WorldWideScience

Sample records for emitting white dwarfs

  1. White dwarf dynamical interactions

    OpenAIRE

    Aznar Siguan, Gabriela

    2015-01-01

    Premi Extraordinari de Doctorat, promoció 2014-2015. Àmbit de Ciències Merging white dwarfs is a promising channel to trigger Type Ia supernovae, known as the double degenerate scenario. Supernovae are stellar explosions that radiate as much energy as any ordinary star is expected to emit over its entire life span, outshining briefly the whole hosting galaxy. They enrich the interstellar medium with higher mass elements and trigger the formation of new stars by the produced expanding shock...

  2. Astrometric Binaries: White Dwarfs?

    Science.gov (United States)

    Oliversen, Nancy A.

    We propose to observe a selection of astrometric or spectroscopicastrometric binaries nearer than about 20 pc with unseen low mass companions. Systems of this type are important for determining the luminosity function of low mass stars (white dwarfs and very late main sequence M stars), and their contribution to the total mass of the galaxy. Systems of this type are also important because the low mass, invisible companions are potential candidates in the search for planets. Our target list is selected primarily from the list of 31 astrometric binaries near the sun by Lippincott (1978, Space Sci. Rev., 22, 153), with additional candidates from recent observations by Kamper. The elimination of stars with previous IUE observations, red companions resolved by infrared speckle interferometry, or primaries later than M1 (because if white dwarf companions are present they should have been detected in the visible region) reduces the list to 5 targets which need further information. IUE SWP low dispersion observations of these targets will show clearly whether the remaining unseen companions are white dwarfs, thus eliminating very cool main sequence stars or planets. This is also important in providing complete statistical information about the nearest stars. The discovery of a white dwarf in such a nearby system would provide important additional information about the masses of white dwarfs. Recent results by Greenstein (1986, A. J., 92, 859) from binary systems containing white dwarfs imply that 80% of such systems are as yet undetected. The preference of binaries for companions of approximately equal mass makes the Lippincott-Kamper list of A through K primaries with unseen companions a good one to use to search for white dwarfs. The mass and light dominance of the current primary over the white dwarf in the visible makes ultraviolet observations essential to obtain an accurate census of white dwarf binaries.

  3. White dwarf-red dwarf binaries in the Galaxy

    NARCIS (Netherlands)

    Besselaar, E.J.M. van den

    2007-01-01

    This PhD thesis shows several studies on white dwarf - red dwarf binaries. White dwarfs are the end products of most stars and red dwarfs are normal hydrogen burning low-mass stars. White dwarf - red dwarf binaries are both blue (white dwarf) and red (red dwarf). Together with the fact that they are

  4. White dwarf planets

    Directory of Open Access Journals (Sweden)

    Bonsor Amy

    2013-04-01

    Full Text Available The recognition that planets may survive the late stages of stellar evolution, and the prospects for finding them around White Dwarfs, are growing. We discuss two aspects governing planetary survival through stellar evolution to the White Dwarf stage. First we discuss the case of a single planet, and its survival under the effects of stellar mass loss, radius expansion, and tidal orbital decay as the star evolves along the Asymptotic Giant Branch. We show that, for stars initially of 1 − 5 M⊙, any planets within about 1 − 5 AU will be engulfed, this distance depending on the stellar and planet masses and the planet's eccentricity. Planets engulfed by the star's envelope are unlikely to survive. Hence, planets surviving the Asymptotic Giant Branch phase will probably be found beyond ∼ 2 AU for a 1  M⊙ progenitor and ∼ 10 AU for a 5 M⊙ progenitor. We then discuss the evolution of two-planet systems around evolving stars. As stars lose mass, planet–planet interactions become stronger, and many systems stable on the Main Sequence become destabilised following evolution of the primary. The outcome of such instabilities is typically the ejection of one planet, with the survivor being left on an eccentric orbit. These eccentric planets could in turn be responsible for feeding planetesimals into the neighbourhood of White Dwarfs, causing observed pollution and circumstellar discs.

  5. Throwing Icebergs at White Dwarfs

    OpenAIRE

    Stephan, Alexander P.; Naoz, Smadar; Zuckerman, B.

    2017-01-01

    White dwarfs have atmospheres that are expected to consist nearly entirely of hydrogen and helium, since heavier elements will sink out of sight on short timescales. However, observations have revealed atmospheric pollution by heavier elements in about a quarter to a half of all white dwarfs. While most of the pollution can be accounted for with asteroidal or dwarf planetary material, recent observations indicate that larger planetary bodies, as well as icy and volatile material from Kuiper b...

  6. Axion cooling of white dwarfs

    OpenAIRE

    Isern, J.; Catalan, S.; Garcia--Berro, E.; Salaris, M.; Torres, S.

    2013-01-01

    The evolution of white dwarfs is a simple gravothermal process. This process can be tested in two ways, through the luminosity function of these stars and through the secular variation of the period of pulsation of those stars that are variable. Here we show how the mass of the axion can be constrained using the white dwarf luminosity function.

  7. Astrophysics of white dwarf binaries

    NARCIS (Netherlands)

    Nelemans, G.A.

    2006-01-01

    White dwarf binaries are the most common compact binaries in the Universe and are especially important for low-frequency gravitational wave detectors such as LISA. There are a number of open questions about binary evolution and the Galactic population of white dwarf binaries that can be solved using

  8. Throwing Icebergs at White Dwarfs

    Science.gov (United States)

    Kohler, Susanna

    2017-08-01

    Where do the metals come from that pollute the atmospheres of many white dwarfs? Close-in asteroids may not be the only culprits! A new study shows that distant planet-size and icy objects could share some of the blame.Pollution ProblemsArtists impression of rocky debris lying close around a white dwarf star. [NASA/ESA/STScI/G. Bacon]When a low- to intermediate-mass star reaches the end of its life, its outer layers are blown off, leaving behind its compact core. The strong gravity of this white dwarf causes elements heavier than hydrogen and helium to rapidly sink to its center in a process known as sedimentation, leaving an atmosphere that should be free of metallic elements.Therefore its perhaps surprising that roughly 2550% of all white dwarfs are observed to have atmospheric pollution by heavy elements. The short timescales for sedimentation suggest that these elements were added to the white dwarf recently but how did they get there?Bringing Ice InwardIn the generally accepted theory, pre-existing rocky bodies or an orbiting asteroid belt survive the stars evolution, later accreting onto the final white dwarf. But this scenario doesnt explain a few observations that suggest white dwarfs might be accreting larger planetary-size bodies and bodies with ices and volatile materials.Dynamical evolution of a Neptune-like planet (a) and a Kuiper belt analog object (b) in wide binary star systems. Both have large eccentricity excitations during the white dwarf phase. [Stephan et al. 2017]How might you get large or icy objects which would begin on very wide orbits close enough to a white dwarf to become disrupted and accrete? Led by Alexander Stephan, a team of scientists at UCLA now suggest that the key is for the white dwarf to be in a binary system.Influence of a CompanionIn the authors model, the white-dwarf progenitor is orbited by both a distant stellar companion (a common occurrence) and a number of large potential polluters, which could have masses between that

  9. Singing and dancing white dwarfs

    Energy Technology Data Exchange (ETDEWEB)

    Mukadam, Anjum S; Szkody, Paula [Department of Astronomy, University of Washington, Seattle, WA 98195 (United States); Gaensicke, Boris T [Department of Physics, University of Warwick, Coventry, CV4 7AL (United Kingdom); Nitta, Atsuko, E-mail: anjum@astro.washington.ed [Gemini Observatory, Hilo, HI 96720 (United States)

    2009-06-01

    Accreting white dwarfs have recently been shown to exhibit non-radial pulsations similar to their non-interacting counterparts. This allows us to probe the interior of the accreting white dwarf using seismology, and may be the only way to determine masses for non-eclipsing cataclysmic variables. Improving our understanding of accreting white dwarfs will have implications for models of supernovae Type Ia. Pulsating white dwarfs in cataclysmic variables are also useful in establishing the effects of accretion on pulsations. A search for nonradial pulsations among suitable candidates has led to the discovery of twelve such systems known to date. With the goal of establishing an instability strip (or strips) for these pulsating accretors, we acquired HST ultra-violet time-series spectroscopy of six pulsating white dwarfs in cataclysmic variables in 2007 and 2008. This approach enables us to measure the effective temperature of the white dwarf using the co-added spectrum, and to simultaneously characterize the pulsations. We also intended to constrain the pulsation mode identification by comparing the ultra-violet amplitudes to those from near-simultaneous ground-based photometry. Our preliminary results indicate a broad instability strip in the temperature range of 10500-15400 K.

  10. Detailed analysis of carbon atmosphere white dwarfs

    Science.gov (United States)

    Dufour, Patrick

    2009-07-01

    We propose to obtain UV spectra for the newly discovered white dwarf stars with a carbon-dominated atmosphere. Model calculations show that these stars emit most of their light in the UV part of the electromagnetic spectrum and that an accurate determination of the flux in this region is crucial for an accurate determination of the atmospheric parameters. It will also provide a unique opportunity to test the atomic data and broadening theory in stellar conditions never met before. This will play a primordial role in our path to understand the origin of these objects as well to obtain a better understanding of the evolution of stars in general. The principal objective we hope to achieve with these observations are 1} obtain accurate surface gravity/mass for these stars, 2} constrain/determine the abundance of other elements {O, He, Mg, Ne etc.}, especially oxygen, 3} verify the accuracy of the various theoretical atomic data used in the model calculations, 4} understand the origin and evolution of carbon atmosphere white dwarfs, in particular whether progenitor stars as massive as 10.5 solar masses can produce white dwarfs, rather than supernovae. We propose to observe 5 objects chosen carefully to cover the range of observed properties among carbon atmosphere white dwarfs {effective temperature, surface gravity, abundance of hydrogen/helium and magnetic field}.

  11. Branes constrictions with White Dwarfs

    Energy Technology Data Exchange (ETDEWEB)

    García-Aspeitia, Miguel A., E-mail: aspeitia@fisica.uaz.edu.mx [Consejo Nacional de Ciencia y Tecnología, Av, Insurgentes Sur 1582, Colonia Crédito Constructor, Del. Benito Juárez, C.P. 03940, Mexico, D.F. (Mexico); Unidad Académica de Física, Universidad Autónoma de Zacatecas, Calzada Solidaridad esquina con Paseo a la Bufa S/N, C.P. 98060, Zacatecas (Mexico)

    2015-11-06

    We consider here a robust study of stellar dynamics for white dwarf stars with polytropic matter in the weak-field approximation using the Lane–Emden equation from the brane-world scenario. We also derive an analytical solution to the nonlocal energy density and show the behavior and sensitivity of these stars to the presence of extra dimensions. Similarly, we analyze stability and compactness, in order to show whether it is possible to agree with the conventional wisdom of white dwarfs dynamics. Our results predict an average value of the brane tension of <λ>≳84.818 MeV{sup 4}, with a standard deviation σ≃82.021 MeV{sup 4}, which comes from a sample of dwarf stars, being weaker than other astrophysical observations but remaining higher than cosmological results provided by nucleosynthesis among others.

  12. Branes constrictions with White Dwarfs

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Aspeitia, Miguel A. [Consejo Nacional de Ciencia y Tecnologia, Mexico (Mexico); Unidad Academica de Fisica, Universidad Autonoma de Zacatecas (Mexico)

    2015-11-15

    We consider here a robust study of stellar dynamics for white dwarf stars with polytropic matter in the weak-field approximation using the Lane-Emden equation from the brane-world scenario. We also derive an analytical solution to the nonlocal energy density and show the behavior and sensitivity of these stars to the presence of extra dimensions. Similarly, we analyze stability and compactness, in order to show whether it is possible to agree with the conventional wisdom of white dwarfs dynamics. Our results predict an average value of the brane tension of left angle λ right angle >or similar 84.818 MeV{sup 4}, with a standard deviation σ ≅ 82.021 MeV{sup 4}, which comes from a sample of dwarf stars, being weaker than other astrophysical observations but remaining higher than cosmological results provided by nucleosynthesis among others. (orig.)

  13. Branes constrictions with White Dwarfs

    Science.gov (United States)

    García-Aspeitia, Miguel A.

    2015-11-01

    We consider here a robust study of stellar dynamics for white dwarf stars with polytropic matter in the weak-field approximation using the Lane-Emden equation from the brane-world scenario. We also derive an analytical solution to the nonlocal energy density and show the behavior and sensitivity of these stars to the presence of extra dimensions. Similarly, we analyze stability and compactness, in order to show whether it is possible to agree with the conventional wisdom of white dwarfs dynamics. Our results predict an average value of the brane tension of < λ rangle ≳ 84.818MeV^4, with a standard deviation σ ˜eq 82.021MeV^4, which comes from a sample of dwarf stars, being weaker than other astrophysical observations but remaining higher than cosmological results provided by nucleosynthesis among others.

  14. The Dusty Accretion of Polluted White Dwarfs

    Science.gov (United States)

    Bonsor, A.; Farihi, J.; Wyatt, M. C.; van Lieshout, R.

    2017-03-01

    Infrared observations of polluted white dwarfs provide key insights into the accretion processes in action. The standard model for the observed infrared excesses is a flat, opaque, dust disc. The infrared observations are inconsistent with the presence of such a disc around all polluted white dwarfs. We discuss potential explanations for the absence of an infrared excess for many polluted white dwarfs.

  15. White dwarf cooling sequences and cosmochronology

    Science.gov (United States)

    Isern, J.; Artigas, A.; García-Berro, E.

    2013-03-01

    The evolution of white dwarfs is a simple gravothermal process. This means that their luminosity function, i.e. the number of white dwarfs per unit bolometric magnitude and unit volume as a function of bolometric magnitude, is a monotonically increasing function that decreases abruptly as a consequence of the finite age of the Galaxy. The precision and the accuracy of the white dwarf luminosity functions obtained with the recent large surveys together with the improved quality of the theoretical models of evolution of white dwarfs allow to feed the hope that in a near future it will be possible to reconstruct the history of the different Galactic populations.

  16. Double White Dwarf Merger Rates

    Science.gov (United States)

    Toonen, Silvia; Nelemans, Gijs; Portegies Zwart, Simon

    2013-01-01

    Type Ia supernovae (SNe Ia) are very successfully used as standard candles on cosmological distance scales, but so far the nature of the progenitor(s) is unclear. A possible scenario for SNe Ia are merging carbon/oxygen white dwarfs with a combined mass exceeding the Chandrasekhar mass. We determine the theoretical rates and delay time distribution of these mergers for two different common envelope prescriptions and metallicities. The shape of the delay time distributions is rather insensitive to the assumptions. The normalization is a factor ~3-13 too low compared to observations.

  17. White Dwarfs Cosmological and Galactic Probes

    CERN Document Server

    Sion, Edward M; Vennes, Stéphane

    2005-01-01

    The emphasis on white dwarf stars and cosmology arises from the most recent advances in cosmological and galactic structure research in which white dwarf stars are playing a very prominent role. Examples are Type Ia supernovae (i.e. white dwarf supernovae), the origin and evolution of the universe, the age of the galactic disk, cosmochronology using white dwarfs in globular clusters and galactic clusters, and the physics of accretion onto compact (very dense) stars. As an assisting guide to the reader, we have included, by invitation, comprehensive review articles in each of the four major areas of the book, white dwarf supernovae, cosmology, accretion physics and galactic structure. The reviews include introductory material that they build upon. The book is suitable and most useful to advanced undergraduates, graduate students and scientific professionals (e.g. astronomers, astrophysicists, cosmologists, physicists).

  18. SIM's Search for Planets Orbiting White Dwarfs

    Science.gov (United States)

    Subasavage, John P., Jr.

    2009-01-01

    Once launched, The Space Interferometry Mission (SIM) will be the most precise astrometric instrument ever developed. These capabilities are vital to exoplanetary studies, in particular, for low-mass, Earthlike planets. I propose to use SIM to observe a sample ( 25-50) of nearby white dwarfs in hopes of detecting planetary companions with masses in the 10 Earth mass range on average. Because of the nature of white dwarfs' spectral signatures (a few broad, if any, absorption lines), current radial velocity planet hunting techniques are not viable. Astrometry is currently the only technique capable of detecting low mass planets around white dwarfs and SIM would be the best suited astrometric instrument to do so. Planetary detections around white dwarfs would better enable us to probe planetary formation theory as well as planetary evolution theory in conjunction with stellar evolution. Because astrometric signatures are inversely related to distance, the closer the system, the larger the signature (all else being equal). Because most stars will eventually end their lives as white dwarfs, these objects are plentiful and on average, closer to the Sun than more rare objects. Thus, a number of white dwarfs are close enough to the Sun to permit low mass planetary signature detections. Given that white dwarfs are the remnants of main-sequence dwarfs with spectral classes from B to K (thus far), we could better understand planetary formation over a broader range of objects than those currently investigated using radial velocity techniques (F, G, and K stars primarily).

  19. PREFACE: 16th European White Dwarfs Workshop

    Science.gov (United States)

    Garcia-Berro, Enrique; Hernanz, Margarita; Isern, Jordi; Torres, Santiago

    2009-07-01

    The 16th European Workshop on White Dwarfs was held in Barcelona, Spain, from 30 June to 4 July 2008 at the premises of the UPC. Almost 120 participants from Europe (France, Germany, United Kingdom, Italy, and several others), America (USA, Canada, Argentina, Brazil, and Chile), and other continents (Australia, South Africa, . . . ) attended the workshop. Among these participants were the most relevant specialists in the field. The topics covered by the conference were: White dwarf structure and evolution Progenitors and Planetary Nebulae White dwarfs in binaries: cataclysmic variables, double degenerates and other binaries White dwarfs, dust disks and planetary systems Atmospheres, chemical composition, magnetic fields Variable white dwarfs White dwarfs in stellar clusters and the halo White Dwarfs as SNIa progenitors The programme included 54 talks, and 45 posters. The oral presentations were distributed into the following sessions: Luminosity function, mass function and populations White dwarf structure and evolution White dwarf ages White dwarf catalogs and surveys Central stars of planetary nebulae Supernovae progenitors White dwarfs in novae and CVs Physical processes in white dwarfs and magnetic white dwarfs Disks, dust and planets around white dwarfs Pulsating white dwarfs Additionally we had a special open session about Spitzer and white dwarfs. The Proceedings of the 16th European Workshop on White Dwarfs are representative of the current state-of-the-art of the research field and include new and exciting results. We acknowledge the very positive attitude of the attendants to the workshop, which stimulated very fruitful discussions that took place in all the sessions and after the official schedule. Also, the meeting allowed new collaborations tp start that will undoubtedly result in significant advances in the research field. We also acknowledge the willingness of the participants to deliver their contributions before the final deadline. We sincerely

  20. What fraction of white dwarfs are members of binary systems?

    Science.gov (United States)

    Holberg, J. B.

    2009-06-01

    White dwarfs were originally discovered as the subordinate faint companions of bright nearby stars (i.e. Sirius B and 40 Eri B). Several general categories of binary systems involving white dwarfs are recognized: Sirius-like systems, where the white dwarf may be difficult to detect, binary systems containing white dwarfs and low mass stars, where the white dwarf is often readily discerned; and double degenerate systems. Different modes of white dwarf discovery influence our perception of both the overall binary fraction and the nature of these systems; proper motion surveys emphasize resolved systems, while photometric surveys emphasize unresolved systems containing relatively hot white dwarfs. Recent studies of the local white dwarf population offer some hope of achieving realistic estimates of the relative number of binary systems containing white dwarfs. A sample of 132 white dwarfs within 20 pc indicates that an individual white dwarf has a probability of 32 ± 8% of occurring within a binary or multiple star system.

  1. Transit probabilities for debris around white dwarfs

    Science.gov (United States)

    Lewis, John Arban; Johnson, John A.

    2017-01-01

    The discovery of WD 1145+017 (Vanderburg et al. 2015), a metal-polluted white dwarf with an infrared-excess and transits confirmed the long held theory that at least some metal-polluted white dwarfs are actively accreting material from crushed up planetesimals. A statistical understanding of WD 1145-like systems would inform us on the various pathways for metal-pollution and the end states of planetary systems around medium- to high-mass stars. However, we only have one example and there are presently no published studies of transit detection/discovery probabilities for white dwarfs within this interesting regime. We present a preliminary look at the transit probabilities for metal-polluted white dwarfs and their projected space density in the Solar Neighborhood, which will inform future searches for analogs to WD 1145+017.

  2. ON THE EVOLUTION OF MAGNETIC WHITE DWARFS

    Energy Technology Data Exchange (ETDEWEB)

    Tremblay, P.-E. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Fontaine, G.; Brassard, P. [Département de Physique, Université de Montréal, C. P. 6128, Succursale Centre-Ville, Montréal, QC H3C 3J7 (Canada); Freytag, B. [Department of Physics and Astronomy at Uppsala University, Regementsvägen 1, Box 516, SE-75120 Uppsala (Sweden); Steiner, O. [Kiepenheuer-Institut für Sonnenphysik, Schöneckstr. 6, D-79104 Freiburg (Germany); Ludwig, H.-G. [Zentrum für Astronomie der Universität Heidelberg, Landessternwarte, Königstuhl 12, D-69117 Heidelberg (Germany); Steffen, M. [Leibniz-Institut für Astrophysik Potsdam, An der Sternwarte 16, D-14482 Potsdam (Germany); Wedemeyer, S., E-mail: tremblay@stsci.edu [Institute of Theoretical Astrophysics, University of Oslo, P.O. Box 1029 Blindern, NO-0315 Oslo (Norway)

    2015-10-10

    We present the first radiation magnetohydrodynamic simulations of the atmosphere of white dwarf stars. We demonstrate that convective energy transfer is seriously impeded by magnetic fields when the plasma-β parameter, the thermal-to-magnetic-pressure ratio, becomes smaller than unity. The critical field strength that inhibits convection in the photosphere of white dwarfs is in the range B = 1–50 kG, which is much smaller than the typical 1–1000 MG field strengths observed in magnetic white dwarfs, implying that these objects have radiative atmospheres. We have employed evolutionary models to study the cooling process of high-field magnetic white dwarfs, where convection is entirely suppressed during the full evolution (B ≳ 10 MG). We find that the inhibition of convection has no effect on cooling rates until the effective temperature (T{sub eff}) reaches a value of around 5500 K. In this regime, the standard convective sequences start to deviate from the ones without convection due to the convective coupling between the outer layers and the degenerate reservoir of thermal energy. Since no magnetic white dwarfs are currently known at the low temperatures where this coupling significantly changes the evolution, the effects of magnetism on cooling rates are not expected to be observed. This result contrasts with a recent suggestion that magnetic white dwarfs with T{sub eff} ≲ 10,000 K cool significantly slower than non-magnetic degenerates.

  3. Building Magnetic Fields in White Dwarfs

    Science.gov (United States)

    Kohler, Susanna

    2017-03-01

    White dwarfs, the compact remnants left over at the end of low- and medium-mass stars lifetimes, are often found to have magnetic fields with strengths ranging from thousands to billions of times that of Earth. But how do these fields form?MultiplePossibilitiesAround 1020% of white dwarfs have been observed to have measurable magnetic fields with a wide range of strengths. There are several theories as to how these fields might be generated:The fields are fossil.The original weak magnetic fields of the progenitor stars were amplified as the stars cores evolved into white dwarfs.The fields are caused by binary interactions.White dwarfs that formed in the merger of a binary pair might have had a magnetic field amplified as a result of a dynamo that was generated during the merger.The fields were produced by some other internal physical mechanism during the cooling of the white dwarf itself.In a recent publication, a team of authors led by Jordi Isern (Institute of Space Sciences, CSIC, and Institute for Space Studies of Catalonia, Spain) explored this third possibility.Dynamos from CrystallizationThe inner and outer boundaries of the convective mantle of carbon/oxygen white dwarfs of two different masses (top vs. bottom panel) as a function of luminosity. As the white dwarf cools (toward the right), the mantle grows thinner due to the crystallization and settling of material. [Isern et al. 2017]As white dwarfs have no nuclear fusion at their centers, they simply radiate heat and gradually cool over time. The structure of the white dwarf undergoes an interesting change as it cools, however: though the object begins as a fluid composed primarily of an ionized mixture of carbon and oxygen (and a few minor species like nickel and iron), it gradually crystallizes as its temperature drops.The crystallized phase of the white dwarf is oxygen-rich which is denser than the liquid, so the crystallized material sinks to the center of the dwarf as it solidifies. As a result, the

  4. Rapid Rotation of a Heavy White Dwarf

    Science.gov (United States)

    Kohler, Susanna

    2017-05-01

    New Kepler observations of a pulsating white dwarf have revealed clues about the rotation of intermediate-mass stars.Learning About ProgenitorsStars weighing in at under 8 solar masses generally end their lives as slowly cooling white dwarfs. By studying the rotation of white dwarfs, therefore, we are able to learn about the final stages of angular momentum evolution in these progenitor stars.Most isolated field white dwarfs cluster in mass around 0.62 solar masses, which corresponds to a progenitor mass of around 2.2 solar masses. This abundance means that weve already learned a good deal about the final rotation of low-mass (13 solar-mass) stars. Our knowledge about the angular momentum of intermediate-mass (38 solar-mass) stars, on the other hand, remains fairly limited.Fourier transform of the pulsations from SDSSJ0837+1856. The six frequencies of stellar variability, marked with red dots, reveal a rotation period of 1.13 hours. [Hermes et al. 2017]Record-Breaking FindA newly discovered white dwarf, SDSSJ0837+1856, is now helping to shed light on this mass range. SDSSJ0837+1856 appears to be unusually massive: its measured at 0.87 solar masses, which corresponds to a progenitor mass of roughly 4.0 solar masses. Determining the rotation of this white dwarf would therefore tell us about the final stages of angular momentum in an intermediate-mass star.In a new study led by J.J. Hermes (Hubble Fellow at University of North Carolina, Chapel Hill), a team of scientists presents a series of measurements of SDSSJ0837+1856 that suggest its the highest-mass and fastest-rotating isolated pulsating white dwarf known.Histogram of rotation rates determined from the asteroseismology of pulsating white dwarfs (marked in red). SDSSJ0837+1856 (indicated in black) is more massive and rotates faster than any other known pulsating white dwarf. [Hermes et al. 2017]Rotation from PulsationsWhy pulsating? In the absence of measurable spots and other surface features, the way we

  5. White Dwarfs in Gaia Data Release 1

    Science.gov (United States)

    Jordan, S.

    2017-03-01

    On September 14, the Gaia archives opened for access to the Gaia DR1. The catalogue with more than one billion star positions and more than two million parallaxes and proper motions will have enormous influence on many topics in astronomy. However, due to their extremely blue colour, parallaxes and proper motions of only six white dwarfs were directly measured. Tremblay et al. used these data and those for 46 white dwarfs in binaries in order to construct an empirical mass-radius relation. As it was the case for Hipparcos, the precision of the data does not allow for the characterisation of hydrogen envelope masses. With Gaia DR2 coming in late 2017 the prospects for white dwarf research are much better.

  6. Actively Disintegrating Astroids around a White Dwarf

    Science.gov (United States)

    Xu, Siyi

    2017-08-01

    Recent studies show that planetary systems can be widespread around white dwarfs. It has been proposed that planetary systems are responsible for the pollution observed in a white dwarf's atmosphere and the excess infrared radiation. This scenario is greatly strengthened by the recent discovery of actively disintegrating bodies orbiting around the white dwarf WD 1145+017. In addition, this system has a heavily polluted atmosphere, a dust disk, and circumstellar gas. Our team has been monitoring this system since its discovery and our recent COS data have revealed many new surprises. We propose to continue studying this system for the next two cycles and further constrain the evolution of the disintegrating bodies: what are the main mechanisms responsible for its destruction? How is circumstellar gas produced and maintained?

  7. White Dwarf Mergers on Adaptive Meshes

    Science.gov (United States)

    Katz, Maximilian Peter

    The mergers of binary white dwarf systems are potential progenitors of astrophysical explosions such as Type Ia supernovae. These white dwarfs can merge either by orbital decay through the emission of gravitational waves or by direct collisions as a result of orbital perturbations. The coalescence of the stars may ignite nuclear fusion, resulting in the destruction of both stars through a thermonuclear runaway and ensuing detonation. The goal of this dissertation is to simulate binary white dwarf systems using the techniques of computational fluid dynamics and therefore to understand what numerical techniques are necessary to obtain accurate dynamical evolution of the system, as well as to learn what conditions are necessary to enable a realistic detonation. For this purpose I have used software that solves the relevant fluid equations, the Poisson equation for self-gravity, and the systems governing nuclear reactions between atomic species. These equations are modeled on a computational domain that uses the technique of adaptive mesh refinement to have the highest spatial resolution in the areas of the domain that are most sensitive to the need for accurate numerical evolution. I have identified that the most important obstacles to accurate evolution are the numerical violation of conservation of energy and angular momentum in the system, and the development of numerically seeded thermonuclear detonations that do not bear resemblance to physically correct detonations. I then developed methods for ameliorating these problems, and determined what metrics can be used for judging whether a given white dwarf merger simulation is trustworthy. This involved the development of a number of algorithmic improvements to the simulation software, which I describe. Finally, I performed high-resolution simulations of typical cases of white dwarf mergers and head-on collisions to demonstrate the impacts of these choices. The results of these simulations and the corresponding

  8. Mystery of a Dimming White Dwarf

    Science.gov (United States)

    Kohler, Susanna

    2015-12-01

    In the wake of the recent media attention over an enigmatic, dimming star, another intriguing object has been discovered: J1529+2928, a white dwarf that periodically dims. This mystery, however, may have a simple solution with interesting consequences for future surveys of white dwarfs.Unexpected VariabilityJ1529+2928 is an isolated white dwarf that appears to have a mass of slightly more than the Sun. But rather than radiating steadily, J1529+2928 dims once every 38 minutes almost as though it were being eclipsed.The team that discovered these variations, led by Mukremin Kilic (University of Oklahoma), used telescopes at the Apache Point Observatory and the McDonald Observatory to obtain follow-up photometric data of J1529+2928 spread across 66 days. The team also took spectra of the white dwarf with the Gemini North telescope.Kilic and collaborators then began, one by one, to rule out possible causes of this objects variability.Eliminating OptionsThe period of the variability is too long for J1529+2928 to be a pulsating white dwarf with luminosity variation caused by gravity-wave pulsations.The variability cant be due to an eclipse by a stellar or brown-dwarf companion, because there isnt any variation in J1529+2928s radial velocity.Its not due to the orbit of a solid-body planetary object; such a transit would be too short to explain observations.It cant be due to the orbit of a disintegrated planet; this wouldnt explain the light curves observed in different filters plus the light curve doesnt change over the 66-day span.Spotty SurfaceTop and middle two panels: light curves from three different nights observing J1529+2928s periodic dimming. Bottom panel: The Fourier transform shows a peak at 37.7 cycles/day (and another, smaller peak at its first harmonic). [Kilic et al. 2015]So what explanation is left? The authors suggest that J1529+2928s variability is likely caused by a starspot on the white dwarfs surface that rotates into and out of our view. Estimates

  9. White dwarf atmospheres and circumstellar environments

    CERN Document Server

    Hoard, Donald W

    2012-01-01

    Written by selected astronomers at the forefront of their fields, this timely and novel book compiles the latest results from research on white dwarf stars, complementing existing literature by focusing on fascinating new developments in our understanding of the atmospheric and circumstellar environments of these stellar remnants. Complete with a thorough refresher on the observational characteristics and physical basis for white dwarf classification, this is a must-have resource for researchers interested in the late stages of stellar evolution, circumstellar dust and nebulae, and the future

  10. The angular momentum of isolated white dwarfs

    Directory of Open Access Journals (Sweden)

    Brassard P.

    2013-03-01

    Full Text Available This is a very brief report on an ongoing program aimed at mapping the internal rotation profiles of stars through asteroseismology. Three years ago, we developed and applied successfully a new technique to the pulsating GW Vir white dwarf PG 1159−035, and were able to infer that it rotates very slowly and rigidly over some 99% of its mass. We applied the same approach to the three other GW Vir pulsators with available rotational splitting data, and found similar results. We discuss the implications of these findings on the question of the angular momentum of white dwarfs resulting from single star evolution.

  11. A wide binary trigger for white dwarf pollution

    OpenAIRE

    Bonsor, Amy; Veras, Dimitri

    2015-01-01

    Metal pollution in white dwarf atmospheres is likely to be a signature of remnant planetary systems. Most explanations for this pollution predict a sharp decrease in the number of polluted systems with white dwarf cooling age. Observations do not confirm this trend, and metal pollution in old (1-5 Gyr) white dwarfs is difficult to explain. We propose an alternative, time-independent mechanism to produce the white dwarf pollution. The orbit of a wide binary companion can be perturbed by Galact...

  12. Theoretical Study of White Dwarf Double Stars

    Science.gov (United States)

    Hira, Ajit; Koetter, Ted; Rivera, Ruben; Diaz, Juan

    2015-04-01

    We continue our interest in the computational simulation of the astrophysical phenomena with a study of gravitationally-bound binary stars, composed of at least one white dwarf star. Of particular interest to astrophysicists are the conditions inside a white dwarf star in the time frame leading up to its explosive end as a Type Ia supernova, for an understanding of the massive stellar explosions. In addition, the studies of the evolution of white dwarfs could serve as promising probes of theories of gravitation. We developed FORTRAN computer programs to implement our models for white dwarfs and other stars. These codes allow for different sizes and masses of stars. Simulations were done in the mass interval from 0.1 to 2.0 solar masses. Our goal was to obtain both atmospheric and orbital parameters. The computational results thus obtained are compared with relevant observational data. The data are further analyzed to identify trends in terms of sizes and masses of stars. We hope to extend our computational studies to blue giant stars in the future. Research Supported by National Science Foundation.

  13. Computational Study of White Dwarf Stars

    Science.gov (United States)

    Pacheco, Jose; Hira, Ajit; Jaramillo, Danelle

    2014-03-01

    We begin our interest in the computational simulation of the astrophysical phenomena with a study of white dwarf stars. Of particular interest to astrophysicists are the conditions inside a white dwarf star in the time frame leading up to its explosive end as a Type Ia supernova, for an understanding of the massive stellar explosions. In addition, the studies of the evolution of white dwarfs could serve as promising probes of theories of gravitation. First, we set up the equations of equilibrium for the star of interest. Then we derived the appropriate equation of state. Next, a FORTRAN computer program was developed to implement our model for white dwarfs. This code allows for different sizes and masses of stars. Simulations were done in the mass interval from 0.4 to 0.8 solar masses. Our goal was to obtain both atmospheric and orbital parameters. The computational results thus obtained are compared with relevant observational data. The data are further analyzed to identify trends in terms of sizes and masses of stars. We hope to extend our computational studies to red giant stars in the future.

  14. Lessons for Asteroseismology from White Dwarf Stars

    Indian Academy of Sciences (India)

    The interpretation of pulsation data for sun-like stars is currently facing challenges quite similar to those faced by white dwarf modelers ten years ago. The observational requirements for uninterrupted long-term monitoring are beginning to be satisfied by successful multi-site campaigns and dedicated satellite missions.

  15. Modelling the formation of double white dwarfs

    NARCIS (Netherlands)

    van der Sluijs, M.V.; Verbunt, F.W.M.|info:eu-repo/dai/nl/068970374; Pols, O.|info:eu-repo/dai/nl/111811155

    2006-01-01

    We investigate the formation of the ten double-lined double white dwarfs that have been observed so far. A detailed stellar evolution code is used to calculate grids of single-star and binary models and we use these to reconstruct possible evolutionary scenarios. We apply various criteria to select

  16. Period changes in ultracompact double white dwarfs

    NARCIS (Netherlands)

    Marsh, T.R.; Nelemans, G.A.

    2005-01-01

    In recent years there has been much interest in the nature of two stars, V407 Vul and RX J0806+1527, which are widely thought to be binary white dwarfs of very short orbital period, 570 and 321s, respectively. As such they should be strong sources of gravitational waves and possible ancestors of the

  17. The White Dwarf Companions of Recycled Pulsars

    OpenAIRE

    van Kerkwijk, M. H.

    1996-01-01

    I review what properties of the white-dwarf companions of recycled pulsars can be inferred from optical observations, and discuss how these can help us understand the characteristics and evolution of these binaries. I focus on spectroscopic observations, describing results obtained recently, and looking forward to what may come.

  18. Line Broadening in White Dwarf Photospheres

    Science.gov (United States)

    Winget, D. E.

    2012-06-01

    White dwarfs are the simplest stars with the simplest surface chemical compositions known. Spectroscopically we detect only hydrogen in surfaces of the vast majority of these stars. The remainders are of various types, including stars with surfaces of nearly pure helium and some apparently massive stars with carbon and oxygen at the photosphere. We will examine the potential offered by the white dwarf stars in the context of both astrophysics and physics. This potential includes studying cosmochronology--establishing the age and evolutionary history of our galaxy and an independent lower limit on the age of the universe, constraining the properties of axions and WIMPS in the context of dark matter models, constraining dark energy by establishing the properties of the massive progenitors of type Ia supernovae, studying nucleosynthesis from their internal composition structure, and crystallization in dense Coulomb plasmas, among many others. Realizing this tremendous scientific potential depends on the determination of two boundary conditions for each star: the surface gravity and effective temperature. To do this, we must establish the photospheric plasma conditions, density and temperature, using observations of the stellar absorption spectra. Our understanding of line broadening appears to be an obstacle, at present. We will discuss the evidence for past theoretical inadequacies in line broadening theory and the hope for recent and future calculations. We will discuss how the experiments underway on the Z-facility at Sandia National Laboratories --where we can create macroscopic uniform plasmas under white dwarf photospheric conditions--will provide the benchmarks for improving our understanding of line broadening under white dwarf photospheric plasma conditions. These experiments will guide future theory and improve our understanding of the white dwarf stars and, through them, the contents and evolution of the cosmos.

  19. The white dwarf population of NGC 6397

    Science.gov (United States)

    Torres, Santiago; García-Berro, Enrique; Althaus, Leandro G.; Camisassa, María E.

    2015-09-01

    Context. NGC 6397 is one of the most interesting, well-observed, and most thoroughly theoretically studied globular clusters. The existing wealth of observations allows us to study the reliability of the theoretical white dwarf cooling sequences of low-metallicity progenitors, to determine the age of NGC 6397 and the percentage of unresolved binaries. We also assess other important characteristics of the cluster, such as the slope of the initial mass function or the fraction of white dwarfs with hydrogen-deficient atmospheres. Aims: We present a population synthesis study of the white dwarf population of NGC 6397. In particular, we study the shape of the color-magnitude diagram and the corresponding magnitude and color distributions. Methods: To do this, we used an advanced Monte Carlo code that incorporates the most recent and reliable cooling sequences and an accurate modeling of the observational biases. Results: Our theoretical models and the observed data agree well. In particular, we find that this agreement is best for those cooling sequences that take into account residual hydrogen burning. This result has important consequences for the evolution of progenitor stars during the thermally pulsing asymptotic giant branch phase, since it implies that appreciable third dredge-up in low-mass, low-metallicity progenitors is not expected to occur. Using a standard burst duration of 1.0 Gyr, we obtain that the age of the cluster is 12.8+0.50-0.75 Gyr. Greater ages are also compatible with the observed data, but then unrealistic longer durations of the initial burst of star formation are needed to fit the luminosity function. Conclusions: We conclude that a correct modeling of the white dwarf population of globular clusters, used in combination with the number counts of main-sequence stars, provides a unique tool for modeling the properties of globular clusters.

  20. White dwarf cosmochronology in the solar neighborhood

    Energy Technology Data Exchange (ETDEWEB)

    Tremblay, P.-E.; Kalirai, J. S.; Soderblom, D. R.; Cignoni, M. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Cummings, J., E-mail: tremblay@stsci.edu [Center for Astrophysical Sciences, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218 (United States)

    2014-08-20

    The study of the stellar formation history in the solar neighborhood is a powerful technique to recover information about the early stages and evolution of the Milky Way. We present a new method that consists of directly probing the formation history from the nearby stellar remnants. We rely on the volume complete sample of white dwarfs within 20 pc, where accurate cooling ages and masses have been determined. The well characterized initial-final mass relation is employed in order to recover the initial masses (1 ≲ M {sub initial}/M {sub ☉} ≲ 8) and total ages for the local degenerate sample. We correct for moderate biases that are necessary to transform our results to a global stellar formation rate, which can be compared to similar studies based on the properties of main-sequence stars in the solar neighborhood. Our method provides precise formation rates for all ages except in very recent times, and the results suggest an enhanced formation rate for the solar neighborhood in the last 5 Gyr compared to the range 5 < Age (Gyr) < 10. Furthermore, the observed total age of ∼10 Gyr for the oldest white dwarfs in the local sample is consistent with the early seminal studies that have determined the age of the Galactic disk from stellar remnants. The main shortcoming of our study is the small size of the local white dwarf sample. However, the presented technique can be applied to larger samples in the future.

  1. White Dwarf Cosmochronology in the Solar Neighborhood

    Science.gov (United States)

    Tremblay, P.-E.; Kalirai, J. S.; Soderblom, D. R.; Cignoni, M.; Cummings, J.

    2014-08-01

    The study of the stellar formation history in the solar neighborhood is a powerful technique to recover information about the early stages and evolution of the Milky Way. We present a new method that consists of directly probing the formation history from the nearby stellar remnants. We rely on the volume complete sample of white dwarfs within 20 pc, where accurate cooling ages and masses have been determined. The well characterized initial-final mass relation is employed in order to recover the initial masses (1 ages for the local degenerate sample. We correct for moderate biases that are necessary to transform our results to a global stellar formation rate, which can be compared to similar studies based on the properties of main-sequence stars in the solar neighborhood. Our method provides precise formation rates for all ages except in very recent times, and the results suggest an enhanced formation rate for the solar neighborhood in the last 5 Gyr compared to the range 5 Age (Gyr) age of ~10 Gyr for the oldest white dwarfs in the local sample is consistent with the early seminal studies that have determined the age of the Galactic disk from stellar remnants. The main shortcoming of our study is the small size of the local white dwarf sample. However, the presented technique can be applied to larger samples in the future.

  2. Unlocking the secrets of white dwarf stars

    CERN Document Server

    Van Horn, Hugh M

    2015-01-01

    White dwarfs, each containing about as much mass as our Sun but packed into a volume about the size of Earth, are the endpoints of evolution for most stars. Thousands of these faint objects have now been discovered, though only a century ago only three were known. They are among the most common stars in the Milky Way Galaxy, and they have become important tools in understanding the universe. Yet a century ago only three white dwarfs were known.   The existence of these stars completely baffled the scientists of the day, and solving the mysteries of these strange objects required revolutionary advances in science and technology, including the development of quantum physics, the construction and utilization of large telescopes, the invention of the digital computer, and the ability to make astronomical observations from space.   This book tells the story of the growth in our understanding of white dwarf stars, set within the context of the relevant scientific and technological advances. Part popular science, ...

  3. CSS 41177: an eclipsing double white dwarf binary

    Science.gov (United States)

    Bours, Madelon

    2013-10-01

    The overwhelming majority of stellar remnants are white dwarfs. Despite their abundance and importance to, amongst others, Galactic age determinations and our understanding of type Ia supernovae fewer than a dozen white dwarfs have model-independent measurements of fundamental parameters like mass and radius. A major limitation on the observational side is that such parameters are extremely difficult to determine in a model-independant way for single white dwarfs. Close white dwarf binaries can provide these important tests.The largest class of white dwarf binaries in the Galaxy are the detached double white dwarfs, which are becoming increasingly popular as the progenitor systems of Type Ia supernovae. In recent years four eclipsing double white dwarfs have been found, creating the opportunity for precision mass and radius measurements of two white dwarfs at once. Our target, CSS 41177, contains two extremely low-gravity white dwarfs with very different temperatures, presenting us with a unique chance to test the existing mass-radius relation at its extremes.Here we propose a 2 orbit HST/COS FUV observation of CSS 41177, to accurately determine the temperature and surface gravity of the hot white dwarf. Through the flux ratio from the light curve this will at the same time constrain those of the cool white dwarf. Therefore it will allow us to add two more white dwarfs with accurate parameters to the short list of white dwarfs for which precise masses and radii are known.Note: The proposed observations are part of the doctoral thesis of Ms. Madelon C.P. Bours.

  4. SIM's Search for Planets Orbiting Nearby White Dwarfs - Update

    Science.gov (United States)

    Subasavage, John P., Jr.

    2009-05-01

    I propose to use the Space Interferometry Mission (SIM) to observe a sample ( 25-50) of nearby white dwarfs in hopes of detecting planetary companions with masses in the 10 Earth mass range on average. Because of the nature of white dwarfs' spectral signatures (a few broad, if any, absorption lines), current radial velocity planet hunting techniques are not viable. Astrometry is currently the only technique capable of detecting low mass planets around white dwarfs and SIM would be the best suited astrometric instrument to do so once launched. As part of a SIM Science Study, I present a detailed evaluation of the star fields in the vicinity of nearby white dwarfs within 20 pc and with V white dwarfs with accuate trigonometric parallaxes and photometry. This effort will aid in the selection of white dwarfs to be targeted for planet searches using SIM by maximizing planetary sensitivities while minimizing total mission time spent on these observations.

  5. Anderson and Stoner Published White Dwarf Mass Limits Before Chandrasekhar

    CERN Document Server

    Blackman, Eric G

    2011-01-01

    In their engaging recountals of Chandrasekhar's extraordinary career (Physics Today, vol 63, Issue 12, Dec 2010), neither Dyson nor Wali mention that Chandrasekhar was the third person not the first, to publish a white dwarf mass limit incorporating a relativistic treatment of degenerate electrons. As it has become a common misconception that Chandrasekhar was the first, a clarifying reminder on this historical point is warranted. In short, the white dwarf mass limit widely attributed to Chandrasekhar (1931) should be the specific white dwarf mass limit calculated for a polytrope. The insight that a relativistic treatment of degeneracy leads to the existence of a white dwarf mass limit first appeared in papers of W. Anderson (1929) and E.C. Stoner (1930) for a uniform density star. Accordingly, Chandrasekhar (1931) cites Stoner (1930) and points out that the polytrope white dwarf mass limit is less than Stoner's uniform density white dwarf mass limit by about 20%.

  6. The fate of exomoons in white dwarf planetary systems

    Science.gov (United States)

    Payne, Matthew J.; Veras, Dimitri; Gänsicke, Boris T.; Holman, Matthew J.

    2017-01-01

    Roughly 1000 white dwarfs are known to be polluted with planetary material, and the progenitors of this material are typically assumed to be asteroids. The dynamical architectures which perturb asteroids into white dwarfs are still unknown, but may be crucially dependent on moons liberated from parent planets during post-main-sequence gravitational scattering. Here, we trace the fate of these exomoons, and show that they more easily achieve deep radial incursions towards the white dwarf than do scattered planets. Consequently, moons are likely to play a significant role in white dwarf pollution, and in some cases may be the progenitors of the pollution itself.

  7. Search for Higgs shifts in white dwarfs

    Energy Technology Data Exchange (ETDEWEB)

    Onofrio, Roberto [Dipartimento di Fisica e Astronomia " Galileo Galilei," Università di Padova, Via Marzolo 8, I-35131 Padova (Italy); Wegner, Gary A., E-mail: onofrior@gmail.com, E-mail: gary.a.wegner@dartmouth.edu [Department of Physics and Astronomy, Dartmouth College, 6127 Wilder Laboratory, Hanover, NH 03755 (United States)

    2014-08-20

    We report on a search for differential shifts between electronic and vibronic transitions in carbon-rich white dwarfs BPM 27606 and Procyon B. The absence of differential shifts within the spectral resolution and taking into account systematic effects such as space motion and pressure shifts allows us to set the first upper bound of astrophysical origin on the coupling between the Higgs field and the Kreschmann curvature invariant. Our analysis provides the basis for a more general methodology to derive bounds to the coupling of long-range scalar fields to curvature invariants in an astrophysical setting complementary to the ones available from high-energy physics or table-top experiments.

  8. The Fate of Exploding White Dwarfs

    Science.gov (United States)

    Fisher, Robert

    2018-01-01

    Type Ia supernovae play an important role as standardizable candles for cosmology, providing one of the most important probes into the nature of dark energy. Yet, the nature of the stellar progenitors which give rise to Type Ia supernovae remains elusive. For decades, the leading model explaining Type Ia supernovae properties consisted of a white dwarf accreting to near the Chandrasekhar mass, in the single-degenerate channel. More recently, a variety of lines of evidence point instead towards merging binary white dwarfs, in the double-degenerate channel, as the progenitors of most Type Ia supernovae. In this talk, I will focus upon recent advances at the interface between observation and theory which will help crack the Type Ia progenitor problem. In particular, I will present new insights obtained from recent multidimensional numerical simulations of both the double-degenerate and single-degenerate channels which I have undertaken with my students and collaborators. I will discuss how new models and observations will help elucidate the long-standing mystery of Type supernovae.

  9. VW Hyi - The white dwarf revealed

    Science.gov (United States)

    Mateo, M.; Szkody, P.

    1984-01-01

    Nonsimultaneous IUE, optical, and near-IR observations of VW Hyi at quiescence are presented. Using these and UV data from other investigations, a broad feature in the ultraviolet is identified with L-alpha absorption. The presence and width of the line imply that (1) the white dwarf in VW Hyi is directly visible in the UV and (2) the effective temperature of this star is approximately 18,000 + or - 2000 K for log g = 8. The continuum observations, combined with the J and K photometry of Sherrington et al., (1980), can be fit with a combination of this relatively cool white dwarf and a steady-state disk model with an accretion rate of 10 to the -11th solar masses/yr. Additional observations of the hump in the optical light curve can be reasonably fit by a 12,000-K blackbody. Such a source is consistent with the hump being a minor contribution to the system's overall continuum distribution shortward of 2000 A and longward of about 1 micron.

  10. Accretion on to Magnetic White Dwarfs

    Directory of Open Access Journals (Sweden)

    Wickramasinghe Dayal

    2014-01-01

    The polars have no counterparts in neutron star systems and their study provides unique insights into the complex nature of the magnetospheric boundary. The observed properties of accretion shocks at the white dwarf surface such as the anomalous soft-X-ray excess and its time variability provide strong support for the hypothesis that under certain circumstances the field channelled funnel flow is “blobby”. This has been attributed to interchange instabilities such as the Magnetic Rayleigh-Taylor instability in the shocked gas at the stream-magnetosphere boundary where the stream fragments into discrete clumps of gas. As the clumps penetrate into the magnetosphere, they are shredded into smaller mass blobs via the Kelvin-Helmholtz instability that then couple on to field lines over an extended inner transition region in the orbital plane. The more massive blobs penetrate deep into the photosphere of the white dwarf releasing their energy as a reprocessed soft-X-ray black body component. Although similar instabilities are expected in the inner transition region in disced accretion albeit on a different scale there has been no direct observational evidence for blobby accretion in the generally lower field and disced IPs.

  11. Probing LSST's Ability to Detect Planets Around White Dwarfs

    Science.gov (United States)

    Cortes, Jorge; Kipping, David

    2018-01-01

    Over the last four years more than 2,000 planets outside our solar system have been discovered, motivating us to search for and characterize potentially habitable worlds. Most planets orbit Sun-like stars, but more exotic stars can also host planets. Debris disks and disintegrating planetary bodies have been detected around white dwarf stars, the inert, Earth-sized cores of once-thriving stars like our Sun. These detections are clues that planets may exist around white dwarfs. Due to the faintness of white dwarfs and the potential rarity of planets around them, a vast survey is required to have a chance at detecting these planetary systems. The Large Synoptic Survey Telescope (LSST), scheduled to commence operations in 2023, will image the entire southern sky every few nights for 10 years, providing our first real opportunity to detect planets around white dwarfs. We characterized LSST’s ability to detect planets around white dwarfs through simulations that incorporate realistic models for LSST’s observing strategy and the white dwarf distribution within the Milky Way galaxy. This was done through the use of LSST's Operations Simulator (OpSim) and Catalog Simulator (CatSim). Our preliminary results indicate that, if all white dwarfs were to possess a planet, LSST would yield a detection for every 100 observed white dwarfs. In the future, a larger set of ongoing simulations will help us quantify the number of planets LSST could potentially find.

  12. White Dwarf/M Dwarf Binaries as Single Degenerate Progenitors of Type Ia Supernovae

    Science.gov (United States)

    Wheeler, J. Craig

    2012-10-01

    Limits on the companions of white dwarfs in the single-degenerate scenario for the origin of Type Ia supernovae (SNe Ia) have gotten increasingly tight, yet igniting a nearly Chandrasekhar mass C/O white dwarf from a condition of near hydrostatic equilibrium provides compelling agreement with observed spectral evolution. The only type of non-degenerate stars that survive the tight limits, MV >~ 8.4 on the SN Ia in SNR 0509-67.5 and MV >~ 9.5 in the remnant of SN 1572, are M dwarfs. While M dwarfs are observed in cataclysmic variables, they have special properties that have not been considered in most work on the progenitors of SNe Ia: they have small but finite magnetic fields and they flare frequently. These properties are explored in the context of SN Ia progenitors. White dwarf/M dwarf pairs may be sufficiently plentiful to provide, in principle, an adequate rate of explosions even with slow orbital evolution due to magnetic braking or gravitational radiation. Even modest magnetic fields on the white dwarf and M dwarf will yield adequate torques to lock the two stars together, resulting in a slowly rotating white dwarf, with the magnetic poles pointing at one another in the orbital plane. The mass loss will be channeled by a "magnetic bottle" connecting the two stars, landing on a concentrated polar area on the white dwarf. This enhances the effective rate of accretion compared to spherical accretion. Luminosity from accretion and hydrogen burning on the surface of the white dwarf may induce self-excited mass transfer. The combined effects of self-excited mass loss, polar accretion, and magnetic inhibition of mixing of accretion layers give possible means to beat the "nova limit" and grow the white dwarf to the Chandrasekhar mass even at rather moderate mass accretion rates.

  13. WHITE DWARF/M DWARF BINARIES AS SINGLE DEGENERATE PROGENITORS OF TYPE Ia SUPERNOVAE

    Energy Technology Data Exchange (ETDEWEB)

    Wheeler, J. Craig, E-mail: wheel@astro.as.utexas.edu [Department of Astronomy, University of Texas at Austin, Austin, TX 78712 (United States)

    2012-10-20

    Limits on the companions of white dwarfs in the single-degenerate scenario for the origin of Type Ia supernovae (SNe Ia) have gotten increasingly tight, yet igniting a nearly Chandrasekhar mass C/O white dwarf from a condition of near hydrostatic equilibrium provides compelling agreement with observed spectral evolution. The only type of non-degenerate stars that survive the tight limits, M{sub V} {approx}> 8.4 on the SN Ia in SNR 0509-67.5 and M{sub V} {approx}> 9.5 in the remnant of SN 1572, are M dwarfs. While M dwarfs are observed in cataclysmic variables, they have special properties that have not been considered in most work on the progenitors of SNe Ia: they have small but finite magnetic fields and they flare frequently. These properties are explored in the context of SN Ia progenitors. White dwarf/M dwarf pairs may be sufficiently plentiful to provide, in principle, an adequate rate of explosions even with slow orbital evolution due to magnetic braking or gravitational radiation. Even modest magnetic fields on the white dwarf and M dwarf will yield adequate torques to lock the two stars together, resulting in a slowly rotating white dwarf, with the magnetic poles pointing at one another in the orbital plane. The mass loss will be channeled by a 'magnetic bottle' connecting the two stars, landing on a concentrated polar area on the white dwarf. This enhances the effective rate of accretion compared to spherical accretion. Luminosity from accretion and hydrogen burning on the surface of the white dwarf may induce self-excited mass transfer. The combined effects of self-excited mass loss, polar accretion, and magnetic inhibition of mixing of accretion layers give possible means to beat the 'nova limit' and grow the white dwarf to the Chandrasekhar mass even at rather moderate mass accretion rates.

  14. SIM's Search for Planets Orbiting White Dwarfs - Final Report

    Science.gov (United States)

    Subasavage, John P., Jr.

    2010-01-01

    I propose to use Space Interferometry Mission (SIM) Lite to observe a sample ( 25-50) of nearby white dwarfs in hopes of detecting planetary companions with masses in the 1-10 Earth mass range on average. Because of the nature of white dwarfs' spectral signatures (a few broad, if any, absorption lines), current radial velocity planet hunting techniques are not viable. Astrometry is currently the only technique capable of detecting low mass planets around white dwarfs and SIM would be the best suited astrometric instrument to do so once launched. As part of a SIM Science Study, I present a detailed evaluation of the star fields in the vicinities of nearby white dwarfs within 20 pc and with V white dwarfs with accuate trigonometric parallaxes and photometry. Simulations indicate that planetary mass detections in the range of 1-10 Earth masses are possible for the majority of the 54 white dwarfs evaluated, provided the planets exist. This effort will aid in the selection of white dwarfs to be targeted for planet searches using SIM by maximizing planetary sensitivity while minimizing total mission time spent on these observations.

  15. The Local White Dwarf Population: The 25 pc Sample

    Science.gov (United States)

    Holberg, Jay B.; Sion, E. M.; Oswalt, T. D.

    2011-01-01

    Currently the most complete sample of white dwarf stars comes from the local white dwarf population within 20 pc, which is believed to be 80 percent complete. This sample contains some 132 degenerate stars. We hope to effectively double the number of known local white dwarfs by extending the sample boundary to 25 pc, while still maintaining a high level of completeness. We discuss plans for extending the local sample and some of the studies that will be possible with this enlarged population. This work was funded in part by NSF Grant AST-1008845.

  16. General relativistic white dwarfs and their astrophysical implications

    Energy Technology Data Exchange (ETDEWEB)

    Boshkayev, Kuantay [Al-Farabi Kazakh National University, Almaty (Kazakhstan); Rueda, Jorge A.; Ruffini, Remo [Sapienza University of Rome, Rome (Italy); Siutsou, Ivan [ICRANet, Square of Republic, Pescara (Italy)

    2014-09-15

    We consider applications of general relativistic uniformly-rotating white dwarfs to several astrophysical phenomena related to the spin-up and the spin-down epochs and to delayed type Ia supernova explosions of super-Chandrasekhar white dwarfs, where we estimate the 'spinning down' lifetime due to magnetic-dipole braking. In addition, we describe the physical properties of Soft Gamma Repeaters and Anomalous X-Ray Pulsars as massive rapidly-rotating highly-magnetized white dwarfs. Particularly we consider one of the so-called low-magnetic-field magnetars SGR 0418+5729 as a massive rapidly-rotating highly- magnetized white dwarf and give bounds for the mass, radius, moment of inertia, and magnetic field by requiring the general relativistic uniformly rotating configurations to be stable.

  17. The Diversity of Rocky Bodies from White Dwarf Pollution

    Science.gov (United States)

    Feng, W.; Desch, S.

    2017-11-01

    Insight to the chemical diversity of extrasolar rocky bodies may be gained by observing heavy elements in white dwarf atmospheres. The disk accretion scenario is key to understanding the accreted rocky bodies.

  18. Circumstellar debris and pollution at white dwarf stars

    Science.gov (United States)

    Farihi, J.

    2016-04-01

    Circumstellar disks of planetary debris are now known or suspected to closely orbit hundreds of white dwarf stars. To date, both data and theory support disks that are entirely contained within the preceding giant stellar radii, and hence must have been produced during the white dwarf phase. This picture is strengthened by the signature of material falling onto the pristine stellar surfaces; disks are always detected together with atmospheric heavy elements. The physical link between this debris and the white dwarf host abundances enables unique insight into the bulk chemistry of extrasolar planetary systems via their remnants. This review summarizes the body of evidence supporting dynamically active planetary systems at a large fraction of all white dwarfs, the remnants of first generation, main-sequence planetary systems, and hence provide insight into initial conditions as well as long-term dynamics and evolution.

  19. Activity and Kinematics of White Dwarf-M Dwarf Binaries from the SUPERBLINK Proper Motion Survey

    Energy Technology Data Exchange (ETDEWEB)

    Skinner, Julie N. [Institute for Astrophysical Research, Boston University, 725 Commonwealth Avenue, Boston, MA 02215 (United States); Morgan, Dylan P.; West, Andrew A. [Department of Astronomy, Boston University, 725 Commonwealth Avenue, Boston, MA 02215 (United States); Lépine, Sébastien [Department of Physics and Astronomy, Georgia State University, 25 Park Place NE, Atlanta, GA, 30303 (United States); Thorstensen, John R., E-mail: jskinner@bu.edu [Department of Physics and Astronomy, 6127 Wilder Laboratory, Dartmouth College, Hanover, NH 03755 (United States)

    2017-09-01

    We present an activity and kinematic analysis of high proper motion white dwarf-M dwarf binaries (WD+dMs) found in the SUPERBLINK survey, 178 of which are new identifications. To identify WD+dMs, we developed a UV–optical–IR color criterion and conducted a spectroscopic survey to confirm each candidate binary. For the newly identified systems, we fit the two components using model white dwarf spectra and M dwarf template spectra to determine physical parameters. We use H α chromospheric emission to examine the magnetic activity of the M dwarf in each system, and investigate how its activity is affected by the presence of a white dwarf companion. We find that the fraction of WD+dM binaries with active M dwarfs is significantly higher than their single M dwarf counterparts at early and mid-spectral types. We corroborate previous studies that find high activity fractions at both close and intermediate separations. At more distant separations, the binary fraction appears to approach the activity fraction for single M dwarfs. Using derived radial velocities and the proper motions, we calculate 3D space velocities for the WD+dMs in SUPERBLINK. For the entire SUPERBLINK WD+dMs, we find a large vertical velocity dispersion, indicating a dynamically hotter population compared to high proper motion samples of single M dwarfs. We compare the kinematics for systems with active M dwarfs and those with inactive M dwarfs, and find signatures of asymmetric drift in the inactive sample, indicating that they are drawn from an older population.

  20. Activity and Kinematics of White Dwarf-M Dwarf Binaries from the SUPERBLINK Proper Motion Survey

    Science.gov (United States)

    Skinner, Julie N.; Morgan, Dylan P.; West, Andrew A.; Lépine, Sébastien; Thorstensen, John R.

    2017-09-01

    We present an activity and kinematic analysis of high proper motion white dwarf-M dwarf binaries (WD+dMs) found in the SUPERBLINK survey, 178 of which are new identifications. To identify WD+dMs, we developed a UV-optical-IR color criterion and conducted a spectroscopic survey to confirm each candidate binary. For the newly identified systems, we fit the two components using model white dwarf spectra and M dwarf template spectra to determine physical parameters. We use Hα chromospheric emission to examine the magnetic activity of the M dwarf in each system, and investigate how its activity is affected by the presence of a white dwarf companion. We find that the fraction of WD+dM binaries with active M dwarfs is significantly higher than their single M dwarf counterparts at early and mid-spectral types. We corroborate previous studies that find high activity fractions at both close and intermediate separations. At more distant separations, the binary fraction appears to approach the activity fraction for single M dwarfs. Using derived radial velocities and the proper motions, we calculate 3D space velocities for the WD+dMs in SUPERBLINK. For the entire SUPERBLINK WD+dMs, we find a large vertical velocity dispersion, indicating a dynamically hotter population compared to high proper motion samples of single M dwarfs. We compare the kinematics for systems with active M dwarfs and those with inactive M dwarfs, and find signatures of asymmetric drift in the inactive sample, indicating that they are drawn from an older population. Based on observations obtained at the MDM Observatory operated by Dartmouth College, Columbia University, The Ohio State University, and the University of Michigan.

  1. Binary white dwarfs in the halo of the Milky Way

    Science.gov (United States)

    van Oirschot, Pim; Nelemans, Gijs; Toonen, Silvia; Pols, Onno; Brown, Anthony G. A.; Helmi, Amina; Portegies Zwart, Simon

    2014-09-01

    Aims: We study single and binary white dwarfs in the inner halo of the Milky Way in order to learn more about the conditions under which the population of halo stars was born, such as the initial mass function (IMF), the star formation history, or the binary fraction. Methods: We simulate the evolution of low-metallicity halo stars at distances up to ~3 kpc using the binary population synthesis code SeBa. We use two different white dwarf cooling models to predict the present-day luminosities of halo white dwarfs. We determine the white dwarf luminosity functions (WDLFs) for eight different halo models and compare these with the observed halo WDLF of white dwarfs in the SuperCOSMOS Sky Survey. Furthermore, we predict the properties of binary white dwarfs in the halo and determine the number of halo white dwarfs that is expected to be observed with the Gaia satellite. Results: By comparing the WDLFs, we find that a standard IMF matches the observations more accurately than a top-heavy one, but the difference with a bottom-heavy IMF is small. A burst of star formation 13 Gyr ago fits slightly better than a star formation burst 10 Gyr ago and also slightly better than continuous star formation 10-13 Gyr ago. Gaia will be the first instument to constrain the bright end of the field halo WDLF, where contributions from binary WDs are considerable. Many of these will have He cores, of which a handful have atypical surface gravities (log g 0 in our standard model for WD cooling. These so called pre-WDs, if observed, can help us to constrain white dwarf cooling models and might teach us something about the fraction of halo stars that reside in binaries. Appendices are available in electronic form at http://www.aanda.org

  2. Calibrating Cosmological Chronometers: White Dwarf Masses via Astrometry

    Science.gov (United States)

    2009-01-01

    Calibrating cosmological chronometers: white dwarf masses via astrometry John P. Subasavage1, Todd J. Henry1, Wei-Chun Jao1, Edmund P. Nelan2, Hugh C...control number. 1. REPORT DATE 2009 2. REPORT TYPE 3. DATES COVERED 00-00-2009 to 00-00-2009 4. TITLE AND SUBTITLE Calibrating cosmological ...Workshop on White Dwarfs Held at Kiel, Germany, 29 August - 1 September 1994. Lecture Notes in Physics vol. 443 eds D. Koester and K. Werner (Heidelberg

  3. White dwarfs as physics laboratories: the case of axions

    OpenAIRE

    Isern, J.; Althaus, L.; Catalan, S.; Corsico, A.; Garcia-Berro, E.; Salaris, M.; Torres, S.

    2012-01-01

    White dwarfs are almost completely degenerate objects that cannot obtain energy from thermonuclear sources, so their evolution is just a gravothermal cooling process. Recent improvements in the accuracy and precision of the luminosity function and in pulsational data of variable white dwarfs suggest that they are cooling faster than expected from conventional theory. In this contribution we show that the inclusion of an additional cooling term due to axions able to interact with electrons wit...

  4. Accreting White Dwarfs as Universal Accretion Laboratories

    Science.gov (United States)

    Knigge, Christian

    Accreting white dwarfs (AWDs) are numerous, bright and nearby, making them excellent laboratories for the study of accretion physics. Since their accretion flows are unaffected by relativistic effects or ultra-strong magnetic fields, they provide a crucial "control" group for efforts to understand more complex/compact systems, such as accreting neutron stars (NSs) and black holes (BHs). Here, I will review recent work on AWDs, which has revealed that these superficially simple systems actually exhibit the full range of accretion-related phenomenology seen in accreting NSs and BHs. For example, (i) AWDs undergo mass loss in the form of both disk winds and radio jets; (ii) their disk winds are only seen in high-Mdot states, similar to what is observed in accreting BHs; (iii) they exhibit (possibly hysteretic) outbursts produced by disk instabilities, as also seen in NS and BH transients; and (iv) they produce accretion-induced stochastic variability ("flickering") that exhibits the same rms-flux relation as observed in low-mass X-ray binaries and AGN. Based on this rich and shared phenomenology, it is reasonable to hope that much of accretion physics is universal. In this context, AWDs hold great promise as observational testing grounds for attempts to model and understand these physics.

  5. Habitable planets around white and brown dwarfs: the perils of a cooling primary.

    Science.gov (United States)

    Barnes, Rory; Heller, René

    2013-03-01

    White and brown dwarfs are astrophysical objects that are bright enough to support an insolation habitable zone (IHZ). Unlike hydrogen-burning stars, they cool and become less luminous with time; hence their IHZ moves in with time. The inner edge of the IHZ is defined as the orbital radius at which a planet may enter a moist or runaway greenhouse, phenomena that can remove a planet's surface water forever. Thus, as the IHZ moves in, planets that enter it may no longer have any water and are still uninhabitable. Additionally, the close proximity of the IHZ to the primary leads to concern that tidal heating may also be strong enough to trigger a runaway greenhouse, even for orbital eccentricities as small as 10(-6). Water loss occurs due to photolyzation by UV photons in the planetary stratosphere, followed by hydrogen escape. Young white dwarfs emit a large amount of these photons, as their surface temperatures are over 10(4) K. The situation is less clear for brown dwarfs, as observational data do not constrain their early activity and UV emission very well. Nonetheless, both types of planets are at risk of never achieving habitable conditions, but planets orbiting white dwarfs may be less likely to sustain life than those orbiting brown dwarfs. We consider the future habitability of the planet candidates KOI 55.01 and 55.02 in these terms and find they are unlikely to become habitable.

  6. Stellar explosions from accreting white dwarfs

    Science.gov (United States)

    Moore, Kevin L.

    Unstable thermonuclear burning on accreting white dwarfs (WDs) can lead to a wide variety of outcomes, and induce shock waves in several contexts. In classical and recurrent novae, a WD accreting hydrogen-rich material from a binary companion can experience thermonuclear runaways, ejecting mass into the interstellar/circumbinary environment at ~1000 km/s. This highly supersonic ejecta drives shock waves into the interstellar gas which may be relevant for sweeping out gas from globular clusters or forming circumstellar absorption regions in interacting supernovae. While runaway nuclear burning in novae releases enough energy for these objects to brighten by a factor of ~10 4 over roughly a weeklong outburst, it does not become dynamically unstable. In contrast, certain helium accretion scenarios may allow for dynamical burning modes, in part due to the higher temperature sensitivity of helium burning reactions and larger accreted envelopes. The majority of this thesis involves such dynamical burning modes, specifically detonations - shock waves sustained by nuclear energy release behind the shock front. We investigate when steady-state detonations are realizable in accreted helium layers on WDs, and model their strength and burning products using both semi-analytic and numerical models. We find the minimum helium layer thickness that will sustain a steady laterally propagating detonation and show that it depends on the density and composition of the helium layer, specifically 12 C and 16O. Though gravitationally unbound, the ashes still have unburned helium (~80% in the thinnest cases) and only reach up to heavy elements such as 40Ca, 44Ti, 48Cr, and 52Fe. It is rare for these thin shells to generate large amounts of radioactive isotopes necessary to power light curves, such as 56Ni. This has important implications on whether the unbound helium burning ashes may create faint and fast peculiar supernovae or events with virtually no radioactivity, as well as on off

  7. Disk Accretion of Tidally Disrupted Rocky Bodies onto White Dwarfs

    Science.gov (United States)

    Feng, W.; Desch, S.

    2017-03-01

    The prevailing model for the pollution of white dwarf photospheres invokes accretion from a disk of gas and solid particles, fed by tidal disruption of rocky bodies inside the Roche radius. Current models can successfully explain the accretion rates of metals onto white dwarfs, provided the gaseous disks viscously spread at rates consistent with a partially suppressed magnetorotational instability (Metzger et al. 2012); however, these models do not explore the extent of the magnetorotational instability in disks by calculating the degree of ionization. We present ionization fractions for thermal and non-thermal processes to assess the extent of the magnetorotational instability in white dwarf disks. We determine that the disk viscosity parameter α can be as high as 0.1 in white disks, implying that the magnetorotational instability must be carefully modeled.

  8. White dwarf stars exceeding the Chandrasekhar mass limit

    Science.gov (United States)

    Tomaschitz, Roman

    2018-01-01

    The effect of nonlinear ultra-relativistic electron dispersion on the mass-radius relation of high-mass white dwarfs is studied. The dispersion is described by a permeability tensor in the Dirac equation, generated by the ionized high-density stellar matter, which constitutes the neutralizing background of the nearly degenerate electron plasma. The electron dispersion results in a stable mass-radius relation for high-mass white dwarfs, in contrast to a mass limit in the case of vacuum permeabilities. In the ultra-relativistic regime, the dispersion relation is a power law whose amplitude and scaling exponent is inferred from mass and radius estimates of two high-mass white dwarfs, Sirius B and LHS 4033. Evidence for the existence of super-Chandrasekhar mass white dwarfs is provided by several Type Ia supernovae (e.g., SN 2013cv, SN 2003fg, SN 2007if and SN 2009dc), whose mass ejecta exceed the Chandrasekhar limit by up to a factor of two. The dispersive mass-radius relation is used to estimate the radii, central densities, Fermi temperatures, bulk and compression moduli and sound velocities of their white dwarf progenitors.

  9. Left Behind: A Bound Remnant from a White Dwarf Supernova?

    Science.gov (United States)

    Jha, Saurabh

    2017-08-01

    Type Ia supernovae (SN Ia) have enormous importance to cosmology and astrophysics, but their progenitors and explosion mechanisms are not understood in detail. Recently, observations and theoretical models have suggested that not all thermonuclear white-dwarf supernova explosions are normal SN Ia. In particular, type Iax supernovae (peculiar cousins to SN Ia), are thought to be exploding white dwarfs that are not completely disrupted, leaving behind a bound remnant. In deep and serendipitous HST pre-explosion data, we have discovered a luminous, blue progenitor system for the type Iax SN 2012Z in NGC 1309, which we interpret as a helium-star donor to the exploding white dwarf. HST observations of SN 2012Z in 2016, when the supernova light was expected to have faded away, still show a source at the location, as expected in our model where the pre-explosion flux was coming from the companion. However, the 2016 data also show a surprise: an excess flux compared to the progenitor system. Our proposed observations here will help unravel the mystery of that excess flux: is it from the bound ex-white dwarf remnant? Or is it from the shocked companion star that has been bombarded by supernova ejecta? Either of these possibilities would provide key new evidence as to the nature of these white dwarf supernovae.

  10. Do all barium stars have a white dwarf companion?

    Science.gov (United States)

    Dominy, J. F.; Lambert, D. L.

    1983-01-01

    International Ultraviolet Explorer short-wavelength, low-dispersion spectra were analyzed for four barium, two mild barium, and one R-type carbon star in order to test the hypothesis that the barium and related giants are produced by mass transfer from a companion now present as a white dwarf. An earlier tentative identification of a white dwarf companion to the mild barium star Zeta Cyg is confirmed. For the other stars, no ultraviolet excess attributable to a white dwarf is seen. Limits are set on the bolometric magnitude and age of a possible white dwarf companion. Since the barium stars do not have obvious progenitors among main-sequence and subgiant stars, mass transfer must be presumed to occur when the mass-gaining star is already on the giant branch. This restriction, and the white dwarf's minimum age, which is greater than 8 x 10 to the 8th yr, determined for several stars, effectively eliminates the hypothesis that mass transfer from an asymptotic giant branch star creates a barium star. Speculations are presented on alternative methods of producing a barium star in a binary system.

  11. White Dwarf/M Dwarf Binaries as Single Degenerate Progenitors of Type Ia Supernovae

    OpenAIRE

    Wheeler, J. Craig

    2012-01-01

    Limits on the companions of white dwarfs in the single degenerate scenario for the origin of Type Ia supernovae (SNIa) have gotten increasingly tight. The only type of non-degenerate stars that survive the limits on the companions of SNIa in SNR 0509-67.5 and SN1572 are M dwarfs. M dwarfs have special properties that have not been considered in most work on the progenitors of SNIa: they have small but finite magnetic fields, and they flare frequently. These properties are explored in the cont...

  12. A catalogue of white dwarf candidates in VST ATLAS

    Science.gov (United States)

    Gentile Fusillo, Nicola Pietro; Raddi, Roberto; Gänsicke, Boris T.; Hermes, J. J.; Pala, Anna F.; Fuchs, Joshua T.; Chehade, Ben; Metcalfe, Nigel; Shanks, Tom

    2017-07-01

    The Sloan Digital Sky Survey (SDSS) has created a knowledge gap between the Northern and the Southern hemispheres, which is very marked for white dwarfs: Only ≃15 per cent of the known white dwarfs are south of the equator. Here, we make use of the VLT Survey Telescope (VST) ATLAS survey, one of the first surveys obtaining deep, optical, multiband photometry over a large area of the southern skies, to remedy this situation. Applying the colour and proper-motion selection developed in our previous work on SDSS to the most recent internal data release (2016 April 25) of VST ATLAS, we created a catalogue of ≃4200 moderately bright (g ≤ 19), high-confidence southern white dwarf candidates, which can be followed up individually with both the large array of southern telescopes or in bulk with ESO's forthcoming multi-object spectrograph 4MOST.

  13. A Dark Spot on a Massive White Dwarf

    Science.gov (United States)

    Kilic, Mukremin; Gianninas, Alexandros; Bell, Keaton J.; Curd, Brandon; Brown, Warren R.; Hermes, J. J.; Dufour, Patrick; Wisniewski, John P.; Winget, D. E.; Winget, K. I.

