement for drought tolerance can be achieved by the introduction of drought-grelated genes and QTLs to modern wheat cultivars. Therefore, identification of candidate molecules or loci involved in drought tolerance is necessary, which is undertaken by “omics” studies and QTL mapping. In this sense, wild counterparts of modern varieties, specifically wild emmer wheat (T. dicoccoides), which are highly tolerant to drought, hold a great potential. Prior to their introgression to modern wheat cultivars, drought related candidate genes are first characterized at the molecular level, and their function is confirmed via transgenic studies. After integration of the tolerance loci, specific environment targeted field trials are performed coupled with extensive analysis of morphological and physiological characteristics of developed cultivars, to assess their performance under drought conditions and their possible contributions to yield in certain regions. This paper focuses on recent advances on drought related gene/QTL identification, studies on drought related molecular pathways, and current efforts on improvement of wheat cultivars for drought tolerance. PMID:23766697

  2. Drought Tolerance in Modern and Wild Wheat

    Directory of Open Access Journals (Sweden)

    Hikmet Budak

    2013-01-01

    Full Text Available The genus Triticum includes bread (Triticum aestivum and durum wheat (Triticum durum and constitutes a major source for human food consumption. Drought is currently the leading threat on world's food supply, limiting crop yield, and is complicated since drought tolerance is a quantitative trait with a complex phenotype affected by the plant's developmental stage. Drought tolerance is crucial to stabilize and increase food production since domestication has limited the genetic diversity of crops including wild wheat, leading to cultivated species, adapted to artificial environments, and lost tolerance to drought stress. Improvement for drought tolerance can be achieved by the introduction of drought-grelated genes and QTLs to modern wheat cultivars. Therefore, identification of candidate molecules or loci involved in drought tolerance is necessary, which is undertaken by “omics” studies and QTL mapping. In this sense, wild counterparts of modern varieties, specifically wild emmer wheat (T. dicoccoides, which are highly tolerant to drought, hold a great potential. Prior to their introgression to modern wheat cultivars, drought related candidate genes are first characterized at the molecular level, and their function is confirmed via transgenic studies. After integration of the tolerance loci, specific environment targeted field trials are performed coupled with extensive analysis of morphological and physiological characteristics of developed cultivars, to assess their performance under drought conditions and their possible contributions to yield in certain regions. This paper focuses on recent advances on drought related gene/QTL identification, studies on drought related molecular pathways, and current efforts on improvement of wheat cultivars for drought tolerance.

  3. Variation in Susceptibility to Wheat dwarf virus among Wild and Domesticated Wheat

    Science.gov (United States)

    Nygren, Jim; Shad, Nadeem; Kvarnheden, Anders; Westerbergh, Anna

    2015-01-01

    We investigated the variation in plant response in host-pathogen interactions between wild (Aegilops spp., Triticum spp.) and domesticated wheat (Triticum spp.) and Wheat dwarf virus (WDV). The distribution of WDV and its wild host species overlaps in Western Asia in the Fertile Crescent, suggesting a coevolutionary relationship. Bread wheat originates from a natural hybridization between wild emmer wheat (carrying the A and B genomes) and the wild D genome donor Aegilops tauschii, followed by polyploidization and domestication. We studied whether the strong selection during these evolutionary processes, leading to genetic bottlenecks, may have resulted in a loss of resistance in domesticated wheat. In addition, we investigated whether putative fluctuations in intensity of selection imposed on the host-pathogen interactions have resulted in a variation in susceptibility to WDV. To test our hypotheses we evaluated eighteen wild and domesticated wheat taxa, directly or indirectly involved in wheat evolution, for traits associated with WDV disease such as leaf chlorosis, different growth traits and WDV content. The plants were exposed to viruliferous leafhoppers (Psammotettix alienus) in a greenhouse trial and evaluated at two time points. We found three different plant response patterns: i) continuous reduction in growth over time, ii) weak response at an early stage of plant development but a much stronger response at a later stage, and iii) remission of symptoms over time. Variation in susceptibility may be explained by differences in the intensity of natural selection, shaping the coevolutionary interaction between WDV and the wild relatives. However, genetic bottlenecks during wheat evolution have not had a strong impact on WDV resistance. Further, this study indicates that the variation in susceptibility may be associated with the genome type and that the ancestor Ae. tauschii may be useful as genetic resource for the improvement of WDV resistance in wheat. PMID

  4. Variation in susceptibility to Wheat dwarf virus among wild and domesticated wheat.

    Directory of Open Access Journals (Sweden)

    Jim Nygren

    Full Text Available We investigated the variation in plant response in host-pathogen interactions between wild (Aegilops spp., Triticum spp. and domesticated wheat (Triticum spp. and Wheat dwarf virus (WDV. The distribution of WDV and its wild host species overlaps in Western Asia in the Fertile Crescent, suggesting a coevolutionary relationship. Bread wheat originates from a natural hybridization between wild emmer wheat (carrying the A and B genomes and the wild D genome donor Aegilops tauschii, followed by polyploidization and domestication. We studied whether the strong selection during these evolutionary processes, leading to genetic bottlenecks, may have resulted in a loss of resistance in domesticated wheat. In addition, we investigated whether putative fluctuations in intensity of selection imposed on the host-pathogen interactions have resulted in a variation in susceptibility to WDV. To test our hypotheses we evaluated eighteen wild and domesticated wheat taxa, directly or indirectly involved in wheat evolution, for traits associated with WDV disease such as leaf chlorosis, different growth traits and WDV content. The plants were exposed to viruliferous leafhoppers (Psammotettix alienus in a greenhouse trial and evaluated at two time points. We found three different plant response patterns: i continuous reduction in growth over time, ii weak response at an early stage of plant development but a much stronger response at a later stage, and iii remission of symptoms over time. Variation in susceptibility may be explained by differences in the intensity of natural selection, shaping the coevolutionary interaction between WDV and the wild relatives. However, genetic bottlenecks during wheat evolution have not had a strong impact on WDV resistance. Further, this study indicates that the variation in susceptibility may be associated with the genome type and that the ancestor Ae. tauschii may be useful as genetic resource for the improvement of WDV resistance in

  5. PLANT REMAINS FROM ASIKLI-HOYUK, A PRE-POTTERY NEOLITHIC SITE IN CENTRAL ANATOLIA

    NARCIS (Netherlands)

    VANZEIST, W; DEROLLER, GJ

    Cereal crop plants at Asikli Hayuk included einkorn wheat (Triticum monococcum), emmer wheat (T. dicoccum), free-threshing wheat (T. cf. durum), hulled two-rowed barley (Hordeum distichum) and naked barley (H. vulgare var. nudum). As for pulses, bitter vetch (Vicia ervilia), lentil (Lens culinaris)

  6. Diallel analysis of anther culture response in wheat ( Triticum ...

    African Journals Online (AJOL)

    The four wheat (Triticum aestivum L.) genotypes differing in their ability to produce embryogenic callus from anther culture were reciprocally crossed and inheritance of anther culture response [callus induction frequency (CIF, %), embryogenic callus induction frequency (ECIF, %), regeneration capacity of callus (RCC, %) ...

  7. Effects of sprouting and salt stress on polyphenol composition and antiradical activity of einkorn, emmer and durum wheat

    Directory of Open Access Journals (Sweden)

    Fabio Stagnari

    2017-12-01

    Full Text Available Germination is related with improvements of nutritional value of seeds, since it promotes accumulation of health-promoting phytochemicals. However, only few studies have investigated on phytochemicals accumulation during sprouting under sub-optimal conditions. Thus, we investigated the effect of salinity during germination of an einkorn (TMoM, an emmer (TDiZ and a durum wheat (TDuC genotype on the total polyphenols (TPC, free- and bound-phenolic acids [PAs; i.e. caffeic acid, syringic acid, Pcoumaric acid, trans-ferulic acid, and salicylic acid] contents and antiradical activity (Trolox equivalent antioxidant capacity; TEAC of sprouts and wheatgrass. The following NaCl treatments were applied: 0 (control, 25, 50 and 100 mM NaCl concentration throughout the whole experiment, or 50 and 100 mM NaCl until sprout stage and then 0 mM until wheatgrass stage (recovery treatments. TMoM showed higher total bound-PAs both in sprouts and wheatgrass with respect to the other Triticum genotypes (+25% and 24%, respectively as well as of total bound-PAs and bound-SA in the recovery treatments. Moderate salt stress significantly increased all the investigated variables in TDiZ. Salt stress induced higher TPC and TEAC as well as total free-PAs values till 50 mM NaCl in TDuC, whilst significantly lowered total bound-PAs due to the negative variation of both P-CA (-84% and trans-FA (-81% acids. Results indicate that salinity during germination could be efficiently modulated to improve the nutritional quality of sprouts, wheatgrass and cereal-based products.

  8. Seed-borne mycoflora of local and improved wheat ( Triticum ...

    African Journals Online (AJOL)

    Three varieties each of local and improved wheat (Triticum sativum) cultivars were investigated for seed-borne pathogenic mycoflora using the plate technique and laid on completely randomized design. A total 99 fungal isolate grouped into five fungal species namely; Rhizopus nigricans, Mucor spp, Penillium jenseni, ...

  9. PCR-Based EST Mapping in Wheat (Triticum aestivum L.

    Directory of Open Access Journals (Sweden)

    J. PERRY GUSTAFSON

    2009-04-01

    Full Text Available Mapping expressed sequence tags (ESTs to hexaploid wheat is aimed to reveal the structure and function of the hexaploid wheat genome. Sixty eight ESTs representing 26 genes were mapped into all seven homologous chromosome groups of wheat (Triticum aestivum L using a polymerase chain reaction technique. The majority of the ESTs were mapped to homologous chromosome group 2, and the least were mapped to homologous chromosome group 6. Comparative analysis between the EST map from this study and the EST map based on RFLPs showed 14 genes that have been mapped by both approaches were mapped to the same arm of the same homologous chromosome, which indicated that using PCR-based ESTs was a reliable approach in mapping ESTs in hexaploid wheat.

  10. Genetics of mycorrhizal symbiosis in winter wheat (Triticum aestivum).

    Science.gov (United States)

    Lehnert, Heike; Serfling, Albrecht; Enders, Matthias; Friedt, Wolfgang; Ordon, Frank

    2017-07-01

    Bread wheat (Triticum aestivum) is a major staple food and therefore of prime importance for feeding the Earth's growing population. Mycorrhiza is known to improve plant growth, but although extensive knowledge concerning the interaction between mycorrhizal fungi and plants is available, genotypic differences concerning the ability of wheat to form mycorrhizal symbiosis and quantitative trait loci (QTLs) involved in mycorrhization are largely unknown. Therefore, a diverse set of 94 bread wheat genotypes was evaluated with regard to root colonization by arbuscular mycorrhizal fungi. In order to identify genomic regions involved in mycorrhization, these genotypes were analyzed using the wheat 90k iSelect chip, resulting in 17 823 polymorphic mapped markers, which were used in a genome-wide association study. Significant genotypic differences (P wheat. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  11. Wheat in the Mediterranean revisited--tetraploid wheat landraces assessed with elite bread wheat Single Nucleotide Polymorphism markers.

    Science.gov (United States)

    Oliveira, Hugo R; Hagenblad, Jenny; Leino, Matti W; Leigh, Fiona J; Lister, Diane L; Penã-Chocarro, Leonor; Jones, Martin K

    2014-05-08

    Single Nucleotide Polymorphism (SNP) panels recently developed for the assessment of genetic diversity in wheat are primarily based on elite varieties, mostly those of bread wheat. The usefulness of such SNP panels for studying wheat evolution and domestication has not yet been fully explored and ascertainment bias issues can potentially affect their applicability when studying landraces and tetraploid ancestors of bread wheat. We here evaluate whether population structure and evolutionary history can be assessed in tetraploid landrace wheats using SNP markers previously developed for the analysis of elite cultivars of hexaploid wheat. We genotyped more than 100 tetraploid wheat landraces and wild emmer wheat accessions, some of which had previously been screened with SSR markers, for an existing SNP panel and obtained publically available genotypes for the same SNPs for hexaploid wheat varieties and landraces. Results showed that quantification of genetic diversity can be affected by ascertainment bias but that the effects of ascertainment bias can at least partly be alleviated by merging SNPs to haplotypes. Analyses of population structure and genetic differentiation show strong subdivision between the tetraploid wheat subspecies, except for durum and rivet that are not separable. A more detailed population structure of durum landraces could be obtained than with SSR markers. The results also suggest an emmer, rather than durum, ancestry of bread wheat and with gene flow from wild emmer. SNP markers developed for elite cultivars show great potential for inferring population structure and can address evolutionary questions in landrace wheat. Issues of marker genome specificity and mapping need, however, to be addressed. Ascertainment bias does not seem to interfere with the ability of a SNP marker system developed for elite bread wheat accessions to detect population structure in other types of wheat.

  12. Molecular mapping of the novel powdery mildew resistance gene Pm36 introgressed from Triticum turgidum var. dicoccoides in durum wheat.

    Science.gov (United States)

    Blanco, Antonio; Gadaleta, A; Cenci, A; Carluccio, A V; Abdelbacki, A M M; Simeone, R

    2008-06-01

    Powdery mildew, caused by Blumeria graminis f.sp. tritici, is one of the most important wheat diseases in many regions of the world. Triticum turgidum var. dicoccoides (2n=4x=AABB), the progenitor of cultivated wheats, shows particular promises as a donor of useful genetic variation for several traits, including disease resistances. The wild emmer accession MG29896, resistant to powdery mildew, was backcrossed to the susceptible durum wheat cultivar Latino, and a set of backcross inbred lines (BC(5)F(5)) was produced. Genetic analysis of F(3) populations from two resistant introgression lines (5BIL-29 x Latino and 5BIL-42 x Latino) indicated that the powdery mildew resistance is controlled by a single dominant gene. Molecular markers and the bulked segregant analysis were used to characterize and map the powdery mildew resistance. Five AFLP markers (XP43M32((250)), XP46M31((410)), XP41M37((100)), XP41M39((250)), XP39M32((120))), three genomic SSR markers (Xcfd07, Xwmc75, Xgwm408) and one EST-derived SSR marker (BJ261635) were found to be linked to the resistance gene in 5BIL-29 and only the BJ261635 marker in 5BIL-42. By means of Chinese Spring nullisomic-tetrasomic, ditelosomic and deletion lines, the polymorphic markers and the resistance gene were assigned to chromosome bin 5BL6-0.29-0.76. These results indicated that the two lines had the same resistance gene and that the introgressed dicoccoides chromosome segment was longer (35.5 cM) in 5BIL-29 than that introgressed in 5BIL-42 (less than 1.5 cM). As no powdery mildew resistance gene has been reported on chromosome arm 5BL, the novel resistance gene derived from var. dicoccoides was designated Pm36. The 244 bp allele of BJ261635 in 5BIL-42 can be used for marker-assisted selection during the wheat resistance breeding process for facilitating gene pyramiding.

  13. Economical factors of wheat (Triticum aestivum L. diversity: econometric stimation

    Directory of Open Access Journals (Sweden)

    S.S. Hamraz

    2016-05-01

    Full Text Available In this study tried to calculate attributed-based index and measurement of farmer’s attention to wheat (Triticum aestivum L. seed environmental, cropping and marketing attribute and evaluate social– economical factors influencing on this index. After this estimation, effective factors have selected. Related data to 102 Mashhad wheat producers, Iran were used for estimations Poisson regression. Results showed that in seed characteristics set; marketability and taste were more important factors. Also, results of this study corroborant previews study and only variables age and family number make difference. Also, education, farming and non–farming income, farming experience, farm area and loan receive have positive effect on these characteristics.

  14. Development of transgenic wheat (Triticum aestivum L.) expressing avidin gene conferring resistance to stored product insects

    OpenAIRE

    Abouseadaa, Heba H; Osman, Gamal H; Ramadan, Ahmed M; Hassanein, Sameh E; Abdelsattar, Mohamed T; Morsy, Yasser B; Alameldin, Hussien F; El-Ghareeb, Doaa K; Nour-Eldin, Hanan A; Salem, Reda; Gad, Adel A; Elkhodary, Soheir E; Shehata, Maher M; Mahfouz, Hala M; Eissa, Hala F

    2015-01-01

    Background Wheat is considered the most important cereal crop all over the world. The wheat weevil Sitophilus granarius is a serious insect pests in much of the wheat growing area worldwide and is responsible for significant loss of yield. Avidin proteins has been proposed to function as plant defense agents against insect pests. Results A synthetic avidin gene was introduced into spring wheat (Triticum aestivum L.) cv. Giza 168 using a biolistic bombardment protocol. The presence and express...

  15. Comparison of Grain Yield and Some Characteristics of Hulled, Durum and Bread Wheat Genotypes Varieties

    Directory of Open Access Journals (Sweden)

    Bekir Atar

    2017-02-01

    Full Text Available In spite of the low grain yield they produce, the hulled wheat have become even more important in recent years because of their resistance to negative environmental conditions and healthy nutritional content. The research was carry out in order to comparison the yield and yield characteristics of durum (Kiziltan-91 and C-1252, hulled (Einkorn and Emmer and bread wheat (Tir varieties in Isparta ecological conditions in 2013-14 and 2014-15 vegetation periods. In both years, the highest grain yield was obtained in Kiziltan-91 variety (3992 and 3758 kg ha-1 respectively. The grain yield of hulled wheats in the first year (Einkorn 1269 kg ha-1, Emmer 2125 kg ha-1 was around Turkey averages. However, grain yield decreased of commercial wheat varieties due to the negative effect of high amount of rainfall in June in the second year, but considerably increased in (Einkorn 2150 kg ha-1, Emmer 2533 kg ha-1. N uptake was found to be lower in the than durum wheats. In terms of grain protein content, the highest values were obtained in Emmer variety (16.4%-15.3%.

  16. Heat stress in wheat (Triticum aestivum L.): Effects on grain growth and quality traits

    NARCIS (Netherlands)

    Spiertz, J.H.J.; Hamer, R.J.; Xu, H.; Primo-Martin, C.; Don, C.; Putten, P.E.L. van der

    2006-01-01

    Heat stress effects on grain dry mass and quality were studied in spring wheat genotypes (Triticum aestivum L.). Three cultivars were chosen with respect to heat tolerance: Lavett (genotype 1), selected for temperate growing conditions and two CIMMYT cultivars, Ciano-79 (genotype 2) and Attila

  17. Characterization and Discrimination of Ancient Grains: A Metabolomics Approach

    Directory of Open Access Journals (Sweden)

    Laura Righetti

    2016-07-01

    Full Text Available Hulled, or ancient, wheats were the earliest domesticated wheats by mankind and the ancestors of current wheats. Their cultivation drastically decreased during the 1960s; however, the increasing demand for a healthy and equilibrated diet led to rediscovering these grains. Our aim was to use a non-targeted metabolomic approach to discriminate and characterize similarities and differences between ancient Triticum varieties. For this purpose, 77 hulled wheat samples from three different varieties were collected: Garfagnana T. turgidum var. dicoccum L. (emmer, ID331 T. monococcum L. (einkorn and Rouquin T. spelta L. (spelt. The ultra high performance liquid chromatography coupled to high resolution tandem mass spectrometry (UHPLC-QTOF metabolomics approach highlighted a pronounced sample clustering according to the wheat variety, with an excellent predictability (Q2, for all the models built. Fifteen metabolites were tentatively identified based on accurate masses, isotopic pattern, and product ion spectra. Among these, alkylresorcinols (ARs were found to be significantly higher in spelt and emmer, showing different homologue composition. Furthermore, phosphatidylcholines (PC and lysophosphatidylcholines (lysoPC levels were higher in einkorn variety. The results obtained in this study confirmed the importance of ARs as markers to distinguish between Triticum species and revealed their values as cultivar markers, being not affected by the environmental influences.

  18. Evaluation of Salt Stress Effect on the Agro-Physiological Traits of Bread Wheat (Triticum aestivum L. and Durum Wheat (Triticum turgidum L. at the Seedling Stage

    Directory of Open Access Journals (Sweden)

    P. Golkar

    2016-07-01

    Full Text Available This experiment was conducted to evaluate the effects of salt stress on some agro-physiological traits in ten varieties of bread (Triticum aestivum L. and durum (Triticum turgidum L. wheats in seedling stage. A greenhouse experiment was carried out as a split plot experiment based on a completely randomized design with four replications in hydroponic condition. Different agronomic and physiological traits (such as Na+, K+, Ca+2 contents and relative water content (RWC were studied. Salinity showed significant effect on all of the studied traits, except for root dry weight and the ratio of Na+/Ca+2. Increase in NaCl level led to significant reductions in all studied traits. The studied genotypes showed significant difference for radicle length, leaf length, seedling dry weight, leaf dry weight, root dry weight, RWC and Na+, K+, Ca+2 concentrations and Na+/K+ and Na+/Ca+2 ratios. The genotype × salinity interaction was significant for RWC, Na+, Ca+2 and Na+/Ca+2. The salt stress increased the leaf Na+ while it decreased the K+ and Ca2+ concentrations. The greatest shoot dry weight (0.035 g, root dry weight (0.024 g and Na+/Ca+2 ratio (1.71 were found in genotype Alamot (bread wheat and the greatest plantlet length (12 cm was observed in genotype Verinak. The greatest rootlet length (14.63 cm, dry weight of seedlings (0.057 g, RWC (82.20%, membrane stability (0.59, K+ (3.38 mg/g dry weight and the smallest Na+/K+ ratio (0.17 were detected in genotype Toos (bread wheat. The genotype Toos was identified as the most tolerant genotype to salt stress.

  19. Silicon alleviates Cd stress of wheat seedlings (Triticum turgidum L. cv. Claudio) grown in hydroponics

    DEFF Research Database (Denmark)

    Rizwan, M.; Meunier, J. D.; Davidian, J. C.

    2016-01-01

    We investigated the potential role of silicon in improving tolerance and decreasing cadmium (Cd) toxicity in durum wheat (Triticum turgidum L. durum) either through a reduced Cd uptake or exclusion/sequestration in non-metabolic tissues. For this, plants were grown in hydroponic conditions for 10...

  20. Studies on certain aspects of seed-borne fungi. VI. Fungi associated with different cultivars of wheat (Triticum aestivum L.)

    OpenAIRE

    K. K. Pandey

    2014-01-01

    Fungi associated with eight cultivars of wheat have been investigated. Twenty seven species were isolated from external and internal surface of all the wheat (Triticum aestivum L.) cultivars respectively. Out of five dominant and subdominant fungi anly Aspergillus terreus and Alternaria tenuis were able to colonize internally. The culture filtrates of test fungi reduced the germination of all wheat varieties up to different degrees.

  1. Agronomic traits and deoxynivalenol contamination of two tetraploid wheat species (Triticum turgidum spp. durum, Triticum turgidum spp. turanicum grown strictly under low input conditions

    Directory of Open Access Journals (Sweden)

    Giovanni Dinelli

    2014-09-01

    Full Text Available An evaluation of the agronomic performance of two tetraploid wheat varieties (Triticum turgidum spp. durum, Claudio; Triticum turgidum spp. turanicum, Kamut® grown strictly under low input conditions was carried out over three consecutive cropping years. The study reported grain yield values ranging from 1.8 to 2.6 t ha-1. Productivity showed to be primarily affected by environmental conditions, while no differences were observed between the two genotypes. The study of the yield components highlighted that the durum wheat variety had a higher plant density than Kamut®, but this discrepancy was offset by a greater number of kernels per spike and the kernel weight of khorasan wheat. The investigated wheat genotypes were also analysed to assess the mycotoxin (DON levels of wholegrain semolina and the efficiency of cleaning treatments to reduce contamination. Results showed that both wheat varieties had a good hygienic and sanitary quality with a DON content ranging from 0.35 to 1.31 mg kg-1, which was lower than the maximum acceptable level set by the European regulation at 1.75 mg kg-1. In addition, our research work investigated the effects of premilling cleaning procedures, such as water washing and brushing, on mycotoxin levels, which yielded interesting results in terms of decontamination efficiency. These methods were particularly efficient with Kamut® semolina (46-93% DON reduction, suggesting that mycotoxins accumulate in this variety at more superficial levels than in the durum wheat variety. On the whole, our study provided additional knowledge on the traits to be further improved to respond to low input requirements and to enhance the potential adaptability of wheat genotypes to organic agriculture. Our results emphasized the need to develop wheat varieties that can provide adequate performance without high levels of nitrogen inputs by selecting specific traits, such as kernel weight, spike length and kernel/spike. This may help

  2. Anatomical Peculiarities in Wheat (Triticum Aestivum L.) varieties Under Copper Stress

    International Nuclear Information System (INIS)

    Atabayeva, S.; Nurmahanova, A.; Akhmetova, A.; Narmuratova, M.; Asrandina, S.; Alybayeva, R.

    2016-01-01

    The effect of different concentrations (0.25 mM, 0.5 mM) of Cu/sup 2+/ on anatomical parameters of leaves and roots was investigated in hydroponically grown five wheat (Triticum aestivum L.) varieties (Kazakhstanskaya rannaya, Kazakhstanskaya-3, Melturn, Kaiyr and Shagala). The results showed that wheat varieties exposed to 0.5 mM Cu/sup 2+/ exhibited significant alterations in anatomical structure of leaves and roots. The thickness of the upper and lower epidermis, diameter of vascular bundles of leaves of almost all varieties showed a tendency to decrease under copper stress. Our experiments showed an activation of defense responses in the root anatomical structure like exodermis thickening in some varieties in the presence of copper in growth medium as compared to the control. This indicates that copper ions increase the thickness of exodermis, which reduce the absorption of toxic elements by root cells. Copper stress caused a decrease in the thickness of the lower and upper epidermis to varying degrees and reduction in the diameter of vascular bundles of wheat leaves. Copper stress caused a reduction in endodermis thickness thereby decreasing the diameter of the central cylinder of wheat roots. (author)

  3. et de blé dur (Triticum durum

    African Journals Online (AJOL)

    SARAH

    31 mai 2017 ... Study of the genetic diversity of some varieties of bread wheat (Triticum aestivum L.) and durum wheat. (Triticum durum Desf.) ...... Crop adaptation to climate change,1e éd. Oxford, Wiley-Blackwell, 595 p. Zeven AC,1998. Landraces: a review of definitions and classifications. Euphytica 104(2) : 127-139.

  4. Nutritional and Nutraceutical Properties of Triticum dicoccum Wheat and Its Health Benefits: An Overview.

    Science.gov (United States)

    Dhanavath, Srinu; Prasada Rao, U J S

    2017-10-01

    Triticum dicoccum wheat is one of the ancient wheat species and is gaining popularity due to its suggested health benefits as well as its suitability for organic farming. In some parts of the world, certain traditional foods prepared with dicoccum wheat are preferred due to their better taste, texture, and flavor. It is rich in bioactive compounds and its starch has been reported to have slow digestibility. However, content and composition of bioactive compounds is reported to vary depending on the geographical location, seasonal variations, varieties used, and the analytical methods followed. Therefore, in the present study, we report the food uses, digestibility of starch, nutritional and nutraceutical compositions of dicoccum wheat grown in different parts of the world, and also its health benefits in ameliorating diabetes and celiac disease. © 2017 Institute of Food Technologists®.

  5. Nucleotide diversity maps reveal variation in diversity among wheat genomes and chromosomes

    Directory of Open Access Journals (Sweden)

    McGuire Patrick E

    2010-12-01

    Full Text Available Abstract Background A genome-wide assessment of nucleotide diversity in a polyploid species must minimize the inclusion of homoeologous sequences into diversity estimates and reliably allocate individual haplotypes into their respective genomes. The same requirements complicate the development and deployment of single nucleotide polymorphism (SNP markers in polyploid species. We report here a strategy that satisfies these requirements and deploy it in the sequencing of genes in cultivated hexaploid wheat (Triticum aestivum, genomes AABBDD and wild tetraploid wheat (Triticum turgidum ssp. dicoccoides, genomes AABB from the putative site of wheat domestication in Turkey. Data are used to assess the distribution of diversity among and within wheat genomes and to develop a panel of SNP markers for polyploid wheat. Results Nucleotide diversity was estimated in 2114 wheat genes and was similar between the A and B genomes and reduced in the D genome. Within a genome, diversity was diminished on some chromosomes. Low diversity was always accompanied by an excess of rare alleles. A total of 5,471 SNPs was discovered in 1791 wheat genes. Totals of 1,271, 1,218, and 2,203 SNPs were discovered in 488, 463, and 641 genes of wheat putative diploid ancestors, T. urartu, Aegilops speltoides, and Ae. tauschii, respectively. A public database containing genome-specific primers, SNPs, and other information was constructed. A total of 987 genes with nucleotide diversity estimated in one or more of the wheat genomes was placed on an Ae. tauschii genetic map, and the map was superimposed on wheat deletion-bin maps. The agreement between the maps was assessed. Conclusions In a young polyploid, exemplified by T. aestivum, ancestral species are the primary source of genetic diversity. Low effective recombination due to self-pollination and a genetic mechanism precluding homoeologous chromosome pairing during polyploid meiosis can lead to the loss of diversity from large

  6. Effect of high temperature on cell structure and gluten protein accumulation in the endosperm of the developing wheat (Triticum aestivum L.) grain

    Science.gov (United States)

    High temperature during grain fill is one of the more significant environmental factors that alters wheat yield and flour quality. To identify endosperm responses to high temperature, cell structure and gluten protein composition were investigated in developing wheat (Triticum aestivum L. cv. Butte ...

  7. Cysteine proteases and wheat (Triticum aestivum L) under drought: A still greatly unexplored association.

    Science.gov (United States)

    Botha, Anna-Maria; Kunert, Karl J; Cullis, Christopher A

    2017-09-01

    Bread wheat (Triticum aestivum L.) provides about 19% of global dietary energy. Environmental stress, such as drought, affects wheat growth causing premature plant senescence and ultimately plant death. A plant response to drought is an increase in protease-mediated proteolysis with rapid degradation of proteins required for metabolic processes. Among the plant proteases that are increased in their activity following stress, cysteine proteases are the best characterized. Very little is known about particular wheat cysteine protease sequences, their expression and also localization. The current knowledge on wheat cysteine proteases belonging to the five clans (CA, CD, CE, CF and CP) is outlined, in particular their expression and possible function under drought. The first successes in establishing an annotated wheat genome database are further highlighted which has allowed more detailed mining of cysteine proteases. We also share our thoughts on future research directions considering the growing availability of genomic resources of this very important food crop. Finally, we also outline future application of developed knowledge in transgenic wheat plants for environmental stress protection and also as senescence markers to monitor wheat growth under environmental stress conditions. © 2017 John Wiley & Sons Ltd.

  8. Uptake, Translocation, and Biotransformation of Organophosphorus Esters in Wheat (Triticum aestivum L.).

    Science.gov (United States)

    Wan, Weining; Huang, Honglin; Lv, Jitao; Han, Ruixia; Zhang, Shuzhen

    2017-12-05

    The uptake, translocation and biotransformation of organophosphate esters (OPEs) by wheat (Triticum aestivum L.) were investigated by a hydroponic experiment. The results demonstrated that OPEs with higher hydrophobicity were more easily taken up by roots, and OPEs with lower hydrophobicity were more liable to be translocated acropetally. A total of 43 metabolites including dealkylated, oxidatively dechlorinated, hydroxylated, methoxylated, and glutathione-, and glucuronide- conjugated products were detected derived from eight OPEs, with diesters formed by direct dealkylation from the parent triesters as the major products, followed with hydroxylated triesters. Molecular interactions of OPEs with plant biomacromolecules were further characterized by homology modeling combined with molecular docking. OPEs with higher hydrophobicity were more liable to bind with TaLTP1.1, the most important wheat nonspecific lipid transfer protein, consistent with the experimental observation that OPEs with higher hydrophobicity were more easily taken up by wheat roots. Characterization of molecular interactions between OPEs and wheat enzymes suggested that OPEs were selectively bound to TaGST4-4 and CYP71C6v1 with different binding affinities, which determined their abilities to be metabolized and form metabolite products in wheat. This study provides both experimental and theoretical evidence for the uptake, accumulation and biotransformation of OPEs in plants.

  9. Improved fluorimetric measurement of uranium uptake and distribution in spring wheat (Triticum aestivum L.)

    Energy Technology Data Exchange (ETDEWEB)

    Borcia, Catalin [' ' Alexandru Ioan Cuza' ' Univ., Iasi (Romania). Dept. of Physics; Popa, Karin; Cecal, Alexandru [' ' Alexandru Ioan Cuza' ' Univ., Iasi (Romania). Dept. of Chemistry; Murariu, Manuela [' ' Petru Poni' ' Institute of Macromolecular Chemistry, Iasi (Romania)

    2016-08-01

    Uranium uptake and (radio)toxicity was tested on spring wheat (Triticum aestivum L.) in a laboratory study using differently concentrated uranium nitrate solutions. Within these experiments, two analytical assays of uranium were comparatively tested: a fast and improved fluorimetric assay and the classical colorimetric (U(IV)-arsenazo(III) complexation) one. During the germination, the wheat seeds and plantlets supported well the uranium solutions of treatment within the entire concentration range (1 x 10{sup -4} -5 x 10{sup -3} M). Uranium proved to be non (radio)toxic to wheat as compared with other natural and anthropogenic radiocations, probably because its uptake by spring wheat during the germination is low. Indeed, only a small fraction of uranium administered was located within the roots, whereas the uranium content of the stems was negligible. A high correlation between the results obtained by two analytical methods was found. However, the fluorimetric assay proved to be more reliable and fast, and accurate.

  10. Joint stress of chlorimuron-ethyl and cadmium on wheat Triticum aestivum at biochemical levels

    International Nuclear Information System (INIS)

    Wang, M.-E; Zhou, Q.-X.

    2006-01-01

    Biochemical responses to joint stress of chlorimuron-ethyl and cadmium (Cd) in wheat Triticum aestivum were examined. The joint action of chlorimuron-ethyl and Cd weakened the inhibition of Cd or chlorimuron-ethyl on the formation of chlorophyll. It was deduced that wheat plants had the capability to protect themselves by increasing the activity of the antioxidant enzyme peroxidase (POD) with the exposure time. The joint effect of chlorimuron-ethyl and Cd on the superoxide dismutase (SOD) activity in leaves was additive, while the joint effect on the SOD activity in roots was determined by the interaction of chlorimuron-ethyl and Cd in wheat. It was also concluded that the change of malondialdehyde (MDA) content in wheat might not be a good biomarker in the oxidative damage by chlorimuron-ethyl, while a decrease in the soluble protein content and POD activity in roots could be considered as a biomarker in the damage of wheat by chlorimuron-ethyl and Cd. - Soluble protein content and peroxidase activity in seedlings were the biomarkers indicating joint stress of chemicals

  11. The effect of high temperature on cell structure and gluten protein accumulation in the endosperm of the developing wheat (Triticum aestivum L.) grain

    Science.gov (United States)

    High temperature during grain fill is one of the more significant environmental factors that alters wheat yield and flour quality. To identify endosperm responses to high temperature, cell structure and gluten protein composition were investigated in developing wheat (Triticum aestivum L. cv. Butte ...

  12. Characterization of N-type glycosylation sites and glycan structures of Purple Acid Phosphatase Phytases from Wheat (Triticum aestivum L.)

    DEFF Research Database (Denmark)

    Dionisio, Giuseppe; Brinch-Pedersen, Henrik; Welinder, Karen Gjesing

    2011-01-01

    Wheat (Triticum aestivum L.) possesses preformed phytase activity in the grain that is essential to make phosphate available to cell metabolism and in food and feed (Brejnholt S. et al., 2011). Cereals contain the purple acid phosphatase type of phytases, PAPhy (Dionisio G. et al., 2011a). Mature......., Skov L. Brinch-Pedersen H. (2011). The degradation of phytate by microbial and wheat phytases is dependent on the phytate matrix and the phytase origin. J. Sci. Food Agri. (in press). Dionisio G., Madsen C.K., Holm P.B., Welinder K.G., Jørgensen M., Stoger E., Arcalis E., Brinch-Pedersen H. (2011a......) Cloning and Characterization of Purple Acid Phosphatase Phytases from Wheat (Triticum aestivum L.), Barley (Hordeum vulgare L.), Maize (Zea maize L.) and Rice (Oryza sativa L.). Plant Physiol. [in press, Jan 10, Epub ahead of print] Dionisio G., Brinch-Pedersen H., Welinder K.G., Jørgensen M. (2011b...

  13. Development of transgenic wheat (Triticum aestivum L.) expressing avidin gene conferring resistance to stored product insects.

    Science.gov (United States)

    Abouseadaa, Heba H; Osman, Gamal H; Ramadan, Ahmed M; Hassanein, Sameh E; Abdelsattar, Mohamed T; Morsy, Yasser B; Alameldin, Hussien F; El-Ghareeb, Doaa K; Nour-Eldin, Hanan A; Salem, Reda; Gad, Adel A; Elkhodary, Soheir E; Shehata, Maher M; Mahfouz, Hala M; Eissa, Hala F; Bahieldin, Ahmed

    2015-07-22

    Wheat is considered the most important cereal crop all over the world. The wheat weevil Sitophilus granarius is a serious insect pests in much of the wheat growing area worldwide and is responsible for significant loss of yield. Avidin proteins has been proposed to function as plant defense agents against insect pests. A synthetic avidin gene was introduced into spring wheat (Triticum aestivum L.) cv. Giza 168 using a biolistic bombardment protocol. The presence and expression of the transgene in six selected T0 transgenic wheat lines were confirmed at the molecular level. Accumulation of avidin protein was detected in transgenic plants compared to non-transgenic plants. Avidin transgene was stably integrated, transcribed and translated as indicated by Southern blot, ELISA, and dot blot analyses, with a high level of expression in transgenic wheat seeds. However, no expression was detected in untransformed wheat seeds. Functional integrity of avidin was confirmed by insect bioassay. The results of bioassay using transgenic wheat plants challenged with wheat weevil revealed 100 % mortality of the insects reared on transgenic plants after 21 days. Transgenic wheat plants had improved resistance to Sitophilus granarius.

  14. Molecular and FISH analyses of a 53-kbp intact DNA fragment inserted by biolistics in wheat (Triticum aestivum L.) genome.

    Science.gov (United States)

    Partier, A; Gay, G; Tassy, C; Beckert, M; Feuillet, C; Barret, P

    2017-10-01

    A large, 53-kbp, intact DNA fragment was inserted into the wheat ( Triticum aestivum L.) genome. FISH analyses of individual transgenic events revealed multiple insertions of intact fragments. Transferring large intact DNA fragments containing clusters of resistance genes or complete metabolic pathways into the wheat genome remains a challenge. In a previous work, we showed that the use of dephosphorylated cassettes for wheat transformation enabled the production of simple integration patterns. Here, we used the same technology to produce a cassette containing a 44-kb Arabidopsis thaliana BAC, flanked by one selection gene and one reporter gene. This 53-kb linear cassette was integrated in the bread wheat (Triticum aestivum L.) genome by biolistic transformation. Our results showed that transgenic plants harboring the entire cassette were generated. The inheritability of the cassette was demonstrated in the T1 and T2 generation. Surprisingly, FISH analysis performed on T1 progeny of independent events identified double genomic insertions of intact fragments in non-homoeologous positions. Inheritability of these double insertions was demonstrated by FISH analysis of the T1 generation. Relative conclusions that can be drawn from molecular or FISH analysis are discussed along with future prospects of the engineering of large fragments for wheat transformation or genome editing.

  15. Global transgenerational gene expression dynamics in two newly synthesized allohexaploid wheat (Triticum aestivum lines

    Directory of Open Access Journals (Sweden)

    Qi Bao

    2012-01-01

    Full Text Available Abstract Background Alteration in gene expression resulting from allopolyploidization is a prominent feature in plants, but its spectrum and extent are not fully known. Common wheat (Triticum aestivum was formed via allohexaploidization about 10,000 years ago, and became the most important crop plant. To gain further insights into the genome-wide transcriptional dynamics associated with the onset of common wheat formation, we conducted microarray-based genome-wide gene expression analysis on two newly synthesized allohexaploid wheat lines with chromosomal stability and a genome constitution analogous to that of the present-day common wheat. Results Multi-color GISH (genomic in situ hybridization was used to identify individual plants from two nascent allohexaploid wheat lines between Triticum turgidum (2n = 4x = 28; genome BBAA and Aegilops tauschii (2n = 2x = 14; genome DD, which had a stable chromosomal constitution analogous to that of common wheat (2n = 6x = 42; genome BBAADD. Genome-wide analysis of gene expression was performed for these allohexaploid lines along with their parental plants from T. turgidum and Ae. tauschii, using the Affymetrix Gene Chip Wheat Genome-Array. Comparison with the parental plants coupled with inclusion of empirical mid-parent values (MPVs revealed that whereas the great majority of genes showed the expected parental additivity, two major patterns of alteration in gene expression in the allohexaploid lines were identified: parental dominance expression and non-additive expression. Genes involved in each of the two altered expression patterns could be classified into three distinct groups, stochastic, heritable and persistent, based on their transgenerational heritability and inter-line conservation. Strikingly, whereas both altered patterns of gene expression showed a propensity of inheritance, identity of the involved genes was highly stochastic, consistent with the involvement of diverse Gene Ontology (GO

  16. Transgenic approach to improve wheat (Triticum aestivum L.) nutritional quality.

    Science.gov (United States)

    Tamás, Cecília; Kisgyörgy, Boglárka N; Rakszegi, Mariann; Wilkinson, Mark D; Yang, Moon-Sik; Láng, László; Tamás, László; Bedo, Zoltán

    2009-07-01

    An amaranth (Amaranthus hypochondriacus) albumin gene, encoding the 35-kDa AmA1 protein of the seed, with a high content of essential amino acids, was used in the biolistic transformation of bread wheat (Triticum aestivum L.) variety Cadenza. The transformation cassette carried the ama1 gene under the control of a powerful wheat endosperm-specific promoter (1Bx17 HMW-GS). Southern-blot analysis of T(1) lines confirmed the integration of the foreign gene, while RT-PCR and Western-blot analyses of the samples confirmed the transcription and translation of the transgene. The effects of the extra albumin protein on the properties of flour, produced from bulked T(2) seeds, were calculated using total protein and essential amino acid content analysis, polymeric/monomeric protein and HMW/LMW glutenin subunit ratio measurements. The results indicated that not only can essential amino acid content be increased, but some parameters associated with functional quality may also be improved because of the expression of the AmA1 protein.

  17. Reaction to diseases of six gamma-irradiated genotypes of wheat (Triticum spp.)

    International Nuclear Information System (INIS)

    Parodi, P.C.; Nebreda, I.M.

    1977-01-01

    Seed from six genotypes of spring wheat: Huelquen, Collafen, Yafen, PLA771 and Bluebird No.3 (Triticum aestivum L.), and also Quilafen (Triticum durum Desf.) was exposed to gamma radiation in doses of 10 and 25 krad. The aim of the research is to produce cultivars resistant to the main diseases, with a high protein content and grain yield, for the north-central region of Chile (29-35 0 latitude south). The selection process up to the generation M 5 has made it possible to identify mutants with a higher level of resistance to Puccinia graminis, Puccinia recondita and Puccinia striiformis than the original genotypes. Progress made in improving resistance to a fungal complex attacking the spikelets of the mutant cultivars Huelquen and Yafen, to Erysiphe graminis, and to the yellow dwarf virus in barley (BYDV), has been slighter. The yield of grain and protein per unit surface of the mutants studied during repeated experiments has been greater than for the controls. If this trend continues, there should be a number of mutants that could be used for commercial cultivation. (author)

  18. Comparison of foliar anatomy of ten bread wheat (triticum, poaceae) and ten barley (hordeum, poaceae) cultivars

    International Nuclear Information System (INIS)

    Ardic, M.; Sezer, O.; Ozgdsd, K.; Yaylaci, O. K.; Koyuncu, O.; Olgun, M.; Bascdftcd, Z. B.; Ayter, N. G.

    2015-01-01

    The aim of this study is to determine anatomical differences and classification of leaf and leaf cell characteristics (cuticle thickness, upper epidermis thickness, lower epidermis thickness, mesophyll thickness, parenchyma thickness and leaf thickness) between 10 bread wheat cultivars (Triticum aestivum L.) and 10 barley cultivars (Hordeum vulgare L.). Classification of leaf characteristics in bread wheat and barley cultivars and relationship between leaf characteristics are made by principal component and correlation analyses. Highest thickness belongs to W8 Mufitbey cultivar in mesophyll and lower epidermis and W1 Sonmez 01 cultivar have the lowest thickness of upper epidermis in bread wheat. In Barley, B1 Ince cultivar has highest leaf thickness mesophyll and parenchyma; lowest thickness of cuticle is included B7 Cumhuriyet 50 cultivar. All other cultivars have homogenous contents of leaf characteristics. (author)

  19. QTL mapping of flag leaf-related traits in wheat (Triticum aestivum L.).

    Science.gov (United States)

    Liu, Kaiye; Xu, Hao; Liu, Gang; Guan, Panfeng; Zhou, Xueyao; Peng, Huiru; Yao, Yingyin; Ni, Zhongfu; Sun, Qixin; Du, Jinkun

    2018-04-01

    QTL controlling flag leaf length, flag leaf width, flag leaf area and flag leaf angle were mapped in wheat. This study aimed to advance our understanding of the genetic mechanisms underlying morphological traits of the flag leaves of wheat (Triticum aestivum L.). A recombinant inbred line (RIL) population derived from ND3331 and the Tibetan semi-wild wheat Zang1817 was used to identify quantitative trait loci (QTLs) controlling flag leaf length (FLL), flag leaf width (FLW), flag leaf area (FLA), and flag leaf angle (FLANG). Using an available simple sequence repeat genetic linkage map, 23 putative QTLs for FLL, FLW, FLA, and FLANG were detected on chromosomes 1B, 2B, 3A, 3D, 4B, 5A, 6B, 7B, and 7D. Individual QTL explained 4.3-68.52% of the phenotypic variance in different environments. Four QTLs for FLL, two for FLW, four for FLA, and five for FLANG were detected in at least two environments. Positive alleles of 17 QTLs for flag leaf-related traits originated from ND3331 and 6 originated from Zang1817. QTLs with pleiotropic effects or multiple linked QTL were also identified on chromosomes 1B, 4B, and 5A; these are potential target regions for fine-mapping and marker-assisted selection in wheat breeding programs.

  20. Characterization of recombinant dihydrodipicolinate synthase from the bread wheat Triticum aestivum.

    Science.gov (United States)

    Gupta, Ruchi; Hogan, Campbell J; Perugini, Matthew A; Soares da Costa, Tatiana P

    2018-05-09

    Recombinant wheat DHDPS was produced for the first time in milligram quantities and shown to be an enzymatically active tetramer in solution using analytical ultracentrifugation and small angle X-ray scattering. Wheat is an important cereal crop with an extensive role in global food supply. Given our rapidly growing population, strategies to increase the nutritional value and production of bread wheat are of major significance in agricultural science to satisfy our dietary requirements. Lysine is one of the most limiting essential amino acids in wheat, thus, a thorough understanding of lysine biosynthesis is of upmost importance to improve its nutritional value. Dihydrodipicolinate synthase (DHDPS; EC 4.3.3.7) catalyzes the first committed step in the lysine biosynthesis pathway of plants. Here, we report for the first time the expression and purification of recombinant DHDPS from the bread wheat Triticum aestivum (Ta-DHDPS). The optimized protocol yielded 36 mg of > 98% pure recombinant Ta-DHDPS per liter of culture. Enzyme kinetic studies demonstrate that the recombinant Ta-DHDPS has a K M (pyruvate) of 0.45 mM, K M (l-aspartate-4-semialdehyde) of 0.07 mM, k cat of 56 s -1 , and is inhibited by lysine (IC 50 LYS of 0.033 mM), which agree well with previous studies using labor-intensive purification from wheat suspension cultures. We subsequently employed circular dichroism spectroscopy, analytical ultracentrifugation and small angle X-ray scattering to show that the recombinant enzyme is folded with 60% α/β structure and exists as a 7.5 S tetrameric species with a R g of 33 Å and D max of 118 Å. This study is the first to report the biophysical properties of the recombinant Ta-DHDPS in aqueous solution and offers an excellent platform for future studies aimed at improving nutritional value and primary production of bread wheat.

  1. The einkorn wheat (Triticum monococcum) mutant, maintained vegetative phase, is caused by a deletion in the VRN1 gene

    International Nuclear Information System (INIS)

    Shitsukawa, N.; Ikari, C.; Shimada, S.; Kitagawa, S.; Sakamoto, K.; Saito, H.; Ryuto, H.; Fukunishi, N.; Abe, T.; Takumi, S.; Nasuda, S.; Murai, K.

    2007-01-01

    The einkorn wheat (Triticum monococcum) mutant, maintained vegetative phase (mvp), was induced by nitrogen ion-beam treatment and was identified by its inability to transit from the vegetative to reproductive phase. In our previous study, we showed that WAP1 (wheat APETALA1) is a key gene in the regulatory pathway that controls phase transition from vegetative to reproductive growth in common wheat. WAP1 is an ortholog of the VRN1 gene that is responsible for vernalization insensitivity in einkorn wheat. The mvp mutation resulted from deletion of the VRN1 coding and promoter regions, demonstrating that WAP1/VRN1 is an indispensable gene for phase transition in wheat. Expression analysis of flowering-related genes in mvp plants indicated that wheat GIGANTIA (GI), CONSTANS (CO) and SUPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1) genes either act upstream of or in a different pathway to WAP1/VRN1

  2. Role of arbuscular mycorrhiza in alleviating salinity stress in wheat (Triticum aestivum L.) grown under ambient and elevated CO2

    DEFF Research Database (Denmark)

    Zhu, X.; Song, F.; Liu, S.

    2016-01-01

    fungi enhanced NUE by altering plant C assimilation and N uptake. AM plants had higher soluble sugar concentration and [K+]: [Na+] ratio compared with non-AM plants. It is concluded that AM symbiosis improves wheat plant growth at vegetative stages through increasing stomatal conductance, enhancing NUE...... role of AM fungus in alleviating salinity stress in wheat (Triticum aestivum L.) plants grown under ambient and elevated CO2 concentrations. Wheat plants inoculated or not inoculated with AM fungus were grown in two glasshouses with different CO2 concentrations (400 and 700 μmol l−1) and salinity......, accumulating soluble sugar, and improving ion homeostasis in wheat plants grown at elevated CO2 and salinity stress....

  3. Massive expansion and differential evolution of small heat shock proteins with wheat (Triticum aestivum L.) polyploidization.

    Science.gov (United States)

    Wang, Xiaoming; Wang, Ruochen; Ma, Chuang; Shi, Xue; Liu, Zhenshan; Wang, Zhonghua; Sun, Qixin; Cao, Jun; Xu, Shengbao

    2017-05-31

    Wheat (Triticum aestivum), one of the world's most important crops, is facing unprecedented challenges due to global warming. To evaluate the gene resources for heat adaptation in hexaploid wheat, small heat shock proteins (sHSPs), the key plant heat protection genes, were comprehensively analysed in wheat and related species. We found that the sHSPs of hexaploid wheat were massively expanded in A and B subgenomes with intrachromosomal duplications during polyploidization. These expanded sHSPs were under similar purifying selection and kept the expressional patterns with the original copies. Generally, a strong purifying selection acted on the α-crystallin domain (ACD) and theoretically constrain conserved function. Meanwhile, weaker purifying selection and strong positive selection acted on the N-terminal region, which conferred sHSP flexibility, allowing adjustments to a wider range of substrates in response to genomic and environmental changes. Notably, in CI, CV, ER, MI and MII subfamilies, gene duplications, expression variations and functional divergence occurred before wheat polyploidization. Our results indicate the massive expansion of active sHSPs in hexaploid wheat may also provide more raw materials for evolving functional novelties and generating genetic diversity to face future global climate changes, and highlight the expansion of stress response genes with wheat polyploidization.

  4. TEOSINTE BRANCHED1 Regulates Inflorescence Architecture and Development in Bread Wheat (Triticum aestivum).

    Science.gov (United States)

    Dixon, Laura E; Greenwood, Julian R; Bencivenga, Stefano; Zhang, Peng; Cockram, James; Mellers, Gregory; Ramm, Kerrie; Cavanagh, Colin; Swain, Steve M; Boden, Scott A

    2018-03-01

    The flowers of major cereals are arranged on reproductive branches known as spikelets, which group together to form an inflorescence. Diversity for inflorescence architecture has been exploited during domestication to increase crop yields, and genetic variation for this trait has potential to further boost grain production. Multiple genes that regulate inflorescence architecture have been identified by studying alleles that modify gene activity or dosage; however, little is known in wheat. Here, we show TEOSINTE BRANCHED1 ( TB1 ) regulates inflorescence architecture in bread wheat ( Triticum aestivum ) by investigating lines that display a form of inflorescence branching known as "paired spikelets." We show that TB1 interacts with FLOWERING LOCUS T1 and that increased dosage of TB1 alters inflorescence architecture and growth rate in a process that includes reduced expression of meristem identity genes, with allelic diversity for TB1 found to associate genetically with paired spikelet development in modern cultivars. We propose TB1 coordinates formation of axillary spikelets during the vegetative to floral transition and that alleles known to modify dosage or function of TB1 could help increase wheat yields. © 2018 American Society of Plant Biologists. All rights reserved.

  5. Toxic reactivity of wheat (Triticum aestivum) plants to herbicide isoproturon.

    Science.gov (United States)

    Yin, Xiao Le; Jiang, Lei; Song, Ning Hui; Yang, Hong

    2008-06-25

    The herbicide isoproturon is widely used for controlling weed/grass in agricultural practice. However, the side effect of isoproturon as contaminants on crops is unknown. In this study, we investigated isoproturon-induced oxidative stress in wheat ( Triticum aestivum). The plants were grown in soils with isoproturon at 0-20 mg/kg and showed negative biological responses. The growth of wheat seedlings with isoproturon was inhibited. Chlorophyll content significantly decreased at the low concentration of isoproturon (2 mg/kg), suggesting that chlorophyll was rather sensitive to isoproturon exposure. The level of thiobarbituric acid reactive substances (TBARS), an indicator of cellular peroxidation, showed an increase, indicating oxidative damage to plants. The isoproturon-induced oxidative stress resulted in a substantial change in activities of the majority of antioxidant enzymes, including superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX). Activities of the antioxidant enzymes showed a general increase at low isoproturon concentrations and a decrease at high isoproturon concentrations. Activities of CAT in leaves showed progressive suppression under the isoproturon exposure. Analysis of nondenaturing polyacrylamide gel electrophoresis (PAGE) confirmed these results. We also tested the activity of glutathione S-transferase (GST) and observed the activity stimulated by isoproturon at 2-10 mg/kg.

  6. Manipulating field margins to increase predation intensity in fields of winter wheat (Triticum eastivum)

    DEFF Research Database (Denmark)

    Mansion-Vaquie, Agathe; Ferrante, Marco; Cook, S M

    2017-01-01

    , intraguild predation, hyperparasitism) may complicate the assumption that a higher density of natural enemies would increase the level of biological control. We investigated the natural enemy guild composition and the predation rate along flower vs. grass margins at the edge of winter wheat (Triticum...... to the two margin types: specialists (mostly parasitic wasps) were attracted by the flower margins, while generalists (ground beetles, rove beetles and spiders) were more active in grass margins. The number of artificial caterpillars attacked was significantly greater in grass margins (mean = 48.9%, SD = 24...

  7. Ractopamine up take by alfalfa (Medicago sativa) and wheat (Triticum aestivum) from soil.

    Science.gov (United States)

    Shelver, Weilin L; DeSutter, Thomas M

    2015-08-01

    Ractopamine is a beta adrenergic agonist used as a growth promoter in swine, cattle and turkeys. To test whether ractopamine has the potential to accumulate in plants grown in contaminated soil, a greenhouse study was conducted with alfalfa (Medicago sativa) and wheat (Triticum aestivum) grown in two soils having different concentrations of organic matter (1.3% and 2.1%), amended with 0, 0.5, and 10 μg/g of ractopamine. Plant growth ranged from 2.7 to 8.8 g dry weight (dw) for alfalfa, and 8.7 to 40 g dw for wheat and was generally greater in the higher organic matter content soil. The uptake of ractopamine in plant tissues ranged from non-detectable to 897 ng/g and was strongly dependent on soil ractopamine concentration across soil and plant tissue. When adjusted to the total fortified quantities, the amount of ractopamine taken up by the plant tissue was low, <0.01% for either soil. Copyright © 2015. Published by Elsevier B.V.

  8. Modulation of nonessential amino acid biosynthetic pathways in virulent Hessian fly larvae (Mayetiola destructor), feeding on susceptible host wheat (Triticum aestivum)

    Science.gov (United States)

    Hessian fly (Mayetiola destructor), an obligate plant-parasitic gall midge, is an important dipteran pest of wheat (Triticum aestivum). The insect employs an effector-based feeding strategy to reprogram the host plant to be nutritionally beneficial for the developing larva by inducing formation of p...

  9. Screening commercial wheat (triticum aestivum l.) varieties for agrobacterium mediated transformation ability

    International Nuclear Information System (INIS)

    Abid, N.; Maqbool, A.; Mlaik, K.

    2014-01-01

    Wheat is staple food crop of many countries including Pakistan. It has a large number of cultivars and genotypes. All genotypes have different tissue culture response that includes callus induction, regeneration and transformation efficiency. For transgenic plant production it is crucial to know tissue culture efficiency of a selected variety. Therefore, in the present study mature embryos of thirteen elite wheat (Triticum aestivum L.) varieties were evaluated for tissue culture response and their amenability to transformation. Each variety responded differently for callogenesis, transient GUS (glucuronidase) expression and regeneration. The results for callus induction and transient GUS expression ranged from 30-100% and 13-100%, respectively whereas regeneration response was quite different in tested varieties that ranged from 0-44%. Good quality callus was observed in all varieties except Dhurabi-11, Lasani-08, Millat and Pak-81. Maximum transient GUS expression (100%) was found in Faisalabad-2008. Highest regeneration (44%) was noticed in Pak-81. Results indicated that three varieties VIII-83, Faisalabad-2008 and Aas-11 are suitable for transformation in comparison to others. (author)

  10. Identification of the TaBTF3 gene in wheat (Triticum aestivum L.) and the effect of its silencing on wheat chloroplast, mitochondria and mesophyll cell development.

    Science.gov (United States)

    Ma, Hong-Zhen; Liu, Guo-Qin; Li, Cheng-Wei; Kang, Guo-Zhang; Guo, Tian-Cai

    2012-10-05

    The full-length cDNA (882bp) and DNA (1742bp) sequences encoding a basic transcription factor 3, designated as TaBTF3, were first isolated from common wheat (Triticum aestivum L.). Subcellular localization studies revealed that the TaBTF3 protein was mainly located in the cytoplasm and nucleus. In TaBTF3-silenced transgenic wheat seedlings obtained using the Virus-induced gene silencing (VIGS) method, the chlorophyll pigment content was markedly reduced. However, the malonaldehyde (MDA) and H(2)O(2) contents were enhanced, and the structure of the wheat mesophyll cell was seriously damaged. Furthermore, transcripts of the chloroplast- and mitochondrial-encoded genes were significantly reduced in TaBTF3-silenced transgenic wheat plants. These results suggest that the TaBTF3 gene might function in the development of the wheat chloroplast, mitochondria and mesophyll cell. This paper is the first report to describe the involvement of TaBTF3 in maintaining the normal plant mesophyll cell structure. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. Assessment of heritability and genetic advance for agronomic traits in durum wheat (Triticum durum Desf.

    Directory of Open Access Journals (Sweden)

    HASSAN NIKKHAHKOUCHAKSARAEI

    2017-09-01

    Full Text Available In order to evaluate the amount of heritability for desirable agronomic characteristics and the genetic progress associated with grain yield of durum wheat (Triticum durum Desf., a split plot experiment was carried out with four replications during three cropping seasons (2009-2012. Three sowing dates (as environmental factor and six durum wheat varieties (as genotypic factor were considered as main and sub factors respectively. Analysis of variance showed interaction effects between genotypes and environments in days to ripening, plant height, spike length, number of grains per spike, number of spikes per unit area, grain mass and grain yield. The grain yield showed the highest positive correlation with number of grains per spike also grain mass (91 % and 85 %, respectively. A relatively high heritability of these traits (82.1 % and 82.2 %, respectively suggests that their genetic improvement is possible. The maximum genetic gain (19.6 % was observed for grain mass, indicating this trait should be a very important indicator for durum wheat breeders, although the climatic effects should not be ignored.

  12. TEOSINTE BRANCHED1 Regulates Inflorescence Architecture and Development in Bread Wheat (Triticum aestivum)[OPEN

    Science.gov (United States)

    Greenwood, Julian R.; Bencivenga, Stefano; Cockram, James; Cavanagh, Colin; Swain, Steve M.

    2018-01-01

    The flowers of major cereals are arranged on reproductive branches known as spikelets, which group together to form an inflorescence. Diversity for inflorescence architecture has been exploited during domestication to increase crop yields, and genetic variation for this trait has potential to further boost grain production. Multiple genes that regulate inflorescence architecture have been identified by studying alleles that modify gene activity or dosage; however, little is known in wheat. Here, we show TEOSINTE BRANCHED1 (TB1) regulates inflorescence architecture in bread wheat (Triticum aestivum) by investigating lines that display a form of inflorescence branching known as “paired spikelets.” We show that TB1 interacts with FLOWERING LOCUS T1 and that increased dosage of TB1 alters inflorescence architecture and growth rate in a process that includes reduced expression of meristem identity genes, with allelic diversity for TB1 found to associate genetically with paired spikelet development in modern cultivars. We propose TB1 coordinates formation of axillary spikelets during the vegetative to floral transition and that alleles known to modify dosage or function of TB1 could help increase wheat yields. PMID:29444813

  13. Gluten of spelt wheat (Triticum aestivum subspecies spelta) as a source of peptides promoting viability and product yield of mouse hybridoma cell cultures

    Czech Academy of Sciences Publication Activity Database

    Franěk, František

    2004-01-01

    Roč. 52, č. 13 (2004), s. 4097-4100 ISSN 0021-8561 Institutional research plan: CEZ:AV0Z5038910 Keywords : spelt wheat (Triticum aestivum subsp spelta) * gluten * peptides Subject RIV: EI - Biotechnology ; Bionics Impact factor: 2.327, year: 2004

  14. Impact of Triticum mosaic virus infection on hard winter wheat milling and bread baking quality.

    Science.gov (United States)

    Miller, Rebecca A; Martin, T Joe; Seifers, Dallas L

    2012-03-15

    Triticum mosaic virus (TriMV) is a newly discovered wheat virus. Information regarding the effect of wheat viruses on milling and baking quality is limited. The objective of this study was to determine the impact of TriMV infection on the kernel characteristics, milling yield and bread baking quality of wheat. Commercial hard winter varieties evaluated included RonL, Danby and Jagalene. The TriMV resistance of RonL is low, while that of Danby and Jagalene is unknown. KS96HW10-3, a germplasm with high TriMV resistance, was included as a control. Plots of each variety were inoculated with TriMV at the two- to three-leaf stage. Trials were conducted at two locations in two crop years. TriMV infection had no effect on the kernel characteristics, flour yield or baking properties of KS96HW10-3. The effect of TriMV on the kernel characteristics of RonL, Danby and Jagalene was not consistent between crop years and presumably an environmental effect. The flour milling and bread baking properties of these three varieties were not significantly affected by TriMV infection. TriMV infection of wheat plants did not affect harvested wheat kernel characteristics, flour milling properties or white pan bread baking quality. Copyright © 2011 Society of Chemical Industry.

  15. Development of RAPD based markers for wheat rust resistance ...

    African Journals Online (AJOL)

    Rust diseases are the major cause of low yield of wheat in Pakistan. Wheat breeders all over the world as well as in Pakistan are deriving rust resistance genes from alien species like Triticum ventricosum and introducing them in common wheat (Triticum aestivum). One such example is the introgression of rust resistance ...

  16. Generation of amphidiploids from hybrids of wheat and related species from the genera Aegilops, Secale, Thinopyrum, and Triticum as a source of genetic variation for wheat improvement.

    Science.gov (United States)

    Nemeth, Csilla; Yang, Cai-yun; Kasprzak, Paul; Hubbart, Stella; Scholefield, Duncan; Mehra, Surbhi; Skipper, Emma; King, Ian; King, Julie

    2015-02-01

    We aim to improve diversity of domesticated wheat by transferring genetic variation for important target traits from related wild and cultivated grass species. The present study describes the development of F1 hybrids between wheat and related species from the genera Aegilops, Secale, Thinopyrum, and Triticum and production of new amphidiploids. Amphidiploid lines were produced from 20 different distant relatives. Both colchicine and caffeine were successfully used to double the chromosome numbers. The genomic constitution of the newly formed amphidiploids derived from seven distant relatives was determined using genomic in situ hybridization (GISH). Altogether, 42 different plants were analysed, 19 using multicolour GISH separating the chromosomes from the A, B, and D genomes of wheat, as well as the distant relative, and 23 using single colour GISH. Restructuring of the allopolyploid genome, both chromosome losses and aneuploidy, was detected in all the genomes contained by the amphidiploids. From the observed chromosome numbers there is an indication that in amphidiploids the B genome of wheat suffers chromosome losses less frequently than the other wheat genomes. Phenotyping to realize the full potential of the wheat-related grass germplasm is underway, linking the analyzed genotypes to agronomically important target traits.

