WorldWideScience

Sample records for emitting diode arrays

  1. Fabrication of InGaN/GaN nanopillar light-emitting diode arrays

    DEFF Research Database (Denmark)

    Ou, Yiyu; Fadil, Ahmed; Ou, Haiyan

    Nanopillar InGaN/GaN green light-emitting diode arrays were fabricated by using self-assembled nanopatterning and dry etching process. Both internal and external quantum efficiency were increased due to strain relaxation and enhanced light extraction.......Nanopillar InGaN/GaN green light-emitting diode arrays were fabricated by using self-assembled nanopatterning and dry etching process. Both internal and external quantum efficiency were increased due to strain relaxation and enhanced light extraction....

  2. Slanted n-ZnO/p-GaN nanorod arrays light-emitting diodes grown by oblique-angle deposition

    Directory of Open Access Journals (Sweden)

    Ya-Ju Lee

    2014-05-01

    Full Text Available High-efficient ZnO-based nanorod array light-emitting diodes (LEDs were grown by an oblique-angle deposition scheme. Due to the shadowing effect, the inclined ZnO vapor-flow was selectively deposited on the tip surfaces of pre-fabricated p-GaN nanorod arrays, resulting in the formation of nanosized heterojunctions. The LED architecture composed of the slanted n-ZnO film on p-GaN nanorod arrays exhibits a well-behaving current rectification of junction diode with low turn-on voltage of 4.7 V, and stably emits bluish-white luminescence with dominant peak of 390 nm under the operation of forward injection currents. In general, as the device fabrication does not involve passivation of using a polymer or sophisticated material growth techniques, the revealed scheme might be readily applied on other kinds of nanoscale optoelectronic devices.

  3. Design of micro, flexible light-emitting diode arrays and fabrication of flexible electrodes

    International Nuclear Information System (INIS)

    Gao, Dan; Wang, Weibiao; Liang, Zhongzhu; Liang, Jingqiu; Qin, Yuxin; Lv, Jinguang

    2016-01-01

    In this study, we design micro, flexible light-emitting diode (LED) array devices. Using theoretical calculations and finite element simulations, we analyze the deformation of the conventional single electrode bar. Through structure optimization, we obtain a three-dimensional (3D), chain-shaped electrode structure, which has a greater bending degree. The optimized electrodes not only have a bigger bend but can also be made to spin. When the supporting body is made of polydimethylsiloxane (PDMS), the maximum bending degree of the micro, flexible LED arrays (4  ×  1 arrays) was approximately 230 µ m; this was obtained using the finite element method. The device (4  ×  1 arrays) can stretch to 15%. This paper describes the fabrication of micro, flexible LED arrays using microelectromechancial (MEMS) technology combined with electroplating technology. Specifically, the isolated grooves are made by dry etching which can isolate and protect the light-emitting units. A combination of MEMS technology and wet etching is used to fabricate the large size spacing. (paper)

  4. Micro-light-emitting-diode array with dual functions of visible light communication and illumination

    International Nuclear Information System (INIS)

    Huang Yong; Guo Zhi-You; Sun Hui-Qing; Huang Hong-Yong

    2017-01-01

    We demonstrate high-speed blue 4 × 4 micro-light-emitting-diode (LED) arrays with 14 light-emitting units (two light-emitting units are used as the positive and negative electrodes for power supply, respectively) comprising multiple quantum wells formed of GaN epitaxial layers grown on a sapphire substrate, and experimentally test their applicability for being used as VLC transmitters and illuminations. The micro-LED arrays provide a maximum −3-dB frequency response of 60.5 MHz with a smooth frequency curve from 1 MHz to 500 MHz for an optical output power of 165 mW at an injection current of 30 mA, which, to our knowledge, is the highest response frequency ever reported for blue GaN-based LEDs operating at that level of optical output power. The relationship between the frequency and size of the device single pixel diameter reveals the relationship between the response frequency and diffusion capacitance of the device. (paper)

  5. Array of organic thin film transistors integrated with organic light emitting diodes on a plastic substrate

    International Nuclear Information System (INIS)

    Ryu, Gi-Seong; Choe, Ki-Beom; Song, Chung-Kun

    2006-01-01

    In order to demonstrate the possible application of an organic thin film transistor (OTFT) to a flexible active matrix organic light emitting diode (OLED) an array of 64 x 64 pixels was fabricated on a 4-in. size poly-ethylene-terephehalate substrate. Each pixel was composed of one OTFT integrated with one OLED. OTFTs successfully drove OLEDs by varying current in a wide range and some images were displayed on the array by emitting green light. The OTFTs used poly(4-vinylphenol) for the gate and pentacene for the semiconductor taking account compatibility with the PET substrate. The average mobility in the array was 0.2 cm 2 /V.s, which was reduced from 1.0 cm 2 /V.s in a single OTFT, and its variation over the entire substrate was 10%

  6. Tunable light extraction efficiency of GaN light emitting diodes by ZnO nanorod arrays

    International Nuclear Information System (INIS)

    Chao, C H; Lin, W H; Lin, C F; Chen, C H; Changjean, C H

    2009-01-01

    We report the influence of ZnO nanorod arrays (NRAs) on the light extraction efficiency of GaN light emitting diodes (LEDs). Our investigation indicates that the output light intensity of the device exhibits a periodic oscillation as a function of the rod length. The variation of light extraction efficiency is caused by the Fabry–Perot resonance of the film composed of the nanorods. The theoretical analysis shows a good agreement with the measurement results. Our study reveals a method to control the output light extraction efficiency of GaN LEDs via a simple solution-based synthesized ZnO NRAs

  7. Top-emitting organic light-emitting diodes.

    Science.gov (United States)

    Hofmann, Simone; Thomschke, Michael; Lüssem, Björn; Leo, Karl

    2011-11-07

    We review top-emitting organic light-emitting diodes (OLEDs), which are beneficial for lighting and display applications, where non-transparent substrates are used. The optical effects of the microcavity structure as well as the loss mechanisms are discussed. Outcoupling techniques and the work on white top-emitting OLEDs are summarized. We discuss the power dissipation spectra for a monochrome and a white top-emitting OLED and give quantitative reports on the loss channels. Furthermore, the development of inverted top-emitting OLEDs is described.

  8. Temperature-controlled transfer and self-wiring for multi-color light-emitting diode arrays

    International Nuclear Information System (INIS)

    Onoe, Hiroaki; Nakai, Akihito; Iwase, Eiji; Matsumoto, Kiyoshi; Shimoyama, Isao

    2009-01-01

    We propose an integration method for arranging light-emitting diode (LED) bare chips on a flexible substrate for multi-color inorganic LED displays. The LED bare chips (240 µm × 240 µm × 75 µm), which were diced on an adhesive sheet by the manufacturer, were transferred to a flexible polyimide substrate by our temperature-controlled transfer (TCT) and self-wiring (SW) processes. In these processes, low-melting point solder (LMPS) and poly-(ethylene glycol) (PEG) worked as adhesive layers for the LED chips during the TCT processes, and the adhesion force of the LMPS and PEG layers was controlled by changing the temperature to melt and solidify the layers. After the TCT processes, electrical connection between the transferred LED chips and the flexible substrate was automatically established via the SW process, by using the surface tension of the melted LMPS. This TCT/SW method enabled us to (i) handle arrays of commercially available bare chips, (ii) arrange multiple types of chips on the circuit substrate by simply repeating the TCT processes and (iii) establish electrical connection between the chips and the substrate automatically. Applying this transfer printing and wiring method, we experimentally demonstrated a 5-by-5 flexible LED array and a two-color (blue and green) LED array

  9. Optical diffraction tomography microscopy with transport of intensity equation using a light-emitting diode array

    Science.gov (United States)

    Li, Jiaji; Chen, Qian; Zhang, Jialin; Zhang, Zhao; Zhang, Yan; Zuo, Chao

    2017-08-01

    Optical diffraction tomography (ODT) is an effective label-free technique for quantitatively refractive index imaging, which enables long-term monitoring of the internal three-dimensional (3D) structures and molecular composition of biological cells with minimal perturbation. However, existing optical tomographic methods generally rely on interferometric configuration for phase measurement and sophisticated mechanical systems for sample rotation or beam scanning. Thereby, the measurement is suspect to phase error coming from the coherent speckle, environmental vibrations, and mechanical error during data acquisition process. To overcome these limitations, we present a new ODT technique based on non-interferometric phase retrieval and programmable illumination emitting from a light-emitting diode (LED) array. The experimental system is built based on a traditional bright field microscope, with the light source replaced by a programmable LED array, which provides angle-variable quasi-monochromatic illumination with an angular coverage of ±37 degrees in both x and y directions (corresponding to an illumination numerical aperture of ∼0.6). Transport of intensity equation (TIE) is utilized to recover the phase at different illumination angles, and the refractive index distribution is reconstructed based on the ODT framework under first Rytov approximation. The missing-cone problem in ODT is addressed by using the iterative non-negative constraint algorithm, and the misalignment of the LED array is further numerically corrected to improve the accuracy of refractive index quantification. Experiments on polystyrene beads and thick biological specimens show that the proposed approach allows accurate refractive index reconstruction while greatly reduced the system complexity and environmental sensitivity compared to conventional interferometric ODT approaches.

  10. Computational diffraction tomographic microscopy with transport of intensity equation using a light-emitting diode array

    Science.gov (United States)

    Li, Jiaji; Chen, Qian; Zhang, Jialin; Zuo, Chao

    2017-10-01

    Optical diffraction tomography (ODT) is an effective label-free technique for quantitatively refractive index imaging, which enables long-term monitoring of the internal three-dimensional (3D) structures and molecular composition of biological cells with minimal perturbation. However, existing optical tomographic methods generally rely on interferometric configuration for phase measurement and sophisticated mechanical systems for sample rotation or beam scanning. Thereby, the measurement is suspect to phase error coming from the coherent speckle, environmental vibrations, and mechanical error during data acquisition process. To overcome these limitations, we present a new ODT technique based on non-interferometric phase retrieval and programmable illumination emitting from a light-emitting diode (LED) array. The experimental system is built based on a traditional bright field microscope, with the light source replaced by a programmable LED array, which provides angle-variable quasi-monochromatic illumination with an angular coverage of +/-37 degrees in both x and y directions (corresponding to an illumination numerical aperture of ˜ 0.6). Transport of intensity equation (TIE) is utilized to recover the phase at different illumination angles, and the refractive index distribution is reconstructed based on the ODT framework under first Rytov approximation. The missing-cone problem in ODT is addressed by using the iterative non-negative constraint algorithm, and the misalignment of the LED array is further numerically corrected to improve the accuracy of refractive index quantification. Experiments on polystyrene beads and thick biological specimens show that the proposed approach allows accurate refractive index reconstruction while greatly reduced the system complexity and environmental sensitivity compared to conventional interferometric ODT approaches.

  11. Enhancement of hole injection and electroluminescence by ordered Ag nanodot array on indium tin oxide anode in organic light emitting diode

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Mi, E-mail: jmnano00@gmail.com, E-mail: Dockha@kist.re.kr [Sensor System Research Center, Korea Institute of Science and Technology, Seoul 136-791 (Korea, Republic of); School of Mechanical Systems Engineering, Kookmin University, Seoul 136-702 (Korea, Republic of); Mo Yoon, Dang; Kim, Miyoung [Korea Printed Electronics Center, Korea Electronics Technology Institute, Jeollabuk-do, 561-844 (Korea, Republic of); Kim, Chulki; Lee, Taikjin; Hun Kim, Jae; Lee, Seok; Woo, Deokha, E-mail: jmnano00@gmail.com, E-mail: Dockha@kist.re.kr [Sensor System Research Center, Korea Institute of Science and Technology, Seoul 136-791 (Korea, Republic of); Lim, Si-Hyung [School of Mechanical Systems Engineering, Kookmin University, Seoul 136-702 (Korea, Republic of)

    2014-07-07

    We report the enhancement of hole injection and electroluminescence (EL) in an organic light emitting diode (OLED) with an ordered Ag nanodot array on indium-tin-oxide (ITO) anode. Until now, most researches have focused on the improved performance of OLEDs by plasmonic effects of metal nanoparticles due to the difficulty in fabricating metal nanodot arrays. A well-ordered Ag nanodot array is fabricated on the ITO anode of OLED using the nanoporous alumina as an evaporation mask. The OLED device with Ag nanodot arrays on the ITO anode shows higher current density and EL enhancement than the one without any nano-structure. These results suggest that the Ag nanodot array with the plasmonic effect has potential as one of attractive approaches to enhance the hole injection and EL in the application of the OLEDs.

  12. Enhanced cathodoluminescence from InGaN/GaN light-emitting diodes with nanohole arrays fabricated using anodic aluminum-oxide masks

    International Nuclear Information System (INIS)

    Doan, M. H.; Lim, H.; Lee, J. J.; Nguyen, D. H.; Rotermund, F.; Mho, S. I.

    2010-01-01

    Blue InGaN/GaN light emitting diodes (LEDs) have been grown by using low-pressure metalorganic chemical vapor deposition. To improve the light extraction from the LEDs, we have fabricated nanohole arrays on top of the p-GaN layer by using anodic aluminum oxides as etch masks. The AAO membranes are fabricated by using a two-step anodization process in an oxalic-acid solution. Atomic force microscopy and field emission scanning electron microscopy show that the nanohole arrays formed on top of the LEDs have a quasi-hexagonal geometry. The cathodoluminescence measurements are used to investigate the light extraction from the nanopatterned samples. Cathodoluminescence intensity of a LED with the nanohole array is enhanced up to 10 times compared to that of a sample without a nanohole array. We also investigated the spatially-resolved luminescence profile around the nanoholes.

  13. Bicolor Light-Emitting Diode Based on Zinc Oxide Nanorod Arrays and Poly(2-methoxy,5-octoxy)-1,4-phenylenevinylene

    Science.gov (United States)

    Song, Jizhong; He, Ying; Chen, Jie; Zhu, Di; Pan, Zhaodong; Zhang, Yaofei; Wang, Jun-An

    2012-03-01

    The current study reports a novel inorganic/organic light-emitting diode (LED), consisting of zinc oxide (ZnO) nanorod arrays and poly(2-methoxy, 5-octoxy)-1,4-phenylenevinylene (MOPPV). ZnO nanorod arrays passivated using polyacrylamide (PAM) with 70 nm diameter were successfully prepared by a simple polymer-assisted chemical method. Enhancement of the ZnO defect emission is caused by PAM passivation, as observed in photoluminescence spectra. Infrared absorption spectra reveal that PAM is chemically or physically adsorbed on the surfaces of ZnO nanorod arrays. The electroluminescence (EL) spectrum shows bluish light at 406 nm from ZnO transition emission, and light emission with center at 600 nm from exciton emission in MOPPV. The potential EL mechanism is electron transition to zinc vacancy in PAM/ZnO nanorod arrays, and exciton radiation luminescence in MOPPV film. This novel PAM/ZnO-MOPPV device may be helpful to promote development of multicolor LEDs.

  14. Improving the optical performance of InGaN light-emitting diodes by altering light reflection and refraction with triangular air prism arrays.

    Science.gov (United States)

    Kang, Ji Hye; Kim, Hyung Gu; Chandramohan, S; Kim, Hyun Kyu; Kim, Hee Yun; Ryu, Jae Hyoung; Park, Young Jae; Beak, Yun Seon; Lee, Jeong-Sik; Park, Joong Seo; Lysak, Volodymyr V; Hong, Chang-Hee

    2012-01-01

    The effect of triangular air prism (TAP) arrays with different distance-to-width (d/w) ratios on the enhancement of light extraction efficiency (LEE) of InGaN light-emitting diodes (LEDs) is investigated. The TAP arrays embedded at the sapphire/GaN interface act as light reflectors and refractors, and thereby improve the light output power due to the redirection of light into escape cones on both the front and back sides of the LED. Enhancement in radiometric power as high as 117% and far-field angle as low as 129° are realized with a compact arrangement of TAP arrays compared with that of a conventional LED made without TAP arrays under an injection current of 20 mA. © 2012 Optical Society of America

  15. Fabrication, characterization and applications of flexible vertical InGaN micro-light emitting diode arrays.

    Science.gov (United States)

    Tian, Pengfei; McKendry, Jonathan J D; Gu, Erdan; Chen, Zhizhong; Sun, Yongjian; Zhang, Guoyi; Dawson, Martin D; Liu, Ran

    2016-01-11

    Flexible vertical InGaN micro-light emitting diode (micro-LED) arrays have been fabricated and characterized for potential applications in flexible micro-displays and visible light communication. The LED epitaxial layers were transferred from initial sapphire substrates to flexible AuSn substrates by metal bonding and laser lift off techniques. The current versus voltage characteristics of flexible micro-LEDs degraded after bending the devices, but the electroluminescence spectra show little shift even under a very small bending radius 3 mm. The high thermal conductivity of flexible metal substrates enables high thermal saturation current density and high light output power of the flexible micro-LEDs, benefiting the potential applications in flexible high-brightness micro-displays and high-speed visible light communication. We have achieved ~40 MHz modulation bandwidth and 120 Mbit/s data transmission speed for a typical flexible micro-LED.

  16. Operating scheme for the light-emitting diode array of a volumetric display that exhibits multiple full-color dynamic images

    Science.gov (United States)

    Hirayama, Ryuji; Shiraki, Atsushi; Nakayama, Hirotaka; Kakue, Takashi; Shimobaba, Tomoyoshi; Ito, Tomoyoshi

    2017-07-01

    We designed and developed a control circuit for a three-dimensional (3-D) light-emitting diode (LED) array to be used in volumetric displays exhibiting full-color dynamic 3-D images. The circuit was implemented on a field-programmable gate array; therefore, pulse-width modulation, which requires high-speed processing, could be operated in real time. We experimentally evaluated the developed system by measuring the luminance of an LED with varying input and confirmed that the system works appropriately. In addition, we demonstrated that the volumetric display exhibits different full-color dynamic two-dimensional images in two orthogonal directions. Each of the exhibited images could be obtained only from the prescribed viewpoint. Such directional characteristics of the system are beneficial for applications, including digital signage, security systems, art, and amusement.

  17. Enhanced Emission Efficiency of Size-Controlled InGaN/GaN Green Nanopillar Light-Emitting Diodes

    DEFF Research Database (Denmark)

    Ou, Yiyu; Iida, Daisuke; Fadil, Ahmed

    2016-01-01

    Nanopillar InGaN/GaN green light-emitting diode (LED) arrays were fabricated by self-assembled Au nanoparticles patterning and dry etching process. Structure size and density of the nanopillar arrays have been modified by varying the Au film thickness in the nanopatterning process. Fabricated...

  18. Light-Emitting Diode-Based Illumination System for In Vitro Photodynamic Therapy

    OpenAIRE

    Defu Chen; Huifen Zheng; Zhiyong Huang; Huiyun Lin; Zhidong Ke; Shusen Xie; Buhong Li

    2012-01-01

    The aim of this study is to develop a light-emitting diode- (LED-) based illumination system that can be used as an alternative light source for in vitro photodynamic therapy (PDT). This illumination system includes a red LED array composed of 70 LEDs centered at 643 nm, an air-cooling unit, and a specific-designed case. The irradiance as a function of the irradiation distance between the LED array and the sample, the homogeneity and stability of irradiation, and the effect of long-time irrad...

  19. Light Converting Inorganic Phosphors for White Light-Emitting Diodes

    OpenAIRE

    Chen, Lei; Lin, Chun-Che; Yeh, Chiao-Wen; Liu, Ru-Shi

    2010-01-01

    White light-emitting diodes (WLEDs) have matched the emission efficiency of florescent lights and will rapidly spread as light source for homes and offices in the next 5 to 10 years. WLEDs provide a light element having a semiconductor light emitting layer (blue or near-ultraviolet (nUV) LEDs) and photoluminescence phosphors. These solid-state LED lamps, rather than organic light emitting diode (OLED) or polymer light-emitting diode (PLED), have a number of advantages over conventional incand...

  20. A High Power InGaN-Based Blue-Violet Laser Diode Array with a Broad-Area Stripe

    International Nuclear Information System (INIS)

    Chen Ping; Zhao De-Gang; Feng Mei-Xin; Jiang De-Sheng; Liu Zong-Shun; Yang Hui; Zhang Li-Qun; Li De-Yao; Liu Jian-Ping; Wang Hui; Zhu Jian-Jun; Zhang Shu-Ming; Zhang Bao-Shun

    2013-01-01

    An array of high power InGaN/GaN multi-quantum-well laser diodes with a broad waveguide is fabricated. The laser diode structure is grown on a GaN substrate by metal-organic chemical vapor deposition. The laser diode array consists of five emitter stripes which share common electrodes on one laser chip. The electrical and optical characteristics of the laser diode array are investigated under the pulse current injection with 10kHz frequency and 100 ns pulse width. The laser diode array emits at the wavelength of 409 nm, which is located in the blue-violet region, and the threshold current is 2.9 A. The maximum output light peak power is measured to be 7.5 W at the wavelength of 411.8 nm under the current of 25 A

  1. Laterally injected light-emitting diode and laser diode

    Science.gov (United States)

    Miller, Mary A.; Crawford, Mary H.; Allerman, Andrew A.

    2015-06-16

    A p-type superlattice is used to laterally inject holes into an III-nitride multiple quantum well active layer, enabling efficient light extraction from the active area. Laterally-injected light-emitting diodes and laser diodes can enable brighter, more efficient devices that impact a wide range of wavelengths and applications. For UV wavelengths, applications include fluorescence-based biological sensing, epoxy curing, and water purification. For visible devices, applications include solid state lighting and projection systems.

  2. Perovskite Materials for Light-Emitting Diodes and Lasers.

    Science.gov (United States)

    Veldhuis, Sjoerd A; Boix, Pablo P; Yantara, Natalia; Li, Mingjie; Sum, Tze Chien; Mathews, Nripan; Mhaisalkar, Subodh G

    2016-08-01

    Organic-inorganic hybrid perovskites have cemented their position as an exceptional class of optoelectronic materials thanks to record photovoltaic efficiencies of 22.1%, as well as promising demonstrations of light-emitting diodes, lasers, and light-emitting transistors. Perovskite materials with photoluminescence quantum yields close to 100% and perovskite light-emitting diodes with external quantum efficiencies of 8% and current efficiencies of 43 cd A(-1) have been achieved. Although perovskite light-emitting devices are yet to become industrially relevant, in merely two years these devices have achieved the brightness and efficiencies that organic light-emitting diodes accomplished in two decades. Further advances will rely decisively on the multitude of compositional, structural variants that enable the formation of lower-dimensionality layered and three-dimensional perovskites, nanostructures, charge-transport materials, and device processing with architectural innovations. Here, the rapid advancements in perovskite light-emitting devices and lasers are reviewed. The key challenges in materials development, device fabrication, operational stability are addressed, and an outlook is presented that will address market viability of perovskite light-emitting devices. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Highly efficient silicon light emitting diode

    NARCIS (Netherlands)

    Le Minh, P.; Holleman, J.; Wallinga, Hans

    2002-01-01

    In this paper, we describe the fabrication, using standard silicon processing techniques, of silicon light-emitting diodes (LED) that efficiently emit photons with energy around the silicon bandgap. The improved efficiency had been explained by the spatial confinement of charge carriers due to a

  4. Morphologies and optical and electrical properties of InGaN/GaN micro-square array light-emitting diode chips.

    Science.gov (United States)

    Han, Dan; Ma, Shufang; Jia, Zhigang; Liu, Peizhi; Jia, Wei; Shang, Lin; Zhai, Guangmei; Xu, Bingshe

    2018-04-10

    InGaN/GaN micro-square array light-emitting diode (LED) chips (micro-chips) have been prepared via the focused ion beam (FIB) etching technique, which can not only reduce ohmic contact degradation but also control the aspect ratio precisely in three-dimensional (3D) structure LED (3D-LED) device fabrication. The effects of FIB beam current and micro-square array depth on morphologies and optical and electrical properties of the micro-chips have been studied. Our results show that sidewall surface morphology and optical and electrical properties of the micro-chips degrade with increased beam current. After potassium hydroxide etching with different times, an optimal current-voltage and luminescence performance can be obtained. Combining the results of cathodoluminescence mappings and light output-current characteristics, the light extraction efficiency of the micro-chips is reduced as FIB etch depth increases. The mechanisms of micro-square depth on light extraction have been revealed by 3D finite difference time domain.

  5. Monolithic Flexible Vertical GaN Light-Emitting Diodes for a Transparent Wireless Brain Optical Stimulator.

    Science.gov (United States)

    Lee, Han Eol; Choi, JeHyuk; Lee, Seung Hyun; Jeong, Minju; Shin, Jung Ho; Joe, Daniel J; Kim, DoHyun; Kim, Chang Wan; Park, Jung Hwan; Lee, Jae Hee; Kim, Daesoo; Shin, Chan-Soo; Lee, Keon Jae

    2018-05-18

    Flexible inorganic-based micro light-emitting diodes (µLEDs) are emerging as a significant technology for flexible displays, which is an important area for bilateral visual communication in the upcoming Internet of Things era. Conventional flexible lateral µLEDs have been investigated by several researchers, but still have significant issues of power consumption, thermal stability, lifetime, and light-extraction efficiency on plastics. Here, high-performance flexible vertical GaN light-emitting diodes (LEDs) are demonstrated by silver nanowire networks and monolithic fabrication. Transparent, ultrathin GaN LED arrays adhere to a human fingernail and stably glow without any mechanical deformation. Experimental studies provide outstanding characteristics of the flexible vertical μLEDs (f-VLEDs) with high optical power (30 mW mm -2 ), long lifetime (≈12 years), and good thermal/mechanical stability (100 000 bending/unbending cycles). The wireless light-emitting system on the human skin is successfully realized by transferring the electrical power f-VLED. Finally, the high-density GaN f-VLED arrays are inserted onto a living mouse cortex and operated without significant histological damage of brain. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Electrically driven surface plasmon light-emitting diodes

    DEFF Research Database (Denmark)

    Fadil, Ahmed; Ou, Yiyu; Iida, Daisuke

    We investigate device performance of GaN light-emitting diodes (LEDs) with a 30-nm p-GaN layer. The metallization used to separate the p-contact from plasmonic metals, reveals limitations on current spreading which reduces surface plasmonic enhancement.......We investigate device performance of GaN light-emitting diodes (LEDs) with a 30-nm p-GaN layer. The metallization used to separate the p-contact from plasmonic metals, reveals limitations on current spreading which reduces surface plasmonic enhancement....

  7. Efficient and bright organic light-emitting diodes on single-layer graphene electrodes

    Science.gov (United States)

    Li, Ning; Oida, Satoshi; Tulevski, George S.; Han, Shu-Jen; Hannon, James B.; Sadana, Devendra K.; Chen, Tze-Chiang

    2013-08-01

    Organic light-emitting diodes are emerging as leading technologies for both high quality display and lighting. However, the transparent conductive electrode used in the current organic light-emitting diode technologies increases the overall cost and has limited bendability for future flexible applications. Here we use single-layer graphene as an alternative flexible transparent conductor, yielding white organic light-emitting diodes with brightness and efficiency sufficient for general lighting. The performance improvement is attributed to the device structure, which allows direct hole injection from the single-layer graphene anode into the light-emitting layers, reducing carrier trapping induced efficiency roll-off. By employing a light out-coupling structure, phosphorescent green organic light-emitting diodes exhibit external quantum efficiency >60%, while phosphorescent white organic light-emitting diodes exhibit external quantum efficiency >45% at 10,000 cd m-2 with colour rendering index of 85. The power efficiency of white organic light-emitting diodes reaches 80 lm W-1 at 3,000 cd m-2, comparable to the most efficient lighting technologies.

  8. Amber light-emitting diode comprising a group III-nitride nanowire active region

    Science.gov (United States)

    Wang, George T.; Li, Qiming; Wierer, Jr., Jonathan J.; Koleske, Daniel

    2014-07-22

    A temperature stable (color and efficiency) III-nitride based amber (585 nm) light-emitting diode is based on a novel hybrid nanowire-planar structure. The arrays of GaN nanowires enable radial InGaN/GaN quantum well LED structures with high indium content and high material quality. The high efficiency and temperature stable direct yellow and red phosphor-free emitters enable high efficiency white LEDs based on the RGYB color-mixing approach.

  9. Organic light emitting diode with surface modification layer

    Science.gov (United States)

    Basil, John D.; Bhandari, Abhinav; Buhay, Harry; Arbab, Mehran; Marietti, Gary J.

    2017-09-12

    An organic light emitting diode (10) includes a substrate (12) having a first surface (14) and a second surface (16), a first electrode (32), and a second electrode (38). An emissive layer (36) is located between the first electrode (32) and the second electrode (38). The organic light emitting diode (10) further includes a surface modification layer (18). The surface modification layer (18) includes a non-planar surface (30, 52).

  10. Silicon monolithic microchannel-cooled laser diode array

    International Nuclear Information System (INIS)

    Skidmore, J. A.; Freitas, B. L.; Crawford, J.; Satariano, J.; Utterback, E.; DiMercurio, L.; Cutter, K.; Sutton, S.

    2000-01-01

    A monolithic microchannel-cooled laser diode array is demonstrated that allows multiple diode-bar mounting with negligible thermal cross talk. The heat sink comprises two main components: a wet-etched Si layer that is anodically bonded to a machined glass block. The continuous wave (cw) thermal resistance of the 10 bar diode array is 0.032 degree sign C/W, which matches the performance of discrete microchannel-cooled arrays. Up to 1.5 kW/cm 2 is achieved cw at an emission wavelength of ∼808 nm. Collimation of a diode array using a monolithic lens frame produced a 7.5 mrad divergence angle by a single active alignment. This diode array offers high average power/brightness in a simple, rugged, scalable architecture that is suitable for large two-dimensional areas. (c) 2000 American Institute of Physics

  11. Doping of nano structures for light emitting diode applications

    International Nuclear Information System (INIS)

    Han, S. W.; Yoo, H. J.; Jeong, E. S.; Park, S. H.

    2006-04-01

    Lighting Emitting Diodes (LED) have been widely studied and developed for practical applications and the LED market in the world have been dramatically expended. GaN-based LEDs are mostly used. However, for diverse application, we should first solved several problems in the GaN-based LEDs, thermal heating effects and low light emitting efficiency. The thermal heating effects reduce the life time of LEDs and the low light emitting efficiency are disadvantageous in competition with electric lights. In this project, we studied the possibility of ZnO nanomaterials as LEDs. We have developed a techniques to fabricated reproducible ZnO nanorod arrays on various substrates with 40 - 100 nm diameters. We have successfully fabricated two-dimensional ZnO film growth on one-dimensional nanorods. We have also systematically studied ZnO nanorod growth on GaN and Al 2 O 3 substrated with different proton treatments to understand the ZnO nanorod growth mechanism. These techniques will be used to develop p-ZnO/n-ZnO nanomaterials as LEDs

  12. Integrated chemical sensor array platform based on a light emitting diode, xerogel-derived sensor elements, and high-speed pin printing

    International Nuclear Information System (INIS)

    Cho, Eun Jeong; Bright, Frank V.

    2002-01-01

    We report a new, solid-state, integrated optical array sensor platform. By using pin printing technology in concert with sol-gel-processing methods, we form discrete xerogel-based microsensor elements that are on the order of 100 μm in diameter and 1 μm thick directly on the face of a light emitting diode (LED). The LED serves as the light source to excite chemically responsive luminophores sequestered within the doped xerogel microsensors and the analyte-dependent emission from within the doped xerogel is detected with a charge coupled device (CCD). We overcome the problem of background illumination from the LED reaching the CCD and the associated biasing that results by coating the LED first with a thin layer of blue paint. The thin paint layer serves as an optical filter, knocking out the LEDs red-edge spectral tail. The problem of the spatially-dependent fluence across the LED face is solved entirely by performing ratiometric measurements. We illustrate the performance of the new sensor scheme by forming an array of 100 discrete O 2 -responsive sensing elements on the face of a single LED. The combination of pin printing with an integrated sensor and light source platform results in a rapid method of forming (∼1 s per sensor element) reusable sensor arrays. The entire sensor array can be calibrated using just one sensor element. Array-to-array reproducibly is <8%. Arrays can be formed using single or multiple pins with indistinguishable analytical performance

  13. Organic light emitting diode with light extracting electrode

    Energy Technology Data Exchange (ETDEWEB)

    Bhandari, Abhinav; Buhay, Harry

    2017-04-18

    An organic light emitting diode (10) includes a substrate (20), a first electrode (12), an emissive active stack (14), and a second electrode (18). At least one of the first and second electrodes (12, 18) is a light extracting electrode (26) having a metallic layer (28). The metallic layer (28) includes light scattering features (29) on and/or in the metallic layer (28). The light extracting features (29) increase light extraction from the organic light emitting diode (10).

  14. Broadband mid-infrared superlattice light-emitting diodes

    Science.gov (United States)

    Ricker, R. J.; Provence, S. R.; Norton, D. T.; Boggess, T. F.; Prineas, J. P.

    2017-05-01

    InAs/GaSb type-II superlattice light-emitting diodes were fabricated to form a device that provides emission over the entire 3-5 μm mid-infrared transmission window. Variable bandgap emission regions were coupled together using tunnel junctions to emit at peak wavelengths of 3.3 μm, 3.5 μm, 3.7 μm, 3.9 μm, 4.1 μm, 4.4 μm, 4.7 μm, and 5.0 μm. Cascading the structure recycles the electrons in each emission region to emit several wavelengths simultaneously. At high current densities, the light-emitting diode spectra broadened into a continuous, broadband spectrum that covered the entire mid-infrared band. When cooled to 77 K, radiances of over 1 W/cm2 sr were achieved, demonstrating apparent temperatures above 1000 K over the 3-5 μm band. InAs/GaSb type-II superlattices are capable of emitting from 3 μm to 30 μm, and the device design can be expanded to include longer emission wavelengths.

  15. Hybrid Light-Emitting Diode Enhanced With Emissive Nanocrystals

    DEFF Research Database (Denmark)

    Kopylov, Oleksii

    This thesis investigates a new type of white light emitting hybrid diode, composed of a light emitting GaN/InGaN LED and a layer of semiconductor nanocrystals for color conversion. Unlike standard white LEDs, the device is configured to achieve high color conversion efficiency via non-radiative e......This thesis investigates a new type of white light emitting hybrid diode, composed of a light emitting GaN/InGaN LED and a layer of semiconductor nanocrystals for color conversion. Unlike standard white LEDs, the device is configured to achieve high color conversion efficiency via non...... of the hybrid diode fabrication including process techniques for GaN LED and incorporation of the nanocrystals are presented with the emphasis on the differences with standard LED processing. Results and analysis of optical and electrical characterization including photoluminescence (PL), micro-PL, time......-resolved PL and electroluminescence (EL) together with current-voltage characteristics are presented to evaluate the device performance. A clear evidence of non-radiative energy transfer was seen in the carrier dynamics of both the LED and the nanocrystals when the quantum well – nanocrystals separation...

  16. Degradation of light emitting diodes: a proposed methodology

    International Nuclear Information System (INIS)

    Koh, Sau; Vam Driel, Willem; Zhang, G.Q.

    2011-01-01

    Due to their long lifetime and high efficacy, light emitting diodes have the potential to revolutionize the illumination industry. However, self heat and high environmental temperature which will lead to increased junction temperature and degradation due to electrical overstress can shorten the life of the light emitting diode. In this research, a methodology to investigate the degradation of the LED emitter has been proposed. The epoxy lens of the emitter can be modelled using simplified Eyring methods whereas an equation has been proposed for describing the degradation of the LED emitters. (semiconductor devices)

  17. Spin-polarized light-emitting diodes based on organic bipolar spin valves

    Science.gov (United States)

    Vardeny, Zeev Valentine; Nguyen, Tho Duc; Ehrenfreund, Eitan Avraham

    2017-10-25

    Spin-polarized organic light-emitting diodes are provided. Such spin-polarized organic light-emitting diodes incorporate ferromagnetic electrodes and show considerable spin-valve magneto-electroluminescence and magneto-conductivity responses, with voltage and temperature dependencies that originate from the bipolar spin-polarized space charge limited current.

  18. Low temperature preparation of Ag-doped ZnO nanowire arrays for sensor and light-emitting diode applications

    Science.gov (United States)

    Lupan, O.; Viana, B.; Cretu, V.; Postica, V.; Adelung, R.; Pauporté, T.