    2015-12-01

    We present the serendipitous discovery of eclipse-like events around the massive white dwarf SDSS J152934.98+292801.9 (hereafter J1529+2928). We selected J1529+2928 for time-series photometry based on its spectroscopic temperature and surface gravity, which place it near the ZZ Ceti instability strip. Instead of pulsations, we detect photometric dips from this white dwarf every 38 minutes. Follow-up optical spectroscopy observations with Gemini reveal no significant radial velocity variations, ruling out stellar and brown dwarf companions. A disintegrating planet around this white dwarf cannot explain the observed light curves in different filters. Given the short period, the source of the photometric dips must be a dark spot that comes into view every 38 minutes due to the rotation of the white dwarf. Our optical spectroscopy does not show any evidence of Zeeman splitting of the Balmer lines, limiting the magnetic field strength to B Tecnologia e Inovação (Brazil) and Ministerio de Ciencia, Tecnología e Innovación Productiva (Argentina).

  14. Constraining the neutrino magnetic dipole moment from white dwarf pulsations

    Energy Technology Data Exchange (ETDEWEB)

    Córsico, A.H.; Althaus, L.G. [Grupo de Evolución Estelar y Pulsaciones, Facultad de Ciencias Astronómicas y Geofísicas, Universidad Nacional de La Plata, Paseo del Bosque s/n, (1900) La Plata (Argentina); Bertolami, M.M. Miller [Instituto de Astrofísica La Plata, CONICET-UNLP, Paseo del Bosque s/n, (1900) La Plata (Argentina); Kepler, S.O. [Departamento de Astronomia, Universidade Federal do Rio Grande do Sul, Av. Bento Goncalves 9500, Porto Alegre 91501-970, RS (Brazil); García-Berro, E., E-mail: acorsico@fcaglp.unlp.edu.ar, E-mail: althaus@fcaglp.unlp.edu.ar, E-mail: marcelo@MPA-Garching.MPG.DE, E-mail: kepler@if.ufrgs.br, E-mail: enrique.garcia-berro@upc.edu [Departament de Física Aplicada, Universitat Politècnica de Catalunya, c/Esteve Terrades 5, 08860, Castelldefels (Spain)

    2014-08-01

    Pulsating white dwarf stars can be used as astrophysical laboratories to constrain the properties of weakly interacting particles. Comparing the cooling rates of these stars with the expected values from theoretical models allows us to search for additional sources of cooling due to the emission of axions, neutralinos, or neutrinos with magnetic dipole moment. In this work, we derive an upper bound to the neutrino magnetic dipole moment (μ{sub ν}) using an estimate of the rate of period change of the pulsating DB white dwarf star PG 1351+489. We employ state-of-the-art evolutionary and pulsational codes which allow us to perform a detailed asteroseismological period fit based on fully DB white dwarf evolutionary sequences. Plasmon neutrino emission is the dominant cooling mechanism for this class of hot pulsating white dwarfs, and so it is the main contributor to the rate of change of period with time (Pidot) for the DBV class. Thus, the inclusion of an anomalous neutrino emission through a non-vanishing magnetic dipole moment in these sequences notably influences the evolutionary timescales, and also the expected pulsational properties of the DBV stars. By comparing the theoretical Pidot value with the rate of change of period with time of PG 1351+489, we assess the possible existence of additional cooling by neutrinos with magnetic dipole moment. Our models suggest the existence of some additional cooling in this pulsating DB white dwarf, consistent with a non-zero magnetic dipole moment with an upper limit of μ{sub ν} ∼< 10{sup -11} μ{sub B}. This bound is somewhat less restrictive than, but still compatible with, other limits inferred from the white dwarf luminosity function or from the color-magnitude diagram of the Globular cluster M5. Further improvements of the measurement of the rate of period change of the dominant pulsation mode of PG 1351+489 will be necessary to confirm our bound.

  15. Constraining the neutrino magnetic dipole moment from white dwarf pulsations

    Science.gov (United States)

    Córsico, A. H.; Althaus, L. G.; Miller Bertolami, M. M.; Kepler, S. O.; García-Berro, E.

    2014-08-01

    Pulsating white dwarf stars can be used as astrophysical laboratories to constrain the properties of weakly interacting particles. Comparing the cooling rates of these stars with the expected values from theoretical models allows us to search for additional sources of cooling due to the emission of axions, neutralinos, or neutrinos with magnetic dipole moment. In this work, we derive an upper bound to the neutrino magnetic dipole moment (μν) using an estimate of the rate of period change of the pulsating DB white dwarf star PG 1351+489. We employ state-of-the-art evolutionary and pulsational codes which allow us to perform a detailed asteroseismological period fit based on fully DB white dwarf evolutionary sequences. Plasmon neutrino emission is the dominant cooling mechanism for this class of hot pulsating white dwarfs, and so it is the main contributor to the rate of change of period with time (Pi dot) for the DBV class. Thus, the inclusion of an anomalous neutrino emission through a non-vanishing magnetic dipole moment in these sequences notably influences the evolutionary timescales, and also the expected pulsational properties of the DBV stars. By comparing the theoretical Pi dot value with the rate of change of period with time of PG 1351+489, we assess the possible existence of additional cooling by neutrinos with magnetic dipole moment. Our models suggest the existence of some additional cooling in this pulsating DB white dwarf, consistent with a non-zero magnetic dipole moment with an upper limit of μν lesssim 10-11 μB. This bound is somewhat less restrictive than, but still compatible with, other limits inferred from the white dwarf luminosity function or from the color-magnitude diagram of the Globular cluster M5. Further improvements of the measurement of the rate of period change of the dominant pulsation mode of PG 1351+489 will be necessary to confirm our bound.

  16. Astro-archaeology - The white dwarfs and hot subwarfs

    Science.gov (United States)

    Van Horn, Hugh M.

    1991-01-01

    By 'astroarcheology' is presently meant the effort to ascertain the Galaxy's past in light of what is found in its most ancient, white dwarf constituents. Attention is given to the controversial role of the hot subdwarfs and the theory of white dwarf spectral evolution, as well as to the concept of the 'Whole Earth Telescope', involving continuous photometric coverage of rapidly varying astronomical sources and thereby eliminating the otherwise troublesome diurnal gaps in data. Much higher resolution of the power spectra of these objects is attainable by these means than any current alternative.

  17. Pulsations powered by hydrogen shell burning in white dwarfs

    Science.gov (United States)

    Camisassa, M. E.; Córsico, A. H.; Althaus, L. G.; Shibahashi, H.

    2016-10-01

    Context. In the absence of a third dredge-up episode during the asymptotic giant-branch phase, white dwarf models evolved from low-metallicity progenitors have a thick hydrogen envelope, which makes hydrogen shell burning be the most important energy source. Aims: We investigate the pulsational stability of white dwarf models with thick envelopes to see whether nonradial g-mode pulsations are triggered by hydrogen burning, with the aim of placing constraints on hydrogen shell burning in cool white dwarfs and on a third dredge-up during the asymptotic giant-branch evolution of their progenitor stars. Methods: We construct white-dwarf sequences from low-metallicity progenitors by means of full evolutionary calculations that take into account the entire history of progenitor stars, including the thermally pulsing and the post-asymptotic giant-branch phases, and analyze their pulsation stability by solving the linear, nonadiabatic, nonradial pulsation equations for the models in the range of effective temperatures Teff 15 000-8000 K. Results: We demonstrate that, for white dwarf models with masses M⋆ ≲ 0.71 M⊙ and effective temperatures 8500 ≲ Teff ≲ 11 600 K that evolved from low-metallicity progenitors (Z = 0.0001, 0.0005, and 0.001), the dipole (ℓ = 1) and quadrupole (ℓ = 2) g1-modes are excited mostly as a result of the hydrogen-burning shell through the ɛ-mechanism, in addition to other g-modes driven by either the κ - γ or the convective driving mechanism. However, the ɛ mechanism is insufficient to drive these modes in white dwarfs evolved from solar-metallicity progenitors. Conclusions: We suggest that efforts should be made to observe the dipole g1-mode in white dwarfs associated with low-metallicity environments, such as globular clusters and/or the galactic halo, to place constraints on hydrogen shell burning in cool white dwarfs and the third dredge-up episode during the preceding asymptotic giant-branch phase.

  18. A Pulsar and White Dwarf in an Unexpected Orbit

    Science.gov (United States)

    Kohler, Susanna

    2016-11-01

    Astronomers have discovered a binary system consisting of a low-mass white dwarf and a millisecond pulsar but its eccentric orbit defies all expectations of how such binaries form.Observed orbital periods and binary eccentricities for binary millisecond pulsars. PSR J2234+0511 is the furthest right of the green stars that mark the five known eccentric systems. [Antoniadis et al. 2016]Unusual EccentricityIt would take a low-mass (0.4 solar masses) white dwarf over 100 billion years to form from the evolution of a single star. Since this is longer than the age of the universe, we believe that these lightweights are instead products of binary-star evolution and indeed, we observe many of these stars to still be in binary systems.But the binary evolution that can create a low-mass white dwarf includes a period of mass transfer, in which efficient tidal dissipation damps the systems orbital eccentricity. Because of this, we would expect all systems containing low-mass white dwarfs to have circular orbits.In the past, our observations of low-mass white dwarfmillisecond pulsar binaries have all been consistent with this expectation. But a new detection has thrown a wrench in the works: the unambiguous identification of a low-mass white dwarf thats in an eccentric (e=0.13) orbit with the millisecond pulsar PSR J2234+0511. How could this system have formed?Eliminating Formation ModelsLed by John Antoniadis (Dunlap Institute at University of Toronto), a team of scientists has used newly obtained optical photometry (from the Sloan Digital Sky Survey) and spectroscopy (from the Very Large Telescope in Chile) of the white dwarf to confirm the identification of this system.Antoniadis and collaborators then use measurements of the bodies masses (0.28 and 1.4 solar masses for the white dwarf and pulsar, respectively) and velocities, and constraints on the white dwarfs temperature, radius and surface gravity, to address three proposed models for the formation of this system.The 3D

  19. Two new color-selected magnetic DA white dwarfs

    Science.gov (United States)

    Liebert, J.; Schmidt, G. D.; Sion, E. M.; Starrfield, S. G.; Green, R. F.; Boroson, T. A.

    1985-01-01

    The discovery of two magnetic white dwarfs culled from blue star surveys is reported. The surveys were carried out with the Mount Lemnon 1.5-meter reflecting telescope attached to a two-holer polarimeter/photometer. Spectral observations of the objects, (PG 1533 - 057, and K813 - 14), indicate the presence of hydrogen and Zeeman components. On the basis of dipolar field simulations, it is shown that PG 1533 - 057 has a polar field strength of 31 megagauss (MG) while K813 - 14 has a polar field strength of 29 MG. A third known white dwarf has a polar field strength of 18 MG. All the dwarfs had temperatures in the 11,000-20,000 K range. The possibility that a significant fraction of isolated magnetic degenerate stars could be the progeny of magnetic accreting binary systems is considered.

  20. High-Resolution EUV Spectroscopy of White Dwarfs

    Science.gov (United States)

    Kowalski, Michael P.; Wood, K. S.; Barstow, M. A.

    2014-01-01

    We compare results of high-resolution EUV spectroscopic measurements of the isolated white dwarf G191-B2B and the binary system Feige 24 obtained with the J-PEX (Joint Plasmadynamic Experiment), which was sponsored jointly by the U.S. Naval Research Laboratory and NASA. J-PEX delivers the world's highest resolution in EUV and does so at high effective area (e.g., more effective area in a sounding rocket than is available with Chandra at adjacent energies, but in a waveband Chandra cannot reach). The capability J-PEX represents is applicable to the astrophysics of hot plasmas in stellar coronae, white dwarfs and the ISM. G191-B2B and Feige 24 are quite distinct hot white dwarf systems having in common that they are bright in the portion of the EUV where He emission features and edges occur, hence they can be exploited to probe both the stellar atmosphere and the ISM, separating those components by model-fitting that sums over all relevant (He) spectral features in the band. There is evidence from these fits that atmospheric He is being detected but the result is more conservatively cast as a pair of upper limits. We discuss how longer duration satellite observations with the same instrumentation could increase exposure to detect atmospheric He in these and other nearby hot white dwarfs.

  1. Binary white dwarfs in the halo of the Milky Way

    NARCIS (Netherlands)

    van Oirschot, Pim; Nelemans, Gijs; Toonen, Silvia; Pols, Onno; Brown, Anthony G. A.; Helmi, Amina; Portegies Zwart, Simon

    Aims: We study single and binary white dwarfs in the inner halo of the Milky Way in order to learn more about the conditions under which the population of halo stars was born, such as the initial mass function (IMF), the star formation history, or the binary fraction. Methods: We simulate the

  2. A Common Origin of Magnetism from Planets to White Dwarfs

    Energy Technology Data Exchange (ETDEWEB)

    Isern, Jordi; Külebi, Baybars [Institut de Ciències de l’Espai (CSIC), Campus UAB, 08193 Cerdanyola (Spain); García-Berro, Enrique [Institut d’Estudis Espacials de Catalunya, Ed. Nexus-201, c/Gran Capità 2-4, E-08034 Barcelona (Spain); Lorén-Aguilar, Pablo [School of Physics, University of Exeter, Stocker Road, Exeter EX4 4QL (United Kingdom)

    2017-02-20

    Isolated magnetic white dwarfs have field strengths ranging from kilogauss to gigagauss. However, the origin of the magnetic field has not been hitherto elucidated. Whether these fields are fossil, hence the remnants of original weak magnetic fields amplified during the course of the evolution of their progenitor stars, or are the result of binary interactions, or, finally, they are produced by other internal physical mechanisms during the cooling of the white dwarf itself, remains a mystery. At sufficiently low temperatures, white dwarfs crystallize. Upon solidification, phase separation of its main constituents, {sup 12}C and {sup 16}O, and of the impurities left by previous evolution occurs. This process leads to the formation of a Rayleigh–Taylor unstable liquid mantle on top of a solid core. This convective region, as it occurs in solar system planets like the Earth and Jupiter, can produce a dynamo able to yield magnetic fields of strengths of up to 0.1 MG, thus providing a mechanism that could explain magnetism in single white dwarfs.

  3. Planetary Engulfment as a Trigger for White Dwarf Pollution

    Science.gov (United States)

    Petrovich, Cristobal; Muñoz, Diego J.

    2017-01-01

    The presence of a planetary system can shield a planetesimal disk from the secular gravitational perturbations due to distant outer massive objects (planets or stellar companions). As the host star evolves off the main sequence to become a white dwarf, these planets can be engulfed during the giant phase, triggering secular instabilities and leading to the tidal disruptions of small rocky bodies. These disrupted bodies can feed the white dwarfs with rocky material and possibly explain the high-metallicity material in their atmospheres. We illustrate how this mechanism can operate when the gravitational perturbations are due to the KL mechanism from a stellar binary companion, a process that is activated only after the planet has been removed/engulfed. We show that this mechanism can explain the observed accretion rates if: (1) the planetary engulfment happens rapidly compared to the secular timescale, which is generally the case for wide binaries (> 100 au) and planetary engulfment during the asymptotic giant branch; (2) the planetesimal disk has a total mass of ˜ {10}-4-{10}-2{M}\\oplus . We show that this new mechanism can provide a steady supply of material throughout the entire life of the white dwarfs for all cooling ages and can account for a large fraction (up to nearly half) of the observed polluted white dwarfs.

  4. First Detection of Krypton and Xenon in a White Dwarf

    Science.gov (United States)

    Werner, Klaus; Rauch, Thomas; Ringat, Ellen; Kruk, Jeffrey W.

    2012-01-01

    We report on the first detection of the noble gases krypton (Z = 36) and xenon (54) in a white dwarf. About 20 KrVI-VII and Xe VI-VII lines were discovered in the ultraviolet spectrum of the hot DO-type white dwarf RE 0503-289. The observations, performed with the Far Ultraviolet Spectroscopic Explorer, also reveal highly ionized photospheric lines from other trans-iron group elements, namely Ga (31), Ge (32), As (33), Se (34), Mo (42), Sn (50), Te (52), and I (53), from which gallium and molybdenum are new discoveries in white dwarfs, too. For Kr and Xe, we performed an NLTE analysis and derived mass fractions of log Kr = -4.3 plus or minus 0.5 and log Xe = -4.2 plus or minus 0.6, corresponding to an enrichment by factors of 450 and 3800, respectively, relative to the Sun. The origin of the large overabundances is unclear. We discuss the roles of neutron-capture nucleosynthesis in the-precursor star and radiation-driven diffusion. It is possible that diffusion is insignificant and thaI the observed metal abundances constrain the evolutionary history of the star. Its hydrogen deficiency may be the consequence of a late helium-shell nash or a binary white dwarf merger.

  5. The Dynamics of White Dwarfs, Black Holes and Stellar Cusps

    Science.gov (United States)

    Wegg, Christopher

    2013-03-01

    This thesis contains topics related mostly to the dynamics of white dwarfs (chapter 2), the dynamics of stars around binary super massive black holes (chapters 4, 5 and 6) and dynamics in the singular isothermal sphere (chapter 7). In chapter 2 the kinematics of young (white dwarfs are investigated. A relationship between the mass and kinematics of white dwarfs is demonstrated, whereby high-mass white dwarfs have low velocity dispersion. This is the result of less scattering during the shorter lifetime of their more massive precursors. The kinematics of the highest-mass white dwarfs (> 0.95 M⊙ ) are also investigated, and it is shown that they are consistent with the majority being formed via single-star evolution from massive progenitor stars. In chapter 3 it is shown that the coolest, oldest white dwarfs can be identified photometrically from their unique colors, and five new ultracool white dwarfs are spectroscopically confirmed. In chapter 4 it is shown that close binary supermassive black holes (SMBHs) should produce a burst of tidal disruptions of up to 0.1 yr-1 as they form. The quiescent rate is ˜ 10-5 yr-1 per galaxy, and it is therefore shown that binary SMBHs can potentially be identified via multiple tidal disruptions from the same system. In chapter 5 we perform more extensive simulations of the dynamics of stars around binary SMBHs to better quantify and understand the stellar dynamics. By incorporating general relativistic corrections, we also investigate the processes undergone by compact remnants orbiting the binary SMBHs, analyzing both objects that plunge directly into the SMBHs, and those that undergo extreme mass ratio inspirals (EMRIs). The potential used to mimic general relativistic precession in these simulations is novel, and more accurate for the type of nearly parabolic orbits considered in this work: It is described in chapter 6. In chapter 7 an analytic solution to the manner in which stars diffuse in the background of a singular

  6. Chandra Grating Spectroscopy of Three Hot White Dwarfs

    Science.gov (United States)

    Adamczak, J.; Werner, K.; Rauch, T.; Schuh, S.; Drake, J. J.; Kruk, J. W.

    2013-01-01

    High-resolution soft X-ray spectroscopic observations of single hot white dwarfs are scarce. With the Chandra Low-Energy Transmission Grating, we have observed two white dwarfs, one is of spectral type DA (LB1919) and the other is a non-DA of spectral type PG1159 (PG1520+525). The spectra of both stars are analyzed, together with an archival Chandra spectrum of another DA white dwarf (GD246). Aims. The soft X-ray spectra of the two DA white dwarfs are investigated in order to study the effect of gravitational settling and radiative levitation of metals in their photospheres. LB1919 is of interest because it has a significantly lower metallicity than DAs with otherwise similar atmospheric parameters. GD246 is the only white dwarf known that shows identifiable individual iron lines in the soft X-ray range. For the PG1159 star, a precise effective temperature determination is performed in order to confine the position of the blue edge of the GW Vir instability region in the HRD. Methods. The Chandra spectra are analyzed with chemically homogeneous as well as stratified NLTE model atmospheres that assume equilibrium between gravitational settling and radiative acceleration of chemical elements. Archival EUV and UV spectra obtained with EUVE, FUSE, and HST are utilized to support the analysis. Results. No metals could be identified in LB1919. All observations are compatible with a pure hydrogen atmosphere. This is in stark contrast to the vast majority of hot DA white dwarfs that exhibit light and heavy metals and to the stratified models that predict significant metal abundances in the atmosphere. For GD246 we find that neither stratified nor homogeneous models can fit the Chandra spectrum. The Chandra spectrum of PG1520+525 constrains the effective temperature to T(sub eff) = 150 000 +/- 10 000 K. Therefore, this nonpulsating star together with the pulsating prototype of the GWVir class (PG1159-035) defines the location of the blue edge of the GWVir instability region

  7. An Ultraviolet Spectral Legacy of Polluted White Dwarfs

    Science.gov (United States)

    Farihi, Jay

    2016-10-01

    Polluted white dwarfs represent the best path to empirically measure the bulk chemical compositions and limiting masses of extrasolar planetesimals. A wealth of data now firmly link metal-enriched white dwarfs with circumstellar debris that derives from rocky planetary building blocks or fragments of larger parent bodies. Ultraviolet spectroscopy is the only way to detect critical elements such as carbon and oxygen, and the small handful of stars studied in this way have yielded spectacular results. Our recent HST successes demonstrate the power of this technique, and we wish to take the next logical step with a large survey. In the same way that planetary scientists utilize diverse meteorite classes to understand the formation and composition of the terrestrial planets, we need a statistical census of extrasolar planetesimal compositions to fully understand their physical and chemical role as exoplanet precursors. A large (N 40) dataset of detailed metal abundances in polluted white dwarfs is essential to our understanding of the assembly and chemistry of Earth-like exoplanets.We propose to observe a brightness-limited sample of metal-rich white dwarfs, by selecting 31 targets that can be observed in a single COS / STIS visit, and thereby making the most efficient use of HST time for any sample of this size. This will increase the number of polluted white dwarfs observed in the far ultraviolet by a factor of five, and thereby perform the most robust and statistically meaningful study that is currently possible. This is a legacy that HST should leave to future planet formation modelers and cosmochemists, and it requires the ultraviolet capacity of HST.

  8. Habitable Planets Around White and Brown Dwarfs: The Perils of a Cooling Primary

    Science.gov (United States)

    Heller, René

    2013-01-01

    Abstract White and brown dwarfs are astrophysical objects that are bright enough to support an insolation habitable zone (IHZ). Unlike hydrogen-burning stars, they cool and become less luminous with time; hence their IHZ moves in with time. The inner edge of the IHZ is defined as the orbital radius at which a planet may enter a moist or runaway greenhouse, phenomena that can remove a planet's surface water forever. Thus, as the IHZ moves in, planets that enter it may no longer have any water and are still uninhabitable. Additionally, the close proximity of the IHZ to the primary leads to concern that tidal heating may also be strong enough to trigger a runaway greenhouse, even for orbital eccentricities as small as 10−6. Water loss occurs due to photolyzation by UV photons in the planetary stratosphere, followed by hydrogen escape. Young white dwarfs emit a large amount of these photons, as their surface temperatures are over 104 K. The situation is less clear for brown dwarfs, as observational data do not constrain their early activity and UV emission very well. Nonetheless, both types of planets are at risk of never achieving habitable conditions, but planets orbiting white dwarfs may be less likely to sustain life than those orbiting brown dwarfs. We consider the future habitability of the planet candidates KOI 55.01 and 55.02 in these terms and find they are unlikely to become habitable. Key Words: Extrasolar terrestrial planets—Habitability—Habitable zone—Tides—Exoplanets. Astrobiology 13, 279–291. PMID:23537137

  9. Resonant excitation of white dwarf oscillations in compact object binaries

    Science.gov (United States)

    Rathore, Yasser

    2005-12-01

    As an eccentric white dwarf-compact object binary shrinks and circularizes because of gravitational radiation, it will pass through resonances when harmonics of the orbital frequency match one of the white dwarf's normal mode eigenfrequencies. A formalism for calculating the resonant energy transfer is presented, both when the when the perturbation of the orbit by the excited mode is neglected (resonances without back reaction), and when the perturbation is included (resonances with back reaction). It is found that back reaction changes the resonant energy transfer both qualitatively and quantitatively. In particular, the energy transfer with back reaction is shown to be always positive, to lowest order in the rate of dissipation by gravitational radiation. Numerical simulations of resonant mode excitation and non-linear evolution of white dwarf oscillations are also considered. A hydrodynamics code for studying this is described. Results from several test problems and simulations of resonant tidal excitation are presented. If the amplitude of an excited mode is driven high enough, the mode may damp non-linearly and heat the white dwarf. If the temperature of the star can be raised to a critical value, then the star may undergo a thermonuclear detonation that results in a Type Ia supernova. The feasibility of such a detonation via excitation of quadrupolar [function of]-modes is studied. It is found that a system with a 1.4 [Special characters omitted.] companion is not viable, but, for companion masses of ~ 10--10 5 [Special characters omitted.] , there exist regions in the parameter space where the white dwarf can be detonated. The ejecta from such a detonation are expected to remain trapped in orbit around the companion in most cases. A preliminary evaluation of the importance of tidal resonances for gravitational wave observations of capture sources with central masses of ~ 10 6 [Special characters omitted.] is also presented. The excitation of [function of

  10. A circumbinary debris disk in a polluted white dwarf system

    Science.gov (United States)

    Farihi, J.; Parsons, S. G.; Gänsicke, B. T.

    2017-03-01

    Planetary systems commonly survive the evolution of single stars, as evidenced by terrestrial-like planetesimal debris observed orbiting and polluting the surfaces of white dwarfs 1,2 . Here, we report the identification of a circumbinary dust disk surrounding a white dwarf with a substellar companion in a 2.27 h orbit. The system bears the dual hallmarks of atmospheric metal pollution and infrared excess 3,4 ; however, the standard (flat and opaque) disk configuration is dynamically precluded by the binary. Instead, the detected reservoir of debris must lie well beyond the Roche limit in an optically thin configuration, where erosion by stellar irradiation is relatively rapid. This finding shows that rocky planetesimal formation is robust around close binaries, even those with low mass ratios.

  11. Polluting white dwarfs with perturbed exo-comets

    Science.gov (United States)

    Caiazzo, Ilaria; Heyl, Jeremy S.

    2017-08-01

    We present a model to account for the observed debris discs around young white dwarfs and the presence of metal lines in their spectra. Stellar evolution models predict that the mass-loss on the AGB will be pulsed; furthermore, observations indicate that the bulk of the mass-loss occurs on the AGB. In this case, if the progenitors of the white dwarfs had remnants of planetary formation like the Sun's Oort cloud or the Kuiper Belt and a planet lying within that cloud or nearby, we find that up to 2 per cent of the planetesimals will fall either into planet-crossing orbits or into chaotic regions after the mass-loss, depending on the location and mass of the planet (from Mars to Neptune). This yields a sufficient mass of comets that can be scattered towards the star, form a debris disc and pollute the atmosphere.

  12. White dwarf pollution by planets in stellar binaries

    OpenAIRE

    Hamers, S.; Portegies, F, Zwart S.

    2016-01-01

    Approximately $0.2 \\pm 0.2$ of white dwarfs (WDs) show signs of pollution by metals, which is likely due to the accretion of tidally disrupted planetary material. Models invoking planet-planet interactions after WD formation generally cannot explain pollution at cooling times of several Gyr. We consider a scenario in which a planet is perturbed by Lidov-Kozai oscillations induced by a binary companion and exacerbated by stellar mass loss, explaining pollution at long cooling times. Our comput...

  13. Planet-Planet Scattering and White Dwarf Pollution

    Science.gov (United States)

    Joasil, Arielle; Payne, Matthew John; Veras, Dimitri

    2017-01-01

    About one-quarter to one-half of white dwarfs are observed to have polluted atmospheres. White dwarfs (WD) are expected to be chemically stratified, with heavy elements rapidly sinking. The frequent observation of heavy element pollution in WD atmospheres indicates that there must be a copious and frequent supply of rocky material from remnant planetary systems acting as a pollutant. Recently, the white dwarf WD 1145+017 has been observed to have been transited by a rocky body apparently in the process of disintegrating (Vanderburg et al. 2015).Post-main sequence expansion may render the planetary system unstable (Veras 2016). Planets orbiting the white dwarf may perturb and scatter one another. If this scattering happens, any moons can be scattered about the system. As such, one possible source of the material polluting WDs is destabilized exomoons (Payne et al. 2016a, 2016b). Moons offer a plausible source of pollution due to their large total mass (in the Solar system), and their generally rocky composition that matches that found in the atmospheric pollution of WDs. During a planet-planet scattering event, the probability that a moon will be ejected from its parent planet is a function of the velocity of the perturbing planet and the distance between the perturbed moon and the perturbing planet (as well as the initial orbit of the moon). We review the results of Payne et al. (2016a, 2016b) and present new results illustrating the probability of moon ejection as a function of these key parameters. We demonstrate the utility of these results for (a) the pollution and WDs, and for (b) general planet-planet scattering scenarios around main-sequence stars.

  14. The white dwarf cooling sequence of 47 Tucanae

    OpenAIRE

    García Berro, Enrique; Torres, Santiago; Althaus, Leandro Gabriel; Miller Bertolami, Marcelo Miguel

    2017-01-01

    Context. 47 Tucanae is one of the most interesting, well-observed, and theoretically studied globular clusters. This allows us to determine the reliability of our understanding of white dwarf cooling sequences, to compare different methods of determining its age, and to assess other important characteristics, such as its star formation history. Aims. Here we present a population synthesis study of the cooling sequence of the globular cluster 47 Tucanae. In particular, we study the d...

  15. COS Spectroscopy of White Dwarf Companions to Blue Stragglers

    Science.gov (United States)

    Gosnell, Natalie M.; Geller, Aaron M.; Knigge, Christian; Mathieu, Robert D.; Sills, Alison; Leiner, Emily; Leigh, Nathan

    2017-01-01

    Complete membership studies of open stellar clusters reveal that 25% of the evolved stars follow alternative pathways in stellar evolution, meaning something in the history of these stars changed their composition or mass (or both). In order to draw a complete picture of stellar evolution we must include these canonically "strange" stars in our definition of standard stellar populations. The formation mechanism of blue straggler stars, traditionally defined to be brighter and bluer than the main sequence turnoff in a star cluster, has been an outstanding question for almost six decades. Recent Hubble Space Telescope (HST) far-ultraviolet (far-UV) observations directly reveal that the blue straggler stars in the old (7 Gyr) open cluster NGC 188 are predominantly formed through mass transfer. We will present HST far-UV COS spectroscopy of white dwarf companions to blue stragglers. These white dwarfs are the remnants of the mass transfer formation process. The effective temperatures and surface gravities of the white dwarfs delineate the timeline of blue straggler formation in this cluster. The existence of these binaries in a well-studied cluster environment provides an unprecedented opportunity to observationally constrain mass transfer models and inform our understanding of many other alternative pathway stellar products.

  16. Fundamental Physics from Observations of White Dwarf Stars

    Science.gov (United States)

    Bainbridge, M. B.; Barstow, M. A.; Reindl, N.; Barrow, J. D.; Webb, J. K.; Hu, J.; Preval, S. P.; Holberg, J. B.; Nave, G.; Tchang-Brillet, L.; Ayres, T. R.

    2017-03-01

    Variation in fundamental constants provide an important test of theories of grand unification. Potentially, white dwarf spectra allow us to directly observe variation in fundamental constants at locations of high gravitational potential. We study hot, metal polluted white dwarf stars, combining far-UV spectroscopic observations, atomic physics, atmospheric modelling and fundamental physics, in the search for variation in the fine structure constant. This registers as small but measurable shifts in the observed wavelengths of highly ionized Fe and Ni lines when compared to laboratory wavelengths. Measurements of these shifts were performed by Berengut et al (2013) using high-resolution STIS spectra of G191-B2B, demonstrating the validity of the method. We have extended this work by; (a) using new (high precision) laboratory wavelengths, (b) refining the analysis methodology (incorporating robust techniques from previous studies towards quasars), and (c) enlarging the sample of white dwarf spectra. A successful detection would be the first direct measurement of a gravitational field effect on a bare constant of nature. We describe our approach and present preliminary results.

  17. Future Far-UV Studies of Hot White Dwarfs

    Science.gov (United States)

    Barstow, M. A.

    We are beginning to understand the evolution of the hot white dwarfs, but even with telescopes such as IUE and HST, we have still only observed a modest number of the most interesting objects with the spectral resolution and signal-to-noise required. This is in part arises from the intense competition for HST time, against both optical and IR observations as well as other far-UV bids. A key requirement of any new far-UV telescope is sufficient sensitivity to observe most of the ~100 or so brightest hot white dwarfs at high spectral resolution. A spectral resolving power of at least 30,000 is required for studies of white dwarfs. First it is necessary to detect and resolve photospheric, circumstellar and interstellar absorption features. Interstellar/circumstellar features may have several components that can only be separated in velocity space. For example, it is interesting to note that IUE was unable to resolve the photospheric and circumstellar CIV components of G191-B2B, discovered by the HST STIS instrument, leading to a serious overestimate of the carbon abundance in this star. There may be similar components in other stars observed only by IUE. In those stars that have highly stratified atmospheres, the detailed shape of the absorption lines is sensitive to the atmospheric structure. High-resolution observations of the line shapes can provide us with a direct probe of atmospheric structure.

  18. Exoplanet recycling in massive white-dwarf debris discs

    Science.gov (United States)

    Van Lieshout, Rik

    2017-06-01

    When a star evolves into a white dwarf, the planetary system it hosts can become unstable. Planets in such systems may then be scattered onto star-grazing orbits, leading to their tidal disruption as they pass within the white dwarf’s Roche limit. We study the massive, compact debris discs that may arrise from this process using a combination of analytical estimates and numerical modelling. The discs are gravitationally unstable, resulting in an enhanced effective viscosity due to angular momentum transport associated with self-gravity wakes. For disc masses greater than ~1026 g (corresponding to progenitor objects comparable to the Galilean moons), viscous spreading dominates over Poynting-Robertson drag in the outer parts of the disc. In such massive discs, mass is transported both in- and outwards. When the outward-flowing material spreads beyond the Roche limit, it coagulates into new (minor) planets in a process analogous to the ongoing formation of Saturn’s innermost moonlets. This process recycles a substantial fraction of the original disc mass (tens of percents), with the bulk of the mass locked in a single large body orbitting in a 2:1 mean-motion resonance with the Roche limit. As such, the recycling of a tidally disrupted super-Earth could yield an Earth-mass planet on a 10--20 hr orbit. For white dwarfs with a temperature below 6000-7000 K (corresponding to a cooling age of >1--2 Gyr), this orbit is located in the white dwarf’s habitable zone. The recycling process also creates a string of smaller bodies just outside the Roche limit. These may account for the collection of minor planets postulated to orbit white dwarf WD 1145+017.

  19. The population of single and binary white dwarfs of the Galactic bulge

    Science.gov (United States)

    Torres, S.; García-Berro, E.; Cojocaru, R.; Calamida, A.

    2018-02-01

    Recent Hubble Space Telescope observations have unveiled the white dwarf cooling sequence of the Galactic bulge. Although the degenerate sequence can be well fitted employing the most up-to-date theoretical cooling sequences, observations show a systematic excess of red objects that cannot be explained by the theoretical models of single carbon-oxygen white dwarfs of the appropriate masses. Here we present a population synthesis study of the white dwarf cooling sequence of the Galactic bulge that takes into account the populations of both single white dwarfs and binary systems containing at least one white dwarf. These calculations incorporate state-of-the-art cooling sequences for white dwarfs with hydrogen-rich and hydrogen-deficient atmospheres, for both white dwarfs with carbon-oxygen and helium cores, and also take into account detailed prescriptions of the evolutionary history of binary systems. Our Monte Carlo simulator also incorporates all the known observational biases. This allows us to model with a high degree of realism the white dwarf population of the Galactic bulge. We find that the observed excess of red stars can be partially attributed to white dwarf plus main sequence binaries, and to cataclysmic variables or dwarf novae. Our best fit is obtained with a higher binary fraction and an initial mass function slope steeper than standard values, as well as with the inclusion of differential reddening and blending. Our results also show that the possible contribution of double degenerate systems or young and thick-disk bulge stars is negligible.

  20. Device Physics of White Polymer Light-Emitting Diodes

    NARCIS (Netherlands)

    Nicolai, Herman T.; Hof, Andre; Blom, Paul W. M.

    2012-01-01

    The charge transport and recombination in white-emitting polymer light- emitting diodes (PLEDs) are studied. The PLED investigated has a single emissive layer consisting of a copolymer in which a green and red dye are incorporated in a blue backbone. From single-carrier devices the effect of the

  1. Device physics of white polymer light-emitting diodes

    NARCIS (Netherlands)

    Nicolai, H.T.; Hof, A.; Blom, P.W.M.

    2012-01-01

    The charge transport and recombination in white-emitting polymer light- emitting diodes (PLEDs) are studied. The PLED investigated has a single emissive layer consisting of a copolymer in which a green and red dye are incorporated in a blue backbone. From single-carrier devices the effect of the

  2. Pulsating low-mass white dwarfs in the frame of new evolutionary sequences. V. Asteroseismology of ELMV white dwarf stars

    Science.gov (United States)

    Calcaferro, Leila M.; Córsico, Alejandro H.; Althaus, Leandro G.

    2017-11-01

    Context. Many pulsating low-mass white dwarf stars have been detected in the past years in the field of our Galaxy. Some of them exhibit multiperiodic brightness variation, therefore it is possible to probe their interiors through asteroseismology. Aims: We present a detailed asteroseismological study of all the known low-mass variable white dwarf stars based on a complete set of fully evolutionary models that are representative of low-mass He-core white dwarf stars. Methods: We employed adiabatic radial and nonradial pulsation periods for low-mass white dwarf models with stellar masses ranging from 0.1554 to 0.4352 M⊙ that were derived by simulating the nonconservative evolution of a binary system consisting of an initially 1 M⊙ zero-age main-sequence (ZAMS) star and a 1.4 M⊙ neutron star companion. We estimated the mean period spacing for the stars under study (where this was possible), and then we constrained the stellar mass by comparing the observed period spacing with the average of the computed period spacings for our grid of models. We also employed the individual observed periods of every known pulsating low-mass white dwarf star to search for a representative seismological model. Results: We found that even though the stars under analysis exhibit few periods and the period fits show multiplicity of solutions, it is possible to find seismological models whose mass and effective temperature are in agreement with the values given by spectroscopy for most of the cases. Unfortunately, we were not able to constrain the stellar masses by employing the observed period spacing because, in general, only few periods are exhibited by these stars. In the two cases where we were able to extract the period spacing from the set of observed periods, this method led to stellar mass values that were substantially higher than expected for this type of stars. Conclusions: The results presented in this work show the need for further photometric searches, on the one hand

  3. The critical binary star separation for a planetary system origin of white dwarf pollution

    OpenAIRE

    Veras, Dimitri; Xu, Siyi; Rebassa-Mansergas, Alberto

    2017-01-01

    The atmospheres of between one quarter and one half of observed single white dwarfs in the Milky Way contain heavy element pollution from planetary debris. The pollution observed in white dwarfs in binary star systems is, however, less clear, because companion star winds can generate a stream of matter which is accreted by the white dwarf. Here we (i) discuss the necessity or lack thereof of a major planet in order to pollute a white dwarf with orbiting minor planets in both single and binary...

  4. On the Detection and Characterization of Polluted White Dwarfs

    Science.gov (United States)

    Steele, Amy; Debes, John H.; Deming, Drake

    2017-06-01

    There is evidence of circumstellar material around main sequence, giant, and white dwarf stars. What happens to this material after the main sequence? With this work, we focus on the characterization of the material around WD 1145+017. The goals are to monitor the white dwarf—which has a transiting, disintegrating planetesimal and determine the composition of the evaporated material for that same white dwarf by looking at high-resolution spectra. We also present preliminary results of follow-up photometric observations of known polluted WDs. If rocky bodies survive red giant branch evolution, then the material raining down on a WD atmosphere is a direct probe of main sequence cosmochemistry. If rocky bodies do not survive the evolution, then this informs the degree of post-main-sequence processing. These case studies will provide the community with further insight about debris disk modeling, the degree of post-main-sequence processing of circumstellar material, and the composition of a disintegrating planetesimal.

  5. A Study of the SDSS White Dwarf Component in the LSPM Proper Motion Survey

    Science.gov (United States)

    Darveau-Bernier, A.; Bergeron, P.; Lépine, S.

    2017-03-01

    We present a model atmosphere analysis of the white dwarfs identified in the Sloan Digital Sky Survey with proper motions measured in the LSPM proper motion survey of Lépine et al. We rely on reduced proper motion diagrams to build a sample of white dwarfs in the SDSS footprint, and cross correlate this sample with the SDSS spectroscopic database to understand the systematics related to completeness, contamination, WD+M dwarf binaries, reddening, etc. We then determine a white dwarf luminosity function for this sample using various methods.

  6. Crystallization of the Pulsating White Dwarf Star, BPM 37093

    Science.gov (United States)

    Salois, Amee; Winget, D.

    2010-01-01

    BPM 37093 is unique among pulsating white dwarf stars because it is expected to have a highly crystallized interior. By understanding how this star is crystallizing, we gain a better understanding of extreme physics. Theoretical models of the evolution of white dwarf stars suggest that they crystallize from the inside out. The pulsations of the star, which we see as intensity variations, cannot penetrate this crystallized interior. Therefore, as the star crystallizes there is a smaller volume for the propagation of the pulsations and the pulsation periods are changed accordingly. We studied these changes in the periods of the pulsations of the star over ten weeks during the McDonald Observatory Research Experience for Undergraduates Program. By studying the changes in the pulsations periods of the star we can determine the mass fraction of the star that is crystallized. Comparing Fourier transforms of our observed light curves taken in 2004 and 2005 at CTIO with data taken in 1998 and 1999 by Kanaan et al. we hope to see the changes that have occurred in the star as well as determining a better approximation of the star's crystallized mass fraction.

  7. White dwarfs as a source of constraints on exotic physics

    CERN Document Server

    Malec, B

    2001-01-01

    In this paper we briefly review main ideas underlying the constraints on exotic physics coming from Astrophysics already used by the others. Next we present a new bound coming from the White Dwarf cooling. Such stringent bound is possible due to accurate measurements offered by astro-seismology. Specifically we consider the G117-B15A pulsating white dwarf (ZZ Ceti star) for which the speed of the period increase has been accurately measured for its fundamental oscillation mode. It has been claimed that this mode detected in G117-B15A is perhaps the most stable oscillation ever recorded in the optical band. Then we review our result concerning the bounds on compactification scale in the theory with large extra dimensions according to Arkani-Hamed, Dimopoulos and Dvali (1998). Because an additional channel of energy loss (Kaluza-Klein gravitons) would speed up the cooling rate, one is able to use the aforementioned stability to derive a bound on compactification scale. We find the lower bound on compactificatio...

  8. Prevention of accretion onto white dwarfs by stellar winds

    Science.gov (United States)

    Macdonald, James

    1992-01-01

    There is indirect observational evidence that hot white dwarfs may have weak stellar winds. In this paper, the interaction between such a wind and the flow of ISM material in the gravitational field of the white dwarf is investigated with the aim of finding limits on the mass-loss rate and terminal velocity of winds capable of preventing accretion from the ISM. The limiting cases of no relative motion of the star and the ISM and supersonic relative motion of the star through ISM are separately investigated. Each case is treated by generalizing models for the interaction between the solar wind and the local ISM to include the effects of gravity. It is found that, for wind velocities expected for radiatively driven winds, mass-loss rates as low as 10 exp -21 solar mass/yr are sufficient to prevent accretion from the hot phase of the ISM. To prevent accretion during passages through cold clouds, wind mass-loss rates of order 10 exp -18 to 10 exp -17 are required.

  9. Mass transfer in white dwarf-neutron star binaries

    Science.gov (United States)

    Bobrick, Alexey; Davies, Melvyn B.; Church, Ross P.

    2017-05-01

    We perform hydrodynamic simulations of mass transfer in binaries that contain a white dwarf and a neutron star (WD-NS binaries), and measure the specific angular momentum of material lost from the binary in disc winds. By incorporating our results within a long-term evolution model, we measure the long-term stability of mass transfer in these binaries. We find that only binaries containing helium white dwarfs (WDs) with masses less than a critical mass of MWD, crit = 0.2 M⊙ undergo stable mass transfer and evolve into ultracompact X-ray binaries. Systems with higher mass WDs experience unstable mass transfer, which leads to tidal disruption of the WD. Our low critical mass compared to the standard jet-only model of mass-loss arises from the efficient removal of angular momentum in the mechanical disc winds, which develop at highly super-Eddington mass-transfer rates. We find that the eccentricities expected for WD-NS binaries when they come into contact do not affect the loss of angular momentum, and can only affect the long-term evolution if they change on shorter time-scales than the mass-transfer rate. Our results are broadly consistent with the observed numbers of both ultracompact X-ray binaries and radio pulsars with WD companions. The observed calcium-rich gap transients are consistent with the merger rate of unstable systems with higher mass WDs.

  10. The structure of white dwarf stars | Babaji | Journal of the Nigerian ...

    African Journals Online (AJOL)

    A FORTRAN code to compute the structure of white dwarf Stars has been written. It is assumed that a good model for the matter in white dwarf stars is the free Fermi gas of electrons at zero temperature, treated with relativistic kinematics. The code written essentially solves numerically the two coupled first-order differential ...

  11. Ultraviolet carbon lines in the spectrum of the white dwarf BPM 11668

    Science.gov (United States)

    Wegner, G.

    1983-01-01

    The southern hemisphere DC white dwarf BPM 11668 has been found to show strong ultraviolet lines of neutral carbon using observations from the IUE satellite. This star seems typical of the growing number of DC white dwarfs found to be of this type and appears to have a carbon abundance near C:He = 0.0001, with an effective temperature of 8500 K.

  12. The WIRED Survey. IV. New Dust Disks from the McCook & Sion White Dwarf Catalog

    Science.gov (United States)

    Hoard, D. W.; Debes, John H.; Wachter, Stefanie; Leisawitz, David T.; Cohen, Martin

    2013-06-01

    We have compiled photometric data from the Wide-field Infrared Survey Explorer All Sky Survey and other archival sources for the more than 2200 objects in the original McCook & Sion Catalog of Spectroscopically Identified White Dwarfs. We applied color-selection criteria to identify 28 targets whose infrared spectral energy distributions depart from the expectation for the white dwarf (WD) photosphere alone. Seven of these are previously known WDs with circumstellar dust disks, five are known central stars of planetary nebulae, and six were excluded for being known binaries or having possible contamination of their infrared photometry. We fit WD models to the spectral energy distributions of the remaining ten targets, and find seven new candidates with infrared excess suggesting the presence of a circumstellar dust disk. We compare the model dust disk properties for these new candidates with a comprehensive compilation of previously published parameters for known WDs with dust disks. It is possible that the current census of WDs with dust disks that produce an excess detectable at K-band and shorter wavelengths is close to complete for the entire sample of known WDs to the detection limits of existing near-IR all-sky surveys. The WD dust disk candidates now being found using longer wavelength infrared data are drawn from a previously underrepresented region of parameter space, in which the dust disks are overall cooler, narrower in radial extent, and/or contain fewer emitting grains.

  13. The onset of convective coupling and freezing in the white dwarfs of 47 Tucanae

    Science.gov (United States)

    Obertas, Alysa; Caiazzo, Ilaria; Heyl, Jeremy; Richer, Harvey; Kalirai, Jason; Tremblay, Pier-Emmanuel

    2018-02-01

    Using images from the Hubble Space Telescope Advanced Camera for Surveys, we measure the rate of cooling of white dwarfs in the globular cluster 47 Tucanae and compare it to modelled cooling curves. We examine the effects of the outer convective envelope reaching the nearly isothermal degenerate core and the release of latent heat during core crystallization on the white dwarf cooling rates. For white dwarfs typical of 47 Tuc, the onset of these effects occur at similar times. The latent heat released during crystallization is a small heat source. In contrast, the heat reservoir of the degenerate core is substantially larger. When the convective envelope reaches the nearly isothermal interior of the white dwarf, the star becomes brighter than it would be in the absence of this effect. Our modelled cooling curves that include this convective coupling closely match the observed luminosity function of the white dwarfs in 47 Tuc.

  14. A white dwarf cooling age of 8 Gyr for NGC 6791 from physical separation processes.

    Science.gov (United States)

    García-Berro, Enrique; Torres, Santiago; Althaus, Leandro G; Renedo, Isabel; Lorén-Aguilar, Pablo; Córsico, Alejandro H; Rohrmann, René D; Salaris, Maurizio; Isern, Jordi

    2010-05-13

    NGC 6791 is a well studied open cluster that it is so close to us that can be imaged down to very faint luminosities. The main-sequence turn-off age ( approximately 8 Gyr) and the age derived from the termination of the white dwarf cooling sequence ( approximately 6 Gyr) are very different. One possible explanation is that as white dwarfs cool, one of the ashes of helium burning, (22)Ne, sinks in the deep interior of these stars. At lower temperatures, white dwarfs are expected to crystallize and phase separation of the main constituents of the core of a typical white dwarf ((12)C and (16)O) is expected to occur. This sequence of events is expected to introduce long delays in the cooling times, but has not hitherto been proven. Here we report that, as theoretically anticipated, physical separation processes occur in the cores of white dwarfs, resolving the age discrepancy for NGC 6791.

  15. AR Sco as a possible seed of highly magnetized white dwarf

    Science.gov (United States)

    Mukhopadhyay, Banibrata; Rao, A. R.; Bhatia, Tanayveer Singh

    2017-12-01

    We explore the possibility that the recently discovered white dwarf pulsar AR Sco acquired its high spin and magnetic field due to repeated episodes of accretion and spin-down. An accreting white dwarf can lead to a larger mass and consequently a smaller radius thus causing an enhanced rotation period and a magnetic field. This spinning magnetic white dwarf temporarily can inhibit accretion, spin down and eventually, the accretion can start again due to the shrinking of the binary period by gravitational radiation. A repetition of the above cycle can eventually lead to a high magnetic field white dwarf, recently postulated to be the reason for overluminous type Ia supernovae. We also point out that these high magnetic field spinning white dwarfs are attractive sites for gravitational radiation.

  16. Tuning the colour of white polymer light emitting diodes

    NARCIS (Netherlands)

    Kok, M.M. de; Sarfert, W.; Paetzold, R.

    2010-01-01

    Colour tuning of white polymer light emitting diode (LED) light sources can be attained by various methods at various stages in the production process of the lamps and/or by the design of the active material incorporated in the LEDs. In this contribution we will describe the methods and discuss the

  17. Determination of illuminants representing typical white light emitting diodes sources

    DEFF Research Database (Denmark)

    Jost, S.; Ngo, M.; Ferrero, A.

    2017-01-01

    Solid-state lighting (SSL) products are already in use by consumers and are rapidly gaining the lighting market. Especially, white Light Emitting Diode (LED) sources are replacing banned incandescent lamps and other lighting technologies in most general lighting applications. The aim of this work...

  18. White Dwarfs in Cataclysmic Variable Stars: Surface Temperatures and Evolution

    Directory of Open Access Journals (Sweden)

    Edward M. Sion

    2012-06-01

    Full Text Available A summary is presented of what is currently known about the surface temperatures of accreting white dwarfs (WDs detected in non-magnetic and magnetic cataclysmic variables (CVs based upon synthetic spectral analyses of far ultraviolet data. A special focus is placed on WD temperatures above and below the CV period gap as a function of the orbital period, Porb. The principal uncertainty of the temperatures for the CV WDs in the Teff - Porb distribution, besides the distance to the CV, is the mass of the WD. Only in eclipsing CV systems, an area of eclipsing binary studies, which was so central to Robert H. Koch’s career, is it possible to know CV WD masses with high precision.

  19. Pre-nova Mixing at the Surface of White Dwarfs

    Science.gov (United States)

    Rosner, R.; Young, Y. N.; Alexakis, A.; Dursi, L. J.; Truran, J.; Calder, A. C.; Fryxell, B.; Olson, K.; Ricker, P. M.; Timmes, F. X.; Zingale, M.; Tufo, H. M.; MacNeice, P.

    2000-12-01

    We report on studies of shear-driven mixing at the interface between a hydrogen-helium envelope and the carbon-oxygen surface of a pre-nova outburst white dwarf. Linear theory shows distinct regimes of unstable gravity surface waves and Kelvin-Helmholtz modes, which we follow into the weakly nonlinear regime by analytical techniques; we then follow the fully nonlinear evolution to the point of wave breaking, using the Chicago Flash Code. We also report on estimates of the mixing efficiency resulting from the combination of weakly driven convection and wave breaking; and discuss their implications for nova outbursts. This work was supported by the DOE ASCI/Alliances program at the University of Chicago, under grant No. B341495.

  20. Compact objects for everyone: I. White dwarf stars

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, C B; Taruna, J; Pouliot, S L; Ellison, B W; Lee, D D; Piekarewicz, J [Department of Physics, Florida State University, Tallahassee, FL 32306 (United States)

    2005-09-01

    Based upon previous discussions on the structure of compact stars geared towards undergraduate physics students, a real experiment involving two upper-level undergraduate physics students, a beginning physics graduate and two advanced graduate students was conducted. A recent addition to the physics curriculum at Florida State University, The Physics of Stars, sparked quite a few students' interests in the subject matter involving stellar structure. This, coupled with Stars and statistical physics by Balian and Blaizot (1999 Am. J. Phys. 67 1189) and Neutron stars for undergraduates by Silbar and Reddy (2004 Am. J. Phys. 72 892), is the cornerstone of this small research group who tackled solving the structure equations for compact objects in the summer of 2004. Through the use of a simple finite-difference algorithm coupled to Microsoft Excel and Maple, solutions to the equations for stellar structure are presented in the Newtonian regime appropriate to the physics of white dwarf stars.

  1. Multicolor white light-emitting diodes for illumination applications

    Science.gov (United States)

    Chi, Solomon W. S.; Chen, Tzer-Perng; Tu, Chuan-Cheng; Chang, Chih-Sung; Tsai, Tzong-Liang; Hsieh, Mario C. C.

    2004-01-01

    Semiconductor light emitting diode (LED) has become a promising device for general-purpose illumination applications. LED has the features of excellent durability, long operation life, low power consumption, no mercury containing and potentially high efficiency. Several white LED technologies appear capable of meeting the technical requirements of illumination. In this paper we present a new multi-color white (MCW) LED as a high luminous efficacy, high color rendering index and low cost white illuminator. The device consists of two LED chips, one is AlInGaN LED for emitting shorter visible spectra, another is AlInGaP LED for emitting longer visible spectra. At least one chip in the MCW-LED has two or more transition energy levels used for emitting two or more colored lights. The multiple colored lights generated from the MCW-LED can be mixed into a full-spectral white light. Besides, there is no phosphors conversion layer used in the MCW-LED structure. Therefore, its color rendering property and illumination efficiency are excellent. The Correlated Color Temperature (CCT) of the MCW-LED may range from 2,500 K to over 10,000 K. The theoretical General Color Rendering Index (Ra) could be as high as 94, which is close to the incandescent and halogen sources, while the Ra of binary complementary white (BCW) LED is about 30 ~ 45. Moreover, compared to the expensive ternary RGB (Red AlInGaP + Green AlInGaN + Blue AlInGaN) white LED sources, the MCW-LED uses only one AlInGaN chip in combination with one cheap AlInGaP chip, to form a low cost, high luminous performance white light source. The MCW-LED is an ideal light source for general-purpose illumination applications.

  2. Solution processed, white emitting tandem organic light-emitting diodes with inverted device architecture.

    Science.gov (United States)

    Höfle, Stefan; Schienle, Alexander; Bernhard, Christoph; Bruns, Michael; Lemmer, Uli; Colsmann, Alexander

    2014-08-13

    Fully solution processed monochromatic and white-light emitting tandem or multi-photon polymer OLEDs with an inverted device architecture have been realized by employing WO3 /PEDOT:PSS/ZnO/PEI charge carrier generation layers. The luminance of the sub-OLEDs adds up in the stacked device indicating multi-photon emission. The white OLEDs exhibit a CRI of 75. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Multiband photometry and spectroscopy of an all-sky sample of bright white dwarfs

    Science.gov (United States)

    Raddi, R.; Gentile Fusillo, N. P.; Pala, A. F.; Hermes, J. J.; Gänsicke, B. T.; Chote, P.; Hollands, M. A.; Henden, A.; Catalán, S.; Geier, S.; Koester, D.; Munari, U.; Napiwotzki, R.; Tremblay, P.-E.

    2017-12-01

    The upcoming NASA Transiting Exoplanet Survey Satellite (TESS) will obtain space-based uninterrupted light curves for a large sample of bright white dwarfs distributed across the entire sky, providing a very rich resource for asteroseismological studies and the search for transits from planetary debris. We have compiled an all-sky catalogue of ultraviolet, optical and infrared photometry as well as proper motions, which we propose as an essential tool for the preliminary identification and characterization of potential targets. We present data for 1864 known white dwarfs and 305 high-probability white dwarf candidates brighter than 17 mag. We describe the spectroscopic follow-up of 135 stars, of which 82 are white dwarfs and 25 are hot subdwarfs. The new confirmed stars include six pulsating white dwarf candidates (ZZ Cetis), and nine white dwarf binaries with a cool main-sequence companion. We identify one star with a spectroscopic distance of only 25 pc from the Sun. Around the time TESS is launched, we foresee that all white dwarfs in this sample will have trigonometric parallaxes measured by the ESA Gaia mission next year.

  4. Characterization of the galactic white dwarf population in the next generation Virgo Cluster survey

    Science.gov (United States)

    Fantin, Nicholas

    Halo white dwarfs remain one of the least studied stellar populations in the Milky Way because of their faint luminosities. Recent work has uncovered a population of hot white dwarfs which are thought to be remnants of low-mass Population II stars. This thesis uses optical data from the Next Generation Virgo Cluster Survey (NGVS) and ultravoilet data from the GALEX Ultraviolet Virgo Cluster Survey (GUViCS) to select candidates which may belong to this population of recently formed halo white dwarfs. A colour selection was used to separate white dwarfs from QSOs and main-sequence stars. Photometric distances are calculated using model colour-absolute magnitude relations. Proper motions are calculated by using the difference in positions between objects from the Sloan Digital Sky Survey and the NGVS. The proper motions are combined with the calculated photometric distances to calculate tangential velocities, as well as approximate Galactic space velocities. White dwarf candidates are characterized as belonging to either the disk or the halo using a variety of methods, including calculated scale heights (z> 1 kpc), tangential velocities (vt >200 km/s), and their location in (V,U) space. The 20 halo white dwarf candidates which were selected using Galactic space velocities are analyzed, and their colours and temperatures suggest that these objects represent some of the youngest white dwarfs in the Galactic halo.

  5. Can Oort clouds pollute their parent stars after they become white dwarfs?

    Science.gov (United States)

    Veras, D.; Shannon, A.; Gänsicke, B. T.

    2017-09-01

    Comets impact the Sun frequently. In fact, coronographs like those which are part of Solar and Heliospheric Observatory (SOHO)/Large Angle and Spectrometric Coronagraph Experiment (LASCO) reveal that a comet grazes the Sun every few days, with a total of about 2400 grazers from 1996 to 2008. This frequency underscores an outstanding question in the quest to understand planetary systems: what types of small bodies - pebbles, asteroids, comets or moons - are the primary polluter of white dwarfs? We determine how often remnant exo-Oort clouds, freshly excited from post-main-sequence stellar mass loss, dynamically inject comets inside the white dwarf's Roche radius. We improve upon previous studies by considering a representative range of single white dwarf masses (0.52-1.00 M⊙) and incorporating different cloud architectures, giant branch stellar mass loss, stellar flybys, Galactic tides and a realistic escape ellipsoid in self-consistent numerical simulations that integrate beyond 8 Gyr ages of white dwarf cooling. We find that ˜10^(-5) of the material in an exo-Oort cloud is typically amassed onto the white dwarf, and that hydrogen deposits accumulate even as the cloud dissipates. This accumulation may account for the relatively large amount of trace hydrogen, 10^(22) -10^(25) g, that is determined frequently among white dwarfs with cooling ages ≥1 Gyr. Our results also reaffirm the notion that exo-Oort cloud comets are not the primary agents of the metal budgets observed in polluted white dwarf atmospheres.

  6. Trace hydrogen in helium atmosphere white dwarfs as a possible signature of water accretion

    Science.gov (United States)

    Gentile Fusillo, Nicola Pietro; Gänsicke, Boris T.; Farihi, Jay; Koester, Detlev; Schreiber, Matthias R.; Pala, Anna F.

    2017-06-01

    A handful of white dwarfs with helium-dominated atmospheres contain exceptionally large masses of hydrogen in their convection zones, with the metal-polluted white dwarf GD 16 being one of the earliest recognized examples. We report the discovery of a similar star: the white dwarf coincidentally named GD 17. We obtained medium-resolution spectroscopy of both GD 16 and GD 17 and calculated abundances and accretion rates of photospheric H, Mg, Ca, Ti, Fe and Ni. The metal abundance ratios indicate that the two stars recently accreted debris, which is Mg-poor compared to the composition of bulk Earth. However, unlike the metal pollutants, H never diffuses out of the atmosphere of white dwarfs and we propose that the exceptionally high atmospheric H content of GD 16 and GD 17 (2.2 × 1024 and 2.9 × 1024 g, respectively) could result from previous accretion of water bearing planetesimals. Comparing the detection of trace H and metal pollution among 729 helium atmosphere white dwarfs, we find that the presence of H is nearly twice as common in metal-polluted white dwarfs compared to their metal-free counterparts. This highly significant correlation indicates that, over the cooling age of the white dwarfs, at least some fraction of the H detected in many He atmospheres (including GD 16 and GD 17) is accreted alongside metal pollutants, where the most plausible source is water. In this scenario, water must be common in systems with rocky planetesimals.

  7. A consistency test of white dwarf and main sequence ages: NGC 6791

    Directory of Open Access Journals (Sweden)

    Córsico A.H.

    2013-03-01

    Full Text Available NGC 6791 is an open cluster that it is so close to us that can be imaged down to very faint luminosities. The main sequence turn-off age (∼8 Gyr and the age derived from the cut-off of the white dwarf luminosity function (∼6 Gyr were found to be significantly different. Here we demonstrate that the origin of this age discrepancy lies in an incorrect evaluation of the white dwarf cooling ages, and we show that when the relevant physical separation processes are included in the calculation of white dwarf sequences both ages are coincident.

  8. Super-Nyquist White Dwarf Pulsations in K2 Long-Cadence Data

    Science.gov (United States)

    Bell, Keaton J.; Hermes, JJ; Montgomery, Michael H.; Vanderbosch, Zach

    2017-06-01

    The Kepler and K2 missions have recently revolutionized the field of white dwarf asteroseismology. Since white dwarfs pulsate on timescales of order 10 minutes, we aim to observe these objects at K2’s short cadence (1 minute). Occasionally we find signatures of pulsations in white dwarf targets that were only observed by K2 at long cadence (30 minute). These signals suffer extreme aliasing since the intrinsic frequencies exceed the Nyquist sampling limit. We present our work to recover accurate frequency determinations for these targets, guided by a limited amount of supplementary, ground-based photometry from McDonald Observatory.

  9. THE HABITABILITY AND DETECTION OF EARTH-LIKE PLANETS ORBITING COOL WHITE DWARFS

    Energy Technology Data Exchange (ETDEWEB)

    Fossati, L.; Haswell, C. A.; Patel, M. R.; Busuttil, R. [Department of Physical Sciences, Open University, Walton Hall, Milton Keynes MK7 6AA (United Kingdom); Bagnulo, S. [Armagh Observatory, College Hill, Armagh BT61 9DG (United Kingdom); Kowalski, P. M. [GFZ German Research Centre for Geosciences, Telegrafenberg, D-14473 Potsdam (Germany); Shulyak, D. V. [Institute of Astrophysics, Georg-August-University, Friedrich-Hund-Platz 1, D-37077 Goettingen (Germany); Sterzik, M. F., E-mail: l.fossati@open.ac.uk, E-mail: C.A.Haswell@open.ac.uk, E-mail: M.R.Patel@open.ac.uk, E-mail: r.busuttil@open.ac.uk, E-mail: sba@arm.ac.uk, E-mail: kowalski@gfz-potsdam.de, E-mail: denis.shulyak@gmail.com, E-mail: msterzik@eso.org [European Southern Observatory, Casilla 19001, Santiago 19 (Chile)

    2012-09-20

    Since there are several ways planets can survive the giant phase of the host star, we examine the habitability and detection of planets orbiting white dwarfs. As a white dwarf cools from 6000 K to 4000 K, a planet orbiting at 0.01 AU would remain in the continuous habitable zone (CHZ) for {approx}8 Gyr. We show that photosynthetic processes can be sustained on such planets. The DNA-weighted UV radiation dose for an Earth-like planet in the CHZ is less than the maxima encountered on Earth, and hence non-magnetic white dwarfs are compatible with the persistence of complex life. Polarization due to a terrestrial planet in the CHZ of a cool white dwarf (CWD) is 10{sup 2} (10{sup 4}) times larger than it would be in the habitable zone of a typical M-dwarf (Sun-like star). Polarimetry is thus a viable way to detect close-in rocky planets around white dwarfs. Multi-band polarimetry would also allow us to reveal the presence of a planet atmosphere, providing a first characterization. Planets in the CHZ of a 0.6 M{sub Sun} white dwarf will be distorted by Roche geometry, and a Kepler-11d analog would overfill its Roche lobe. With current facilities a super-Earth-sized atmosphereless planet is detectable with polarimetry around the brightest known CWD. Planned future facilities render smaller planets detectable, in particular by increasing the instrumental sensitivity in the blue.

  10. SPIRAL INSTABILITY CAN DRIVE THERMONUCLEAR EXPLOSIONS IN BINARY WHITE DWARF MERGERS

    Energy Technology Data Exchange (ETDEWEB)

    Kashyap, Rahul; Fisher, Robert [Department of Physics, University of Massachusetts Dartmouth, 285 Old Westport Road, North Dartmouth, MA 02740 (United States); García-Berro, Enrique; Aznar-Siguán, Gabriela [Departament de Física Aplicada, Universitat Politècnica de Catalunya, c/Esteve Terrades, 5, E-08860 Castelldefels (Spain); Ji, Suoqing [Department of Physics, Broida Hall, University of California Santa Barbara, Santa Barbara, CA 93106–9530 (United States); Lorén-Aguilar, Pablo [School of Physics, University of Exeter, Stocker Road, Exeter EX4 4QL (United Kingdom)

    2015-02-10

    Thermonuclear, or Type Ia supernovae (SNe Ia), originate from the explosion of carbon–oxygen white dwarfs, and serve as standardizable cosmological candles. However, despite their importance, the nature of the progenitor systems that give rise to SNe Ia has not been hitherto elucidated. Observational evidence favors the double-degenerate channel in which merging white dwarf binaries lead to SNe Ia. Furthermore, significant discrepancies exist between observations and theory, and to date, there has been no self-consistent merger model that yields a SNe Ia. Here we show that a spiral mode instability in the accretion disk formed during a binary white dwarf merger leads to a detonation on a dynamical timescale. This mechanism sheds light on how white dwarf mergers may frequently yield SNe Ia.

  11. Rolling in their Graves: White Dwarf Rotation as a Function of Mass

    Science.gov (United States)

    Hermes, JJ

    2018-01-01

    We have more than doubled the number of rotation rates measured for isolated pulsating white dwarfs thanks to extensive space-based photometry from Kepler and K2. Using follow-up optical spectroscopy to measure masses, we have put the first constraints on white dwarf rotation as a function of mass, constraining the endpoints of angular momentum evolution in stars. We find that 0.51-to-0.73-solar-mass white dwarfs, which evolved from 0.9-to-3.0-solar-mass ZAMS progenitors, have a mean rotation period of 35 hr with a standard deviation of 28 hr, with notable exceptions for higher-mass white dwarfs. Our raw and reduced data, still growing every K2 Campaign field, are available for the community to (re-)analyze at http://www.k2wd.org.

  12. The connection between period spectra and constraints in white dwarf asteroseismology

    Directory of Open Access Journals (Sweden)

    Bischoff-Kim Agnès

    2017-01-01

    Full Text Available White dwarfs are the end product of evolution for around 98% of the stars in our Galaxy. Buried in their interiors are the records of physical processes that take place during earlier stages in the life of the star. In recent years, a well-established theory of non-radial oscillations, improved white dwarf models, year of expertise built up in the field of white dwarf asteroseismic fitting, and computing power have culminated in the asteroseismology finally delivering what it promised: a detailed map of the interior structure of white dwarfs. As always in science, new results raise new questions. We perform a number of numerical experiments to better understand the connection between a given set of periods varying in the number of periods and in the set of radial overtones and the quality of the constraints on interior structure one obtains from fitting these periods.

  13. Rx J0648.0-4418: the Fastest-Spinning White Dwarf

    Science.gov (United States)

    Mereghetti, S.

    2015-01-01

    HD 49798/RX J0648.0-4418 is a post common-envelope X-ray binary composed of a hot subdwarf and one of the most massive white dwarfs with a dynamical mass measurement (1.28±0.05 M⊙). This white dwarf, with a spin period of 13.2 s, rotates more than twice faster than the white dwarf in the cataclysmic variable AE Aqr. The current properties of these two binaries, as well as their future evolution, are quite different, despite both contain a fast-spinning white dwarf. HD 49798/RX J0648.0-4418 could be the progenitor of either a Type Ia supernova or of a non-recycled millisecond pulsars.

  14. Light Converting Inorganic Phosphors for White Light-Emitting Diodes

    Directory of Open Access Journals (Sweden)

    Chiao-Wen Yeh

    2010-03-01

    Full Text Available White light-emitting diodes (WLEDs have matched the emission efficiency of florescent lights and will rapidly spread as light source for homes and offices in the next 5 to 10 years. WLEDs provide a light element having a semiconductor light emitting layer (blue or near-ultraviolet (nUV LEDs and photoluminescence phosphors. These solid-state LED lamps, rather than organic light emitting diode (OLED or polymer light-emitting diode (PLED, have a number of advantages over conventional incandescent bulbs and halogen lamps, such as high efficiency to convert electrical energy into light, reliability and long operating lifetime. To meet with the further requirement of high color rendering index, warm light with low color temperature, high thermal stability and higher energy efficiency for WLEDs, new phosphors that can absorb excitation energy from blue or nUV LEDs and generate visible emissions efficiently are desired. The criteria of choosing the best phosphors, for blue (450-480 nm and nUV (380-400 nm LEDs, strongly depends on the absorption and emission of the phosphors. Moreover, the balance of light between the emission from blue-nUV LEDs and the emissions from phosphors (such as yellow from Y3Al5O12:Ce3+ is important to obtain white light with proper color rendering index and color temperature. Here, we will review the status of phosphors for LEDs and prospect the future development.

  15. White Dwarf Rotation as a Function of Mass and a Dichotomy of Mode Line Widths: Kepler Observations of 27 Pulsating DA White Dwarfs through K2 Campaign 8

    Science.gov (United States)

    Hermes, J. J.; Gänsicke, B. T.; Kawaler, Steven D.; Greiss, S.; Tremblay, P.-E.; Gentile Fusillo, N. P.; Raddi, R.; Fanale, S. M.; Bell, Keaton J.; Dennihy, E.; Fuchs, J. T.; Dunlap, B. H.; Clemens, J. C.; Montgomery, M. H.; Winget, D. E.; Chote, P.; Marsh, T. R.; Redfield, S.

    2017-10-01

    We present photometry and spectroscopy for 27 pulsating hydrogen-atmosphere white dwarfs (DAVs; a.k.a. ZZ Ceti stars) observed by the Kepler space telescope up to K2 Campaign 8, an extensive compilation of observations with unprecedented duration (>75 days) and duty cycle (>90%). The space-based photometry reveals pulsation properties previously inaccessible to ground-based observations. We observe a sharp dichotomy in oscillation mode line widths at roughly 800 s, such that white dwarf pulsations with periods exceeding 800 s have substantially broader mode line widths, more reminiscent of a damped harmonic oscillator than a heat-driven pulsator. Extended Kepler coverage also permits extensive mode identification: we identify the spherical degree of 87 out of 201 unique radial orders, providing direct constraints of the rotation period for 20 of these 27 DAVs, more than doubling the number of white dwarfs with rotation periods determined via asteroseismology. We also obtain spectroscopy from 4 m-class telescopes for all DAVs with Kepler photometry. Using these homogeneously analyzed spectra, we estimate the overall mass of all 27 DAVs, which allows us to measure white dwarf rotation as a function of mass, constraining the endpoints of angular momentum in low- and intermediate-mass stars. We find that 0.51-0.73 M ⊙ white dwarfs, which evolved from 1.7-3.0 M ⊙ ZAMS progenitors, have a mean rotation period of 35 hr with a standard deviation of 28 hr, with notable exceptions for higher-mass white dwarfs. Finally, we announce an online repository for our Kepler data and follow-up spectroscopy, which we collect at http://k2wd.org.

  16. Simple single-emitting layer hybrid white organic light emitting with high color stability

    Science.gov (United States)

    Nguyen, C.; Lu, Z. H.

    2017-10-01

    Simultaneously achieving a high efficiency and color quality at luminance levels required for solid-state lighting has been difficult for white organic light emitting diodes (OLEDs). Single-emitting layer (SEL) white OLEDs, in particular, exhibit a significant tradeoff between efficiency and color stability. Furthermore, despite the simplicity of SEL white OLEDs being its main advantage, the reported device structures are often complicated by the use of multiple blocking layers. In this paper, we report a highly simplified three-layered white OLED that achieves a low turn-on voltage of 2.7 V, an external quantum efficiency of 18.9% and power efficiency of 30 lm/W at 1000 cd/cm2. This simple white OLED also shows good color quality with a color rendering index of 75, CIE coordinates (0.42, 0.46), and little color shifting at high luminance. The device consists of a SEL sandwiched between a hole transport layer and an electron transport layer. The SEL comprises a thermally activated delayer fluorescent molecule having dual functions as a blue emitter and as a host for other lower energy emitters. The improved color stability and efficiency in such a simple device structure is explained as due to the elimination of significant energy barriers at various organic-organic interfaces in the traditional devices having multiple blocking layers.

  17. Testing the white dwarf mass-radius relationship with eclipsing binaries

    Science.gov (United States)

    Parsons, S. G.; Gänsicke, B. T.; Marsh, T. R.; Ashley, R. P.; Bours, M. C. P.; Breedt, E.; Burleigh, M. R.; Copperwheat, C. M.; Dhillon, V. S.; Green, M.; Hardy, L. K.; Hermes, J. J.; Irawati, P.; Kerry, P.; Littlefair, S. P.; McAllister, M. J.; Rattanasoon, S.; Rebassa-Mansergas, A.; Sahman, D. I.; Schreiber, M. R.

    2017-10-01

    We present high-precision, model-independent, mass and radius measurements for 16 white dwarfs in detached eclipsing binaries and combine these with previously published data to test the theoretical white dwarf mass-radius relationship. We reach a mean precision of 2.4 per cent in mass and 2.7 per cent in radius, with our best measurements reaching a precision of 0.3 per cent in mass and 0.5 per cent in radius. We find excellent agreement between the measured and predicted radii across a wide range of masses and temperatures. We also find the radii of all white dwarfs with masses less than 0.48 M⊙ to be fully consistent with helium core models, but they are on average 9 per cent larger than those of carbon-oxygen core models. In contrast, white dwarfs with masses larger than 0.52 M⊙ all have radii consistent with carbon-oxygen core models. Moreover, we find that all but one of the white dwarfs in our sample have radii consistent with possessing thick surface hydrogen envelopes (10-5 ≥ MH/MWD ≥ 10-4), implying that the surface hydrogen layers of these white dwarfs are not obviously affected by common envelope evolution.

  18. A large oxygen-dominated core from the seismic cartography of a pulsating white dwarf

    Science.gov (United States)

    Giammichele, N.; Charpinet, S.; Fontaine, G.; Brassard, P.; Green, E. M.; Van Grootel, V.; Bergeron, P.; Zong, W.; Dupret, M.-A.

    2018-02-01

    White-dwarf stars are the end product of stellar evolution for most stars in the Universe. Their interiors bear the imprint of fundamental mechanisms that occur during stellar evolution. Moreover, they are important chronometers for dating galactic stellar populations, and their mergers with other white dwarfs now appear to be responsible for producing the type Ia supernovae that are used as standard cosmological candles. However, the internal structure of white-dwarf stars—in particular their oxygen content and the stratification of their cores—is still poorly known, because of remaining uncertainties in the physics involved in stellar modelling codes. Here we report a measurement of the radial chemical stratification (of oxygen, carbon and helium) in the hydrogen-deficient white-dwarf star KIC08626021 (J192904.6+444708), independently of stellar-evolution calculations. We use archival data coupled with asteroseismic sounding techniques to determine the internal constitution of this star. We find that the oxygen content and extent of its core exceed the predictions of existing models of stellar evolution. The central homogeneous core has a mass of 0.45 solar masses, and is composed of about 86 per cent oxygen by mass. These values are respectively 40 per cent and 15 per cent greater than those expected from typical white-dwarf models. These findings challenge present theories of stellar evolution and their constitutive physics, and open up an avenue for calibrating white-dwarf cosmochronology.