  17. RELATIONSHIP BETWEEN CRYSTALLINE STRUCTURE AND OPTICAL PROPERTIES OF WHEAT (Triticum aestevum L. STRAW SODA-OXYGEN PULP

    Directory of Open Access Journals (Sweden)

    Esat Gümüşkaya

    2003-04-01

    Full Text Available In this study; pulp was produced with soda-oxygen process by using wheat (Triticum aestevum L. straw as raw material and this pulp bleached with hypocholoride (H and peroxyde (P stages. It was found that crystalline properties of unbleached and bleached pulp samples increased by removing amorphous components. In addition, paper sheets made from unbleached and bleached soda-oxygen pulp and determined their optical properties. Consequently; while crystalline properties of pulp samples was rising with HP bleaching, it was determined that optical properties of paper sheets improved with bleaching.

  18. Effect of gamma irradiation, evaporation retardants and transpiration suppressants on grain yield, nutrient uptake and moisture-use efficiency on bread wheat (Triticum aestivum)

    International Nuclear Information System (INIS)

    Dash, D.K.; Sen, Avijit; Misra, N.M.

    1988-01-01

    A field trial was conducted on 'Malaviya 37' bread wheat (Triticum aestivum Linn. emend. Fiori and Paol.) in 1982-83 and 1983-84. It included 4 dos es of gamma irradiation of seeds (0, 2.5, 4.5 and 6.5 kR) and 5 treatments of evaporation retardants and transpiration suppressants, viz. control, rice (Oryza sativa Linn.) straw, wheat straw, rice straw + phenyl mercuric acetate (150 ppm) and wheat straw + kaolin (6 per cent). Seed irradiation with gamma-rays at 6.5 kR and wheat straw + kaolin gave 11.76 and 61.37 per cent higher yield than the control respectively. For moisture-use efficiency and NPK uptake these treatments also showed the same trend. (author). 12 refs

  19. Molecular Phylogeny of Triticum and Aegilops Genera Based on ITS and MATK Sequence Data

    International Nuclear Information System (INIS)

    Dizkirici, A.; Kansu, C.; Onde, S.

    2016-01-01

    Understanding the phylogenetic relationship between Triticum and Aegilops species, which form a vast gene pool of wheat, is very important for breeding new cultivated wheat varieties. In the present study, phylogenetic relationships between Triticum (12 samples from 4 species) and Aegilops (24 samples from 8 species) were investigated using sequences of the nuclear ITS rDNA gene and partial sequences of the matK gene of chloroplast genome. The phylogenetic relationships among species were reconstructed using Maximum Likelihood method. The constructed tree based on the sequences of the nuclear component (ITS) displayed a close relationship between polyploid wheats and Aegilops speltoides species which provided new evidence for the source of the enigmatic B genome donor as Ae. speltoides. Concurrent clustering of Ae. cylindrica and Ae. tauschii and their close positioning to polyploid wheats pointed the source of the D genome as one of these species. As reported before, diploid Triticum species (i.e. T. urartu) were identified as the A genome donors and the positioning of these diploid wheats on the constructed tree are meaningful. The constructed tree based on the chloroplastic matK sequences displayed same relationship between polyploid wheats and Ae. speltoides species providing evidence for the later species being the chloroplast donors for polyploid wheats. Therefore, our results supported the idea of coinheritance of nuclear and chloroplast genomes where Ae. speltoides was the maternal donor. For both trees the remaining Aegilops species produced a distinct cluster whereas with the exception of T. urartu, diploid Triticum species displayed a monophyletic structure. (author)

  20. EVALUATION OF TECHNOLOGICAL AND ANTIOXIDANT PROPERTIES OF TRITICUM AESTIVUM L. AND TRITICUM DURUM L. VARIETIES

    Directory of Open Access Journals (Sweden)

    Ján Mareček

    2014-02-01

    Full Text Available The study deals with the evaluation of technological and antioxidant characteristics of selected varieties of Triticum aestivum and Triticum durum grown in Slovakia and Serbia. Research was conducted during the two years 2009 and 2010. Measured values of water activity were in the range 0.4 - 0.5. Optimal activity of alpha-amylase was measured in Serbian varieties Etida (210 seconds, Pobeda (218 seconds and Renesansa (272 seconds. The highest sedimentation capacity expressed as sedimentation index by Zeleny had variety Karpatia (60 cm3. The high content of insoluble protein (gluten was measured in a variety Rusija (36.6%. Nitrogen content was in the range 12.7 - 13.9% of dry matter, starch content in the range 56.6 - 61.6% of dry matter. Antioxidant activity measured by DPPH method ranged in wheat varieties from 44 to 49%. The highest content of polyphenols was measured in a variety Etida (0.464 mg of catechin/g of sample. Durum wheat varieties have a higher content of polyphenols in general. The production of semolina flour from durum wheat may have the positive antioxidant effect according to gained measurements.

  1. Biostimulation effects on wheat seeds (Triticum Aestivum L) caused by low level red laser radiation with λ = 660 nm

    International Nuclear Information System (INIS)

    Hernandez, M.; Michtchenko, A.

    2009-01-01

    The principal objective is to study the biostimulation effects caused by a semiconductor low level laser radiation with ? = 660 nm on wheat seeds (Triticum Aestivum L). Seeds were treated before sowing with this laser light source. An increase in the growth of the stem of 12% with respect to control seeds was registered for seeds radiated by an intensity of 15mW/cm 2 and an irradiation time of 60 seconds. (Author)

  2. Identification of Alleles of Puroindoline Genes and Their Effect on Wheat (Triticum aestivum L. Grain Texture

    Directory of Open Access Journals (Sweden)

    Klára Štiasna

    2016-01-01

    Full Text Available Grain hardness is one of the most important quality characteristics of wheat (Triticum aestivum L.. It is a significant property of wheat grains and relates to milling quality and end product quality. Grain hardness is caused by the presence of puroindoline genes (Pina and Pinb. A collection of 25 genotypes of wheat with unusual grain colour (blue aleurone, purple and white pericarp, yellow endosperm was studied by polymerase chain reaction (PCR for the diversity within Pina and Pinb (alleles: Pina-D1a, Pina-D1b, Pinb-D1a, Pinb- -D1b, Pinb-D1c and Pinb-D1d. The endosperm structure was determined by a non-destructive method using light transfl ectance meter and grain hardness by a texture analyser. Genotype Novosibirskaya 67 and isogenic ANK lines revealed hitherto unknown alleles at the locus for the annealing of primers of Pinb-D1. Allele Pinb-D1c was found to be absent from each genotype. The mealy endosperm ranged from 0 to 100 % and grain hardness from 15.10 to 26.87 N per sample.

  3. WHEAT PATHOGEN RESISTANCE AND CHITINASE PROFILE

    Directory of Open Access Journals (Sweden)

    Zuzana Gregorová

    2015-02-01

    Full Text Available The powdery mildew and leaf rust caused by Blumeria graminis and Puccinia recondita (respectively are common diseases of wheat throughout the world. These fungal diseases greatly affect crop productivity. Incorporation of effective and durable disease resistance is an important breeding objective for wheat improvement. We have evaluated resistance of four bread wheat (Triticum aestivum and four spelt wheat (Triticum spelta cultivars. Chitinases occurrence as well as their activity was determined in leaf tissues. There was no correlation between resistance rating and activity of chitinase. The pattern of chitinases reveals four isoforms with different size in eight wheat cultivars. A detailed understanding of the molecular events that take place during a plant–pathogen interaction is an essential goal for disease control in the future.

  4. Relay cropping of wheat (Triticum aestivum L.) in cotton (Gossypium hirsutum L.) improves the profitability of cotton-wheat cropping system in Punjab, Pakistan.

    Science.gov (United States)

    Sajjad, Aamer; Anjum, Shakeel Ahmad; Ahmad, Riaz; Waraich, Ejaz Ahmad

    2018-01-01

    Delayed sowing of wheat (Triticum aestivum L.) in cotton-based system reduces the productivity and profitability of the cotton-wheat cropping system. In this scenario, relay cropping of wheat in standing cotton might be a viable option to ensure the timely wheat sowing with simultaneous improvement in wheat yields and system profitability. This 2-year study (2012-2013 and 2013-2014) aimed to evaluate the influence of sowing dates and relay cropping combined with different management techniques of cotton sticks on the wheat yield, soil physical properties, and the profitability of the cotton-wheat system. The experiment consisted of five treatments viz. (S1) sowing of wheat at the 7th of November by conventional tillage (two disc harrows + one rotavator + two plankings) after the removal of cotton sticks, (S2) sowing of wheat at the 7th of November by conventional tillage (two disc harrows + two plankings) after the incorporation of cotton sticks in the field with a rotavator, (S3) sowing of wheat at the 7th of November as relay crop in standing cotton with broadcast method, (S4) sowing of wheat at the 15th of December by conventional tillage (two disc harrows + one rotavator + two plankings) after the removal of cotton sticks, and (S5) sowing of wheat at the 15th of December by conventional tillage (two disc harrows + two plankings) after the incorporation of cotton sticks in the field with a rotavator. The highest seed cotton yield was observed in the S5 treatment which was statistically similar with the S3 and S4 treatments; seed cotton yield in the S1 and S2 treatments has been the lowest in both years of experimentation. However, the S2 treatment produced substantially higher root length, biological yield, and grain yield of wheat than the other treatments. The lower soil bulk density at 0-10-cm depth was recorded in the S2 treatment which was statistically similar with the S5 treatment during both years of experimentation. The volumetric water contents, net

  5. Pollen-mediated gene flow in wheat (Triticum aestivum L.) in a semiarid field environment in Spain.

    Science.gov (United States)

    Loureiro, Iñigo; Escorial, María-Concepción; González, Águeda; Chueca, María-Cristina

    2012-12-01

    Transgenic wheat (Triticum aestivum L.) varieties are being developed and field-tested in various countries. Concerns regarding gene flow from genetically modified (GM) crops to non-GM crops have stimulated research to estimate outcrossing in wheat prior to the release and commercialization of any transgenic cultivars. The aim is to ensure that coexistence of all types of wheat with GM wheat is feasible in accordance with current regulations. The present study describes the result of a field experiment under the semi-arid climate conditions of Madrid, Spain, at two locations ("La Canaleja" and "El Encin" experimental stations) in Madrid over a 3-year period, from 2005 to 2007. The experimental design consisted of a 50 × 50 m wheat pollen source sown with wheat cultivars resistant to the herbicide chlortoluron ('Deganit' and 'Castan' respectively) and three susceptible receptor cultivars ('Abental', 'Altria' and 'Recital') sown in replicated 1 × 1 m plots at different distances (0, 1, 3, 5, 10, 20, 40, 80 and 100 m) and four directions. Outcrossing rates were measured as a percentage of herbicide-resistant hybrids using an herbicide-screening assay. Outcrossing was greatest near the pollen source, averaging 0.029% at 0 m distance at "La Canaleja" and 0.337% at "El Encin", both below the 0.9% European Union regulated threshold, although a maximum outcrossing rate of 3.5% was detected in one recipient plot. These percentages declined rapidly as the distance increased, but hybrids were detected at different rates at distances of up to 100 m, the maximum distance of the experiment. Environmental conditions, as drought in 2004-2005 and 2005-2006, may have influenced the extent of outcrossing. These assays carried out in wheat under semi-arid conditions in Europe provide a more complete assessment of pollen-mediated gene flow in this crop.

  6. Functional Analysis and Marker Development of TaCRT-D Gene in Common Wheat (Triticum aestivum L.

    Directory of Open Access Journals (Sweden)

    Jiping Wang

    2017-09-01

    Full Text Available Calreticulin (CRT, an endoplasmic reticulum (ER-localized Ca2+-binding/buffering protein, is highly conserved and extensively expressed in animal and plant cells. To understand the function of CRTs in wheat (Triticum aestivum L., particularly their roles in stress tolerance, we cloned the full-length genomic sequence of the TaCRT-D isoform from D genome of common hexaploid wheat, and characterized its function by transgenic Arabidopsis system. TaCRT-D exhibited different expression patterns in wheat seedling under different abiotic stresses. Transgenic Arabidopsis plants overexpressing ORF of TaCRT-D displayed more tolerance to drought, cold, salt, mannitol, and other abiotic stresses at both seed germination and seedling stages, compared with the wild-type controls. Furthermore, DNA polymorphism analysis and gene mapping were employed to develop the functional markers of this gene for marker-assistant selection in wheat breeding program. One SNP, S440 (T→C was detected at the TaCRT-D locus by genotyping a wheat recombinant inbred line (RIL population (114 lines developed from Opata 85 × W7984. The TaCRT-D was then fine mapped between markers Xgwm645 and Xgwm664 on chromosome 3DL, corresponding to genetic distances of 3.5 and 4.4 cM, respectively, using the RIL population and Chinese Spring nulli-tetrasomic lines. Finally, the genome-specific and allele-specific markers were developed for the TaCRT-D gene. These findings indicate that TaCRT-D function importantly in plant stress responses, providing a gene target for genetic engineering to increase plant stress tolerance and the functional markers of TaCRT-D for marker-assistant selection in wheat breeding.

  7. Functional Analysis and Marker Development of TaCRT-D Gene in Common Wheat (Triticum aestivum L.).

    Science.gov (United States)

    Wang, Jiping; Li, Runzhi; Mao, Xinguo; Jing, Ruilian

    2017-01-01

    Calreticulin (CRT), an endoplasmic reticulum (ER)-localized Ca 2+ -binding/buffering protein, is highly conserved and extensively expressed in animal and plant cells. To understand the function of CRTs in wheat ( Triticum aestivum L.), particularly their roles in stress tolerance, we cloned the full-length genomic sequence of the TaCRT-D isoform from D genome of common hexaploid wheat, and characterized its function by transgenic Arabidopsis system. TaCRT-D exhibited different expression patterns in wheat seedling under different abiotic stresses. Transgenic Arabidopsis plants overexpressing ORF of TaCRT-D displayed more tolerance to drought, cold, salt, mannitol, and other abiotic stresses at both seed germination and seedling stages, compared with the wild-type controls. Furthermore, DNA polymorphism analysis and gene mapping were employed to develop the functional markers of this gene for marker-assistant selection in wheat breeding program. One SNP, S440 (T→C) was detected at the TaCRT-D locus by genotyping a wheat recombinant inbred line (RIL) population (114 lines) developed from Opata 85 × W7984. The TaCRT-D was then fine mapped between markers Xgwm645 and Xgwm664 on chromosome 3DL, corresponding to genetic distances of 3.5 and 4.4 cM, respectively, using the RIL population and Chinese Spring nulli-tetrasomic lines. Finally, the genome-specific and allele-specific markers were developed for the TaCRT-D gene. These findings indicate that TaCRT-D function importantly in plant stress responses, providing a gene target for genetic engineering to increase plant stress tolerance and the functional markers of TaCRT-D for marker-assistant selection in wheat breeding.

  8. Zinc biofortification of cereals: rice differs from wheat and barley

    NARCIS (Netherlands)

    Stomph, T.J.; Jiang, W.; Struik, P.C.

    2009-01-01

    In their review, mainly focused on bread wheat (Triticum aestivum), durum wheat (Triticum durum) and barley (Hordeum vulgare), Palmgren et al. 1 M.G. Palmgren et al., Zinc biofortification of cereals: problems and solutions, Trends Plant Sci. 13 (2008), pp. 464–473. Article | PDF (905 K) | View

  9. The dynamic process of interspecific interactions of competitive nitrogen capture between intercropped wheat (Triticum aestivum L. and Faba Bean (Vicia faba L..

    Directory of Open Access Journals (Sweden)

    Chunjie Li

    Full Text Available Wheat (Triticum aestivum L./faba bean (Vicia faba L. intercropping shows significant overyielding and high nitrogen (N-use efficiency, but the dynamics of plant interactions have rarely been estimated. The objective of the present study was to investigate the temporal dynamics of competitive N acquisition between intercropped wheat and faba bean with the logistic model. Wheat and faba bean were grown together or alone with limited N supply in pots. Data of shoot and root biomass and N content measured from 14 samplings were fitted to logistic models to determine instantaneous rates of growth and N uptake. The superiority of instantaneous biomass production and N uptake shifted from faba bean to wheat with their growth. Moreover, the shift of superiority on N uptake occurred 7-12 days earlier than that of biomass production. Interspecific competition stimulated intercropped wheat to have a much earlier and stronger superiority on instantaneous N uptake compared with isolated wheat. The modeling methodology characterized the temporal dynamics of biomass production and N uptake of intercropped wheat and faba bean in different planting systems, which helps to understand the underlying process of plant interaction for intercropping plants.

  10. The dynamic process of interspecific interactions of competitive nitrogen capture between intercropped wheat (Triticum aestivum L.) and Faba Bean (Vicia faba L.).

    Science.gov (United States)

    Li, Chunjie; Dong, Yan; Li, Haigang; Shen, Jianbo; Zhang, Fusuo

    2014-01-01

    Wheat (Triticum aestivum L.)/faba bean (Vicia faba L.) intercropping shows significant overyielding and high nitrogen (N)-use efficiency, but the dynamics of plant interactions have rarely been estimated. The objective of the present study was to investigate the temporal dynamics of competitive N acquisition between intercropped wheat and faba bean with the logistic model. Wheat and faba bean were grown together or alone with limited N supply in pots. Data of shoot and root biomass and N content measured from 14 samplings were fitted to logistic models to determine instantaneous rates of growth and N uptake. The superiority of instantaneous biomass production and N uptake shifted from faba bean to wheat with their growth. Moreover, the shift of superiority on N uptake occurred 7-12 days earlier than that of biomass production. Interspecific competition stimulated intercropped wheat to have a much earlier and stronger superiority on instantaneous N uptake compared with isolated wheat. The modeling methodology characterized the temporal dynamics of biomass production and N uptake of intercropped wheat and faba bean in different planting systems, which helps to understand the underlying process of plant interaction for intercropping plants.

  11. Gene expression, cellular localisation and function of glutamine synthetase isozymes in wheat (Triticum aestivum L.)

    DEFF Research Database (Denmark)

    Bernard, Stéphanie M.; Møller, Anders Laurell Blom; Dionisio, Giuseppe

    2008-01-01

    ). Phylogenetic analysis showed that the wheat GS sub-families together with the GS genes from other monocotyledonous species form four distinct clades. Immunolocalisation studies in leaves, stems and rachis in plants at flowering showed GS protein to be present in parenchyma, phloem companion and perifascicular......We present the first cloning and study of glutamine synthetase (GS) genes in wheat (Triticum aestivum L.). Based on sequence analysis, phylogenetic studies and mapping data, ten GS sequences were classified into four sub-families: GS2 (a, b and c), GS1 (a, b and c), GSr (1 and 2) and GSe (1 and 2...... sheath cells. In situ localisation confirmed that GS1 transcripts were present in the perifascicular sheath cells whilst those for GSr were confined to the vascular cells. Studies of the expression and protein profiles showed that all GS sub-families were differentially expressed in the leaves, peduncle...

  12. Hybrid dwarfness in crosses between wheat (Triticum aestivum L.) and rye (Secale cereale L.): a new look at an old phenomenon.

    Science.gov (United States)

    Tikhenko, N; Rutten, T; Tsvetkova, N; Voylokov, A; Börner, A

    2015-03-01

    The existence of hybrid dwarfs from intraspecific crosses in wheat (Triticum aestivum) was described 100 years ago, and the genetics underlying hybrid dwarfness are well understood. In this study, we report a dwarf phenotype in interspecific hybrids between wheat and rye (Secale cereale). We identified two rye lines that produce hybrid dwarfs with wheat and have none of the hitherto known hybrid dwarfing genes. Genetic analyses revealed that both rye lines carry a single allelic gene responsible for the dwarf phenotype. This gene was designated Hdw-R1 (Hybrid dwarf-R1). Application of gibberellic acid (GA3 ) to both intraspecific (wheat-wheat) and interspecific (wheat-rye) hybrids showed that hybrid dwarfness cannot be overcome by treatment with this phytohormone. Histological analysis of shoot apices showed that wheat-rye hybrids with the dwarf phenotype at 21 and 45 days after germination failed to develop further. Shoot apices of dwarf plants did not elongate, did not form new primordia and had a dome-shaped appearance in the seed. The possible relationship between hybrid dwarfness and the genes responsible for the transition from vegetative to generative growth stage is discussed. © 2014 German Botanical Society and The Royal Botanical Society of the Netherlands.

  13. A High Resolution Radiation Hybrid Map of Wheat Chromosome 4A

    Czech Academy of Sciences Publication Activity Database

    Balcárková, Barbora; Frenkel, Z.; Škopová, Monika; Abrouk, Michael; Kumar, A.; Chao, S.; Kianian, S. F.; Akhunov, E.; Korol, A.; Doležel, Jaroslav; Valárik, Miroslav

    2017-01-01

    Roč. 7, JAN 10 (2017), č. článku 2063. ISSN 1664-462X R&D Projects: GA MŠk(CZ) LO1204; GA ČR(CZ) GA14-07164S Institutional support: RVO:61389030 Keywords : triticum-aestivum l. * bread wheat * high-density * agronomic traits * tetraploid wheat * hexaploid wheat * polyploid wheat * genetic maps * genomes * recombination * endosperm radiation hybrid panel * radiation hybrid map * wheat chromosome 4A * chromosome deletion bin map * Triticum aestivum * SNP iSelect array Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Plant sciences, botany Impact factor: 4.298, year: 2016

  14. Silicon nanoparticles more effectively alleviated UV-B stress than silicon in wheat (Triticum aestivum) seedlings.

    Science.gov (United States)

    Tripathi, Durgesh Kumar; Singh, Swati; Singh, Vijay Pratap; Prasad, Sheo Mohan; Dubey, Nawal Kishore; Chauhan, Devendra Kumar

    2017-01-01

    The role of silicon (Si) in alleviating biotic as well as abiotic stresses is well known. However, the potential of silicon nanoparticle (SiNP) in regulating abiotic stress and associated mechanisms have not yet been explored. Therefore, in the present study hydroponic experiments were conducted to investigate whether Si or SiNp are more effective in the regulation of UV-B stress. UV-B (ambient and enhanced) radiation caused adverse effect on growth of wheat (Triticum aestivum) seedlings, which was accompanied by declined photosynthetic performance and altered vital leaf structures. Levels of superoxide radical and H 2 O 2 were enhanced by UV-B as also evident from their histochemical stainings, which was accompanied by increased lipid peroxidation (LPO) and electrolyte leakage. Activities of superoxide dismutase and ascorbate peroxidase were inhibited by UV-B while catalase and guaiacol peroxidase, and all non-enzymatic antioxidants were stimulated by UV-B. Although, nitric oxide (NO) content was increased at all tested combinations, but its maximum content was observed under SiNps together with UV-B enhanced treatment. Pre-additions of SiNp as well as Si protected wheat seedlings against UV-B by regulating oxidative stress through enhanced antioxidants. Data indicate that SiNp might have protected wheat seedlings through NO-mediated triggering of antioxidant defense system, which subsequently counterbalance reactive oxygen species-induced damage to photosynthesis. Further, SiNp appear to be more effective in reducing UV-B stress than Si, which is related to its greater availability to wheat seedlings. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  15. Alterations in reducing sugar in Triticum aestivum under irrigated ...

    African Journals Online (AJOL)

    DELL

    2012-03-13

    47 ... unstable with respect to yield and yield components. ... Wheat (Triticum aestivum), one of the important staple ... stress affects many physiological and biochemical ... regulation as the osmolyte under adverse environmental.

  16. An endogenous reference gene of common and durum wheat for detection of genetically modified wheat.

    Science.gov (United States)

    Imai, Shinjiro; Tanaka, Keiko; Nishitsuji, Yasuyuki; Kikuchi, Yosuke; Matsuoka, Yasuyuki; Arami, Shin-Ichiro; Sato, Megumi; Haraguchi, Hiroyuki; Kurimoto, Youichi; Mano, Junichi; Furui, Satoshi; Kitta, Kazumi

    2012-01-01

    To develop a method for detecting GM wheat that may be marketed in the near future, we evaluated the proline-rich protein (PRP) gene as an endogenous reference gene of common wheat (Triticum aestivum L.) and durum wheat (Triticum durum L.). Real-time PCR analysis showed that only DNA of wheat was amplified and no amplification product was observed for phylogenetically related cereals, indicating that the PRP detection system is specific to wheat. The intensities of the amplification products and Ct values among all wheat samples used in this study were very similar, with no nonspecific or additional amplification, indicating that the PRP detection system has high sequence stability. The limit of detection was estimated at 5 haploid genome copies. The PRP region was demonstrated to be present as a single or double copy in the common wheat haploid genome. Furthermore, the PRP detection system showed a highly linear relationship between Ct values and the amount of plasmid DNA, indicating that an appropriate calibration curve could be constructed for quantitative detection of GM wheat. All these results indicate that the PRP gene is a suitable endogenous reference gene for PCR-based detection of GM wheat.

  17. 7 CFR 810.2201 - Definition of wheat.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 7 2010-01-01 2010-01-01 false Definition of wheat. 810.2201 Section 810.2201... GRAIN United States Standards for Wheat Terms Defined § 810.2201 Definition of wheat. Grain that, before the removal of dockage, consists of 50 percent or more common wheat (Triticum aestivum L.), club wheat...

  18. RNA-seq in grain unveils fate of neo- and paleopolyploidization events in bread wheat (Triticum aestivum L.).

    Science.gov (United States)

    Pont, Caroline; Murat, Florent; Confolent, Carole; Balzergue, Sandrine; Salse, Jérôme

    2011-12-02

    Whole genome duplication is a common evolutionary event in plants. Bread wheat (Triticum aestivum L.) is a good model to investigate the impact of paleo- and neoduplications on the organization and function of modern plant genomes. We performed an RNA sequencing-based inference of the grain filling gene network in bread wheat and identified a set of 37,695 non-redundant sequence clusters, which is an unprecedented resolution corresponding to an estimated half of the wheat genome unigene repertoire. Using the Brachypodium distachyon genome as a reference for the Triticeae, we classified gene clusters into orthologous, paralogous, and homoeologous relationships. Based on this wheat gene evolutionary classification, older duplicated copies (dating back 50 to 70 million years) exhibit more than 80% gene loss and expression divergence while recent duplicates (dating back 1.5 to 3 million years) show only 54% gene loss and 36 to 49% expression divergence. We suggest that structural shuffling due to duplicated gene loss is a rapid process, whereas functional shuffling due to neo- and/or subfunctionalization of duplicates is a longer process, and that both shuffling mechanisms drive functional redundancy erosion. We conclude that, as a result of these mechanisms, half the gene duplicates in plants are structurally and functionally altered within 10 million years of evolution, and the diploidization process is completed after 45 to 50 million years following polyploidization.

  19. Rheological characteristics of flours milled from different wheat varieties (Triticum aestivum L.

    Directory of Open Access Journals (Sweden)

    Ladislav Haris

    2010-01-01

    Full Text Available Technological quality was studied of wheat flours from three varieties of Triticum aestivum L. (Arida, Meritto, Verita delivered to the mill for three years (2007–2009. Physico-chemical parameters observed during the purchase of grain (STN 461100-2 were not significantly different. Also milled flours from tested varieties have by processors required ash content, gluten, acceptable Zeleny index, α-amylase activity (falling number, but as the rheological properties of dough from these flours show, these parameters are unsuited enough (unsuitability of material for efficient processing of flour. Rheological evaluation showed that each variety is suitable for different processing direction. Therefore, if we deliberately separate lots of purchased grain, not only by basic physico-che­mi­cal properties listed in the current standards (CSN and STN, but also by their rheological properties, which are important and reliable indicator of the direction of the end-use processing of wheat flours, the flours will be more likely to succeed in specific cereal technology. For the production of bread was satisfactory rheological properties of dough from variety Arida. Verita variety is suitable for processing into wafers, and a variety Meritto for producing biscuits and crackers. Verita and Me­rit­to varieties so do not achieved the expected values of the rheological optimum for „classic“ bread processing (bakery products despite satisfactory gluten content and falling number to use this processing direction. Reported results show us the possibilities of more efficient selection of varieties or lots purchased grain of wheat for use in baking and buscuit industry by using rheological evaluation methods. Results were evaluated by analysis of data exploration (Boxplot, scattering graphs, classical nonparametric testing of hypotheses and the distribution of the data (Wilcoxon test, Kruskal-Wallis, Friedman, rates central tendency and dispersion.

  20. Dissection of the multigenic wheat stem rust resistance present in the Montenegrin spring wheat accession PI 362698

    Science.gov (United States)

    Research to identify and characterize stem rust resistance genes in common wheat, Triticum aestivum, has been stimulated by the emergence of Ug99-lineage races of the wheat stem rust pathogen, Puccinia graminis f. sp. tritici (Pgt), in Eastern Africa. The Montenegrin spring wheat landrace PI 362698 ...

  1. Development and characterization of a new TILLING population of common bread wheat (Triticum aestivum L..

    Directory of Open Access Journals (Sweden)

    Liang Chen

    Full Text Available Mutagenesis is an important tool in crop improvement. However, the hexaploid genome of wheat (Triticum aestivum L. presents problems in identifying desirable genetic changes based on phenotypic screening due to gene redundancy. TILLING (Targeting Induced Local Lesions IN Genomes, a powerful reverse genetic strategy that allows the detection of induced point mutations in individuals of the mutagenized populations, can address the major challenge of linking sequence information to the biological function of genes and can also identify novel variation for crop breeding. Wheat is especially well-suited for TILLING due to the high mutation densities tolerated by polyploids. However, only a few wheat TILLING populations are currently available in the world, which is far from satisfying the requirement of researchers and breeders in different growing environments. In addition, current TILLING screening protocols require costly fluorescence detection systems, limiting their use, especially in developing countries. We developed a new TILLING resource comprising 2610 M(2 mutants in a common wheat cultivar 'Jinmai 47'. Numerous phenotypes with altered morphological and agronomic traits were observed from the M(2 and M(3 lines in the field. To simplify the procedure and decrease costs, we use unlabeled primers and either non-denaturing polyacrylamide gels or agarose gels for mutation detection. The value of this new resource was tested using PCR with RAPD and Intron-spliced junction (ISJ primers, and also TILLING in three selected candidate genes, in 300 and 512 mutant lines, revealing high mutation densities of 1/34 kb by RAPD/ISJ analysis and 1/47 kb by TILLING. In total, 31 novel alleles were identified in the 3 targeted genes and confirmed by sequencing. The results indicate that this mutant population represents a useful resource for the wheat research community. We hope that the use of this reverse genetics resource will provide novel allelic

  2. Effects of nitrogen and irrigation on gluten protein composition and their relationship to yellow berry disorder in wheat (triticum aestivum)

    International Nuclear Information System (INIS)

    Wong, B.R.; Felix, F.R.; Chavez, T

    2014-01-01

    In Mexico and the rest of the world, the presence of yellow berry (YB) in wheat grains (Triticum aestivum) has been related with poor quality, this defect is associated with low protein content in the grains. However, the quality of the wheat depends not only on the protein content, but also on the composition of the gluten proteins. The effect of the various agronomic factors on the composition of wheat gluten has been a subject of study worldwide. However, in Mexico, wheat quality still remains an issue, as there is a lack of knowledge regarding the optimal agronomic conditions to produce wheat with good-quality gluten. For this reason, the effects of nitrogen (N) rates and irrigations on the amount of gliadin subclasses, glutenin subunits (two main groups) and grain protein content as well as the relation of these proteins to the YB content in wheat grains were investigated. The experiment was conducted on arable farmland in the Valley of Empalme, Sonora, Mexico (27 degree 58' N, 110 degree 49' W; 10 m altitude), during the fall-winter period of 2009-2010. Tarachi, the hard wheat cultivar studied, was selected for its relative susceptibility to the presence of elevated YB content in mature wheat kernels. Three levels of N (75, 150 or 250 kg ha-1) and three levels of irrigation (1, 2 or 3 auxiliary irrigations) were studied. Using a N rate of 150 kg ha-1 with 3 auxiliary irrigations, wheat with good-quality gluten was obtained. The results suggest that the YB disorder is primarily related to the amount of protein in the wheat grain. (author)

  3. Effect of Glu-B3 Allelic Variation on Sodium Dodecyl Sulfate Sedimentation Volume in Common Wheat (Triticum aestivum L.

    Directory of Open Access Journals (Sweden)

    Hongqi Si

    2013-01-01

    Full Text Available Sodium dodecyl sulfate (SDS sedimentation volume has long been used to characterize wheat flours and meals with the aim of predicting processing and end-product qualities. In order to survey the influence of low-molecular-weight glutenin subunits (LMW-GSs at Glu-B3 locus on wheat SDS sedimentation volume, a total of 283 wheat (Triticum aestivum L. varieties including landraces and improved and introduced cultivars were analyzed using 10 allele-specific PCR markers at the Glu-B3 locus. The highest allele frequency observed in the tested varieties was Glu-B3i with 21.9% in all varieties, 21.1% in landraces, 25.5% in improved cultivars, and 12% in introduced cultivars. Glu-B3 locus represented 8.6% of the variance in wheat SDS sedimentation volume, and Glu-B3b, Glu-B3g, and Glu-B3h significantly heightened the SDS sedimentation volume, but Glu-B3a, Glu-B3c, and Glu-B3j significantly lowered the SDS sedimentation volume. For the bread-making quality, the most desirable alleles Glu-B3b and Glu-B3g become more and more popular and the least desirable alleles Glu-B3a and Glu-B3c got less and less in modern improved cultivars, suggesting that wheat grain quality in China has been significantly improved through breeding effort.

  4. Variability in Indian bread wheat (Triticum aestivum L.) varieties differing in nitrogen efficiency as assessed by microsatellite markers.

    Science.gov (United States)

    Chandna, Ruby; Gupta, Sarika; Ahmad, Altaf; Iqbal, Muhammad; Prasad, Manoj

    2010-06-01

    Wheat (Triticum aestivum L.) is a staple food for half of the world. Its productivity and agronomical practices, especially for nitrogen supplementation, is governed by the nitrogen efficiency (NE) of the genotypes. We analyzed 16 popular cultivated Indian varieties of wheat for their NE and variability estimates using a set of 21 simple sequence repeat (SSR) markers, derived from each wheat chromosome. These genotypes were categorized into three groups, viz., low, moderate, and high nitrogen efficient. Of these 16 genotypes, we have reported six, eight, and two genotypes in high, moderate, and low NE categories, respectively. The differential NE in these genotypes was supported by nitrogen uptake and assimilation parameters. The values of average polymorphic information content and marker index for these SSR markers were estimated to be 0.32 and 0.59, respectively. The genetic similarity coefficient for all possible pairs of varieties ranged from 0.41 to 0.76, indicating the presence of considerable range of genetic diversity at molecular level. The dendrogram prepared on the basis of unweighted pair-group method of arithmetic average algorithm grouped the 16 wheat varieties into three major clusters. The clustering was strongly supported by high bootstrap values. The distribution of the varieties in different clusters and subclusters appeared to be related to their variability in NE parameter that was scored. Genetically diverse parents were identified that could potentially be used for their desirable characteristics in breeding programs for improvement of NE in wheat.

  5. The influence of the forerunner plant and the irrigation on some quality indicators of the wheat plant (Triticum aestivum L. in their growth conditions on the acid soils in the North-Western Romania

    Directory of Open Access Journals (Sweden)

    Ileana ARDELEAN

    2010-05-01

    Full Text Available The paper sustains the importance of the forerunner plant concerning the quality of the wheat (Triticum aestivum L. and is based on the research carried out during 2006-2008 on a long term trial placed on the brown luvic (acid soils from Oradea in 1990. In non-irrigating and irrigating conditions as well the smallest protein, wet gluten and dry gluten values were obtained in wheat mono-crop; the values increased in the forerunner plant, wheat-maize and the biggest values were registered in the forerunner plant, wheat-maize-soybean.

  6. Natural variation in grain composition of wheat and related cereals.

    Science.gov (United States)

    Shewry, Peter R; Hawkesford, Malcolm J; Piironen, Vieno; Lampi, Ann-Maija; Gebruers, Kurt; Boros, Danuta; Andersson, Annica A M; Åman, Per; Rakszegi, Mariann; Bedo, Zoltan; Ward, Jane L

    2013-09-04

    The wheat grain comprises three groups of major components, starch, protein, and cell wall polysaccharides (dietary fiber), and a range of minor components that may confer benefits to human health. Detailed analyses of dietary fiber and other bioactive components were carried out under the EU FP6 HEALTHGRAIN program on 150 bread wheat lines grown on a single site, 50 lines of other wheat species and other cereals grown on the same site, and 23-26 bread wheat lines grown in six environments. Principal component analysis allowed the 150 bread wheat lines to be classified on the basis of differences in their contents of bioactive components and wheat species (bread, durum, spelt, emmer, and einkorn wheats) to be clearly separated from related cereals (barley, rye, and oats). Such multivariate analyses could be used to define substantial equivalence when novel (including transgenic) cereals are considered.

  7. Effect of incorporation of decorticated pigeon pea (Cajanus cajan) protein isolate on functional, baking and sensory characteristics of Wheat (Triticum aesitivum) biscuit

    OpenAIRE

    H. A. Hassan; A.I. Mustafa; A.R. Ahmed

    2013-01-01

    This study was undertaken with the objectives of using the decorticated pigeon pea protein isolate in the development of protein rich-biscuit, suitable for general and specific nutritional purposes and to study the effect of incorporation of pigeon pea protein isolate on the sensory evaluation and quality of biscuit produced. Decorticated Pigeon Pea protein Isolate (DPPI) was incorporated in wheat (Triticum aesitivum) flour (WF, extraction rate 72%), for making fortified biscuit. Ratios of DP...

  8. Genetic diversity and population structure analysis of European hexaploid bread wheat (Triticum aestivum L.) varieties.

    Science.gov (United States)

    Nielsen, Nanna Hellum; Backes, Gunter; Stougaard, Jens; Andersen, Stig Uggerhøj; Jahoor, Ahmed

    2014-01-01

    Progress in plant breeding is facilitated by accurate information about genetic structure and diversity. Here, Diversity Array Technology (DArT) was used to characterize a population of 94 bread wheat (Triticum aestivum L.) varieties of mainly European origin. In total, 1,849 of 7,000 tested markers were polymorphic and could be used for population structure analysis. Two major subgroups of wheat varieties, GrI and GrII, were identified using the program STRUCTURE, and confirmed by principal component analysis (PCA). These subgroups were largely separated according to origin; GrI comprised varieties from Southern and Eastern Europe, whereas GrII contained mostly modern varieties from Western and Northern Europe. A large proportion of the markers contributing most to the genetic separation of the subgroups were located on chromosome 2D near the Reduced height 8 (Rht8) locus, and PCR-based genotyping suggested that breeding for the Rht8 allele had a major impact on subgroup separation. Consistently, analysis of linkage disequilibrium (LD) suggested that different selective pressures had acted on chromosome 2D in the two subgroups. Our data provides an overview of the allele composition of bread wheat varieties anchored to DArT markers, which will facilitate targeted combination of alleles following DArT-based QTL studies. In addition, the genetic diversity and distance data combined with specific Rht8 genotypes can now be used by breeders to guide selection of crossing parents.

  9. Genetic diversity and population structure analysis of European hexaploid bread wheat (Triticum aestivum L. varieties.

    Directory of Open Access Journals (Sweden)

    Nanna Hellum Nielsen

    Full Text Available Progress in plant breeding is facilitated by accurate information about genetic structure and diversity. Here, Diversity Array Technology (DArT was used to characterize a population of 94 bread wheat (Triticum aestivum L. varieties of mainly European origin. In total, 1,849 of 7,000 tested markers were polymorphic and could be used for population structure analysis. Two major subgroups of wheat varieties, GrI and GrII, were identified using the program STRUCTURE, and confirmed by principal component analysis (PCA. These subgroups were largely separated according to origin; GrI comprised varieties from Southern and Eastern Europe, whereas GrII contained mostly modern varieties from Western and Northern Europe. A large proportion of the markers contributing most to the genetic separation of the subgroups were located on chromosome 2D near the Reduced height 8 (Rht8 locus, and PCR-based genotyping suggested that breeding for the Rht8 allele had a major impact on subgroup separation. Consistently, analysis of linkage disequilibrium (LD suggested that different selective pressures had acted on chromosome 2D in the two subgroups. Our data provides an overview of the allele composition of bread wheat varieties anchored to DArT markers, which will facilitate targeted combination of alleles following DArT-based QTL studies. In addition, the genetic diversity and distance data combined with specific Rht8 genotypes can now be used by breeders to guide selection of crossing parents.

  10. Identification and comprehensive analyses of the CBL and CIPK gene families in wheat (Triticum aestivum L.).

    Science.gov (United States)

    Sun, Tao; Wang, Yan; Wang, Meng; Li, Tingting; Zhou, Yi; Wang, Xiatian; Wei, Shuya; He, Guangyuan; Yang, Guangxiao

    2015-11-04

    Calcineurin B-like (CBL) proteins belong to a unique group of calcium sensors in plant that decode the Ca(2+) signature by interacting with CBL-interacting protein kinases (CIPKs). Although CBL-CIPK complexes have been shown to play important roles in the responses to various stresses in plants, little is known about their functions in wheat. A total of seven TaCBL and 20 TaCIPK genes were amplified from bread wheat, Triticum aestivum cv. Chinese Spring. Reverse-transcriptase-polymerase chain reaction (RT-PCR) and in silico expression analyses showed that TaCBL and TaCIPK genes were expressed at different levels in different tissues, or maintained at nearly constant expression levels during the whole life cycle of the wheat plant. Some TaCBL and TaCIPK genes showed up- or down-regulated expressions during seed germination. Preferential interactions between TaCBLs and TaCIPKs were observed in yeast two-hybrid and bimolecular fluorescence complementation experiments. Analyses of a deletion series of TaCIPK proteins with amino acid variations at the C-terminus provided new insights into the specificity of the interactions between TaCIPKs and TaCBLs, and indicated that the TaCBL-TaCIPK signaling pathway is very complex in wheat because of its hexaploid genome. The expressions of many TaCBLs and TaCIPKs were responsive to abiotic stresses (salt, cold, and simulated drought) and abscisic acid treatment. Transgenic Arabidopsis plants overexpressing TaCIPK24 exhibited improved salt tolerance through increased Na(+) efflux and an enhanced reactive oxygen species scavenging capacity. These results contribute to our understanding of the functions of CBL-CIPK complexes and provide the basis for selecting appropriate genes for in-depth functional studies of CBL-CIPK in wheat.

  11. Impact of transgene genome location on gene migration from herbicide-resistant wheat (Triticum aestivum L.) to jointed goatgrass (Aegilops cylindrica Host).

    Science.gov (United States)

    Rehman, Maqsood; Hansen, Jennifer L; Mallory-Smith, Carol A; Zemetra, Robert S

    2017-08-01

    Wheat (Triticum aestivum) (ABD) and jointed goatgrass (Aegilops cylindrica) (CD) can cross and produce hybrids that can backcross to either parent. Such backcrosses can result in progeny with chromosomes and/or chromosome segments retained from wheat. Thus, a herbicide resistance gene could migrate from wheat to jointed goatgrass. In theory, the risk of gene migration from herbicide-resistant wheat to jointed goatgrass is more likely if the gene is located on the D genome and less likely if the gene is located on the A or B genome of wheat. BC 1 populations (jointed goatgrass as a recurrent parent) were analyzed for chromosome numbers and transgene transmission rates under sprayed and non-sprayed conditions. Transgene retention in the non-sprayed BC 1 generation for the A, B and D genomes was 84, 60 and 64% respectively. In the sprayed populations, the retention was 81, 59 and 74% respectively. The gene transmission rates were higher than the expected 50% or less under sprayed and non-sprayed conditions, possibly owing to meiotic chromosome restitution and/or chromosome non-disjunction. Such high transmission rates in the BC 1 generation negates the benefits of gene placement for reducing the potential of gene migration from wheat to jointed goatgrass. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  12. Epistatic determinism of durum wheat resistance to the wheat spindle streak mosaic virus.

    Science.gov (United States)

    Holtz, Yan; Bonnefoy, Michel; Viader, Véronique; Ardisson, Morgane; Rode, Nicolas O; Poux, Gérard; Roumet, Pierre; Marie-Jeanne, Véronique; Ranwez, Vincent; Santoni, Sylvain; Gouache, David; David, Jacques L

    2017-07-01

    The resistance of durum wheat to the Wheat spindle streak mosaic virus (WSSMV) is controlled by two main QTLs on chromosomes 7A and 7B, with a huge epistatic effect. Wheat spindle streak mosaic virus (WSSMV) is a major disease of durum wheat in Europe and North America. Breeding WSSMV-resistant cultivars is currently the only way to control the virus since no treatment is available. This paper reports studies of the inheritance of WSSMV resistance using two related durum wheat populations obtained by crossing two elite cultivars with a WSSMV-resistant emmer cultivar. In 2012 and 2015, 354 recombinant inbred lines (RIL) were phenotyped using visual notations, ELISA and qPCR and genotyped using locus targeted capture and sequencing. This allowed us to build a consensus genetic map of 8568 markers and identify three chromosomal regions involved in WSSMV resistance. Two major regions (located on chromosomes 7A and 7B) jointly explain, on the basis of epistatic interactions, up to 43% of the phenotypic variation. Flanking sequences of our genetic markers are provided to facilitate future marker-assisted selection of WSSMV-resistant cultivars.

  13. Evolutionary agroecology: individual fitness and population yield in wheat (Triticum aestivum).

    Science.gov (United States)

    Weiner, Jacob; Du, Yan-Lei; Zhang, Cong; Qin, Xiao-Liang; Li, Feng-Min

    2017-09-01

    Although the importance of group selection in nature is highly controversial, several researchers have argued that plant breeding for agriculture should be based on group selection, because the goal in agriculture is to optimize population production, not individual fitness. A core hypothesis behind this claim is that crop genotypes with the highest individual fitness in a mixture of genotypes will not produce the highest population yield, because fitness is often increased by "selfish" behaviors, which reduce population performance. We tested this hypothesis by growing 35 cultivars of spring wheat (Triticum aestivum L.) in mixtures and monocultures, and analyzing the relationship between population yield in monoculture and individual yield in mixture. The relationship was unimodal, as predicted. The highest-yielding populations were from cultivars that had intermediate fitness, and these produced, on average, 35% higher yields than cultivars with the highest fitness. It is unlikely that plant breeding or genetic engineering can improve traits that natural selection has been optimizing for millions of years, but there is unutilized potential in traits that increase crop yield by decreasing individual fitness. © 2017 by the Ecological Society of America.

  14. The effects of 2,4-dichlorophenoxy acetic acid and isoproturon herbicides on the mitotic activity of wheat (Triticum aestivum L.) root tips

    OpenAIRE

    KUMAR, Sanjay; *, -; ARYA, Shashi Kiran; ROY, Bijoy Krishna; SINGH, Atul Kumar

    2014-01-01

    The effects of the herbicides 2,4-dichlorophenoxy acetic acid and isoproturon on 3 wheat (Triticum aestivum L.) varieties (HUW 234, HUW 468, and HUW 533) were studied with regards to mitotic abnormalities and chromosomal behavior. Pre-soaked seeds were treated with both herbicides at concentrations of 50-1200 ppm. Both 2,4-D and isoproturon were highly mito-inhibitory and induced chromosomal abnormalities, such as precocious movement, stickiness, and chromosome bridges, with and without lagga...

  15. Aneuploids of wheat and chromosomal localization of genes ...

    African Journals Online (AJOL)

    Aneuploids of wheat and chromosomal localization of genes. ... African Journal of Biotechnology ... cytogenetic methods for the chromosomal localization of major genes in wheat including Chinese spring (CS) monosomics (Triticum aestivum, ...

  16. Khorasan wheat population researching (Triticum turgidum, ssp. Turanicum (McKey in the minimum tillage conditions

    Directory of Open Access Journals (Sweden)

    Ikanović Jela

    2014-01-01

    Full Text Available Khorasan wheat occupies a special place in the group of new-old cereals (Triticum turgidum, ssp. Turanicum McKey. It is an ancient species, native to eastern Persia, that is very close to durum wheat by morphological characteristics. Investigations were carried out in agro ecological conditions of the eastern Srem, with two wheat populations with dark and bright awns as objects of study. The following morphological and productive characteristics were investigated: plant height (PH, spike length (SH, number of spikelets per spike (NSS, absolute weight (AW and grain weight per spike (GW, seed germination (G and grains yield (YG. Field micro-experiments were set on the carbonate chernozem soil type on loess plateau in 2011 and 2012. Hand wheat sowing was conducted in early March with drill row spacing of 12 cm. The experiment was established as complete randomized block system with four replications. Tending crops measures were not applied during the growing season. Plants were grown without usage of NPK mineral nutrients. Chemical crop protection measures were not applied, although powdery mildew (Erysiphe graminis was appeared before plants spike formation in a small extent. The results showed that both populations have a genetic yield potential. In general, both populations manifested a satisfactory tolerance on lodging and there was no seed dispersal. Plants from bright awns population were higher, had longer spikes and larger number of spikelet’s per spike. However, plants from dark awns population had higher absolute weight and grains weight per spike, as well as grain yield per plant. Strong correlation connections were identified among the investigated characteristics. The determination of correlations, as well as direct and indirect affects, enabled easier understanding of the mutual relationships and their balancing in order to improve the yield per unit area. [Projekat Ministarstva nauke Republike Srbije, br. TR 31078 i br. TR 31022

  17. Over-expression of a tobacco nitrate reductase gene in wheat (Triticum aestivum L.) increases seed protein content and weight without augmenting nitrogen supplying.

    Science.gov (United States)

    Zhao, Xiao-Qiang; Nie, Xuan-Li; Xiao, Xing-Guo

    2013-01-01

    Heavy nitrogen (N) application to gain higher yield of wheat (Triticum aestivum L.) resulted in increased production cost and environment pollution. How to diminish the N supply without losing yield and/or quality remains a challenge. To meet the challenge, we integrated and expressed a tobacco nitrate reductase gene (NR) in transgenic wheat. The 35S-NR gene was transferred into two winter cultivars, "Nongda146" and "Jimai6358", by Agrobacterium-mediation. Over-expression of the transgene remarkably enhanced T1 foliar NR activity and significantly augmented T2 seed protein content and 1000-grain weight in 63.8% and 68.1% of T1 offspring (total 67 individuals analyzed), respectively. Our results suggest that constitutive expression of foreign nitrate reductase gene(s) in wheat might improve nitrogen use efficiency and thus make it possible to increase seed protein content and weight without augmenting N supplying.

  18. Over-expression of a tobacco nitrate reductase gene in wheat (Triticum aestivum L. increases seed protein content and weight without augmenting nitrogen supplying.

    Directory of Open Access Journals (Sweden)

    Xiao-Qiang Zhao

    Full Text Available Heavy nitrogen (N application to gain higher yield of wheat (Triticum aestivum L. resulted in increased production cost and environment pollution. How to diminish the N supply without losing yield and/or quality remains a challenge. To meet the challenge, we integrated and expressed a tobacco nitrate reductase gene (NR in transgenic wheat. The 35S-NR gene was transferred into two winter cultivars, "Nongda146" and "Jimai6358", by Agrobacterium-mediation. Over-expression of the transgene remarkably enhanced T1 foliar NR activity and significantly augmented T2 seed protein content and 1000-grain weight in 63.8% and 68.1% of T1 offspring (total 67 individuals analyzed, respectively. Our results suggest that constitutive expression of foreign nitrate reductase gene(s in wheat might improve nitrogen use efficiency and thus make it possible to increase seed protein content and weight without augmenting N supplying.

  19. Characterization of new allele influencing flowering time in bread wheat introgressed from Triticum militinae.

    Science.gov (United States)

    Ivaničová, Zuzana; Jakobson, Irena; Reis, Diana; Šafář, Jan; Milec, Zbyněk; Abrouk, Michael; Doležel, Jaroslav; Järve, Kadri; Valárik, Miroslav

    2016-09-25

    Flowering time variation was identified within a mapping population of doubled haploid lines developed from a cross between the introgressive line 8.1 and spring bread wheat cv. Tähti. The line 8.1 carried introgressions from tetraploid Triticum militinae in the cv. Tähti genetic background on chromosomes 1A, 2A, 4A, 5A, 7A, 1B and 5B. The most significant QTL for the flowering time variation was identified within the introgressed region on chromosome 5A and its largest effect was associated with the VRN-A1 locus, accounting for up to 70% of phenotypic variance. The allele of T. militinae origin was designated as VRN-A1f-like. The effect of the VRN-A1f-like allele was verified in two other mapping populations. QTL analysis identified that in cv. Tähti and cv. Mooni genetic background, VRN-A1f-like allele incurred a delay of 1.9-18.6 days in flowering time, depending on growing conditions. Sequence comparison of the VRN-A1f-like and VRN-A1a alleles from the parental lines of the mapping populations revealed major mutations in the promoter region as well as in the first intron, including insertion of a MITE element and a large deletion. The sequence variation allowed construction of specific diagnostic PCR markers for VRN-A1f-like allele determination. Identification and quantification of the effect of the VRN-A1f-like allele offers a useful tool for wheat breeding and for studying fine-scale regulation of flowering pathways in wheat. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. QTL analysis of falling number and seed longevity in wheat (Triticum aestivum L.).

    Science.gov (United States)

    Börner, Andreas; Nagel, Manuela; Agacka-Mołdoch, Monika; Gierke, Peter Ulrich; Oberforster, Michael; Albrecht, Theresa; Mohler, Volker

    2018-02-01

    Pre-harvest sprouting (PHS) and seed longevity (SL) are complex biological processes of major importance for agricultural production. In the present study, a recombinant inbred line (RIL) population derived from a cross between the German winter wheat (Triticum aestivum L.) cultivars History and Rubens was used to identify genetic factors controlling these two physiological seed traits. A falling number (FN) test was employed to evaluate PHS, while SL was measured using a germination test (and the speed of germination) after controlled deterioration. FN of the population was assessed in four environments; SL traits were measured in one environment. Four major quantitative trait loci (QTL) for FN were detected on chromosomes 4D, 5A, 5D, and 7B, whereas for SL traits, a major QTL was found on chromosome 1A. The FN QTL on chromosome 4D that coincided with the position of the dwarfing gene Rht-D1b only had effects in environments that were free of PHS. The remaining three QTL for FN were mostly pronounced under conditions conducive to PHS. The QTL on the long arm of chromosome 7B corresponded to the major gene locus controlling late maturity α-amylase (LMA) in wheat. The severity of the LMA phenotype became truly apparent under sprouting conditions. The position on the long arm of chromosome 1A of the QTL for SL points to a new QTL for this important regenerative seed trait.

  1. Multisurface modeling of Ni bioavailability to wheat (Triticum aestivum L.) in various soils.

    Science.gov (United States)

    Zhao, Xiaopeng; Jiang, Yang; Gu, Xueyuan; Gu, Cheng; Taylor, J Anita; Evans, Les J

    2018-07-01

    Continual efforts have been made to determine a simple and universal method of estimating heavy metal phytoavailability in terrestrial systems. In the present study, a mechanism-based multi-surface model (MSM) was developed to predict the partition of Ni(II) in soil-solution phases and its bioaccumulation in wheat (Triticum aestivum L.) in 19 Chinese soils with a wide range of soil properties. MSM successfully predicted the Ni(II) dissolution in 0.01 M CaCl 2 extracting solution (R 2  = 0.875). The two-site model for clay fraction improved the prediction, particularly for alkaline soils, because of the additional consideration of edge sites. More crucially, the calculated dissolved Ni(II) was highly correlated with the metal accumulation in wheat (R 2  = 0.820 for roots and 0.817 for shoots). The correlation coefficients for the MSM and various chemical extraction methods have the following order: soil pore water > MSM ≈ diffuse gradient technique (DGT) > soil total Ni > 0.43 M HNO 3  > 0.01 M CaCl 2 . The results suggested that the dissolved Ni(II) calculated using MSM can serve as an effective indicator of the bioavailability of Ni(II) in various soils; hence, MSM can be used as an supplement for metal risk prediction and assessment besides chemical extraction techniques. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Antifungal properties of wheat histones (H1-H4) and purified wheat histone H1

    Science.gov (United States)

    Wheat (Triticum sp.) histones H1, H2, H3, and H4 were extracted. H1 was further purified. Their activities against fungi with varying degrees of wheat pathogenicity were determined. They included Aspergillus flavus, A. fumigatus, A. niger, F. oxysporum, F. verticillioides, F. solani, F. graminearu...

  3. PITHOMYCES CHARTARUM AS A PATHOGEN OF WHEAT

    NARCIS (Netherlands)

    Tóth, B; Csösz, M; Dijksterhuis, J; Frisvad, J C; Varga, J

    2007-01-01

    During routine surveys of wheat-growing (Triticum aestivum L.) areas of Hungary, symptomatic leaf samples were collected from different wheat cultivars. Macro- and micromorphological examinations of singlespore isolates showed some of them to belong to Pithomyces chartarum (teleomorph:

  4. Heat-induced regulation of antioxidant defense system and nutrient accumulation in hexaploid bread wheat (triticum aestivum l.)

    International Nuclear Information System (INIS)

    Zia, M.A.; Ashraf, M.; Akram, A.

    2014-01-01

    Ten cultivars (five registered S-24, Inqlab-91, Saher-2006, Fsd-2008, and Lasani, and five candidate cultivars P.B-18, M.P-65, S.H-20, AARI-10, and G.A-20) of spring wheat (Triticum aestivum L.) were examined for high temperature stress tolerance. Plants were grown in soil filled pots in the Botanical Garden of the Department of Botany University of Agriculture Faisalabad, Pakistan. Three different temperature regimes (30, 40 and 50 degree C) were applied at two different growth stages (tillering and boot) for three temperature durations 30, 60 and 90 min in a growth chamber. The leaf and root samples were collected after two weeks of temperature treatment and then analyzed for enzymatic and non-enzymatic antioxidants as well as inorganic nutrients (N, P, K+, Ca2+). At the end, data obtained were statistically analyzed to distinguish heat tolerant from non-tolerant wheat cultivars. After appraisal of growth, antioxidant defense system and uptake of nutrients it was found that cvs. S-24, Inqlab-91, Saher-2006, Fsd-2008, Lasani and G.A-20 exhibited better thermo-tolerance capabilities than the other wheat cultivars (P.B-18, M.P-65, S.H-20, AARI-10). Among the thermo-tolerant wheat cultivars, G.A-20 and Lasani were superior in maintaining shoot fresh weights and shoot length, high antioxidant activities and better nutrient uptake at both tillering and boot stages. The response of all cultivars to heat stress applied at the tillering stage or boot stage was almost the same. (author)

  5. Genome-wide association mapping of resistance to eyespot disease (Pseudocercosporella herpotrichoides) in European winter wheat (Triticum aestivum L.) and fine-mapping of Pch1.

    Science.gov (United States)

    Zanke, Christine D; Rodemann, Bernd; Ling, Jie; Muqaddasi, Quddoos H; Plieske, Jörg; Polley, Andreas; Kollers, Sonja; Ebmeyer, Erhard; Korzun, Viktor; Argillier, Odile; Stiewe, Gunther; Zschäckel, Thomas; Ganal, Martin W; Röder, Marion S

    2017-03-01

    Genotypes with recombination events in the Triticum ventricosum introgression on chromosome 7D allowed to fine-map resistance gene Pch1, the main source of eyespot resistance in European winter wheat cultivars. Eyespot (also called Strawbreaker) is a common and serious fungal disease of winter wheat caused by the necrotrophic fungi Oculimacula yallundae and Oculimacula acuformis (former name Pseudocercosporella herpotrichoides). A genome-wide association study (GWAS) for eyespot was performed with 732 microsatellite markers (SSR) and 7761 mapped SNP markers derived from the 90 K iSELECT wheat array using a panel of 168 European winter wheat varieties as well as three spring wheat varieties and phenotypic evaluation of eyespot in field tests in three environments. Best linear unbiased estimations (BLUEs) were calculated across all trials and ranged from 1.20 (most resistant) to 5.73 (most susceptible) with an average value of 4.24 and a heritability of H 2  = 0.91. A total of 108 SSR and 235 SNP marker-trait associations (MTAs) were identified by considering associations with a -log 10 (P value) ≥3.0. Significant MTAs for eyespot-score BLUEs were found on chromosomes 1D, 2A, 2D, 3D, 5A, 5D, 6A, 7A and 7D for the SSR markers and chromosomes 1B, 2A, 2B, 2D, 3B and 7D for the SNP markers. For 18 varieties (10.5%), a highly resistant phenotype was detected that was linked to the presence of the resistance gene Pch1 on chromosome 7D. The identification of genotypes with recombination events in the introgressed genomic segment from Triticum ventricosum harboring the Pch1 resistance gene on chromosome 7DL allowed the fine-mapping of this gene using additional SNP markers and a potential candidate gene Traes_7DL_973A33763 coding for a CC-NBS-LRR class protein was identified.

  6. Allelopathic effects of aqueous extracts of sunflower on wheat (triticum aestivum l.) and maize (zea mays l.)

    International Nuclear Information System (INIS)

    Muhammad, Z.; Mujeed, A.

    2014-01-01

    Sunflower is a potent allelopathic plant which possesses important allelochemicals with known allelopathic activity on other plants. In this study, allelopathic effects of fresh aqueous extracts (FAE) and air dried aqueous extracts (DAE) of root, shoot and leaves of sunflower (Halianthus annuus L.) were investigated on germination and seedling growth of wheat (Triticum aestivum L.) and maize (Zea mays L.) in seed bioassay experiments carried out at Botany Department of Peshawar University during 2010. Results showed significantly inhibitory effects of aqueous extracts on seed germination, growth and dry biomass of seedlings of wheat and maize. In wheat seedlings, significant germination inhibition (15.21%), increased mean germination time (MGT) (57.76%), reduced plumule and radical growth (21.66 and 28.44%) and lowered seedlings dry biomass (31.05%) were recorded under dry aqueous extracts of leaf when compared to control. Germination percentage of maize was inhibited by dry aqueous extracts of leaf by 7.81%, germination index by 16.51%, increased MGT by 25.53%, decreased plumule and radical lengths by 29.00 and 36.12% respectively, and lowered maize seedling dry biomass by 34.02 %. In both experiments, dry aqueous extracts (DAE) were more phytotoxic than fresh aqueous extracts (FAE). Similarly, inhibitory effects of aqueous extracts of different parts of sunflower were recorded in the order leaf > shoot > root for both tested plants. (author)

  7. Optimizing rate of nitrogen application for higher growth and yield of wheat (triticum aestivum l.) cultivars

    International Nuclear Information System (INIS)

    Maqsood, M.; Shehzad, M.A.; Asim, A.; Ahmad, W.

    2012-01-01

    In order to optimize the nitrogen rates in three wheat (Triticum aestivum L.) cultivars for obtaining higher grain yield, a split plot experiment based on Randomized Complete Block Design with three replicates was conducted in the research field of University of Agriculture, Faisalabad during Rabi season 2006-07. Among treatments nitrogen levels (N0= 0, N/sub 1/= 50, N2= 100, N3= 150 kg ha/sup -1/) in main while wheat cultivars (V1= Punjnad-I, V/sub 2/= Fareed-2006, V3=Uqab-2000) were allocated in sub plots during the course of growing season. Traits as plant height, fertile tillers, spike length, spikelets spike-1, grains spike-1, 1000-grain weight, straw yield, grain yield and harvest index (HI) were significantly (P=0.05) affected by treatment combinations. Maximum grain yield was obtained by V3 (Uqab-2000) cultivar when treated with N3 (150 kg ha/sup -1/) fertilizer level. Also, results showed that with increasing nitrogen rates, wheat yield increases significantly up to a level of significance (P=0.05). Increasing nitrogen levels led to significantly increase in plant height (101.81 cm), spike bearing tillers (495.77), grains spike/sup -1/ (61.45), straw yield (8.60 t ha/sup -1/) and harvest index (36.17%) of V3 (Uqab-2000). In all traits except germination count, V3 (Uqab-2000) was found to be superior. (author)

  8. Impact of improved wheat technology adoption on productivity and ...

    African Journals Online (AJOL)

    Wheat (Triticum aestivum L.) is one of the most important cereal crops cultivated in wide range of agro-ecologies in Eastern Africa. However, wheat productivity has remained low. This study was carried out in Ethiopia Aris Zone to determine the level and impact of adoption of improved wheat varieties on wheat productivity ...