    2016-02-01

    Transition metal doped-oxide semiconductor nanostructures are important to achieve enhanced and new properties for advanced applications. We describe the low temperature preparation of ZnO:Ag nanowire/nanorod (NW/NR) arrays by electrodeposition at 90 °C. The NWs have been characterized by SEM, EDX, transmittance and photoluminescence (PL) measurements. The integration of Ag in the crystal is shown. Single nanowire/nanorod of ZnO:Ag was integrated in a nanosensor structure leading to new and enhanced properties. The ultraviolet (UV) response of the nanosensor was investigated at room temperature. Experimental results indicate that ZnO:Ag (0.75 μM) nanosensor possesses faster response/recovery time and better response to UV light than those reported in literature. The sensor structure has been also shown to give a fast response for the hydrogen detection with improved performances compared to pristine ZnO NWs. ZnO:Ag nanowire/nanorod arrays electrochemically grown on p-type GaN single crystal layer is also shown to act as light emitter in LED structures. The emission wavelength is red-shifted compared to pristine ZnO NW array. At low Ag concentration a single UV-blue emission is found whereas at higher concentration of dopant the emission is broadened and extends up to the red wavelength range. Our study indicates that high quality ZnO:Ag NW/NR prepared at low temperature by electrodeposition can serve as building nanomaterials for new sensors and light emitting diodes (LEDs) structures with low-power consumption.

  19. Laser diode arrays based on AlGaAs/GaAs quantum-well heterostructures with an efficiency up to 62%

    Science.gov (United States)

    Ladugin, M. A.; Marmalyuk, A. A.; Padalitsa, A. A.; Telegin, K. Yu; Lobintsov, A. V.; Sapozhnikov, S. M.; Danilov, A. I.; Podkopaev, A. V.; Simakov, V. A.

    2017-08-01

    The results of development of quasi-cw laser diode arrays operating at a wavelength of 808 nm with a high efficiency are demonstrated. The laser diodes are based on semiconductor AlGaAs/GaAs quantum-well heterostructures grown by MOCVD. The measured spectral, spatial, electric and power characteristics are presented. The output optical power of the array with an emitting area of 5 × 10 mm is 2.7 kW at a pump current of 100 A, and the maximum efficiency reaches 62%.

  20. Radiation effects in semiconductor laser diode arrays

    International Nuclear Information System (INIS)

    Carson, R.F.

    1988-01-01

    The effects of radiation events are important for many of the present and future applications that involve optoelectronic components. Laser diodes show a strong resistance to degradation by gamma rays, prompt x-rays and (to a lesser extent), neutrons. This is due to the short carrier lifetime that is associated with stimulated emission and the high current injection conditions that are present in these devices. Radiation-resistant properties should carry over to many of the more recently developed devices such as multi-stripe array and broad area laser diodes. There are, however, additional considerations for radiation tolerance that are introduced by these devices. Arrays and other high power laser diodes have larger active region volumes than lower power single stripe devices. In addition, evanescent field coupling between stripes, the material quality available from newer MOCVD epitaxial growth techniques, and stripe definition methods may all influence the radiation tolerance of the high power laser diode devices. Radiation tests have been conducted on various GaAs-GaAlAs laser diode array and broad area devices. Tests involving total gamma dose have indicated that high power laser diodes and arrays have small degradations in light power output with current input after 4 MRad(Si) of radiation from a Co 60 source. Additional test results involving flash x-rays indicate that high power diode lasers and arrays are tolerant to 10 12 rads(Si)/sec, when observed on microsecond or millisecond time scales. High power diode laser devices were also irradiated with neutrons to a fluence of 10 14 neutrons/cm 2 with some degradation of threshold current level

  1. Investigations of thin p-GaN light-emitting diodes

    DEFF Research Database (Denmark)

    Fadil, Ahmed; Ou, Yiyu; Iida, Daisuke

    2016-01-01

    We investigate device performance of InGaN light-emitting diodes with a 30-nm p-GaN layer. The metallization used to separate the p-contact from plasmonic metals, reveals limitations on current spreading which reduces surface plasmonic enhancement.......We investigate device performance of InGaN light-emitting diodes with a 30-nm p-GaN layer. The metallization used to separate the p-contact from plasmonic metals, reveals limitations on current spreading which reduces surface plasmonic enhancement....

  2. Ultra-bright and highly efficient inorganic based perovskite light-emitting diodes

    Science.gov (United States)

    Zhang, Liuqi; Yang, Xiaolei; Jiang, Qi; Wang, Pengyang; Yin, Zhigang; Zhang, Xingwang; Tan, Hairen; Yang, Yang (Michael); Wei, Mingyang; Sutherland, Brandon R.; Sargent, Edward H.; You, Jingbi

    2017-06-01

    Inorganic perovskites such as CsPbX3 (X=Cl, Br, I) have attracted attention due to their excellent thermal stability and high photoluminescence quantum efficiency. However, the electroluminescence quantum efficiency of their light-emitting diodes was CsPbBr3 lattice and by depositing a hydrophilic and insulating polyvinyl pyrrolidine polymer atop the ZnO electron-injection layer to overcome these issues. As a result, we obtained light-emitting diodes exhibiting a high brightness of 91,000 cd m-2 and a high external quantum efficiency of 10.4% using a mixed-cation perovskite Cs0.87MA0.13PbBr3 as the emitting layer. To the best of our knowledge, this is the brightest and most-efficient green perovskite light-emitting diodes reported to date.

  3. All-Quantum-Dot Infrared Light-Emitting Diodes

    KAUST Repository

    Yang, Zhenyu; Voznyy, Oleksandr; Liu, Mengxia; Yuan, Mingjian; Ip, Alexander H.; Ahmed, Osman S.; Levina, Larissa; Kinge, Sachin; Hoogland, Sjoerd; Sargent, Edward H.

    2015-01-01

    © 2015 American Chemical Society. Colloidal quantum dots (CQDs) are promising candidates for infrared electroluminescent devices. To date, CQD-based light-emitting diodes (LEDs) have employed a CQD emission layer sandwiched between carrier transport

  4. Irradiation Pattern Analysis for Designing Light Sources-Based on Light Emitting Diodes

    International Nuclear Information System (INIS)

    Rojas, E.; Stolik, S.; La Rosa, J. de; Valor, A.

    2016-01-01

    Nowadays it is possible to design light sources with a specific irradiation pattern for many applications. Light Emitting Diodes present features like high luminous efficiency, durability, reliability, flexibility, among others as the result of its rapid development. In this paper the analysis of the irradiation pattern of the light emitting diodes is presented. The approximation of these irradiation patterns to both, a Lambertian, as well as a Gaussian functions for the design of light sources is proposed. Finally, the obtained results and the functionality of bringing the irradiation pattern of the light emitting diodes to these functions are discussed. (Author)

  5. Site-controlled InGaN/GaN single-photon-emitting diode

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Lei; Deng, Hui, E-mail: dengh@umich.edu [Department of Physics, University of Michigan, 450 Church St., Ann Arbor, Michigan 48109 (United States); Teng, Chu-Hsiang; Ku, Pei-Cheng, E-mail: peicheng@umich.edu [Department of Electrical Engineering and Computer Science, University of Michigan, 1301 Beal Ave., Ann Arbor, Michigan 48109 (United States)

    2016-04-11

    We report single-photon emission from electrically driven site-controlled InGaN/GaN quantum dots. The device is fabricated from a planar light-emitting diode structure containing a single InGaN quantum well, using a top-down approach. The location, dimension, and height of each single-photon-emitting diode are controlled lithographically, providing great flexibility for chip-scale integration.

  6. Silicon light-emitting diodes and lasers photon breeding devices using dressed photons

    CERN Document Server

    Ohtsu, Motoichi

    2016-01-01

    This book focuses on a novel phenomenon named photon breeding. It is applied to realizing light-emitting diodes and lasers made of indirect-transition-type silicon bulk crystals in which the light-emission principle is based on dressed photons. After presenting physical pictures of dressed photons and dressed-photon phonons, the principle of light emission by using dressed-photon phonons is reviewed. A novel phenomenon named photon breeding is also reviewed. Next, the fabrication and operation of light emitting diodes and lasers are described The role of coherent phonons in these devices is discussed. Finally, light-emitting diodes using other relevant crystals are described and other relevant devices are also reviewed.

  7. Light emitting diode excitation emission matrix fluorescence spectroscopy.

    Science.gov (United States)

    Hart, Sean J; JiJi, Renée D

    2002-12-01

    An excitation emission matrix (EEM) fluorescence instrument has been developed using a linear array of light emitting diodes (LED). The wavelengths covered extend from the upper UV through the visible spectrum: 370-640 nm. Using an LED array to excite fluorescence emission at multiple excitation wavelengths is a low-cost alternative to an expensive high power lamp and imaging spectrograph. The LED-EEM system is a departure from other EEM spectroscopy systems in that LEDs often have broad excitation ranges which may overlap with neighboring channels. The LED array can be considered a hybrid between a spectroscopic and sensor system, as the broad LED excitation range produces a partially selective optical measurement. The instrument has been tested and characterized using fluorescent dyes: limits of detection (LOD) for 9,10-bis(phenylethynyl)-anthracene and rhodamine B were in the mid parts-per-trillion range; detection limits for the other compounds were in the low parts-per-billion range (LED-EEMs were analyzed using parallel factor analysis (PARAFAC), which allowed the mathematical resolution of the individual contributions of the mono- and dianion fluorescein tautomers a priori. Correct identification and quantitation of six fluorescent dyes in two to six component mixtures (concentrations between 12.5 and 500 ppb) has been achieved with root mean squared errors of prediction (RMSEP) of less than 4.0 ppb for all components.

  8. Characteristics of organic light emitting diodes with copper iodide as injection layer

    Energy Technology Data Exchange (ETDEWEB)

    Stakhira, P., E-mail: stakhira@polynet.lviv.u [Lviv Polytechnic National University, S. Bandera, 12, Lviv, 79013 (Ukraine); Cherpak, V.; Volynyuk, D.; Ivastchyshyn, F. [Lviv Polytechnic National University, S. Bandera, 12, Lviv, 79013 (Ukraine); Hotra, Z. [Lviv Polytechnic National University, S. Bandera, 12, Lviv, 79013 (Ukraine); Rzeszow University of Technology, W. Pola 2, Rzeszow, 35-959 (Poland); Tataryn, V. [Lviv Polytechnic National University, S. Bandera, 12, Lviv, 79013 (Ukraine); Luka, G. [Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw (Poland)

    2010-09-30

    We have studied the use of a thin copper iodide (CuI) film as an efficient injection layer of holes from indium tin oxide (ITO) anode in a light-emitting diode structure based on tris-8-hydroxyquinoline aluminium (Alq3). The results of impedance analysis of two types of diode structures, ITO/CuI/Alq3/poly(ethylene glycol) dimethyl ether/Al and ITO/Alq3/poly(ethylene glycol) dimethyl ether/Al, are presented. Comparative analysis of their current density-voltage, luminance-voltage and impedance characteristics shows that presence of CuI layer facilitates injection of holes from ITO anode into the light-emitting layer Alq3 and increases electroluminescence efficiency of the organic light emitting diodes.

  9. Performance measurements of hybrid PIN diode arrays

    International Nuclear Information System (INIS)

    Jernigan, J.G.; Arens, J.F.; Collins, T.; Herring, J.; Shapiro, S.L.; Wilburn, C.D.

    1990-05-01

    We report on the successful effort to develop hybrid PIN diode arrays and to demonstrate their potential as components of vertex detectors. Hybrid pixel arrays have been fabricated by the Hughes Aircraft Co. by bump bonding readout chips developed by Hughes to an array of PIN diodes manufactured by Micron Semiconductor Inc. These hybrid pixel arrays were constructed in two configurations. One array format having 10 x 64 pixels, each 120 μm square, and the other format having 256 x 256 pixels, each 30 μm square. In both cases, the thickness of the PIN diode layer is 300 μm. Measurements of detector performance show that excellent position resolution can be achieved by interpolation. By determining the centroid of the charge cloud which spreads charge into a number of neighboring pixels, a spatial resolution of a few microns has been attained. The noise has been measured to be about 300 electrons (rms) at room temperature, as expected from KTC and dark current considerations, yielding a signal-to-noise ratio of about 100 for minimum ionizing particles. 4 refs., 13 figs

  10. Operation of AC Adapters Visualized Using Light-Emitting Diodes

    Science.gov (United States)

    Regester, Jeffrey

    2016-01-01

    A bridge rectifier is a diamond-shaped configuration of diodes that serves to convert alternating current(AC) into direct current (DC). In our world of AC outlets and DC electronics, they are ubiquitous. Of course, most bridge rectifiers are built with regular diodes, not the light-emitting variety, because LEDs have a number of disadvantages. For…

  11. Light-Emitting Diode-Based Illumination System for In Vitro Photodynamic Therapy

    Directory of Open Access Journals (Sweden)

    Defu Chen

    2012-01-01

    Full Text Available The aim of this study is to develop a light-emitting diode- (LED- based illumination system that can be used as an alternative light source for in vitro photodynamic therapy (PDT. This illumination system includes a red LED array composed of 70 LEDs centered at 643 nm, an air-cooling unit, and a specific-designed case. The irradiance as a function of the irradiation distance between the LED array and the sample, the homogeneity and stability of irradiation, and the effect of long-time irradiation on culture medium temperature were characterized. Furthermore, the survival rate of the CNE1 cells that sensitized with 5-aminolevulinic acid after PDT treatment was evaluated to demonstrate the efficiency of the new LED-based illumination system. The obtained results show that the LED-based illumination system is a promising light source for in vitro PDT that performed in standard multiwell plate.

  12. Fabrication of organic light emitting diode using Molybdenum ...

    Indian Academy of Sciences (India)

    65

    out by measuring sheet resistance, optical transmittance and surface ... role in the organic light-emitting diode (OLED) performance because it determines the .... coated glass by thermal vacuum deposition method and optimize it by using ...

  13. Evaluation of light-emitting diode beacon light fixtures.

    Science.gov (United States)

    2009-12-01

    Rotating beacons containing filament light sources have long been used on highway maintenance trucks : to indicate the presence of the truck to other drivers. Because of advances in light-emitting diode (LED) : technologies, flashing lights containin...

  14. Light Converting Inorganic Phosphors for White Light-Emitting Diodes

    Directory of Open Access Journals (Sweden)

    Chiao-Wen Yeh

    2010-03-01

    Full Text Available White light-emitting diodes (WLEDs have matched the emission efficiency of florescent lights and will rapidly spread as light source for homes and offices in the next 5 to 10 years. WLEDs provide a light element having a semiconductor light emitting layer (blue or near-ultraviolet (nUV LEDs and photoluminescence phosphors. These solid-state LED lamps, rather than organic light emitting diode (OLED or polymer light-emitting diode (PLED, have a number of advantages over conventional incandescent bulbs and halogen lamps, such as high efficiency to convert electrical energy into light, reliability and long operating lifetime. To meet with the further requirement of high color rendering index, warm light with low color temperature, high thermal stability and higher energy efficiency for WLEDs, new phosphors that can absorb excitation energy from blue or nUV LEDs and generate visible emissions efficiently are desired. The criteria of choosing the best phosphors, for blue (450-480 nm and nUV (380-400 nm LEDs, strongly depends on the absorption and emission of the phosphors. Moreover, the balance of light between the emission from blue-nUV LEDs and the emissions from phosphors (such as yellow from Y3Al5O12:Ce3+ is important to obtain white light with proper color rendering index and color temperature. Here, we will review the status of phosphors for LEDs and prospect the future development.

  15. Light Converting Inorganic Phosphors for White Light-Emitting Diodes

    Science.gov (United States)

    Chen, Lei; Lin, Chun-Che; Yeh, Chiao-Wen; Liu, Ru-Shi

    2010-01-01

    White light-emitting diodes (WLEDs) have matched the emission efficiency of florescent lights and will rapidly spread as light source for homes and offices in the next 5 to 10 years. WLEDs provide a light element having a semiconductor light emitting layer (blue or near-ultraviolet (nUV) LEDs) and photoluminescence phosphors. These solid-state LED lamps, rather than organic light emitting diode (OLED) or polymer light-emitting diode (PLED), have a number of advantages over conventional incandescent bulbs and halogen lamps, such as high efficiency to convert electrical energy into light, reliability and long operating lifetime. To meet with the further requirement of high color rendering index, warm light with low color temperature, high thermal stability and higher energy efficiency for WLEDs, new phosphors that can absorb excitation energy from blue or nUV LEDs and generate visible emissions efficiently are desired. The criteria of choosing the best phosphors, for blue (450−480 nm) and nUV (380−400 nm) LEDs, strongly depends on the absorption and emission of the phosphors. Moreover, the balance of light between the emission from blue-nUV LEDs and the emissions from phosphors (such as yellow from Y3Al5O12:Ce3+) is important to obtain white light with proper color rendering index and color temperature. Here, we will review the status of phosphors for LEDs and prospect the future development.

  16. White organic light emitting diodes based on fluorene-carbazole dendrimers

    International Nuclear Information System (INIS)

    Usluer, Özlem; Demic, Serafettin; Kus, Mahmut; Özel, Faruk; Serdar Sariciftci, Niyazi

    2014-01-01

    In this paper, we report on theProd. Type: FTP fabrication and characterization of blue and white light emitting devices based on two fluorene-carbazole containing dendrimers and para-sexiphenyl (6P) oligomers. Blue light emitting diodes were fabricated using 9′,9″-(9,9-dioctyl-9H-fluorene-2,7-diyl)bis-9′H-9,3′:6′,9″-tercarbazole (OFC-G2) and 9′,9″-(9,9′-spirobi[fluorene]-2,7-diyl)bis-9′H-9,3′:6′,9″-tercarbazole (SBFC-G2) dendrimers as a hole transport and emissive layer (EML) and 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP) as an electron transport layer. White light emitting diodes were fabricated using 6P and these two dendrimers as an EML. OLED device with the structure of ITO/PEDOT:PSS (50 nm)/OFC-G2 (40 nm)/6P (20 nm)/LiF:Al (0.5:100 nm) shows maximum luminance of nearly 1400 cd/m 2 and a Commission Internationale de l'Eclairage chromaticity coordinates of (0.27, 0.30) at 12 V. -- Highlights: • White organic light emitting diodes have been fabricated using two fluorene-carbazole dendrimers and para-sexiphenyl (6P) oligomers. • When only these two dendrimers are used as EML, OLED devices are emitted blue light. • The emission colors of OLED devices change from blue to white when 6P is coated on dendrimer films

  17. Polymer light emitting diodes

    International Nuclear Information System (INIS)

    Gautier-Thianche, Emmmanuelle

    1998-01-01

    We study sandwich type semiconducting polymer light emitting diodes; anode/polymer/cathode. ITO is selected as anode, this polymer is a blend of a commercially available polymer with a high hole transport ability: polyvinyl-carbazole and a laser dye: coumarin-515. Magnesium covered with silver is chosen for the anode. We study the influence of polymer thickness and coumarin doping ratio on electroluminescence spectrum, electric characteristics and quantum efficiency. An important drawback is that diodes lifetime remains low. In the second part of our study we determine degradations causes with X-Ray reflectivity experiments. It may be due to ITO very high roughness. We realize a new type of planar electroluminescent device: a channel type electroluminescent device in which polymer layer is inserted into an aluminium channel. Such a device is by far more stable than using classical sandwich structures with the same polymer composition: indeed, charges are generated by internal-field ionization and there is no injection from the electrode to the polymer. This avoids electrochemical reactions at electrodes, thus reducing degradations routes. (author) [fr

  18. Novel recycle technology for recovering rare metals (Ga, In) from waste light-emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Zhan, Lu; Xia, Fafa; Ye, Qiuyu; Xiang, Xishu; Xie, Bing, E-mail: bxie@des.ecnu.edu.cn

    2015-12-15

    Highlights: • Rare metals (Ga, In) are separated and recycled from waste light-emitting diodes. • Pyrolysis, physical disaggregation and vacuum metallurgy separation are proposed. • There is no hazardous materials produced in this process. - Abstract: This work develops a novel process of recycling rare metals (Ga, In) from waste light-emitting diodes using the combination of pyrolysis, physical disaggregation methods and vacuum metallurgy separation. Firstly, the pure chips containing InGaN/GaN are adopted to study the vacuum separation behavior of rare metals, which aims to provide the theoretical foundation for recycling gallium and indium from waste light-emitting diodes. In order to extract the rare-metal-rich particles from waste light-emitting diodes, pyrolysis and physical disaggregation methods (crushing, screening, grinding and secondly screening) are studied respectively, and the operating parameters are optimized. With low boiling points and high saturation vapor pressures under vacuum, gallium and indium are separated from rare-metal-rich particles by the process of evaporation and condensation. By reference to the separating parameters of pure chips, gallium and indium in waste light-emitting diodes are recycled with the recovery efficiencies of 93.48% and 95.67% under the conditions as follows: heating temperature of 1373 K, vacuum pressure of 0.01–0.1 Pa, and holding time of 60 min. There are no secondary hazardous materials generated in the whole processes. This work provides an efficient and environmentally friendly process for recycling rare metals from waste light-emitting diodes.

  19. Characterization of High-power Quasi-cw Laser Diode Arrays

    Science.gov (United States)

    Stephen, Mark A.; Vasilyev, Aleksey; Troupaki, Elisavet; Allan, Graham R.; Kashem, Nasir B.

    2005-01-01

    NASA s requirements for high reliability, high performance satellite laser instruments have driven the investigation of many critical components; specifically, 808 nm laser diode array (LDA) pump devices. Performance and comprehensive characterization data of Quasi-CW, High-power, laser diode arrays is presented.

  20. Heat transfer and structure stress analysis of micro packaging component of high power light emitting diode

    Directory of Open Access Journals (Sweden)

    Hsu Chih-Neng

    2013-01-01

    Full Text Available This paper focuses on the heat transfer and structural stress analysis of the micro- scale packaging structure of a high-power light emitting diode. The thermal-effect and thermal-stress of light emitting diode are determined numerically. Light emitting diode is attached to the silicon substrate through the wire bonding process by using epoxy as die bond material. The silicon substrate is etched with holes at the bottom and filled with high conductivity copper material. The chip temperature and structure stress increase with input power consumption. The micro light emitting diode is mounted on the heat sink to increase the heat dissipation performance, to decrease chip temperature, to enhance the material structure reliability and safety, and to avoid structure failure as well. This paper has successfully used the finite element method to the micro-scale light emitting diode heat transfer and stress concentration at the edges through etched holes.

  1. Electrical and Optical Enhancement in Internally Nanopatterned Organic Light-Emitting Diodes

    Science.gov (United States)

    Fina, Michael Dane

    Organic light-emitting diodes (OLEDs) have made tremendous technological progress in the past two decades and have emerged as a top competitor for next generation light-emitting displays and lighting. State-of-the-art OLEDs have been reported in literature to approach, and even surpass, white fluorescent tube efficiency. However, despite rapid technological progress, efficiency metrics must be improved to compete with traditional inorganic light-emitting diode (LED) technology. Organic materials possess specialized traits that permit manipulations to the light-emitting cavity. Overall, as demonstrated within, these modifications can be used to improve electrical and optical device efficiencies. This work is focused at analyzing the effects that nanopatterned geometric modifications to the organic active layers play on device efficiency. In general, OLED efficiency is complicated by the complex, coupled processes which contribute to spontaneous dipole emission. A composite of three sub-systems (electrical, exciton and optical) ultimately dictate the OLED device efficiency. OLED electrical operation is believed to take place via a low-mobility-modified Schottky injection process. In the injection-limited regime, geometric effects are expected to modify the local electric field leading to device current enhancement. It is shown that the patterning effect can be used to enhance charge carrier parity, thereby enhancing overall recombination. Current density and luminance characteristics are shown to be improved by OLED nanopatterning from both the model developed within and experimental techniques. Next, the optical enhancement effects produced by the nanopatterned array are considered. Finite-difference time-domain (FDTD) simulations are used to determine positional, spectral optical enhancement for the nanopatterned device. The results show beneficial effects to the device performance. The optical enhancements are related to the reduction in internal radiative

  2. Bright infrared quantum-dot light-emitting diodes through inter-dot spacing control

    KAUST Repository

    Sun, Liangfeng; Choi, Joshua J.; Stachnik, David; Bartnik, Adam C.; Hyun, Byung-Ryool; Malliaras, George G.; Hanrath, Tobias; Wise, Frank W.

    2012-01-01

    Infrared light-emitting diodes are currently fabricated from direct-gap semiconductors using epitaxy, which makes them expensive and difficult to integrate with other materials. Light-emitting diodes based on colloidal semiconductor quantum dots, on the other hand, can be solution-processed at low cost, and can be directly integrated with silicon. However, so far, exciton dissociation and recombination have not been well controlled in these devices, and this has limited their performance. Here, by tuning the distance between adjacent PbS quantum dots, we fabricate thin-film quantum-dot light-emitting diodes that operate at infrared wavelengths with radiances (6.4 W sr '1 m '2) eight times higher and external quantum efficiencies (2.0%) two times higher than the highest values previously reported. The distance between adjacent dots is tuned over a range of 1.3 nm by varying the lengths of the linker molecules from three to eight CH 2 groups, which allows us to achieve the optimum balance between charge injection and radiative exciton recombination. The electroluminescent powers of the best devices are comparable to those produced by commercial InGaAsP light-emitting diodes. By varying the size of the quantum dots, we can tune the emission wavelengths between 800 and 1,850 nm.© 2012 Macmillan Publishers Limited.

  3. Bright infrared quantum-dot light-emitting diodes through inter-dot spacing control.

    Science.gov (United States)

    Sun, Liangfeng; Choi, Joshua J; Stachnik, David; Bartnik, Adam C; Hyun, Byung-Ryool; Malliaras, George G; Hanrath, Tobias; Wise, Frank W

    2012-05-06

    Infrared light-emitting diodes are currently fabricated from direct-gap semiconductors using epitaxy, which makes them expensive and difficult to integrate with other materials. Light-emitting diodes based on colloidal semiconductor quantum dots, on the other hand, can be solution-processed at low cost, and can be directly integrated with silicon. However, so far, exciton dissociation and recombination have not been well controlled in these devices, and this has limited their performance. Here, by tuning the distance between adjacent PbS quantum dots, we fabricate thin-film quantum-dot light-emitting diodes that operate at infrared wavelengths with radiances (6.4 W sr(-1) m(-2)) eight times higher and external quantum efficiencies (2.0%) two times higher than the highest values previously reported. The distance between adjacent dots is tuned over a range of 1.3 nm by varying the lengths of the linker molecules from three to eight CH(2) groups, which allows us to achieve the optimum balance between charge injection and radiative exciton recombination. The electroluminescent powers of the best devices are comparable to those produced by commercial InGaAsP light-emitting diodes. By varying the size of the quantum dots, we can tune the emission wavelengths between 800 and 1,850 nm.

  4. Bright infrared quantum-dot light-emitting diodes through inter-dot spacing control

    KAUST Repository

    Sun, Liangfeng

    2012-05-06

    Infrared light-emitting diodes are currently fabricated from direct-gap semiconductors using epitaxy, which makes them expensive and difficult to integrate with other materials. Light-emitting diodes based on colloidal semiconductor quantum dots, on the other hand, can be solution-processed at low cost, and can be directly integrated with silicon. However, so far, exciton dissociation and recombination have not been well controlled in these devices, and this has limited their performance. Here, by tuning the distance between adjacent PbS quantum dots, we fabricate thin-film quantum-dot light-emitting diodes that operate at infrared wavelengths with radiances (6.4 W sr \\'1 m \\'2) eight times higher and external quantum efficiencies (2.0%) two times higher than the highest values previously reported. The distance between adjacent dots is tuned over a range of 1.3 nm by varying the lengths of the linker molecules from three to eight CH 2 groups, which allows us to achieve the optimum balance between charge injection and radiative exciton recombination. The electroluminescent powers of the best devices are comparable to those produced by commercial InGaAsP light-emitting diodes. By varying the size of the quantum dots, we can tune the emission wavelengths between 800 and 1,850 nm.© 2012 Macmillan Publishers Limited.

  5. All-Quantum-Dot Infrared Light-Emitting Diodes

    KAUST Repository

    Yang, Zhenyu

    2015-12-22

    © 2015 American Chemical Society. Colloidal quantum dots (CQDs) are promising candidates for infrared electroluminescent devices. To date, CQD-based light-emitting diodes (LEDs) have employed a CQD emission layer sandwiched between carrier transport layers built using organic materials and inorganic oxides. Herein, we report the infrared LEDs that use quantum-tuned materials for each of the hole-transporting, the electron-transporting, and the light-emitting layers. We successfully tailor the bandgap and band position of each CQD-based component to produce electroluminescent devices that exhibit emission that we tune from 1220 to 1622 nm. Devices emitting at 1350 nm achieve peak external quantum efficiency up to 1.6% with a low turn-on voltage of 1.2 V, surpassing previously reported all-inorganic CQD LEDs.

  6. Fluorescence lifetime imaging using light emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Kennedy, Gordon T; Munro, Ian; Poher, Vincent; French, Paul M W; Neil, Mark A A [Blackett Laboratory, Imperial College London, South Kensington Campus, London SW7 2AZ (United Kingdom); Elson, Daniel S [Institute of Biomedical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ (United Kingdom); Hares, Jonathan D [Kentech Instruments Ltd, Unit 9, Hall Farm Workshops, South Moreton, Didcot, Oxfordshire, OX11 9AG (United Kingdom)], E-mail: gordon.kennedy@imperial.ac.uk

    2008-05-07

    We demonstrate flexible use of low cost, high-power light emitting diodes as illumination sources for fluorescence lifetime imaging (FLIM). Both time-domain and frequency-domain techniques have been implemented at wavelengths spanning the range 450-640 nm. Additionally, we demonstrate optically sectioned fluorescence lifetime imaging by combining structured illumination with frequency-domain FLIM.

  7. White organic light emitting diodes based on fluorene-carbazole dendrimers

    Energy Technology Data Exchange (ETDEWEB)

    Usluer, Özlem, E-mail: usluerozlem@yahoo.com.tr [Department of Chemistry, Muğla Sıtkı Koçman University, 48000 Muğla (Turkey); Demic, Serafettin [Department of Materials Science and Engineering, Izmir Katip Çelebi University, 35620 Çiğli, Izmir (Turkey); Kus, Mahmut, E-mail: mahmutkus1@gmail.com [Chemical Engineering Department and Advanced Technology R and D Center, Selçuk University, Konya (Turkey); Özel, Faruk [Chemical Engineering Department and Advanced Technology R and D Center, Selçuk University, Konya (Turkey); Serdar Sariciftci, Niyazi [Linz Institute for Organic Solar Cells (LIOS), Physical Chemistry, Johannes Kepler University, Altenbergerstr. 69, A-4040 Linz (Austria)

    2014-02-15

    In this paper, we report on theProd. Type: FTP fabrication and characterization of blue and white light emitting devices based on two fluorene-carbazole containing dendrimers and para-sexiphenyl (6P) oligomers. Blue light emitting diodes were fabricated using 9′,9″-(9,9-dioctyl-9H-fluorene-2,7-diyl)bis-9′H-9,3′:6′,9″-tercarbazole (OFC-G2) and 9′,9″-(9,9′-spirobi[fluorene]-2,7-diyl)bis-9′H-9,3′:6′,9″-tercarbazole (SBFC-G2) dendrimers as a hole transport and emissive layer (EML) and 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP) as an electron transport layer. White light emitting diodes were fabricated using 6P and these two dendrimers as an EML. OLED device with the structure of ITO/PEDOT:PSS (50 nm)/OFC-G2 (40 nm)/6P (20 nm)/LiF:Al (0.5:100 nm) shows maximum luminance of nearly 1400 cd/m{sup 2} and a Commission Internationale de l'Eclairage chromaticity coordinates of (0.27, 0.30) at 12 V. -- Highlights: • White organic light emitting diodes have been fabricated using two fluorene-carbazole dendrimers and para-sexiphenyl (6P) oligomers. • When only these two dendrimers are used as EML, OLED devices are emitted blue light. • The emission colors of OLED devices change from blue to white when 6P is coated on dendrimer films.

  8. Photoresponse of poly(para-phenylenevinylene) light-emitting diodes

    International Nuclear Information System (INIS)

    Wei, X.; Raikh, M.; Vardeny, Z.V.; Yang, Y.; Moses, D.

    1994-01-01

    We have studied the photoresponses of poly(para-phenylene vinylene) (PPV) light-emitting diodes (LED's) with PPV derivatives sandwiched between tin oxide (ITO) and metals including calcium, aluminum, and copper. Under illumination all diodes exhibit relatively large photoconductive I(V) responses which cross the dark I(V) curve at a forward-bias voltage V 0 that scales with the difference in work functions between the ITO and metal electrodes, the open-circuit voltage saturates at V 0 and is temperature independent, and the enhanced electroluminescence intensity of the illuminated LED's correlates with the photocurrent

  9. Invariable optical properties of phosphor-free white light-emitting diode under electrical stress

    International Nuclear Information System (INIS)

    Hao, Long; Hao, Fang; Sheng-Li, Qi; Li-Wen, Sang; Wen-Yu, Cao; Jian, Yan; Jun-Jing, Deng; Zhi-Jian, Yang; Guo-Yi, Zhang

    2010-01-01

    This paper reports that a dual-wavelength white light-emitting diode is fabricated by using a metal-organic chemical vapor deposition method. Through a 200-hours' current stress, the reverse leakage current of this light-emitting diode increases with the aging time, but the optical properties remained unchanged despite the enhanced reverse leakage current. Transmission electron microscopy and cathodeluminescence images show that indium atoms were assembled in and around V-shape pits with various compositions, which can be ascribed to the emitted white light. Evolution of cathodeluminescence intensities under electron irradiation is also performed. Combining cathodeluminescence intensities under electron irradiation and above results, the increase of leakage channels and crystalline quality degradation are realized. Although leakage channels increase with aging, potential fluctuation caused by indium aggregation can effectively avoid the impact of leakage channels. Indium aggregation can be attributed to the mechanism of preventing optical degradation in phosphor-free white light-emitting diode. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  10. Novel Strategy for Photopatterning Emissive Polymer Brushes for Organic Light Emitting Diode Applications.

    Science.gov (United States)

    Page, Zachariah A; Narupai, Benjaporn; Pester, Christian W; Bou Zerdan, Raghida; Sokolov, Anatoliy; Laitar, David S; Mukhopadhyay, Sukrit; Sprague, Scott; McGrath, Alaina J; Kramer, John W; Trefonas, Peter; Hawker, Craig J

    2017-06-28

    A light-mediated methodology to grow patterned, emissive polymer brushes with micron feature resolution is reported and applied to organic light emitting diode (OLED) displays. Light is used for both initiator functionalization of indium tin oxide and subsequent atom transfer radical polymerization of methacrylate-based fluorescent and phosphorescent iridium monomers. The iridium centers play key roles in photocatalyzing and mediating polymer growth while also emitting light in the final OLED structure. The scope of the presented procedure enables the synthesis of a library of polymers with emissive colors spanning the visible spectrum where the dopant incorporation, position of brush growth, and brush thickness are readily controlled. The chain-ends of the polymer brushes remain intact, affording subsequent chain extension and formation of well-defined diblock architectures. This high level of structure and function control allows for the facile preparation of random ternary copolymers and red-green-blue arrays to yield white emission.

  11. Integrated power conditioning for laser diode arrays

    International Nuclear Information System (INIS)

    Hanks, R.L.; Kirbie, H.C.; Newton, M.A.; Farhoud, M.S.

    1995-01-01

    This compact modulator has demonstated its ability to efficiently and accurately drive a laser diode array. The addition of the crowbar protection circuit is an invaluable addition to the integrated system and is capable of protecting the laser diode array against severe damage. We showed that the correlation between measured data and simulation indicates that our modulator model is valid and can be used as a tool in the design of future systems. The spectrometer measurements that we conducted underline the imprtance of current regulation to stable laser operation

  12. Nanoscale-accuracy transfer printing of ultra-thin AlInGaN light-emitting diodes onto mechanically flexible substrates

    International Nuclear Information System (INIS)

    Trindade, A. J.; Guilhabert, B.; Massoubre, D.; Laurand, N.; Gu, E.; Watson, I. M.; Dawson, M. D.; Zhu, D.; Humphreys, C. J.

    2013-01-01

    The transfer printing of 2 μm-thick aluminum indium gallium nitride (AlInGaN) micron-size light-emitting diodes with 150 nm (±14 nm) minimum spacing is reported. The thin AlInGaN structures were assembled onto mechanically flexible polyethyleneterephthalate/polydimethylsiloxane substrates in a representative 16 × 16 array format using a modified dip-pen nano-patterning system. Devices in the array were positioned using a pre-calculated set of coordinates to demonstrate an automated transfer printing process. Individual printed array elements showed blue emission centered at 486 nm with a forward-directed optical output power up to 80 μW (355 mW/cm 2 ) when operated at a current density of 20 A/cm 2

  13. Crosstalk of HgCdTe LWIR n-on-p diode arrays

    International Nuclear Information System (INIS)

    Sun Yinghui; Zhang Bo; Yu Meifang; Liao Qingjun; Zhang Yan; Wen Xin; Jiang Peilu; Hu Xiaoning; Dai Ning

    2009-01-01

    Crosstalk of HgCdTe long-wavelength infrared (LWIR) n-on-p diode arrays was measured using scanning laser microscopy. During the measurement, HgCdTe diode arrays with different diode pitches were frontside illuminated by a He-Ne laser at liquid nitrogen temperature and room temperature. The experimental results show that crosstalk between the nearest neighboring diodes decreases exponentially as the diode pitch increases, and the factors that affect the obtained crosstalk are presented and analyzed. Crosstalk out of the nominal diode area (optically sensitive area) is also measured and discussed.