  19. The DB gap and a new class of pulsating white dwarfs

    Directory of Open Access Journals (Sweden)

    Shibahashi H.

    2013-03-01

    Full Text Available The recent systematic surveys providing enormously massive datasets of white dwarfs show that there is still a deficit of a factor of 2.5 in the DA/non-DA ratio within the temperature range of 30 000 K < Teff < 45 000 K, which has been regarded as the “DB gap” meaning a range with almost no helium atmosphere white dwarfs. Since all white dwarfs have to evolve through this temperature range along almost the identical sequence on the color-magnitude diagram, this implies that most of the helium atmosphere DO stars once evolve into hydrogen atmosphere hot DA stars in the temperature range of the DB gap and then back to helium atmosphere DB stars. Possible scenarios for this chameleon-like disguises of white dwarfs with helium dominant atmospheres are described and a new class of pulsating white dwarfs, named the hot-DAV stars, is predicted from these scenarios. One pulsating DA white dwarf, being consistent with the prediction, has been discovered indeed.

  20. The critical binary star separation for a planetary system origin of white dwarf pollution

    Science.gov (United States)

    Veras, Dimitri; Xu, Siyi; Rebassa-Mansergas, Alberto

    2018-01-01

    The atmospheres of between one quarter and one half of observed single white dwarfs in the Milky Way contain heavy element pollution from planetary debris. The pollution observed in white dwarfs in binary star systems is, however, less clear, because companion star winds can generate a stream of matter which is accreted by the white dwarf. Here, we (i) discuss the necessity or lack thereof of a major planet in order to pollute a white dwarf with orbiting minor planets in both single and binary systems, and (ii) determine the critical binary separation beyond which the accretion source is from a planetary system. We hence obtain user-friendly functions relating this distance to the masses and radii of both stars, the companion wind, and the accretion rate on to the white dwarf, for a wide variety of published accretion prescriptions. We find that for the majority of white dwarfs in known binaries, if pollution is detected, then that pollution should originate from planetary material.

  1. Infrared observations of white dwarfs and the implications for the accretion of dusty planetary material

    Science.gov (United States)

    Bonsor, Amy; Farihi, Jay; Wyatt, Mark C.; van Lieshout, Rik

    2017-06-01

    Infrared excesses around metal-polluted white dwarfs have been associated with the accretion of dusty planetary material. This work analyses the available infrared data for an unbiased sample of white dwarfs and demonstrates that no more than 3.3 per cent can have a wide, flat, opaque dust disc, extending to the Roche radius, with a temperature at the disc inner edge of Tin = 1400 K, the standard model for the observed excesses. This is in stark contrast to the incidence of pollution of about 30 per cent. We present four potential reasons for the absence of an infrared excess in polluted white dwarfs, depending on their stellar properties and inferred accretion rates: (I) their dust discs are opaque, but narrow, thus evading detection if more than 85 per cent of polluted white dwarfs have dust discs narrower than δr white dwarfs with sinking time-scales longer than hundreds of years, (III) their dust is optically thin, which can supply low accretion rates of 20 000 K. Future observations sensitive to faint infrared excesses or the presence of gas can test the scenarios presented here, thereby better constraining the nature of the material fuelling accretion in polluted white dwarfs.

  2. New halo white dwarf candidates in the Sloan Digital Sky Survey

    Science.gov (United States)

    Dame, Kyra; Gianninas, A.; Kilic, Mukremin; Munn, Jeffrey A.; Brown, Warren R.; Williams, Kurtis A.; von Hippel, Ted; Harris, Hugh C.

    2016-12-01

    We present optical spectroscopy and near-infrared photometry of 57 faint (g = 19-22) high proper motion white dwarfs identified through repeat imaging of ≈3100 deg2 of the Sloan Digital Sky Survey footprint by Munn et al. We use ugriz and JH photometry to perform a model atmosphere analysis, and identify 10 ultracool white dwarfs with Teff 120 km s-1) and UVW velocities that are more consistent with the halo than the Galactic disc. For typical 0.6 M⊙ white dwarfs, the cooling ages for these halo candidates range from 2.3 to 8.5 Gyr. However, the total main-sequence+white dwarf cooling ages of these stars would be consistent with the Galactic halo if they are slightly undermassive. Given the magnitude limits of the current large-scale surveys, many of the coolest and oldest white dwarfs remain undiscovered in the solar neighbourhood, but upcoming surveys such as Gaia and the Large Synoptic Survey Telescope should find many of these elusive thick disc and halo white dwarfs.

  3. Population Synthesis Studies of the White Dwarfs of the Galactic Disk and Halo

    Science.gov (United States)

    Cojocaru, Elena-Ruxandra

    2016-09-01

    White dwarfs are fossil stars that can encode valuable information about the formation, evolution and other properties of the different Galactic stellar populations. They are the direct descendants of main-sequence stars with masses ranging from ∼0.8 M⊙ to ∼10 M⊙, which means that over 95% of the stars in our Galaxy will eventually become white dwarfs. This fact, correlated with the excellent quality of modern white dwarf cooling models, clearly marks their potential as cosmic clocks for estimating the ages of Galactic stellar populations, as well as place white dwarfs as privileged objects in understanding several actual astrophysical problems. Stellar population synthesis methods (Tinsley, 1968) use theoretical evolutionary sequences to reproduce luminosities, temperatures and other parameters building up to a synthetic population that can be readily compared to an observed sample of stars. Such techniques are perfect for the study of the different white dwarf populations in our Galaxy and their strength has only grown in recent years, fueled both by improved evolutionary sequences and detailed cooling tracks and also by the ever growing samples of white dwarfs identified through modern survey missions. In particular, the work presented in this thesis uses an updated population synthesis code based on previous versions of the code from our group (García-Berro et al., 1999; Torres et al., 2002; García-Berro et al., 2004; Torres et al., 2005; Camacho et al., 2014). Our synthetic population code, based on Monte Carlo statistical techniques, has been extensively used in the study of the disk (García-Berro et al., 1! 999; Torres et al., 2001; Torres & García-Berro, 2016) and halo (Torres et al., 2002; García-Berro et al., 2004) single white-dwarf population, white dwarf plus main sequence stars (Camacho et al., 2014), as well as open clusters such as NGC 6791 (García-Berro et al., 2010; García-Berro et al., 2011) or globular clusters, as 47 Tuc (Garc

  4. An upper limit on the contribution of accreting white dwarfs to the type Ia supernova rate.

    Science.gov (United States)

    Gilfanov, Marat; Bogdán, Akos

    2010-02-18

    There is wide agreement that type Ia supernovae (used as standard candles for cosmology) are associated with the thermonuclear explosions of white dwarf stars. The nuclear runaway that leads to the explosion could start in a white dwarf gradually accumulating matter from a companion star until it reaches the Chandrasekhar limit, or could be triggered by the merger of two white dwarfs in a compact binary system. The X-ray signatures of these two possible paths are very different. Whereas no strong electromagnetic emission is expected in the merger scenario until shortly before the supernova, the white dwarf accreting material from the normal star becomes a source of copious X-rays for about 10(7) years before the explosion. This offers a means of determining which path dominates. Here we report that the observed X-ray flux from six nearby elliptical galaxies and galaxy bulges is a factor of approximately 30-50 less than predicted in the accretion scenario, based upon an estimate of the supernova rate from their K-band luminosities. We conclude that no more than about five per cent of type Ia supernovae in early-type galaxies can be produced by white dwarfs in accreting binary systems, unless their progenitors are much younger than the bulk of the stellar population in these galaxies, or explosions of sub-Chandrasekhar white dwarfs make a significant contribution to the supernova rate.

  5. Stellar equilibrium configurations of white dwarfs in the f( R, T) gravity

    Science.gov (United States)

    Carvalho, G. A.; Lobato, R. V.; Moraes, P. H. R. S.; Arbañil, José D. V.; Otoniel, E.; Marinho, R. M.; Malheiro, M.

    2017-12-01

    In this work we investigate the equilibrium configurations of white dwarfs in a modified gravity theory, namely, f( R, T) gravity, for which R and T stand for the Ricci scalar and trace of the energy-momentum tensor, respectively. Considering the functional form f(R,T)=R+2λ T, with λ being a constant, we obtain the hydrostatic equilibrium equation for the theory. Some physical properties of white dwarfs, such as: mass, radius, pressure and energy density, as well as their dependence on the parameter λ are derived. More massive and larger white dwarfs are found for negative values of λ when it decreases. The equilibrium configurations predict a maximum mass limit for white dwarfs slightly above the Chandrasekhar limit, with larger radii and lower central densities when compared to standard gravity outcomes. The most important effect of f( R, T) theory for massive white dwarfs is the increase of the radius in comparison with GR and also f( R) results. By comparing our results with some observational data of massive white dwarfs we also find a lower limit for λ , namely, λ >- 3× 10^{-4}.

  6. Turbulent Mixing on Helium-accreting White Dwarfs

    Science.gov (United States)

    Piro, Anthony L.

    2015-03-01

    An attractive scenario for producing Type Ia supernovae (SNe Ia) is a double detonation, where detonation of an accreted helium layer triggers ignition of a C/O core. Whether or not such a mechanism can explain some or most SNe Ia depends on the properties of the helium burning, which in turn is set by the composition of the surface material. Using a combination of semi-analytic and simple numerical models, I explore when turbulent mixing due to hydrodynamic instabilities during the accretion process can mix C/O core material up into the accreted helium. Mixing is strongest at high accretion rates, large white dwarf (WD) masses, and slow spin rates. The mixing would result in subsequent helium burning that better matches the observed properties of SNe Ia. In some cases, there is considerable mixing that can lead to more than 50% C/O in the accreted layer at the time of ignition. These results will hopefully motivate future theoretical studies of such strongly mixed conditions. Mixing also has implications for other types of WD surface explosions, including the so-called .Ia supernovae, the calcium-rich transients (if they arise from accreting WDs), and metal-enriched classical novae.

  7. White dwarf pollution by planets in stellar binaries

    Science.gov (United States)

    Hamers, Adrian S.; Portegies Zwart, Simon F.

    2016-10-01

    Approximately 0.2 ± 0.2 of white dwarfs (WDs) show signs of pollution by metals, which is likely due to the accretion of tidally disrupted planetary material. Models invoking planet-planet interactions after WD formation generally cannot explain pollution at cooling times of several Gyr. We consider a scenario in which a planet is perturbed by Lidov-Kozai oscillations induced by a binary companion and exacerbated by stellar mass-loss, explaining pollution at long cooling times. Our computed accretion rates are consistent with observations assuming planetary masses between ˜0.01 and 1 MMars, although non-gravitational effects may already be important for masses ≲0.3 MMars. The fraction of polluted WDs in our simulations, ˜0.05, is consistent with observations of WDs with intermediate cooling times between ˜0.1 and 1 Gyr. For cooling times ≲0.1 Gyr and ≳1 Gyr, our scenario cannot explain the high observed pollution fractions of up to 0.7. Nevertheless, our results motivate searches for companions around polluted WDs.

  8. The Physical Nature of Subdwarf A Stars: White Dwarf Impostors

    Science.gov (United States)

    Brown, Warren R.; Kilic, Mukremin; Gianninas, A.

    2017-04-01

    We address the physical nature of subdwarf A-type (sdA) stars and their possible link to extremely low mass (ELM) white dwarfs (WDs). The two classes of objects are confused in low-resolution spectroscopy. However, colors and proper motions indicate that sdA stars are cooler and more luminous, and thus larger in radius, than published ELM WDs. We demonstrate that surface gravities derived from pure hydrogen models suffer a systematic ˜1 dex error for sdA stars, likely explained by metal line blanketing below 9000 K. A detailed study of five eclipsing binaries with radial velocity orbital solutions and infrared excess establishes that these sdA stars are metal-poor ≃1.2 M ⊙ main sequence stars with ≃0.8 M ⊙ companions. While WDs must exist at sdA temperatures, only ˜1% of a magnitude-limited sdA sample should be ELM WDs. We conclude that the majority of sdA stars are metal-poor A-F type stars in the halo, and that recently discovered pulsating ELM WD-like stars with no obvious radial velocity variations may be SX Phe variables, not pulsating WDs.

  9. The Physical Nature of Subdwarf A Stars: White Dwarf Impostors

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Warren R. [Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138 (United States); Kilic, Mukremin; Gianninas, A., E-mail: wbrown@cfa.harvard.edu, E-mail: kilic@ou.edu, E-mail: alexg@nhn.ou.edu [Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, 440 W. Brooks Street, Norman, OK, 73019 (United States)

    2017-04-10

    We address the physical nature of subdwarf A-type (sdA) stars and their possible link to extremely low mass (ELM) white dwarfs (WDs). The two classes of objects are confused in low-resolution spectroscopy. However, colors and proper motions indicate that sdA stars are cooler and more luminous, and thus larger in radius, than published ELM WDs. We demonstrate that surface gravities derived from pure hydrogen models suffer a systematic ∼1 dex error for sdA stars, likely explained by metal line blanketing below 9000 K. A detailed study of five eclipsing binaries with radial velocity orbital solutions and infrared excess establishes that these sdA stars are metal-poor ≃1.2 M {sub ⊙} main sequence stars with ≃0.8 M {sub ⊙} companions. While WDs must exist at sdA temperatures, only ∼1% of a magnitude-limited sdA sample should be ELM WDs. We conclude that the majority of sdA stars are metal-poor A–F type stars in the halo, and that recently discovered pulsating ELM WD-like stars with no obvious radial velocity variations may be SX Phe variables, not pulsating WDs.

  10. X-Ray Emissions from Accreting White Dwarfs: A Review

    Science.gov (United States)

    Mukai, K.

    2017-01-01

    Interacting binaries in which a white dwarf accretes material from a companion-cataclysmic variables (CVs) in which the mass donor is a Roche-lobe filling star on or near the main sequence, and symbiotic stars in which the mass donor is a late type giant-are relatively commonplace. They display a wide range of behaviors in the optical, X-rays, and other wavelengths, which still often baffle observers and theorists alike. Here I review the existing body of research on X-ray emissions from these objects for the benefits of both experts and newcomers to the field. I provide introductions to the past and current X-ray observatories, the types of known X-ray emissions from these objects, and the data analysis techniques relevant to this field. I then summarize of our knowledge regarding the X-ray emissions from magnetic CVs, non-magnetic CVs and symbiotic stars, and novae in eruption. I also discuss space density and the X-ray luminosity functions of these binaries and their contribution to the integrated X-ray emission from the Galaxy. I then discuss open questions and future prospects.

  11. Determining the core stratification in white dwarfs with asteroseismology

    Directory of Open Access Journals (Sweden)

    Charpinet S.

    2017-01-01

    Full Text Available Using the forward modeling approach and a new parameterization for the core chemical stratification in ZZ Ceti stars, we test several situations typical of the usually limited constraints available, such as small numbers of observed independent modes, to carry out asteroseismology of these stars. We find that, even with a limited number of modes, the core chemical stratification (in particular, the location of the steep chemical transitions expected in the oxygen profile can be determined quite precisely due to the significant sensitivity of some confined modes to partial reflexion (trapping effects. These effects are similar to the well known trapping induced by the shallower chemical transitions at the edge of the core and at the bottom of the H-rich envelope. We also find that success to unravel the core structure depends on the information content of the available seismic data. In some cases, it may not be possible to isolate a unique, well-defined seismic solution and the problem remains degenerate. Our results establish that constraining the core chemical stratification in white dwarf stars based solely on asteroseismology is possible, an opportunity that we have started to exploit.

  12. Mass Transfer and Tidal Dynamics in White Dwarf Binary Systems

    Science.gov (United States)

    Gerber, Jeffrey; Fuller, J.

    2014-01-01

    Compact white dwarf (WD) binary systems (with orbital periods ranging from minutes to hours) can produce a variety of interesting astrophysical objects (e.g., type Ia supernovae, AM CVn systems, R Cor Bor stars, sdB stars) upon the onset of mass transfer. These systems are driven toward Roche lobe overflow by the emission of gravitational radiation, but it is not known whether the mass transfer will be stable (forming an Am CVn system) or become unstable (resulting in a merger). We analyze how the combined effects of mass transfer and tidal torques affect the evolution of these systems by creating numerical models with the MESA stellar evolution program. Using new calculations of the tidal torque in rotating WDs, we predict the outcome of mass transfer in these systems as a function of the masses of the WD components. We find that the stability of mass transfer depends primarily on the peak mass transfer rate near the period minimum, which is highly dependent on the WD masses and on the strength of the tidal torques. Except for low WD accretor masses, the tidal torques are insufficient to significantly increase the stability of mass transfer. We find that mass transfer is generally unstable for WD donor masses greater than about 0.25 solar masses, and that the 12 minute system SDSS J0615 will end its inspiral in a WD merger, likely producing an R Cor Bor star.

  13. Unstable Helium Shell Burning on Accreting White Dwarfs

    Science.gov (United States)

    Shen, Ken J.; Bildsten, Lars

    2009-07-01

    AM Canum Venaticorum (AM CVn) binaries consist of a degenerate helium donor and a helium, C/O, or O/Ne white dwarf accretor, with accretion rates of \\dot{M} = 10^{-13}\\--10^{-5} \\, M_\\odot \\; yr^{-1}. For accretion rates thermonuclear supernovae. In this paper, we study the evolution of the He-burning shells in more detail. We calculate maximum achievable temperatures as well as the minimum envelope masses that achieve dynamical burning conditions, finding that AM CVn systems with accretors gsim0.8 M sun will undergo dynamical burning. Triple-α reactions during the hydrostatic evolution set a lower limit to the 12C mass fraction of 0.001-0.05 when dynamical burning occurs, but core dredge-up may yield 12C, 16O, and/or 20Ne mass fractions of ~0.1. Accreted 14N will likely remain 14N during the accretion and convective phases, but regardless of 14N's fate, the neutron-to-proton ratio at the beginning of convection is fixed until the onset of dynamical burning. During explosive burning, the 14N will undergo 14N(α, γ)18F(α, p)21Ne, liberating a proton for the subsequent 12C(p, γ)13N(α, p)16O reaction, which bypasses the relatively slow α-capture onto 12C. Future hydrodynamic simulations must include these isotopes, as the additional reactions will reduce the Zel'dovich-von Neumann-Döring length, making the propagation of the detonation wave more likely.

  14. The nature of millisecond pulsars with helium white dwarf companions

    Science.gov (United States)

    Smedley, Sarah L.; Tout, Christopher A.; Ferrario, Lilia; Wickramasinghe, Dayal T.

    2014-01-01

    We examine the growing data set of binary millisecond pulsars that are thought to have a helium white dwarf companion. These systems are believed to form when a low- to intermediate-mass companion to a neutron star fills its Roche lobe between central hydrogen exhaustion and core helium ignition. We confirm that our own stellar models reproduce a well-defined period-companion mass relation irrespective of the details of the mass transfer process. With magnetic braking, this relation extends to periods of less than 1 d for a 1 M⊙ giant donor. With this and the measured binary mass functions, we calculate the orbital inclination of each system for a given pulsar mass. We expect these inclinations to be randomly oriented in space. If the masses of the pulsars were typically 1.35 M⊙, then there would appear to be a distinct dearth of high-inclination systems. However, if the pulsar masses are more typically from 1.55 to 1.65 M⊙, then the distribution of inclinations is indeed indistinguishable from random. If it were as much as 1.75 M⊙, then there would appear to be an excess of high-inclination systems. Thus, with the available data, we can argue that the neutron star masses in binary millisecond pulsars recycled by mass transfer from a red giant typically lie around 1.6 M⊙ and that there is no preferred inclination at which these systems are observed. Hence, there is reason to believe that pulsar beams are either sufficiently broad or show no preferred direction relative to the pulsar's spin axis which is aligned with the binary orbit. This is contrary to some previous claims, based on a subset of the data available today, that there might be a tendency for the pulsar beams to be perpendicular to their spin.

  15. Deposition of steeply infalling debris around white dwarf stars

    Science.gov (United States)

    Brown, John C.; Veras, Dimitri; Gänsicke, Boris T.

    2017-06-01

    High-metallicity pollution is common in white dwarf (WD) stars hosting remnant planetary systems. However, they rarely have detectable debris accretion discs, possibly because much of the influx is fast steeply infalling debris in star-grazing orbits, producing a more tenuous signature than a slowly accreting disc. Processes governing such deposition between the Roche radius and photosphere have so far received little attention and we model them here analytically by extending recent work on sun-grazing comets to WD systems. We find that the evolution of cm-to-km size (a0) infallers most strongly depends on two combinations of parameters, which effectively measure sublimation rate and binding strength. We then provide an algorithm to determine the fate of infallers for any WD, and apply the algorithm to four limiting combinations of hot versus cool (young/old) WDs with snowy (weak, volatile) versus rocky (strong, refractory) infallers. We find: (I) Total sublimation above the photosphere befalls all small infallers across the entire WD temperature (TWD) range, the threshold size rising with TWD and 100× larger for rock than snow. (II) All very large objects fragment tidally regardless of TWD: for rock, a0 ≽ 105 cm; for snow, a0 ≽ 103-3 × 104 cm across all WD cooling ages. (III) A considerable range of a0 avoids fragmentation and total sublimation, yielding impacts or grazes with cold WDs. This range rapidly narrows with increasing TWD, especially for snowy bodies. Finally, we briefly discuss how the various forms of deposited debris may finally reach the photosphere surface itself.

  16. Magnetically gated accretion in an accreting ‘non-magnetic’ white dwarf

    Science.gov (United States)

    Scaringi, S.; Maccarone, T. J.; D’Angelo, C.; Knigge, C.; Groot, P. J.

    2017-12-01

    White dwarfs are often found in binary systems with orbital periods ranging from tens of minutes to hours in which they can accrete gas from their companion stars. In about 15 per cent of these binaries, the magnetic field of the white dwarf is strong enough (at 106 gauss or more) to channel the accreted matter along field lines onto the magnetic poles. The remaining systems are referred to as ‘non-magnetic’, because until now there has been no evidence that they have a magnetic field that is strong enough to affect the accretion dynamics. Here we report an analysis of archival optical observations of the ‘non-magnetic’ accreting white dwarf in the binary system MV Lyrae, whose light curve displays quasi-periodic bursts of about 30 minutes duration roughly every 2 hours. The timescale and amplitude of these bursts indicate the presence of an unstable, magnetically regulated accretion mode, which in turn implies the existence of magnetically gated accretion, in which disk material builds up around the magnetospheric boundary (at the co-rotation radius) and then accretes onto the white dwarf, producing bursts powered by the release of gravitational potential energy. We infer a surface magnetic field strength for the white dwarf in MV Lyrae of between 2 × 104 gauss and 1 × 105 gauss, too low to be detectable by other current methods. Our discovery provides a new way of studying the strength and evolution of magnetic fields in accreting white dwarfs and extends the connections between accretion onto white dwarfs, young stellar objects and neutron stars, for which similar magnetically gated accretion cycles have been identified.

  17. Capturing triplet emission in white organic light emitting devices

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Jai [Faculty of EHSE, School of Engineering and IT, B-purple-12, Charles Darwin University, Darwin, NT 0909 (Australia)

    2011-08-15

    The state-of-the art in the white organic light emitting devices (WOLEDs) is reviewed for further developments with a view to enhance the capture of triplet emission. In particular, applying the new exciton-spin-orbit-photon interaction operator as a perturbation, rates of spontaneous emission are calculated in a few phosphorescent materials and compared with experimental results. For iridium based phosphorescent materials the rates agree quite well with the experimental results. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. White dwarfs in cataclysmic variables - Low state IUE observations of V794 Aquilae, MR Serpentis, and AN Ursae Majoris

    Science.gov (United States)

    Szkody, Paula; Mateo, Mario; Downes, Ronald

    1988-01-01

    IUE low-dispersion observations of one novalike system (V794 Aql) and two AM Her systems (MR Ser and AN UMa) during low or intermediate-low accretion-rate states are reported. The decreased UV emission during these times was used to place limits on the white dwarf temperatures. When these results are added to the existing data on white dwarf temperatures, it appears that the white dwarfs in systems with normal high accretion rates and only occasional low-accretion-rate states remain hotter than the white dwarfs in systems with low average accretion rates.

  19. White organic light-emitting diodes with fluorescent tube efficiency.

    Science.gov (United States)

    Reineke, Sebastian; Lindner, Frank; Schwartz, Gregor; Seidler, Nico; Walzer, Karsten; Lüssem, Björn; Leo, Karl

    2009-05-14

    The development of white organic light-emitting diodes (OLEDs) holds great promise for the production of highly efficient large-area light sources. High internal quantum efficiencies for the conversion of electrical energy to light have been realized. Nevertheless, the overall device power efficiencies are still considerably below the 60-70 lumens per watt of fluorescent tubes, which is the current benchmark for novel light sources. Although some reports about highly power-efficient white OLEDs exist, details about structure and the measurement conditions of these structures have not been fully disclosed: the highest power efficiency reported in the scientific literature is 44 lm W(-1) (ref. 7). Here we report an improved OLED structure which reaches fluorescent tube efficiency. By combining a carefully chosen emitter layer with high-refractive-index substrates, and using a periodic outcoupling structure, we achieve a device power efficiency of 90 lm W(-1) at 1,000 candelas per square metre. This efficiency has the potential to be raised to 124 lm W(-1) if the light outcoupling can be further improved. Besides approaching internal quantum efficiency values of one, we have also focused on reducing energetic and ohmic losses that occur during electron-photon conversion. We anticipate that our results will be a starting point for further research, leading to white OLEDs having efficiencies beyond 100 lm W(-1). This could make white-light OLEDs, with their soft area light and high colour-rendering qualities, the light sources of choice for the future.

  20. Physics of the Compact Debris Disks Around Metal Rich White Dwarfs

    Science.gov (United States)

    Rafikov, Roman

    2017-06-01

    Significant fraction of the white dwarfs are known to have metal polluted atmospheres, with a much smaller fraction (of order several per cent) also exhibiting near-infrared excesses, indicative of the presence of the dense debris disks in their immediate vicinity. Such disks are believed to originate from tidal disruption of the minor objects originally orbiting these white dwarfs, thus shedding light on the properties of the planetary systems hosted by these stellar remnants. They also provide an obvious mass reservoir to explain the observed metal contamination of the white dwarf atmospheres. In my talk I'll focus on the physical processes affecting the evolution of the debris disks and affecting the rate, at which they accrete onto their central stars. I will demonstrate the key role of the Poynting-Robertson drag in setting the minimum metal accretion rate onto the white dwarf. I will also show how the coupling between the particulate and gaseous debris disks can naturally give rise to much higher accretion rates of metals. Better understanding of these processes will help us illuminate accreton history of minor planets by the white dwarfs.

  1. The binarity of the local white dwarf population

    Science.gov (United States)

    Toonen, S.; Hollands, M.; Gänsicke, B. T.; Boekholt, T.

    2017-06-01

    Context. As endpoints of stellar evolution, white dwarfs (WDs) are powerful tools to study the evolutionary history of the Galaxy. In particular, the multiplicity of WDs contains information regarding the formation and evolution of binary systems. Aims: Can we understand the multiplicity of the local WD sample from a theoretical point of view? Population synthesis methods are often applied to estimate stellar space densities and event rates, but how well are these estimates calibrated? This can be tested by a comparison with the 20 pc sample, which contains ≃100 stars and is minimally affected by selection biases. Methods: We model the formation and evolution of single stars and binaries within 20 pc with a population synthesis approach. We construct a model of the current sample of WDs and differentiate between WDs in different configurations, that is single WDs, and resolved and unresolved binaries containing a WD with either a main-sequence (MS) component or with a second WD. We also study the effect of different assumptions concerning the star formation history, binary evolution, and the initial distributions of binary parameters. We compile from the literature the available information on the sample of WDs within 20 pc, with a particular emphasis on their multiplicity, and compare this to the synthetic models. Results: The observed space densities of single and binary WDs are well reproduced by the models. The space densities of the most common WD systems (single WDs and unresolved WD-MS binaries) are consistent within a factor two with the observed value. We find a discrepancy only for the space density of resolved double WDs. We exclude that observational selection effects, fast stellar winds, or dynamical interactions with other objects in the Milky Way explain this discrepancy. We find that either the initial mass ratio distribution in the solar neighbourhood is biased towards low mass-ratios, or more than ten resolved DWDs have been missed

  2. White dwarfs in the building blocks of the Galactic spheroid

    Science.gov (United States)

    van Oirschot, Pim; Nelemans, Gijs; Starkenburg, Else; Toonen, Silvia; Helmi, Amina; Zwart, Simon Portegies

    2017-11-01

    Aims: The Galactic halo likely grew over time in part by assembling smaller galaxies, the so-called building blocks (BBs). We investigate if the properties of these BBs are reflected in the halo white dwarf (WD) population in the solar neighbourhood. Furthermore, we compute the halo WD luminosity functions (WDLFs for four major BBs of five cosmologically motivated stellar haloes). We compare the sum of these to the observed WDLF of the Galactic halo, derived from selected halo WDs in the SuperCOSMOS Sky Survey, aiming to investigate if they match better than the WDLFs predicted by simpler models. Methods: We couple the SeBa binary population synthesis model to the Munich-Groningen semi-analytic galaxy formation model applied to the high-resolution Aquarius dark matter simulations. Although the semi-analytic model assumes an instantaneous recycling approximation, we model the evolution of zero-age main sequence stars to WDs, taking age and metallicity variations of the population into account. To be consistent with the observed stellar halo mass density in the solar neighbourhood (ρ0), we simulate the mass in WDs corresponding to this density, assuming a Chabrier initial mass function (IMF) and a binary fraction of 50%. We also normalize our WDLFs to ρ0. Results: Although the majority of halo stars are old and metal-poor and therefore the WDs in the different BBs have similar properties (including present-day luminosity), we find in our models that the WDs originating from BBs that have young and/or metal-rich stars can be distinguished from WDs that were born in other BBs. In practice, however, it will be hard to prove that these WDs really originate from different BBs, as the variations in the halo WD population due to binary WD mergers result in similar effects. The five joined stellar halo WD populations that we modelled result in WDLFs that are very similar to each other. We find that simple models with a Kroupa or Salpeter IMF fit the observed luminosity

  3. Floral scent emitted by white and coloured morphs in orchids.

    Science.gov (United States)

    Dormont, L; Delle-Vedove, R; Bessière, J-M; Schatz, B

    2014-04-01

    Polymorphism of floral signals, such as colour and odour, is widespread in flowering plants and often considered to be adaptive, reflecting various pollinator preferences for particular floral traits. Several authors have recently hypothesized that particular associations exist between floral colour and scent, which would result from shared biochemistry between these two floral traits. In this study, we compared the chemical composition of floral volatiles emitted by white- and purple-flowered morphs of three different orchid species, including two food-deceptive species (Orchis mascula and Orchis simia) and a food-rewarding species (Anacamptis coriophora fragrans). We found clear interspecific differences in floral odours. As expected from their pollination strategy, the two deceptive orchids showed high inter-individual variation of floral volatiles, whereas the food-rewarding A. c. fragrans showed low variation of floral scent. Floral volatiles did not differ overall between white- and coloured-flowered morphs in O. mascula and A. c. fragrans, while O. simia exhibited different volatile profiles between the two colour morphs. However, a detailed analysis restricted to benzenoid compounds (which are associated with the production of floral anthocyanin pigments) showed that white inflorescences emitted more volatiles of the shikimic pathway than coloured ones, both for O. mascula and O. simia. These results are consistent with the current hypothesis that shared biochemistry creates pleiotropic links between floral colour and scent. Whether intraspecific variation of floral signals actually affects pollinator attraction and influences the reproductive success of these orchids remains to be determined. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Prompt emission from tidal disruptions of white dwarfs by intermediate mass black holes

    Directory of Open Access Journals (Sweden)

    Laguna P.

    2012-12-01

    Full Text Available We present a qualitative picture of prompt emission from tidal disruptions of white dwarfs (WD by intermediate mass black holes (IMBH. The smaller size of an IMBH compared to a supermassive black hole and a smaller tidal radius of a WD disruption lead to a very fast event with high peak luminosity. Magnetic field is generated in situ following the tidal disruption, which leads to effective accretion. Since large-scale magnetic field is also produced, geometrically thick super-Eddington inflow leads to a relativistic jet. The dense jet possesses a photosphere, which emits quasi-thermal radiation in soft X-rays. The source can be classified as a long low-luminosity gamma-ray burst (ll-GRB. Tidal compression of a WD causes nuclear ignition, which is observable as an accompanying supernova. We suggest that GRB060218 and SN2006aj is such a pair of ll-GRB and supernova. We argue that in a flux-limited sample the disruptions of WDs by IMBHs are more frequent then the disruptions of other stars by IMBHs.

  5. Iron abundance in the hot DA white dwarfs Feige 24 and G191 B2B

    Science.gov (United States)

    Vennes, Stephane; Chayer, Pierre; Thorstensen, John R.; Bowyer, Stuart; Shipman, Harry L.

    1992-01-01

    Attention is given to model calculations of the far- and extreme-UV line spectra of highly ionized Fe species (Fe IV, Fe V, and Fe VI) for hot high-gravity H-rich stars. A spectral analysis of 31 hr of exposure of the DA white dwarf Feige 24 with IUE in the echelle mode reveals the presence of Fe with an abundance relative to H by number of (5-10) x 10 exp -6 with an uncertainty dominated by the determination of stellar parameters. An analysis of IUE data from the white dwarf G191 B2B results in a similar Fe abundance if this star shares similar atmospheric parameters (Teff, g) with Feige 24. Fe is thus the second most abundant photospheric element in hot DA white dwarfs.

  6. New insights on pulsating white dwarfs from 3D radiation-hydrodynamical simulations

    Science.gov (United States)

    Tremblay, Pier-Emmanuel; Fontaine, Gilles; Ludwig, Hans-Günter; Gianninas, Alexandros; Kilic, Mukremin

    We have recently computed a grid of 3D radiation-hydrodynamical simulations for the atmosphere of pure-hydrogen DA white dwarfs in the range 5.0 white dwarfs are located. We have significantly improved the theoretical framework to study these objects by removing the free parameters of 1D convection, which were previously a major modeling hurdle. We present improved atmospheric parameter determinations based on spectroscopic fits with 3D model spectra, allowing for an updated definition of the empirical edges of the ZZ Ceti instability strip. Our 3D simulations also precisely predict the depth of the convection zones, narrowing down the internal layers where pulsation are being driven. We hope that these 3D effects will be included in asteroseismic models in the future to predict the region of the HR diagram where white dwarfs are expected to pulsate.

  7. Cool White Dwarfs from the SuperCOSMOS and Sloan Digital Sky Surveys

    Science.gov (United States)

    Hambly, N. C.; Digby, A. P.; Oppenheimer, B. R.

    2005-07-01

    We have used datamining techniques in the SuperCOSMOS Science Archive (http://surveys.roe.ac.uk/ssa) to obtain a large, well defined proper motion and magnitude selected sample of cool white dwarfs. Using accurate 5-colour photometry from the Sloan Digital Sky Survey DR1 and SuperCOSMOS Sky Survey photometry and astrometry, we demonstrate the power of reduced proper motion in obtaining a sample of >700 white dwarfs. We examine the characteristics of these objects in various two-colour diagrams in conjunction with new model atmosphere predictions recently computed in the SDSS photometric system. Ultimately, we intend to analyse these data with techniques similar to those already used to examine the subdwarf luminosity function (Digby et al. 2003). In this way, we aim to decompose the contribution of thin disk, thick disk and spheroid white dwarfs in the sample to enable computation of accurate luminosity functions for those respective populations.

  8. From Accretion to Explosion and Beyond: Transforming White Dwarfs to Neutron Stars and Black Holes

    Science.gov (United States)

    Di Stefano, Rosanne; Harris, R.

    2010-03-01

    White dwarfs accreting at high rates can grow in mass, exhibiting episodes of supersoft-source activity. Some can achieve the Chandrasekhar mass and will either become Type Ia supernovae or else will collapse, becoming neutron stars. We consider white dwarfs with giant donors, computing the rates of both supernovae and collapses. For the collapses, we follow each system to the end of accretion. Some of these systems will appear as ultraluminous x-ray sources and some will go on to become low-mass black holes. This scenario should be fairly common in young stellar populations and links a wide range of astrophysical phenomena. Indeed, it is a veritable cornucopia for the high-energy astrophysicist, offering accreting white dwarfs, neutron stars, and black holes, Type Ia supernovae, gamma-ray bursts, supersoft sources, ultraluminous sources, and neutron star and black hole binaries in globular clusters.

  9. Modeling and Analysis of CTIO 1.5m White Dwarf Spectra

    Science.gov (United States)

    Gulledge, Deborah Jean; Tucker, Douglas; Smith, John Allyn; Wester, William; Robertson, Jacob; Mueller, Jack H.; Fix, Mees; Narayan, Gautham; Tremblay, P.-E.

    2018-01-01

    We present results to date on spectroscopic reductions of white dwarf stars from the CTIO 1.5m telescope in support of calibrations for the Dark Energy Survey, which is based in the Southern hemisphere to map galaxies and gather information on dark energy.Science requirements for the survey require a 0.5\\% uncertainty in color, driven by supernova science. The Dark Energy Survey relies on a calibration technique that uses white dwarf stars to set zero points. These white dwarf spectra are fit to model spectra at the same temperatures and surface gravities. Fits are done both by a WD modeling expert, Pier Emmanuel Tremblay, and by WD model fitting software created by Gautham Narayan. Fits from both are comparable and give similar results, which are then used to generate synthetic photometry. These synthetic photometry values are compared to the measured values from the survey to verify that the zero points are correct.

  10. New Observations of the Mysterious Metal-Polluted White Dwarf GD 394

    Science.gov (United States)

    Wilson, D. J.; Gänsicke, B. T.; Koester, D.; Holberg, J.; Burleigh, M. R.; Belardi, C.

    2017-03-01

    GD394 is a hot, extremely metal-polluted white dwarf. EUVE observations in the early 1990s revealed a 1.15 day periodicity with a 25 percent amplitude. This was hypothesised to be due to an accretion spot on the white dwarf, rotating into and out of view on the white dwarf spin period. We have obtained phase-resolved HST/STIS high-resolution FUV spectra of GD394 that sample the entire spin period. The spectra contain dozens of strong metal absorption lines, which we use to test the hypothesis of a rotating spot. No variation is seen in the STIS spectra, nor between them and a 1992 GHRS spectrum. Furthermore, archive SuperWASP observations do not show the optical variability predicted by the spot hypothesis. The STIS spectra also show mysterious C IV lines that may be an indicator of circumstellar material.

  11. 3D hydrodynamic simulations of tidal disruption of terrestrial planets around white dwarfs

    Science.gov (United States)

    Liu, Shangfei; Zhang, Jinsu; Lin, Douglas N. C.

    2018-01-01

    Recent K2 mission spotted striking variability due to a group of minor bodies transiting white dwarf WD 1145+017 with periods ranging from 4.5 hours to 4.9 hours. One of the formation scenarios is that those transiting objects are the debris of a tidally disrupted minor planet. This scenario is consistent with fact that the white dwarf also hosts a dusty disk and displays strong metal atmospheric pollution. In this work, we perform state-of-the-art three-dimensional hydrodynamic simulations to study the consequences of tidal disruption of planets with various differentiated compositions by a white dwarf. We study the general outcomes of tidal disruption including partially disruption and total disruption. We also apply our results to the WD 1145+017 system to infer the physical and orbital properties of the progenitor.

  12. Post main sequence evolution of icy minor planets: water retention and white dwarf pollution

    Science.gov (United States)

    Malamud, Uri; Perets, Hagai

    2017-06-01

    We investigate the evolution of icy minor planets from the moment of their birth and through the all evolutionary stages of their host stars, including the main sequence, red giant branch and asymptotic giant branch phases. We then asses the degree of water retention in planetary systems around white dwarf, as a function of various parameters. We consider progenitor stars of different masses and metallicities. We also consider minor planets of various sizes, initial orbital distances, compositions and formation times. Our results indicate that water can survive to the white dwarf stage in a variety of circumstances, especially around G, F, A and even some B type stars. We discuss the significance of water retention with respect to white dwarf pollution and also for planet habitability.

  13. Ultra-high energy cosmic rays from white dwarf pulsars and the Hillas criterion

    Science.gov (United States)

    Lobato, Ronaldo V.; Coelho, Jaziel G.; Malheiro, M.

    2017-06-01

    The origins of ultra-high-energy cosmic rays (E ≳ 1019 eV) are a mystery and still under debate in astroparticle physics. In recent years some efforts were made to understand their nature. In this contribution we consider the possibility of Some Soft Gamma Repeaters (SGRs) and Anomalous X-ray Pulsars (AXPs) beeing white dwarf pulsars, and show that these sources can achieve large electromagnetic potentials on their surface that accelerate particle almost at the speed of light, with energies E ~ 1020-21 eV. The sources SGRs/AXPs considered as highly magnetized white dwarfs are well described in the Hillas diagram, lying close to the AR Sorpii and AE Aquarii which are understood as white dwarf pulsars.

  14. Current and future white dwarf mass-radius constraints on varying fundamental couplings and unification scenarios

    Science.gov (United States)

    Magano, D. M. N.; Vilas Boas, J. M. A.; Martins, C. J. A. P.

    2017-10-01

    We discuss the feasibility of using astrophysical observations of white dwarfs as probes of fundamental physics. We quantify the effects of varying fundamental couplings on the white dwarf mass-radius relation in a broad class of unification scenarios, both for the simple case of a polytropic stellar structure model and for more general models. Independent measurements of the mass and radius, together with direct spectroscopic measurements of the fine-structure constant in white dwarf atmospheres lead to constraints on combinations of the two phenomenological parameters describing the underlying unification scenario (one of which is related to the strong sector of the theory while the other is related to the electroweak sector). While currently available measurements do not yet provide stringent constraints, we show that forthcoming improvements, expected for example from the Gaia satellite, can break parameter degeneracies and lead to constraints that ideally complement those obtained from local laboratory tests using atomic clocks.

  15. X-ray reflection from cold white dwarfs in magnetic cataclysmic variables

    Science.gov (United States)

    Hayashi, Takayuki; Kitaguchi, Takao; Ishida, Manabu

    2018-02-01

    We model X-ray reflection from white dwarfs (WDs) in magnetic cataclysmic variables (mCVs) using a Monte Carlo simulation. A point source with a power-law spectrum or a realistic post-shock accretion column (PSAC) source irradiates a cool and spherical WD. The PSAC source emits thermal spectra of various temperatures stratified along the column according to the PSAC model. In the point-source simulation, we confirm the following: a source harder and nearer to the WD enhances the reflection; higher iron abundance enhances the equivalent widths (EWs) of fluorescent iron Kα1, 2 lines and their Compton shoulder, and increases the cut-off energy of a Compton hump; significant reflection appears from an area that is more than 90° apart from the position right under the point X-ray source because of the WD curvature. The PSAC simulation reveals the following: a more massive WD basically enhances the intensities of the fluorescent iron Kα1, 2 lines and the Compton hump, except for some specific accretion rate, because the more massive WD makes a hotter PSAC from which higher-energy X-rays are preferentially emitted; a larger specific accretion rate monotonically enhances the reflection because it makes a hotter and shorter PSAC; the intrinsic thermal component hardens by occultation of the cool base of the PSAC by the WD. We quantitatively estimate the influences of the parameters on the EWs and the Compton hump with both types of source. We also calculate X-ray modulation profiles brought about by the WD spin. These depend on the angles of the spin axis from the line of sight and from the PSAC, and on whether the two PSACs can be seen. The reflection spectral model and the modulation model involve the fluorescent lines and the Compton hump and can directly be compared to the data, which allows us to estimate these geometrical parameters with unprecedented accuracy.

  16. A library of IUE white dwarf spectra for stellar population analyses.

    Science.gov (United States)

    Bica, E.; Bonatto, C.; Giovannini, O.

    1996-10-01

    We present high Signal to Noise ratio IUE spectra of different classes of white dwarfs, to be used as templates for stellar population analyses in the ultraviolet region. We present average stellar parameters associated to each group. The library contains 6 groups for DA's, 2 for DO's and 5 for DB's. We also present equivalent widths of spectral features, and continuum measurements. We call attention to the spectral characteristics which are promising indicators of the presence of white dwarfs in the spectra of composite stellar populations.

  17. GD1212: Probing deep into the interior of a pulsating white dwarf star

    Directory of Open Access Journals (Sweden)

    Giammichele N.

    2015-01-01

    Full Text Available We present the first self-consistent seismic analysis of a white dwarf star, GD 1212, in the Kepler2 field. We precisely establish the fundamental parameters of the star using the forward method based on physically sound models. We unravel the internal structure as well as the rotation profile of GD1212 deeper than in any other ZZCeti stars studied so far. This opens up interesting prospects for future analyses of the white dwarf pulsators monitored in the Kepler and Kepler2 fields.

  18. Mixing by Non-linear Gravity Wave Breaking on a White Dwarf Surface

    Science.gov (United States)

    Calder, A. C.; Alexakis, A.; Dursi, L. J.; Rosner, R.; Truran, J. W.; Fryxell, B.; Ricker, P.; Zingale, M.; Olson, K.; Timmes, F. X.; MacNeice, P.

    2002-11-01

    We present the results of a simulation of a wind-driven non-linear gravity wave breaking on the surface of a white dwarf. The ``wind'' consists of H/He from an accreted envelope, and the simulation demonstrates that this breaking wave mechanism can produce a well-mixed layer of H/He with C/O from the white dwarf above the surface. Material from this mixed layer may then be transported throughout the accreted envelope by convection, which would enrich the C/O abundance of the envelope as is expected from observations of novae.

  19. DOUBLE DEGENERATE MERGERS AS PROGENITORS OF HIGH-FIELD MAGNETIC WHITE DWARFS

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Berro, Enrique; Loren-Aguilar, Pablo; Aznar-Siguan, Gabriela; Torres, Santiago; Camacho, Judit [Departament de Fisica Aplicada, Universitat Politecnica de Catalunya, c/Esteve Terrades, 5, 08860 Castelldefels (Spain); Althaus, Leandro G.; Corsico, Alejandro H. [Facultad de Ciencias Astronomicas y Geofisicas, Universidad Nacional de La Plata, Paseo del Bosque s/n, (1900) La Plata (Argentina); Kuelebi, Baybars; Isern, Jordi, E-mail: garcia@fa.upc.edu [Institute for Space Studies of Catalonia, c/Gran Capita 2-4, Edif. Nexus 104, 08034 Barcelona (Spain)

    2012-04-10

    High-field magnetic white dwarfs have been long suspected to be the result of stellar mergers. However, the nature of the coalescing stars and the precise mechanism that produces the magnetic field are still unknown. Here, we show that the hot, convective, differentially rotating corona present in the outer layers of the remnant of the merger of two degenerate cores can produce magnetic fields of the required strength that do not decay for long timescales. Using a state-of-the-art Monte Carlo simulator, we also show that the expected number of high-field magnetic white dwarfs produced in this way is consistent with that found in the solar neighborhood.

  20. The stellar seismology of hot white dwarfs and planetary nebula nuclei

    Science.gov (United States)

    Kawaler, Steven D.

    1987-01-01

    The pulsation properties of hot white dwarfs make it possible to determine their mass, surface composition, rotation, and rate of evolution, and provide constraints on their internal structure. Period spacings are sensitive measures of stellar mass and indicate surface layer structure. Measurement of the rate of period change for these stars provide a way to determine their cooling rates. Attention is also given to how well (or poorly) models of excitation of the pulsations fit within current models of planetary nebula nuclei and hot white dwarfs.

  1. Significantly Super-Chandrasekhar Limiting Mass White Dwarfs and their Consequences

    Science.gov (United States)

    Mukhopadhyay, B.; Das, U.; Rao, A. R.; Subramanian, S.; Bhattacharya, M.; Mukerjee, S.; Bhatia, T. S.; Sutradhar, J.

    2017-03-01

    Since 2012, we have initiated a new idea showing that the mass of highly magnetized or modified Einstein's gravity induced white dwarfs could be significantly super-Chandrasekhar with a different mass-limit. This discovery has several important consequences, including explanation of peculiar, over-luminous type Ia supernovae, soft gamma-ray repeaters and anomalous X-ray pulsars without invoking extraordinarily strong, yet unobserved, magnetic fields. It further argues for a possible second standard candle. Based on simpler calculations, these white dwarfs are also shown to be much less luminous than their standard counter-parts (of low magnetic fields). This discovery altogether initiates a new field of research.

  2. Sirius B: Confronting the Limits of our Understanding of White Dwarfs

    Science.gov (United States)

    Barstow, M. A.; Joyce, S.; Casewell, S. L.; Holberg, J. B.; Bond, H. E.; Burleigh, M. R.

    2017-03-01

    Sirius B is the visually brightest and closest of all white dwarfs and we should understand it better than any other. However, as part of a binary system, its proximity to the main sequence companion Sirius A makes it very difficult to observe from the ground. Consequently, detailed study of this white dwarf has relied on a range of space-based observatories, including ROSAT, EUVE, FUSE and HST. Photometry and spectroscopy of exquisite quality and the highest signal-to- noise have been obtained from these missions from which we have been able to study the star in great detail. In principle, the measurements made are the most precise of any white dwarf. Nevertheless, Sirius B remains a challenging object to understand. So far it has proved impossible to compute a self-consistent model atmosphere that can match observations across its full energy distribution. Furthermore, separate determinations of its mass and radius from Balmer line fitting, measurement of the gravitational redshift and astrometry of the binary remain stubbornly in significant disagreement. We examine all the systematic effects that come into play with the various models and measurements and consider what improvements need to be made to finally understand Sirius B and, by implication, many other white dwarfs.

  3. Stripped Red Giants - Helium Core White Dwarf Progenitors and their sdB Siblings

    Science.gov (United States)

    Heber, U.

    2017-03-01

    Some gaps in the mosaic of binary star evolution have recently been filled by the discoveries of helium-core white dwarf progenitors (often called extremely low mass (ELM) white dwarfs) as stripped cores of first-giant branch objects. Two varieties can be distinguished. One class is made up by SB1 binaries, companions being white dwarfs as well. Another class, the so-called EL CVn stars, are composite spectrum binaries, with A-Type companions. Pulsating stars are found among both classes. A riddle is posed by the apparently single objects. There is a one-to-one correspondence of the phenomena found for these new classes of star to those observed for sdB stars. In fact, standard evolutionary scenarios explain the origin of sdB stars as red giants that have been stripped close to the tip of first red giant branch. A subgroup of subluminous B stars can also be identified as stripped helium-cores of red giants. They form an extension of the ELM sequence to higher temperatures. Hence low mass white dwarfs of helium cores and sdB stars in binaries are close relatives in terms of stellar evolution.

  4. Comparing the white dwarf cooling sequences in 47 Tuc and NGC 6397

    Energy Technology Data Exchange (ETDEWEB)

    Richer, Harvey B.; Goldsbury, Ryan; Heyl, Jeremy [Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, V6T 1Z1 (Canada); Hurley, Jarrod [Centre for Astrophysics and Supercomputing, Swinburne University of Technology, Hawthorn, VIC 3122 (Australia); Dotter, Aaron [Research School of Astronomy and Astrophysics, Australian National University, Canberra (Australia); Kalirai, Jason S. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Woodley, Kristin A. [Department of Astronomy and Astrophysics, University of California at Santa Cruz, 1156 High Street, Santa Cruz, CA 95064 (United States); Fahlman, Gregory G. [National Research Council, Herzberg Institute of Astrophysics, Victoria, BC, V9E 2E7 (Canada); Rich, R. Michael [Division of Astronomy and Astrophysics, University of California at Los Angeles, Los Angeles, CA 90095 (United States); Shara, Michael M., E-mail: richer@astro.ubc.ca, E-mail: rgoldsb@phas.ubc.ca, E-mail: heyl@phas.ubc.ca, E-mail: jhurley@swin.edu.au, E-mail: dotter@mso.anu.edu.au, E-mail: jkalirai@stsci.edu, E-mail: kwoodley@ucolick.org, E-mail: greg.fahlman@nrc-cnrc.gc.ca, E-mail: rmr@astro.ucla.edu, E-mail: mshara@amnh.org [Department of Astrophysics, American Museum of Natural History, Central Park West and 79th Street, New York, NY 10024 (United States)

    2013-12-01

    Using deep Hubble Space Telescope imaging, color-magnitude diagrams are constructed for the globular clusters 47 Tuc and NGC 6397. As expected, because of its lower metal abundance, the main sequence of NGC 6397 lies well to the blue of that of 47 Tuc. A comparison of the white dwarf cooling sequences of the two clusters, however, demonstrates that these sequences are indistinguishable over most of their loci—a consequence of the settling out of heavy elements in the dense white dwarf atmosphere and the near equality of their masses. Lower quality data on M4 continues this trend to a third cluster whose metallicity is intermediate between these two. While the path of the white dwarfs in the color-magnitude diagram is nearly identical in 47 Tuc and NGC 6397, the numbers of white dwarfs along the path are not. This results from the relatively rapid relaxation in NGC 6397 compared to 47 Tuc and provides a cautionary note that simply counting objects in star clusters in random locations as a method of testing stellar evolutionary theory is likely dangerous unless dynamical considerations are included.

  5. Multidimensional simulations of the accretion-induced collapse of white dwarfs to neutron stars

    NARCIS (Netherlands)

    Dessart, L.|info:eu-repo/dai/nl/304846074; Burrows, A.; Ott, C.D.; Livne, E.; Yoon, S.C.|info:eu-repo/dai/nl/266576753; Langer, N.|info:eu-repo/dai/nl/304829498

    2006-01-01

    We present 2.5-dimensional radiation-hydrodynamics simulations of the accretion-induced collapse (AIC) of white dwarfs, starting from two-dimensional rotational equilibrium configurations, thereby accounting consistently for the effects of rotation prior to and after core collapse.We focus our study

  6. VizieR Online Data Catalog: SDSS magnetic white dwarf stars (Kepler+, 2013)

    Science.gov (United States)

    Kepler, S. O.; Pelisoli, I.; Jordan, S.; Kleinman, S. J.; Koester, D.; Kulebi, B.; Pecanha, V.; Castanheira, B. G.; Nitta, A.; Costa, J. E. S.; Winget, D. E.; Kanaan, A.; Fraga, L.

    2017-07-01

    We classified more than 48000 spectra, selected as possible white dwarf stars from the SDSS DR7 by their colours, through visual inspection and detected Zeeman splittings in 521 DA stars. Table 1 shows the estimated values for the magnetic fields for the 521 spectra we measured. (1 data file).

  7. Measurements of Physical Parameters of White Dwarfs: A Test of the Mass-Radius Relation

    Science.gov (United States)

    Bédard, A.; Bergeron, P.; Fontaine, G.

    2017-10-01

    We present a detailed spectroscopic and photometric analysis of 219 DA and DB white dwarfs for which trigonometric parallax measurements are available. Our aim is to compare the physical parameters derived from the spectroscopic and photometric techniques, and then to test the theoretical mass-radius relation for white dwarfs using these results. The agreement between spectroscopic and photometric parameters is found to be excellent, especially for effective temperatures, showing that our model atmospheres and fitting procedures provide an accurate, internally consistent analysis. The values of surface gravity and solid angle obtained, respectively, from spectroscopy and photometry, are combined with parallax measurements in various ways to study the validity of the mass-radius relation from an empirical point of view. After a thorough examination of our results, we find that 73% and 92% of the white dwarfs are consistent within 1σ and 2σ confidence levels, respectively, with the predictions of the mass-radius relation, thus providing strong support to the theory of stellar degeneracy. Our analysis also allows us to identify 15 stars that are better interpreted in terms of unresolved double degenerate binaries. Atmospheric parameters for both components in these binary systems are obtained using a novel approach. We further identify a few white dwarfs that are possibly composed of an iron core rather than a carbon/oxygen core, since they are consistent with Fe-core evolutionary models.

  8. Consequence of total lepton number violation in strongly magnetized iron white dwarfs

    Energy Technology Data Exchange (ETDEWEB)

    Belyaev, V.B. [Bogolyubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Dubna 141980 (Russian Federation); Ricci, P. [Istituto Nazionale di Fisica Nucleare, Sezione di Firenze, I-50019 Sesto Fiorentino (Firenze) (Italy); Šimkovic, F. [Department of Nuclear Physics and Biophysics, Comenius University, Mlynská dolina F1, SK-842 15, Bratislava (Slovakia); Bogolyubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Dubna 141980 (Russian Federation); Adam, J.; Tater, M. [Institute of Nuclear Physics ASCR, CZ-250 68 Řež (Czech Republic); Truhlík, E., E-mail: truhlik@ujf.cas.cz [Institute of Nuclear Physics ASCR, CZ-250 68 Řež (Czech Republic)

    2015-05-15

    The influence of a neutrinoless electron to positron conversion on a cooling of strongly magnetized iron white dwarfs is studied. It is shown that they can be good candidates for soft gamma-ray repeaters and anomalous X-ray pulsars.

  9. Hydrodynamic Simulations of Classical Novae: Accretion onto CO White Dwarfs as SN Ia Progenitors

    Science.gov (United States)

    Starrfield, Sumner; Bose, Maitrayee; Iliadis, Christian; Hix, William R.; José, Jordi; Hernanz, Margarita

    2017-06-01

    We have continued our studies of accretion onto white dwarfs by following the evolution of thermonuclear runaways on Carbon Oxygen (CO) white dwarfs. We have varied the mass of the white dwarf and the composition of the accreted material but chosen to keep the mass accretion rate at 2 x 10^{-10} solar masses per year to obtain the largest amount of accreted material possible with rates near to those observed. We assume either 25% core material or 50% core material has been mixed into the accreting material prior to the explosion. We use our 1D, lagrangian, hydrodynamic code: NOVA. We will report on the results of these simulations and compare the ejecta abundances to those measured in pre-solar grains that are thought to arise from classical nova explosions. These results will also be compared to recent results with SHIVA (Jose and Hernanz). We find that in all cases and for all white dwarf masses that less mass is ejected than accreted and, therefore, the white dwarf is growing in mass as a result of the accretion and resulting explosion.This work was supported in part by NASA under the Astrophysics Theory Program grant 14-ATP14-0007 and the U.S. DOE under Contract No. DE-FG02- 97ER41041. SS acknowledges partial support from NASA, NSF, and HST grants to ASU and WRH is supported by the U.S. Department of Energy, Office of Nuclear Physics. The results reported herein benefitted from collaborations and/or information exchange within NASA’s Nexus for Exoplanet System Science (NExSS) research coordination network sponsored by NASA’s Science Mission Directorate.

  10. Modelling the gas kinematics of an atypical Ly α emitting compact dwarf galaxy

    Science.gov (United States)

    Forero-Romero, Jaime E.; Gronke, Max; Remolina-Gutiérrez, Maria Camila; Garavito-Camargo, Nicolás; Dijkstra, Mark

    2018-02-01

    Star-forming compact dwarf galaxies (CDGs) resemble the expected pristine conditions of the first galaxies in the Universe and are the best systems to test models on primordial galaxy formation and evolution. Here, we report on one of such CDGs, Tololo 1214-277, which presents a broad, single peaked, highly symmetric Ly α emission line that had evaded theoretical interpretation so far. In this paper, we reproduce for the first time these line features with two different physically motivated kinematic models: an interstellar medium composed by outflowing clumps with random motions and an homogeneous gaseous sphere undergoing solid body rotation. The multiphase model requires a clump velocity dispersion of 54.3 ± 0.6 km s-1 with outflows of 54.3 ± 5.1 km s-1 , while the bulk rotation velocity is constrained to be 348^{+75}_{-48} km s-1. We argue that the results from the multiphase model provide a correct interpretation of the data. In that case, the clump velocity dispersion implies a dynamical mass of 2 × 109 M⊙, 10 times its baryonic mass. If future kinematic maps of Tololo 1214-277 confirm the velocities suggested by the multiphase model, it would provide additional support to expect such kinematic state in primordial galaxies, opening the opportunity to use the models and methods presented in this paper to constrain the physics of star formation and feedback in the early generation of Ly α -emitting galaxies.

  11. Transit detection limits for sub-stellar and terrestrial companions to white dwarfs

    Science.gov (United States)

    Faedi, F.; West, R.; Burleigh, M. R.; Goad, M. R.; Hebb, L.

    2009-06-01

    The SuperWASP project is a ground-based ultra wide angle search for extra-solar planetary transits that has successfully detected 15 previously unknown planets in the last two years. We have used SuperWASP photometric data to investigate the transit characteristics of and detection limits for brown dwarfs, gas giants and terrestrial companions in orbit around white dwarfs. The relatively small size of a white dwarf host star (approximately 1 Earth radius), implies that any sub-stellar or gas giant companion will completely eclipse it, while terrestrial bodies smaller than the Moon will produce relatively large (> 1%) transits, detectable in good S/N light-curves. We performed extensive simulations using SuperWASP photometric data and we found that for Gaussian random noise we are sensitive to companions as small as the Moon. Our sensitivity drops in the presence of co-variant noise structure, nevertheless Earth-size bodies remain readily detectable in relatively low S/N data. We searched for eclipses and transit signals in a sample of 174 WASP targets, resulting from a cross-correlation of the McCook & Sion catalogue and the SuperWASP data archive. This study found no evidence for sub-stellar or planetary companions in close orbits around our sample of white dwarfs.

  12. Flexible fluorescent white organic light emitting diodes with ALD encapsulation

    Science.gov (United States)

    Tsai, Yu-Sheng; Chittawanij, Apisit; Juang, Fuh-Shyang; Lin, Pen-Chu; Hong, Lin-Ann; Tsai, Feng-Yu; Tseng, Ming-Hong; Wang, Ching-Chiun; Chen, Chien-Chih; Lin, Kung-Liang; Chen, Szu-Hao

    2015-08-01

    In this paper, the flexible white organic light-emitting diodes (WOLED) was fabricated on polyethylene naphthalate (PEN) with structure of ITO/EHI608 (75 nm)/HTG-1 (10 nm)/3% EB502:0.8% EY53 (5 nm)/3% EB502 (35 nm)/Alq3 (10 nm)/LiF (0.8 nm)/Al (150 nm) and was compared with glass substrate the same structure. It was seen that the performances of flexible and glass substrate are almost the same. The luminance, current efficiency, and CIE coordinates of flexible device is 6351 cd/m2, 12.7 cd/A, and (0.31, 0.38) at 50 mA/cm2, respectively. Then, an Al2O3/HfO2 film on polyethylene terephthalate (PET) was deposited using atomic layer deposition (ALD) as a thin film encapsulation layer have been described and compared, such as the characteristics of water permeability and lifetime of flexible WOLED. The results show that the PET/ALD film low value of about 0.04 g/m2d, and the PET film shows WVTR of about 3.8 g/m2/d. The lifetimes of PET/ALD and PET encapsulations are 840 min and 140 min, respectively. Simultaneous deposition of ALD film on PET film gave the lifetime of flexible WOLED is six times longer than device without ALD encapsulation.

  13. KOI-256's Magnetic Activity Under the Influence of the White Dwarf

    Science.gov (United States)

    Yoldaş, Ezgi; Dal, Hasan Ali

    2017-11-01

    We present the findings about chromospheric activity nature of KOI-256 obtained from the Kepler Mission data. First, it was found that there are some sinusoidal variations out-of-eclipses due to cool spot activity. The sinusoidal variations modelled by the spotmodel program indicate that the active component has two different active regions. Their longitudinal variation revealed that one of them has a migration period of 3.95 yrs, while the other has a migration period of 8.37 yrs. Second, 225 flares were detected from the short cadence data in total. The parameters, such as increase (T r) and decay (T d) times, total flare time (T t), equivalent durations (P), were calculated for each flare. The distribution of equivalent durations versus total flare times in logarithmic scale is modelled to find flare activity level. The Plateau value known as the saturation level of the active component was calculated to be 2.3121 ± 0.0964 s, and the Half-life value, which is required flare total time to reach the saturation, was computed to be 2233.6 s. In addition, the frequency of N 1, which is the number of flares per an hour in the system, was found to be 0.05087 h-1, while the flare frequency N 2 that the flare-equivalent duration emitting per an hour was found to be 0.00051. Contrary to the spot activity, it has been found that the flares are in tends to appear at specific phases due to the white dwarf component.

  14. Ultrahigh-energy cosmic rays from tidally-ignited white dwarfs

    Science.gov (United States)

    Alves Batista, Rafael; Silk, Joseph

    2017-11-01

    Ultrahigh-energy cosmic rays (UHECRs) can be accelerated by tidal disruption events of stars by black holes. We suggest a novel mechanism for UHECR acceleration wherein white dwarfs (WDs) are tidally compressed by intermediate-mass black holes (IMBHs), leading to their ignition and subsequent explosion as a supernova. Cosmic rays accelerated by the supernova may receive an energy boost when crossing the accretion-powered jet. The rate of encounters between WDs and IMBHs can be relatively high, as the number of IMBHs may be substantially augmented once account is taken of their likely presence in dwarf galaxies. Here we show that this kind of tidal disruption event naturally provides an intermediate composition for the observed UHECRs, and suggest that dwarf galaxies and globular clusters are suitable sites for particle acceleration to ultrahigh energies.

  15. Double-detonation supernovae of sub-Chandrasekhar mass white dwarfs

    Science.gov (United States)

    Fink, M.; Hillebrandt, W.; Röpke, F. K.

    2007-12-01

    Type Ia supernovae are believed to be white dwarfs disrupted by a thermonuclear explosion. Here we investigate the scenario in which a rather low-mass, carbon-oxygen (C + O) white dwarf accumulates helium on its surface in a sufficient amount for igniting a detonation in the helium shell before the Chandrasekhar mass is reached. In principle, this can happen on white dwarfs accreting from a non-degenerate companion or by merging a C + O white dwarf with a low-mass helium one. In this scenario, the helium detonation is thought to trigger a secondary detonation in the C + O core. It is therefore called the “double-detonation sub-Chandrasekhar” supernova model. By means of a set of numerical simulations, we investigate the robustness of this explosion mechanism for generic 1-{M_⊙} models and analyze its observable predictions. Also a resolution dependence in numerical simulations is analyzed. Hydrodynamic simulations of the double-detonation sub-Chandrasekhar scenario are conducted in two and three spatial dimensions. The propagation of thermonuclear detonation fronts, both in helium and in the carbon-oxygen mixture, is computed by means of both a level-set function and a simplified description for nuclear reactions. The decision whether a secondary detonation is triggered in the white dwarf's core or not is made based on criteria given in the literature. In a parameter study involving different initial flame geometries for He-shell masses of 0.2 and 0.1 {M_⊙} (and thus 0.8 and 0.9 {M_⊙} of C + O), we find that a secondary detonation ignition is a very robust process. Converging shock waves originating from the detonation in the He shell generate the conditions for a detonation near the center of the white dwarf in most of the cases considered. Finally, we follow the complete evolution of three selected models with 0.2 {M_⊙} of He through the C/O-detonation phase and obtain 56Ni-masses of about 0.40 to 0.45 {M_⊙}. Although we have not done a complete

  16. Polarimetric Evidence of the First White Dwarf Pulsar: The Binary System AR Scorpii

    Directory of Open Access Journals (Sweden)

    David A.H. Buckley

    2018-01-01

    Full Text Available The binary star AR Scorpii was recently discovered to exhibit high amplitude coherent variability across the electromagnetic spectrum (ultraviolet to radio at two closely spaced ∼2 min periods, attributed to the spin period of a white dwarf and the beat period. There is strong evidence (low X-ray luminosity, lack of flickering and absense of broad emission lines that AR Sco is a detached non-accreting system whose luminosity is dominated by the spin-down power of a white dwarf, due to magnetohydrodynamical (MHD interactions with its M5 companion. Optical polarimetry has revealed highly pulsed linear polarization on the same periods, reaching a maximum of 40%, consistent with a pulsar-like dipole, with the Stokes Q and U variations reminiscent of the Crab pulsar. These observations, coupled with the spectral energy distribution (SED which is dominated by non-thermal emission, characteristic of synchrotron emission, support the notion that a strongly magnetic (∼200 MG white dwarf is behaving like a pulsar, whose magnetic field interacts with the secondary star’s photosphere and magnetosphere. Radio synchrotron emission is produced from the pumping action of the white dwarf’s magnetic field on coronal loops from the M-star companion, while emission at high frequencies (UV/optical/X-ray comes from the particle wind, driven by large electric potential, again reminiscent of processes seen in neutron star pulsars.

  17. Red for LED : New narrow band red phosphors for white light emitting diodes

    NARCIS (Netherlands)

    Senden, T.|info:eu-repo/dai/nl/37060217X

    2018-01-01

    White light emitting diodes (LEDs) are nowadays widely applied in general lighting and consumer electronics. Due to their superior energy efficiency and long operation lifetime, white LEDs are considered to be the light sources of the future, and it is anticipated that white LEDs will largely

  18. GaN doped with beryllium—An effective light converter for white light emitting diodes

    Science.gov (United States)

    Teisseyre, Henryk; Bockowski, Michal; Grzegory, Izabella; Kozanecki, Adrian; Damilano, Benjamin; Zhydachevskii, Yaroslav; Kunzer, Michael; Holc, Katarzyna; Schwarz, Ulrich T.

    2013-07-01

    So far, most of the studies on GaN doped with beryllium have mainly concentrated on possible p-type doping. Unfortunately, realization of p-type conductivity in such a way appeared to be very difficult. It seems, however, that bulk crystals doped with beryllium can be used as white light converters in the monolithic white light emitting diodes. To realize monolithic white light emitting diode, we used blue light emitting diodes and a single GaN:Be crystal as converter. High value of the Color Rendering Index gives hope for obtaining an effective light converter based on gallium nitride doped with beryllium.

  19. An unusual white dwarf star may be a surviving remnant of a subluminous Type Ia supernova

    Science.gov (United States)

    Vennes, S.; Nemeth, P.; Kawka, A.; Thorstensen, J. R.; Khalack, V.; Ferrario, L.; Alper, E. H.

    2017-08-01

    Subluminous Type Ia supernovae, such as the Type Iax-class prototype SN 2002cx, are described by a variety of models such as the failed detonation and partial deflagration of an accreting carbon-oxygen white dwarf star or the explosion of an accreting, hybrid carbon-oxygen-neon core. These models predict that bound remnants survive such events with, according to some simulations, a high kick velocity. We report the discovery of a high proper motion, low-mass white dwarf (LP 40-365) that travels at a velocity greater than the Galactic escape velocity and whose peculiar atmosphere is dominated by intermediate-mass elements. Strong evidence indicates that this partially burnt remnant was ejected following a subluminous Type Ia supernova event. This supports the viability of single-degenerate supernova progenitors.

  20. Compact Objects in Astrophysics White Dwarfs, Neutron Stars and Black Holes

    CERN Document Server

    Camenzind, Max

    2007-01-01

    Compact objects are an important class of astronomical objects in current research. Supermassive black holes play an important role in the understanding of the formation of galaxies in the early Universe. Old white dwarfs are nowadays used to calibrate the age of the Universe. Mergers of neutron stars and black holes are the sources of intense gravitational waves which will be measured in the next ten years by gravitational wave detectors. Camenzind's Compact Objects in Astrophysics gives a comprehensive introduction and up-to-date overview about the physical processes behind these objects, covering the field from the beginning to most recent results, including all relevant observations. After a presentation of the taxonomy of compact objects, the basic principles of general relativity are given. The author then discusses in detail the physics and observations of white dwarfs and neutron stars (including the most recent equations of state for neutron star matter), the gravitational field of rapidly rotating c...

  1. The potential of 3D radiation-hydrodynamics models for white dwarf asteroseismology

    Directory of Open Access Journals (Sweden)

    Tremblay P.-E.

    2013-03-01

    Full Text Available White dwarfs with hydrogen-rich atmospheres (DA are the most abundant of all degenerate objects. In recent years work has been dedicated to increase the accuracy of their model atmospheres. Most notably, convective motions are now treated with 3D radiation-hydrodynamics instead of the standard mixing-length theory. We present and describe selected 3D model atmospheres close and within the instability strip of the pulsating ZZ Ceti white dwarfs. Our 3D simulations depend only weakly on numerical parameters and compared to 1D models, they provide more realistic determinations of the depth of the convective zone. The 3D structures can then be adopted as input for asteroseismology.

  2. A Spectroscopic Search for White Dwarf Companions to 101 Nearby M Dwarfs

    Science.gov (United States)

    Bar, Ira; Vreeswijk, Paul; Gal-Yam, Avishay; Ofek, Eran O.; Nelemans, Gijs

    2017-11-01

    Recent studies of the stellar population in the solar neighborhood (explosive phenomena. In an attempt to uncover these hidden WDs, we present intermediate resolution spectroscopy over the wavelength range of 3000–25000 Å of 101 nearby M dwarfs (dMs), observed with the Very Large Telescope X-Shooter spectrograph. For each star we search for a hot component superimposed on the dM spectrum. X-Shooter has excellent blue sensitivity and thus can reveal a faint hot WD despite the brightness of its red companion. Visual examination shows no clear evidence of a WD in any of the spectra. We place upper limits on the effective temperatures of WDs that may still be hiding by fitting dM templates to the spectra and modeling the WD spectra. On average our survey is sensitive to WDs hotter than about 5300 K. This suggests that the frequency of WD companions of {T}{eff}≳ 5300 {{K}} with separation of the order of ≲50 au among the local dM population is <3% at the 95% confidence level. The reduced spectra are made available via the WISeREP3 repository. Based on observations collected in service mode using the Very Large Telescope (VLT) under program IDs 095_D-0949(A) and 096_D-0963(A).

  3. A faint type of supernova from a white dwarf with a helium-rich companion

    OpenAIRE

    Perets, H.B.; Gal-Yam, A; Mazzali, P.; Arnett, D.; Kagan, D.; Filippenko, A. V.; Li, W.; Arcavi, I.; Cenko, S. B.; Fox, D. B.; Leonard, D. C.; Moon, D. -S.; Sand, D. J.; Soderberg, A. M.; Foley, R. J.

    2009-01-01

    Supernovae (SNe) are thought to arise from two different physical processes. The cores of massive, short-lived stars undergo gravitational core collapse and typically eject a few solar masses during their explosion. These are thought to appear as as type Ib/c and II SNe, and are associated with young stellar populations. A type Ia SN is thought to arise from the thermonuclear detonation of a white dwarf star composed mainly of carbon and oxygen, whose mass approaches the Chandrasekhar limit. ...

  4. New Insights into the Problem of the Surface Gravity Distribution of Cool DA White Dwarfs

    Science.gov (United States)

    Tremblay, P.-E.; Bergeron, P.; Kalirai, J. S.; Gianninas, A.

    2010-04-01

    We review at length the longstanding problem in the spectroscopic analysis of cool hydrogen-line (DA) white dwarfs (T effTremblay & Bergeron and find that the gravity distribution of cool objects remains suspiciously high. Finally, we find that photometric masses are, on average, in agreement with expected values, and that the high-log g problem is so far unique to the spectroscopic approach.

  5. White dwarfs in the UKIRT infrared deep sky survey data release

    Energy Technology Data Exchange (ETDEWEB)

    Tremblay, P.-E.; Kalirai, J. S. [Space Telescope Science Institute, 700 San Martin Drive, Baltimore, MD 21218 (United States); Leggett, S. K. [Gemini Observatory, Northern Operations Center, 670 North A' ohoku Place, Hilo, HI 96720 (United States); Lodieu, N. [Instituto de Astrofísica de Canarias (IAC), C/Vía Láctea s/n, E-38200 La Laguna, Tenerife (Spain); Freytag, B. [Astronomical Observatory, Uppsala University, Regementsvägen 1, Box 515, SE-75120 Uppsala (Sweden); Bergeron, P. [Département de Physique, Université de Montréal, C. P. 6128, Succursale Centre-Ville, Montréal, QC H3C 3J7 (Canada); Ludwig, H.-G., E-mail: tremblay@stsci.edu [Zentrum für Astronomie der Universität Heidelberg, Landessternwarte, Königstuhl 12, D-69117 Heidelberg (Germany)

    2014-06-20

    We have identified 8 to 10 new cool white dwarfs from the Large Area Survey (LAS) Data Release 9 of the United Kingdom InfraRed Telescope (UKIRT) Infrared Deep Sky Survey (UKIDSS). The data set was paired with the Sloan Digital Sky Survey to obtain proper motions and a broad ugrizYJHK wavelength coverage. Optical spectroscopic observations were secured at Gemini Observatory and confirm the degenerate status for eight of our targets. The final sample includes two additional white dwarf candidates with no spectroscopic observations. We rely on improved one-dimensional model atmospheres and new multi-dimensional simulations with CO5BOLD to review the stellar parameters of the published LAS white dwarf sample along with our additional discoveries. Most of the new objects possess very cool atmospheres with effective temperatures below 5000 K, including two pure-hydrogen remnants with a cooling age between 8.5 and 9.0 Gyr, and tangential velocities in the range 40 km s{sup –1} ≤v {sub tan} ≤ 60 km s{sup –1}. They are likely thick disk 10-11 Gyr old objects. In addition, we find a resolved double degenerate system with v {sub tan} ∼ 155 km s{sup –1} and a cooling age between 3.0 and 5.0 Gyr. These white dwarfs could be disk remnants with a very high velocity or former halo G stars. We also compare the LAS sample with earlier studies of very cool degenerates and observe a similar deficit of helium-dominated atmospheres in the range 5000 < T {sub eff} (K) < 6000. We review the possible explanations for the spectral evolution from helium-dominated toward hydrogen-rich atmospheres at low temperatures.