  9. Effects of HMW-GS Ax1 or Dx2 absence on the glutenin polymerization and gluten micro structure of wheat (Triticum aestivum L.).

    Science.gov (United States)

    Gao, Xin; Liu, Tianhong; Ding, Mengyun; Wang, Jun; Li, Chunlian; Wang, Zhonghua; Li, Xuejun

    2018-02-01

    Wheat (Triticum aestivum L.) dough strength and extensibility are mainly determined by the polymerization of glutenin. The number of high-molecular-weight glutenin subunits (HMW-GS) differs in various wheat varieties due to the silencing of some genes. The effects of Ax1 or Dx2 subunit absence on glutenin polymerization, dough mixing properties and gluten micro structure were investigated with two groups of near-isogenic lines. The results showed that Ax1 or Dx2 absence decreased the accumulation rate of glutenin polymers and thus delayed the rapid increase period for glutenin polymerization by at least ten days, which led to lower percentage of polymeric protein in mature grain. Ax1 or Dx2 absence significantly decreased the dough development time and dough stability, but increased the uniformity of micro structure. Lacunarity, derived from quantitative analysis of gluten network, is suggested as a new indicator for wheat quality. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Seed coating with arbuscular mycorrhizal fungi as an ecotechnologicalapproach for sustainable agricultural production of common wheat (Triticum aestivum L.).

    Science.gov (United States)

    Oliveira, Rui S; Rocha, Inês; Ma, Ying; Vosátka, Miroslav; Freitas, Helena

    2016-01-01

    The exploitation of arbuscular mycorrhizal (AM) fungi has become of great interest in agriculture due to their potential roles in reducing the need for agrochemicals, while improving plant growth and nutrition. Nevertheless, the application of AM fungi by dispersing inocula in granular form to open agricultural fields is not feasible because nontargeted spreading of inocula over large surface areas results in high cost per plant. Seed coating has the potential to significantly reduce the amount of inoculum needed, resulting in cost reduction and increased efficiency. The aim of this study was to assess whether seed coating with AM fungal inoculum is a feasible delivery system for production of common wheat (Triticum aestivum L.). Wheat seeds were coated with inoculum of Rhizophagus irregularis BEG140 and grown under different fertilization conditions: (1) none, (2) partial, or (3) complete. Data indicated that mycorrhizal inoculation via seed coating significantly increased the dry weight of shoot and seed spikes of wheat associated with reduced fertilization. Assessment of nutritional status of wheat showed that plants inoculated with R. irregularis via seed coating displayed enhanced stem concentrations of potassium (K), sulfur (S), and zinc (Zn). There were no significant differences in root colonization between plants conventionally inoculated with R. irregularis in soil and those inoculated via seed coating. Seed coating with AM fungi may be as effective as conventional soil inoculation and may contribute to reduce the utilization of chemical fertilizers. The application of AM via seed coating is proposed as an ecotechnological approach for sustainable agricultural wheat production.

  11. Cytogenetic and molecular identification of a wheat-Leymus mollis alien multiple substitution line from octoploid Tritileymus x Triticum durum.

    Science.gov (United States)

    Pang, Y H; Zhao, J X; Du, W L; Li, Y L; Wang, J; Wang, L M; Wu, J; Cheng, X N; Yang, Q H; Chen, X H

    2014-05-23

    Leymus mollis (Trin.) Pilger (NsNsXmXm, 2n = 28), a wild relative of common wheat, possesses many traits that are potentially valuable for wheat improvement. In order to exploit and utilize the useful genes of L. mollis, we developed a multiple alien substitution line, 10DM50, from the progenies of octoploid Tritileymus M842-16 x Triticum durum cv. D4286. Genomic in situ hybridization analysis of mitosis and meiosis (metaphase I), using labeled total DNA of Psathyrostachys huashanica as probe, showed that the substitution line 10DM50 was a cytogenetically stable alien substitution line with 36 chromosomes from wheat and three pairs of Ns genome chromosomes from L. mollis. Simple sequence repeat analysis showed that the chromosomes 3D, 6D, and 7D were absent in 10DM50. Expressed sequence tag-sequence tagged sites analysis showed that new chromatin from 3Ns, 6Ns, and 7Ns of L. mollis were detected in 10DM50. We deduced that the substitution line 10DM50 was a multiple alien substitution line with the 3D, 6D, and 7D chromosomes replaced by 3Ns, 6Ns, and 7Ns from L. mollis. 10DM50 showed high resistance to leaf rust and significantly improved spike length, spikes per plant, and kernels per spike, which are correlated with higher wheat yield. These results suggest that line 10DM50 could be used as intermediate material for transferring desirable traits from L. mollis into common wheat in breeding programs.

  12. Mapping of Ppd-B1, a Major Candidate Gene for Late Heading on Wild Emmer Chromosome Arm 2BS and Assessment of Its Interactions with Early Heading QTLs on 3AL.

    Science.gov (United States)

    Zhou, Wei; Wu, Shasha; Ding, Mingquan; Li, Jingjuan; Shi, Zhaobin; Wei, Wei; Guo, Jialian; Zhang, Hua; Jiang, Yurong; Rong, Junkang

    2016-01-01

    Wheat heading date is an important agronomic trait determining maturation time and yield. A set of common wheat (Triticum aestivum var. Chinese Spring; CS)-wild emmer (T. turgidum L. subsp. dicoccoides (TDIC)) chromosome arm substitution lines (CASLs) was used to identify and allocate QTLs conferring late or early spike emergence by examining heading date. Genetic loci accelerating heading were found on TDIC chromosome arms 3AL and 7BS, while loci delaying heading were located on 4AL and 2BS. To map QTLs conferring late heading on 2BS, F2 populations derived from two cross combinations of CASL2BS × CS and CASL3AL × CASL2BS were developed and each planted at two times, constituting four F2 mapping populations. Heading date varied continuously among individuals of these four populations, suggesting quantitative characteristics. A genetic map of 2BS, consisting of 23 SSR and one single-stranded conformation polymorphism (SSCP) marker(s), was constructed using these F2 populations. This map spanned a genetic length of 53.2 cM with average marker density of 2.3 cM. The photoperiod-sensitivity gene Ppd-B1 was mapped to chromosome arm 2BS as a SSCP molecular marker, and was validated as tightly linked to a major QTL governing late heading of CASL2BS in all mapping populations. A significant dominance by additive effect of Ppd-B1 with the LUX gene located on 3AL was also detected. CS had more copies of Ppd-B1 than CASL2BS, implying that increased copy number could elevate the expression of Ppd-1 in CS, also increasing expression of LUX and FT genes and causing CS to have an earlier heading date than CASL2BS in long days.

  13. Earthworms, Collembola and residue management change wheat (Triticum aestivum) and herbivore pest performance (Aphidina: Rhophalosiphum padi).

    Science.gov (United States)

    Ke, Xin; Scheu, Stefan

    2008-10-01

    Management practices of arable systems determine the distribution of soil organic matter thereby changing decomposer animal activity and their impact on nutrient mineralization, plant growth and plant-herbivore interactions. Decomposer-mediated changes in plant growth and insect pest performance were investigated in wheat-aphid model systems in the greenhouse. Three types of litter distribution were established: litter patch at the soil surface (simulating mulching), litter patch deeper in soil (simulating ploughing) and litter homogeneously mixed into soil (simulating disk cultivation). The litter was labelled with (15)N to follow the mineralization and uptake of nutrients by the plants. Earthworms (Aporrectodea caliginosa) and Collembola (Protaphorura armata) were included as representatives of major functional groups of decomposers. Wheat (Triticum aestivum) was planted and aphids (Rhophalosiphum padi) were introduced to leaves as one of the most important pests. Earthworms, Collembola and litter distribution affected plant growth, N acquisition and aphid development in an interactive way. Earthworms and Collembola increased biomass of seeds, shoots and roots of wheat. Increased plant growth by earthworms and Collembola was mainly due to increased transfer of N from soil (rather than litter) into plants. Despite increasing plant growth, earthworms reduced aphid reproduction. Aphid reproduction was not correlated closely with plant N concentrations, but rather with the concentration of litter N in wheat. Unexpectedly, both Collembola and earthworms predominantly affected the mobilization of N from soil organic matter, and by altering the distribution of litter earthworms reduced infestation of crops by aphids via reducing plant capture of litter N, in particular if the litter was concentrated deeper in soil. The results suggest that management practices stimulating a continuous moderate increase in nutrient mobilization from soil organic matter rather than

  14. Canola versus Wheat Rotation Effects on Subsequent Wheat Yield

    Science.gov (United States)

    Winter canola (Brassica napus L.) (WC) is considered the most promising, domestically-produced oilseed feedstock for biodiesel production and for diversifying wheat (Triticum aestivum L.)-based cropping systems in the Inland Pacific Northwest, USA (PNW). A law passed in 2006 requires that at least t...

  15. Identification of novel QTL for sawfly resistance in wheat

    Science.gov (United States)

    J. D. Sherman; D. K. Weaver; M. L. Hofland; S. E. Sing; M. Buteler; S. P. Lanning; Y. Naruoka; F. Crutcher; N. K. Blake; J. M. Martin; P. F. Lamb; G. R. Carlson; L. E. Talbert

    2010-01-01

    The wheat stem sawfly (WSS) (Cephus cinctus Nort.) is an important pest of wheat (Triticum aestivum L. em. Thell.) in the Northern Great Plains. This paper reports the genetic analysis of antixenosis for egg-laying WSS females in recombinant inbred lines (RIL) of hard red spring wheat. Female WSS preferentially choose certain wheat genotypes for egg-laying, with the...

  16. Genetic diversity, population structure and marker-trait associations for agronomic and grain traits in wild diploid wheat Triticum urartu.

    Science.gov (United States)

    Wang, Xin; Luo, Guangbin; Yang, Wenlong; Li, Yiwen; Sun, Jiazhu; Zhan, Kehui; Liu, Dongcheng; Zhang, Aimin

    2017-07-01

    Wild diploid wheat, Triticum urartu (T. urartu) is the progenitor of bread wheat, and understanding its genetic diversity and genome function will provide considerable reference for dissecting genomic information of common wheat. In this study, we investigated the morphological and genetic diversity and population structure of 238 T. urartu accessions collected from different geographic regions. This collection had 19.37 alleles per SSR locus and its polymorphic information content (PIC) value was 0.76, and the PIC and Nei's gene diversity (GD) of high-molecular-weight glutenin subunits (HMW-GSs) were 0.86 and 0.88, respectively. UPGMA clustering analysis indicated that the 238 T. urartu accessions could be classified into two subpopulations, of which Cluster I contained accessions from Eastern Mediterranean coast and those from Mesopotamia and Transcaucasia belonged to Cluster II. The wide range of genetic diversity along with the manageable number of accessions makes it one of the best collections for mining valuable genes based on marker-trait association. Significant associations were observed between simple sequence repeats (SSR) or HMW-GSs and six morphological traits: heading date (HD), plant height (PH), spike length (SPL), spikelet number per spike (SPLN), tiller angle (TA) and grain length (GL). Our data demonstrated that SSRs and HMW-GSs were useful markers for identification of beneficial genes controlling important traits in T. urartu, and subsequently for their conservation and future utilization, which may be useful for genetic improvement of the cultivated hexaploid wheat.

  17. Changes in carbon and nitrogen allocation, growth and grain yield induced by arbuscular mycorrhizal fungi in wheat (Triticum aestivum L.) subjected to a period of water deficit

    DEFF Research Database (Denmark)

    Zhou, Qin; Ravnskov, Sabine; Jiang, Dong

    2015-01-01

    Drought is a major abiotic factor limiting agricultural crop production. One of the effective ways to increase drought resistance in plants could be to optimize the exploitation of symbiosis with arbuscular mycorrhizal fungi (AMF). Hypothesizing that alleviation of water deficits by AMF in wheat...... will help maintain photosynthetic carbon-use, we studied the role of AMF on gas-exchange, light-use efficiencies, carbon/nitrogen ratios and growth and yield parameters in the contrasting wheat (Triticum aestivum L.) cultivars ‘Vinjett’ and ‘1110’ grown with/without AMF symbiosis. Water deficits applied...... at the floret initiation stage significantly decreased rates of photosynthetic carbon gain, transpiration and stomatal conductance in the two wheat cultivars. AMF increased the rates of photosynthesis, transpiration and stomatal conductance under drought conditions. Water deficits decreased electron transport...

  18. Interaction effects on uptake and toxicity of perfluoroalkyl substances and cadmium in wheat (Triticum aestivum L.) and rapeseed (Brassica campestris L.) from co-contaminated soil.

    Science.gov (United States)

    Zhao, Shuyan; Fan, Ziyan; Sun, Lihui; Zhou, Tao; Xing, Yuliang; Liu, Lifen

    2017-03-01

    A vegetation study was conducted to investigate the interactive effects of perfluoroalkyl substances (PFASs), including perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS), and Cadmium (Cd) on soil enzyme activities, phytotoxicity and bioaccumulation of wheat (Triticum aestivum L.) and rapeseed (Brassica campestris L.) from co-contaminated soil. Soil urease activities were inhibited significantly but catalase activities were promoted significantly by interaction of PFASs and Cd which had few effects on sucrase activities. Joint stress with PFASs and Cd decreased the biomass of plants and chlorophyll (Chl) content in both wheat and rapeseed, and malondialdehyde (MDA) content, superoxide dismutase (SOD) and peroxidase (POD) activities were increased in wheat but inhibited in rapeseed compared with single treatments. The bioconcentration abilities of PFASs in wheat and rapeseed were decreased, and the translocation factor of PFASs was decreased in wheat but increased in rapeseed with Cd addition. The bioaccumulation and translocation abilities of Cd were increased significantly in both wheat and rapeseed with PFASs addition. These findings suggested important evidence that the co-existence of PFASs and Cd reduced the bioavailability of PFASs while enhanced the bioavailability of Cd in soil, which increased the associated environmental risk for Cd but decreased for PFASs. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Genome-wide identification and characterization of NB-ARC resistant genes in wheat (Triticum aestivum L.) and their expression during leaf rust infection.

    Science.gov (United States)

    Chandra, Saket; Kazmi, Andaleeb Z; Ahmed, Zainab; Roychowdhury, Gargi; Kumari, Veena; Kumar, Manish; Mukhopadhyay, Kunal

    2017-07-01

    NB-ARC domain-containing resistance genes from the wheat genome were identified, characterized and localized on chromosome arms that displayed differential yet positive response during incompatible and compatible leaf rust interactions. Wheat (Triticum aestivum L.) is an important cereal crop; however, its production is affected severely by numerous diseases including rusts. An efficient, cost-effective and ecologically viable approach to control pathogens is through host resistance. In wheat, high numbers of resistance loci are present but only few have been identified and cloned. A comprehensive analysis of the NB-ARC-containing genes in complete wheat genome was accomplished in this study. Complete NB-ARC encoding genes were mined from the Ensembl Plants database to predict 604 NB-ARC containing sequences using the HMM approach. Genome-wide analysis of orthologous clusters in the NB-ARC-containing sequences of wheat and other members of the Poaceae family revealed maximum homology with Oryza sativa indica and Brachypodium distachyon. The identification of overlap between orthologous clusters enabled the elucidation of the function and evolution of resistance proteins. The distributions of the NB-ARC domain-containing sequences were found to be balanced among the three wheat sub-genomes. Wheat chromosome arms 4AL and 7BL had the most NB-ARC domain-containing contigs. The spatio-temporal expression profiling studies exemplified the positive role of these genes in resistant and susceptible wheat plants during incompatible and compatible interaction in response to the leaf rust pathogen Puccinia triticina. Two NB-ARC domain-containing sequences were modelled in silico, cloned and sequenced to analyze their fine structures. The data obtained in this study will augment isolation, characterization and application NB-ARC resistance genes in marker-assisted selection based breeding programs for improving rust resistance in wheat.

  20. Molecular markers for predicting end-products quality of wheat ...

    African Journals Online (AJOL)

    Molecular markers for predicting end-products quality of wheat (Triticum aestivum L.) ... African Journal of Biotechnology. Journal Home · ABOUT ... Four new Saudi wheat lines (KSU 102, KSU 103, KSU 105 and KSU 106) and two. American ...

  1. Carpel size, grain filling, and morphology determine individual grain weight in wheat

    OpenAIRE

    Xie, Quan; Mayes, Sean; Sparkes, Debbie L.

    2015-01-01

    Individual grain weight is a major yield component in wheat. To provide a comprehensive understanding of grain weight determination, the carpel size at anthesis, grain dry matter accumulation, grain water uptake and loss, grain morphological expansion, and final grain weight at different positions within spikelets were investigated in a recombinant inbred line mapping population of bread wheat (Triticum aestivum L.)?spelt (Triticum spelta L.). Carpel size, grain dry matter and water accumulat...

  2. Photobiostimulation effects on germination and early growth of wheat seeds (Triticum aestivum L) produced by a semiconductor laser with λ=980nm

    International Nuclear Information System (INIS)

    Michtchenko, A.; Hernandez, M.

    2009-01-01

    The effect of the exposure of wheat (Triticum aestivum L) seeds to a IR laser radiation with λ=980nm produced by a semiconductor laser on germination and early growth had been studied under laboratory conditions. Seeds were irradiated to one of two laser intensities 15 mWcm - ''2 or 30 mWcm -2 for different periods of time 30, 60 or 120 s. Seeds exposed to a light intensity of 15mWcm -2 and an exposition time of 30 s. showed an increase on the percentage of seeds germinated normally while the percentage of seeds germinated abnormally decreased. At the same time there is a stimulation effect on the growth of the stem and on the growth of the root of 10% on wheat seedlings over control seedlings. Significant differences (ρ < 0.001) were observed between the control and the above treatment. (Author)

  3. The Alleviating Effect of Elevated CO2 on Heat Stress Susceptibility of Two Wheat (Triticum aestivum L.) Cultivars

    DEFF Research Database (Denmark)

    Shanmugam, Sindhuja; Kjær, Katrine Heinsvig; Ottosen, Carl-Otto

    2013-01-01

    This study analysed the alleviating effect of elevated CO2 on stress-induced decreases in photosynthesis and changes in carbohydrate metabolism in two wheat cultivars (Triticum aestivum L.) of different origin. The plants were grown in ambient (400 μl l−1) and elevated (800 μl l−1) CO2 with a day...... in leaves were analysed before and during the stress treatments as well as after 1 day of recovery. Heat stress reduced PN and Fv/Fm in both wheat cultivars, but plants grown in elevated CO2 maintained higher PN and Fv/Fm in comparison with plants grown in ambient CO2. Heat stress reduced leaf chlorophyll...... to cultivar origin, the phenological stage of the plants and can be alleviated by elevated CO2. This confirms the complex interrelation between environmental factors and genotypic traits that influence crop performance under various climatic stresses....

  4. Effect of green manure crops and nitrogen fertilizer levels on dry matter remobilization efficiency in wheat (Triticum aestivum L. internodes

    Directory of Open Access Journals (Sweden)

    F. Gerami

    2016-05-01

    Full Text Available In order to evaluate the effect of nitrogen rates and green manure crops on dry matter mobilization and mobilization efficiency indices of wheat (Triticum aestivum L. a field experiment was conducted in Agricultural Faculty of Shahid Chamran University, Ahvaz during growing season of 2010-2011. The experimental design was split-plot based on randomized complete block with three replications. Main plot included four nitrogen rates (i.e. 0, 50, 100 and 150 kgN.ha-1 and sub-plot included six green manure crops containing millet (Pennisetum sp., amaranth (Amaranthus sp., sesbania (Sesbania sp., cowpea (Vigna unguiculata L., mung bean (Vigna radiata L. and fallow. This experiment was done at two stages. First, planting and turn down of green manure crops and then planting of wheat. The results showed that the maximum weight and specific weight of all stem internodes obtained from 0 to 20 days after wheat anthesis. Then, this trend decreased from 20 to 50 days after wheat anthesis due to remobilization of dry matter to grain. Mobilized dry matter was more in control (0 kg.N.h-1 than in high N application for peduncle (219 vs. 181 mg and penultimate (203 vs. 165 mg, while, was less in the lower internodes (403 vs. 407 mg. Generally, with increasing of nitrogen levels, dry matter mobilization efficiency was decreased by. So, the effect of green manure crops not limited only by soil properties, while influences the relationship between physiological sources and sink.

  5. Impact of Low-Energy Ion Beam Implantation on the Expression of Ty1-copia-like Retrotransposons in Wheat (Triticum aestivum)

    International Nuclear Information System (INIS)

    Ya Huiyuan; Jiao Zhen; Gu Yunhong; Wang Weidong; Qin Guangyong; Huo Yuping

    2007-01-01

    Retrotransposon-like elements are major constituents of most eukaryotic genomes. For example, they account for roughly 90% of the wheat (Triticum aestivum) genome. Previous study on a wheat strain treated by low-energy N + ions indicated the variations in AFLP (Amplified Fragment Length Polymorphism ) markers. One such variation was caused by the re-activation of Ty1-copia-like retrotransposons, implying that the mutagenic effects of low-energy ions might work through elevated activation of retrotransposons. In this paper an expression profile of Ty1-copia-like retrotransposons in wheat treated by low-energy N + ions is reported. The reverse transcriptase (RT) domains of these retrotransposons were amplified by reverse-transcriptional polymerase chain reaction (RT-PCR) and sequentially cloned. 42 and 65 clones were obtained from the treated (CL) and control materials (CK), respectively. Sequence analysis of each clone was performed by software. Phylogeny and classification were calculated responding to the sequences of the RT domains. All the results show that there is much difference in the RT domain between the control sample and the treated sample. Especially, the RT domains from the treated group encode significantly more functional ORF (open reading frames) than those from the control sample. This observation suggests that the treated sample has higher activation of retrotransposons, possibly as a consequence of low-energy ion beam irradiation. It also suggests that retrotransposons in the two groups impact the host gene expression in two different ways and carry out different functions in wheat cells

  6. Evaluation of Wheat (Triticum aestivum, L. Seed Quality of Certified Seed and Farm-Saved Seed in Three Provinces of Iran

    Directory of Open Access Journals (Sweden)

    Khazaei Fardin

    2016-06-01

    Full Text Available The objective of this study was to study the seed quality aspects of wheat (Triticum aestivum L. and the extent of weed seed contamination present in wheat seeds produced in different regions of Iran. Four districts (cities, each including 12 fields (six certified seed fields and six farm-saved seed fields, were selected in each regions (provinces. One kilogram of the wheat seed sample was collected from each field for analysis in the laboratory. Wheat seeding was commonly done by farm-saved seed sourced from within the farm due to the high costs of certified seeds purchased from outside sources, followed by the low seed quality. The use of a farm-saved seed resulted in a higher germination rate and a lower mean time to germination compared with another system. The more positive temperatures experienced by mother plants could decrease the number of normal seedling and seedling length vigor index. Generally there was virtually no difference about physiological quality between certified seed and farm-saved seed sector that is related to lower quality of certified seed. The certified produced seeds had the lower number of weed seed, species and genus before and after cleaning. The highest seed purity and 1000 seed weight was obtained from the certified seed production system. The need for cleaning the farm-saved seed samples before sowing is one of the important findings of this survey.

  7. Genome-wide association mapping for stripe rust (Puccinia striiformis F. sp. tritici) in US Pacific Northwest winter wheat (Triticum aestivum L.).

    Science.gov (United States)

    Naruoka, Y; Garland-Campbell, K A; Carter, A H

    2015-06-01

    Potential novel and known QTL for race-specific all-stage and adult plant resistance to stripe rust were identified by genome-wide association mapping in the US PNW winter wheat accessions. Stripe rust (Puccinia striiformis F. sp. tritici; also known as yellow rust) is a globally devastating disease of wheat (Triticum aestivum L.) and a major threat to wheat production in the US Pacific Northwest (PNW), therefore both adult plant and all-stage resistance have been introduced into the winter wheat breeding programs in the PNW. The goal of this study was to identify quantitative trait loci (QTL) and molecular markers for these resistances through genome-wide association (GWAS) mapping in winter wheat accessions adapted to the PNW. Stripe rust response for adult plants was evaluated in naturally occurring epidemics in a total of nine environments in Washington State, USA. Seedling response was evaluated with three races under artificial inoculation in the greenhouse. The panel was genotyped with the 9K Illumina Wheat single nucleotide polymorphism (SNP) array and additional markers linked to previously reported genes and QTL for stripe rust resistance. The population was grouped into three sub-populations. Markers linked to Yr17 and previously reported QTL for stripe rust resistance were identified on chromosomes 1B, 2A, and 2B. Potentially novel QTL associated with race-specific seedling response were identified on chromosomes 1B and 1D. Potentially novel QTL associated with adult plant response were located on chromosomes 2A, 2B, 3B, 4A, and 4B. Stripe rust was reduced when multiple alleles for resistance were present. The resistant allele frequencies were different among sub-populations in the panel. This information provides breeders with germplasm and closely linked markers for stripe rust resistance to facilitate the transfer of multiple loci for durable stripe rust resistance into wheat breeding lines and cultivars.

  8. Real-time polymerase chain reaction assay for endogenous reference gene for specific detection and quantification of common wheat-derived DNA (Triticum aestivum L.).

    Science.gov (United States)

    Vautrin, Sonia; Zhang, David

    2007-01-01

    A species-specific endogenous reference gene system was developed for polymerase chain reaction (PCR)-based analysis in common wheat (Triticum aestivum L.) by targeting the ALMT1 gene, an aluminium-activated malate transporter. The primers and probe were elaborated for real-time PCR-based qualitative and quantitative assay. The size of amplified product is 95 base pairs. The specificity was assessed on 17 monocot and dicot plant species. The established real-time PCR assay amplified only T. aestivum-derived DNA; no amplification occurred on other phylogenetically related species, including durum wheat (T. durum). The robustness of the system was tested on the DNA of 15 common wheat cultivars using 20 000 genomic copies per PCR the mean cycle threshold (Ct) values of 24.02 +/- 0.251 were obtained. The absolute limits of detection and quantification of the real-time PCR assay were estimated to 2 and 20 haploid genome copies of common wheat, respectively. The linearity was experimentally validated on 2-fold serial dilutions of DNA from 650 to 20 000 haploid genome copies. All these results show that the real-time PCR assay developed on the ALMT1 gene is suitable to be used as an endogenous reference gene for PCR-based specific detection and quantification of T. aestivum-derived DNA in various applications, in particular for the detection and quantification of genetically modified materials in common wheat.

  9. Enriching and understanding the wheat B genome by meiotic homoeologous recombination

    Science.gov (United States)

    Wheat, including common wheat (Triticum aestivum, 2n=6x=42, AABBDD) and durum wheat (T. turgidum ssp. durum, 2n=4x=28, AABB), contains three homoeologous subgenomes (A, B, and D) originated from three diploid ancestors. The wild einkorn wheat T. urartu (2n=2x=14, AA) contributed subgenome A and wild...

  10. Integration of physio-biochemical processes at different phenological stages of wheat (triticum aestivum l.) plants in response to heat stress

    International Nuclear Information System (INIS)

    Javed, N.

    2014-01-01

    A study was conducted to assess the influence of heat stress imposed at different growth stages of wheat (Triticum aestivum L.) plants. Four wheat cultivars namely S-24, Saher-2006, Lasani and AARI-10 were subjected to high temperature (HT) stress at tillering and booting phenological phases. Under stress conditions, root and shoot fresh weights, membrane thermostability (MTS) and non-photochemical quenching (NPQ) were significantly perturbed in all four wheat cultivars at both developmental stages. However, HT stress did not influence all the other attributes significantly including shoot fresh weight, chlorophyll a and b pigments, photosynthetic rate (A), leaf water (w), internal CO/sub 2/ (Ci), osmotic (s) and turgor (p) potentials, transpiration rate (E), water-use-efficiency (A/E), stomatal conductance (gs) as well as Fv/Fm ratio. Among all wheat cultivars, cv. Lasani performed better in shoot and root fresh weight, and chlorophyll a contents at the tillering stage, while in MTS at the booting phase, cv. S-24 in shoot fresh weight, E, and gs at the boot stage and highest MTS and WUE at the tillering stage. However, cv. AARI-10 performed well in root fresh weight, w, s, p,,WUE and NPQ when stress was applied at the boot stage, while E and Fv/Fm in this cultivar on exposure to stress at the tillering stage. Cultivar Saher-2006 performed better in gs, leaf s and p at the tillering stage, while Fv/Fm was recorded better at the boot stage and A in the same cultivar at all growth stages. Overall, HT stress applied at different growth stages was only effective in altering root fresh weight, MTS and NPQ in all four wheat cultivars. Of all wheat cultivars, cv. AARI-10 performed better in growth and physiological attributes examined in the present study under HT stress applied at different phenological stages. (author)

  11. Study on genetic diversity in Pakistani wheat varieties using simple ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-09-01

    Sep 1, 2009 ... Common wheat (Triticum aestivum L.) is a grass species, cultivated world wide. Globally, it is ... A high degree of genetic polymorphism was observed among the wheat varieties with average ... cold, heat, soil salinization and water logging and (ii) ... and to find genetically most diverse genotypes of wheat.

  12. Molecular Characterization of wheat stem rust races in Kenya

    Science.gov (United States)

    Stem or black rust caused by Puccinia graminis f. sp. tritici (Pgt) Erikss. & Henning causes severe losses to wheat (Triticum aestivum L.), historically threatening global wheat production. Characterizing prevalent isolates of Pgt would enhance the knowledge of population dynamics and evolution of t...

  13. Cloning and Characterization of Low-Molecular-Weight Glutenin Subunit Alleles from Chinese Wheat Landraces (Triticum aestivum L.

    Directory of Open Access Journals (Sweden)

    Hongqi Si

    2014-01-01

    Full Text Available Low-molecular-weight glutenin subunits (LMW-GS are of great importance in processing quality and participate in the formation of polymers in wheat. In this study, eight new LMW-GS alleles were isolated from Chinese wheat landraces (Triticum aestivum L. and designated as Glu-A3-1a, Glu-A3-1b, Glu-B3-1a, Glu-B3-1b, Glu-B3-1c, Glu-D3-1a, Glu-D3-1b, and Glu-D3-1c, which were located at the Glu-A3, Glu-B3, and Glu-D3 loci, respectively. Based on the proteins encoded, the number of deduced amino acids of Glu-B3 alleles was approximately 50 more than those of Glu-A3 and Glu-D3 alleles. The first cysteine of Glu-A3 and Glu-D3 alleles was located at the N-terminal domain, while that of Glu-B3 alleles was found in the repetitive domain, which may lead to the different functioning in forming disulfide bonds. All the eight genes were LMW-m types and the new allele of Glu-B3-1a which had nine cysteine residues may be the desirable LMW-GS gene for improving bread-making quality.

  14. The influence of cultivar, year and nitrogen supply on quality parameters of bread wheat (Triticum aestivum. L

    Directory of Open Access Journals (Sweden)

    Đurić Veselinka

    2006-01-01

    Full Text Available Field experiments with 3 winter wheat (Triticum, aestivum. L; Lasta, Sremica and Pobeda was applied nitrogen (rate N as follows: 0, 60, 120 and 180 kg Nha-1 from 2000 to 2002. The varieties differed in their biological and production characteristics as well as in technological quality. The analyzed samples belonged to the international ISDV (Internationale Stickstoff Dauer Versuche stationary field trial established at the Rimski Šančevi Experiment Field of the Institute of Field and Vegetable Crops in Novi Sad. Improvement of end use quality in winter wheat depends on thorough understanding of the influences of environment, variety, and their interaction. Grain protein content (GPC, sedimentation value (SED, energy dough, Hagberg falling number (HFN and bread crumb quality number were measured. Highly significant differences were detected among the environments (A, rate N (B and varieties (C for each of the quality variables. Both variety (V and environment (E had a significant effect on quality traits. Significant Vx E interactions indicated that quality trait evaluations must be undertaken for environments. The most influence on protein content and sedimentation value have been climatitic condition. According to lot of environment influence on falling number and dow energy the main part of variance it is genotype and phenotype variability. .

  15. Exploring the genetics of fertility restoration controlled by Rf1 in common wheat (Triticum aestivum L.) using high-density linkage maps.

    Science.gov (United States)

    Geyer, Manuel; Albrecht, Theresa; Hartl, Lorenz; Mohler, Volker

    2018-04-01

    Hybrid wheat breeding has the potential to significantly increase wheat productivity compared to line breeding. The induction of male sterility by the cytoplasm of Triticum timopheevii Zhuk. is a widely discussed approach to ensure cross-pollination between parental inbred lines in hybrid wheat seed production. As fertility restoration in hybrids with this cytoplasm is often incomplete, understanding the underlying genetics is a prerequisite to apply this technology. A promising component for fertility restoration is the restorer locus Rf1, which was first detected on chromosome 1A of the restorer accession R3. In the present study, we performed quantitative trait locus (QTL) analyses to locate Rf1 and estimate its effect in populations involving the restorer lines R3, R113 and L19. Molecular markers linked to Rf1 in these populations were used to analyse the genomic target region in T. timopheevii accessions and common wheat breeding lines. The QTL analyses revealed that Rf1 interacted with a modifier locus on chromosome 1BS and the restorer locus Rf4 on chromosome 6B. The modifier locus significantly influenced both the penetrance and expressivity of Rf1. Whereas Rf1 exhibited expressivity higher than that of Rf4, the effects of these loci were not additive. Evaluating the marker haplotype for the Rf1 region, we propose that the restoring Rf1 allele may be derived exclusively from T. timopheevii. The present study demonstrates that interactions between restorer and modifier loci play a critical role in fertility restoration of common wheat with the cytoplasm of T. timopheevii.

  16. Characterization of Triticum aestivum Abscisic Acid Receptors and a Possible Role for These in Mediating Fusairum Head Blight Susceptibility in Wheat

    Science.gov (United States)

    Gordon, Cameron S.; Rajagopalan, Nandhakishore; Risseeuw, Eddy P.; Surpin, Marci; Ball, Fraser J.; Barber, Carla J.; Buhrow, Leann M.; Clark, Shawn M.; Page, Jonathan E.; Todd, Chris D.; Abrams, Suzanne R.; Loewen, Michele C.

    2016-01-01

    Abscisic acid (ABA) is a well-characterized plant hormone, known to mediate developmental aspects as well as both abiotic and biotic stress responses. Notably, the exogenous application of ABA has recently been shown to increase susceptibility to the fungal pathogen Fusarium graminearum, the causative agent of Fusarium head blight (FHB) in wheat and other cereals. However roles and mechanisms associated with ABA’s modulation of pathogen responses remain enigmatic. Here the identification of putative ABA receptors from available genomic databases for Triticum aestivum (bread wheat) and Brachypodium distachyon (a model cereal) are reported. A number of these were cloned for recombinant expression and their functionality as ABA receptors confirmed by in vitro assays against protein phosphatases Type 2Cs. Ligand selectivity profiling of one of the wheat receptors (Ta_PYL2DS_FL) highlighted unique activities compared to Arabidopsis AtPYL5. Mutagenic analysis showed Ta_PYL2DS_FL amino acid D180 as being a critical contributor to this selectivity. Subsequently, a virus induced gene silencing (VIGS) approach was used to knockdown wheat Ta_PYL4AS_A (and similar) in planta, yielding plants with increased early stage resistance to FHB progression and decreased mycotoxin accumulation. Together these results confirm the existence of a family of ABA receptors in wheat and Brachypodium and present insight into factors modulating receptor function at the molecular level. That knockdown of Ta_PYL4AS_A (and similar) leads to early stage FHB resistance highlights novel targets for investigation in the future development of disease resistant crops. PMID:27755583

  17. Effects of soil drought stress on plant regeneration efficiency and endogenous hormone levels of immature embryos in wheat (Triticum aestivum L.)

    International Nuclear Information System (INIS)

    Bie, X.; Wang, K.; Liu, C.; Du, L.

    2017-01-01

    In this study, the water supply in soil for wheat mother donor plants was controlled, leading to drought stress conditions, and the relative soil water content (RSWC) was measured in different soil depths. The immature embryos of common wheat (Triticum aestivum L.) 13 days post anthesis (DPA) were used to test regeneration capacity. The accumulation of the plant growth regulators (PGRs) including abscisic acid (ABA), indole-3-acetic acid (IAA), and hydrogen peroxide (H2O2) in the wheat embryos grown under the two conditions was measured. The results indicated that RSWC difference between the drought treatment and the irrigated control was more than 13% at the various soil depths, with the maximum difference was observed at 40 cm depth. Tissue culture evaluation showed that the plant regeneration efficiency of the immature embryos grown under drought stress treatment was significantly higher than that of the tissues grown under the control condition. Assay for PGR found that the drought stress caused obviously increased concentration of endogenous ABA and H2O2, and slightly decreased level of IAA in the target tissues. Therefore, it seems that the concentration of endogenous ABA, IAA, and H2O2 in immature wheat embryos is very important in regeneration capacity. Drought stress can improve the regeneration capacity by changing the levels of ABA, IAA, and H2O2. Our results would be helpful to efficient development of genetically modified wheat plants through improvement of regeneration via manipulating the endogenous PGRs. (author)

  18. A pseudo-response regulator is misexpressed in the photoperiod insensitive Ppd-D1a mutant of wheat (Triticum aestivum L.).

    Science.gov (United States)

    Beales, James; Turner, Adrian; Griffiths, Simon; Snape, John W; Laurie, David A

    2007-09-01

    Ppd-D1 on chromosome 2D is the major photoperiod response locus in hexaploid wheat (Triticum aestivum). A semi-dominant mutation widely used in the "green revolution" converts wheat from a long day (LD) to a photoperiod insensitive (day neutral) plant, providing adaptation to a broad range of environments. Comparative mapping shows Ppd-D1 to be colinear with the Ppd-H1 gene of barley (Hordeum vulgare) which is a member of the pseudo-response regulator (PRR) gene family. To investigate the relationship between wheat and barley photoperiod genes we isolated homologues of Ppd-H1 from a 'Chinese Spring' wheat BAC library and compared them to sequences from other wheat varieties with known Ppd alleles. Varieties with the photoperiod insensitive Ppd-D1a allele which causes early flowering in short (SD) or LDs had a 2 kb deletion upstream of the coding region. This was associated with misexpression of the 2D PRR gene and expression of the key floral regulator FT in SDs, showing that photoperiod insensitivity is due to activation of a known photoperiod pathway irrespective of day length. Five Ppd-D1 alleles were found but only the 2 kb deletion was associated with photoperiod insensitivity. Photoperiod insensitivity can also be conferred by mutation at a homoeologous locus on chromosome 2B (Ppd-B1). No candidate mutation was found in the 2B PRR gene but polymorphism within the 2B PRR gene cosegregated with the Ppd-B1 locus in a doubled haploid population, suggesting that insensitivity on 2B is due to a mutation outside the sequenced region or to a closely linked gene.

  19. The botanical macroremains from the prehistoric settlement Kalnik-Igrišče (NW Croatia in the context of current knowledge about cultivation and plant consumption in Croatia and neighboring countries during the Bronze Age

    Directory of Open Access Journals (Sweden)

    Sara Mareković

    2015-07-01

    Full Text Available This paper presents the results of the first extensive archaeobotanical research into a Bronze Age site in Croatia. The aim of the study was to reveal what plants were consumed (grown at Kalnik-Igrišče (NW Croatia in the Bronze Age and to realize if the plant diet of the local population differed from that of the inhabitants in neighboring countries. The results show that all plant macrofossils found at Kalnik-Igrišče can be classified into one of four functional groups: cereals, cultivated legumes, useful trees and weeds. As much as 98% of the findings are of cereals and legumes. The most abundant species found are Panicum miliaceum (millet, Hordeum vulgare (barley, Vicia faba (faba bean, Triticum aestivum ssp. aestivum (bread wheat, Triticum turgidum ssp. dicoccon (emmer wheat and Lens culinaris (lentils. The findings from Kalnik-Igrišče do not differ from the findings of neighboring countries, indicating that there were similar diets and agricultural/plant-collecting activities throughout the whole of the studied area (Bosnia and Herzegovina, Slovenia, Serbia, Italy, Austria and Hungary.

  20. A recombinant wheat serpin with inhibitory activity

    DEFF Research Database (Denmark)

    Rasmussen, Søren K; Dahl, Søren Weis; Nørgård, Anette

    1996-01-01

    A full-length clone encoding the wheat (Triticum aestivum L.) serpin WSZ1 was isolated from a cDNA library based on mRNA from immature grain. The 398 amino acid sequence deduced from the cDNA was corroborated by sequencing CNBr peptides of WSZ1 purified from resting grain. WSZ1 belongs to the sub......A full-length clone encoding the wheat (Triticum aestivum L.) serpin WSZ1 was isolated from a cDNA library based on mRNA from immature grain. The 398 amino acid sequence deduced from the cDNA was corroborated by sequencing CNBr peptides of WSZ1 purified from resting grain. WSZ1 belongs...... sequencing indicated that only few serpins are encoded by wheat, but at least three distinct genes are expressed in the grain. Cleavage experiments on a chymotrypsin column suggested a Gln-Gln reactive site bond not previously observed in inhibitory serpins....

  1. An overview of wheat genome sequencing and its implications for ...

    Indian Academy of Sciences (India)

    National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110 067, India ... Wheat (Triticum aestivum L.) serves as the staple food for. 30% of the global .... bread wheat genome is a product of multiple rounds of hybrid.

  2. Possible origin of Triticum petropavlovskyi based on cytological analyses of crosses between T. petropavlovskyi and tetraploid, hexaploid, and synthetic hexaploid (SHW-DPW) wheat accessions

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Q.; Song, J.; Du, W.; Xu, L.Y.; Yu, G.R.

    2016-07-01

    Intraspecific hybridization between Triticum petropavlovskyi Udacz. et Migusch., synthetic hexaploid wheat (SHW-DPW), and tetraploid and hexaploid wheat, was performed to collect data on seed set, fertility of F1 hybrid, and meiotic pairing configuration, aiming to evaluate the possible origin of T. petropavlovskyi. Our data showed that (1) seed set of crosses T. petropavlovskyi × T. polonicum and T. petropavlovskyi × T. aestivum cv. Chinese Spring was significantly high; (2) fertility of hybrids T. petropavlovskyi × T. polonicum and T. petropavlovskyi × T. aestivum ssp. yunnanense was higher than that of the other hybrids; (3) fertility of F1 hybrids SHW-DPW × T. dicoccoides and SHW-DPW×T. aestivum ssp. tibetanum was significantly high; and (4) c-value of T. petropavlovskyi × T. polonicum and T. petropavlovskyi × T. aestivum cv. Changning white wheat was also significantly high. The results indicate that the probable origin of T. petropavlovskyi is divergence from a natural cross between T. aestivum and T. polonicum, via either spontaneous introgression or breeding effort.

  3. Molecular diversity of α-gliadin expressed genes in genetically contrasted spelt (Triticum aestivum ssp. spelta) accessions and comparison with bread wheat (T. aestivum ssp. aestivum) and related diploid Triticum and Aegilops species.

    Science.gov (United States)

    Dubois, Benjamin; Bertin, Pierre; Mingeot, Dominique

    2016-01-01

    The gluten proteins of cereals such as bread wheat ( Triticum aestivum ssp. aestivum ) and spelt ( T. aestivum ssp. spelta ) are responsible for celiac disease (CD). The α-gliadins constitute the most immunogenic class of gluten proteins as they include four main T-cell stimulatory epitopes that affect CD patients. Spelt has been less studied than bread wheat and could constitute a source of valuable diversity. The objective of this work was to study the genetic diversity of spelt α-gliadin transcripts and to compare it with those of bread wheat. Genotyping data from 85 spelt accessions obtained with 19 simple sequence repeat (SSR) markers were used to select 11 contrasted accessions, from which 446 full open reading frame α-gliadin genes were cloned and sequenced, which revealed a high allelic diversity. High variations among the accessions were highlighted, in terms of the proportion of α-gliadin sequences from each of the three genomes (A, B and D), and their composition in the four T-cell stimulatory epitopes. An accession from Tajikistan stood out, having a particularly high proportion of α-gliadins from the B genome and a low immunogenic content. Even if no clear separation between spelt and bread wheat sequences was shown, spelt α-gliadins displayed specific features concerning e.g. the frequencies of some amino acid substitutions. Given this observation and the variations in toxicity revealed in the spelt accessions in this study, the high genetic diversity held in spelt germplasm collections could be a valuable resource in the development of safer varieties for CD patients.

  4. Cytogenetics and immature embryo culture at Embrapa Trigo breeding program: transfer of disease resistance from related species by artificial resynthesis of hexaploid wheat (Triticum aestivum L. em. Thell

    Directory of Open Access Journals (Sweden)

    Maria Irene Baggio de Moraes Fernandes

    2000-12-01

    Full Text Available Worldwide wheat (Triticum aestivum L. em. Thell, 2n = 6X = 42, AABBDD breeding programs aim to reorganize genotypes to achieve better yields, environmental adaptation and food quality. The necessary interdisciplinarity for breeding purposes requires an accurate choice of the most appropriate cellular and/or molecular strategies available to be integrated with agronomic approaches in order to overcome the genetic limitation of each cultivated species, at each agroecosystem. Cytogenetics has given a great contribution to wheat genetic studies and breeding, due to viability of chromosomal variants because of homoeology among genomes in this allohexaploid species and the genus Triticum. The level of development of cytogenetic techniques achieved over the last 60 years has set wheat apart from other cereal crops in terms of possibilities to introduce genetic material from other species. Cytogenetic approaches have been extensively used in chromosomal mapping and/or resistance gene transference from tribe Triticeae-related species. Monosomic analysis, entire chromosomes engineered through single additions and/or substitutions, reciprocal translocation through radiation or manipulation of homoeologous pairing, as well as synthesis of new amphiploids to allow homologous recombination by chiasmata evolved considerably since the past decades. The association of tissue culture and molecular biology techniques provides bread wheat breeding programs with a powerful set of biotechnological tools. However, knowledge on genetic system components, cytotaxonomical relationships, cytogenetic structure and evolutionary history of wheat species cannot be neglected. This information indicates the appropriate strategy to avoid isolation mechanisms in interspecific or intergeneric crosses, according to the genome constitution of the species the desired gene is to be transferred from. The development of amphiploids as "bridge" species is one of the available procedures

  5. Indole-3-acetic acid (IAA) producing Pseudomonas isolates inhibit seed germination and α-amylase activity in durum wheat (Triticum turgidum L.)

    Energy Technology Data Exchange (ETDEWEB)

    Tabatabaei, S.; Ehsanzadeh, P.; Etesami, H.; Alikhani, H.A.; Glick, B.R.

    2016-11-01

    The role of plant-associated bacteria in plant physiology and metabolism is well documented, but little has been known about the roles played by Pseudomonas in durum wheat (Triticum turgidum L. var durum) growth and development. An in vitroexperiment was conducted to observe the effect of the inoculation of four indole-3-acetic acid (IAA)-producing Pseudomonas isolates and exogenous IAA on seed germination traits and α-amylase activity of durum wheat. The results showed inoculation with all bacterial isolates led to a decrease in the germination percent, although the extent of the depression varied with the isolate. A significant relationship between concentrations of bacterial IAA and the germination inhibition percent in durum wheat seeds by different bacteria strains was observed. The results of this assay showed the effect of bacterial isolates on α-amylase activity after six and 8 days of inoculation was significant, while effect of these isolates on α-amylase activity after two and 4 days of inoculation was not meaningful. In addition, the exogenously applied IAA displayed a concentration-dependent effect on seed germination attributes and α-amylase activity, consistent with the possibility that the inhibitory effect of bacterial inoculation on seed germination was in consequence of bacteria-produced IAA. Therefore, it may suggested that the inhibitory role of IAA in seed germination and α-amylase activity should be taken into account during the screening of IAA-producing Pseudomonas isolates for durum wheat growth promoting agents. (Author)

  6. Antagonist effects of Bacillus spp. strains against Fusarium graminearum for protection of durum wheat (Triticum turgidum L. subsp. durum).

    Science.gov (United States)

    Zalila-Kolsi, Imen; Ben Mahmoud, Afif; Ali, Hacina; Sellami, Sameh; Nasfi, Zina; Tounsi, Slim; Jamoussi, Kaïs

    2016-11-01

    Bacillus species are attractive due to their potential use in the biological control of fungal diseases. Bacillus amyloliquefaciens strain BLB369, Bacillus subtilis strain BLB277, and Paenibacillus polymyxa strain BLB267 were isolated and identified using biochemical and molecular (16S rDNA, gyrA, and rpoB) approaches. They could produce, respectively, (iturin and surfactin), (surfactin and fengycin), and (fusaricidin and polymyxin) exhibiting broad spectrum against several phytopathogenic fungi. In vivo examination of wheat seed germination, plant height, phenolic compounds, chlorophyll, and carotenoid contents proved the efficiency of the bacterial cells and the secreted antagonist activities to protect Tunisian durum wheat (Triticum turgidum L. subsp. durum) cultivar Om Rabiia against F. graminearum fungus. Application of single bacterial culture medium, particularly that of B. amyloliquefaciens, showed better protection than combinations of various culture media. The tertiary combination of B. amyloliquefaciens, B. subtilis, and P. polymyxa bacterial cells led to the highest protection rate which could be due to strains synergistic or complementary effects. Hence, combination of compatible biocontrol agents could be a strategic approach to control plant diseases. Copyright © 2016 Elsevier GmbH. All rights reserved.

  7. Effect of zinc-lysine on growth, yield and cadmium uptake in wheat (Triticum aestivum L.) and health risk assessment.

    Science.gov (United States)

    Rizwan, Muhammad; Ali, Shafaqat; Hussain, Afzal; Ali, Qasim; Shakoor, Muhammad Bilal; Zia-Ur-Rehman, Muhammad; Farid, Mujahid; Asma, Maliha

    2017-11-01

    Cadmium (Cd) is among the most widespread toxic trace elements found in agricultural soils due to various anthropogenic activities. The role of micronutrient-amino chelates on reducing Cd toxicity in crop plants is recently introduced. The current study was conducted to highlight the role of foliar application of zinc-lysine (Zn-lys) complex on biochemical and growth parameters and Cd uptake in wheat (Triticum aestivum) grown in aged Cd-contaminated soil. Foliar concentration of Zn-lys (0, 10, 20, and 30 mg L -1 ) was applied at different time intervals (2nd, 3rd, 5th and 7th week of sowing) and plants were harvested at maturity. Folliar application of Zinc-lys significantly increased the photosynthesis, grain yield, enzyme activities and Zn contents in different plant tissues. Zinc-lys reduced Cd contents in grains, shoot and root as well as reduced the oxidative stress in wheat linearly in a dose-additive manner. Taken together, Zn-lys chelate efficiently improved wheat growth and fortified Zn contents while reduced Cd concentration in plant in a Zn-deficient Cd-contaminated soil. Although, health risk index (HRI) from the soil sampling area seems to be lower than <1 for Cd but may exceed due to long-term consumption of grains produced from such contaminated soil. Foliar applied Zn-lys reduced HRI which may help to reduce health risks associated with Cd. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Smoke produced from plants waste material elicits growth of wheat (Triticum aestivum L. by improving morphological, physiological and biochemical activity

    Directory of Open Access Journals (Sweden)

    Muhammad Iqbal

    2018-03-01

    Full Text Available The experimental work presented in this study was carried out with the hypothesis that plant derived smoke enhanced the morphological, physiological and biochemical attributes of a cereal crop, wheat (Triticum aestivum L.. Furthermore, this study supported the hypothesis that plant derived smoke acts as vegetative growth promoter, inexpensive, rapid and most appropriate eco-friendly bio-fertilizer for sustainable agriculture. Plant derived smoke was generated by burning of plant material (leaf, straws etc in a specially designed furnace, and seeds were treated with this smoke for different time duration. Four level of plant derived smoke (1 h, 2 h, 3 h and 4 h along with control were tested on four wheat cultivars in CRD repeated pot experiment. The smoke-related treatments modified number of morphological, physiological and biochemical features of wheat. Compared with the control, aerosol smoke treatment of the seeds significantly improved root length (2.6%, shoot length (7.7%, RFW (0.04%, SFW (0.7%, SDW (0.1% and leaf area (63.9%. All the smoke-related treatments significantly promoted RWC (17.3%, water potential (1.5%, osmotic potential (1.4% and MSI (14.6% whereas a pronounced increase in chlorophyll a (24.9%, chlorophyll b (21.7% and total chlorophyll contents (15.5% were recorded in response to aerosol-smoke treatments. Plant derived smoke exposure applied for short time i.e. 1 h & 2 h induced significant results as compared to prolonged PDS exposure (3 h and 4 h. The best results were observed in Pak-13 and Glaxy-13 wheat cultivars. These findings indicated that the plant-derived smoke treatment has a great potential to improve morphological, physiological and biochemical features of wheat crop.

  9. Molecular, Physicochemical and Rheological Characteristics of Introgressive Triticale/Triticum monococcum ssp. monococcum Lines with Wheat 1D/1A Chromosome Substitution

    Directory of Open Access Journals (Sweden)

    Lidia Błaszczyk

    2013-07-01

    Full Text Available Three sets of hexaploid introgressive triticale lines, with Triticum monococcum ssp. monococcum (cultivated einkorn wheat genes and a bread wheat chromosome 1D substituted for chromosome 1A, and one set of secondary triticale lines were evaluated for grain and flour physicochemical and dough rheological characteristics in two generations (F7 and F8. Genomic in situ hybridization (GISH and fluorescence in situ hybridization (FISH confirmed the 1D/1A chromosome substitution. The presence or absence of einkorn high-molecular-weight (HMW glutenin subunits and the wheat Glu-D1d locus encoding the 5 + 10 subunits was assessed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE, capillary zone electrophoresis, and allele-specific molecular markers. Significant differences were found among physicochemical properties (with the exception of the Hagberg falling number of all introgressive Triticale/T. monococcum lines and the secondary triticale lines. The wheat 1D/1A chromosome substitution also affected these properties. The results showed that in all introgressive triticale lines, the protein and gluten content, Zeleny sedimentation value, and water absorption capacity, were increased. The rheological parameters estimated using micro-farinograph, reomixer, and Kieffer dough extensibility systems also showed an appreciable increase in dough-mixing properties, maximum resistance to extension (Rmax, and dough extensibility. Introgressive Triticale/T. monococcum lines with 5 + 10 subunits have particularly favorable rheological parameters. The results obtained in this study suggest that the cultivated einkorn genome Am, in the context of hexaploid secondary triticale lines and with a wheat 1D/1A substitution, has the potential to improve gluten polymer interactions and be a valuable genetic resource for triticale quality improvement.

  10. Introgression lines of Triticum aestivum x Aegilops tauschii: Agronomic and nutritional value

    Science.gov (United States)

    Eighty-five single homozygous substitution lines (SLs) of the Aegilops tauschii D genome in Chinese Spring (CS) hexaploid wheat (Triticum aestivum L.) genetic background were evaluated for agronomic, phenotypic and ionome profiles during three years of field experiments. An augmented design with a r...

  11. Induction of mutants in durum wheat (triticum durum desf cv. samra) using gamma irradiation

    International Nuclear Information System (INIS)

    Albokari, M.

    2014-01-01

    A mutation breeding program was initiated in 2008 emphasizing the main constraints for sustainable production of durum wheat in Saudi Arabia. The aim of the program was to develop moderate or high yielding semi-dwarf/lodging tolerant, early maturing mutants with drought and disease tolerance from a local durum wheat cultivar (Triticum durum Desf. cv. Samra) which has the main defects of longer crop duration, lodging habit and low grain yield. Dry seeds of Samra were subjected to 150 and 200Gy doses of gamma irradiation and each treatment consisted of 2500 seeds. Irradiated seeds were grown as M1 population along with parental variety as control at Almuzahmiah Research Station of Riyadh, Saudi Arabia. Decrease in germination (%) and survival rate (%) of plants was observed. A wide variation in days to flowering and plant height was found in the M1 populations. Three seeds from each spike per plant of M1 plants were collected, bulked dose wise and grown separately as M2 in 2009 growing season. From these M2, 17 desirable putative mutant plants which varied significantly with the mother were visually selected. These putative mutants were found to be semi-dwarf and early maturing in nature with other improved agronomic traits including lodging reaction and grain yield. The selected plants, when grown in progeny lines as M3 in 2010, more or less maintained their superiority over the mother for many traits. Most of the mutant lines showed homogeneity for most of characters studied. Eleven of these 17 lines were found to be promising in respect of days to flower, plant height (for semi-dwarf) and other traits including grain yield. (author)

  12. Salt tolerance analysis of chickpea, faba bean and durum wheat varieties. II. Durum wheat

    NARCIS (Netherlands)

    Katerji, N.; Hoorn, van J.W.; Hamdy, A.; Mastrorilli, M.; Nachit, M.M.; Oweis, T.

    2005-01-01

    Seven varieties of durum wheat (Triticum turgidum), provided by ICARDA, were tested in a greenhouse experiment for their salt tolerance. Afterwards two varieties, differing in salt tolerance, were irrigated with waters of three different salinity levels in a lysimeter experiment to analyse their

  13. Dataset of the HOX1 gene sequences of the wheat polyploids and their diploid relatives

    Directory of Open Access Journals (Sweden)

    Andrey B. Shcherban

    2018-02-01

    Full Text Available The TaHOX-1 gene of common wheat Triticum aestivum L. (BAD-genome encodes transcription factor (HD-Zip I which is characterized by the presence of a DNA-binding homeodomain (HD with an adjacent Leucine zipper (LZ motif. This gene can play a role in adapting plant to a variety of abiotic stresses, such as drought, cold, salinity etc., which strongly affect wheat production. However, it's both functional role in stress resistance and divergence during wheat evolution has not yet been elucidated. This data in brief article is associated with the research paper “Structural and functional divergence of homoeologous copies of the TaHOX-1 gene in polyploid wheats and their diploid ancestors”. The data set represents a recent survey of the primary HOX-1 gene sequences isolated from the first wheat allotetraploids (BA-genome and their corresponding Triticum and Aegilops diploid relatives. Specifically, we provide detailed information about the HOX-1 nucleotide sequences of the promoter region and both nucleotide and amino acid sequences of the gene. The sequencing data used here is available at DDBJ/EMBL/GenBank under the accession numbers MG000630-MG000698. Keywords: Wheat, Polyploid, HOX-1 gene, Homeodomain, Transcription factor, Promoter, Triticum, Aegilops

  14. Wheat (Triticum aestivum L.) transformation using immature embryos.

    Science.gov (United States)

    Ishida, Yuji; Tsunashima, Masako; Hiei, Yukoh; Komari, Toshihiko

    2015-01-01

    Wheat may now be transformed very efficiently by Agrobacterium tumefaciens. Under the protocol hereby described, immature embryos of healthy plants of wheat cultivar Fielder grown in a well-conditioned greenhouse were pretreated with centrifuging and cocultivated with A. tumefaciens. Transgenic wheat plants were obtained routinely from between 40 and 90 % of the immature embryos, thus infected in our tests. All regenerants were normal in morphology and fully fertile. About half of the transformed plants carried single copy of the transgene, which are inherited by the progeny in a Mendelian fashion.

  15. Molecular cytogenetic characterization and stem rust resistance of five wheat-thinopyrum ponticum partial amphiploids

    Science.gov (United States)

    Partial amphiploids created by crossing common wheat (Triticum aestivum L.) and Thinopyrum ponticum (Podp.), Barkworth & D. R. Dewey may be resistant to major wheat diseases and are an important intermediate material in wheat breeding. In this study, we examined chromosome composition of five Xiaoy...

  16. Molecular cloning of a novel GSK3/shaggy-like gene from Triticum ...

    African Journals Online (AJOL)

    use

    2011-05-16

    May 16, 2011 ... MATERIALS AND METHODS. Plant material and stress treatments. Seed of the einkorn wheat (Triticum monococcum L.) were surface-sterilized for 5 min in ... constructing a melting curve after the polymerase chain reaction amplification, and negative controls containing RNase-free water instead of sample ...

  17. Uncovering leaf rust responsive miRNAs in wheat (Triticum aestivum L.) using high-throughput sequencing and prediction of their targets through degradome analysis.

    Science.gov (United States)

    Kumar, Dhananjay; Dutta, Summi; Singh, Dharmendra; Prabhu, Kumble Vinod; Kumar, Manish; Mukhopadhyay, Kunal

    2017-01-01

    Deep sequencing identified 497 conserved and 559 novel miRNAs in wheat, while degradome analysis revealed 701 targets genes. QRT-PCR demonstrated differential expression of miRNAs during stages of leaf rust progression. Bread wheat (Triticum aestivum L.) is an important cereal food crop feeding 30 % of the world population. Major threat to wheat production is the rust epidemics. This study was targeted towards identification and functional characterizations of micro(mi)RNAs and their target genes in wheat in response to leaf rust ingression. High-throughput sequencing was used for transcriptome-wide identification of miRNAs and their expression profiling in retort to leaf rust using mock and pathogen-inoculated resistant and susceptible near-isogenic wheat plants. A total of 1056 mature miRNAs were identified, of which 497 miRNAs were conserved and 559 miRNAs were novel. The pathogen-inoculated resistant plants manifested more miRNAs compared with the pathogen infected susceptible plants. The miRNA counts increased in susceptible isoline due to leaf rust, conversely, the counts decreased in the resistant isoline in response to pathogenesis illustrating precise spatial tuning of miRNAs during compatible and incompatible interaction. Stem-loop quantitative real-time PCR was used to profile 10 highly differentially expressed miRNAs obtained from high-throughput sequencing data. The spatio-temporal profiling validated the differential expression of miRNAs between the isolines as well as in retort to pathogen infection. Degradome analysis provided 701 predicted target genes associated with defense response, signal transduction, development, metabolism, and transcriptional regulation. The obtained results indicate that wheat isolines employ diverse arrays of miRNAs that modulate their target genes during compatible and incompatible interaction. Our findings contribute to increase knowledge on roles of microRNA in wheat-leaf rust interactions and could help in rust

  18. Meiotic behaviour of tetraploid wheats (Triticum turgidum L.)

    Indian Academy of Sciences (India)

    Meiotic behaviour of plant chromosomes is influenced by both genetic and environmental factors. In this study, the meiotic behaviour of cereal crops was investigated, which includes tetraploid wheat genotypes (with and without the meiotic restitution trait) and their derivates (synthetic hexaploid wheats and a doubled ...

  19. economics of herbicide weed management in wheat in ethiopia ...

    African Journals Online (AJOL)

    ACSS

    Effective use of herbicides for the control of annual grass and broadleaf weeds in wheat (Triticum aestivum L.) was not a reality in Ethiopia, until in recent years. This study aimed at evaluating different post-emergence herbicides against annual grasses and broadleaf weeds in wheat for selection and incorporation into an ...

  20. Silicon mediated biochemical changes in wheat under salinized and ...

    African Journals Online (AJOL)

    Silicon (Si) can alleviate salinity damage, a major threat to agriculture that causes instability in wheat production. We report on the effects of silicon (150 mg L-1) on the morphological, physiological and biochemical traits in wheat (Triticum aestivum L.) cultivars (salt sensitive; Auqab-2000 and salt tolerant; SARC-5) differing ...

  1. Effect of fungicide on the development of wheat stem rust and yield ...

    African Journals Online (AJOL)

    Stem rust caused by Puccinia graminis f.sp tritici Erik. & E. Henn. is a highly destructive disease of wheat (Triticum aestivum L.). The effects of fungicide application on stem rust (Puccinia graminis tritici) epidemics and yield of three bread wheat varieties varying in reaction to the disease were studied in two major wheat ...

  2. Characterization of γ-aminobutyric acid metabolism and oxidative damage in wheat (Triticum aestivum L.) seedlings under salt and osmotic stress.

    Science.gov (United States)

    Al-Quraan, Nisreen A; Sartawe, Fatima Al-Batool; Qaryouti, Muien M

    2013-07-15

    The molecular response of plants to abiotic stresses has been considered a process mainly involved in the modulation of transcriptional activity of stress-related genes. Nevertheless, recent findings have suggested new layers of regulation and complexity. Upstream molecular mechanisms are involved in the plant response to abiotic stress. Plants gain resistance to abiotic stress by reprogramming metabolism and gene expression. GABA is proposed to be a signaling molecule involved in nitrogen metabolism, regulating the cytosolic pH, and protection against oxidative damage in response to various abiotic stresses. The aim of our study was to examine the role of the GABA shunt pathway-specific response in five wheat (Triticum aestivum L.) cultivars (Hurani 75, Sham I, Acsad 65, Um Qayes and Nodsieh) to salt and osmotic stress in terms of seed germination, seedling growth, oxidative damage (malondialdehyde (MDA) accumulation), and characterization of the glutamate decarboxylse gene (GAD) m-RNA level were determined using RT-PCR techniques. Our data showed a marked increase in GABA, MDA and GAD m-RNA levels under salt and osmotic stress in the five wheat cultivars. Um Qayes cultivar showed the highest germination percentage, GABA accumulation, and MDA level under salt and osmotic stresses. The marked increase in GAD gene expression explains the high accumulation of the GABA level under both stresses. Our results indicated that the GABA shunt is a key signaling and metabolic pathway that allows wheat to adapt to salt and osmotic stress. Based on our data, the Um Qayes wheat cultivar is the cultivar most recommended to be grown in soil with high salt and osmotic contents. Copyright © 2013 Elsevier GmbH. All rights reserved.