  14. V-shaped resonators for addition of broad-area laser diode arrays

    Science.gov (United States)

    Liu, Bo; Liu, Yun; Braiman, Yehuda Y.

    2012-12-25

    A system and method for addition of broad-area semiconductor laser diode arrays are described. The system can include an array of laser diodes, a V-shaped external cavity, and grating systems to provide feedback for phase-locking of the laser diode array. A V-shaped mirror used to couple the laser diode emissions along two optical paths can be a V-shaped prism mirror, a V-shaped stepped mirror or include multiple V-shaped micro-mirrors. The V-shaped external cavity can be a ring cavity. The system can include an external injection laser to further improve coherence and phase-locking.

  15. Method and system for homogenizing diode laser pump arrays

    Science.gov (United States)

    Bayramian, Andy J

    2013-10-01

    An optical amplifier system includes a diode pump array including a plurality of semiconductor diode laser bars disposed in an array configuration and characterized by a periodic distance between adjacent semiconductor diode laser bars. The periodic distance is measured in a first direction perpendicular to each of the plurality of semiconductor diode laser bars. The diode pump array provides a pump output propagating along an optical path and characterized by a first intensity profile measured as a function of the first direction and having a variation greater than 10%. The optical amplifier system also includes a diffractive optic disposed along the optical path. The diffractive optic includes a photo-thermo-refractive glass member. The optical amplifier system further includes an amplifier slab having an input face and position along the optical path and separated from the diffractive optic by a predetermined distance. A second intensity profile measured at the input face of the amplifier slab as a function of the first direction has a variation less than 10%.

  16. Organic light emitting diodes with spin polarized electrodes

    NARCIS (Netherlands)

    Arisi, E.; Bergenti, I.; Dediu, V.; Loi, M.A.; Muccini, M.; Murgia, M.; Ruani, G.; Taliani, C.; Zamboni, R.

    2003-01-01

    Electrical and optical properties of Alq3 based organic light emitting diodes with normal and spin polarized electrodes are presented. Epitaxial semitransparent highly spin polarized La0.7Sr0.3MnO3 were used as hole injector, substituting the traditional indium tin oxide electrode. A comparison of

  17. Performance of injection-limited polymer light-emitting diodes

    NARCIS (Netherlands)

    Blom, P.W.M.; Woudenberg, T.V.; Huiberts, H.; Jabbour, GE; Carter, SA; Kido, J; Lee, ST; Sariciftci, NS

    2002-01-01

    The electro-optical characteristics of a polymer light emitting diode (PLED) with a strongly reduced hole injection have been investigated. The device consists of a poly-p-phenylene vinylene semiconductor with a Ag hole injecting contact, which has an injection barrier of about 1 eV. It is observed

  18. Diode lasers and arrays

    International Nuclear Information System (INIS)

    Streifer, W.

    1988-01-01

    This paper discusses the principles of operation of III-V semiconductor diode lasers, the use of distributed feedback, and high power laser arrays. The semiconductor laser is a robust, miniature, versatile device, which directly converts electricity to light with very high efficiency. Applications to pumping solid-state lasers and to fiber optic and point-to-point communications are reviewed

  19. High energy erbium laser end-pumped by a laser diode bar array coupled to a Nonimaging Optic Concentrator

    OpenAIRE

    Tanguy , Eric; Feugnet , Gilles; Pocholle , Jean-Paul; Blondeau , R.; Poisson , M.A.; Duchemin , J.P.

    1998-01-01

    International audience; A high energy Er3+, Yb3+:glass laser end pumped by a laser diode array emitting at 980 nm coupled to a Nonimaging Optic Concentrator (NOC) is demonstrated. Energy up to 100 mJ and a 16% slope efficiency are achieved in a plano-plano laser cavity. The energy transfer coefficient from Yb3+ to Er3+ is estimated by a new method.

  20. Nanoscale-accuracy transfer printing of ultra-thin AlInGaN light-emitting diodes onto mechanically flexible substrates

    Energy Technology Data Exchange (ETDEWEB)

    Trindade, A. J., E-mail: antonio.trindade@strath.ac.uk; Guilhabert, B.; Massoubre, D.; Laurand, N.; Gu, E.; Watson, I. M.; Dawson, M. D. [Institute of Photonics, SUPA, University of Strathclyde, 106 Rottenrow, Glasgow G4 0NW (United Kingdom); Zhu, D.; Humphreys, C. J. [Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS (United Kingdom)

    2013-12-16

    The transfer printing of 2 μm-thick aluminum indium gallium nitride (AlInGaN) micron-size light-emitting diodes with 150 nm (±14 nm) minimum spacing is reported. The thin AlInGaN structures were assembled onto mechanically flexible polyethyleneterephthalate/polydimethylsiloxane substrates in a representative 16 × 16 array format using a modified dip-pen nano-patterning system. Devices in the array were positioned using a pre-calculated set of coordinates to demonstrate an automated transfer printing process. Individual printed array elements showed blue emission centered at 486 nm with a forward-directed optical output power up to 80 μW (355 mW/cm{sup 2}) when operated at a current density of 20 A/cm{sup 2}.

  1. Quasi-CW 110 kW AlGaAs laser diode array module for inertial fusion energy laser driver

    International Nuclear Information System (INIS)

    Kawashima, Toshiyuki

    2001-01-01

    We have successfully demonstrated a large aperture 803 nm AlGaAs diode laser module as a pump source for a 1053 nm, 10 J output Nd: glass slab laser amplifier for diode-pumped solid-state laser (DPSSL) fusion driver. Detailed performance results of the laser diode module are presented, including bar package and stack configuration, and their thermal design and analysis. A sufficiently low thermal impedance of the stack was realized by combining backplane liquid cooling configuration with modular bar package architecture. Total peak power of 110 kW and electrical to optical conversion efficiently of 46% were obtained from the module consisting of a total of 1000 laser diode bars. A peak intensity of 2.6 kW/cm 2 was accomplished across an emitting area of 418 mm x 10 mm. Currently, this laser diode array module with a large two-dimensional aperture is, to our knowledge, the only operational pump source for the high output energy DPSSL. (author)

  2. Safety of light emitting diodes in toys.

    Science.gov (United States)

    Higlett, M P; O'Hagan, J B; Khazova, M

    2012-03-01

    Light emitting diodes (LEDs) are increasingly being used in toys. An assessment methodology is described for determining the accessible emission limits for the optical radiation from the toys, which takes account of expected use and reasonably foreseeable misuse of toys. Where data are available, it may be possible to assess the toy from the data sheet alone. If this information is not available, a simple measurement protocol is proposed.

  3. Safety of light emitting diodes in toys

    International Nuclear Information System (INIS)

    Higlett, M P; O'Hagan, J B; Khazova, M

    2012-01-01

    Light emitting diodes (LEDs) are increasingly being used in toys. An assessment methodology is described for determining the accessible emission limits for the optical radiation from the toys, which takes account of expected use and reasonably foreseeable misuse of toys. Where data are available, it may be possible to assess the toy from the data sheet alone. If this information is not available, a simple measurement protocol is proposed.

  4. Improvement in light-extraction efficiency of light emitting diode ...

    Indian Academy of Sciences (India)

    2018-02-02

    Feb 2, 2018 ... emitting diode (OLED) can be enhanced by using light- extraction ... to grow, ω should posses a positive value, which is possible only when ∂φ/∂h < 0, .... To detect small changes, first, the source LED was sta- bilized by ...

  5. Organic Light-Emitting Diodes on Solution-Processed Graphene Transparent Electrodes

    KAUST Repository

    Wu, Junbo

    2010-01-26

    Theoretical estimates indicate that graphene thin films can be used as transparent electrodes for thin-film devices such as solar cells and organic light-emitting diodes, with an unmatched combination of sheet resistance and transparency. We demonstrate organic light-emitting diodes with solution-processed graphene thin film transparent conductive anodes. The graphene electrodes were deposited on quartz substrates by spincoating of an aqueous dispersion of functionalized graphene, followed by a vacuum anneal step to reduce the sheet resistance. Small molecular weight organic materials and a metal cathode were directly deposited on the graphene anodes, resulting in devices with a performance comparable to control devices on indium-tin-oxide transparent anodes. The outcoupling efficiency of devices on graphene and indium-tin-oxide is nearly identical, in agreement with model predictions. © 2010 American Chemical Society.

  6. Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes

    Science.gov (United States)

    Cho, Himchan; Jeong, Su-Hun; Park, Min-Ho; Kim, Young-Hoon; Wolf, Christoph; Lee, Chang-Lyoul; Heo, Jin Hyuck; Sadhanala, Aditya; Myoung, NoSoung; Yoo, Seunghyup; Im, Sang Hyuk; Friend, Richard H.; Lee, Tae-Woo

    2015-12-01

    Organic-inorganic hybrid perovskites are emerging low-cost emitters with very high color purity, but their low luminescent efficiency is a critical drawback. We boosted the current efficiency (CE) of perovskite light-emitting diodes with a simple bilayer structure to 42.9 candela per ampere, similar to the CE of phosphorescent organic light-emitting diodes, with two modifications: We prevented the formation of metallic lead (Pb) atoms that cause strong exciton quenching through a small increase in methylammonium bromide (MABr) molar proportion, and we spatially confined the exciton in uniform MAPbBr3 nanograins (average diameter = 99.7 nanometers) formed by a nanocrystal pinning process and concomitant reduction of exciton diffusion length to 67 nanometers. These changes caused substantial increases in steady-state photoluminescence intensity and efficiency of MAPbBr3 nanograin layers.

  7. Influences of wide-angle and multi-beam interference on the chromaticity and efficiency of top-emitting white organic light-emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Lingling; Zhou, Hongwei; Chen, Shufen, E-mail: iamsfchen@njupt.edu.cn; Liu, Bin; Wang, Lianhui [Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing 210023 (China); Shi, Hongying [Jiangsu-Singapore Joint Research Center for Organic/Bio- Electronics and Information Displays and Institute of Advanced Materials, Nanjing Tech University, Nanjing 211816 (China); Huang, Wei, E-mail: iamdirector@njupt.edu.cn [Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing 210023 (China); Jiangsu-Singapore Joint Research Center for Organic/Bio- Electronics and Information Displays and Institute of Advanced Materials, Nanjing Tech University, Nanjing 211816 (China)

    2015-02-28

    Wide-angle interference (WI) and multi-beam interference (MI) in microcavity are analyzed separately to improve chromaticity and efficiency of the top-emitting white organic light-emitting diodes (TWOLEDs). A classic electromagnetic theory is used to calculate the resonance intensities of WI and MI in top-emitting organic light-emitting diodes (TOLEDs) with influence factors (e.g., electrodes and exciton locations) being considered. The role of WI on the performances of TOLEDs is revealed through using δ-doping technology and comparing blue and red EML positions in top-emitting and bottom-emitting devices. The blue light intensity significantly increases and the chromaticity of TWOLEDs is further improved with the use of enhanced WI (the blue emitting layer moving towards the reflective electrode) in the case of a weak MI. In addition, the effect of the thicknesses of light output layer and carrier transport layers on WI and MI are also investigated. Apart from the microcavity effect, other factors, e.g., carrier balance and carrier recombination regions are considered to obtain TWOLEDs with high efficiency and improved chromaticity near white light equal-energy point.

  8. Non-radiative recombination losses in polymer light-emitting diodes

    NARCIS (Netherlands)

    Kuik, M.; Koster, L. J. A.; Dijkstra, A. G.; Wetzelaer, G. A. H.; Blom, P. W. M.

    We present a quantitative analysis of the loss of electroluminescence in light-emitting diodes (LEDs) based on poly[2-methoxy-5-(2'-ethylhexyloxy)-p-phenylenevinylene] (MEH-PPV) due to the combination of non-radiative trap-assisted recombination and exciton quenching at the metallic cathode. It is

  9. Liquid metals as electrodes in polymer light emitting diodes

    NARCIS (Netherlands)

    Andersson, G.G.; Gommans, H.H.P.; Denier van der Gon, A.W.; Brongersma, H.H.

    2003-01-01

    We demonstrate that liquid metals can be used as cathodes in light emitting diodes (pLEDs). The main difference between the use of liquid cathodes and evaporated cathodes is the sharpness of the metal–polymer interface. Liquid metal cathodes result in significantly sharper metal–organic interfaces

  10. Organic Light-Emitting Diodes on Solution-Processed Graphene Transparent Electrodes

    KAUST Repository

    Wu, Junbo; Agrawal, Mukul; Becerril, Héctor A.; Bao, Zhenan; Liu, Zunfeng; Chen, Yongsheng; Peumans, Peter

    2010-01-01

    Theoretical estimates indicate that graphene thin films can be used as transparent electrodes for thin-film devices such as solar cells and organic light-emitting diodes, with an unmatched combination of sheet resistance and transparency. We

  11. Evaluation of light-emitting diode beacon light fixtures : final report.

    Science.gov (United States)

    2009-12-01

    Rotating beacons containing filament light sources have long been used on highway maintenance trucks : to indicate the presence of the truck to other drivers. Because of advances in light-emitting diode (LED) : technologies, flashing lights containin...

  12. Tunable diode-pumped-LNA laser

    International Nuclear Information System (INIS)

    Cassimi, A.; Hardy, V.; Hamel, J.; Leduc, M.

    1987-01-01

    Diode-pumped crystals provided recently new compact laser devices. We report the first end pumping of a La x Nd 1-x MgAl 11 O 19 (LNA) crystal using a 200mW diode array (Spectra Diode Lab). We also report the first results obtained with a 1mW diode (SONY). This C.W. laser can be tuned from 1.048μm to 1.086μm. Without selective elements in the cavity, the laser emits around 1.054μm with a threshold of 24mW and a slope efficiency of 4.4% (output mirror of transmission T = 1%) when pumped by the diode array. With the selective elements, the threshold increases to 100mW and we obtain a power of 4mW for a pump power of 200mW

  13. Efficient organic light emitting-diodes (OLEDs)

    CERN Document Server

    Chang, Yi-Lu

    2015-01-01

    Following two decades of intense research globally, the organic light-emitting diode (OLED) has steadily emerged as the ultimate display technology of choice for the coming decades. Portable active matrix OLED displays have already become prevalent, and even large-sized ultra-high definition 4K TVs are being mass-produced. More exotic applications such as wearable displays have been commercialized recently. With the burgeoning success in displays, researchers are actively bringing the technology forward into the exciting solid-state lighting market. This book presents the knowledge needed for

  14. The Light-Emitting Diode as a Light Detector

    Science.gov (United States)

    Baird, William H.; Hack, W. Nathan; Tran, Kiet; Vira, Zeeshan; Pickett, Matthew

    2011-01-01

    A light-emitting diode (LED) and operational amplifier can be used as an affordable method to provide a digital output indicating detection of an intense light source such as a laser beam or high-output LED. When coupled with a microcontroller, the combination can be used as a multiple photogate and timer for under $50. A similar circuit is used…

  15. White organic light-emitting diodes with 9, 10-bis (2-naphthyl) anthracene

    International Nuclear Information System (INIS)

    Guan Yunxia; Niu Lianbin

    2009-01-01

    White organic light-emitting diodes were fabricated by 9, 10-bis (2-naphthyl) anthracene (ADN) doped with Rubrene with a structure of ITO/copper phthalocyanine (CuPc) / NPB /ADN: Rubrene /Alq 3 /CsF/Mg:Ag/Ag. Multilayer organic devices using AND and Rubrene as an emitting layer produced white emissions with good chromaticity and luminous efficiency as high as 5.93 cd/A. This performance can be explained by Foerster energy transfer from the blue-emitting host to the orange-emitting dopant.

  16. Molecular-scale simulation of electroluminescence in a multilayer white organic light-emitting diode

    DEFF Research Database (Denmark)

    Mesta, Murat; Carvelli, Marco; de Vries, Rein J

    2013-01-01

    we show that it is feasible to carry out Monte Carlo simulations including all of these molecular-scale processes for a hybrid multilayer organic light-emitting diode combining red and green phosphorescent layers with a blue fluorescent layer. The simulated current density and emission profile......In multilayer white organic light-emitting diodes the electronic processes in the various layers--injection and motion of charges as well as generation, diffusion and radiative decay of excitons--should be concerted such that efficient, stable and colour-balanced electroluminescence can occur. Here...

  17. SPECTRAL CHARACTERISTICS OF MID-INFRARED LIGHT-EMITTING DIODES BASED ON InAs (Sb,P

    Directory of Open Access Journals (Sweden)

    N. K. Zhumashev

    2016-01-01

    Full Text Available Subject of Study. We consider spectral characteristics of mid-infrared light-emitting diodes with heterostructures based on InAs(Sb,P emitting at T=300 K in the wavelength range 3.4–4.1 micrometers. The aim of the study was to search for the ways of increasing the diode efficiency. Methods. The heterostructures were grown from metal-organic chemical compounds with the use of vapor-phase epitaxial technique. The spectra were recorded under pulse excitation with the use of computer-controlled installation employing MDR-23 grating monochromator and a lock-in amplifier. InSb photodiode was used as a detector. Comparative study of electroluminescence spectra of the diodes was carried out at the temperatures equal to 300 K and 77 K. We compared the obtained data with the calculation results of the band diagrams of the heterostructures. Main Results. As a result of comparative study of the electroluminescence spectra of the diodes recorded at 300 K and 77 K we have established that increasing of their efficiency is hindered by substantial influence of Auger recombination. For the first time at 77 К we have observed the effect of stimulated emission from InAsSb active layer in light-emitting structures made of InAs/InAsSb/InAsSbP. For heterostructures with quantum wells InAs/(InAs/InAsSb/InAsSbP we have found out that at 77 К the carrier recombination occurs outside quantum wells, which points out to the insufficient carrier localization in the active layer. Thus, we have shown that the efficiency of mid-infrared light-emitting diodes based on InAs(Sb,P can be increased via suppression of Auger-recombination and improvement of carrier localization in the active region. Practical Relevance. The results of the study can be used for development of heterostructures for mid-infrared light-emitting diodes.

  18. Influence of Pre-trimethylindium flow treatment on blue light emitting diode

    International Nuclear Information System (INIS)

    Xu, Bing; Zhao, Jun Liang; Dai, Hai Tao; Wang, Shu Guo; Lin, Ray-Ming; Chu, Fu-Chuan; Huang, Chou-Hsiung; Yu, Sheng-Fu; Sun, Xiao Wei

    2014-01-01

    The effects of Pre-trimethylindium (TMIn) flow treatment prior to quantum well growth on blue light emitting diode properties were investigated. High-resolution X-ray diffraction indicated that Pre-TMIn flow treatment did not change the composition of indium in quantum wells, but influenced electrical and optical properties of blue light emitting diode. Electroluminescence exhibited redshift with increasing TMIn treatment time. Though, the forward voltage became a little larger with longer Pre-TMIn treatment time due to the slight phase separation and indium aggregation, the efficiency droop of the device was improved effectively. - Highlights: • Pre-trimethylindium treatment can lead to longer wavelength. • External quantum efficiency can be improved effectively. • Electrical properties are not decreased using Pre-trimethylindium treatment

  19. Influence of Pre-trimethylindium flow treatment on blue light emitting diode

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Bing; Zhao, Jun Liang [Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Science, Tianjin University, Tianjin 300072 (China); Dai, Hai Tao, E-mail: htdai@tju.edu.cn [Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Science, Tianjin University, Tianjin 300072 (China); Wang, Shu Guo [Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Science, Tianjin University, Tianjin 300072 (China); Lin, Ray-Ming, E-mail: rmlin@mail.cgu.edu.tw [Graduate Institute of Electronic Engineering and Green Technology Research Center, Chang Gung University, Taoyuan 333, Taiwan (China); Chu, Fu-Chuan; Huang, Chou-Hsiung [Graduate Institute of Electronic Engineering and Green Technology Research Center, Chang Gung University, Taoyuan 333, Taiwan (China); Yu, Sheng-Fu [Institute of Microelectronics and Department of Electrical Engineering, Center for Micro/Nano Science and Technology, Advanced Optoelectronic Technology Center, National Cheng Kung University, Tainan 70101, Taiwan (China); Sun, Xiao Wei, E-mail: xwsun@sustc.edu.cn [South University of Science and Technology of China, Shenzhen, Guangdong (China)

    2014-01-31

    The effects of Pre-trimethylindium (TMIn) flow treatment prior to quantum well growth on blue light emitting diode properties were investigated. High-resolution X-ray diffraction indicated that Pre-TMIn flow treatment did not change the composition of indium in quantum wells, but influenced electrical and optical properties of blue light emitting diode. Electroluminescence exhibited redshift with increasing TMIn treatment time. Though, the forward voltage became a little larger with longer Pre-TMIn treatment time due to the slight phase separation and indium aggregation, the efficiency droop of the device was improved effectively. - Highlights: • Pre-trimethylindium treatment can lead to longer wavelength. • External quantum efficiency can be improved effectively. • Electrical properties are not decreased using Pre-trimethylindium treatment.

  20. Improvement in light-extraction efficiency of light emitting diode ...

    Indian Academy of Sciences (India)

    The effect of various microlens parameters such as diameter and area fraction on light-extraction efficiency was systematically studied. Improvement of 4% in extraction efficiency was obtained by employing it on white light emitting diode. The area fraction of microlenses was increased up to 0.34 by reducing the spin speed.

  1. Tuning the colour of white polymer light emitting diodes

    NARCIS (Netherlands)

    Kok, M.M. de; Sarfert, W.; Paetzold, R.

    2010-01-01

    Colour tuning of white polymer light emitting diode (LED) light sources can be attained by various methods at various stages in the production process of the lamps and/or by the design of the active material incorporated in the LEDs. In this contribution we will describe the methods and discuss the

  2. White organic light-emitting diodes with 9, 10-bis (2-naphthyl) anthracene

    Energy Technology Data Exchange (ETDEWEB)

    Guan Yunxia; Niu Lianbin [Key Laboratory of Optical Engineering, College of Physics and Information Technology, Chongqing Normal University, Chongqing 400047 (China)], E-mail: gyxybsy@126.com, E-mail: niulb03@126.com

    2009-03-01

    White organic light-emitting diodes were fabricated by 9, 10-bis (2-naphthyl) anthracene (ADN) doped with Rubrene with a structure of ITO/copper phthalocyanine (CuPc) / NPB /ADN: Rubrene /Alq{sub 3} /CsF/Mg:Ag/Ag. Multilayer organic devices using AND and Rubrene as an emitting layer produced white emissions with good chromaticity and luminous efficiency as high as 5.93 cd/A. This performance can be explained by Foerster energy transfer from the blue-emitting host to the orange-emitting dopant.

  3. Nanostructured High Performance Ultraviolet and Blue Light Emitting Diodes for Solid State Lighting

    Energy Technology Data Exchange (ETDEWEB)

    Arto V. Nurmikko; Jung Han

    2007-03-31

    We report on research results in this project which synergize advanced material science approaches with fundamental optical physics concepts pertaining to light-matter interaction, with the goal of solving seminal problems for the development of very high performance light emitting diodes (LEDs) in the blue and near ultraviolet for Solid State Lighting applications. Accomplishments in the duration of the contract period include (i) new means of synthesizing AlGaN and InN quantum dots by droplet heteroepitaxy, (ii) synthesis of AlGaInN nanowires as building blocks for GaN-based microcavity devices, (iii) progress towards direct epitaxial alignment of the dense arrays of nanowires, (iv) observation and measurements of stimulated emission in dense InGaN nanopost arrays, (v) design and fabrication of InGaN photonic crystal emitters, and (vi) observation and measurements of enhanced fluorescence from coupled quantum dot and plasmonic nanostructures. The body of results is presented in this report shows how a solid foundation has been laid, with several noticeable accomplishments, for innovative research, consistent with the stated milestones.

  4. Is it viable to improve light output efficiency by nano-light-emitting diodes?

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Chao-Hung; Huang, Yu-Wen [Department of Materials Science and Engineering, National Cheng Kung University, Tainan 70101, Taiwan (China); Wu, Shang-En [Genesis Photonics Incorporation, Tainan 70101, Taiwan (China); Liu, Chuan-Pu, E-mail: cpliu@mail.ncku.edu.tw [Department of Materials Science and Engineering, National Cheng Kung University, Tainan 70101, Taiwan (China); Center for Micro/Nano Science and Technology, National Cheng Kung University, Tainan 70101, Taiwan (China); Research Center for Energy Technology and Strategy, National Cheng Kung University, Tainan 70101, Taiwan (China)

    2013-12-02

    Nanopillar arrays with InGaN/GaN multiple-quantum-disks (MQDs) are fabricated by focused-ion-beam milling with surface damage layer removed by KOH wet etching. Nano-light-emitting diodes (Nano-LEDs) made of the InGaN/GaN MQD nanopillars are found to have 19.49% less output power than that of a conventional LED. The reasons are analyzed in detail and considering their current-voltage and electroluminescence characteristics, internal quantum efficiency, external quantum efficiency, light extraction, and wall-plug efficiency. Our results suggest that nanopillar-LED can outperform if the density can be increased to 2.81 × 10{sup 9} cm{sup −2} with the size unchanged or the size can be increased to 854.4 nm with the density unchanged.

  5. Atom probe tomography of a commercial light emitting diode

    International Nuclear Information System (INIS)

    Larson, D J; Prosa, T J; Olson, D; Lawrence, D; Clifton, P H; Kelly, T F; Lefebvre, W

    2013-01-01

    The atomic-scale analysis of a commercial light emitting diode device purchased at retail is demonstrated using a local electrode atom probe. Some of the features are correlated with transmission electron microscopy imaging. Subtle details of the structure that are revealed have potential significance for the design and performance of this device

  6. Investigations of thin p-GaN light-emitting diodes with surface plasmon compatible metallization

    DEFF Research Database (Denmark)

    Fadil, Ahmed; Ou, Yiyu; Iida, Daisuke

    2016-01-01

    We investigate device performance of InGaN light-emitting diodes with a 30-nm p-GaN layer. The metallization used to separate the p-contact from plasmonic metals, reveals limitations on current spreading which reduces surface plasmonic enhancement.......We investigate device performance of InGaN light-emitting diodes with a 30-nm p-GaN layer. The metallization used to separate the p-contact from plasmonic metals, reveals limitations on current spreading which reduces surface plasmonic enhancement....

  7. Edge and defect luminescence of powerful ultraviolet InGaN/GaN light-emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Shamirzaev, V. T., E-mail: tim@isp.nsc.ru; Gaisler, V. A. [Novosibirsk State Technical University (Russian Federation); Shamirzaev, T. S. [Russian Academy of Science, Siberian Branch, Rzhanov Institute of Semiconductor Physics (Russian Federation)

    2016-11-15

    The spectrum of ultraviolet (UV) InGaN/GaN light-emitting diodes and its dependence on the current flowing through the structure are studied. The intensity of the UV contribution to the integrated diode luminescence increases steadily with increasing density of current flowing through the structure, despite a drop in the emission quantum efficiency. The electroluminescence excitation conditions that allow the fraction of UV emission to be increased to 97% are established. It is shown that the nonuniform generation of extended defects, which penetrate the active region of the light-emitting diodes as the structures degrade upon local current overheating, reduces the integrated emission intensity but does not affect the relative intensity of diode emission in the UV (370 nm) and visible (550 nm) spectral ranges.

  8. The efficiency challenge of nitride light-emitting diodes for lighting

    KAUST Repository

    Weisbuch, Claude; Piccardo, Marco; Martinelli, Lucio; Iveland, Justin; Peretti, Jacques; Speck, James S.

    2015-01-01

    © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. We discuss the challenges of light-emitting diodes in view of their application to solid-state lighting. The requirement is to at least displace the quite efficient fluorescent, sodium, and high

  9. White emission from nano-structured top-emitting organic light-emitting diodes based on a blue emitting layer

    International Nuclear Information System (INIS)

    Hyun, Woo Jin; Park, Jung Jin; Park, O Ok; Im, Sang Hyuk; Chin, Byung Doo

    2013-01-01

    We demonstrated that white emission can be obtained from nano-structured top-emitting organic light-emitting diodes (TEOLEDs) based on a blue emitting layer (EML). The nano-structured TEOLEDs were fabricated on nano-patterned substrates, in which both optical micro-cavity and scattering effects occur simultaneously. Due to the combination of these two effects, the electroluminescence spectra of the nano-structured device with a blue EML exhibited not only blue but also yellow colours, which corresponded to the intrinsic emission of the EML and the resonant emission of the micro-cavity effect. Consequently, it was possible to produce white emission from nano-structured TEOLEDs without employing a multimode micro-cavity. The intrinsic emission wavelength can be varied by altering the dopant used for the EML. Furthermore, the emissive characteristics turned out to be strongly dependent on the nano-pattern sizes of the nano-structured devices. (paper)

  10. Manufacturing polymer light emitting diode with high luminance efficiency by solution process

    Science.gov (United States)

    Kim, Miyoung; Jo, SongJin; Yang, Ho Chang; Yoon, Dang Mo; Kwon, Jae-Taek; Lee, Seung-Hyun; Choi, Ju Hwan; Lee, Bum-Joo; Shin, Jin-Koog

    2012-06-01

    While investigating polymer light emitting diodes (polymer-LEDs) fabricated by solution process, surface roughness influences electro-optical (E-O) characteristics. We expect that E-O characteristics such as luminance and power efficiency related to surface roughness and layer thickness of emitting layer with poly-9-Vinylcarbazole. In this study, we fabricated polymer organic light emitting diodes by solution process which guarantees easy, eco-friendly and low cost manufacturing for flexible display applications. In order to obtain high luminescence efficiency, E-O characteristics of these devices by varying parameters for printing process have been investigated. Therefore, we optimized process condition for polymer-LEDs by adjusting annealing temperatures of emission, thickness of emission layer showing efficiency (10.8 cd/A) at 10 mA/cm2. We also checked wavelength dependent electroluminescence spectrum in order to find the correlation between the variation of efficiency and the thickness of the layer.

  11. Efficient photochemical generation of peroxycarboxylic nitric anhydrides with ultraviolet light-emitting diodes

    Science.gov (United States)

    Rider, N. D.; Taha, Y. M.; Odame-Ankrah, C. A.; Huo, J. A.; Tokarek, T. W.; Cairns, E.; Moussa, S. G.; Liggio, J.; Osthoff, H. D.

    2015-07-01

    Photochemical sources of peroxycarboxylic nitric anhydrides (PANs) are utilized in many atmospheric measurement techniques for calibration or to deliver an internal standard. Conventionally, such sources rely on phosphor-coated low-pressure mercury (Hg) lamps to generate the UV light necessary to photo-dissociate a dialkyl ketone (usually acetone) in the presence of a calibrated amount of nitric oxide (NO) and oxygen (O2). In this manuscript, a photochemical PAN source in which the Hg lamp has been replaced by arrays of ultraviolet light-emitting diodes (UV-LEDs) is described. The output of the UV-LED source was analyzed by gas chromatography (PAN-GC) and thermal dissociation cavity ring-down spectroscopy (TD-CRDS). Using acetone, diethyl ketone (DIEK), diisopropyl ketone (DIPK), or di-n-propyl ketone (DNPK), respectively, the source produces peroxyacetic (PAN), peroxypropionic (PPN), peroxyisobutanoic (PiBN), or peroxy-n-butanoic nitric anhydride (PnBN) from NO in high yield (> 90 %). Box model simulations with a subset of the Master Chemical Mechanism (MCM) were carried out to rationalize product yields and to identify side products. The present work demonstrates that UV-LED arrays are a viable alternative to current Hg lamp setups.

  12. Highly efficient single-layer dendrimer light-emitting diodes with balanced charge transport

    Science.gov (United States)

    Anthopoulos, Thomas D.; Markham, Jonathan P. J.; Namdas, Ebinazar B.; Samuel, Ifor D. W.; Lo, Shih-Chun; Burn, Paul L.

    2003-06-01

    High-efficiency single-layer-solution-processed green light-emitting diodes based on a phosphorescent dendrimer are demonstrated. A peak external quantum efficiency of 10.4% (35 cd/A) was measured for a first generation fac-tris(2-phenylpyridine) iridium cored dendrimer when blended with 4,4'-bis(N-carbazolyl)biphenyl and electron transporting 1,3,5-tris(2-N-phenylbenzimidazolyl)benzene at 8.1 V. A maximum power efficiency of 12.8 lm/W was measured also at 8.1 V and 550 cd/m2. These results indicate that, by simple blending of bipolar and electron-transporting molecules, highly efficient light-emitting diodes can be made employing a very simple device structure.

  13. Low cost batch fabrication of microdevices using ultraviolet light-emitting diode photolithography technique

    Science.gov (United States)

    Lee, Neam Heng; Swamy, Varghese; Ramakrishnan, Narayanan

    2016-01-01

    Solid-state technology has enabled the use of light-emitting diodes (LEDs) in lithography systems due to their low cost, low power requirement, and higher efficiency relative to the traditional mercury lamp. Uniform irradiance distribution is essential for photolithography to ensure the critical dimension (CD) of the feature fabricated. However, light illuminated from arrays of LEDs can have nonuniform irradiance distribution, which can be a problem when using LED arrays as a source to batch-fabricate multiple devices on a large wafer piece. In this study, the irradiance distribution of an UV LED array was analyzed, and the separation distance between light source and mask optimized to obtain maximum irradiance uniformity without the use of a complex lens. Further, employing a diffuser glass enhanced the fabrication process and the CD loss was minimized to an average of 300 nm. To assess the performance of the proposed technology, batch fabrication of surface acoustic wave devices on lithium niobate substrate was carried out, and all the devices exhibited identical insertion loss of -18 dB at a resonance frequency of 39.33 MHz. The proposed low-cost UV lithography setup can be adapted in academic laboratories for research and teaching on microdevices.

  14. Photoluminescence studies of organic phosphor coated diffusing surface using blue inorganic light-emitting diode as excitation source

    International Nuclear Information System (INIS)

    Singh, Gyanendra; Mehta, Dalip Singh

    2013-01-01

    We report the studies on photoluminescence (PL) of organic phosphor coated on a diffusing surface using a blue inorganic light-emitting diode (LED) array as an excitation source. The organic phosphor composite coated diffuser was used to scatter the directional blue light from the LED array. Some of the blue light is absorbed by the organic phosphor composite and the phosphor molecules are excited and re-emit light at longer wavelengths due to the PL process. The output light consists of scattered blue light plus phosphor generated broadband yellow light, thus making white light. The diffuser was made up of a plastic substrate coated with an organic composite of small molecule fluorescent material zinc(II)bis(8-hydroxyquinoline) (Znq 2 ) doped with different percentages of electro-phosphorescent metal complex iridium(III)bis(2-methyldibenzo-[f, h] quinoxaline) (acetylacetonate) ([Ir(MDQ) 2 (acac)]). By means of changing the concentration and the thickness of the phosphor composite material the colour coordinates of white light were achieved. The CIE coordinates and correlated colour temperature were calculated for various thicknesses and phosphor composite concentrations and the results are reported. (paper)

  15. Flexible bottom-emitting white organic light-emitting diodes with semitransparent Ni/Ag/Ni anode.

    Science.gov (United States)

    Koo, Ja-Ryong; Lee, Seok Jae; Lee, Ho Won; Lee, Dong Hyung; Yang, Hyung Jin; Kim, Woo Young; Kim, Young Kwan

    2013-05-06

    We fabricated a flexible bottom-emitting white organic light-emitting diode (BEWOLED) with a structure of PET/Ni/Ag/Ni (3/6/3 nm)/ NPB (50 nm)/mCP (10 nm)/7% FIrpic:mCP (10 nm)/3% Ir(pq)(2) acac:TPBi (5 nm)/7% FIrpic:TPBi (5 nm)/TPBi (10 nm)/Liq (2 nm)/ Al (100 nm). To improve the performance of the BEWOLED, a multilayered metal stack anode of Ni/Ag/Ni treated with oxygen plasma for 60 sec was introduced into the OLED devices. The Ni/Ag/Ni anode effectively enhanced the probability of hole-electron recombination due to an efficient hole injection into and charge balance in an emitting layer. By comparing with a reference WOLED using ITO on glass, it is verified that the flexible BEWOLED showed a similar or better electroluminescence (EL) performance.

  16. The Fuge Tube Diode Array Spectrophotometer

    Science.gov (United States)

    Arneson, B. T.; Long, S. R.; Stewart, K. K.; Lagowski, J. J.