  6. A Model for the Galactic Population of Symbiotic Stars with White Dwarf Accretors

    Science.gov (United States)

    Yungelson, L.; Livio, M.; Tutukov, A.; Kenyon, S. J.

    1995-07-01

    By means of a population synthesis code, we investigate the formation of symbiotic systems in which the hot components are assumed to be white dwarfs which are either burning hydrogen steadily or are in a post-nova plateau" phase, in the evolution of exploding white dwarfs. Our estimate for the total number of symbiotic systems in the Galaxy, ˜3000-30,000 (depending on different model assumptions), is compatible with observational estimates. The crucial parameter for the determination of the birthrate and number of symbiotic stars is the mass of the hydrogen layer which the white dwarf can accumulate prior to hydrogen ignition. We model the distributions of symbiotic stars over orbital periods, masses of the components, mass-loss rates by the cool components, and brightness of components, and we obtain a reasonable agreement with observations. We show that in systems which are the most efficient in producing the symbiotic phenomenon, the accretors have to capture up to ˜30% of the matter lost by the cool component via a stellar wind. If the fraction of captured matter is significantly lower, it becomes impossible to explain even the lowest observational estimates of the number of symbiotic stars. The theoretical estimate of the average rate of symbiotic novae is ˜0.1 yr-1, compatible with the observed one. The apparent normal chemical composition of symbiotic novae can be explained if the white dwarfs in these systems, which have systematically lower masses than in cataclysmic binaries, manage to preserve "buffer" helium layers between their CO cores and the accreted hydrogen envelopes. Mass exchange in symbiotic systems does not lead to SN Ia's via the accumulation of a Chandrasekhar mass. However, if sub-Chandrasekhar-mass, double-detonation models indeed produce SN Ia's, then symbiotic systems can be the progenitors of ≲⅓ of the events. According to the model, SN Ia's in symbiotic binaries belong to young and intermediate-age populations (t ≲ 6 × 109

  7. Stellar Archeology: What White Dwarf Stars Tell Us About the History of the Galaxy

    Directory of Open Access Journals (Sweden)

    Terry D. Oswalt

    2012-06-01

    Full Text Available White dwarf stars have played important roles in rather diverse areas of astrophysics. This paper outlines how these stellar remnants, especially those in widely separated “fragile” binaries, have provided unique leverage on difficult astrophysical problems such as the ages of stars, the structure and evolution of the Galaxy, the nature of dark matter and even the discovery of dark energy.

  8. Normal Type Ia Supernovae from Violent Mergers of White Dwarf Binaries

    Science.gov (United States)

    Pakmor, R.; Kromer, M.; Taubenberger, S.; Sim, S. A.; Röpke, F. K.; Hillebrandt, W.

    2012-03-01

    One of the most important questions regarding the progenitor systems of Type Ia supernovae (SNe Ia) is whether mergers of two white dwarfs can lead to explosions that reproduce observations of normal events. Here we present a fully three-dimensional simulation of a violent merger of two carbon-oxygen white dwarfs with masses of 0.9 M ⊙ and 1.1 M ⊙ combining very high resolution and exact initial conditions. A well-tested combination of codes is used to study the system. We start with the dynamical inspiral phase and follow the subsequent thermonuclear explosion under the plausible assumption that a detonation forms in the process of merging. We then perform detailed nucleosynthesis calculations and radiative transfer simulations to predict synthetic observables from the homologously expanding supernova ejecta. We find that synthetic color light curves of our merger, which produces about 0.62 M ⊙ of 56Ni, show good agreement with those observed for normal SNe Ia in all wave bands from U to K. Line velocities in synthetic spectra around maximum light also agree well with observations. We conclude that violent mergers of massive white dwarfs can closely resemble normal SNe Ia. Therefore, depending on the number of such massive systems available these mergers may contribute at least a small fraction to the observed population of normal SNe Ia.

  9. NORMAL TYPE Ia SUPERNOVAE FROM VIOLENT MERGERS OF WHITE DWARF BINARIES

    Energy Technology Data Exchange (ETDEWEB)

    Pakmor, R. [Heidelberger Institut fuer Theoretische Studien, Schloss-Wolfsbrunnenweg 35, 69118 Heidelberg (Germany); Kromer, M.; Taubenberger, S.; Hillebrandt, W. [Max-Planck-Institut fuer Astrophysik, Karl-Schwarzschild-Str. 1, 85741 Garching (Germany); Sim, S. A. [Research School of Astronomy and Astrophysics, Mount Stromlo Observatory, Cotter Road, Weston Creek, ACT 2611 (Australia); Roepke, F. K. [Institut Fuer Theoretische Physik und Astrophysik, Universitaet Wuerzburg, Emil-Fischer-Str. 31, 97074 Wuerzburg (Germany)

    2012-03-15

    One of the most important questions regarding the progenitor systems of Type Ia supernovae (SNe Ia) is whether mergers of two white dwarfs can lead to explosions that reproduce observations of normal events. Here we present a fully three-dimensional simulation of a violent merger of two carbon-oxygen white dwarfs with masses of 0.9 M{sub Sun} and 1.1 M{sub Sun} combining very high resolution and exact initial conditions. A well-tested combination of codes is used to study the system. We start with the dynamical inspiral phase and follow the subsequent thermonuclear explosion under the plausible assumption that a detonation forms in the process of merging. We then perform detailed nucleosynthesis calculations and radiative transfer simulations to predict synthetic observables from the homologously expanding supernova ejecta. We find that synthetic color light curves of our merger, which produces about 0.62 M{sub Sun} of {sup 56}Ni, show good agreement with those observed for normal SNe Ia in all wave bands from U to K. Line velocities in synthetic spectra around maximum light also agree well with observations. We conclude that violent mergers of massive white dwarfs can closely resemble normal SNe Ia. Therefore, depending on the number of such massive systems available these mergers may contribute at least a small fraction to the observed population of normal SNe Ia.

  10. Direct formation of millisecond pulsars from rotationally delayed accretion-induced collapse of massive white dwarfs

    Science.gov (United States)

    Freire, Paulo C. C.; Tauris, Thomas M.

    2014-02-01

    Millisecond pulsars (MSPs) are believed to be old neutron stars, formed via Type Ib/c core-collapse supernovae, which have subsequently been spun up to high rotation rates via accretion from a companion star in a highly circularized low-mass X-ray binary. The recent discoveries of Galactic field binary MSPs in eccentric orbits, and mass functions compatible with that expected for helium white dwarf companions, PSR J2234+06 and PSR J1946+3417, therefore challenge this picture. Here, we present a hypothesis for producing this new class of systems, where the MSPs are formed directly from a rotationally delayed accretion-induced collapse of a super-Chandrasekhar mass white dwarf. We compute the orbital properties of the MSPs formed in such events and demonstrate that our hypothesis can reproduce the observed eccentricities, masses and orbital periods of the white dwarfs, as well as forecasting the pulsar masses and velocities. Finally, we compare this hypothesis to a triple-star scenario.

  11. Metal abundances in hot white dwarfs with signatures of a superionized wind

    Science.gov (United States)

    Werner, K.; Rauch, T.; Kruk, J. W.

    2018-01-01

    About a dozen hot white dwarfs with effective temperatures Teff = 65 000-120 000 K exhibit unusual absorption features in their optical spectra. These objects were tentatively identified as Rydberg lines of ultra-high excited metals in ionization stages v-x, indicating line formation in a dense environment with temperatures near 106 K. Since some features show blueward extensions, it was argued that they stem from a superionized wind. A unique assignment of the lines to particular elements is not possible, although they probably stem from C, N, O, and Ne. To further investigate this phenomenon, we analyzed the ultraviolet spectra available from only three stars of this group; that is, two helium-rich white dwarfs, HE 0504-2408 and HS 0713+3958 with spectral type DO, and a hydrogen-rich white dwarf, HS 2115+1148 with spectral type DAO. We identified light metals (C, N, O, Si, P, and S) with generally subsolar abundances and heavy elements from the iron group (Cr, Mn, Fe, Co, Ni) with solar or oversolar abundance. The abundance patterns are not unusual for hot WDs and can be interpreted as the result of gravitational settling and radiative levitation of elements. As to the origin of the ultra-high ionized metals lines, we discuss the possible presence of a multicomponent radiatively driven wind that is frictionally heated.

  12. Do weak magnetic fields prevent hydrogen from accreting onto metal-line white dwarf stars?

    Science.gov (United States)

    Friedrich, S.; Jordan, S.; Koester, D.

    2004-09-01

    The widely accepted assumption is that metals detected in the spectra of a few cool helium-rich white dwarfs cannot be of primordial origin and therefore must be accreted from the interstellar medium. However, the observed abundances of hydrogen are much too low to be compatible with the high accretion rates inferred from metal accretion. Hydrogen accretion is therefore suppressed compared to metal accretion. The hypothesis most widely discussed as cause for this ``hydrogen screening'' is the propeller mechanism: Metals are accreted in the form of grains onto a slowly rotating, weakly magnetized white dwarf, whereas ionized hydrogen is repelled at the Alfvén radius. We have obtained circular polarization spectra of the helium-rich white dwarfs GD 40 (WD0300-013) and L745-46A (WD0738-172) - which both show strong metal lines as well as hydrogen - in order to search for signatures of a weak magnetic field. The magnetic field strengths necessary for the propeller mechanism to work in these stars are at least 144 000 G and 3000 G, respectively. Whereas L745-46A might have a magnetic field of about -6900 G no magnetic field could be found with an upper limit for the field strength of 4000 G (with 99% confidence) for GD 40. Based on observations collected at the European Southern Observatory, Paranal, Chile (ESO Programme 66.D-0541).

  13. Metal Accretion onto White Dwarfs. I. The Approximate Approach Based on Estimates of Diffusion Timescales

    Science.gov (United States)

    Fontaine, G.; Brassard, P.; Dufour, P.; Tremblay, P.-E.

    2015-06-01

    The accretion-diffusion picture is the model par excellence for describing the presence of planetary debris polluting the atmospheres of relatively cool white dwarfs. Some important insights into the process may be derived using an approximate approach which combines static stellar models with estimates of diffusion timescales at the base of the outer convection zone or, in its absence, at the photosphere. Until recently, and to our knowledge, values of diffusion timescales in white dwarfs have all been obtained on the basis of the same physics as that developed initially by Paquette et al., including their diffusion coefficients and thermal diffusion coefficients. In view of the recent exciting discoveries of a plethora of metals (including some never seen before) polluting the atmospheres of an increasing number of cool white dwarfs, we felt that a new look at the estimates of settling timescales would be worthwhile. We thus provide improved estimates of diffusion timescales for all 27 elements from Li to Cu in the periodic table in a wide range of the surface gravity-effective temperature domain and for both DA and non-DA stars.

  14. Rapid Evolution of the Gaseous Exoplanetary Debris around the White Dwarf Star HE 1349–2305

    Science.gov (United States)

    Dennihy, E.; Clemens, J. C.; Dunlap, B. H.; Fanale, S. M.; Fuchs, J. T.; Hermes, J. J.

    2018-02-01

    Observations of heavy metal pollution in white dwarf stars indicate that metal-rich planetesimals are frequently scattered into star-grazing orbits, tidally disrupted, and accreted onto the white dwarf surface, offering direct insight into the dynamical evolution of post-main-sequence exoplanetary systems. Emission lines from the gaseous debris in the accretion disks of some of these systems show variations on timescales of decades, and have been interpreted as the general relativistic precession of a recently formed, elliptical disk. Here we present a comprehensive spectroscopic monitoring campaign of the calcium infrared triplet emission in one system, HE 1349–2305, which shows morphological emission profile variations suggestive of a precessing, asymmetric intensity pattern. The emission profiles are shown to vary on a timescale of one to two years, which is an order of magnitude shorter than what has been observed in other similar systems. We demonstrate that this timescale is likely incompatible with general relativistic precession, and consider alternative explanations for the rapid evolution, including the propagation of density waves within the gaseous debris. We conclude with recommendations for follow-up observations, and discuss how the rapid evolution of the gaseous debris in HE 1349–2305 could be leveraged to test theories of exoplanetary debris disk evolution around white dwarf stars.

  15. Supernova SN 2011fe from an exploding carbon-oxygen white dwarf star.

    Science.gov (United States)

    Nugent, Peter E; Sullivan, Mark; Cenko, S Bradley; Thomas, Rollin C; Kasen, Daniel; Howell, D Andrew; Bersier, David; Bloom, Joshua S; Kulkarni, S R; Kandrashoff, Michael T; Filippenko, Alexei V; Silverman, Jeffrey M; Marcy, Geoffrey W; Howard, Andrew W; Isaacson, Howard T; Maguire, Kate; Suzuki, Nao; Tarlton, James E; Pan, Yen-Chen; Bildsten, Lars; Fulton, Benjamin J; Parrent, Jerod T; Sand, David; Podsiadlowski, Philipp; Bianco, Federica B; Dilday, Benjamin; Graham, Melissa L; Lyman, Joe; James, Phil; Kasliwal, Mansi M; Law, Nicholas M; Quimby, Robert M; Hook, Isobel M; Walker, Emma S; Mazzali, Paolo; Pian, Elena; Ofek, Eran O; Gal-Yam, Avishay; Poznanski, Dovi

    2011-12-14

    Type Ia supernovae have been used empirically as 'standard candles' to demonstrate the acceleration of the expansion of the Universe even though fundamental details, such as the nature of their progenitor systems and how the stars explode, remain a mystery. There is consensus that a white dwarf star explodes after accreting matter in a binary system, but the secondary body could be anything from a main-sequence star to a red giant, or even another white dwarf. This uncertainty stems from the fact that no recent type Ia supernova has been discovered close enough to Earth to detect the stars before explosion. Here we report early observations of supernova SN 2011fe in the galaxy M101 at a distance from Earth of 6.4 megaparsecs. We find that the exploding star was probably a carbon-oxygen white dwarf, and from the lack of an early shock we conclude that the companion was probably a main-sequence star. Early spectroscopy shows high-velocity oxygen that slows rapidly, on a timescale of hours, and extensive mixing of newly synthesized intermediate-mass elements in the outermost layers of the supernova. A companion paper uses pre-explosion images to rule out luminous red giants and most helium stars as companions to the progenitor.

  16. A WHITE DWARF MERGER AS PROGENITOR OF THE ANOMALOUS X-RAY PULSAR 4U 0142+61?

    Energy Technology Data Exchange (ETDEWEB)

    Rueda, J. A.; Boshkayev, K.; Izzo, L.; Ruffini, R. [Dipartimento di Fisica and ICRA, Sapienza Universita di Roma, P.le Aldo Moro 5, I-00185 Rome (Italy); Loren-Aguilar, P. [School of Physics, University of Exeter, Stocker Road, Exeter EX4 4QL (United Kingdom); Kuelebi, B. [Institut de Ciencies de l' Espai (CSIC), Facultat de Ciencies, Campus UAB, Torre C5-parell, E-08193 Bellaterra (Spain); Aznar-Siguan, G.; Garcia-Berro, E., E-mail: jorge.rueda@icra.it, E-mail: enrique.garcia-berro@upc.edu [Institute for Space Studies of Catalonia, c/Gran Capita 2-4, Edif. Nexus 104, E-08034 Barcelona (Spain)

    2013-08-01

    It has been recently proposed that massive, fast-rotating, highly magnetized white dwarfs could describe the observational properties of some of soft gamma-ray repeaters and anomalous X-ray pulsars (AXPs). Moreover, it has also been shown that high-field magnetic white dwarfs can be the outcome of white dwarf binary mergers. The products of these mergers consist of a hot central white dwarf surrounded by a rapidly rotating disk. Here we show that the merger of a double degenerate system can explain the characteristics of the peculiar AXP 4U 0142+61. This scenario accounts for the observed infrared excess. We also show that the observed properties of 4U 0142+6 are consistent with an approximately 1.2 M{sub Sun} white dwarf, remnant of the coalescence of an original system made of two white dwarfs of masses 0.6 M{sub Sun} and 1.0 M{sub Sun }. Finally, we infer a post-merging age {tau}{sub WD} Almost-Equal-To 64 kyr and a magnetic field B Almost-Equal-To 2 Multiplication-Sign 10{sup 8} G. Evidence for such a magnetic field may come from the possible detection of the electron cyclotron absorption feature observed between the B and V bands at Almost-Equal-To 10{sup 15} Hz in the spectrum of 4U 0142+61.

  17. Once in a blue moon: detection of `bluing' during debris transits in the white dwarf WD 1145+017

    Science.gov (United States)

    Hallakoun, N.; Xu (许偲艺), S.; Maoz, D.; Marsh, T. R.; Ivanov, V. D.; Dhillon, V. S.; Bours, M. C. P.; Parsons, S. G.; Kerry, P.; Sharma, S.; Su, K.; Rengaswamy, S.; Pravec, P.; Kušnirák, P.; Kučáková, H.; Armstrong, J. D.; Arnold, C.; Gerard, N.; Vanzi, L.

    2017-08-01

    The first transiting planetesimal orbiting a white dwarf was recently detected in K2 data of WD 1145+017 and has been followed up intensively. The multiple, long and variable transits suggest the transiting objects are dust clouds, probably produced by a disintegrating asteroid. In addition, the system contains circumstellar gas, evident by broad absorption lines, mostly in the u΄ band, and a dust disc, indicated by an infrared excess. Here we present the first detection of a change in colour of WD 1145+017 during transits, using simultaneous multiband fast-photometry ULTRACAM measurements over the u΄g΄r΄i΄ bands. The observations reveal what appears to be 'bluing' during transits; transits are deeper in the redder bands, with a u΄ - r΄ colour difference of up to ∼-0.05 mag. We explore various possible explanations for the bluing, including limb darkening or peculiar dust properties. 'Spectral' photometry obtained by integrating over bandpasses in the spectroscopic data in and out of transit, compared to the photometric data, shows that the observed colour difference is most likely the result of reduced circumstellar absorption in the spectrum during transits. This indicates that the transiting objects and the gas share the same line of sight and that the gas covers the white dwarf only partially, as would be expected if the gas, the transiting debris and the dust emitting the infrared excess are part of the same general disc structure (although possibly at different radii). In addition, we present the results of a week-long monitoring campaign of the system using a global network of telescopes.

  18. Conversion of Biowaste Asian Hard Clam (Meretrix lusoria Shells into White-Emitting Phosphors for Use in Neutral White LEDs

    Directory of Open Access Journals (Sweden)

    Tsung-Yuan Chang

    2016-12-01

    Full Text Available The increasing volume and complexity of waste associated with the modern economy poses a serious risk to ecosystems and human health. However, the remanufacturing and recycling of waste into usable products can lead to substantial resource savings. In the present study, clam shell waste was first transformed into pure and well-crystallized single-phase white light-emitting phosphor Ca9Gd(PO47:Eu2+,Mn2+ materials. The phosphor Ca9Gd(PO47:Eu2+,Mn2+ materials were synthesized by the solid-state reaction method and the carbothermic reduction process, and then characterized and analyzed by means of X-ray diffraction (XRD and photoluminescence (PL measurements. The structural and luminescent properties of the phosphors were investigated as well. The PL and quantum efficiency measurements showed that the luminescence properties of clam shell-based phosphors were comparable to that of the chemically derived phosphors. Moreover, white light-emitting diodes were fabricated through the integration of 380 nm chips and single-phase white light-emitting phosphors (Ca0.979Eu0.006Mn0.0159Gd(PO47 into a single package of a white light emitting diode (WLED emitting a neutral white light of 5298 K with color coordinates of (0.337, 0.344.

  19. Conversion of Biowaste Asian Hard Clam (Meretrix lusoria) Shells into White-Emitting Phosphors for Use in Neutral White LEDs.

    Science.gov (United States)

    Chang, Tsung-Yuan; Wang, Chih-Min; Lin, Tai-Yuan; Lin, Hsiu-Mei

    2016-12-02

    The increasing volume and complexity of waste associated with the modern economy poses a serious risk to ecosystems and human health. However, the remanufacturing and recycling of waste into usable products can lead to substantial resource savings. In the present study, clam shell waste was first transformed into pure and well-crystallized single-phase white light-emitting phosphor Ca₉Gd(PO₄)₇:Eu2+,Mn2+ materials. The phosphor Ca₉Gd(PO₄)₇:Eu2+,Mn2+ materials were synthesized by the solid-state reaction method and the carbothermic reduction process, and then characterized and analyzed by means of X-ray diffraction (XRD) and photoluminescence (PL) measurements. The structural and luminescent properties of the phosphors were investigated as well. The PL and quantum efficiency measurements showed that the luminescence properties of clam shell-based phosphors were comparable to that of the chemically derived phosphors. Moreover, white light-emitting diodes were fabricated through the integration of 380 nm chips and single-phase white light-emitting phosphors (Ca0.979Eu0.006Mn0.015)₉Gd(PO₄)₇ into a single package of a white light emitting diode (WLED) emitting a neutral white light of 5298 K with color coordinates of (0.337, 0.344).

  20. Searching For Infrared Excesses Around White Dwarf Stars

    Science.gov (United States)

    Deeb Wilson, Elin; Rebull, Luisa M.; Debes, John H.; Stark, Chris

    2017-01-01

    Many WDs have been found to be “polluted,” meaning they contain heavier elements in their atmospheres. Either an active process that counters gravitational settling is taking place, or an external mechanism is the cause. One proposed external mechanism for atmospheric pollution of WDs is the disintegration and accretion of rocky bodies, which would result in a circumstellar (CS) disk. As CS disks are heated, they emit excess infrared (IR) emission. WDs with IR excesses indicative of a CS disk are known as dusty WDs. Statistical studies are still needed to determine how numerous dusty, polluted WDs are, along with trends and correlations regarding rate of planetary accretion, the lifetimes of CS disks, and the structure and evolution of CS disks. These findings will allow for a better understanding of the fates of planets along with potential habitability of surviving planets.In this work, we are trying to confirm IR excesses around a sample of 69 WD stars selected as part of the WISE InfraRed Excesses around Degenerates (WIRED) Survey (Debes et al. 2011). We have archival data from WISE, Spitzer, 2MASS, DENIS, and SDSS. The targets were initially selected from the Sloan Digital Sky Survey (SDSS), and identified as containing IR excesses based on WISE data. We also have data from the Four Star Infrared Camera array, which is part of Carnegie Institution’s Magellan 6.5 meter Baade Telescope located at Las Campanas Observatory in Chile. These Four Star data are much higher spatial resolution than the WISE data that were used to determine if each WD has an IR excess. There are often not many bands delineating the IR excess portion of the SED; therefore, we are using the Four Star data to check if there is another source in the WISE beam affecting the IR excess.

  1. High performance flexible top-emitting warm-white organic light-emitting devices and chromaticity shift mechanism

    Directory of Open Access Journals (Sweden)

    Hongying Shi

    2014-04-01

    Full Text Available Flexible warm-white top-emitting organic light-emitting devices (TEOLEDs are fabricated onto PET substrates with a simple semi-transparent cathode Sm/Ag and two-color phosphors respectively doped into a single host material TCTA. By adjusting the relative position of the orange-red EML sandwiched between the blue emitting layers, the optimized device exhibits the highest power/current efficiency of 8.07 lm/W and near 13 cd/A, with a correlated color temperature (CCT of 4105 K and a color rendering index (CRI of 70. In addition, a moderate chromaticity variation of (-0.025, +0.008 around warm white illumination coordinates (0.45, 0.44 is obtained over a large luminance range of 1000 to 10000 cd/m2. The emission mechanism is discussed via delta-doping method and single-carrier device, which is summarized that the carrier trapping, the exciton quenching, the mobility change and the recombination zone alteration are negative to color stability while the energy transfer process and the blue/red/blue sandwiched structure are contributed to the color stability in our flexible white TEOLEDs.

  2. Color stable white phosphorescent organic light emitting diodes with red emissive electron transport layer

    Energy Technology Data Exchange (ETDEWEB)

    Wook Kim, Jin; Yoo, Seung Il; Sung Kang, Jin [Department of Green Energy & Semiconductor Engineering, Hoseo University, Asan 336-795 (Korea, Republic of); Eun Lee, Song; Kwan Kim, Young [Department of Information Display, Hongik University, Seoul 121-791 (Korea, Republic of); Hwa Yu, Hyeong; Turak, Ayse [Department of Engineering Physics, McMaster University, Hamilton, Ontario L8S 4L7 (Canada); Young Kim, Woo, E-mail: wykim@hoseo.edu [Department of Green Energy & Semiconductor Engineering, Hoseo University, Asan 336-795 (Korea, Republic of); Department of Engineering Physics, McMaster University, Hamilton, Ontario L8S 4L7 (Canada)

    2015-06-28

    We analyzed the performance of multi-emissive white phosphorescent organic light-emitting diodes (PHOLEDs) in relation to various red emitting sites of hole and electron transport layers (HTL and ETL). The shift of the recombination zone producing stable white emission in PHOLEDs was utilized as luminance was increased with red emission in its electron transport layer. Multi-emissive white PHOLEDs including the red light emitting electron transport layer yielded maximum external quantum efficiency of 17.4% with CIE color coordinates (−0.030, +0.001) shifting only from 1000 to 10 000 cd/m{sup 2}. Additionally, we observed a reduction of energy loss in the white PHOLED via Ir(piq){sub 3} as phosphorescent red dopant in electron transport layer.

  3. Fluorescent SiC for white light-emitting diodes

    DEFF Research Database (Denmark)

    Ou, Haiyan; Ou, Yiyu; Kamiyama, S.

    2012-01-01

    The strong photoluminescence from f-SiC was achieved after the optimization of the B and N concentrations. Surface nanostructures were successfully applied to enhance the extraction efficiency. f-SiC is a promising wavelength convertor for white LEDs.......The strong photoluminescence from f-SiC was achieved after the optimization of the B and N concentrations. Surface nanostructures were successfully applied to enhance the extraction efficiency. f-SiC is a promising wavelength convertor for white LEDs....

  4. Topics in solid-state astrophysics: Magnetized neutron star crusts and multicomponent crusts/white dwarfs

    Science.gov (United States)

    Engstrom, Tyler A.

    Two research endeavors are described in this dissertation; both undertake problems in solid-state astrophysics, which is a branch of solid-state physics concerning the extreme conditions found within white dwarfs and the solid crusts of neutron stars. As much of our knowledge about these compact objects comes from observation of astrophysical phenomena, Chapter 1 is devoted to the phenomena, and how they can be exploited as material property probes. Several of the most interesting phenomena involve the enormous magnetic fields (B ≥ 1012 gauss) harbored by many neutron stars, and the interaction between these fields and the charged particles within the solid crust. Accordingly, Chapter 2 reviews some theory of strongly-magnetized electrons, which both sets the stage for Chapter 3, and (hopefully) serves as a useful reference for future research. Let it now be made clear that this dissertation focuses exclusively on the "outer crusts," of neutron stars, where no free neutrons are present (rho white dwarfs, which have central densities ˜ 107 g/cc. For the most part we specialize to even lower densities. In Chapter 3, static and dynamic properties of low density (rho ≥ 106 g/cc) outer envelopes of neutron stars are calculated within the nonlinear magnetic Thomas-Fermi model, assuming degenerate electrons. A novel domain decomposition enables proper description of lattice symmetry and may be seen as a prototype for the general class of problems involving nonlinear charge screening of periodic, quasi-low-dimensionality structures, e.g. liquid crystals. We describe a scalable implementation of the method using Hypre. Over the density range considered, the effective shear modulus appears to be a factor of ≈ 20 larger than in the linearlyscreened Coulomb crystal model, which could have implications for observables related to astroseismology as well as low temperature phonon-mediated thermal conductivity. Other findings include incipient c' white dwarfs. Candidate

  5. Revisiting the axion bounds from the Galactic white dwarf luminosity function

    Science.gov (United States)

    Miller Bertolami, M. M.; Melendez, B. E.; Althaus, L. G.; Isern, J.

    2014-10-01

    It has been shown that the shape of the luminosity function of white dwarfs (WDLF) is a powerful tool to check for the possible existence of DFSZ-axions, a proposed but not yet detected type of weakly interacting particles. With the aim of deriving new constraints on the axion mass, we compute in this paper new theoretical WDLFs on the basis of WD evolving models that incorporate the feedback of axions on the thermal structure of the white dwarf. We find that the impact of the axion emission into the neutrino emission can not be neglected at high luminosities M Bollesssim 8) and that the axion emission needs to be incorporated self-consistently into the evolution of the white dwarfs when dealing with axion masses larger than macos2β≳ 5 meV (i.e. axion-electron coupling constant gae≳ 1.4× 10-13). We went beyond previous works by including 5 different derivations of the WDLF in our analysis. Then we have performed χ2-tests to have a quantitative measure of the agreement between the theoretical WDLFs — computed under the assumptions of different axion masses and normalization methods --- and the observed WDLFs of the Galactic disk. While all the WDLF studied in this work disfavour axion masses in the range suggested by asteroseismology macos2β≳ 10 meV; gae≳ 2.8× 10-13) lower axion masses can not be discarded from our current knowledge of the WDLF of the Galactic Disk. A larger set of completely independent derivations of the WDLF of the galactic disk as well as a detailed study of the uncertainties of the theoretical WDLFs is needed before quantitative constraints on the axion-electron coupling constant can be made.

  6. CALIBRATION OF THE MIXING-LENGTH THEORY FOR CONVECTIVE WHITE DWARF ENVELOPES

    Energy Technology Data Exchange (ETDEWEB)

    Tremblay, P.-E. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Ludwig, H.-G. [Zentrum für Astronomie der Universität Heidelberg, Landessternwarte, Königstuhl 12, D-69117 Heidelberg (Germany); Freytag, B. [Department of Physics and Astronomy at Uppsala University, Regementsvägen 1, Box 516, SE-75120 Uppsala (Sweden); Fontaine, G.; Brassard, P. [Département de Physique, Université de Montréal, C. P. 6128, Succursale Centre-Ville, Montréal, QC H3C 3J7 (Canada); Steffen, M., E-mail: tremblay@stsci.edu [Leibniz-Institut für Astrophysik Potsdam, An der Sternwarte 16, D-14482 Potsdam (Germany)

    2015-02-01

    A calibration of the mixing-length parameter in the local mixing-length theory (MLT) is presented for the lower part of the convection zone in pure-hydrogen-atmosphere white dwarfs. The parameterization is performed from a comparison of three-dimensional (3D) CO5BOLD simulations with a grid of one-dimensional (1D) envelopes with a varying mixing-length parameter. In many instances, the 3D simulations are restricted to the upper part of the convection zone. The hydrodynamical calculations suggest, in those cases, that the entropy of the upflows does not change significantly from the bottom of the convection zone to regions immediately below the photosphere. We rely on this asymptotic entropy value, characteristic of the deep and adiabatically stratified layers, to calibrate 1D envelopes. The calibration encompasses the convective hydrogen-line (DA) white dwarfs in the effective temperature range 6000 ≤ T {sub eff} (K) ≤15, 000 and the surface gravity range 7.0 ≤ log g ≤ 9.0. It is established that the local MLT is unable to reproduce simultaneously the thermodynamical, flux, and dynamical properties of the 3D simulations. We therefore propose three different parameterizations for these quantities. The resulting calibration can be applied to structure and envelope calculations, in particular for pulsation, chemical diffusion, and convective mixing studies. On the other hand, convection has no effect on the white dwarf cooling rates until there is a convective coupling with the degenerate core below T {sub eff} ∼ 5000 K. In this regime, the 1D structures are insensitive to the MLT parameterization and converge to the mean 3D results, hence they remain fully appropriate for age determinations.

  7. Search for Weak Magnetic Fields in DBZ and DBAZ White Dwarfs

    Science.gov (United States)

    Friedrich, S.; Jordan, S.; Koester, D.

    It is widely accepted that metals detected in the spectra of a few cool white dwarfs cannot be of primordial origin and therefore must be accreted from the interstellar medium. However the observed abundances of hydrogen in the atmospheres of these stars are much too low to be compatible with the high accretion rates inferred from metal accretion if solar abundances are assumed. It was therefore proposed that metals are accreted in the form of grains onto a slowly rotating, weakly magnetized white dwarf, whereas ionized hydrogen is repelled at the Alfven radius. In order to test this hypothesis we obtained circular polarization spectra of two metal line white dwarfs (GD40 and L745-46A) with the VLT-UT1 and FORS1 to search for such magnetic fields. Within the errors (±0.1% and ±0.3% for L745-46A and GD40, respectively) we could not find signatures of a magnetic field in the spectra of any of the two stars. If we exclude the possibility, that we are looking on the magnetic equator of a pure magnetic dipole, in which case the components of the magnetic field along the line of sight completely cancel and no circular polarization can be detected, we conclude, that the field strength of the magnetic field on both stars must be well below the 105 Gauss required by theory. We could confirm an Hα line in the flux spectrum of GD40, which was found by Greenstein & Liebert (ApJ 360, 662) and determine the hydrogen abundance in the stellar atmosphere which is a factor of 100 to 1000 below the value expected from accretion with solar abundances.

  8. THE SPECTRUM OF THE RECYCLED PSR J0437-4715 AND ITS WHITE DWARF COMPANION

    Energy Technology Data Exchange (ETDEWEB)

    Durant, Martin; Kargaltsev, Oleg [Department of Astronomy, University of Florida, FL 32611-2055 (United States); Pavlov, George G.; Posselt, Bettina [Department of Astronomy and Astrophysics, Pennsylvania State University, PA 16802 (United States); Kowalski, Piotr M. [Helmholtz Centre Potsdam-GFZ German Research Centre for Geosciences, Telegrafenberg, 14473 Potsdam (Germany); Van Kerkwijk, Marten H. [Department of Astronomy, University of Toronto, 50 St. George Street, Toronto, ON M5S 3H4 (Canada); Kaplan, David L., E-mail: martin.durant@astro.ufl.edu [Physics Department, University of Wisconsin-Milwaukee, Milwaukee, WI 53211 (United States)

    2012-02-10

    We present extensive spectral and photometric observations of the recycled pulsar/white dwarf binary containing PSR J0437-4715, which we analyzed together with archival X-ray and gamma-ray data, to obtain the complete mid-infrared to gamma-ray spectrum. We first fit each part of the spectrum separately, and then the whole multi-wavelength spectrum. We find that the optical-infrared part of the spectrum is well fit by a cool white dwarf atmosphere model with pure hydrogen composition. The model atmosphere (T{sub eff} = 3950 {+-} 150 K, log g = 6.98 {+-} 0.15, R{sub WD} = (1.9 {+-} 0.2) Multiplication-Sign 10{sup 9} cm) fits our spectral data remarkably well for the known mass and distance (M = 0.25 {+-} 0.02 M{sub Sun }, d = 156.3 {+-} 1.3 pc), yielding the white dwarf age ({tau}{sub WD} = 6.0 {+-} 0.5 Gyr). In the UV, we find a spectral shape consistent with thermal emission from the bulk of the neutron star surface, with surface temperature between 1.25 Multiplication-Sign 10{sup 5} and 3.5 Multiplication-Sign 10{sup 5} K. The temperature of the thermal spectrum suggests that some heating mechanism operates throughout the life of the neutron star. The temperature distribution on the neutron star surface is non-uniform. In the X-rays, we confirm the presence of a high-energy tail which is consistent with a continuation of the cutoff power-law component ({Gamma} = 1.56 {+-} 0.01, E{sub cut} = 1.1 {+-} 0.2 GeV) that is seen in gamma rays and perhaps even extends to the near-UV.

  9. SHORT-PERIOD g-MODE PULSATIONS IN LOW-MASS WHITE DWARFS TRIGGERED BY H-SHELL BURNING

    Energy Technology Data Exchange (ETDEWEB)

    Córsico, A. H.; Althaus, L. G., E-mail: acorsico@fcaglp.unlp.edu.ar [Grupo de Evolución Estelar y Pulsaciones, Facultad de Ciencias Astronómicas y Geofísicas, Universidad Nacional de La Plata, Paseo del Bosque s/n, 1900 La Plata (Argentina)

    2014-09-20

    The detection of pulsations in white dwarfs with low mass offers the possibility of probing their internal structures through asteroseismology and placing constraints on the binary evolutionary processes involved in their formation. In this Letter, we assess the impact of stable H burning on the pulsational stability properties of low-mass He-core white dwarf models resulting from binary star evolutionary calculations. We found that besides a dense spectrum of unstable radial modes and nonradial g and p modes driven by the κ mechanism due to the partial ionization of H in the stellar envelope, some unstable g modes with short pulsation periods are also powered by H burning via the ε mechanism of mode driving. This is the first time that ε destabilized modes are found in models representative of cool white dwarf stars. The short periods recently detected in the pulsating low-mass white dwarf SDSS J111215.82+111745.0 could constitute the first evidence of the existence of stable H burning in these stars, in particular in the so-called extremely low-mass white dwarfs.

  10. Dynamical instability of white dwarfs and breaking of spherical symmetry under the presence of extreme magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Coelho, J. G.; Cáceres, D. L.; Rueda, J. A.; Ruffini, R. [Dipartimento di Fisica and ICRA, Sapienza Università di Roma, P.le Aldo Moro 5, I-00185 Rome (Italy); Marinho, R. M.; Malheiro, M. [Departamento de Física, Instituto Tecnológico de Aeronáutica, ITA, São José dos Campos, 12228-900 SP (Brazil); Negreiros, R., E-mail: jaziel.coelho@icranet.org, E-mail: jorge.rueda@icra.it, E-mail: m.malheiro@ita.br [Instituto de Física, Universidade Federal Fluminense, UFF, Niterói, 24210-346 RJ (Brazil)

    2014-10-10

    Massive, highly magnetized white dwarfs with fields up to 10{sup 9} G have been observed and theoretically used for the description of a variety of astrophysical phenomena. Ultramagnetized white dwarfs with uniform interior fields up to 10{sup 18} G have been recently purported to obey a new maximum mass limit, M {sub max} ≈ 2.58 M {sub ☉}, which largely overcomes the traditional Chandrasekhar value, M {sub Ch} ≈ 1.44 M {sub ☉}. Such a larger limit would make these astrophysical objects viable candidates for the explanation of the superluminous population of Type Ia supernovae. We show that several macro and micro physical aspects such as gravitational, dynamical stability, breaking of spherical symmetry, general relativity, inverse β decay, and pycnonuclear fusion reactions are of most relevance for the self-consistent description of the structure and assessment of stability of these objects. It is shown in this work that the first family of magnetized white dwarfs indeed satisfy all the criteria of stability, while the ultramagnetized white dwarfs are very unlikely to exist in nature since they violate minimal requests of stability. Therefore, the canonical Chandrasekhar mass limit of white dwarfs still has to be applied.

  11. An independent constraint on the secular rate of variation of the gravitational constant from pulsating white dwarfs

    Energy Technology Data Exchange (ETDEWEB)

    Córsico, Alejandro H.; Althaus, Leandro G. [Facultad de Ciencias Astronómicas y Geofísicas, Universidad Nacional de La Plata, Paseo del Bosque s/n, (1900) La Plata (Argentina); García-Berro, Enrique [Departament de Física Aplicada, Universitat Politècnica de Catalunya, c/Esteve Terrades, 5, 08860 Castelldefels (Spain); Romero, Alejandra D., E-mail: acorsico@fcaglp.unlp.edu.ar, E-mail: althaus@fcaglp.unlp.edu.ar, E-mail: enrique.garcia-berro@upc.edu, E-mail: alejandra.romero@ufrgs.br [Departamento de Astronomia, Universidade Federal do Rio Grande do Sul, Av. Bento Goncalves 9500, Porto Alegre 91501-970, RS (Brazil)

    2013-06-01

    A secular variation of the gravitational constant modifies the structure and evolutionary time scales of white dwarfs. Using an state-of-the-art stellar evolutionary code and an up-to-date pulsational code we compute the effects of a secularly varying G on the pulsational properties of variable white dwarfs. Comparing the the theoretical results obtained taking into account the effects of a running G with the observed periods and measured rates of change of the periods of two well studied pulsating white dwarfs, G117-B15A and R548, we place constraints on the rate of variation of Newton's constant. We derive an upper bound Ġ/G ∼ −1.8 × 10{sup −10} yr{sup −1} using the variable white dwarf G117-B15A, and Ġ/G ∼ −1.3 × 10{sup −10} yr{sup −1} using R548. Although these upper limits are currently less restrictive than those obtained using other techniques, they can be improved in a future measuring the rate of change of the period of massive white dwarfs.

  12. Angular momentum exchange in white dwarf binaries accreting through direct impact

    Energy Technology Data Exchange (ETDEWEB)

    Sepinsky, J. F. [Department of Physics and Electrical Engineering, The University of Scranton, Scranton, PA 18510 (United States); Kalogera, V., E-mail: jeremy.sepinsky@scranton.edu, E-mail: vicky@northwestern.edu [Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA) and Department of Physics and Astronomy, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208 (United States)

    2014-04-20

    We examine the exchange of angular momentum between the component spins and the orbit in semi-detached double white dwarf binaries undergoing mass transfer through direct impact of the transfer stream. We approximate the stream as a series of discrete massive particles ejected in the ballistic limit at the inner Lagrangian point of the donor toward the accretor. This work improves upon similar earlier studies in a number of ways. First, we self-consistently calculate the total angular momentum of the orbit at all times. This includes changes in the orbital angular momentum during the ballistic trajectory of the ejected mass, as well as changes during the ejection/accretion due to the radial component of the particle's velocity. Second, we calculate the particle's ballistic trajectory for each system, which allows us to determine the precise position and velocity of the particle upon accretion. We can then include specific information about the radius of the accretor as well as the angle of impact. Finally, we ensure that the total angular momentum is conserved, which requires the donor star spin to vary self-consistently. With these improvements, we calculate the angular momentum change of the orbit and each binary component across the entire parameter space of direct impact double white dwarf binary systems. We find a significant decrease in the amount of angular momentum removed from the orbit during mass transfer, as well as cases where this process increases the angular momentum of the orbit at the expense of the spin angular momentum of the donor. We conclude that, unlike earlier claims in the literature, mass transfer through direct impact need not destabilize the binary and that the quantity and sign of the orbital angular momentum transfer depends on the binary properties, particularly the masses of the double white dwarf binary component stars. This stabilization may significantly impact the population synthesis calculations of the expected

  13. Probing the accretion induced collapse of white dwarfs in millisecond pulsars

    Science.gov (United States)

    Taani, A.; Khasawneh, A.

    2017-06-01

    This paper investigates the progenitors of Millisecond Pulsars (MSPs) with a distribution of long orbital periods (Porb > 2 d), to show the link between white dwarf (WD) binaries and long orbits for some binary MSPs through the Accretion Induced Collapse (AIC) of a WD. For this purpose, a model is presented to turn binary MSPs into wide binaries and highly circular orbits (e pulsar during the AIC process, which may indicate a sizeable kick velocity along the rotation of the proto-neutron star. The results show the effects of shock wave, binding energy, and mass loss (0.2M⊙). The model shows the pulsar systems are relevant to AIC-candidates.

  14. The heavily polluted atmosphere of the DAZ white dwarf GALEX J193156.8+011745

    Czech Academy of Sciences Publication Activity Database

    Vennes, Stephane; Kawka, Adela; Németh, Péter

    2010-01-01

    Roč. 404, č. 1 (2010), L40-L44 ISSN 0035-8711 R&D Projects: GA AV ČR(CZ) IAA300030908; GA ČR GAP209/10/0967; GA MŠk(CZ) LC06014 Grant - others:GA AV ČR(CZ) IAA301630901 Program:IA Institutional research plan: CEZ:AV0Z10030501 Keywords : GALEX J193156.8+011745 * white dwarfs Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 4.888, year: 2010

  15. Deiksis Dalam Film Snow White and the Seven Dwarfs Karya Walter Elias Disney (Suatu Analisis Pragmatik)

    OpenAIRE

    Lumawir, Hesty N

    2014-01-01

    S Pragmatics is the study of the relations between language and context that are basic to an account of language understanding. The most obvious single way in which the relationship between language and context is reflected in the structures of the language themselves through the phenomenon of the deixis. The research questions of this investigation are what types of deixis are found in the film Snow White and The Seven Dwarfs and how the use of deixis in the film. The method used in the re...

  16. Radio pulsar death lines to SGRs/AXPs and white dwarfs pulsars

    Energy Technology Data Exchange (ETDEWEB)

    Lobato, Ronaldo V.; Malheiro, M. [Departamento de Física, Instituto Tecnológico de Aeronáutica, ITA - DCTA, Vila das Acácias, São José dos Campos, 12228-900 SP (Brazil); Coelho, J. G. [INPE - Instituto Nacional de Pesquisas Espaciais, Divisão de Astrofísica, Av. dos Astronautas 1758, São José dos Campos, 12227-010 SP (Brazil)

    2015-12-17

    Recently, an alternative model based on white dwarfs pulsars has been proposed to explain a class of pulsars known as Soft Gamma Repeaters (SGR) and Anomalus X-Ray Pulsars (AXP) [1], usually named as magnetars. In this model, the magnetized white dwarfs can have surface magnetic field B ∼ 10{sup 7} − 10{sup 10} G and rotate very fast with angular frequencies Ω ∼ 1 rad/s, allowing them to produce large electromagnetic (EM) potentials and generate electron-positron pairs. These EM potentials are comparable with the ones of neutron star pulsars with strong magnetic fields and even larger. In this study we consider two possible processes associated with the particle acceleration, both of them are common used to explain radio emission in neutron star pulsars: in the first process the pair production happens near to the star polar caps, i.e. inside of the light cylinder where magnetic field lines are closed; in the second one the creation of pair happens in the outer magnetosphere, i.e. far away of the star surface where magnetic field lines are open [2]. The analysis of the possibility of radio emission were done for 23 SGRs/AXPs of the McGill Online Magnetar Catalog [3] that contains the current information available on these sources. The results of this work show that the model where the particles production occur in the outer magnetosphere emission “o2” is the process compatible with the astronomical observations of absence of radio emission for almost all SGRs/AXPs when these sources are understood as white dwarf pulsars. Our work is a first attempted to find an explanation for the puzzle why for almost all the SGRs/AXPs was expected radio emission, but it was observed in only four of them. These four sources, as it was suggested recently [4], seem to belong to an high magnetic field neutron star pulsar category, different from all the others SGRs/AXPs that our work indicate to belong to a new class of white dwarf pulsars, very fast and magnetized.

  17. The White Dwarf Mass and the Accretion Rate of Recurrent Novae: An X-ray Perspective

    Science.gov (United States)

    Mukai, Koji; Sokoloski, Jennifer L.; Nelson, Thomas; Luna, Gerardo J. M.

    2011-01-01

    We present recent results of quiescent X-ray observations of recurrent novae (RNe) and related objects. Several RNe are luminous hard X-ray sources in quiescence, consistent with accretion onto a near Chandrasekhar mass white dwarf. Detection of similar hard X-ray emissions in old novae and other cataclysmic variables may lead to identification of additional RN candidates. On the other hand, other RNe are found to be comparatively hard X-ray faint. We present several scenarios that may explain this dichotomy, which should be explored further.

  18. The effects of close binaries on the magnetic activity of M dwarfs as probed using close white dwarf companions

    Science.gov (United States)

    Morgan, D. P.

    2017-01-01

    I present a study of close white dwarf (WD) and M dwarf (dM) binary systems (WD+dM) to examine the effects that close companions have on magnetic field generation in dMs. Using the Sloan Digital Sky Survey (SDSS) Data Release 8 spectroscopic database, I constructed a sample of 1756 WD+dM high-quality pairs. I show that early-type dMs (M4), where stars become fully convective, the activity fraction and activity lifetimes of WD+dM binary systems become more comparable to those of the field dMs. The implications of having a close binary companion may include: increased stellar rotation through disk disruption, tidal effects, and/or angular momentum exchange. Thus, the similarity in activity between late-type field dMs and late-type dMs with close companions is likely due to the mechanism generating magnetic fields being less sensitive to the effects caused by a close companion; namely, increased stellar rotation. Using a subset of 181 close WD+dM pairs, matched to the time-domain SDSS Stripe 82 catalog, I show that enhanced magnetic activity extends to the flaring behavior of dMs in close binaries. Specifically, early spectral type dMs (M0-M4), in close WD+dM pairs, are two orders of magnitude more likely to flare than field dMs, whereas late-type dMs (M4-M6) in close WD+dM pairs flare as frequently or less than the late-type field dM sample. To test whether the presence of a close companion leads to star-star interactions, I searched for correlations between the WD occultations and flares from the dM member in KOI-256, an eclipsing WD+dM system. I find no correlations between the flaring activity of the dM and the WD occultations, indicating the there are no obvious signs of star-star interactions at work. In addition, the dM member of KOI-256 flares more than any other dM observed by Kepler and shows evidence for solar-like magnetic activity cycles, a feature not seen in many dMs to date.

  19. White Dwarf Rotation as a Function of Mass and a Dichotomy of Mode Line Widths: Kepler  Observations of 27 Pulsating DA White Dwarfs through K2 Campaign 8

    Energy Technology Data Exchange (ETDEWEB)

    Hermes, J. J.; Fanale, S. M.; Dennihy, E.; Fuchs, J. T.; Dunlap, B. H.; Clemens, J. C. [Department of Physics and Astronomy, University of North Carolina, Chapel Hill, NC 27599 (United States); Gänsicke, B. T.; Greiss, S.; Tremblay, P.-E.; Fusillo, N. P. Gentile; Raddi, R.; Chote, P.; Marsh, T. R. [Department of Physics, University of Warwick, Coventry CV4 7AL (United Kingdom); Kawaler, Steven D. [Department of Physics and Astronomy, Iowa State University, Ames, IA 50011 (United States); Bell, Keaton J.; Montgomery, M. H.; Winget, D. E. [Department of Astronomy, University of Texas at Austin, Austin, TX 78712 (United States); Redfield, S., E-mail: jjhermes@unc.edu [Wesleyan University Astronomy Department, Van Vleck Observatory, 96 Foss Hill Drive, Middletown, CT 06459 (United States)

    2017-10-01

    We present photometry and spectroscopy for 27 pulsating hydrogen-atmosphere white dwarfs (DAVs; a.k.a. ZZ Ceti stars) observed by the Kepler space telescope up to K2 Campaign 8, an extensive compilation of observations with unprecedented duration (>75 days) and duty cycle (>90%). The space-based photometry reveals pulsation properties previously inaccessible to ground-based observations. We observe a sharp dichotomy in oscillation mode line widths at roughly 800 s, such that white dwarf pulsations with periods exceeding 800 s have substantially broader mode line widths, more reminiscent of a damped harmonic oscillator than a heat-driven pulsator. Extended Kepler coverage also permits extensive mode identification: we identify the spherical degree of 87 out of 201 unique radial orders, providing direct constraints of the rotation period for 20 of these 27 DAVs, more than doubling the number of white dwarfs with rotation periods determined via asteroseismology. We also obtain spectroscopy from 4 m-class telescopes for all DAVs with Kepler photometry. Using these homogeneously analyzed spectra, we estimate the overall mass of all 27 DAVs, which allows us to measure white dwarf rotation as a function of mass, constraining the endpoints of angular momentum in low- and intermediate-mass stars. We find that 0.51–0.73 M {sub ⊙} white dwarfs, which evolved from 1.7–3.0 M {sub ⊙} ZAMS progenitors, have a mean rotation period of 35 hr with a standard deviation of 28 hr, with notable exceptions for higher-mass white dwarfs. Finally, we announce an online repository for our Kepler data and follow-up spectroscopy, which we collect at http://k2wd.org.

  20. Blue and white phosphorescent organic light emitting diode performance improvement by confining electrons and holes inside double emitting layers

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, Yu-Sheng; Hong, Lin-Ann; Juang, Fuh-Shyang; Chen, Cheng-Yin

    2014-09-15

    In this research, complex emitting layers (EML) were fabricated using TCTA doping hole-transport material in the front half of a bipolar 26DCzPPy as well as PPT doping electron-transport material in the back half of 26DCzPPy. Blue dopant FIrpic was also mixed inside the complex emitting layer to produce a highly efficient blue phosphorescent organic light emitting diode (OLED). The hole and electron injection and carrier recombination rate were effectively increased. The fabricated complex emitting layers exhibited current efficiency of 42 cd/A and power efficiency of 30 lm/W when the luminance was 1000 cd/m{sup 2}, driving voltage was 4.4 V, and current density was 2.4 mA/cm{sup 2}. A white OLED component was then manufactured by doping red dopant [Os(bpftz){sub 2}(PPh{sub 2}Me){sub 2}] (Os) in proper locations. When the Os dopant was doped in between the complex emitting layers, excitons were effectively confined within, increasing the recombination rate and therefore reducing the color shift. The resulting Commission Internationale de L’Eclairage (CIE) coordinates shifted from 4 to 10 V is (Δx=−0.04, Δy=+0.01). The component had a current efficiency of 35.7 cd/A, a power efficiency of 24 lm/W, driving voltage of 4.6 V and a CIE{sub x,y} of (0.31,0.35) at a luminance of 1000 cd/m{sup 2}, with a maximum luminance of 15,600 cd/m{sup 2} at 10 V. Attaching an outcoupling enhancement film was applied to increase the luminance efficiency to 30 lm/W. - Highlights: • Used the complex double emitting layers. • Respectively doped hole and electron transport material in the bipolar host. • Electrons and holes are effectively confined within EMLs to produce excitons.

  1. Fluorescent Silicon Carbide and its Applications in White Light-Emitting Diodes

    DEFF Research Database (Denmark)

    Ou, Yiyu

    This thesis focuses on the optical properties analysis of Donor-Acceptor-Pair (DAP) co-doped Fluorescent Silicon Carbide (f-SiC) as a wavelengthconversion material in white Light-Emitting Diodes (LEDs). Different methods of fabricating surface Antireflective Structures (ARS) on f-SiC to enhance its...... light extraction efficiency are presented. White LEDs are the most promising techniques to replace the conventional lighting sources. A typical white LED consists of a Gallium Nitride (GaN) blue or Ultraviolet (UV) LED stack and a wavelengthconversion material. Silicon Carbide (SiC) has a wide optical...... bandgap and could be tailored to emit light at different wavelength by introducing different dopants. Combined emitting spectra of two types of DAP co-doped f-SiC could cover the whole visible spectral range and make f-SiC as a good candidate of wavelength-conversion material. It has a better color...

  2. Luminescent carbon quantum dots with high quantum yield as a single white converter for white light emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Feng, X. T.; Zhang, Y.; Liu, X. G., E-mail: liuxuguang@tyut.edu.cn [Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Taiyuan 030024 (China); College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); Zhang, F.; Wang, Y. L.; Yang, Y. Z., E-mail: yyztyut@126.com [Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Taiyuan 030024 (China); Research Center on Advanced Materials Science and Technology, Taiyuan University of Technology, Taiyuan 030024 (China)

    2015-11-23

    Carbon quantum dots (CQDs) with high quantum yield (51.4%) were synthesized by a one-step hydrothermal method using thiosalicylic acid and ethylenediamine as precursor. The CQDs have the average diameter of 2.3 nm and possess excitation-independent emission wavelength in the range from 320 to 440 nm excitation. Under an ultraviolet (UV) excitation, the CQDs aqueous solutions emit bright blue fluorescence directly and exhibit broad emission with a high spectral component ratio of 67.4% (blue to red intensity to total intensity). We applied the CQDs as a single white-light converter for white light emitting diodes (WLEDs) using a UV-LED chip as the excitation light source. The resulted WLED shows superior performance with corresponding color temperature of 5227 K and the color coordinates of (0.34, 0.38) belonging to the white gamut.

  3. Top-emitting white organic light-emitting devices with a one-dimensional metallic-dielectric photonic crystal anode.

    Science.gov (United States)

    Ji, Wenyu; Zhang, Letian; Zhang, Tianyu; Liu, Guoqiang; Xie, Wenfa; Liu, Shiyong; Zhang, Hanzhuang; Zhang, Liying; Li, Bin

    2009-09-15

    Top-emitting white organic light-emitting devices (TEWOLEDs) with 1D metallic-dielectric photonic crystal (1D MDPC) as an anode are investigated. A quasi-periodic 1D MDPC anode allowed for fabrication of multiple-peak TEWOLEDs. A two-peak or three-peak TEWOLED was obtained by simply adjusting the thickness of the dielectric layers in the MDPC. The efficiency of the TEWOLEDs are comparable to the corresponding bottom WOLED (11.1 cd/A), which are 9.9 (two-peak device) and 9.4 cd/A (three-peak device), respectively, and the contrast of the TEWOLEDs is about twice as high as the bottom device owing to the low reflection of the anode.

  4. Fluorescent deep-blue and hybrid white emitting devices based on a naphthalene-benzofuran compound

    KAUST Repository

    Yang, Xiaohui

    2013-08-01

    We report the synthesis, photophysics and electrochemical properties of naphthalene-benzofuran compound 1 and its application in organic light emitting devices. Fluorescent deep-blue emitting devices employing 1 as the emitting dopant embedded in 4-4′-bis(9-carbazolyl)-2,2′-biphenyl (CBP) host show the peak external quantum efficiency of 4.5% and Commission Internationale d\\'Énclairage (CIE) coordinates of (0.15, 0.07). Hybrid white devices using fluorescent blue emitting layer with 1 and a phosphorescent orange emitting layer based on an iridium-complex show the peak external quantum efficiency above 10% and CIE coordinates of (0.31, 0.37). © 2013 Published by Elsevier B.V.

  5. Dynamo generation of magnetic field in the white dwarf GD 358

    Science.gov (United States)

    Markiel, J. Andrew; Thomas, John H.; Van Horn, H. M.

    1994-01-01

    On the basis of Whole Earth Telescope observations of the g-mode oscillation spectrum of the white dwarf GD 358, Winget et al. find evidence for significant differential rotation and for a time-varying magnetic field concentrated in the surface layers of this star. Here we argue on theoretical grounds that this magnetic field is produced by an alpha omega dynamo operating in the lower part of a surface convection zone in GD 358. Our argument is based on numerical solutions of the nonlinear, local dynamo equations of Robinson & Durney, with specific parameters based on our detailed models of white-dwarf convective envelopes, and universal constants determined by a calibration with the the Sun's dynamo. The calculations suggest a dynamo cycle period of about 6 years for the fundamental mode, and periods as short as 1 year for the higher-order modes that are expected to dominate in view of the large dynamo number we estimate for GD 358. These dynamo periods are consistent with the changes in the magnetic field of GD 358 over the span of 1 month inferred by Winget et. al. from their observations. Our calculations also suggest a peak dynamo magnetic field strength at the base of the surface convection zone of about 1800 G, which is consistent with the field strength inferred from the observations.

  6. Formation of Millisecond Pulsars with Heavy White Dwarf Companions: Extreme Mass Transfer on Subthermal Timescales.

    Science.gov (United States)

    Tauris; van Den Heuvel EP; Savonije

    2000-02-20

    We have performed detailed numerical calculations of the nonconservative evolution of close X-ray binary systems with intermediate-mass (2.0-6.0 M middle dot in circle) donor stars and a 1.3 M middle dot in circle accreting neutron star. We calculated the thermal response of the donor star to mass loss in order to determine its stability and follow the evolution of the mass transfer. Under the assumption of the "isotropic reemission model," we demonstrate that in many cases it is possible for the binary to prevent a spiral-in and survive a highly super-Eddington mass transfer phase (1millisecond pulsars with heavy CO white dwarfs and relatively short orbital periods (3-50 days). However, we conclude that to produce a binary pulsar with a O-Ne-Mg white dwarf or Porb approximately 1 day (e.g., PSR B0655+64) the above scenario does not work, and a spiral-in phase is still considered the most plausible scenario for the formation of such a system.

  7. A faint type of supernova from a white dwarf with a helium-rich companion.

    Science.gov (United States)

    Perets, H B; Gal-Yam, A; Mazzali, P A; Arnett, D; Kagan, D; Filippenko, A V; Li, W; Arcavi, I; Cenko, S B; Fox, D B; Leonard, D C; Moon, D-S; Sand, D J; Soderberg, A M; Anderson, J P; James, P A; Foley, R J; Ganeshalingam, M; Ofek, E O; Bildsten, L; Nelemans, G; Shen, K J; Weinberg, N N; Metzger, B D; Piro, A L; Quataert, E; Kiewe, M; Poznanski, D

    2010-05-20

    Supernovae are thought to arise from two different physical processes. The cores of massive, short-lived stars undergo gravitational core collapse and typically eject a few solar masses during their explosion. These are thought to appear as type Ib/c and type II supernovae, and are associated with young stellar populations. In contrast, the thermonuclear detonation of a carbon-oxygen white dwarf, whose mass approaches the Chandrasekhar limit, is thought to produce type Ia supernovae. Such supernovae are observed in both young and old stellar environments. Here we report a faint type Ib supernova, SN 2005E, in the halo of the nearby isolated galaxy, NGC 1032. The 'old' environment near the supernova location, and the very low derived ejected mass ( approximately 0.3 solar masses), argue strongly against a core-collapse origin. Spectroscopic observations and analysis reveal high ejecta velocities, dominated by helium-burning products, probably excluding this as a subluminous or a regular type Ia supernova. We conclude that it arises from a low-mass, old progenitor, likely to have been a helium-accreting white dwarf in a binary. The ejecta contain more calcium than observed in other types of supernovae and probably large amounts of radioactive (44)Ti.

  8. Importance of tides for periastron precession in eccentric neutron star-white dwarf binaries

    Energy Technology Data Exchange (ETDEWEB)

    Sravan, N.; Valsecchi, F.; Kalogera, V. [Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA), and Department of Physics and Astronomy, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208 (United States); Althaus, L. G., E-mail: niharika.sravan@gmail.com [Grupo de Evolución Estelar y Pulsaciones, Facultad de Ciencias Astronómicas y Geofísicas, Universidad Nacional de La Plata, Argentina Instituto de Astrofísica La Plata, CONICET-UNLP, Paseo del Bosque s/n, (1900) La Plata (Argentina)

    2014-09-10

    Although not nearly as numerous as binaries with two white dwarfs, eccentric neutron star-white dwarf (NS-WD) binaries are important gravitational-wave (GW) sources for the next generation of space-based detectors sensitive to low frequency waves. Here we investigate periastron precession in these sources as a result of general relativistic, tidal, and rotational effects; such precession is expected to be detectable for at least some of the detected binaries of this type. Currently, two eccentric NS-WD binaries are known in the galactic field, PSR J1141–6545 and PSR B2303+46, both of which have orbits too wide to be relevant in their current state to GW observations. However, population synthesis studies predict the existence of a significant Galactic population of such systems. Though small in most of these systems, we find that tidally induced periastron precession becomes important when tides contribute to more than 3% of the total precession rate. For these systems, accounting for tides when analyzing periastron precession rate measurements can improve estimates of the inferred WD component mass and, in some cases, will prevent us from misclassifying the object. However, such systems are rare, due to rapid orbital decay. To aid the inclusion of tidal effects when using periastron precession as a mass measurement tool, we derive a function that relates the WD radius and periastron precession constant to the WD mass.

  9. Transmission of Thermonuclear Detonations through Layers of Burned Material in Carbon-Oxygen White Dwarfs

    Science.gov (United States)

    Gamezo, V. N.; Oran, E. S.

    2006-06-01

    In three-dimensional delayed-detonation models of type Ia supernovae, detonations propagate through funnels of degenerate carbon-oxygen matter that are left unburned by turbulent deflagrations in central parts of a white dwarf. Some of these funnels can be disconnected from the rest of the unburned material, thus creating unburned pockets that cannot be directly reached by a detonation wave. These pockets may or may not ignite when strong shocks generated by detonations reach them through layers of burned material. In this work, we study the detonation transmission phenomena in exploding white dwarfs using one-dimensional time-dependent numerical simulations based on reactive Euler equations. The thermonuclear burning of carbon-oxygen mixture is modeled by a 13-nuclei alpha network. We use a steady-state solution for the reaction-zone structure of a one-dimensional detonation wave as an initial condition. Time-dependent computations performed for a fully resolved carbon reaction scale show that a detonation shock passing through a layer of burned material can initiate a new detonation or decay. The critical thickness of burned material that allows the detonation reignition is a function of density. This work was supported in part by the NASA ATP program (NRA-02-OSS-01-ATP) and by the Naval Research Laboratory (NRL) through the Office of Naval Research.

  10. Hubble Space Telescope observations of cool white dwarf stars: Detection of new species of heavy elements

    Science.gov (United States)

    Shipman, Harry; Barnhill, Maurice; Provencal, Judi; Roby, Scott; Bues, Irmela; Cordova, France; Hammond, Gordon; Hintzen, Paul; Koester, Detlev; Liebert, James

    1995-01-01

    Observations of cool white dwarf stars with the Hubble Space Telescope (HST) has uncovered a number of spectral features from previouslly unobserved species. In this paper we present the data on four cool white dwarfs. We present identifications, equivalent width measurements, and brief summaries of the significance of our findings. The four stars observed are GD 40 (DBZ3, G 74-7 (DAZ), L 745-46A (DZ), and LDS 749B (DBA). Many additional species of heavey elements were detected in GD 40 and G 74-7. In L 745-46A, while the detections are limited to Fe 1, Fe II, and Mg II, the quality of the Mg II h and K line profiles should permit a test of the line broadening theories, which are so crucial to abundance determinations. The clear detection of Mg II h and k in LDS 749 B should, once an abundance determination is made, provide a clear test of the hypothesis that the DBA stars are the result of accretion from the interstellar medium. This star contains no other clear features other than a tantalizing hint of C II 1335 with a P Cygni profile, and some expected He 1 lines.

  11. The double helium-white dwarf channel for the formation of AM CVn binaries

    Science.gov (United States)

    Zhang, Xian-Fei; Liu, Jin-Zhong; Jeffery, C. Simon; Hall, Philip D.; Bi, Shao-Lan

    2018-01-01

    Most close double helium white dwarfs will merge within a Hubble time due to orbital decay by gravitational wave radiation. However, a significant fraction with low mass ratios will survive for a long time as a consequence of stable mass transfer. Such stable mass transfer between two helium white dwarfs (HeWDs) provides one channel for the production of AM CVn binary stars. In previous calculations of double HeWD progenitors, the accreting HeWD was treated as a point mass. We have computed the evolution of 16 double HeWD models in order to investigate the consequences of treating the evolution of both components in detail. We find that the boundary between binaries having stable and unstable mass transfer is slightly modified by this approach. By comparing with observed periods and mass ratios, we redetermine masses of eight known AM CVn stars by our double HeWDs channel, i.e. HM Cnc, AM CVn, V406 Hya, J0926, J1240, GP Com, Gaia14aae and V396 Hya.We propose that central spikes in the triple-peaked emission spectra of J1240, GP Com and V396 Hya and the surface abundance ratios of N/C/O in GP Com can be explained by the stable double HeWD channel. The mass estimates derived from our calculations are used to discuss the predicted gravitational wave signal in the context of the Laser Interferometer Space Antenna (LISA) project.

  12. High-Time-Resolution Photometry of the White Dwarf Pulsar AR Scorpii

    Science.gov (United States)

    Stiller, Robert A.; Littlefield, Colin; Garnavich, Peter

    2018-01-01

    The cataclysmic variable AR Sco was recently discovered to be the first-ever white dwarf pulsar by Marsh et al. (2016) and Buckley et al. (2017). AR Sco has a 3.56-hour orbital period, a beat period of 1.97 minutes, and a spin period of 1.95 minutes. The flux varies by up to a factor of four during the beat period. It is believed that there is little to no accretion because of the weak X-ray emissions from the system. The white dwarf pulsar is believed to be spin-powered and is in an ejector state (Beskrovnaya et. al 2017) which is further evidence of little to no accretion. 24 hours of high-time-resolution photometry was taken using the 0.8 meter Sarah L. Krizmanich Telescope at the University of Notre Dame. We used our own observations and previous observations to calculate a new spin down timescale. In our data, AR Sco is brightest at an orbital phase of approximately 0.4 which suggests that if the orbital modulation is a reflection effect, the inner hemisphere in not uniformly irradiated. We establish that the amplitude and waveform of the beat pulse changes as function of orbital phase and that this can be attributed to the beat and spin pulses constructively and destructively interfering with one another.

  13. Extreme abundance ratios in the polluted atmosphere of the cool white dwarf NLTT 19868

    Science.gov (United States)

    Kawka, Adela; Vennes, Stéphane

    2016-05-01

    We present an analysis of intermediate-dispersion spectra and photometric data of the newly identified cool, polluted white dwarf NLTT 19868. The spectra obtained with X-shooter on the Very Large Telescope-Melipal show strong lines of calcium, and several lines of magnesium, aluminium and iron. We use these spectra and the optical-to-near-infrared spectral energy distribution to constrain the atmospheric parameters of NLTT 19868. Our analysis shows that NLTT 19868 is iron poor with respect to aluminium and calcium. A comparison with other cool, polluted white dwarfs shows that the Fe to Ca abundance ratio (Fe/Ca) varies by up to approximately two orders of magnitudes over a narrow temperature range with NLTT 19868 at one extremum in the Fe/Ca ratio and, in contrast, NLTT 888 at the other extremum. The sample shows evidence of extreme diversity in the composition of the accreted material: in the case of NLTT 888, the inferred composition of the accreted matter is akin to iron-rich planetary core composition, while in the case of NLTT 19868 it is close to mantle composition depleted by subsequent chemical separation at the bottom of the convection zone.

  14. Extinct Stars and Eviscerated Planets: Using Observations of White Dwarf Pollution to Understand the Formation, Composition and Evolution of Planetary Systems

    Science.gov (United States)

    Payne, M. J.

    2017-05-01

    I will discuss the work that will required for the white-dwarf community to be able to extract the unique data that only white dwarf systems can supply on the fundamental processes governing the formation and evolution of planetary systems.

  15. Radio Observations as a Tool to Investigate Shocks and Asymmetries in Accreting White Dwarf Binaries

    Science.gov (United States)

    Weston, Jennifer H. S.

    2016-07-01

    This dissertation uses radio observations with the Karl G. Jansky Very Large Array (VLA) to investigate the mechanisms that power and shape accreting white dwarfs (WD) and their ejecta. We test the predictions of both simple spherical and steady-state radio emission models by examining nova V1723 Aql, nova V5589 Sgr, symbiotic CH Cyg, and two small surveys of symbiotic binaries. First, we highlight classical nova V1723 Aql with three years of radio observations alongside optical and X-ray observations. We use these observations to show that multiple outflows from the system collided to create early non-thermal shocks with a brightness temperature of ≥106 K. While the late-time radio light curve is roughly consistent an expanding thermal shell of mass 2x10-4 M⊙ solar masses, resolved images of V1723 Aql show elongated material that apparently rotates its major axis over the course of 15 months, much like what is seen in gamma-ray producing nova V959 Mon, suggesting similar structures in the two systems. Next, we examine nova V5589 Sgr, where we find that the early radio emission is dominated by a shock-powered non-thermal flare that produces strong (kTx > 33 keV) X-rays. We additionally find roughly 10-5 M⊙ solar masses of thermal bremsstrahlung emitting material, all at a distance of ~4 kpc. The similarities in the evolution of both V1723 Aql and V5589 Sgr to that of nova V959 Mon suggest that these systems may all have dense equatorial tori shaping faster flows at their poles. Turning our focus to symbiotic binaries, we first use our radio observations of CH Cyg to link the ejection of a collimated jet to a change of state in the accretion disk. We additionally estimate the amount of mass ejected during this period (10-7 M⊙ masses), and improve measurements of the period of jet precession (P=12013 ± 74 days). We then use our survey of eleven accretion-driven symbiotic systems to determine that the radio brightness of a symbiotic system could potentially

  16. Kepler monitoring of an L dwarf I. The photometric period and white light flares

    Energy Technology Data Exchange (ETDEWEB)

    Gizis, John E. [Department of Physics and Astronomy, University of Delaware, Newark, DE 19716 (United States); Burgasser, Adam J. [Center for Astrophysics and Space Science, University of California San Diego, La Jolla, CA 92093 (United States); Berger, Edo; Williams, Peter K. G. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Vrba, Frederick J. [US Naval Observatory, Flagstaff Station, 10391 West Naval Observatory Road, Flagstaff, AZ 86001 (United States); Cruz, Kelle L. [Department of Physics and Astronomy, Hunter College, City University of New York, 695 Park Avenue, New York, NY 10065 (United States); Metchev, Stanimir [Department of Physics and Astronomy, State University of New York, Stony Brook, NY 11794 (United States)

    2013-12-20

    We report on the results of 15 months of monitoring the nearby field L1 dwarf WISEP J190648.47+401106.8 (W1906+40) with the Kepler mission. Supporting observations with the Karl G. Jansky Very Large Array and Gemini North Telescope reveal that the L dwarf is magnetically active, with quiescent radio and variable Hα emission. A preliminary trigonometric parallax shows that W1906+40 is at a distance of 16.35{sub −0.34}{sup +0.36} pc, and all observations are consistent with W1906+40 being an old disk star just above the hydrogen-burning limit. The star shows photometric variability with a period of 8.9 hr and an amplitude of 1.5%, with a consistent phase throughout the year. We infer a radius of 0.92 ± 0.07R{sub J} and sin i > 0.57 from the observed period, luminosity (10{sup –3.67} {sup ±} {sup 0.03} L {sub ☉}), effective temperature (2300 ± 75 K), and vsin i (11.2 ± 2.2 km s{sup –1}). The light curve may be modeled with a single large, high latitude dark spot. Unlike many L-type brown dwarfs, there is no evidence of other variations at the ≳ 2% level, either non-periodic or transient periodic, that mask the underlying rotation period. We suggest that the long-lived surface features may be due to starspots, but the possibility of cloud variations cannot be ruled out without further multi-wavelength observations. During the Gemini spectroscopy, we observed the most powerful flare ever seen on an L dwarf, with an estimated energy of ∼1.6 × 10{sup 32} erg in white light emission. Using the Kepler data, we identify similar flares and estimate that white light flares with optical/ultraviolet energies of 10{sup 31} erg or more occur on W1906+40 as often as 1-2 times per month.

  17. Three new barium dwarfs with white dwarf companions: BD+68°1027, RE J0702+129 and BD+80°670

    Science.gov (United States)

    Kong, X. M.; Bharat Kumar, Y.; Zhao, G.; Zhao, J. K.; Fang, X. S.; Shi, J. R.; Wang, L.; Zhang, J. B.; Yan, H. L.

    2018-02-01

    We report three new barium (Ba) dwarfs lying in Sirius-like systems. They provide direct evidence that Ba dwarfs are companions to white dwarfs (WDs). Atmospheric parameters, stellar masses and the chemical abundances of 25 elements, including light, α, Fe-peak and s-process elements, are derived from high-resolution and high S/N spectra. The enhancement of s-process elements with [s/Fe] ratios between 0.4 and 0.6 confirm them as mild barium stars. The estimated metallicities (-0.31, -0.06 and 0.13) of BD+68°1027, RE J0702+129 and BD+80°670 are in the range of known Ba dwarfs and giants. As expected, the observed indices [hs/ls], [s/Fe] and [C/Fe] show an anti-correlation with metallicity. Asymptotic giant branch (AGB) progenitor masses are estimated for the WD companions of RE J0702+129 (1.47 M⊙) and BD+80°670 (3.59 M⊙). These confirm the predicted range of progenitor AGB masses (1.5-4 M⊙) for unseen WDs around Ba dwarfs. The surface abundances of s-process elements in RE J0702+129 and BD+80°670 are compared with AGB models and they are in close agreement, within the predicted accretion efficiencies and pollution factors for Ba stars. These results support that the origin of s-process overabundances in Ba dwarfs is similar to those of Ba giants via the McClure hypothesis in which Ba stars accumulate s-process elements through mass transfer from their host companions during the AGB phase.

  18. Electrical-thermal-luminous-chromatic model of phosphor-converted white light-emitting diodes

    NARCIS (Netherlands)

    Ye, H.; Koh, S.W.; Yuan, C.; Zeijl, H. van; Gielen, A.W.J.; Lee, S.W.R.; Zhang, G.

    2014-01-01

    The drive of increased electrical currents to achieve high luminous output for phosphor-converted white light-emitting diodes (PW-LED) has led to a series of thermal problems. The light performance of PW-LED is affected by the heat generated by the two major sources in a package/module: chip(s) and

  19. Efficient fluorescent deep-blue and hybrid white emitting devices based on carbazole/benzimidazole compound

    KAUST Repository

    Yang, Xiaohui

    2011-07-28

    We report the synthesis, photophysics, and electrochemical characterization of carbazole/benzimidazole-based compound (Cz-2pbb) and efficient fluorescent deep-blue light emitting devices based on Cz-2pbb with the peak external quantum efficiency of 4.1% and Commission Internationale dÉnclairage coordinates of (0.16, 0.05). Efficient deep-blue emission as well as high triplet state energy of Cz-2pbb enables fabrication of hybrid white organic light emitting diodes with a single emissive layer. Hybrid white emitting devices based on Cz-2pbb show the peak external quantum efficiency exceeding 10% and power efficiency of 14.8 lm/W at a luminance of 500 cd/m2. © 2011 American Chemical Society.