  3. Novel fluorescent sequence-related amplified polymorphism(FSRAP markers for the construction of a genetic linkage map of wheat(Triticum aestivum L.

    Directory of Open Access Journals (Sweden)

    Zhao Lingbo

    2017-01-01

    Full Text Available Novel fluorescent sequence-related amplified polymorphism (FSRAP markers were developed based on the SRAP molecular marker. Then, the FSRAP markers were used to construct the genetic map of a wheat (Triticum aestivumL. recombinant inbred line population derived from a Chuanmai 42×Chuannong 16 cross. Reproducibility and polymorphism tests indicated that the FSRAP markers have repeatability and better reflect the polymorphism of wheat varieties compared with SRAP markers. A total of 430 polymorphic loci between Chuanmai 42 and Chuannong 16 were detected with 189 FSRAP primer combinations. A total of 281 FSARP markers and 39 SSR markers re classified into 20 linkage groups. The maps spanned a total length of 2499.3cM with an average distance of 7.81cM between markers. A total of 201 markers were mapped on the B genome and covered a distance of 1013cM. On the A genome, 84 markers were mapped and covered a distance of 849.6cM. On the D genome, however, only 35 markers were mapped and covered a distance of 636.7cM. No FSRAP markers were distributed on the 7D chromosome. The results of the present study revealed that the novel FSRAP markers can be used to generate dense, uniform genetic maps of wheat.

  4. Molecular genetic analysis of phosphomannomutase genes in Triticum monococcum

    Institute of Scientific and Technical Information of China (English)

    Chunmei; Yu; Xinyan; Liu; Qian; Zhang; Xinyu; He; Wan; Huai; Baohua; Wang; Yunying; Cao; Rong; Zhou

    2015-01-01

    In higher plants, phosphomannomutase(PMM) is essential for synthesizing the antioxidant ascorbic acid through the Smirnoff–Wheeler pathway. Previously, we characterized six PMM genes(Ta PMM-A1, A2, B1, B2, D1 and D2) in common wheat(Triticum aestivum, AABBDD).Here, we report a molecular genetic analysis of PMM genes in Triticum monococcum(AmAm), a diploid wheat species whose Amgenome is closely related to the A genome of common wheat. Two distinct PMM genes, Tm PMM-1 and Tm PMM-2, were found in T. monococcum. The coding region of Tm PMM-1 was intact and highly conserved. In contrast, two main Tm PMM-2 alleles were identified, with Tm PMM-2a possessing an intact coding sequence and Tm PMM-2b being a pseudogene. The transcript level of Tm PMM-2a was much higher than that of Tm PMM-2b, and a bacterially expressed Tm PMM-2a recombinant protein displayed relatively high PMM activity. In general, the total transcript level of PMM was substantially higher in accessions carrying Tm PMM-1 and Tm PMM-2a than those harboring Tm PMM-1 and Tm PMM-2b. However, total PMM protein and activity levels did not differ drastically between the two genotypes. This work provides new information on PMM genes in T. monococcum and expands our understanding on Triticeae PMM genes, which may aid further functional and applied studies of PMM in crop plants.

  5. Accumulation of phenanthrene by roots of intact wheat (Triticum acstivnm L. seedlings: passive or active uptake?

    Directory of Open Access Journals (Sweden)

    Jiang Ting-Hui

    2010-03-01

    Full Text Available Abstract Background Polycyclic aromatic hydrocarbons (PAHs are of particular concern due to their hydrophobic, recalcitrant, persistent, potentially carcinogenic, mutagenic and toxic properties, and their ubiquitous occurrence in the environment. Most of the PAHs in the environment are present in surface soil. Plants grown in PAH-contaminated soils or water can become contaminated with PAHs because of their uptake. Therefore, they may threaten human and animal health. However, the mechanism for PAHs uptake by crop roots is little understood. It is important to understand exactly how PAHs are transported into the plant root system and into the human food chain, since it is beneficial in governing crop contamination by PAHs, remedying soils or waters polluted by PAHs with plants, and modeling potential uptake for risk assessment. Results The possibility that plant roots may take up phenanthrene (PHE, a representative of PAHs, via active process was investigated using intact wheat (Triticum acstivnm L. seedlings in a series of hydroponic experiments. The time course for PHE uptake into wheat roots grown in Hoagland solution containing 5.62 μM PHE for 36 h could be separated into two periods: a fast uptake process during the initial 2 h and a slow uptake component thereafter. Concentration-dependent PHE uptake was characterized by a smooth, saturable curve with an apparent Km of 23.7 μM and a Vmax of 208 nmol g-1 fresh weight h-1, suggesting a carrier-mediated uptake system. Competition between PHE and naphthalene for their uptake by the roots further supported the carrier-mediated uptake system. Low temperature and 2,4-dinitrophenol (DNP could inhibit PHE uptake equally, indicating that metabolism plays a role in PHE uptake. The inhibitions by low temperature and DNP were strengthened with increasing concentration of PHE in external solution within PHE water solubility (7.3 μM. The contribution of active uptake to total absorption was almost 40

  6. The role of ZIP transporters and group F bZIP transcription factors in the Zn-deficiency response of wheat (Triticum aestivum).

    Science.gov (United States)

    Evens, Nicholas P; Buchner, Peter; Williams, Lorraine E; Hawkesford, Malcolm J

    2017-10-01

    Understanding the molecular basis of zinc (Zn) uptake and transport in staple cereal crops is critical for improving both Zn content and tolerance to low-Zn soils. This study demonstrates the importance of group F bZIP transcription factors and ZIP transporters in responses to Zn deficiency in wheat (Triticum aestivum). Seven group F TabZIP genes and 14 ZIPs with homeologs were identified in hexaploid wheat. Promoter analysis revealed the presence of Zn-deficiency-response elements (ZDREs) in a number of the ZIPs. Functional complementation of the zrt1/zrt2 yeast mutant by TaZIP3, -6, -7, -9 and -13 supported an ability to transport Zn. Group F TabZIPs contain the group-defining cysteine-histidine-rich motifs, which are the predicted binding site of Zn 2+ in the Zn-deficiency response. Conservation of these motifs varied between the TabZIPs suggesting that individual TabZIPs may have specific roles in the wheat Zn-homeostatic network. Increased expression in response to low Zn levels was observed for several of the wheat ZIPs and bZIPs; this varied temporally and spatially suggesting specific functions in the response mechanism. The ability of the group F TabZIPs to bind to specific ZDREs in the promoters of TaZIPs indicates a conserved mechanism in monocots and dicots in responding to Zn deficiency. In support of this, TabZIPF1-7DL and TabZIPF4-7AL afforded a strong level of rescue to the Arabidopsis hypersensitive bzip19 bzip23 double mutant under Zn deficiency. These results provide a greater understanding of Zn-homeostatic mechanisms in wheat, demonstrating an expanded repertoire of group F bZIP transcription factors, adding to the complexity of Zn homeostasis. © 2017 The Authors The Plant Journal published by John Wiley & Sons Ltd and Society for Experimental Biology.

  7. Epiphytic pink-pigmented methylotrophic bacteria enhance germination and seedling growth of wheat (Triticum aestivum) by producing phytohormone.

    Science.gov (United States)

    Meena, Kamlesh K; Kumar, Manish; Kalyuzhnaya, Marina G; Yandigeri, Mahesh S; Singh, Dhananjaya P; Saxena, Anil K; Arora, Dilip K

    2012-05-01

    Methylotrophic bacteria were isolated from the phyllosphere of different crop plants such as sugarcane, pigeonpea, mustard, potato and radish. The methylotrophic isolates were differentiated based on growth characteristics and colony morphology on methanol supplemented ammonium mineral salts medium. Amplification of the mxaF gene helped in the identification of the methylotrophic isolates as belonging to the genus Methylobacterium. Cell-free culture filtrates of these strains enhanced seed germination of wheat (Triticum aestivum) with highest values of 98.3% observed using Methylobacterium sp. (NC4). Highest values of seedling length and vigour were recorded with Methylobacterium sp. (NC28). HPLC analysis of production by bacterial strains ranged from 1.09 to 9.89 μg ml(-1) of cytokinins in the culture filtrate. Such cytokinin producing beneficial methylotrophs can be useful in developing bio-inoculants through co-inoculation of pink-pigmented facultative methylotrophs with other compatible bacterial strains, for improving plant growth and productivity, in an environment-friendly manner.

  8. THE EFFECT OF OZONE ON BELOW-GROUND CARBON ALLOCATION IN WHEAT

    Science.gov (United States)

    Short term 14CO2 pulse and chase experiments were conducted in order to investigate the effect ozone on below-ground carbon allocation in spring wheat seedlings (Triticum aestivumL. ?ANZA'). Wheat seedlings were grown in a sand-hydroponic system and exposed to either high ozone ...

  9. A 3D virtual plant-modelling study : Tillering in spring wheat

    NARCIS (Netherlands)

    Evers, J.B.; Vos, J.

    2007-01-01

    Tillering in wheat (Triticum aestivum L.) is influenced by both light intensity and the ratio between the intensities of red and far-red light. The relationships between canopy architecture, light properties within the canopy, and tillering in spring-wheat plants were studied using a 3D virtual

  10. Trend Analysis of Nitrogen Use and Productivity in Wheat (Triticum aestivum L. Production Systems of Iran

    Directory of Open Access Journals (Sweden)

    M. Nassiri

    2017-10-01

    Full Text Available Introduction At global level nitrogen (N fertilizers had drastic effects on crop yields increment during the last century. However, high application rates of this input have resulted to environmental pollution all around the world in addition decreased yields per unit of applied N is also reported in some countries. To fulfill increasing demands for agricultural crops with conservative application of N fertilizers, increasing N use efficiencies is recognized as a sustainable management. This calls for systematic studies on N use efficiency and its components at crop, field and regional levels. However, N efficiencies of agricultural crops at national level are not fully analyzed in Iran. In this research, forty years (1960-2010 data on yield and N application rate were analyzed for yield trend, N efficiencies and its related components for wheat (Triticum aestivum L. production systems of Iran. Materials and Methods Required data of wheat yield and nitrogen fertilizer application rates during the 40 years study period was obtained from official web sites of national agricultural statistics as well as Ministry of Jihad Agriculture. Using these data partial nitrogen productivity (kg yield kg N-1; nitrogen use efficiency (kg yield kg-1 N, ignoring soil N, nitrogen uptake efficiency (%; nitrogen utilization efficiency (kg yield kg-1 absorbed N; and relative contribution of Nitrogen to grain yield (% was estimated based on previously reported methods. Yield and N fertilizer application rate were subjected to time series analysis and fertilizer rates were predicted for the next decade over the studied period. Results and Discussion The results indicated that during the studied period mean annual growth rate of wheat yield and nitrogen application were 2.9 and 6.9%, respectively leading to 3.4 fold increase in yield and 9.5 fold increase in N fertilizers so that fertilize application rate was changed from 25 to 240 kg ha-1. However, N fertilizer

  11. Características tecnológicas de genótipos de trigo (Triticum aestivum L. cultivados no cerrado Technological characteristics of wheat (Triticum aestivum L. genotypes grown in the Brazilian Cerrado

    Directory of Open Access Journals (Sweden)

    Luiz Carlos Gutkoski

    2007-06-01

    Full Text Available Realizou-se este estudo com o objetivo de estudar as características grau de extração, proteína bruta, número de queda, alveografia, farinografia, volume específico e escore de pontos dos pães obtidos de amostras de grãos de genótipos de trigo (Triticum aestivum L. plantados no cerrado brasileiro. Amostras de grãos de trigo dos genótipos Embrapa 22, Embrapa 42, Önix, Taurum e Fundacep 27, plantados no cerrado brasileiro, safra 2003/2004 foram avaliadas em delineamento inteiramente casualizado, no laboratório de Cereais do Centro de Pesquisa em Alimentação da Universidade de Passo Fundo, sendo os resultados experimentais analisados pelo emprego da análise de variância (Anova e nos modelos significativos as médias comparadas entre si pelo teste de Tukey a 5% de probabilidade de erro. As cultivares de trigo foram classificadas com base na alveografia e número de queda em melhorador, pão e brando. Nos trigos classificados como melhoradores as propriedades funcionais dos pães foram inferiores, o que define a utilização destas farinhas para mesclas com trigos de menor força de glúten. No cerrado brasileiro é possível produzir trigo classe melhorador.The aim of this study was to investigate the characteristics of flour extraction grade, protein content, falling number, alveography, farinography, specific volume and point score of bread made from samples of grain of wheat genotypes grown in the Brazilian Cerrado. Samples of wheat grains of genotypes Embrapa 22, Embrapa 42, Önix, Taurum and Fundacep 27, grown in the Brazilian Cerrado, 2003/2004 crop, were disposed in fully randomized design, in the Cereal Laboratory at the Centro de Pesquisa em Alimentação of the University of Passo Fundo. The results were analyzed by variance analysis and the means compared by Tukey's test at 5% error probability. The wheat cultivars were classified according to alveography and falling number in improved, bread and bland. In the wheat

  12. Allometric analysis of the effects of density on reproductive allocation and Harvest Index in 6 varieties of wheat (Triticum)

    DEFF Research Database (Denmark)

    Qin, Xiao-liang; Weiner, Jacob; Qi, Lin

    2013-01-01

    allocation should be analyzed and interpreted allometrically because ratios or fractions such as Reproductive Effort or Harvest Index are size dependent. We investigated reproductive allocation of individuals in 6 varieties of Triticum (wheat) grown at a wide range of densities. We harvested leaves, stems...... size. There were significant differences among the varieties in the allometric exponent (slope of log–log relationship) of grain versus vegetative mass, such that some varieties produced higher yield (and therefore had a higher Harvest Index) than others when plants were small, while others had higher...... yield at larger sizes. Thus, the Harvest Index and its rank among varieties changed with plant size, which puts into question the practice of selecting for Harvest Index when crop performance varies greatly among individuals, years or environments. Selection for a high Harvest Index when individuals...

  13. Grain subproteome responses to nitrogen and sulfur supply in diploid wheat Triticum monococcum ssp. monococcum.

    Science.gov (United States)

    Bonnot, Titouan; Bancel, Emmanuelle; Alvarez, David; Davanture, Marlène; Boudet, Julie; Pailloux, Marie; Zivy, Michel; Ravel, Catherine; Martre, Pierre

    2017-09-01

    Wheat grain storage proteins (GSPs) make up most of the protein content of grain and determine flour end-use value. The synthesis and accumulation of GSPs depend highly on nitrogen (N) and sulfur (S) availability and it is important to understand the underlying control mechanisms. Here we studied how the einkorn (Triticum monococcum ssp. monococcum) grain proteome responds to different amounts of N and S supply during grain development. GSP composition at grain maturity was clearly impacted by nutrition treatments, due to early changes in the rate of GSP accumulation during grain filling. Large-scale analysis of the nuclear and albumin-globulin subproteomes during this key developmental phase revealed that the abundance of 203 proteins was significantly modified by the nutrition treatments. Our results showed that the grain proteome was highly affected by perturbation in the N:S balance. S supply strongly increased the rate of accumulation of S-rich α/β-gliadin and γ-gliadin, and the abundance of several other proteins involved in glutathione metabolism. Post-anthesis N supply resulted in the activation of amino acid metabolism at the expense of carbohydrate metabolism and the activation of transport processes including nucleocytoplasmic transit. Protein accumulation networks were analyzed. Several central actors in the response were identified whose variation in abundance was related to variation in the amounts of many other proteins and are thus potentially important for GSP accumulation. This detailed analysis of grain subproteomes provides information on how wheat GSP composition can possibly be controlled in low-level fertilization condition. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  14. Meiotic homoeologous recombination-based alien gene introgression in the genomics era of wheat

    Science.gov (United States)

    Wheat (Triticum spp.) has a narrow genetic basis due to its allopolyploid origin. However, wheat has numerous wild relatives usable for expanding genetic variability of its genome through meiotic homoeologous recombination. Traditionally, laborious cytological analyses have been employed to detect h...

  15. The influence of soft kernel texture on the flour, water absorption, rheology, and baking quality of durum wheat

    Science.gov (United States)

    Durum (T. turgidum subsp. durum) wheat production worldwide is substantially less than that of common wheat (Triticum aestivum). Durum kernels are extremely hard; leading to most durum wheat being milled into semolina. Durum wheat production is limited in part due to the relatively limited end-user ...

  16. Competition increases sensitivity of wheat (Triticum aestivum) to biotic plant-soil feedback.

    Science.gov (United States)

    Hol, W H Gera; de Boer, Wietse; ten Hooven, Freddy; van der Putten, Wim H

    2013-01-01

    Plant-soil feedback (PSF) and plant competition play an important role in structuring vegetation composition, but their interaction remains unclear. Recent studies suggest that competing plants could dilute pathogenic effects, whereas the standing view is that competition may increase the sensitivity of the focal plant to PSF. In agro-ecosystems each of these two options would yield contrasting outcomes: reduced versus enhanced effects of weeds on crop biomass production. To test the effect of competition on sensitivity to PSF, we grew Triticum aestivum (Common wheat) with and without competition from a weed community composed of Vicia villosa, Chenopodium album and Myosotis arvensis. Plants were grown in sterilized soil, with or without living field inoculum from 4 farms in the UK. In the conditioning phase, field inocula had both positive and negative effects on T. aestivum shoot biomass, depending on farm. In the feedback phase the differences between shoot biomass in T. aestivum monoculture on non-inoculated and inoculated soils had mostly disappeared. However, T. aestivum plants growing in mixtures in the feedback phase were larger on non-inoculated soil than on inoculated soil. Hence, T. aestivum was more sensitive to competition when the field soil biota was present. This was supported by the statistically significant negative correlation between shoot biomass of weeds and T. aestivum, which was absent on sterilized soil. In conclusion, competition in cereal crop-weed systems appears to increase cereal crop sensitivity to soil biota.

  17. Genetics and mapping of a new leaf rust resistance gene in Triticum ...

    Indian Academy of Sciences (India)

    A Triticum timopheevii-derived bread wheat line, Selection G12, was screened with 40 pathotypes of leaf rust pathogen, Puccinia triticina at seedling stage and with two most commonly prevalent pathotypes 77-5 and 104-2 at adult plant stage. Selection G12 showed resistance at both seedling and adult plant stages.

  18. Transferring alien genes to wheat

    International Nuclear Information System (INIS)

    Knott, D.R.

    1987-01-01

    In broad terms an alien gene can be considered to be any gene transferred to wheat from a related species. As described above by Maan (section 7D) the genus Triticum contains a broad range of species, some of which cross readily with the cultivated tetraploid (T. Turgidum L.) or hexaploid (T. aestivum L.) wheats, and others only with great difficulty. In addition, wheat will also cross with species in a number of other genera including Agropyron, Elymus, Elytrigia (=Agropyron), Haynaldia, Hordeum, and Secale (Riley and Kimber, 1966; Knobloch, 1968; Feldman and Sears, 1981). In discussing the Triticum and Aegilops spp., the classification by Kimber and Sears, section SA-I, above, will be followed. For the Agropyron and related species the classification described by Dewey (1983) will be used. To avoid confusion, in referring to the literature the designations used by the authors will be given, followed by the new designation. The wild relatives of wheat are adapted to a broad range of environments and carry a large reservoir of useful genes (Zohary et al., 1969; Kerber and Dyck, 1973; Brezhnev, 1977; Feldman and Sears, 1981; Limin and Fowler, 1981; Sharma et aI., 1981; McGuire and Dvorak, 1981). Initially they were considered to be primarily sources of disease resistance, but more recently they have been recognized as potential sources of genes for high protein, cold tolerance, salt tolerance, drought tolerance, lodging resistance, early maturity, and even yield. Extensive screening of the wild relatives of wheat needs to be done before their useful genes can be fully utilized

  19. Transferring alien genes to wheat

    Energy Technology Data Exchange (ETDEWEB)

    Knott, D. R.

    1987-07-01

    In broad terms an alien gene can be considered to be any gene transferred to wheat from a related species. As described above by Maan (section 7D) the genus Triticum contains a broad range of species, some of which cross readily with the cultivated tetraploid (T. Turgidum L.) or hexaploid (T. aestivum L.) wheats, and others only with great difficulty. In addition, wheat will also cross with species in a number of other genera including Agropyron, Elymus, Elytrigia (=Agropyron), Haynaldia, Hordeum, and Secale (Riley and Kimber, 1966; Knobloch, 1968; Feldman and Sears, 1981). In discussing the Triticum and Aegilops spp., the classification by Kimber and Sears, section SA-I, above, will be followed. For the Agropyron and related species the classification described by Dewey (1983) will be used. To avoid confusion, in referring to the literature the designations used by the authors will be given, followed by the new designation. The wild relatives of wheat are adapted to a broad range of environments and carry a large reservoir of useful genes (Zohary et al., 1969; Kerber and Dyck, 1973; Brezhnev, 1977; Feldman and Sears, 1981; Limin and Fowler, 1981; Sharma et aI., 1981; McGuire and Dvorak, 1981). Initially they were considered to be primarily sources of disease resistance, but more recently they have been recognized as potential sources of genes for high protein, cold tolerance, salt tolerance, drought tolerance, lodging resistance, early maturity, and even yield. Extensive screening of the wild relatives of wheat needs to be done before their useful genes can be fully utilized.

  20. Registration of 'Tiger' wheat

    Science.gov (United States)

    ‘Tiger’ hard white winter wheat (Triticum aestivum L.) was developed at Research Center-Hays, Kansas State University and released by Kansas Agricultural Experiment Station in 2010. Tiger was selected from a three-way cross KS98H245/’Trego’//KS98HW518 made in 1999 at Hays, KS. The objective of this ...

  1. The Response of Durum Wheat to the Preceding Crop in a Mediterranean Environment

    Directory of Open Access Journals (Sweden)

    Laura Ercoli

    2014-01-01

    Full Text Available Crop sequence is an important management practice that may affect durum wheat (Triticum durum Desf. production. Field research was conducted in 2007-2008 and 2008-2009 seasons in a rain-fed cold Mediterranean environment to examine the impact of the preceding crops alfalfa (Medicago sativa L., maize (Zea mays L., sunflower (Helianthus annuus L., and bread wheat (Triticum aestivum L. on yield and N uptake of four durum wheat varieties. The response of grain yield of durum wheat to the preceding crop was high in 2007-2008 and was absent in the 2008-2009 season, because of the heavy rainfall that negatively impacted establishment, vegetative growth, and grain yield of durum wheat due to waterlogging. In the first season, durum wheat grain yield was highest following alfalfa, and was 33% lower following wheat. The yield increase of durum wheat following alfalfa was mainly due to an increased number of spikes per unit area and number of kernels per spike, while the yield decrease following wheat was mainly due to a reduction of spike number per unit area. Variety growth habit and performance did not affect the response to preceding crop and varieties ranked in the order Levante > Saragolla = Svevo > Normanno.

  2. Study on genetic diversity in Pakistani wheat varieties using simple ...

    African Journals Online (AJOL)

    Common wheat ( Triticum aestivum L.) is a grass species, cultivated world wide. Globally, it is the most important human food grain and ranks second in total production as a cereal crop behind maize. Genetic diversity evaluation of germplasm is the basis of improvement in wheat. In the present study genetic diversity of 10 ...

  3. Expression of phytoene synthase1 and carotene desaturase crtI genes result in an increase in the total carotenoids content in transgenic elite wheat (Triticum aestivum L.).

    Science.gov (United States)

    Cong, Ling; Wang, Cheng; Chen, Ling; Liu, Huijuan; Yang, Guangxiao; He, Guangyuan

    2009-09-23

    Dietary micronutrient deficiencies, such as the lack of vitamin A, are a major source of morbidity and mortality worldwide. Carotenoids in food can function as provitamin A in humans, while grains of Chinese elite wheat cultivars generally have low carotenoid contents. To increase the carotenoid contents in common wheat endosperm, transgenic wheat has been generated by expressing the maize y1 gene encoding phytoene synthase driven by a endosperm-specific 1Dx5 promoter in the elite wheat (Triticum aestivum L.) variety EM12, together with the bacterial phytoene desaturase crtI gene from Erwinia uredovora under the constitutive CaMV 35S promoter control. A clear increase of the carotenoid content was detected in the endosperms of transgenic wheat that visually showed a light yellow color. The total carotenoids content was increased up to 10.8-fold as compared with the nontransgenic EM12 cultivar. To test whether the variability of total carotenoid content in different transgenic lines was due to differences in the transgene copy number or expression pattern, Southern hybridization and semiquantitative reverse transcriptase polymerase chain reaction analyses were curried out. The results showed that transgene copy numbers and transcript levels did not associate well with carotenoid contents. The expression patterns of endogenous carotenoid genes, such as the phytoene synthases and carotene desaturases, were also investigated in wild-type and transgenic wheat lines. No significant changes in expression levels of these genes were detected in the transgenic endosperms, indicating that the increase in carotenoid transgenic wheat endosperms resulted from the expression of transgenes.

  4. Starch characteristics of transgenic wheat (Triticum aestivum L.) overexpressing the Dx5 high molecular weight glutenin subunit are substantially equivalent to those in nonmodified wheat.

    Science.gov (United States)

    Beckles, Diane M; Tananuwong, Kanitha; Shoemaker, Charles F

    2012-04-01

    The effects of engineering higher levels of the High Molecular Weight Glutenin Dx5 subunit on starch characteristics in transgenic wheat (Triticum aestivum L.) grain were evaluated. This is important because of the interrelationship between starch and protein accumulation in grain, the strong biotechnological interest in modulating Dx5 levels and the increasing likelihood that transgenic wheat will be commercialized in the U.S. Unintended effects of Dx5 overexpression on starch could affect wheat marketability and therefore should be examined. Two controls with native levels of Dx5 were used: (i) the nontransformed Bobwhite cultivar, and (ii) a transgenic line (Bar-D) expressing a herbicide resistant (bar) gene, and they were compared with 2 transgenic lines (Dx5G and Dx5J) containing bar and additional copies of Dx5. There were few changes between Bar-D and Dx5G compared to Bobwhite. However, Dx5J, the line with the highest Dx5 protein (×3.5) accumulated 140% more hexose, 25% less starch and the starch had a higher frequency of longer amylopectin chains. These differences were not of sufficient magnitude to influence starch functionality, because granule morphology, crystallinity, amylose-to-amylopectin ratio, and the enthalpy of starch gelatinization and the amylose-lipid complex melting were similar to the control (P > 0.05). This overall similarity was borne out by Partial Least Squares-Discriminant Function Analysis, which could not distinguish among genotypes. Collectively our data imply that higher Dx5 can affect starch accumulation and some aspects of starch molecular structure but that the starches of the Dx5 transgenic wheat lines are substantially equivalent to the controls. Transgenic manipulation of biochemical pathways is an effective way to enhance food sensory quality, but it can also lead to unintended effects. These spurious changes are a concern to Government Regulatory Agencies and to those Industries that market the product. In this study we

  5. Development of TaqMan probes targeting the four major celiac disease epitopes found in α-gliadin sequences of spelt (Triticum aestivum ssp. spelta) and bread wheat (Triticum aestivum ssp. aestivum).

    Science.gov (United States)

    Dubois, Benjamin; Bertin, Pierre; Muhovski, Yordan; Escarnot, Emmanuelle; Mingeot, Dominique

    2017-01-01

    Celiac disease (CD) is caused by specific sequences of gluten proteins found in cereals such as bread wheat ( Triticum aestivum ssp. aestivum ) and spelt ( T. aestivum ssp. spelta ). Among them, the α-gliadins display the highest immunogenicity, with four T-cell stimulatory epitopes. The toxicity of each epitope sequence can be reduced or even suppressed according to the allelic form of each sequence. One way to address the CD problem would be to make use of this allelic variability in breeding programs to develop safe varieties, but tools to track the presence of toxic epitopes are required. The objective of this study was to develop a tool to accurately detect and quantify the immunogenic content of expressed α-gliadins of spelt and bread wheat. Four TaqMan probes that only hybridize to the canonical-i.e. toxic-form of each of the four epitopes were developed and their specificity was demonstrated. Six TaqMan probes targeting stable reference genes were also developed and constitute a tool to normalize qPCR data. The probes were used to measure the epitope expression levels of 11 contrasted spelt accessions and three ancestral diploid accessions of bread wheat and spelt. A high expression variability was highlighted among epitopes and among accessions, especially in Asian spelts, which showed lower epitope expression levels than the other spelts. Some discrepancies were identified between the canonical epitope expression level and the global amount of expressed α-gliadins, which makes the designed TaqMan probes a useful tool to quantify the immunogenic potential independently of the global amount of expressed α-gliadins. The results obtained in this study provide useful tools to study the immunogenic potential of expressed α-gliadin sequences from Triticeae accessions such as spelt and bread wheat. The application of the designed probes to contrasted spelt accessions revealed a high variability and interesting low canonical epitope expression levels in the

  6. Registration of 'Prevail' hard red spring wheat

    Science.gov (United States)

    Grower and end-user acceptance of new Hard Red Spring Wheat (HRSW; Triticum aestivum L.) cultivars is largely contingent upon satisfactory agronomic performance, end-use quality potential, and disease resistance levels. Additional characteristics, such as desirable plant height, can also contribute...

  7. Growth Responses of Wheat (Triticum aestivumL. var. HD 2329 Exposed to Ambient Air Pollution under Varying Fertility Regimes

    Directory of Open Access Journals (Sweden)

    Anoop Singh

    2003-01-01

    Full Text Available The problem of urban air pollution has attracted special attention in India due to a tremendous increase in the urban population; motor vehicles vis a vis the extent of energy utilization. Field studies were conducted on wheat crops (Triticum aestivum L. var. HD 2329 by keeping the pot-grown plants in similar edaphic conditions at nine different sites in Allahabad City to quantify the effects of ambient air pollution levels on selected growth and yield parameters. Air quality monitoring was done at all the sites for gaseous pollutants viz. SO2, NO2, and O3. Various growth parameters (plant height, biomass, leaf area, NPP, etc. showed adverse effects at sites receiving higher pollution load. Reduction in test weight and harvest index was found to be directly correlated with the levels of pollutant concentrations. The study clearly showed the negative impact of air pollution on periurban agriculture.

  8. Genomic Imprinting Was Evolutionarily Conserved during Wheat Polyploidization.

    Science.gov (United States)

    Yang, Guanghui; Liu, Zhenshan; Gao, Lulu; Yu, Kuohai; Feng, Man; Yao, Yingyin; Peng, Huiru; Hu, Zhaorong; Sun, Qixin; Ni, Zhongfu; Xin, Mingming

    2018-01-01

    Genomic imprinting is an epigenetic phenomenon that causes genes to be differentially expressed depending on their parent of origin. To evaluate the evolutionary conservation of genomic imprinting and the effects of ploidy on this process, we investigated parent-of-origin-specific gene expression patterns in the endosperm of diploid ( Aegilops spp), tetraploid, and hexaploid wheat ( Triticum spp) at various stages of development via high-throughput transcriptome sequencing. We identified 91, 135, and 146 maternally or paternally expressed genes (MEGs or PEGs, respectively) in diploid, tetraploid, and hexaploid wheat, respectively, 52.7% of which exhibited dynamic expression patterns at different developmental stages. Gene Ontology enrichment analysis suggested that MEGs and PEGs were involved in metabolic processes and DNA-dependent transcription, respectively. Nearly half of the imprinted genes exhibited conserved expression patterns during wheat hexaploidization. In addition, 40% of the homoeolog pairs originating from whole-genome duplication were consistently maternally or paternally biased in the different subgenomes of hexaploid wheat. Furthermore, imprinted expression was found for 41.2% and 50.0% of homolog pairs that evolved by tandem duplication after genome duplication in tetraploid and hexaploid wheat, respectively. These results suggest that genomic imprinting was evolutionarily conserved between closely related Triticum and Aegilops species and in the face of polyploid hybridization between species in these genera. © 2018 American Society of Plant Biologists. All rights reserved.

  9. Mapping genes for resistance to stripe rust in spring wheat landrace PI 480035

    Science.gov (United States)

    Stripe rust caused by Puccinia striiformis Westend. f. sp. tritici Erikks. is an economically important disease of wheat (Triticum aestivum L.). Hexaploid spring wheat landrace PI 480035 was highly resistant to stripe rust in the field in Washington during 2011 and 2012. The objective of this resear...

  10. Heterologous expression of a plastid EF-Tu reduces protein thermal aggregation and enhances CO2 fixation in wheat (Triticum aestivum) following heat stress.

    Science.gov (United States)

    Fu, Jianming; Momcilović, Ivana; Clemente, Thomas E; Nersesian, Natalya; Trick, Harold N; Ristic, Zoran

    2008-10-01

    Heat stress is a major constraint to wheat production and negatively impacts grain quality, causing tremendous economic losses, and may become a more troublesome factor due to global warming. At the cellular level, heat stress causes denaturation and aggregation of proteins and injury to membranes leading to alterations in metabolic fluxes. Protein aggregation is irreversible, and protection of proteins from thermal aggregation is a strategy a cell uses to tolerate heat stress. Here we report on the development of transgenic wheat (Triticum aestivum) events, expressing a maize gene coding for plastidal protein synthesis elongation factor (EF-Tu), which, compared to non-transgenic plants, display reduced thermal aggregation of leaf proteins, reduced heat injury to photosynthetic membranes (thylakoids), and enhanced rate of CO(2) fixation after exposure to heat stress. The results support the concept that EF-Tu ameliorates negative effects of heat stress by acting as a molecular chaperone. This is the first demonstration of the introduction of a plastidal EF-Tu in plants that leads to protection against heat injury and enhanced photosynthesis after heat stress. This is also the first demonstration that a gene other than HSP gene can be used for improvement of heat tolerance and that the improvement is possible in a species that has a complex genome, hexaploid wheat. The results strongly suggest that heat tolerance of wheat, and possibly other crop plants, can be improved by modulating expression of plastidal EF-Tu and/or by selection of genotypes with increased endogenous levels of this protein.

  11. Assessment of on-farm diversity of wheat varieties and landraces: Evidence from farmer’s fields in Ethiopia

    NARCIS (Netherlands)

    Bishaw, Z.; Struik, P.C.; Gastel, van A.J.G.

    2014-01-01

    Analysis of spatial diversity, temporal diversity and coefficient of parentage (COP) were carried out along with measurements of agronomic and morphological traits to explain on-farm diversity of modern varieties or landraces of wheat (Triticum aestivum L. and Triticum durum L.) grown by farmers in

  12. Mapping and characterization of wheat stem rust resistance genes SrTm5 and Sr60 from Triticum monococcum.

    Science.gov (United States)

    Chen, Shisheng; Guo, Yan; Briggs, Jordan; Dubach, Felix; Chao, Shiaoman; Zhang, Wenjun; Rouse, Matthew N; Dubcovsky, Jorge

    2018-03-01

    The new stem rust resistance gene Sr60 was fine-mapped to the distal region of chromosome arm 5A m S, and the TTKSK-effective gene SrTm5 could be a new allele of Sr22. The emergence and spread of new virulent races of the wheat stem rust pathogen (Puccinia graminis f. sp. tritici; Pgt), including the Ug99 race group, is a serious threat to global wheat production. In this study, we mapped and characterized two stem rust resistance genes from diploid wheat Triticum monococcum accession PI 306540. We mapped SrTm5, a previously postulated gene effective to Ug99, on chromosome arm 7A m L, completely linked to Sr22. SrTm5 displayed a different race specificity compared to Sr22 indicating that they are distinct. Sequencing of the Sr22 homolog in PI 306540 revealed a novel haplotype. Characterization of the segregating populations with Pgt race QFCSC revealed an additional resistance gene on chromosome arm 5A m S that was assigned the official name Sr60. This gene was also effective against races QTHJC and SCCSC but not against TTKSK (a Ug99 group race). Using two large mapping populations (4046 gametes), we mapped Sr60 within a 0.44 cM interval flanked by sequenced-based markers GH724575 and CJ942731. These two markers delimit a 54.6-kb region in Brachypodium distachyon chromosome 4 and a 430-kb region in the Chinese Spring reference genome. Both regions include a leucine-rich repeat protein kinase (LRRK123.1) that represents a potential candidate gene. Three CC-NBS-LRR genes were found in the colinear Brachypodium region but not in the wheat genome. We are currently developing a Bacterial Artificial Chromosome library of PI 306540 to determine which of these candidate genes are present in the T. monococcum genome and to complete the cloning of Sr60.

  13. Elevatated CO2 alleviates heat stress tolerance in wheat

    DEFF Research Database (Denmark)

    Kjær, Katrine Heinsvig; Rosenqvist, Eva S. K.; Ottosen, Carl-Otto

    2014-01-01

    Title: The alleviating effect of elevated CO2 on heat stress susceptibility of two wheat (Triticum aestivum L.) cultivars Session: Plant response and adaptation to abiotic stress Sindhuja Shanmugam1, Katrine Heinsvig Kjaer2*, Carl-Otto Ottosen2, Eva Rosenqvist3, Dew Kumari Sharma3 and Bernd...... Wollenweber4 1Department of Bioenergy, Tamilnadu Agricultural University, Coimbatore, India. 2Department of Food Science, Aarhus University, Kirstinebjergvej 10, 5792 Årslev, Denmark 3Institute of Agricultural Sciences and Ecology, University of Copenhagen, Hojbakkegaard Allé 9, 2630 Taastrup, Denmark 4......Institute for Agroecology, Aarhus University, Forsøgsvej 1, 4200 Slagelse, Denmark *Presenting author This study analysed the alleviating effect of elevated CO2 on stress-induced decreases in photosynthesis and changes in carbohydrate metabolism in two wheat cultivars (Triticum aestivum L.) of different...

  14. Effect of silicon application on physiological characteristics and growth of wheat (Triticum aestivum L. under drought stress condition

    Directory of Open Access Journals (Sweden)

    A. Karmollachaab

    2016-05-01

    Full Text Available In order to investigate the effect of silicon application on some physiological characteristics and growth of Wheat (Triticum aestivum L. under late drought stress condition, an experiment was conducted at the Agriculture and Natural Resources University of Ramin, Khuzestan during year 2012. The experiment was conducted in the open environment as factorial randomized complete block design with three levels of drought stress (irrigation after 25, 50 and 75% depletion of available water content as the first factor and four levels of silicon (0, 10, 20 and 30 mg Si.kg-1 soil as the second factor with three replications. The results showed that drought stress imposed a negative significant effect on all traits. The drought stress led to increased electrolyte leakage and proline content, cuticular wax, leaf silicon concentration, superoxide dismutase activity (SOD and grain potassium were decreased. The severe drought stress has most effect on electrolyte leakage (up to 53%. The application of silicon except the shoot/root parameter, on all characters have been affected so that application of 30 mg Si.kg-1 soil led to decrease electrolyte leakage up to 22.5% and increased SOD activity, proline content, cuticular wax grain K and flag leaf Si concentration, 25, 12.8, 21, 17 and 30% compared to control, respectively. In general, the results showed a positive effect of silicon on wheat plant under stress conditions that were higher than no stress condition.

  15. Effects of Bacillus subtilis on some physiological and biochemical parameters of Triticum aestivum L. (wheat) under salinity.

    Science.gov (United States)

    Lastochkina, Oksana; Pusenkova, Ludmila; Yuldashev, Ruslan; Babaev, Marat; Garipova, Svetlana; Blagova, Dar'ya; Khairullin, Ramil; Aliniaeifard, Sasan

    2017-12-01

    Endophytic strain Bacillus subtilis (B. subtilis) 10-4, producing indole-3-acetic acid (IAA) and siderofores but not active in phosphate solubilization, exerted a protective effect on Triticum aestivum L. (wheat) plant grown under salinity (2% NaCl) stress. Exposure to salt stress resulted in an essential increase of proline (Pro) and malondialdehyde (MDA) level in the seedlings. At the same time the seedlings inoculated with B. subtilis 10-4 were characterized by decreased level of stress-induced Pro and MDA accumulation. It was revealed that both B. subtilis 10-4 and salinity caused increase in the content of endogenous salicylic acid (SA) in wheat seedlings as compared to SA content in the control, while B. subtilis 10-4 suppressed stress-induced SA accumulation. Water storage capacity (WSC) in leaf tissues was increased and stress-induced hydrolysis of statolite starch in root cap cells of the germinal roots was reduced by B. subtilis 10-4. The obtained data indicated that the activation of the defense reactions induced by B. subtilis 10-4 induced defense reactions may be connected with their ability to decrease the level of stress-induced oxidative and osmotic stress in seedlings and with the increase of endogenous SA level that can make a significant contribution to the implementation of the protective effect of B. subtilis 10-4 and is manifested in the improvement of plant growth, WSC of leaves and slowing down of the process of statolite starch hydrolysis under salinity. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  16. Changes in the synthesis of DNA, RNA and protein during somatic embryogenesis in wheat (triticum aestivum L.)

    International Nuclear Information System (INIS)

    Cui Kairong; Wang Xiaozhe; Chen Xiong; Wang Yafu

    1997-01-01

    Embryogenic and non-embryogenic callus formed from immature embryo of wheat (Triticum aestivum L.) in N 6 B 5 MS medium I supplemented with 2,4-D 2 mg/L, KT 0.5 mg/L, LH300 mg/L, sucrose 3% were sub-cultured and transferred respectively to N 6 B 5 MS medium II (2,4-D was decreased to 0.5 mg/L and 4 mol/L proline was added). Somatic embryos obtained from embryogenic callus, and plantlet formed from non-embryogenic callus through organogenesis respectively. By incorporation of 3 H-thymidine, 3 H-uridine and 3 H-leucine into DNA, RNA and protein respectively, the rate of synthesis of DNA, RNA and protein during somatic embryogenesis were measured. A large amount of RNA and protein synthesized during the early somatic embryogenesis. The activities of RNA and protein synthesis reached the peak on the 4th and the 8th day respectively, then decreased a little, but kept a high level. The synthesis of DNA increased apparently during the early stage. No apparent change occurred when the embryogenic cell masses formed. The synthesis rate of RNA and protein in non-embryogenic callus were much less than that in embryogenic callus. Actinomycin and cycloheximide inhibited not only the synthesis of nucleic acid and protein, but also the growth of embryogenic callus and somatic embryogenesis. The earlier the inhibitors were added, the greater the influence was caused. The results indicate that the active expression of corresponding genes of wheat is the molecular base of somatic embryogenesis

  17. Proteome approaches to characterize seed storage proteins related to ditelocentric chromosomes in common wheat (Triticum aestivum L.).

    Science.gov (United States)

    Islam, Nazrul; Woo, Sun-Hee; Tsujimoto, Hisashi; Kawasaki, Hiroshi; Hirano, Hisashi

    2002-09-01

    Changes in protein composition of wheat endosperm proteome were investigated in 39 ditelocentric chromosome lines of common wheat (Triticum aestivum L.) cv. Chinese Spring. Two-dimensional gel electrophoresis followed by Coomassie Brilliant Blue staining has resolved a total of 105 protein spots in a gel. Quantitative image analysis of protein spots was performed by PDQuest. Variations in protein spots between the euploid and the 39 ditelocentric lines were evaluated by spot number, appearance, disappearance and intensity. A specific spot present in all gels was taken as an internal standard, and the intensity of all other spots was calculated as the ratio of the internal standard. Out of the 1755 major spots detected in 39 ditelocentric lines, 1372 (78%) spots were found variable in different spot parameters: 147 (11%) disappeared, 978 (71%) up-regulated and 247 (18%) down-regulated. Correlation studies in changes in protein intensities among 24 protein spots across the ditelocentric lines were performed. High correlations in changes of protein intensities were observed among the proteins encoded by genes located in the homoeologous arms. Locations of structural genes controlling 26 spots were identified in 10 chromosomal arms. Multiple regulators of the same protein located at various chromosomal arms were also noticed. Identification of structural genes for most of the proteins was found difficult due to multiple regulators encoding the same protein. Two novel subunits (1B(Z,) 1BDz), the structure of which are very similar to the high molecular weight glutenin subunit 12, were identified, and the chromosome arm locations of these subunits were assigned.

  18. Assessment of genetic diversity among sixty bread wheat ( Triticum ...

    African Journals Online (AJOL)

    Assessment of genetic diversity among wheat cultivars is important to ensure that a continuous pool of cultivars with varying desirable traits is maintained. In view of this, a molecular study was conducted to assess the genetic diversity of sixty wheat cultivars using sixty microsatellite markers. Amplified alleles from each ...

  19. Assessment of genetic diversity among sixty bread wheat (Triticum ...

    African Journals Online (AJOL)

    Mwale

    2016-05-25

    May 25, 2016 ... the highest genetic diversity followed by genome B while genome D was the lowest diverse. Cluster ... and 95% of people in the developing countries eat wheat or maize in ... area for wheat production in China due to pressure from ...... hypertension in the stroke-prone spontaneously hypertensive rat. Cell.

  20. Digestibility of pasta made with three wheat types: a preliminary study.

    Science.gov (United States)

    Simonato, Barbara; Curioni, Andrea; Pasini, Gabriella

    2015-05-01

    The aim of this study was to assess the digestibility of the protein and starch in pasta made with different cereals, i.e. Triticum durum, Triticum polonicum and Triticum dicoccum, and to measure the glycemic index (GI) of the different types of pasta. The digestibility of the starch in T.polonicum pasta differed significantly from the others. It seemed to be less digested than dicoccum and durum wheat pasta. T.polonicum pasta also had a lower glycemic index, while there were no significant differences in the protein digestibility of the three types of pasta. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Quantitative and qualitative differences in celiac disease epitopes among durum wheat varieties identified through deep RNA-amplican sequencing

    NARCIS (Netherlands)

    Salentijn, E.M.J.; Esselink, D.G.; Goryunova, S.V.; Meer, van der I.M.; Gilissen, L.J.W.J.; Smulders, M.J.M.

    2013-01-01

    Background - Wheat gluten is important for the industrial quality of bread wheat (Triticum aestivum L.) and durum wheat (T. turgidum L.). Gluten proteins are also the source of immunogenic peptides that can trigger a T cell reaction in celiac disease (CD) patients, leading to inflammatory responses

  2. incidence and distribution of insect pests in rain-fed wheat in eastern ...

    African Journals Online (AJOL)

    ACSS

    Insect pests are some of the major constraints limiting yield of wheat (Triticum aestivum L.) in East Africa. The objective of this study was to determine the species composition and distribution of insect pests, and their natural enemies associated with wheat in Eastern Africa. A survey was conducted in farmers' fields in ...

  3. The clone of wheat dehydrin-like gene wzy2 and its functional ...

    African Journals Online (AJOL)

    We used winter wheat (Triticum aestivum) Zhengyin No.1 as the material, the complete cDNA sequence of dehydrin wzy2 was cloned and the code sequence of wzy2 was transformed into yeast (Pichia pastoris) for eukaryotic expression. We also analyzed the relationship between wheat dehydrin wzy2 gene and drought ...

  4. allelic variation of hmw glutenin subunits of ethiopian bread wheat

    African Journals Online (AJOL)

    journal

    High molecular weight glutenins are often effective in identifying wheat (Triticum ... There were highly significant differences between genotypes and banding ... was without deliberate selection pressure towards high Glu-1 scoring alleles ...

  5. Prolamin proteins alteration in durum wheat by species of the genus Eurygaster and Aelia (Insecta, Hemiptera)

    International Nuclear Information System (INIS)

    Salis, L.; Goula, M.; Valero, J.; Gordun, E.

    2010-01-01

    Wheat bugs are widely distributed in various areas of Europe, Asia and North Africa. Species belonging to the genus Eurygaster and Aelia pierce wheat kernels affecting protein quality. The effects of these insects feeding activity have been studied mainly in bread wheat (Triticum aestivum L.). This study provides information on the degradation of prolamin proteins (glutenins and gliadins) of bug-damaged durum wheat (Triticum turgidum L. var durum) in six cultivars grown in Sardinia (Italy). Samples of whole flour mixture of 70% sound wheat and 30% damaged wheat were hydrated and incubated at two temperatures (45 and 4 degree centigrade), for different periods of time (0, 1 and 3 h). Glutenin and gliadin content was analysed using free zone capillary electrophoresis. The presence of bug-damaged kernels had influence on the quality of durum wheat proteins. Glutenins were rapidly degraded independently to incubation temperature. Gliadin degradation, however, took place with dependence on temperature and incubation time. Therefore glutenin degradation was possibly not due solely to the activity of proteolytic enzymes but also to some other as yet unknown factor linked to wheat bugs feeding activity. (Author) 35 refs.

  6. Prolamin proteins alteration in durum wheat by species of the genus Eurygaster and Aelia (Insecta, Hemiptera)

    Energy Technology Data Exchange (ETDEWEB)

    Salis, L.; Goula, M.; Valero, J.; Gordun, E.

    2010-07-01

    Wheat bugs are widely distributed in various areas of Europe, Asia and North Africa. Species belonging to the genus Eurygaster and Aelia pierce wheat kernels affecting protein quality. The effects of these insects feeding activity have been studied mainly in bread wheat (Triticum aestivum L.). This study provides information on the degradation of prolamin proteins (glutenins and gliadins) of bug-damaged durum wheat (Triticum turgidum L. var durum) in six cultivars grown in Sardinia (Italy). Samples of whole flour mixture of 70% sound wheat and 30% damaged wheat were hydrated and incubated at two temperatures (45 and 4 degree centigrade), for different periods of time (0, 1 and 3 h). Glutenin and gliadin content was analysed using free zone capillary electrophoresis. The presence of bug-damaged kernels had influence on the quality of durum wheat proteins. Glutenins were rapidly degraded independently to incubation temperature. Gliadin degradation, however, took place with dependence on temperature and incubation time. Therefore glutenin degradation was possibly not due solely to the activity of proteolytic enzymes but also to some other as yet unknown factor linked to wheat bugs feeding activity. (Author) 35 refs.

  7. phenotypic diversity of tunisian durum wheat landraces abstract

    African Journals Online (AJOL)

    Administrator

    Tunisia is considered as a diversification centre of durum wheat (Triticum durum Desf.) and barely ( ... diversification (Devra, 1999), especially within the primary and ..... Geographical patterns of morphological variation in sorghum (Sorghum bicolor (L.) Moench) germplasm from Ethiopia and Eritrea: qualitative characters.

  8. Uptake, localization, and speciation of cobalt in Triticum aestivum L. (wheat) and Lycopersicon esculentum M. (tomato).

    Science.gov (United States)

    Collins, Richard N; Bakkaus, Estelle; Carrière, Marie; Khodja, Hicham; Proux, Olivier; Morel, Jean-Louis; Gouget, Barbara

    2010-04-15

    The root-to-shoot transfer, localization, and chemical speciation of Co were investigated in a monocotyledon (Triticum aestivum L., wheat) and a dicotyledon (Lycopersicon esculentum M., tomato) plant species grown in nutrient solution at low (5 muM) and high (20 muM) Co(II) concentrations. Cobalt was measured in the roots and shoots by inductively coupled plasma-mass spectrometry. X-ray absorption spectroscopy measurements were used to identify the chemical structure of Co within the plants and Co distribution in the leaves was determined by micro-PIXE (particle induced X-ray emission). Although the root-to-shoot transport was higher for tomato plants exposed to excess Co, both plants appeared as excluders. The oxidation state of Co(II) was not transformed by either plant in the roots or shoots and Co appeared to be present as Co(II) in a complex with carboxylate containing organic acids. Cobalt was also essentially located in the vascular system of both plant species indicating that neither responded to Co toxicity via sequestration in epidermal or trichome tissues as has been observed for other metals in metal hyperaccumulating plants.

  9. Alleviation of salt stress by halotolerant and halophilic plant growth-promoting bacteria in wheat (Triticum aestivum

    Directory of Open Access Journals (Sweden)

    Furkan Orhan

    Full Text Available ABSTRACT In the current study, 18 halotolerant and halophilic bacteria have been investigated for their plant growth promoting abilities in vitro and in a hydroponic culture. The bacterial strains have been investigated for ammonia, indole-3-acetic acid and 1-aminocyclopropane-1-carboxylate-deaminase production, phosphate solubilisation and nitrogen fixation activities. Of the tested bacteria, eight were inoculated with Triticum aestivum in a hydroponic culture. The investigated bacterial strains were found to have different plant-growth promoting activities in vitro. Under salt stress (200 mM NaCl, the investigated bacterial strains significantly increased the root and shoot length and total fresh weight of the plants. The growth rates of the plants inoculated with bacterial strains ranged from 62.2% to 78.1%.Identifying of novel halophilic and halotolerant bacteria that promote plant growth can be used as alternatives for salt sensitive plants. Extensive research has been conducted on several halophilic and halotolerant bacterial strains to investigate their plant growth promoting activities. However, to the best of my knowledge, this is the first study to inoculate these bacterial strains with wheat.

  10. Alleviation of salt stress by halotolerant and halophilic plant growth-promoting bacteria in wheat (Triticum aestivum).

    Science.gov (United States)

    Orhan, Furkan

    2016-01-01

    In the current study, 18 halotolerant and halophilic bacteria have been investigated for their plant growth promoting abilities in vitro and in a hydroponic culture. The bacterial strains have been investigated for ammonia, indole-3-acetic acid and 1-aminocyclopropane-1-carboxylate-deaminase production, phosphate solubilisation and nitrogen fixation activities. Of the tested bacteria, eight were inoculated with Triticum aestivum in a hydroponic culture. The investigated bacterial strains were found to have different plant-growth promoting activities in vitro. Under salt stress (200mM NaCl), the investigated bacterial strains significantly increased the root and shoot length and total fresh weight of the plants. The growth rates of the plants inoculated with bacterial strains ranged from 62.2% to 78.1%. Identifying of novel halophilic and halotolerant bacteria that promote plant growth can be used as alternatives for salt sensitive plants. Extensive research has been conducted on several halophilic and halotolerant bacterial strains to investigate their plant growth promoting activities. However, to the best of my knowledge, this is the first study to inoculate these bacterial strains with wheat. Copyright © 2016 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  11. Grain filling parameters and yield components in wheat

    OpenAIRE

    Brdar Milka; Kobiljski Borislav; Balalić-Kraljević Marija

    2006-01-01

    Grain yield of wheat (Triticum aestivum L.) is influenced by number of grains per unit area and grain weight, which is result of grain filling duration and rate. The aim of the study was to investigate the relationships between grain filling parameters in 4 wheat genotypes of different earliness and yield components. Nonlinear regression estimated and observed parameters were analyzed. Rang of estimated parameters corresponds to rang of observed parameters. Stepwise MANOVA indicated that the ...

  12. The physical map of wheat chromosome 1BS provides insights into its gene space organization and evolution

    Czech Academy of Sciences Publication Activity Database

    Raats, D.; Frenkel, Z.; Krugman, T.; Šimková, Hana; Paux, E.; Doležel, Jaroslav; Feuillet, C.; Korol, A.; Fahima, T.

    2013-01-01

    Roč. 14, č. 12 (2013) ISSN 1465-6906 Institutional research plan: CEZ:AV0Z50380511 Keywords : TRITICUM-AESTIVUM L. * HEXAPLOID WHEAT * BREAD WHEAT Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 10.465, year: 2013

  13. Characterization of a wheat (Triticum aestivum L.) expansin gene, TaEXPB23, involved in the abiotic stress response and phytohormone regulation.

    Science.gov (United States)

    Han, Yang yang; Li, Ai xiu; Li, Feng; Zhao, Mei rong; Wang, Wei

    2012-05-01

    Expansins are proteins that are generally accepted to be key regulators of cell wall extension and plant growth. We examined the expression pattern of TaEXPB23, a wheat (Triticum aestivum L.) expansin gene, under exogenous phytohormone and abiotic stress treatments. In addition, we evaluated its function in the tolerance to salt stress and high temperature (HT) by overexpressing it in transgenic tobacco plants. In subcellular localization assays, TaEXPB23 localized to the cell wall. Expression analysis demonstrated that the transcription pattern of TaEXPB23 corresponded to wheat coleoptile growth. Real-time RT-PCR analysis revealed that TaEXPB23 transcript expression was upregulated by exogenous methyl jasmonate (MeJA) and salt stress, but downregulated by exogenous gibberellins (GA₃), ethylene (ET), indole-3-acetic acid (IAA) and α-naphthlcetic acid (NAA). Overexpression of TaEXPB23 in tobacco (tabacum) conferred tolerance to salt stress by enhancing water retention ability (WRA) and decreasing osmotic potential (OP). However, transgenic plants overexpressing TaEXPB23 did not show any improvement in the tolerance to HT stress. These results suggested that TaEXPB23 is regulated by phytohormones and is involved in the regulation of salt stress tolerance. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  14. Genetics of flowering time in bread wheat Triticum aestivum

    Indian Academy of Sciences (India)

    Twelve Indian spring wheat cultivars and the spring wheat landrace Chinese Spring were characterized for their flowering times by seeding them every month for five years under natural field conditions in New Delhi. Near isogenic Vrn-1 Ppd-D1 and Vrn-1 Ppd-D1a lines constructed in two genetic backgrounds were also ...

  15. Resistance of Wheat Accessions to the English Grain Aphid Sitobion avenae

    Science.gov (United States)

    Hu, Xiang-Shun; Liu, Ying-Jie; Wang, Yu-Han; Wang, Zhe; Yu, Xin-lin; Wang, Bo; Zhang, Gai-Sheng; Liu, Xiao-Feng; Hu, Zu-Qing; Zhao, Hui-Yan; Liu, Tong-Xian

    2016-01-01

    The English grain aphid, Sitobion avenae, is a major pest species of wheat crops; however, certain varieties may have stronger resistance to infestation than others. Here, we investigated 3 classical resistance mechanisms (antixenosis, antibiosis, and tolerance) by 14 wheat varieties/lines to S. avenae under laboratory and field conditions. Under laboratory conditions, alatae given the choice between 2 wheat varieties, strongly discriminated against certain varieties. Specifically, the ‘Amigo’ variety had the lowest palatability to S. avenae alatae of all varieties. ‘Tm’ (Triticum monococcum), ‘Astron,’ ‘Xanthus,’ ‘Ww2730,’ and ‘Batis’ varieties also had lower palatability than other varieties. Thus, these accessions may use antibiosis as the resistant mechanism. In contrast, under field conditions, there were no significant differences in the number of alatae detected on the 14 wheat varieties. One synthetic line (98-10-30, a cross between of Triticum aestivum (var. Chris) and Triticum turgidum (var. durum) hybridization) had low aphid numbers but high yield loss, indicating that it has high antibiosis, but poor tolerance. In comparison, ‘Amigo,’ ‘Xiaoyan22,’ and some ‘186Tm’ samples had high aphid numbers but low yield loss rates, indicating they have low antibiosis, but good tolerance. Aphid population size and wheat yield loss rates greatly varied in different fields and years for ‘98-10-35,’ ‘Xiaoyan22,’ ‘Tp,’ ‘Tam200,’ ‘PI high,’ and other ‘186Tm’ samples, which were hybrid offspring of T. aestivum and wheat related species. Thus, these germplasm should be considered for use in future studies. Overall, S. avenae is best adapted to ‘Xinong1376,’ because it was the most palatable variety, with the greatest yield loss rates of all 14 wheat varieties. However, individual varieties/lines influenced aphid populations differently in different years. Therefore, we strongly recommend a combination of

  16. Adaptation to rhizosphere acidification is a necessary prerequisite for wheat (Triticum aestivum L.) seedling resistance to ammonium stress.

    Science.gov (United States)

    Wang, Feng; Gao, Jingwen; Tian, Zhongwei; Liu, Yang; Abid, Muhammad; Jiang, Dong; Cao, Weixing; Dai, Tingbo

    2016-11-01

    Because soil acidification accompanies ammonium (NH 4 + ) stress, the tolerance of higher plants to ammonium is associated with their adaptation to root medium acidification. However, the underlying mechanisms of this adaptation have not been fully elucidated. The objective of this study was thus to elucidate the effect of rhizosphere pH on NH 4 + tolerance in different winter wheat cultivars (Triticum aestivum L.). Hydroponic experiments were carried out on two wheat cultivars: AK58 (an NH 4 + -sensitive cultivar) and XM25 (an NH 4 + -tolerant cultivar). Four pH levels resembling acidified (4.0, 5.0, 6.0 and 7.0) were tested and 5 mM NH 4 + nitrogen (AN) was used as a stress treatment, with 5 mM nitrate nitrogen used as a control. The addition of AN led to a severe reduction in biomass and an increase in free NH 4 + , amino acids, and the activities of glutamine synthetase (GS) and glutamate dehydrogenase (GDH) in the shoots and roots of the two wheat cultivars. Further decreases in growth medium pH led to further increases in free NH 4 + , but decreases in total amino acids and the activities of GS and NADH-dependent glutamate synthase (NADH-GDH). However, there was less of an increase in free NH 4 + and less of a reduction in the activities of GS and NADH-GDH in the cultivar XM25 compared with AK58. In addition, total soluble sugar content and the root-to-shoot soluble sugar ratio were also decreased by AN treatment, except in the shoots of XM25. Decreasing pH resulted in lower root-to-shoot soluble sugar ratios with greater reductions in the AK58 cultivar. These results indicate that wheat growth was inhibited significantly by the addition of NH 4 + combined with low pH. Low medium pH reduced the capacity for nitrogen assimilation and interrupted carbohydrate transport between the shoot and root. The NH 4 + -tolerant cultivar XM25 was better adapted to low rhizosphere pH due to its increased capacity for assimilating NH 4 + efficiently and thereby avoiding

  17. Structural equation models based on multivariate diversity assessment of diploid and tetraploid hulled wheat species

    Science.gov (United States)

    Hulled wheats are largely untapped genetic resources with >10,000 years of genetic memory and diversity that can be used for wheat quality improvement, development of healthy products, and adaptation to climate change. Multivariate diversity was assessed in the diploid Triticum monococcum L. var mon...

  18. Logistic Regression Analysis of the Response of Winter Wheat to Components of Artificial Freezing Episodes

    Science.gov (United States)

    Improvement of cold tolerance of winter wheat (Triticum aestivum L.) through breeding methods has been problematic. A better understanding of how individual wheat cultivars respond to components of the freezing process may provide new information that can be used to develop more cold tolerance culti...

  19. Mapping quantitative trait loci for a unique 'super soft' kernel trait in soft white wheat

    Science.gov (United States)

    Wheat (Triticum sp.) kernel texture is an important factor affecting milling, flour functionality, and end-use quality. Kernel texture is normally characterized as either hard or soft, the two major classes of texture. However, further variation is typically encountered in each class. Soft wheat var...

  20. Discovery of a novel stem rust resistance allele in durum wheat that exhibits differential reactions to Ug99 isolates

    Science.gov (United States)

    Wheat stem rust, caused by Puccinia graminis f. sp. tritici Erikss. & E. Henn, can incur yield losses on susceptible cultivars of durum wheat, Triticum turgidum ssp. durum (Desf.) Husnot. Though several durum cultivars possess the stem rust resistance gene Sr13, additional genes in durum wheat effec...

  1. Assessment of AquaCrop model in the simulation of durum wheat (Triticum aestivum L. growth and yield under different water regimes in Tadla- Morocco

    Directory of Open Access Journals (Sweden)

    Bassou BOUAZZAM

    2017-09-01

    Full Text Available Simulation models that clarify the effects of water on crop yield are useful tools for improving farm level water management and optimizing water use efficiency. In this study, AquaCrop was evaluated for Karim genotype which is the main durum winter wheat (Triticum aestivum L. practiced in Tadla. AquaCrop is based on the water-driven growth module, in that transpiration is converted into biomass through a water productivity parameter. The model was calibrated on data from a full irrigation treatment in 2014/15 and validated on other stressed and unstressed treatments including rain-fed conditions in 2014/15 and 2015/16. Results showed that the model provided excellent simulations of canopy cover, biomass and grain yield. Overall, the relationship between observed and modeled wheat grain yield for all treatments combined produced an R2 of 0.79, a mean squared error of 1.01 t ha-1 and an efficiency coefficient of 0.68. The model satisfactory predicted the trend of soil water reserve. Consequently, AquaCrop can be a valuable tool for simulating wheat grain yield in Tadla plain, particularly considering the fact that the model requires a relatively small number of input data. However, the performance of the model has to be fine-tuned under a wider range of conditions.

  2. Quantitative traits in wheat (Triticum aestivum L

    African Journals Online (AJOL)

    MSS

    2012-11-13

    Nov 13, 2012 ... Of the quantitative traits in wheat, spike length, number of spikes per m2, grain mass per spike, number ... design with four liming variants along with three replications, in which the experimental field .... The sampling was done.