    2008-01-01

    We present the details for adapting a diode array UV-vis spectrophotometer to incorporate the use of polypropylene microcentrifuge tubes--fuge tubes--as cuvettes. Optical data are presented validating that the polyethylene fuge tubes are equivalent to the standard square cross section polystyrene or glass cuvettes generally used in…

  17. Polymer Light-Emitting Diode Prepared by Floating-Off Film-Transfer Technique

    KAUST Repository

    Park, Jihoon; Kim, Eugene

    2015-01-01

    © 2015 Copyright Taylor & Francis Group, LLC. Floating-off film-transfer technique was used for the formation of semiconducting polymer multi-layers and the effect on the performance of polymer light-emitting diode (PLED) was studied. This method

  18. Interference phenomenon determines the color in an organic light emitting diode

    Science.gov (United States)

    Granlund, Thomas; Pettersson, Leif A. A.; Anderson, Mats R.; Inganäs, Olle

    1997-06-01

    We report on electroluminescence from two-layer organic diodes made of poly(3-methyl-4-octylthiophene) and 2-(4-biphenylyl)-5-(4-tert-butylphenyl)-1,2,4-oxadiazole films between electrodes of indium tin oxide and Ca/Al. The diodes emitted light in the green-blue range; the electroluminescence spectra varied between diodes with different thicknesses of the polymer and molecular layers. The optical phenomena were simulated with a model accounting for interference effects; simulated results showed that the electroluminescence from the organic diode can be due neither to luminescence of the polymer nor of the molecular layer. These model simulations, together with electrochemical measurements, can be interpreted as evidence for an indirect optical transition at the polymer/molecule interface that only occurs in a strong electric field. We label this transition an electroplex.

  19. Electrodeposition of Cu-doped ZnO nanowire arrays and heterojunction formation with p-GaN for color tunable light emitting diode applications

    International Nuclear Information System (INIS)

    Lupan, O.; Pauporté, T.; Viana, B.; Aschehoug, P.

    2011-01-01

    Highlights: ► High quality copper-doped zinc oxide nanowires were electrochemically grown at low temperature. ► ZnO:Cu nanowires have been epitaxially grown on Mg-doped p-GaN single-crystalline layers. ► The (ZnO:Cu NWs)/(p-GaN:Mg) heterojunction was used to fabricate a light-emitting diode structure. ► The photo- and electroluminescence emission was red-shifted to the violet spectral region compared to pure ZnO. ► The results are of importance for band-gap engineering of ZnO and for color-tunable LED. - Abstract: Copper-doped zinc oxide (ZnO:Cu) nanowires (NWs) were electrochemically deposited at low temperature on fluor-doped tin oxide (FTO) substrates. The electrochemical behavior of the Cu–Zn system for Cu-doped ZnO electrodeposition was studied and the electrochemical reaction mechanism is discussed. The synthesized ZnO arrayed layers were investigated by using SEM, XRD, EDX, photoluminescence and Raman techniques. X-ray diffraction analysis demonstrates a decrease in the lattice parameters of Cu-doped ZnO NWs. Structural analyses show that the nanomaterial is of hexagonal structure with the Cu incorporated in ZnO NWs probably by substituting zinc in the host lattice. Photoluminescence studies on pure and Cu-doped ZnO NWs shows that the near band edge emission is red-shifted by about 5 or 12 nm depending on Cu(II) concentration in the electrolytic bath solution (3 or 6 μmol l −1 ). Cu-doped ZnO NWs have been also epitaxially grown on Mg doped p-GaN single-crystalline layers and the (ZnO:Cu NWs)/(p-GaN:Mg) heterojunction has been used to fabricate a light-emitting diode (LED) structure. The emission was red-shifted to the visible violet spectral region compared to pure ZnO. The present work demonstrates the ability of electrodeposition to produce high quality ZnO nanowires with tailored optical properties by doping. The obtained results are of great importance for further studies on bandgap engineering of ZnO, for color-tunable LED applications

  20. Preparing nano-hole arrays by using porous anodic aluminum oxide nano-structural masks for the enhanced emission from InGaN/GaN blue light-emitting diodes

    International Nuclear Information System (INIS)

    Nguyen, Hoang-Duy; Nguyen, Hieu Pham Trung; Lee, Jae-jin; Mho, Sun-Il

    2012-01-01

    We report on the achievement of the enhanced cathodoluminescence (CL) from InGaN/GaN light-emitting diodes (LEDs) by using roughening surface. Nanoporous anodic aluminum oxide (AAO) mask was utilized to form nano-hole arrays on the surface of InGaN/GaN LEDs. AAO membranes with ordered hexagonal structures were fabricated from aluminum foils by a two-step anodization method. The average pore densities of ∼1.0 × 10 10 cm −2 and 3.0 × 10 10 cm −2 were fabricated with the constant anodization voltages of 25 and 40 V, respectively. Anodic porous alumina film with a thickness of ∼600 nm has been used as a mask for the induced couple plasma etching process to fabricate nano-hole arrays on the LED surface. Diameter and depth of nano-holes can be controlled by varying the etching duration and/or the diameter of AAO membranes. Due to the reduction of total internal reflection obtained in the patterned samples, we have observed that the cathodoluminescence intensity of LEDs with nanoporous structures is increased up to eight times compared to that of samples without using nanoporous structure. (paper)

  1. Preparing nano-hole arrays by using porous anodic aluminum oxide nano-structural masks for the enhanced emission from InGaN/GaN blue light-emitting diodes

    Science.gov (United States)

    Nguyen, Hoang-Duy; Nguyen, Hieu Pham Trung; Lee, Jae-jin; Mho, Sun-Il

    2012-12-01

    We report on the achievement of the enhanced cathodoluminescence (CL) from InGaN/GaN light-emitting diodes (LEDs) by using roughening surface. Nanoporous anodic aluminum oxide (AAO) mask was utilized to form nano-hole arrays on the surface of InGaN/GaN LEDs. AAO membranes with ordered hexagonal structures were fabricated from aluminum foils by a two-step anodization method. The average pore densities of ˜1.0 × 1010 cm-2 and 3.0 × 1010 cm-2 were fabricated with the constant anodization voltages of 25 and 40 V, respectively. Anodic porous alumina film with a thickness of ˜600 nm has been used as a mask for the induced couple plasma etching process to fabricate nano-hole arrays on the LED surface. Diameter and depth of nano-holes can be controlled by varying the etching duration and/or the diameter of AAO membranes. Due to the reduction of total internal reflection obtained in the patterned samples, we have observed that the cathodoluminescence intensity of LEDs with nanoporous structures is increased up to eight times compared to that of samples without using nanoporous structure.

  2. A Yellow Emitting InGaN/GaN Nanowires-based Light Emitting Diode Grown on Scalable Quartz Substrate

    KAUST Repository

    Prabaswara, Aditya

    2017-05-08

    The first InGaN/GaN nanowires-based yellow (λ = 590 nm) light-emitting diodes on scalable quartz substrates are demonstrated, by utilizing a thin Ti/TiN interlayer to achieve simultaneous substrate conductivity and transparency.

  3. A Yellow Emitting InGaN/GaN Nanowires-based Light Emitting Diode Grown on Scalable Quartz Substrate

    KAUST Repository

    Prabaswara, Aditya; Ng, Tien Khee; Zhao, Chao; Janjua, Bilal; Alyamani, Ahmed; El-desouki, Munir; Ooi, Boon S.

    2017-01-01

    The first InGaN/GaN nanowires-based yellow (λ = 590 nm) light-emitting diodes on scalable quartz substrates are demonstrated, by utilizing a thin Ti/TiN interlayer to achieve simultaneous substrate conductivity and transparency.

  4. Performance Improvement of GaN-Based Flip-Chip White Light-Emitting Diodes with Diffused Nanorod Reflector and with ZnO Nanorod Antireflection Layer

    Directory of Open Access Journals (Sweden)

    Hsin-Ying Lee

    2014-01-01

    Full Text Available The GaN-based flip-chip white light-emitting diodes (FCWLEDs with diffused ZnO nanorod reflector and with ZnO nanorod antireflection layer were fabricated. The ZnO nanorod array grown using an aqueous solution method was combined with Al metal to form the diffused ZnO nanorod reflector. It could avoid the blue light emitted out from the Mg-doped GaN layer of the FCWLEDs, which caused more blue light emitted out from the sapphire substrate to pump the phosphor. Moreover, the ZnO nanorod array was utilized as the antireflection layer of the FCWLEDs to reduce the total reflection loss. The light output power and the phosphor conversion efficiency of the FCWLEDs with diffused nanorod reflector and 250 nm long ZnO nanorod antireflection layer were improved from 21.15 mW to 23.90 mW and from 77.6% to 80.1% in comparison with the FCWLEDs with diffused nanorod reflector and without ZnO nanorod antireflection layer, respectively.

  5. Inkjet printing the three organic functional layers of two-colored organic light emitting diodes

    International Nuclear Information System (INIS)

    Coenen, Michiel J.J.; Slaats, Thijs M.W.L.; Eggenhuisen, Tamara M.; Groen, Pim

    2015-01-01

    Inkjet printing allows for the roll-2-roll fabrication of organic electronic devices at an industrial scale. In this paper we demonstrate the fabrication of two-colored organic light emitting diodes (OLEDs) in which three adjacent organic device layers were inkjet printed from halogen free inks. The resulting devices demonstrate the possibilities offered by this technique for the fabrication of OLEDs for signage and personalized electronics. - Highlights: • Two-colored organic light emitting diodes with 3 inkjet printed device layers were fabricated. • All materials were printed from halogen free inks. • Inkjet printing of emissive materials is suitable for signage applications

  6. Printed assemblies of ultrathin, microscale inorganic light emitting diodes for deformable and semitransparent displays

    Science.gov (United States)

    Rogers, John A.; Nuzzo, Ralph; Kim, Hoon-sik; Brueckner, Eric; Park, Sang Il; Kim, Rak Hwan

    2017-05-09

    Described herein are printable structures and methods for making, assembling and arranging electronic devices. A number of the methods described herein are useful for assembling electronic devices where one or more device components are embedded in a polymer which is patterned during the embedding process with trenches for electrical interconnects between device components. Some methods described herein are useful for assembling electronic devices by printing methods, such as by dry transfer contact printing methods. Also described herein are GaN light emitting diodes and methods for making and arranging GaN light emitting diodes, for example for display or lighting systems.

  7. Effects of Light-Emitting Diode Therapy on Muscle Hypertrophy, Gene Expression, Performance, Damage, and Delayed-Onset Muscle Soreness: Case-control Study with a Pair of Identical Twins.

    Science.gov (United States)

    Ferraresi, Cleber; Bertucci, Danilo; Schiavinato, Josiane; Reiff, Rodrigo; Araújo, Amélia; Panepucci, Rodrigo; Matheucci, Euclides; Cunha, Anderson Ferreira; Arakelian, Vivian Maria; Hamblin, Michael R; Parizotto, Nivaldo; Bagnato, Vanderlei

    2016-10-01

    The aim of this study was to verify how a pair of monozygotic twins would respond to light-emitting diode therapy (LEDT) or placebo combined with a strength-training program during 12 weeks. This case-control study enrolled a pair of male monozygotic twins, allocated randomly to LEDT or placebo therapies. Light-emitting diode therapy or placebo was applied from a flexible light-emitting diode array (λ = 850 nm, total energy = 75 J, t = 15 seconds) to both quadriceps femoris muscles of each twin immediately after each strength training session (3 times/wk for 12 weeks) consisting of leg press and leg extension exercises with load of 80% and 50% of the 1-repetition maximum test, respectively. Muscle biopsies, magnetic resonance imaging, maximal load, and fatigue resistance tests were conducted before and after the training program to assess gene expression, muscle hypertrophy and performance, respectively. Creatine kinase levels in blood and visual analog scale assessed muscle damage and delayed-onset muscle soreness, respectively, during the training program. Compared with placebo, LEDT increased the maximal load in exercise and reduced fatigue, creatine kinase, and visual analog scale. Gene expression analyses showed decreases in markers of inflammation (interleukin 1β) and muscle atrophy (myostatin) with LEDT. Protein synthesis (mammalian target of rapamycin) and oxidative stress defense (SOD2 [mitochondrial superoxide dismutase]) were up-regulated with LEDT, together with increases in thigh muscle hypertrophy. Light-emitting diode therapy can be useful to reduce muscle damage, pain, and atrophy, as well as to increase muscle mass, recovery, and athletic performance in rehabilitation programs and sports medicine.

  8. The use of ionic salt dyes as amorphous, thermally stable emitting layers in organic light-emitting diodes

    Science.gov (United States)

    Chondroudis, Konstantinos; Mitzi, David B.

    2000-01-01

    The conversion of two neutral dye molecules (D) to ionic salts (H2N-D-NH2ṡ2HX) and their utilization as emitting layers in organic light-emitting diodes (OLEDs) is described. The dye salts, AEQTṡ2HCl and APTṡ2HCl, can be deposited as amorphous films using conventional evaporation techniques. X-ray diffraction and scanning electron microscopy analysis, coupled with thermal annealing studies, demonstrate the resistance of the films to crystallization. This stability is attributed to strong ionic forces between the relatively rigid molecules. OLEDs incorporating such salts for emitting layers exhibit better thermal stability compared with devices made from the corresponding neutral dyes (H2N-D-NH2). These results suggest that ionic salts may more generally enable the formation of thermally stable, amorphous emitting, and charge transporting layers.

  9. Benzoporphyrin derivative and light-emitting diode for use in photodynamic therapy: Applications of space light-emitting diode technology

    International Nuclear Information System (INIS)

    Whelan, Harry T.; Houle, John M.; Bajic, Dawn M.; Schmidt, Meic H.; Reichert, Kenneth W. II; Meyer, Glenn A.

    1998-01-01

    Photodynamic therapy (PDT) is a cancer treatment modality that recently has been applied as adjuvant therapy for brain tumors. PDT consists of intravenously injecting a photosensitizer, which preferentially accumulates in tumor cells, into a patient and then activating the photosensitizer with a light source. This results in free radical generation followed by cell death. The development of more effective light sources for PDT of brain tumors has been facilitated by applications of space light-emitting diode array technology; thus permitting deeper tumor penetration of light and use of better photosensitizers. Currently, the most commonly used photosensitizer for brain tumor PDT is Photofrin registered . Photofrin registered is a heterogeneous mixture of compounds derived from hematoporphyrin. Photofrin registered is activated with a 630 nm laser light and does destroy tumor cells in animal models and humans. However, treatment failure does occur using this method. Most investigators attribute this failure to the limited penetration of brain tissue by a 630 nm laser light and to the fact that Photofrin registered has only a minor absorption peak at 630 nm, meaning that only a small fraction of the chemical is activated. Benzoporphyrin Derivative Monoacid Ring A (BPD) is a new, second generation photosensitizer that can potentially improve PDT for brain tumors. BPD has a major absorption peak at 690 nm, which gives it two distinct advantages over Photofrin registered . First, longer wavelengths of light penetrate brain tissue more easily so that larger tumors could be treated, and second, the major absorption peak means that a larger fraction of the drug is activated upon exposure to light. In the first part of this project we have studied the tumoricidal effects of BPD in vitro using 2A9 canine glioma and U373 human glioblastoma cell cultures. Using light emitting diodes (LED) with a peak emission of 688 nm as a light source, cell kill of up to 86 percent was

  10. High Intensity Organic Light-emitting Diodes

    Science.gov (United States)

    Qi, Xiangfei

    This thesis is dedicated to the fabrication, modeling, and characterization to achieve high efficiency organic light-emitting diodes (OLEDs) for illumination applications. Compared to conventional lighting sources, OLEDs enabled the direct conversion of electrical energy into light emission and have intrigued the world's lighting designers with the long-lasting, highly efficient illumination. We begin with a brief overview of organic technology, from basic organic semiconductor physics, to its application in optoelectronics, i.e. light-emitting diodes, photovoltaics, photodetectors and thin-film transistors. Due to the importance of phosphorescent materials, we will focus on the photophysics of metal complexes that is central to high efficiency OLED technology, followed by a transient study to examine the radiative decay dynamics in a series of phosphorescent platinum binuclear complexes. The major theme of this thesis is the design and optimization of a novel architecture where individual red, green and blue phosphorescent OLEDs are vertically stacked and electrically interconnected by the compound charge generation layers. We modeled carrier generation from the metal-oxide/doped organic interface based on a thermally assisted tunneling mechanism. The model provides insights to the optimization of a stacked OLED from both electrical and optical point of view. To realize the high intensity white lighting source, the efficient removal of heat is of a particular concern, especially in large-area devices. A fundamental transfer matrix analysis is introduced to predict the thermal properties in the devices. The analysis employs Laplace transforms to determine the response of the system to the combined effects of conduction, convection, and radiation. This perspective of constructing transmission matrices greatly facilitates the calculation of transient coupled heat transfer in a general multi-layer composite. It converts differential equations to algebraic forms, and

  11. Improving lumen maintenance by nanopore array dispersed quantum dots for on-chip light emitting diodes

    Science.gov (United States)

    Chen, Quan; Yang, Fan; Wan, Renzhuo; Fang, Dong

    2017-12-01

    The temperature stability of quantum dots (QDs), which is crucial for integrating into high power light-emitting diodes (LEDs) in the on-chip configuration, needs to be further improved. In this letter, we report warm white LEDs, where CdSe/ZnS nanoparticles were incorporated into a porous anodic alumina (PAA) matrix with a chain structure by the self-assembly method. Experiments demonstrate that the QD concentration range in toluene solvent from 1% mg/μl to 1.2% mg/μl in combination with the PAA matrix shows the best luminous property. To verify the reliability of the as-prepared device, a comparison experiment was conducted. It indicates excellent lumen maintenance of the light source and less chromaticity coordinate shift under accelerated life testing conditions. Experiments also prove that optical depreciation was only up to 4.6% of its initial value after the 1500 h aging test at the junction temperature of 76 °C.

  12. Color-converted remote phosphor prototype of a multiwavelength excitable borosilicate glass for white light-emitting diodes

    International Nuclear Information System (INIS)

    Tian Hua; Qiu Kun; Song Jun; Wang Da-Jian; Liu Ji-Wen

    2012-01-01

    We report a unique red light-emitting Eu-doped borosilicate glass to convert color for warm white light-emitting diodes. This glass can be excited from 394 nm-peaked near ultraviolet light, 466 nm-peaked blue light, to 534 nm-peaked green light to emit the desired red light with an excellent transmission in the wavelength range of 400–700 nm which makes this glass suitable for color conversion without a great cost of luminous power loss. In particular, when assembling this glass for commercial white light-emitting diodes, the tested results show that the color rendering index is improved to 84 with a loss of luminous power by 12 percent at average, making this variety of glass promising for inorganic “remote-phosphor” color conversion

  13. AlGaInN-based ultraviolet light-emitting diodes grown on Si(111)

    International Nuclear Information System (INIS)

    Kipshidze, G.; Kuryatkov, V.; Borisov, B.; Holtz, M.; Nikishin, S.; Temkin, H.

    2002-01-01

    Ultraviolet light-emitting diodes grown on Si(111) by gas-source molecular-beam epitaxy with ammonia are described. The layers are composed of superlattices of AlGaN/GaN and AlN/AlGaInN. The layers are doped n and p type with Si and Mg, respectively. Hole concentration of 4x10 17 cm -3 , with a mobility of 8 cm2/Vs, is measured in Al 0.4 Ga 0.6 N/GaN. We demonstrate effective n- and p-type doping of structures based on AlN/AlGaInN. Light-emitting diodes based on these structures show light emission between 290 and 334 nm

  14. Efficient photochemical generation of peroxycarboxylic nitric anhydrides with ultraviolet light emitting diodes

    Science.gov (United States)

    Rider, N. D.; Taha, Y. M.; Odame-Ankrah, C. A.; Huo, J. A.; Tokarek, T. W.; Cairns, E.; Moussa, S. G.; Liggio, J.; Osthoff, H. D.

    2015-01-01

    Photochemical sources of peroxycarboxylic nitric anhydrides (PANs) are utilized in many atmospheric measurement techniques for calibration or to deliver an internal standard. Conventionally, such sources rely on phosphor-coated low-pressure mercury (Hg) lamps to generate the UV light necessary to photo-dissociate a dialkyl ketone (usually acetone) in the presence of a calibrated amount of nitric oxide (NO) and oxygen (O2). In this manuscript, a photochemical PAN source in which the Hg lamp has been replaced by arrays of ultraviolet light-emitting diodes (UV-LEDs) is described. The output of the UV-LED source was analyzed by gas chromatography (PAN-GC) and thermal dissociation cavity ring-down spectroscopy (TD-CRDS). Using acetone, diethyl ketone (DIEK), diisopropyl ketone (DIPK), or di-n-propyl ketone (DNPK), respectively, the source produces peroxyacetic (PAN), peroxypropionic (PPN), peroxyisobutanoic (PiBN), or peroxy-n-butanoic nitric anhydride (PnBN) from NO in high yield (> 90%). Box model simulations with a subset of the Master Chemical Mechanism (MCM) were carried out to rationalize products yields and to identify side products. The use of UV-LED arrays offers many advantages over conventional Hg lamp setups, including greater light output over a narrower wavelength range, lower power consumption, and minimal generation of heat.

  15. Surface plasmon enhanced organic light emitting diodes by gold nanoparticles with different sizes

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Chia-Yuan; Chen, Ying-Chung [Department of Electrical Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan (China); Chen, Kan-Lin [Department of Electronic Engineering, Fortune Institute of Technology, Kaohsiung, Taiwan (China); Huang, Chien-Jung, E-mail: chien@nuk.edu.tw [Department of Applied Physics, National University of Kaohsiung, Kaohsiung, Taiwan (China)

    2015-11-30

    Highlights: • Different varieties, sizes, and shapes for nanoparticles will generate different surface plasmon resonance effects in the devices. • The red-shift phenomenon for absorption peaks is because of an increasing contribution of higher-order plasmon modes for the larger gold nanoparticles. • The mobility of electrons in the electron-transport layer of organic light-emitting diodes is a few orders of magnitude lower than that of holes in the hole-transport layer of organic light-emitting diodes. - Abstract: The influence of gold nanoparticles (GNPs) with different sizes doped into (poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate)) (PEDOT:PSS) on the performance of organic light-emitting diodes is investigated in this study. The current efficiency of the device, at a current density of 145 mA/cm, with PEDOT:PSS doped with GNPs of 8 nm is about 1.57 times higher than that of the device with prime PEDOT:PSS because the absorption peak of GNPs is closest to the photoluminescence peak of the emission layer, resulting in maximum surface plasmon resonance effect in the device. In addition, the surface-enhanced Raman scattering spectroscopy also reveals the maximum surface plasmon resonance effect in the device when the mean particle size of GNPs is 8 nm.

  16. Improving Reliability of High Power Quasi-CW Laser Diode Arrays for Pumping Solid State Lasers

    Science.gov (United States)

    Amzajerdian, Farzin; Meadows, Byron L.; Baker, Nathaniel R.; Barnes, Bruce W.; Baggott, Renee S.; Lockard, George E.; Singh, Upendra N.; Kavaya, Michael J.

    2005-01-01

    Most Lidar applications rely on moderate to high power solid state lasers to generate the required transmitted pulses. However, the reliability of solid state lasers, which can operate autonomously over long periods, is constrained by their laser diode pump arrays. Thermal cycling of the active regions is considered the primary reason for rapid degradation of the quasi-CW high power laser diode arrays, and the excessive temperature rise is the leading suspect in premature failure. The thermal issues of laser diode arrays are even more drastic for 2-micron solid state lasers which require considerably longer pump pulses compared to the more commonly used pump arrays for 1-micron lasers. This paper describes several advanced packaging techniques being employed for more efficient heat removal from the active regions of the laser diode bars. Experimental results for several high power laser diode array devices will be reported and their performance when operated at long pulsewidths of about 1msec will be described.

  17. Pyridine substituted spirofluorene derivative as an electron transport material for high efficiency in blue organic light-emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Soon Ok; Yook, Kyoung Soo; Lee, Jun Yeob, E-mail: leej17@dankook.ac.k

    2010-11-01

    The quantum efficiency of blue fluorescent organic light-emitting diodes was enhanced by 20% using a pyridine substituted spirofluorene-benzofluorene derivative as an electron transport material. 2',7'-Di(pyridin-3-yl)spiro[benzofluorene-7,9'-fluorene] (SPBP) was synthesized and it was used as the electron transport material to block the hole leakage from the emitting layer. The improvement of the quantum efficiency and power efficiency of the blue fluorescent organic light-emitting diodes using the SPBP was investigated.

  18. Light emitting diodes for today's energy conscious world

    Energy Technology Data Exchange (ETDEWEB)

    Papanier, J

    2000-10-01

    The role played by light emitting diodes in back lighting, decorative illumination, emergency lighting, and automated signage are described as indicators of the many benefits and advantages of LED technology. The basic principles underlying the functioning of LEDs are explained, including the reasons behind their high efficiency in applications requiring colour. The difference between wattage and lumens is clarified; wattage refers to power consumption, whereas lumens measure brightness or light output, the measure most significant in the case of LEDs.

  19. Recent developments in white light emitting diodes

    Science.gov (United States)

    Lohe, P. P.; Nandanwar, D. V.; Belsare, P. D.; Moharil, S. V.

    2018-05-01

    because they can emit visible light strongly under blue light irradiation. These are chemically, thermally and mechanically stable materials with high efficiency to down convert blue radiation into green and red. Efficient white light can be generated by coating these phosphors on blue LED.CRI of white emitting LED lamp can be improved significantly if green and red emitting phosphors are coated on efficient blue emitting LED chips. In this approach CRI will be maintained if appropriate combination of red, green along with blue emission is used. This article reviews some recent developments in phosphors for white light emitting diodes.

  20. Origin of colour stability in blue/orange/blue stacked phosphorescent white organic light-emitting diodes

    International Nuclear Information System (INIS)

    Kim, Sung Hyun; Jang, Jyongsik; Yook, Kyoung Soo; Lee, Jun Yeob

    2009-01-01

    The origin of colour stability in phosphorescent white organic light-emitting diodes (PHWOLEDs) with a blue/orange/blue stacked emitting structure was studied by monitoring the change in a recombination zone. A balanced recombination zone shift between the blue and the orange light-emitting layers was found to be responsible for the colour stability in the blue/orange/blue stacked PHWOLEDs.

  1. Manipulating Ion Migration for Highly Stable Light-Emitting Diodes with Single-Crystalline Organometal Halide Perovskite Microplatelets.

    Science.gov (United States)

    Chen, Mingming; Shan, Xin; Geske, Thomas; Li, Junqiang; Yu, Zhibin

    2017-06-27

    Ion migration has been commonly observed as a detrimental phenomenon in organometal halide perovskite semiconductors, causing the measurement hysteresis in solar cells and ultrashort operation lifetimes in light-emitting diodes. In this work, ion migration is utilized for the formation of a p-i-n junction at ambient temperature in single-crystalline organometal halide perovskites. The junction is subsequently stabilized by quenching the ionic movement at a low temperature. Such a strategy of manipulating the ion migration has led to efficient single-crystalline light-emitting diodes that emit 2.3 eV photons starting at 1.8 V and sustain a continuous operation for 54 h at ∼5000 cd m -2 without degradation of brightness. In addition, a whispering-gallery-mode cavity and exciton-exciton interaction in the perovskite microplatelets have both been observed that can be potentially useful for achieving electrically driven laser diodes based on single-crystalline organometal halide perovskite semiconductors.

  2. Trap-assisted and Langevin-type recombination in organic light-emitting diodes

    NARCIS (Netherlands)

    Wetzelaer, G. A. H.; Kuik, M.; Nicolai, H. T.; Blom, P. W. M.

    2011-01-01

    Trapping of charges is known to play an important role in the charge transport of organic semiconductors, but the role of traps in the recombination process has not been addressed. Here we show that the ideality factor of the current of organic light-emitting diodes (OLEDs) in the

  3. Determination of the trap-assisted recombination strength in polymer light emitting diodes

    NARCIS (Netherlands)

    Kuik, Martijn; Nicolai, Herman T.; Lenes, Martijn; Wetzelaer, Gert-Jan A. H.; Lu, Mingtao; Blom, Paul W. M.

    2011-01-01

    The recombination processes in poly(p-phenylene vinylene) based polymer light-emitting diodes (PLEDs) are investigated. Photogenerated current measurements on PLED device structures reveal that next to the known Langevin recombination also trap-assisted recombination is an important recombination

  4. Determination of the trap-assisted recombination strength in polymer light emitting diodes

    NARCIS (Netherlands)

    Kuik, M.; Nicolai, H.T.; Lenes, M.; Wetzelaer, G.-J.A.H.; Lu, M.; Blom, P.W.M.

    2011-01-01

    The recombination processes in poly(p -phenylene vinylene) based polymer light-emitting diodes (PLEDs) are investigated. Photogenerated current measurements on PLED device structures reveal that next to the known Langevin recombination also trap-assisted recombination is an important recombination

  5. Preliminary Demonstration of Power Beaming With Non-Coherent Laser Diode Arrays

    National Research Council Canada - National Science Library

    Kare, Jordin

    1999-01-01

    A preliminary demonstration of free-space electric power transmission has been conducted using non-coherent laser diode arrays as the transmitter and standard silicon photovoltaic cell arrays as the receiver...

  6. Investigation of phosphorescent blue organic light emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Chiu, Chien-Shu [Department of Electrical Engineering and Information Technology, Technical University of Braunschweig (Germany); Siemens AG, CT MM 1, Erlangen (Germany); Krause, Ralf [Department of Materials Science VI, University of Erlangen-Nuernberg (Germany); Siemens AG, CT MM 1, Erlangen (Germany); Kozlowski, Fryderyk; Hunze, Arvid [Siemens AG, CT MM 1, Erlangen (Germany); Kowalsky, Wolfgang [Department of Electrical Engineering and Information Technology, Technical University of Braunschweig (Germany)

    2008-07-01

    Recently, rapid development of phosphorescent materials has significantly improved the efficiency of organic light emitting diodes (OLEDs). By using efficient phosphorescent emitter materials white OLEDs with high power efficiency values could be demonstrated. But especially blue phosphorescent devices, due to stability issues, need to be further investigated und optimized. In this work, blue OLED devices based on the phosphorescent emitter FIrpic were investigated. Single-carrier hole-only as well as electron-only devices were fabricated and characterized to study the impact of charge carriers on device performance.

  7. Low driving voltage blue, green, yellow, red and white organic light-emitting diodes with a simply double light-emitting structure.

    Science.gov (United States)

    Zhang, Zhensong; Yue, Shouzhen; Wu, Yukun; Yan, Pingrui; Wu, Qingyang; Qu, Dalong; Liu, Shiyong; Zhao, Yi

    2014-01-27

    Low driving voltage blue, green, yellow, red and white phosphorescent organic light-emitting diodes (OLEDs) with a common simply double emitting layer (D-EML) structure are investigated. Our OLEDs without any out-coupling schemes as well as n-doping strategies show low driving voltage, e.g. white OLED, respectively. This work demonstrates that the low driving voltages and high efficiencies can be simultaneously realized with a common simply D-EML structure.

  8. Enhanced Performance of Bipolar Cascade Light Emitting Diodes by Doping the Aluminum Oxide Apertures

    National Research Council Canada - National Science Library

    Siskaninetz, William

    2004-01-01

    Performance improvements in multiple-stage, single-cavity bipolar cascade light emitting diodes including reduced operating voltages, enhanced light generation, and reduced device heating are obtained...

  9. Analytic formalism for current crowding in light emitting diodes

    International Nuclear Information System (INIS)

    Lee, Kyu-Seok

    2012-01-01

    This paper presents an analytic approach to simulating current crowding (CC) in light-emitting diodes with parallel p- and n-contacts. The electrical potential difference across the p-i-n layers is derived from the Laplace equation, whereas the current density through the p-i-n layers is obtained from the current density - voltage relation of a single-diode model. Since these two properties influence each other, they are calculated iteratively. It is found that CC depends on the applied voltage (or the average current density), the sheet resistances of the p- and the n-contact layers, the width of the active region, and the specific series resistance and ideality factor of the p-i-n layers. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. High-performance flexible inverted organic light-emitting diodes by exploiting MoS2 nanopillar arrays as electron-injecting and light-coupling layers.

    Science.gov (United States)

    Guo, Kunping; Si, Changfeng; Han, Ceng; Pan, Saihu; Chen, Guo; Zheng, Yanqiong; Zhu, Wenqing; Zhang, Jianhua; Sun, Chang; Wei, Bin

    2017-10-05

    Inverted organic light-emitting diodes (IOLEDs) on plastic substrates have great potential application in flexible active-matrix displays. High energy consumption, instability and poor electron injection are key issues limiting the commercialization of flexible IOLEDs. Here, we have systematically investigated the electrooptical properties of molybdenum disulfide (MoS 2 ) and applied it in developing highly efficient and stable blue fluorescent IOLEDs. We have demonstrated that MoS 2 -based IOLEDs can significantly improve electron-injecting capacity. For the MoS 2 -based device on plastic substrates, we have achieved a very high external quantum efficiency of 7.3% at the luminance of 9141 cd m -2 , which is the highest among the flexible blue fluorescent IOLEDs reported. Also, an approximately 1.8-fold improvement in power efficiency was obtained compared to glass-based IOLEDs. We attributed the enhanced performance of flexible IOLEDs to MoS 2 nanopillar arrays due to their light extraction effect. The van der Waals force played an important role in the formation of MoS 2 nanopillar arrays by thermal evaporation. Notably, MoS 2 -based flexible IOLEDs exhibit an intriguing efficiency roll-up, that is, the current efficiency increases slightly from 14.0 to 14.6 cd A -1 with the luminance increasing from 100 to 5000 cd m -2 . In addition, we observed that the initial brightness of 500 cd m -2 can be maintained at 97% after bending for 500 cycles, demonstrating the excellent mechanical stability of flexible IOLEDs. Furthermore, we have successfully fabricated a transparent, flexible IOLED with low efficiency roll-off at high current density.

  11. White-light-emitting diode based on a single-layer polymer

    Science.gov (United States)

    Wang, B. Z.; Zhang, X. P.; Liu, H. M.

    2013-05-01

    A broad-band light-emitting diode was achieved in a single-layer device based on pure poly(9,9'-dioctylfluorene-co-bis-N,N'-(4-butylphenyl)-bis-N,N'-phenyl-1,4-phenylenediamine) (PFB). Electromer emission was observed in the red with a center wavelength of about 620 nm in electroluminescence (EL) spectrum. This kind of emission exhibits strong dependence on the thickness of the PFB layer, so that the shape of the EL spectrum may be adjusted through changing the thickness of the active polymer layer to balance between the intrinsic PFB emission in the blue and the electromer emission in the red. Thus, white light emission may be achieved from such a single-layer single-material diode.

  12. Effect of interface voids on electroluminescence colors for ZnO microdisk/p-GaN heterojunction light-emitting diodes

    Science.gov (United States)

    Mo, Ran; Choi, Ji Eun; Kim, Hyeong Jin; Jeong, Junseok; Kim, Jong Chan; Kim, Yong-Jin; Jeong, Hu Young; Hong, Young Joon

    2017-10-01

    This study investigates the influence of voids on the electroluminescence (EL) emission color of ZnO microdisk/p-GaN heterojunction light-emitting diodes (LEDs). For this study, position-controlled microdisk arrays were fabricated on patterned p-GaN via wet chemical epitaxy of ZnO, and specifically, the use of trisodium citrate dihydrate (TCD) yielded high-density voids at the bottom of the microdisk. Greenish yellow or whitish blue EL was emitted from the microdisk LEDs formed with or without TCD, respectively, at reverse-bias voltages. Such different EL colors were found to be responsible for the relative EL intensity ratio between indigo and yellow emission peaks, which were originated from radiative recombination at p-GaN and ZnO, respectively. The relative EL intensity between dichromatic emissions is discussed in terms of (i) junction edge effect provoked by interfacial voids and (ii) electron tunneling probability depending on the depletion layer geometry.

  13. Top-Emitting White Organic Light-Emitting Diodes Based on Cu as Both Anode and Cathode

    International Nuclear Information System (INIS)

    Mu Ye; Zhang Zhen-Song; Wang Hong-Bo; Qu Da-Long; Wu Yu-Kun; Yan Ping-Rui; Li Chuan-Nan; Zhao Yi

    2015-01-01

    It is still challenging to obtain broadband emission covering visible light spectrum as much as possible with negligible angular dependence. In this work, we demonstrate a low driving voltage top-emitting white organic light-emitting diode (TEWOLED) based on complementary blue and yellow phosphor emitters with negligible angular dependence. The bottom copper anode with medium reflectance, which is compatible with the standard complementary metal oxide semiconductor (CMOS) technology below 0.13 μm, and the semitransparent multilayer Cs2CO3/Al/Cu cathode as a top electrode, are introduced to realize high-performance TEWOLED. Our TEWOLED achieves high efficiencies of 15.4 cd/A and 12.1 lm/W at a practical brightness of 1000 cd/m 2 at low voltage of 4 V. (paper)

  14. Highly efficient exciplex organic light-emitting diodes incorporating a heptazine derivative as an electron acceptor.