  20. .pi.-conjugated heavy-metal polymers for organic white-light-emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Vardeny, Zeev Valentine; Wojcik, Leonard; Drori, Tomer

    2016-09-13

    A polymer mixture emits a broad spectrum of visible light that appears white or near-white in the aggregate. The polymer mixture comprises two (or more) components in the active layer. A heavy atom, such as platinum and/or iridium, present in the backbone of the mixture acts via a spin-orbit coupling mechanism to cause the ratio of fluorescent to phosphorescent light emission bands to be of approximately equal strength. These two broad emissions overlap, resulting in an emission spectrum that appears to the eye to be white.

  1. A 1.05 M{sub ☉} companion to PSR J2222–0137: The coolest known white dwarf?

    Energy Technology Data Exchange (ETDEWEB)

    Kaplan, David L. [Department of Physics, University of Wisconsin-Milwaukee, 1900 East Kenwood Boulevard, Milwaukee, WI 53211 (United States); Boyles, Jason; McLaughlin, Maura A.; Lorimer, Duncan R. [Department of Physics and Astronomy, West Virginia University, White Hall, Box 6315, Morgantown, WV 26506-6315 (United States); Dunlap, Bart H. [Department of Physics and Astronomy, University of North Carolina, Chapel Hill, NC 27599-3255 (United States); Tendulkar, Shriharsh P. [Space Radiation Laboratory, California Institute of Technology, 1200 East California Boulevard, MC 249-17, Pasadena, CA 91125 (United States); Deller, Adam T. [ASTRON, P.O. Box 2, 7990 AA Dwingeloo (Netherlands); Ransom, Scott M. [National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903-2475 (United States); Stairs, Ingrid H., E-mail: kaplan@uwm.edu [Department of Physics and Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver, British Columbia V6T 1Z1 (Canada)

    2014-07-10

    The recycled pulsar PSR J2222–0137 is one of the closest known neutron stars (NSs) with a parallax distance of 267{sub −0.9}{sup +1.2} pc and an edge-on orbit. We measure the Shapiro delay in the system through pulsar timing with the Green Bank Telescope, deriving a low pulsar mass (1.20 ± 0.14 M{sub ☉}) and a high companion mass (1.05 ± 0.06 M{sub ☉}) consistent with either a low-mass NS or a high-mass white dwarf. We can largely reject the NS hypothesis on the basis of the system's extremely low eccentricity (3 × 10{sup –4})—too low to have been the product of two supernovae under normal circumstances. However, despite deep optical and near-infrared searches with Southern Astrophysical Research and the Keck telescopes we have not discovered the optical counterpart of the system. This is consistent with the white dwarf hypothesis only if the effective temperature is <3000 K, a limit that is robust to distance, mass, and atmosphere uncertainties. This would make the companion to PSR J2222–0137 one of the coolest white dwarfs ever observed. For the implied age to be consistent with the age of the Milky Way requires the white dwarf to have already crystallized and entered the faster Debye-cooling regime.

  2. Can magnetic fields suppress convection in the atmosphere of cool white dwarfs? A case study on WD2105-820

    Science.gov (United States)

    Gentile Fusillo, N. P.; Tremblay, P.-E.; Jordan, S.; Gänsicke, B. T.; Kalirai, J. S.; Cummings, J.

    2018-01-01

    Around 10 per cent of white dwarfs exhibit global magnetic structures with fields ranging from 1 kG to hundreds of MG. Recently, the first radiation magnetohydrodynamics simulations of the atmosphere of white dwarfs showed that convection should be suppressed in their photospheres for magnetic fields with strengths B ≳ 50 kG. These predictions are in agreement with our knowledge of stellar physics (e.g. energy transfer in strong magnetic field regions of the solar photosphere), but have yet to be directly confirmed from white dwarf observations. We obtained Cosmic Origins Spectrograph (COS) far-ultraviolet (FUV) spectroscopy of the weakly magnetic, hydrogen-atmosphere, white dwarf WD2105-820 and of three additional non-magnetic, convective remnants (all in the Teff range 9000-11 000 K). We fitted both the COS and the already available optical spectra with convective and radiative atmospheric models. As expected, we find that for two of the non-magnetic comparison stars only convective model fits predicted consistent Teff values from both the optical and the FUV spectra. In contrast, for WD2105-820 only the best-fitting radiative model produced consistent results.

  3. A 1.05 M ⊙ Companion to PSR J2222-0137: The Coolest Known White Dwarf?

    Science.gov (United States)

    Kaplan, David L.; Boyles, Jason; Dunlap, Bart H.; Tendulkar, Shriharsh P.; Deller, Adam T.; Ransom, Scott M.; McLaughlin, Maura A.; Lorimer, Duncan R.; Stairs, Ingrid H.

    2014-07-01

    The recycled pulsar PSR J2222-0137 is one of the closest known neutron stars (NSs) with a parallax distance of 267_{-0.9}^{+1.2} pc and an edge-on orbit. We measure the Shapiro delay in the system through pulsar timing with the Green Bank Telescope, deriving a low pulsar mass (1.20 ± 0.14 M ⊙) and a high companion mass (1.05 ± 0.06 M ⊙) consistent with either a low-mass NS or a high-mass white dwarf. We can largely reject the NS hypothesis on the basis of the system's extremely low eccentricity (3 × 10-4)—too low to have been the product of two supernovae under normal circumstances. However, despite deep optical and near-infrared searches with Southern Astrophysical Research and the Keck telescopes we have not discovered the optical counterpart of the system. This is consistent with the white dwarf hypothesis only if the effective temperature is <3000 K, a limit that is robust to distance, mass, and atmosphere uncertainties. This would make the companion to PSR J2222-0137 one of the coolest white dwarfs ever observed. For the implied age to be consistent with the age of the Milky Way requires the white dwarf to have already crystallized and entered the faster Debye-cooling regime.

  4. Numerical Simulations of Gaseous Disks Generated from Collisional Cascades at the Roche Limits of White Dwarf Stars

    Science.gov (United States)

    Kenyon, Scott J.; Bromley, Benjamin C.

    2017-11-01

    We consider the long-term evolution of gaseous disks fed by the vaporization of small particles produced in a collisional cascade inside the Roche limit of a 0.6 {M}⊙ white dwarf. Adding solids with radius {r}0 at a constant rate {\\dot{M}}0 into a narrow annulus leads to two distinct types of evolution. When {\\dot{M}}0≳ {\\dot{M}}0,{crit}≈ 3× {10}4 {({r}0/1{km})}3.92 {{g}} {{{s}}}-1, the cascade generates a fairly steady accretion disk where the mass transfer rate of gas onto the white dwarf is roughly {\\dot{M}}0 and the mass in gas is {M}g≈ 2.3× {10}22 ({\\dot{M}}0/{10}10 {{g}} {{{s}}}-1) (1500 {{K}}/{T}0) ({10}-3/α ) g, where T 0 is the temperature of the gas near the Roche limit and α is the dimensionless viscosity parameter. If {\\dot{M}}0≲ {\\dot{M}}0,{crit}, the system alternates between high states with large mass transfer rates and low states with negligible accretion. Although either mode of evolution adds significant amounts of metals to the white dwarf photosphere, none of our calculations yield a vertically thin ensemble of solids inside the Roche limit. X-ray observations can place limits on the mass transfer rate and test this model for metallic line white dwarfs.

  5. TOWARD HIGH-PRECISION SEISMIC STUDIES OF WHITE DWARF STARS: PARAMETRIZATION OF THE CORE AND TESTS OF ACCURACY

    Energy Technology Data Exchange (ETDEWEB)

    Giammichele, N.; Fontaine, G.; Brassard, P. [Département de Physique, Université de Montréal, Montréal, QC H3C 3J7 (Canada); Charpinet, S. [Université de Toulouse, UPS-OMP, IRAP, Toulouse F-31400 (France)

    2017-01-10

    We present a prescription for parametrizing the chemical profile in the core of white dwarfs in light of the recent discovery that pulsation modes may sometimes be deeply confined in some cool pulsating white dwarfs. Such modes may be used as unique probes of the complicated chemical stratification that results from several processes that occurred in previous evolutionary phases of intermediate-mass stars. This effort is part of our ongoing quest for more credible and realistic seismic models of white dwarfs using static, parametrized equilibrium structures. Inspired by successful techniques developed in design optimization fields (such as aerodynamics), we exploit Akima splines for the tracing of the chemical profile of oxygen (carbon) in the core of a white dwarf model. A series of tests are then presented to better seize the precision and significance of the results that can be obtained in an asteroseismological context. We also show that the new parametrization passes an essential basic test, as it successfully reproduces the chemical stratification of a full evolutionary model.

  6. White Electroluminescence Using ZnO Nanotubes/GaN Heterostructure Light-Emitting Diode

    Directory of Open Access Journals (Sweden)

    Sadaf JR

    2010-01-01

    Full Text Available Abstract We report the fabrication of heterostructure white light–emitting diode (LED comprised of n-ZnO nanotubes (NTs aqueous chemically synthesized on p-GaN substrate. Room temperature electroluminescence (EL of the LED demonstrates strong broadband white emission spectrum consisting of predominating peak centred at 560 nm and relatively weak violet–blue emission peak at 450 nm under forward bias. The broadband EL emission covering the whole visible spectrum has been attributed to the large surface area and high surface states of ZnO NTs produced during the etching process. In addition, comparison of the EL emission colour quality shows that ZnO nanotubes have much better quality than that of the ZnO nanorods. The colour-rendering index of the white light obtained from the nanotubes was 87, while the nanorods-based LED emit yellowish colour.

  7. White Electroluminescence Using ZnO Nanotubes/GaN Heterostructure Light-Emitting Diode.

    Science.gov (United States)

    Sadaf, J R; Israr, Mq; Kishwar, S; Nur, O; Willander, M

    2010-04-04

    We report the fabrication of heterostructure white light-emitting diode (LED) comprised of n-ZnO nanotubes (NTs) aqueous chemically synthesized on p-GaN substrate. Room temperature electroluminescence (EL) of the LED demonstrates strong broadband white emission spectrum consisting of predominating peak centred at 560 nm and relatively weak violet-blue emission peak at 450 nm under forward bias. The broadband EL emission covering the whole visible spectrum has been attributed to the large surface area and high surface states of ZnO NTs produced during the etching process. In addition, comparison of the EL emission colour quality shows that ZnO nanotubes have much better quality than that of the ZnO nanorods. The colour-rendering index of the white light obtained from the nanotubes was 87, while the nanorods-based LED emit yellowish colour.

  8. Measuring the wind speed on a radio-emitting brown dwarf

    Science.gov (United States)

    Allers, Katelyn; Vos, Johanna; Williams, Peter; Biller, Beth

    2017-10-01

    We propose for photometric monitoring observations of 2MASS J10475385+2124234 using Spitzer/IRAC. 2MASS J1047+21 is a late spectral type (T6.5) radio emitter with a measured radio period of 1.77 hrs. As a part of our successful Cycle 13 program, we detected photometric variability for 2MASS J1047+21. Our proposed observations will not only characterize this variability of the coolest known radio emitter, but also provide a unique opportunity to measure the wind speed of this brown dwarf. Spitzer is currently the only facility capable of the photometric stability, continuous observations and 4.5 micron sensitivity necessary for the success of our program.

  9. A BAYESIAN APPROACH TO DERIVING AGES OF INDIVIDUAL FIELD WHITE DWARFS

    Energy Technology Data Exchange (ETDEWEB)

    O' Malley, Erin M. [Department of Physics and Astronomy, Siena College, Loudonville, NY 12211 (United States); Von Hippel, Ted [Department of Physical Sciences, Embry-Riddle Aeronautical University, Daytona Beach, FL 32114 (United States); Van Dyk, David A., E-mail: ted.vonhippel@erau.edu, E-mail: dvandyke@imperial.ac.uk [Statistics Section, Department of Mathematics, Imperial College London, SW7 2AZ (United Kingdom)

    2013-09-20

    We apply a self-consistent and robust Bayesian statistical approach to determine the ages, distances, and zero-age main sequence (ZAMS) masses of 28 field DA white dwarfs (WDs) with ages of approximately 4-8 Gyr. Our technique requires only quality optical and near-infrared photometry to derive ages with <15% uncertainties, generally with little sensitivity to our choice of modern initial-final mass relation. We find that age, distance, and ZAMS mass are correlated in a manner that is too complex to be captured by traditional error propagation techniques. We further find that the posterior distributions of age are often asymmetric, indicating that the standard approach to deriving WD ages can yield misleading results.

  10. NuSTAR and swift observations of the fast rotating magnetized white dwarf AE Aquarii

    DEFF Research Database (Denmark)

    Kitaguchi, Takao; An, Hongjun; Beloborodov, Andrei M.

    2014-01-01

    AE Aquarii is a cataclysmic variable with the fastest known rotating magnetized white dwarf (P-spin = 33.08 s). Compared to many intermediate polars, AE Aquarii shows a soft X-ray spectrum with a very low luminosity (L-X similar to 10(31) erg s(-1)). We have analyzed overlapping observations...... model with two temperatures of 1.00(-0.23)(+0.34) and 4.64(-0.84)(+1.58) keV plus a power-law component with photon index of 2.50(-0.23)(+0.17). The pulse profile in the 3-20 keV band is broad and approximately sinusoidal, with a pulsed fraction of 16.6% +/- 2.3%. We do not find any evidence...

  11. Effect of Generalized Uncertainty Principle on Main-Sequence Stars and White Dwarfs

    Directory of Open Access Journals (Sweden)

    Mohamed Moussa

    2015-01-01

    Full Text Available This paper addresses the effect of generalized uncertainty principle, emerged from different approaches of quantum gravity within Planck scale, on thermodynamic properties of photon, nonrelativistic ideal gases, and degenerate fermions. A modification in pressure, particle number, and energy density are calculated. Astrophysical objects such as main-sequence stars and white dwarfs are examined and discussed as an application. A modification in Lane-Emden equation due to a change in a polytropic relation caused by the presence of quantum gravity is investigated. The applicable range of quantum gravity parameters is estimated. The bounds in the perturbed parameters are relatively large but they may be considered reasonable values in the astrophysical regime.

  12. On white dwarfs and neutron stars in Palatini f(R) gravity

    CERN Document Server

    Reijonen, Vappu

    2009-01-01

    In Palatini $f(R)$ gravity, the parameters of the Schwarzschild - de Sitter solution as well as the whole interior solutions of compact objects are expected to change when compared to general relativity. We solve the Palatini field equations numerically in the case of the models $f(R) = R + \\alpha R^2$ and $f(R) = R - \\mu^4/R$, and using the equation of state of Fermi gas. We show how the density profiles and the prediction for the maximum masses of white dwarfs (the Chandrasekhar limit) and neutron stars (the Tolman-Oppenheimer-Volkoff limit) are altered, and thereby conclude that observations on compact stars may be used to exclude alternative gravity models.

  13. Explosive nucleosynthesis in tidal disruption events of massive white dwarfs, and their debris

    Science.gov (United States)

    Tanikawa, Ataru; Sato, Yushi; Nomoto, Ken'Ichi; Maeda, Keiichi; Nakasato, Naohito; Hachisu, Izumi

    We perform SPH simulations coupled with nuclear reactions to follow tidal disruption events (TDEs) of white dwarfs (WDs) by intermediate mass black holes (IMBHs). We consider an oxygen-neon-magnesium (ONeMg) WD with 1.2M ⊙ as well as a helium (He) WD with 0.3M ⊙, and a carbon-oxygen (CO) WD with 0.6M ⊙. Our WD models have different numbers of SPH particles, N, up to a few 10 million. We find that nucleosynthesis does not converge against N even for N > 107. For all the WDs, the amount of radioactive nuclei, such as 56Ni, decreases with increasing N. Nuclear reactions might be extinguished for infinitely large N. Our results show that these kinds of TDEs, if solely powered by radioactive decays, are much dimmer optical transients similar to Type Ia supernovae as previously suggested.

  14. Hot DA white dwarf model atmosphere calculations: including improved Ni PI cross-sections

    Science.gov (United States)

    Preval, S. P.; Barstow, M. A.; Badnell, N. R.; Hubeny, I.; Holberg, J. B.

    2017-02-01

    To calculate realistic models of objects with Ni in their atmospheres, accurate atomic data for the relevant ionization stages need to be included in model atmosphere calculations. In the context of white dwarf stars, we investigate the effect of changing the Ni IV-VI bound-bound and bound-free atomic data on model atmosphere calculations. Models including photoionization cross-section (PICS) calculated with AUTOSTRUCTURE show significant flux attenuation of up to ˜80 per cent shortward of 180 Å in the extreme ultraviolet (EUV) region compared to a model using hydrogenic PICS. Comparatively, models including a larger set of Ni transitions left the EUV, UV, and optical continua unaffected. We use models calculated with permutations of these atomic data to test for potential changes to measured metal abundances of the hot DA white dwarf G191-B2B. Models including AUTOSTRUCTURE PICS were found to change the abundances of N and O by as much as ˜22 per cent compared to models using hydrogenic PICS, but heavier species were relatively unaffected. Models including AUTOSTRUCTURE PICS caused the abundances of N/O IV and V to diverge. This is because the increased opacity in the AUTOSTRUCTURE PICS model causes these charge states to form higher in the atmosphere, more so for N/O V. Models using an extended line list caused significant changes to the Ni IV-V abundances. While both PICS and an extended line list cause changes in both synthetic spectra and measured abundances, the biggest changes are caused by using AUTOSTRUCTURE PICS for Ni.

  15. THE CIRCUMSTELLAR ENVIRONMENT OF R CORONAE BOREALIS: WHITE DWARF MERGER OR FINAL-HELIUM-SHELL FLASH?

    Energy Technology Data Exchange (ETDEWEB)

    Clayton, Geoffrey C.; Andrews, J. E. [Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803 (United States); Sugerman, Ben E. K. [Department of Physics and Astronomy, Goucher College, 1021 Dulaney Valley Rd., Baltimore, MD 21204 (United States); Adam Stanford, S. [IGPP, Lawrence Livermore National Laboratory, Livermore, CA 94551 (United States); Whitney, B. A. [Space Science Institute, 4750 Walnut St. Suite 205, Boulder, CO 80301 (United States); Honor, J.; Babler, B. [Department of Astronomy, 475 North Charter St., University of Wisconsin, Madison, WI 53706 (United States); Barlow, M. J. [Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT (United Kingdom); Gordon, K. D.; Bond, Howard E.; Matsuura, M. [STScI, 3700 San Martin Dr., Baltimore, MD 21218 (United States); Geballe, T. R. [Gemini Observatory, 670 N. A' ohoku Place, Hilo, HI 96720 (United States); De Marco, O. [Department of Physics, Macquarie University, Sydney, NSW 2109 (Australia); Lawson, W. A. [School of PEMS, University of New South Wales, ADFA, P.O. Box 7916, Canberra, ACT 2610 (Australia); Sibthorpe, B. [Max-Planck-Institut fuer Astronomie, Koenigstuhl 17, D-69117 Heidelberg (Germany); Olofsson, G. [Department of Astronomy, Stockholm University, AlbaNova University Center, Roslagstullsbacken 21, SE-10691 Stockholm (Sweden); Polehampton, E. [Space Science and Technology Department, Rutherford Appleton Laboratory, Didcot OX11 0QX (United Kingdom); Gomez, H. L.; Hargrave, P. C. [School of Physics and Astronomy, Cardiff University, 5 The Parade, Cardiff, Wales CF24 3YB (United Kingdom); Ivison, R. J., E-mail: gclayton@phys.lsu.edu, E-mail: jandrews@phys.lsu.edu, E-mail: ben.sugerman@goucher.edu, E-mail: stanford@physics.ucdavis.edu, E-mail: bwhitney@spacescience.org, E-mail: jhonor@astro.wisc.edu, E-mail: brian@astro.wisc.edu, E-mail: mjb@star.ucl.ac.uk [UK Astronomy Technology Centre, ROE, Blackford Hill, Edinburgh EH9 3HJ (United Kingdom); and others

    2011-12-10

    In 2007, R Coronae Borealis (R CrB) went into a historically deep and long decline. In this state, the dust acts like a natural coronagraph at visible wavelengths, allowing faint nebulosity around the star to be seen. Imaging has been obtained from 0.5 to 500 {mu}m with Gemini/GMOS, Hubble Space Telescope/WFPC2, Spitzer/MIPS, and Herschel/SPIRE. Several of the structures around R CrB are cometary globules caused by wind from the star streaming past dense blobs. The estimated dust mass of the knots is consistent with their being responsible for the R CrB declines if they form along the line of sight to the star. In addition, there is a large diffuse shell extending up to 4 pc away from the star containing cool 25 K dust that is detected all the way out to 500 {mu}m. The spectral energy distribution of R CrB can be well fitted by a 150 AU disk surrounded by a very large diffuse envelope which corresponds to the size of the observed nebulosity. The total masses of the disk and envelope are 10{sup -4} and 2 M{sub Sun }, respectively, assuming a gas-to-dust ratio of 100. The evidence pointing toward a white dwarf merger or a final-helium-shell flash origin for R CrB is contradictory. The shell and the cometary knots are consistent with a fossil planetary nebula. Along with the fact that R CrB shows significant lithium in its atmosphere, this supports the final-helium-shell flash. However, the relatively high inferred mass of R CrB and its high fluorine abundance support a white dwarf merger.

  16. White Dwarf Pollution by Disk Accretion of Tidally Disrupted Rocky Bodies

    Science.gov (United States)

    Feng, Wanda; Desch, Steven

    2017-01-01

    Approximately 30% of cool white dwarfs (WDs) show heavy elements which should otherwise sediment out of their atmospheres (Koester et al. 2014; Zuckerman et al. 2010). The prevailing model for the pollution of white dwarf photospheres invokes the formation of a solid disk upon a rocky body falling within the WD Roche radius, which is then transported inward by Poynting-Robertson drag (e.g., Metzger et al. 2012, Rafikov 2011). At high temperatures close to the WD, solid particles sublimate to gas that accretes onto the WD and viscously spreads outward. This concept is supported by observations of Ca II emission from WD disks (e.g., Manser et al. 2016). The model by Metzger et al. (2012) successfully explains the range in inferred mass accretion rates (10^10 g/s, Farihi et al. 2010), provided the gaseous disks viscously spread at rates consistent with a partially suppressed magnetorotational instability (MRI). However, Metzger et al. (2012) do not consider disk chemistry or dust-to-gas mixing in their model, and do not calculate the degree of ionization to explore the extent of MRI in WD disks.We present a 1-D model of a gaseous WD disk accretion, to assess the extent of the magnetorotational instability in WD disks. The disk composition is considered with changes in sublimation rate by pressure. The degree of ionization is determined by considering UV, X-ray, and high-temperature ionization. We calculate the rate of viscous spreading and accretion rates of metals onto WDs.

  17. White organic light emitting diodes based on fluorene-carbazole dendrimers

    Energy Technology Data Exchange (ETDEWEB)

    Usluer, Özlem, E-mail: usluerozlem@yahoo.com.tr [Department of Chemistry, Muğla Sıtkı Koçman University, 48000 Muğla (Turkey); Demic, Serafettin [Department of Materials Science and Engineering, Izmir Katip Çelebi University, 35620 Çiğli, Izmir (Turkey); Kus, Mahmut, E-mail: mahmutkus1@gmail.com [Chemical Engineering Department and Advanced Technology R and D Center, Selçuk University, Konya (Turkey); Özel, Faruk [Chemical Engineering Department and Advanced Technology R and D Center, Selçuk University, Konya (Turkey); Serdar Sariciftci, Niyazi [Linz Institute for Organic Solar Cells (LIOS), Physical Chemistry, Johannes Kepler University, Altenbergerstr. 69, A-4040 Linz (Austria)

    2014-02-15

    In this paper, we report on theProd. Type: FTP fabrication and characterization of blue and white light emitting devices based on two fluorene-carbazole containing dendrimers and para-sexiphenyl (6P) oligomers. Blue light emitting diodes were fabricated using 9′,9″-(9,9-dioctyl-9H-fluorene-2,7-diyl)bis-9′H-9,3′:6′,9″-tercarbazole (OFC-G2) and 9′,9″-(9,9′-spirobi[fluorene]-2,7-diyl)bis-9′H-9,3′:6′,9″-tercarbazole (SBFC-G2) dendrimers as a hole transport and emissive layer (EML) and 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP) as an electron transport layer. White light emitting diodes were fabricated using 6P and these two dendrimers as an EML. OLED device with the structure of ITO/PEDOT:PSS (50 nm)/OFC-G2 (40 nm)/6P (20 nm)/LiF:Al (0.5:100 nm) shows maximum luminance of nearly 1400 cd/m{sup 2} and a Commission Internationale de l'Eclairage chromaticity coordinates of (0.27, 0.30) at 12 V. -- Highlights: • White organic light emitting diodes have been fabricated using two fluorene-carbazole dendrimers and para-sexiphenyl (6P) oligomers. • When only these two dendrimers are used as EML, OLED devices are emitted blue light. • The emission colors of OLED devices change from blue to white when 6P is coated on dendrimer films.

  18. A nearly ideal phosphor-converted white light-emitting diode

    Science.gov (United States)

    Allen, Steven C.; Steckl, Andrew J.

    2008-04-01

    A phosphor-converted light-emitting diode was obtained with nearly ideal blue-to-white conversion loss of only 1%. This is achieved using internal reflection to steer phosphor emission away from lossy surfaces, a reflector material with high reflectivity, and a remotely located organic phosphor having (1) unity quantum efficiency (ηq), (2) homogeneous refractive index to minimize scattering, and (3) refractive index-matched to the encapsulation to eliminate total internal reflection. An inorganic composite phosphor is also reported with a nearly homogeneous refractive index to minimize diffuse scattering of emitted light, thereby maximizing the effective phosphor ηq and light extraction.

  19. Molecular-scale simulation of electroluminescence in a multilayer white organic light-emitting diode

    DEFF Research Database (Denmark)

    Mesta, Murat; Carvelli, Marco; de Vries, Rein J

    2013-01-01

    In multilayer white organic light-emitting diodes the electronic processes in the various layers--injection and motion of charges as well as generation, diffusion and radiative decay of excitons--should be concerted such that efficient, stable and colour-balanced electroluminescence can occur. Here...... we show that it is feasible to carry out Monte Carlo simulations including all of these molecular-scale processes for a hybrid multilayer organic light-emitting diode combining red and green phosphorescent layers with a blue fluorescent layer. The simulated current density and emission profile...

  20. InP/ZnS nanocrystals for colour conversion in white light emitting diodes

    DEFF Research Database (Denmark)

    Shirazi, Roza

    In this work a comprehensive study of a colloidal InP/ZnS nanocrystals (NC) as the colour conversion material for white light emitting diodes (WLED) is shown. Studied nanocrystals were synthesised by wet chemistry using one pot, hot injection method. A quantum efficiency (QE) of photoluminescence...... joined with a time resolved photoluminescence (TRPL) measurements of NCs covering the visible light spectrum range revealed a presence of a population of NCs that does not emit light upon photon absorption and it is significantly higher for a larger particles. By modifying local density of optical states...

  1. Maximum mass ratio of AM CVn-type binary systems and maximum white dwarf mass in ultra-compact X-ray binaries

    Directory of Open Access Journals (Sweden)

    Arbutina Bojan

    2011-01-01

    Full Text Available AM CVn-type stars and ultra-compact X-ray binaries are extremely interesting semi-detached close binary systems in which the Roche lobe filling component is a white dwarf transferring mass to another white dwarf, neutron star or a black hole. Earlier theoretical considerations show that there is a maximum mass ratio of AM CVn-type binary systems (qmax ≈ 2/3 below which the mass transfer is stable. In this paper we derive slightly different value for qmax and more interestingly, by applying the same procedure, we find the maximum expected white dwarf mass in ultra-compact X-ray binaries.

  2. Solution-processed white phosphorescent tandem organic light-emitting devices.

    Science.gov (United States)

    Chiba, Takayuki; Pu, Yong-Jin; Kido, Junji

    2015-08-26

    Solution-processed phosphorescent tandem organic light-emitting devices (OLEDs) exhibit extremely high efficiencies (94 cd A(-1) ) and 26% external quantum efficiency (EQE) at 5000 cd m(-2) for green phosphorescent devices and 69 cd A(-1) and 28% EQE at 5000 cd m(-2) for white phosphorescent devices. Development of these highly efficient solution-processed tandem-OLEDs with inverted device structure paves the way to printable, low-cost, and large-area white lighting. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. High color rendering index white organic light-emitting diode using levofloxacin as blue emitter

    Science.gov (United States)

    Miao, Yan-Qin; Gao, Zhi-Xiang; Zhang, Ai-Qin; Li, Yuan-Hao; Wang, Hua; Jia, Hu-Sheng; Liu, Xu-Guang; Tsuboi, Taijuf

    2015-05-01

    Levofloxacin (LOFX), which is well-known as an antibiotic medicament, was shown to be useful as a 452-nm blue emitter for white organic light-emitting diodes (OLEDs). In this paper, the fabricated white OLED contains a 452-nm blue emitting layer (thickness of 30 nm) with 1 wt% LOFX doped in CBP (4,4’-bis(carbazol-9-yl)biphenyl) host and a 584-nm orange emitting layer (thickness of 10 nm) with 0.8 wt% DCJTB (4-(dicyanomethylene)-2-tert-butyl-6-(1,1,7,7-tetramethyljulolidin-4-yl-vinyl)-4H-pyran) doped in CBP, which are separated by a 20-nm-thick buffer layer of TPBi (2,2’,2”-(benzene-1,3,5-triyl)-tri(1-phenyl-1H-benzimidazole). A high color rendering index (CRI) of 84.5 and CIE chromaticity coordinates of (0.33, 0.32), which is close to ideal white emission CIE (0.333, 0.333), are obtained at a bias voltage of 14 V. Taking into account that LOFX is less expensive and the synthesis and purification technologies of LOFX are mature, these results indicate that blue fluorescence emitting LOFX is useful for applications to white OLEDs although the maximum current efficiency and luminance are not high. The present paper is expected to become a milestone to using medical drug materials for OLEDs. Project supported by the Program for New Century Excellent Talents in University of Ministry of Education of China (Grant No. NCET-13-0927), the International Science & Technology Cooperation Program of China (Grant No. 2012DFR50460), the National Natural Science Foundation of China (Grant Nos. 21101111 and 61274056), and the Shanxi Provincial Key Innovative Research Team in Science and Technology, China (Grant No. 2012041011).

  4. Accretion onto Carbon-Oxygen White Dwarfs as a possible mechanism for growth to the Chandrasekhar Limit

    Science.gov (United States)

    Starrfield, Sumner; Bose, Maitrayee; Iliadis, Christian; Hix, William R.; José, Jordi; Hernanz, Margarita

    2017-08-01

    We have continued our studies of accretion onto white dwarfs by following the evolution of thermonuclear runaways (TNRs) on Carbon Oxygen (CO) white dwarfs. We have varied the mass of the white dwarf and the composition of the accreted material. We use the results of the multi-dimensional studies of TNRs in white dwarfs, accreting only Solar matter, which show that sufficient core material is dredged-up by the TNR and then ejected by the explosion to agree with the observations of the ejecta abundances. We have also found that the initial 12C abundance is inversely proportional to the amount of material accreted prior to the TNR. Therefore, we first accrete Solar material and follow the evolution until a TNR occurs. Because the 12C abundance is significantly smaller then if we had initially mixed the accreting gas with the carbon-oxygen core, more matter takes part in the explosion than if we had begun the evolution with the mixed composition. We then instantaneously switch the composition to a mixture with either 25% core material or 50% core material (plus accreted material) and follow the resulting evolution of the TNR. We use our 1D, Lagrangian, hydrodynamic code: NOVA. We report on the results of these new simulations and compare the ejecta abundances to those measured in pre-solar grains that are thought to arise from classical nova explosions. These results will also be compared to recent results with SHIVA (Josè and Hernanz). We find that there are some white dwarf masses where significantly less mass is ejected than accreted during the Classical Nova event and, therefore, the white dwarf is growing in mass as a result of the accretion and in spite of the resulting explosion.This work was supported in part by NASA under the Astrophysics Theory Program grant 14-ATP14-0007 and the U.S. DOE under Contract No. DE-FG02- 97ER41041. SS acknowledges partial support from NASA, NSF, and HST grants to ASU and WRH is supported by the U.S. Department of Energy, Office

  5. The accretion of solar material onto white dwarfs: No mixing with core material implies that the mass of the white dwarf is increasing

    Directory of Open Access Journals (Sweden)

    Sumner Starrfield

    2014-02-01

    Full Text Available Cataclysmic Variables (CVs are close binary star systems with one component a white dwarf (WD and the other a larger cooler star that fills its Roche Lobe. The cooler star is losing mass through the inner Lagrangian point of the binary and some unknown fraction of this material is accreted by the WD. One consequence of the WDs accreting material, is the possibility that they are growing in mass and will eventually reach the Chandrasekhar Limit. This evolution could result in a Supernova Ia (SN Ia explosion and is designated the Single Degenerate Progenitor (SD scenario. This paper is concerned with the SD scenario for SN Ia progenitors. One problem with the single degenerate scenario is that it is generally assumed that the accreting material mixes with WD core material at some time during the accretion phase of evolution and, since the typical WD has a carbon-oxygen CO core, the mixing results in large amounts of carbon and oxygen being brought up into the accreted layers. The presence of enriched carbon causes enhanced nuclear fusion and a Classical Nova explosion. Both observations and theoretical studies of these explosions imply that more mass is ejected than is accreted. Thus, the WD in a Classical Nova system is losing mass and cannot be a SN Ia progenitor. However, the composition in the nuclear burning region is important and, in new calculations reported here, the consequences to the WD of no mixing of accreted material with core material have been investigated so that the material involved in the explosion has only a Solar composition. WDs with a large range in initial masses and mass accretion rates have been evolved. I find that once sufficient material has been accreted, nuclear burning occurs in all evolutionary sequences and continues until a thermonuclear runaway (TNR occurs and the WD either ejects a small amount of material or its radius grows to about 1012 cm and the evolution is ended. In all cases where mass ejection occurs

  6. Conversion of Biowaste Asian Hard Clam (Meretrix lusoria) Shells into White-Emitting Phosphors for Use in Neutral White LEDs

    OpenAIRE

    Tsung-Yuan Chang; Chih-Min Wang; Tai-Yuan Lin; Hsiu-Mei Lin

    2016-01-01

    The increasing volume and complexity of waste associated with the modern economy poses a serious risk to ecosystems and human health. However, the remanufacturing and recycling of waste into usable products can lead to substantial resource savings. In the present study, clam shell waste was first transformed into pure and well-crystallized single-phase white light-emitting phosphor Ca9Gd(PO4)7:Eu2+,Mn2+ materials. The phosphor Ca9Gd(PO4)7:Eu2+,Mn2+ materials were synthesized by the solid-stat...

  7. Ag nanocluster-based color converters for white organic light-emitting devices

    Science.gov (United States)

    Nishikitani, Yoshinori; Takizawa, Daisuke; Uchida, Soichi; Lu, Yue; Nishimura, Suzushi; Oyaizu, Kenichi; Nishide, Hiroyuki

    2017-11-01

    The authors present Ag nanocluster-based color converters (Ag NC color converters), which convert part of the blue light from a light source to yellow light so as to create white organic light-emitting devices that could be suitable for lighting systems. Ag NCs synthesized by poly(methacrylic acid) template methods have a statistical size distribution with a mean diameter of around 4.5 nm, which is larger than the Fermi wavelength of around 2 nm. Hence, like free electrons in metals, the Ag NC electrons are thought to form a continuous energy band, leading to the formation of surface plasmons by photoexcitation. As for the fluorescence emission mechanism, the fact that the photoluminescence is excitation wavelength dependent suggests that the fluorescence originates from surface plasmons in Ag NCs of different sizes. By using Ag NC color converters and suitable blue light sources, white organic light-emitting devices can be fabricated based on the concept of light-mixing. For our blue light sources, we used polymer light-emitting electrochemical cells (PLECs), which, like organic light-emitting diodes, are area light sources. The PLECs were fabricated with a blue fluorescent π-conjugated polymer, poly[(9,9-dihexylfluoren-2,7-diyl)-co-(anthracen-9,10-diyl)] (PDHFA), and a polymeric solid electrolyte composed of poly(ethylene oxide) and KCF3SO3. In this device structure, the Ag NC color converter absorbs blue light from the PDHFA-based PLEC (PDHFA-PLEC) and then emits yellow light. When the PDHFA-PLEC is turned on by applying an external voltage, pure white light emission can be produced with Commission Internationale de l'Eclairage coordinates of (x = 0.32, y = 0.33) and a color rendering index of 93.6. This study shows that utilization of Ag NC color converters and blue PLECs is a very promising and highly effective method for realizing white organic light-emitting devices.

  8. The instability strip of ZZ Ceti white dwarfs. I. Introduction of time-dependent convection

    Science.gov (United States)

    Van Grootel, V.; Dupret, M.-A.; Fontaine, G.; Brassard, P.; Grigahcène, A.; Quirion, P.-O.

    2012-03-01

    Aims: The determination of the location of the theoretical ZZ Ceti instability strip in the log g - Teff diagram has remained a challenge over the years due to the lack of a suitable treatment for convection in these stars. For the first time, a full nonadiabatic approach including time-dependent convection is applied to ZZ Ceti pulsators, and we provide the appropriate details related to the inner workings of the driving mechanism. Methods: We used the nonadiabatic pulsation code MAD with a representative evolutionary sequence of a 0.6 M⊙ DA white dwarf. This sequence is made of state-of-the-art models that include a detailed modeling of the feedback of convection on the atmospheric structure. The assumed convective efficiency in these models is the so-called ML2/α = 1.0 version. We also carried out, for comparison purposes, nonadiabatic computations within the frozen convection approximation, as well as calculations based on models with standard grey atmospheres. Results: We find that pulsational driving in ZZ Ceti stars is concentrated at the base of the superficial H convection zone, but at depths, near the blue edge of the instability strip, somewhat larger than those obtained with the frozen convection approach. Despite the fact that this approach is formally invalid in such stars, particularly near the blue edge of the instability strip, the predicted boundaries are not dramatically different in both cases. The revised blue edge for a 0.6 M⊙ model is found to be around Teff = 11 970 K, some 240 K hotter than the value predicted within the frozen convection approximation, in rather good agreement with the empirical value. On the other hand, our predicted red edge temperature for the same stellar mass is only about 5600 K (80 K hotter than with the frozen convection approach), much lower than the observed value. Conclusions: We correctly understand the development of pulsational instabilities of a white dwarf as it cools at the blue edge of the ZZ Ceti

  9. Multi-solution processes of small molecule for flexible white organic light-emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, Yu-Sheng, E-mail: ystsai@nfu.edu.tw [Institute of Electro-optical and Materials Science, National Formosa University, Yunlin 63201, Taiwan, ROC (China); Chittawanij, Apisit; Hong, Lin-Ann; Guo, Siou-Wei [Institute of Electro-optical and Materials Science, National Formosa University, Yunlin 63201, Taiwan, ROC (China); Wang, Ching-Chiun [Department of Solid State Lighting Technology, Mechanical and Systems Research Laboratories, Industrial Technology Research Institute, Hsinchu 31040, Taiwan, ROC (China); Juang, Fuh-Shyang [Institute of Electro-optical and Materials Science, National Formosa University, Yunlin 63201, Taiwan, ROC (China); Lai, Shih-Hsiang [Department of Solid State Lighting Technology, Mechanical and Systems Research Laboratories, Industrial Technology Research Institute, Hsinchu 31040, Taiwan, ROC (China); Lin, Yang-Ching [Institute of Electro-optical and Materials Science, National Formosa University, Yunlin 63201, Taiwan, ROC (China)

    2016-04-01

    Most small molecule organic light emitting diode (SM-OLED) device structures are made in one layer using solution-based processing because the solution is usually a high dissolvent material that easily attacks the layer below it. We demonstrate a simple and reliable stamping technique for fabricating multi-solution process flexible white SM-OLEDs. The structure is anode/spin-hole injection layer/spin-emitting layer/stamping-electron transport layer/cathode. Poly(di-methyl silane) (PDMS) stamp is used for transferring electron transport layer. An intermediate ultraviolet-ozone surface treatment is introduced to temporarily modify the PDMS stamp surface. Then, the solution-based electron transport layer film can therefore be uniformly formed on top of the PDMS surface. After that the electron transport layer film on the PDMS stamp is transfer-printed onto the emitting layer with suitable heating and pressing. A solution-based processing is successfully established to efficiently fabricate flexible white SM-OLEDs. The SM-OLEDs were obtained at the current density of 20 mA/cm{sup 2}, luminance of 1062 cd/m{sup 2}, current efficiency of 5.57 cd/A, and Commission internationale de l'éclairage coordinate of (0.32, 0.35). - Highlights: • All solution-processed small molecule materials (emitting layer, electron transport layer). • Poly(di-methylsilane) (PDMS) stamp is subsequently used for stamping transfer. • The flexible white SM-OLEDs are based on solution-processes with a low-cost method.

  10. Fabrication of Flexible White Light-Emitting Diodes from Photoluminescent Polymer Materials with Excellent Color Quality.

    Science.gov (United States)

    Lin, Huang-Yu; Sher, Chin-Wei; Lin, Chih-Hao; Tu, Hsien-Hao; Chen, Xin Yin; Lai, Yi-Chun; Lin, Chien-Chung; Chen, Huang-Ming; Yu, Peichen; Meng, Hsin-Fei; Chi, Gou-Chung; Honjo, Keiji; Chen, Teng-Ming; Kuo, Hao-Chung

    2017-10-11

    This study developed flexible light-emitting diodes (LEDs) with warm white and neutral white light. A simple ultraviolet flip-chip sticking process was adopted for the pumping source and combined with polymer and quantum dot (QD) films technology to yield white light. The polymer-blended flexible LEDs exhibited higher luminous efficiency than the QD-blended flexible LEDs. Moreover, the polymer-blended LEDs achieved excellent color-rendering index (CRI) values (Ra = 96 and R9 = 96), with high reliability, demonstrating high suitability for special applications like accent, down, or retrofit lights in the future. In places such as a museum, kitchen, or surgery room, its high R9 and high CRI characteristics can provide high-quality services.

  11. Surprising Rapid Collapse of Sirius B from Red Giant to White Dwarf Through Mass Transfer to Sirius a

    Science.gov (United States)

    Yousef, Shahinaz; Ali, Ola

    2013-03-01

    Sirius was observed in antiquity as a red star. In his famous astronomy textbook the Almagest written 140 AD, Ptolemy described the star Sirius as fiery red. He curiously depicted it as one of six red-colored stars. The other five are class M and K stars, such as Arcturus and Betelgeuse. Apparent confirmation in ancient Greek and Roman sources are found and Sirius was also reported red in Europe about 1400 years ago. Sirius must have changed to a white dwarf in the night of Ascension. The star chapter in the Quran started with "by the star as it collapsed (1) your companion have not gone astray nor being misled (2), and in verse 49 which is the rotation period of the companion Sirius B around Sirius A, it is said" He is the Lord of Sirius (49). If Sirius actually was red what could have caused it to change into the brilliant bluish-white star we see today? What the naked eye perceives as a single star is actually a binary star system, consisting of a white main sequence star of spectral type A1V, termed Sirius A, and a faint white dwarf companion of spectral type DA2, termed Sirius B. The red color indicates that the star seen then was a red giant. It looks that what they have seen in antiquity was Sirius B which was then a red giant and it collapsed to form a white dwarf. Since there is no evidence of a planetary nebula, then the red Sirius paradox can be solved in terms of stellar evolution with mass transfer. Sirius B was the most massive star which evolved to a red giant and filled the Roche lobe. Mass transfer to Sirius A occurred through the Lagrangian point. Sirius A then became more massive while Sirius B lost mass and shrank. Sirius B then collapsed abruptly into a white dwarf. In the case of Algol, Ptolmy observed it as white star but it was red at the time of El sufi. At present it is white. The rate of mass transfer from Sirius B to Sirius A, and from Algol B to A is estimated from observational data of colour change from red to bullish white to be 0

  12. VizieR Online Data Catalog: NLTE spectral analysis of white dwarf G191-B2B (Rauch+, 2013)

    Science.gov (United States)

    Rauch, T.; Werner, K.; Bohlin, R.; Kruk, J. W.

    2013-08-01

    In the framework of the Virtual Observatory, the German Astrophysical Virtual Observatory developed the registered service TheoSSA. It provides easy access to stellar spectral energy distributions (SEDs) and is intended to ingest SEDs calculated by any model-atmosphere code. In case of the DA white dwarf G191-B2B, we demonstrate that the model reproduces not only its overall continuum shape but also the numerous metal lines exhibited in its ultraviolet spectrum. (3 data files).

  13. Colour tuning in white hybrid inorganic/organic light-emitting diodes

    Science.gov (United States)

    Bruckbauer, Jochen; Brasser, Catherine; Findlay, Neil J.; Edwards, Paul R.; Wallis, David J.; Skabara, Peter J.; Martin, Robert W.

    2016-10-01

    White hybrid inorganic/organic light-emitting diodes (LEDs) were fabricated by combining a novel organic colour converter with a blue inorganic LED. An organic small molecule was specifically synthesised to act as down-converter. The characteristics of the white colour were controlled by changing the concentration of the organic molecule based on the BODIPY unit, which was embedded in a transparent matrix, and volume of the molecule and encapsulant mixture. The concentration has a critical effect on the conversion efficiency, i.e. how much of the absorbed blue light is converted into yellow light. With increasing concentration the conversion efficiency decreases. This quenching effect is due to aggregation of the organic molecule at higher concentrations. Increasing the deposited amount of the converter does not increase the yellow emission despite more blue light being absorbed. Degradation of the organic converter was also observed during a period of 15 months from LED fabrication. Angular-dependent measurements revealed slight deviation from a Lambertian profile for the blue and yellow emission peaks leading to a small change in ‘whiteness’ with emission angle. Warm white and cool white light with correlated colour temperatures of 2770 K and 7680 K, respectively, were achieved using different concentrations of the converter molecule. Although further work is needed to improve the lifetime and poor colour rendering, these hybrid LEDs show promising results as an alternative approach for generating white LEDs compared with phosphor-based white LEDs.

  14. Phosphor-Free InGaN White Light Emitting Diodes Using Flip-Chip Technology

    Science.gov (United States)

    Li, Ying-Chang; Chang, Liann-Be; Chen, Hou-Jen; Yen, Chia-Yi; Pan, Ke-Wei; Huang, Bohr-Ran; Kuo, Wen-Yu; Chow, Lee; Zhou, Dan; Popko, Ewa

    2017-01-01

    Monolithic phosphor-free two-color gallium nitride (GaN)-based white light emitting diodes (LED) have the potential to replace current phosphor-based GaN white LEDs due to their low cost and long life cycle. Unfortunately, the growth of high indium content indium gallium nitride (InGaN)/GaN quantum dot and reported LED’s color rendering index (CRI) are still problematic. Here, we use flip-chip technology to fabricate an upside down monolithic two-color phosphor-free LED with four grown layers of high indium quantum dots on top of the three grown layers of lower indium quantum wells separated by a GaN tunneling barrier layer. The photoluminescence (PL) and electroluminescence (EL) spectra of this white LED reveal a broad spectrum ranging from 475 to 675 nm which is close to an ideal white-light source. The corresponding color temperature and color rendering index (CRI) of the fabricated white LED, operated at 350, 500, and 750 mA, are comparable to that of the conventional phosphor-based LEDs. Insights of the epitaxial structure and the transport mechanism were revealed through the TEM and temperature dependent PL and EL measurements. Our results show true potential in the Epi-ready GaN white LEDs for future solid state lighting applications. PMID:28772792

  15. Phosphor-Free InGaN White Light Emitting Diodes Using Flip-Chip Technology

    Directory of Open Access Journals (Sweden)

    Ying-Chang Li

    2017-04-01

    Full Text Available Monolithic phosphor-free two-color gallium nitride (GaN-based white light emitting diodes (LED have the potential to replace current phosphor-based GaN white LEDs due to their low cost and long life cycle. Unfortunately, the growth of high indium content indium gallium nitride (InGaN/GaN quantum dot and reported LED’s color rendering index (CRI are still problematic. Here, we use flip-chip technology to fabricate an upside down monolithic two-color phosphor-free LED with four grown layers of high indium quantum dots on top of the three grown layers of lower indium quantum wells separated by a GaN tunneling barrier layer. The photoluminescence (PL and electroluminescence (EL spectra of this white LED reveal a broad spectrum ranging from 475 to 675 nm which is close to an ideal white-light source. The corresponding color temperature and color rendering index (CRI of the fabricated white LED, operated at 350, 500, and 750 mA, are comparable to that of the conventional phosphor-based LEDs. Insights of the epitaxial structure and the transport mechanism were revealed through the TEM and temperature dependent PL and EL measurements. Our results show true potential in the Epi-ready GaN white LEDs for future solid state lighting applications.

  16. The age-metallicity relation in the solar neighbourhood from a pilot sample of white dwarf-main sequence binaries

    Science.gov (United States)

    Rebassa-Mansergas, A.; Anguiano, B.; García-Berro, E.; Freeman, K. C.; Cojocaru, R.; Manser, C. J.; Pala, A. F.; Gänsicke, B. T.; Liu, X.-W.

    2016-12-01

    The age-metallicity relation (AMR) is a fundamental observational constraint for understanding how the Galactic disc formed and evolved chemically in time. However, there is not yet an agreement on the observational properties of the AMR for the solar neighbourhood, primarily due to the difficulty in obtaining accurate stellar ages for individual field stars. We have started an observational campaign for providing the much needed observational input by using wide white-dwarf-main-sequence (WDMS) binaries. White dwarfs are `natural' clocks and can be used to derive accurate ages. Metallicities can be obtained from the main-sequence companions. Since the progenitors of white dwarfs and the main-sequence stars were born at the same time, WDMS binaries provide a unique opportunity to observationally constrain in a robust way the properties of the AMR. In this work we present the AMR derived from analysing a pilot sample of 23 WDMS binaries and provide clear observational evidence for the lack of correlation between age and metallicity at young and intermediate ages (0-7 Gyr).

  17. Does a Differentiated, Carbonate-rich, Rocky Object Pollute the White Dwarf SDSS J104341.53+085558.2?

    Science.gov (United States)

    Melis, Carl; Dufour, P.

    2017-01-01

    We present spectroscopic observations of the dust- and gas-enshrouded, polluted, single white dwarf star SDSS J104341.53+085558.2 (hereafter SDSS J1043+0855). Hubble Space Telescope Cosmic Origins Spectrograph far-ultraviolet spectra combined with deep Keck HIRES optical spectroscopy reveal the elements C, O, Mg, Al, Si, P, S, Ca, Fe, and Ni and enable useful limits for Sc, Ti, V, Cr, and Mn in the photosphere of SDSS J1043+0855. From this suite of elements we determine that the parent body being accreted by SDSS J1043+0855 is similar to the silicate Moon or the outer layers of Earth in that it is rocky and iron-poor. Combining this with comparison to other heavily polluted white dwarf stars, we are able to identify the material being accreted by SDSS J1043+0855 as likely to have come from the outermost layers of a differentiated object. Furthermore, we present evidence that some polluted white dwarfs (including SDSS J1043+0855) allow us to examine the structure of differentiated extrasolar rocky bodies. Enhanced levels of carbon in the body polluting SDSS J1043+0855 relative to the Earth-Moon system can be explained with a model where a significant amount of the accreted rocky minerals took the form of carbonates; specifically, through this model the accreted material could be up to 9% calcium-carbonate by mass.

  18. Solar abundances of rock-forming elements, extreme oxygen and hydrogen in a young polluted white dwarf

    Science.gov (United States)

    Farihi, J.; Koester, D.; Zuckerman, B.; Vican, L.; Gänsicke, B. T.; Smith, N.; Walth, G.; Breedt, E.

    2016-12-01

    The Teff = 20 800 K white dwarf WD 1536+520 is shown to have broadly solar abundances of the major rock-forming elements O, Mg, Al, Si, Ca, and Fe, together with a strong relative depletion in the volatile elements C and S. In addition to the highest metal abundances observed to date, including log (O/He) = -3.4, the helium-dominated atmosphere has an exceptional hydrogen abundance at log (H/He) = -1.7. Within the uncertainties, the metal-to-metal ratios are consistent with the accretion of an H2O-rich and rocky parent body, an interpretation supported by the anomalously high trace hydrogen. The mixed atmosphere yields unusually short diffusion time-scales for a helium atmosphere white dwarf, of no more than a few hundred years, and equivalent to those in a much cooler, hydrogen-rich star. The overall heavy element abundances of the disrupted parent body deviate modestly from a bulk Earth pattern, and suggest the deposition of some core-like material. The total inferred accretion rate is 4.2 × 109 g s-1, and at least four times higher than for any white dwarf with a comparable diffusion time-scale. Notably, when accretion is exhausted in this system, both metals and hydrogen will become undetectable within roughly 300 Myr, thus supporting a scenario where the trace hydrogen is related to the ongoing accretion of planetary debris.

  19. Importance of fingering convection for accreting white dwarfs in the framework of full evolutionary calculations: the case of the hydrogen-rich white dwarfs GD 133 and G 29-38

    Science.gov (United States)

    Wachlin, F. C.; Vauclair, G.; Vauclair, S.; Althaus, L. G.

    2017-05-01

    Context. A large fraction of white dwarfs show photospheric chemical composition that is polluted by heavy elements accreted from a debris disk. Such debris disks result from the tidal disruption of rocky planetesimals that have survived to whole stellar evolution from the main sequence to the final white dwarf stage. Determining the accretion rate of this material is an important step toward estimating the mass of the planetesimals and understanding the ultimate fate of the planetary systems. Aims: The accretion of heavy material with a mean molecular weight, μ, higher than the mean molecular weight of the white dwarf outer layers, induces a double-diffusive instability producing the fingering convection and an extra-mixing. As a result, the accreted material is diluted deep into the star. We explore the effect of this extra-mixing on the abundance evolution of Mg, O, Ca, Fe and Si in the cases of the two well-studied polluted DAZ white dwarfs: GD 133 and G 29-38. Methods: We performed numerical simulations of the accretion of material that has a chemical composition similar to the bulk Earth composition. We assumed a continuous and uniform accretion and considered a range of accretion rates from 104 g/s to 1010 g/s. Two cases are simulated, one using the standard mixing length theory (MLT) and one including the double-diffusive instability (fingering convection). Results: The double-diffusive instability develops on a very short timescale. The surface abundance rapidly reaches a stationary value while the depth of the zone mixed by the fingering convection increases. In the case of GD 133, the accretion rate needed to reproduce the observed abundances exceeds by more than two orders of magnitude the rate estimated by neglecting the fingering convection. In the case of G 29-38 the needed accretion rate is increased by approximately 1.7 dex. Conclusions: Our numerical simulations of the accretion of heavy elements on the hydrogen-rich white dwarf GD 133 and G 29

  20. A STRANGE STAR SCENARIO FOR THE FORMATION OF ECCENTRIC MILLISECOND PULSAR/HELIUM WHITE DWARF BINARIES

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Long; Li, Xiang-Dong [Department of Astronomy, Nanjing University, Nanjing 210046 (China); Dey, Jishnu; Dey, Mira, E-mail: lixd@nju.edu.cn [Department of Physics, Presidency University, 86/1, College Street, Kolkata 700 073 (India)

    2015-07-01

    According to the recycling scenario, millisecond pulsars (MSPs) have evolved from low-mass X-ray binaries (LMXBs). Their orbits are expected to be circular due to tidal interactions during binary evolution, as observed in most binary MSPs. There are some peculiar systems that do not fit this picture. Three recent examples are the PSRs J2234+06, J1946+3417, and J1950+2414, all of which are MSPs in eccentric orbits but with mass functions compatible with expected He white dwarf (WD) companions. It has been suggested these MSPs may have formed from delayed accretion-induced collapse of massive WDs, or the eccentricity may be induced by dynamical interaction between the binary and a circumbinary disk. Assuming that the core density of accreting neutron stars (NSs) in LMXBs may reach the density of quark deconfinement, which can lead to phase transition from NSs to strange quark stars, we show that the resultant MSPs are likely to have an eccentric orbit, due to the sudden loss of the gravitational mass of the NS during the transition. The eccentricities can be reproduced with a reasonable estimate of the mass loss. This scenario might also account for the formation of the youngest known X-ray binary Cir X–1, which also possesses a low-field compact star in an eccentric orbit.

  1. The Identification of the White Dwarf Companion to the Millisecond Pulsar J2317+1439

    Science.gov (United States)

    Dai, S.; Smith, M. C.; Wang, S.; Okamoto, S.; Xu, R. X.; Yue, Y. L.; Liu, J. F.

    2017-06-01

    We report the identification of the optical counterpart to the companion of the millisecond pulsar J2317+1439. At the timing position of the pulsar, we find an object with g=22.96+/- 0.05, r=22.86+/- 0.04, and i=22.82+/- 0.05. The magnitudes and colors of the object are consistent with a white dwarf (WD). Compared with WD cooling models, we estimate that it has a mass of {0.39}-0.10+0.13 {M}⊙ , an effective temperature of {8077}-470+550 K, and a cooling age of 10.9 ± 0.3 Gyr. Combining our results with published constraints on the orbital parameters obtained through pulsar timing, we estimate the pulsar mass to be {3.4}-1.1+1.4 {M}⊙ . Although the constraint on the pulsar mass is still weak, there is a significant possibility that the pulsar could be more massive than two solar masses.

  2. Formation of millisecond pulsars with low-mass helium white dwarf companions in very compact binaries

    Energy Technology Data Exchange (ETDEWEB)

    Jia, Kun; Li, X.-D., E-mail: lixd@nju.edu.cn [Department of Astronomy, Nanjing University, Nanjing 210093 (China)

    2014-08-20

    Binary millisecond pulsars (BMSPs) are thought to have evolved from low-mass X-ray binaries (LMXBs). If the mass transfer in LMXBs is driven by nuclear evolution of the donor star, the final orbital period is predicted to be well correlated with the mass of the white dwarf (WD), which is the degenerate He core of the donor. Here we show that this relation can be extended to very small WD mass (∼0.14-0.17 M {sub ☉}) and narrow orbital period (about a few hours), depending mainly on the metallicities of the donor stars. There is also discontinuity in the relation, which is due to the temporary contraction of the donor when the H-burning shell crosses the hydrogen discontinuity. BMSPs with low-mass He WD companions in very compact binaries can be accounted for if the progenitor binary experienced very late Case A mass transfer. The WD companion of PSR J1738+0333 is likely to evolve from a Pop II star. For PSR J0348+0432, to explain its extreme compact orbit in the Roche-lobe-decoupling phase, even lower metallicity (Z = 0.0001) is required.

  3. ON THE FORMATION OF ECCENTRIC MILLISECOND PULSARS WITH HELIUM WHITE-DWARF COMPANIONS

    Energy Technology Data Exchange (ETDEWEB)

    Antoniadis, John, E-mail: antoniadis@dunlap.utoronto.ca [Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, D-53121 Bonn (Germany); Dunlap Institute for Astronomy and Astrophysics, University of Toronto, 50 St. George Street, Toronto, Ontario M5S 3H4 (Canada)

    2014-12-20

    Millisecond pulsars (MSPs) orbiting helium white dwarfs (WDs) in eccentric orbits challenge the established binary-evolution paradigm that predicts efficient orbital circularization during the mass-transfer episode that spins up the pulsar. Freire and Tauris recently proposed that these binary MSPs may instead form from the rotationally delayed accretion-induced collapse of a massive WD. However, their hypothesis predicts that eccentric systems preferably host low-mass pulsars and travel with small systemic velocities—in tension with new observational constraints. Here, I show that a substantial growth in eccentricity may alternatively arise from the dynamical interaction of the binary with a circumbinary disk. Such a disk may form from ejected donor material during hydrogen flash episodes, when the neutron star is already an active radio pulsar and tidal forces can no longer circularize the binary. I demonstrate that a short-lived (10{sup 4}-10{sup 5} yr) disk can result in eccentricities of e ≅ 0.01-0.15 for orbital periods between 15 and 50 days. Finally, I propose that, more generally, the disk hypothesis may explain the lack of circular binary pulsars for the aforementioned orbital-period range.

  4. MULTI-DIMENSIONAL MODELS FOR DOUBLE DETONATION IN SUB-CHANDRASEKHAR MASS WHITE DWARFS

    Energy Technology Data Exchange (ETDEWEB)

    Moll, R.; Woosley, S. E. [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States)

    2013-09-10

    Using two-dimensional and three-dimensional simulations, we study the ''robustness'' of the double detonation scenario for Type Ia supernovae, in which a detonation in the helium shell of a carbon-oxygen white dwarf induces a secondary detonation in the underlying core. We find that a helium detonation cannot easily descend into the core unless it commences (artificially) well above the hottest layer calculated for the helium shell in current presupernova models. Compressional waves induced by the sliding helium detonation, however, robustly generate hot spots which trigger a detonation in the core. Our simulations show that this is true even for non-axisymmetric initial conditions. If the helium is ignited at multiple points, then the internal waves can pass through one another or be reflected, but this added complexity does not defeat the generation of the hot spot. The ignition of very low-mass helium shells depends on whether a thermonuclear runaway can simultaneously commence in a sufficiently large region.

  5. 3D MODEL ATMOSPHERES FOR EXTREMELY LOW-MASS WHITE DWARFS

    Energy Technology Data Exchange (ETDEWEB)

    Tremblay, P.-E. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD, 21218 (United States); Gianninas, A.; Kilic, M. [Department of Physics and Astronomy, University of Oklahoma, 440 W. Brooks St., Norman, OK, 73019 (United States); Ludwig, H.-G. [Zentrum für Astronomie der Universität Heidelberg, Landessternwarte, Königstuhl 12, D-69117 Heidelberg (Germany); Steffen, M. [Leibniz-Institut für Astrophysik Potsdam, An der Sternwarte 16, D-14482 Potsdam (Germany); Freytag, B. [Department of Physics and Astronomy at Uppsala University, Regementsvägen 1, Box 516, SE-75120 Uppsala (Sweden); Hermes, J. J., E-mail: tremblay@stsci.edu [Department of Physics, University of Warwick, Coventry CV4 7AL (United Kingdom)

    2015-08-20

    We present an extended grid of mean three-dimensional (3D) spectra for low-mass, pure-hydrogen atmosphere DA white dwarfs (WDs). We use CO5BOLD radiation-hydrodynamics 3D simulations covering T{sub eff} = 6000–11,500 K and log g = 5–6.5 (g in cm s{sup −2}) to derive analytical functions to convert spectroscopically determined 1D temperatures and surface gravities to 3D atmospheric parameters. Along with the previously published 3D models, the 1D to 3D corrections are now available for essentially all known convective DA WDs (i.e., log g = 5–9). For low-mass WDs, the correction in temperature is relatively small (a few percent at the most), but the surface gravities measured from the 3D models are lower by as much as 0.35 dex. We revisit the spectroscopic analysis of the extremely low-mass (ELM) WDs, and demonstrate that the 3D models largely resolve the discrepancies seen in the radius and mass measurements for relatively cool ELM WDs in eclipsing double WD and WD + millisecond pulsar binary systems. We also use the 3D corrections to revise the boundaries of the ZZ Ceti instability strip, including the recently found ELM pulsators.

  6. The Massive CO White Dwarf in the Symbiotic Recurrent Nova RS Ophiuchi

    Science.gov (United States)

    Mikołajewska, Joanna; Shara, Michael M.

    2017-10-01

    If accreting white dwarfs (WDs) in binary systems are to produce type Ia supernovae (SNe Ia), they must grow to nearly the Chandrasekhar mass and ignite carbon burning. Proving conclusively that a WD has grown substantially since its birth is a challenging task. Slow accretion of hydrogen inevitably leads to the erosion, rather than the growth of WDs. Rapid hydrogen accretion does lead to growth of a helium layer, due to both decreased degeneracy and the inhibition of mixing of the accreted hydrogen with the underlying WD. However, until recently, simulations of helium-accreting WDs all claimed to show the explosive ejection of a helium envelope once it exceeded ˜ {10}-1 {M}⊙ . Because CO WDs cannot be born with masses in excess of ˜ 1.1 {M}⊙ , any such object in excess of ˜ 1.2 {M}⊙ must have grown substantially. We demonstrate that the WD in the symbiotic nova RS Oph is in the mass range 1.2-1.4 M ⊙. We compare UV spectra of RS Oph with those of novae with ONe WDs and with novae erupting on CO WDs. The RS Oph WD is clearly made of CO, demonstrating that it has grown substantially since birth. It is a prime candidate to eventually produce an SN Ia.

  7. Multi-dimensional Models for Double Detonation in Sub-Chandrasekhar Mass White Dwarfs

    Science.gov (United States)

    Moll, R.; Woosley, S. E.

    2013-09-01

    Using two-dimensional and three-dimensional simulations, we study the "robustness" of the double detonation scenario for Type Ia supernovae, in which a detonation in the helium shell of a carbon-oxygen white dwarf induces a secondary detonation in the underlying core. We find that a helium detonation cannot easily descend into the core unless it commences (artificially) well above the hottest layer calculated for the helium shell in current presupernova models. Compressional waves induced by the sliding helium detonation, however, robustly generate hot spots which trigger a detonation in the core. Our simulations show that this is true even for non-axisymmetric initial conditions. If the helium is ignited at multiple points, then the internal waves can pass through one another or be reflected, but this added complexity does not defeat the generation of the hot spot. The ignition of very low-mass helium shells depends on whether a thermonuclear runaway can simultaneously commence in a sufficiently large region.

  8. The population of white dwarf-main sequence binaries in the SDSS DR 12

    Science.gov (United States)

    Cojocaru, R.; Rebassa-Mansergas, A.; Torres, S.; García-Berro, E.

    2017-09-01

    We present a Monte Carlo population synthesis study of white dwarf-main sequence (WD+MS) binaries in the Galactic disc aimed at reproducing the ensemble properties of the entire population observed by the Sloan Digital Sky Survey (SDSS) Data Release 12. Our simulations take into account all known observational biases and use the most up-to-date stellar evolutionary models. This allows us to perform a sound comparison between the simulations and the observational data. We find that the properties of the simulated and observed parameter distributions agree best when assuming low values of the common envelope efficiency (0.2-0.3), a result that is in agreement with previous findings obtained by observational and population synthesis studies of close SDSS WD+MS binaries. We also show that all synthetic populations that result from adopting an initial mass ratio distribution with a positive slope are excluded by observations. Finally, we confirm that the properties of the simulated WD+MS binary populations are nearly independent of the age adopted for the thin disc, on the contribution of WD+MS binaries from the thick disc (0-17 per cent of the total population) and on the assumed fraction of the internal energy that is used to eject the envelope during the common envelope phase (0.1-0.5).

  9. A Massive-born Neutron Star with a Massive White Dwarf Companion

    Science.gov (United States)

    Cognard, Ismaël; Freire, Paulo C. C.; Guillemot, Lucas; Theureau, Gilles; Tauris, Thomas M.; Wex, Norbert; Graikou, Eleni; Kramer, Michael; Stappers, Benjamin; Lyne, Andrew G.; Bassa, Cees; Desvignes, Gregory; Lazarus, Patrick

    2017-08-01

    We report on the results of a 4 year timing campaign of PSR J2222-0137, a 2.44 day binary pulsar with a massive white dwarf (WD) companion, with the Nançay, Effelsberg, and Lovell radio telescopes. Using the Shapiro delay for this system, we find a pulsar mass m p = 1.76 ± 0.06 M ⊙ and a WD mass m c = 1.293 ± 0.025 M ⊙. We also measure the rate of advance of periastron for this system, which is marginally consistent with the general relativity prediction for these masses. The short lifetime of the massive WD progenitor star led to a rapid X-ray binary phase with little (< 10-2 M ⊙) mass accretion onto the neutron star; hence, the current pulsar mass is, within uncertainties, its birth mass, which is the largest measured to date. We discuss the discrepancy with previous mass measurements for this system; we conclude that the measurements presented here are likely to be more accurate. Finally, we highlight the usefulness of this system for testing alternative theories of gravity by tightly constraining the presence of dipolar radiation. This is of particular importance for certain aspects of strong-field gravity, like spontaneous scalarization, since the mass of PSR J2222-0137 puts that system into a poorly tested parameter range.

  10. He-accreting carbon-oxygen white dwarfs and Type Ia supernovae

    Science.gov (United States)

    Wang, Bo; Podsiadlowski, Philipp; Han, Zhanwen

    2017-12-01

    He accretion on to carbon-oxygen white dwarfs (CO WDs) plays a fundamental role when studying the formation of Type Ia supernovae (SNe Ia). Employing the mesa stellar evolution code, we calculated the long-term evolution of He-accreting CO WDs. Previous studies usually supposed that a WD can grow in mass to the Chandrasekhar limit in the stable He burning region and finally produce an SN Ia. However, in this study, we find that off-centre carbon ignition occurs in the stable He burning region if the accretion rate is above a critical value (˜2.05 × 10-6 M⊙ yr-1), resulting in accretion-induced collapse rather than an SN Ia. If the accretion rate is below the critical value, explosive carbon ignition will eventually happen in the centre producing an SN Ia. Taking into account the possibility of off-centre carbon ignition, we have re-determined the initial parameter space that produces SNe Ia in the He star donor channel, one of the promising channels to produce SNe Ia in young populations. Since this parameter space is smaller than was found in the previous study of Wang et al. (2009), the SN Ia rates are also correspondingly smaller. We also determined the chemical abundance profile of the He-accreting WDs at the moment of explosive carbon ignition, which can be used as initial input for SN Ia explosion models.

  11. A Massive-born Neutron Star with a Massive White Dwarf Companion

    Energy Technology Data Exchange (ETDEWEB)

    Cognard, Ismaël; Guillemot, Lucas; Theureau, Gilles [Laboratoire de Physique et Chimie de l’Environnement et de l’Espace, Université d’Orléans/CNRS, F-45071 Orléans Cedex 02 (France); Freire, Paulo C. C. [Station de radioastronomie de Nançay, Observatoire de Paris, CNRS/INSU, F-18330 Nançay (France); Tauris, Thomas M.; Wex, Norbert; Graikou, Eleni; Kramer, Michael; Desvignes, Gregory; Lazarus, Patrick [Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, D-53121 Bonn (Germany); Stappers, Benjamin; Lyne, Andrew G. [Jodrell Bank Center for Astrophysics, School of Physics and Astronomy, The University of Manchester, M13 9PL (United Kingdom); Bassa, Cees [ASTRON, The Netherlands Institute for Radioastronomy, Postbus 2, 7900 AA, Dwingeloo (Netherlands)

    2017-08-01

    We report on the results of a 4 year timing campaign of PSR J2222−0137, a 2.44 day binary pulsar with a massive white dwarf (WD) companion, with the Nançay, Effelsberg, and Lovell radio telescopes. Using the Shapiro delay for this system, we find a pulsar mass m {sub p} = 1.76 ± 0.06 M {sub ⊙} and a WD mass m {sub c} = 1.293 ± 0.025 M {sub ⊙}. We also measure the rate of advance of periastron for this system, which is marginally consistent with the general relativity prediction for these masses. The short lifetime of the massive WD progenitor star led to a rapid X-ray binary phase with little (< 10{sup −2} M {sub ⊙}) mass accretion onto the neutron star; hence, the current pulsar mass is, within uncertainties, its birth mass, which is the largest measured to date. We discuss the discrepancy with previous mass measurements for this system; we conclude that the measurements presented here are likely to be more accurate. Finally, we highlight the usefulness of this system for testing alternative theories of gravity by tightly constraining the presence of dipolar radiation. This is of particular importance for certain aspects of strong-field gravity, like spontaneous scalarization, since the mass of PSR J2222−0137 puts that system into a poorly tested parameter range.

  12. Simulating the tidal disruption of the asteroid orbiting white dwarf WD 1145+017

    Science.gov (United States)

    Veras, Dimitri; Carter, Philip; Leinhardt, Zoe; Gänsicke, Boris

    2017-06-01

    Post-main-sequence planetary science has been galvanised by the striking variability, depth and shape of the photometric transit curves due to objects orbiting white dwarf WD 1145+017, a star which also hosts a dusty debris disc and circumstellar gas, and displays strong metal atmospheric pollution. However, the physical properties of the likely asteroid which is discharging disintegrating fragments remain largely unconstrained from the observations. This process has not yet been modelled numerically. Here, we use the N-body code PKDGRAV to compute dissipation properties for asteroids of different spins, densities, masses, and eccentricities. We simulate both homogeneous and differentiated asteroids, for up to two years, and find that the disruption timescale is strongly dependent on density and eccentricity, but weakly dependent on mass and spin. We find that primarily rocky differentiated bodies with moderate (~3-4 g/cm^3) bulk densities on near-circular (e <~ 0.1) orbits can remain intact while occasionally shedding mass from their mantles. These results suggest that the asteroid orbiting WD 1145+017 is differentiated, resides just outside of the Roche radius for bulk density but just inside the Roche radius for mantle density, and is more akin physically to an asteroid like Vesta instead of one like Itokawa.

  13. Periodic optical variability and debris accretion in white dwarfs: a test for a causal connection★

    Science.gov (United States)

    Hallakoun, Na'ama; Maoz, Dan; Agol, Eric; Brown, Warren R.; Dufour, Patrick; Farihi, Jay; Gänsicke, Boris T.; Kilic, Mukremin; Kosakowski, Alekzander; Loeb, Abraham; Mazeh, Tsevi; Mullally, Fergal

    2018-01-01

    Recent Kepler photometry has revealed that about half of white dwarfs (WDs) have periodic, low-level (˜10-4 - 10-3), optical variations. Hubble Space Telescope (HST) ultraviolet spectroscopy has shown that up to about one half of WDs are actively accreting rocky planetary debris, as evidenced by the presence of photospheric metal absorption lines. We have obtained HST ultraviolet spectra of seven WDs that have been monitored for periodic variations, to test the hypothesis that these two phenomena are causally connected, i.e. that the optical periodic modulation is caused by WD rotation coupled with an inhomogeneous surface distribution of accreted metals. We detect photospheric metals in four out of the seven WDs. However, we find no significant correspondence between the existence of optical periodic variability and the detection of photospheric ultraviolet absorption lines. Thus the null hypothesis stands, that the two phenomena are not directly related. Some other source of WD surface inhomogeneity, perhaps related to magnetic field strength, combined with the WD rotation, or alternatively effects due to close binary companions, may be behind the observed optical modulation. We report the marginal detection of molecular hydrogen in WD J1949+4734, only the fourth known WD with detected H2 lines. We also re-classify J1926+4219 as a carbon-rich He-sdO subdwarf.

  14. Accretion-induced variability links young stellar objects, white dwarfs, and black holes.

    Science.gov (United States)

    Scaringi, Simone; Maccarone, Thomas J; Körding, Elmar; Knigge, Christian; Vaughan, Simon; Marsh, Thomas R; Aranzana, Ester; Dhillon, Vikram S; Barros, Susana C C

    2015-10-01

    The central engines of disc-accreting stellar-mass black holes appear to be scaled down versions of the supermassive black holes that power active galactic nuclei. However, if the physics of accretion is universal, it should also be possible to extend this scaling to other types of accreting systems, irrespective of accretor mass, size, or type. We examine new observations, obtained with Kepler/K2 and ULTRACAM, regarding accreting white dwarfs and young stellar objects. Every object in the sample displays the same linear correlation between the brightness of the source and its amplitude of variability (rms-flux relation) and obeys the same quantitative scaling relation as stellar-mass black holes and active galactic nuclei. We also show that the most important parameter in this scaling relation is the physical size of the accreting object. This establishes the universality of accretion physics from proto-stars still in the star-forming process to the supermassive black holes at the centers of galaxies.

  15. A Strange Star Scenario for the Formation of Eccentric Millisecond Pulsar/Helium White Dwarf Binaries

    Science.gov (United States)

    Jiang, Long; Li, Xiang-Dong; Dey, Jishnu; Dey, Mira

    2015-07-01

    According to the recycling scenario, millisecond pulsars (MSPs) have evolved from low-mass X-ray binaries (LMXBs). Their orbits are expected to be circular due to tidal interactions during binary evolution, as observed in most binary MSPs. There are some peculiar systems that do not fit this picture. Three recent examples are the PSRs J2234+06, J1946+3417, and J1950+2414, all of which are MSPs in eccentric orbits but with mass functions compatible with expected He white dwarf (WD) companions. It has been suggested these MSPs may have formed from delayed accretion-induced collapse of massive WDs, or the eccentricity may be induced by dynamical interaction between the binary and a circumbinary disk. Assuming that the core density of accreting neutron stars (NSs) in LMXBs may reach the density of quark deconfinement, which can lead to phase transition from NSs to strange quark stars, we show that the resultant MSPs are likely to have an eccentric orbit, due to the sudden loss of the gravitational mass of the NS during the transition. The eccentricities can be reproduced with a reasonable estimate of the mass loss. This scenario might also account for the formation of the youngest known X-ray binary Cir X-1, which also possesses a low-field compact star in an eccentric orbit.