  3. Prey foraging movements by Hippodamia convergens in wheat are influenced by hunger and aphids

    Science.gov (United States)

    We investigated foraging movements by adult female convergent lady beetles, Hippodamia convergens Guerin-Meneville, on English grain aphids, Sitobion avenae L., on wheat, Triticum aestivum L., growing in 1.8 x 1.8 m plantings in a greenhouse with a soil floor. The wheat was planted to simulate whea...

  4. Growth of wheat and triticale cultivars with the use of the artificial genetic mutations

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    This document reports the use of gamma radiation to induce resistance to the fungus Puccina graminis tritici in wheat (Triticum). A resistant wheat mutant was produced, and its genetic properties are reported. The mutant was evaluated for use as a crop and for application in further crop improvement programms

  5. The pangenome of hexaploid bread wheat

    Czech Academy of Sciences Publication Activity Database

    Montenegro, J. D.; Golicz, A. A.; Bayer, P.E.; Hurgobin, B.; Lee, H. T.; Chan, C. K. K.; Visendi, P.; Lai, K.; Doležel, Jaroslav; Batley, J.; Edwards, D.

    2017-01-01

    Roč. 90, č. 5 (2017), s. 1007-1013 ISSN 0960-7412 R&D Projects: GA MŠk(CZ) LO1204 Institutional support: RVO:61389030 Keywords : database * diversity * genome * pangenome * single nucleotide polymorphisms * Triticum aestivum * wheat Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Plant sciences, botany Impact factor: 5.901, year: 2016

  6. Chromosome sorting and its applications in common wheat (Triticum aestivum) genome sequencing

    Czech Academy of Sciences Publication Activity Database

    Wu, S.W.; Xiao, Y.; Zheng, X.; Cai, Y.F.; Doležel, Jaroslav; Liu, B.H.; Yang, L.; Song, M.F.; Zhou, P.; Zhou, Y.; Meng, F.H.; Wang, S.H.; Liu, H.W.; Zhai, H.Q.; Yang, J.P.

    2010-01-01

    Roč. 55, č. 15 (2010), s. 1463-1468 ISSN 1001-6538 Institutional research plan: CEZ:AV0Z50380511 Keywords : Triticum aestivum * flow cytogenetics * chromosome sorting Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.087, year: 2010

  7. Molecular breeding for drought tolerance in plants: wheat perspective

    International Nuclear Information System (INIS)

    Hussain, S.S.; Rivandi, A.; Rivandi, A.

    2007-01-01

    Wheat (Triticum aestivum L.em Thell.) is the first important and strategic cereal crop for the majority of world,s populations. It is the most important staple food of about two billion people (36% of the world population). Due to industrialization, erosion, urbanization, compaction, and the increase in acidity as a result of fertilization, there is a decrease in the available space for agriculture. Environmental conditions such as increased salinity, drought, and freezing cause adverse effects on the growth and productivity of cereal crops such as wheat (Triticum aestivum L.). Though grown under a wide range of climates and soils, wheat is best adapted to temperate regions. Whether the cropping occurs in the temperate areas or the tropics, both types of environments are affected by global warming and the destabilizing effects that it causes, none more serious than the attendant increased variability in rainfall and temperature. Due to the limited insight into the physiological basis of drought tolerance in wheat, a better understanding of some of the mechanisms that enable the plants to adapt to stress and maintain growth during stress periods would help in breeding for drought tolerance. On the other hand, understanding the genetic and genome organization using molecular markers is of great value for plant breeding purposes. (author)

  8. Fast neutron radiation induced Glu-B1 deficient lines of an elite bread wheat variety

    Science.gov (United States)

    Five isogenic wheat lines deficient in high-molecular weight subunit (HMW-GS) proteins encoded by the B-genome were identified from a fast-neutron radiation-mutagenized population of Summit, an elite variety of bread wheat (Triticum aestivum L.). The mutant lines differ from the wild-type progenit...

  9. Nitrogen uptake, nitrate leaching and root development in winter-grown wheat and fodder radish

    DEFF Research Database (Denmark)

    Munkholm, Lars Juhl; Hansen, Elly Møller; Thomsen, Ingrid Kaag

    2017-01-01

    Early seeding of winter wheat (Triticum aestivum L.) has been proposed as a means to reduce N leaching as an alternative to growing cover crops like fodder radish (Raphanus sativus L.). The objective of this study was to quantify the effect of winter wheat, seeded early and normally, and of fodder...

  10. Variation in genome composition of blue-aleurone wheat

    Czech Academy of Sciences Publication Activity Database

    Burešová, Veronika; Kopecký, David; Bartoš, Jan; Martinek, P.; Watanabe, N.; Vyhnánek, T.; Doležel, Jaroslav

    2015-01-01

    Roč. 128, č. 2 (2015), s. 273-282 ISSN 0040-5752 R&D Projects: GA MŠk(CZ) LO1204 Institutional support: RVO:61389030 Keywords : TRITICUM-AESTIVUM L * COMMON WHEAT * THINOPYRUM-PONTICUM Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.900, year: 2015

  11. Basis for selecting soft wheat for end-use quality

    Science.gov (United States)

    Within the United States, end-use quality of soft wheat (Triticum aestivum L.) is determined by several genetically controlled components: milling yield, flour particle size, and baking characteristics related to flour water absorption caused by glutenin macropolymer, non-starch polysaccharides, and...

  12. Effects of earthworm (Eisenia fetida) and wheat (Triticum aestivum) straw additions on selected properties of petroleum-contaminated soils.

    Science.gov (United States)

    Callaham, Mac A; Stewart, Arthur J; Alarcón, Clara; McMillen, Sara J

    2002-08-01

    Current bioremediation techniques for petroleum-contaminated soils are designed to remove contaminants as quickly and efficiently as possible, but not necessarily with postremediation soil biological quality as a primary objective. To test a simple postbioremediation technique, we added earthworms (Eisenia fetida) or wheat (Triticum aestivum) straw to petroleum land-farm soil and measured biological quality of the soil as responses in plant growth, soil respiration, and oil and grease (O&G) and total petroleum hydrocarbon (TPH) concentrations. Results indicated that plant growth was greater in earthworm-treated land-farm soil. Furthermore, addition of wheat straw resulted in greater total respiration in all soils tested (land-farm soil, noncontaminated reference soil, and a 1:1 mixture of land-farm and reference soils). We observed a 30% increase in soil respiration in straw-amended oily soil, whereas respiration increased by 246% in straw-amended reference soil. Much of the difference between oily and reference soils was attributable to higher basal respiration rates of nonamended oily soil compared to nonamended reference soil. Addition of earthworms resulted in greater total respiration of all soil and straw treatments except two (the land-farm and the 1:1 mixture soil treatments without straw). Straw and earthworm treatments did not affect O&G or TPH concentrations. Nevertheless, our findings that earthworm additions improved plant growth and that straw additions enhanced microbial activity in land-farm soil suggest that these treatments may be compatible with plant-based remediation techniques currently under evaluation in field trials, and could reduce the time required to restore soil ecosystem function.

  13. Identification of isoforms of microRNAs in wheat (Triticum aestivum L. and their role in leaf rust pathogenesis

    Directory of Open Access Journals (Sweden)

    Summi Dutta

    2017-10-01

    Full Text Available Bread wheat, a type of grass under genus Triticum and species aestivum covers the largest land area when production of cereal crops is considered. Being an allohexaploid (2n=6x=42; AABBDD, its genome is contributed by three progenitors and is evolutionarily rich. Rust in leaves, caused by Puccinia triticina, severely affects grain quality. MicroRNAs are considered as major components of gene silencing and so have deep role to play during stress. Post transcriptional modification of miRNAs which generates isomiRNAs significantly affects target specificity especially when the modification occurs in 5′end. A total of four small RNA libraries were prepared through next-generation Illumina sequencing techniques from leaves of two wheat Near Isogenic Lines (NILs, HD2329 (susceptible and HD2329 + LR24 (resistant. Prior to this, one set of the two NILs was mock inoculated and considered as control (with sRNA library code named SM-mi and RM-mi while other was treated with urediniospores of leaf rust fungus (with sRNA library code named SPI-mi and RPI-mi. Clean reads in all four libraries were previously used for prediction of 559 novel miRNAs and in the current study it was used to detect isoforms of these miRNAs. A total of 237 isoforms were detected for 41 miRNAs. These isoforms included both 5′ and 3′ modifications of miRNAs. There were 27 miRNAs with 5′ modifications and five miRNAs with 3′ modifications while nine miRNAs showed both types of modifications.

  14. Wheat transcription factor TaWRKY70 is positively involved in high-temperature seedling-plant resistance to Puccinia striiformis f. sp. tritici

    Science.gov (United States)

    Wheat stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), is a devastating disease of wheat (Triticum aestivum) worldwide. Wheat high-temperature seedling-plant (HTSP) resistance to Pst is non-race-specific and durable. WRKY transcription factors have proven to play important roles in ...

  15. Reticulated Origin of Domesticated Emmer Wheat Supports a Dynamic Model for the Emergence of Agriculture in the Fertile Crescent

    Czech Academy of Sciences Publication Activity Database

    Civáň, P.; Ivaničová, Zuzana; Brown, T.A.

    2013-01-01

    Roč. 8, č. 11 (2013) E-ISSN 1932-6203 Institutional research plan: CEZ:AV0Z50380511 Keywords : RNA MULTIGENE FAMILY * TRITICUM-DICOCCOIDES * PHYLOGENETIC NETWORKS Subject RIV: EF - Botanics Impact factor: 3.534, year: 2013

  16. Biochemical and Physiological Studies on the Effects of Senescence Leaves of Populus deltoides on Triticum vulgare

    Directory of Open Access Journals (Sweden)

    Tejinder Pal Khaket

    2014-01-01

    Full Text Available Triticum vulgare (Wheat based products are the major dietary source of food in developing countries. In India, it grows in association with boundary plantations of Populus deltoids (poplar. During winter, poplar enters in dormancy which cause a heavy leaf fall at the time of wheat seed germination. Large number of poplar senescence leaves may adversely affect the wheat. Therefore, the present study was performed to examine the effect of senescence poplar leaves on wheat germ and some other biochemical parameters. Seed’s germination rate was determined by measuring root and shoot lengths, percent germination, germination index, and inhibition percentage. Biochemical parameters, namely, pigment, carbohydrate, protein, and phenol content, were estimated. Activities of catalase and polyphenol oxidase which are stress marker enzymes were also measured. Results revealed that germination and other biochemical parameters of wheat were severely affected by senescence poplar leaves even at very low concentration. So, intercropping of poplar along with wheat may be chosen carefully as wheat is the major dietary staple.

  17. A positive allelopathic effect of corn cockle, agrostemma githago, on wheat, triticum aestivum

    DEFF Research Database (Denmark)

    Søgaard, B.; Doll, H.

    1992-01-01

    The effect of com cockle on wheat was studied during germination and on adult plants in a growth chamber. Seedling length of wheat germinated together with corn cockle for 5 days increased 13%. Wheat growing together with corn cockle in pots to maturity had a statistically significant higher wheat...... biomass and grain production than wheat growing alone. However, two other experiments with adult plants harvested before wheat maturity showed no effect of corn cockle on wheat production per pot. Within the pots the presence of corn cockle influenced wheat in all three experiments. Wheat plants growing...... at the same position as a corn cockle plant were 20 to 50% larger than wheat plants standing alone....

  18. The defence?associated transcriptome of hexaploid wheat displays homoeolog expression and induction bias

    OpenAIRE

    Powell, Jonathan J.; Fitzgerald, Timothy L.; Stiller, Jiri; Berkman, Paul J.; Gardiner, Donald M.; Manners, John M.; Henry, Robert J.; Kazan, Kemal

    2016-01-01

    Summary Bread wheat (Triticum aestivum L.) is an allopolyploid species containing three ancestral genomes. Therefore, three homoeologous copies exist for the majority of genes in the wheat genome. Whether different homoeologs are differentially expressed (homoeolog expression bias) in response to biotic and abiotic stresses is poorly understood. In this study, we applied a RNA?seq approach to analyse homoeolog?specific global gene expression patterns in wheat during infection by the fungal pa...

  19. TOXICITY OF METHYL-TERT BYTYL ETHER (MTBE) TO PLANTS (AVENA SATIVA, ZEA MAYS, TRITICUM AESTIVUM, AND LACTUCA SATIVA)

    Science.gov (United States)

    Effects of Methyl tert-butyl ether (MTBE) on the germination of seeds and growth of the plant were studied in some laboratory experiments. Test plants were wild oat (Avena sative), sweet corn (Zea mays), wheat (Triticum aestivum), and lettuce (Lactuca sativa). Seed germination,...

  20. Winter Wheat Root Growth and Nitrogen Relations

    DEFF Research Database (Denmark)

    Rasmussen, Irene Skovby

    in winter wheat (Triticum aestivum L). Field experiments on the effect of sowing date, N fertilization and cultivars were conducted on a sandy loam soil in Taastrup, Denmark. The root studies were conducted by means of the minirhizotron method. Also, a field experiment on the effect of defoliation and N...

  1. Soil zinc and cadmium availability and uptake by wheat (Triticum aestivum L.) as affected by long-term organic matter management

    Science.gov (United States)

    Grüter, Roman; Costerousse, Benjamin; Mayer, Jochen; Mäder, Paul; Thonar, Cécile; Frossard, Emmanuel; Schulin, Rainer; Tandy, Susan

    2017-04-01

    Zinc (Zn) deficiency is a widespread problem in human mineral nutrition. It is mainly caused by imbalanced diets with low contents of bioavailable Zn. This is in particular a problem in populations depending on cereals such as wheat (Triticum aestivum L.) as a major source of this essential micronutrient element. Increasing Zn concentrations in wheat grains (biofortification) is therefore an important challenge. At the same time, increased uptake of the toxic heavy metal cadmium (Cd) must be prevented. Agronomic practises influence soil properties such as pH and soil organic carbon and thus also have an indirect effect on phytoavailable soil Zn and Cd concentrations and the uptake of these metals by wheat in addition to direct inputs with fertilizers and other amendments. This study investigated the effects of long-term organic matter management on the phytoavailability of soil Zn and Cd and their uptake by wheat on plots of two Swiss long-term field trials. In one trial (DOK), a farming system comparison trial established in 1978, we compared plots under conventional management with mineral fertilization either in combination or not with farmyard manure application to plots under biodynamic organic management and control plots with no fertilizer application. In the second trial (ZOFE), established in 1949, we compared different fertilizer regimes on conventionally managed plots, including plots with application of mineral fertilizers only, farmyard manure, or compost and control plots with no fertilizer application. Soil physico-chemical and biological properties were determined at the beginning of the growing season. Soil Zn and Cd availabilities were assessed by the Diffusive Gradients in Thin Films (DGT) method and by DTPA extraction before and after wheat cultivation. Additionally, various wheat yield components and element concentrations in shoots and grains were measured at harvest. In the ZOFE trial, soil Zn and Cd concentrations were lowest in the mineral

  2. Heat tolerance in wheat

    DEFF Research Database (Denmark)

    Sharma, Dew Kumari

    As a consequence of global climate change, heat stress together with other abiotic stresses will remain an important determinant of future food security. Wheat (Triticum aestivum L.) is the third most important crop of the world feeding one third of the world population. Being a crop of temperate...... climate, wheat is sensitive to heat stress. We need to understand how our crops will perform in these changing climatic conditions and how we can develop varieties, which are more tolerant. The PhD study focussed on understanding heat tolerance in wheat with a combined approach of plant physiology...... and quantitative genetics in particular, plant phenotyping based quantitative trait loci (QTL) discovery for a physiological trait under heat stress. Chlorophyll a fluorescence trait, Fv/Fm was used as a phenotyping tool, as it reflects the effect of heat stress on maximum photochemical efficiency of photosystem...

  3. Cadmium stress in wheat seedlings: growth, cadmium accumulation and photosynthesis

    DEFF Research Database (Denmark)

    Ci, Dunwei; Jiang, Dong; Wollenweber, Bernd

    2010-01-01

    parameters were generally depressed by Cd stress, especially under the high Cd concentrations. Cd concentration and accumulation in both shoots and roots increased with increasing external Cd concentrations. Relationships between corrected parameters of growth, photosynthesis and fluorescence and corrected......Seedlings of wheat (Triticum aestivum L.) cultivars Jing 411, Jinmai 30 and Yangmai 10 were exposed to 0, 10, 20, 30, 40 or 50 μM of CdCl2 in a solution culture experiment. The effects of cadmium (Cd) stress on wheat growth, leaf photon energy conversion, gas exchange, and Cd accumulation in wheat...

  4. Chromosome-specific sequencing reveals an extensive dispensable genome component in wheat

    Czech Academy of Sciences Publication Activity Database

    Liu, M.; Stiller, J.; Holušová, Kateřina; Vrána, Jan; Liu, D.; Doležel, Jaroslav; Liu, C.

    2016-01-01

    Roč. 6, NOV 8 (2016), č. článku 36398. ISSN 2045-2322 R&D Projects: GA MŠk(CZ) LO1204; GA ČR GBP501/12/G090 Institutional support: RVO:61389030 Keywords : triticum-aestivum l. * fusarium crown rot * pan-genome * hexaploid wheat * bread wheat * draft genome * rna-seq * maize * transcriptome Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.259, year: 2016

  5. Supplementary data: A complete mitochondrial genome of wheat ...

    Indian Academy of Sciences (India)

    Supplementary data: A complete mitochondrial genome of wheat (Triticum aestivum cv. Chinese Yumai), and fast evolving mitochondrial genes in higher plants. Peng Cui, Huitao Liu, Qiang Lin, Feng Ding, Guoyin Zhuo, Songnian Hu, Dongcheng Liu, Wenlong Yang, Kehui Zhan,. Aimin Zhang and Jun Yu. J. Genet.

  6. Exogenous abscisic acid application during grain filling in winter wheat improves cold tolerance of offspring's seedlings

    DEFF Research Database (Denmark)

    Li, X.; Cai, J.; Liu, Fulai

    2014-01-01

    Low temperature seriously depresses seed germination and seedling growth in winter wheat (Triticum aestivum L.). In this study, wheat plants were sprayed with abscisic acid (ABA) and fluridone (inhibitor of ABA biosynthesis) at 19 days after anthesis (DAA) and repeated at 26 DAA. The seeds of those...

  7. Studies on some ecophysiological traits associated with competitiveness of old and new Iranian bread wheat (Triticum aestivum L. cultivars against wild oat ( Avena ludoviciana L.

    Directory of Open Access Journals (Sweden)

    eskandar zand

    2009-06-01

    Full Text Available An experiment was conducted during 1996-1997 growing season in Mashhad, NE of Iran to evaluate the genetic improvement in ecophysiological traits that enhance the competitiveness of Iranian winter wheat (Triticum aestivuml against wild oat ( Avena ludovicianal. Six Iranian winter wheat cultivars which have been released during the past 40 years were used for this experiment. A factorial experiment was arranged in a randomized complete block design with three replications. Each cultivar was planted at its own optimum seeding rate with and without competition with wild oat. Wild oat was planted at a constant density of 80 plants per square meter. The results showed that more recent cultivars had much higher competitive ability compared to earlier cultivars. Alvand (the most recent cultivar had higher dry matter accumulation, crop growth rate (CGR, leaf area index (LAI and relative leaf area growth rate (RLGR compared to Bezostaya. Alvand had a higher proportion of its leaf area in higher canopy layer. Wild oat was also shorter in height when it was competing with Alvand compared to Bezostaya. It was found that following characteristics were the most important criteria in competitive ability of winter wheat against wild oats: 1 leaf area at the end of tillering stage. 2 final leaf area index. 3 relative leaf area index, and 4 the canopy layer where the higher leaf area was measured

  8. Wheat and barley seed systems in Ethiopia and Syria

    NARCIS (Netherlands)

    Bishaw, Z.

    2004-01-01

    Keywords: Wheat,Triticumspp., Barley,Hordeumvulgare L., Seed Systems, Formal Seed Sector, Informal Seed Sector, National Seed Program, Seed Source, Seed Selection, Seed Management, Seed Quality,

  9. Assessment and Reaction of Triticum aestivum Genotypes to Fusarium graminearum and effects on Traits Related to Grain Yield and Seed Quality

    OpenAIRE

    Chappell, Matthew Randolph

    2001-01-01

    Fusarium graminearum (Schwabe), causal organism of fusarium head blight (FHB), has become a major pathogen of wheat (Triticum aestivum L.) throughout North America. Since its discovery in the United States, the disease has spread south and east until at present it is an annual threat for growers of winter wheat in the Mid-Atlantic region. Yield losses for soft red winter (SRW) wheat averaged 908 kg ha-1 in the FHB outbreak of 1998 (Griffey et al., 1999). The economic loss from this single FHB...

  10. Characterization of zinc uptake, binding, and translocation in intact seedlings of bread and durum wheat cultivars

    International Nuclear Information System (INIS)

    Hart, J.J.; Norvell, W.A.; Welch, R.M.; Sullivan, L.A.; Kochian, L.V.

    1998-01-01

    Durum wheat (Triticum turgidum L. var durum) cultivars exhibit lower Zn efficiency than comparable bread wheat (Triticum aestivum L.) cultivars. To understand the physiological mechanism(s) that confers Zn efficiency, this study used 65Zn to investigate ionic Zn2+ root uptake, binding, and translocation to shoots in seedlings of bread and durum wheat cultivars. Time-dependent Zn2+ accumulation during 90 min was greater in roots of the bread wheat cultivar. Zn2+ cell wall binding was not different in the two cultivars. In each cultivar, concentration-dependent Zn2+ influx was characterized by a smooth, saturating curve, suggesting a carrier-mediated uptake system. At very low solution Zn2+ activities, Zn2+ uptake rates were higher in the bread wheat cultivar. As a result, the Michaelis constant for Zn2+ uptake was lower in the bread wheat cultivar (2.3 micromolar) than in the durum wheat cultivar (3.9 micromolar). Low temperature decreased the rate of Zn2+ influx, suggesting that metabolism plays a role in Zn2+ uptake. Ca inhibited Zn2+ uptake equally in both cultivars. Translocation of Zn to shoots was greater in the bread wheat cultivar, reflecting the higher root uptake rates. The study suggests that lower root Zn2+ uptake rates may contribute to reduced Zn efficiency in durum wheat varieties under Zn-limiting conditions

  11. New winter hardy winter bread wheat cultivar (Triticum aestivum L. Voloshkova

    Directory of Open Access Journals (Sweden)

    Л. М. Голик

    2007-12-01

    Full Text Available Creation of Initial raw for breeding of winter wheat by change of the development type under low temperatures influence was described. Seeds of spring wheat were vernalized in aluminum weighting bottle. By using low temperatures at sawing of M2-6 at the begin ind of optimal terms of sawing of winter wheat, new winter-hardy variety of Voloshkova was bred.

  12. molecular characterization of γ gliadin from durum wheat

    African Journals Online (AJOL)

    R. Mzid

    1 sept. 2017 ... "Gli-A1" encoding a γ-gliadin protein associated with gluten strength and ... Keywords: in silico; Storage Proteins; Gliadin; Triticum ; wheat; ... Les différences qui définissent la propriété de la pâte et sa qualité de cuisson.

  13. Molecular cytogenetic characterization of a new wheat Secale ...

    Indian Academy of Sciences (India)

    A stable, highly fertile wheat Secale africanum substitution line LF24, derived from the F7 generation of a cross between Mianyang11 (MY11) and Triticum durum, S. africanum amphiploid (YF) was identified through molecular cytogenetic analysis. Application of C-banding, in situ hybridization and molecular markers ...

  14. Wheat and barley exposure to nanoceria: Implications for agricultural productivity

    Science.gov (United States)

    The impacts of man-made nanomaterials on agricultural productivity are not yet well understood. A soil microcosm study was performed to assess the physiological, phenological, and yield responses of wheat (Triticum aestivum) and barley (Hordeum vulgare L.) exposed to nanoceria (n...

  15. Submergence sensitivity of durum wheat, bread wheat and barley at the germination stage

    Directory of Open Access Journals (Sweden)

    Iduna Arduini

    2016-06-01

    Full Text Available Soil waterlogging at initial growth stages can cause heavy yield losses of winter cereals. Therefore, the screening for submergence tolerance traits in seeds of commercial varieties is of high concern worldwide. Ten Italian varieties of durum wheat (Triticum durum Desf., bread wheat (T. aestivum L. and barley (Hordeum vulgare L. were investigated for their ability to germinate in submerged conditions and to recover after submergence periods of three to 15 days. Submergence prevented germination and decreased germinability, at rates that increased with duration of submergence. Sensitivity ranked in the order: barley >durum wheat >bread wheat. We related the higher sensitivity of barley to its slower germination and slightly higher leakage of electrolytes, whereas the percentage of abnormal seedlings was lower than in other species. It was less than 4%, compared to less than 15 and 8% in durum wheat and bread wheat, respectively. Wide varietal differences were found in all species. According to variety, after 6-day submergence, germinability ranged from 2 to 42% in barley, from 5 to 80% in durum wheat, and from 30 to 77% in bread wheat. Varieties with more than 40% seed survival were three, six and seven per species, in the same order. The differential submergence sensitivity of varieties indicates a potential to select for waterlogging tolerance within Italian genotypes of winter cereal crops.

  16. End-use quality of CIMMYT-derived soft kernel durum wheat germplasm. II. Dough strength and pan bread quality

    Science.gov (United States)

    Durum wheat (Triticum turgidum ssp. durum) is considered unsuitable for the majority of commercial bread production because its weak gluten strength combined with flour particle size and flour starch damage after milling are not commensurate with hexaploid wheat flours. Recently a new durum cultivar...

  17. The effect of plant growth promoting rhizobacteria, nitrogen and phosphorus on relative agronomic efficiency of fertilizers, growth parameters and yield of wheat (Triticum aestivum L. cultivar N-80-19 in Sari

    Directory of Open Access Journals (Sweden)

    Z. Saber

    2016-05-01

    Full Text Available In order to evaluate the efficiency of plant growth promoting rhizobacteria (PGPR plus nitrogen and phosphorous chemical fertilizers on relative agronomic efficiency of P and N fertilizers and some agronomic parameters of wheat (Triticum aestivum L. cultivar N-80-19, an experiment was conducted at Sari Agricultural Sciences and Natural Resources University during growing season of 2008-2009. Experiment was arranged in split-split plot based on randomized complete block design with three levels (0, 25 and 50 kg.ha-1 and sub-plots were considered PGPR at four levels (control, inoculation with nitrogen fixing bacteria (PFB, phosphate solubilizing bacteria (PSB and dual inoculation with PFB and PSB with three replications. Results showed that the application of biofertilizers significantly increased relative agronomic efficiency of N and P fertilizers, spike number, plant height, flag leaf area, grain yield and grain weight of wheat. Application of biofertilizers increased wheat grain yield as much as 46.6% as compared to control. Double inoculation of biofertilizers improved relative agronomic efficiency of fertilizers by 58.4 and 76.5% as compared to control, respectively. Integrated treatments showed higher performance compared to separate treatments. Generally, biofertilizers with low levels of P and N fertilizers significantly improved yield components of wheat without any reduction in yield related parameters.

  18. Microbial Diversity of Type I Sourdoughs Prepared and Back-Slopped with Wholemeal and Refined Soft (Triticum aestivum) Wheat Flours.

    Science.gov (United States)

    Taccari, Manuela; Aquilanti, Lucia; Polverigiani, Serena; Osimani, Andrea; Garofalo, Cristiana; Milanović, Vesna; Clementi, Francesca

    2016-08-01

    The fermentation of type I sourdough was studied for 20 d with daily back-slopping under laboratory and artisan bakery conditions using 1 wholemeal and 2 refined soft wheat (Triticum aestivum) flours. The sourdough bacterial and yeast diversity and dynamics were investigated by plate counting and a combination of culture-dependent and culture-independent PCR-DGGE approach. The pH, total titrable acidity, and concentration of key organic acids (phytic, lactic, and acetic) were measured. Three flours differed for both chemical and rheological properties. A microbial succession was observed, with the atypical sourdough species detected at day 0 (i.e. Lactococcus lactis and Leuconostoc holzapfelii/citreum group for bacteria and Candida silvae and Wickerhamomyces anomalus for yeasts) being progressively replaced by taxa more adapted to the sourdough ecosystem (Lactobacillus brevis, Lactobacillus alimentarius/paralimentarius, Saccharomyces cerevisiae). In mature sourdoughs, a notably different species composition was observed. As sourdoughs propagated with the same flour at laboratory and artisan bakery level were compared, the influence of both the substrate and the propagation environment on microbial diversity was assumed. © 2016 Institute of Food Technologists®

  19. A genome-wide identification of chromosomal regions determining nitrogen use efficiency components in wheat (Triticum aestivum L.).

    Science.gov (United States)

    Cormier, Fabien; Le Gouis, Jacques; Dubreuil, Pierre; Lafarge, Stéphane; Praud, Sébastien

    2014-12-01

    This study identified 333 genomic regions associated to 28 traits related to nitrogen use efficiency in European winter wheat using genome-wide association in a 214-varieties panel experimented in eight environments. Improving nitrogen use efficiency is a key factor to sustainably ensure global production increase. However, while high-throughput screening methods remain at a developmental stage, genetic progress may be mainly driven by marker-assisted selection. The objective of this study was to identify chromosomal regions associated with nitrogen use efficiency-related traits in bread wheat (Triticum aestivum L.) using a genome-wide association approach. Two hundred and fourteen European elite varieties were characterised for 28 traits related to nitrogen use efficiency in eight environments in which two different nitrogen fertilisation levels were tested. The genome-wide association study was carried out using 23,603 SNP with a mixed model for taking into account parentage relationships among varieties. We identified 1,010 significantly associated SNP which defined 333 chromosomal regions associated with at least one trait and found colocalisations for 39 % of these chromosomal regions. A method based on linkage disequilibrium to define the associated region was suggested and discussed with reference to false positive rate. Through a network approach, colocalisations were analysed and highlighted the impact of genomic regions controlling nitrogen status at flowering, precocity, and nitrogen utilisation on global agronomic performance. We were able to explain 40 ± 10 % of the total genetic variation. Numerous colocalisations with previously published genomic regions were observed with such candidate genes as Ppd-D1, Rht-D1, NADH-Gogat, and GSe. We highlighted selection pressure on yield and nitrogen utilisation discussing allele frequencies in associated regions.

  20. Effects of drought stress condition on the yield of spring wheat ...

    African Journals Online (AJOL)

    Effects of drought stress condition on the yield of spring wheat ( Triticum aestivum ) lines. ... Drought stress tolerance is seen in almost all plants but its extent varies from species to species and even within species. ... from 32 Countries:.

  1. Dissecting the U, M, S and C genomes of wild relatives of bread wheat (Aegilops spp.) into chromosomes and exploring their synteny with wheat

    Czech Academy of Sciences Publication Activity Database

    Molnár, I.; Vrána, Jan; Burešová, Veronika; Cápal, Petr; Farkas, A.; Darko, E.; Cseh, A.; Kubaláková, Marie; Molnár-Láng, M.; Doležel, Jaroslav

    2016-01-01

    Roč. 88, č. 3 (2016), s. 452-467 ISSN 0960-7412 R&D Projects: GA MŠk(CZ) LO1204 Institutional support: RVO:61389030 Keywords : tertiary gene pool * triticum-aestivum * common wheat * addition lines * mitotic chromosomes * plant chromosomes * hexaploid wheat * ae. speltoides * dna-sequences * rye genome * Aegilops umbellulata * Aegilops comosa * Aegilops speltoides * Aegilops markgrafii * flow cytometric chromosome sorting * fluorescence insitu hybridization * conserved orthologous set markers Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 5.901, year: 2016

  2. Expression of TpNRAMP5, a metal transporter from Polish wheat (Triticum polonicum L.), enhances the accumulation of Cd, Co and Mn in transgenic Arabidopsis plants.

    Science.gov (United States)

    Peng, Fan; Wang, Chao; Zhu, Jianshu; Zeng, Jian; Kang, Houyang; Fan, Xing; Sha, Lina; Zhang, Haiqin; Zhou, Yonghong; Wang, Yi

    2018-06-01

    TpRNAMP5 is mainly expressed in the plasma membrane of roots and basal stems. It functions as a metal transporter for Cd, Mn and Co accumulation. Numerous natural resistance-associated macrophage proteins (NRAMPs) have been functionally identified in various plant species, including Arabidopsis, rice, soybean and tobacco, but no information is available on NRAMP genes in wheat. In this study, we isolated a TpNRAMP5 from dwarf Polish wheat (DPW, Triticum polonicum L.), a species with high tolerance to Cd and Zn. Expression pattern analysis revealed that TpNRAMP5 is mainly expressed in roots and basal stems of DPW. TpNRAMP5 was localized at the plasma membrane of Arabidopsis leaf protoplast. Expression of TpNRAMP5 in yeast significantly increased yeast sensitivity to Cd and Co, but not Zn, and enhanced Cd and Co concentrations. Expression of TpNRAMP5 in Arabidopsis significantly increased Cd, Co and Mn concentrations in roots, shoots and whole plants, but had no effect on Fe and Zn concentrations. These results indicate that TpNRAMP5 is a metal transporter enhancing the accumulation of Cd, Co and Mn, but not Zn and Fe. Genetic manipulation of TpNRAMP5 can be applied in the future to limit the transfer of Cd from soil to wheat grains, thereby protecting human health.

  3. Alien DNA introgression and wheat DNA rearrangements in a stable wheat line derived from the early generation of distant hybridization.

    Science.gov (United States)

    Zhang, Lianquan; Liu, Dengcai; Yan, Zehong; Zheng, Youliang

    2005-10-01

    Polyploidy has been found to be common in plants. Bread or common wheat (Triticum aestivum L., 2n=42) is a good example of allopolyploid made up of three diploid genomes A, B and D. In recent years, by the study of mimicking the origination of common wheat, it was found that changes of DNA sequence and gene expression occurred at the early stages of artificial allohexaploid between tetraploid wheat and Aegilops tauschii, which was probably favorable to genetic diploidization of new synthetic hexaploid wheat. Common wheat 99L2 is a new line stable in genetic, which was derived from the early self-pollinated generation of wide hybrids between common wheat and rye. In this study, it was found that at least two rye DNA segments had been introgressed into 99L2. This result suggested that a mechanism of alien DNA introgression may exist, which was different from the traditional mechanism of chromosome pairing and DNA recombination between wheat and alien species. Meanwhile, during the introgression process of alien rye DNA segments, the changes in DNA sequences of wheat itself occurred.

  4. Modeling end-use quality in U. S. soft wheat germplasm

    Science.gov (United States)

    End-use quality in soft wheat (Triticum aestivum L.) can be assessed by a wide array of measurements, generally categorized into grain, milling, and baking characteristics. Samples were obtained from four regional nurseries. Selected parameters included: test weight, kernel hardness, kernel size, ke...

  5. The Impact of Diet Wheat Source on the Onset of Type 1 Diabetes Mellitus-Lessons Learned from the Non-Obese Diabetic (NOD) Mouse Model.

    Science.gov (United States)

    Gorelick, Jonathan; Yarmolinsky, Ludmila; Budovsky, Arie; Khalfin, Boris; Klein, Joshua D; Pinchasov, Yosi; Bushuev, Maxim A; Rudchenko, Tatiana; Ben-Shabat, Shimon

    2017-05-10

    Nutrition, especially wheat consumption, is a major factor involved in the onset of type 1 diabetes (T1D) and other autoimmune diseases such as celiac. While modern wheat cultivars possess similar gliadin proteins associated with the onset of celiac disease and T1D, alternative dietary wheat sources from Israeli landraces and native ancestral species may be lacking the epitopes linked with T1D, potentially reducing the incidence of T1D. The Non-Obese Diabetic (NOD) mouse model was used to monitor the effects of dietary wheat sources on the onset and development of T1D. The effects of modern wheat flour were compared with those from either T. aestivum , T. turgidum spp. dicoccoides , or T. turgidum spp. dicoccum landraces or a non-wheat diet. Animals which received wheat from local landraces or ancestral species such as emmer displayed a lower incidence of T1D and related complications compared to animals fed a modern wheat variety. This study is the first report of the diabetogenic properties of various dietary wheat sources and suggests that alternative dietary wheat sources may lack T1D linked epitopes, thus reducing the incidence of T1D.

  6. Assessment of genetic diversity among Syrian durum (Triticum turgidum ssp. durum) and bread wheat (Triticum aestivum L.) using SSR markers.

    Science.gov (United States)

    Achtar, S; Moualla, M Y; Kalhout, A; Röder, M S; MirAli, N

    2010-11-01

    Genetic diversity among 49 wheat varieties (37 durum and 12 bread wheat) was assayed using 32 microsatellites representing 34 loci covering almost the whole wheat genome. The polymorphic information content (PIC) across the tested loci ranged from 0 to 0.88 with average values of 0.57 and 0.65 for durum and bread wheat respectively. B genome had the highest mean number of alleles (10.91) followed by A genome (8.3) whereas D genome had the lowest number (4.73). The correlation between PIC and allele number was significant in all genome groups accounting for 0.87, 074 and 0.84 for A, B and D genomes respectively, and over all genomes, the correlation was higher in tetraploid (0.8) than in hexaploid wheat varieties (0.5). The cluster analysis discriminated all varieties and clearly divided the two ploidy levels into two separate clusters that reflect the differences in genetic diversity within each cluster. This study demonstrates that microsatellites markers have unique advantages compared to other molecular and biochemical fingerprinting techniques in revealing the genetic diversity in Syrian wheat varieties that is crucial for wheat improvement.

  7. Identification and characterization of Sr13, a tetraploid wheat gene that confers resistance to the Ug99 stem rust race group

    Science.gov (United States)

    The Puccinia graminis f. sp. tritici (Pgt) Ug99 race group is virulent to most stem rust resistance genes currently deployed in wheat and poses a serious threat to global wheat production. The durum wheat (Triticum turgidum ssp. durum) gene Sr13 confers resistance to Ug99 in addition to virulent rac...

  8. Phenolic acids and antioxidant activity of wheat species: a review

    Directory of Open Access Journals (Sweden)

    Leváková Ľudmila

    2017-10-01

    Full Text Available Wheat (genus Triticum is considered to be an important source of polyphenols, plant secondary metabolites with numerous health-promoting effects. Many phytochemicals are responsible for the high antioxidant activity of whole grain products. However, there is a lack of information about composition of phenolic acids and their concentrations in different Triticum species. Despite the fact that the increased consumption of whole grain cereals and whole grain-based products has been closely related to reduced risk of chronic diseases, bioactive compounds found in whole grain cereals have not achieved as much attention as the bioactive compounds in vegetables and fruits. Recent studies have revealed that the content of bioactive compounds and antioxidant capacity of whole grain cereals have been regularly undervalued in the literature, because they contain more polyphenols and other phytochemicals than was reported in the past. Phenolic acids represent a large group of bioactive compounds in cereals. These compounds play a significant role in the possible positive effects of the human diet rich in whole grain cereals, especially in wheat and provide health benefits associated with demonstrably diminished risk of chronic disease development. Ferulic acid, the primary and the most abundant phenolic acid contained in wheat grain, is mainly responsible for the antioxidant activity of wheat, particularly bran fraction. In this paper, selected phenolic compounds in wheat, their antioxidant activity and health benefits related to consumption of whole grain cereals are reviewed.

  9. Effect of silicon on wheat seedlings (Triticum turgidum L.) grown in hydroponics and exposed to 0 to 30 µM Cu.

    Science.gov (United States)

    Keller, C; Rizwan, M; Davidian, J-C; Pokrovsky, O S; Bovet, N; Chaurand, P; Meunier, J-D

    2015-04-01

    Aqueous Si limits Cu uptake by a Si-accumulating plant via physicochemical mechanisms occurring at the root level. Sufficient Si supply may alleviate Cu toxicity in Cu-contaminated soils. Little information is available on the role of silicon (Si) in copper (Cu) tolerance while Cu toxicity is widespread in crops grown on Cu-contaminated soils. A hydroponic study was set up to investigate the influence of Si on Cu tolerance in durum wheat (Triticum turgidum L.) grown in 0, 0.7, 7.0 and 30 µM Cu without and with 1.0 mM Si, and to identify the mechanisms involved in mitigation of Cu toxicity. Si supply alleviated Cu toxicity in durum wheat at 30 µM Cu, while Cu significantly increased Si concentration in roots. Root length, photosynthetic pigments concentrations, macroelements, and organic anions (malate, acetate and aconitate) in roots, were also increased. Desorption experiments, XPS analysis of the outer thin root surface (≤100 Å) and µXRF analyses showed that Si increased adsorption of Cu at the root surface as well as Cu accumulation in the epidermis while Cu was localised in the central cylinder when Si was not applied. Copper was not detected in phytoliths. This study provides evidences for Si-mediated alleviation of Cu toxicity in durum wheat. It also shows that Si supplementation to plants exposed to increasing levels of Cu in solution induces non-simultaneous changes in physiological parameters. We propose a three-step mechanism occurring mainly at the root level and limiting Cu uptake and translocation to shoots: (i) increased Cu adsorption onto the outer thin layer root surface and immobilisation in the vicinity of root epidermis, (ii) increased Cu complexation by both inorganic and organic anions such as aconitate and, (iii) limitation of translocation through an enhanced thickening of a Si-loaded endodermis.

  10. BAC Libraries from Wheat Chromosome 7D: Efficient Tool for Positional Cloning of Aphid Resistance Genes

    Czech Academy of Sciences Publication Activity Database

    Šimková, Hana; Šafář, Jan; Kubaláková, Marie; Suchánková, Pavla; Čihalíková, Jarmila; Robert-Quatre, Heda; Azhaguvel, P.; Weng, Y. Q.; Peng, J.; Lapitan, N. L. V.; Ma, Y. Q.; You, F. M.; Luo, M. C.; Bartoš, Jan; Doležel, Jaroslav

    -, č. 302543 (2011), s. 1-11 ISSN 1110-7243 R&D Projects: GA ČR GA521/07/1573; GA MŠk(CZ) LC06004 Institutional research plan: CEZ:AV0Z50380511 Keywords : TRITICUM-AESTIVUM L. * HEXAPLOID WHEAT * BREAD WHEAT Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.436, year: 2011

  11. Neutron activation analysis of wheat samples

    International Nuclear Information System (INIS)

    Galinha, C.; Anawar, H.M.; Freitas, M.C.; Pacheco, A.M.G.; Almeida-Silva, M.; Coutinho, J.; Macas, B.; Almeida, A.S.

    2011-01-01

    The deficiency of essential micronutrients and excess of toxic metals in cereals, an important food items for human nutrition, can cause public health risk. Therefore, before their consumption and adoption of soil supplementation, concentrations of essential micronutrients and metals in cereals should be monitored. This study collected soil and two varieties of wheat samples-Triticum aestivum L. (Jordao/bread wheat), and Triticum durum L. (Marialva/durum wheat) from Elvas area, Portugal and analyzed concentrations of As, Cr, Co, Fe, K, Na, Rb and Zn using Instrumental Neutron Activation Analysis (INAA) to focus on the risk of adverse public health issues. The low variability and moderate concentrations of metals in soils indicated a lower significant effect of environmental input on metal concentrations in agricultural soils. The Cr and Fe concentrations in soils that ranged from 93-117 and 26,400-31,300 mg/kg, respectively, were relatively high, but Zn concentration was very low (below detection limit Fe>Na>Zn>Cr>Rb>As>Co. Concentrations of As, Co and Cr in root, straw and spike of both varieties were higher than the permissible limits with exception of a few samples. The concentrations of Zn in root, straw and spike were relatively low (4-30 mg/kg) indicating the deficiency of an essential micronutrient Zn in wheat cultivated in Portugal. The elemental transfer from soil to plant decreases with increasing growth of the plant. The concentrations of various metals in different parts of wheat followed the order: Root>Straw>Spike. A few root, straw and spike samples showed enrichment of metals, but the majority of the samples showed no enrichment. Potassium is enriched in all samples of root, straw and spike for both varieties of wheat. Relatively to the seed used for cultivation, Jordao presented higher transfer coefficients than Marialva, in particular for Co, Fe, and Na. The Jordao and Marialva cultivars accumulated not statistically significant different

  12. Characterization and glutenin diversity in tetraploid wheat varieties ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-11-19

    Nov 19, 2008 ... Important methods applied for the breeding of bread-quality wheat (Triticum durum L.) consist of small- scale bread-quality tests for the determination of the grain protein content, SDS-sedimentation volume, thousand weight kernel and ... marked as a x and y – type subunits, based on their electrophoretic ...

  13. incidence and distribution of insect pests in rain-fed wheat in eastern

    African Journals Online (AJOL)

    ACSS

    Insect pests are some of the major constraints limiting yield of wheat (Triticum aestivum L.) in East Africa. The objective of this ... control measure applied, type of variety grown and agronomic .... development of an integrated pest management.

  14. Soil nutrient patchiness and genotypes interact on the quantity, quality and decomposition of roots versus shoots of Triticum aestivum.

    NARCIS (Netherlands)

    He, W.M.; Shen, Y.; Cornelissen, J.H.C.

    2012-01-01

    Aims: The purpose of this study was to test the hypotheses that soil nutrient patchiness can differentially benefit the decomposition of root and shoot litters and that this facilitation depends on plant genotypes. Methods: We grew 15 cultivars (i. e. genotypes) of winter wheat (Triticum aestivum

  15. Alpha-gliadin genes from the A, B, and D genomes of wheat contain different sets of celiac disease epitopes

    NARCIS (Netherlands)

    Herpen, van T.W.J.M.; Goryunova-Svetlana, V.; Schoot, van der J.; Mitreva, M.; Salentijn, E.M.J.; Vorst, O.F.J.; Schenk, M.F.; Veelen, van P.; Koning, de F.; Soest, van L.J.M.; Vosman, B.J.; Bosch, H.J.; Gilissen, L.J.W.J.; Smulders, M.J.M.

    2006-01-01

    Background - Bread wheat (Triticum aestivum) is an important staple food. However, wheat gluten proteins cause celiac disease (CD) in 0.5 to 1% of the general population. Among these proteins, the a-gliadins contain several peptides that are associated to the disease. Results - We obtained 230

  16. Intergenerational studies on the effects of cerium oxide nanoparticles in wheat

    Science.gov (United States)

    The intergenerational impacts of engineered nanomaterials in plants are not yet well understood. A soil microcosm study was performed to assess the physiology, phenology, yield and nutrient uptake in wheat (Triticum aestivum) exposed to nanoceria (nCeO2). Seeds from parental plan...

  17. Early interspecific interference in the wheat/faba bean (Triticum aestivum/ Vicia faba ssp. minor and rapeseed/squarrosum clover (Brassica napus var. oleifera/Trifolium squarrosum intercrops

    Directory of Open Access Journals (Sweden)

    Paolo Benincasa

    2012-04-01

    Full Text Available Most of research on intercrops evaluate performances and interference between species on the basis of final yield, while little knowledge is available on the interference in early stages and at the root level, at least for cultivated intercrops. In fact, in the few studies on this subject species are often combined minding at experimental needs (e.g. common substrate, temperature and water requirements, easy root separation more than at their actual use in the farm. The present work evaluates interspecific interference during early developmental stages for two intercrops of agricultural interest: soft wheat-faba bean and rapeseed-squarrosum clover. Improving this knowledge would help intercrop growth modelling and rational cultivation. The experiments were carried out on soft wheat (Triticum aestivum, faba bean (Vicia faba var. minor, rapeseed (Brassica napus var. oleifera and squarrosum clover (Trifolium squarrosum, germinated and grown until 32 days after sowing (DAS as one-species stands or as wheat/faba bean and rapeseed/squarrosum clover intercrops, with different densities and proportions for the two species in each couple. Germination was studied in controlled-temperature chamber, plantlet growth was studied on pots in the greenhouse. During germination no interspecific interference was observed for both wheat/faba bean and rapeseed/squarrosum clover intercrops. During plantlet growth, interspecific interference occurred in both intercrops causing variations in whole plant and root dry matter accumulation. In the wheat/faba bean intercrop each species suffered from the competitive effect of the companion species and faba bean was the dominant species when present in lower proportion than wheat. The unexpectedly high aggressivity of faba bean may be explained either with the greater seed size that could have represented an initial advantage within the short duration of the experiment or with the competition towards wheat for substrate N

  18. Molecular markers validation to drought resistance in wheat meal (Triticum aestivum L. under greenhouse conditions

    Directory of Open Access Journals (Sweden)

    Gabriel Julio

    2013-08-01

    Full Text Available With the aim to study the genetic resistance to drought and validate molecular markers co-localized with genes/QTLs for this factor, 16 varieties were evaluated as well as advanced lines of wheat meal (Triticum aestivum in two stages of crop development. Physiological parameters were considered: amount of chlorophyll (clo, wilting or severity degree (SEV and recovery (reco, morphological parameters: foliage dry matter (FDM and root dry matter (RDM, the integrated resistance mechanisms: water use efficiency (WUE, other parameters: number of grains (Ngrain and grain weight (Wgrain, biochemical parameters: Catalaza (CAT, Ascorbate Peroxidase (APX and Guaiacol Peroxidase (POX and three microsatellite markers (Xwmc603, Xwmc596, Xwmc9. Results showed significant differences for MSR and Ngrain. It was observed that Anzaldo, ERR2V.L-20, EARII2V.L-5, EARIZV.L-11, ERR2V.L-11 and EE2V.L-19 were the most resistant to drough water stress. There was a highly significant negative correlation between the MSR and Ngrain. All other variables showed low and non-significant correlations. In biochemical analyzes, the Anzaldo variety showed an increased enzymatic activity compared to controls in all cases (CAT-APX and POX, being the most resistant to water stress by drought. Finally, it was found that SSR markers (Xwmc596 and Xwmc9 are co-located with the gene / QTL of drought resistance and can be used for marker-assisted selection.

  19. Neutron activation analysis of wheat samples

    Energy Technology Data Exchange (ETDEWEB)

    Galinha, C. [CERENA-IST, Technical University of Lisbon, Av. Rovisco Pais 1, 1049-001 Lisboa (Portugal); Instituto Tecnoclogico e Nuclear, URSN, E.N. 10, 2686-953 Sacavem (Portugal); Anawar, H.M. [Instituto Tecnoclogico e Nuclear, URSN, E.N. 10, 2686-953 Sacavem (Portugal); Freitas, M.C., E-mail: cfreitas@itn.pt [Instituto Tecnoclogico e Nuclear, URSN, E.N. 10, 2686-953 Sacavem (Portugal); Pacheco, A.M.G. [CERENA-IST, Technical University of Lisbon, Av. Rovisco Pais 1, 1049-001 Lisboa (Portugal); Almeida-Silva, M. [Instituto Tecnoclogico e Nuclear, URSN, E.N. 10, 2686-953 Sacavem (Portugal); Coutinho, J.; Macas, B.; Almeida, A.S. [INRB/INIA-Elvas, National Institute of Biological Resources, Est. Gil Vaz, 7350-228 Elvas (Portugal)

    2011-11-15

    The deficiency of essential micronutrients and excess of toxic metals in cereals, an important food items for human nutrition, can cause public health risk. Therefore, before their consumption and adoption of soil supplementation, concentrations of essential micronutrients and metals in cereals should be monitored. This study collected soil and two varieties of wheat samples-Triticum aestivum L. (Jordao/bread wheat), and Triticum durum L. (Marialva/durum wheat) from Elvas area, Portugal and analyzed concentrations of As, Cr, Co, Fe, K, Na, Rb and Zn using Instrumental Neutron Activation Analysis (INAA) to focus on the risk of adverse public health issues. The low variability and moderate concentrations of metals in soils indicated a lower significant effect of environmental input on metal concentrations in agricultural soils. The Cr and Fe concentrations in soils that ranged from 93-117 and 26,400-31,300 mg/kg, respectively, were relatively high, but Zn concentration was very low (below detection limit <22 mg/kg) indicating that soils should be supplemented with Zn during cultivation. The concentrations of metals in roots and straw of both varieties of wheat decreased in the order of K>Fe>Na>Zn>Cr>Rb>As>Co. Concentrations of As, Co and Cr in root, straw and spike of both varieties were higher than the permissible limits with exception of a few samples. The concentrations of Zn in root, straw and spike were relatively low (4-30 mg/kg) indicating the deficiency of an essential micronutrient Zn in wheat cultivated in Portugal. The elemental transfer from soil to plant decreases with increasing growth of the plant. The concentrations of various metals in different parts of wheat followed the order: Root>Straw>Spike. A few root, straw and spike samples showed enrichment of metals, but the majority of the samples showed no enrichment. Potassium is enriched in all samples of root, straw and spike for both varieties of wheat. Relatively to the seed used for cultivation

  20. Comparative functional analysis of wheat (Triticum aestivum) zinc finger-containing glycine-rich RNA-binding proteins in response to abiotic stresses.

    Science.gov (United States)

    Xu, Tao; Gu, Lili; Choi, Min Ji; Kim, Ryeo Jin; Suh, Mi Chung; Kang, Hunseung

    2014-01-01

    Although the functional roles of zinc finger-containing glycine-rich RNA-binding proteins (RZs) have been characterized in several plant species, including Arabidopsis thaliana and rice (Oryza sativa), the physiological functions of RZs in wheat (Triticum aestivum) remain largely unknown. Here, the functional roles of the three wheat RZ family members, named TaRZ1, TaRZ2, and TaRZ3, were investigated using transgenic Arabidopsis plants under various abiotic stress conditions. Expression of TaRZs was markedly regulated by salt, dehydration, or cold stress. The TaRZ1 and TaRZ3 proteins were localized to the nucleus, whereas the TaRZ2 protein was localized to the nucleus, endoplasmic reticulum, and cytoplasm. Germination of all three TaRZ-expressing transgenic Arabidopsis seeds was retarded compared with that of wild-type seeds under salt stress conditions, whereas germination of TaRZ2- or TaRZ3-expressing transgenic Arabidopsis seeds was retarded under dehydration stress conditions. Seedling growth of TaRZ1-expressing transgenic plants was severely inhibited under cold or salt stress conditions, and seedling growth of TaRZ2-expressing plants was inhibited under salt stress conditions. By contrast, expression of TaRZ3 did not affect seedling growth of transgenic plants under any of the stress conditions. In addition, expression of TaRZ2 conferred freeze tolerance in Arabidopsis. Taken together, these results suggest that different TaRZ family members play various roles in seed germination, seedling growth, and freeze tolerance in plants under abiotic stress.

  1. Prediction and analysis of three gene families related to leaf rust (Puccinia triticina) resistance in wheat (Triticum aestivum L.).

    Science.gov (United States)

    Peng, Fred Y; Yang, Rong-Cai

    2017-06-20

    The resistance to leaf rust (Lr) caused by Puccinia triticina in wheat (Triticum aestivum L.) has been well studied over the past decades with over 70 Lr genes being mapped on different chromosomes and numerous QTLs (quantitative trait loci) being detected or mapped using DNA markers. Such resistance is often divided into race-specific and race-nonspecific resistance. The race-nonspecific resistance can be further divided into resistance to most or all races of the same pathogen and resistance to multiple pathogens. At the molecular level, these three types of resistance may cover across the whole spectrum of pathogen specificities that are controlled by genes encoding different protein families in wheat. The objective of this study is to predict and analyze genes in three such families: NBS-LRR (nucleotide-binding sites and leucine-rich repeats or NLR), START (Steroidogenic Acute Regulatory protein [STaR] related lipid-transfer) and ABC (ATP-Binding Cassette) transporter. The focus of the analysis is on the patterns of relationships between these protein-coding genes within the gene families and QTLs detected for leaf rust resistance. We predicted 526 ABC, 1117 NLR and 144 START genes in the hexaploid wheat genome through a domain analysis of wheat proteome. Of the 1809 SNPs from leaf rust resistance QTLs in seedling and adult stages of wheat, 126 SNPs were found within coding regions of these genes or their neighborhood (5 Kb upstream from transcription start site [TSS] or downstream from transcription termination site [TTS] of the genes). Forty-three of these SNPs for adult resistance and 18 SNPs for seedling resistance reside within coding or neighboring regions of the ABC genes whereas 14 SNPs for adult resistance and 29 SNPs for seedling resistance reside within coding or neighboring regions of the NLR gene. Moreover, we found 17 nonsynonymous SNPs for adult resistance and five SNPs for seedling resistance in the ABC genes, and five nonsynonymous SNPs for

  2. Analysis of transgenic wheat (Triticum aestivum L.) harboring a maize (Zea mays L.) gene for plastid EF-Tu: segregation pattern, expression and effects of the transgene.

    Science.gov (United States)

    Fu, Jianming; Ristic, Zoran

    2010-06-01

    We previously reported that transgenic wheat (Triticum aestivum L.) carrying a maize (Zea mays L.) gene (Zmeftu1) for chloroplast protein synthesis elongation factor, EF-Tu, displays reduced thermal aggregation of leaf proteins, reduced injury to photosynthetic membranes (thylakoids), and enhanced rate of CO(2) fixation following exposure to heat stress (18 h at 45 degrees C) [Fu et al. in Plant Mol Biol 68:277-288, 2008]. In the current study, we investigated the segregation pattern and expression of the transgene Zmeftu1 and determined the grain yield of transgenic plants after exposure to a brief heat stress (18 h at 45 degrees C). We also assessed thermal aggregation of soluble leaf proteins in transgenic plants, testing the hypothesis that increased levels of EF-Tu will lead to a non-specific protection of leaf proteins against thermal aggregation. The transgenic wheat displayed a single-gene pattern of segregation of Zmeftu1. Zmeftu1 was expressed, and the transgenic plants synthesized and accumulated three anti-EF-Tu cross-reacting polypeptides of similar molecular mass but different pI, suggesting the possibility of posttranslational modification of this protein. The transgenic plants also showed better grain yield after exposure to heat stress compared with their non-transgenic counterparts. Soluble leaf proteins of various molecular masses displayed lower thermal aggregation in transgenic than in non-transgenic wheat. The results suggest that overexpression of chloroplast EF-Tu can be beneficial to wheat tolerance to heat stress. Moreover, the results also support the hypothesis that EF-Tu contributes to heat tolerance by acting as a molecular chaperone and protecting heat-labile proteins from thermal aggregation in a non-specific manner.

  3. The nitrate leached below maize root zone is available for deep-rooted wheat in winter wheat-summer maize rotation in the North China Plain

    Energy Technology Data Exchange (ETDEWEB)

    Zhou Shunli [Key Laboratory of Crop Cultivation and Farming System, Ministry of Agriculture, College of Agronomy and Biotechnology, China Agricultural University, 2 West Yuanmingyuan Road, Beijing 100094 (China)], E-mail: zhoushl@cau.edu.cn; Wu Yongcheng [Key Laboratory of Crop Cultivation and Farming System, Ministry of Agriculture, College of Agronomy and Biotechnology, China Agricultural University, 2 West Yuanmingyuan Road, Beijing 100094 (China); College of Agronomy, Si Chuan Agricultural University, Yaan 625014 (China); Wang Zhimin [Key Laboratory of Crop Cultivation and Farming System, Ministry of Agriculture, College of Agronomy and Biotechnology, China Agricultural University, 2 West Yuanmingyuan Road, Beijing 100094 (China); Lu Laiqing; Wang Runzheng [Wuqiao Experimental Station, China Agricultural University, Hebei 061802 (China)

    2008-04-15

    In winter wheat (Triticum aestivum L.)-summer maize (Zea mays L.) rotation system in the North China Plain, maize roots do not extend beyond 1.2 m in the vertical soil profile, but wheat roots can reach up to 2.0 m. Increases in soil nitrate content at maize harvest and significant reductions after winter wheat harvest were observed in the 1.4-2.0 m depth under field conditions. The recovery of {sup 15}N isotope (calcium nitrate) from various (1.0, 1.2, 1.4, 1.6, 1.8 and 2.0 m) soil depths showed that deep-rooting winter wheat could use soil nitrate up to the 2.0 m depth. This accounted partially, for the reduced nitrate in the 1.4-2.0 m depth of the soil after harvest of wheat in the rotation system. - Deep-rooted wheat can recycle nitrate leached from maize root zone in winter wheat-summer maize rotation system.

  4. The nitrate leached below maize root zone is available for deep-rooted wheat in winter wheat-summer maize rotation in the North China Plain

    International Nuclear Information System (INIS)

    Zhou Shunli; Wu Yongcheng; Wang Zhimin; Lu Laiqing; Wang Runzheng

    2008-01-01

    In winter wheat (Triticum aestivum L.)-summer maize (Zea mays L.) rotation system in the North China Plain, maize roots do not extend beyond 1.2 m in the vertical soil profile, but wheat roots can reach up to 2.0 m. Increases in soil nitrate content at maize harvest and significant reductions after winter wheat harvest were observed in the 1.4-2.0 m depth under field conditions. The recovery of 15 N isotope (calcium nitrate) from various (1.0, 1.2, 1.4, 1.6, 1.8 and 2.0 m) soil depths showed that deep-rooting winter wheat could use soil nitrate up to the 2.0 m depth. This accounted partially, for the reduced nitrate in the 1.4-2.0 m depth of the soil after harvest of wheat in the rotation system. - Deep-rooted wheat can recycle nitrate leached from maize root zone in winter wheat-summer maize rotation system

  5. Endophytic fungi isolated from wheat (Triticum durum Desf.): evaluation of their antimicrobial activity, antioxidant activity and host growth promotion.

    Science.gov (United States)

    Harzallah, Daoud; Sadrati, Nouari; Zerroug, Amina; Dahamna, Saliha; Bouharati, Saddek

    2012-01-01

    The emergence of antibiotic-resistant micro-organisms calls for inventive research and development strategies. The screening for antimicrobial compounds from endophytes is a promising way to meet the increasing threat of drug-resistant strains of human and plant pathogens. Endophytes may be defined as "microbes that colonize living, internal tissues of plants without causing any immediate, overt negative effects". Endophytes are relatively unstudied as potential sources of novel natural products for exploitation in medicine, agriculture, and industry. The purpose of this study was to evaluate several isolated fungi from wheat (Triticum durum Desf.) Mohamed Ben Bachir variety and to select endophytic fungi for further evaluation of its antimicrobial, antioxidant activities and host growth promotion. A total of 20 endophytic fungi have been isolated. Antimicrobial activity was evaluated for crude ethyl acetate extracts using an agar diffusion assay. All extracts showed inhibitory activity on at least one or more pathogenic microorganism, with an average zone of inhibition varied between 7 mm to 25 mm, a large zone of 23 and 25mm against candida albicans and Escherichia coli respectively. The antioxidant capacity of the extracts was evaluated by beta-carotene/linoleic acid assay. Results showed that 70% of these extracts have antioxidant activity, exhibiting 50, 57% to 78, 96% inhibitions. While 30% from them, their inhibitory activity for oxidation of linoleic acid Were less than 50%. Growth promotion ability of these endophytes was tested on seed germination among ten isolates tested, two isolates showed significant growth promotion effects on wheat seeds. From the present work we can conclude that these microorganisms could be promising source of bioactive compounds, growth promotion and warrant further study.

  6. Molecular Cytogenetic Mapping of Satellite DNA Sequences in Aegilops geniculata and Wheat

    Czech Academy of Sciences Publication Activity Database

    Koo, D.H.; Tiwari, V.K.; Hřibová, Eva; Doležel, Jaroslav; Friebe, B.; Gill, B.S.

    2016-01-01

    Roč. 148, č. 4 (2016), s. 314-321 ISSN 1424-8581 R&D Projects: GA MŠk(CZ) LO1204 Institutional support: RVO:61389030 Keywords : in-situ hybridization * chromosome addition lines * resistance genes lr57 * repetitive dna * triticum-ovatum * powdery mildew * plant genome * bread wheat * leaf rust * identification * Aegilops geniculata * Chromosome identification * Fluorescence in situ hybridization * Satellite DNA * Wheat Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.354, year: 2016

  7. PLASMA-MEMBRANE LIPID ALTERATIONS INDUCED BY NACL IN WINTER-WHEAT ROOTS

    NARCIS (Netherlands)

    MANSOUR, MMF; VANHASSELT, PR; KUIPER, PJC

    A highly enriched plasma membrane fraction was isolated by two phase partitioning from wheat roots (Triticum aestivum L. cv. Vivant) grown with and without 100 mM NaCl. The lipids of the plasma membrane fraction were extracted and characterized. Phosphatidylcholine and phosphatidylethanolamine were

  8. Fusarium proliferatum and fumonisin B1 co-occur with Fusarium species causing Fusarium Head Blight in durum wheat in Italy

    OpenAIRE

    Amato, Barbara; Pfohl, Katharina; Tonti, Stefano; Nipoti, Paola; Dastjerdi, Raana; Pisi, Annamaria; Karlovsky, Petr; Prodi, Antonio

    2015-01-01

    Fusarium Head Blight caused by phytopathogenic Fusarium spp. with Fusarium graminearum as main causal agent is a major disease of durum wheat (Triticum durum Desf.). Mycotoxins in wheat are dominated by trichothecenes B. Fumonisins have only occasionally been reported from wheat; their occurrence was attributed to Fusarium proliferatum and Fusarium verticillioides. We investigated kernels of durum wheat grown in Italy in 2008 - 2010 for colonization with Fusarium spp. and for the content o...