    Science.gov (United States)

    Li, Jie; Nomura, Hiroko; Miyazaki, Hiroshi; Adachi, Chihaya

    2014-06-11

    Highly efficient exciplex systems incorporating a heptazine derivative () as an electron acceptor and 1,3-di(9H-carbazol-9-yl)benzene () as an electron donor are developed. An organic light-emitting diode containing 8 wt% : as an emitting layer exhibits a maximum external quantum efficiency of 11.3%.

  15. Study of photophysical processes in organic light-emitting diodes based on light-emission profile reconstruction

    NARCIS (Netherlands)

    Carvelli, M.

    2012-01-01

    Organic light-emitting diodes (OLEDs) are emerging as a promising option for energy-efficient, flexible light sources. A key factor that needs to be measured and controlled is the shape of the emission profile, i.e. the spatial distribution of the emitting excitons across the active layer thickness.

  16. Semi-transparent all-oxide ultraviolet light-emitting diodes based on ZnO/NiO-core/shell nanowires

    Science.gov (United States)

    Shi, Zhi-Feng; Xu, Ting-Ting; Wu, Di; Zhang, Yuan-Tao; Zhang, Bao-Lin; Tian, Yong-Tao; Li, Xin-Jian; Du, Guo-Tong

    2016-05-01

    Semi-transparent all-oxide light-emitting diodes based on ZnO/NiO-core/shell nanowire structures were prepared on double-polished c-Al2O3 substrates. The entire heterojunction diode showed an average transparency of ~65% in the ultraviolet and visible regions. Under forward bias, the diode displayed an intense ultraviolet emission at ~382 nm, and its electroluminescence performance was remarkable in terms of a low emission onset, acceptable operating stability, and the ability to optically excite emissive semiconductor nanoparticle chromophores.Semi-transparent all-oxide light-emitting diodes based on ZnO/NiO-core/shell nanowire structures were prepared on double-polished c-Al2O3 substrates. The entire heterojunction diode showed an average transparency of ~65% in the ultraviolet and visible regions. Under forward bias, the diode displayed an intense ultraviolet emission at ~382 nm, and its electroluminescence performance was remarkable in terms of a low emission onset, acceptable operating stability, and the ability to optically excite emissive semiconductor nanoparticle chromophores. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr07236k

  17. Resonant cavity light-emitting diodes based on dielectric passive cavity structures

    Science.gov (United States)

    Ledentsov, N.; Shchukin, V. A.; Kropp, J.-R.; Zschiedrich, L.; Schmidt, F.; Ledentsov, N. N.

    2017-02-01

    A novel design for high brightness planar technology light-emitting diodes (LEDs) and LED on-wafer arrays on absorbing substrates is proposed. The design integrates features of passive dielectric cavity deposited on top of an oxide- semiconductor distributed Bragg reflector (DBR), the p-n junction with a light emitting region is introduced into the top semiconductor λ/4 DBR period. A multilayer dielectric structure containing a cavity layer and dielectric DBRs is further processed by etching into a micrometer-scale pattern. An oxide-confined aperture is further amended for current and light confinement. We study the impact of the placement of the active region into the maximum or minimum of the optical field intensity and study an impact of the active region positioning on light extraction efficiency. We also study an etching profile composed of symmetric rings in the etched passive cavity over the light emitting area. The bottom semiconductor is an AlGaAs-AlAs multilayer DBR selectively oxidized with the conversion of the AlAs layers into AlOx to increase the stopband width preventing the light from entering the semiconductor substrate. The approach allows to achieve very high light extraction efficiency in a narrow vertical angle keeping the reasonable thermal and current conductivity properties. As an example, a micro-LED structure has been modeled with AlGaAs-AlAs or AlGaAs-AlOx DBRs and an active region based on InGaAlP quantum well(s) emitting in the orange spectral range at 610 nm. A passive dielectric SiO2 cavity is confined by dielectric Ta2O5/SiO2 and AlGaAs-AlOx DBRs. Cylindrically-symmetric structures with multiple ring patterns are modeled. It is demonstrated that the extraction coefficient of light to the air can be increased from 1.3% up to above 90% in a narrow vertical angle (full width at half maximum (FWHM) below 20°). For very small oxide-confined apertures 100nm the narrowing of the FWHM for light extraction can be reduced down to 5

  18. Color optimization of conjugated-polymer/InGaN hybrid white light emitting diodes by incomplete energy transfer

    International Nuclear Information System (INIS)

    Chang, Chi-Jung; Lai, Chun-Feng; Madhusudhana Reddy, P.; Chen, Yung-Lin; Chiou, Wei-Yung; Chang, Shinn-Jen

    2015-01-01

    By using the wavelength conversion method, white light emitting diodes (WLEDs) were produced by applying mixtures of polysiloxane and fluorescent polymers on InGaN based light emitting diodes. UV curable organic–inorganic hybrid materials with high refractive index (1.561), compromised optical, thermal and mechanical properties was used as encapsulants. Red light emitting fluorescent FABD polymer (with 9,9-dioctylfluorene (F), anthracene (A) and 2,1,3-benzothiadiazole (B), and 4,7-bis(2-thienyl)-2,1,3-benzothiadiazole (D) repeating units) and green light emitting fluorescent FAB polymer were used as wavelength converters. The encapsulant/fluorescent polymer mixture and InGaN produce the white light by incomplete energy transfer mechanism. WLEDs with high color rendering index (CRI, about 93), and tunable correlated color temperature (CCT) properties can be produced by controlling the composition and chemical structures of encapsulating polymer and fluorescent polymer in hybrid materials, offering cool-white and neutral-white LEDs. - Highlights: • Highly efficient white light-emitting diodes (WLEDs) were produced. • Conjugated-polymer/InGaN hybrid WLEDs by incomplete energy transfer mechanism. • WLEDs with high color-rendering index and tunable correlated color temperature. • Polysiloxane encapsulant with superior optical, mechanical and thermal properties

  19. Topology optimisation of passive coolers for light-emitting diode lamps

    DEFF Research Database (Denmark)

    Alexandersen, Joe

    2015-01-01

    This work applies topology optimisation to the design of passive coolers for light-emitting diode (LED) lamps. The heat sinks are cooled by the natural convection currents arising from the temperature difference between the LED lamp and the surrounding air. A large scale parallel computational....... The optimisation results show interesting features that are currently being incorporated into industrial designs for enhanced passive cooling abilities....

  20. Nanostructured current-confined single quantum dot light-emitting diode at 1300 nm

    NARCIS (Netherlands)

    Monat, C.; Alloing, B.; Zinoni, C.; Li, L.; Fiore, A.

    2006-01-01

    A novel light-emitting-diode structure is demonstrated, which relies on nanoscale current injection through an oxide aperture to achieve selective excitation of single InAs/GaAs quantum dots. Low-temp. electroluminescence spectra evidence discrete narrow lines around 1300 nm (line width ~ 75 micro

  1. Advancement of High Power Quasi-CW Laser Diode Arrays For Space-based Laser Instruments

    Science.gov (United States)

    Amzajerdian, Farzin; Meadows, Byron L.; Baker, nathaniel R.; Baggott, Renee S.; Singh, Upendra N.; Kavaya, Michael J.

    2004-01-01

    Space-based laser and lidar instruments play an important role in NASA s plans for meeting its objectives in both Earth Science and Space Exploration areas. Almost all the lidar instrument concepts being considered by NASA scientist utilize moderate to high power diode-pumped solid state lasers as their transmitter source. Perhaps the most critical component of any solid state laser system is its pump laser diode array which essentially dictates instrument efficiency, reliability and lifetime. For this reason, premature failures and rapid degradation of high power laser diode arrays that have been experienced by laser system designers are of major concern to NASA. This work addresses these reliability and lifetime issues by attempting to eliminate the causes of failures and developing methods for screening laser diode arrays and qualifying them for operation in space.

  2. Improved light extraction efficiency of InGaN/GaN light-emitting diodes using dielectric coated nanopillars

    DEFF Research Database (Denmark)

    Fadil, Ahmed; Ou, Yiyu; Ou, Haiyan

    Nanopillars have been fabricated on InGaN/GaN ligh t-emitting diodes using nanosphere lithography. With HCl treatment and SiN passivation a photoluminescence improvement by a factor of 7.8 was obtained compared to the untreated nanopillar structure.......Nanopillars have been fabricated on InGaN/GaN ligh t-emitting diodes using nanosphere lithography. With HCl treatment and SiN passivation a photoluminescence improvement by a factor of 7.8 was obtained compared to the untreated nanopillar structure....

  3. Stacking multiple connecting functional materials in tandem organic light-emitting diodes

    Science.gov (United States)

    Zhang, Tao; Wang, Deng-Ke; Jiang, Nan; Lu, Zheng-Hong

    2017-02-01

    Tandem device is an important architecture in fabricating high performance organic light-emitting diodes and organic photovoltaic cells. The key element in making a high performance tandem device is the connecting materials stack, which plays an important role in electric field distribution, charge generation and charge injection. For a tandem organic light-emitting diode (OLED) with a simple Liq/Al/MoO3 stack, we discovered that there is a significant current lateral spreading causing light emission over an extremely large area outside the OLED pixel when the Al thickness exceeds 2 nm. This spread light emission, caused by an inductive electric field over one of the device unit, limits one’s ability to fabricate high performance tandem devices. To resolve this issue, a new connecting materials stack with a C60 fullerene buffer layer is reported. This new structure permits optimization of the Al metal layer in the connecting stack and thus enables us to fabricate an efficient tandem OLED having a high 155.6 cd/A current efficiency and a low roll-off (or droop) in current efficiency.

  4. Diode temperature sensor array for measuring and controlling micro scale surface temperature

    International Nuclear Information System (INIS)

    Han, Il Young; Kim, Sung Jin

    2004-01-01

    The needs of micro scale thermal detecting technique are increasing in biology and chemical industry. For example, thermal finger print, Micro PCR(Polymer Chain Reaction), TAS and so on. To satisfy these needs, we developed a DTSA(Diode Temperature Sensor Array) for detecting and controlling the temperature on small surface. The DTSA is fabricated by using VLSI technique. It consists of 32 array of diodes(1,024 diodes) for temperature detection and 8 heaters for temperature control on a 8mm surface area. The working principle of temperature detection is that the forward voltage drop across a silicon diode is approximately proportional to the inverse of the absolute temperature of diode. And eight heaters (1K) made of poly-silicon are added onto a silicon wafer and controlled individually to maintain a uniform temperature distribution across the DTSA. Flip chip packaging used for easy connection of the DTSA. The circuitry for scanning and controlling DTSA are also developed

  5. Progress in Piezo-Phototronic-Effect-Enhanced Light-Emitting Diodes and Pressure Imaging.

    Science.gov (United States)

    Pan, Caofeng; Chen, Mengxiao; Yu, Ruomeng; Yang, Qing; Hu, Youfan; Zhang, Yan; Wang, Zhong Lin

    2016-02-24

    Wurtzite materials exhibit both semiconductor and piezoelectric properties under strains due to the non-central symmetric crystal structures. The three-way coupling of semiconductor properties, piezoelectric polarization and optical excitation in ZnO, GaN, CdS and other piezoelectric semiconductors leads to the emerging field of piezo-phototronics. This effect can efficiently manipulate the emission intensity of light-emitting diodes (LEDs) by utilizing the piezo-polarization charges created at the junction upon straining to modulate the energy band diagrams and the optoelectronic processes, such as generation, separation, recombination and/or transport of charge carriers. Starting from fundamental physics principles, recent progress in piezo-phototronic-effect-enhanced LEDs is reviewed; following their development from single-nanowire pressure-sensitive devices to high-resolution array matrices for pressure-distribution mapping applications. The piezo-phototronic effect provides a promising method to enhance the light emission of LEDs based on piezoelectric semiconductors through applying static strains, and may find perspective applications in various optoelectronic devices and integrated systems. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Weak-microcavity organic light-emitting diodes with improved light out-coupling.

    Science.gov (United States)

    Cho, Sang-Hwan; Song, Young-Woo; Lee, Joon-gu; Kim, Yoon-Chang; Lee, Jong Hyuk; Ha, Jaeheung; Oh, Jong-Suk; Lee, So Young; Lee, Sun Young; Hwang, Kyu Hwan; Zang, Dong-Sik; Lee, Yong-Hee

    2008-08-18

    We propose and demonstrate weak-microcavity organic light-emitting diode (OLED) displays with improved light-extraction and viewing-angle characteristics. A single pair of low- and high-index layers is inserted between indium tin oxide (ITO) and a glass substrate. The electroluminescent (EL) efficiencies of discrete red, green, and blue weak-microcavity OLEDs are enhanced by 56%, 107%, and 26%, respectively, with improved color purity. Moreover, full-color passive-matrix bottom-emitting OLED displays are fabricated by employing low-index layers of two thicknesses. As a display, the EL efficiency of white color was 27% higher than that of a conventional OLED display.

  7. Flexible Light Emission Diode Arrays Made of Transferred Si Microwires-ZnO Nanofilm with Piezo-Phototronic Effect Enhanced Lighting.

    Science.gov (United States)

    Li, Xiaoyi; Liang, Renrong; Tao, Juan; Peng, Zhengchun; Xu, Qiming; Han, Xun; Wang, Xiandi; Wang, Chunfeng; Zhu, Jing; Pan, Caofeng; Wang, Zhong Lin

    2017-04-25

    Due to the fragility and the poor optoelectronic performances of Si, it is challenging and exciting to fabricate the Si-based flexible light-emitting diode (LED) array devices. Here, a flexible LED array device made of Si microwires-ZnO nanofilm, with the advantages of flexibility, stability, lightweight, and energy savings, is fabricated and can be used as a strain sensor to demonstrate the two-dimensional pressure distribution. Based on piezo-phototronic effect, the intensity of the flexible LED array can be increased more than 3 times (under 60 MPa compressive strains). Additionally, the device is stable and energy saving. The flexible device can still work well after 1000 bending cycles or 6 months placed in the atmosphere, and the power supplied to the flexible LED array is only 8% of the power of the surface-contact LED. The promising Si-based flexible device has wide range application and may revolutionize the technologies of flexible screens, touchpad technology, and smart skin.

  8. Rosin-enabled ultraclean and damage-free transfer of graphene for large-area flexible organic light-emitting diodes

    Science.gov (United States)

    Zhang, Zhikun; Du, Jinhong; Zhang, Dingdong; Sun, Hengda; Yin, Lichang; Ma, Laipeng; Chen, Jiangshan; Ma, Dongge; Cheng, Hui-Ming; Ren, Wencai

    2017-02-01

    The large polymer particle residue generated during the transfer process of graphene grown by chemical vapour deposition is a critical issue that limits its use in large-area thin-film devices such as organic light-emitting diodes. The available lighting areas of the graphene-based organic light-emitting diodes reported so far are usually transfer method using rosin as a support layer, whose weak interaction with graphene, good solubility and sufficient strength enable ultraclean and damage-free transfer. The transferred graphene has a low surface roughness with an occasional maximum residue height of about 15 nm and a uniform sheet resistance of 560 Ω per square with about 1% deviation over a large area. Such clean, damage-free graphene has produced the four-inch monolithic flexible graphene-based organic light-emitting diode with a high brightness of about 10,000 cd m-2 that can already satisfy the requirements for lighting sources and displays.

  9. Continuous light-emitting Diode (LED) lighting for improving food quality

    OpenAIRE

    Lu, C; Bian, Z

    2016-01-01

    Lighting-emitting diodes (LEDs) have shown great potential for plant growth and development, with higher luminous efficiency and positive impact compared with other artificial lighting. The combined effects of red/blue or/and green, and white LED light on plant growth and physiology, including chlorophyll fluorescence, nitrate content and phytochemical concentration before harvest, were investigated. The results showed that continuous light (CL)\\ud exposure at pre-harvest can effectively redu...

  10. Color Shift Modeling of Light-Emitting Diode Lamps in Step-Loaded Stress Testing

    NARCIS (Netherlands)

    Cai, Miao; Yang, Daoguo; Huang, J.; Zhang, Maofen; Chen, Xianping; Liang, Caihang; Koh, S.W.; Zhang, G.Q.

    2017-01-01

    The color coordinate shift of light-emitting diode (LED) lamps is investigated by running three stress-loaded testing methods, namely step-up stress accelerated degradation testing, step-down stress accelerated degradation testing, and constant stress accelerated degradation testing. A power

  11. Highly efficient greenish-blue platinum-based phosphorescent organic light-emitting diodes on a high triplet energy platform

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Y. L., E-mail: yilu.chang@mail.utoronto.ca; Gong, S., E-mail: sgong@chem.utoronto.ca; White, R.; Lu, Z. H., E-mail: zhenghong.lu@utoronto.ca [Department of Materials Science and Engineering, University of Toronto, 184 College St., Toronto, Ontario M5S 3E4 (Canada); Wang, X.; Wang, S., E-mail: wangs@chem.queensu.ca [Department of Chemistry, Queen' s University, 90 Bader Lane, Kingston, Ontario K7L 3N6 (Canada); Yang, C. [Department of Chemistry, Wuhan University, Wuhan 430072 (China)

    2014-04-28

    We have demonstrated high-efficiency greenish-blue phosphorescent organic light-emitting diodes (PHOLEDs) based on a dimesitylboryl-functionalized C^N chelate Pt(II) phosphor, Pt(m-Bptrz)(t-Bu-pytrz-Me). Using a high triplet energy platform and optimized double emissive zone device architecture results in greenish-blue PHOLEDs that exhibit an external quantum efficiency of 24.0% and a power efficiency of 55.8 lm/W. This record high performance is comparable with that of the state-of-the-art Ir-based sky-blue organic light-emitting diodes.

  12. Fiber optic modification of a diode array spectrophotometer

    International Nuclear Information System (INIS)

    Van Hare, D.R.; Prather, W.S.

    1986-01-01

    Fiber optics were adapted to a Hewlett-Packard diode array spectrophotometer to permit the analysis of radioactive samples without risking contamination of the instrument. Instrument performance was not compromised by the fiber optics. The instrument is in routine use at the Savannah River Plant control laboratories

  13. Air-stable memory array of bistable rectifying diodes based on ferroelectric-semiconductor polymer blends

    Science.gov (United States)

    Kumar, Manasvi; Sharifi Dehsari, Hamed; Anwar, Saleem; Asadi, Kamal

    2018-03-01

    Organic bistable diodes based on phase-separated blends of ferroelectric and semiconducting polymers have emerged as promising candidates for non-volatile information storage for low-cost solution processable electronics. One of the bottlenecks impeding upscaling is stability and reliable operation of the array in air. Here, we present a memory array fabricated with an air-stable amine-based semiconducting polymer. Memory diode fabrication and full electrical characterizations were carried out in atmospheric conditions (23 °C and 45% relative humidity). The memory diodes showed on/off ratios greater than 100 and further exhibited robust and stable performance upon continuous write-read-erase-read cycles. Moreover, we demonstrate a 4-bit memory array that is free from cross-talk with a shelf-life of several months. Demonstration of the stability and reliable air operation further strengthens the feasibility of the resistance switching in ferroelectric memory diodes for low-cost applications.

  14. Highly Efficient Perovskite-Quantum-Dot Light-Emitting Diodes by Surface Engineering

    KAUST Repository

    Pan, Jun; Quan, Li Na; Zhao, Yongbiao; Peng, Wei; Banavoth, Murali; Sarmah, Smritakshi P.; Yuan, Mingjian; Sinatra, Lutfan; AlYami, Noktan; Liu, Jiakai; Yassitepe, Emre; Yang, Zhenyu; Voznyy, Oleksandr; Comin, Riccardo; Hedhili, Mohamed N.; Mohammed, Omar F.; Lu, Zheng Hong; Kim, Dong Ha; Sargent, Edward H.; Bakr, Osman

    2016-01-01

    A two-step ligand-exchange strategy is developed, in which the long-carbon-chain ligands on all-inorganic perovskite (CsPbX3, X = Br, Cl) quantum dots (QDs) are replaced with halide-ion-pair ligands. Green and blue light-emitting diodes made from the halide-ion-paircapped quantum dots exhibit high external quantum efficiencies compared with the untreated QDs.

  15. Highly Efficient Perovskite-Quantum-Dot Light-Emitting Diodes by Surface Engineering

    KAUST Repository

    Pan, Jun

    2016-08-16

    A two-step ligand-exchange strategy is developed, in which the long-carbon-chain ligands on all-inorganic perovskite (CsPbX3, X = Br, Cl) quantum dots (QDs) are replaced with halide-ion-pair ligands. Green and blue light-emitting diodes made from the halide-ion-paircapped quantum dots exhibit high external quantum efficiencies compared with the untreated QDs.

  16. The influence of melt purification and structure defects on mid-infrared light emitting diodes

    CERN Document Server

    Krier, A

    2003-01-01

    Mid-infrared light emitting diodes which exhibit more than 7 mW (pulsed) and 0.35 mW dc output power at 3.3 mu m and at room temperature have been fabricated by liquid phase epitaxy using Pb as a neutral solvent. Using Pb solution an increase in pulsed output power of between two and three times was obtained compared with InAs light emitting diodes (LEDs) made using rare-earth gettering. The performance improvements were attributed to a reduction in residual carrier concentration arising from the removal of un-intentional donors and structure defects in the InAs active region material. These LEDs are well matched to the CH sub 4 absorption spectrum and potentially could form the basis of a practical infrared CH sub 4 gas sensor.

  17. Light emission mechanism of mixed host organic light-emitting diodes

    Science.gov (United States)

    Song, Wook; Lee, Jun Yeob

    2015-03-01

    Light emission mechanism of organic light-emitting diodes with a mixed host emitting layer was studied using an exciplex type mixed host and an exciplex free mixed host. Monitoring of the current density and luminance of the two type mixed host devices revealed that the light emission process of the exciplex type mixed host was dominated by energy transfer, while the light emission of the exciplex free mixed host was controlled by charge trapping. Mixed host composition was also critical to the light emission mechanism, and the contribution of the energy transfer process was maximized at 50:50 mixed host composition. Therefore, it was possible to manage the light emission process of the mixed host devices by managing the mixed host composition.

  18. Prediction and design of efficient exciplex emitters for high-efficiency, thermally activated delayed-fluorescence organic light-emitting diodes.

    Science.gov (United States)

    Liu, Xiao-Ke; Chen, Zhan; Zheng, Cai-Jun; Liu, Chuan-Lin; Lee, Chun-Sing; Li, Fan; Ou, Xue-Mei; Zhang, Xiao-Hong

    2015-04-08

    High-efficiency, thermally activated delayed-fluorescence organic light-emitting diodes based on exciplex emitters are demonstrated. The best device, based on a TAPC:DPTPCz emitter, shows a high external quantum efficiency of 15.4%. Strategies for predicting and designing efficient exciplex emitters are also provided. This approach allow prediction and design of efficient exciplex emitters for achieving high-efficiency organic light-emitting diodes, for future use in displays and lighting applications. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. GaN-Based Multiple-Quantum-Well Light-Emitting Diodes Employing Nanotechnology for Photon Management

    KAUST Repository

    Hsiao, Yu Hsuan; Tsai, Meng Lin; He, Jr-Hau

    2015-01-01

    Nanostructures have been proved to be an efficient way of modifying/improving the performance of GaN-based light-emitting diodes (LEDs). The achievements in photon management include strain relaxation, light extraction enhancement, radiation pattern

  20. Study of electrical fatigue by defect engineering in organic light-emitting diodes

    International Nuclear Information System (INIS)

    Gassmann, Andrea; Yampolskii, Sergey V.; Klein, Andreas; Albe, Karsten; Vilbrandt, Nicole; Pekkola, Oili; Genenko, Yuri A.; Rehahn, Matthias; Seggern, Heinz von

    2015-01-01

    Graphical abstract: - Highlights: • Electrical fatigue is investigated in PPV-based polymer light-emitting diodes. • Bromide defects remaining from Gilch synthesis limit PLED lifetime. • Electrical stress yields lower hole mobility and transition to dispersive transport. • Triplet excitons reduce lifetime and EL-emission-induced degradation observed. • Self-consistent drift-diffusion model for charge carrier injection and transport. - Abstract: In this work the current knowledge on the electrical degradation of polymer-based light-emitting diodes is reviewed focusing especially on derivatives of poly(p-phenylene-vinylene) (PPV). The electrical degradation will be referred to as electrical fatigue and is understood as mechanisms, phenomena and material properties that change during continuous operation of the device at constant current. The focus of this review lies especially on the effect of chemical synthesis on the transport properties of the organic semiconductor and the device lifetimes. In addition, the prominent transparent conductive oxide indium tin oxide as well as In 2 O 3 will be reviewed and how their properties can be altered by the processing conditions. The experiments are accompanied by theoretical modeling shining light on how the change of injection barriers, charge carrier mobility or trap density influence the current–voltage characteristics of the diodes and on how and which defects form in transparent conductive oxides used as anode

  1. Versatile IEEE-488 data acquisition and control routines for a diode array spectrophotometer

    OpenAIRE

    Shiundu, Paul M.; Wade, Adrian P.

    1991-01-01

    The UV-visible diode array spectrophotometer is a work-horse instrument for many laboratories. This article provides simple data acquisition and control routines in Microsoft QuickBasic for a HP-8452A diode array spectrophotometer interfaced to an IBM PC/XT/AT, or compatible, microcomputer. These allow capture of full spectra and measure absorbance at one or several wavelengths at preset time intervals. The variance in absorbance at each wavelength is available as an option.

  2. Ultraviolet light-emitting diodes in water disinfection.

    Science.gov (United States)

    Vilhunen, Sari; Särkkä, Heikki; Sillanpää, Mika

    2009-06-01

    The novel system of ultraviolet light-emitting diodes (UV LEDs) was studied in water disinfection. Conventional UV lamps, like mercury vapor lamp, consume much energy and are considered to be problem waste after use. UV LEDs are energy efficient and free of toxicants. This study showed the suitability of LEDs in disinfection and provided information of the effect of two emitted wavelengths and different test mediums to Escherichia coli destruction. Common laboratory strain of E. coli (K12) was used and the effects of two emitted wavelengths (269 and 276 nm) were investigated with two photolytic batch reactors both including ten LEDs. The effects of test medium were examined with ultrapure water, nutrient and water, and nutrient and water with humic acids. Efficiency of reactors was almost the same even though the one emitting higher wavelength had doubled optical power compared to the other. Therefore, the effect of wavelength was evident and the radiation emitted at 269 nm was more powerful. Also, the impact of background was studied and noticed to have only slight deteriorating effect. In the 5-min experiment, the bacterial reduction of three to four log colony-forming units (CFU) per cubic centimeter was achieved, in all cases. When turbidity of the test medium was greater, part of the UV radiation was spent on the absorption and reactions with extra substances on liquid. Humic acids can also coat the bacteria reducing the sensitivity of the cells to UV light. The lower wavelength was distinctly more efficient when the optical power is considered, even though the difference of wavelengths was small. The reason presumably is the greater absorption of DNA causing more efficient bacterial breakage. UV LEDs were efficient in E. coli destruction, even if LEDs were considered to have rather low optical power. The effect of wavelengths was noticeable but the test medium did not have much impact. This study found UV LEDs to be an optimal method for bacterial

  3. High efficient white organic light emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Seidel, Stefan; Krause, Ralf [Department of Materials Science VI, University of Erlangen-Nuremberg (Germany); Siemens AG, CT MM 1, Erlangen (Germany); Kozlowski, Fryderyk; Schmid, Guenter; Hunze, Arvid [Siemens AG, CT MM 1, Erlangen (Germany); Winnacker, Albrecht [Department of Materials Science VI, University of Erlangen-Nuremberg (Germany)

    2007-07-01

    Due to the rapid progress in the last years the performance of organic light emitting diodes (OLEDs) has reached a level where general lighting presents a most interesting application target. We demonstrate, how the color coordinates of the emission spectrum can be adjusted using a combinatorial evaporation tool to lie on the desired black body curve representing cold and warm white, respectively. The evaluation includes phosphorescent and fluorescent dye approaches to optimize lifetime and efficiency, simultaneously. Detailed results are presented with respect to variation of layer thicknesses and dopant concentrations of each layer within the OLED stack. The most promising approach contains phosphorescent red and green dyes combined with a fluorescent blue one as blue phosphorescent dopants are not yet stable enough to achieve long lifetimes.

  4. Frustrated total internal reflection in organic light-emitting diodes employing sphere cavity embedded in polystyrene

    International Nuclear Information System (INIS)

    Zhu, Peifen

    2016-01-01

    The light extraction efficiency of top-emitting organic light-emitting diodes (OLEDs) is numerically investigated employing the finite-difference time-domain method. The periodic nanostructures formed by embedding the sphere arrays in polystyrene (PS) are placed on top of OLED to frustrate the total internal reflection at the interface between OLED and free space. These nanostructures serve as an intermediate medium to extract the light out of OLED devices. Efficiently coupling both evanescent waves and propagation waves into spheres and subsequently extracting these light waves out of the sphere is key to achieving high extraction efficiency. By tuning the thickness of PS layer, both of the in-coupling efficiency and out-coupling efficiency are optimized for achieving high light extraction efficiency. Thicker PS layer results in higher in-coupling efficiency in sphere while the thinner PS layer leads to higher out-coupling efficiency. Thus the maximum light extraction is a trade-off between the in-coupling efficiency and out-coupling efficiency. The study shows that light extraction efficiency of 89% can be achieved by embedding 0.90 μm TiO 2 sphere in 0.30 μm PS layer with optimized in-coupling efficiency, out-coupling efficiency and cavity effect. (paper)

  5. Light emitting diodes (LED): applications in forest and native plant nurseries

    Science.gov (United States)

    Thomas D. Landis; Jeremiah R. Pinto; R. Kasten Dumroese

    2013-01-01

    It was quotes like this that made us want to learn more about light emitting diodes (LED). Other than knowing that LEDs were the latest innovation in artificial lighting, we knew that we had a lot to learn. So we started by reviewing some of the basics. The following review is a brief synopsis of how light affects plants and some discussion about LED lighting. If you...

  6. A triphenylamine substituted quinacridone derivative for solution processed organic light emitting diodes

    NARCIS (Netherlands)

    Pilz da Cunha, M.; Do, T.T.; Yambem, S.D.; Pham, H.D.; Chang, S.; Manzhos, S.; Katoh, R.; Sonar, P.

    2018-01-01

    We report on a novel quinacridone derivative design, namely, 2,9-bis(4-(bis(4-methoxyphenyl)amino)phenyl)-5,12-bis(2-ethylhexyl)-5,12-dihydroquinolino[2,3-b]acridine-7,14-dione (TPA-QA-TPA) for possible use as a solution processable emissive layer in organic light emitting diodes (OLEDs). TPA-QA-TPA

  7. High tunability and superluminescence in InAs mid-infrared light emitting diodes

    International Nuclear Information System (INIS)

    Sherstnev, V.V.; Krier, A.; Hill, G.

    2002-01-01

    We report on the observation of super luminescence and high spectral current tunability (181 nm) of InAs light emitting diodes operating at 3.0 μm. The source is based on an optical whispering gallery mode which is generated near the edges of the mesa and which is responsible for the superluminescence. (author)

  8. Phosphorescence white organic light-emitting diodes with single emitting layer based on isoquinolinefluorene-carbazole containing host.

    Science.gov (United States)

    Koo, Ja Ryong; Lee, Seok Jae; Hyung, Gun Woo; Kim, Bo Young; Shin, Hyun Su; Lee, Kum Hee; Yoon, Seung Soo; Kim, Woo Young; Kim, Young Kwan

    2013-03-01

    We have demonstrated a stable phosphorescent white organic light-emitting diodes (WOLEDs) using an orange emitter, Bis(5-benzoyl-2-(4-fluorophenyl)pyridinato-C,N) iridium(III)acetylacetonate [(Bz4Fppy)2Ir(III)acac] doped into a newly synthesized blue host material, 2-(carbazol-9-yl)-7-(isoquinolin-1-yl)-9,9-diethylfluorene (CzFliq). When 1 wt.% (Bz4Fppy)2Ir(III)acac was doped into emitting layer, it was realized an improved EL performance and a pure white color in the OLED. The optimum WOLED showed maximum values as a luminous efficiency of 10.14 cd/A, a power efficiency of 10.24 Im/W, a peak external quantum efficiency 4.07%, and Commission Internationale de L'Eclairage coordinates of (0.34, 0.39) at 8 V.

  9. Light-emitting diodes - Their potential in biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Yeh, Naichia Gary; Wu, Chia-Hao [College of Applied Sciences, MingDao University, 369 Wen-Hua Road, Peetou, Changhua 52345 (China); Cheng, Ta Chih [Department of Tropical Agriculture and International Cooperation, National Pingtung University of Science and Technology, 1 Hseuh-Fu Rd., Nei-Pu Hsiang, Pingtung 91201 (China)

    2010-10-15

    The rapid development of high brightness light-emitting diodes (LEDs) makes feasible the use of LEDs, among other light sources (such as laser, intense pulse light and other incoherent light systems), for medical treatment and light therapy. This paper provides a general review on red, green, blue, ultraviolet LED applications in photo rejuvenation and medical treatments of a variety of physical abnormalities, as well as the relief of stress, circadian rhythm disorders, and seasonal affective disorder. The review, concentrated in the papers published after 1990, intends to show that LEDs are well qualified to succeed its more energy demanding counterparts in the named areas and beyond. (author)

  10. Colour-tunable light-emitting diodes based on InP/GaP nanostructures

    International Nuclear Information System (INIS)

    Hatami, Fariba; Masselink, W Ted; Harris, James S

    2006-01-01

    We describe a novel colour-tunable light-emitting diode whose operation is based on direct band-gap emission from coupled configurations of InP quantum dots and quantum wells embedded in GaP. The control of the emission colour stems from a marked difference in the current dependence of intensities of two different emission processes. At lower currents, the emission is dominated by the 720 nm luminescence from the quantum dots and appears red; at higher currents, the emission is dominated by the 550 nm quantum-well luminescence and the perceived colour is green. Thus, we are able to tune the colour of such diodes from red to green by means of drive current. A multi-colour pixel can be realized by a single diode, with rapid switching between colour states to provide a range of colour mix

  11. Luminescence and squeezing of a superconducting light-emitting diode

    Science.gov (United States)

    Hlobil, Patrik; Orth, Peter P.

    2015-05-01

    We investigate a semiconductor p -n junction in contact with superconducting leads that is operated under forward bias as a light-emitting diode. The presence of superconductivity results in a significant increase of the electroluminescence in a sharp frequency window. We demonstrate that the tunneling of Cooper pairs induces an additional luminescence peak on resonance. There is a transfer of superconducting to photonic coherence that results in the emission of entangled photon pairs and squeezing of the fluctuations in the quadrature amplitudes of the emitted light. We show that the squeezing angle can be electrically manipulated by changing the relative phase of the order parameters in the superconductors. We finally derive the conditions for lasing in the system and show that the laser threshold is reduced due to superconductivity. This reveals how the macroscopic coherence of a superconductor can be used to control the properties of light.

  12. Investigation of organic light emitting diodes for interferometric purposes

    Science.gov (United States)

    Pakula, Anna; Zimak, Marzena; Sałbut, Leszek

    2011-05-01

    Recently the new type of light source has been introduced to the market. Organic light emitting diode (OLED) is not only interesting because of the low applying voltage, wide light emitting areas and emission efficiency. It gives the possibility to create a light source of a various shape, various color and in the near future very likely even the one that will change shape and spectrum in time in controlled way. Those opportunities have not been in our reach until now. In the paper authors try to give an answer to the question if the new light source -OLED - is suitable for interferometric purposes. Tests cover the short and long term spectrum stability, spectrum changes due to the emission area selection. In the paper the results of two OLEDs (red and white) are shown together with the result of an attempt to use them in an interferometric setup.

  13. Best practices : bus signage for persons with visual impairments : light-emitting diode (LED) signs

    Science.gov (United States)

    2004-01-01

    This best-practices report provides key information regarding the use of Light-Emitting Diode (LED) sign technologies to present destination and route information on transit vehicles. It will assist managers and engineers in the acquisition and use o...

  14. Light extraction efficiency enhancement for fluorescent SiC based white light-emitting diodes

    DEFF Research Database (Denmark)

    Ou, Haiyan; Ou, Yiyu; Argyraki, Aikaterini

    Fluorescent SiC based white light-emitting diodes(LEDs) light source, as an innovative energy-efficient light source, would even have longer lifetime, better light quality and eliminated blue-tone effect, compared to the current phosphor based white LED light source. In this paper, the yellow...