  16. Probing the Accretion Induced Collapse of White Dwarfs in the Binary Millisecond Pulsars Population

    Science.gov (United States)

    Taani, Ali

    The recycling process suggested that low-mass X-ray binaries (LMXBs) could evolve into binary Millisecond Pulsars (MSPs). I will discuss another possible channel involving the Accretion Induced Collapse (AIC) of a white dwarf (WD) in binaries. I will investigate the progenitors of MSPs with a distribution of long orbital periods, to show the link between WD binaries and long orbits for some binary MSPs. For this task, I present a model that attempts to turn binary MSPs into wide binaries (P_orb > 2 d) with high eccentricities (e > 0.1). in the Galactic disk, since the AIC process in a close binary will impart a kick velocity caused by asymmetric collapse to the thus formed neutron star, and the binding energy plus the mass loss (0.2~Msun) not expected to exceed a few tens of km/s. An appropriate kick can disrupt the binary system and result in the birth of isolated MSPs. Otherwise, the binary survives and an eccentric binary MSP is formed. The circularity of the orbit implies that the companion is a WD. In addition AIC can retain pulsars in globular clusters due to the small momentum kick expected to be associated with the implosion.

  17. Color stabilization in white organic light emitting devices utilizing trapping layers inserted in both an electron transport layer and an emitting layer.

    Science.gov (United States)

    Kwack, Byoung Chan; Lee, Kwang Seop; Choo, Dong Chul; Kim, Tae Whan; Seo, Ji Hyun; Kim, Young Kwan

    2008-10-01

    The electrical and the optical properties of white organic light emitting devices (OLEDs) utilizing trapping layers inserted into both an electron transport layer (ETL) and an emitting layer (EML) were investigated. The current density of OLEDs with an ETL containing a 5,6,11,12-tetraphenylnaphthacene (rubrene) layer was slightly smaller than those of other devices. The luminance-current density and luminance efficiency-current density of the OLEDs with rubrene layers embedded in only an ETL or an EML were similar to the blue reference device. While the electroluminescence (EL) spectrum for the OLEDs with a rubrene layer in the ETL in the low voltage range showed the white color, that with rubrene layers in both the EML and the ETL exhibited white color, regardless of the applied voltage. The Commission International de l'Eclairage coordinates of the white OLEDs became stabilized by inserting rubrene layers into both the EML and the ETL.

  18. Naming Disney's Dwarfs.

    Science.gov (United States)

    Sidwell, Robert T.

    1980-01-01

    Discusses Disney's version of the folkloric dwarfs in his production of "Snow White" and weighs the Disney rendition of the dwarf figure against the corpus of traits and behaviors pertaining to dwarfs in traditional folklore. Concludes that Disney's dwarfs are "anthropologically true." (HOD)

  19. A new type of white light-emitting diode light source basing on fluorescent SiC

    DEFF Research Database (Denmark)

    Ou, Haiyan; Ou, Yiyu; Lu, Weifang

    Most of the commercial white light-emitting diode (LED) light sources are made from phosphor coated blue-emitting gallium nitride (GaN) chips. This type white LED light source always has tradeoff between luminous efficacy and color rendering index (CRI). Furthermore, yellow-emitting phosphor decays...... much faster than the semiconductor chip, so the white color will turn into bluish over the time. This paper will propose a new type white LED light source: using fluorescent silicon carbide (SiC) to take the place of phosphor. This new type LED has the following advantages: a) SiC is a wide bandgap...... semiconductor material , so it is stable; b) Fluorescent SiC has very wide emission spectrum, and it could generate white light with very high CRI; c) It is a better substrate than sapphire for the GaN growth in terms of lattice match and thermal conductivity. This paper will cover: the growth of fluorescent Si...

  20. Polaron self-localization in white-light emitting hybrid perovskites

    KAUST Repository

    Cortecchia, Daniele

    2017-02-03

    Two-dimensional (2D) perovskites with the general formula APbX are attracting increasing interest as solution processable, white-light emissive materials. Recent studies have shown that their broadband emission is related to the formation of intra-gap colour centres. Here, we provide an in-depth description of the charge localization sites underlying the generation of such radiative centres and their corresponding decay dynamics, highlighting the formation of small polarons trapped within their lattice distortion field. Using a combination of spectroscopic techniques and first-principles calculations to study the white-light emitting 2D perovskites (EDBE)PbCl and (EDBE)PbBr, we infer the formation of Pb , Pb, and X (where X = Cl or Br) species confined within the inorganic perovskite framework. Due to strong Coulombic interactions, these species retain their original excitonic character and form self-trapped polaron-excitons acting as radiative colour centres. These findings are expected to be relevant for a broad class of white-light emitting perovskites with large polaron relaxation energy.

  1. Recent Progress in Quantum Dot Based White Light-Emitting Devices.

    Science.gov (United States)

    Su, Liang; Zhang, Xiaoyu; Zhang, Yu; Rogach, Andrey L

    2016-08-01

    Colloidal semiconductor quantum dots (QDs) have been widely employed as components of white light-emitting diodes (WLEDs) due to their excellent optical properties (highly saturated emission color, high luminescence quantum yield) as well as thermal and chemical stability. Much effort has been devoted to realize efficient QD-based WLEDs, including the synthesis of superior luminescent nanomaterials with excellent stabilities, and the design of advanced devices structures. In this paper, after introducing photometric parameters of the contemporary QD-based WLEDs, we highlight the recent progress in these devices grouped according to three main mechanisms for white light generation: optical excitation, direct charge carrier injection, and Förster resonance energy transfer. The methods to generate white light, the design of QD emitters and QD-based devices, as well as their fabrication techniques are considered, and the key scientific and technological challenges in the QD-based WLEDs are highlighted. Novel light-emitting materials for WLEDs such as carbon-based nanoparticles are also considered.

  2. Phosphorescent white organic light-emitting diodes by electron transporting layer engineering.

    Science.gov (United States)

    Lee, Seok Jae; Koo, Ja Ryong; Lee, Dong Hyung; Lee, Ho Won; Lee, Kum Hee; Yoon, Seung Soo; Kim, Young Kwan

    2014-10-01

    The authors describe the fabrication of white organic light-emitting diodes (WOLEDs) with dual electron transporting layers (D-ETL) using 2,9-dimethyl-4,7-diphenyl-1,10-phenanhroline/ 4,7-diphenyl-1,10-phenanthroline (BPhen) and bis-(2-methyl-8-quinolinolate)-4-(phenylphenolato) aluminum/BPhen. Stepwise D-ETL easily transports electrons easily to the emitting layer and reduces the leakage of electrons. Therefore, WOLEDs with D-ETL show higher external quantum efficiency (EQE) when compared to a control WOLED with a single ETL device. The optimized WOLEDs showed a peak EQE of 13.0%, luminous efficiency of 27.4 cd/A, and Commission Internationale de L'Eclairage coordinates of (0.40, 0.39) at 1000 cd/m2.

  3. Effects of white light-emitting diode (LED) exposure on retinal pigment epithelium in vivo.

    Science.gov (United States)

    Jaadane, Imene; Villalpando Rodriguez, Gloria Elisa; Boulenguez, Pierre; Chahory, Sabine; Carré, Samuel; Savoldelli, Michèle; Jonet, Laurent; Behar-Cohen, Francine; Martinsons, Christophe; Torriglia, Alicia

    2017-12-01

    Ageing and alteration of the functions of the retinal pigment epithelium (RPE) are at the origin of lost of vision seen in age-related macular degeneration (AMD). The RPE is known to be vulnerable to high-energy blue light. The white light-emitting diodes (LED) commercially available have relatively high content of blue light, a feature that suggest that they could be deleterious for this retinal cell layer. The aim of our study was to investigate the effects of "white LED" exposure on RPE. For this, commercially available white LEDs were used for exposure experiments on Wistar rats. Immunohistochemical stain on RPE flat mount, transmission electron microscopy and Western blot were used to exam the RPE. LED-induced RPE damage was evaluated by studying oxidative stress, stress response pathways and cell death pathways as well as the integrity of the outer blood-retinal barrier (BRB). We show that white LED light caused structural alterations leading to the disruption of the outer blood-retinal barrier. We observed an increase in oxidized molecules, disturbance of basal autophagy and cell death by necrosis. We conclude that white LEDs induced strong damages in rat RPE characterized by the breakdown of the BRB and the induction of necrotic cell death. © 2017 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  4. Enhanced efficiency in single-host white organic light-emitting diode by triplet exciton conversion

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Qingyang, E-mail: wqy1527@163.com [State Key laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012 (China); Zhang, Shiming [State Key laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012 (China); Département of Chemical Engineering, École Polytechnique de Montréal, Montréal, Québec, Canada H3C3J7 (Canada); Yue, Shouzhen; Zhang, Zhensong [State Key laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012 (China); Xie, Guohua [Institut für Angewandte Photophysik, Technische Universtität Dresden, Dresden 01062 (Germany); Zhao, Yi; Liu, Shiyong [State Key laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012 (China)

    2013-11-15

    The authors observe that the external quantum efficiency (EQE) of the Iridium (III) bis(4-phenylthieno [3,2-c]pyridinato-N,C{sup 2′})acetylacetonate (PO-01) based yellow organic light-emitting diode (OLED) is significantly increased by uniformly co-doping Iridium (III)bis[(4,6-difluorophenyl)-pyridinato-N,C{sup 2−}] (FIrpic) and PO-01 into the same wide band-gap host of N,N{sup ′}-dicarbazolyl-3, 5-benzene (mCP). Detailed investigation indicates that the efficiency enhancement is ascribed to effective triplet exciton gathering by FIrpic, followed by energy transfer to PO-01. Compared to the control device, which has maximum EQE of 10.5%, an improved maximum EQE of 13.2% is obtained in the optimization white device based on FIrpic and PO-01 emission according to this principle. This work makes it easier for a single host white OLED to simultaneously harvest high efficiency in both blue and yellow units. Comprehensive experimental results show that this phenomenon can also be found and utilized in other popular hosts to realize more efficient white devices. -- Highlights: • This work makes easier for a single host white OLED to harvest high efficiency in both blue and yellow units. • Efficiency enhancement is ascribed to effective triplet exciton gathering by FIrpic, followed by energy transfer to PO-01. • This phenomenon can also be found and utilized in other popular hosts to realize more efficient white devices.

  5. An estimation of the white dwarf mass in the Dwarf Nova GK Persei with NuSTAR observations of two states

    Science.gov (United States)

    Wada, Yuuki; Yuasa, Takayuki; Nakazawa, Kazuhiro; Makishima, Kazuo; Hayashi, Takayuki; Ishida, Manabu

    2018-02-01

    We report on X-ray observations of the Dwarf Nova GK Persei performed by NuSTAR in 2015. GK Persei, behaving also as an Intermediate Polar, exhibited a Dwarf Nova outburst in 2015 March-April. The object was observed with NuSTAR during the outburst state, and again in a quiescent state wherein the 15-50 keV flux was 33 times lower. Using a multitemperature plasma emission and reflection model, the highest plasma temperature in the accretion column was measured as 19.7^{+1.3}_{-1.0} keV in outburst and 36.2^{+3.5}_{-3.2} keV in quiescence. The significant change of the maximum temperature is considered to reflect an accretion-induced decrease of the inner-disc radius Rin, where accreting gas is captured by the magnetosphere. Assuming this radius scales as R_in ∝ \\dot{M}^{-2/7}, where \\dot{M} is the mass accretion rate, we obtain R_in = 1.9 ^{+0.4}_{-0.2} R_WD and R_in = 7.4^{+2.1}_{-1.2} R_WD in outburst and quiescence, respectively, where RWD is the white-dwarf (WD) radius of this system. Utilizing the measured temperatures and fluxes, as well as the standard mass-radius relation of WDs, we estimate the WD mass as MWD = 0.87 ± 0.08 M⊙ including typical systematic uncertainties by 7 per cent. The surface magnetic field is also measured as B ˜ 5 × 105 G. These results exemplify a new X-ray method of estimating MWD and B of WDs by using large changes in \\dot{M}.

  6. Post-main-sequence Evolution of Icy Minor Planets. III. Water Retention in Dwarf Planets and Exomoons and Implications for White Dwarf Pollution

    Science.gov (United States)

    Malamud, Uri; Perets, Hagai B.

    2017-11-01

    Studies suggest that the pollution of white dwarf (WD) atmospheres arises from the accretion of minor planets, but the exact properties of polluting material, and in particular the evidence for water in some cases are not yet understood. Several previous works studied the possibility of water surviving inside minor planets around evolving stars. However, they all focused on small, comet-sized to moonlet-sized minor planets, when the inferred mass inside the convection zones of He-dominated WDs could actually be compatible with much more massive minor planets. Here we explore for the first time, the water retention inside exoplanetary dwarf planets, or moderate-sized moons, with radii of the order of hundreds of kilometers. This paper concludes a series of papers that has now covered nearly the entire potential mass range of minor planets, in addition to the full mass range of their host stars. We find that water retention is (a) affected by the mass of the WD progenitor, and (b) it is on average at least 5%, irrespective of the assumed initial water composition, if it came from a single accretion event of an icy dwarf planet or moon. The latter prediction strengthens the possibility of habitability in WD planetary systems, and it may also be used in order to distinguish between pollution originating from multiple small accretion events and singular large accretion events. To conclude our work, we provide a code that calculates ice and water retention by interpolation and may be freely used as a service to the community.

  7. Light extraction efficiency enhancement for fluorescent SiC based white light-emitting diodes

    DEFF Research Database (Denmark)

    Ou, Haiyan; Ou, Yiyu; Argyraki, Aikaterini

    Fluorescent SiC based white light-emitting diodes(LEDs) light source, as an innovative energy-efficient light source, would even have longer lifetime, better light quality and eliminated blue-tone effect, compared to the current phosphor based white LED light source. In this paper, the yellow....... At a device level, the focus is on improving the light extraction efficiency due to the rather high refractive index of SiC by nanostructuring the surface of SiC. Both periodic nanostructures made by e-beam lithography and nanosphere lithography and random nanostructures made by self-assembled Au nanosphere...... fluorescent Boron-Nitrogen co-doped 6H SiC is optimized in terms of source material, growth condition, dopant concentration, and carrier lifetime by using photoluminescence, pump-probe spectroscopy etc. The internal quantum efficiency is measured and the methods to increase the efficiency have been explored...

  8. Hydrogen-bonded supramolecular conjugated polymer nanoparticles for white light-emitting devices.

    Science.gov (United States)

    Lin, Jin-Yi; Wong, JenIt; Xie, Ling-Hai; Dong, Xiao-Chen; Yang, Hui Ying; Huang, Wei

    2014-05-01

    Supramolecular polyfluorenol enable assembly into conjugated polymer nanoparticles (CPNs). Poly{9-[4-(octyloxy)phenyl]fluoren-9-ol-2,7-diyl} (PPFOH)-based supramolecular nanoparticles are prepared via reprecipitation. PPFOH nanoparticles with diameters ranging from 40 to 200 nm are obtained by adding different amounts of water into DMF solution. Size-dependent luminescence is observed in PPFOH-based hydrogen-bonded nanoparticles that is different from that of poly(9,9-dioctylfluorenes). Finally, white light-emitting devices using CPNs with a size of 80 nm exhibit white emission with the CIE coordinates (0.31, 0.34). Amphiphilic conjugated polymer nanoparticles are potential organic nano-inks for the fabrication of organic devices in printed electronics. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. A Strange Dwarf Scenario for the Formation of the Peculiar Double White Dwarf Binary SDSS J125733.63+542850.5

    Science.gov (United States)

    Jiang, Long; Chen, Wen-Cong; Li, Xiang-Dong

    2018-01-01

    The Hubble Space Telescope observation of the double white dwarf (WD) binary SDSS J125733.63+542850.5 reveal that the massive WD has a surface gravity logg1 ˜ 8.7 (which implies a mass of M1 ˜ 1.06 M⊙) and an effective temperature T1 ˜ 13000 K, while the effective temperature of the low-mass WD (M2 double WD binary. We assume that the massive WD is a strange dwarf originating from a phase transition in a ˜1.1 M⊙ WD, which has experienced accretion and spin-down processes. Its high effective temperature could arise from the heating process during the phase transition. Our simulations suggest that the progenitor of SDSS J125733.63+542850.5 can be a binary system consisting of a 0.65 M_{⊙} WD and a 1.5 M_{⊙} main sequence star in a 1.492 day orbit. Especially, the secondary star (i.e., the progenitor of the low mass WD) is likely to have an ultra-low metallicity of Z = 0.0001.

  10. Luminescence properties of novel single-host white-light-emitting phosphor KBaBP2O8:Dy3+

    Science.gov (United States)

    Han, Bing; Zhang, Jie; Li, Pengju; Shi, Hengzhen

    2015-01-01

    A series of white-light-emitting KBaBP2O8:Dy3+ phosphors were synthesized by using a solid state reaction technique at high-temperature. X-ray diffraction and fluorescence spectroscopy measurements were utilized to characterize the structure and luminescence characteristics including excitation and emission spectra, decay curves, chromaticity coordinates of the assprepared phosphors. The influence of the doping concentration of Dy3+ on the relative emission intensity of Dy3+ was investigated. The critical distance as well as concentration quenching mechanism was calculated and confirmed. The as-prepared phosphors can be effectively excited with near ultraviolet, and exhibit white light emission with short decay time of milliseconds. The above work indicates these phosphors could be potential candidates as single-host white-light-emitting phosphors for application in white light-emitting-diodes.

  11. Optical Identification of He White Dwarfs Orbiting Four Millisecond Pulsars in the Globular Cluster 47 Tucanae

    Science.gov (United States)

    Cadelano, M.; Pallanca, C.; Ferraro, F. R.; Salaris, M.; Dalessandro, E.; Lanzoni, B.; Freire, P. C. C.

    2015-10-01

    We used ultra-deep UV observations obtained with the Hubble Space Telescope to search for optical companions to binary millisecond pulsars (MSPs) in the globular cluster 47 Tucanae. We identified four new counterparts (to MSPs 47TucQ, 47TucS, 47TucT, and 47TucY) and confirmed those already known (to MSPs 47TucU and 47TucW). In the color-magnitude diagram, the detected companions are located in a region between the main sequence and the CO white dwarf (WD) cooling sequences, consistent with the cooling tracks of He WDs with masses between 0.15 M⊙ and 0.20 M⊙. For each identified companion, mass, cooling age, temperature, and pulsar mass (as a function of the inclination angle) have been derived and discussed. For 47TucU we also found that the past accretion history likely proceeded at a sub-Eddington rate. The companion to the redback 47TucW is confirmed to be a non-degenerate star, with properties particularly similar to those observed for black widow systems. Two stars have been identified within the 2σ astrometric uncertainty from the radio positions of 47TucH and 47TucI, but the available data prevent us from firmly assessing whether they are the true companions of these two MSPs. Based on observations collected with the NASA/ESA HST (Prop. 12950), obtained at the Space Telescope Science Institute, which is operated by AURA, Inc., under NASA contract NAS5-26555.

  12. An Eccentric Binary Millisecond Pulsar with a Helium White Dwarf Companion in the Galactic field

    Science.gov (United States)

    Antoniadis, John; Kaplan, David L.; Stovall, Kevin; Freire, Paulo C. C.; Deneva, Julia S.; Koester, Detlev; Jenet, Fredrick; Martinez, Jose G.

    2016-10-01

    Low-mass white dwarfs (LMWDs) are believed to be exclusive products of binary evolution, as the universe is not old enough to produce them from single stars. Because of the strong tidal forces operating during the binary interaction phase, the remnant systems observed today are expected to have negligible eccentricities. Here, we report on the first unambiguous identification of an LMWD in an eccentric (e = 0.13) orbit around the millisecond pulsar PSR J2234+0511, which directly contradicts this picture. We use our spectra and radio-timing solution (derived elsewhere) to infer the WD temperature ({T}{{eff}}=8600+/- 190 K), and peculiar systemic velocity relative to the local standard of rest (≃ 31 km s-1). We also place model-independent constraints on the WD radius ({R}{{WD}}={0.024}-0.002+0.004 {R}⊙ ) and surface gravity ({log} g={7.11}-0.16+0.08 dex). The WD and kinematic properties are consistent with the expectations for low-mass X-ray binary evolution and disfavor a dynamic three-body formation channel. In the case of the high eccentricity being the result of a spontaneous phase transition, we infer a mass of ˜1.60 M ⊙ for the pulsar progenitor, which is too low for the quark-nova mechanism proposed by Jiang et al., and too high for the scenario of Freire & Tauris, in which a WD collapses into a neutron star via a rotationally delayed accretion-induced collapse. We find that eccentricity pumping via interaction with a circumbinary disk is consistent with our inferred parameters. Finally, we report tentative evidence for pulsations that, if confirmed, would transform the star into an unprecedented laboratory for WD physics.

  13. Is the DO-type White Dwarf RE 0503-289 a Unique Object?

    Science.gov (United States)

    Hoyer, D.; Rauch, T.; Werner, K.

    2017-03-01

    Trans-iron group elements (atomic numbers Z > 28) are produced by s-process nucleosynthesis on the asymptotic giant branch (AGB). Flash induced mixing during a late thermal pulse (LTP) should strongly enrich their photospheric abundances. While they are so far not found in the hydrogen-deficient post-LTP [WC] -type Wolf-Rayet stars and PG 1159-type stars, they were identified in a small number of DO-type white dwarfs (WDs). Abundance determinations have shown that these are indeed up to about 35000 times solar. The detection of Ge (Z = 32) in some DA-type WDs yields about solar abundances. Thus, an LTP scenario may be a pre-requisite for very high trans-iron group element abundances. Recently, a very high number of lines of trans-iron group elements were discovered in the ultraviolet (UV) spectrum of the DO-type WD RE 0503-289. Abundance analyses by means of non-local thermodynamic equilibrium (NLTE) model-atmosphere techniques have shown that these elements are strongly overabundant (up to about 4 dex) compared to solar values. To prove the suggestion that an LTP is necessary to yield such overabundances, we performed UV spectroscopy with HST/COS of the PG 1159-type star PG 1707+427 and of two DO-type stars, namely PG 0109+111 and WD 0111+002. These three stars are located in the Hertzsprung-Russell diagram close before and after the so-called PG 1159 wind limit. At about this limit, PG 1159-type stars evolve into DO-type WDs. These observations will show whether the high abundances of trans-iron group elements are a common phenomenon and establish constraints for AGB nucleosynthesis and post-LTP evolution. To clarify this, we performed an advanced NLTE spectral analysis and present our preliminary results.

  14. The end of the White Dwarf Cooling Sequence of NGC 6752

    Science.gov (United States)

    Bedin, Luigi

    2017-08-01

    We propose to study the last HST-accessible white dwarf (WD) cooling sequence (CS) for a nearby globular cluster (GC), the chemically complex, extreme blue horizontal branch cluster NGC 6752. Over 97% of stars end their lives as WDs, and the WD CS provides constraints not only on the age, but also potentially the star formation history of a GC. The CS of WDs also lies in the least-explored region of the color-magnitude diagram of old stellar populations. Recent deep imaging with HST has successfully reached the end of the WD CS in only three classical old GCs, M4, NGC 6397 and 47 Tuc, and reveals an unexpectedly complex, and double-peaked, WD CS in the metal rich old open cluster NGC 6791. One more investigation is in progress on the massive globular Omega Centauri, where over 14 sub-populations are known to exist.While almost every cluster is known to host multiple populations, every single cluster is unique. NGC 6752 is a bridge between the relatively simple globular clusters, and Omega Cen, the most complex globular cluster known. NGC 6752 has an extended blue horizontal branch, a collapsed core and 3 chemically distinct populations. It is our last chance to add diversity to our very limited sample of WD CS, so far containing only 3 globular clusters, one old open cluster, and the complex Omega Cen system. We need to undertake this investigation while HST is still operational, as there is no foreseeable opportunity in the post-HST era to have one extra WD CS in the homogeneus optical photometric system of HST.

  15. Fast and Luminous Transients from the Explosions of Long-lived Massive White Dwarf Merger Remnants

    Science.gov (United States)

    Brooks, Jared; Schwab, Josiah; Bildsten, Lars; Quataert, Eliot; Paxton, Bill; Blinnikov, Sergei; Sorokina, Elena

    2017-12-01

    We study the evolution and final outcome of long-lived (≈ {10}5 years) remnants from the merger of an He white dwarf (WD) with a more massive C/O or O/Ne WD. Using Modules for Experiments in Stellar Astrophysics ({\\mathtt{MESA}}), we show that these remnants have a red giant configuration supported by steady helium burning, adding mass to the WD core until it reaches {M}{core}≈ 1.12{--}1.20 {M}⊙ . At that point, the base of the surface convection zone extends into the burning layer, mixing the helium-burning products (primarily carbon and magnesium) throughout the convective envelope. Further evolution depletes the convective envelope of helium and dramatically slows the mass increase of the underlying WD core. The WD core mass growth re-initiates after helium depletion, as then an uncoupled carbon-burning shell is ignited and proceeds to burn the fuel from the remaining metal-rich extended envelope. For large enough initial total merger masses, O/Ne WD cores would experience electron-capture triggered collapse to neutron stars (NSs) after growing to near Chandrasekhar mass ({M}{Ch}). Massive C/O WD cores could suffer the same fate after a carbon-burning flame converts them to ONe. The NS formation would release ≈ {10}50 erg into the remaining extended low mass envelope. Using the STELLA radiative transfer code, we predict the resulting optical light curves from these exploded envelopes. Reaching absolute magnitudes of {M}V≈ -17, these transients are bright for about one week and have many features of the class of luminous, rapidly evolving transients studied by Drout and collaborators.

  16. Mass retention efficiencies of He accretion onto carbon-oxygen white dwarfs and type Ia supernovae

    Science.gov (United States)

    Wu, C.; Wang, B.; Liu, D.; Han, Z.

    2017-07-01

    Context. Type Ia supernovae (SNe Ia) play a crucial role in studying cosmology and galactic chemical evolution. They are thought to be thermonuclear explosions of carbon-oxygen white dwarfs (CO WDs) when their masses reach the Chandrasekar mass limit in binaries. Previous studies have suggested that He novae may be progenitor candidates of SNe Ia. However, the mass retention efficiencies during He nova outbursts are still uncertain. Aims: In this article, we aim to study the mass retention efficiencies of He nova outbursts and to investigate whether SNe Ia can be produced through He nova outbursts. Methods: Using the stellar evolution code Modules for Experiments in Stellar Astrophysics, we simulated a series of multicycle He-layer flashes, in which the initial WD masses range from 0.7 to 1.35 M⊙ with various accretion rates. Results: We obtained the mass retention efficiencies of He nova outbursts for various initial WD masses, which can be used in the binary population synthesis studies. In our simulations, He nova outbursts can increase the mass of the WD to the Chandrasekar mass limit and the explosive carbon burning can be triggered in the center of the WD; this suggests that He nova outbursts can produce SNe Ia. Meanwhile, the mass retention efficiencies in the present work are lower than those of previous studies, which leads to a lower birthrates of SNe Ia through the WD + He star channel. Furthermore, we obtained the elemental abundances distribution at the moment of explosive carbon burning, which can be used as the initial input parameters in studying explosion models of SNe Ia.

  17. Far-UV Spectroscopy of Two Extremely Hot, Helium-Rich White Dwarfs

    Science.gov (United States)

    Werner, K.; Rauch, T.; Kruk, J. W.

    2017-01-01

    A large proportion of hot post-asymptotic giant branch stars and white dwarfs (WDs) are hydrogen-deficient. Two distinct evolutionary sequences have been identified. One of them comprises stars of spectral type [WC] and PG1159, and it originates from a late helium-shell flash, creating helium-rich stellar atmospheres with significant admixtures of carbon (up to about 50, mass fraction). The other sequence comprises stars of spectral type O(He) and luminous subdwarf O stars which possibly are descendants of RCrB stars and extreme helium stars. Their carbon abundances are significantly lower (of the order of 1 or less) and it is thought that they originate from binary-star evolution (through merger or common-envelope evolution). Here we investigate two of the three hottest known helium-rich (DO) WDs (PG 1034+001 and PG 0038+199). They are the only ones for which spectra were recorded with the Far Ultraviolet Spectroscopic Explorer and the Hubble Space Telescope, allowing a comprehensive ultraviolet spectral analysis. We find effective temperatures of T(eff) =115000 +/- 5000 K and 125000 +/- 5000 K, respectively, and a surface gravity of log g = 7 +/-0.5. In both stars, nitrogen is strongly oversolar while C and O are significantly subsolar. For all other assessed metals (Ne, Si, P, S, Ar, Fe, and Ni) we find abundances close to solar. We conclude that these WDs are immediate descendants of O(He) stars and, hence, result from close-binary evolution.

  18. The Next Generation Virgo Cluster Survey. XXVIII. Characterization of the Galactic White Dwarf Population

    Energy Technology Data Exchange (ETDEWEB)

    Fantin, Nicholas J. [Department of Physics and Astronomy,University of Victoria, Victoria, BC, V8P 1A1 (Canada); Côté, Patrick; Gwyn, S. D. J.; Ferrarese, Laura; McConnachie, Alan [National Research Council of Canada, Herzberg Astronomy and Astrophysics Program, 5071 W. Saanich Road, Victoria, BC, V9E 2E7 (Canada); Hanes, David A. [Queen’s University, Department of Physics, Engineering Physics and Astronomy, Kingston, Ontario (Canada); Bianchi, Luciana [Department of Physics and Astronomy, The Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218 (United States); Cuillandre, Jean-Charles [CEA/IRFU/SAp, Laboratoire AIM Paris-Saclay, CNRS/INSU, Université Paris Diderot, Observatoire de Paris, PSL Research University, F-91191 Gif-sur-Yvette Cedex (France); Starkenburg, Else, E-mail: nfantin@uvic.ca [Leibniz Institute for Astrophysics Potsdam (AIP), An der Sternwarte 16, D-14482 Potsdam (Germany)

    2017-07-01

    We use three different techniques to identify hundreds of white dwarf (WD) candidates in the Next Generation Virgo Cluster Survey (NGVS) based on photometry from the NGVS and GUViCS, and proper motions derived from the NGVS and the Sloan Digital Sky Survey (SDSS). Photometric distances for these candidates are calculated using theoretical color–absolute magnitude relations, while effective temperatures are measured by fitting their spectral energy distributions. Disk and halo WD candidates are separated using a tangential velocity cut of 200 km s{sup −1} in a reduced proper motion diagram, which leads to a sample of six halo WD candidates. Cooling ages, calculated for an assumed WD mass of 0.6 M {sub ⊙}, range between 60 Myr and 6 Gyr, although these estimates depend sensitively on the adopted mass. Luminosity functions for the disk and halo subsamples are constructed and compared to previous results from the SDSS and SuperCOSMOS survey. We compute a number density of (2.81 ± 0.52) × 10{sup −3} pc{sup −3} for the disk WD population—consistent with previous measurements. We find (7.85 ± 4.55) × 10{sup −6} pc{sup −3} for the halo, or 0.3% of the disk. Observed stellar counts are also compared to predictions made by the TRILEGAL and Besançon stellar population synthesis models. The comparison suggests that the TRILEGAL model overpredicts the total number of WDs. The WD counts predicted by the Besançon model agree with the observations, although a discrepancy arises when comparing the predicted and observed halo WD populations; the difference is likely due to the WD masses in the adopted model halo.

  19. Timing of a young mildly recycled pulsar with a massive white dwarf companion

    Science.gov (United States)

    Lazarus, P.; Tauris, T. M.; Knispel, B.; Freire, P. C. C.; Deneva, J. S.; Kaspi, V. M.; Allen, B.; Bogdanov, S.; Chatterjee, S.; Stairs, I. H.; Zhu, W. W.

    2014-01-01

    We report on timing observations of the recently discovered binary pulsar PSR J1952+2630 using the Arecibo Observatory. The mildly recycled 20.7-ms pulsar is in a 9.4-h orbit with a massive, MWD > 0.93 M⊙, white dwarf (WD) companion. We present, for the first time, a phase-coherent timing solution, with precise spin, astrometric and Keplerian orbital parameters. This shows that the characteristic age of PSR J1952+2630 is 77 Myr, younger by one order of magnitude than any other recycled pulsar-massive WD system. We derive an upper limit on the true age of the system of 150 Myr. We investigate the formation of PSR J1952+2630 using detailed modelling of the mass-transfer process from a naked helium star on to the neutron star following a common-envelope phase (Case BB Roche lobe overflow). From our modelling of the progenitor system, we constrain the accretion efficiency of the neutron star, which suggests a value between 100 and 300 per cent of the Eddington accretion limit. We present numerical models of the chemical structure of a possible oxygen-neon-magnesium WD companion. Furthermore, we calculate the past and the future spin evolution of PSR J1952+2630, until the system merges in about 3.4 Gyr due to gravitational wave emission. Although we detect no relativistic effects in our timing analysis, we show that several such effects will become measurable with continued observations over the next 10 yr; thus, PSR J1952+2630 has potential as a testbed for gravitational theories.

  20. The binary fraction, separation distribution, and merger rate of white dwarfs from SPY

    Science.gov (United States)

    Maoz, Dan; Hallakoun, Na'ama

    2017-05-01

    From a sample of spectra of 439 white dwarfs (WDs) from the ESO-VLT Supernova-Ia Progenitor Survey (SPY), we measure the maximal changes in radial velocity (ΔRVmax) between epochs (generally two epochs, separated by up to 470 d), and model the observed ΔRVmax statistics via Monte Carlo simulations, to constrain the population characteristics of double WDs (DWDs). The DWD fraction among WDs is fbin = 0.10 ± 0.02 (1σ, random) +0.02 (systematic), in the separation range ≲4 au within which the data are sensitive to binarity. Assuming the distribution of binary separation, a, is a power law, dN/da ∝ aα, at the end of the last common-envelope phase and the start of solely gravitational-wave-driven binary evolution, the constraint by the data is α = -1.3 ± 0.2 (1σ) ±0.2 (systematic). If these parameters extend to small separations, the implied Galactic WD merger rate per unit stellar mass is Rmerge = (1-80) × 10-13 yr^{-1} M_{⊙}^{-1} (2σ), with a likelihood-weighted mean of Rmerge = (7 ± 2) × 10-13 yr^{-1} M_{⊙}^{-1} (1σ). The Milky Way's specific Type Ia supernova (SN Ia) rate is likely RIa ≈ 1.1 × 10-13 yr^{-1} M_{⊙}^{-1} and therefore, in terms of rates, a possibly small fraction of all merging DWDs (e.g. those with massive-enough primary WDs) could suffice to produce most or all SNe Ia.

  1. The importance of Urca-process cooling in accreting ONe white dwarfs

    Science.gov (United States)

    Schwab, Josiah; Bildsten, Lars; Quataert, Eliot

    2017-12-01

    We study the evolution of accreting oxygen-neon (ONe) white dwarfs (WDs), with a particular emphasis on the effects of the presence of the carbon-burning products 23Na and 25Mg. These isotopes lead to substantial cooling of the WD via the 25Mg-25Na, 23Na-23Ne and 25Na-25Ne Urca pairs. We derive an analytic formula for the peak Urca-process cooling rate and use it to obtain a simple expression for the temperature to which the Urca process cools the WD. Our estimates are equally applicable to accreting carbon-oxygen WDs. We use the Modules for Experiments in Stellar Astrophysics (MESA) stellar evolution code to evolve a suite of models that confirm these analytic results and demonstrate that Urca-process cooling substantially modifies the thermal evolution of accreting ONe WDs. Most importantly, we show that MESA models with lower temperatures at the onset of the 24Mg and 24Na electron captures develop convectively unstable regions, even when using the Ledoux criterion. We discuss the difficulties that we encounter in modelling these convective regions and outline the potential effects of this convection on the subsequent WD evolution. For models in which we do not allow convection to operate, we find that oxygen ignites around a density of log(ρc/g cm-3) ≈ 9.95, very similar to the value without Urca cooling. Nonetheless, the inclusion of the effects of Urca-process cooling is an important step in producing progenitor models with more realistic temperature and composition profiles which are needed for the evolution of the subsequent oxygen deflagration and hence for studies of the signature of accretion-induced collapse.

  2. THE EFFECTS OF CURVATURE AND EXPANSION ON HELIUM DETONATIONS ON WHITE DWARF SURFACES

    Energy Technology Data Exchange (ETDEWEB)

    Moore, Kevin; Bildsten, Lars [Department of Physics, University of California, Santa Barbara, CA (United States); Townsley, Dean M. [Department of Physics and Astronomy, University of Alabama, Tuscaloosa, AL (United States)

    2013-10-20

    Accreted helium layers on white dwarfs have been highlighted for many decades as a possible site for a detonation triggered by a thermonuclear runaway. In this paper, we find the minimum helium layer thickness that will sustain a steady laterally propagating detonation and show that it depends on the density and composition of the helium layer, specifically {sup 12}C and {sup 16}O. Detonations in these thin helium layers have speeds slower than the Chapman-Jouget (CJ) speed from complete helium burning, v{sub CJ} = 1.5 × 10{sup 9} cm s{sup –1}. Though gravitationally unbound, the ashes still have unburned helium (≈80% in the thinnest cases) and only reach up to heavy elements such as {sup 40}Ca, {sup 44}Ti, {sup 48}Cr, and {sup 52}Fe. It is rare for these thin shells to generate large amounts of {sup 56}Ni. We also find a new set of solutions that can propagate in even thinner helium layers when {sup 16}O is present at a minimum mass fraction of ≈0.07. Driven by energy release from α captures on {sup 16}O and subsequent elements, these slow detonations only create ashes up to {sup 28}Si in the outer detonated He shell. We close by discussing how the unbound helium burning ashes may create faint and fast 'Ia' supernovae as well as events with virtually no radioactivity, and speculate on how the slower helium detonation velocities impact the off-center ignition of a carbon detonation that could cause a Type Ia supernova in the double detonation scenario.

  3. CRYSTAL CHEMISTRY OF THREE-COMPONENT WHITE DWARFS AND NEUTRON STAR CRUSTS: PHASE STABILITY, PHASE STRATIFICATION, AND PHYSICAL PROPERTIES

    Energy Technology Data Exchange (ETDEWEB)

    Engstrom, T. A.; Yoder, N. C.; Crespi, V. H., E-mail: tae146@psu.edu, E-mail: ncy5007@psu.edu, E-mail: vhc2@psu.edu [Department of Physics, The Pennsylvania State University, University Park, PA 16802 (United States)

    2016-02-20

    A systematic search for multicomponent crystal structures is carried out for five different ternary systems of nuclei in a polarizable background of electrons, representative of accreted neutron star crusts and some white dwarfs. Candidate structures are “bred” by a genetic algorithm and optimized at constant pressure under the assumption of linear response (Thomas–Fermi) charge screening. Subsequent phase equilibria calculations reveal eight distinct crystal structures in the T = 0 bulk phase diagrams, five of which are complicated multinary structures not previously predicted in the context of compact object astrophysics. Frequent instances of geometrically similar but compositionally distinct phases give insight into structural preferences of systems with pairwise Yukawa interactions, including and extending to the regime of low-density colloidal suspensions made in a laboratory. As an application of these main results, we self-consistently couple the phase stability problem to the equations for a self-gravitating, hydrostatically stable white dwarf, with fixed overall composition. To our knowledge, this is the first attempt to incorporate complex multinary phases into the equilibrium phase-layering diagram and mass–radius-composition dependence, both of which are reported for He–C–O and C–O–Ne white dwarfs. Finite thickness interfacial phases (“interphases”) show up at the boundaries between single-component body-centered cubic (bcc) crystalline regions, some of which have lower lattice symmetry than cubic. A second application—quasi-static settling of heavy nuclei in white dwarfs—builds on our equilibrium phase-layering method. Tests of this nonequilibrium method reveal extra phases that play the role of transient host phases for the settling species.

  4. White OLED using {beta}-diketones rare earth binuclear complex as emitting layer

    Energy Technology Data Exchange (ETDEWEB)

    Quirino, W.G. [LOEM, Departamento de Fisica, Pontificia Universidade Catolica do Rio de Janeiro, PUC-Rio, P.O.Box 38071, Rio de Janeiro, RJ, CEP 22453-970 (Brazil); Legnani, C. [LOEM, Departamento de Fisica, Pontificia Universidade Catolica do Rio de Janeiro, PUC-Rio, P.O.Box 38071, Rio de Janeiro, RJ, CEP 22453-970 (Brazil); Cremona, M. [LOEM, Departamento de Fisica, Pontificia Universidade Catolica do Rio de Janeiro, PUC-Rio, P.O.Box 38071, Rio de Janeiro, RJ, CEP 22453-970 (Brazil)]. E-mail: cremona@fis.puc-rio.br; Lima, P.P. [Departamento de Quimica Fundamental, Universidade Federal de Pernambuco, UFPE-CCEN, Recife, PE, 50670-901 (Brazil); Junior, S.A. [Departamento de Quimica Fundamental, Universidade Federal de Pernambuco, UFPE-CCEN, Recife, PE, 50670-901 (Brazil); Malta, O.L. [Departamento de Quimica Fundamental, Universidade Federal de Pernambuco, UFPE-CCEN, Recife, PE, 50670-901 (Brazil)

    2006-01-03

    In this work, the fabrication and the characterization of a white triple-layer OLED using a {beta}-diketones binuclear complex [Eu(btfa){sub 3}phenterpyTb(acac){sub 3}] as the emitting layer is reported. The devices were assembled using a heterojunction between three organic molecular materials: the N,N'-bis(naphthalen-1-yl)-N,N'-bis(phenyl)benzidine (NPB) as hole-transporting layer, the {beta}-diketones binuclear complex and the tris(8-hydroxyquinoline aluminum) (Alq{sub 3}) as the electron transporting layer. All the organic layers were sequentially deposited under high vacuum environment by thermal evaporation onto ITO substrates and without breaking vacuum. Continuous electroluminescence emission was obtained varying the applied bias voltage from 10 to 22 V showing a wide emission band from 400 to 700 nm with about 100 cd/m{sup 2} of luminance. The white emission results from a combined action between the binuclear complex, acting as hole blocking and emitting layer, blue from NPB and the typical Alq{sub 3} green emission. The intensity ratio of the peaks is determined by the layer thickness and by the bias voltage applied to the OLED, allowing us to obtain a color tunable light source.

  5. New photic stimulating system with white light-emitting diodes to elicit electroretinograms from zebrafish larvae.

    Science.gov (United States)

    Matsubara, Hisashi; Matsui, Yoshitsugu; Miyata, Ryohei; Nishimura, Yuhei; Yamamoto, Tetsuro; Tanaka, Toshio; Kondo, Mineo

    2017-10-01

    The zebrafish is an established animal model commonly used in biological, neuroscience, and genetic research. We have developed a new light stimulating system using white light-emitting diodes (LEDs) to elicit ERGs from zebrafish larvae. The purpose of this study was to record full-field ERGs and to evaluate the inter-trial reliability of the ERGs recorded with our system from zebrafish larvae. The stimulating device used white LEDs that were attached to a stereomicroscope, and the location of the recording electrode on the cornea could be monitored while the eye was being stimulated. Full-field scotopic and photopic ERGs were recorded from larvae at the age of 5-7 days post-fertilization (dpf). Intensity-response curves were constructed from the ERGs. Inter-trial reliability of the ERGs recorded by our system was evaluated. This stimulating system could be used for efficient and reliable ERG recordings from 5-7 dpf larvae. The amplitudes, implicit times, and the waveforms of the scotopic and photopic ERGs were similar to those reported in earlier studies. Inter-trial reliability of the amplitudes of the photopic ERG b-waves was excellent with an intra-class correlation coefficient of 0.98. We conclude that this new light stimulation system using white LEDs attached to a stereomicroscope will be helpful in recording reliable ERGs from zebrafish larvae.

  6. Effects of electron blocking and hole trapping of the red guest emitter materials on hybrid white organic light emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Lin-Ann; Vu, Hoang-Tuan [National Formosa University, Institute of Electro-Optical and Materials Science, Huwei, Yunlin County, Taiwan (China); Juang, Fuh-Shyang, E-mail: fsjuang@seed.net.tw [National Formosa University, Institute of Electro-Optical and Materials Science, Huwei, Yunlin County, Taiwan (China); Lai, Yun-Jr [National Formosa University, Institute of Electro-Optical and Materials Science, Huwei, Yunlin County, Taiwan (China); Yeh, Pei-Hsun [Raystar Optronics, Inc., 5F No. 25, Keya Rd. Daya Township, Taichung County, Taiwan (China); Tsai, Yu-Sheng [National Formosa University, Institute of Electro-Optical and Materials Science, Huwei, Yunlin County, Taiwan (China)

    2013-10-01

    Hybrid white organic light emitting diodes (HWOLEDs) with fluorescence and phosphorescence hybrid structures are studied in this work. HWOLEDs were fabricated with blue/red emitting layers: fluorescent host material doped with sky blue material, and bipolar phosphorescent host emitting material doped with red dopant material. An electron blocking layer is applied that provides hole red guest emitter hole trapping effects, increases the charge carrier injection quantity into the emitting layers and controls the recombination zone (RZ) that helps balance the device color. Spacer layers were also inserted to expand the RZ, increase efficiency and reduce energy quenching along with roll-off effects. The resulting high efficiency warm white OLED device has the lower highest occupied molecule orbital level red guest material, current efficiency of 15.9 cd/A at current density of 20 mA/cm{sup 2}, and Commission Internationale de L'Eclairage coordinates of (0.34, 0.39)

  7. An Accreting White Dwarf near the Chandrasekhar Limit in the Andromeda Galaxy

    Science.gov (United States)

    Tang, Sumin; Bildsten, Lars; Wolf, William M.; Li, K. L.; Kong, Albert K. H.; Cao, Yi; Cenko, S. Bradley; De Cia, Annalisa; Kasliwal, Mansi M.; Kulkarni, Shrinivas R.; hide

    2014-01-01

    The iPTF (Intermediate Palomar Transient Factory) detection of the most recent outburst of the recurrent nova system RX J0045.4+4154 in the Andromeda Galaxy has enabled the unprecedented study of a massive (mass is greater than 1.3 solar masses) accreting white dwarf (WD). We detected this nova as part of the near daily iPTF monitoring of M31 to a depth of R (red band-pass filter) approximately equal to magnitude 21 and triggered optical photometry, spectroscopy and soft X-ray monitoring of the outburst. Peaking at an absolute magnitude of MR (red, mid-infrared band-pass filter) equals magnitude -6.6, and with a decay time of 1 magnitude per day, it is a faint and very fast nova. It shows optical emission lines of He/N and expansion velocities of 1900 to 2600 kilometers per second 1-4 days after the optical peak. The Swift monitoring of the X-ray evolution revealed a supersoft source (SSS) with kT (energy: Boltzmann constant times temperature) (sub eff (effective)) approximately equal to 90-110 electronvolts that appeared within 5 days after the optical peak, and lasted only 12 days. Most remarkably, this is not the first event from this system, rather it is a recurrent nova with a time between outbursts of approximately 1 year, the shortest known. Recurrent X-ray emission from this binary was detected by ROSAT in 1992 and 1993, and the source was well characterized as a mass greater than 1.3 solar masses WD SSS. Based on the observed recurrence time between different outbursts, the duration and effective temperature of the SS phase, MESA models of accreting WDs allow us to constrain the accretion rate to mass greater than 1.7x10 (sup -7) solar masses per year and WD mass greater than 1.30 solar masses. If the WD keeps 30 percent of the accreted material, it will take less than a million years to reach core densities high enough for carbon ignition (if made of C/O) or electron capture (if made of O/Ne) to end the binary evolution.

  8. Strategies to Achieve High-Performance White Organic Light-Emitting Diodes

    Directory of Open Access Journals (Sweden)

    Lirong Zhang

    2017-12-01

    Full Text Available As one of the most promising technologies for next-generation lighting and displays, white organic light-emitting diodes (WOLEDs have received enormous worldwide interest due to their outstanding properties, including high efficiency, bright luminance, wide viewing angle, fast switching, lower power consumption, ultralight and ultrathin characteristics, and flexibility. In this invited review, the main parameters which are used to characterize the performance of WOLEDs are introduced. Subsequently, the state-of-the-art strategies to achieve high-performance WOLEDs in recent years are summarized. Specifically, the manipulation of charges and excitons distribution in the four types of WOLEDs (fluorescent WOLEDs, phosphorescent WOLEDs, thermally activated delayed fluorescent WOLEDs, and fluorescent/phosphorescent hybrid WOLEDs are comprehensively highlighted. Moreover, doping-free WOLEDs are described. Finally, issues and ways to further enhance the performance of WOLEDs are briefly clarified.

  9. White-Light-Emitting Lanthanide Metallogels with Tunable Luminescence and Reversible Stimuli-Responsive Properties.

    Science.gov (United States)

    Chen, Pangkuan; Li, Qiaochu; Grindy, Scott; Holten-Andersen, Niels

    2015-09-16

    We have developed model light-emitting metallogels functionalized with lanthanide metal-ligand coordination complexes via a terpyridyl-end-capped four-arm poly(ethylene glycol) polymer. The optical properties of these highly luminescent polymer networks are readily modulated over a wide spectrum, including white-light emission, simply by tuning of the lanthanide metal ion stoichiometry. Furthermore, the dynamic nature of the Ln-N coordination bonding leads to a broad variety of reversible stimuli-responsive properties (mechano-, vapo-, thermo-, and chemochromism) of both sol-gel systems and solid thin films. The versatile functional performance combined with the ease of assembly suggests that this lanthanide coordination polymer design approach offers a robust pathway for future engineering of multi-stimuli-responsive polymer materials.

  10. Study of Amorphous Carbon Nitride Films Aiming at White Light Emitting Devices

    Science.gov (United States)

    Iwano, Yuta; Kittaka, Toshiaki; Tabuchi, Hidekazu; Soukawa, Masaya; Kunitsugu, Shinsuke; Takarabe, Kenichi; Itoh, Kunio

    2008-10-01

    The possibility for white light emitting devices using carbon nitride (CNx) thin films has been studied. Microwave electron cyclotron resonance (ECR)-plasma chemical vapor deposition (CVD) and RF-sputtering apparatuses have been used for the formation of CNx thin films. In both cases, CH4 was used as the source or sub-source of carbon in order to investigate the effect of hydrogenated carbon nitride for luminescence. The cathodoluminescence (CL) measurement of the film grown by ECR-plasma CVD method showed three peaks of red, green, and blue (R/G/B). The photoluminescence (PL) measurement of the film grown by RF-sputtering also showed the red peak, which could not be observed in the film without hydrogen. Together with the X-ray photoelectron spectroscopy (XPS) analysis data, we concluded that the red peak originates from the level relating to H atom and blue peak from C-N bonds.

  11. White organic light-emitting diodes with 4 nm metal electrode

    Energy Technology Data Exchange (ETDEWEB)

    Lenk, Simone; Schwab, Tobias; Schubert, Sylvio; Müller-Meskamp, Lars; Leo, Karl; Reineke, Sebastian [Institut für Angewandte Photophysik, Technische Universität Dresden, George-Bähr-Straße 1, 01069 Dresden (Germany); Gather, Malte C. [Institut für Angewandte Photophysik, Technische Universität Dresden, George-Bähr-Straße 1, 01069 Dresden (Germany); Organic Semiconductor Centre, SUPA, School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews KY16 9SS (United Kingdom)

    2015-10-19

    We investigate metal layers with a thickness of only a few nanometers as anode replacement for indium tin oxide (ITO) in white organic light-emitting diodes (OLEDs). The ultrathin metal electrodes prove to be an excellent alternative that can, with regard to the angular dependence and efficiency of the OLED devices, outperform the ITO reference. Furthermore, unlike ITO, the thin composite metal electrodes are readily compatible with demanding architectures (e.g., top-emission or transparent OLEDs, device unit stacking, etc.) and flexible substrates. Here, we compare the sheet resistance of both types of electrodes on polyethylene terephthalate for different bending radii. The electrical performance of ITO breaks down at a radius of 10 mm, while the metal electrode remains intact even at radii smaller than 1 mm.

  12. All-inorganic white light emitting devices based on ZnO nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Nannen, Ekaterina

    2012-09-21

    Semiconductor nanaocrystals (NCs) are very promising candidates for lightweight large-area rollable displays and light emitting devices (LEDs). They are expected to combine the efficiency, robustness and color tunability of conventional semiconductor LEDs with the flexible fabrication techniques known from OLED technology, since the NCs are compatible with solution processing and therefore can be deposited on virtually any substrates including glass and plastic. Today, NC-LEDs consist of chemically synthesized QDs embedded in organic charge injection and transport layers. The organic layers limit the robustness of the NC-LEDs and result in significant constrictions within the device fabrication procedure, such as organic evaporation steps, inert (i.e. humidity and oxygen free) atmosphere and obligatory encapsulation. These limitations during the production process as well as complex chemical synthesis route of the implemented NCs and organic components lead to high fabrication costs and low turnover. So far, only prototype devices have been introduced by several research groups and industrial companies. Still, the main concern retarding NC-LEDs from market launch is the high content of toxic heavy metals like Cd in the active nanocrystalline light emitting material. Within this work, possible environmentally safe and ambient-air-compatible alternatives to conventional QDs and organics were explored, with the main focus on design and fabrication of completely inorganic white NC-LEDs with commercial ZnO nanoparticles as an active light emitting material. While the electrical transport properties through the NC-network of the commercially available VP AdNano {sup registered} ZnO2O particles were already to some extent explored, their optical properties and therefore suitability as an active light emitter in NC-LEDs were not studied so far. (orig.)

  13. White polymer light-emitting devices for solid-state lighting: materials, devices, and recent progress.

    Science.gov (United States)

    Ying, Lei; Ho, Cheuk-Lam; Wu, Hongbin; Cao, Yong; Wong, Wai-Yeung

    2014-04-23

    White polymer light-emitting devices (WPLEDs) have become a field of immense interest in both scientific and industrial communities. They have unique advantages such as low cost, light weight, ease of device fabrication, and large area manufacturing. Applications of WPLEDs for solid-state lighting are of special interest because about 20% of the generated electricity on the earth is consumed by lighting. To date, incandescent light bulbs (with a typical power efficiency of 12-17 lm W(-1) ) and fluorescent lamps (about 40-70 lm W(-1) ) are the most widely used lighting sources. However, incandescent light bulbs convert 90% of their consumed power into heat while fluorescent lamps contain a small but significant amount of toxic mercury in the tube, which complicates an environmentally friendly disposal. Remarkably, the device performances of WPLEDs have recently been demonstrated to be as efficient as those of fluorescent lamps. Here, we summarize the recent advances in WPLEDs with special attention paid to the design of novel luminescent dopants and device structures. Such advancements minimize the gap (for both efficiency and stability) from other lighting sources such as fluorescent lamps, light-emitting diodes based on inorganic semiconductors, and vacuum-deposited small-molecular devices, thus rendering WPLEDs equally competitive as these counterparts currently in use for illumination purposes. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Organic Light-Emitting Diode with Color Tunable between Bluish-White Daylight and Orange-White Dusk Hue

    Directory of Open Access Journals (Sweden)

    Shih-Yun Liao

    2014-01-01

    Full Text Available The varying color of sunlight diurnally exhibits an important effect on circadian rhythm of living organisms. The bluish-white daylight that is suitable for work shows a color temperature as high as 9,000 K, while the homey orange-white dusk hue is as low as 2,000 K. We demonstrate in this report the feasibility of using organic light-emitting diode (OLED technology to fabricate sunlight-style illumination with a very wide color temperature range. The color temperature can be tuned from 2,300 K to 9,300 K, for example, by changing the applied voltage from 3 to 11 V for the device composing red and yellow emitters in the first emissive layer and blue emitter in the second. Unlike the prior arts, the color-temperature span can be made much wider without any additional carrier modulation layer, which should enable a more cost effective fabrication. For example, the color-temperature span is 7,000 K for the above case, while it is 1,700 K upon the incorporation of a nanoscale hole modulation layer in between the two emissive layers. The reason why the present device can effectively regulate the shifting of recombination zone is because the first emissive layer itself possesses an effective hole modulation barrier of 0.2 eV. This also explains why the incorporation of an extra hole modulation layer with a 0.7 eV barrier did not help extend the desirable color-temperature span since excessive holes may be blocked.

  15. Quasisoft X-Ray Sources: White Dwarfs? Neutron Stars? Black Holes?

    Science.gov (United States)

    Di Stefano, Rosanne

    Two of the most exciting areas of current research in astrophysics are black holes and Type Ia supernovae. We propose archival work that has the potential to shed light on both areas. The focus of our research is a newly-established class of x-ray sources called Quasisoft X-ray Sources (QSSs). Although they comprise a significant fraction of the x- ray sources in galaxies of all types, including M31, it has proved difficult to identify members of this class in the Milky Way or Magellanic Clouds. We have developed methods to find these sources, and have begun to meet with success in the application of our methods. The three-year project we propose will allow us to identify QSSs. We will then use the full range of archived data to determine which QSS candidates are highly luminous, and which are members of less luminous classes, such as quiescent low-mass x-ray binaries (qLMXBs), or even isolated neutron stars. Many will be nearby x-ray active stars, or else distant AGN, whose discovery will also be of interest to a range of researchers. In the end, we will have a subset of intriguing physical systems, some of which may be accreting black holes and some of which may be unusual states of neutron stars or even of nuclear-burning white dwarfs. The systems identified through this ADAP program will be targets of future observing programs, from space and from the ground. The information we derive from NASA archived data will provide insight into important astrophysical questions. Do intermediate-mass black holes (IMBHs) exist? It has only been during the past 15 years or so that accreting compact objects that were considered as black hole candidates have been promoted to black holes. This achievement required years of observations of candidates in the Milky Way and Magellanic Clouds. The discovery of ultraluminous X- ray source in external galaxies suggests that there are black holes with masses larger than the 10-30 solar masses typical of the known black holes. To

  16. HS 2231+2441: an HW Vir system composed of a low-mass white dwarf and a brown dwarf★

    Science.gov (United States)

    Almeida, L. A.; Damineli, A.; Rodrigues, C. V.; Pereira, M. G.; Jablonski, F.

    2017-12-01

    HW Vir systems are rare evolved eclipsing binaries composed of a hot compact star and a low-mass main sequence star in a close orbit. These systems provide a direct way to measure the fundamental properties, e.g. masses and radii, of their components, hence they are crucial in studying the formation of subdwarf B stars and low-mass white dwarfs, the common-envelope phase and the pre-phase of cataclysmic variables. Here, we present a detailed study of HS 2231+2441, an HW Vir type system, by analysing BVRCIC photometry and phase-resolved optical spectroscopy. The spectra of this system, which are dominated by the primary component features, were fitted using non-local thermodynamic equilibrium models providing an effective temperature Teff = 28 500 ± 500 K, surface gravity log g = 5.40 ± 0.05 cm s-2 and helium abundance log (n(He)/n(H)) = -2.52 ± 0.07. The geometrical orbit and physical parameters were derived by simultaneously modelling the photometric and spectroscopic data using the Wilson-Devinney code. We derive two possible solutions for HS 2231+2441 that provide the component masses: M1 = 0.19 M⊙ and M2 = 0.036 M⊙ or M1 = 0.288 M⊙ and M2 = 0.046 M⊙. Considering the possible evolutionary channels for forming a compact hot star, the primary of HS 2231+2441 probably evolved through the red-giant branch scenario and does not have a helium-burning core, which is consistent with a low-mass white dwarf. Both solutions are consistent with a brown dwarf as the secondary.

  17. Tunable and white light emitting AlPO4 mesoporous glass by design of inorganic/organic luminescent species

    Directory of Open Access Journals (Sweden)

    Jin He

    2015-04-01

    Full Text Available The realization of tunable and white light emitting sources employed by UV-LED with single-host phosphors has been an exciting development in the search for high luminous efficiency and excellent color rendering index white-light source. A tunable and white light emitting mesoporous glass was prepared by utilizing both inorganic/organic (Europium/coumarin luminescent species in the meso-structure. The tunable and white light emission was deliberately designed by CIE calculation based on the individual emission spectra, which was realized by tailoring the emission of Eu2+/Eu3+ ions and coumarin 535 in sol-gel AlPO4 mesoporous glass. This simple and versatile procedure is not limited in the combination of rare earth and organic dye and is therefore extendable to other luminescent species in meso-structure for color-tunable efficient solid-state lighting sources.

  18. Non-LTE line-blanketed model atmospheres of hot stars. 2: Hot, metal-rich white dwarfs

    Science.gov (United States)

    Lanz, T.; Hubeny, I.

    1995-01-01

    We present several model atmospheres for a typical hot metal-rich DA white dwarf, T(sub eff) = 60,000 K, log g = 7.5. We consider pure hydrogen models, as well as models with various abundances of two typical 'trace' elements-carbon and iron. We calculte a number of Local Thermodynamic Equilibrium (LTE) and non-LTE models, taking into account the effect of numerous lines of these elements on the atmospheric structure. We demostrate that while the non-LTE effects are notvery significant for pure hydrogen models, except for describing correctly the central emission in H-alpha they are essential for predicting correctly the ionization balance of metals, such as carbon and iron. Previously reported discrepancies in LTE abundances determinations using C III and C IV lines are easily explained by non-LTE effects. We show that if the iron abundance is larger than 10(exp -5), the iron line opacity has to be considered not only for the spectrum synthesis, but also in the model construction itself. For such metal abundances, non-LTE metal line-blanketed models are needed for detailed abundance studies of hot, metal-rich white dwarfs. We also discuss the predicted Extreme Ultraviolet (EUV) spectrum and show that it is very sensitive to metal abundances, as well as to non-LTE effects.

  19. Pressure Distortion of the H2-He Collision-induced Absorption at the Photosphere of Cool White Dwarf Stars

    Science.gov (United States)

    Blouin, S.; Kowalski, P. M.; Dufour, P.

    2017-10-01

    Collision-induced absorption (CIA) from molecular hydrogen is a dominant opacity source in the atmosphere of cool white dwarfs. It results in a significant flux depletion in the near-IR and IR parts of their spectra. Because of the extreme conditions of helium-rich atmospheres (where the density can be as high as a few g cm-3), this opacity source is expected to undergo strong pressure distortion and the currently used opacities have not been validated at such extreme conditions. To check the distortion of the CIA opacity, we applied state-of-the-art ab initio methods of computational quantum chemistry to simulate the CIA opacity at high densities. The results show that the CIA profiles are significantly distorted above densities of 0.1 {{g}} {{cm}}-3 in a way that is not captured by the existing models. The roto-translational band is enhanced and shifted to higher frequencies as an effect of the decrease of the interatomic separation of the H2 molecule. The vibrational band is blueward shifted and split into Q R and Q P branches, separated by a pronounced interference dip. Its intensity is also substantially reduced. The distortions result in a shift of the maximum of the absorption from 2.3 μm to 3-7 μm, which could potentially explain the spectra of some very cool, helium-rich white dwarfs.

  20. Down the Tubes: Vetting the Apparent Water-rich Parent Body being Accreted by the White Dwarf GD 16

    Science.gov (United States)

    Melis, Carl

    2015-10-01

    How water is distributed in a planetary system critically affects the formation, evolution, and habitability of its constituent rocky bodies. White dwarf stars provide a unique method to probe the prevalence of water-rich rocky bodies outside of our Solar system and where they preferentially reside in a planetary system. However, as evidenced by the case of GD 362, some parent bodies that at first glance might appear to be water-rich can actually be quite water-scarce. At this time there are only a small number of plausibly water-rich rocky bodies that are being actively accreted by their host white dwarf star. Given such a sample size it is crucial to characterize each one in sufficient detail to remove interlopers like GD 362 that might otherwise affect future statistical analyses. In this proposal we seek to vet GD 16, a water-rich candidate yet to be observed with HST-COS that is the brightest remaining such target in the UV.

  1. Post-main Sequence Evolution of Icy Minor Planets: Implications for Water Retention and White Dwarf Pollution

    Science.gov (United States)

    Malamud, Uri; Perets, Hagai B.

    2016-12-01

    Most observations of polluted white dwarf atmospheres are consistent with accretion of water-depleted planetary material. Among tens of known cases, merely two involve accretion of objects that contain a considerable mass fraction of water. The purpose of this study is to investigate the relative scarcity of these detections. Based on a new and highly detailed model, we evaluate the retention of water inside icy minor planets during the high-luminosity stellar evolution that follows the main sequence. Our model fully considers the thermal, physical, and chemical evolution of icy bodies, following their internal differentiation as well as water depletion, from the moment of their birth and through all stellar evolution phases preceding the formation of the white dwarf. We also account for different initial compositions and formation times. Our results differ from previous studies, which have either underestimated or overestimated water retention. We show that water can survive in a variety of circumstances and in great quantities, and therefore other possibilities are discussed in order to explain the infrequency of water detection. We predict that the sequence of accretion is such that water accretes earlier, and more rapidly, than the rest of the silicate disk, considerably reducing the chance of its detection in H-dominated atmospheres. In He-dominated atmospheres, the scarcity of water detections could be observationally biased. It implies that the accreted material is typically intrinsically dry, which may be the result of the inside-out depopulation sequence of minor planets.

  2. A Deep Proper Motion Catalog Within the Sloan Digital Sky Survey Footprint. II. The White Dwarf Luminosity Function

    Science.gov (United States)

    Munn, Jeffrey A.; Harris, Hugh C.; von Hippel, Ted; Kilic, Mukremin; Liebert, James W.; Williams, Kurtis A.; DeGennaro, Steven; Jeffery, Elizabeth; Dame, Kyra; Gianninas, A.; Brown, Warren R.

    2017-01-01

    A catalog of 8472 white dwarf (WD) candidates is presented, selected using reduced proper motions from the deep proper motion catalog of Munn et al. Candidates are selected in the magnitude range 16Digital Sky Survey (SDSS) imaging footprint. Distances, bolometric luminosities, and atmospheric compositions are derived by fitting SDSS ugriz photometry to pure hydrogen and helium model atmospheres (assuming surface gravities {log} {\\text{}}g=8). The disk white dwarf luminosity function (WDLF) is constructed using a sample of 2839 stars with 5.5< {M}{bol}< 17, with statistically significant numbers of stars cooler than the turnover in the luminosity function. The WDLF for the halo is also constructed, using a sample of 135 halo WDs with 5< {M}{bol}< 16. We find space densities of disk and halo WDs in the solar neighborhood of 5.5+/- 0.1× {10}-3 {{pc}}-3 and 3.5+/- 0.7× {10}-5 {{pc}}-3, respectively. We resolve the bump in the disk WDLF due to the onset of fully convective envelopes in WDs, and see indications of it in the halo WDLF as well.

  3. FUSE observations of PG1342+444: new insights into the nature of the hottest DA white dwarfs

    Science.gov (United States)

    Barstow, M. A.; Good, S. A.; Holberg, J. B.; Burleigh, M. R.; Bannister, N. P.; Hubeny, I.; Napiwotzki, R.

    2002-02-01

    We present Far Ultraviolet Spectroscopic Explorer (FUSE) observations of the very hot (Teff~60000K) DA white dwarf PG1342+444, describing our data reduction and analysis techniques. The spectrum reveals a number of photospheric absorption lines from high ionization species along with numerous interstellar features. The photospheric detections include the 1031.9- and 1037.0-Å OVI lines which are seen for the first time in a hot DA atmosphere and are usually associated with the much hotter PG1159 stars and so-called OVI central stars of planetary nebulae. Estimates of the stellar effective temperature made independently using both the Balmer and Lyman series lines are in disagreement (Teff~67000 and ~54000K respectively), when taking into account just the statistical uncertainties in the analyses. However, the presence of weak absorption from the CIII multiplet near 1176Å, which is predicted to be much stronger if the star were as cool as the Lyman measurement suggests, leads us to favour the higher temperature. PG1342+444 appears to have enhanced C, Fe and Ni abundances in its atmosphere compared with all the other G191-B2B-like DA white dwarfs, which might affect the temperature structure of the atmosphere if not homogeneously distributed, as assumed in this study.

  4. Numerical Simulation on Light Output of UV-based White Light-Emitting Diodes with Multicolor Phosphor Blends

    Science.gov (United States)

    Ishida, Kunio; Mitsuishi, Iwao; Hattori, Yasushi; Nunoue, Shinya

    2008-08-01

    We developed a new simulation method for designing the luminescence profiles of phophor-based white light-emitting diodes (LEDs). By combining the rate equations for absorption/emission processes by phosphors with a differential equation for spatial distribution of light intensity, we take into account the cascade process of phosphor emission due to the reabsorption of photons. We found that our model is suitable for a systematic design method of white light sources with multicolor phosphor blends.

  5. ESO 439-162/163 - a common proper motion binary formed by a magnetic DQ and a DC type white dwarf

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz, M.T.; Maza, J.

    1988-12-01

    In the course of a search for faint large proper motion stars, a common proper motion pair was identified having a mu = 0.38 + or - 0.03 arcsec/yr in the direction theta = 233 deg. The stars are separated by 23 arcsec and have apparent visual magnitudes 18.77 and 19.84, respectively. Spectrophotometry of the stars established that the fainter component is a cold DC white dwarf, while the brighter one is a magnetic white dwarf with strong Swan bands of C2 shifted and broadened by an about 10 to the 8th G magnetic field. 6 references.

  6. Monitoring and modelling of white dwarfs with extremely weak magnetic fields. WD 2047+372 and WD 2359-434

    Science.gov (United States)

    Landstreet, J. D.; Bagnulo, S.; Valyavin, G.; Valeev, A. F.

    2017-11-01

    Magnetic fields are detected in a few percent of white dwarfs. The number of such magnetic white dwarfs known is now some hundreds. Fields range in strength from a few kG to several hundred MG. Almost all the known magnetic white dwarfs have a mean field modulus ≥1 MG. We are trying to fill a major gap in observational knowledge at the low field limit (≤200 kG) using circular spectro-polarimetry. In this paper we report the discovery and monitoring of strong, periodic magnetic variability in two previously discovered "super-weak field" magnetic white dwarfs, WD 2047+372 and WD 2359-434. WD 2047+372 has a mean longitudinal field that reverses between about -12 and + 15 kG, with a period of 0.243 d, while its mean field modulus appears nearly constant at 60 kG. The observations can be interpreted in terms of a dipolar field tilted with respect to the stellar rotation axis. WD 2359-434 always shows a weak positive longitudinal field with values between about 0 and + 12 kG, varying only weakly with stellar rotation, while the mean field modulus varies between about 50 and 100 kG. The rotation period is found to be 0.112 d using the variable shape of the Hα line core, consistent with available photometry. The field of this star appears to be much more complex than a dipole, and is probably not axisymmetric. Available photometry shows that WD 2359-434 is a light variable with an amplitude of only 0.005 mag; our own photometry shows that if WD 2047+372 is photometrically variable, the amplitude is below about 0.01 mag. These are the first models for magnetic white dwarfs with fields below about 100 kG based on magnetic measurements through the full stellar rotation. They reveal two very different magnetic surface configurations, and that, contrary to simple ohmic decay theory, WD 2359-434 has a much more complex surface field than the much younger WD 2047+372. Based, in part, on observations collected at the European Organisation for Astronomical Research in the

  7. Tuning the white light spectrum of light emitting diode lamps to reduce attraction of nocturnal arthropods.

    Science.gov (United States)

    Longcore, Travis; Aldern, Hannah L; Eggers, John F; Flores, Steve; Franco, Lesly; Hirshfield-Yamanishi, Eric; Petrinec, Laina N; Yan, Wilson A; Barroso, André M

    2015-05-05

    Artificial lighting allows humans to be active at night, but has many unintended consequences, including interference with ecological processes, disruption of circadian rhythms and increased exposure to insect vectors of diseases. Although ultraviolet and blue light are usually most attractive to arthropods, degree of attraction varies among orders. With a focus on future indoor lighting applications, we manipulated the spectrum of white lamps to investigate the influence of spectral composition on number of arthropods attracted. We compared numbers of arthropods captured at three customizable light-emitting diode (LED) lamps (3510, 2704 and 2728 K), two commercial LED lamps (2700 K), two commercial compact fluorescent lamps (CFLs; 2700 K) and a control. We configured the three custom LEDs to minimize invertebrate attraction based on published attraction curves for honeybees and moths. Lamps were placed with pan traps at an urban and two rural study sites in Los Angeles, California. For all invertebrate orders combined, our custom LED configurations were less attractive than the commercial LED lamps or CFLs of similar colour temperatures. Thus, adjusting spectral composition of white light to minimize attracting nocturnal arthropods is feasible; not all lights with the same colour temperature are equally attractive to arthropods. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  8. ASASSN-16ae: A POWERFUL WHITE-LIGHT FLARE ON AN EARLY-L DWARF

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, Sarah J. [Leibniz-Institute for Astrophysics Potsdam (AIP), An der Sternwarte 16, D-14482, Potsdam (Germany); Shappee, Benjamin J.; Seibert, Mark [Carnegie Observatories, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Gagné, Jonathan [Department of Terrestrial Magnetism, Carnegie Institution of Washington, Washington, DC 20015 (United States); Stanek, K. Z.; Holoien, Thomas W.-S.; Kochanek, C. S. [Department of Astronomy, Ohio State University, 140 West 18th Avenue, Columbus, OH 43210 (United States); Prieto, José L. [Núcleo de Astronomía de la Facultad de Ingenierá, Universidad Diego Portales, Av. Ejército 441, Santiago (Chile); Chomiuk, Laura; Strader, Jay [Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824 (United States); Dong, Subo, E-mail: sjschmidt@aip.de [Kavli Institute for Astronomy and Astrophysics, Peking University, Yi He Yuan Road 5, Hai Dian District, Beijing 100871 (China)

    2016-09-10

    We report the discovery and classification of SDSS J053341.43+001434.1 (SDSS0533), an early-L dwarf first discovered during a powerful Δ V< −11 magnitude flare observed as part of the ASAS-SN survey. Optical and infrared spectroscopy indicate a spectral type of L0 with strong H α emission and a blue NIR spectral slope. Combining the photometric distance, proper motion, and radial velocity of SDSS0533 yields three-dimensional velocities of ( U , V , W ) = (14 ± 13, −35 ± 14, −94 ± 22) km s{sup −1}, indicating that it is most likely part of the thick disk population and probably old. The three detections of SDSS0533 obtained during the flare are consistent with a total V -band flare energy of at least 4.9 × 10{sup 33} erg (corresponding to a total thermal energy of at least E {sub tot} > 3.7 × 10{sup 34} erg), placing it among the strongest detected M dwarf flares. The presence of this powerful flare on an old L0 dwarf may indicate that stellar-type magnetic activity persists down to the end of the main sequence and on older ML transition dwarfs.