  9. Genome-wide association study and genetic diversity analysis on nitrogen use efficiency in a Central European winter wheat (Triticum aestivum L. collection.

    Directory of Open Access Journals (Sweden)

    István Monostori

    Full Text Available To satisfy future demands, the increase of wheat (Triticum aestivum L. yield is inevitable. Simultaneously, maintaining high crop productivity and efficient use of nutrients, especially nitrogen use efficiency (NUE, are essential for sustainable agriculture. NUE and its components are inherently complex and highly influenced by environmental factors, nitrogen management practices and genotypic variation. Therefore, a better understanding of their genetic basis and regulation is fundamental. To investigate NUE-related traits and their genetic and environmental regulation, field trials were evaluated in a Central European wheat collection of 93 cultivars at two nitrogen input levels across three seasons. This elite germplasm collection was genotyped on DArTseq® genotypic platform to identify loci affecting N-related complex agronomic traits. To conduct robust genome-wide association mapping, the genetic diversity, population structure and linkage disequilibrium were examined. Population structure was investigated by various methods and two subpopulations were identified. Their separation is based on the breeding history of the cultivars, while analysis of linkage disequilibrium suggested that selective pressures had acted on genomic regions bearing loci with remarkable agronomic importance. Besides NUE, genetic basis for variation in agronomic traits indirectly affecting NUE and its components, moreover genetic loci underlying response to nitrogen fertilisation were also determined. Altogether, 183 marker-trait associations (MTA were identified spreading over almost the entire genome. We found that most of the MTAs were environmental-dependent. The present study identified several associated markers in those genomic regions where previous reports had found genes or quantitative trait loci influencing the same traits, while most of the MTAs revealed new genomic regions. Our data provides an overview of the allele composition of bread wheat

  10. Induction of mutation: Improvement of genetic variability of wheat (Triticum sp.)

    International Nuclear Information System (INIS)

    Parodi, P.C.P.

    1984-01-01

    The malnutrition problem in developing countries can be solved by increased production of foods with high proteic content. This paper discusses the application of mutagenesis by radiation in the development of an improved wheat variability with high content of proteins and amino acids. Wheat is the staple food of developing countries

  11. Yield Interactions of Wheat Genotypes to Dates of Seeding in Eastern Mid Hills of Nepal

    OpenAIRE

    Rudra Bhattarai; Bedanand Chaudhary; Dhruba Bahadur Thapa; Ramesh Raj Puri; Ram Nath Chaudhary; Ram Nath Chaudhary; Bibek Sapkota; Kiran Baral; Shukra Raj Shrestha; Surya Prasad Adhikari

    2015-01-01

    Wheat (Triticum aestivum L.) is one of the major cereal crops and staple food sources in Nepal. Wheat varieties being popular in mid hill regions are still in the early stages of adoption. Identification of appropriate date of seeding plays important role in enhancing the adoption rate ensuring the sustainable production. Therefore, three dates viz 15th November, 1st and 15th December for seeding and twenty eight wheat genotypes were evaluated in a split plot design with two replications for ...

  12. Potassium up-regulates antioxidant metabolism and alleviates growth inhibition under water and osmotic stress in wheat (Triticum aestivum L).

    Science.gov (United States)

    Ahanger, Mohammad Abass; Agarwal, R M

    2017-07-01

    Pot experiments were conducted to find out the effectivity of K on Triticum aestivum L cultivars. Polyethylene glycol 6000 (PEG 6000) was used as an osmoticum to induce osmotic stress under sand culture setting up the water potential of external solution at -3 and -5 bars. In pots, plants were raised under restricted and normal irrigation and K was applied in varying doses (0, 20, 40, 60 kg ha -1 ) and estimation of different physiological and biochemical parameters was done at two developmental stages, i.e., preflowering and flowering. Supplementation of K resulted in obvious increase in growth and activity of antioxidant enzymes in both normal and stressed plants. Added potassium increased total phenols and tannins thereby strengthening the components of both the enzymatic as well as non-enzymatic antioxidant system. Under both normal and stressed conditions, K-fed plants experienced significant increase in the synthesis of osmolytes like free proline, amino acids, and sugars which assumes special significance in growth under water stress conditions. Wheat plants accumulating greater K were able to counteract the water stress-induced changes by maintaining lower Na/K ratio.

  13. A comprehensive survey of soft wheat grain quality in United States germplasm

    Science.gov (United States)

    Wheat (Triticum aestivum L.) quality is dependent upon both genetic and environmental factors, which work in combination to produce specific grain, milling, and baking characteristics. Along with these genetic and environmental factors, the adaptation of the genetics to the given growing environment...

  14. Analysis of diallel crosses between six varieties of durum wheat in ...

    African Journals Online (AJOL)

    $$)9

    2014-01-08

    Jan 8, 2014 ... The study of morphological genetic determinism characteristics and production of durum wheat. (Triticum durum Desf.) ... analysis of variance for general combining ability (GCA) and specific combining ability (SCA) abilities and reciprocal ... increased and at the same time, these components results in an ...

  15. Genetic analysis without replications: Model evaluation and application in spring wheat

    Science.gov (United States)

    Genetic data collected from plant breeding and genetic studies may not be replicated in field designs even though field variation is present. In this study, we addressed this problem using spring wheat (Triticum eastivum L.) trial data collected from two locations. There were no intra-location repl...

  16. Evidence of isolate-specificity in non-hypersensitive resistance in spring wheat (Triticum aestivum) to wheat leaf rust

    NARCIS (Netherlands)

    Qamar, Maqsood; Niks, R.E.

    2007-01-01

    Isolate-specific aspect of non-hypersensitive resistance in wheat to wheat leaf rust was studied at seedling stage in the green house. Isolate-specific response of non-hypersensitive resistance was assessed from latency period (LP) and infection frequency (IF) of two single-pustule isolates of

  17. Molecular markers associated with salt tolerance in Egyptian wheats ...

    African Journals Online (AJOL)

    Salinity affects plant growth by the osmotic stress of the salt around the roots, as well as by toxicity caused by excessive accumulation of salt in leaves. In the present study, seven common (Triticum aestivum) and two durum (T. turgidum ssp. Durum) wheat genotypes were subjected to salt stress for 2 weeks. Salt stress ...

  18. When Isolated at Full Receptivity, in Vitro Fertilized Wheat (Triticum aestivum, L. Egg Cells Reveal [Ca2+]cyt Oscillation of Intracellular Origin

    Directory of Open Access Journals (Sweden)

    Zsolt Pónya

    2014-12-01

    Full Text Available During in vitro fertilization of wheat (Triticum aestivum, L. in egg cells isolated at various developmental stages, changes in cytosolic free calcium ([Ca2+]cyt were observed. The dynamics of [Ca2+]cyt elevation varied, reflecting the difference in the developmental stage of the eggs used. [Ca2+]cyt oscillation was exclusively observed in fertile, mature egg cells fused with the sperm cell. To determine how [Ca2+]cyt oscillation in mature egg cells is generated, egg cells were incubated in thapsigargin, which proved to be a specific inhibitor of the endoplasmic reticulum (ER Ca2+-ATPase in wheat egg cells. In unfertilized egg cells, the addition of thapsigargin caused an abrupt transient increase in [Ca2+]cyt in the absence of extracellular Ca2+, suggesting that an influx pathway for Ca2+ is activated by thapsigargin. The [Ca2+]cyt oscillation seemed to require the filling of an intracellular calcium store for the onset of which, calcium influx through the plasma membrane appeared essential. This was demonstrated by omitting extracellular calcium from (or adding GdCl3 to the fusion medium, which prevented [Ca2+]cyt oscillation in mature egg cells fused with the sperm. Combined, these data permit the hypothesis that the first sperm-induced transient increase in [Ca2+]cyt depletes an intracellular Ca2+ store, triggering an increase in plasma membrane Ca2+ permeability, and this enhanced Ca2+ influx results in [Ca2+]cyt oscillation.

  19. Characterization of cadmium binding, uptake, and translocation in intact seedlings of bread and durum wheat cultivars

    International Nuclear Information System (INIS)

    Hart, J.J.; Welch, R.M.; Norvell, W.A.; Sullivanm, L.A.; Kochian, L.V.

    1998-01-01

    High Cd content in durum wheat (Triticum turgidum L. var durum) grain grown in the United States and Canada presents potential health and economic problems for consumers and growers. In an effort to understand the biological processes that result in excess Cd accumulation, root Cd uptake and xylem translocation to shoots in seedlings of bread wheat (Triticum aestivum L.) and durum wheat cultivars were studied. Whole-plant Cd accumulation was somewhat greater in the bread wheat cultivar, but this was probably because of increased apoplastic Cd binding. Concentration-dependent 109Cd2+-influx kinetics in both cultivars were characterized by smooth, nonsaturating curves that could be dissected into linear and saturable components. The saturable component likely represented carrier-mediated Cd influx across root-cell plasma membranes (Michaelis constant, 20-40 nM; maximum initial velocity, 26-29 nmol g-1 fresh weight h-1), whereas linear Cd uptake represented cell wall binding of 109Cd. Cd translocation to shoots was greater in the bread wheat cultivar than in the durum cultivar because a larger proportion of root-absorbed Cd moved to shoots. Our results indicate that excess Cd accumulation in durum wheat grain is not correlated with seedling-root influx rates or root-to-shoot translocation, but may be related to phloem-mediated Cd transport to the grain

  20. Effect of soil water stress on yield and proline content of four wheat ...

    African Journals Online (AJOL)

    STORAGESEVER

    2010-01-04

    Jan 4, 2010 ... Four lines of bread wheat (N-82-9, N-83-5, ... Key words: Water stress, Triticum aestivum, yield, proline, TSS. .... Numbers in the columns followed by the same letters are not significantly different at P .... constituents, Acta Bot.

  1. Drought priming at vegetative growth stages improves tolerance to drought and heat stresses occurring during grain filling in spring wheat

    DEFF Research Database (Denmark)

    Wang, Xiao; Vignjevic, Marija; Liu, Fulai

    2015-01-01

    Plants of spring wheat (Triticum aestivum L. cv. Vinjett) were exposed to moderate water deficit at the vegetative growth stages six-leaf and/or stem elongation to investigate drought priming effects on tolerance to drought and heat stress events occurring during the grain filling stage. Compared......Plants of spring wheat (Triticum aestivum L. cv. Vinjett) were exposed to moderate water deficit at the vegetative growth stages six-leaf and/or stem elongation to investigate drought priming effects on tolerance to drought and heat stress events occurring during the grain filling stage...... of abscisic acid in primed plants under drought stress could contribute to higher grain yield compared to the non-primed plants. Taken together, the results indicate that drought priming during vegetative stages improved tolerance to both drought and heat stress events occurring during grain filling in wheat....

  2. Potential Climatic Zoning of Wheat (Triticum aestivum L. Golestan Province

    Directory of Open Access Journals (Sweden)

    Afrough Sadat Baniaghil

    2017-12-01

    Full Text Available Introduction Crop selection based on land capabilities has been used in several studies to assess the suitability of land for specific crops in order to determine the optimal cropping system. Maize, rice, wheat, barley, cotton, soybean and canola are the major crops found in the agricultural production systems of Golestan province, Iran. Soybean (Glycine max L.; Fabaceae is grown world-wide as an important staple and commercial crop. Kamkar et al., (2014 on assessment review of land suitability for cultivation of rapeseed and soybean in four basins over Golestan province, using GIS reported that only 11.82% of the total lands very suitable to rotate soybean after canola, used raster layers for them study were included climatic (precipitation, temperature, topographic (aspects and slope and soil-related (texture, pH, EC. The Geographical Information System (GIS offers a flexible and powerful tool as it can combine large volumes of different kinds of data into new datasets and display these new datasets in the form of informative and accessible thematic maps. The aim of this study was to perform land suitability assessments for wheat cultivation Golestan province, and to investigate the possibility of wheat cultivation. In this way, we used GIS and a comprehensive data set on wheat crop ecological requirements, agro climatological, topographic and soil data. Material and Methods Geographical Location of the Region The province of Golestan with an area of 21,500 square kilometers, is in the southeast of the Caspian Sea. This area extends from 36_440 N to 38_50 N and from 51_530 E to 56_140 E. In general, Golestan has a moderate and humid climate known as "the moderate Caspian climate. arid and semiarid areas has occupied more than 35% of Golestan province. The study area of the research, include agricultural lands and rangelands of Golestan province is present. Using 1: 50,000 maps of the national cartographic center of Iran, we created a 20 m

  3. Overexpression of wheat lipid transfer protein gene TaLTP5 increases resistances to Cochliobolus sativus and Fusarium graminearum in transgenic wheat.

    Science.gov (United States)

    Zhu, Xiuliang; Li, Zhao; Xu, Huijun; Zhou, Miaoping; Du, Lipu; Zhang, Zengyan

    2012-08-01

    The fungus Cochliobolus sativus is the main pathogen of common root rot, a serious soil-borne disease of wheat (Triticum aestivum L.). The fungus Fusarium graminearum is the primary pathogen of Fusarium head blight, a devastating disease of wheat worldwide. In this study, the wheat lipid transfer protein gene, TaLTP5, was cloned and evaluated for its ability to suppress disease development in transgenic wheat. TaLTP5 expression was induced after C. sativus infection. The TaLTP5 expression vector, pA25-TaLTP5, was constructed and bombarded into Chinese wheat variety Yangmai 18. Six TaLTP5 transgenic wheat lines were established and characterized. PCR and Southern blot analyses indicated that the introduced TaLTP5 gene was integrated into the genomes of six transgenic wheat lines by distinct patterns, and heritable. RT-PCR and real-time quantitative RT-PCR revealed that the TaLTP5 gene was over-expressed in the transgenic wheat lines compared to segregants lacking the transgene and wild-type wheat plants. Following challenge with C. sativus or F. graminearum, all six transgenic lines overexpressing TaLTP5 exhibited significantly enhanced resistance to both common root rot and Fusarium head blight compared to the untransformed wheat Yangmai 18.

  4. Cellular and Subcellular Immunohistochemical Localization and Quantification of Cadmium Ions in Wheat (Triticum aestivum.

    Directory of Open Access Journals (Sweden)

    Wei Gao

    Full Text Available The distribution of metallic ions in plant tissues is associated with their toxicity and is important for understanding mechanisms of toxicity tolerance. A quantitative histochemical method can help advance knowledge of cellular and subcellular localization and distribution of heavy metals in plant tissues. An immunohistochemical (IHC imaging method for cadmium ions (Cd2+ was developed for the first time for the wheat Triticum aestivum grown in Cd2+-fortified soils. Also, 1-(4-Isothiocyanobenzyl-ethylenediamine-N,N,N,N-tetraacetic acid (ITCB-EDTA was used to chelate the mobile Cd2+. The ITCB-EDTA/Cd2+ complex was fixed with proteins in situ via the isothiocyano group. A new Cd2+-EDTA specific monoclonal antibody, 4F3B6D9A1, was used to locate the Cd2+-EDTA protein complex. After staining, the fluorescence intensities of sections of Cd2+-positive roots were compared with those of Cd2+-negative roots under a laser confocal scanning microscope, and the location of colloidal gold particles was determined with a transmission electron microscope. The results enable quantification of the Cd2+ content in plant tissues and illustrate Cd2+ translocation and cellular and subcellular responses of T. aestivum to Cd2+ stress. Compared to the conventional metal-S coprecipitation histochemical method, this new IHC method is quantitative, more specific and has less background interference. The subcellular location of Cd2+ was also confirmed with energy-dispersive X-ray microanalysis. The IHC method is suitable for locating and quantifying Cd2+ in plant tissues and can be extended to other heavy metallic ions.

  5. Cellular and Subcellular Immunohistochemical Localization and Quantification of Cadmium Ions in Wheat (Triticum aestivum).

    Science.gov (United States)

    Gao, Wei; Nan, Tiegui; Tan, Guiyu; Zhao, Hongwei; Tan, Weiming; Meng, Fanyun; Li, Zhaohu; Li, Qing X; Wang, Baomin

    2015-01-01

    The distribution of metallic ions in plant tissues is associated with their toxicity and is important for understanding mechanisms of toxicity tolerance. A quantitative histochemical method can help advance knowledge of cellular and subcellular localization and distribution of heavy metals in plant tissues. An immunohistochemical (IHC) imaging method for cadmium ions (Cd2+) was developed for the first time for the wheat Triticum aestivum grown in Cd2+-fortified soils. Also, 1-(4-Isothiocyanobenzyl)-ethylenediamine-N,N,N,N-tetraacetic acid (ITCB-EDTA) was used to chelate the mobile Cd2+. The ITCB-EDTA/Cd2+ complex was fixed with proteins in situ via the isothiocyano group. A new Cd2+-EDTA specific monoclonal antibody, 4F3B6D9A1, was used to locate the Cd2+-EDTA protein complex. After staining, the fluorescence intensities of sections of Cd2+-positive roots were compared with those of Cd2+-negative roots under a laser confocal scanning microscope, and the location of colloidal gold particles was determined with a transmission electron microscope. The results enable quantification of the Cd2+ content in plant tissues and illustrate Cd2+ translocation and cellular and subcellular responses of T. aestivum to Cd2+ stress. Compared to the conventional metal-S coprecipitation histochemical method, this new IHC method is quantitative, more specific and has less background interference. The subcellular location of Cd2+ was also confirmed with energy-dispersive X-ray microanalysis. The IHC method is suitable for locating and quantifying Cd2+ in plant tissues and can be extended to other heavy metallic ions.

  6. Yield and growth components of potato and wheat under organic nitrogen management

    NARCIS (Netherlands)

    Delden, van A.

    2001-01-01

    In order to optimize N management in organic farming systems, knowledge of crop growth processes in relation to N limitation is necessary. The present paper examines the response of potato (Solanum tuberosum L.) and wheat (Triticum aestivum L.) to N with respect to intercepted photosynthetically

  7. Genetic map of Triticum turgidum based on a hexaploid wheat population without genetic recombination for D genome

    Directory of Open Access Journals (Sweden)

    Zhang Li

    2012-08-01

    Full Text Available Abstract Background A synthetic doubled-haploid hexaploid wheat population, SynDH1, derived from the spontaneous chromosome doubling of triploid F1 hybrid plants obtained from the cross of hybrids Triticum turgidum ssp. durum line Langdon (LDN and ssp. turgidum line AS313, with Aegilops tauschii ssp. tauschii accession AS60, was previously constructed. SynDH1 is a tetraploidization-hexaploid doubled haploid (DH population because it contains recombinant A and B chromosomes from two different T. turgidum genotypes, while all the D chromosomes from Ae. tauschii are homogenous across the whole population. This paper reports the construction of a genetic map using this population. Results Of the 606 markers used to assemble the genetic map, 588 (97% were assigned to linkage groups. These included 513 Diversity Arrays Technology (DArT markers, 72 simple sequence repeat (SSR, one insertion site-based polymorphism (ISBP, and two high-molecular-weight glutenin subunit (HMW-GS markers. These markers were assigned to the 14 chromosomes, covering 2048.79 cM, with a mean distance of 3.48 cM between adjacent markers. This map showed good coverage of the A and B genome chromosomes, apart from 3A, 5A, 6A, and 4B. Compared with previously reported maps, most shared markers showed highly consistent orders. This map was successfully used to identify five quantitative trait loci (QTL, including two for spikelet number on chromosomes 7A and 5B, two for spike length on 7A and 3B, and one for 1000-grain weight on 4B. However, differences in crossability QTL between the two T. turgidum parents may explain the segregation distortion regions on chromosomes 1A, 3B, and 6B. Conclusions A genetic map of T. turgidum including 588 markers was constructed using a synthetic doubled haploid (SynDH hexaploid wheat population. Five QTLs for three agronomic traits were identified from this population. However, more markers are needed to increase the density and resolution of

  8. Genetic map of Triticum turgidum based on a hexaploid wheat population without genetic recombination for D genome.

    Science.gov (United States)

    Zhang, Li; Luo, Jiang-Tao; Hao, Ming; Zhang, Lian-Quan; Yuan, Zhong-Wei; Yan, Ze-Hong; Liu, Ya-Xi; Zhang, Bo; Liu, Bao-Long; Liu, Chun-Ji; Zhang, Huai-Gang; Zheng, You-Liang; Liu, Deng-Cai

    2012-08-13

    A synthetic doubled-haploid hexaploid wheat population, SynDH1, derived from the spontaneous chromosome doubling of triploid F1 hybrid plants obtained from the cross of hybrids Triticum turgidum ssp. durum line Langdon (LDN) and ssp. turgidum line AS313, with Aegilops tauschii ssp. tauschii accession AS60, was previously constructed. SynDH1 is a tetraploidization-hexaploid doubled haploid (DH) population because it contains recombinant A and B chromosomes from two different T. turgidum genotypes, while all the D chromosomes from Ae. tauschii are homogenous across the whole population. This paper reports the construction of a genetic map using this population. Of the 606 markers used to assemble the genetic map, 588 (97%) were assigned to linkage groups. These included 513 Diversity Arrays Technology (DArT) markers, 72 simple sequence repeat (SSR), one insertion site-based polymorphism (ISBP), and two high-molecular-weight glutenin subunit (HMW-GS) markers. These markers were assigned to the 14 chromosomes, covering 2048.79 cM, with a mean distance of 3.48 cM between adjacent markers. This map showed good coverage of the A and B genome chromosomes, apart from 3A, 5A, 6A, and 4B. Compared with previously reported maps, most shared markers showed highly consistent orders. This map was successfully used to identify five quantitative trait loci (QTL), including two for spikelet number on chromosomes 7A and 5B, two for spike length on 7A and 3B, and one for 1000-grain weight on 4B. However, differences in crossability QTL between the two T. turgidum parents may explain the segregation distortion regions on chromosomes 1A, 3B, and 6B. A genetic map of T. turgidum including 588 markers was constructed using a synthetic doubled haploid (SynDH) hexaploid wheat population. Five QTLs for three agronomic traits were identified from this population. However, more markers are needed to increase the density and resolution of this map in the future study.

  9. Genetic Fingerprinting of Wheat and Its Progenitors by Mitochondrial Gene orf256

    Directory of Open Access Journals (Sweden)

    Mona M. Elseehy

    2012-04-01

    Full Text Available orf256 is a wheat mitochondrial gene associated with cytoplasmic male sterility (CMS that has different organization in various species. This study exploited the orf256 gene as a mitochondrial DNA marker to study the genetic fingerprint of Triticum and Aegilops species. PCR followed by sequencing of common parts of the orf256 gene were employed to determine the fingerprint and molecular evolution of Triticum and Aegilops species. Although many primer pairs were used, two pairs of orf256 specific primers (5:-94/C: 482, 5:253/C: 482, amplified DNA fragments of 576 bp and 230 bp respectively in all species were tested. A common 500 bp of nine species of Triticum and Aegilops were aligned and showed consistent results with that obtained from other similar chloroplast or nuclear genes. Base alignment showed that there were various numbers of base substitutions in all species compared to S. cereal (Sc (the outgroup species. Phylogenetic relationship revealed similar locations and proximity on phylogenetic trees established using plastid and nuclear genes. The results of this study open a good route to use unknown function genes of mitochondria in studying the molecular relationships and evolution of wheat and complex plant genomes.

  10. De novo assembly and comparative analysis of the transcriptome of embryogenic callus formation in bread wheat (Triticum aestivum L.).

    Science.gov (United States)

    Chu, Zongli; Chen, Junying; Sun, Junyan; Dong, Zhongdong; Yang, Xia; Wang, Ying; Xu, Haixia; Zhang, Xiaoke; Chen, Feng; Cui, Dangqun

    2017-12-19

    During asexual reproduction the embryogenic callus can differentiate into a new plantlet, offering great potential for fostering in vitro culture efficiency in plants. The immature embryos (IMEs) of wheat (Triticum aestivum L.) are more easily able to generate embryogenic callus than mature embryos (MEs). To understand the molecular process of embryogenic callus formation in wheat, de novo transcriptome sequencing was used to generate transcriptome sequences from calli derived from IMEs and MEs after 3d, 6d, or 15d of culture (DC). In total, 155 million high quality paired-end reads were obtained from the 6 cDNA libraries. Our de novo assembly generated 142,221 unigenes, of which 59,976 (42.17%) were annotated with a significant Blastx against nr, Pfam, Swissprot, KOG, KEGG, GO and COG/KOG databases. Comparative transcriptome analysis indicated that a total of 5194 differentially expressed genes (DEGs) were identified in the comparisons of IME vs. ME at the three stages, including 3181, 2085 and 1468 DEGs at 3, 6 and 15 DC, respectively. Of them, 283 overlapped in all the three comparisons. Furthermore, 4731 DEGs were identified in the comparisons between stages in IMEs and MEs. Functional analysis revealed that 271transcription factor (TF) genes (10 overlapped in all 3 comparisons of IME vs. ME) and 346 somatic embryogenesis related genes (SSEGs; 35 overlapped in all 3 comparisons of IME vs. ME) were differentially expressed in at least one comparison of IME vs. ME. In addition, of the 283 overlapped DEGs in the 3 comparisons of IME vs. ME, excluding the SSEGs and TFs, 39 possessed a higher rate of involvement in biological processes relating to response to stimuli, in multi-organism processes, reproductive processes and reproduction. Furthermore, 7 were simultaneously differentially expressed in the 2 comparisons between the stages in IMEs, but not MEs, suggesting that they may be related to embryogenic callus formation. The expression levels of genes, which

  11. Freezing tolerance of wheat cultivars at the early growing season ...

    African Journals Online (AJOL)

    Cold stress is a worldwide abiotic stress in temperate regions that affects plant development and yield of winter wheat (Triticum aestivum L.) cultivars and other winter crops. This study was conducted to evaluate the effect of freezing stress at the early growing season on survival and also the relationship between resistances ...

  12. Identification of RAPD markers linked to salinity tolerance in wheat ...

    African Journals Online (AJOL)

    Genetic diversity can be measured by a number of ways, including pedigree, phenotype and allelic diversity at loci controlling phenotypes of interest. A DNA marker for root length in wheat (Triticum aestivum L.) was identified. The individual plants from F2 population segregation for salinity tolerance and the parents (S-24 ...

  13. Combined Effects of Boron and NaCl on Wheat Seedlings

    Directory of Open Access Journals (Sweden)

    ZHEN Mei-nan

    2015-08-01

    Full Text Available To investigate the combined effects of boron(Band NaCl on the growth of wheat, a pot experiment was conducted using wheat (Triticum aestivum Linn.seedlings. Boron concentrations of culture medium were set as 0, 50 mg·kg-1 and 100 mg·kg-1, and NaCl concentrations were 0, 1 g·kg-1 and 2 g·kg-1. The results showed that both boron and NaCl could significantly inhibit wheat growth. At 50 mg B·kg-1, NaCl aggravated growth inhibition caused by boron. At 100 mg B·kg-1, however, NaCl alleviated the inhibition caused by boron. The combined stress of boron and NaCl significantly increased the root to shoot ratio of wheat. NaCl inhibited the uptake of boron by wheat. It suggests that under severe boron stress, NaCl is able to alleviate boron toxicity in wheat by increasing root to shoot ratio and reducing boron uptake.

  14. Genetics of flowering time in bread wheat Triticum aestivum ...

    Indian Academy of Sciences (India)

    2012-04-17

    Apr 17, 2012 ... in response to vernalization (Flood and Halloran 1984;. Goncharov ... ering signal (florigen) that moves from leaves to apices and induces .... Weeding was done man- ually. ...... gene action for vernalization response in wheat.

  15. Non-Additive Expression of Homoeologous Genes is Established Upon Polyploidization in Hexaploid Wheat

    Science.gov (United States)

    Traditional views on the potential genetic effects of polyploidy in allohexaploid wheat (Triticum aestivum L.) have primarily emphasized aspects of greater coding sequence variation and the enhanced potential to acquire new gene functions through mutation of redundant loci. The extent and significa...

  16. Impact of humic acid and chemical fertilizer application on growth and grain yield of rainfed wheat (triticum aestivum l.)

    International Nuclear Information System (INIS)

    Khan, R.U.; Khan, M.S.

    2010-01-01

    The high cost of inorganic fertilizer, use of natural fertilizer resources for increasing crop production on sustainable basis has become imperative. Two field experiments were conducted to study the potential of humic acid (HA) as a low-cost natural fertilizer and to determine its effect on the yield of rainfed wheat crop (Triticum aestivum L. cv. Naseer) at the research farm of Arid Zone Research Institute, Dera Ismail Khan during two successive winter seasons, 2007-08 and 2008-09. The treatments consisted of HA alone (3 kg ha/sup -1/ or 1.5 kg ha/sup -1/) and in combination with full (60:40 kg ha/sup -1/) and half (30:20 kg ha/sup -1/) the recommended rates of NP fertilizers. Results showed that in the first growing season (2007-08), the combination of 3 kg ha/sup -1/ HA with half (30:20 kg ha-1) rate of NP produced the highest grain yield (1314 kg ha/sup -1/) and increased the yield by 46.9% over the control. In the second growing season (2008-09), application of 3 kg ha/sup -1/ HA alone produced significantly (P<0.05) higher grain yield (2999.9 kg ha/sup -1/) and increased the yield by 24% over the control and saved 100% cost of the chemical fertilizer. Results suggested that HA applied alone at 3 kg ha/sup -1/ or in combination with half (30:20 kg ha/sup -1/) rate of NP fertilizers appeared to be the most economical rate to obtain the maximum yield of wheat under the rainfed conditions of Dera Ismail Khan. HA has great potential as a low cost natural fertilizer to improve soil fertility on sustainable basis. (author)

  17. Short periods of high temperature during meiosis prevent normal meiotic progression and reduce grain number in hexaploid wheat (Triticum aestivum L.).

    Science.gov (United States)

    Draeger, Tracie; Moore, Graham

    2017-09-01

    Exposure of wheat to high temperatures during male meiosis prevents normal meiotic progression and reduces grain number. We define a temperature-sensitive period and link heat tolerance to chromosome 5D. This study assesses the effects of heat on meiotic progression and grain number in hexaploid wheat (Triticum aestivum L. var. Chinese Spring), defines a heat-sensitive stage and evaluates the role of chromosome 5D in heat tolerance. Plants were exposed to high temperatures (30 or 35 °C) in a controlled environment room for 20-h periods during meiosis and the premeiotic interphase just prior to meiosis. Examination of pollen mother cells (PMCs) from immature anthers immediately before and after heat treatment enabled precise identification of the developmental phases being exposed to heat. A temperature-sensitive period was defined, lasting from premeiotic interphase to late leptotene, during which heat can prevent PMCs from progressing through meiosis. PMCs exposed to 35 °C were less likely to progress than those exposed to 30 °C. Grain number per spike was reduced at 30 °C, and reduced even further at 35 °C. Chinese Spring nullisomic 5D-tetrasomic 5B (N5DT5B) plants, which lack chromosome 5D, were more susceptible to heat during premeiosis-leptotene than Chinese Spring plants with the normal (euploid) chromosome complement. The proportion of plants with PMCs progressing through meiosis after heat treatment was lower for N5DT5B plants than for euploids, but the difference was not significant. However, following exposure to 30 °C, in euploid plants grain number was reduced (though not significantly), whereas in N5DT5B plants the reduction was highly significant. After exposure to 35 °C, the reduction in grain number was highly significant for both genotypes. Implications of these findings for the breeding of thermotolerant wheat are discussed.

  18. Identification of quantitative trait loci for cadmium tolerance and accumulation in wheat

    DEFF Research Database (Denmark)

    Ci, Dunwei; Jiang, Dong; Li, Sishen

    2012-01-01

    Quantitative trait loci (QTL) for Cadmium (Cd) tolerance and accumulation in wheat (Triticum aestivum L.) were identified, using 103 recombinant inbred lines (RILs) derived from a cross of Ch×Sh at germination and seedling stages. The traits of germination, growth and physiology were measured. Cd...

  19. Mechanisms of flood tolerance in wheat and rice

    DEFF Research Database (Denmark)

    Herzog, Max

    Most crops are sensitive to excess water, and consequently floods have detrimental effects on crop yields worldwide. In addition, global climate change is expected to regionally increase the number of floods within decades, urging for more flood-tolerant crop cultivars to be released. The aim...... of this thesis was to assess mechanisms conferring rice (Oryza sativa) and wheat (Triticum aestivum) flood tolerance, focusing on the role of leaf gas films during plant submergence. Reviewing the literature showed that wheat germplasm holds genetic variation towards waterlogging (soil flooding), and highlighted...... that the contrasting submergence tolerance could rather be governed by tolerance to radical oxygen species or contrasting metabolic responses (other than carbohydrate consumption) to ethylene accumulation. Manipulating leaf gas film presence affected wheat and rice submergence tolerance such as plant growth...

  20. Comparative analysis the selenium concentration in grains of wheat and barley species

    International Nuclear Information System (INIS)

    Jalal, F.; Arif, M.; Munsif, F.; Ali, K.

    2016-01-01

    Macro and micro nutrients are essential for human health and growth development. It is reported that about three million people are suffering from nutrient deficiencies all over the world. Various sources are available like: vegetables, fruits, fish, meat and cereals to overcome these deficiencies. Among cereals, wheat and barley are main source to meet the requirement of this dietary element. Two year studies were conducted to investigate the Se concentration in grains of different wheat (T. aestivum L., T. turgidum L. and T. durum L.) and barley (H. spontaneum L. and H. vulgare L.) species originated from different parts of the world. Results indicated that the durum and emmer wheat grains contain higher Se level in both studied years (70.5 and 72.9 micro g kg-1 in 2012 and 74.1 and 73.2 microg kg-1 in 2013 respectively). Among H. spontaneum L. collected from six populations, Mahola population of barley showed remarkable variations in grain Se concentration ranged from 88.3-437.2 and 90.2-439.5 micro g kg-1 in 2012 and 2013 respectively. The information obtained from the findings helps in identifying the lines of wild barley that have more Se uptake and accumulation capability. According to the conclusion of the study that H. Spontaneum L. had greater genetic variation for Se as compare to other species of wheat and barley. (author)

  1. Management of parthenium weed by extracts and residue of wheat ...

    African Journals Online (AJOL)

    This study was carried out to investigate the prospects of using methanolic extracts and residue of wheat (Triticum aestivum L.) for the management of parthenium (Parthenium hysterophorus L.), one of the world's worst weeds. In a laboratory bioassay, the effect of methanol extracts of 1, 2, 3, 4 and 5% (w/v) concentrations of ...

  2. development of wheat germplasm for stem rust resistance in eastern ...

    African Journals Online (AJOL)

    ACSS

    Wheat (Triticum aestivum) rust outbreak is the primary production constraint in Eastern Africa. Ethiopia, Kenya and Uganda are hot spots for the epidemic of rusts, due to higher rates of evolution of new pathogen races, especially of the virulent stem rust (Puccinia graminis) race, Ug99. The objective of this study was to ...

  3. Development of wheat germplasm for stem rust resistance in eastern ...

    African Journals Online (AJOL)

    Wheat (Triticum aestivum) rust outbreak is the primary production constraint in Eastern Africa. Ethiopia, Kenya and Uganda are hot spots for the epidemic of rusts, due to higher rates of evolution of new pathogen races, especially of the virulent stem rust (Puccinia graminis) race, Ug99. The objective of this study was to ...

  4. Spontaneous wheat-Aegilops biuncialis, Ae. geniculata and Ae. triuncialis amphiploid production, a potential way of gene transference

    OpenAIRE

    Loureiro, I.; Escorial, C.; García-Baudin, J.M.; Chueca, C.

    2009-01-01

    Some F1 hybrid plants between three species of the Aegilops genus and different hexaploid wheat Triticum aestivum cultivars show certain self-fertility, with averages of F1 hybrids bearing F2 seeds of 8.17%, 5.12% and 48.14% for Aegilops biuncialis, Aegilops geniculata and Aegilops triuncialis respectively. In the Ae. triuncialis-wheat combination with ";Astral" wheat cultivar, the fertility was higher than that found in the other combinations. All the F2 seeds studied were spontaneous amphip...

  5. NIR calibration of soluble stem carbohydrates for predicting drought tolerance in spring wheat

    Science.gov (United States)

    Soluble stem carbohydrates are a component of drought response in wheat (Triticum aestivum L.) and other grasses. Near-infrared spectroscopy (NIR) can rapidly assay for soluble carbohydrates indirectly, but this requires a statistical model for calibration. The objectives of this study were: (i) to ...

  6. A physical map of the 1-gigabase bread wheat chromosome 3B

    Czech Academy of Sciences Publication Activity Database

    Paux, E.; Sourdille, P.; Salse, J.; Saintenac, C.; Choulet, F.; LeRoy, P.; Korol, A.; Michalak, M.; Kianian, S.; Spielmeyer, W.; Lagudah, E.; Somers, D.; Kilian, A.; Alaux, M.; Vautrin, S.; Bergès, H.; Eversole, K.; Appels, R.; Šafář, Jan; Šimková, Hana; Doležel, Jaroslav; Bernard, M.; Feuillet, C.

    2008-01-01

    Roč. 322, č. 5898 (2008), s. 101-104 ISSN 0036-8075 R&D Projects: GA MŠk(CZ) LC06004 Institutional research plan: CEZ:AV0Z5038910 Keywords : RUST RESISTANCE GENE * TRITICUM-AESTIVUM * HEXAPLOID WHEAT Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 28.103, year: 2008

  7. Low light intensity effects on the growth, photosynthetic characteristics, antioxidant capacity, yield and quality of wheat (Triticum aestivum L.) at different growth stages in BLSS

    Science.gov (United States)

    Dong, Chen; Fu, Yuming; Liu, Guanghui; Liu, Hong

    2014-06-01

    Minimizing energy consumption and maximizing crop productivity are major challenges to growing plants in Bioregenerative Life Support System (BLSS) for future long-term space mission. As a primary source of energy, light is one of the most important environmental factors for plant growth. The purpose of this study is to investigate the effects of low light intensity at different stages on growth, pigment composition, photosynthetic efficiency, biological production and antioxidant defence systems of wheat (Triticum aestivum L.) cultivars during ontogenesis. Experiments were divided into 3 intensity-controlled stages according to growth period (a total of 65 days): seedling stage (first 20 days), heading and flowering stage (middle 30 days) and grain filling stage (last 15 days). Initial light condition of the control was 420 μmol m-2 s-1 and the light intensity increased with the growth of wheat plants. The light intensities of group I and II at the first stage and the last stage were adjusted to the half level of the control respectively. For group III, the first and the last stage were both adjusted to half level of the control. During the middle 30 days, all treatments were kept the same intensity. The results indicated that low-light treatment at seedling stage, biomass, nutritional contents, components of inedible biomass and healthy index (including peroxidase (POD) activity, malondialdehyde (MDA) and proline content) of wheat plants have no significant difference to the control. Furthermore, unit kilojoule yield of group I reached 0.591 × 10-3 g/kJ and induced the highest energy efficiency. However, low-light treatment at grain filling stage affected the final production significantly.

  8. Mutations in durum wheat SBEII genes conferring increased amylose and resistant starch affect grain yield components, semolina and pasta quality and fermentation responses in rats

    Science.gov (United States)

    Increased amylose in wheat (Triticum spp.) starch is associated with increased resistant starch, a fermentable dietary fiber. Fermentation of resistant starch in the large intestine produces short-chain fatty acids that provide human health benefits. Since wheat foods are an important component of t...

  9. Genetic diversity in wheat germplasm collections from Balochistan province of Pakistan

    International Nuclear Information System (INIS)

    Khan, A.A.; Iqbal, A.; Awan, F.S.; Khan, I.A.

    2010-01-01

    Productivity of wheat varieties being bred for the last many years is stagnant in Pakistan, apparently because of the narrowed genetic base of their parental lines. As a part of the national wheat germplasm characterization programme, we examined genetic diversity among 75 accessions of wheat using RAPD markers and assessed the relationship and genetic distance between them. The accessions surveyed were comprised of land race populations of Triticum aestivum L., collected from various districts of the Balochistan province of Pakistan, which is considered a reservoir of genetic diversity, particularly for wheat. The genetic similarity revealed by RAPD markers among the wheat accessions was medium to high. The accessions collected from Sibi and Pishin districts had the greatest similarity. The polymorphism revealed in the wheat accessions, appeared to be distributed with the location of collections. The high degree of similarity even among the presumably land race material emphasizes the need for the expansion of germplasm resources and development of wheat varieties with diverse genetic background, which could substantiate the wheat breeding programmes to increase its productivity. (author)

  10. Resistance of Select Winter Wheat (Triticum aestivum) Cultivars to Rhopalosiphum padi (Hemiptera: Aphididae).

    Science.gov (United States)

    Girvin, John; Whitworth, R Jeff; Rojas, Lina Maria Aguirre; Smith, C Michael

    2017-08-01

    The bird cherry-oat aphid (Rhopalosiphum padi L.) is a global pest of wheat and vectors some of the most damaging strains of barley yellow dwarf virus (BYDV). In years of heavy R. padi infestation, R. padi and BYDV together reduce wheat yields by 30-40% in Kansas and other states of the U.S. Great Plains wheat production area. Cultivation of wheat cultivars resistant to R. padi can greatly reduce production costs and mitigate R. padi-BYDV yield losses, and increase producer profits. This study identified cultivars of hard red and soft white winter wheat with R. padi resistance that suppress R. padi populations or tolerate the effects of R. padi feeding damage. 'Pioneer (S) 25R40,' 'MFA (S) 2248,' 'Pioneer (S) 25R77,' and 'Limagrain LCS Mint' significantly reduced R. padi populations. MFA (S) 2248, Pioneer (S) 25R40, and 'Limagrain LS Wizard' exhibited tolerance expressed as significantly greater aboveground biomass. These findings are significant in that they have identified wheat cultivars currently available to producers, enabling the immediate improvement of tactics to manage R. padi and BYDV in heavily infested areas. Secondarily, these results identify cultivars that are good candidates for use in breeding and genetic analyses of arthropod resistance genes in wheat. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. Yr10 gene polymorphism in bread wheat varieties | Temel | African ...

    African Journals Online (AJOL)

    Yellow rust resistance locus Yr10 located on chromosome 1B in Moro and originated from the Turkish line PI178383 was investigated in terms of polymorphism in seven winter type bread wheat cvs. (Triticum aestivum ssp. Aestivum) Altay2000, zgi2001, Sönmez2001 (yellow rust resistant), Aytýn98, ES14, Harmankaya99 ...

  12. Effect of Sodium Cyanide on Wheat (Triticum durum cv. Altar and T. aestivum cv. Cumhuriyet)

    DEFF Research Database (Denmark)

    Gemici, Meliha; Karshenass, A.M.; Tan, Kit

    2008-01-01

    The effect of sodium cyanide on the morphology of stem, leaves and grain yields of Triticum durum cv. Altar and Triticum aestivum cv. Cumhuriyet grown under glass was studied. Seeds were planted in six different sets of pots containing ordinary garden soil. After formation of the first leaves......, the first set was used as the control and watered using ordinary bottled water sold commercially. The other five sets with T. durum cv. Altar and T. aestivum cv. Cumhuriyet seedlings were additionally watered with various concentrations of sodium cyanide, the test-quantity used being 10-50 mg/L. Growth...... of individual plants was monitored until grain production. It was found that the sodium cyanide concentrations in the feed solutions affected plant stature, with the plants becoming progressively dwarfed with increasing dosage. Anomalies in the morphological and anatomical structure of the plant were also noted...

  13. Wheat breeding for low phytic acid content: State and perspectives

    Directory of Open Access Journals (Sweden)

    Branković Gordana

    2011-01-01

    Full Text Available Interest in wheat breeding for low phytic acid content arised from its roll as antinutrient factor which chelates mineral elements (Ca, Zn, Fe, Mn, Cu and P, leading to their inadequate use. Excretion of unused P in phytic acid complex through non-ruminant animals such as poultry, swine and fish causes water eutrophication. Numerous indirect methods (e.g. spectrophotometric and direct methods (HPLC - High Performance Liquid Chromatography were developed for fast and accurate phytic acid determination in wheat. It typically represents 50-85% of seed total phosphorus and one to several percents of dry seed weight. Phytic acid content and phytate phosphorus genetic variability have been determined for wheat cultivars and lines under different environmental conditions. Wheat mutant (Triticum aestivum L for low phytic acid content Js-12-LPA was created through breeding efforts.

  14. Genome interplay in the grain transcriptome of hexaploid bread wheat.

    Science.gov (United States)

    Pfeifer, Matthias; Kugler, Karl G; Sandve, Simen R; Zhan, Bujie; Rudi, Heidi; Hvidsten, Torgeir R; Mayer, Klaus F X; Olsen, Odd-Arne

    2014-07-18

    Allohexaploid bread wheat (Triticum aestivum L.) provides approximately 20% of calories consumed by humans. Lack of genome sequence for the three homeologous and highly similar bread wheat genomes (A, B, and D) has impeded expression analysis of the grain transcriptome. We used previously unknown genome information to analyze the cell type-specific expression of homeologous genes in the developing wheat grain and identified distinct co-expression clusters reflecting the spatiotemporal progression during endosperm development. We observed no global but cell type- and stage-dependent genome dominance, organization of the wheat genome into transcriptionally active chromosomal regions, and asymmetric expression in gene families related to baking quality. Our findings give insight into the transcriptional dynamics and genome interplay among individual grain cell types in a polyploid cereal genome. Copyright © 2014, American Association for the Advancement of Science.

  15. Induced mutations for disease resistance in wheat and barley

    International Nuclear Information System (INIS)

    Hanis, M.; Hanisova, A.; Knytl, V.; Cerny, J.; Benc, S.

    1977-01-01

    The induction of mutations in cultivars of wheat (Triticum aestivum), barley (Hordeum vulgare), and field beans (Phaseolus vulgaris) has been part of the breeding programme at the Plant Breeding Station at Stupice since 1960. A total of 26 cultivars or selections of winter wheat, 4 cultivars or selections of spring wheat, 2 cultivars of field beans, and 43 selections of spring barley have been treated since 1960. A total of 140 mutant lines of wheat and 37 mutant lines of barley with improved disease resistance of a race-specific type have been obtained. Several mutation programme derived cultivars have been registered in Czechoslovakia (''Diamant'', ''Ametyst'', ''Favorit'', ''Hana'', ''Rapid'', and ''Atlas'' in barley, and ''Alfa'' in field beans), but none of them is a mutation for disease resistance. A series of mutants have been used in crossing programmes. Approaches to improve the efficiency of mutation breeding for disease resistance are suggested. (author)

  16. Plant Density Effect on Grain Number and Weight of Two Winter Wheat Cultivars at Different Spikelet and Grain Positions

    OpenAIRE

    Li, Yong; Cui, Zhengyong; Ni, Yingli; Zheng, Mengjing; Yang, Dongqing; Jin, Min; Chen, Jin; Wang, Zhenlin; Yin, Yanping

    2016-01-01

    In winter wheat, grain development is asynchronous. The grain number and grain weight vary significantly at different spikelet and grain positions among wheat cultivars grown at different plant densities. In this study, two winter wheat (Triticum aestivum L.) cultivars, 'Wennong6' and 'Jimai20', were grown under four different plant densities for two seasons, in order to study the effect of plant density on the grain number and grain weight at different spikelet and grain positions. The resul...

  17. A genetic linkage map with 178 SSR and 1 901 SNP markers constructed using a RIL population in wheatTriticum aestivum L.)

    Institute of Scientific and Technical Information of China (English)

    ZHAI Hui-jie; FENG Zhi-yu; LIU Xin-ye; CHENG Xue-jiao; PENG Hui-ru; YAO Ying-yin; SUN Qi-xin; NI Zhong-fu

    2015-01-01

    The construction of high density genetic linkage map provides a powerful tool to detect and map quantitative trait loci (QTLs) controlling agronomically important traits. In this study, simple sequence repeat (SSR) markers and Illumina 9K iSelect single nucleotide polymorphism (SNP) genechip were employed to construct one genetic linkage map of common wheatTriticum aestivum L.) using 191 recombinant inbred lines (RILs) derived from cross Yu 8679xJing 411. This map included 1 901 SNP loci and 178 SSR loci, covering 1 659.9 cM and 1 000 marker bins, with an average interval distance of 1.66 cM. A, B and D genomes covered 719.1,703.5 and 237.3 cM, with an average interval distance of 1.66, 1.45 and 2.9 cM, respectively. Notably, the genetic linkage map covered 20 chromosomes, with the exception of chromosome 5D. Bioinformatics analysis revealed that 1 754 (92.27%) of 1 901 mapped SNP loci could be aligned to 1 215 distinct wheat unigenes, among which 1 184 (97.4%) were located on one single chromosome, and the rest 31 (2.6%) were located on 2 to 3 chromosomes. By performing in silico comparison, 214 chromosome deletion bin-mapped expressed sequence tags (ESTs), 1 043 Brachypodium genes and 1 033 rice genes were further added onto the genetic linkage map. This map not only integrated genetic and physical maps, SSR and SNP loci, respectively, but also provided the information of Brachypodium and rice genes corresponding to 1 754 SNP loci. Therefore, it will be a useful tool for comparative genomics analysis, fine mapping of QTL/gene controlling agronomically important traits and marker-assisted selection breeding in wheat.

  18. The Effect of Supplemental Irrigation on Canopy Temperature Depression, Chlorophyll Content, and Water Use Efficiency in Three Wheat (Triticum aestivum L. and T. durum Desf. Varieties Grown in Dry Regions of Jordan

    Directory of Open Access Journals (Sweden)

    Abdul Latief A. Al-Ghzawi

    2018-05-01

    Full Text Available One critical challenge facing the world is the need to satisfy the food requirements of the dramatically growing population. Drought stress is one of the main limiting factors in the wheat-producing regions; therefore, wheat yield stability is a major objective of wheat-breeding programs in Jordan, which experience fluctuating climatic conditions in the context of global climate change. In the current study, a two-year field experiment was conducted for exploring the effect of four different water regimes on the yield, yield components, and stability of three wheat (Triticum aestivum L.; T. durum Desf. Jordanian cultivars as related to Canopy Temperature Depression (CTD, and Chlorophyll Content (measured by Soil-Plant Analysis Development, SPAD. A split plot design was used in this experiment with four replicates. Water treatment was applied as the main factor: with and without supplemental irrigation; 0%, 50%, 75%, and 100% of field capacity were applied. Two durum wheat cultivars and one bread wheat cultivar were split over irrigation treatments as a sub factor. In both growing seasons, supplemental irrigation showed a significant increase in grain yield compared to the rain-fed conditions. This increase in grain yield was due to the significantly positive effect of water availability on yield components. Values of CTD, SPAD, harvest index, and water use efficiency (WUE were increased significantly with an increase in soil moisture and highly correlated with grain yield. Ammon variety produced the highest grain yield across the four water regimes used in this study. This variety was characterized by the least thermal time to maturity and the highest values of CTD and SPAD. It was concluded that Ammon had the highest stability among the cultivars tested. Furthermore, CTD and SPAD can be used as important selection parameters in breeding programs in Jordan to assist in developing high-yielding genotypes under drought and heat stress conditions.

  19. Gametocidal chromosomes enhancing chromosome aberration in common wheat induced by 5-azacytidine.

    Science.gov (United States)

    Su, W-Y; Cong, W-W; Shu, Y-J; Wang, D; Xu, G-H; Guo, C-H

    2013-07-08

    The gametocidal (Gc) chromosome from Aegilops spp induces chromosome mutation, which is introduced into common wheat as a tool of chromosome manipulation for genetic improvement. The Gc chromosome functions similar to a restriction-modification system in bacteria, in which DNA methylation is an important regulator. We treated root tips of wheat carrying Gc chromosomes with the hypomethylation agent 5-azacytidine; chromosome breakage and micronuclei were observed in these root tips. The frequency of aberrations differed in wheat containing different Gc chromosomes, suggesting different functions inducing chromosome breakage. Gc chromosome 3C caused the greatest degree of chromosome aberration, while Gc chromosome 3C(SAT) and 2C caused only slight chromosome aberration. Gc chromosome 3C induced different degrees of chromosome aberration in wheat varieties Triticum aestivum var. Chinese Spring and Norin 26, demonstrating an inhibition function in common wheat.

  20. Proteomic analysis of the defense response of wheat to the powdery mildew fungus, Blumeria graminis f. sp. tritici.

    Science.gov (United States)

    Mandal, Md Siddikun Nabi; Fu, Ying; Zhang, Sheng; Ji, Wanquan

    2014-12-01

    Powdery mildew of wheat is caused by Blumeria graminis f. sp. tritici (Bgt). Although many wheat cultivars resistant to this disease have been developed, little is known about their resistance mechanisms. The aim of this study was to identify proteins showing changes in abundance during the resistance response of the wheat line N0308 infected by Bgt. In two-dimensional electrophoresis analyses, 45 spots on the gels showed significant changes in abundance at 24, 48, and 72 h after inoculation, as compared to non-inoculated plants. Of these 45 proteins, 44 were identified by mass spectrometry analysis using the NCBInr database of Triticum aestivum (26 spots) and closely related species in the Triticum genus (18 spots). These proteins were associated with the defense response, photosynthesis, metabolism, and other cellular processes in wheat. Most of the up-regulated proteins were identified as stress- and defense-related proteins. In particular, the product of a specific powdery mildew resistance gene (Pm3b and its homolog) and some other defense- and pathogenesis-related proteins were overexpressed. The resistance gene product mediates the immune response and coordinates other cellular processes during the resistance response to Bgt.

  1. Concentrations of radiocaesium in Italian durum wheat and its products after the Chernobyl accident

    International Nuclear Information System (INIS)

    Lotfi, M.; Notaro, M.; Azimi-Garakani, D.; Tommasino, L.; Cubadda, R.; Santaroni, G.P.

    1990-01-01

    The radiocaesium concentrations of over 400 samples of durum wheat (triticum durum) collected throughout Italy after the Chernobyl accident have been measured to study the implications of contamination of this specific type of wheat used primarily in making alimentary pasta. The transfer of radiocaesium from the wheat sample of highest activity into the human food chain was studied systematically by measuring radiocaesium levels in the outer layers of the grain and in semolina, pasta and bread produced this wheat. The effect of cooking on the nuclide content of pasta was also studied, the results showing that most of the radiocaesium is removed into the water in which the pasta is boiled. (author)

  2. FAR5, a fatty acyl-coenzyme A reductase, is involved in primary alcohol biosynthesis of the leaf blade cuticular wax in wheat (Triticum aestivum L.).

    Science.gov (United States)

    Wang, Yong; Wang, Meiling; Sun, Yulin; Wang, Yanting; Li, Tingting; Chai, Guaiqiang; Jiang, Wenhui; Shan, Liwei; Li, Chunlian; Xiao, Enshi; Wang, Zhonghua

    2015-03-01

    A waxy cuticle that serves as a protective barrier against non-stomatal water loss and environmental damage coats the aerial surfaces of land plants. It comprises a cutin polymer matrix and waxes. Cuticular waxes are complex mixtures of very long chain fatty acids (VLCFAs) and their derivatives. Results show that primary alcohols are the major components of bread wheat (Triticum aestivum L.) leaf blade cuticular waxes. Here, the characterization of TaFAR5 from wheat cv Xinong 2718, which is allelic to TAA1b, an anther-specific gene, is reported. Evidence is presented for a new function for TaFAR5 in the biosynthesis of primary alcohols of leaf blade cuticular wax in wheat. Expression of TaFAR5 cDNA in yeast (Saccharomyces cerevisiae) led to production of C22:0 primary alcohol. The transgenic expression of TaFAR5 in tomato (Solanum lycopersicum) cv MicroTom leaves resulted in the accumulation of C26:0, C28:0, and C30:0 primary alcohols. TaFAR5 encodes an alcohol-forming fatty acyl-coenzyme A reductase (FAR). Expression analysis revealed that TaFAR5 was expressed at high levels in the leaf blades, anthers, pistils, and seeds. Fully functional green fluorescent protein-tagged TaFAR5 protein was localized to the endoplasmic reticulum (ER), the site of primary alcohol biosynthesis. SDS-PAGE analysis indicated that the TaFAR5 protein possessed a molecular mass of 58.4kDa, and it was also shown that TaFAR5 transcript levels were regulated in response to drought, cold, and abscisic acid (ABA). Overall, these data suggest that TaFAR5 plays an important role in the synthesis of primary alcohols in wheat leaf blade. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  3. Environmental and economic aspects of Triticum aestivum L. and Avena sativa growing

    Directory of Open Access Journals (Sweden)

    Jelínková Zuzana

    2016-01-01

    Full Text Available This paper deals with the assessment of cultivation of bread wheat (Triticum aestivum L. and oat (Avena sativa grown in Central Europe within the conventional and organic farming systems in terms of greenhouse gas emissions and economic profitability. Organic farming may be one of the tools for mitigation of greenhouse gas emissions from agricultural production. In the context of crop production, cereals rank among the most commonly grown crops and therefore bread wheat and oat were chosen. The Climate change impact category was assessed within the simplified LCA method and the production of greenhouse gas emissions expressed in CO2e per the production unit was calculated. Economic balance of the cultivation of monitored cereals was compiled based on the yields, farm gate prices and costs. On its basis, the cultivation of wheat within the organic farming system appears to be the most profitable. From an environmental point of view, the emission load of the organic farming system is reduced by 8.04 % within the wheat production and by 15.46 % within the oat cultivation. Therefore, the organic farming system in the Czech Republic appears to be more environmentally friendly and economically efficient within the cereals production.

  4. Silicon alleviates Cd stress of wheat seedlings (Triticum turgidum L. cv. Claudio) grown in hydroponics.

    Science.gov (United States)

    Rizwan, M; Meunier, J-D; Davidian, J-C; Pokrovsky, O S; Bovet, N; Keller, C

    2016-01-01

    We investigated the potential role of silicon in improving tolerance and decreasing cadmium (Cd) toxicity in durum wheat (Triticum turgidum L. durum) either through a reduced Cd uptake or exclusion/sequestration in non-metabolic tissues. For this, plants were grown in hydroponic conditions for 10 days either in presence or absence of 1 mM Si and for 11 additional days in various Cd concentrations (0, 0.5, 5.0 and 50 μM). After harvesting, morphological and physiological parameters as well as elemental concentrations were recorded. Cadmium caused reduction in growth parameters, photosynthetic pigments and mineral nutrient concentrations both in shoots and roots. Shoot and root contents of malate, citrate and aconitate increased, while contents of phosphate, nitrate and sulphate decreased with increasing Cd concentrations in plants. Addition of Si to the nutrient solution mitigated these adverse effects: Cd concentration in shoots decreased while concentration of Cd adsorbed at the root cell apoplasmic level increased together with Zn uptake by roots. Overall, total Cd uptake decreased in presence of Si. There was no co-localisation of Cd and Si either at the shoot or at the root levels. No Cd was detected in leaf phytoliths. In roots, Cd was mainly detected in the cortical parenchyma and Si at the endodermis level, while analysis of the outer thin root surface of the plants grown in the 50 μM Cd + 1 mM Si treatment highlighted non-homogeneous Cd and Si enrichments. These data strongly suggest the existence of a root localised protection mechanism consisting in armoring the root surface by Si- and Cd-bearing compounds and in limiting root-shoot translocation.

  5. Biolistic- and Agrobacterium-mediated transformation protocols for wheat.

    Science.gov (United States)

    Tamás-Nyitrai, Cecília; Jones, Huw D; Tamás, László

    2012-01-01

    After rice, wheat is considered to be the most important world food crop, and the demand for high-quality wheat flour is increasing. Although there are no GM varieties currently grown, wheat is an important target for biotechnology, and we anticipate that GM wheat will be commercially available in 10-15 years. In this chapter, we summarize the main features and challenges of wheat transformation and then describe detailed protocols for the production of transgenic wheat plants both by biolistic and Agrobacterium-mediated DNA-delivery. Although these methods are used mainly for bread wheat (Triticum aestivum L.), they can also be successfully applied, with slight modifications, to tetraploid durum wheat (T. turgidum L. var. durum). The appropriate size and developmental stage of explants (immature embryo-derived scutella), the conditions to produce embryogenic callus tissues, and the methods to regenerate transgenic plants under increasing selection pressure are provided in the protocol. To illustrate the application of herbicide selection system, we have chosen to describe the use of the plasmid pAHC25 for biolistic transformation, while for Agrobacterium-mediated transformation the binary vector pAL156 (incorporating both the bar gene and the uidA gene) has been chosen. Beside the step-by-step methodology for obtaining stably transformed and normal fertile plants, procedures for screening and testing transgenic wheat plants are also discussed.

  6. The role of the F-box gene TaFBA1 from wheat (Triticum aestivum L.) in drought tolerance.

    Science.gov (United States)

    Zhou, Shumei; Sun, Xiudong; Yin, Suhong; Kong, Xiangzhu; Zhou, Shan; Xu, Ying; Luo, Yin; Wang, Wei

    2014-11-01

    Drought is one of the most important factors limiting plant growth and development. We identified a gene in wheat (Triticum aestivum L.) under drought stress named TaFBA1. TaFBA1 encodes a putative 325-amino-acid F-box protein with a conserved N-terminal F-box domain and a C-terminal AMN1 domain. Real-time RT-PCR analysis revealed that TaFBA1 transcript accumulation was upregulated by high-salinity, water stress, and abscisic acid (ABA) treatment. To evaluate the functions of TaFBA1 in the regulation of drought stress responses, we produced transgenic tobacco lines overexpressing TaFBA1. Under water stress conditions, the transgenic tobacco plants had a higher germination rate, higher relative water content, net photosynthesis rate (Pn), less chlorophyll loss, and less growth inhibition than WT. These results demonstrate the high tolerance of the transgenic plants to drought stress compared to the WT. The enhanced oxidative stress tolerance of these plants, which may be involved in their drought tolerance, was indicated by their lower levels of reactive oxygen species (ROS) accumulation, MDA content, and cell membrane damage under drought stress compared to WT. The antioxidant enzyme activities were higher in the transgenic plants than in WT, which may be related to the upregulated expression of some antioxidant genes via overexpression of TaFBA1. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  7. Responses of wheat and rice to factorial combinations of ambient and elevated CO

    NARCIS (Netherlands)

    Cai, Chuang; Yin, Xinyou; He, Shuaiqi; Jiang, Wenyu; Si, Chuanfei; Struik, Paul C.; Luo, Weihong; Li, Gang; Xie, Yingtian; Xiong, Yan; Pan, Genxing

    2016-01-01

    Elevated CO2 and temperature strongly affect crop production, but understanding of the crop response to combined CO2 and temperature increases under field conditions is still limited while data are scarce. We grew wheat (Triticum aestivum L.) and rice (Oryza sativa L.) under

  8. A novel QTL associated with dwarf bunt resistance in Idaho 444 winter wheat

    Science.gov (United States)

    A significant component of Mendel’s legacy has been the ability to discover, map, and utilize genes for resistance to diseases in the crops that the world relies on for food. Dwarf bunt [Tilletia contraversa Kühn (syn. Tilletia controversa)] is a destructive disease of wheat (Triticum aestivum L.) ...

  9. Chromosomal genomics facilitates fine mapping of a Russian wheat aphid resistance gene

    Czech Academy of Sciences Publication Activity Database

    Staňková, Helena; Valárik, Miroslav; Lapitan, N.L.V.; Berkman, P.J.; Batley, J.; Edwards, D.; Luo, M.C.; Tulpová, Zuzana; Kubaláková, Marie; Stein, N.; Doležel, Jaroslav; Šimková, Hana

    2015-01-01

    Roč. 128, č. 7 (2015), s. 1373-1383 ISSN 0040-5752 R&D Projects: GA ČR(CZ) GAP501/12/2554; GA MŠk(CZ) LO1204 Institutional support: RVO:61389030 Keywords : TRITICUM-AESTIVUM L. * BREAD WHEAT * AEGILOPS-TAUSCHII Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.900, year: 2015

  10. Changes in bacterial populations along roots of wheat (Tricticum aestivum L.) seedlings

    NARCIS (Netherlands)

    Liljeroth, E.; Burgers, S.L.G.E.; Veen, van J.A.

    1991-01-01

    In this study the bacterial populations on root tips (1–2 days old) of wheat (Triticum aestivum L.) were compared with the populations on root segments about 1 week older (root base). The isolates were characterized with a set of physiological tests and the test results were used to group the

  11. First report of Fusarium redolens causing crown rot of wheat (Triticum spp.) in Turkey

    Science.gov (United States)

    Fusarium crown rot, caused by a complex of Fusarium spp., is a yield-limiting disease of wheat world-wide, especially in dry Mediterranean climates. In order to identify Fusarium species associated with crown rot of wheat, a survey was conducted in summer 2013 in the major wheat growing regions of T...