  15. Versatile IEEE-488 data acquisition and control routines for a diode array spectrophotometer

    Science.gov (United States)

    Shiundu, Paul M.

    1991-01-01

    The UV-visible diode array spectrophotometer is a work-horse instrument for many laboratories. This article provides simple data acquisition and control routines in Microsoft QuickBasic for a HP-8452A diode array spectrophotometer interfaced to an IBM PC/XT/AT, or compatible, microcomputer. These allow capture of full spectra and measure absorbance at one or several wavelengths at preset time intervals. The variance in absorbance at each wavelength is available as an option. PMID:18924888

  16. Fabrication of white light-emitting diodes based on UV light-emitting diodes with conjugated polymers-(CdSe/ZnS) quantum dots as hybrid phosphors.

    Science.gov (United States)

    Jung, Hyunchul; Chung, Wonkeun; Lee, Chang Hun; Kim, Sung Hyun

    2012-07-01

    White light-emitting diodes (LEDs) were fabricated using GaN-based 380-nm UV LEDs precoated with the composite of blue-emitting polymer (poly[(9,9-dihexylfluorenyl-2,7-diyl)-alt-co-(2-methoxy-5-{2-ethylhexyloxy)-1 ,4-phenylene)]), yellow green-emitting polymer (poly[(9,9-dioctylfluorenyl-2,7-diyl)-co-(1,4-benzo-{2,1',3}-thiadiazole)]), and 605-nm red-emitting quantum dots (QDs). CdSe cores were obtained by solvothermal route using CdO, Se precursors and ZnS shells were synthesized by using diethylzinc, and hexamethyldisilathiane precursors. The optical properties of CdSe/ZnS QDs were characterized by UV-visible and photoluminescence (PL) spectra. The structural data and composition of the QDs were transmission electron microscopy (TEM), and EDX technique. The quantum yield and size of the QDs were 58.7% and about 6.7 nm, respectively. Three-band white light was generated by hybridizing blue (430 nm), green (535 nm), and red (605 nm) emission. The color-rendering index (CRI) of the device was extremely improved by introducing the QDs. The CIE-1931 chromaticity coordinate, color temperature, and CRI of a white LED at 20 mA were (0.379, 0.368), 3969 K, and 90, respectively.

  17. Highly efficient white top-emitting organic light-emitting diodes with forward directed light emission

    Energy Technology Data Exchange (ETDEWEB)

    Freitag, Patricia; Reineke, Sebastian; Furno, Mauro; Luessem, Bjoern; Leo, Karl [Institut fuer Angewandte Photophysik, TU Dresden (Germany)

    2010-07-01

    The demand for highly efficient and energy saving illumination has increased considerably during the last decades. Organic light emitting diodes (OLEDs) are promising candidates for future lighting technologies. They offer high efficiency along with excellent color quality, allowing substantially lower power consumption than traditional illuminants. Recently, especially top-emitting devices have attracted high interest due to their compatibility with opaque substrates like metal sheets. In this contribution, we demonstrate top-emitting OLEDs with white emission spectra employing a multilayer hybrid cavity structure with two highly efficient phosphorescent emitter materials for orange-red (Ir(MDQ)2(acac)) and green (Ir(ppy)3) emission as well as the stable fluorescent blue emitter TBPe. To improve the OLED performance and modify the color quality, two different electron blocking layers and anode material combinations are tested. Compared to Lambertian emission, our devices show considerably enhanced forward emission, which is preferred for most lighting applications. Besides broadband emission and angle independent emission maxima, power efficiencies of 13.3 lm/W at 3 V and external quantum efficiencies of 5.3% are achieved. The emission shows excellent CIE coordinates of (0.420,0.407) at approx. 1000 cd/m{sup 2} and color rendering indices up to 77.

  18. Medical Applications of Space Light-Emitting Diode Technology--Space Station and Beyond

    Energy Technology Data Exchange (ETDEWEB)

    Whelan, H.T.; Houle, J.M.; Donohoe, D.L.; Bajic, D.M.; Schmidt, M.H.; Reichert, K.W.; Weyenberg, G.T.; Larson, D.L.; Meyer, G.A.; Caviness, J.A.

    1999-06-01

    Space light-emitting diode (LED) technology has provided medicine with a new tool capable of delivering light deep into tissues of the body, at wavelengths which are biologically optimal for cancer treatment and wound healing. This LED technology has already flown on Space Shuttle missions, and shows promise for wound healing applications of benefit to Space Station astronauts.

  19. New Optoelectronic Technology Simplified for Organic Light Emitting Diode (OLED

    Directory of Open Access Journals (Sweden)

    Andre F. S. Guedes

    2014-06-01

    Full Text Available The development of Organic Light Emitting Diode (OLED, using an optically transparent substrate material and organic semiconductor materials, has been widely utilized by the electronic industry when producing new technological products. The OLED are the base Poly (3,4-ethylenedioxythiophene, PEDOT, and Polyaniline, PANI, were deposited in Indium Tin Oxide, ITO, and characterized by UV-Visible Spectroscopy (UV-Vis, Optical Parameters (OP and Scanning Electron Microscopy (SEM. In addition, the thin film obtained by the deposition of PANI, prepared in perchloric acid solution, was identified through PANI-X1. The result obtained by UV-Vis has demonstrated that the Quartz/ITO/PEDOT/PANI-X1 layer does not have displacement of absorption for wavelengths greaters after spin-coating and electrodeposition. Thus, the spectral irradiance of the OLED informed the irradiance of 100 W/m2, and this result, compared with the standard Light Emitting Diode (LED, has indicated that the OLED has higher irradiance. After 1000 hours of electrical OLED tests, the appearance of nanoparticles visible for images by SEM, to the migration process of organic semiconductor materials, was present, then. Still, similar to the phenomenon of electromigration observed in connections and interconnections of microelectronic devices, the results have revealed a new mechanism of migration, which raises the passage of electric current in OLED.

  20. Light emitting diodes as a plant lighting source

    Energy Technology Data Exchange (ETDEWEB)

    Bula, R.J.; Tennessen, D.J.; Morrow, R.C. [Wisconsin Center for Space Automation and Robotics, Madison, WI (United States); Tibbitts, T.W. [Univ. of Wisconsin, Madison, WI (United States)

    1994-12-31

    Electroluminescence in solid materials is defined as the generation of light by the passage of an electric current through a body of solid material under an applied electric field. A specific type of electroluminescence, first noted by Lossew in 1923, involves the generation of photons when electrons are passed through a p-n junction of certain solid materials (junction of a n-type semiconductor, an electron donor, and a p-type semiconductor, an electron acceptor). Development efforts to translate these observations into visible light emitting devices, however, was not undertaken until the 1950s. The term, light emitting diode (LEDs), was first used in a report by Wolfe, et al., in 1955. The development of this light emitting semiconductor technology dates back less than 30 years. During this period of time, the LED has evolved from a rare and expensive light generating device to one of the most widely used electronic components. The most popular applications of the LED are as indicators or as optoelectronic switches. However, several recent advances in LED technology have made possible the utilization of LEDs for applications that require a high photon flux, such as for plant lighting in controlled environments. The new generation of LEDs based on a gallium aluminum arsenide (GaAlAS) semiconductor material fabricated as a double heterostructure on a transparent substrate has opened up many new applications for these LEDs.

  1. Passivation of organic light emitting diode anode grid lines by pulsed Joule heating

    NARCIS (Netherlands)

    Janka, M.; Gierth, R.; Rubingh, J.E.; Abendroth, M.; Eggert, M.; Moet, D.J.D.; Lupo, D.

    2015-01-01

    We report the self-aligned passivation of a current distribution grid for an organic light emitting diode (OLED) anode using a pulsed Joule heating method to align the passivation layer accurately on the metal grid. This method involves passing an electric current through the grid to cure a polymer

  2. Efficient electron injection from solution-processed cesium stearate interlayers in organic light-emitting diodes

    NARCIS (Netherlands)

    Wetzelaer, G. A. H.; Najafi, A.; Kist, R. J. P.; Kuik, M.; Blom, P. W. M.

    2013-01-01

    The electron-injection capability of solution-processed cesium stearate films in organic light-emitting diodes is investigated. Cesium stearate, which is expected to exhibit good solubility and film formation due to its long hydrocarbon chain, is synthesized using a straightforward procedure.

  3. High performance tunnel injection InGaN/GaN quantum Dot light emitting diodes emitting in the green (λ=495nm)

    KAUST Repository

    Zhang, Meng; Banerjee, Animesh; Bhattacharya, Pallab

    2011-01-01

    peak at 495 nm at 300 K. The characteristics of tunnel injection InGaN/GaN quantum dot light emitting diodes are presented. The current density at maximum efficiency is 90.2 A/cm 2, which is superior to equivalent multiquantum well devices. © 2010

  4. Ideality factor of GaN-based light-emitting diodes determined by the measurement of photovoltaic characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyun-Joong; Ryu, Geun-Hwan; Yang, Won-Bo; Ryu, Han-Youl [Inha University, Incheon (Korea, Republic of)

    2014-11-15

    We present a method for determining the ideality factor of GaN-based light-emitting diodes (LEDs) by using the measured photovoltaic characteristics. The relation between the short-circuit current and the open-circuit voltage is obtained as the incident power of a laser diode emitting at 405 nm is varied, which is used to determine the ideality factor of the LED. From the photovoltaic measurements, the ideality factors of a blue and a green LED are determined to be 1.16 and 1.78, respectively. The ideality factors obtained by using the photovoltaic measurement are found to be much smaller than those obtained by using the I - V curve without illumination, which is believed to result from the different carrier generation and transport mechanisms. Investigating the photovoltaic characteristics of GaN-based LEDs is expected to provide insight into the origin of the high diode ideality factor in GaN-based devices.

  5. Ideality factor of GaN-based light-emitting diodes determined by the measurement of photovoltaic characteristics

    International Nuclear Information System (INIS)

    Kim, Hyun-Joong; Ryu, Geun-Hwan; Yang, Won-Bo; Ryu, Han-Youl

    2014-01-01

    We present a method for determining the ideality factor of GaN-based light-emitting diodes (LEDs) by using the measured photovoltaic characteristics. The relation between the short-circuit current and the open-circuit voltage is obtained as the incident power of a laser diode emitting at 405 nm is varied, which is used to determine the ideality factor of the LED. From the photovoltaic measurements, the ideality factors of a blue and a green LED are determined to be 1.16 and 1.78, respectively. The ideality factors obtained by using the photovoltaic measurement are found to be much smaller than those obtained by using the I - V curve without illumination, which is believed to result from the different carrier generation and transport mechanisms. Investigating the photovoltaic characteristics of GaN-based LEDs is expected to provide insight into the origin of the high diode ideality factor in GaN-based devices.

  6. Flexible and twistable non-volatile memory cell array with all-organic one diode-one resistor architecture.

    Science.gov (United States)

    Ji, Yongsung; Zeigler, David F; Lee, Dong Su; Choi, Hyejung; Jen, Alex K-Y; Ko, Heung Cho; Kim, Tae-Wook

    2013-01-01

    Flexible organic memory devices are one of the integral components for future flexible organic electronics. However, high-density all-organic memory cell arrays on malleable substrates without cross-talk have not been demonstrated because of difficulties in their fabrication and relatively poor performances to date. Here we demonstrate the first flexible all-organic 64-bit memory cell array possessing one diode-one resistor architectures. Our all-organic one diode-one resistor cell exhibits excellent rewritable switching characteristics, even during and after harsh physical stresses. The write-read-erase-read output sequence of the cells perfectly correspond to the external pulse signal regardless of substrate deformation. The one diode-one resistor cell array is clearly addressed at the specified cells and encoded letters based on the standard ASCII character code. Our study on integrated organic memory cell arrays suggests that the all-organic one diode-one resistor cell architecture is suitable for high-density flexible organic memory applications in the future.

  7. Extraction of surface plasmons in organic light-emitting diodes via high-index coupling.

    Science.gov (United States)

    Scholz, Bert J; Frischeisen, Jörg; Jaeger, Arndt; Setz, Daniel S; Reusch, Thilo C G; Brütting, Wolfgang

    2012-03-12

    The efficiency of organic light-emitting diodes (OLEDs) is still limited by poor light outcoupling. In particular, the excitation of surface plasmon polaritons (SPPs) at metal-organic interfaces represents a major loss channel. By combining optical simulations and experiments on simplified luminescent thin-film structures we elaborate the conditions for the extraction of SPPs via coupling to high-index media. As a proof-of-concept, we demonstrate the possibility to extract light from wave-guided modes and surface plasmons in a top-emitting white OLED by a high-index prism.

  8. Effects of nano-structured photonic crystals on light extraction enhancement of nitride light-emitting diodes

    International Nuclear Information System (INIS)

    Wu, G.M.; Yen, C.C.; Chien, H.W.; Lu, H.C.; Chang, T.W.; Nee, T.E.

    2011-01-01

    The light extraction efficiency of an InGaN/GaN light-emitting diode (LED) can be enhanced by incorporating nano-structured photonic crystals inside the LED structure. We employed plane wave expansion (PWE) method and finite difference time domain (FDTD) method to reveal the optical confinement effects with the relevant parameters. The results showed that band-gap modulation could increase the efficiency for light extraction at the lattice constant of 200 nm and depth of 200 nm for the 468-nm LED. Focused ion beam (FIB) using Ga created the desired nano-structured patterns. The LED device micro-PL (photoluminescence) results have demonstrated that the triangular photonic crystal arrays could increase the peak illumination intensity by 58%. The peak wavelength remained unchanged. The integrated area under the illumination peak was increased by 75%. As the patterned area ratio was increased to 85%, the peak intensity enhancement was further improved to 91%, and the integrated area was achieved at 106%.

  9. Large-area high-power VCSEL pump arrays optimized for high-energy lasers

    Science.gov (United States)

    Wang, Chad; Geske, Jonathan; Garrett, Henry; Cardellino, Terri; Talantov, Fedor; Berdin, Glen; Millenheft, David; Renner, Daniel; Klemer, Daniel

    2012-06-01

    Practical, large-area, high-power diode pumps for one micron (Nd, Yb) as well as eye-safer wavelengths (Er, Tm, Ho) are critical to the success of any high energy diode pumped solid state laser. Diode efficiency, brightness, availability and cost will determine how realizable a fielded high energy diode pumped solid state laser will be. 2-D Vertical-Cavity Surface-Emitting Laser (VCSEL) arrays are uniquely positioned to meet these requirements because of their unique properties, such as low divergence circular output beams, reduced wavelength drift with temperature, scalability to large 2-D arrays through low-cost and high-volume semiconductor photolithographic processes, high reliability, no catastrophic optical damage failure, and radiation and vacuum operation tolerance. Data will be presented on the status of FLIR-EOC's VCSEL pump arrays. Analysis of the key aspects of electrical, thermal and mechanical design that are critical to the design of a VCSEL pump array to achieve high power efficient array performance will be presented.

  10. 4H-SiC Schottky diode arrays for X-ray detection

    Energy Technology Data Exchange (ETDEWEB)

    Lioliou, G. [Semiconductor Materials and Devices Laboratory, School of Engineering and Informatics, University of Sussex, Falmer, Brighton BN1 9QT (United Kingdom); Chan, H.K. [School of Electrical and Electronic Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU (United Kingdom); Gohil, T. [Semiconductor Materials and Devices Laboratory, School of Engineering and Informatics, University of Sussex, Falmer, Brighton BN1 9QT (United Kingdom); Vassilevski, K.V.; Wright, N.G.; Horsfall, A.B. [School of Electrical and Electronic Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU (United Kingdom); Barnett, A.M. [Semiconductor Materials and Devices Laboratory, School of Engineering and Informatics, University of Sussex, Falmer, Brighton BN1 9QT (United Kingdom)

    2016-12-21

    Five SiC Schottky photodiodes for X-ray detection have been electrically characterized at room temperature. One representative diode was also electrically characterized over the temperature range 20°C to 140 °C. The performance at 30 °C of all five X-ray detectors, in both current mode and for photon counting X-ray spectroscopy was investigated. The diodes were fabricated in an array form such that they could be operated as either a 2×2 or 1×3 pixel array. Although the devices showed double barrier heights, high ideality factors and higher than expected leakage current at room temperature (12 nA/cm{sup 2} at an internal electric field of 105 kV/cm), they operated as spectroscopic photon counting soft X-ray detectors uncooled at 30 °C. The measured energy resolution (FWHM at 17.4 keV, Mo Kα) varied from 1.36 to 1.68 keV among different diodes.

  11. Doping concentration effect on performance of single QW double-heterostructure InGaN/AlGaN light emitting diode

    Science.gov (United States)

    Halim, N. Syafira Abdul; Wahid, M. Halim A.; Hambali, N. Azura M. Ahmad; Rashid, Shanise; Shahimin, Mukhzeer M.

    2017-11-01

    Light emitting diode (LED) employed a numerous applications such as displaying information, communication, sensing, illumination and lighting. In this paper, InGaN/AlGaN based on one quantum well (1QW) light emitting diode (LED) is modeled and studied numerically by using COMSOL Multiphysics 5.1 version. We have selected In0.06Ga0.94N as the active layer with thickness 50nm sandwiched between 0.15μm thick layers of p and n-type Al0.15Ga0.85N of cladding layers. We investigated an effect of doping concentration on InGaN/AlGaN double heterostructure of light-emitting diode (LED). Thus, energy levels, carrier concentration, electron concentration and forward voltage (IV) are extracted from the simulation results. As the doping concentration is increasing, the performance of threshold voltage, Vth on one quantum well (1QW) is also increases from 2.8V to 3.1V.

  12. Doping concentration effect on performance of single QW double-heterostructure InGaN/AlGaN light emitting diode

    Directory of Open Access Journals (Sweden)

    Abdul Halim N. Syafira

    2017-01-01

    Full Text Available Light emitting diode (LED employed a numerous applications such as displaying information, communication, sensing, illumination and lighting. In this paper, InGaN/AlGaN based on one quantum well (1QW light emitting diode (LED is modeled and studied numerically by using COMSOL Multiphysics 5.1 version. We have selected In0.06Ga0.94N as the active layer with thickness 50nm sandwiched between 0.15μm thick layers of p and n-type Al0.15Ga0.85N of cladding layers. We investigated an effect of doping concentration on InGaN/AlGaN double heterostructure of light-emitting diode (LED. Thus, energy levels, carrier concentration, electron concentration and forward voltage (IV are extracted from the simulation results. As the doping concentration is increasing, the performance of threshold voltage, Vth on one quantum well (1QW is also increases from 2.8V to 3.1V.

  13. GaAs optoelectronic neuron arrays

    Science.gov (United States)

    Lin, Steven; Grot, Annette; Luo, Jiafu; Psaltis, Demetri

    1993-01-01

    A simple optoelectronic circuit integrated monolithically in GaAs to implement sigmoidal neuron responses is presented. The circuit integrates a light-emitting diode with one or two transistors and one or two photodetectors. The design considerations for building arrays with densities of up to 10,000/sq cm are discussed.

  14. Multilayer mirror and foil filter AXUV diode arrays on CDX-U spherical torus

    International Nuclear Information System (INIS)

    Soukhanovskii, V. A.; Stutman, D.; Iovea, M.; Finkenthal, M.; Moos, H. W.; Munsat, T.; Jones, B.; Hoffman, D.; Kaita, R.; Majeski, R.

    2001-01-01

    Recent upgrades to CDX-U spherical torus diagnostics include two 10-channel AXUV diode arrays. The multilayer mirror (MLM) array measures the λ150 O VI brightness profile in the poloidal plane using the Mo/B 4 C synthetic multilayer structures as dispersive elements. The foil filter array has a tangential view and is equipped with interchangeable clear aperture, beryllium and titanium filters. This allows measurements of radiated power, O VI or C V radial distributions, respectively. The O VI and C V emissivity and the radiated power profiles are highly peaked. A Neoclassical impurity accumulation mechanism is considered as an explanation. For radiated power measurements in the T e ≤100 eV plasmas, photon energy dependent corrections must be used in order to account for nonlinear AXUV sensitivity in the range E phot ≤20 eV. The arrays are also used for characterization of resistive MHD phenomena, such as the low m modes, saw-tooth oscillations and internal reconnection events. Based on the successful operation of the diagnostics, a new ultra soft x-ray multilayer mirror diode AXUV diode array monitoring the 34 Aa emissivity distribution of C VI will be built and installed on the National Spherical Torus Experiment

  15. An aluminium nitride light-emitting diode with a wavelength of 210 nanometres.

    Science.gov (United States)

    Taniyasu, Yoshitaka; Kasu, Makoto; Makimoto, Toshiki

    2006-05-18

    Compact high-efficiency ultraviolet solid-state light sources--such as light-emitting diodes (LEDs) and laser diodes--are of considerable technological interest as alternatives to large, toxic, low-efficiency gas lasers and mercury lamps. Microelectronic fabrication technologies and the environmental sciences both require light sources with shorter emission wavelengths: the former for improved resolution in photolithography and the latter for sensors that can detect minute hazardous particles. In addition, ultraviolet solid-state light sources are also attracting attention for potential applications in high-density optical data storage, biomedical research, water and air purification, and sterilization. Wide-bandgap materials, such as diamond and III-V nitride semiconductors (GaN, AlGaN and AlN; refs 3-10), are potential materials for ultraviolet LEDs and laser diodes, but suffer from difficulties in controlling electrical conduction. Here we report the successful control of both n-type and p-type doping in aluminium nitride (AlN), which has a very wide direct bandgap of 6 eV. This doping strategy allows us to develop an AlN PIN (p-type/intrinsic/n-type) homojunction LED with an emission wavelength of 210 nm, which is the shortest reported to date for any kind of LED. The emission is attributed to an exciton transition, and represents an important step towards achieving exciton-related light-emitting devices as well as replacing gas light sources with solid-state light sources.

  16. Organic light-emitting diodes with direct contact-printed red, green, blue, and white light-emitting layers

    Science.gov (United States)

    Chen, Sun-Zen; Peng, Shiang-Hau; Ting, Tzu-Yu; Wu, Po-Shien; Lin, Chun-Hao; Chang, Chin-Yeh; Shyue, Jing-Jong; Jou, Jwo-Huei

    2012-10-01

    We demonstrate the feasibility of using direct contact-printing in the fabrication of monochromatic and polychromatic organic light-emitting diodes (OLEDs). Bright devices with red, green, blue, and white contact-printed light-emitting layers with a respective maximum luminance of 29 000, 29 000, 4000, and 18 000 cd/m2 were obtained with sound film integrity by blending a polymeric host into a molecular host. For the red OLED as example, the maximum luminance was decreased from 29 000 to 5000 cd/m2 as only the polymeric host was used, or decreased to 7000 cd/m2 as only the molecular host was used. The markedly improved device performance achieved in the devices with blended hosts may be attributed to the employed polymeric host that contributed a good film-forming character, and the molecular host that contributed a good electroluminescence character.

  17. White electroluminescence from ZnO nanorods/p-GaN heterojunction light-emitting diodes under reverse bias

    International Nuclear Information System (INIS)

    Zhang, Lichun; Li, Qingshan; Qu, Chong; Zhang, Zhongjun; Huang, Ruizhi; Zhao, Fengzhou

    2013-01-01

    Heterojunction light-emitting diodes (LEDs) based on arrays of ZnO nanorods were fabricated on p-GaN films by the hydrothermal method. Without any phosphors, white-light electroluminescence (EL) from ZnO nanorods/p-GaN heterojunction LEDs operated at reverse breakdown bias was observed. The EL spectra are composed of an ultraviolet (UV) emission centered at 382 nm, a blue light located at 431 nm and a broadband yellow–green light at around 547 nm, which originated from band-edge emission in ZnO, the Mg acceptor levels in p-GaN and the deep-level states near the ZnO/GaN interface, respectively. The chromaticity coordinates of EL spectrum are very close to the (0.333, 0.333) of standard white light. The origin of these emissions has been discussed and the tunneling effect in the interface is probably the mechanism to explain EL emission. (paper)

  18. Aggregation in organic light emitting diodes

    Science.gov (United States)

    Meyer, Abigail

    Organic light emitting diode (OLED) technology has great potential for becoming a solid state lighting source. However, there are inefficiencies in OLED devices that need to be understood. Since these inefficiencies occur on a nanometer scale there is a need for structural data on this length scale in three dimensions which has been unattainable until now. Local Electron Atom Probe (LEAP), a specific implementation of Atom Probe Tomography (APT), is used in this work to acquire morphology data in three dimensions on a nanometer scale with much better chemical resolution than is previously seen. Before analyzing LEAP data, simulations were used to investigate how detector efficiency, sample size and cluster size affect data analysis which is done using radial distribution functions (RDFs). Data is reconstructed using the LEAP software which provides mass and position data. Two samples were then analyzed, 3% DCM2 in C60 and 2% DCM2 in Alq3. Analysis of both samples indicated little to no clustering was present in this system.

  19. Powerful infrared emitting diodes

    Directory of Open Access Journals (Sweden)

    Kogan L. M.

    2012-02-01

    Full Text Available Powerful infrared LEDs with emission wavelength 805 ± 10, 870 ± 20 and 940 ± 10 nm developed at SPC OED "OPTEL" are presented in the article. The radiant intensity of beam diode is under 4 W/sr in the continuous mode and under 100 W/sr in the pulse mode. The radiation power of wide-angle LEDs reaches 1 W in continuous mode. The external quantum efficiency of emission IR diodes runs up to 30%. There also has been created infrared diode modules with a block of flat Fresnel lenses with radiant intensity under 70 W/sr.

  20. Hand-Drawn Resistors and a Simple Tester Using a Light-Emitting Diode

    Science.gov (United States)

    Kamata, Masahiro; Abe, Mayumi

    2012-01-01

    A thick line drawn on a sheet of paper with a 6B pencil is electrically conductive and its resistance can be roughly estimated using a simple tester made of a light-emitting diode (LED) and a lithium coin-type cell. Using this hand-drawn resistor and the LED tester, we developed teaching materials that help students to understand how electrical…

  1. Optimization of freeform lightpipes for light-emitting-diode projectors.

    Science.gov (United States)

    Fournier, Florian; Rolland, Jannick

    2008-03-01

    Standard nonimaging components used to collect and integrate light in light-emitting-diode-based projector light engines such as tapered rods and compound parabolic concentrators are compared to optimized freeform shapes in terms of transmission efficiency and spatial uniformity. We show that the simultaneous optimization of the output surface and the profile shape yields transmission efficiency within the étendue limit up to 90% and spatial uniformity higher than 95%, even for compact sizes. The optimization process involves a manual study of the trends for different shapes and the use of an optimization algorithm to further improve the performance of the freeform lightpipe.

  2. Advancements of ultra-high peak power laser diode arrays

    Science.gov (United States)

    Crawford, D.; Thiagarajan, P.; Goings, J.; Caliva, B.; Smith, S.; Walker, R.

    2018-02-01

    Enhancements of laser diode epitaxy in conjunction with process and packaging improvements have led to the availability of 1cm bars capable of over 500W peak power at near-infrared wavelengths (770nm to 1100nm). Advances in cooler design allow for multi-bar stacks with bar-to-bar pitches as low as 350μm and a scalable package architecture enabled a single diode assembly with total peak powers of over 1MegaWatt of peak power. With the addition of micro-optics, overall array brightness greater than 10kW/cm2 was achieved. Performance metrics of barbased diode lasers specifically engineered for high peak power and high brightness at wavelengths and pulse conditions commonly used to pump a variety of fiber and solid-state materials are presented.

  3. A Closed-Loop Smart Control System Driving RGB Light Emitting Diodes

    KAUST Repository

    Al-Saggaf, Abeer

    2015-05-01

    The demand for control systems that are highly capable of driving solid-state optoelectronic devices has significantly increased with the advancement of their efficiency and elevation of their current consumption. This work presents a closed-loop control system that is based on a microcontroller embedded system capable of driving high power optoelectronic devices. In this version of the system, the device in the center of control is a high-power red, green, and blue light emitting diode package. The system features a graphical user interface, namely an Android mobile phone application, in which the user can easily use to vary the light color and intensity of the light-emitting device wirelessly via Bluetooth. Included in the system is a feedback mechanism constituted by a red, green, and blue color sensor through which the user can use to observe feedback color information about the emitted light. The system has many commercial application including in-door lighting and research application including plant agriculture research fields.

  4. A Closed-Loop Smart Control System Driving RGB Light Emitting Diodes

    KAUST Repository

    Al-Saggaf, Abeer

    2015-01-01

    The demand for control systems that are highly capable of driving solid-state optoelectronic devices has significantly increased with the advancement of their efficiency and elevation of their current consumption. This work presents a closed-loop control system that is based on a microcontroller embedded system capable of driving high power optoelectronic devices. In this version of the system, the device in the center of control is a high-power red, green, and blue light emitting diode package. The system features a graphical user interface, namely an Android mobile phone application, in which the user can easily use to vary the light color and intensity of the light-emitting device wirelessly via Bluetooth. Included in the system is a feedback mechanism constituted by a red, green, and blue color sensor through which the user can use to observe feedback color information about the emitted light. The system has many commercial application including in-door lighting and research application including plant agriculture research fields.

  5. Extracting the emitter orientation in organic light-emitting diodes from external quantum efficiency measurements

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, Tobias D., E-mail: Tobias.Schmidt@physik.uni-augsburg.de; Reichardt, Lukas J.; Wehrmeister, Sebastian; Scholz, Bert J.; Mayr, Christian; Brütting, Wolfgang, E-mail: Wolfgang.Bruetting@physik.uni-augsburg.de [Institute of Physics, University of Augsburg, 86135 Augsburg (Germany); Rausch, Andreas F.; Wehlus, Thomas; Reusch, Thilo C. G. [OSRAM OLED GmbH, Wernerwerkstrasse 2, 93049 Regensburg (Germany); Ciarnáin, Rossá Mac; Danz, Norbert [Fraunhofer Institute for Applied Optics and Precision Engineering, 07745 Jena (Germany)

    2014-07-28

    Emitter orientation will play a major role in future applications of organic light-emitting diodes due to its strong impact on the efficiency of the devices. Up to now, determining the orientation of transition dipole moments required elaborate angular-dependent measurements of the light emission pattern. In this paper, we present a simplified and straightforward method to extract the emitter orientation from external quantum efficiency measurements. We demonstrate the validity of the method on three different dye-doped emitting systems.

  6. Excellent nonlinearity of a selection device based on anti-series connected Zener diodes for ultrahigh-density bipolar RRAM arrays

    International Nuclear Information System (INIS)

    Li, Yingtao; Li, Rongrong; Wang, Yang; Tao, Chunlan; Fu, Liping; Gao, Xiaoping

    2015-01-01

    A crossbar array is usually used for the high-density application of a resistive random access memory (RRAM) device. However, the cross-talk interference limits the increase in the integration density. In this paper, anti-series connected Zener diodes as a selection device are proposed for bipolar RRAM arrays. Simulation results show that, by using the anti-series connected Zener diodes as a selection device, the readout margin is sufficiently improved compared to that obtained without a selection device or with anti-parallel connected diodes as the selection device. The maximum size of the crossbar arrays with anti-series connected Zener diodes as a selection device over 1 TB is estimated by theoretical simulation. In addition, the feasibility of using the anti-series connected Zener diodes as a selection device for bipolar RRAM is demonstrated experimentally. These results indicate that anti-series connected Zener diodes as a selection device opens up great opportunities to realize ultrahigh-density bipolar RRAM arrays. (paper)

  7. All-solution processed polymer light-emitting diodes with air stable metal-oxide electrodes

    NARCIS (Netherlands)

    Bruyn, P. de; Moet, D.J.D.; Blom, P.W.M.

    2012-01-01

    We present an all-solution processed polymer light-emitting diode (PLED) using spincoated zinc oxide (ZnO) and vanadium pentoxide (V2O5) as electron and hole injecting contact, respectively. We compare the performance of these devices to the standard PLED design using PEDOT:PSS as anode and Ba/Al as

  8. An Exciplex Host for Deep-Blue Phosphorescent Organic Light-Emitting Diodes.

    Science.gov (United States)

    Lim, Hyoungcheol; Shin, Hyun; Kim, Kwon-Hyeon; Yoo, Seung-Jun; Huh, Jin-Suk; Kim, Jang-Joo

    2017-11-01

    The use of exciplex hosts is attractive for high-performance phosphorescent organic light-emitting diodes (PhOLEDs) and thermally activated delayed fluorescence OLEDs, which have high external quantum efficiency, low driving voltage, and low efficiency roll-off. However, exciplex hosts for deep-blue OLEDs have not yet been reported because of the difficulties in identifying suitable molecules. Here, we report a deep-blue-emitting exciplex system with an exciplex energy of 3.0 eV. It is composed of a carbazole-based hole-transporting material (mCP) and a phosphine-oxide-based electron-transporting material (BM-A10). The blue PhOLEDs exhibited maximum external quantum efficiency of 24% with CIE coordinates of (0.15, 0.21) and longer lifetime than the single host devices.

  9. Improved emission spectrum from quantum dot superluminescent light emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Li, L.H.; Rossetti, M.; Fiore, A. [Institute of Photonics and Quantum Electronics, Ecole Polytechnique Federale de Lausanne, 1015 Lausanne (Switzerland); Occhi, L.; Velez, C. [EXALOS AG, Technoparkstrasse 1, 8005 Zuerich (Switzerland)

    2006-12-15

    The size dispersion of InAs quantum dots (QD) was optimized to broaden the photoluminescence (PL) spectrum. A broad PL spectral width up to 96 nm is achieved from a single QD layer with InAs thickness smaller than 2.4 monolayers at a growth temperature of 510 C. QD Superluminescent light emitting diodes with an ultrawide (115 nm), smooth output spectrum are obtained by incorporating this QD layer into chirped stacked structures. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  10. Three-dimensional modeling of charge transport, injection and recombination in organic light-emitting diodes

    NARCIS (Netherlands)

    Holst, van der J.J.M.

    2010-01-01

    Organic light-emitting diodes (OLEDs) are ideally suited for lighting and display applications. Commercial OLED displays as well as OLED white-light sources are presently being introduced to the market. Essential electronic processes in OLEDs are the injection of electrons and holes into an organic

  11. Modelling of the thermal parameters of high-power linear laser-diode arrays. Two-dimensional transient model

    International Nuclear Information System (INIS)

    Bezotosnyi, V V; Kumykov, Kh Kh

    1998-01-01

    A two-dimensional transient thermal model of an injection laser is developed. This model makes it possible to analyse the temperature profiles in pulsed and cw stripe lasers with an arbitrary width of the stripe contact, and also in linear laser-diode arrays. This can be done for any durations and repetition rates of the pump pulses. The model can also be applied to two-dimensional laser-diode arrays operating quasicontinuously. An analysis is reported of the influence of various structural parameters of a diode array on the thermal regime of a single laser. The temperature distributions along the cavity axis are investigated for different variants of mounting a crystal on a heat sink. It is found that the temperature drop along the cavity length in cw and quasi-cw laser diodes may exceed 20%. (lasers)

  12. Wireless Power Transmission to Organic Light Emitting Diode Lighting Panel with Magnetically Coupled Resonator

    Science.gov (United States)

    Kim, Yong-Hae; Han, Jun-Han; Kang, Seung-Youl; Cheon, Sanghoon; Lee, Myung-Lae; Ahn, Seong-Deok; Zyung, Taehyoung; Lee, Jeong-Ik; Moon, Jaehyun; Chu, Hye Yong

    2012-09-01

    We are successful to lit the organic light emitting diode (OLED) lighting panel through the magnetically coupled wireless power transmission technology. For the wireless power transmission, we used the operation frequency 932 kHz, specially designed double spiral type transmitter, small and thin receiver on the four layered printed circuit board, and schottky diodes for the full bridge rectifier. Our white OLED is a hybrid type, in which phosphorescent and fluorescent organics are used together to generate stable white color. The total efficiency of power transmission is around 72%.

  13. Application of a diode-array detector in capillary electrophoresis

    NARCIS (Netherlands)

    Beck, W.; Hoek, van R.; Engelhardt, H.