  9. Device Engineering and Degradation Mechanism Study of All-Phosphorescent White Organic Light-Emitting Diodes

    Science.gov (United States)

    Xu, Lisong

    As a possible next-generation solid-state lighting source, white organic light-emitting diodes (WOLEDs) have the advantages in high power efficiency, large area and flat panel form factor applications. Phosphorescent emitters and multiple emitting layer structures are typically used in high efficiency WOLEDs. However due to the complexity of the device structure comprising a stack of multiple layers of organic thin films, ten or more organic materials are usually required, and each of the layers in the stack has to be optimized to produce the desired electrical and optical functions such that collectively a WOLED of the highest possible efficiency can be achieved. Moreover, device degradation mechanisms are still unclear for most OLED systems, especially blue phosphorescent OLEDs. Such challenges require a deep understanding of the device operating principles and materials/device degradation mechanisms. This thesis will focus on achieving high-efficiency and color-stable all-phosphorescent WOLEDs through optimization of the device structures and material compositions. The operating principles and the degradation mechanisms specific to all-phosphorescent WOLED will be studied. First, we investigated a WOLED where a blue emitter was based on a doped mix-host system with the archetypal bis(4,6-difluorophenyl-pyridinato-N,C2) picolinate iridium(III), FIrpic, as the blue dopant. In forming the WOLED, the red and green components were incorporated in a single layer adjacent to the blue layer. The WOLED efficiency and color were optimized through variations of the mixed-host compositions to control the electron-hole recombination zone and the dopant concentrations of the green-red layers to achieve a balanced white emission. Second, a WOLED structure with two separate blue layers and an ultra-thin red and green co-doped layer was studied. Through a systematic investigation of the placement of the co-doped red and green layer between the blue layers and the material

  10. White polymer light-emitting diodes based on star-shaped polymers with an orange dendritic phosphorescent core.

    Science.gov (United States)

    Zhu, Minrong; Li, Yanhu; Cao, Xiaosong; Jiang, Bei; Wu, Hongbin; Qin, Jingui; Cao, Yong; Yang, Chuluo

    2014-12-01

    A series of new star-shaped polymers with a triphenylamine-based iridium(III) dendritic complex as the orange-emitting core and poly(9,9-dihexylfluorene) (PFH) chains as the blue-emitting arms is developed towards white polymer light-emitting diodes (WPLEDs). By fine-tuning the content of the orange phosphor, partial energy transfer and charge trapping from the blue backbone to the orange core is realized to achieve white light emission. Single-layer WPLEDs with the configuration of ITO (indium-tin oxide)/poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS)/polymer/CsF/Al exhibit a maximum current efficiency of 1.69 cd A(-1) and CIE coordinates of (0.35, 0.33), which is very close to the pure white-light point of (0.33, 0.33). To the best of our knowledge, this is the first report on star-shaped white-emitting single polymers that simultaneously consist of fluorescent and phosphorescent species. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Room temperature luminescence properties of fluorescent SiC as white light emitting diode medium

    Energy Technology Data Exchange (ETDEWEB)

    Sun, J.W., E-mail: jianwusun@gmail.com [Department of Physics, Chemistry and Biology, Linkoeping University, 581 83 Linkoeping (Sweden); Jokubavicius, V.; Liljedahl, R.; Yakimova, R. [Department of Physics, Chemistry and Biology, Linkoeping University, 581 83 Linkoeping (Sweden); Juillaguet, S. [Universite Montpellier 2, Laboratoire Charles Coulomb UMR 5221, F-34095, Montpellier (France); Camassel, J. [CNRS, Laboratoire Charles Coulomb UMR 5221, F-34095, Montpellier (France); Kamiyama, S. [Department of Materials Science and Engineering, Meijo University, 1-501 Shiogamaguchi, Tenpaku-ku, Nagoya 468-8502 (Japan); Syvaejaervi, M. [Department of Physics, Chemistry and Biology, Linkoeping University, 581 83 Linkoeping (Sweden)

    2012-11-01

    The high quantum efficiency of donor-acceptor-pair emission in N and B co-doped 6H-SiC opens the way for SiC to constitute as an efficient light-emitting medium for white light-emitting diodes. In this work, we evidence room temperature luminescence in N and B co-doped 6H-SiC fluorescent material grown by the Fast Sublimation Growth Process. Three series of samples, with eight different N and B doping levels, were investigated. In most samples, from photoluminescence measurements a strong N-B donor-acceptor-pair emission band was observed at room temperature, with intensity dependent on the nitrogen pressure in the growth chamber and boron doping level in the source. Low temperature photoluminescence spectra showed that N bound exciton peaks exhibited a continuous broadening with increasing N{sub 2} pressure during the growth, unambiguously indicating an opportunity to control the N doping in the epilayer by conveniently changing the N{sub 2} pressure. Finally, the crystal quality of the N and B doped 6H-SiC was evaluated by X-ray diffraction measurements. The {omega} rocking curves of (0006) Bragg diffractions from the samples grown with lower and higher N{sub 2} pressure show almost the same value of the full width at half maximum as that collected from the substrate. This suggests that the N and B doping, which is expected to give rise to an efficient donor-acceptor-pair emission at room temperature, does not degrade the crystal quality.

  12. Enabling Lambertian-Like Warm White Organic Light-Emitting Diodes with a Yellow Phosphor Embedded Flexible Film

    Directory of Open Access Journals (Sweden)

    Cheng-Chang Chen

    2014-01-01

    Full Text Available We demonstrate in this report a new constructive method of fabricating white organic light-emitting devices (OLEDs with a flexible plastic film embedded with yellow phosphor. The flexible film is composed of polydimethylsiloxane (PDMS and fabricated by using spin coating followed by peeling technology. From the results, the resultant electroluminescent spectrum shows the white OLED to have chromatic coordinates of 0.38 and 0.54 and correlated color temperature of 4200 K. The warm white OLED exhibits the yield of 10.3 cd/A and the luminous power efficiency of 5.4 lm/W at a luminance of 1000 cd/m2. A desirable Lambertian-like far-field pattern is detected from the white OLEDs with the yellow phosphor containing PDMS film. This method is simple, reproducible, and cost-effective, proving to be a highly feasible approach to realize white OLED.

  13. Double Osbnd Ne-Mg white dwarfs merging as the source of the powerfull gravitational waves for LIGO/VIRGO type interferometers

    Science.gov (United States)

    Lipunov, V. M.

    2017-10-01

    New strong non-spiralling-in gravitational wave (GW) source for LIGO/VIRGO detectors are proposed. Double Osbnd Ne-Mg white dwarf mergers can produce strong gravitational waves with frequencies in the several hundreds Hz range. Such events can be followed by a Super Nova type Ia.

  14. Divergent selection for mature body weight in dwarf White Leghorns. 1. Growth and reproductive responses to selection.

    Science.gov (United States)

    Benoff, F H; Renden, J A

    1983-10-01

    Genetic selection for high (H) and low (L) 20-week body weight (BW) in dwarf White Leghorns was practiced for three generations. The base population was the Oregon State University dwarf Leghorn population (C) selected previously for part year hen-housed egg production (EP), early sexual maturity (SM), and large initial egg weight (EW). Asymmetry of response was observed in both sexes. Realized heritabilities for 20-week BW for H and L males were .49 and .36 and for H and L females were .45 and .79, respectively. Twenty-week BW of the 3rd generation H and L line females were 1.48 and .80 kg, respectively, compared to 1.13 kg for the C line. Similar weights for the males were 1.74, .97, and 1.27 kg for the H, L, and C line, respectively. The H and L lines diverged significantly in 10, 20, 40, and 60-week BW, SM, and EW after one generation of selection and the divergence continued through the third generation. The EP and egg specific gravity did not differ among lines. The C line was intermediate to the selected lines for all traits except EP. The EW at 35 and 60 weeks differed between the H and L lines by 10 g at generation 3 and SM was 149 and 157 days for the H and L lines, respectively.

  15. Origin of White Electroluminescence in Graphene Quantum Dots Embedded Host/Guest Polymer Light Emitting Diodes

    Science.gov (United States)

    Kyu Kim, Jung; Bae, Sukang; Yi, Yeonjin; Jin Park, Myung; Jin Kim, Sang; Myoung, Nosoung; Lee, Chang-Lyoul; Hee Hong, Byung; Hyeok Park, Jong

    2015-06-01

    Polymer light emitting diodes (PLEDs) using quantum dots (QDs) as emissive materials have received much attention as promising components for next-generation displays. Despite their outstanding properties, toxic and hazardous nature of QDs is a serious impediment to their use in future eco-friendly opto-electronic device applications. Owing to the desires to develop new types of nano-material without health and environmental effects but with strong opto-electrical properties similar to QDs, graphene quantum dots (GQDs) have attracted great interest as promising luminophores. However, the origin of electroluminescence from GQDs incorporated PLEDs is unclear. Herein, we synthesized graphene oxide quantum dots (GOQDs) using a modified hydrothermal deoxidization method and characterized the PLED performance using GOQDs blended poly(N-vinyl carbazole) (PVK) as emissive layer. Simple device structure was used to reveal the origin of EL by excluding the contribution of and contamination from other layers. The energy transfer and interaction between the PVK host and GOQDs guest were investigated using steady-state PL, time-correlated single photon counting (TCSPC) and density functional theory (DFT) calculations. Experiments revealed that white EL emission from the PLED originated from the hybridized GOQD-PVK complex emission with the contributions from the individual GOQDs and PVK emissions.

  16. Tunneling Injection and Exciton Diffusion of White Organic Light-Emitting Diodes with Composed Buffer Layers

    Science.gov (United States)

    Yang, Su-Hua; Wu, Jian-Ping; Huang, Tao-Liang; Chung, Bin-Fong

    2018-02-01

    Four configurations of buffer layers were inserted into the structure of a white organic light emitting diode, and their impacts on the hole tunneling-injection and exciton diffusion processes were investigated. The insertion of a single buffer layer of 4,4'-bis(carbazol-9-yl)biphenyl (CBP) resulted in a balanced carrier concentration and excellent color stability with insignificant chromaticity coordinate variations of Δ x < 0.023 and Δ y < 0.023. A device with a 2,9-Dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP) buffer layer was beneficial for hole tunneling to the emission layer, resulting in a 1.45-fold increase in current density. The tunneling of holes and the diffusion of excitons were confirmed by the preparation of a dual buffer layer of CBP:tris-(phenylpyridine)-iridine (Ir(ppy)3)/BCP. A maximum current efficiency of 12.61 cd/A with a luminance of 13,850 cd/m2 was obtained at 8 V when a device with a dual-buffer layer of CBP:6 wt.% Ir(ppy)3/BCP was prepared.

  17. Enhancing Lighting Performance of White LED Lamps by Green Emitting Ce,Tb Phosphor

    Directory of Open Access Journals (Sweden)

    Nguyen Doan Quoc Anh

    2016-01-01

    Full Text Available With the development of high-efficiency and high-power Light-Emitting Diodes (LEDs, it has become possible to use LEDs in lighting and illumination. In last decades, developing a new method for improving lumen output and Angular Color Uniformity (ACU is the main direction in LED technology. In this paper, an innovative approach for enhancing lighting performance (lumen output and angular color uniformity of Multi-Chip White LED lamps (MCW-LEDs was proposed and demonstrated by mixing the green Ce0.67Tb0.33MgAl11O19: Ce,Tb (CeTb phosphor into their phosphor compounding. With varying CeTb concentration, ACU and lumen output with Conformal Phosphor Package (CPP and In-cup Phosphor Package (IPP are calculated, displayed and analyzed. The results show that the lumen output and the ACU of 7000 K and 8500 K MCW-LEDs increased remarkably in comparison with the older works. Using green CeTb is a prospective method for improving lighting performance of MCW-LEDs in future.

  18. Origin of White Electroluminescence in Graphene Quantum Dots Embedded Host/Guest Polymer Light Emitting Diodes

    Science.gov (United States)

    Kyu Kim, Jung; Bae, Sukang; Yi, Yeonjin; Jin Park, Myung; Jin Kim, Sang; Myoung, NoSoung; Lee, Chang-Lyoul; Hee Hong, Byung; Hyeok Park, Jong

    2015-01-01

    Polymer light emitting diodes (PLEDs) using quantum dots (QDs) as emissive materials have received much attention as promising components for next-generation displays. Despite their outstanding properties, toxic and hazardous nature of QDs is a serious impediment to their use in future eco-friendly opto-electronic device applications. Owing to the desires to develop new types of nano-material without health and environmental effects but with strong opto-electrical properties similar to QDs, graphene quantum dots (GQDs) have attracted great interest as promising luminophores. However, the origin of electroluminescence from GQDs incorporated PLEDs is unclear. Herein, we synthesized graphene oxide quantum dots (GOQDs) using a modified hydrothermal deoxidization method and characterized the PLED performance using GOQDs blended poly(N-vinyl carbazole) (PVK) as emissive layer. Simple device structure was used to reveal the origin of EL by excluding the contribution of and contamination from other layers. The energy transfer and interaction between the PVK host and GOQDs guest were investigated using steady-state PL, time-correlated single photon counting (TCSPC) and density functional theory (DFT) calculations. Experiments revealed that white EL emission from the PLED originated from the hybridized GOQD-PVK complex emission with the contributions from the individual GOQDs and PVK emissions. PMID:26067060

  19. Making the Standard Candle: A study of how the progenitor white dwarf modulates the peak luminosity of type Ia supernovae

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Edward F [Michigan State University

    2010-01-21

    The goals of the proposed research as stated in the proposal were to: • Build a suite of one-dimensional initial models of different metallicities and central densities. • Using the improved flame capturing scheme, simulate the explosion of a white dwarf with embedded Lagrangian tracer particles, and post-process the thermal histories of the tracers to reconstruct the nucleosynthesis of the explosion. • Survey the effects of a changing progenitor metallicity on the isotopic yields. Of particular interest is 1) whether the linear relation between the mass of 56Ni synthesized and the pro- genitor metallicity is moderated by the effect of electron captures in the core; and 2) how a varying central density alters the relation between metallicity and 56Ni mass. • Using these results, examine how the observed metallicity distribution would affect the brightness distribution of SNe Ia and the isotopic ratios about the Fe-peak.

  20. A black hole-white dwarf compact binary model for long gamma-ray bursts without supernova association

    Science.gov (United States)

    Dong, Yi-Ze; Gu, Wei-Min; Liu, Tong; Wang, Junfeng

    2018-03-01

    Gamma-ray bursts (GRBs) are luminous and violent phenomena in the Universe. Traditionally, long GRBs are expected to be produced by the collapse of massive stars and associated with supernovae. However, some low-redshift long GRBs have no detection of supernova association, such as GRBs 060505, 060614, and 111005A. It is hard to classify these events convincingly according to usual classifications, and the lack of the supernova implies a non-massive star origin. We propose a new path to produce long GRBs without supernova association, the unstable and extremely violent accretion in a contact binary system consisting of a stellar-mass black hole and a white dwarf, which fills an important gap in compact binary evolution.

  1. SN 2010LP—A TYPE IA SUPERNOVA FROM A VIOLENT MERGER OF TWO CARBON-OXYGEN WHITE DWARFS

    Energy Technology Data Exchange (ETDEWEB)

    Kromer, M.; Taubenberger, S.; Seitenzahl, I. R.; Hillebrandt, W. [Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Str. 1, D-85748 Garching (Germany); Pakmor, R. [Heidelberger Institut für Theoretische Studien, Schloss-Wolfsbrunnenweg 35, D-69118 Heidelberg (Germany); Pignata, G. [Departamento de Ciencias Fisicas, Universidad Andres Bello, Avda. Republica 252, Santiago (Chile); Fink, M.; Röpke, F. K. [Institut für Theoretische Physik und Astrophysik, Universität Würzburg, Emil-Fischer-Str. 31, D-97074 Würzburg (Germany); Sim, S. A. [Astrophysics Research Centre, School of Mathematics and Physics, Queen' s University Belfast, Belfast BT7 1NN (United Kingdom)

    2013-11-20

    SN 2010lp is a subluminous Type Ia supernova (SN Ia) with slowly evolving lightcurves. Moreover, it is the only subluminous SN Ia observed so far that shows narrow emission lines of [O I] in late-time spectra, indicating unburned oxygen close to the center of the ejecta. Most explosion models for SNe Ia cannot explain the narrow [O I] emission. Here, we present hydrodynamic explosion and radiative transfer calculations showing that the violent merger of two carbon-oxygen white dwarfs of 0.9 and 0.76 M {sub ☉} adequately reproduces the early-time observables of SN 2010lp. Moreover, our model predicts oxygen close to the center of the explosion ejecta, a pre-requisite for narrow [O I] emission in nebular spectra as observed in SN 2010lp.

  2. A Black Hole - White Dwarf Compact Binary Model for Long Gamma-ray Bursts without Supernova Association

    Science.gov (United States)

    Dong, Yi-Ze; Gu, Wei-Min; Liu, Tong; Wang, Junfeng

    2018-01-01

    Gamma-ray bursts (GRBs) are luminous and violent phenomena in the universe. Traditionally, long GRBs are expected to be produced by the collapse of massive stars and associated with supernovae. However, some low-redshift long GRBs have no detection of supernova association, such as GRBs 060505, 060614 and 111005A. It is hard to classify these events convincingly according to usual classifications, and the lack of the supernova implies a non-massive star origin. We propose a new path to produce long GRBs without supernova association, the unstable and extremely violent accretion in a contact binary system consisting of a stellar-mass black hole and a white dwarf, which fills an important gap in compact binary evolution.

  3. A 1.05Msun Companion to PSR J2222-0137: The Coolest Known White Dwarf?

    Science.gov (United States)

    Kaplan, David

    2014-10-01

    The recycled pulsar PSR J2222-0137 is one of the closest known neutron stars, with a parallax distance of 267+/-1 pc. Using radio Shapiro delay measurements, we determine a companion mass (1.05+/-0.06 Msun) consistent with either a low-mass neutron star or a high-mass white dwarf (WD). However, the orbital eccentricity is too low to be the product of two supernovae and we are forced to conclude that the companion is a WD. And yet, despite deep optical and near-infrared searches with SOAR and the Keck telescopes we have not discovered the optical counterpart of the system and can limit its effective temperature to pulsars.

  4. A comprehensive near- and far-ultraviolet spectroscopic study of the hot DA white dwarf G191-B2B

    Science.gov (United States)

    Preval, S. P.; Barstow, M. A.; Holberg, J. B.; Dickinson, N. J.

    2013-11-01

    We present a detailed spectroscopic analysis of the hot DA white dwarf G191-B2B, using the best signal-to-noise ratio, high-resolution near- and far-UV spectrum obtained to date. This is constructed from co-added Hubble Space Telescope (HST) Space Telescope Imaging Spectrometer (STIS) E140H, E230H and FUSE observations, covering the spectral ranges of 1150-3145 Å and 910-1185 Å, respectively. With the aid of recently published atomic data, we have been able to identify previously undetected absorption features down to equivalent widths of only a few mÅ. In total, 976 absorption features have been detected to 3σ confidence or greater, with 947 of these lines now possessing an identification, the majority of which are attributed to Fe and Ni transitions. In our survey, we have also potentially identified an additional source of circumstellar material originating from Si III. While we confirm the presence of Ge detected by Vennes et al., we do not detect any other species. Furthermore, we have calculated updated abundances for C, N, O, Si, P, S, Fe and Ni, while also calculating, for the first time, a non-local thermodynamic equilibrium abundance for Al, deriving Al III/H=1.60_{-0.08}^{+0.07}× {10}^{-7}. Our analysis constitutes what is the most complete spectroscopic survey of any white dwarf. All observed absorption features in the FUSE spectrum have now been identified, and relatively few remain elusive in the STIS spectrum.

  5. VizieR Online Data Catalog: Solar neighborhood. XXXIX. Nearby white dwarfs (Subasavage+, 2017)

    Science.gov (United States)

    Subasavage, J. P.; Jao, W.-C.; Henry, T. J.; Harris, H. C.; Dahn, C. C.; Bergeron, P.; Dufour, P.; Dunlap, B. H.; Barlow, B. N.; Ianna, P. A.; Lepine, S.; Margheim, S. J.

    2017-10-01

    Standardized photometric observations were carried out at three separate telescopes. The Small & Moderate Aperture Research Telescope System (SMARTS) 0.9m telescope at Cerro Tololo Inter-American Observatory (CTIO) was used during Cerro Tololo Inter-American Observatory Parallax Investigation (CTIOPI) observing runs when conditions were photometric. A Tektronics 2K*2K detector was used in region-of-interest mode centered on the central quarter of the full CCD producing a Field Of View (FOV) of 6.8'*6.8'. The SMARTS 1.0m telescope at CTIO was used with the Y4KCam 4K*4K imager, producing a 19.7'*19.7' FOV. Finally, the Ritchey 40-in telescope at USNO Flagstaff Station (NOFS) was used with a Tektronics 2K*2K detector with a 20.0'*20.0' FOV. Near-infrared JHKs photometry was collected for WD0851-246, at the CTIO 4.0 m Blanco telescope using the NEWFIRM during an engineering night on 2011.27 UT. National Optical Astronomy Observatory (NOAO) Extremely Wide-field Infrared Image (NEWFIRM) is a 4K*4K InSb mosaic that provides a 28'*28' FOV on the Blanco telescope. Additional photometry values were extracted from the Sloan Digital Sky Survey (SDSS) DR12 (Alam et al. 2015, Cat. V/147), 2MASS, and the United Kingdom Infra-Red Telescope (UKIRT) Infrared Sky Survey (UKIDSS) DR9 Large Area Survey (LAS; see Lawrence et al. 2012, Cat. II/319), when available. Two White Dwarfs (WDs) presented here (WD1743-545 and WD2057-493) are newly discovered nearby WDs identified during a spectroscopic survey of WD candidates in the southern hemisphere (J. Subasavage et al. 2017, in preparation) taken from the SUPERBLINK catalog (Lepine & Shara 2015ASPC..493..455S). A third WD included here (WD2307-691) was previously unclassified, yet is a common proper-motion companion to a Hipparcos star within 25pc (HIP114416). A fourth WD (WD2028-171) was suspected to be a WD by the authors based on a trawl of the New Luyten Two Tenths (NLTT) catalog (Luyten 1979, Cat. I/98). Finally, a fifth WD (WD1241

  6. Warm-White-Light-Emitting Diode Based on a Dye-Loaded Metal-Organic Framework for Fast White-Light Communication.

    Science.gov (United States)

    Wang, Zhiye; Wang, Zi; Lin, Bangjiang; Hu, XueFu; Wei, YunFeng; Zhang, Cankun; An, Bing; Wang, Cheng; Lin, Wenbin

    2017-10-11

    A dye@metal-organic framework (MOF) hybrid was used as a fluorophore in a white-light-emitting diode (WLED) for fast visible-light communication (VLC). The white light was generated from a combination of blue emission of the 9,10-dibenzoate anthracene (DBA) linkers and yellow emission of the encapsulated Rhodamine B molecules. The MOF structure not only prevents dye molecules from aggregation-induced quenching but also efficiently transfers energy to the dye for dual emission. This light-emitting material shows emission lifetimes of 1.8 and 5.3 ns for the blue and yellow components, respectively, which are significantly shorter than the 200 ns lifetime of Y3Al5O12:Ce3+ in commercial WLEDs. The MOF-WLED device exhibited a modulating frequency of 3.6 MHz for VLC, six times that of commercial WLEDs.

  7. Luminescence properties of novel red-emitting phosphor InNb1-xPxO4:Eu3+ for white light emitting-diodes

    Directory of Open Access Journals (Sweden)

    Tang An

    2015-06-01

    Full Text Available InNb1-xPxO4:Eu3+ red phosphors were synthesized by solid-state reaction and their luminescence properties were also studied through photoluminescence spectra. The excitation and emission spectra make it clear that the as-prepared phosphors can be effectively excited by near-ultraviolet (UV 394 nm light and blue 466 nm light to emit strong red light located at 612 nm, due to the Eu3+ transition of 5D0 → 7F2. The luminescence intensity is dependent on phosphorus content, and it achieves the maximum at x = 0.4. Excessive phosphorus in the phosphors can result in reduction of luminescence intensity owing to concentration quenching.With the increasing content of phosphorus, the phosphors are prone to emit pure red light. This shows that the InNb1.6P0.4O4:0.04Eu3+ phosphor may be a potential candidate as a red component for white light emitting-diodes.

  8. Flexible white phosphorescent organic light emitting diodes based on multilayered graphene/PEDOT:PSS transparent conducting film

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Xiaoxiao; Li, Fushan, E-mail: fushanli@hotmail.com; Wu, Wei; Guo, Tailiang, E-mail: gtl_fzu@hotmail.com

    2014-03-01

    Highlights: • A double-layered graphene/PEDOT:PSS film was fabricated by spray-coating. • A white flexible phosphorescent OLED was fabricated based on this film. • The white flexible OLED presented pure white light emission. • The flexible OLEDs showed a stable white emission during bending test. - Abstract: A double-layered graphene/poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) conductive film was prepared, in which the PEDOT:PSS layer was obtained by using spray-coating technique. A flexible white phosphorescent organic light-emitting devices based on the graphene/PEDOT:PSS conductive film was fabricated. Phosphorescent material tris(2-phenylpyridine) iridium (Ir(ppy){sub 3}) and the fluorescent dye 5,6,11,12-tetraphenylnapthacene (Rubrene) were co-doped into 4,4′-N,N′-dicarbazole-biphenyl (CBP) host. N,N′-diphenyl-N,N′-bis(1-naphthyl)-(1,1′-biphenyl)-4,4′-diamine (NPB) and 4,7-diphenyl-1,10-phenanthroline (Bphen) were used as hole-transporting and electron-transporting layer, respectively, and 4,4′-bis(2,2′-diphenylvinyl)-1,1′-biphenyl (DPVBi) was used as blue light-emitting layer. The device presented pure white light emission with a Commission Internationale De I’Eclairage coordinates of (0.31, 0.33) and exhibited an excellent light-emitting stability during the bending cycle test with a radius of curvature of 10 mm.

  9. Control of a White Organic Light Emitting Diode emission parameters using a single doped RGB active layer

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, D. [Departamento de Ciência dos Materiais e i3N – Instituto de Nanoestruturas, Nanomodelação e Nanofabricação, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus da Caparica, 2829-516 Caparica (Portugal); Pinto, A.; Califórnia, A.; Gomes, J. [CeNTI – Centro de Nanotecnologia, Materiais Técnicos, Funcionais e Inteligentes, Rua Fernando Mesquita 2785, 4760-034 Vila Nova de Famalicão (Portugal); Pereira, L., E-mail: luiz@ua.pt [Departmento de Física e i3N – Instituto de Nanoestruturas, Nanomodelação e Nanofabricação, Universidade de Aveiro, 3810-193 Aveiro (Portugal)

    2016-09-15

    Highlights: • A simple WOLED for Solid State Lighting is proposed with high color stability. • Energy transfer and electroluminescence dynamics of a single RGB layer for WOLEDs. • White shade modulation and stability over large emitting areas and applied voltages. - Abstract: Solid State Lighting technologies based on Organic Light Emitting Diodes, became an interesting focus due to their unique properties. The use of a unique RGB active layer for white emission, although simple in theory, shows difficulty to stabilize both CIE coordinates and color modulation. In this work, a WOLED using a simple RGB layer, was developed achieving a high color stability and shade modulation. The RGB matrix comprises a blue host material NPB, doped with two guests, a green (Coumarin 153) and a red (DCM1) in low concentrations. The RGB layer carrier dynamics allows for the white emission in low device complexity and high stability. This was also shown independent of the white shade, obtained through small changes in the red dopant resulting in devices ranging from warm to cool white i.e. an easy color tuning. A detailed analysis of the opto-electrical behavior is made.

  10. R/G/B/natural white light thin colloidal quantum dot-based light-emitting devices.

    Science.gov (United States)

    Bae, Wan Ki; Lim, Jaehoon; Lee, Donggu; Park, Myeongjin; Lee, Hyunkoo; Kwak, Jeonghun; Char, Kookheon; Lee, Changhee; Lee, Seonghoon

    2014-10-08

    Bright, low-voltage driven colloidal quantum dot (QD)-based white light-emitting devices (LEDs) with practicable device performances are enabled by the direct exciton formation within quantum-dot active layers in a hybrid device structure. Detailed device characterization reveals that white-QLEDs can be rationalized as a parallel circuit, in which different QDs are connected through the same set of electrically common organic and inorganic charge transport layers. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Optimal Color Stability for White Organic Light-Emitting Diode (WOLED by Using Multiple-Ultra-Thin Layers (MUTL

    Directory of Open Access Journals (Sweden)

    Kan-Lin Chen

    2013-01-01

    Full Text Available The work demonstrates the improvement of color stability for white organic light-emitting diode (WOLED. The devices were prepared by vacuum deposition on ITO-glass substrates. These guest materials of 5,6,11,12-tetraphenylnaphthacene (Rubrene were deposited in 4,4′-bis(2,2-diphenyl vinyl-1,1′-biphenyl (DPVBi, resulting in an emitting layer. Experimental results reveal that the properties in the multiple-ultra-thin layer (MUTL are better than those of the emitting layer with a single guest material, reaching the commercial white-light wavelength requirement of 400–700 nm. The function of the MUTL is as the light-emitting and trapping layer. The results show that the MUTL has excellent carrier capture effect, leading to high color stability of the device at various applied voltages. The Commissions Internationale De L’Eclairage (CIE coordinate of this device at 3~7 V is few displacement and shows a very slight variation of (0.016, 0.009. The CIE coordinates at a maximal luminance of 9980 cd/m2 are (0.34, 0.33.

  12. Nanopatterned yttrium aluminum garnet phosphor incorporated film for high-brightness GaN-based white light emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Joong-yeon; Park, Sang-Jun [Department of Materials Science and Engineering, Korea University, Seoul 136-713 (Korea, Republic of); Ahn, Jinho, E-mail: jhahn@hanyang.ac.kr [Department of Material Science and Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of); Lee, Heon, E-mail: heonlee@korea.ac.kr [Department of Materials Science and Engineering, Korea University, Seoul 136-713 (Korea, Republic of)

    2014-11-03

    In this study, we fabricated high-brightness white light emitting diodes (LEDs) by developing a nanopatterned yttrium aluminum garnet (YAG) phosphor-incorporated film. White light can be obtained by mixing blue light from a GaN-based LED and yellow light of the YAG phosphor-incorporated film. If white light sources can be fabricated by exciting proper yellow phosphor using blue light, then these sources can be used instead of the conventional fluorescent lamps with a UV source, for backlighting of displays. In this work, a moth-eye structure was formed on the YAG phosphor-incorporated film by direct spin-on glass (SOG) printing. The moth-eye structures have been investigated to improve light transmittance in various optoelectronic devices, including photovoltaic solar cells, light emitting diodes, and displays, because of their anti-reflection property. Direct SOG printing, which is a simple, easy, and relatively inexpensive process, can be used to fabricate nanoscale structures. After direct SOG printing, the moth-eye structure with a diameter of 220 nm was formed uniformly on the YAG phosphor-incorporated film. As a result of moth-eye patterning on the YAG phosphor-incorporated film, the light output power of a white LED with a patterned YAG phosphor-incorporated film increased to up to 13% higher than that of a white LED with a non-patterned film. - Highlights: • GaN-based high-brightness white LED was prepared using patterned YAG phosphor-incorporated films. • Direct hydrogen silsesquioxane printing was used to form moth-eye patterns on the YAG films. • The electroluminescence intensity of the white LED was enhanced by up to 14.9%.

  13. Southern rice black-streaked dwarf virus: a white-backed planthopper-transmitted fijivirus threatening rice production in Asia

    Science.gov (United States)

    Zhou, Guohui; Xu, Donglin; Xu, Dagao; Zhang, Maoxin

    2013-01-01

    Southern rice black-streaked dwarf virus (SRBSDV), a non-enveloped icosahedral virus with a genome of 10 double-stranded RNA segments, is a novel species in the genus Fijivirus (family Reoviridae) first recognized in 2008. Rice plants infected with this virus exhibit symptoms similar to those caused by Rice black-streaked dwarf virus. Since 2009, the virus has rapidly spread and caused serious rice losses in East and Southeast Asia. Significant progress has been made in recent years in understanding this disease, especially about the functions of the viral genes, rice–virus–insect interactions, and epidemiology and control measures. The virus can be efficiently transmitted by the white-backed planthopper (WBPH, Sogatella furcifera) in a persistent circulative propagative manner but cannot be transmitted by the brown planthopper (Nilaparvata lugens) and small brown planthopper (Laodelphax striatellus). Rice, maize, Chinese sorghum (Coix lacryma-jobi) and other grass weeds can be infected via WBPH. However, only rice plays a major role in the virus infection cycle because of the vector’s preference. In Southeast Asia, WBPH is a long-distance migratory rice pest. The disease cycle can be described as follows: SRBSDV and its WBPH vector overwinter in warm tropical or sub-tropical areas; viruliferous WBPH adults carry the virus from south to north via long-distance migration in early spring, transmit the virus to rice seedlings in the newly colonized areas, and lay eggs on the infected seedlings; the next generation of WBPHs propagate on infected seedlings, become viruliferous, disperse, and cause new disease outbreaks. Several molecular and serological methods have been developed to detect SRBSDV in plant tissues and individual insects. Control measures based on protection from WBPH, including seedbed coverage, chemical seed treatments, and chemical spraying of seedlings, have proven effective in China. PMID:24058362

  14. Southern rice black-streaked dwarf virus: a white-backed planthopper transmitted fijivirus threadening rice production in Asia

    Directory of Open Access Journals (Sweden)

    Guohui eZhou

    2013-09-01

    Full Text Available Southern rice black-streaked dwarf virus (SRBSDV, a nonenveloped icosahedral virus with a genome of 10 double-stranded RNA segments, is a novel species in the genus Fijivirus (family Reoviridae first recognized in 2008. Rice plants infected with this virus exhibit symptoms similar to those caused by Rice black-streaked dwarf virus. Since 2009, the virus has rapidly spread and caused serious rice losses in East and Southeast Asia. Significant progress has been made in recent years in understanding this disease, especially about the functions of the viral genes, rice–virus–insect interactions, and epidemiology and control measures. The virus can be efficiently transmitted by the white-backed planthopper (WBPH, Sogatella furcifera in a persistent circulative propagative manner but cannot be transmitted by the brown planthopper (Nilaparvata lugens and small brown planthopper (Laodelphax striatellus. Rice, maize, Chinese sorghum (Coix lacryma-jobi and other grass weeds can be infected via WBPH. However, only rice plays a major role in the virus infection cycle because of the vector's preference. In Southeast Asia, WBPH is a long-distance migratory rice pest. The disease cycle can be described as follows: SRBSDV and its WBPH vector overwinter in warm tropical or sub-tropical areas; viruliferous WBPH adults carry the virus from south to north via long-distance migration in early spring, transmit the virus to rice seedlings in the newly colonized areas, and lay eggs on the infected seedlings; the next generation of WBPHs propagate on infected seedlings, become viruliferous, disperse, and cause new disease outbreaks. Several molecular and serological methods have been developed to detect SRBSDV in plant tissues and individual insects. Control measures based on protection from WBPH, including seedbed coverage, chemical seed treatments, and chemical spraying of seedlings, have proven effective in China.

  15. Southern rice black-streaked dwarf virus: a white-backed planthopper-transmitted fijivirus threatening rice production in Asia.

    Science.gov (United States)

    Zhou, Guohui; Xu, Donglin; Xu, Dagao; Zhang, Maoxin

    2013-09-09

    Southern rice black-streaked dwarf virus (SRBSDV), a non-enveloped icosahedral virus with a genome of 10 double-stranded RNA segments, is a novel species in the genus Fijivirus (family Reoviridae) first recognized in 2008. Rice plants infected with this virus exhibit symptoms similar to those caused by Rice black-streaked dwarf virus. Since 2009, the virus has rapidly spread and caused serious rice losses in East and Southeast Asia. Significant progress has been made in recent years in understanding this disease, especially about the functions of the viral genes, rice-virus-insect interactions, and epidemiology and control measures. The virus can be efficiently transmitted by the white-backed planthopper (WBPH, Sogatella furcifera) in a persistent circulative propagative manner but cannot be transmitted by the brown planthopper (Nilaparvata lugens) and small brown planthopper (Laodelphax striatellus). Rice, maize, Chinese sorghum (Coix lacryma-jobi) and other grass weeds can be infected via WBPH. However, only rice plays a major role in the virus infection cycle because of the vector's preference. In Southeast Asia, WBPH is a long-distance migratory rice pest. The disease cycle can be described as follows: SRBSDV and its WBPH vector overwinter in warm tropical or sub-tropical areas; viruliferous WBPH adults carry the virus from south to north via long-distance migration in early spring, transmit the virus to rice seedlings in the newly colonized areas, and lay eggs on the infected seedlings; the next generation of WBPHs propagate on infected seedlings, become viruliferous, disperse, and cause new disease outbreaks. Several molecular and serological methods have been developed to detect SRBSDV in plant tissues and individual insects. Control measures based on protection from WBPH, including seedbed coverage, chemical seed treatments, and chemical spraying of seedlings, have proven effective in China.

  16. Fabrication of white light-emitting diodes based on solvothermally synthesized copper indium sulfide quantum dots as color converters

    Science.gov (United States)

    Song, Woo-Seuk; Yang, Heesun

    2012-04-01

    A facile, large-scalable solvothermal synthesis of copper indium sulfide (CIS) quantum dots (QDs) and their application to the fabrication of QD-based white light-emitting diodes (LEDs) are reported. Depending on CIS QD growth time of 2 versus 5 h, the core/shell structured QDs of CIS/ZnS exhibit tunable emissions of yellow-orange with excellent quantum yields of 55%-91%. A white QD-LED is realized by applying CIS (2 h)/ZnS QD as a blue-to-yellow color converter. Furthermore, a white QD-LED having a blend of yellow and orange QDs is fabricated to improve a color rendering property through spectral extension, and its electroluminescent properties are evaluated.

  17. An organic white light-emitting dye: very small molecular architecture displays panchromatic emission.

    Science.gov (United States)

    Nandhikonda, Premchendar; Heagy, Michael D

    2010-11-14

    The synthesis and photophysical characterization of a new white-light fluorophore is described. The optimization of excitation wavelengths allows the naphthalimide (NI) dyes to display blue, green or white light emission depending on the excitation wavelength.

  18. Development and Utilization of Host Materials for White Phosphorescent Organic Light-Emitting Diodes

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Ching; Chen, Shaw

    2013-05-31

    Our project was primarily focused on the MYPP 2015 goal for white phosphorescent organic devices (PhOLEDs or phosphorescent organic light-emitting diodes) for solid-state lighting with long lifetimes and high efficiencies. Our central activity was to synthesize and evaluate a new class of host materials for blue phosphors in the PhOLEDs, known to be a weak link in the device operating lifetime. The work was a collaborative effort between three groups, one primarily responsible for chemical design and characterization (Chen), one primarily responsible for device development (Tang) and one primarily responsible for mechanistic studies and degradation analysis (Rothberg). The host materials were designed with a novel architecture that chemically links groups with good ability to move electrons with those having good ability to move “holes” (positive charges), the main premise being that we could suppress the instability associated with physical separation and crystallization of the electron conducting and hole conducting materials that might cause the devices to fail. We found that these materials do prevent crystallization and that this will increase device lifetimes but that efficiencies were reduced substantially due to interactions between the materials creating new low energy “charge transfer” states that are non-luminescent. Therefore, while our proposed strategy could in principle improve device lifetimes, we were unable to find a materials combination where the efficiency was not substantially compromised. In the course of our project, we made several important contributions that are peripherally related to the main project goal. First, we were able to prepare the proposed new family of materials and develop synthetic routes to make them efficiently. These types of materials that can transport both electrons and holes may yet have important roles to play in organic device technology. Second we developed an important new method for controlling the

  19. Red-emitting phosphor Rb2TiF6:Mn4+ with high thermal-quenching resistance for wide color-gamut white light-emitting diodes

    Science.gov (United States)

    Wang, Zhengliang; Yang, Zhiyu; Tan, Huiying; Brik, Mikhail G.; Zhou, Qiang; Chen, Guo; Liang, Hongbin

    2017-10-01

    Red-emitting phosphor plays a critical role in improving performance of the phosphor-converted white light-emitting diodes (pc-WLEDs). Herein, a red-emitting phosphor, Rb2TiF6:Mn4+, was synthesized via the ion exchange method under mild condition. The crystal structure and morphology were characterized by the powder X-ray diffraction (XRD), scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). The Rietveld refinements of Rb2TiF6:Mn4+ indicate that this sample is of single phase with hexagonal crystal structure. The as-prepared Rb2TiF6:Mn4+ has sharp red emissions with broad excitation band at ∼460 nm. The luminescent behavior of Mn4+ was discussed in detail. The temperature-dependent emission spectra of Rb2TiF6:Mn4+ indicate that this phosphor shares high thermal quenching resistance and excellent color stability. A series of WLEDs with tunable color rendering index and color temperature were fabricated by combining commercial Y3Al5O12:Ce3+ and Rb2TiF6:Mn4+ on blue GaN-LED chips. With the addition of Rb2TiF6:Mn4+, WLED with wide gamut was obtained with low color temperature (3123 K), high color rendering index (91.5) and high luminous efficacy (187.9 lm/W). These findings show this phosphor could be a promising commercial red phosphor in wide color-gamut WLEDs.

  20. The Tübingen Model-Atom Database: A Revised Aluminum Model Atom and its Application for the Spectral Analysis of White Dwarfs

    Science.gov (United States)

    Löbling, L.

    2017-03-01

    Aluminum (Al) nucleosynthesis takes place during the asymptotic-giant-branch (AGB) phase of stellar evolution. Al abundance determinations in hot white dwarf stars provide constraints to understand this process. Precise abundance measurements require advanced non-local thermodynamic stellar-atmosphere models and reliable atomic data. In the framework of the German Astrophysical Virtual Observatory (GAVO), the Tübingen Model-Atom Database (TMAD) contains ready-to- use model atoms for elements from hydrogen to barium. A revised, elaborated Al model atom has recently been added. We present preliminary stellar-atmosphere models and emergent Al line spectra for the hot white dwarfs G191-B2B and RE 0503-289.

  1. FORMATION OF THE GALACTIC MILLISECOND PULSAR TRIPLE SYSTEM PSR J0337+1715—A NEUTRON STAR WITH TWO ORBITING WHITE DWARFS

    Energy Technology Data Exchange (ETDEWEB)

    Tauris, T. M. [Argelander-Institut für Astronomie, Universität Bonn, Auf dem Hügel 71, D-53121 Bonn (Germany); Van den Heuvel, E. P. J., E-mail: tauris@astro.uni-bonn.de [Astronomical Institute Anton Pannekoek, University of Amsterdam, P.O. Box 94249, 1090 GE Amsterdam (Netherlands)

    2014-01-20

    The millisecond pulsar in a triple system (PSR J0337+1715, recently discovered by Ransom et al.) is an unusual neutron star with two orbiting white dwarfs. The existence of such a system in the Galactic field poses new challenges to stellar astrophysics for understanding evolution, interactions, and mass transfer in close multiple stellar systems. In addition, this system provides the first precise confirmation for a very wide-orbit system of the white dwarf mass-orbital period relation. Here, we present a self-consistent, semi-analytical solution to the formation of PSR J0337+1715. Our model constrains the peculiar velocity of the system to be less than 160 km s{sup –1} and brings novel insight to, for example, common envelope evolution in a triple system, for which we find evidence for in-spiral of both outer stars. Finally, we briefly discuss our scenario in relation to alternative models.

  2. Aligned energy-level design for decreasing operation voltage of tandem white organic light-emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Chih-Hao, E-mail: chc@saturn.yzu.edu.tw [Department of Photonics Engineering, Yuan Ze University, Chung-Li 32003, Taiwan, ROC (China); Wu, Zih-Jyun; Liang, Yi-Hu; Chang, Yu-Shuo; Chiu, Chuan-Hao; Tai, Cheng-Wei [Department of Photonics Engineering, Yuan Ze University, Chung-Li 32003, Taiwan, ROC (China); Chang, Hsin-Hua, E-mail: hhua3@mail.vnu.edu.tw [Department of Electro-Optical Engineering, Vanung University, Chung-Li 32061, Taiwan, ROC (China)

    2013-12-02

    In general, organic light-emitting devices (OLEDs) need to operate at higher current density levels to ensure an ample light flux. However, stressed operation will result in poor performance and limited device lifetime. Recently, a tandem structure has been proposed as a pivotal technique to meet the stringent lighting requirements for OLED commercialization, with a research focus on decreasing the concomitant higher operation voltage. Driving two connected emission units (EMUs) in a tandem structure often requires more than twice the driving voltage for a single EMU. This study investigates bipolar host materials and their effective employment in fabricating tandem white phosphorescent OLEDs (PhOLEDs). In addition, the design of a mechanism to align the energy level between the hole transport layer/emitting layer is shown to effectively mitigate operational voltages. In sharp contrast to devices using a unipolar host material, we demonstrate that the turn-on voltage of blue PhOLEDs could be decreased from 3.8 V to 2.7 V through utilizing a bipolar host. Furthermore, applying the proposed techniques to tandem white PhOLEDs produces a luminance of 10{sup 3} cd/m{sup 2} by a 10.1 V driving voltage. - Highlights: • The matched energy level between the hole transport/emitting layer lowers voltages. • Multiple conduction dopants were used to investigate charge generation layer. • Two-color emitters were used to quantify the charge generation strength.

  3. WIRED for EC: New White Dwarfs with WISE Infrared Excesses and New Classification Schemes from the Edinburgh-Cape Blue Object Survey

    Science.gov (United States)

    Dennihy, E.; Clemens, J. C.; Debes, John H.; Dunlap, B. H.; Kilkenny, D.; O'Brien, P. C.; Fuchs, J. T.

    2017-11-01

    We present a simple method for identifying candidate white dwarf systems with dusty exoplanetary debris based on a single temperature blackbody model fit to the infrared excess. We apply this technique to a sample of Southern Hemisphere white dwarfs from the recently completed Edinburgh-Cape Blue Object Survey and identify four new promising dusty debris disk candidates. We demonstrate the efficacy of our selection method by recovering three of the four Spitzer confirmed dusty debris disk systems in our sample. Further investigation using archival high-resolution imaging shows that Spitzer data of the unrecovered fourth object is likely contaminated by a line-of-sight object that either led to a misclassification as a dusty disk in the literature or is confounding our method. Finally, in our diagnostic plot, we show that dusty white dwarfs, which also host gaseous debris, lie along a boundary of our dusty debris disk region, providing clues to the origin and evolution of these especially interesting systems.

  4. Novel modelling of ultracompact X-ray binary evolution - stable mass transfer from white dwarfs to neutron stars

    Science.gov (United States)

    Sengar, Rahul; Tauris, Thomas M.; Langer, Norbert; Istrate, Alina G.

    2017-09-01

    Tight binaries of helium white dwarfs (He WDs) orbiting millisecond pulsars (MSPs) will eventually 'merge' due to gravitational damping of the orbit. The outcome has been predicted to be the production of long-lived ultracompact X-ray binaries (UCXBs), in which the WD transfers material to the accreting neutron star (NS). Here we present complete numerical computations, for the first time, of such stable mass transfer from a He WD to a NS. We have calculated a number of complete binary stellar evolution tracks, starting from pre-low-mass X-ray binary systems, and evolved these to detached MSP+WD systems and further on to UCXBs. The minimum orbital period is found to be as short as 5.6 min. We followed the subsequent widening of the systems until the donor stars become planets with a mass of ˜0.005 M⊙ after roughly a Hubble time. Our models are able to explain the properties of observed UCXBs with high helium abundances and we can identify these sources on the ascending or descending branch in a diagram displaying mass-transfer rate versus orbital period.

  5. FORMATION OF BINARY MILLISECOND PULSARS BY ACCRETION-INDUCED COLLAPSE OF WHITE DWARFS UNDER WIND-DRIVEN EVOLUTION

    Energy Technology Data Exchange (ETDEWEB)

    Ablimit, Iminhaji; Li, Xiang-Dong, E-mail: lixd@nju.edu.cn [Department of Astronomy, Nanjing University, Nanjing 210046 (China)

    2015-02-20

    Accretion-induced collapse (AIC) of massive white dwarfs (WDs) has been proposed to be an important channel to form binary millisecond pulsars (MSPs). Recent investigations on thermal timescale mass transfer in WD binaries demonstrate that the resultant MSPs are likely to have relatively wide orbit periods (≳ 10 days). Here we calculate the evolution of WD binaries taking into account the excited wind from the companion star induced by X-ray irradiation of the accreting WD, which may drive rapid mass transfer even when the companion star is less massive than the WD. This scenario can naturally explain the formation of the strong-field neutron star in the low-mass X-ray binary 4U 1822–37. After AIC the mass transfer resumes when the companion star refills its Roche lobe, and the neutron star is recycled owing to mass accretion. A large fraction of the binaries will evolve to become binary MSPs with an He WD companion, with the orbital periods distributed between ≳ 0.1 days and ≲ 30 days, while some of them may follow the cataclysmic variable-like evolution toward very short orbits. If we instead assume that the newborn neutron star appears as an MSP and that part of its rotational energy is used to ablate its companion star, the binaries may also evolve to be the redback-like systems.

  6. Formation of Binary Millisecond Pulsars by Accretion-induced Collapse of White Dwarfs under Wind-driven Evolution

    Science.gov (United States)

    Ablimit, Iminhaji; Li, Xiang-Dong

    2015-02-01

    Accretion-induced collapse (AIC) of massive white dwarfs (WDs) has been proposed to be an important channel to form binary millisecond pulsars (MSPs). Recent investigations on thermal timescale mass transfer in WD binaries demonstrate that the resultant MSPs are likely to have relatively wide orbit periods (gsim 10 days). Here we calculate the evolution of WD binaries taking into account the excited wind from the companion star induced by X-ray irradiation of the accreting WD, which may drive rapid mass transfer even when the companion star is less massive than the WD. This scenario can naturally explain the formation of the strong-field neutron star in the low-mass X-ray binary 4U 1822-37. After AIC the mass transfer resumes when the companion star refills its Roche lobe, and the neutron star is recycled owing to mass accretion. A large fraction of the binaries will evolve to become binary MSPs with an He WD companion, with the orbital periods distributed between >~ 0.1 days and <~ 30 days, while some of them may follow the cataclysmic variable-like evolution toward very short orbits. If we instead assume that the newborn neutron star appears as an MSP and that part of its rotational energy is used to ablate its companion star, the binaries may also evolve to be the redback-like systems.

  7. Post-main-sequence Evolution of Icy Minor Planets. II. Water Retention and White Dwarf Pollution around Massive Progenitor Stars

    Science.gov (United States)

    Malamud, Uri; Perets, Hagai B.

    2017-06-01

    Most studies suggest that the pollution of white dwarf (WD) atmospheres arises from the accretion of minor planets, but the exact properties of polluting material, and in particular the evidence for water in some cases, are not yet understood. Here we study the water retention of small icy bodies in exo-solar planetary systems, as their respective host stars evolve through and off the main sequence and eventually become WDs. We explore, for the first time, a wide range of star masses and metallicities. We find that the mass of the WD progenitor star is of crucial importance for the retention of water, while its metallicity is relatively unimportant. We predict that minor planets around lower-mass WD progenitors would generally retain more water and would do so at closer distances from the WD than compared with high-mass progenitors. The dependence of water retention on progenitor mass and other parameters has direct implications for the origin of observed WD pollution, and we discuss how our results and predictions might be tested in the future as more observations of WDs with long cooling ages become available.

  8. White light emitting silicon nano-crystals-polymeric hybrid films prepared by single batch solution based method

    Energy Technology Data Exchange (ETDEWEB)

    Balci, Mustafa H. [Department of Materials Science and Engineering, NTNU, 7491 Trondheim (Norway); Aas, Lars Martin Sandvik; Kildemo, Morten; Sæterli, Ragnhild; Holmestad, Randi; Lindgren, Mikael [Department of Physics, NTNU, 7491 Trondheim (Norway); Grande, Tor [Department of Materials Science and Engineering, NTNU, 7491 Trondheim (Norway); Einarsrud, Mari-Ann, E-mail: Mari-Ann.Einarsrud@ntnu.no [Department of Materials Science and Engineering, NTNU, 7491 Trondheim (Norway)

    2016-03-31

    Silicon nano-crystals have been studied intensively due to their photoluminescence properties and possible applications in new generation opto-electronic devices. Their importance in lightning and display technologies is increasing due to the abundance and non-toxicity of silicon. Here we report a single batch solution based synthesis route to silicon nano-crystal organic hybrid films exhibiting white light photoluminescence at room temperature upon excitation by ultraviolet light. Films prepared by ethylene glycol terminated Si nano-crystals showed maximum 240 nm red shift in photoluminescence response upon excitation at 350 nm. The shift was found to decrease in order for hybrid films fabricated using acrylic acid, 1-octanol acid and oleic acid terminated Si nano-crystals. The mean size of the Si nano-crystals (~ 2–10 nm) estimated by Raman spectroscopy were smallest for the ethylene glycol capped Si nano-crystal films. The calculated Tauc bandgaps of the hybrid films varied between 1.51 and 2.35 eV. - Highlights: • White light emitting Si nanocrystal hybrid films were synthesized at low temperature • The effect of the surface termination of the Si nano-crystals is reported • A red shift in photoluminescence response was observed • The hybrid films are new candidate white light emitting diodes • The hybrid films can be used in solar cell applications for spectral-shifting control.

  9. Rapid microwave-assisted synthesis of highly luminescent nitrogen-doped carbon dots for white light-emitting diodes

    Science.gov (United States)

    Wang, Yaling; Zheng, Jingxia; Wang, Junli; Yang, Yongzhen; Liu, Xuguang

    2017-11-01

    Highly luminescent nitrogen-doped carbon dots (N-CDs) were synthesized rapidly by one-step microwave-assisted hydrothermal method using citric acid as carbon source and ethylenediamine as dopant. The influences of reaction temperature, reaction time and raw material ratio on the fluorescence performance of N-CDs were investigated. Then N-CDs with the highest quantum yield were selected as fluorescent materials for fabricating white light-emitting diodes (LEDs). Highly luminescent N-CDs with the quantum yield of 75.96% and blue-to-red spectral composition of 51.48% were obtained at the conditions of 180 °C, 8 min and the molar ratio of citric acid to ethylenediamine 2:1. As-prepared highly luminescent N-CDs have an average size of 6.06 nm, possess extensive oxygen- and nitrogen-containing functional groups on their surface, and exhibit strong absorption in ultraviolet region. White LEDs based on the highly luminescent N-CDs emit warm white light with color coordinates of (0.42, 0.40) and correlated color temperature of 3416 K.

  10. Simultaneous enhancement of photo- and electroluminescence in white organic light-emitting devices by localized surface plasmons of silver nanoclusters.

    Science.gov (United States)

    Yu, Jingting; Zhu, Wenqing; Shi, Guanjie; Zhai, Guangsheng; Qian, Bingjie; Li, Jun

    2017-02-24

    White organic light-emitting devices (WOLEDs) with enhanced current efficiency and negligible color shifting equipped with an internal color conversion layer (CCL) were fabricated. They were attained by embedding a single layer of silver nanoclusters (SNCs) between the CCL and light-emitting layer (EML). The simultaneous enhancement of the photoluminescence (PL) of the CCL and electroluminescence (EL) of the EML were realized by controlling the thickness and size of the SNCs to match the localized surface plasmon resonance spectrum with the PL spectrum of the CCL and the EL spectrum of the EML. The WOLED with optimal SNCs demonstrated a 25.81% enhancement in current efficiency at 60 mA cm-2 and good color stability over the entire range of current density.

  11. Electrophoretic Deposition of Highly Efficient Phosphors for White Solid State Lighting using near UV-Emitting LEDs

    Science.gov (United States)

    Choi, Jae Ik

    Electrophoretic deposition (EPD) is a method to deposit particles dispersed in a liquid onto a substrate under the force of an applied electric field, and has been applied for depositing phosphors for application in solid state lighting. The objective is to deposit phosphors in a "remote phosphor" configuration for a UV-LED-based light source for improved white light extraction efficiency. It is demonstrated that EPD can be used to deposit red-, green-, blue-, yellow- and orange-emitting phosphors to generate white light using a near UV-emitting LED by either depositing a phosphor blend or sequentially individual phosphor compositions. The phosphor coverage was excellent, demonstrating that EPD is a viable method to produce phosphor layers for the "remote phosphor" white light design. The deposition rates of the individual phosphor films were ˜1-5 mum/min. The blend depositions composed of both three and four phosphor compositions emit white light located on or near the black body locus on the CIE chromaticity diagram. Phosphor films were also prepared by sequential deposition of red/orange and green/blue compositions, to generate white light. The layered films were flipped over and illuminated in this orientation, which showed approximately the same luminescence characteristics. No change in the reabsorption ratio of green/blue emission by the red/orange phosphor was found regardless of the deposited order of the layered films. These applications of EPD of phosphor for white solid state lighting are promising and effective due to easy tuning of emissive color by varying the phosphor blend compositions. Although nanoparticles of a variety of materials have been coated by EPD, there have been few direct comparisons of EPD of nano- and micron-sized particles of the same material. Another field of the study was to compare EPD of nano-, nano core/SiO2 shell and micron-sized (Ba0.97 Eu0.03)2SiO4 phosphor particles for application in a near-UV LED-based light source

  12. 53% Efficient Red Emissive Carbon Quantum Dots for High Color Rendering and Stable Warm White-Light-Emitting Diodes.

    Science.gov (United States)

    Wang, Zifei; Yuan, Fanglong; Li, Xiaohong; Li, Yunchao; Zhong, Haizheng; Fan, Louzhen; Yang, Shihe

    2017-10-01

    Red emissive carbon quantum dots (R-CQDs) with quantum yield of 53% is successfully prepared. An ultraviolet (UV)-pumped CQD phosphors-based warm white light-emitting diode (WLED) is realized for the first time and achieves a color rendering index of 97. This work provides a new avenue for the exploration of low cost, environment-friendly, and high-performance CQD phosphors-based warm WLEDs. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. The White-Dwarf Mass-Radius Relation from 40 Eridani B and Other Nearby Visual Binaries

    Science.gov (United States)

    Bond, Howard E.; Bergeron, P.; Bedard, A.

    2018-01-01

    The bright, nearby DA-type white dwarf (WD) 40 Eridani B is orbited by the M dwarf 40 Eri C, allowing determination of the WD's mass. Until recently, however, the mass depended on orbital elements determined four decades ago, and that mass was so low that it created several astrophysical puzzles. Using new astrometric measurements, the binary-star group at the U.S. Naval Observatory has revised the dynamical mass upward, to 0.573 ± 0.018 M⊙. We have used model-atmosphere analysis to update other parameters of the WD, including effective temperature, surface gravity, radius, and luminosity. We then comparethese results with WD interior models.Within the observational uncertainties, theoretical cooling tracks for CO-core WDs of its measured mass are consistent with the position of 40 Eri B in the H-R diagram; equivalently, the theoretical mass-radius relation (MRR) is consistent with the star's location in the mass-radius plane. This consistency is, however, achieved only if we assume a "thin'' outer hydrogen layer, with qH = MH/MWD ∼ 10–10.We discuss other evidence that a significant fraction of DA WDs have such thin H layers, in spite of expectation from canonical stellar-evolution theory of "thick'' H layers with qH ∼ 10–4 . The cooling age of 40 Eri B is ~122 Myr, and its total age is ~1.8 Gyr. We present the MRRs for 40 Eri B and three other nearby WDs in visual binaries with precise mass determinations, and show that the agreement of current theory with observation is excellent in all cases.However, astrophysical puzzles remain. The eccentricity of the BC orbit has remained high (0.43), even though the progenitor of B ought to have interacted tidally with C when it was an AGB star. This puzzle exists also for the Sirius and Procyon systems. If thin hydrogen layers are common among WDs, the mass scale will need to be shifted downwards by a few hundredths of a solar mass.

  14. The performance of quantum dots-based white light-emitting diodes

    Science.gov (United States)

    Chen, Kuan-Lin; Chung, Shu-Ru

    2017-08-01

    Recently, the investigation of quantum dots (QDs) as a color converter for white light-emitting diodes (WLEDs) application has attracted a great deal of attention. Because the narrow emission wavelength of QDs can be controlled by their particle sizes and compositions, which is facilitated to improve the color gamut of display as well as color rendering index (CRI) and the correlated color temperature (CCT) of WLEDs. In a typical commercially available LCD display, the color gamut is approximately to 75 % which is defined by the National Television System Committee (NTSC). In order to enhance NTSC, the full width at half-maximum (FWHM) of color converter should be less than 30 nm. Therefore, the QDs are the best choice for display application due to the FWHM of QDs is meet the demand of display application. In this study, the hot injection method with one-pot process is used to synthesis of colloidal ternary ZnCdSe green (G-) and red-emission (R-) QDs with a narrow emission wavelength around 537 and 610 nm. By controlling the complex reagents-stearic acid (SA) and lauric acid (LA), high performance of G- and R-QDs can be prepared. The quantum yields (QYs), particle sizes and FWHM for G- and R-QDs are 70, 30 %, 3.2 +/- 0.5, 4.1 +/- 0.5 nm and 25, 26 nm, respectively. In order to explore the performance of QDs-based WLEDs, mixing ratios effect between G-QD and R-QD are studied and the WLED is packed as conformal-type. Different ratios of R-QD and G-QD (1:10, 1:20 and 1:30) are mixed and fill up the 3020 SMD blue-InGaN LED, and named as LED-10, LED-20 and LED-30. After that, UV curable gel is deposited on the top of QD layer to form WLED and named as LED-10*, LED-20* and LED-30*. The results show that the Commission International d'Eclairage (CIE) chromaticity coordinates, color rendering index (CRI), luminous efficacy of LED-10*, LED-20* and LED-30* are (0.27, 0.21), 53, 1.9 lm/W, (0.29, 0.30), 72, 3.3 lm/W and (0.25, 0.34), 45, 6.8 lm/W, respectively. We can find

  15. Dietary ambon lumut banana stem extract Musa cavendishii var. dwarf Paxton as an immunostimulant for white spot disease prevention in Pacific white shrimp Litopenaeus vannamei

    Directory of Open Access Journals (Sweden)

    Afriani Ramadhan

    2017-07-01

    Full Text Available ABSTRACT This study was aimed to evaluate the dietary ambon lumut banana Musa cavendishii var. dwarf Paxton stem extract on the immune responses, growth, and survival rate of Pacific white shrimp against white spot disease. Ambon banana steam extract was obtained by maceration method using ethanol. The shrimps fed by pellet containing ambon banana stem extracts with different dosages for 29 days, i.e designated as 0.1 (A; 0.3 (B, and 0.5 (C g/kg, the diet treatment without ambon banana stem extract without challenged test (K-, and diet treatment without ambon banana stem extract with challenged test (K+. Each treatment consisted of three replications. Feeding was conducted for 29 days of maintenance (four times a day. The results showed that the immune responses (average total hemocyte count: 45.15×106 cells/mL, phenoloxidase activity 1.03±0.08 OD, respiratory burst 0.95±0.04 OD, phagocytic activity 94.33±1.53%, growth (specific growth rate: 7.79±0.06%/day, feed ratio conversion was 52±0.01, and survival of treatment C (survival rate 100% were higher compared with the treatment K+ (total hemocyte count: 3.83×106 cells/mL, phenoloxidase activity 0.04±0.01 OD, respiratory burst 0.18±0.06 OD,  phagocytic activity 5.67±0.58%, specific growth rate: 2.61±0.08%/day, feed conversion ratio 2.11±0.02, survival rate: 50%. Therefore, banana stem extract at a dose of 0.5 g/kg everyday diet can be used to improve growth and nonspecific immune system against white spot disease on Pacific white shrimp. Keywords: Pacific white shrimp, white spot disease, immune response, Ambon banana stem extract  ABSTRAK Penelitian ini bertujuan untuk menguji dosis optimal ekstrak batang pisang ambon melalui pakan dalam meningkatkan respon imun, pertumbuhan dan kelangsungan hidup udang putih terhadap penyakit white spot. Ekstrak batang pisang ambon lumut Musa cavendishii var. dwarf  Paxton menggunakan metode maserasi dengan menggunakan pelarut etanol. Pakan

  16. Rare-Earth Free Self-Activated Graphene Quantum Dots and Copper-Cysteamine Phosphors for Enhanced White Light-Emitting-Diodes under Single Excitation

    National Research Council Canada - National Science Library

    Wubin Dai; Yifeng Lei; Man Xu; Pei Zhao; Zhanhui Zhang; Jia Zhou

    2017-01-01

    .... On the contrary, as for phosphor-convert white light-emitting-diodes (pc-WLEDs), a solution-processed tunable warm white emission LED composite is fabricated in this study under single excitation, with both RE free phosphors graphene quantum dots (GQDs...

  17. Cool and warm hybrid white organic light-emitting diode with blue delayed fluorescent emitter both as blue emitter and triplet host

    Science.gov (United States)

    Cho, Yong Joo; Yook, Kyoung Soo; Lee, Jun Yeob

    2015-01-01

    A hybrid white organic light-emitting diode (WOLED) with an external quantum efficiency above 20% was developed using a new blue thermally activated delayed fluorescent material, 4,6-di(9H-carbazol-9-yl)isophthalonitrile (DCzIPN), both as a blue emitter and a host for a yellow phosphorescent emitter. DCzIPN showed high quantum efficiency of 16.4% as a blue emitter and 24.9% as a host for a yellow phosphorescent emitter. The hybrid WOLEDs with the DCzIPN host based yellow emitting layer sandwiched between DCzIPN emitter based blue emitting layers exhibited high external quantum efficiency of 22.9% with a warm white color coordinate of (0.39, 0.43) and quantum efficiency of 21.0% with a cool white color coordinate of (0.31, 0.33) by managing the thickness of the yellow emitting layer. PMID:25598436

  18. How to distinguish scattered and absorbed light from re-emitted light for white LEDs?

    NARCIS (Netherlands)

    Meretska, Maryna; Lagendijk, Aart; Thyrrestrup Nielsen, Henri; Mosk, Allard; IJzerman, Wilbert; Vos, Willem L.

    2017-01-01

    We have studied the light transport through phosphor diffuser plates that are used in commercial solid-state lighting modules (Fortimo). These polymer plates contain YAG:Ce+3 phosphor particles that scatter, absorb and re-emit incident light in the visible wavelength range (400-700 nm). To

  19. Improvement of color purity in white OLED based on Zn(HPB){sub 2} as blue emitting layer

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong-Eun [Department of Electrical Engineering and NTRC, Dong-A University, Busan, 604-714 (Korea, Republic of); Kim, Won-Sam [Department of Chemistry and Institute of Functional Materials, Inje University, Gimhae, 621-749 (Korea, Republic of); Kim, Byoung-Sang [Department of Electrical Engineering and NTRC, Dong-A University, Busan, 604-714 (Korea, Republic of); Lee, Burm-Jong [Department of Chemistry and Institute of Functional Materials, Inje University, Gimhae, 621-749 (Korea, Republic of); Kwon, Young-Soo [Department of Electrical Engineering and NTRC, Dong-A University, Busan, 604-714 (Korea, Republic of)], E-mail: yskwon@dau.ac.kr

    2008-04-01

    We synthesized zinc (II) [2-(2-hydroxyphenyl)benzoxazole] (Zn(HPB){sub 2}) as blue emitting materials and evaluated in the organic light emitting diodes (OLEDs). The layer of Zn(HPB){sub 2} doped with 4-(dicyanomethylene)-2-t-butyl-6(1,1,7,7-tetramethyljulolidyl-9-enyl) -4H-pyran (DCJTB) (Zn(HPB){sub 2}:DCJTB) as emitters has been demonstrated. The structure of the device is indium-tin-oxide (ITO)/N,N'-bis-(1-naphthl)-diphenyl-1,1'-biphenyl-4,4'-diamine (NPB, 40 nm)/Zn(HPB){sub 2}/Zn(HPB){sub 2}:DCJTB/Alq{sub 3} (20 nm)/LiF/Al. The thickness of Zn(HPB){sub 2} layer was 0, 10, 20, 30 nm at the same time the thickness of Zn(HPB){sub 2}:DCJTB layer were 40, 30, 20, 10 nm. When thickness of Zn(HPB){sub 2} layer was 30 nm and the thickness of Zn(HPB){sub 2}:DCJTB layer was 10 nm, white emission is achieved. The Commission Internationale de l'Eclairage (CIE) coordinates of the white emission are (0.304, 0.332) at an applied voltage of 10.5 V.

  20. Application of exciplex in the fabrication of white organic light emitting devices with mixed fluorescent and phosphorescent layers

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Dan; Duan, Yahui; Yang, Yongqiang [State Key Laboratory on Integrated Optoelectronics, College of Electronic Science & Engineering, Jilin University, Changchun 130012 (China); Hu, Nan [State Key Laboratory on Integrated Optoelectronics, College of Electronic Science & Engineering, Jilin University, Changchun 130012 (China); Changchun University of Science and Technology, Changchun 130012 (China); Wang, Xiao [State Key Laboratory on Integrated Optoelectronics, College of Electronic Science & Engineering, Jilin University, Changchun 130012 (China); Sun, Fengbo [State Key Laboratory on Integrated Optoelectronics, College of Electronic Science & Engineering, Jilin University, Changchun 130012 (China); Changchun University of Science and Technology, Changchun 130012 (China); Duan, Yu, E-mail: duanyu@jlu.edu.cn [State Key Laboratory on Integrated Optoelectronics, College of Electronic Science & Engineering, Jilin University, Changchun 130012 (China)

    2015-10-15

    In this study, a highly efficient fluorescent/phosphorescent white organic light-emitting device (WOLED) was fabricated using exciplex light emission. The hole-transport material 4,4',4''-tris(N-carbazolyl)triphenylamine (TCTA), and electron-transport material, 4,7-diphenyl-1,10-phenanthroline (Bphen), were mixed to afford a blue-emitting exciplex. The WOLED was fabricated with a yellow phosphorescent dye, Ir(III) bis(4-phenylthieno [3,2-c] pyridinato-N,C{sup 2'}) acetylacetonate (PO-01), combined with the exciplex. In this structure, the energy can be efficiently transferred from the blend layer to the yellow phosphorescent dye, thus improving the efficiency of the utilization of the triplet exciton. The maximum power efficiency of the WOLED reached a value 9.03 lm/W with an external quantum efficiency of 4.3%. The Commission Internationale de I'Eclairage (CIE) color coordinates (x,y) of the device were from (0.39, 0.45) to (0.27, 0.31), with a voltage range of 4–9 V. - Highlights: • An exciplex/phosphorescence hybrid white OLED was fabricated for the first time with blue/orange complementary emitters. • By using exciplex as the blue emitter, non-radiative triplet-states on the exciplex can be harvested for light-emission by transferring them to low triplet-state phosphors.

  1. Does Explosive Nuclear Burning Occur in Tidal Disruption Events of White Dwarfs by Intermediate-mass Black Holes?

    Energy Technology Data Exchange (ETDEWEB)

    Tanikawa, Ataru; Sato, Yushi; Hachisu, Izumi [Department of Earth Science and Astronomy, College of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902 (Japan); Nomoto, Ken’ichi; Maeda, Keiichi [Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8583 (Japan); Nakasato, Naohito, E-mail: tanikawa@ea.c.u-tokyo.ac.jp [Department of Computer Science and Engineering, University of Aizu, Tsuruga Ikki-machi Aizu-Wakamatsu, Fukushima 965-8580 (Japan)

    2017-04-20

    We investigate nucleosynthesis in tidal disruption events (TDEs) of white dwarfs (WDs) by intermediate-mass black holes. We consider various types of WDs with different masses and compositions by means of three-dimensional (3D) smoothed particle hydrodynamics (SPH) simulations. We model these WDs with different numbers of SPH particles, N , from a few 10{sup 4} to a few 10{sup 7} in order to check mass resolution convergence, where SPH simulations with N > 10{sup 7} (or a space resolution of several 10{sup 6} cm) have unprecedentedly high resolution in this kind of simulation. We find that nuclear reactions become less active with increasing N and that these nuclear reactions are excited by spurious heating due to low resolution. Moreover, we find no shock wave generation. In order to investigate the reason for the absence of a shock wave, we additionally perform one-dimensional (1D) SPH and mesh-based simulations with a space resolution ranging from 10{sup 4} to 10{sup 7} cm, using a characteristic flow structure extracted from the 3D SPH simulations. We find shock waves in these 1D high-resolution simulations, one of which triggers a detonation wave. However, we must be careful of the fact that, if the shock wave emerged in an outer region, it could not trigger the detonation wave due to low density. Note that the 1D initial conditions lack accuracy to precisely determine where a shock wave emerges. We need to perform 3D simulations with ≲10{sup 6} cm space resolution in order to conclude that WD TDEs become optical transients powered by radioactive nuclei.

  2. THE CRITICAL MASS RATIO OF DOUBLE WHITE DWARF BINARIES FOR VIOLENT MERGER-INDUCED TYPE IA SUPERNOVA EXPLOSIONS

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Yushi [Department of Astronomy, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Nakasato, Naohito [Department of Computer Science and Engineering, University of Aizu, Tsuruga Ikki-machi Aizu-Wakamatsu, Fukushima 965-8580 (Japan); Tanikawa, Ataru; Hachisu, Izumi [Department of Earth Science and Astronomy, College of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902 (Japan); Nomoto, Ken’ichi [Kavli Institute for the Physics and Mathematics of the universe (WPI), The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8583 (Japan); Maeda, Keiichi, E-mail: sato@ea.c.u-tokyo.ac.jp [Department of Astronomy, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto 606-8502 (Japan)

    2016-04-10

    Mergers of carbon–oxygen (CO) white dwarfs (WDs) are considered to be one of the potential progenitors of type Ia supernovae (SNe Ia). Recent hydrodynamical simulations showed that the less massive (secondary) WD violently accretes onto the more massive (primary) one, carbon detonation occurs, the detonation wave propagates through the primary, and the primary finally explodes as a sub-Chandrasekhar mass SN Ia. Such an explosion mechanism is called the violent merger scenario. Based on the smoothed particle hydrodynamics simulations of merging CO WDs, we derived a critical mass ratio (q{sub cr}) leading to the violent merger scenario that is more stringent than previous results. We conclude that this difference mainly comes from the differences in the initial condition of whether or not the WDs are synchronously spinning. Using our new results, we estimated the brightness distribution of SNe Ia in the violent merger scenario and compared it with previous studies. We found that our new q{sub cr} does not significantly affect the brightness distribution. We present the direct outcome immediately following CO WD mergers for various primary masses and mass ratios. We also discussed the final fate of the central system of the bipolar planetary nebula Henize 2-428, which was recently suggested to be a double CO WD system whose total mass exceeds the Chandrasekhar-limiting mass, merging within the Hubble time. Even considering the uncertainties in the proposed binary parameters, we concluded that the final fate of this system is almost certainly a sub-Chandrasekhar mass SN Ia in the violent merger scenario.

  3. Local Ignition in Carbon-Oxygen White Dwarfs. I. One-Zone Ignition and Spherical Shock Ignition of Detonations

    Science.gov (United States)

    Dursi, L. Jonathan; Timmes, F. X.

    2006-04-01

    The details of ignition of Type Ia supernovae remain fuzzy, despite the importance of this input for any large-scale model of the final explosion. Here, we begin a process of understanding the ignition of these hot spots by examining the burning of one zone of material, and then we investigate the ignition of a detonation due to rapid heating at single point. We numerically measure the ignition delay time for onset of burning in mixtures of degenerate material and provide fitting formulae for conditions of relevance in the Type Ia problem. Using the neon abundance as a proxy for the white dwarf progenitor's metallicity, we then find that ignition times can decrease by ~20% with the addition of even 5% of neon by mass. When temperature fluctuations that successfully kindle a region are very rare, such a reduction in ignition time can increase the probability of ignition by orders of magnitude. If the neon comes largely at the expense of carbon, a similar decrease in the ignition time can occur. We then consider the ignition of a detonation by an explosive energy input in one localized zone, for example, a Sedov blast wave leading to a shock-ignited detonation. Building on previous work on curved detonations, we confirm that surprisingly large inputs of energy are required to successfully launch a detonation, leading to required match heads of ~4500 detonation thicknesses-tens of centimeters to hundreds of meters-which is orders of magnitude larger than naive considerations might suggest. This is a very difficult constraint to meet for some pictures of a deflagration-to-detonation transition, such as a Zel'dovich gradient mechanism ignition in the distributed burning regime.

  4. Diffusive settling of neon-22 in isolated carbon-oxygen white dwarfs, and, Arbitrarily degenerate donors in ultracompact stellar binaries

    Science.gov (United States)

    Deloye, Christopher J.

    I detail my work, conducted under Professor Lars Bildsten concerning several aspects of white dwarf (WD) physics. In Part I, I describe our study of the impact of 22Ne diffusion in liquid WD interiors. The neutron excess of 22Ne compared to 12C and 16O allows it to sink towards the center, releasing gravitational binding energy. This energy slows WD cooling by an amount that depends on the mass of the WD, the 22Ne diffusion rate, and metallicity. A gradient in 22Ne also affects the internal buoyancy of the WD, altering the star's g-mode frequencies at a detectable level. In Part II, I move onto the donors in ultracompact binary systems (UCBs). These systems represent extreme examples of mass-transferring binaries, having orbital periods less than 70 min. I detail our new model set for the donors in these systems, which allows consideration of donors with arbitrary composition and entropy. This is a major improvement over the models available prior to our work as we can now consider constraining internal donor properties from observational data. We apply these models to UCB systems that contain either a neutron star (NS) accretor or a WD accretor, placing constraints on members of both classes of systems. In particular, we find that the composition of the donors in certain NS accretor systems can be strongly constrained, while we can provide weak limits on the entropy of the donors in the WD accretor systems. This latter fact may help distinguish between possible formation channels for these systems. Finally, I conclude by considering several outstanding questions in both classes of systems and outline how our models can be used or modified to address each of them.

  5. Low-mass Pre-He White Dwarf Stars in Kepler Eclipsing Binaries with Multi-periodic Pulsations

    Science.gov (United States)

    Zhang, X. B.; Fu, J. N.; Liu, N.; Luo, C. Q.; Ren, A. B.