  12. Comparison of the chemical properties of wheat straw and beech fibers following alkaline wet oxidation and laccase treatments

    DEFF Research Database (Denmark)

    Schmidt, A. S.; Mallon, S.; Thomsen, Anne Belinda

    2002-01-01

    Wheat straw (Triticum aestivum) and beech (Fagus sylvatica), were used to evaluate the effects of two pre-treatment processes (alkaline wet oxidation and enzyme treatment with laccase) on lignocellulosic materials for applications in particleboards and fiberboards. Wheat straw and beech fibers...... treatment gave a more reactive surface than alkaline wet oxidation for wheat straw, whereas the opposite was observed for beech. Fourier transform infrared (FT-IR) spectroscopy showed an almost complete loss of the ester carbonyl stretching signal and the corresponding C-C-O stretching in wet...

  13. Delimitation of the Earliness per se D1 (Eps-D1) flowering gene to a subtelomeric chromosomal deletion in bread wheat (Triticum aestivum)

    Science.gov (United States)

    Zikhali, Meluleki; Wingen, Luzie U.; Griffiths, Simon

    2016-01-01

    Earliness per se (Eps) genes account for the variation in flowering time when vernalization and photoperiod requirements are satisfied. Genomics and bioinformatics approaches were used to describe allelic variation for 40 Triticum aestivum genes predicted, by synteny with Brachypodium distachyon, to be in the 1DL Eps region. Re-sequencing 1DL genes revealed that varieties carrying early heading alleles at this locus, Spark and Cadenza, carry a subtelomeric deletion including several genes. The equivalent region in Rialto and Avalon is intact. A bimodal distribution in the segregating Spark X Rialto single seed descent (SSD) populations enabled the 1DL QTL to be defined as a discrete Mendelian factor, which we named Eps-D1. Near isogenic lines (NILs) and NIL derived key recombinants between markers flanking Eps-D1 suggest that the 1DL deletion contains the gene(s) underlying Eps-D1. The deletion spans the equivalent of the Triticum monoccocum Eps-A m 1 locus, and hence includes MODIFIER OF TRANSCRIPTION 1 (MOT1) and FTSH PROTEASE 4 (FTSH4), the candidates for Eps-A m 1. The deletion also contains T. aestivum EARLY FLOWERING 3-D1 (TaELF3-D1) a homologue of the Arabidopsis thaliana circadian clock gene EARLY FLOWERING 3. Eps-D1 is possibly a homologue of Eps-B1 on chromosome 1BL. NILs carrying the Eps-D1 deletion have significantly reduced total TaELF3 expression and altered TaGIGANTEA (TaGI) expression compared with wild type. Altered TaGI expression is consistent with an ELF3 mutant, hence we propose TaELF3-D1 as the more likely candidate for Eps-D1. This is the first direct fine mapping of Eps effect in bread wheat. PMID:26476691

  14. Delimitation of the Earliness per se D1 (Eps-D1) flowering gene to a subtelomeric chromosomal deletion in bread wheat (Triticum aestivum).

    Science.gov (United States)

    Zikhali, Meluleki; Wingen, Luzie U; Griffiths, Simon

    2016-01-01

    Earliness per se (Eps) genes account for the variation in flowering time when vernalization and photoperiod requirements are satisfied. Genomics and bioinformatics approaches were used to describe allelic variation for 40 Triticum aestivum genes predicted, by synteny with Brachypodium distachyon, to be in the 1DL Eps region. Re-sequencing 1DL genes revealed that varieties carrying early heading alleles at this locus, Spark and Cadenza, carry a subtelomeric deletion including several genes. The equivalent region in Rialto and Avalon is intact. A bimodal distribution in the segregating Spark X Rialto single seed descent (SSD) populations enabled the 1DL QTL to be defined as a discrete Mendelian factor, which we named Eps-D1. Near isogenic lines (NILs) and NIL derived key recombinants between markers flanking Eps-D1 suggest that the 1DL deletion contains the gene(s) underlying Eps-D1. The deletion spans the equivalent of the Triticum monoccocum Eps-A (m) 1 locus, and hence includes MODIFIER OF TRANSCRIPTION 1 (MOT1) and FTSH PROTEASE 4 (FTSH4), the candidates for Eps-A (m) 1. The deletion also contains T. aestivum EARLY FLOWERING 3-D1 (TaELF3-D1) a homologue of the Arabidopsis thaliana circadian clock gene EARLY FLOWERING 3. Eps-D1 is possibly a homologue of Eps-B1 on chromosome 1BL. NILs carrying the Eps-D1 deletion have significantly reduced total TaELF3 expression and altered TaGIGANTEA (TaGI) expression compared with wild type. Altered TaGI expression is consistent with an ELF3 mutant, hence we propose TaELF3-D1 as the more likely candidate for Eps-D1. This is the first direct fine mapping of Eps effect in bread wheat. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  15. Evapotranspiration in winter wheat under different grazing and tillage practices in the southern Great Plains

    Science.gov (United States)

    Precipitation in the Southern Great Plains (SGP) is highly variable both spatially and temporally with recurring periods of severe drought. Winter wheat (Triticum aestivum L.) – summer fallow system with conventional tillage is the principal dryland cropping system in this region for both grazing an...

  16. Comparative Analysis of Phenolic Compound Characterization and Their Biosynthesis Genes between Two Diverse Bread Wheat (Triticum aestivum) Varieties Differing for Chapatti (Unleavened Flat Bread) Quality.

    Science.gov (United States)

    Sharma, Monica; Sandhir, Rajat; Singh, Anuradha; Kumar, Pankaj; Mishra, Ankita; Jachak, Sanjay; Singh, Sukhvinder P; Singh, Jagdeep; Roy, Joy

    2016-01-01

    Phenolic compounds (PCs) affect the bread quality and can also affect the other types of end-use food products such as chapatti (unleavened flat bread), now globally recognized wheat-based food product. The detailed analysis of PCs and their biosynthesis genes in diverse bread wheat ( Triticum aestivum ) varieties differing for chapatti quality have not been studied. In this study, the identification and quantification of PCs using UPLC-QTOF-MS and/or MS/MS and functional genomics techniques such as microarrays and qRT-PCR of their biosynthesis genes have been studied in a good chapatti variety, "C 306" and a poor chapatti variety, "Sonalika." About 80% (69/87) of plant phenolic compounds were tentatively identified in these varieties. Nine PCs (hinokinin, coutaric acid, fertaric acid, p-coumaroylqunic acid, kaempferide, isorhamnetin, epigallocatechin gallate, methyl isoorientin-2'-O-rhamnoside, and cyanidin-3-rutinoside) were identified only in the good chapatti variety and four PCs (tricin, apigenindin, quercetin-3-O-glucuronide, and myricetin-3-glucoside) in the poor chapatti variety. Therefore, about 20% of the identified PCs are unique to each other and may be "variety or genotype" specific PCs. Fourteen PCs used for quantification showed high variation between the varieties. The microarray data of 44 phenolic compound biosynthesis genes and 17 of them on qRT-PCR showed variation in expression level during seed development and majority of them showed low expression in the good chapatti variety. The expression pattern in the good chapatti variety was largely in agreement with that of phenolic compounds. The level of variation of 12 genes was high between the good and poor chapatti quality varieties and has potential in development of markers. The information generated in this study can be extended onto a larger germplasm set for development of molecular markers using QTL and/or association mapping approaches for their application in wheat breeding.

  17. The release of cytochrome c and the regulation of the programmed cell death progress in the endosperm of winter wheat (Triticum aestivum L.) under waterlogging.

    Science.gov (United States)

    Qi, Yuan-Hong; Mao, Fang-Fang; Zhou, Zhu-Qing; Liu, Dong-Cheng; Min-Yu; Deng, Xiang-Yi; Li, Ji-Wei; Mei, Fang-Zhu

    2018-05-02

    It has been shown in mammalian systems that the mitochondria can play a key role in the regulation of apoptosis by releasing intermembrane proteins (such as cytochrome c) into the cytosol. Cytochrome c released from the mitochondria to the cytoplasm activates proteolytic enzyme cascades, leading to specific nuclear DNA degradation and cell death. This pathway is considered to be one of the important regulatory mechanisms of apoptosis. Previous studies have shown that endosperm cell development in wheat undergoes specialized programmed cell death (PCD) and that waterlogging stress accelerates the PCD process; however, little is known regarding the associated molecular mechanism. In this study, changes in mitochondrial structure, the release of cytochrome c, and gene expression were studied in the endosperm cells of the wheat (Triticum aestivum L.) cultivar "huamai 8" during PCD under different waterlogging durations. The results showed that waterlogging aggravated the degradation of mitochondrial structure, increased the mitochondrial permeability transition (MPT), and decreased mitochondrial transmembrane potential (ΔΨm), resulting in the advancement of the endosperm PCD process. In situ localization and western blotting of cytochrome c indicated that with the development of the endosperm cell, cytochrome c was gradually released from the mitochondria to the cytoplasm, and waterlogging stress led to an advancement and increase in the release of cytochrome c. In addition, waterlogging stress resulted in the increased expression of the voltage-dependent anion channel (VDAC) and adenine nucleotide translocator (ANT), suggesting that the mitochondrial permeability transition pore (MPTP) may be involved in endosperm PCD under waterlogging stress. The MPTP inhibitor cyclosporine A effectively suppressed cell death and cytochrome c release during wheat endosperm PCD. Our results indicate that the mitochondria play important roles in the PCD of endosperm cells and that

  18. Economical and Morpho-Biological Features of Whiner Wheat New Generation Varieties (Triticum durum

    Directory of Open Access Journals (Sweden)

    Л. І. Улич

    2010-10-01

    Full Text Available The article describes summary of the researches, characteristics of morphological and agro-biological characteristics and features, a note is made of a significant progress in the selection of productivity and adaptability of registered Durum Winter Wheat Varieties of new crops rotation. Significant developments of  plants architectonic are marked, especially in height, characteristics of economical value, and in terms of considerable achievements in breeding of this kind of wheat. A stress in made on the need to enhance Durum Winter Wheat breeding to develop more frostresistant and drought-overheat resistant varieties.

  19. Characterization of a Wheat Breeders' Array suitable for high-throughput SNP genotyping of global accessions of hexaploid bread wheat (Triticum aestivum).

    Science.gov (United States)

    Allen, Alexandra M; Winfield, Mark O; Burridge, Amanda J; Downie, Rowena C; Benbow, Harriet R; Barker, Gary L A; Wilkinson, Paul A; Coghill, Jane; Waterfall, Christy; Davassi, Alessandro; Scopes, Geoff; Pirani, Ali; Webster, Teresa; Brew, Fiona; Bloor, Claire; Griffiths, Simon; Bentley, Alison R; Alda, Mark; Jack, Peter; Phillips, Andrew L; Edwards, Keith J

    2017-03-01

    Targeted selection and inbreeding have resulted in a lack of genetic diversity in elite hexaploid bread wheat accessions. Reduced diversity can be a limiting factor in the breeding of high yielding varieties and crucially can mean reduced resilience in the face of changing climate and resource pressures. Recent technological advances have enabled the development of molecular markers for use in the assessment and utilization of genetic diversity in hexaploid wheat. Starting with a large collection of 819 571 previously characterized wheat markers, here we describe the identification of 35 143 single nucleotide polymorphism-based markers, which are highly suited to the genotyping of elite hexaploid wheat accessions. To assess their suitability, the markers have been validated using a commercial high-density Affymetrix Axiom ® genotyping array (the Wheat Breeders' Array), in a high-throughput 384 microplate configuration, to characterize a diverse global collection of wheat accessions including landraces and elite lines derived from commercial breeding communities. We demonstrate that the Wheat Breeders' Array is also suitable for generating high-density genetic maps of previously uncharacterized populations and for characterizing novel genetic diversity produced by mutagenesis. To facilitate the use of the array by the wheat community, the markers, the associated sequence and the genotype information have been made available through the interactive web site 'CerealsDB'. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  20. Study of root para-nodules formation in wheat (Triticum durum ...

    African Journals Online (AJOL)

    djemel

    2013-08-28

    Aug 28, 2013 ... African Journal of Biotechnology. Full Length Research ... formed when wheat roots were inoculated with Frankia and the root length was enhanced. When the .... are modified lateral roots with structure enhanced by rhizobial.

  1. Weed biomass and economic yield of wheat (Triticum aestivum) as ...

    African Journals Online (AJOL)

    Yomi

    2012-01-24

    Jan 24, 2012 ... INTRODUCTION ... to control weeds in conjunction with cultural practices. Jarwar et al. (1999) .... Wheat grain yield is an interplay of yield components especially ... The biological yield expresses the overall growth of crop.

  2. Effects of rhizobial bacteria on K, Ca and Na concentration of wheat (Triticum aestivum L. in saline soils

    Directory of Open Access Journals (Sweden)

    S homayoon

    2016-05-01

    Full Text Available Introduction Soil salinity is one of the major agricultural problems and it is limiting crop productivity in many parts of the cultivated areas all over the world. Saline soils are differentiated by the presence of great ratios of Na/Ca, Na/K, Ca2+, Mg2+, and Cl/NO3 (Gratan & Catherine, 1993 and high levels of neutral salts in the surface layers, which are resulting from the capillary action (Al-Falih, 2002. Osmotic stress occurs when soluble salts increase in the soils and then results in specific ion toxicity (Agarwal & Ahmad, 2010. Therefore, one of the most important side effects of salinity is nutritional disorders. High concentration of NaCl in the root medium usually reduces nutrients uptake and affects the transportation of potassium and calcium ions in plant. (Gratan & Catherine, 1993 reported that the salinity of soils changes ionic strength of the substrate and it can influence mineral nutrient uptake and translocation. Salinity also changes the mineral nutrient availability and disrupts the mineral relations of plants. Hence, the main purpose of this research is to evaluate the effects of rhizobial bacteria inoculation on K, Ca and Na concentration of wheat (Triticum aestivum L. in saline soils. Material and methods Soil sample was collected from Astan Ghodse Razavi farm, Mashhad Iran, and then was dried and passed through a 12-mesh (approximately 2 mm screen. Soil sample was divided into three parts and then was placed into three containers. Each container was watered by a different proportion of saline water (EC= 10 dS.m-1. Salinity of soils was regularly monitored until three salinities (2, 6 and 10 dS.m-1 came out. Then, a completely randomized design with a factorial arrangement was carried out in a greenhouse condition. The experimental factors included four levels of inoculation (Sinorhizobium meliloti, Bradyrhizobium japonicum and Rhizobium leguminosarum and control and three levels of soil salinity (2, 6 and 10 dS.m-1 with

  3. The physical map of wheat chromosome 5DS revealed gene duplications and small rearrangements

    Czech Academy of Sciences Publication Activity Database

    Akpinar, B.A.; Magni, F.; Yuce, M.; Lucas, S. J.; Šimková, Hana; Šafář, Jan; Vautrin, S.; Berges, H.; Cattonaro, F.; Doležel, Jaroslav; Budak, H.

    2015-01-01

    Roč. 16, JUN 13 (2015) ISSN 1471-2164 R&D Projects: GA ČR GBP501/12/G090; GA MŠk(CZ) LO1204 Institutional support: RVO:61389030 Keywords : Triticum aestivum * 5DS * Hexaploid wheat Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.867, year: 2015

  4. Chlorophyll a fluorescence to phenotype wheat genotypes for heat tolerance

    DEFF Research Database (Denmark)

    Sharma, Dew Kumari; Andersen, Sven Bode; Ottosen, Carl-Otto

    In prospects of global climate change, heat stress is a rising constraint for the productivity of wheat (Triticum aestivum L.). It is a heat-susceptible crop beyond 17-23oC temperature throughout its phenological stages, flowering phase being the most sensitive stage. Chlorophyll a fluorescence...... parameter, maximum quantum yield efficiency of PSII (Fv/Fm) is used as a physiological marker for early stress detection in PSII in plants. We established a reproducible protocol to measure response of wheat genotypes to high temperature based on Fv/Fm. The heat treatment of 40°C in 300 µmol m-2s-1 PAR...... enabled the identification of contrasting wheat genotypes that can be used to study the genetic and physiological nature of heat stress tolerance to dissect quantitative traits into simpler and more heritable traits....

  5. Intercropping of wheat and pea as influenced by nitrogen fertilization

    DEFF Research Database (Denmark)

    Ghaley, B.B.; Hauggaard-Nielsen, Henrik; Jensen, Henning Høgh

    2005-01-01

    The effect of sole and intercropping of field pea (Pisum sativum L.) and spring wheat (Triticum aestivum L.) on crop yield, fertilizer and soil nitrogen (N) use was tested on a sandy loam soil at three levels of urea fertilizer N (0, 4 and 8 g N m−2) applied at sowing. The 15N enrichment and natu...... with lower soil N levels, and vice versa for wheat, paving way for future option to reduce N inputs and negative environmental impacts of agricultural crop production......., grain N concentration, the proportion of N derived from symbiotic N2 fixation, and soil N accumulation. With increasing fertilizer N supply, intercropped and sole cropped wheat responded with increased yield, grain N yield and soil N accumulation, whereas the opposite was the case for pea. Fertilizer N...

  6. Solid-stemmed spring wheat cultivars give better androgenic response than hollow-stemmed cultivars in anther culture

    OpenAIRE

    Weigt, Dorota; Kiel, Angelika; Nawraca?a, Jerzy; Pluta, Mateusz; ?acka, Agnieszka

    2016-01-01

    Solid-stemmed spring wheat cultivars (Triticum aestivum L.) are resistant to the stem sawfly (Cephus cinctus Nort.) and lodging. Anthers of 24 spring wheat cultivars with varying content of pith in the stem were used in the experiment. All were classified into three groups: solid, medium?solid and hollow stems. There was considerable influence of the cultivar on callus formation and green plant regeneration. The highest efficiency of green plant regeneration (24%) was observed for the solid-s...

  7. SHORT-TERM EXPOSURE TO ATMOSPHERIC AMMONIA DOES NOT AFFECT LOW-TEMPERATURE HARDENING OF WINTER-WHEAT

    NARCIS (Netherlands)

    CLEMENT, JMAM; VENEMA, JH; VANHASSELT, PR

    The effect of atmospheric NH3 on low-temperature hardening of winter wheat (Triticum aestivum L. cv. Urban) was investigated. Growth and photosynthesis were stimulated by ammonia exposure. After a 14 d exposure at moderate temperatures (day/night 18.5/16 degrees C) total nitrogen content was

  8. Predicting pre-planting risk of Stagonospora nodorum blotch in winter wheat using machine learning models

    Science.gov (United States)

    Pre-planting factors have been associated with the late-season severity of Stagonospora nodorum blotch (SNB), caused by the fungal pathogen Parastagonospora nodorum, in winter wheat (Triticum aestivum). The relative importance of these factors in the risk of SNB has not been determined and this know...

  9. Bread wheat progenitors: Aegilops tauschii (DD genome) and Triticum dicoccoides (AABB genome) reveal differential antioxidative response under water stress.

    Science.gov (United States)

    Suneja, Yadhu; Gupta, Anil Kumar; Bains, Navtej Singh

    2017-01-01

    Antioxidant enzymes are known to play a significant role in scavenging reactive oxygen species and maintaining cellular homeostasis. Activity of four antioxidant enzymes viz., superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX) and glutathione reductase (GR) was examined in the flag leaves of nine Aegilops tauschii and three Triticum dicoccoides accessions along with two bread wheat cultivars under irrigated and rain-fed conditions. These accessions were shortlisted from a larger set on the basis of field performance for a set of morpho-physiological traits. At anthesis, significant differences were observed in enzyme activities in two environments. A 45% elevation in average GR activity was observed under rain-fed conditions. Genotypic variation was evident within each environment as well as in terms of response to stress environment. Aegilops tauschii accession 3769 (86% increase in SOD, 41% in CAT, 72% in APX, 48% in GR activity) and acc. 14096 (37% increase in SOD, 32% CAT, 25% APX, 42% GR) showed up-regulation in the activity of all the four studied antioxidant enzymes. Aegilops tauschii accessions-9809, 14189 and 14113 also seemed to have strong induction mechanism as elevated activity of at least three enzymes was observed in them under rain-fed conditions. T. dicoccoides , on the other hand, maintained active antioxidative machinery under irrigated condition with relatively lower induction under stress. A significant positive correlation (r = 0.760) was identified between change in the activity of CAT and GR under stress. Changes in plant height, spike length and grain weight were recorded under stress and non-stress conditions on the basis of which a cumulative tolerance index was deduced and accessions were ranked for drought tolerance. Overall, Ae. tauschii accession 3769, 14096, 14113 (DD-genome) and T. dicoccoides accession 7054 (AABB-genome) may be used as donors to combine beneficial stress adaptive traits of all the three sub

  10. Cumulative abiotic stresses and their effect on the antioxidant defense system in two species of wheat, Triticum durum Desf and Triticum aestivum L.

    OpenAIRE

    Ibrahim M.M.; Alsahli A.A.; Al-Ghamdi A.A.

    2013-01-01

    The combined effects of heat and UV-B on the antioxidant system and photosynthetic pigments were investigated in the leaves of T. durum Desf. and Triticum aestivum L. The photosynthetic pigment content, in vitro evaluation of the antioxidant system activities including DPPH radical scavenging activity, and super oxide anion radical scavenging activity were determined. In addition, the antioxidant enzyme activities, such as superoxide dismutase (SOD) and gua...

  11. Tissue specific responses alter the biomass accumulation in wheat under gradual and sudden salt stress

    Directory of Open Access Journals (Sweden)

    Yumurtaci A.

    2012-11-01

    Full Text Available Salinity is one the major limiting environmental factors which has negative side effects on crop production. The purpose of this study was to investigate the differences between the gradual and sudden salt stress effects on biomass accumulation associated with whole plant development in three different tissues of two wheat species ( Triticum aestivum and Triticum durum under hydroponic conditions in the long term. Considering the effects of sudden and gradual stress for biomass accumulation, while importance of salinity x genotype interaction for fresh weights was 5%, association for salinity x tissue type was found as 1% important. Interestingly, root branching and development of lateral roots were much more negatively affected by gradual stress rather than sudden salt application. Our results demonstrated that root and leaf were both critical tissues to test the salt tolerance by physiologically but sheath tissue might be used as an alternative source of variation for solving the interactions between root and leaves in wheat.

  12. Response of spring type wheat (triticum aestivum l.) cultivars to different chilling treatments

    Science.gov (United States)

    Late sowing of wheat in autumn due to environmental conditions or late harvesting of cotton crop results in substantial yield loss. It may be attributed to non-fulfillment of chilling requirements. The present study was conducted to identify the chilling requirement of autumn sown cultivars of wheat...

  13. Physiological response of wheat, maize and cotton to gamma irradiation

    International Nuclear Information System (INIS)

    Sharabash, M.T.M.; Gaweesh, S.S.M.; Orabi, I.O.A.; Hammad, A.H.A.

    1988-01-01

    Grains of wheat triticum aestivum vulgare cv. Giza 155, maize Zea mays cv. double hybrid strain 17 S and cotton seeds Gossypium barbadence cv. Giza 67 were irradiated with successive doses of gamma rays from 0 to 64 Krad. Irradiating wheat grains with 1 Krad, maize grains with 0.5 Krad and cotton seeds with 4 Krad stimulated their germination and enhanced the growth of seedlings and their chlorophyll content. Also, these doses activated Alpha- and Beta-Amylase in the seeds. Higher doses had suppression effects. Peroxidase value in the seedlings of the three species was accelerated progressively in concomitant with the increase in the dosage

  14. Study on Prevalence of Mycoflora in Wheat Seeds

    Directory of Open Access Journals (Sweden)

    Pratishtha Adhikari

    2016-01-01

    Full Text Available Forty seed sample of wheat (Triticum aestivum were collected from four locations viz. Chitwan, Kaski, Banke and Lalitpur and tested by blotter method at laboratory during 2013 for determining fungal pathogens associated with wheat seeds in Nepal. Eighteen species representing thirteen genera of fungi were recovered from the seed. Alternaria alternata and Bipolaris sorokiniana were predominant in all the varieties/genotypes from all the locations, where B. sorokiniana was strongly pathogenic in wheat crop. Percentage frequency and type of fungi detected varied with variety and locations. Bipolaris sorokiniana was highest (64.40% in Banke than remaining three locations. Seeds of Chitwan had lowest percentage (5.50% of seed infection as compared to other locations. Relative abundance of Alternaria alternata (55.10% was highest as it was the most prevalent component of seed borne mycoflora, followed by Bipolaris sorokiniana (34.69% and Cladosporium herbarum (7.19%. Differences in quantity of precipitation and relative humidity might be the possible reason for variation in frequency and type of fungi detected in wheat seeds of four locations.

  15. Cloning and Characterization of Purple Acid Phosphatase Phytases from Wheat, Barley, Maize and Rice

    DEFF Research Database (Denmark)

    Dionisio, Giuseppe; Madsen, Claus Krogh; Holm, Preben Bach

    2011-01-01

    development and germination. In wheat, it was demonstrated that a and b isogene expression is driven by different promoters (approximately 31% identity). TaPAPhy_a/b promoter reporter gene expression in transgenic grains and peptide mapping of TaPAPhy purified from wheat bran and germinating grains confirmed......Barley (Hordeum vulgare) and wheat (Triticum aestivum) possess significant phytase activity in the mature grains. Maize (Zea mays) and rice (Oryza sativa) possess little or virtually no preformed phytase activity in the mature grain and depend fully on de novo synthesis during germination. Here......, it is demonstrated that wheat, barley, maize, and rice all possess purple acid phosphatase (PAP) genes that, expressed in Pichia pastoris, give fully functional phytases (PAPhys) with very similar enzyme kinetics. Preformed wheat PAPhy was localized to the protein crystalloid of the aleurone vacuole. Phylogenetic...

  16. Introgression of novel traits from a wild wheat relative improves drought adaptation in wheat.

    Science.gov (United States)

    Placido, Dante F; Campbell, Malachy T; Folsom, Jing J; Cui, Xinping; Kruger, Greg R; Baenziger, P Stephen; Walia, Harkamal

    2013-04-01

    Root architecture traits are an important component for improving water stress adaptation. However, selection for aboveground traits under favorable environments in modern cultivars may have led to an inadvertent loss of genes and novel alleles beneficial for adapting to environments with limited water. In this study, we elucidate the physiological and molecular consequences of introgressing an alien chromosome segment (7DL) from a wild wheat relative species (Agropyron elongatum) into cultivated wheat (Triticum aestivum). The wheat translocation line had improved water stress adaptation and higher root and shoot biomass compared with the control genotypes, which showed significant drops in root and shoot biomass during stress. Enhanced access to water due to higher root biomass enabled the translocation line to maintain more favorable gas-exchange and carbon assimilation levels relative to the wild-type wheat genotypes during water stress. Transcriptome analysis identified candidate genes associated with root development. Two of these candidate genes mapped to the site of translocation on chromosome 7DL based on single-feature polymorphism analysis. A brassinosteroid signaling pathway was predicted to be involved in the novel root responses observed in the A. elongatum translocation line, based on the coexpression-based gene network generated by seeding the network with the candidate genes. We present an effective and highly integrated approach that combines root phenotyping, whole-plant physiology, and functional genomics to discover novel root traits and the underlying genes from a wild related species to improve drought adaptation in cultivated wheat.

  17. Mechanism of Resistance in two Bread Wheat (Triticum Aestivum L.) Lines to Russian Wheat Aphid (Diuraphis Noxia: Homoptra: Aphididae) in Kenya

    International Nuclear Information System (INIS)

    Malinga, J.N.

    2002-01-01

    Russian wheat aphid (Diuraphis noxia) is a recent pest of small cereals that is causing severe yield losses in farmers' fields and farmers have demanded a resistant wheat line. In wheat the pest causes both direct and indirect damage resulting in losses of up to 90%. Control of the aphid is a major constraint in the production of wheat in Kenya requiring the use of more than one systematic insecticide application.This cost is prohibitive.Breeding wheat for resistance to Russian wheat is the cheapest alternative and is the international trend. The use of Russian wheat aphid resistant cultivars may reduce the impact of these pest on cereal production. A study was therefore conducted in Kenya to understand and determine the genetics of inheritance pattern of D. noxia present in two new sources of resistance (RWA 8 and RWA 16). These two new sources would be potential donors of D. noxia resistance in breeding programmes. The two resistant donors with unknown resistance genes for Diuraphis noxia were crossed with susceptible Kenyan commercial wheat cultivar, Heroe. Resistant reaction of F 1 ,BC 1 and F2 indicated that resistance in the two lines differed. Resistant in RWA 8 may be controlled by a single dominant genes while RWA 16 by two incomplete dominant genes. It is unknown wether these genes are identical to any known, designated resistance genes. However, their resistance has been shown to be effective on the RWA population in Kenya. As studies continue on these genes at molecular level, it is recommended that resistant populations are carried on through the breeding programme to possibly identify and release a resistant variety for commercial production

  18. Td4IN2: A drought-responsive durum wheat (Triticum durum Desf.) gene coding for a resistance like protein with serine/threonine protein kinase, nucleotide binding site and leucine rich domains.

    Science.gov (United States)

    Rampino, Patrizia; De Pascali, Mariarosaria; De Caroli, Monica; Luvisi, Andrea; De Bellis, Luigi; Piro, Gabriella; Perrotta, Carla

    2017-11-01

    Wheat, the main food source for a third of world population, appears strongly under threat because of predicted increasing temperatures coupled to drought. Plant complex molecular response to drought stress relies on the gene network controlling cell reactions to abiotic stress. In the natural environment, plants are subjected to the combination of abiotic and biotic stresses. Also the response of plants to biotic stress, to cope with pathogens, involves the activation of a molecular network. Investigations on combination of abiotic and biotic stresses indicate the existence of cross-talk between the two networks and a kind of overlapping can be hypothesized. In this work we describe the isolation and characterization of a drought-related durum wheat (Triticum durum Desf.) gene, identified in a previous study, coding for a protein combining features of NBS-LRR type resistance protein with a S/TPK domain, involved in drought stress response. This is one of the few examples reported where all three domains are present in a single protein and, to our knowledge, it is the first report on a gene specifically induced by drought stress and drought-related conditions, with this particular structure. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  19. Chlorophyll fluorescence as a parameter for frost hardiness in winter wheat. A comparison with other hardiness parameters.

    NARCIS (Netherlands)

    Clement, JMAM; vanHasselt, PR

    1996-01-01

    Frost hardiness of winter wheat leaves (Triticum aestivum L. cv. Urban) was measured during an eight weeks hardening period using chlorophyll fluorescence. Determination of frost induced damage after freezing, measured as the decrease of photochemical capacity of photosystem II (F-V/F-M =

  20. Molecular cloning and characterization of two novel genes from hexaploid wheat that encode double PR-1 domains coupled with a receptor-like protein kinase

    Science.gov (United States)

    Hexaploid wheat (Triticum aestivum L.) contains at least 23 TaPr-1 genes encoding the group 1 pathogenesis-related (PR-1) proteins as identified in our previous work. Here we report the cloning and characterization of TaPr-1-rk1 and TaPr-1-rk2, two novel genes closely related to the wheat PR-1 famil...

  1. Harnessing Genetic Diversity of Wild Gene Pools to Enhance Wheat Crop Production and Sustainability: Challenges and Opportunities

    Directory of Open Access Journals (Sweden)

    Carla Ceoloni

    2017-12-01

    Full Text Available Wild species are extremely rich resources of useful genes not available in the cultivated gene pool. For species providing staple food to mankind, such as the cultivated Triticum species, including hexaploid bread wheat (Triticum aestivum, 6x and tetraploid durum wheat (T. durum, 4x, widening the genetic base is a priority and primary target to cope with the many challenges that the crop has to face. These include recent climate changes, as well as actual and projected demographic growth, contrasting with reduction of arable land and water reserves. All of these environmental and societal modifications pose major constraints to the required production increase in the wheat crop. A sustainable approach to address this task implies resorting to non-conventional breeding strategies, such as “chromosome engineering”. This is based on cytogenetic methodologies, which ultimately allow for the incorporation into wheat chromosomes of targeted, and ideally small, chromosomal segments from the genome of wild relatives, containing the gene(s of interest. Chromosome engineering has been successfully applied to introduce into wheat genes/QTL for resistance to biotic and abiotic stresses, quality attributes, and even yield-related traits. In recent years, a substantial upsurge in effective alien gene exploitation for wheat improvement has come from modern technologies, including use of molecular markers, molecular cytogenetic techniques, and sequencing, which have greatly expanded our knowledge and ability to finely manipulate wheat and alien genomes. Examples will be provided of various types of stable introgressions, including pyramiding of different alien genes/QTL, into the background of bread and durum wheat genotypes, representing valuable materials for both species to respond to the needed novelty in current and future breeding programs. Challenging contexts, such as that inherent to the 4x nature of durum wheat when compared to 6x bread wheat, or

  2. Association of molecular markers with polyphenol oxidase activity in selected wheat genotypes

    International Nuclear Information System (INIS)

    Abbas, Z.; Javad, B.; Majeed, N.; Naqvi, S.

    2016-01-01

    Wheat (Triticum aestivum L.), a major staple food for the people of Pakistan and other Asian countries, is used as bread, chapatti, porridge, noodles and many other. It is established that color quality of wheat products depend on chemical and enzymatic factors especially the polyphenol oxidases (PPOs). These are copper containing enzymes which induce browning in wheat-based products. Various procedures for determining PPO activity available and differences in PPO activity among wheat genotypes have been documented. In present study, an attempt was made to establish the association of molecular markers with polyphenol oxidase activity in wheat genotypes having very high or very low PPO activities. Twelve pairs of markers were used out of which only three primer pairs viz. PPO43, PPO30 and WP2-2 yielded specific pattern discriminating high and low PPO genotypes. Cluster analysis for all 12 markers revealed that all the low PPO lline share the same sub cluster, but high PPO lines were dispersed in different clusters. (author)

  3. Low irradiances affect abscisic acid, indole-3-acidic acid, and cytokinin levels of wheat (Triticum aestivum L.) tissues

    Science.gov (United States)

    Nan, R.; Carman, J. G.; Salisbury, F. B.

    1999-01-01

    Wheat (Triticum aestivum L.) plants were grown under four irradiance levels: 1,400, 400, 200, and 100 micromol m-2 s-1. Leaves and roots were sampled before, during, and after the boot stage, and levels of abscisic acid (ABA), indole-3-acetic acid (IAA), zeatin, zeatin riboside, dihydrozeatin, dihydrozeatin riboside, isopentenyl adenine, and isopentenyl adenosine were quantified using noncompetitive indirect ELISA systems. Levels of IAA in leaves and roots of plants exposed to 100 micromol m-2 s-1 of irradiance were 0.7 and 2.9 micromol kg-1 dry mass (DM), respectively. These levels were 0.2 and 1.0 micromol kg-1 DM, respectively, when plants were exposed to 1,400 micromol m-2 s-1. Levels of ABA in leaves and roots of plants exposed to 100 micromol m-2 s-1 were 0.65 and 0.55 micromol kg-1 DM, respectively. They were 0.24 micromol kg-1 DM (both leaves and roots) when plants were exposed to 1,400 micromol m-2 s-1. Levels of isopentenyl adenosine in leaves (24.3 nmol kg-1 DM) and roots (29.9 nmol kg-1 DM) were not affected by differences in the irradiance regime. Similar values were obtained in a second experiment. Other cytokinins could not be detected (<10 nmol kg 1 DM) in either experiment with the sample sizes used (150-600 mg DM for roots and shoots, respectively).

  4. Quantification of peptides causing celiac disease in historical and modern hard red spring wheat cultivars

    Science.gov (United States)

    Celiac disease (CD) is prevalent in 0.5 to 1.26% of adolescents and adults. The disease develops in genetically susceptible individuals as a result of ingestion of gluten forming proteins found in cereals such as, wheat (Triticum aestivum L.), rye (Secale cereale L.) and barley (Hordeum sativum L.)...

  5. Atividade de glutationa S-transferase na metabolização de acetochlor, atrazine e oxyfluorfen em milho (Zea mays L., sorgo (Sorghum bicolor L. e trigo (Triticum aestivum L. (Poaceae Glutathione S-transferase activity in acetochlor, atrazine and oxyfluorfen metabolization in maize (Zea mays L., sorghum (Sorghum bicolor L. and wheat (Triticum aestivumL. (Poaceae

    Directory of Open Access Journals (Sweden)

    Ethel Lourenzi Barbosa Novelli

    2002-05-01

    Full Text Available Este experimento foi conduzido para avaliar a seletividade em plantas dos herbicidas acetochlor, atrazine e oxyfluorfen em relação à atividade da glutationa S-transferase (GST em plantas de milho (Zea mays L., sorgo (Sorghum bicolor L. e trigo (Triticum aestivum L. (Poaceae. A atividade da GST foi detectada às 24, 48 e 72 horas após as aplicaç��es dos tratamentos. Os tratamentos do experimento consistiram de aplicação com água (controle, acetochlor (3 L.ha-1, atrazine (4 L.ha-1 e oxyfluorfen (1 L.ha-1. As maiores atividades de GST foram observadas na presença de acetochlor, principalmente às 48 horas após o tratamento. Esses aumentos foram 105, 148 e 118% em relação ao controle para milho, sorgo e trigo, respectivamente. É sugerido que a GST pode ter papel na degradação de acetochlor e pode ser uma das razões para a seletividade desse herbicida para essas culturas.This experiment was conducted to evaluate the acetochlor, atrazine and oxyfluorfen herbicides plant selectivity, in relation to glutathione S-transferase activity (GST in maize (Zea mays L., sorghum (Sorghum bicolor L. and wheat (Triticum aestivum L (Poaceae plants. GST activity was detected 24, 48 and 72 hours after treatment applications. The experiment's treatments consisted of spraying plants with water (control, acetochlor (3 L.ha-1`, atrazine (4 L.ha-1 and oxyfluorfen (1 L.ha-1. The highest GST activities were observed in presence of acetochlor, mainly at 48 hours after treatment. These increments were 105, 148 and 118% when compared to maize, sorghum and wheat control groups, respectively. It is suggested that the GST may have a role in acetochlor degradation and it may be a reason for this herbicide's selectivity in these crops.

  6. Contribution of crop models to adaptation in wheat

    DEFF Research Database (Denmark)

    Chenu, Karine; Porter, John Roy; Martre, Pierre

    2017-01-01

    With world population growing quickly, agriculture needs to produce more with fewer inputs while being environmentally friendly. In a context of changing environments, crop models are useful tools to simulate crop yields. Wheat (Triticum spp.) crop models have been evolving since the 1960s...... to translate processes related to crop growth and development into mathematical equations. These have been used over decades for agronomic purposes, and have more recently incorporated advances in the modeling of environmental footprints, biotic constraints, trait and gene effects, climate change impact......, and the upscaling of global change impacts. This review outlines the potential and limitations of modern wheat crop models in assisting agronomists, breeders, and policymakers to address the current and future challenges facing agriculture....

  7. Evaluation of nitrogen uptake patterns in spring and winter wheat in western Oregon

    International Nuclear Information System (INIS)

    Baloch, D.M.; Malghani, M.A.K.; Khan, M.A.; Kakar, E.

    2010-01-01

    An understanding of the ground nitrogen (N) uptake pattern for wheat (Triticum aestivum L.) is essential to facilitate nitrogen management. The purpose of this study was to determine the nitrogen uptake pattern of spring and winter wheat grown in western Oregon, USA. Data used in this study were obtained from three different trials. For spring wheat rotation trials five spring wheat cultivars were used. Fertilizer N (16-16-16-4) at the rate of 140 kg ha/sup -1/ was applied at the time of planting. In small plot rotation trials five fertilizer treatments - 0, 50, 100,150 and 200 kg N ha/sup -1/ were used. Rotations include winter wheat following clover and winter wheat following oat. The N uptake and dry matter yield of winter wheat were also determined from unfertilized plots of wheat trial. The maximum N uptake for spring wheat and winter wheat were at 1100 and 2000 accumulated growing degree days (GDD), before Feekes 10, respectively. The maximum N uptake rate for spring wheat, 0.038 kg N GDD/sup -1/, occurred at 750 GDD and the peak N uptake was observed approximately 35 days after Feekes 2. Nitrogen uptake in winter wheat was significantly affected by rotations. (author)

  8. Use of intergeneric cross for production of doubled haploid wheat (triticum aestivum l.)

    International Nuclear Information System (INIS)

    Khan, M.A.; Shaukat, S.; Kashif, M.; Khan, A.S.

    2012-01-01

    The main purpose of conventional breeding or hybridisation is to bring about homozygosity, for which 6 to 7 years may be required. Wheat and maize crosses have proved to be more efficient in DH lines production than anther culture methods, because of its lower genetic specificity. Doubled haploid technique facilitates the development of homozygous plants within one generation. The system is developed through haploid production, followed by chromosome doubling, to produce homozygous plants in a single generation. For doubled haploid production method wheat and maize crossing system is better than anther culture and ovule culture because maize pollens are highly responsive and produce stable progeny population. Wheat is being used as female parent and maize as a male parent for the production of doubled haploid. Moreover, Silver Nitrate (AgNO/sub 3/) in tiller culture media can improve the frequency of haploid embryo production in this crossing system. Our result showed that DH production through wheat and maize crossing system was proved to be time saving (2 years) as compared to other conventional breeding methods (6 years). (author)

  9. Simulating Durum Wheat (Triticum turgidum L. Response to Root Zone Salinity based on Statistics and Macroscopic Models

    Directory of Open Access Journals (Sweden)

    Vahid Reza Jalali

    2017-10-01

    Full Text Available Introduction Salinity as an abiotic stress can cause excessive disturbance for seed germination and plant sustainable production. Salinity with three different mechanisms of osmotic potential reduction, ionic toxicity and disturbance of plant nutritional balance, can reduce performance of the final product. Planning for optimal use of available water and saline water with poor quality in agricultural activities is of great importance. Wheat is one of the eight main food sources including rice, corn, sugar beet, cattle, sorghum, millet and cassava which provide 70-90% of all calories and 66-90% of the protein consumed in developing countries. Durum wheat (Triticum turgidum L. is an important crop grows in some arid and semi-arid areas of the world such as Middle East and North Africa. In these regions, in addition to soil salinity, sharp decline in rainfall and a sharp drop in groundwater levels in recent years has emphasized on the efficient use of limited soil and water resources. Consequently, in order to use brackish water for agricultural productions, it is required to analyze its quantitative response to salinity stress by simulation models in those regions. The objective of this study is to assess the capability of statistics and macro-simulation models of yield in saline conditions. Materials and methods In this study, two general approach of simulation includes process-physical models and statistical-experimental models were investigated. For this purpose, in order to quantify the salinity effect on seed relative yield of durum wheat (Behrang Variety at different levels of soil salinity, process-physical models of Maas & Hoffman, van Genuchten & Hoffman, Dirksen et al. and Homaee et al. models were used. Also, statistical-experimental models of Modified Gompertz Function, Bi-Exponential Function and Modified Weibull Function were used too. In order to get closer to real conditions of growth circumstances in saline soils, a natural saline

  10. Effect of Drought Stress on Water Use Efficiency and Root Dry Weight of Wheat (Triticum aesativum L. and Rye (Secale cereale L. in Competition Conditions

    Directory of Open Access Journals (Sweden)

    F Golestani Far

    2017-10-01

    Full Text Available Introduction Deficiency of water during the plant growth is one of the main factors which reduce the crops production around the world. Drought stress is one of the most important tensions that may occur around the low rainfall, high temperature and wind blowing environments. Plant response to this stress depends on the stage of plant growth and drought intensity. Weeds are unwanted and harmful plants with disturbance in agricultural practices which make increase the cost of crop production and reduce the crop yields. Rye (Secale cereal L. is one of the most important weeds at wheat fields in Iran (Baghestani and Atri, 2003. Low expectations, allelopathic effects and similarity of life cycle and morphology, caused increasing of rye density in winter wheat fields. Water use efficiency (WUE as an important physiological characteristic indicates the ability of plants to water stress. WUE may be affected by climatic and soil or plant factors. In plant communities, competition is one of most important physiological topics (Evans et al, 2003. At Inter-specific competition, weeds interfere to absorbing of light, water and nutrients through the adjacency with crop and so affect the growth and yield of crops. Weeds often compete with crops for soil water and reduce the accessibility of water. Competition between weeds and crops decrease the soil moisture and cause water stress which might decrease the weeds and crops growth. When the supply of water is limited, water drainage overlap areas in soil profile could be occurred relatively fast at early of in the crop life cycle. Materials and Methods In order to study the effects of drought stress on water use efficiency and root dry weight of wheat (Triticum aesativum L. and rye (Secale cereale L. in competition conditions, a pot experiment was conducted in the greenhouse of Agriculture Faculty , University of Birjand in 2012. The experiment was arranged as factorial based on completely randomized design

  11. Physiological effects induced by the hydroalcoholic extract of Violae tricoloris herba (wild pansy aerial parts on Triticum aestivum L

    Directory of Open Access Journals (Sweden)

    Ruxandra Cretu

    2011-12-01

    Full Text Available Wild pansy (Viola tricolor hydroalcoholic extract was prepared by extraction of powdered dried – flowering aerial parts with ethanol 70% v/v (1:10, by reflux for two hours. This was diluted with distilled water to give the final concentrations of 0.5, 1.0 and 5% (v/v (VTEx1, VTEx2 and VTEx3. These extracts were tested for their effects on seed germination and seedlings growth of wheat (Triticum aestivum in a laboratory experiment. Distilled water was used as a control (C. After the 10 days of experiment, we evaluated seed germination of wheat and seedlings growth (roots and shoots lengths, their fresh and dry biomass.

  12. Gamma radiation influence on technological characteristics of wheat flour

    Science.gov (United States)

    Teixeira, Christian A. H. M.; Inamura, Patricia Y.; Uehara, Vanessa B.; Mastro, Nelida L. d.

    2012-08-01

    This study aimed at determining the influence of gamma radiation on technological characteristics of wheat (Triticum sativum) flour and physical properties of pan breads made with this flour. The bread formulation included wheat flour, water, milk, salt, sugar, yeast and butter. The α-amylase activity of wheat flour irradiated with 1, 3 and 9 kGy in a Gammacell 220 (AECL), one day, five days and one month after irradiation was evaluated. Deformation force, height and weight of breads prepared with the irradiated flour were also determined. The enzymatic activity increased—reduction of falling number time—as radiation dose increased, their values being 397 s (0 kGy), 388 s (1 kGy), 343 s (3 kGy) and 293 s (9 kGy) respectively, remaining almost constant over the period of one month. Pan breads prepared with irradiated wheat flour showed increased weight. Texture analysis showed that bread made of irradiated flour presented an increase in maximum deformation force. The results indicate that wheat flour ionizing radiation processing may confer increased enzymatic activity on bread making and depending on the irradiation dose, an increase in weight, height and deformation force parameters of pan breads made of it.

  13. Genome-wide analysis of short interspersed nuclear elements SINES revealed high sequence conservation, gene association and retrotranspositional activity in wheat.

    Science.gov (United States)

    Ben-David, Smadar; Yaakov, Beery; Kashkush, Khalil

    2013-10-01

    Short interspersed nuclear elements (SINEs) are non-autonomous non-LTR retroelements that are present in most eukaryotic species. While SINEs have been intensively investigated in humans and other animal systems, they are poorly studied in plants, especially in wheat (Triticum aestivum). We used quantitative PCR of various wheat species to determine the copy number of a wheat SINE family, termed Au SINE, combined with computer-assisted analyses of the publicly available 454 pyrosequencing database of T. aestivum. In addition, we utilized site-specific PCR on 57 Au SINE insertions, transposon methylation display and transposon display on newly formed wheat polyploids to assess retrotranspositional activity, epigenetic status and genetic rearrangements in Au SINE, respectively. We retrieved 3706 different insertions of Au SINE from the 454 pyrosequencing database of T. aestivum, and found that most of the elements are inserted in A/T-rich regions, while approximately 38% of the insertions are associated with transcribed regions, including known wheat genes. We observed typical retrotransposition of Au SINE in the second generation of a newly formed wheat allohexaploid, and massive hypermethylation in CCGG sites surrounding Au SINE in the third generation. Finally, we observed huge differences in the copy numbers in diploid Triticum and Aegilops species, and a significant increase in the copy numbers in natural wheat polyploids, but no significant increase in the copy number of Au SINE in the first four generations for two of three newly formed allopolyploid species used in this study. Our data indicate that SINEs may play a prominent role in the genomic evolution of wheat through stress-induced activation. © 2013 Ben-Gurion University The Plant Journal © 2013 John Wiley & Sons Ltd.

  14. Effect of Boron Toxicity on Oxidative Stress and Genotoxicity in Wheat (Triticum aestivum L.).

    Science.gov (United States)

    Çatav, Şükrü Serter; Genç, Tuncer Okan; Kesik Oktay, Müjgan; Küçükakyüz, Köksal

    2018-04-01

    Boron (B) toxicity, which occurs in semi-arid and arid environments, can adversely affect the growth and yield of many plants. The aim of this study was to determine the effects of different concentrations of boric acid (3, 6, 9 and 12 mM) on growth, oxidative stress and genotoxicity parameters in root and shoot tissues of wheat seedlings. Our results indicate that B stress inhibits root and shoot growth of wheat in a concentration-dependent manner, and leads to increases in TBARS and H 2 O 2 contents in shoot tissue. Moreover, our findings suggest that high concentrations of B may exert a genotoxic effect on wheat. To the best of our knowledge, this is the first report to evaluate the effect of B stress on genotoxicity in both root and shoot tissues of wheat.

  15. Evaluation of alternative planting strategies to reduce wheat stem sawfly (Hymenoptera: Cephidae) damage to spring wheat in the northern Great Plains.

    Science.gov (United States)

    Beres, B L; Cárcamo, H A; Bremer, E

    2009-12-01

    Wheat, Triticum aestivum L., producers are often reluctant to use solid-stemmed wheat cultivars resistant to wheat stem sawfly, Cephus cinctus Norton (Hymenoptera: Cephidae), due to concerns regarding yield, efficacy or market opportunities. We evaluated the impact of several planting strategies on wheat yield and quality and wheat stem sawfly infestation at two locations over a three-year period. Experimental units consisted of large plots (50 by 200 m) located on commercial farms adjacent to wheat stem sawfly-infested fields. Compared with a monoculture of a hollow-stemmed cultivar ('AC Barrie'), planting a monoculture of a solid-stemmed cultivar ('AC Eatonia') increased yield by an average of 16% (0.4 mg ha(-1)) and increased the grade of wheat by one unit at the two most heavily infested site-years. Planting a 1:1 blend of AC Eatonia and AC Barrie increased yield by an average of 11%, whereas planting 20- or 40-m plot margins to AC Eatonia increased yield by an average of 8%. High wheat stem sawfly pressure limited the effectiveness of using resistant cultivars in field margins because plants were often infested beyond the plot margin, with uniform infestation down the length of the plots at the two most heavily infested site-years. The effectiveness of AC Eatonia to reduce wheat stem sawfly survivorship was modest in this study, probably due to weather-related factors influencing pith expression and to the high abundance of wheat stem sawfly. Greater benefits from planting field margins to resistant cultivars or planting a blend of resistant and susceptible cultivars might be achievable under lower wheat stem sawfly pressure.

  16. Physiological and comparative proteomic analysis reveals different drought responses in roots and leaves of drought-tolerant wild wheat (Triticum boeoticum.

    Directory of Open Access Journals (Sweden)

    Hui Liu

    Full Text Available To determine the proteomic-level responses of drought tolerant wild wheat (Triticum boeoticum, physiological and comparative proteomic analyses were conducted using the roots and the leaves of control and short term drought-stressed plants. Drought stress was imposed by transferring hydroponically grown seedlings at the 3-leaf stage into 1/2 Hoagland solution containing 20% PEG-6000 for 48 h. Root and leaf samples were separately collected at 0 (control, 24, and 48 h of drought treatment for analysis. Physiological analysis indicated that abscisic acid (ABA level was greatly increased in the drought-treated plants, but the increase was greater and more rapid in the leaves than in the roots. The net photosynthetic rate of the wild wheat leaves was significantly decreased under short-term drought stress. The deleterious effects of drought on the studied traits mainly targeted photosynthesis. Comparative proteomic analysis identified 98 and 85 differently changed protein spots (DEPs (corresponding to 87 and 80 unique proteins, respectively in the leaves and the roots, respectively, with only 6 mutual unique proteins in the both organs. An impressive 86% of the DEPs were implicated in detoxification and defense, carbon metabolism, amino acid and nitrogen metabolism, proteins metabolism, chaperones, transcription and translation, photosynthesis, nucleotide metabolism, and signal transduction. Further analysis revealed some mutual and tissue-specific responses to short-term drought in the leaves and the roots. The differences of drought-response between the roots and the leaves mainly included that signal sensing and transduction-associated proteins were greatly up-regulated in the roots. Photosynthesis and carbon fixation ability were decreased in the leaves. Glycolysis was down-regulated but PPP pathway enhanced in the roots, resulting in occurrence of complex changes in energy metabolism and establishment of a new homeostasis. Protein metabolism

  17. The role of thioredoxin h in protein metabolism during wheat (Triticum aestivum L.) seed germination.

    Science.gov (United States)

    Guo, Hongxiang; Wang, Shaoxin; Xu, Fangfang; Li, Yongchun; Ren, Jiangping; Wang, Xiang; Niu, Hongbin; Yin, Jun

    2013-06-01

    Thioredoxin h can regulate the redox environment in the cell and play an important role in the germination of cereals. In the present study, the thioredoxin s antisense transgenic wheat with down-regulation of thioredoxin h was used to study the role of thioredoxin h in protein metabolism during germination of wheat seeds, and to explore the mechanism of the thioredoxin s antisense transgenic wheat seeds having high resistance to pre-harvest sprouting. The qRT-PCR results showed that the expression of protein disulfide isomerase in the thioredoxin s antisense transgenic wheat was up-regulated, which induced easily forming glutenin macropolymers and the resistance of storage proteins to degradation. The expression of serine protease inhibitor was also up-regulated in transgenic wheat, which might be responsible for the decreased activity of thiocalsin during the germination. The expression of WRKY6 in transgenic wheat was down-regulated, which was consistent with the decreased activity of glutamine oxoglutarate aminotransferase. In transgenic wheat, the activities of glutamate dehydrogenase, glutamic pyruvic transaminase and glutamic oxaloacetic transaminase were down-regulated, indicating that the metabolism of amino acid was lower than that in wild-type wheat during seed germination. A putative model for the role of thioredoxin h in protein metabolism during wheat seed germination was proposed and discussed. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  18. The role of plants in the economy of Tell Arbid, north-east Syria, in the Post-Akkadian Period and Middle Bronze Age

    Directory of Open Access Journals (Sweden)

    Wasylikowa Krystyna

    2013-12-01

    Full Text Available Archaeological fieldwork carried out at the Tell Arbid site in north-eastern Syria exposed settlement remains dating from the early 3rd millennium BC to the mid 2nd millennium BC. Recent excavations in Sector P, on the eastern slope of the site, revealed the existence of a significant occupation of the Post-Akkadian/ Early Jazirah V period and of levels dated to the Early and Classic Khabur Ware/Old Jazirah/Middle Bronze Age I-II periods. Cereal remains were dominated by grains and ear fragments of hulled two-rowed barley Hordeum distichon. Less numerous were wheats represented by emmer Triticum dicoccon, einkorn T. monococcum, and macaroni wheat T. durum. The presence of bread wheat T. aestivum and six-rowed barley Hordeum vulgare could not be excluded. The two periods contained similar sets of cereals, but in the Post-Akkadian Period the percentage of hulled wheat remains was higher, while in the Middle Bronze Age (particularly in its younger phase naked wheat slightly exceeded hulled wheats. Legumes were represented by only very few seeds of lentil Lens culinaris and bitter vetch Vicia ervilia. Diaspores of wild plants were very abundant, particularly those from the families of grasses and legumes. The considerable number of ear and culm fragments probably belonging to cereals as well as numerous seeds/fruits of wild plants suggests that the plant remains originated from fodder or animal dung or belonged to threshing waste. The presence of grass stems with nodes indicated that cereals were reaped low on the straw; occasional use of uprooting was suggested by the occurrence of basal culm fragments with traces of rootlets.

  19. Genetic characterisation of novel resistance alleles to stem rust and stripe rust in wheat-alien introgression lines

    OpenAIRE

    Rahmatov, Mahbubjon

    2016-01-01

    Bread wheat (Triticum aestivum L., 2n = 6x = 42, AABBDD) is one of the most important food crops world-wide, but is attacked by many diseases and pests that cause significant yield losses. Globally, stem rust (Sr) (Puccinia graminis f. sp. tritici Erikss & E. Henning), stripe rust (Yr) (Puccinia striiformis Westend. f. sp. tritici Eriks) and leaf rust (Lr) (Puccinia triticina Eriks) are a great threat to wheat production. The majority of the Sr, Yr and Lr resistance genes are already defeated...

  20. Exogenous salicylic acid enhances the resistance of wheat seedlings to hessian fly (Diptera: Cecidomyiidae) infestation under heat stress

    Science.gov (United States)

    Heat stress exerts significant impact on plant-parasite interactions. Phytohormones, such as salicylic acid (SA) play important roles in plant defense against parasite attacks. Here we studied the impact of a combination of heat stress and exogenous SA on wheat (Triticum aestivum L.) plant resistanc...

  1. Effects of transgene-encoded high-molecular weight glutenin proteins in wheat flour blends and sponge and dough baking

    Science.gov (United States)

    HMW glutenin subunits are the most important determinants of wheat (Triticum aestivum L.) bread-making quality, and subunit composition explains a large percentage of the variability observed between genotypes. Experiments were designed to elevate expression of a key native HMW glutenin subunit (1D...

  2. Next-generation sequencing of flow-sorted wheat chromosome 5D reveals lineage-specific translocations and widespread gene duplications

    Czech Academy of Sciences Publication Activity Database

    Lucas, S. J.; Akpinar, B. A.; Šimková, Hana; Kubaláková, Marie; Doležel, Jaroslav; Budak, H.

    2014-01-01

    Roč. 15, DEC 9 2014 (2014) ISSN 1471-2164 R&D Projects: GA ČR GBP501/12/G090 Institutional support: RVO:61389030 Keywords : Wheat genome * Chromosome sorting * Triticum aestivum Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.986, year: 2014

  3. The genetic characteristics in cytology and plant physiology of two wheat (Triticum aestivum) near isogenic lines with different freezing tolerances.

    Science.gov (United States)

    Wang, Wenqiang; Hao, Qunqun; Wang, Wenlong; Li, Qinxue; Wang, Wei

    2017-11-01

    Freezing tolerance in taft plants relied more upon an ABA-independent- than an ABA-dependent antifreeze signaling pathway. Two wheat (Triticum aestivum) near isogenic lines (NIL) named tafs (freezing sensitivity) and taft (freezing tolerance) were isolated in the laboratory and their various cytological and physiological characteristics under freezing conditions were studied. Proplastid, cell membrane, and mitochondrial ultrastructure were less damaged by freezing treatment in taft than tafs plants. Chlorophyll, ATP, and thylakoid membrane protein contents were significantly higher, but malondialdehyde content was significantly lower in taft than tafs plants under freezing condition. Antioxidant capacity, as indicated by reactive oxygen species accumulation and antioxidant enzyme activity, and the relative gene expression were significantly greater in taft than tafs plants. Soluble sugars and abscisic acid (ABA) contents were significantly higher in taft plants than in tafs plants under both normal and freezing conditions. The upregulated expression levels of certain freezing tolerance-related genes were greater in taft than tafs plants under freezing treatment. The addition of sodium tungstate, an ABA synthesis inhibitor, led to only partial freezing tolerance inhibition in taft plants and the down-regulated expression of some ABA-dependent genes. Thus, both ABA-dependent and ABA-independent signaling pathways are involved in the freezing tolerance of taft plants. At the same time, freezing tolerance in taft plants relied more upon an ABA-independent- than an ABA-dependent antifreeze signaling pathway.

  4. TaHsfA6f is a transcriptional activator that regulates a suite of heat stress protection genes in wheat (Triticum aestivum L.) including previously unknown Hsf targets.

    Science.gov (United States)

    Xue, Gang-Ping; Drenth, Janneke; McIntyre, C Lynne

    2015-02-01

    Heat stress is a significant environmental factor adversely affecting crop yield. Crop adaptation to high-temperature environments requires transcriptional reprogramming of a suite of genes involved in heat stress protection. This study investigated the role of TaHsfA6f, a member of the A6 subclass of heat shock transcription factors, in the regulation of heat stress protection genes in Triticum aestivum (bread wheat), a poorly understood phenomenon in this crop species. Expression analysis showed that TaHsfA6f was expressed constitutively in green organs but was markedly up-regulated during heat stress. Overexpression of TaHsfA6f in transgenic wheat using a drought-inducible promoter resulted in up-regulation of heat shock proteins (HSPs) and a number of other heat stress protection genes that included some previously unknown Hsf target genes such as Golgi anti-apoptotic protein (GAAP) and the large isoform of Rubisco activase. Transgenic wheat plants overexpressing TaHsfA6f showed improved thermotolerance. Transactivation assays showed that TaHsfA6f activated the expression of reporter genes driven by the promoters of several HSP genes (TaHSP16.8, TaHSP17, TaHSP17.3, and TaHSP90.1-A1) as well as TaGAAP and TaRof1 (a co-chaperone) under non-stress conditions. DNA binding analysis revealed the presence of high-affinity TaHsfA6f-binding heat shock element-like motifs in the promoters of these six genes. Promoter truncation and mutagenesis analyses identified TaHsfA6f-binding elements that were responsible for transactivation of TaHSP90.1-A1 and TaGAAP by TaHsfA6f. These data suggest that TaHsfA6f is a transcriptional activator that directly regulates TaHSP, TaGAAP, and TaRof1 genes in wheat and its gene regulatory network has a positive impact on thermotolerance. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  5. Structural and functional peculiarities of the lipopolysaccharide of Azospirillum brasilense SR55, isolated from the roots of Triticum durum.

    Science.gov (United States)

    Boyko, Alevtina S; Konnova, Svetlana A; Fedonenko, Yulia P; Zdorovenko, Evelina L; Smol'kina, Olga N; Kachala, Vadim V; Ignatov, Vladimir V

    2011-10-20

    Azospirillum brasilense SR55, isolated from the rhizosphere of Triticum durum, was classified as serogroup II on the basis of serological tests. Such serogroup affiliation is uncharacteristic of wheat-associated Azospirillum species. The lipid A of A. brasilense SR55 lipopolysaccharide contained 3-hydroxytetradecanoic, 3-hydroxyhexadecanoic, hexadecanoic and octadecenoic fatty acids. The structure of the lipopolysaccharide's O polysaccharide was established, with the branched octasaccharide repeating unit being represented by l-rhamnose, l-3-O-Me-rhamnose, d-galactose and d-glucuronic acid. The SR55 lipopolysaccharide induced deformations of wheat root hairs. The lipopolysaccharide was not involved in bacterial cell aggregation, but its use to pretreat wheat roots was conducive to cell adsorption. This study shows that Azospirillum bacteria can utilise their own lipopolysaccharide as a carbon source, which may give them an advantage in competitive natural environments. Copyright © 2011 Elsevier GmbH. All rights reserved.

  6. Whole genome association mapping of plant height in winter wheat (Triticum aestivum L..

    Directory of Open Access Journals (Sweden)

    Christine D Zanke

    Full Text Available The genetic architecture of plant height was investigated in a set of 358 recent European winter wheat varieties plus 14 spring wheat varieties based on field data in eight environments. Genotyping of diagnostic markers revealed the Rht-D1b mutant allele in 58% of the investigated varieties, while the Rht-B1b mutant was only present in 7% of the varieties. Rht-D1 was significantly associated with plant height by using a mixed linear model and employing a kinship matrix to correct for population stratification. Further genotyping data included 732 microsatellite markers, resulting in 770 loci, of which 635 markers were placed on the ITMI map plus a set of 7769 mapped SNP markers genotyped with the 90 k iSELECT chip. When Bonferroni correction was applied, a total of 153 significant marker-trait associations (MTAs were observed for plant height and the SSR markers (-log10 (P-value ≥ 4.82 and 280 (-log10 (P-value ≥ 5.89 for the SNPs. Linear regression between the most effective markers and the BLUEs for plant height indicated additive effects for the MTAs of different chromosomal regions. Analysis of syntenic regions in the rice genome revealed closely linked rice genes related to gibberellin acid (GA metabolism and perception, i.e. GA20 and GA2 oxidases orthologous to wheat chromosomes 1A, 2A, 3A, 3B, 5B, 5D and 7B, ent-kaurenoic acid oxidase orthologous to wheat chromosome 7A, ent-kaurene synthase on wheat chromosome 2B, as well as GA-receptors like DELLA genes orthologous to wheat chromosomes 4B, 4D and 7A and genes of the GID family orthologous to chromosomes 2B and 5B. The data indicated that besides the widely used GA-insensitive dwarfing genes Rht-B1 and Rht-D1 there is a wide spectrum of loci available that could be used for modulating plant height in variety development.