    1993-01-01

    In the last decade diode-array detection has proved to be extremely useful in high performance liquid chromatography in recording UV-visible spectra directly and on-line in the column effluent. In capillary electrophoresis (CE) only fast-scanning detectors with long scan times (up to 2 s) are

  14. Vertically p-n-junctioned GaN nano-wire array diode fabricated on Si(111) using MOCVD.

    Science.gov (United States)

    Park, Ji-Hyeon; Kim, Min-Hee; Kissinger, Suthan; Lee, Cheul-Ro

    2013-04-07

    We demonstrate the fabrication of n-GaN:Si/p-GaN:Mg nanowire arrays on (111) silicon substrate by metal organic chemical vapor deposition (MOCVD) method .The nanowires were grown by a newly developed two-step growth process. The diameter of as-grown nanowires ranges from 300-400 nm with a density of 6-7 × 10(7) cm(-2). The p- and n-type doping of the nanowires is achieved with Mg and Si dopant species. Structural characterization by X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HRTEM) indicates that the nanowires are relatively defect-free. The room-temperature photoluminescence emission with a strong peak at 370 nm indicates that the n-GaN:Si/p-GaN:Mg nanowire arrays have potential application in light-emitting nanodevices. The cathodoluminscence (CL) spectrum clearly shows a distinct optical transition of GaN nanodiodes. The nano-n-GaN:Si/p-GaN:Mg diodes were further completed using a sputter coating approach to deposit Au/Ni metal contacts. The polysilazane filler has been etched by a wet chemical etching process. The n-GaN:Si/p-GaN:Mg nanowire diode was fabricated for different Mg source flow rates. The current-voltage (I-V) measurements reveal excellent rectifying properties with an obvious turn-on voltage at 1.6 V for a Mg flow rate of 5 sccm (standard cubic centimeters per minute).

  15. Luminescence and the light emitting diode the basics and technology of leds and the luminescence properties of the materials

    CERN Document Server

    Williams, E W; Pamplin, BR

    2013-01-01

    Luminescence and the Light Emitting Diode: The Basics and Technology of LEDS and the Luminescence Properties of the Materials focuses on the basic physics and technology of light emitting diodes (LEDS) and pn junction lasers as well as their luminescence properties. Optical processes in semiconductors and the useful devices which can be made are discussed. Comprised of 10 chapters, this book begins with an introduction to the crystal structure and growth, as well as the optical and electrical properties of LED materials. The detailed fabrication of the LED is then considered, along with the lu

  16. Progress report on the use of hybrid silicon pin diode arrays in high energy physics

    International Nuclear Information System (INIS)

    Shapiro, S.L.; Jernigan, J.G.; Arens, J.F.

    1990-05-01

    We report on the successful effort to develop hybrid PIN diode arrays and to demonstrate their potential as components of vertex detectors. Hybrid pixel arrays have been fabricated by the Hughes Aircraft Co. by bump-bonding readout chips developed by Hughes to an array of PIN diodes manufactured by Micron Semiconductor Inc. These hybrid pixel arrays were constructed in two configurations. One array format has 10 x 64 pixels, each 120 μm square; and the other format has 256 x 156 pixels, each 30 μm square. In both cases, the thickness of the PIN diode layer is 300 μm. Measurements of detector performance show that excellent position resolution can be achieved by interpolation. By determining the centroid of the charge cloud which spreads charge into a number of neighboring pixels, a spatial resolution of a few microns has been attained. The noise has been measured to be about 300 electrons (rms) at room temperature, as expected from KTC and dark current considerations, yielding a signal-to-noise ratio of about 100 for minimum ionizing particles. 4 refs., 17 figs

  17. High-efficiency orange and tandem white organic light-emitting diodes using phosphorescent dyes with horizontally oriented emitting dipoles.

    Science.gov (United States)

    Lee, Sunghun; Shin, Hyun; Kim, Jang-Joo

    2014-09-03

    Tandem white organic light-emitting diodes (WOLEDs) using horizontally oriented phosphorescent dyes in an exciplex-forming co-host are presented, along with an orange OLED. A high external quantum efficiency of 32% is achieved for the orange OLED at 1000 cd m(-2) and the tandem WOLEDs exhibit a high maximum EQE of 54.3% (PE of 63 lm W(-1)). © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Color tunable hybrid light-emitting diodes based on perovskite quantum dot/conjugated polymer

    Science.gov (United States)

    Germino, José C.; Yassitepe, Emre; Freitas, Jilian N.; Santiago, Glauco M.; Bonato, Luiz Gustavo; de Morais, Andréia; Atvars, Teresa D. Z.; Nogueira, Ana F.

    2017-08-01

    Inorganic organic metal halide perovskite materials have been investigated for several technological applications, such as photovoltaic cells, lasers, photodetectors and light emitting diodes (LEDs), either in the bulk form or as colloidal nanoparticles. Recently, all inorganic Cesium Lead Halide (CsPbX3, X=Cl,Br, I) perovskite quantum dots (PQDs) were reported with high photoluminescence quantum yield with narrow emission lines in the visible wavelengths. Here, green-emitting perovskite quantum dots (PQDs) prepared by a synthetic method based on a mixture of oleylamine and oleic acid as surfactants were applied in the electroluminescent layer of hybrid LEDs in combination with two different conjugated polymers: polyvinylcarbazole (PVK) or poly(9,9-di-n-octylfluorenyl-2,7-diyl) (PFO). The performance of the diodes and the emission color tuning upon dispersion of different concentrations of the PQDs in the polymer matrix is discussed. The presented approach aims at the combination of the optical properties of the PQDs and their interaction with wide bandgap conjugated polymers, associated with the solution processing ability of these materials.

  19. White top-emitting organic light-emitting diodes using one-emissive layer of the DCJTB doped DPVBi layer

    Energy Technology Data Exchange (ETDEWEB)

    Kim, M.S.; Jeong, C.H.; Lim, J.T. [Department of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon, Gyonggi-Do, 440-746 (Korea, Republic of); Yeom, G.Y. [Department of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon, Gyonggi-Do, 440-746 (Korea, Republic of); The National Program for Tera-level Devices, Hawolgok-dong, Sungbuk-gu, Seoul, 136-791 (Korea, Republic of)], E-mail: gyyeom@skku.edu

    2008-04-01

    White top-emitting organic light-emitting diodes (TEOLEDs) composed of one doped emissive layer which emits two-wavelength light though the radiative recombination were fabricated. As the emissive layer, 4,4-bis(2,2-diphenylethen-1-yl)biphenyl (DPVBi) was used as the host material and 4-(dicyanomethylene)-2-tert-butyl-6-(1,1,7,7-tetramethyljulolidyl-9-enyl) -4H-pyran (DCJTB) was added as the dopant material. By optimizing the DCJTB concentration (1.2%) and the thickness of the DPVBi layer (30 nm), the intensity ratio of the two wavelengths could be adjusted for balanced white light emission. By using the device composed of glass/Ag (100 nm)/ITO (90 nm)/2-TNATA (60 nm)/NPB (15 nm)/DPVBi:DCJTB (1.2%, 30 nm)/Alq{sub 3} (20 nm)/Li (1.0 nm)/Al (2.0 nm)/Ag (20 nm)/ITO (63 nm)/SiO{sub 2} (42 nm), the Commission Internationale d'Eclairage (CIE) chromaticity coordinate of (0.32, 0.34) close to the ideal white color CIE coordinate could be obtained at 100 cd/m{sup 2}.

  20. Hybrid Structure White Organic Light Emitting Diode for Enhanced Efficiency by Varied Doping Rate.

    Science.gov (United States)

    Kim, Dong-Eun; Kang, Min-Jae; Park, Gwang-Ryeol; Kim, Nam-Kyu; Lee, Burm-Jong; Kwon, Young-Soo; Shin, Hoon-Kyu

    2016-03-01

    Novel materials based on Zn(HPB)2 and Ir-complexes were synthesized as blue or red emitters, respectively. White organic light emitting diodes were fabricated using the Zn(HPB)2 as a blue emitting layer, Ir-complexes as a red emitting layer and Alq3 as a green emitting layer. The obtained experimental results, were based on white OLEDs fabricated using double emission layers of Zn(HPB)2 and Alq3:Ir-complexes. The doping rate of the Ir-complexes was varied at 0.4%, 0.6%, 0.8% and 1.0%. When the doping rate of the Alq3:Ir-complexes was 0.6%, a white emission was achieved. The Commission Internationale de l'Eclairage coordinates of the device's white emission were (0.316, 0.331) at an applied voltage of 10.75 V.

  1. A tunable lighting system integrated by inorganic and transparent organic light-emitting diodes

    Science.gov (United States)

    Zhang, Jing-jing; Zhang, Tao; Jin, Ya-fang; Liu, Shi-shen; Yuan, Shi-dong; Cui, Zhao; Zhang, Li; Wang, Wei-hui

    2014-05-01

    A tunable surface-emitting integrated lighting system is constructed using a combination of inorganic light-emitting diodes (LEDs) and transparent organic LEDs (OLEDs). An RB two-color LED is used to supply red and blue light emission, and a green organic LED is used to supply green light emission. Currents of the LED and OLED are tuned to produce a white color, showing different Commission Internationale d'Eclairage (CIE) chromaticity coordinates and correlated color temperatures with a wide adjustable range. Such an integration can compensate for the lack of the LED's luminance uniformity and the transparent OLED's luminance intensity.

  2. Blue light emitting diodes for optical stimulation of quartz in retrospective dosimetry and dating

    DEFF Research Database (Denmark)

    Bøtter-Jensen, L.; Duller, G.A.T.; Murray, A.S.

    1999-01-01

    Recently developed blue light emitting diodes (LEDs) for the optical stimulation of quartz for use in routine optically stimulated luminescence (OSL) dating and retrospective dosimetry have been tested. For similar power densities, it was found that the higher energy light provided by the blue LE......, preliminary results from ramping the blue light power output with time are demonstrated. It is shown that this technique enables the separation of OSL components with differing stimulation rates.......Recently developed blue light emitting diodes (LEDs) for the optical stimulation of quartz for use in routine optically stimulated luminescence (OSL) dating and retrospective dosimetry have been tested. For similar power densities, it was found that the higher energy light provided by the blue LEDs...... (470 nm) gives order of magnitude greater rate of stimulation in quartz than that from conventional blue-green light filtered from a halogen lamp. A practical blue LED OSL configuration is described. From comparisons of OSL decay curves produced by green and blue light sources, and by examination...

  3. Nanoengineering of organic light-emitting diodes

    International Nuclear Information System (INIS)

    Lupton, J.M.

    2000-11-01

    This thesis reports nanoengineerging of the emission and transport properties of organic light-emitting diodes (LEDs). This is achieved by a control of the electronic material properties and the photonic device properties. A novel class of conjugated materials for electroluminescence (EL) applications is presented, based on successively branching, or dendritic, materials comprising an emissive core and a shielding dendritic architecture. Exciton localisation at the centre of these dendrimers is observed in both luminescence and absorption. A detailed quantum chemical investigation using an exciton model supports these findings and accurately describes the energies and oscillator strengths of transitions in the core and branches. The dendrimer generation describes the degree of branching and gives a direct measure of the separation and interaction between chromophores. Increasing generation is found to lead to a reduction in red tail emission. This correlates with an increase in operating field and LED efficiency. Dendrimer blends with triplet harvesting dendritic phosphors are also investigated and found to exhibit unique emission properties. A numerical device model is presented, which is used to describe the temperature dependence of single layer polymer LEDs by fitting the field-dependent mobility and the barrier to hole injection. The device model is also used to obtain mobility values for the dendrimer materials, which are in excellent agreement with results obtained from time-of-flight measurements. The dendrimer generation is shown to provide a direct control of hopping mobility, which decreases by two orders of magnitude as the dendrimer generation increases from 0 to 3. The photonic properties and spontaneous emission of an LED are modified by incorporating a periodic wavelength scale microstructure into the emitting film. This is found to double the amount of light emitted with no effect on the device current. An investigation of the angular dependence

  4. Recycling of Gallium from End-of-Life Light Emitting Diodes

    Directory of Open Access Journals (Sweden)

    Nagy S.

    2017-06-01

    Full Text Available Nowadays Light Emitting Diodes (LEDs are widely utilized. They are applied as backlighting in Liquid Crystal Displays (LCD and TV sets or as lighting equipments in homes, cars, instruments and street-lightning. End of life equipments are containing more and more LEDs. The recovery of valuable materials – such as Ga, Au, Cu etc. – from the LEDs is essential for the creating the circular economy. First task is the development of a proper recycling technology. Most of the researchers propose fully chemical or thermal-chemical pathway for the recycling of LEDs.

  5. Study of voltage decrease in organic light emitting diodes during the initial stage of lifetime

    Science.gov (United States)

    Cusumano, P.

    2016-02-01

    We report the results of lifetime DC testing at constant current of not-encapsulated organic light emitting diodes (OLEDs) based on Tris (8 idroxyquinoline) aluminum (Alq3) as emitting material. In particular, a voltage decrease during the initial stage of the lifetime test is observed. The cause of this behavior is also discussed, mainly linked to initial Joule self-heating of the device, rising its temperature above room temperature until thermal equilibrium is reached at steady state.

  6. Stacking layered structure of polymer light emitting diodes prepared by evaporative spray deposition using ultradilute solution for improving carrier balance

    International Nuclear Information System (INIS)

    Aoki, Youichi; Shakutsui, Masato; Fujita, Katsuhiko

    2009-01-01

    Polymer light-emitting diodes (PLEDs) with staking layered structures are prepared by the evaporative spray deposition using ultradilute solution (ESDUS) method, which has enabled forming a polymer layer onto another polymer layer even if both polymers are soluble in a solvent used for the preparation. By this method, polymers having various HOMO and LUMO levels can be stacked as a hole transport layer, an emitting layer and an electron transport layer as commonly employed in small molecule-based organic light emitting diodes. Here we demonstrated that a PLED having a tri-layer structure using three kinds of polymers showed significant improvement in quantum efficiency compared with those having a single or bi-layer structure of corresponding polymers.

  7. Novel green-emitting Na2CaPO4F:Eu2+ phosphors for near-ultraviolet white light-emitting diodes

    International Nuclear Information System (INIS)

    Huang, Chien-Hao; Chen, Yen-Chi; Kuo, Te-Wen; Chen, Teng-Ming

    2011-01-01

    In this study, green-emitting Na 2 CaPO 4 F:Eu 2+ phosphors were synthesized by solid-state reactions. The excitation spectra of the phosphors showed a broad hump between 250 and 450 nm; the spectra match well with the near-ultraviolet (NUV) emission spectra of light-emitting diodes (LEDs). The emission spectrum showed an intense broad emission band centered at 506 nm. White LEDs were fabricated by integrating a 390 nm NUV chip comprising blue-emitting BaMgAl 10 O 17 :Eu 2+ , green-emitting Na 2 CaPO 4 F:0.02 Eu 2+ , and red-emitting CaAlSiN 3 :Eu 2+ phosphors into a single package; the white LEDs exhibited white light with a correlated color temperature of 5540 K, a color-rendering index of 90.75, and color coordinates (0.332, 0.365) close to those of ideal white light. - Highlights: → Novel green-emitting Na 2 CaPO 4 F:Eu 2+ phosphors were synthesized by solid-state reactions in this research. → White LEDs were fabricated by integrating a 390 nm NUV chip comprising blue-emitting BaMgAl 10 O 17 :Eu 2+ , green-emitting Na 2 CaPO 4 F:0.02Eu 2+ , and red-emitting CaAlSiN 3 :Eu 2+ phosphors into a single package. → The white LEDs exhibited white light with a correlated color temperature of 5540 K, a color-rendering index of 90.75, and color coordinates (0.332, 0.365) close to those of ideal white light.

  8. Effect of Stepwise Doping on Lifetime and Efficiency of Blue and White Phosphorescent Organic Light Emitting Diodes.

    Science.gov (United States)

    Lee, Song Eun; Lee, Ho Won; Lee, Seok Jae; Koo, Ja-ryong; Lee, Dong Hyung; Yang, Hyung Jin; Kim, Hye Jeong; Yoon, Seung Soo; Kim, Young Kwan

    2015-02-01

    We investigated a light emission mechanism of blue phosphorescent organic light emitting diodes (PHOLEDs), using a stepwise doping profile of 2, 8, and 14 wt.% within the emitting layer (EML). We fabricated several blue PHOLEDs with phosphorescent blue emitter iridium(III) bis[(4,6-difluorophenyl)-pyridinato-N,C2]picolinate doped in N,N'-dicarbazolyl-3,5-benzene as a p-type host material. A blue PHOLED with the highest doping concentration as part of the EML close to an electron transporting layer showed a maximum luminous efficiency of 20.74 cd/A, and a maximum external quantum efficiency of 10.52%. This can be explained by effective electron injection through a highly doped EML side. Additionally, a white OLED based on the doping profile was fabricated with two thin red EMLs within a blue EML maintaining a thickness of 30 nm for the entire EML. Keywords: Blue Phosphorescent Organic Light Emitting Diodes, Stepwise Doping Structure, Charge Trapping Effect.

  9. InGaN/GaN light-emitting diode microwires of submillimeter length

    Energy Technology Data Exchange (ETDEWEB)

    Lundin, W. V., E-mail: lundin.vpegroup@mail.ioffe.ru; Rodin, S. N.; Sakharov, A. V.; Lundina, E. Yu. [Russian Academy of Sciences, Ioffe Physical–Technical Institute (Russian Federation); Usov, S. O. [Russian Academy of Sciences, Research and Engineering Center of Submicron Heterostructures for Microelectronics (Russian Federation); Zadiranov, Yu. M.; Troshkov, S. I. [Russian Academy of Sciences, Ioffe Physical–Technical Institute (Russian Federation); Tsatsulnikov, A. F. [Russian Academy of Sciences, Research and Engineering Center of Submicron Heterostructures for Microelectronics (Russian Federation)

    2017-01-15

    Microcrystalline wire-like InGaN/GaN light-emitting diodes designed as core–shell structures 400–600 μm in length are grown by metal–organic vapor-phase epitaxy on sapphire and silicon substrates. The technology of the titanium-nanolayer-induced ultrafast growth of nanowire and microwire crystals is used. As a current is passed through the microcrystals, an electroluminescence signal is observed in the blue–green spectral region.

  10. Inkjet Printing of Organic Light-Emitting Diodes Based on Alcohol-Soluble Polyfluorenes

    Science.gov (United States)

    Odod, A. V.; Gadirov, R. M.; Solodova, T. A.; Kurtsevich, A. E.; Il'gach, D. M.; Yakimanskii, A. V.; Burtman, V.; Kopylova, T. N.

    2018-04-01

    Ink compositions for inkjet printing based on poly(9.9-dioctylfluorene) and its alcohol-soluble analog are created. Current-voltage, brightness-voltage, and spectral characteristics are compared for one- and twolayer polymer structures of organic light-emitting diodes. It is shown that the efficiency of the alcohol-soluble polyfluorene analog is higher compared to poly(9.9-dioctylfluorene), and the possibility of viscosity optimization is higher compared to aromatic chlorinated solvents.

  11. Design of passive coolers for light-emitting diode lamps using topology optimisation

    DEFF Research Database (Denmark)

    Alexandersen, Joe; Sigmund, Ole; Meyer, Knud Erik

    2018-01-01

    Topology optimised designs for passive cooling of light-emitting diode (LED) lamps are investigated through extensive numerical parameter studies. The designs are optimised for either horizontal or vertical orientations and are compared to a lattice-fin design as well as a simple parameter......, while maintaining low sensitivity to orientation. Furthermore, they exhibit several defining features and provide insight and general guidelines for the design of passive coolers for LED lamps....

  12. Highly efficient and simplified phosphorescence white organic light-emitting diodes based on synthesized deep-blue host and orange emitter

    Energy Technology Data Exchange (ETDEWEB)

    Koo, Ja Ryong; Lee, Seok Jae; Hyung, Gun Woo; Kim, Bo Young; Lee, Dong Hyung [Department of Information Display, Hongik University, Seoul 121-791 (Korea, Republic of); Kim, Woo Young [Department of Green Energy and Semiconductor Engineering, Hoseo University, Asan 336-795 (Korea, Republic of); Lee, Kum Hee [Department of Chemistry, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Yoon, Seung Soo, E-mail: ssyoon@skku.edu [Department of Chemistry, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Kim, Young Kwan, E-mail: kimyk@hongik.ac.kr [Department of Information Display, Hongik University, Seoul 121-791 (Korea, Republic of)

    2013-10-01

    The authors have demonstrated a highly efficient and stable phosphorescent white organic light-emitting diode (WOLED), which has been achieved by doping only one orange phosphorescent emitter, Bis(5-benzoyl-2-(4-fluorophenyl)pyridinato-C,N)iridium(III) acetylacetonate into an appropriate deep blue phosphorescent host, 4,4'-bis(4-(triphenylsilyl)phenyl)-1,1'-binaphthyl as an emitting layer (EML). The WOLED has been achieved by effective confinement of triplet excitons to emit a warm white color. The optimized WOLED, with a simple structure as a hole transporting layer-EML-electron transporting layer, showed a maximum luminous efficiency of 22.38 cd/A, a maximum power efficiency of 12.01 lm/W, a maximum external quantum efficiency of 7.32%, and CIEx,y coordinates of (0.38,0.42) at 500 cd/m{sup 2}, respectively. - Highlights: • Highly efficient phosphorescent white organic light-emitting diode (WOLED) • Single emitting layer consists of synthesized deep blue host and orange emitter • The WOLED with high EL efficiencies due to efficient triplet exciton confinement.

  13. Background story of the invention of efficient blue InGaN light emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Shuji [University of California, Santa Barbara, CA (United States)

    2015-06-15

    Shuji Nakamura discovered p-type doping in Gallium Nitride (GaN) and developed blue, green, and white InGaN based light emitting diodes (LEDs) and blue laser diodes (LDs). His inventions made possible energy efficient, solid-state lighting systems and enabled the next generation of optical storage. Together with Isamu Akasaki and Hiroshi Amano, he is one of the three recipients of the 2014 Nobel Prize in Physics. In his Nobel lecture, Shuji Nakamura gives an overview of this research and the story of his inventions. (copyright 2015 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. Electroluminescence enhancement for near-ultraviolet light emitting diodes with graphene/AZO-based current spreading layers

    DEFF Research Database (Denmark)

    Lin, Li; Ou, Yiyu; Zhu, Xiaolong

    LEDs) have attracted significant research interest due to their intensive applications in various areas where indium tin oxide (ITO) is one of the most widely employed transparent conductive materials for NUV LEDs. Compared to ITO, indium-free aluminum-doped zinc oxide (AZO) has similar electrical......Near-ultraviolet light emitting diodes with different aluminum-doped zinc oxide-based current spreading layers were fabricated and electroluminescence (EL) was compared. A 170% EL enhancement was achieved by using a graphene-based interlayer. GaN-based near-ultraviolet light emitting diodes (NUV...... with a new type of current spreading layer (CSL) which combines AZO and a single-layer graphene (SLG) as an effective transparent CSL [1]. In the present work, LEDs with solo AZO CSL in Fig.1(a) and SLG/Ni/AZO-based CSL in Fig.1(b) were both fabricated for EL comparison. Standard mesa fabrication including...

  15. A Study of the interaction of radiation and semiconductor lasers: an analysis of transient and permanent effects induced on edge emitting and vertical cavity surface emitting laser diodes

    International Nuclear Information System (INIS)

    Pailharey, Eric

    2000-01-01

    The behavior of laser diodes under transient environment is presented in this work. The first section describes the basic phenomena of radiation interaction with matter. The radiative environments, the main characteristics of laser diodes and the research undertaken on the subject are presented and discussed. The tests on 1300 nm edge emitting laser diode are presented in the second section. The response to a transient ionizing excitation is explored using a 532 nm laser beam. The time of return to steady state after the perturbation is decomposed into several steps: decrease of the optical power during excitation, turn-on delay, relaxation oscillations and optical power offset. Their origins are analyzed using the device structure. To include all the phenomena in a numerical simulation of the device, an individual study of low conductivity materials used for the lateral confinement of the current density is undertaken. The effects of a single particle traversing the optical cavity and an analysis of permanent damages induced by neutrons are also determined. In the last section, 850 nm vertical cavity surface emitting laser diodes (VCSEL) are studied. The behavior of these devices which performances are in constant evolution, is investigated as a function of both temperature and polarization. Then VCSEL are submitted to transient ionizing irradiation and their responses are compared to those of edge emitting diodes. When proton implantation is used in the process, we observe the same behavior for both technologies. VCSEL were submitted to neutron fluence and we have studied the influence of the damages on threshold current, emission patterns and maximum of optical power. (author) [fr

  16. A white organic light emitting diode based on anthracene-triphenylamine derivatives

    Science.gov (United States)

    Jiang, Quan; Qu, Jianjun; Yu, Junsheng; Tao, Silu; Gan, Yuanyuan; Jiang, Yadong

    2010-10-01

    White organic lighting-diode (WOLED) can be used as flat light sources, backlights for liquid crystal displays and full color displays. Recently, a research mainstream of white OLED is to develop the novel materials and optimize the structure of devices. In this work a WOLED with a structure of ITO/NPB/PAA/Alq3: x% rubrene/Alq3/Mg: Ag, was fabricated. The device has two light-emitting layers. NPB is used as a hole transport layer, PAA as a blue emitting layer, Alq3: rubrene host-guest system as a yellow emitting layer, and Alq3 close to the cathode as an electron transport layer. In the experiment, the doping concentration of rubrene was optimized. WOLED 1 with 4% rubrene achieved a maximum luminous efficiency of 1.80 lm/W, a maximum luminance of 3926 cd/m2 and CIE coordinates of (0.374, 0.341) .WOLED 2 with 2% rubrene achieved a maximum luminous efficiency of 0.65 lm/W, a maximum luminance of 7495cd/m2 and CIE coordinates of (0.365,0.365).

  17. A white organic light emitting diode with improved stability

    International Nuclear Information System (INIS)

    Zhang Zhilin; Jiang Xueyin; Zhu Wenqing; Zhang Buxin; Xu Shaohong

    2001-01-01

    A white organic light emitting diode (OLED) has been constructed by employing a new blue material and a red dye directly doped in the blue emitting layer. For comparison, another white cell with a blocking layer has also been made. The configurations of the devices are ITO/CuPc/NPB/JBEM(P):DCJT/Alq/MgAg (device 1) and ITO/CuPc/NPB/TPBi:DCJT/Alq/MgAg (device 2) where copper phthalocyanine (CuPc) is the buffer layer, N,N'-bis-(1-naphthyl)-N,N'-diphenyl-1.1'bipheny1-4-4'-diamine (NPB) is the hole transporting layer, 9,10-bis(3'5'-diaryl)phenyl anthracene doped with perylene (JBEM(P)) is the new blue emitting material, N,arylbenzimidazoles (TPBi) is the hole blocking layer, tris(8-quinolinolato)aluminium complex (Alq) is the electron transporting layer, and DCJT is a red dye. A stable and current independent white OLED has been obtained in device 1, which has a maximum luminance of 14 850 cd m -2 , an efficiency of 2.88 Lm W -1 , Commission Internationale de l'Eclairage coordinates of x=0.32, y=0.38 between 4-200 mA cm -2 , and a half lifetime of 2860 h at the starting luminance of 100 cd m -2 . Device 1 has a stability more than 50 times better than that of device 2. (author)

  18. 700 W blue fiber-coupled diode-laser emitting at 450 nm

    Science.gov (United States)

    Balck, A.; Baumann, M.; Malchus, J.; Chacko, R. V.; Marfels, S.; Witte, U.; Dinakaran, D.; Ocylok, S.; Weinbach, M.; Bachert, C.; Kösters, A.; Krause, V.; König, H.; Lell, A.; Stojetz, B.; Löffler, A.; Strauss, U.

    2018-02-01

    A high-power blue laser source was long-awaited for processing materials with low absorption in the near infrared (NIR) spectral range like copper or gold. Due to the huge progress of GaN-based semiconductors, the performance of blue diode-lasers has made a major step forward recently. With the availability of unprecedented power levels at cw-operating blue diode-lasers emitting at 450 nm, it was possible to set up a high-power diode-laser in the blue spectral range to address these conventional laser applications and probably beyond that to establish completely new utilizations for lasers. Within the scope of the research project "BlauLas", funded within the German photonic initiative "EFFILAS" [8] by the German Federal Ministry of Education and Research (BMBF), Laserline in cooperation with OSRAM aims to realize a cw fiber-coupled diode-laser exceeding 1 kW blue laser power. In this paper the conceptual design and experimental results of a 700 W blue fiber-coupled diode-laser are presented. Initially a close look had to be taken on the mounting techniques of the semiconductors to serve the requirements of the GaN laser diodes. Early samples were used for extensive long term tests to investigate degradation processes. With first functional laser-modules we set up fiber-coupled laser-systems for further testing. Besides adaption of well-known optical concepts a main task within the development of the laser system was the selection and examination of suitable materials and assembling in order to minimize degradation and reach adequate lifetimes. We realized R&D blue lasersystems with lifetimes above 5,000 h, which enable first application experiments on processing of various materials as well as experiments on conversion to white-light.

  19. Feasibility study of using a Zener diode as the selection device for bipolar RRAM and WORM memory arrays

    International Nuclear Information System (INIS)

    Li, Yingtao; Fu, Liping; Tao, Chunlan; Jiang, Xinyu; Sun, Pengxiao

    2014-01-01

    Cross-bar arrays are usually used for the high density application of resistive random access memory (RRAM) devices. However, cross-talk interference limits an increase in the integration density. In this paper, the Zener diode is proposed as a selection device to suppress the sneak current in bipolar RRAM arrays. Measurement results show that the Zener diode can act as a good selection device, and the sneak current can be effectively suppressed. The readout margin is sufficiently improved compared to that obtained without the selection device. Due to the improvement for the reading disturbance, the size of the cross-bar array can be enhanced to more than 10 3  × 10 3 . Furthermore, the possibility of using a write-once-read-many-times (WORM) cross-bar array is also demonstrated by connecting the Zener diode and the bipolar RRAM in series. These results strongly suggest that using a Zener diode as a selection device opens up great opportunities to realize high density bipolar RRAM arrays. (paper)

  20. Synthesis and electroluminescent properties of blue emitting materials based on arylamine-substituted diphenylvinylbiphenyl derivatives for organic light-emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kum Hee; You, Jae Nam; Won, Jiyeon; Lee, Jin Yong [Department of Chemistry, Sungkyunkwan University, Suwon, 440-746 (Korea, Republic of); Seo, Ji Hoon [Department of Information Display, Hongik University, Seoul, 121-791 (Korea, Republic of); Kim, Young Kwan, E-mail: kimyk@hongik.ac.kr [Department of Information Display, Hongik University, Seoul, 121-791 (Korea, Republic of); Yoon, Seung Soo, E-mail: ssyoon@skku.edu [Department of Chemistry, Sungkyunkwan University, Suwon, 440-746 (Korea, Republic of)

    2011-10-31

    This paper reports the synthesis and electroluminescent properties of a series of blue emitting materials with arylamine and diphenylvinylbiphenyl groups for applications to efficient blue organic light-emitting diodes (OLEDs). All devices exhibited blue electroluminescence with electroluminescent properties that were quite sensitive to the structural features of the dopants in the emitting layers. In particular, the device using dopant 4 exhibited sky-blue emission with a maximum luminance, luminance efficiency, power efficiency, external quantum efficiency and CIE coordinates of 39,000 cd/m{sup 2}, 12.3 cd/A, 7.45 lm/W, 7.71% at 20 mA/cm{sup 2} and (x = 0.17, y = 0.31) at 8 V, respectively. In addition, a blue OLED using dopant 2 with CIE coordinates (x = 0.16, y = 0.18) at 8 V exhibited a luminous efficiency, power efficiency and external quantum efficiency of 4.39 cd/A, 2.46 lm/W and 2.97% at 20 mA/cm{sup 2}, respectively.

  1. Enhancement and Quenching of Fluorescence by Silver Nanoparticles in Organic Light-Emitting Diodes

    Directory of Open Access Journals (Sweden)

    Ying-Chung Chen

    2013-01-01

    Full Text Available The influence of silver nanoparticles (SNPs on the performance of organic light-emitting diodes (OLEDs is investigated in this study. The SNPs are introduced between the electron-transport layers by means of thermal evaporation. SNPs are found to have the surface plasmon resonance at wavelength 525 nm when the mean particle size of SNPs is 34 nm. The optimized OLED, in terms of the spacing between the emitting layer and SNPs, is found to have the maximum luminance 2.4 times higher than that in the OLED without SNPs. The energy transfer between exciton and surface plasmons with the different spacing distances has been studied.

  2. Transparent conductive graphene electrode in GaN-based ultra-violet light emitting diodes.

    Science.gov (United States)

    Kim, Byung-Jae; Mastro, Michael A; Hite, Jennifer; Eddy, Charles R; Kim, Jihyun

    2010-10-25

    We report a graphene-based transparent conductive electrode for use in ultraviolet (UV) GaN light emitting diodes (LEDs). A few-layer graphene (FLG) layer was mechanically deposited. UV light at a peak wavelength of 368 nm was successfully emitted by the FLG layer as transparent contact to p-GaN. The emission of UV light through the thin graphene layer was brighter than through the thick graphene layer. The thickness of the graphene layer was characterized by micro-Raman spectroscopy. Our results indicate that this novel graphene-based transparent conductive electrode holds great promise for use in UV optoelectronics for which conventional ITO is less transparent than graphene.

  3. Effect of arylamine hole-transport units on the performance of blue polyspirobifulorene light-emitting diodes

    NARCIS (Netherlands)

    Abbaszadeh, D.; Nicolai, H.T.; Crəciun, N.I.; Blom, P.W.M.

    2014-01-01

    The operation of blue light-emitting diodes based on polyspirobifluorene with a varying number of N,N,N′,N′ tetraaryldiamino biphenyl (TAD) hole-transport units (HTUs) is investigated. Assuming that the electron transport is not affected by the incorporation of TAD units, model calculations predict

  4. Gigabit-per-second white light-based visible light communication using near-ultraviolet laser diode and red-, green-, and blue-emitting phosphors

    KAUST Repository

    Lee, Changmin; Shen, Chao; Cozzan, Clayton; Farrell, Robert M.; Speck, James S.; Nakamura, Shuji; Ooi, Boon S.; DenBaars, Steven P.

    2017-01-01

    Data communication based on white light generated using a near-ultraviolet (NUV) laser diode (LD) pumping red-, green-, and blue-emitting (RGB) phosphors was demonstrated for the first time. A III-nitride laser diode (LD) on a semipolar (2021

  5. Bipolar Electrode Array Embedded in a Polymer Light-Emitting Electrochemical Cell.

    Science.gov (United States)

    Gao, Jun; Chen, Shulun; AlTal, Faleh; Hu, Shiyu; Bouffier, Laurent; Wantz, Guillaume

    2017-09-20

    A linear array of aluminum discs is deposited between the driving electrodes of an extremely large planar polymer light-emitting electrochemical cell (PLEC). The planar PLEC is then operated at a constant bias voltage of 100 V. This promotes in situ electrochemical doping of the luminescent polymer from both the driving electrodes and the aluminum discs. These aluminum discs function as discrete bipolar electrodes (BPEs) that can drive redox reactions at their extremities. Time-lapse fluorescence imaging reveals that p- and n-doping that originated from neighboring BPEs can interact to form multiple light-emitting p-n junctions in series. This provides direct evidence of the working principle of bulk homojunction PLECs. The propagation of p-doping is faster from the BPEs than from the positive driving electrode due to electric field enhancement at the extremities of BPEs. The effect of field enhancement and the fact that the doping fronts only need to travel the distance between the neighboring BPEs to form a light-emitting junction greatly reduce the response time for electroluminescence in the region containing the BPE array. The near simultaneous formation of multiple light-emitting p-n junctions in series causes a measurable increase in cell current. This indicates that the region containing a BPE is much more conductive than the rest of the planar cell despite the latter's greater width. The p- and n-doping originating from the BPEs is initially highly confined. Significant expansion and divergence of doping occurred when the region containing the BPE array became more conductive. The shape and direction of expanded doping strongly suggest that the multiple light-emitting p-n junctions, formed between and connected by the array of metal BPEs, have functioned as a single rod-shaped BPE. This represents a new type of BPE that is formed in situ and as a combination of metal, doped polymers, and forward-biased p-n junctions connected in series.

  6. Highly efficient exciplex organic light-emitting diodes using thermally activated delayed fluorescent emitters as donor and acceptor materials

    Science.gov (United States)

    Jeon, Sang Kyu; Yook, Kyoung Soo; Lee, Jun Yeob

    2016-06-01

    Highly efficient exciplex type organic light-emitting diodes were developed using thermally activated delayed fluorescent emitters as donors and acceptors of an exciplex. Blue emitting bis[4-(9,9-dimethyl-9,10-dihydroacridine)phenyl]sulfone (DMAC-DPS) was a donor and 9,9‧-(5-(4,6-diphenyl-1,3,5-triazin-2-yl)-1,3-phenylene)bis(9H-carbazole) (DDCzTrz) and 9,9‧,9″-(5-(4,6-diphenyl-1,3,5-triazin-2-yl)benzene-1,2,3-triyl)tris(9H-carbazole) (TCzTrz) were acceptor materials. The exciplexes of DMAC-DPS:TCzTrz and DMAC-DPS:DDCzTrz resulted in high photoluminescence quantum yield and high quantum efficiency in the green exciplex organic light-emitting diodes. High quantum efficiencies of 13.4% and 15.3% were obtained in the DMAC-DPS:DDCzTrz and DMAC-DPS:TCzTrz exciplex devices.