    2017-12-01

    We report the discovery of two thermally bloated low-mass pre-He white dwarfs (WDs) in two eclipsing binaries, KIC 10989032 and KIC 8087799. Based on the Kepler long-cadence photometry, we determined comprehensive photometric solutions of the two binary systems. The light curve analysis reveals that KIC 10989032 is a partially eclipsed detached binary system containing a probable low-mass WD with the temperature of about 10,300 K. Having a WD with the temperature of about 13,300, KKIC 8087799 is typical of an EL CVn system. By utilizing radial velocity measurements available for the A-type primary star of KIC 10989032, the mass and radius of the WD component are determined to be 0.24+/- 0.02 {M}⊙ and 0.50+/- 0.01 {R}⊙ , respectively. The values of mass and radius of the WD in KIC 8087799 are estimated as 0.16 ± 0.02 M ⊙ and 0.21 ± 0.01 R ⊙, respectively, according to the effective temperature and mean density of the A-type star derived from the photometric solution. We therefore introduce KIC 10989032 and KIC 8087799 as the eleventh and twelfth dA+WD eclipsing binaries in the Kepler field. Moreover, both binaries display marked multi-periodic pulsations superimposed on binary effects. A preliminary frequency analysis is applied to the light residuals when subtracting the synthetic eclipsing light curves from the observations, revealing that the light pulsations of the two systems are both due to the δ Sct-type primaries. We hence classify KIC 10989032 and KIC 8087799 as two WD+δ Sct binaries.

  6. Linking long-term planetary N-body simulations with periodic orbits: application to white dwarf pollution

    Science.gov (United States)

    Antoniadou, Kyriaki I.; Veras, Dimitri

    2016-12-01

    Mounting discoveries of debris discs orbiting newly formed stars and white dwarfs (WDs) showcase the importance of modelling the long-term evolution of small bodies in exosystems. WD debris discs are, in particular, thought to form from very long-term (0.1-5.0 Gyr) instability between planets and asteroids. However, the time-consuming nature of N-body integrators which accurately simulate motion over Gyrs necessitates a judicious choice of initial conditions. The analytical tools known as periodic orbits can circumvent the guesswork. Here, we begin a comprehensive analysis directly linking periodic orbits with N-body integration outcomes with an extensive exploration of the planar circular restricted three-body problem (CRTBP) with an outer planet and inner asteroid near or inside of the 2:1 mean motion resonance. We run nearly 1000 focused simulations for the entire age of the Universe (14 Gyr) with initial conditions mapped to the phase space locations surrounding the unstable and stable periodic orbits for that commensurability. In none of our simulations did the planar CRTBP architecture yield a long-time-scale (≳0.25 per cent of the age of the Universe) asteroid-star collision. The pericentre distance of asteroids which survived beyond this time-scale (≈35 Myr) varied by at most about 60 per cent. These results help affirm that collisions occur too quickly to explain WD pollution in the planar CRTBP 2:1 regime, and highlight the need for further periodic orbit studies with the eccentric and inclined TBP architectures and other significant orbital period commensurabilities.

  7. White light-emitting diodes (LEDs) at domestic lighting levels and retinal injury in a rat model.

    Science.gov (United States)

    Shang, Yu-Man; Wang, Gen-Shuh; Sliney, David; Yang, Chang-Hao; Lee, Li-Ling

    2014-03-01

    Light-emitting diodes (LEDs) deliver higher levels of blue light to the retina than do conventional domestic light sources. Chronic exposure to high-intensity light (2,000-10,000 lux) has previously been found to result in light-induced retinal injury, but chronic exposure to relatively low-intensity (750 lux) light has not been previously assessed with LEDs in a rodent model. We examined LED-induced retinal neuronal cell damage in the Sprague-Dawley rat using functional, histological, and biochemical measurements. We used blue LEDs (460 nm) and full-spectrum white LEDs, coupled with matching compact fluorescent lights, for exposures. Pathological examinations included electroretinogram, hematoxylin and eosin (H&E) staining, immunohistochemistry (IHC), and transmission electron microscopy (TEM). We also measured free radical production in the retina to determine the oxidative stress level. H&E staining and TEM revealed apoptosis and necrosis of photoreceptors, which indicated blue-light induced photochemical injury of the retina. Free radical production in the retina was increased in LED-exposed groups. IHC staining demonstrated that oxidative stress was associated with retinal injury. Although we found serious retinal light injury in LED groups, the compact fluorescent lamp (CFL) groups showed moderate to mild injury. Our results raise questions about adverse effects on the retina from chronic exposure to LED light compared with other light sources that have less blue light. Thus, we suggest a precautionary approach with regard to the use of blue-rich "white" LEDs for general lighting. Shang YM, Wang GS, Sliney D, Yang CH, Lee LL. 2014. White light-emitting diodes (LEDs) at domestic lighting levels and retinal injury in a rat model. Environ Health Perspect 122:269-276; http://dx.doi.org/10.1289/ehp.1307294.

  8. Ultrabroad linewidth orange-emitting nanowires LED for high CRI laser-based white lighting and gigahertz communications

    KAUST Repository

    Janjua, Bilal

    2016-08-10

    Group-III-nitride laser diode (LD)-based solid-state lighting device has been demonstrated to be droop-free compared to light-emitting diodes (LEDs), and highly energy-efficient compared to that of the traditional incandescent and fluorescent white light systems. The YAG:Ce3+ phosphor used in LD-based solid-state lighting, however, is associated with rapid degradation issue. An alternate phosphor/LD architecture, which is capable of sustaining high temperature, high power density, while still intensity- and bandwidth-tunable for high color-quality remained unexplored. In this paper, we present for the first time, the proof-of-concept of the generation of high-quality white light using an InGaN-based orange nanowires (NWs) LED grown on silicon, in conjunction with a blue LD, and in place of the compound-phosphor. By changing the relative intensities of the ultrabroad linewidth orange and narrow-linewidth blue components, our LED/LD device architecture achieved correlated color temperature (CCT) ranging from 3000 K to above 6000K with color rendering index (CRI) values reaching 83.1, a value unsurpassed by the YAG-phosphor/blue-LD counterpart. The white-light wireless communications was implemented using the blue LD through on-off keying (OOK) modulation to obtain a data rate of 1.06 Gbps. We therefore achieved the best of both worlds when orange-emitting NWs LED are utilized as “active-phosphor”, while blue LD is used for both color mixing and optical wireless communications.

  9. White organic light-emitting devices based on blue fluorescent dye combined with dual sub-monolayer

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Huishan, E-mail: yanghuishan1697@163.com

    2013-10-15

    White organic light-emitting devices have been realized by using highly blue fluorescent dye 4,4′-Bis(2,2-diphenyl-ethen-1-yl)-4,4′-di-(tert-butyl)phenyl(p-TDPVBi) and [2-methyl-6-[2-(2, 3,6,7-tetrahydro-1H, red fluorescent dye 5H-benzo[ij] quinolizin-9-yl) ethenyl]-4H-pyran-4-ylidene] propane-dinitrile(DCM2), together with well known green fluorescent dye quinacridone (QAD). The fabrication of multilayer WOLEDs did not involve the hard-to-control doping process. The structure of the device is ITO/m-MTDATA (45 nm)/NPB(8 nm)/p-TDPVBi(15 nm)/DCM2(x nm)/Alq{sub 3} (5 nm)/QAD(y nm)/Alq{sub 3}(55 nm)/LiF(1 nm)/Al, where 4,4′,4′′-tris{N,-(3-methylphenyl)-N-phenylamine}triphenylamine (m-MTDATA) acts as a hole injection layer, N,N′-bis-(1-naphthyl)-N, N′-diphenyl-1, 1′-biph-enyl-4, 4′-diamine (NPB) acts as a hole transport layer, p-TDPVBi acts as a blue emitting layer, DCM2 acts as a red emitting layer, QAD acts as a green emitting layer, tris-(8-hydroxyquinoline) aluminum (Alq{sub 3}) acts as an electron transport layer, and WOLEDs of devices A, B, C and D are different in layer thickness of DCM2 and QAD, respectively. To change the thickness of dual sub-monolayer DCM2 and QAD, the WOLEDs were obtained. When x, y=0.05, 0.1, the Commission Internationale de 1’Eclairage (CIE) coordinates of the device change from (0.4458, 0.4589) at 3 V to (0.3137, 0.3455) at 12 V that are well in the white region, and the color temperature and color rendering index were 5348 K and 85 at 8 V, respectively. Its maximum luminance was 35260 cd/m{sup 2} at 12 V, and maximum current efficiency and maximum power efficiency were 13.54 cd/A at 12 V and 6.68 lm/W at 5 V, respectively. Moreover, the current efficiency is largely insensitive to the applied voltage. The electroluminescence intensity of white EL devices varied only little at deferent dual sub-monolayer. Device D exhibited relatively high color rendering index (CRI) in the range of 88–90, which was essentially

  10. Design of a bike headlamp based on a power white-light-emitting diode

    Science.gov (United States)

    Lo, Yi-Chien; Chen, Cheng-Chien; Chou, Hung-Yu; Yang, Kai-Yu; Sun, Ching-Cherng

    2011-08-01

    In this letter, we present a new design for a light-emitting diode- based bike headlamp. The optical design contains two horizontal reflectors and a light pipe with two horizontal parallel mirrors. The designed illumination pattern in our simulations performs a contrast of 250 in the K-mark regulation, and it was measured to be 21 in the experiment with a not well-finished prototype, which was operated at 1 W. The contrast is higher than 5 as requested in the regulation.

  11. Stellar Laboratories . [VI. New Mo IV - VII Oscillator Strengths and the Molybdenum Abundance in the Hot White Dwarfs G191-B2B and RE 0503-289

    Science.gov (United States)

    Rauch, T.; Quinet, T.; Hoyer, D.; Werner, K.; Demleitner, M.; Kruk, J. W.

    2016-01-01

    For the spectral analysis of high-resolution and high signal-to-noise (SN) spectra of hot stars, state-of-the-art non-local thermodynamic equilibrium (NLTE) model atmospheres are mandatory. These are strongly dependent on the reliability of the atomic data that is used for their calculation. Aims: To identify molybdenum lines in the ultraviolet (UV) spectra of the DA-type white dwarf G191B2B and the DO-type white dwarf RE 0503289 and, to determine their photospheric Mo abundances, reliable Mo iv-vii oscillator strengths are used. Methods: We newly calculated Mo iv-vii oscillator strengths to consider their radiative and collisional bound-bound transitions indetail in our NLTE stellar-atmosphere models for the analysis of Mo lines exhibited in high-resolution and high SN UV observations of RE 0503289.Results. We identified 12 Mo v and nine Mo vi lines in the UV spectrum of RE 0503289 and measured a photospheric Mo abundance of 1.2 3.0 104(mass fraction, 22 500 56 400 times the solar abundance). In addition, from the As v and Sn iv resonance lines,we measured mass fractions of arsenic (0.51.3 105, about 300 1200 times solar) and tin (1.33.2 104, about 14 300 35 200 times solar). For G191B2B, upper limits were determined for the abundances of Mo (5.3 107, 100 times solar) and, in addition, for Kr (1.1106, 10 times solar) and Xe (1.7107, 10 times solar). The arsenic abundance was determined (2.35.9 107, about 21 53 times solar). A new, registered German Astrophysical Virtual Observatory (GAVO) service, TOSS, has been constructed to provide weighted oscillator strengths and transition probabilities.Conclusions. Reliable measurements and calculations of atomic data are a prerequisite for stellar-atmosphere modeling. Observed Mo v-vi line profiles in the UV spectrum of the white dwarf RE 0503289 were well reproduced with our newly calculated oscillator strengths. For the first time, this allowed the photospheric Mo abundance in a white dwarf to be determined.

  12. The Carnegie Supernova Project. I. Third Photometry Data Release of Low-redshift Type Ia Supernovae and Other White Dwarf Explosions

    DEFF Research Database (Denmark)

    Krisciunas, Kevin; Contreras, Carlos; Burns, Christopher R.

    2017-01-01

    We present final natural-system optical (ugriBV) and near-infrared (YJH) photometry of 134 supernovae (SNe) with probable white dwarf progenitors that were observed in 2004-2009 as part of the first stage of the Carnegie Supernova Project (CSP-I). The sample consists of 123 Type. Ia SNe, 5 Type...... optical extinction coefficients and color terms are derived and demonstrated to be stable during the five CSP-I observing campaigns. Measurements of the CSP-I near-infrared bandpasses are also described, and near-infrared color terms are estimated through synthetic photometry of stellar atmosphere models...

  13. Narrow line-width phosphors for phosphor-converted white light emitting diodes

    Science.gov (United States)

    Khanna, Aloka

    The luminous efficacy of present day phosphor-converted white LEDs is limited by phosphors with broad spectral emission in the long wavelength visible range (600-700 nm). The light output from the cool-white LEDs that do not use a red phosphor is 30-35% higher than the warm white LEDs fabricated with a red phosphor in addition to the yellow phosphor. However, the CRI of cool-white LEDs is significantly lower (~60-70) than the CRI of the warm white LEDs (~80-95) due to lack of the red photons in the emission spectrum. Therefore, a trade-off exists between luminous efficacy and color rendering capability of light generated by phosphor-converted white LEDs. In order to solve this problem, an efficient red phosphor with considerably narrow full width of half maxima (~5-10 nm) and emission in the 600-650 nm wavelength range is required. The narrow spectral line-width can be achieved by introducing trivalent lanthanide ions like Eu3+, Pr3+ and Sm3+ (λpeak- 615 nm, 650 nm, 655 nm) in oxide host lattices although the high energy gaps of these hosts makes these phosphors unsuitable for excitation with near-UV/Blue (380-470 nm) LED sources. Therefore, the goal of this project is two-fold- to develop new material systems which can serve as potential hosts for trivalent lanthanide ions like Eu3+, Pr3+ and Sm3+ (λpeak- 615 nm, 650 nm, 655 nm) with strong excitation bands in the near-UV/blue wavelength region (380-470 nm) and improve the efficiency of the known oxide phosphors doped with trivalent lanthanide ions and the novel phosphors via crystal growth processes. Moreover, phosphors in the green-yellow wavelength region with a narrow emission line-width have the potential of improving the luminous efficacy of the phosphor-converted LEDs as the human eye sensitivity curve peaks at 555 nm. Thus, in parallel with the narrow line-width red phosphor research, new compositions doped with Tb3+ (550 nm), Dy3+ (575 nm), etc. are being explored with strong excitation bands in near

  14. A potential red emitting K{sub 4}Ca(PO{sub 4}){sub 2}: Eu{sup 3+} phosphor for white light emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Dillip, G.R. [Department of Physics, Sri Venkateswara University, Tirupati 517502 (India); Dhoble, S.J. [Department of Physics, RTM Nagpur University, Nagpur 440033 (India); Manoj, L. [Centre for Nanoscience and Nanotechnology, Sathyabama University, Chennai 600119 (India); Madhukar Reddy, C. [Department of Physics, Sri Venkateswara University, Tirupati 517502 (India); Deva Prasad Raju, B., E-mail: drdevaprasadraju@gmail.com [Department of Physics, Sri Venkateswara University, Tirupati 517502 (India); Department of Future Studies, Sri Venkateswara University, Tirupati 517502 (India)

    2012-11-15

    Europium (III) ions doped red phosphors K{sub 4}Ca(PO{sub 4}){sub 2} were prepared first time by high temperature solid state reaction method. The prepared phosphors structure was examined by X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDS) analyses. The thermal properties of the synthesized phosphor were investigated by differential scanning calorimetry (DSC) analysis. Photoluminescence (PL) spectra of K{sub 4}Ca(PO{sub 4}){sub 2}:Eu{sup 3+} phosphors have shown strong red emission at 618 nm ({sup 5}D{sub 0}{yields}{sup 7}F{sub 2}) with near UV an excitation wavelength of {lambda}{sub exc}=394 nm ({sup 7}F{sub 0}{yields}{sup 5}L{sub 6}). In addition, the decay curves and CIE color coordinate measurements are also carried out. Hence, emission and excitation characterization of synthesized phosphors shows that the phosphors may be a promising red component for the application in the white light emitting diodes (WLEDs). - Highlights: Black-Right-Pointing-Pointer The red luminescent K{sub 4}Ca(PO{sub 4}){sub 2}:Eu{sup 3+} phosphors were prepared. Black-Right-Pointing-Pointer The orthophosphates in the sample was confirmed by FTIR analysis. Black-Right-Pointing-Pointer The size of the prepared phosphors particles are in micrometer dimension. Black-Right-Pointing-Pointer The obtained longest lifetime value for K{sub 4}Ca(PO{sub 4}){sub 2}:Eu{sup 3+} (6 mol%) is 1.982 ms.

  15. Comparative Study of Lettuce and Radish Grown Under Red and Blue Light-Emitting Diodes (LEDs) and White Fluorescent Lamps

    Science.gov (United States)

    Mickens, Matthew A.

    2012-01-01

    Growing vegetable crops in space will be an essential part of sustaining astronauts during long-term missions. To drive photosynthesis, red and blue light-emitting diodes (LEDs) have attracted attention because of their efficiency, longevity, small size, and safety. In efforts to optimize crop production, there have also been recent interests in analyzing the subtle effects of green light on plant growth, and to determine if it serves as a source of growth enhancement or suppression. A comparative study was performed on two short cycle crops of lettuce (Outredgeous) and radish (Cherry Bomb) grown under two light treatments. The first treatment being red and blue LEDs, and the second treatment consisting of white fluorescent lamps which contain a portion of green light. In addition to comparing biomass production, physiological characterizations were conducted on how the light treatments influence morphology, water use, chlorophyll content, and the production of A TP within plant tissues.

  16. Cost-effective elimination of lipofuscin fluorescence from formalin-fixed brain tissue by white phosphor light emitting diode array.

    Science.gov (United States)

    Sun, Yulong; Chakrabartty, Avi

    2016-12-01

    Autofluorescence of aldehyde-fixed tissues greatly hinders fluorescence microscopy. In particular, lipofuscin, an autofluorescent component of aged brain tissue, complicates fluorescence imaging of tissue in neurodegenerative diseases. Background and lipofuscin fluorescence can be reduced by greater than 90% through photobleaching using white phosphor light emitting diode arrays prior to treatment with fluorescent probes. We compared the effect of photobleaching versus established chemical quenchers on the quality of fluorescent staining in formalin-fixed brain tissue of frontotemporal dementia with tau-positive inclusions. Unlike chemical quenchers, which reduced fluorescent probe signals as well as background, photobleaching treatment had no effect on probe fluorescence intensity while it effectively reduced background and lipofuscin fluorescence. The advantages and versatility of photobleaching over established methods are discussed.

  17. Performance comparison of polarized white light emitting diodes using wire-grid polarizers with polymeric and glass substrates

    Science.gov (United States)

    Su, Jung-Chieh; Chou, Shih-Chieh

    2018-03-01

    Polarized white light emitting diodes (WLEDs) packaged with reflective metal wire-grid polarizer of polymeric and glass substrates were investigated. The performance comparison of polymeric wire-grid polarizer film (WGF) and nano wire-grid polarizer (NWGP) with glass substrate was evaluated. The transverse electric field (TE) polarization transmittance of WGF is less than that of NWGP due to its smaller grid parameters. Despite of the higher duty cycle of WGF, the angular-dependent extinction ratio (ER) of the polarized WLEDs (PWLEDs) with WGF is higher than that of with NWGP. Regarding increasing drive currents, the PWLEDs with NWGP had better color stability than that with WGF due to better substrate thermal stability. In summary, linewidth, period and substrate material are the crucial factors for the PWLED packaging using wire grid polarizer.

  18. InGaN/GaN disk-in-nanowire white light emitting diodes on (001) silicon

    KAUST Repository

    Guo, Wei

    2011-01-01

    High density (? 1011 cm-2) GaN nanowires and InGaN/GaN disk-in-nanowire heterostructures have been grown on (001) silicon substrates by plasma-assisted molecular beam epitaxy. The nanowires exhibit excellent uniformity in length and diameter and a broad emission is obtained by incorporating InGaN disks of varying composition along the length of the nanowires. Monolithic lighting emitting diodes were fabricated with appropriate n- and p-doping of contact layers. White light emission with chromaticity coordinates of x=0.29 and y=0.37 and a correlated color temperature of 5500-6500 K at an injection current of 50 A/ cm2 is measured. The measured external quantum efficiency of the devices do not exhibit any rollover (droop) up to an injection current density of 400 A/ cm2. © 2011 American Institute of Physics.

  19. Effect of gold wire bonding process on angular correlated color temperature uniformity of white light-emitting diode.

    Science.gov (United States)

    Wu, Bulong; Luo, Xiaobing; Zheng, Huai; Liu, Sheng

    2011-11-21

    Gold wire bonding is an important packaging process of lighting emitting diode (LED). In this work, we studied the effect of gold wire bonding on the angular uniformity of correlated color temperature (CCT) in white LEDs whose phosphor layers were coated by freely dispersed coating process. Experimental study indicated that different gold wire bonding impacts the geometry of phosphor layer, and it results in different fluctuation trends of angular CCT at different spatial planes in one LED sample. It also results in various fluctuating amplitudes of angular CCT distributions at the same spatial plane for samples with different wire bonding angles. The gold wire bonding process has important impact on angular uniformity of CCT in LED package. © 2011 Optical Society of America

  20. Development of a Highly Efficient Hybrid White Organic-Light-Emitting Diode with a Single Emission Layer by Solution Processing.

    Science.gov (United States)

    Wu, Jun-Yi; Chen, Show-An

    2018-02-07

    We use a mixed host, 2,6-bis[3-(carbazol-9-yl)phenyl]pyridine blended with 20 wt % tris(4-carbazoyl-9-ylphenyl)amine, to lower the hole-injection barrier, along with the bipolar and high-photoluminescence-quantum-yield (Φp= 84%), blue thermally activated delay fluorescence (TADF) material of 9,9-dimethyl-9,10-dihydroacridine-2,4,6-triphenyl-1,3,5-triazine (DMAC-TRZ) as a blue dopant to compose the emission layer for the fabrication of a TADF blue organic-light-emitting diode (BOLED). The device is highly efficient with the following performance parameters: maximum brightness (Bmax) = 57586 cd/m2, maximum current efficiency (CEmax) = 35.3 cd/A, maximum power efficiency (PEmax) = 21.4 lm/W, maximum external quantum efficiency (EQEmax) = 14.1%, and CIE coordinates (0.18, 0.42). This device has the best performance recorded among the reported solution-processed TADF BOLEDs and has a low efficiency roll-off: at brightness values of 1000 and 5000 cd/m2, its CEs are close, being 35.1 and 30.1 cd/A, respectively. Upon further doping of the red phosphor Ir(dpm)PQ2 (emission peak λmax = 595 nm) into the blue emission layer, we obtained a TADF-phosphor hybrid white organic-light-emitting diode (T-P hybrid WOLED) with high performance: Bmax = 43594 cd/m2, CEmax = 28.8 cd/A, PEmax = 18.1 lm/W, and CIE coordinates (0.38, 0.44). This Bmax = 43594 cd/m2 is better than that of the vacuum-deposited WOLED with a blue TADF emitter, 10000 cd/m2. This is also the first report on a T-P hybrid WOLED with a solution-processed emitting layer.

  1. Evolution towards and beyond accretion-induced collapse of massive white dwarfs and formation of millisecond pulsars

    Science.gov (United States)

    Tauris, T. M.; Sanyal, D.; Yoon, S.-C.; Langer, N.

    2013-10-01

    Context. Millisecond pulsars (MSPs) are generally believed to be old neutron stars (NSs), formed via type Ib/c core-collapse supernovae (SNe), which have been spun up to high rotation rates via accretion from a companion star in a low-mass X-ray binary (LMXB). In an alternative formation channel, NSs are produced via the accretion-induced collapse (AIC) of a massive white dwarf (WD) in a close binary. Aims: Here we investigate binary evolution leading to AIC and examine if NSs formed in this way can subsequently be recycled to form MSPs and, if so, how they can observationally be distinguished from pulsars formed via the standard core-collapse SN channel in terms of their masses, spins, orbital periods and space velocities. Methods: Numerical calculations with a detailed stellar evolution code were used for the first time to study the combined pre- and post-AIC evolution of close binaries. We investigated the mass transfer onto a massive WD (treated as a point mass) in 240 systems with three different types of non-degenerate donor stars: main-sequence stars, red giants, and helium stars. When the WD is able to accrete sufficient mass (depending on the mass-transfer rate and the duration of the accretion phase) we assumed it collapses to form a NS and we studied the dynamical effects of this implosion on the binary orbit. Subsequently, we followed the mass-transfer epoch which resumes once the donor star refills its Roche lobe and calculated the continued LMXB evolution until the end. Results: We show that recycled pulsars may form via AIC from all three types of progenitor systems investigated and find that the final properties of the resulting MSPs are, in general, remarkably similar to those of MSPs formed via the standard core-collapse SN channel. However, as a consequence of the fine-tuned mass-transfer rate necessary to make the WD grow in mass, the resultant MSPs created via the AIC channel preferentially form in certain orbital period intervals. In addition

  2. White Light–Emitting Diodes (LEDs) at Domestic Lighting Levels and Retinal Injury in a Rat Model

    Science.gov (United States)

    Shang, Yu-Man; Wang, Gen-Shuh; Sliney, David; Lee, Li-Ling

    2013-01-01

    Background: Light-emitting diodes (LEDs) deliver higher levels of blue light to the retina than do conventional domestic light sources. Chronic exposure to high-intensity light (2,000–10,000 lux) has previously been found to result in light-induced retinal injury, but chronic exposure to relatively low-intensity (750 lux) light has not been previously assessed with LEDs in a rodent model. Objective: We examined LED-induced retinal neuronal cell damage in the Sprague-Dawley rat using functional, histological, and biochemical measurements. Methods: We used blue LEDs (460 nm) and full-spectrum white LEDs, coupled with matching compact fluorescent lights, for exposures. Pathological examinations included electroretinogram, hematoxylin and eosin (H&E) staining, immunohistochemistry (IHC), and transmission electron microscopy (TEM). We also measured free radical production in the retina to determine the oxidative stress level. Results: H&E staining and TEM revealed apoptosis and necrosis of photoreceptors, which indicated blue-light induced photochemical injury of the retina. Free radical production in the retina was increased in LED-exposed groups. IHC staining demonstrated that oxidative stress was associated with retinal injury. Although we found serious retinal light injury in LED groups, the compact fluorescent lamp (CFL) groups showed moderate to mild injury. Conclusion: Our results raise questions about adverse effects on the retina from chronic exposure to LED light compared with other light sources that have less blue light. Thus, we suggest a precautionary approach with regard to the use of blue-rich “white” LEDs for general lighting. Citation: Shang YM, Wang GS, Sliney D, Yang CH, Lee LL. 2014. White light–emitting diodes (LEDs) at domestic lighting levels and retinal injury in a rat model. Environ Health Perspect 122:269–276; http://dx.doi.org/10.1289/ehp.1307294 PMID:24362357

  3. Chip-scale white flip-chip light-emitting diode containing indium phosphide/zinc selenide quantum dots

    Science.gov (United States)

    Fan, Bingfeng; Yan, Linchao; Lao, Yuqin; Ma, Yanfei; Chen, Zimin; Ma, Xuejin; Zhuo, Yi; Pei, Yanli; Wang, Gang

    2017-08-01

    A method for preparing a quantum dot (QD)-white light-emitting diode (WLED) is reported. Holes were etched in the SiO2 layer deposited on the sapphire substrate of the flip-chip LED by inductively coupled plasma, and these holes were then filled with QDs. An ultraviolet-curable resin was then spin-coated on top of the QD-containing SiO2 layer, and the resin was cured to act as a protecting layer. The reflective sidewall structure minimized sidelight leakage. The fabrication of the QD-WLED is simple in preparation and compatible with traditional LED processes, which was the minimum size of the WLED chip-scale integrated package. InP/ZnS core-shell QDs were used as the converter in the WLED. A blue light-emitting diode with a flip-chip structure was used as the excitation source. The QD-WLED exhibited color temperatures from 5900 to 6400 K and Commission Internationale De L'Elcairage color coordinates from (0.315, 0.325) to (0.325, 0.317), under drive currents from 100 to 400 mA. The QD-WLED exhibited stable optoelectronic properties.

  4. White organic light-emitting devices with tunable color emission fabricated utilizing exciplex formation at heterointerfaces including m-MDATA

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kwang Seop; Choo, Dong Chul; Kim, Tae Whan, E-mail: twk@hanyang.ac.kr

    2011-05-31

    The electrical and the optical properties of organic light-emitting devices (OLEDs) fabricated utilizing a 4,4',4''-tris(2-methylphenyl-phenylamino)triphenylamine (m-MTDATA) were investigated to clarify the effect of exciplex on their color stabilization and color purity. The electrons combined with the holes at heterointerfaces between the m-MTDATA layer and the 9,10-di(2-naphthyl)anthracene (MADN) and the 4-(dicyanomethylene)-2-methyl-6-(p-dimethyl aminostyryl)-4H-pyran (DCM1) emitting layer (EML) resulted in the formation of the exciplex. The emission peak of the electroluminescence spectra for the OLEDs fabricated utilizing the m-MTDATA layer shifted to a lower energy side in comparison with that of the EML. This was due to the interaction of the holes in the m-MTDATA layer and the electrons in the MADN EML. Carriers in white OLEDs (WOLEDs) with exciplex emissions existed at the heterointerfaces between the m-MTDATA and the EML because the DCM1 EML was too thin to affect the EL peak related to the m-MTDATA layer. The Commission Internationale de l'Eclairage coordinates of WOLEDs at 9.5 V were (0.33, 0.36), and their maximum current efficiency at 46 mA/cm{sup 2} was 2.03 cd/A.

  5. Managing excitons for high performance hybrid white organic light-emitting diodes by using a simple planar heterojunction interlayer

    Science.gov (United States)

    Shi, Changsheng; Sun, Ning; Wu, Zhongbin; Chen, Jiangshan; Ahamad, Tansir; Alshehri, Saad M.; Ma, Dongge

    2018-01-01

    High performance hybrid white organic light-emitting diodes (WOLEDs) were fabricated by inserting a planar heterojunction interlayer between the fluorescent and phosphorescent emitting layers (EMLs). The maximum external quantum efficiency (EQE) of 19.3%, current efficiency of 57.1 cd A-1, and power efficiency (PE) of 66.2 lm W-1 were achieved in the optimized device without any light extraction enhancement. At the luminance of 1000 cd m-2, the EQE and PE remained as high as 18.9% and 60 lm W-1, respectively, showing the reduced efficiency-roll. In order to disclose the reason for such high performance, the distribution of excitons was analyzed by using ultra-thin fluorescent and phosphorescent layers as sensors. It was found that the heterojunction interlayer can efficiently separate the singlet and triplet excitons, preventing the triplet excitons from being quenched by the fluorescent emitter. The introduction of the heterojunction interlayer between the fluorescent and phosphorescent EMLs should offer a simple and efficient route to fabricate the high performance hybrid WOLEDs.

  6. Kinetic Monte Carlo modeling of the efficiency roll-off in a multilayer white organic light-emitting device

    Energy Technology Data Exchange (ETDEWEB)

    Mesta, M.; Coehoorn, R.; Bobbert, P. A. [Department of Applied Physics, Technische Universiteit Eindhoven, P.O. Box 513, NL-5600 MB Eindhoven (Netherlands); Eersel, H. van [Simbeyond B.V., P.O. Box 513, NL-5600 MB Eindhoven (Netherlands)

    2016-03-28

    Triplet-triplet annihilation (TTA) and triplet-polaron quenching (TPQ) in organic light-emitting devices (OLEDs) lead to a roll-off of the internal quantum efficiency (IQE) with increasing current density J. We employ a kinetic Monte Carlo modeling study to analyze the measured IQE and color balance as a function of J in a multilayer hybrid white OLED that combines fluorescent blue with phosphorescent green and red emission. We investigate two models for TTA and TPQ involving the phosphorescent green and red emitters: short-range nearest-neighbor quenching and long-range Förster-type quenching. Short-range quenching predicts roll-off to occur at much higher J than measured. Taking long-range quenching with Förster radii for TTA and TPQ equal to twice the Förster radii for exciton transfer leads to a fair description of the measured IQE-J curve, with the major contribution to the roll-off coming from TPQ. The measured decrease of the ratio of phosphorescent to fluorescent component of the emitted light with increasing J is correctly predicted. A proper description of the J-dependence of the ratio of red and green phosphorescent emission needs further model refinements.

  7. Emergence of White Organic Light-Emitting Diodes Based on Thermally Activated Delayed Fluorescence

    Directory of Open Access Journals (Sweden)

    Peng Xiao

    2018-02-01

    Full Text Available Recently, thermally activated delayed fluorescence (TADF organic light-emitting diodes (OLEDs have attracted both academic and industrial interest due to their extraordinary characteristics, such as high efficiency, low driving voltage, bright luminance, lower power consumption and potentially long lifetime. In this invited review, the fundamental concepts of TADF have been firstly introduced. Then, main approaches to realize WOLEDs based on TADF have been summarized. More specifically, the recent development of WOLEDs based on all TADF emitters, WOLEDs based on TADF and conventional fluorescence emitters, hybrid WOLEDs based on blue TADF and phosphorescence emitters and WOLEDs based on TADF exciplex host and phosphorescence dopants is highlighted. In particular, design strategies, device structures, working mechanisms and electroluminescent processes of the representative WOLEDs based on TADF are reviewed. Finally, challenges and opportunities for further enhancement of the performance of WOLEDs based on TADF are presented.

  8. High-flux focusable color-tunable and efficient white-light-emitting diode light engine for stage lighting

    DEFF Research Database (Denmark)

    Chakrabarti, Maumita; Pedersen, Henrik Chresten; Petersen, Paul Michael

    2016-01-01

    colors through a microlens array(MA) at the gate of ∅50 mm. Hence, it produces homogeneous color-mixed tunable white light from 3000 to6000 K that can be adjustable from flood to spot position providing 10% translational loss, whereas the correspondingloss from the halogen–Fresnel spotlight is 37......% and a luminous efficacy of 33 lm∕W are achieved, which is three times higherthan the 2-kW halogen–Fresnel spotlight. In addition to having color rendering of color rendering indexRa > 85 and television lighting consistency index 12 > 70, the dimmable and tunable white light can becolor controlled during......A color mixing light-emitting diode (LED) light engine that can replace 2-kW halogen–Fresnel spotlightwith high-luminous flux in excess of 20,000 lm is reported for applications in professional stage and studio lighting.The light engine focuses and mixes the light from 210 LEDs of five different...

  9. Novel concepts for high-efficiency white organic light-emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Schwartz, Gregor

    2007-07-01

    This work deals with novel concepts to realize high efficiency white OLEDs by combining fluorescent blue and phosphorescent green and orange emitters. A key point determining the maximum efficiency possible, as well as the device structure to be chosen to reach high efficiency, is the triplet exciton energy of the fluorescent blue emitter. If its triplet state is lower than that of the phosphorescent emitters, mutual exciton quenching can occur. This problem is solved by the first concept with spatial separation of the fluorescent blue from the phosphorescent emitters by a large-gap exciton blocking layer. To still realize exciton generation on both sides, the interlayer has to be ambipolar. On the other hand, if the triplet exciton energy of the fluorescent blue is higher than that of at least one of the phosphorescent emitters, appropriate arrangement of the emission layers makes a separation layer obsolete, since phosphorescence quenching does not occur anymore. Moreover, the intrinsically non-radiative triplet excitons of the fluorescent blue emitter may be harvested by the phosphor for light emission, which means that even 100% internal quantum efficiency is possible. The last chapter 6 deals with this second concept, where the main issue is to simultaneously achieve exciton harvesting as complete as possible and a balanced white emission spectrum by appropriately distributing singlet and triplet excitons to the used emitters. All emitters used in this work are commercially available and their molecular structure is disclosed in order to make the results transparent. (orig.)

  10. The interstellar medium and the highly ionized species observed in the spectrum of the nearby white dwarf G191-B2B

    Science.gov (United States)

    Bruhweiler, F. C.; Kondo, Y.

    1981-01-01

    High-resolution spectra of the nearby (48 pc) white dwarf G191-B2B, obtained with the International Ultraviolet Explorer, reveal sharp resonance lines of N V, C IV, and Si IV. The origin of these features is most likely linked to the white dwarf, possibly being formed in an expanding halo around the star. Interstellar lines of C II, N I, Mg II, Si II, and Fe II are also seen in the spectrum. Analysis of these features indicates an average neutral hydrogen number density of 0.064 for this line of sight. In combination with the recent EUV and soft X-ray results, this is interpreted to mean that the interstellar medium in the most immediate solar vicinity is of the normal density n approximately equal to 0.1/cu cm of lower ionization, while just beyond it, at least in some directions, is a hot lower density plasma. These results are apparently in conflict with the model of the interstellar medium by McKee and Ostriker (1977) in its present form.

  11. The discovery of Ni V in the photospheres of the hot DA white dwarfs RE 2214-492 and G191-B2B

    Science.gov (United States)

    Holberg, J. B.; Hubeny, I.; Barstow, M. A.; Lanz, T.; Sion, E. M.; Tweedy, R. W.

    1994-01-01

    We have co-added six recently obtained International Ultraviolet Explorer (IUE) echelle spectra of the hot DA white dwarf RE 2214-492 and 10 existing archive spectra of the well-known hot DA, G191-B2B. We find that both stars contain numerous weak features due to Ni V. Nickel is thus the second iron-group element to be found in the spectra of the very hottest DA white dwarfs. In addition to Ni V, we also observe Al III in both stars and present evidence for the possible presence of Ni IV and Fe IV in RE 2214-492. The presence of Ni and Al, together with previously reported elements, will contribute significantly to both the EUV opacity and to the apparent complexity of the UV spectra of these stars. Using Non-Local Thermodynamic Equilibrium (NLTE) model atmospheres we estimate the Ni abundances in RE 2214-492 the G191-B2B to be log(Ni/H) = -5.5 +/- 0.3 and -6.0 +/- 0.3, respectively.

  12. White light emission from an exciplex interface with a single emitting layer (Conference Presentation)

    Science.gov (United States)

    Bernal, Wilson; Perez-Gutierrez, Enrique; Agular, Andres; Barbosa G, J. Oracio C.; Maldonado, Jose L.; Meneses-Nava, Marco Antonio; Rodriguez Rivera, Mario A.; Rodriguez, Braulio

    2017-02-01

    Efficient solid state lighting devices based in inorganic emissive materials are now available in the market meanwhile for organic emissive materials still a lot of research work is in its way. [1,2] In this work a new organic emissive material based on carbazole, N-(4-Ethynylphenyl) carba-zole-d4 (6-d4), is used as electron-acceptor and commercial PEDOT:PSS as the electron-donor to obtain white emission. Besides the HOMO-LUMO levels of materials the white emission showed dependence on the films thicknesses and applied voltages. In here it is reported that by diminishing the thickness of the PEDOT:PSS layer, from 60 to 35 nm, and by keeping the derivative carbazole layer constant at 100 nm the electro-luminescence (EL) changed from emissive exciton states to the mixture of emissive exciton and exciplex states. [3] For the former thicknesses no white light was obtained meanwhile for the later the EL spectra broadened due to the emission of exciplex states. Under this condition, the best-achieved CIE coordinate was (0.31,0.33) with a driving voltage of 8 V. To lower the driving voltage of the devices a thin film of LiF was added between the derivative of carbazol and cathode but the CIE coordinates changed. The best CIE coordinates for this case were (0.29, 0.34) and (0.32, 0.37) with driving voltage of about 6.5 V. Acknowledgments: CeMie-Sol/27 (Mexico) 207450 References [1] Timothy L Dawson, Society of Dyers and Colourists, Color. Technol., 126, 1-10 (2010), doi: 10.1111/j.1478-4408.2010.00220.x [2] G. M. Farinola, R. Ragni, Journal of Solid State Lighting, 2:9 (2015), doi: 10.1186/s40539-015-0028-7. [3] E. Angioni, et al, J. Mater. Chem. C, 2016, 4, 3851, doi: 10.1039/c6tc00750c.

  13. Maximum mass ratio of am CVn-type binary systems and maximum white dwarf mass in ultra-compact x-ray binaries (addendum - Serb. Astron. J. No. 183 (2011, 63

    Directory of Open Access Journals (Sweden)

    Arbutina B.

    2012-01-01

    Full Text Available We recalculated the maximum white dwarf mass in ultra-compact X-ray binaries obtained in an earlier paper (Arbutina 2011, by taking the effects of super-Eddington accretion rate on the stability of mass transfer into account. It is found that, although the value formally remains the same (under the assumed approximations, for white dwarf masses M2 >~0.1MCh mass ratios are extremely low, implying that the result for Mmax is likely to have little if any practical relevance.

  14. Liquid-type AgInS2/ZnS quantum dot-based warm white light-emitting diodes

    Science.gov (United States)

    Lu, Min; Bai, Xue; Lin, Yijun; Ji, Changyin; Wu, Hua; Ruan, Cheng; Gao, Wenzhu; Wang, Yiding; Du, Qiaoling

    2016-09-01

    We here report a warm white light-emitting diode (WLED) by employing the red-emitting liquid layer of AgInS2/ZnS quantum dots (QDs) over the yellow-emitting YAG:Ce phosphor-based WLEDs. Compared to the commercial WLEDs, our liquid-type QD-WLEDs exhibit a color temperature of 3500 K and an improved color rendering index of 85. In addition, the experimental results indicate that the liquid structure warm white light device has a higher luminous efficiency of 72.1 lm/W and a better color stability against the extended working time in comparison to the solid-type QD-WLEDs.

  15. True Yellow Light-Emitting Diodes as Phosphor for Tunable Color-Rendering Index Laser-Based White Light

    KAUST Repository

    Janjua, Bilal

    2016-10-11

    An urgent challenge for the lighting research community is the lack of efficient optical devices emitting in between 500 and 600 nm, resulting in the “green-yellow gap”. In particular, true green (∼555 nm) and true yellow (∼590 nm), along with blue and red, constitute four technologically important colors. The III-nitride material system, being the most promising choice of platform to bridge this gap, still suffers from high dislocation density and poor crystal quality in realizing high-power, efficient devices. Particularly, the high polarization fields in the active region of such 2D quantum confined structures prevent efficient recombination of carriers. Here we demonstrate a true yellow nanowire (NW) light emitting diode (LED) with peak emission of 588 nm at 29.5 A/cm2 (75 mA in a 0.5 × 0.5 mm2 device) and a low turn-on voltage of ∼2.5 V, while having an internal quantum efficiency of 39%, and without “efficiency droop” up to an injection current density of 29.5 A/cm2. By mixing yellow light from a NW LED in reflective configuration with that of a red, green, and blue laser diode (LD), white light with a correlated color temperature of ∼6000 K and color-rendering index of 87.7 was achieved. The nitride-NW-based device offers a robust, long-term stability for realizing yellow light emitters for tunable color-rendering index solid-state lighting, on a scalable, low-cost, foundry-compatible titanium/silicon substrate, suitable for industry uptake.

  16. Models of low-mass helium white dwarfs including gravitational settling, thermal and chemical diffusion, and rotational mixing

    Science.gov (United States)

    Istrate, A. G.; Marchant, P.; Tauris, T. M.; Langer, N.; Stancliffe, R. J.; Grassitelli, L.

    2016-10-01

    A large number of extremely low-mass helium white dwarfs (ELM WDs) have been discovered in recent years. The majority of them are found in close binary systems suggesting they are formed either through a common-envelope phase or via stable mass transfer in a low-mass X-ray binary (LMXB) or a cataclysmic variable (CV) system. Here, we investigate the formation of these objects through the LMXB channel with emphasis on the proto-WD evolution in environments with different metallicities. We study for the first time the combined effects of rotational mixing and element diffusion (e.g. gravitational settling, thermal and chemical diffusion) on the evolution of proto-WDs and on the cooling properties of the resulting WDs. We present state-of-the-art binary stellar evolution models computed with MESA for metallicities of Z = 0.02, 0.01, 0.001 and 0.0002, producing WDs with masses between 0.16-0.45 M⊙. Our results confirm that element diffusion plays a significant role in the evolution of proto-WDs that experience hydrogen shell flashes. The occurrence of these flashes produces a clear dichotomy in the cooling timescales of ELM WDs, which has important consequences e.g. for the age determination of binary millisecond pulsars. In addition, we confirm that the threshold mass at which this dichotomy occurs depends on metallicity. Rotational mixing is found to counteract the effect of gravitational settling in the surface layers of young, bloated ELM proto-WDs and therefore plays a key role in determining their surface chemical abundances, I.e. the observed presence of metals in their atmospheres. We predict that these proto-WDs have helium-rich envelopes through a significant part of their lifetime. This is of great importance as helium is a crucial ingredient in the driving of the κ-mechanism suggested for the newly observed ELM proto-WD pulsators. However, we find that the number of hydrogen shell flashes and, as a result, the hydrogen envelope mass at the beginning of

  17. Enhancing the Efficiency and Contrast Ratio of White Organic Light-Emitting Diode Using Energy-Recyclable Photovoltaic Cells

    Science.gov (United States)

    Yokoyama, Meiso; Wu, Chung-Ming; Su, Shui-Hsiang

    2012-03-01

    We demonstrate that power recycling is feasible by using a semitransparent strip of Al electrode as an interconnecting layer to merge a white organic light-emitting device (WOLED) and an organic photovoltaic (OPV) cell. The device is called a photovoltaic organic light-emitting device (PVOLED). It has a glass/indium tin oxide (ITO)/copper phthalocyanine (CuPc)/4,4,4-tris(3-methyl-phenylphenylamino) triphenylamine (m-MTDATA):V2O5/2-N',N-bis(1-naphthyl)-N,N'-diphenyl-1'-biphenyl-4,4'-diamine (NPB)/4,4'-bis(carbazol-9-yl)biphenyl (CBP):bis[3,5-difluoro-2-(2-pyridyl) phenyl-(2-carboxypyridyl)] iridium(II) (FIrpic):4-(dicyanomethylene)-2-t-butyl-6 (1,1,7,7-tetramethyljulolidyl-9-enyl)-4H-pyran (DCJTB)/4,7-diphenyl-1,10-phenanthroline (BPhen)/LiF/Al/poly(3-hexylthiophene) (P3HT):[6,6]-phenyl-C61 butyric acid methyl ester (PCBM)/V2O5/Al structure. A power recycling efficiency of 10.133% is achieved using the WOLED of the PVOLED operated at 9 V and a brightness of 2110 cd/m2 when the conversion efficiency of the OPV cell is 2.3%. We found that the power recycling efficiency decreases at a high brightness and a high applied voltage owing to an increase in the input power of the WOLED. A high efficiency (18.3 cd/A) and a high contrast ratio (9.3) are obtained in the device operated at 2500 cd/m2 under an ambient illumination of 24000 lx. Reasonable white light emission with Commission Internationale De L'Eclairage (CIE) color coordinates of (0.32, 0.44) at 20 mA/cm2 and a slight color shift occur in spite of the high current density of 50 mA/cm2.

  18. Luminescence and white-light emitting luminescent sensor of tetrafluoroterephthalate-lanthanide metal-organic frameworks.

    Science.gov (United States)

    Han, Yongqiang; Yan, Pengfei; Sun, Jingwen; An, Guanghui; Yao, Xu; Li, Yuxin; Li, Guangming

    2017-04-05

    Two types of sixteen complexes 1-16, namely, {[Ln(TFBDC)1.5(H2O)]·2H2O}n [Ln = Pr (1) and Nd (2)] and {[Ln(TFBDC)1.5(H2O)2]·H2O}n [Ln = Ce (3), Pr (4), Nd (5), Sm (6), Eu (7), Gd (8), Tb (9), Dy (10), Ho (11), Er (12), Yb (13) and Lu (14)], {[Dy0.281Eu0.719(TFBDC)1.5(H2O)2]·H2O}n (15) and {[Gd0.871Eu0.103Tb0.026(TFBDC)1.5(H2O)2]·H2O}n (16), were isolated by the reaction of LnCl3·6H2O with 2,3,5,6-tetrafluoroterephthalic acid (H2TFBDC). X-ray crystallographic analysis revealed that 1 and 2 exhibit 3D network structures and complexes 3-14 feature 2D network structures formed via three different coordination modes of the ligand. Luminescence spectra revealed that these complexes exhibit broad-spectrum luminescence from the visible to the near-infrared (NIR) region. Unexpectedly, complex 1 exhibits a unique NIR luminescence pattern and the longest lifetime among reported molecular praseodymium complexes. White-light emission was realized via three approaches using the single-component complex 6 (Sm), the two-component complex 15 (Eu and Dy) and the three-component complex 16 (Eu, Tb and Gd). Complex 9 exhibits high sensitivity and selectivity in its luminescence response to benzaldehyde, which provides a promising luminescent sensor for the detection of benzaldehyde.

  19. Development of Key Technologies for White Lighting Based on Light-Emitting Diodes (LEDs)

    Energy Technology Data Exchange (ETDEWEB)

    Werner Goetz; Bill Imler; James Kim; Junko Kobayashi; Andrew Kim; Mike Krames; Rick Mann; Gerd Mueller-Mach; Anneli Munkholm; Jonathan Wierer

    2004-03-31

    This program was organized to focus on materials development issues critical to the acceleration of solid-state lighting, and was split into three major thrust areas: (1) study of dislocation density reduction for GaN grown on sapphire using 'cantilever epitaxy', and the impact of dislocation density on the performance of state-of-the-art high-power LEDs; (2) the evaluation of in situ techniques for monitoring gas phase chemistry and the properties of GaN-based layers during metal-organic vapor phase epitaxy (MOCVD), and (3) feasibility for using semiconductor nanoparticles ('quantum dots') for the down-conversion of blue or ultraviolet light to generate white light. The program included a partnership between Lumileds Lighting (epitaxy and device fabrication for high power LEDs) and Sandia National Laboratories (cantilever epitaxy, gas phase chemistry, and quantum dot synthesis). Key findings included: (1) cantilever epitaxy can provide dislocation density reduction comparable to that of more complicated approaches, but all in one epitaxial growth step; however, further improvements are required to realize significant gains in LED performance at high drive currents, (2) in situ tools can provide detailed knowledge about gas phase chemistry, and can be used to monitor and control epitaxial layer composition and temperature to provide improved yields (e.g., a fivefold increase in color targeting is demonstrated for 540nm LEDs), and (3) quantum efficiency for quantum dots is improved and maintained up to 70% in epoxy thin films, but further work is necessary to increase densification (absorption) and robustness before practical application to LEDs.

  20. Phosphors for near UV-Emitting LED's for Efficacious Generation of White Light

    Energy Technology Data Exchange (ETDEWEB)

    McKittrick, Joanna [Univ. of California, San Diego, CA (United States)

    2013-09-30

    1) We studied phosphors for near-UV (nUV) LED application as an alternative to blue LEDs currently being used in SSL systems. We have shown that nUV light sources could be very efficient at high current and will have significantly less binning at both the chip and phosphor levels. We identified phosphor blends that could yield 4100K lamps with a CRI of approximately 80 and LPWnUV,opt equal to 179 for the best performing phosphor blend. Considering the fact that the lamps were not optimized for light coupling, the results are quite impressive. The main bottleneck is an optimum blue phosphor with a peak near 440 nm with a full width half maximum of about 25 nm and a quantum efficiency of >95%. Unfortunately, that may be a very difficult task when we want to excite a phosphor at ~400 nm with a very small margin for Stokes shift. Another way is to have all the phosphors in the blend having the excitation peak at 400 nm or slightly shorter wavelength. This could lead to a white light source with no body color and optimum efficacy due to no self-absorption effects by phosphors in the blend. This is even harder than finding an ideal blue phosphor, but not necessarily impossible. 2) With the phosphor blends identified, light sources using nUV LEDs at high current could be designed with comparable efficacy to those using blue LEDs. It will allow us to design light sources with multiple wattages using the same chips and phosphor blends simply by varying the input current. In the case of blue LEDs, this is not currently possible because varying the current will lower the efficacy at high current and alter the color point. With improvement of phosphor blends, control over CRI could improve. Less binning at the chip level and also at the phosphor blend level could reduce the cost of SSL light sources. 3) This study provided a deeper understanding of phosphor characteristics needed for LEDs in general and nUV LEDs in particular. Two students received Ph.D. degrees and three

  1. The origin of the strongest magnetic fields in dwarfs

    Indian Academy of Sciences (India)

    Abstract. White dwarfs have frozen in magnetic fields ranging from below the measurable limit of about 3 × 103 to 109 G. White dwarfs with surface magnetic fields in excess of 1 MG are found as isolated single stars and relatively more often in magnetic cataclysmic variables. Some 1253 white dwarfs with a detached ...

  2. Realization of wide circadian variability by quantum dots-luminescent mesoporous silica-based white light-emitting diodes

    Science.gov (United States)

    Xie, Bin; Zhang, Jingjing; Chen, Wei; Hao, Junjie; Cheng, Yanhua; Hu, Run; Wu, Dan; Wang, Kai; Luo, Xiaobing

    2017-10-01

    Human comfort has become one of the most important criteria in modern lighting architecture. Here, we proposed a tuning strategy to enhance the non-image forming photobiological effect on the human circadian rhythm based on quantum-dots-converted white light-emitting diodes (QDs-WLEDs). We introduced the limiting variability of the circadian action factor (CAF), defined as the ratio of circadian efficiency and luminous efficiency of radiation. The CAF was deeply discussed and was found to be a function of constraining the color rendering index (CRI) and correlated color temperatures. The maximum CAF variability of QDs-WLEDs was found to be dependent on the QDs’ peak wavelength and full width at half maximum. With the optimized parameters, the packaging materials were synthesized and WLEDs were packaged. Experimental results show that at CRI > 90, the maximum CAF variability can be tuned by 3.83 times (from 0.251 at 2700 K to 0.961 at 6500 K), which implies that our approach could reduce the number of tunable channels, and could achieve wider CAF variability.

  3. Study on color-tunable phosphor-coated white light-emitting diodes with high S/P ratios

    Science.gov (United States)

    Guo, Ziquan; Shih, Tienmo; Xiao, Jingjing; Lu, Hongli; Lu, Yijun; Wu, Tingzhu; Lin, Yue; Gao, Yulin; Xiao, Hua; Chen, Zhong

    2016-03-01

    In this study, we have investigated the trade-off between the color rendering index (CRI, Ra) and the scotopic/photopic ratio (S/P) for color-tunable phosphor-coated white light-emitting diodes (LEDs) at two CRI limitations (Ra ≥ 70 and Ra ≥ 96). First, luminescent spectra measurements have been conducted to determine experimental results of Ra and S/P under various correlated color temperatures (CCTs). Then, a nonlinear programming method has been adopted for the optimization of Ra and S/P by varying spectral shapes through adjusting spectral parameters, such as peak wavelengths, full-width at half-maxima, and relative intensities. Therefore, polynomial curves of optimal S/P versus CCT at two Ra limitations have been discovered, enabling users to obtain optimal S/P under arbitrary CCTs within [2700 K, 6500 K]. In addition, a comparison study between the present work and our previous work has also been conducted at Ra = 70, and a fair agreement of optimal S/P has been observed.

  4. Synthesis and photoluminescence of EuIIin barium zinc orthosilicate: a novel green color emitting phosphor for white-LEDs.

    Science.gov (United States)

    Kasturi, S; Sivakumar, V; Varadaraju, U V

    2017-05-01

    A series of Eu 2+ -activated barium orthosilicates (BaZnSiO 4 ) were synthesized using a high-temperature solid-state reaction. A photoluminescence excitation study of Eu 2 + shows a broad absorption band in the range of 270-450 nm, with multiple absorption peak maxima (310, 350 and 400 nm) due to 4f-5d electronic transition. The emission spectra of all the compositions show green color emission (in the spectral region 450-550 nm with a peak maximum at 502 nm and a shoulder at ~ 490 nm) with appropriate Comission Internationale de l'Eclairage (CIE) color coordinates. The two emission peaks are due to the presence of Eu 2 + in two different Ba sites in the BaZnSiO 4 host lattice. The energy transfers between the Eu 2 + ions in BaZnSiO 4 host are elucidated from the critical concentration quenching data based on the electronic multipolar interaction. All Eu 2 + -activated BaZnSiO 4 phosphor materials can be efficiently excited in the ultraviolet (UV) to near UV-region (270-420 nm), making them attractive candidate as a green phosphor for solid state lighting-white light-emitting diodes. Copyright © 2016 John Wiley & Sons, Ltd.

  5. Zinc silicates with tunable morphology by surfactant assisted sonochemical route suitable for NUV excitable white light emitting diodes.

    Science.gov (United States)

    Basavaraj, R B; Nagabhushana, H; Daruka Prasad, B; Vijayakumar, G R

    2017-01-01

    The cationic surfactants assisted ultrasound route was used to prepare Dy(3+) doped Zn2SiO4 nanophosphors. The final products were characterized by powder X-ray diffraction (PXRD), ultraviolet visible spectroscopy, scanning electron microscopy, transmission electron microscopy and photoluminescence. Orthorhombic phase of Zn2SiO4:Dy(3+) (JCPDS card No. 35-1485) was confirmed from PXRD. It was evident that the morphology of spherical and broom like structures were obtained with epigallocatechin gallate (EGCG) and cetyltrimethylammonium bromide (CTAB) surfactants respectively. Further the size and agglomeration of the products were varied with surfactants concentration, sonication time, pH and sonication power. The probable formation mechanisms to obtain various micro/nano superstructures were discussed. The characteristic PL peaks were observed at 484, 574 and 666nm due to the electronic transitions (4)F9/2→(6)Hj (j=15/2, 13/2, 11/2) of Dy(3+) ions upon excited at NUV pumping wavelength of 350nm [(6)H15/2→(6)P7/2 ((4)M15/2)]. The Judd-Ofelt intensity parameters and radiative properties were estimated by using PL emission data. The photometric studies indicated that the obtained phosphors could be promising materials in white light emitting diodes (wLED's). The present synthesis route was rapid, environmentally benign, cost-effective and useful for industrial applications such as solid state lighting and display devices. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Solution-processed multilayer small-molecule light-emitting devices with high-efficiency white-light emission

    Science.gov (United States)

    Aizawa, Naoya; Pu, Yong-Jin; Watanabe, Michitake; Chiba, Takayuki; Ideta, Kazushige; Toyota, Naoki; Igarashi, Masahiro; Suzuri, Yoshiyuki; Sasabe, Hisahiro; Kido, Junji

    2014-12-01

    Recent developments in the field of π-conjugated polymers have led to considerable improvements in the performance of solution-processed organic light-emitting devices (OLEDs). However, further improving efficiency is still required to compete with other traditional light sources. Here we demonstrate efficient solution-processed multilayer OLEDs using small molecules. On the basis of estimates from a solvent resistance test of small host molecules, we demonstrate that covalent dimerization or trimerization instead of polymerization can afford conventional small host molecules sufficient resistance to alcohols used for processing upper layers. This allows us to construct multilayer OLEDs through subsequent solution-processing steps, achieving record-high power efficiencies of 36, 52 and 34 lm W-1 at 100 cd m-2 for solution-processed blue, green and white OLEDs, respectively, with stable electroluminescence spectra under varying current density. We also show that the composition at the resulting interface of solution-processed layers is a critical factor in determining device performance.

  7. White Light-Emitting Diodes Based on AgInS2/ZnS Quantum Dots with Improved Bandwidth in Visible Light Communication

    OpenAIRE

    Cheng Ruan; Yu Zhang; Min Lu; Changyin Ji; Chun Sun; Xiongbin Chen; Hongda Chen; Colvin, Vicki L.; Yu, William W.

    2016-01-01

    Quantum dot white light-emitting diodes (QD-WLEDs) were fabricated from green- and red-emitting AgInS2/ZnS core/shell QDs coated on GaN LEDs. Their electroluminescence (EL) spectra were measured at different currents, ranging from 50 mA to 400 mA, and showed good color stability. The modulation bandwidth of previously prepared QD-WLEDs was confirmed to be much wider than that of YAG:Ce phosphor-based WLEDs. These results indicate that the AgInS2/ZnS core/shell QDs are good color-converting ma...

  8. Vii. New Kr IV - VII Oscillator Strengths and an Improved Spectral Analysis of the Hot, Hydrogen-deficient Do-type White Dwarf RE 0503-289

    Science.gov (United States)

    Rauch, T.; Quinet, P.; Hoyer, D.; Werner, K.; Richter, P.; Kruk, J. W.; Demleitner, M.

    2016-01-01

    For the spectral analysis of high-resolution and high signal-to-noise (SN) spectra of hot stars, state-of-the-art non-local thermodynamic equilibrium (NLTE) model atmospheres are mandatory. These are strongly dependent on the reliability of the atomic data that is used for their calculation. Aims. New Krivvii oscillator strengths for a large number of lines enable us to construct more detailed model atoms for our NLTEmodel-atmosphere calculations. This enables us to search for additional Kr lines in observed spectra and to improve Kr abundance determinations. Methods. We calculated Krivvii oscillator strengths to consider radiative and collisional bound-bound transitions in detail in our NLTE stellar-atmosphere models for the analysis of Kr lines that are exhibited in high-resolution and high SN ultraviolet (UV)observations of the hot white dwarf RE 0503.

  9. Kinematic, Photometric, and Spectroscopic Properties of Faint White Dwarf Stars Discovered in the HALO7D Survey of the Milky Way Galaxy

    Science.gov (United States)

    Harris, Madison; Cunningham, Emily; Guhathakurta, Puragra; Cheshire, Ishani; Gupta, Nandita

    2018-01-01

    White dwarf (WD) stars represent the final phase in the life of solar-mass stars. The extreme low luminosity of WDs means that most detailed measurements of such stars are limited to samples in the immediate neighborhood of the Sun in the thin disk of the Milky Way galaxy. We present spectra, line-of-sight (LOS) velocities, and proper motions (PMs) of a sample of faint (m_V ~ 19.0–24.5) white dwarfs (WDs) from the HALO7D survey. HALO7D is a Keck II/DEIMOS spectroscopic survey of unprecedented depth (8–24 hour integrations) in the CANDELS fields of main sequence turnoff stars in the Milky Way's outer halo. Faint WD stars are rare but useful by-products of this survey. We identify the sample of WDs based on their characteristic broad spectral Balmer absorption features, and present a Bayesian method for measuring their LOS velocities. Using their broadband colors, LOS velocities and PMs measured with the Hubble Space Telescope, we identify candidate halo members among the WDs based on the predicted velocity distributions from the Besançon numerical model of stellar populations in the Milky Way galaxy. The WDs found in the HALO7D survey will yield new insights on the old stellar population associated with the Milky Way's thick disk and halo. Funding for this research was provided by the National Science Foundation and NASA/STScI. NG and IC's participation in this research was under the auspices of the Science Internship Program at the University of California Santa Cruz.

  10. Microfluidic White Organic Light-Emitting Diode Based on Integrated Patterns of Greenish-Blue and Yellow Solvent-Free Liquid Emitters

    Science.gov (United States)

    Kobayashi, Naofumi; Kasahara, Takashi; Edura, Tomohiko; Oshima, Juro; Ishimatsu, Ryoichi; Tsuwaki, Miho; Imato, Toshihiko; Shoji, Shuichi; Mizuno, Jun

    2015-01-01

    We demonstrated a novel microfluidic white organic light-emitting diode (microfluidic WOLED) based on integrated sub-100-μm-wide microchannels. Single-μm-thick SU-8-based microchannels, which were sandwiched between indium tin oxide (ITO) anode and cathode pairs, were fabricated by photolithography and heterogeneous bonding technologies. 1-Pyrenebutyric acid 2-ethylhexyl ester (PLQ) was used as a solvent-free greenish-blue liquid emitter, while 2,8-di-tert-butyl-5,11-bis(4-tert-butylphenyl)-6,12-diphenyltetracene (TBRb)-doped PLQ was applied as a yellow liquid emitter. In order to form the liquid white light-emitting layer, the greenish-blue and yellow liquid emitters were alternately injected into the integrated microchannels. The fabricated electro-microfluidic device successfully exhibited white electroluminescence (EL) emission via simultaneous greenish-blue and yellow emissions under an applied voltage of 100 V. A white emission with Commission Internationale de l’Declairage (CIE) color coordinates of (0.40, 0.42) was also obtained; the emission corresponds to warm-white light. The proposed device has potential applications in subpixels of liquid-based microdisplays and for lighting. PMID:26439164

  11. Rare-Earth Free Self-Activated Graphene Quantum Dots and Copper-Cysteamine Phosphors for Enhanced White Light-Emitting-Diodes under Single Excitation

    OpenAIRE

    Dai, Wubin; Lei, Yifeng; Xu, Man; Zhao, Pei; Zhang, Zhanhui; Zhou, Jia

    2017-01-01

    Rare-earth (RE) based phosphors are attractive due to their potential applications. However, owing to the resource issue, these kinds of phosphors are expensive and costly. On the contrary, as for phosphor-convert white light-emitting-diodes (pc-WLEDs), a solution-processed tunable warm white emission LED composite is fabricated in this study under single excitation, with both RE free phosphors graphene quantum dots (GQDs) and Copper-Cysteamine (Cu-Cy). By using microwave-assisted wet-chemica...

  12. Controlling reabsorption effect of bi-color CdSe quantum dots-based white light-emitting diodes

    Science.gov (United States)

    Siao, Cyuan-Bin; Chung, Shu-Ru; Wang, Kuan-Wen

    2017-08-01

    The colloidal semiconductor quantum dots (QDs) have the potentials to be used in white light-emitting diode (WLED) as a down-converting component to replace incandescent lamps, because the traditional WLED composed of Y3Al5O12:Ce3+ (YAG:Ce) phosphor lack of red color emissions and shows low color quality. Among various QDs, CdSe has been extensively studied because it possesses attractive characteristics such as high quantum yields (QYs), narrow emission spectral bandwidth, as well as size-tunable optical characteristics. However, in order to enhance the color rendering index (CRI) of WLED, blending materials with different emission wavelengths has been used frequently. Unfortunately, these procedures are complex and time-consuming, and the emission energy of smaller QDs can be reabsorbed by larger QDs, resulting in decreasing the excitation intensity in yellowish-green region. Therefore, in this study, in order to decrease the reabsorption effect and to simplify the procedures, we have demonstrated a facile thermal pyrolyzed route to prepare bicolor CdSe QDs with dual-wavelengths. The emission wavelengths, particle sizes, and QYs of QDs can be tuned from 537/595 to 537/602 nm, 2.59/3.92 to 2.59/4.01 nm, and 27 to 40 %, for GR1 to 3 samples, respectively when the amount of Se precursor is decreased from 1.5 to 0.75 mmol. Meanwhile, the area ratio of green to red (Ag/Ar) in fluorescence spectra is gradually increased, due to the increase in growth rate, and decrease in nuclei formation in red emission. The GR1, GR2, and GR3 QDs are then encapsulated by convert types to form the LED, in which the QDs are deposited on the blue-emitting InGaN LED chip (λem = 450 nm). After encapsulation, the devices properties of Commission International d'Eclairage (CIE) chromaticity and Ag/Ar area ratio are (0.40, 0.24), 0.28/1, (0.40, 0.31), 0.52/1, and (0.40, 0.38), 1.02/1, respectively for GR1, GR2, and GR3. The results show that the green emission intensity are strongly

  13. Energy Transfer between Conjugated Colloidal Ga2O3 and CdSe/CdS Core/Shell Nanocrystals for White Light Emitting Applications

    Directory of Open Access Journals (Sweden)

    Paul C. Stanish

    2016-02-01

    Full Text Available Developing solid state materials capable of generating homogeneous white light in an energy efficient and resource-sustainable way is central to the design of new and improved devices for various lighting applications. Most currently-used phosphors depend on strategically important rare earth elements, and rely on a multicomponent approach, which produces sub-optimal quality white light. Here, we report the design and preparation of a colloidal white-light emitting nanocrystal conjugate. This conjugate is obtained by linking colloidal Ga2O3 and II–VI nanocrystals in the solution phase with a short bifunctional organic molecule (thioglycolic acid. The two types of nanocrystals are electronically coupled by Förster resonance energy transfer owing to the short separation between Ga2O3 (energy donor and core/shell CdSe/CdS (energy acceptor nanocrystals, and the spectral overlap between the photoluminescence of the donor and the absorption of the acceptor. Using steady state and time-resolved photoluminescence spectroscopies, we quantified the contribution of the energy transfer to the photoluminescence spectral power distribution and the corresponding chromaticity of this nanocrystal conjugate. Quantitative understanding of this new system allows for tuning of the emission color and the design of quasi-single white light emitting inorganic phosphors without the use of rare-earth elements.

  14. Antireflective sub-wavelength structures for improvement of the extraction efficiency and color rendering index of monolithic white light-emitting diode

    DEFF Research Database (Denmark)

    Ou, Yiyu; Corell, Dennis Dan; Dam-Hansen, Carsten

    2011-01-01

    (CRI) and the correlated color temperature (CCT) of the monolithic white LED have been demonstrated. The CRI of the monolithic white LED could be improved from 92.68 to around 94 by applying a cylinder structure, and the CCT could be modified in a very large range with appropriate design......We have theoretically investigated the influence of antireflective sub-wavelength structures on a monolithic white light-emitting diode (LED). The simulation is based on the rigorous coupled wave analysis (RCWA) algorithm, and both cylinder and moth-eye structures have been studied in the work. Our...... simulation results show that a moth-eye structure enhances the light extraction efficiency over the entire visible light range with an extraction efficiency enhancement of up to 26 %. Also for the first time to our best knowledge, the influence of sub-wavelength structures on both the color rendering index...

  15. Effect of gold wire bonding process on angular correlated color temperature uniformity of white light-emitting diode

    National Research Council Canada - National Science Library

    Wu, Bulong; Luo, Xiaobing; Zheng, Huai; Liu, Sheng

    2011-01-01

    Gold wire bonding is an important packaging process of lighting emitting diode (LED). In this work, we studied the effect of gold wire bonding on the angular uniformity of correlated color temperature...

  16. Flexible White Organic Light-Emitting Diodes Based on Single-Walled Carbon Nanotube:Poly(3,4-ethylenedioxythiophene)/Poly(styrene sulfonate) Transparent Conducting Film

    Science.gov (United States)

    Zhang, Beibei; Li, Fushan; Lin, Zhixiao; Wu, Chaoxing; Guo, Tailiang; Liu, Wenbin; Su, Yang; Du, Jinhong

    2012-07-01

    Single-walled carbon nanotube:poly(3,4-ethylenedioxythiophene)/poly(styrene sulfonate) hybrid film (SWCNT:PEDOT/PSS) hybrid conducting film was obtained by using spray-coating technique, based on which a white flexible organic light emitting diode (FOLED) was fabricated with the structure of SWCNT:PEDOT/PSS/N,N-diphenyl-N,N-bis(1-napthyl)-1,1-biphenyl-4,4-diamine/5,6,11,12-tetraphenylnaphthacene:4,4'-bis(2,2'-diphenylvinyl)-1,1'-biphenyl/4,7-diphenyl-1,10-phenanthroline/LiF/Al. The hybrid film exhibited superior surface morphology, electrical conductivity to the pure SWCNT network. The as-fabricated FOLED showed a stable white emission that is close to the equi-energy white point upon bending, and the light-emitting efficiency of the device was significantly improved by using the hybrid film as anode. The hybrid film holds promise for application in flexible lighting and display.

  17. Warm White Light Emitting Diodes with Gelatin-Coated AgInS2/ZnS Core/Shell Quantum Dots.

    Science.gov (United States)

    Kang, Xiaojiao; Yang, Yanchun; Wang, Lan; Wei, Song; Pan, Daocheng

    2015-12-23

    Cadmium-free and water-soluble AgInS2/ZnS core/shell quantum dots (QDs) with a cost of 2.5 $/g are synthesized in an electric pressure cooker. The QD powders with different Ag/In ratios exhibit bright yellow, orange, and orange-red luminescence under UV light. Their absolute photoluminescence quantum yields (PLQYs) can reach as high as 50.5, 57, and 52%, respectively. Because gelatin is used as the capping agent, the concentrated QDs/gelatin solution can be directly utilized as phosphor for the fabrication of white light-emitting diodes (LEDs) by a simple drop-drying process without the need of resin package. Warm-white LEDs are obtained by combining orange-emitting QDs with blue InGaN chip. As-fabricated warm-white LED exhibits a luminous efficacy of 39.85 lm/W, a correlated color temperature (CCT) of 2634 K and a color rendering index (CRI) of 71 at a drive current of 20 mA. Furthermore, the electroluminescence (EL) stability of LED device and thermal stability of as-prepared QDs are evaluated.

  18. White Light-Emitting Diodes Based on AgInS2/ZnS Quantum Dots with Improved Bandwidth in Visible Light Communication

    Science.gov (United States)

    Ruan, Cheng; Zhang, Yu; Lu, Min; Ji, Changyin; Sun, Chun; Chen, Xiongbin; Chen, Hongda; Colvin, Vicki L.; Yu, William W.

    2016-01-01

    Quantum dot white light-emitting diodes (QD-WLEDs) were fabricated from green- and red-emitting AgInS2/ZnS core/shell QDs coated on GaN LEDs. Their electroluminescence (EL) spectra were measured at different currents, ranging from 50 mA to 400 mA, and showed good color stability. The modulation bandwidth of previously prepared QD-WLEDs was confirmed to be much wider than that of YAG:Ce phosphor-based WLEDs. These results indicate that the AgInS2/ZnS core/shell QDs are good color-converting materials for WLEDs and they are capable in visible light communication (VLC). PMID:28344270

  19. White Light-Emitting Diodes Based on AgInS₂/ZnS Quantum Dots with Improved Bandwidth in Visible Light Communication.

    Science.gov (United States)

    Ruan, Cheng; Zhang, Yu; Lu, Min; Ji, Changyin; Sun, Chun; Chen, Xiongbin; Chen, Hongda; Colvin, Vicki L; Yu, William W

    2016-01-08

    Quantum dot white light-emitting diodes (QD-WLEDs) were fabricated from green- and red-emitting AgInS₂/ZnS core/shell QDs coated on GaN LEDs. Their electroluminescence (EL) spectra were measured at different currents, ranging from 50 mA to 400 mA, and showed good color stability. The modulation bandwidth of previously prepared QD-WLEDs was confirmed to be much wider than that of YAG:Ce phosphor-based WLEDs. These results indicate that the AgInS₂/ZnS core/shell QDs are good color-converting materials for WLEDs and they are capable in visible light communication (VLC).

  20. White Light-Emitting Diodes Based on AgInS2/ZnS Quantum Dots with Improved Bandwidth in Visible Light Communication

    Directory of Open Access Journals (Sweden)

    Cheng Ruan

    2016-01-01

    Full Text Available Quantum dot white light-emitting diodes (QD-WLEDs were fabricated from green- and red-emitting AgInS2/ZnS core/shell QDs coated on GaN LEDs. Their electroluminescence (EL spectra were measured at different currents, ranging from 50 mA to 400 mA, and showed good color stability. The modulation bandwidth of previously prepared QD-WLEDs was confirmed to be much wider than that of YAG:Ce phosphor-based WLEDs. These results indicate that the AgInS2/ZnS core/shell QDs are good color-converting materials for WLEDs and they are capable in visible light communication (VLC.

  1. Energy transfer and thermal stability of Ce3+, Tb3+ co-doped Ca3Si2O4N2 phosphors for white light-emitting diodes

    Science.gov (United States)

    Wang, Baochen; Liu, Yan-gai; Huang, Zhaohui; Fang, Minghao

    2017-12-01

    A series of Ca3Si2O4N2:Ce3+, Tb3+ phosphors were synthesized and their phase composition and luminescence properties were investigated. Results showed that an efficient energy transfer occurred between the Ce3+ and Tb3+ ions. The thermal stability of the Ce3+ emission was dramatically enhanced upon Tb3+ doping. The mechanism was attributed to a shift of the configuration coordinate and an increased energy barrier for thermal quenching, which resulted from the enhanced rigid structure of the host. Finally, a white light emitting diode lamp was fabricated, which exhibited excellent properties. These results indicate that Ca3Si2O4N2:Ce3+, Tb3+ can serve as promising blue-green emitting phosphors for w-LEDs.

  2. Walt Disney’s Visual Interpretation of the Fairy Tales: Snow White and the Seven Dwarfs, Cinderella, and Sleeping Beauty

    OpenAIRE

    Chan, Tracy Selina

    2016-01-01

    Snow White, Cinderella, Sleeping Beauty and other classic fairy tale characters were reborn through Walt Disney’s hands. For nearly a century, his unique adaptations of European fairy tales in animated films have provoked extreme criticism and endless comparison to their literary sources. This denunciation stems from Disney’s failure to be faithful to the original narrative, thematic, and aesthetic elements we expect from the literature, implying that literature, as a form of artistic medium,...

  3. Optical efficiency enhancement in white organic light-emitting diode display with high color gamut using patterned quantum dot film and long pass filter

    Science.gov (United States)

    Kim, Hyo-Jun; Shin, Min-Ho; Kim, Young-Joo

    2016-08-01

    A new structure for white organic light-emitting diode (OLED) displays with a patterned quantum dot (QD) film and a long pass filter (LPF) was proposed and evaluated to realize both a high color gamut and high optical efficiency. Since optical efficiency is a critical parameter in white OLED displays with a high color gamut, a red or green QD film as a color-converting component and an LPF as a light-recycling component are introduced to be adjusted via the characteristics of a color filter (CF). Compared with a conventional white OLED without both a QD film and the LPF, it was confirmed experimentally that the optical powers of red and green light in a new <