  7. Aphid-parasitoid community structure on genetically modified wheat.

    Science.gov (United States)

    von Burg, Simone; van Veen, Frank J F; Álvarez-Alfageme, Fernando; Romeis, Jörg

    2011-06-23

    Since the introduction of genetically modified (GM) plants, one of the main concerns has been their potential effect on non-target insects. Many studies have looked at GM plant effects on single non-target herbivore species or on simple herbivore-natural enemy food chains. Agro-ecosystems, however, are characterized by numerous insect species which are involved in complex interactions, forming food webs. In this study, we looked at transgenic disease-resistant wheat (Triticum aestivum) and its effect on aphid-parasitoid food webs. We hypothesized that the GM of the wheat lines directly or indirectly affect aphids and that these effects cascade up to change the structure of the associated food webs. Over 2 years, we studied different experimental wheat lines under semi-field conditions. We constructed quantitative food webs to compare their properties on GM lines with the properties on corresponding non-transgenic controls. We found significant effects of the different wheat lines on insect community structure up to the fourth trophic level. However, the observed effects were inconsistent between study years and the variation between wheat varieties was as big as between GM plants and their controls. This suggests that the impact of our powdery mildew-resistant GM wheat plants on food web structure may be negligible and potential ecological effects on non-target insects limited.

  8. Patterns of homoeologous gene expression shown by RNA sequencing in hexaploid bread wheat.

    KAUST Repository

    Leach, Lindsey J

    2014-04-11

    BACKGROUND: Bread wheat (Triticum aestivum) has a large, complex and hexaploid genome consisting of A, B and D homoeologous chromosome sets. Therefore each wheat gene potentially exists as a trio of A, B and D homoeoloci, each of which may contribute differentially to wheat phenotypes. We describe a novel approach combining wheat cytogenetic resources (chromosome substitution \\'nullisomic-tetrasomic\\' lines) with next generation deep sequencing of gene transcripts (RNA-Seq), to directly and accurately identify homoeologue-specific single nucleotide variants and quantify the relative contribution of individual homoeoloci to gene expression. RESULTS: We discover, based on a sample comprising ~5-10% of the total wheat gene content, that at least 45% of wheat genes are expressed from all three distinct homoeoloci. Most of these genes show strikingly biased expression patterns in which expression is dominated by a single homoeolocus. The remaining ~55% of wheat genes are expressed from either one or two homoeoloci only, through a combination of extensive transcriptional silencing and homoeolocus loss. CONCLUSIONS: We conclude that wheat is tending towards functional diploidy, through a variety of mechanisms causing single homoeoloci to become the predominant source of gene transcripts. This discovery has profound consequences for wheat breeding and our understanding of wheat evolution.

  9. Patterns of homoeologous gene expression shown by RNA sequencing in hexaploid bread wheat.

    KAUST Repository

    Leach, Lindsey J; Belfield, Eric J; Jiang, Caifu; Brown, Carly; Mithani, Aziz; Harberd, Nicholas P

    2014-01-01

    BACKGROUND: Bread wheat (Triticum aestivum) has a large, complex and hexaploid genome consisting of A, B and D homoeologous chromosome sets. Therefore each wheat gene potentially exists as a trio of A, B and D homoeoloci, each of which may contribute differentially to wheat phenotypes. We describe a novel approach combining wheat cytogenetic resources (chromosome substitution 'nullisomic-tetrasomic' lines) with next generation deep sequencing of gene transcripts (RNA-Seq), to directly and accurately identify homoeologue-specific single nucleotide variants and quantify the relative contribution of individual homoeoloci to gene expression. RESULTS: We discover, based on a sample comprising ~5-10% of the total wheat gene content, that at least 45% of wheat genes are expressed from all three distinct homoeoloci. Most of these genes show strikingly biased expression patterns in which expression is dominated by a single homoeolocus. The remaining ~55% of wheat genes are expressed from either one or two homoeoloci only, through a combination of extensive transcriptional silencing and homoeolocus loss. CONCLUSIONS: We conclude that wheat is tending towards functional diploidy, through a variety of mechanisms causing single homoeoloci to become the predominant source of gene transcripts. This discovery has profound consequences for wheat breeding and our understanding of wheat evolution.

  10. Root development of fodder radish and winter wheat before winter in relation to uptake of nitrogen

    DEFF Research Database (Denmark)

    Wahlström, Ellen Margrethe; Hansen, Elly Møller; Mandel, A.

    2015-01-01

    occurred. Quantitative data is missing on N leaching of a catch crop compared to a winter cereal in a conventional cereal-based cropping system. The aim of the study was to investigate whether fodder radish (Raphanus sativus L.) (FR) would be more efficient than winter wheat (Triticum aestivum L.) (WW...

  11. Low crop plant population densities promote pollen-mediated gene flow in spring wheat (Triticum aestivum L.).

    Science.gov (United States)

    Willenborg, Christian J; Brûlé-Babel, Anita L; Van Acker, Rene C

    2009-12-01

    Transgenic wheat is currently being field tested with the intent of eventual commercialization. The development of wheat genotypes with novel traits has raised concerns regarding the presence of volunteer wheat populations and the role they may play in facilitating transgene movement. Here, we report the results of a field experiment that investigated the potential of spring wheat plant population density and crop height to minimize gene flow from a herbicide-resistant (HR) volunteer population to a non-HR crop. Pollen-mediated gene flow (PMGF) between the HR volunteer wheat population and four conventional spring wheat genotypes varying in height was assessed over a range of plant population densities. Natural hybridization events between the two cultivars were detected by phenotypically scoring plants in F(1) populations followed by verification with Mendelian segregation ratios in the F(1:2) families. PMGF was strongly associated with crop yield components, but showed no association with flowering synchrony. Maximum observed PMGF was always less than 0.6%, regardless of crop height and density. The frequency of PMGF in spring wheat decreased exponentially with increasing plant population density, but showed no dependence on either crop genotype or height. However, increasing plant densities beyond the recommended planting rate of 300 cropped wheat plants m(-2) provided no obvious benefit to reducing PMGF. Nevertheless, our results demonstrate a critical plant density of 175-200 cropped wheat plants m(-2) below which PMGF frequencies rise exponentially with decreasing plant density. These results will be useful in the development of mechanistic models and best management practices that collectively facilitate the coexistence of transgenic and nontransgenic wheat crops.

  12. Shifts of microbial communities of wheat (Triticum aestivum L.) cultivation in a closed artificial ecosystem.

    Science.gov (United States)

    Qin, Youcai; Fu, Yuming; Dong, Chen; Jia, Nannan; Liu, Hong

    2016-05-01

    The microbial communities of plant ecosystems are in relation to plant growing environment, but the alteration in biodiversity of rhizosphere and phyllosphere microbial communities in closed and controlled environments is unknown. The purpose of this study is to analyze the change regularity of microbial communities with wheat plants dependent-cultivated in a closed artificial ecosystem. The microbial community structures in closed-environment treatment plants were investigated by a culture-dependent approach, polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE), and Illumina Miseq high-throughput sequencing. The results indicated that the number of microbes decreased along with time, and the magnitude of bacteria, fungi, and actinomycetes were 10(7)-10(8), 10(5), and 10(3)-10(4) CFU/g (dry weight), respectively. The analysis of PCR-DGGE and Illumina Miseq revealed that the wheat leaf surface and near-root substrate had different microbial communities at different periods of wheat ecosystem development and showed that the relative highest diversity of microbial communities appeared at late and middle periods of the plant ecosystem, respectively. The results also indicated that the wheat leaf and substrate had different microbial community compositions, and the wheat substrate had higher richness of microbial community than the leaf. Flavobacterium, Pseudomonas, Paenibacillus, Enterobacter, Penicillium, Rhodotorula, Acremonium, and Alternaria were dominant in the wheat leaf samples, and Pedobacter, Flavobacterium, Halomonas, Marinobacter, Salinimicrobium, Lysobacter, Pseudomonas, Halobacillus, Xanthomonas, Acremonium, Monographella, and Penicillium were dominant populations in the wheat near-root substrate samples.

  13. In vitro wheat haploid embryo production by wheat x maize cross system under different environmental conditions

    International Nuclear Information System (INIS)

    Khan, M.A.; Ahmad, J.

    2011-01-01

    Haploids are helpful in studies for inter genomic relationship, identifying molecular markers, reducing time period of varietal development and increasing efficiency of breeding program. In case of bread wheat (Triticum aestivum L.), wheat x maize cross system is the most successful system due to its higher efficiency, more haploid embryo production and low genetic specificity. The haploid embryo production is affected by many factors i.e. light, temperature, relative humidity and tiller culture media. A study was carried out comprising 25 genotypes of bread wheat for haploid embryo production using 100 mgL/sup -1/ 2,4-D, 40Gl/sup -1/ Sucrose and 8mlL/sup -1/ Sulphurous acid. Haploid embryo production was observed at various levels of environmental factors i.e. maize pollen collection temperature, time of pollination after tiller emasculation, light intensity and relative humidity during haploid seed formation. Maximum haploid embryo formation recorded was 9.52%. Best temperature observed for pollination was 21-26 degree C, optimum time duration for pollination was 24 hours after emasculation, light intensity was 10,000 Lux and relative humidity was 60-65% at 20-22 degree C. (author)

  14. Contribution of Crop Models to Adaptation in Wheat.

    Science.gov (United States)

    Chenu, Karine; Porter, John Roy; Martre, Pierre; Basso, Bruno; Chapman, Scott Cameron; Ewert, Frank; Bindi, Marco; Asseng, Senthold

    2017-06-01

    With world population growing quickly, agriculture needs to produce more with fewer inputs while being environmentally friendly. In a context of changing environments, crop models are useful tools to simulate crop yields. Wheat (Triticum spp.) crop models have been evolving since the 1960s to translate processes related to crop growth and development into mathematical equations. These have been used over decades for agronomic purposes, and have more recently incorporated advances in the modeling of environmental footprints, biotic constraints, trait and gene effects, climate change impact, and the upscaling of global change impacts. This review outlines the potential and limitations of modern wheat crop models in assisting agronomists, breeders, and policymakers to address the current and future challenges facing agriculture. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Real-time weed detection, decision making and patch spraying in maize, sugarbeet, winter wheat and winter barley

    DEFF Research Database (Denmark)

    Gerhards, R; Christensen, Svend

    2003-01-01

    with weed infestation levels higher than the economic weed threshold; a review of such work is provided. This paper presents a system for site-specific weed control in sugarbeet (Beta vulgaris L.), maize (Zea mays L.), winter wheat (Triticum aestivum L.) and winter barley (Hordeum vulgare L.), including...

  16. Cultivate in vitro of wheat Anthers (Triticum Aestivum L.) In the ICA-TENZA and PAV -76 varieties

    International Nuclear Information System (INIS)

    Manrique O, Olga L.

    1994-01-01

    The objective of the present work consisted, in determining the cultivation conditions under which it was possible to induce through the technique of the cultivation of anthers, the callus formation and possible regeneration of green plants of wheat (Triticum aestivum L.) in the varieties ICA-Tenza and Pav -76. With the purpose of identifying the but appropriate state of development of the grain of pollen for the inoculation of the anthers, a cytologic study was made in which was correlation among the moriolic parameters of the plant; (inter liguler distances, auricle-knot distances and longitude of the edges) and the state of development of the microspore; Of the parameters, it was recommended to keep in mind the longitude from the edges when harvesting the experimental material. The anthers of both genotypes were inoculated in the means bases Pope 4 and N6, with hormonal levels of ELL (naftalen acetic acid) of 0.0, 0.5 and 1.0 mg/I. the answers of the genotypes were evaluated before the means of basal cultivation, in connection with the induction of tripes and the plants regeneration. Of the two used genotypes, the Pav -76 it presented bigger capacity to induce the formation of tripes, while the ICA-Tenza genotype presented a bigger answer capacity in the regeneration of plants so much green as albino. The results obtained allowed to establish that a relationship exists between the means of cultivation and the capacity of the genotypes to regenerate as much tripes as plants. Due to the drop survival of the regenerated plants, it was not possible to settle down with clarity a relationship of the ploidia level

  17. Induced mutation aiming at obtaining lodging resistance in wheat C V.Omid(Triticum Aestivum)

    International Nuclear Information System (INIS)

    Majd, F.; Rezazadeh, M.; Ghohari, A.

    1993-01-01

    Mutation breeding has been an important part breeding research for solving some of the existing problems related to wheat. A locally adopted wheat cultivar 'Omid' which is a traditionally tall wheat mostly cultivated in regions with a continental climate and is susceptible to lodging was chosen as research material. The nuclear research department for agriculture of Atomic Energy Organization of Iran initiated a mutation breeding program for creating genetic variability in wheat using this local cultivar. Seeds of this variety was irradiated with gamma radiation (50-150 Gy) to induce short straw mutants with greater lodging resistance and yield potential. from a total of about 20000 irradiated seeds 1500 plants showing promising agronomic character were isolated as potential mutants. Following progeny tests and selection 18 mutants lines entered preliminary yield trail. Further field trails at different locations gave two promising lines which are characterized by higher yield, lodging resistance and early maturity. (author). 3 tabs

  18. Response of Bread Wheat (Triticum aestivum L.) to Application of ...

    African Journals Online (AJOL)

    The disadvantage of urea fertilizer is that considerable ... environmental cost associated with N losses via NH3 volatilization, NO3. - leaching .... Where Yf is the total biological yield (grain plus straw) of the fertilized plot (kg);. Yu is the total ... price, which is 9 Birr kg-1 of wheat grain yield for Hawzien and 11 ETB for Emba.

  19. Studies on water use efficiency of wheat in Egypt

    Energy Technology Data Exchange (ETDEWEB)

    Abdou, M [Suez Canal Univ., Ismailia (Egypt). Soil and Water Dept.

    1996-07-01

    This experiment was carried out in Ismailia region to investigate water use efficiency of 14 bred wheat cultivars (Triticum aestivum L.) and 4 durum wheat cultivars (T. durum L.). Two irrigation water levels were used, an optimum level of 441 mm and a low level of 271 mm during the growing season using a sprinkler irrigation system. Yield and yield components examined showed significant differences among cultivars. The best cultivar for grain yield was Sakha 8 giving 4850 kg/ha. The lowest yield of 2650 kg/ha was produced by Sohag 3. There were also large genotypic differences among cultivars for water use efficiency. The cultivars that are better in water use efficiency may be used for wheat production in areas in Egypt where rainfall is low, or for use in breeding programmes aimed at incorporating the traits of high water use efficiency with high grain yield. Protein and phytin content of grains were negatively correlated with irrigation water level. (author). 10 refs, 1 fig., 1 tab.

  20. Studies on water use efficiency of wheat in Egypt

    International Nuclear Information System (INIS)

    Abdou, M.

    1996-01-01

    This experiment was carried out in Ismailia region to investigate water use efficiency of 14 bred wheat cultivars (Triticum aestivum L.) and 4 durum wheat cultivars (T. durum L.). Two irrigation water levels were used, an optimum level of 441 mm and a low level of 271 mm during the growing season using a sprinkler irrigation system. Yield and yield components examined showed significant differences among cultivars. The best cultivar for grain yield was Sakha 8 giving 4850 kg/ha. The lowest yield of 2650 kg/ha was produced by Sohag 3. There were also large genotypic differences among cultivars for water use efficiency. The cultivars that are better in water use efficiency may be used for wheat production in areas in Egypt where rainfall is low, or for use in breeding programmes aimed at incorporating the traits of high water use efficiency with high grain yield. Protein and phytin content of grains were negatively correlated with irrigation water level. (author). 10 refs, 1 fig., 1 tab

  1. Comparative Analysis of Phenolic Compound Characterization and Their Biosynthesis Genes between Two Diverse Bread Wheat (Triticum aestivum) Varieties Differing for Chapatti (Unleavened Flat Bread) Quality

    Science.gov (United States)

    Sharma, Monica; Sandhir, Rajat; Singh, Anuradha; Kumar, Pankaj; Mishra, Ankita; Jachak, Sanjay; Singh, Sukhvinder P.; Singh, Jagdeep; Roy, Joy

    2016-01-01

    Phenolic compounds (PCs) affect the bread quality and can also affect the other types of end-use food products such as chapatti (unleavened flat bread), now globally recognized wheat-based food product. The detailed analysis of PCs and their biosynthesis genes in diverse bread wheat (Triticum aestivum) varieties differing for chapatti quality have not been studied. In this study, the identification and quantification of PCs using UPLC-QTOF-MS and/or MS/MS and functional genomics techniques such as microarrays and qRT-PCR of their biosynthesis genes have been studied in a good chapatti variety, “C 306” and a poor chapatti variety, “Sonalika.” About 80% (69/87) of plant phenolic compounds were tentatively identified in these varieties. Nine PCs (hinokinin, coutaric acid, fertaric acid, p-coumaroylqunic acid, kaempferide, isorhamnetin, epigallocatechin gallate, methyl isoorientin-2′-O-rhamnoside, and cyanidin-3-rutinoside) were identified only in the good chapatti variety and four PCs (tricin, apigenindin, quercetin-3-O-glucuronide, and myricetin-3-glucoside) in the poor chapatti variety. Therefore, about 20% of the identified PCs are unique to each other and may be “variety or genotype” specific PCs. Fourteen PCs used for quantification showed high variation between the varieties. The microarray data of 44 phenolic compound biosynthesis genes and 17 of them on qRT-PCR showed variation in expression level during seed development and majority of them showed low expression in the good chapatti variety. The expression pattern in the good chapatti variety was largely in agreement with that of phenolic compounds. The level of variation of 12 genes was high between the good and poor chapatti quality varieties and has potential in development of markers. The information generated in this study can be extended onto a larger germplasm set for development of molecular markers using QTL and/or association mapping approaches for their application in wheat breeding

  2. Development of frost tolerance in winter wheat as modulated by differential root and shoot temperature

    NARCIS (Netherlands)

    Windt, C.W.; van Hasselt, P.R

    Winter wheat plants (Triticum aestivum L. cv. Urban), grown in nutrient solution, were exposed to differential shoot/root temperatures (i.e., 4/4, 4/20, 20/4 and 20/20 degrees C) for six weeks. Leaves grown at 4 degrees C showed an increase in frost tolerance from - 4 degrees C down to -11 degrees

  3. Sequence diversity and copy number variation of Mutator-like transposases in wheat

    Directory of Open Access Journals (Sweden)

    Nobuaki Asakura

    2008-01-01

    Full Text Available Partial transposase-coding sequences of Mutator-like elements (MULEs were isolated from a wild einkorn wheat, Triticum urartu, by degenerate PCR. The isolated sequences were classified into a MuDR or Class I clade and divided into two distinct subclasses (subclass I and subclass II. The average pair-wise identity between members of both subclasses was 58.8% at the nucleotide sequence level. Sequence diversity of subclass I was larger than that of subclass II. DNA gel blot analysis showed that subclass I was present as low copy number elements in the genomes of all Triticum and Aegilops accessions surveyed, while subclass II was present as high copy number elements. These two subclasses seemed uncapable of recognizing each other for transposition. The number of copies of subclass II elements was much higher in Aegilops with the S, Sl and D genomes and polyploid Triticum species than in diploid Triticum with the A genome, indicating that active transposition occurred in S, Sl and D genomes before polyploidization. DNA gel blot analysis of six species selected from three subfamilies of Poaceae demonstrated that only the tribe Triticeae possessed both subclasses. These results suggest that the differentiation of these two subclasses occurred before or immediately after the establishment of the tribe Triticeae.

  4. Identification of changes in wheat (Triticum aestivum L.) seeds proteome in response to anti-trx s gene.

    Science.gov (United States)

    Guo, Hongxiang; Zhang, Huizhen; Li, Yongchun; Ren, Jiangping; Wang, Xiang; Niu, Hongbin; Yin, Jun

    2011-01-01

    Thioredoxin h (trx h) is closely related to germination of cereal seeds. The cDNA sequences of the thioredoxin s (trx s) gene from Phalaris coerulescens and the thioredoxin h (trx h) gene from wheat are highly homologous, and their expression products have similar biological functions. Transgenic wheat had been formed after the antisense trx s was transferred into wheat, and it had been certified that the expression of trx h decreased in transgenic wheat, and transgenic wheat has high resistance to pre-harvest sprouting. Through analyzing the differential proteome of wheat seeds between transgenic wheat and wild type wheat, the mechanism of transgenic wheat seeds having high resistance to pre-harvest sprouting was studied in the present work. There were 36 differential proteins which had been identified by matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF-MS). All these differential proteins are involved in regulation of carbohydrates, esters, nucleic acid, proteins and energy metabolism, and biological stress. The quantitative real time PCR results of some differential proteins, such as trx h, heat shock protein 70, α-amylase, β-amylase, glucose-6-phosphate isomerase, 14-3-3 protein, S3-RNase, glyceraldehyde-3-phosphate dehydrogenase, and WRKY transcription factor 6, represented good correlation between transcripts and proteins. The biological functions of many differential proteins are consistent with the proposed role of trx h in wheat seeds. A possible model for the role of trx h in wheat seeds germination was proposed in this paper. These results will not only play an important role in clarifying the mechanism that transgenic wheat has high resistance to pre-harvest sprouting, but also provide further evidence for the role of trx h in germination of wheat seeds.

  5. Identification of Changes in Wheat (Triticum aestivum L.) Seeds Proteome in Response to Anti–trx s Gene

    Science.gov (United States)

    Guo, Hongxiang; Zhang, Huizhen; Li, Yongchun; Ren, Jiangping; Wang, Xiang; Niu, Hongbin; Yin, Jun

    2011-01-01

    Background Thioredoxin h (trx h) is closely related to germination of cereal seeds. The cDNA sequences of the thioredoxin s (trx s) gene from Phalaris coerulescens and the thioredoxin h (trx h) gene from wheat are highly homologous, and their expression products have similar biological functions. Transgenic wheat had been formed after the antisense trx s was transferred into wheat, and it had been certified that the expression of trx h decreased in transgenic wheat, and transgenic wheat has high resistance to pre-harvest sprouting. Methodology/Principal Findings Through analyzing the differential proteome of wheat seeds between transgenic wheat and wild type wheat, the mechanism of transgenic wheat seeds having high resistance to pre-harvest sprouting was studied in the present work. There were 36 differential proteins which had been identified by matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF-MS). All these differential proteins are involved in regulation of carbohydrates, esters, nucleic acid, proteins and energy metabolism, and biological stress. The quantitative real time PCR results of some differential proteins, such as trx h, heat shock protein 70, α-amylase, β-amylase, glucose-6-phosphate isomerase, 14-3-3 protein, S3-RNase, glyceraldehyde-3-phosphate dehydrogenase, and WRKY transcription factor 6, represented good correlation between transcripts and proteins. The biological functions of many differential proteins are consistent with the proposed role of trx h in wheat seeds. Conclusions/Significance A possible model for the role of trx h in wheat seeds germination was proposed in this paper. These results will not only play an important role in clarifying the mechanism that transgenic wheat has high resistance to pre-harvest sprouting, but also provide further evidence for the role of trx h in germination of wheat seeds. PMID:21811579

  6. Identification of changes in wheat (Triticum aestivum L. seeds proteome in response to anti-trx s gene.

    Directory of Open Access Journals (Sweden)

    Hongxiang Guo

    Full Text Available BACKGROUND: Thioredoxin h (trx h is closely related to germination of cereal seeds. The cDNA sequences of the thioredoxin s (trx s gene from Phalaris coerulescens and the thioredoxin h (trx h gene from wheat are highly homologous, and their expression products have similar biological functions. Transgenic wheat had been formed after the antisense trx s was transferred into wheat, and it had been certified that the expression of trx h decreased in transgenic wheat, and transgenic wheat has high resistance to pre-harvest sprouting. METHODOLOGY/PRINCIPAL FINDINGS: Through analyzing the differential proteome of wheat seeds between transgenic wheat and wild type wheat, the mechanism of transgenic wheat seeds having high resistance to pre-harvest sprouting was studied in the present work. There were 36 differential proteins which had been identified by matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF-MS. All these differential proteins are involved in regulation of carbohydrates, esters, nucleic acid, proteins and energy metabolism, and biological stress. The quantitative real time PCR results of some differential proteins, such as trx h, heat shock protein 70, α-amylase, β-amylase, glucose-6-phosphate isomerase, 14-3-3 protein, S3-RNase, glyceraldehyde-3-phosphate dehydrogenase, and WRKY transcription factor 6, represented good correlation between transcripts and proteins. The biological functions of many differential proteins are consistent with the proposed role of trx h in wheat seeds. CONCLUSIONS/SIGNIFICANCE: A possible model for the role of trx h in wheat seeds germination was proposed in this paper. These results will not only play an important role in clarifying the mechanism that transgenic wheat has high resistance to pre-harvest sprouting, but also provide further evidence for the role of trx h in germination of wheat seeds.

  7. Identification of Wheat Varieties Using Matrix-assisted Laser Desorption/Ionisation Time-of-flight Mass Spectrometry and an Artificial Neural network

    DEFF Research Database (Denmark)

    Bloch, Helle Aagaard; Kesmir, Can; Petersen, Marianne Kjerstine

    1999-01-01

    A novel tool for variety identification of wheat (Triticum aestivum L,) has been developed: an artificial neural network (ANN) is used to classify the gliadin fraction analysed by matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOFMS). The robustness...

  8. Stomatal conductance, mesophyll conductance, and trans piration efficiency in relation to leaf anatomy in rice and wheat genotypes under drought

    NARCIS (Netherlands)

    Ouyang, Wenjing; Struik, Paul C.; Yin, Xinyou; Yang, Jianchang

    2017-01-01

    Increasing leaf transpiration efficiency (TE) may provide leads for growing rice like dryland cereals such as wheat (Triticum aestivum). To explore avenues for improving TE in rice, variations in stomatal conductance (g s) and mesophyll conductance (g m) and their anatomical determinants were

  9. Durum Wheat (Triticum Durum Desf. Lines Show Different Abilities to Form Masked Mycotoxins under Greenhouse Conditions

    Directory of Open Access Journals (Sweden)

    Martina Cirlini

    2013-12-01

    Full Text Available Deoxynivalenol (DON is the most prevalent trichothecene in Europe and its occurrence is associated with infections of Fusarium graminearum and F. culmorum, causal agents of Fusarium head blight (FHB on wheat. Resistance to FHB is a complex character and high variability occurs in the relationship between DON content and FHB incidence. DON conjugation to glucose (DON-3-glucoside, D3G is the primary plant mechanism for resistance towards DON accumulation. Although this mechanism has been already described in bread wheat and barley, no data are reported so far about durum wheat, a key cereal in the pasta production chain. To address this issue, the ability of durum wheat to detoxify and convert deoxynivalenol into D3G was studied under greenhouse controlled conditions. Four durum wheat varieties (Svevo, Claudio, Kofa and Neodur were assessed for DON-D3G conversion; Sumai 3, a bread wheat variety carrying a major QTL for FHB resistance (QFhs.ndsu-3B, was used as a positive control. Data reported hereby clearly demonstrate the ability of durum wheat to convert deoxynivalenol into its conjugated form, D3G.

  10. Selenium supplementation of Portuguese wheat cultivars through foliar treatment in actual field conditions

    International Nuclear Information System (INIS)

    Catarina Galinha; Pacheco, A.M.G.; Maria do Carmo Freitas; Jose Coutinho; Benvindo Macas; Ana Sofia Almeida

    2013-01-01

    Selenium (Se) is a trace element essential to the well-being and health quality of humankind. Plant-derived foodstuffs, namely cereals, are the major dietary sources of Se in most countries throughout the world, even if Se contents are strongly dependent upon the corresponding levels in cereal-growing soils. Therefore, wheat is one of the staple crops that appears as an obvious candidate for Se biofortification, considering its gross-tonnage production and nutritional relevance worldwide. The present paper focuses on the ability of bread and durum wheat-Triticum aestivum L. and Triticum durum Desf., respectively-to accumulate Se after supplementation via a foliar-addition procedure. Two of the most representative wheat cultivars in Portugal - Jordao (bread) and Marialva (durum) - have been selected for supplementation trials, following the same agronomic practices and field schedules as the regular (non-supplemented) crops of those varieties (sowing: November 2010; harvesting: July 2011). Foliar additions were performed at the booting and grain-filling stages, using sodium selenate and sodium selenite solutions at three different Se concentrations-equivalent to field supplementation rates of 4, 20 and 100 g of Se per ha-with and without potassium iodide. Selenium contents in wheat grains obtained under foliar application are compared to data from regular wheat samples (field blanks) grown at the same soil/season, yet devoid of any Se supplementation. Total Se in all field samples was determined by cyclic neutron activation analysis (CNAA), via the short-lived nuclide 77m Se (half-life time: 17.5 s), in the Portuguese Research Reactor (RPI; CTN-IST, Sacavem). Quality control of the analytical procedure was asserted through concurrent analyses of NIST-SRM R 1567a (Wheat Flour). Results show that foliar additions can increase Se contents in mature grains up to 15 and 40 times for Marialva and Jordao, respectively, when compared to non-supplemented crops. Jordao and

  11. Spontaneous wheat-Aegilops biuncialis, Ae. geniculata and Ae. triuncialis amphiploid production, a potential way of gene transference

    Energy Technology Data Exchange (ETDEWEB)

    Loureiro, I.; Escorial, C.; Garcia-Baudin, J. M.; Chueca, M. C.

    2009-07-01

    Some F1 hybrid plants between three species of the Aegilops genus and different hexaploid wheat Triticum aestivum cultivars show certain self-fertility, with averages of F{sub 1} hybrids bearing F{sub 2} seeds of 8.17%, 5.12% and 48.14% for Aegilops biuncialis, Aegilops geniculata and Aegilops triuncialis respectively. In the Ae. triuncialis-wheat combination with Astral wheat cultivar, the fertility was higher than that found in the other combinations. All the F2 seeds studied were spontaneous amphiploids (2n=10x=70). The present study evidences the possibility of spontaneous formation of amphiploids between these three Aegilops species and hexaploid wheat and discusses their relevance for gene transference. Future risk assessment of transgenic wheat cultivars needs to evaluate the importance of amphiploids as a bridge for transgene introgression and for gene escape to the wild. (Author)

  12. Effect of salinity on grain yield and grain quality of wheat (triticum aestivum l.)

    International Nuclear Information System (INIS)

    Abbas, G.; Saqib, M.; Rafique, Q.; Rahman, A.U.; Akhtar, J.; Haq, M.A.U.

    2013-01-01

    Salinity is one of the important stresses resulting in the reduction of growth and yield of different crops including wheat. In saline soils the concentration of Na/sup +/ and Cl/sup -/ is higher accompanied with the decreased K/sup +/: Na/sup +/ ratio thus severely affecting the growth and yield of crops. The effect of salinity on the growth and yield of wheat is well documented, whereas there is very little information about salinity tolerance and grain quality of wheat. Present study was conducted to assess the effect of salinity on yield components, ionic relations and grain quality and to understand the relationship among these parameters. A pot experiment was conducted using wheat genotype Pasban-90. There were two treatments i.e. non-saline (0.33 dS m/sup -1/) and saline (15 dS m/sup -1/) with five replications. Salinity resulted in a significant reduction of the grain protein, fat and fiber contents. Similarly yield components were significantly reduced. Maximum reduction was noted in case of number of tillers plant/sup -1/, followed by grain weight plant/sup -1/. High Na/sup +/ and low K/sup +/, P concentration and K/sup +/: Na/sup +/ ratio was observed in the shoot, root and grain. This disturbed ionic composition seems to be apparent cause of yield reduction and deterioration of wheat quality under salinity. (author)

  13. Global QTL Analysis Identifies Genomic Regions on Chromosomes 4A and 4B Harboring Stable Loci for Yield-Related Traits Across Different Environments in Wheat (Triticum aestivum L.

    Directory of Open Access Journals (Sweden)

    Panfeng Guan

    2018-04-01

    Full Text Available Major advances in wheat production are needed to address global food insecurity under future climate conditions, such as high temperatures. The grain yield of bread wheat (Triticum aestivum L. is a quantitatively inherited complex trait that is strongly influenced by interacting genetic and environmental factors. Here, we conducted global QTL analysis for five yield-related traits, including spike yield, yield components and plant height (PH, in the Nongda3338/Jingdong6 doubled haploid (DH population using a high-density SNP and SSR-based genetic map. A total of 12 major genomic regions with stable QTL controlling yield-related traits were detected on chromosomes 1B, 2A, 2B, 2D, 3A, 4A, 4B, 4D, 5A, 6A, and 7A across 12 different field trials with timely sown (normal and late sown (heat stress conditions. Co-location of yield components revealed significant tradeoffs between thousand grain weight (TGW and grain number per spike (GNS on chromosome 4A. Dissection of a “QTL-hotspot” region for grain weight on chromosome 4B was helpful in marker-assisted selection (MAS breeding. Moreover, this study identified a novel QTL for heat susceptibility index of thousand grain weight (HSITGW on chromosome 4BL that explains approximately 10% of phenotypic variation. QPh.cau-4B.2, QPh.cau-4D.1 and QPh.cau-2D.3 were coincident with the dwarfing genes Rht1, Rht2, and Rht8, and haplotype analysis revealed their pleiotropic architecture with yield components. Overall, our findings will be useful for elucidating the genetic architecture of yield-related traits and developing new wheat varieties with high and stable yield.

  14. Variability in carbon dioxide fluxes among six winter wheat paddocks managed under different tillage and grazing practices

    Science.gov (United States)

    Carbon dioxide (CO2) fluxes from six winter wheat (Triticum aestivum L.) paddocks (grain only, graze-grain, and graze-out) managed under conventional till (CT) and no-till (NT) systems were synthesized for the 2016-2017 growing season to compare the magnitudes and seasonal dynamics of CO2 fluxes and...

  15. Response of bread wheat ( Triticum aestivum L.) to application of ...

    African Journals Online (AJOL)

    Both biological and partial budget analysis reveals that the use of N at rate of 64 kg N ha-1 as UREAStabil and 64 kg N ha-1 as conventional urea could give optimum bread wheat yield in Hawzien and in Emba Alaje, respectively, and in areas where the rainfall distribution and soil type is similar with study districts where ...

  16. Identification of superior parents and hybrids from diallel crosses of bread wheat (triticum aestivum l.)

    International Nuclear Information System (INIS)

    Baloch, M.J.; Rajper, T.A.; Jatoi, W.A.

    2013-01-01

    Five parents of bread wheat (Triticum aestivum L.) viz. TD-1, SKD-1, Marvi, Moomal and Mehran were crossed in a half diallel design; hence 10 F 1 hybrids were developed. Parents alongwith hybrids were evaluated for combining ability and heterosis for tillers/plant, spike length, spike density, grains/spike, grain yield/plant and seed index. The experiment was conducted in a randomized complete block design with four replications at Botanical Garden, Department of Plant Breeding and Genetics, Sindh Agriculture University,Tandojam, during 2010. The analysis of variance due to genotypes, parents, hybrids and parents vs. hybrids was significant for all the characters which revealed presence of significant amount of genetic variability in the material. The results also indicated significant differences among the parents for their general combining ability (GCA) and hybrids for specific combining ability (SCA) suggesting the importance of both additive and non-additive genes in the expression of traits studied. The greater magnitude of SCA variances over GCA were recorded for tillers/plant, grains/spike and grain yield/plant which indicated the importance of additive gene action while the involvement of non-additive genes was evident in the inheritance of spike length, spike density and seed index. Among the parents, generally TD-I, Mehran, Moomal and Marvi were the best general combiners for tillers/plant, spike length, spike density, grains/spike, grain yield/plant and seed index. Whereas, the hybrids like SKD-1 x Mehran, Marvi x Mehran, Marvix Moomal and TD-I x SKD-I were the best specific combiners for majority of yield traits. Positive heterosis was expressed by the hybrid SKD-1 x Moomal for tillers per plant; TD-I x Moomal for spike length; TD-1 x SKD-I for grains per spike; Marvi x Mehran for spike density and Marvi x Moomal for seed index. The best parents and hybrids could be effectively utilized in hybridization and selection programmes and also for hybrid crop

  17. Development and characterization of mutant winter wheat (Triticum aestivum L.) accessions resistant to the herbicide quizalofop.

    Science.gov (United States)

    Ostlie, Michael; Haley, Scott D; Anderson, Victoria; Shaner, Dale; Manmathan, Harish; Beil, Craig; Westra, Phillip

    2015-02-01

    New herbicide resistance traits in wheat were produced through the use of induced mutagenesis. While herbicide-resistant crops have become common in many agricultural systems, wheat has seen few introductions of herbicide resistance traits. A population of Hatcher winter wheat treated with ethyl methanesulfonate was screened with quizalofop to identify herbicide-resistant plants. Initial testing identified plants that survived multiple quizalofop applications. A series of experiments were designed to characterize this trait. In greenhouse studies the mutants exhibited high levels of quizalofop resistance compared to non-mutant wheat. Sequencing ACC1 revealed a novel missense mutation causing an alanine to valine change at position 2004 (Alopecurus myosuroides reference sequence). Plants carrying single mutations in wheat's three genomes (A, B, D) were identified. Acetyl co-enzyme A carboxylase in resistant plants was 4- to 10-fold more tolerant to quizalofop. Populations of segregating backcross progenies were developed by crossing each of the three individual mutants with wild-type wheat. Experiments conducted with these populations confirmed largely normal segregation, with each mutant allele conferring an additive level of resistance. Further tests showed that the A genome mutation conferred the greatest resistance and the B genome mutation conferred the least resistance to quizalofop. The non-transgenic herbicide resistance trait identified will enhance weed control strategies in wheat.

  18. Effects of Short-Term Hypergravity Exposure are Reversible in Triticum aestivum L. Caryopses

    Science.gov (United States)

    Dixit, Jyotsana P.; Jagtap, Sagar S.; Kamble, Shailendra M.; Vidyasagar, Pandit B.

    2017-10-01

    Short-term hypergravity exposure is shown to retard seed germination, growth and photosynthesis in wheat caryopses. This study investigates the reversibility of effects of short-term hypergravity on imbibed wheat ( Triticum aestivum var L.) caryopses. After hypergravity exposure (500 × g - 2500 × g for 10 min) on a centrifuge, exposed caryopses were kept under normal gravity (1 × g) up to six days and then sown on agar. Results of the present study showed that percentage germination and growth were completely restored for DAY 6 compared to DAY 0. Restoration of germination and growth was accompanied by increased α-amylase activity. The specific activity of antioxidative enzyme viz. catalase and guaiacol peroxidase was lowered on DAY 6 compared to DAY 0 suggesting an alleviation of oxidative cellular damage against hypergravity stress. Chlorophyll pigment recovery along with chlorophyll fluorescence (PI and Fv/Fm) on DAY 6 indicates a transient rather than permanent damage of the photosynthetic apparatus. Thus, our findings demonstrate that short-term hypergravity effects are reversible in wheat caryopses. The metabolic cause of restoration of seed germination and growth upon transferring the caryopses to normal gravity is performed by a reactivation of carbohydrate- metabolizing enzymes, α-amylase and alleviation of oxidative stress damage with subsequent recovery of chlorophyll biosynthesis and photosynthetic activity.

  19. Bioaccessible mineral content of malted finger millet (Eleusine coracana), wheat (Triticum aestivum), and barley (Hordeum vulgare).

    Science.gov (United States)

    Platel, Kalpana; Eipeson, Sushma W; Srinivasan, Krishnapura

    2010-07-14

    Malted grains are extensively used in weaning and geriatric foods. Malting generally improves the nutrient content and digestibility of foods. The present investigation examined the influence of malting of finger millet, wheat, and barley on the bioaccessibility of iron, zinc, calcium, copper, and manganese. Malting increased the bioaccessibility of iron by >3-fold from the two varieties of finger millet and by >2-fold from wheat, whereas such a beneficial influence was not seen in barley. The bioaccessibility of zinc from wheat and barley increased to an extent of 234 and 100%, respectively, as a result of malting. However, malting reduced the bioaccessibility of zinc from finger millet. Malting marginally increased the bioaccessibility of calcium from white finger millet and wheat. Whereas malting did not exert any influence on bioaccessibility of copper from finger millet and wheat, it significantly decreased (75%) the same from barley. Malting did increase the bioaccessibility of manganese from brown finger millet (17%) and wheat (42%). Thus, malting could be an appropriate food-based strategy to derive iron and other minerals maximally from food grains.

  20. Evaluation of the Effect of Crop Rotations on Yield and Yield Components of Bread Wheat (Triticum aestivum L. cv. Darya)

    OpenAIRE

    H. A. Fallahi; U. Mahmadyarov; H. Sabouri; M. Ezat-Ahmadi4

    2013-01-01

    Grain yield in wheat is influenced directly and indirectly by other plant characteristics. One of the main goals in wheat breeding programs is increase of grain yield. Considering the role of crop rotation in increasing grain yield, and in order to study the difference between crop rotations for wheat yield and yield components (Darya cultivar), an experiment was conducted with six rotation treatments (wheat-chickpea-wheat, wheat-cotton-wheat, wheat-watermelon-wheat, wheat-wheat-wheat, wheat-...

  1. Induction of chilling tolerance in wheat during germination by pre-soaking seed with nitric oxide and gibberellin

    DEFF Research Database (Denmark)

    Li, Xiangnan; Jiang, Haidong; Liu, Fulai

    2013-01-01

    Chilling depresses seed germination and seedling establishment, and is one major constraint to grain yield formation in late sown winter wheat. Seeds of winter wheat (Triticum aestivum L.) were separately pre-soaked with sodium nitroprusside (SNP, as nitric oxide donor) and Gibberellic acid (GA3...... by exogenous NO and GA3 as a result of improved seed germination and maintenance of better reactive oxygen species homeostasis in seedling growing under chilling temperatures. It is indicated that exogenous NO was more effective than GA3 in alleviating chilling stress during seed germination and seedling...

  2. CHARACTERIZATION OF GLIADIN AND HMW GLUTENIN PROTEIN COMPOSITION IN COLOURED WHEAT (TRITICUM AESTIVUM L. VARIETIES

    Directory of Open Access Journals (Sweden)

    Valéria Šudyová

    2011-12-01

    Full Text Available Wheat is one of the most important grains in our daily diet. Coloured wheat contains natural anthocyanin compounds. Bioactive compounds in wheat have attracted increasingly more interest from breeders because of their benefits. It is important to fully understand protein properties of red, blue, purple, and yellow-coloured wheat in order to predict their potential uses for culturing new varieties. All 21 accessions originating from different geographical areas of world were evaluated for high molecular weight glutenin subunit (HMW-GS and T1BL.1RS wheat-rye translocation using SDS-PAGE and A-PAGE. The data indicated the prevalence of the allele 1 (36%, allele 0 (30% and allele 2* (34% at the Glu-1A and five alleles, namely 7+8 (36%, 7+9 (29%, 20 (21%, 7 (12% and 17+18 (2% represented the Glu-1B. Existence of 2 alleles at the locus Glu-1D was revealed, in fact 21% of them showed the subunit pairs Glu-1D 5+10 correlated with good bread making properties. Protein subunit Glu-1A1 and Glu-1A2* were correlated positively with improved dough strength as compared to subunit null. On the chromosome Glu-1B subunit 17+18 and 7+8 were associated with slightly stronger gluten type than 7+9, whereas subunit 20 and 7 were associated with weak gluten properties. On the basis of electrophoretic separation of gliadin fraction it was found that only one genotype contained T1BL.1RS wheat-rye translocation. The Glu-1 quality score ranged from 4 to 10. Suitable accessions can be used for the crossing programs to improve colour and good technological quality of bread wheat.  doi:10.5219/161

  3. Lignin biosynthesis in wheat (Triticum aestivum L.): its response to waterlogging and association with hormonal levels.

    Science.gov (United States)

    Nguyen, Tran-Nguyen; Son, SeungHyun; Jordan, Mark C; Levin, David B; Ayele, Belay T

    2016-01-25

    Lignin is an important structural component of plant cell wall that confers mechanical strength and tolerance against biotic and abiotic stressors; however it affects the use of biomass such as wheat straw for some industrial applications such as biofuel production. Genetic alteration of lignin quantity and quality has been considered as a viable option to overcome this problem. However, the molecular mechanisms underlying lignin formation in wheat biomass has not been studied. Combining molecular and biochemical approaches, the present study investigated the transcriptional regulation of lignin biosynthesis in two wheat cultivars with varying lodging characteristics and also in response to waterlogging. It also examined the association of lignin level in tissues with that of plant hormones implicated in the control of lignin biosynthesis. Analysis of lignin biosynthesis in the two wheat cultivars revealed a close association of lodging resistance with internode lignin content and expression of 4-coumarate:CoA ligase1 (4CL1), p-coumarate 3-hydroxylase1 (C3H1), cinnamoyl-CoA reductase2 (CCR2), ferulate 5-hydroxylase2 (F5H2) and caffeic acid O-methyltransferase2 (COMT2), which are among the genes highly expressed in wheat tissues, implying the importance of these genes in mediating lignin deposition in wheat stem. Waterlogging of wheat plants reduced internode lignin content, and this effect is accompanied by transcriptional repression of three of the genes characterized as highly expressed in wheat internode including phenylalanine ammonia-lyase6 (PAL6), CCR2 and F5H2, and decreased activity of PAL. Expression of the other genes was, however, induced by waterlogging, suggesting their role in the synthesis of other phenylpropanoid-derived molecules with roles in stress responses. Moreover, difference in internode lignin content between cultivars or change in its level due to waterlogging is associated with the level of cytokinin. Lodging resistance, tolerance against

  4. Interactive effects of high CO2 and SO2 on growth and antioxidant levels in wheat

    NARCIS (Netherlands)

    Rao, M.V.; De Kok, L.J.

    1994-01-01

    The impact of elevated CO2 and/or SO2 on the growth and antioxidant levels of wheat {Triticum aestivum L. cv. Urban) plants has been studied. High CO2 (0.7 ml I-1) significantly enhanced shoot biomass and photosynthetic capacity, while exposure to SO2 (0.14 ul I-1) resulted in a decreased shoot

  5. [Transgenic wheat (Triticum aestivum L.) with increased resistance to the storage pest obtained by Agrobacterium tumefaciens--mediated].

    Science.gov (United States)

    Bi, Rui-Ming; Jia, Hai-Yan; Feng, De-Shun; Wang, Hong-Gang

    2006-05-01

    The transgenic wheat of improved resistance to the storage pest was production. We have introduced the cowpea trypsin inhibitor gene (CpTI) into cultured embryonic callus cells of immature embryos of wheat elite line by Agrobacterium-mediated method. Independent plantlets were obtained from the kanamycin-resistant calli after screening. PCR and real time PCR analysis, PCR-Southern and Southern blot hybridization indicated that there were 3 transgenic plants viz. transformed- I, II and III (T- I, T-II and T-III). The transformation frequencies were obviously affected by Agrobacterium concentration, the infection duration and transformation treatment. The segregations of CpTI in the transgenic wheat progenies were not easily to be elucidated, and some transgenic wheat lines (T- I and T-III) showed Mendelian segregations. The determinations of insect resistance to the stored grain insect of wheat viz. the grain moth (Sitotroga cerealella Olivier) indicated that the 3 transgenic wheat progeny seeds moth-resistance was improved significantly. The seed moth-eaten ratio of T- I, T-II, T-III and nontransformed control was 19.8%, 21.9%, 32.9% and 58.3% respectively. 3 transgenic wheat T1 PCR-positive plants revealed that the 3 transgenic lines had excellent agronomic traits. They supplied good germplasm resource of insect-resistance for wheat genetic improvement.

  6. The uptake of NO3-, NO2-, and NH4+ by intact wheat (Triticum aestivum) seedlings. I. Induction and kinetics of transport systems

    Science.gov (United States)

    Goyal, S. S.; Huffaker, R. C.

    1986-01-01

    The inducibility and kinetics of the NO3-, NO2-, and NH4+ transporters in roots of wheat seedlings (Triticum aestivum cv Yercora Rojo) were characterized using precise methods approaching constant analysis of the substrate solutions. A microcomputer-controlled automated high performance liquid chromatography system was used to determine the depletion of each N species (initially at 1 millimolar) from complete nutrient solutions. Uptake rate analyses were performed using computerized curve-fitting techniques. More precise estimates were obtained for the time required for the extent of the induction of each transporter. Up to 10 and 6 hours, respectively, were required to achieve apparent full induction of the NO3- and NO2- transporters. Evidence for substrate inducibility of the NH4+ transporters requiring 5 hours is presented. The transport of NO3- was mediated by a dual system (or dual phasic), whereas only single systems were found for transport of NO2- and NH4+. The Km values for NO3-, NO2-, and NH4+ were, respectively, 0.027, 0.054, and 0.05 millimolar. The Km for mechanism II of NO3- transport could not be defined in this study as it exhibited only apparent first order kinetics up to 1 millimolar.

  7. GC-MS Metabolomics to Evaluate the Composition of Plant Cuticular Waxes for Four Triticum aestivum Cultivars

    Directory of Open Access Journals (Sweden)

    Florent D. Lavergne

    2018-01-01

    Full Text Available Wheat (Triticum aestivum L. is an important food crop, and biotic and abiotic stresses significantly impact grain yield. Wheat leaf and stem surface waxes are associated with traits of biological importance, including stress resistance. Past studies have characterized the composition of wheat cuticular waxes, however protocols can be relatively low-throughput and narrow in the range of metabolites detected. Here, gas chromatography-mass spectrometry (GC-MS metabolomics methods were utilized to provide a comprehensive characterization of the chemical composition of cuticular waxes in wheat leaves and stems. Further, waxes from four wheat cultivars were assayed to evaluate the potential for GC-MS metabolomics to describe wax composition attributed to differences in wheat genotype. A total of 263 putative compounds were detected and included 58 wax compounds that can be classified (e.g., alkanes and fatty acids. Many of the detected wax metabolites have known associations to important biological functions. Principal component analysis and ANOVA were used to evaluate metabolite distribution, which was attributed to both tissue type (leaf, stem and cultivar differences. Leaves contained more primary alcohols than stems such as 6-methylheptacosan-1-ol and octacosan-1-ol. The metabolite data were validated using scanning electron microscopy of epicuticular wax crystals which detected wax tubules and platelets. Conan was the only cultivar to display alcohol-associated platelet-shaped crystals on its abaxial leaf surface. Taken together, application of GC-MS metabolomics enabled the characterization of cuticular wax content in wheat tissues and provided relative quantitative comparisons among sample types, thus contributing to the understanding of wax composition associated with important phenotypic traits in a major crop.

  8. Registration of DGE-3, a durum wheat disomic substitution line 1E(1B) involving a wheatgrass chromosome

    Science.gov (United States)

    Durum wheat (Triticum turgidum L., 2n = 4x = 28; AABB genomes) alien disomic substitution 1E(1B) line DGE-3 (PI 665473) was developed by the U.S. Department of Agriculture – Agricultural Research Service, Northern Crop Science Lab, Cereal Crops Research Unit, Fargo, ND and released in 2012. It was ...

  9. Mutation breeding for durum wheat (Triticum turgidum ssp. durum Desf.) improvement in Italy

    Energy Technology Data Exchange (ETDEWEB)

    Scarascia-Mugnozza, G T [Universita della Tuscia, Viterbo (Italy); D' Amato, F [Dipartimento di Biologia delle Piante Agrarie, Universita di Pisa (Italy); Avanzi, S [Dipartimento di Botanica, Universita di Pisa (Italy); and others

    1993-12-01

    In view of the economic importance of durum wheat in Italy and in the Mediterranean and Near East Region much effort was devoted to its genetic improvement. Lodging susceptibility and straw weakness, particularly under high fertilizer level, were the main reasons of substantially lower yields compared to bread wheat. An experimental mutagenesis programme was started in Italy in 1956 by F. D'Amato and G.T. Scarascia. It included both fundamental genetic studies and applied mutation breeding. Remarkable results were obtained at the 'Laboratorio Applicazioni in Agricoltura', Casaccia Nuclear Research Center, Roma, Italy, in radiobiology, radiogenetics, cytology and cytogenetics, genetics and breeding. Selection among some 1,000 induced mutants and hybridization led to 11 registered mutant varieties, six by the direct use of selected mutants and the remaining from cross-breeding. The economic benefits derived from the developed mutant cultivars are substantial. Mutant varieties have a great impact on durum wheat production, both in Italy and other countries like Bulgaria or Austria where Italian mutants have been used successfully in cross-breeding. (author)

  10. Mutation breeding for durum wheat (Triticum turgidum ssp. durum Desf.) improvement in Italy

    International Nuclear Information System (INIS)

    Scarascia-Mugnozza, G.T.; D'Amato, F.; Avanzi, S.

    1993-01-01

    In view of the economic importance of durum wheat in Italy and in the Mediterranean and Near East Region much effort was devoted to its genetic improvement. Lodging susceptibility and straw weakness, particularly under high fertilizer level, were the main reasons of substantially lower yields compared to bread wheat. An experimental mutagenesis programme was started in Italy in 1956 by F. D'Amato and G.T. Scarascia. It included both fundamental genetic studies and applied mutation breeding. Remarkable results were obtained at the 'Laboratorio Applicazioni in Agricoltura', Casaccia Nuclear Research Center, Roma, Italy, in radiobiology, radiogenetics, cytology and cytogenetics, genetics and breeding. Selection among some 1,000 induced mutants and hybridization led to 11 registered mutant varieties, six by the direct use of selected mutants and the remaining from cross-breeding. The economic benefits derived from the developed mutant cultivars are substantial. Mutant varieties have a great impact on durum wheat production, both in Italy and other countries like Bulgaria or Austria where Italian mutants have been used successfully in cross-breeding. (author)

  11. Effect of different rates of nitrogen fertilizer on durum wheat (Triticum ...

    African Journals Online (AJOL)

    Dr Asefa

    2012-05-03

    May 3, 2012 ... The result showed that nitrogen rates and cultivars had significant effect on yield, yield related traits, nitrogen uptake ... cooking quality [8]. Durum wheat grain protein functionality can be influenced by N fertilization, particularly in the varieties of relatively with less gluten strength [9]. Information on the quality ...

  12. Sodium Dodecyl Sulfate- Polyacrylamide Gel Electrophoresis (SDS- PAGE) of Irradiated Wheat Flour Proteins

    International Nuclear Information System (INIS)

    Souzan, R.M.

    1999-01-01

    Sodium dodecyl sulfate - polyacrylamide gel electrophoresis (SDS-PAGE) of wheat (Triticum aestivum L) flour have revealed 23 polypeptides of molecular weights between 170 and 11.57 KDa, High molecular weight glutenin subunits (LMW-GS) were distinguished. Densitometric analysis of the gel showed the effect of radiation on polypeptide constitution at radiation energy up to 7.5 kGy. Irradiation of wheat flour with 2.5 kGy have resulted in a slight increase in the molecular weight of wheat flour protein subunits. The increase of irradiation dose to 5.0 kGy has also induced an additional increase of molecular weight of protein subunits. The continuity in application of more radiation energy to a level of 7.5 kGy have resulted in the prevalence of degradation processes of all protein subunits more than the aggregation

  13. Interpreting genotype × environment interactions for grain yield of rainfed durum wheat in Iran

    Directory of Open Access Journals (Sweden)

    Reza Mohammadi

    2015-12-01

    Full Text Available Clustering genotype × environment (GE interactions and understanding the causes of GE interactions are among the most important tasks in crop breeding programs. Pattern analysis (cluster and ordination techniques was applied to analyze GE interactions for grain yield of 24 durum wheat (Triticum turgidum L. var. durum genotypes (breeding lines and old and new cultivars along with a popular bread wheat (Triticum aestivum cultivar grown in 21 different rainfed environments during the 2010–2013 cropping seasons. To investigate the causes of GE interaction, several genotypic and environmental covariables were used. In a combined ANOVA, environment was the predominant source of variation, accounting for 81.2% of the total sum of squares (TSS, and the remaining TSS due to the GE interaction effect was almost seven times that of the genetic effect. Cluster analysis separated the environments into four groups with similar discriminating ability among genotypes, and genotypes into five groups with similar patterns in yield performance. Pattern analysis confirmed two major environmental clusters (cold and warm, and allowed the discrimination and characterization of genotype adaptation. Within the cold-environment cluster, several subclusters were identified. The breeding lines were most adapted to moderate and warm environments, whereas the old varieties were adapted to cold environments. The results indicated that winter rainfall and plant height were among the environmental and genotypic covariables, respectively, that contributed most to GE interaction for grain yield in rainfed durum wheat.

  14. Effects of benzoic acid and cadmium toxicity on wheat seedlings

    Directory of Open Access Journals (Sweden)

    Kavita Yadav

    2013-06-01

    Full Text Available Benzoic acid (BA and Cd exhibit cumulative effects on plants due to their accumulation in the soil. The present study reports the effects of BA an allelochemical, Cd and their combinations on seed germination, seedling growth, biochemical parameters, and response of antioxidant enzymes in Triticum aestivum L. The experiment was conducted in sand supplemented with Hoagland nutrient solution. Benzoic acid was applied at concentrations of 0.5, 1.0, and 1.5 mM with or without Cd (7 mg L-1 to observe effects of allelochemical and Cd alone and in combination on wheat. Both stresses exhibited inhibitory effect on growth and metabolism of wheat seedlings. The allelochemical in single and combined treatments with Cd decreased seedling growth as compared to Cd stress. The two stresses significantly enhanced malondialdehyde content of wheat seedlings. The activity of other antioxidant enzymes, viz. superoxide dismutase (SOD, catalase (CAT, ascorbate peroxidase (APX, and guaiacol peroxidase (POX were also recorded. SOD increased in seedlings under the two stresses. CAT more prominently ameliorates the toxic effects of H2O2 as compared with APX and POX and protected wheat seedlings from oxidative stress. Allelochemical buttressed the toxic effect of Cd on wheat seedlings.

  15. Use of radiation to transfer alien chromosome segments to wheat

    International Nuclear Information System (INIS)

    Sears, E.R.

    1993-01-01

    Ionizing radiation can accomplish the transfer of genetic information from species so distantly related to wheat (Triticum aestivum L. em Thell.) that their chromosomes pair very little, if at all, with those of wheat, even in the absence of the homoeologous-pairing suppressor Ph1. In a successful transfer, the alien segment must almost always replace a homoeologous wheat segment, but radiation induces translocations largely at random; therefore automatic selection in favor of desirable translocations must be provided if the size of the project is to be kept within reasonable limits. Pollen selection will occur if seeds or plants monosomic for both an alien chromosome and one of its wheat homoeologues are irradiated. Making the plants also deficient for Ph1 may increase the number of suitable transfers. High-frequency occurrence of the desired alien character in M2 head-rows from plants grown from irradiated seed can identify favorable transfers with little cytological work. Irradiation of plants shortly before meiosis, using them to pollinate ditelosomics or double ditelosomics for the wheat arm or chromosome concerned, and cytologically examining offspring which have the alien character can not only identify the desirable transfers, but also reveal the lengths of the alien segments involved

  16. Interactive effects of high temperature and drought stress during stem elongation, anthesis and early grain filling on the yield formation and photosynthesis of winter wheat

    Czech Academy of Sciences Publication Activity Database

    Hlaváčová, Marcela; Klem, Karel; Rapantová, Barbora; Novotná, Kateřina; Urban, Otmar; Hlavinka, Petr; Smutná, P.; Horáková, V.; Škarpa, P.; Pohanková, Eva; Wimmerová, Markéta; Orság, Matěj; Jurečka, František; Trnka, Miroslav

    2018-01-01

    Roč. 221, MAY (2018), s. 182-195 ISSN 0378-4290 R&D Projects: GA MŠk(CZ) LO1415; GA MŠk(CZ) LM2015061; GA MŠk(CZ) EF16_013/0001609 Institutional support: RVO:86652079 Keywords : carbon-isotope discrimination * triticum-aestivum-l. * heat-stress * climate-change * reproductive growth * leaf senescence * gas-exchange * water -stress * durum-wheat * responses * Drought stress * Heat stress * Photosynthesis * Triticum aestivum * Yield formation Subject RIV: GC - Agronomy OBOR OECD: Agronomy, plant breeding and plant protection Impact factor: 3.048, year: 2016

  17. Flanking sequence determination and event-specific detection of genetically modified wheat B73-6-1.

    Science.gov (United States)

    Xu, Junyi; Cao, Jijuan; Cao, Dongmei; Zhao, Tongtong; Huang, Xin; Zhang, Piqiao; Luan, Fengxia

    2013-05-01

    In order to establish a specific identification method for genetically modified (GM) wheat, exogenous insert DNA and flanking sequence between exogenous fragment and recombinant chromosome of GM wheat B73-6-1 were successfully acquired by means of conventional polymerase chain reaction (PCR) and thermal asymmetric interlaced (TAIL)-PCR strategies. Newly acquired exogenous fragment covered the full-length sequence of transformed genes such as transformed plasmid and corresponding functional genes including marker uidA, herbicide-resistant bar, ubiquitin promoter, and high-molecular-weight gluten subunit. The flanking sequence between insert DNA revealed high similarity with Triticum turgidum A gene (GenBank: AY494981.1). A specific PCR detection method for GM wheat B73-6-1 was established on the basis of primers designed according to the flanking sequence. This specific PCR method was validated by GM wheat, GM corn, GM soybean, GM rice, and non-GM wheat. The specifically amplified target band was observed only in GM wheat B73-6-1. This method is of high specificity, high reproducibility, rapid identification, and excellent accuracy for the identification of GM wheat B73-6-1.

  18. Can Growing Degree Days and Photoperiod Predict Spring Wheat Phenology?

    Directory of Open Access Journals (Sweden)

    Muhammad A. Aslam

    2017-09-01

    Full Text Available Wheat (Triticum aestivum production in the rainfed area of Pothwar Pakistan is extremely vulnerable to high temperature. The expected increase in temperature due to global warming should result in shorter crop life cycles, and thus lower biomass and grain yield. Two major factors control wheat phenological development: temperature and photoperiod. To evaluate wheat development in response to these factors, we conducted experiments that created diverse temperature and daylength conditions by adjusting the crop sowing time. The study was conducted during 2013–14 and 2014–15 using five spring wheat genotypes, four sowing times, at three sites under rainfed management in Pothwar, Pakistan. Wheat crops experienced more cold days with early sowing, but later sowing dates resulted in higher temperatures, especially from anthesis to maturity. These treatments produced large differences in phenology, biomass production, and yield. To investigate whether growing degree days (GDD and photoperiod algorithms could predict wheat phenology under these changing conditions, GDD was calculated based on the method proposed by Wang and Engel while photoperiod followed the approach introduced in the APSIM crop growth model. GDD was calculated separately and in combination with photoperiod from germination to anthesis. For the grain filling period, only GDD was calculated. The observed and predicted number of days to anthesis and maturity were in good agreement, showing that the combination of GDD and photoperiod algorithms provided good estimations of spring wheat phenology under variable temperature and daylength conditions.

  19. Plant availability of nutrients recovered as solids from human urine tested in climate chamber on Triticum aestivum L.

    Science.gov (United States)

    Ganrot, Zsófia; Dave, Göran; Nilsson, Eva; Li, Bo

    2007-11-01

    Recovered nutrients by freezing-thawing from human urine in combination with struvite precipitation and nitrogen adsorption on zeolite and activated carbon have been tested in pot trials with wheat, Triticum aestivum L., in a climate chamber during 21 days. A simple test design using sand as substrate was chosen to give a first, general evaluation of the nutrient (P and N) availability from these sources. Dry weight, plant growth morphology, total-P and total-N were analysed. The tests show a slow-release of nutrients (P and N) from struvite and from N-adsorbents. The nitrogen in all treatments was in the deficiency range for optimum yield for wheat. Higher pH than usual for soil tests contributed to the difficulties in plant uptake, especially in the pots with only struvite (with highest MgO addition) as nutrient source.

  20. Enhanced root and shoot growth of wheat (Triticum aestivum L.) by Trichoderma harzianum from Turkey.

    Science.gov (United States)

    Kucuk, Cigdem

    2014-01-01

    It is well known that Trichoderma species can be used as biocontrol and plant growth promote agent. In this study, Trichoderma harzianum isolates were evaluated for their growth promotion effects on wheat in greenhouse experiments. Two isolates of T. harzianum were used. The experimental design was a randomized complete block with three replications. Seeds were inoculated with conidial suspensions of each isolate. Wheat plants grown in steriled soil in pots. T. harzianum T8 and T15 isolates increased wheat length, root dry weight and shoot dry weight according to untreated control. Turkish isolates T8 and T15 did not produce damage in seeds nor in plants.