  7. High power cascade diode lasers emitting near 2 μm

    Energy Technology Data Exchange (ETDEWEB)

    Hosoda, Takashi; Feng, Tao; Shterengas, Leon, E-mail: leon.shterengas@stonybrook.edu; Kipshidze, Gela; Belenky, Gregory [State University of New York at Stony Brook, Stony Brook, New York 11794 (United States)

    2016-03-28

    High-power two-stage cascade GaSb-based type-I quantum well diode lasers emitting near 2 μm were designed and fabricated. Coated devices with cavity length of 3 mm generated about 2 W of continuous wave power from 100-μm-wide aperture at the current of 6 A. The power conversion efficiency peaked at 20%. Carrier recycling between quantum well gain stages was realized using band-to-band tunneling in GaSb/AlSb/InAs heterostructure complemented with optimized electron and hole injector regions. Design optimization eliminated parasitic optical absorption and thermionic emission, and included modification of the InAs quantum wells of electron and composition and doping profile of hole injectors. Utilization of the cascade pumping scheme yielded 2 μm lasers with improved output power and efficiency compared to existing state-of-the-art diodes.

  8. Lifetime enhanced phosphorescent organic light emitting diode using an electron scavenger layer

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Seokhwan; Kim, Ji Whan; Lee, Sangyeob, E-mail: sy96.lee@samsung.com [Samsung Advanced Institute of Technology, Samsung Electronics Co., Ltd., 130 Samsung-ro, Suwon, Gyeonggi 443-803 (Korea, Republic of)

    2015-07-27

    We demonstrate a method to improve lifetime of a phosphorescent organic light emitting diode (OLED) using an electron scavenger layer (ESL) in a hole transporting layer (HTL) of the device. We use a bis(1-(phenyl)isoquinoline)iridium(III)acetylacetonate [Ir(piq){sub 2}(acac)] doped HTL to stimulate radiative decay, preventing thermal degradation in HTL. The ESL effectively prevented non-radiative decay of leakage electron in HTL by converting non-radiative decay to radiative decay via a phosphorescent red emitter, Ir(piq){sub 2}(acac). The lifetime of device (t{sub 95}: time after 5% decrease of luminance) has been increased from 75 h to 120 h by using the ESL in a phosphorescent green-emitting OLED.

  9. Degradation of phosphorescent blue organic light-emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Chiu, Chien-Shu [Department of Electrical Engineering and Information Technology, Technical University of Braunschweig (Germany); Siemens AG, CT MM 1, Erlangen (Germany); Steinbacher, Frank [Department of Materials Science VI, University of Erlangen-Nuernberg (Germany); Siemens AG, CT MM 1, Erlangen (Germany); Krause, Ralf; Hunze, Arvid [Siemens AG, CT MM 1, Erlangen (Germany); Kowalsky, Wolfgang [Department of Electrical Engineering and Information Technology, Technical University of Braunschweig (Germany)

    2009-07-01

    Development of phosphorescent materials has significantly improved the efficiency of organic light-emitting diodes (OLEDs). By using efficient red, green and blue phosphorescent emitter materials high efficient white OLEDs can be achieved. However, due to low stability of blue phosphorescent materials the lifetime of phosphorescent white OLEDs remains an issue. As a result, degradation of blue phosphorescent materials needs to be further investigated and improved. In this work, blue OLED devices based on the phosphorescent emitter FIrpic were investigated. Single-carrier hole-only as well as electron-only devices were fabricated. For investigation of degradation process the devices were stressed with electrical current and UV-light to study the impact of charge carriers as well as excitons and exciton-polaron quenching on the stability of the blue dye.

  10. Effect of the thickness of Zn(BTZ)2 emitting layer on the electroluminescent spectra of white organic light-emitting diodes

    International Nuclear Information System (INIS)

    Zhu, F.J.; Hua, Y.L.; Yin, S.G.; Deng, J.C.; Wu, K.W.; Niu, X.; Wu, X.M.; Petty, M.C.

    2007-01-01

    White organic light-emitting diodes (OLEDs) are fabricated with a simple bilayer structure: ITO/TPD/ Zn(BTZ) 2 /Al. White emission is composed of two parts: one is 470 nm, which originates from exciton emission in Zn(BTZ) 2 emitting layer; the other is 580 nm, which originates from exciplexes formation at the interface of TPD and Zn(BTZ) 2 . Specially, the thickness of Zn(BTZ) 2 layer effects the relative intensity of two emissions. When the Zn(BTZ) 2 layer becomes thin (or thick), the 470 nm (or 580 nm) emission intensity turns into weak (or strong). Finally, We successfully fabricated pure white OLED when the thickness of Zn(BTZ) 2 layer was 65 nm

  11. Organic light-emitting diodes with a spacer enhanced exciplex emission

    Science.gov (United States)

    Yan, Fei; Chen, Rui; Sun, Handong; Wei Sun, Xiao

    2014-04-01

    By introducing a spacer molecule into the blended exciplex emissive layer, the performance of the bulk heterojunction exciplex organic light-emitting diodes (OLEDs) was improved dramatically; the maximum luminous efficiency was enhanced by about 22% from 7.9 cd/A to 9.7 cd/A, and the luminous efficiency drop was reduced by 28% at 400 mA/cm2. Besides the suppressed annihilation of exciton, the time-resolved photoluminescence measurements indicated that the spacer enhanced the delayed fluorescence through increasing the backward intersystem crossing rate from the triplet to singlet exciplex state. This method is useful for developing high performance exciplex OLEDs.

  12. Efficient light harvesting from flexible perovskite solar cells under indoor white light-emitting diode illumination

    NARCIS (Netherlands)

    Lucarelli, G.; Di Giacomo, F.; Zardetto, V.; Creatore, M.; Brown, T.M.

    2017-01-01

    This is the first report of an investigation on flexible perovskite solar cells for artificial light harvesting by using a white light-emitting diode (LED) lamp as a light source at 200 and 400 lx, values typically found in indoor environments. Flexible cells were developed using either

  13. Influence of a partially oxidized calcium cathode on the performance of polymeric light emitting diodes

    NARCIS (Netherlands)

    Andersson, G.G.; Jong, de M.P.; Janssen, F.J.J.; Sturm, J.M.; IJzendoorn, van L.J.; Denier van der Gon, A.W.; Voigt, de M.J.A.; Brongersma, H.H.

    2001-01-01

    We investigated the influence of the presence of oxygen during the deposition of the calcium cathode on the structure and on the performance of polymeric light emitting diodes (pLEDs). The oxygen background pressure during deposition of the calcium cathode of polymeric LEDs was varied. Subsequently,

  14. A Simple, Small-Scale Lego Colorimeter with a Light-Emitting Diode (LED) Used as Detector

    Science.gov (United States)

    Asheim, Jonas; Kvittingen, Eivind V.; Kvittingen, Lise; Verley, Richard

    2014-01-01

    This article describes how to construct a simple, inexpensive, and robust colorimeter from a few Lego bricks, in which one light-emitting diode (LED) is used as a light source and a second LED as a light detector. The colorimeter is suited to various grades and curricula.

  15. Electro-optical properties of a polymer light-emitting diode with an injection-limited hole contact

    NARCIS (Netherlands)

    van Woudenbergh, T; Blom, PWM; Huiberts, JN

    2003-01-01

    The electro-optical characteristics of a polymer light-emitting diode with a strongly reduced hole injection have been investigated. A silver contact on poly-dialkoxy-p-phenylene vinylene decreases the hole injection by five orders of magnitude, resulting in both a highly reduced light output and

  16. Accuracy Improvement for Light-Emitting-Diode-Based Colorimeter by Iterative Algorithm

    Science.gov (United States)

    Yang, Pao-Keng

    2011-09-01

    We present a simple algorithm, combining an interpolating method with an iterative calculation, to enhance the resolution of spectral reflectance by removing the spectral broadening effect due to the finite bandwidth of the light-emitting diode (LED) from it. The proposed algorithm can be used to improve the accuracy of a reflective colorimeter using multicolor LEDs as probing light sources and is also applicable to the case when the probing LEDs have different bandwidths in different spectral ranges, to which the powerful deconvolution method cannot be applied.

  17. Transparent Heat-Resistant PMMA Copolymers for Packing Light-Emitting Diode Materials

    Directory of Open Access Journals (Sweden)

    Shu-Ling Yeh

    2015-07-01

    Full Text Available Transparent and heat-resistant poly(methyl methacrylate copolymers were synthesized by bulk polymerizing methyl methacrylate (MMA, isobornyl methacrylate (IBMA, and methacrylamide (MAA monomers. Copolymerization was performed using a chain transfer agent to investigate the molecular weight changes of these copolymers, which exhibited advantages including a low molecular weight distribution, excellent optical properties, high transparency, high glass transition temperature, low moisture absorption, and pellets that can be readily mass produced by using extrusion or jet injection for packing light-emitting diode materials.

  18. Electroplex as a New Concept of Universal Host for Improved Efficiency and Lifetime in Red, Yellow, Green, and Blue Phosphorescent Organic Light-Emitting Diodes.

    Science.gov (United States)

    Song, Wook; Lee, Jun Yeob; Cho, Yong Joo; Yu, Hyeonghwa; Aziz, Hany; Lee, Kang Mun

    2018-02-01

    A new concept of host, electroplex host, is developed for high efficiency and long lifetime phosphorescent organic light-emitting diodes by mixing two host materials generating an electroplex under an electric field. A carbazole-type host and a triazine-type host are selected as the host materials to form the electroplex host. The electroplex host is found to induce light emission through an energy transfer process rather than charge trapping, and universally improves the lifetime of red, yellow, green, and blue phosphorescent organic light-emitting diodes by more than four times. Furthermore, the electroplex host shows much longer lifetime than a common exciplex host. This is the first demonstration of using the electroplex as the host of high efficiency and long lifetime phosphorescent organic light-emitting diodes.

  19. Electroplex emission at PVK/Bphen interface for application in white organic light-emitting diodes

    International Nuclear Information System (INIS)

    Wen Liang; Li Fushan; Xie Jiangxing; Wu Chaoxing; Zheng Yong; Chen Dongling; Xu Sheng; Guo Tailiang; Qu Bo; Chen Zhijian; Gong Qihuang

    2011-01-01

    White organic light-emitting diode (WOLED) with a structure of ITO/poly(N-vinylcarbazole) (PVK)/4,7-diphenyl-1, 10-phenanthroline (Bphen)/tris(8-hydroxyquinoline)aluminum (Alq 3 )/LiF/Al has been fabricated via the thermal evaporation technique. The electroluminescence (EL) spectrum of the as-fabricated WOLED covers from 380 to 700 nm of the visible light region with a wide blue emission from PVK and an interesting new red emission. The red emission at 613 nm in EL spectra of the WOLED was attributed to electroplex emission at PVK/Bphen interface since it was not observed in photoluminescence spectra. The WOLED showed a Commission International De l'Eclairage coordinate of (0.31, 0.32), which is very close to the standard white coordinate (0.33, 0.33). - Highlights: → A white organic light-emitting diode was fabricated by vacuum deposition. → A new red emission at 613 nm was observed in the electroluminescence spectra. → Red emission comes from electroplex instead of exciplex at PVK/Bphen interface. → The device has a CIE coordinate of (0.31, 0.32).

  20. InGaN/AlGaInN-based ultraviolet light-emitting diodes with indium gallium tin oxide electrodes

    International Nuclear Information System (INIS)

    Kim, Sukwon; Kim, Tae Geun

    2015-01-01

    In this study, In- and Sn-doped GaO (IGTO) is proposed as an alternative transparent conductive electrode for indium tin oxide (ITO) to improve the performance of InGaN/AlGaInN-based near ultraviolet light-emitting diodes (NUV LEDs). IGTO films were prepared by co-sputtering the ITO and Ga_2O_3 targets under various target power ratios. Among those, IGTO films post-annealed at 700 °C under a hydrogen environment gave rise to a transmittance of 94% at 385 nm and a contact resistance of 9.4 × 10"−"3 Ω-cm"2 with a sheet resistance of 124 Ω/ϒ. Compared to ITO-based NUV LEDs, the IGTO-based NUV LED showed a 9% improvement in the light output power, probably due to IGTO's higher transmittance, although the forward voltage was still higher by 0.23 V. - Highlights: • Indium gallium tin oxide (IGTO) for near-ultraviolet light-emitting diode is proposed. • IGTO is fabricated by co-sputtering the ITO and Ga_2O_3 targets and hydrogen annealing. • IGTO shows a 94% transmittance at 385 nm and a 9.4 × 10"−"3 Ω-cm"2 contact resistance. • Near-ultraviolet light-emitting diode with IGTO shows improved optical performance.

  1. Hybrid tunnel junction contacts to III–nitride light-emitting diodes

    KAUST Repository

    Young, Erin C.; Yonkee, Benjamin P.; Wu, Feng; Oh, Sang Ho; DenBaars, Steven P.; Nakamura, Shuji; Speck, James S.

    2016-01-01

    In this work, we demonstrate highly doped GaN p–n tunnel junction (TJ) contacts on III–nitride heterostructures where the active region of the device and the top p-GaN layers were grown by metal organic chemical vapor deposition and highly doped n-GaN was grown by NH3 molecular beam epitaxy to form the TJ. The regrowth interface in these hybrid devices was found to have a high concentration of oxygen, which likely enhanced tunneling through the diode. For optimized regrowth, the best tunnel junction device had a total differential resistivity of 1.5 × 10−4 Ω cm2, including contact resistance. As a demonstration, a blue-light-emitting diode on a ($20\\bar{2}\\bar{1}$) GaN substrate with a hybrid tunnel junction and an n-GaN current spreading layer was fabricated and compared with a reference sample with a transparent conducting oxide (TCO) layer. The tunnel junction LED showed a lower forward operating voltage and a higher efficiency at a low current density than the TCO LED.

  2. Hybrid tunnel junction contacts to III–nitride light-emitting diodes

    KAUST Repository

    Young, Erin C.

    2016-01-26

    In this work, we demonstrate highly doped GaN p–n tunnel junction (TJ) contacts on III–nitride heterostructures where the active region of the device and the top p-GaN layers were grown by metal organic chemical vapor deposition and highly doped n-GaN was grown by NH3 molecular beam epitaxy to form the TJ. The regrowth interface in these hybrid devices was found to have a high concentration of oxygen, which likely enhanced tunneling through the diode. For optimized regrowth, the best tunnel junction device had a total differential resistivity of 1.5 × 10−4 Ω cm2, including contact resistance. As a demonstration, a blue-light-emitting diode on a ($20\\\\bar{2}\\\\bar{1}$) GaN substrate with a hybrid tunnel junction and an n-GaN current spreading layer was fabricated and compared with a reference sample with a transparent conducting oxide (TCO) layer. The tunnel junction LED showed a lower forward operating voltage and a higher efficiency at a low current density than the TCO LED.

  3. A new light emitting diode-light emitting diode portable carbon dioxide gas sensor based on an interchangeable membrane system for industrial applications.

    Science.gov (United States)

    de Vargas-Sansalvador, I M Pérez; Fay, C; Phelan, T; Fernández-Ramos, M D; Capitán-Vallvey, L F; Diamond, D; Benito-Lopez, F

    2011-08-12

    A new system for CO(2) measurement (0-100%) based on a paired emitter-detector diode arrangement as a colorimetric detection system is described. Two different configurations were tested: configuration 1 (an opposite side configuration) where a secondary inner-filter effect accounts for CO(2) sensitivity. This configuration involves the absorption of the phosphorescence emitted from a CO(2)-insensitive luminophore by an acid-base indicator and configuration 2 wherein the membrane containing the luminophore is removed, simplifying the sensing membrane that now only contains the acid-base indicator. In addition, two different instrumental configurations have been studied, using a paired emitter-detector diode system, consisting of two LEDs wherein one is used as the light source (emitter) and the other is used in reverse bias mode as the light detector. The first configuration uses a green LED as emitter and a red LED as detector, whereas in the second case two identical red LEDs are used as emitter and detector. The system was characterised in terms of sensitivity, dynamic response, reproducibility, stability and temperature influence. We found that configuration 2 presented a better CO(2) response in terms of sensitivity. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Evaluation of inorganic and organic light-emitting diode displays for signage application

    Science.gov (United States)

    Sharma, Pratibha; Kwok, Harry

    2006-08-01

    High-brightness, inorganic light-emitting diodes (LEDs) have been successfully utilized for edge-lighting of large displays for signage. Further interest in solid-state lighting technology has been fueled with the emergence of small molecule and polymer-based organic light-emitting diodes (OLEDs). In this paper, edgelit inorganic LED-based displays and state-of-the-art OLED-based displays are evaluated on the basis of electrical and photometric measurements. The reference size for a signage system is assumed to be 600 mm x 600mm based on the industrial usage. With the availability of high power light-emitting diodes, it is possible to develop edgelit signage systems of the standard size. These displays possess an efficacy of 18 lm/W. Although, these displays are environmentally friendly and efficient, they suffer from some inherent limitations. Homogeneity of displays, which is a prime requirement for illuminated signs, is not accomplished. A standard deviation of 3.12 lux is observed between the illuminance values on the surface of the display. In order to distribute light effectively, reflective gratings are employed. Reflective gratings aid in reducing the problem but fail to eliminate it. In addition, the overall cost of signage is increased by 50% with the use of these additional components. This problem can be overcome by the use of a distributed source of light. Hence, the organic-LEDs are considered as a possible contender. In this paper, we experimentally determine the feasibility of using OLEDs for signage applications and compare their performance with inorganic LEDs. Passive matrix, small-molecule based, commercially available OLEDs is used. Design techniques for implementation of displays using organic LEDs are also discussed. It is determined that tiled displays based on organic LEDs possess better uniformity than the inorganic LED-based displays. However, the currently available OLEDs have lower light-conversion efficiency and higher costs than the

  5. Auger-generated hot carrier current in photo-excited forward biased single quantum well blue light emitting diodes

    Science.gov (United States)

    Espenlaub, Andrew C.; Alhassan, Abdullah I.; Nakamura, Shuji; Weisbuch, Claude; Speck, James S.

    2018-04-01

    We report on measurements of the photo-modulated current-voltage and electroluminescence characteristics of forward biased single quantum well, blue InGaN/GaN light emitting diodes with and without electron blocking layers. Low intensity resonant optical excitation of the quantum well was observed to induce an additional forward current at constant forward diode bias, in contrast to the usual sense of the photocurrent in photodiodes and solar cells, as well as an increased electroluminescence intensity. The presence of an electron blocking layer only slightly decreased the magnitude of the photo-induced current at constant forward bias. Photo-modulation at constant forward diode current resulted in a reduced diode bias under optical excitation. We argue that this decrease in diode bias at constant current and the increase in forward diode current at constant applied bias can only be due to additional hot carriers being ejected from the quantum well as a result of an increased Auger recombination rate within the quantum well.

  6. High-efficiency white organic light-emitting diodes using thermally activated delayed fluorescence

    International Nuclear Information System (INIS)

    Nishide, Jun-ichi; Hiraga, Yasuhide; Nakanotani, Hajime; Adachi, Chihaya

    2014-01-01

    White organic light-emitting diodes (WOLEDs) have attracted much attention recently, aimed for next-generation lighting sources because of their high potential to realize high electroluminescence efficiency, flexibility, and low-cost manufacture. Here, we demonstrate high-efficiency WOLED using red, green, and blue thermally activated delayed fluorescence materials as emissive dopants to generate white electroluminescence. The WOLED has a maximum external quantum efficiency of over 17% with Commission Internationale de l'Eclairage coordinates of (0.30, 0.38).

  7. BaZrO3 perovskite nanoparticles as emissive material for organic/inorganic hybrid light-emitting diodes

    DEFF Research Database (Denmark)

    Tamulevičius, S.; Ivaniuk, K.; Cherpak, V.

    2017-01-01

    In the present work we have demonstrated double-channel emission from organic exciplexes coupled to inorganic nanoparticles. The process is demonstrated by yellow-green emission in light-emitting diodes based on organic exciplexes hybridized with perovskite-type dispersed BaZrO3 nanoparticles...

  8. Improved performance of high average power semiconductor arrays for applications in diode pumped solid state lasers

    International Nuclear Information System (INIS)

    Beach, R.; Emanuel, M.; Benett, W.; Freitas, B.; Ciarlo, D.; Carlson, N.; Sutton, S.; Skidmore, J.; Solarz, R.

    1994-01-01

    The average power performance capability of semiconductor diode laser arrays has improved dramatically over the past several years. These performance improvements, combined with cost reductions pursued by LLNL and others in the fabrication and packaging of diode lasers, have continued to reduce the price per average watt of laser diode radiation. Presently, we are at the point where the manufacturers of commercial high average power solid state laser systems used in material processing applications can now seriously consider the replacement of their flashlamp pumps with laser diode pump sources. Additionally, a low cost technique developed and demonstrated at LLNL for optically conditioning the output radiation of diode laser arrays has enabled a new and scalable average power diode-end-pumping architecture that can be simply implemented in diode pumped solid state laser systems (DPSSL's). This development allows the high average power DPSSL designer to look beyond the Nd ion for the first time. Along with high average power DPSSL's which are appropriate for material processing applications, low and intermediate average power DPSSL's are now realizable at low enough costs to be attractive for use in many medical, electronic, and lithographic applications

  9. Indium tin oxide-rod/single walled carbon nanotube based transparent electrodes for ultraviolet light-emitting diodes

    International Nuclear Information System (INIS)

    Yun, Min Ju; Kim, Hee-Dong; Kim, Kyeong Heon; Sung, Hwan Jun; Park, Sang Young; An, Ho-Myoung; Kim, Tae Geun

    2013-01-01

    In this paper, we report a transparent conductive oxide electrode scheme working for ultraviolet light-emitting diodes based on indium tin oxide (ITO)-rod and a single walled carbon nanotube (SWCNT) layer. We prepared four samples with ITO-rod, SWCNT/ITO-rod, ITO-rod/SWCNT, and SWCNT/ITO-rod/SWCNT structures for comparison. As a result, the sample with SWCNT/ITO-rod/SWCNT structures showed the highest transmittance over 90% at 280 nm and the highest Ohmic behavior (with sheet resistance of 5.33 kΩ/□) in the current–voltage characteristic curves. - Highlights: • Transparent conductive oxide (TCO) electrodes are proposed for UV light-emitting diodes. • These TCO electrodes are based on evaporated indium tin oxide (ITO)-rods. • Single walled carbon nanotube (SWCNT) layers are used as a current spreading layer. • The proposed TCO electrode structures show more than 90% transmittance at 280 nm

  10. Phase Locking of Laser Diode Array by Using an Off-Axis External Talbot Cavity

    International Nuclear Information System (INIS)

    Su Zhou-Ping; Zhu Zhuo-Wei; Que Li-Zhi; Zhu Yun; Ji Zhi-Cheng

    2012-01-01

    Phase locking of a laser diode array is demonstrated experimentally by using an off-axis external Talbot cavity with a feedback plane mirror. Due to good spatial mode discrimination, the cavity does not need a spatial filter. By employing the cavity, a clear and stable far-field interference pattern can be observed when the driver current is less than 14 A. In addition, the spectral line width can be reduced to 0.8 nm. The slope efficiency of the phase-locked laser diode array is about 0.62 W/A. (fundamental areas of phenomenology(including applications))

  11. Electroplex as a New Concept of Universal Host for Improved Efficiency and Lifetime in Red, Yellow, Green, and Blue Phosphorescent Organic Light‐Emitting Diodes

    Science.gov (United States)

    Song, Wook; Cho, Yong Joo; Yu, Hyeonghwa; Aziz, Hany; Lee, Kang Mun

    2017-01-01

    Abstract A new concept of host, electroplex host, is developed for high efficiency and long lifetime phosphorescent organic light‐emitting diodes by mixing two host materials generating an electroplex under an electric field. A carbazole‐type host and a triazine‐type host are selected as the host materials to form the electroplex host. The electroplex host is found to induce light emission through an energy transfer process rather than charge trapping, and universally improves the lifetime of red, yellow, green, and blue phosphorescent organic light‐emitting diodes by more than four times. Furthermore, the electroplex host shows much longer lifetime than a common exciplex host. This is the first demonstration of using the electroplex as the host of high efficiency and long lifetime phosphorescent organic light‐emitting diodes. PMID:29610726

  12. Comparison of organic light emitting diodes with different mixed layer structures

    Energy Technology Data Exchange (ETDEWEB)

    Kee, Y.Y.; Siew, W.O. [Faculty of Engineering, Multimedia University, 63100 Cyberjaya (Malaysia); Yap, S.S. [Faculty of Engineering, Multimedia University, 63100 Cyberjaya (Malaysia); Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia); Tou, T.Y., E-mail: tytou@mmu.edu.my [Faculty of Engineering, Multimedia University, 63100 Cyberjaya (Malaysia)

    2014-11-03

    A mixed-source thermal evaporation method was used to fabricate organic light emitting diodes (OLEDs) with uniformly mixed (UM), continuously graded mixed (CGM) and step-wise graded, mixed (SGM) light-emitting layers. N,N′-Bis(3-methylphenyl)-N,N′-diphenylbenzidine and Tris-(8-hydroxyquinoline)aluminum were used, respectively, as the hole- and electron-transport materials. As compared to the conventional, heterojunction OLED, the maximum brightness of UM-, CGM- and SGM-OLEDs without charge injection layers were improved by 2.2, 3.8 and 2.1 times, respectively, while the maximum power efficiencies improved by 1.5, 3.2 and 1.9 times. These improvements were discussed in terms of more distributed recombination zone and removal of interfacial barrier. - Highlights: • Fabrication of OLEDs using a mixed-source evaporation technique • Three different types of mixed-host OLEDs with better brightness • Improved electroluminescence and power efficiencies as compared to conventional OLED.

  13. Trap-assisted and Langevin-type recombination in organic light-emitting diodes

    Science.gov (United States)

    Wetzelaer, G. A. H.; Kuik, M.; Nicolai, H. T.; Blom, P. W. M.

    2011-04-01

    Trapping of charges is known to play an important role in the charge transport of organic semiconductors, but the role of traps in the recombination process has not been addressed. Here we show that the ideality factor of the current of organic light-emitting diodes (OLEDs) in the diffusion-dominated regime has a temperature-independent value of 2, which reveals that nonradiative trap-assisted recombination dominates the current. In contrast, the ideality factor of the light output approaches unity, demonstrating that luminance is governed by recombination of the bimolecular Langevin type. This apparent contradiction can be resolved by measuring the current and luminance ideality factor for a white-emitting polymer, where both free and trapped charge carriers recombine radiatively. With increasing bias voltage, Langevin recombination becomes dominant over trap-assisted recombination due to its stronger dependence on carrier density, leading to an enhancement in OLED efficiency.

  14. Solution-Grown ZnO Films toward Transparent and Smart Dual-Color Light-Emitting Diode.

    Science.gov (United States)

    Huang, Xiaohu; Zhang, Li; Wang, Shijie; Chi, Dongzhi; Chua, Soo Jin

    2016-06-22

    An individual light-emitting diode (LED) capable of emitting different colors of light under different bias conditions not only allows for compact device integration but also extends the functionality of the LED beyond traditional illumination and display. Herein, we report a color-switchable LED based on solution-grown n-type ZnO on p-GaN/n-GaN heterojunction. The LED emits red light with a peak centered at ∼692 nm and a full width at half-maximum of ∼90 nm under forward bias, while it emits green light under reverse bias. These two lighting colors can be switched repeatedly by reversing the bias polarity. The bias-polarity-switched dual-color LED enables independent control over the lighting color and brightness of each emission with two-terminal operation. The results offer a promising strategy toward transparent, miniaturized, and smart LEDs, which hold great potential in optoelectronics and optical communication.

  15. Highly stable cesium lead iodide perovskite quantum dot light-emitting diodes

    Science.gov (United States)

    Zou, Chen; Huang, Chun-Ying; Sanehira, Erin M.; Luther, Joseph M.; Lin, Lih Y.

    2017-11-01

    Recently, all-inorganic perovskites such as CsPbBr3 and CsPbI3, have emerged as promising materials for light-emitting applications. While encouraging performance has been demonstrated, the stability issue of the red-emitting CsPbI3 is still a major concern due to its small tolerance factor. Here we report a highly stable CsPbI3 quantum dot (QD) light-emitting diode (LED) with red emission fabricated using an improved purification approach. The device achieved decent external quantum efficiency (EQE) of 0.21% at a bias of 6 V and outstanding operational stability, with a L 70 lifetime (EL intensity decreases to 70% of starting value) of 16 h and 1.5 h under a constant driving voltage of 5 V and 6 V (maximum EQE operation) respectively. Furthermore, the device can work under a higher voltage of 7 V (maximum luminance operation) and retain 50% of its initial EL intensity after 500 s. These findings demonstrate the promise of CsPbI3 QDs for stable red LEDs, and suggest the feasibility for electrically pumped perovskite lasers with further device optimizations.

  16. Advanced Oxidation of Tartrazine and Brilliant Blue with Pulsed Ultraviolet Light Emitting Diodes

    OpenAIRE

    Scott, Robert; Mudimbi, Patrick; Miller, Michael E.; Magnuson, Matthew; Willison, Stuart; Phillips, Rebecca; Harper, Willie F.

    2017-01-01

    This study investigated the effect of ultraviolet light-emitting diodes (UVLEDs) coupled with hydrogen peroxide as an advanced oxidation process (AOP) for the degradation of two test chemicals. Brilliant Blue FCF consistently exhibited greater degradation than tartrazine, with 83% degradation after 300 minutes at the 100% duty cycle compared with only 17% degradation of tartrazine under the same conditions. These differences are attributable to the structural properties of the compounds. Duty...

  17. Improving the Stability of Metal Halide Perovskite Materials and Light-Emitting Diodes.

    Science.gov (United States)

    Cho, Himchan; Kim, Young-Hoon; Wolf, Christoph; Lee, Hyeon-Dong; Lee, Tae-Woo

    2018-01-25

    Metal halide perovskites (MHPs) have numerous advantages as light emitters such as high photoluminescence quantum efficiency with a direct bandgap, very narrow emission linewidth, high charge-carrier mobility, low energetic disorder, solution processability, simple color tuning, and low material cost. Based on these advantages, MHPs have recently shown unprecedented radical progress (maximum current efficiency from 0.3 to 42.9 cd A -1 ) in the field of light-emitting diodes. However, perovskite light-emitting diodes (PeLEDs) suffer from intrinsic instability of MHP materials and instability arising from the operation of the PeLEDs. Recently, many researchers have devoted efforts to overcome these instabilities. Here, the origins of the instability in PeLEDs are reviewed by categorizing it into two types: instability of (i) the MHP materials and (ii) the constituent layers and interfaces in PeLED devices. Then, the strategies to improve the stability of MHP materials and PeLEDs are critically reviewed, such as A-site cation engineering, Ruddlesden-Popper phase, suppression of ion migration with additives and blocking layers, fabrication of uniform bulk polycrystalline MHP layers, and fabrication of stable MHP nanoparticles. Based on this review of recent advances, future research directions and an outlook of PeLEDs for display applications are suggested. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Natural substrate lift-off technique for vertical light-emitting diodes

    Science.gov (United States)

    Lee, Chia-Yu; Lan, Yu-Pin; Tu, Po-Min; Hsu, Shih-Chieh; Lin, Chien-Chung; Kuo, Hao-Chung; Chi, Gou-Chung; Chang, Chun-Yen

    2014-04-01

    Hexagonal inverted pyramid (HIP) structures and the natural substrate lift-off (NSLO) technique were demonstrated on a GaN-based vertical light-emitting diode (VLED). The HIP structures were formed at the interface between GaN and the sapphire substrate by molten KOH wet etching. The threading dislocation density (TDD) estimated by transmission electron microscopy (TEM) was reduced to 1 × 108 cm-2. Raman spectroscopy indicated that the compressive strain from the bottom GaN/sapphire was effectively released through the HIP structure. With the adoption of the HIP structure and NSLO, the light output power and yield performance of leakage current could be further improved.

  19. Determination of illuminants representing typical white light emitting diodes sources

    DEFF Research Database (Denmark)

    Jost, S.; Ngo, M.; Ferrero, A.

    2017-01-01

    is to develop LED-based illuminants that describe typical white LED products based on their Spectral Power Distributions (SPDs). Some of these new illuminants will be recommended in the update of the CIE publication 15 on colorimetry with the other typical illuminants, and among them, some could be used......Solid-state lighting (SSL) products are already in use by consumers and are rapidly gaining the lighting market. Especially, white Light Emitting Diode (LED) sources are replacing banned incandescent lamps and other lighting technologies in most general lighting applications. The aim of this work...... to complement the CIE standard illuminant A for calibration use in photometry....

  20. Energy down converting organic fluorophore functionalized mesoporous silica hybrids for monolith-coated light emitting diodes

    Directory of Open Access Journals (Sweden)

    Markus Börgardts

    2017-04-01

    Full Text Available The covalent attachment of organic fluorophores in mesoporous silica matrices for usage as energy down converting phosphors without employing inorganic transition or rare earth metals is reported in this article. Triethoxysilylpropyl-substituted derivatives of the blue emitting perylene, green emitting benzofurazane, and red emitting Nile red were synthesized and applied in the synthesis of mesoporous hybrid materials by postsynthetic grafting to commercially available MCM-41. These individually dye-functionalized hybrid materials are mixed in variable ratios to furnish a powder capable of emitting white light with CIE chromaticity coordinates of x = 0.33, y = 0.33 and an external quantum yield of 4.6% upon irradiation at 410 nm. Furthermore, as a proof of concept two different device setups of commercially available UV light emitting diodes, are coated with silica monoliths containing the three triethoxysilylpropyl-substituted fluorophore derivatives. These coatings are able to convert the emitted UV light into light with correlated color temperatures of very cold white (41100 K, 10700 K as well as a greenish white emission with correlated color temperatures of about 5500 K.

  1. Quantum key distribution with an entangled light emitting diode

    Energy Technology Data Exchange (ETDEWEB)

    Dzurnak, B.; Stevenson, R. M.; Nilsson, J.; Dynes, J. F.; Yuan, Z. L.; Skiba-Szymanska, J.; Shields, A. J. [Toshiba Research Europe Limited, 208 Science Park, Milton Road, Cambridge CB4 0GZ (United Kingdom); Farrer, I.; Ritchie, D. A. [Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE (United Kingdom)

    2015-12-28

    Measurements performed on entangled photon pairs shared between two parties can allow unique quantum cryptographic keys to be formed, creating secure links between users. An advantage of using such entangled photon links is that they can be adapted to propagate entanglement to end users of quantum networks with only untrusted nodes. However, demonstrations of quantum key distribution with entangled photons have so far relied on sources optically excited with lasers. Here, we realize a quantum cryptography system based on an electrically driven entangled-light-emitting diode. Measurement bases are passively chosen and we show formation of an error-free quantum key. Our measurements also simultaneously reveal Bell's parameter for the detected light, which exceeds the threshold for quantum entanglement.

  2. Quantum dot superluminescent light emitting diodes: Ideal blackbody radiators?

    Energy Technology Data Exchange (ETDEWEB)

    Blazek, Martin; Elsaesser, Wolfgang [Institute of Applied Physics, Darmstadt University of Technology (Germany); Hopkinson, Mark [Dept. E and E.E, University of Sheffield (United Kingdom); Krakowski, Michel [Alcatel Thales, III-V Lab. (France)

    2008-07-01

    Quantum dot (QD) superluminescent light emitting diodes (SLEDs) provide large optical bandwidths at desired wavelengths and are therefore promising devices for incoherent light application. The intensity noise behavior of QD SLEDs is of fundamental physical interest as it provides insight into the photon emission process. We performed high precision intensity noise measurements over several decades of optical output power. For low driving currents spontaneous emission leads to Shot Noise. For high currents we find excess noise behavior with Amplified Spontaneous Emission acting as the dominant source of noise. The QD SLEDs' noise can be described as blackbody radiation noise with a limited number of optical modes. It is therefore possible to identify the SLEDs' relevant intensity noise parameters.

  3. Design and geometry of hybrid white light-emitted diodes for efficient energy transfer from the quantum well to the nanocrystals

    DEFF Research Database (Denmark)

    Kopylov, Oleksii; Huck, Alexander; Shirazi, Roza

    2013-01-01

    We demonstrate light color conversion in patterned InGaN light-emitting diodes (LEDs), which is enhanced via nonradiative exciton resonant energy transfer (RET) from the electrically driven diode to colloidal semiconductor nanocrystals (NCs). Patterning of the diode is essential for the coupling...... between a quantum well (QW) and NCs, because the distance between the QW and NCs is a main and very critical factor of RET. Moreover, a proper design of the pattern can enhance light extraction....

  4. Usability of light-emitting diodes in precision approach path indicator systems by individuals with marginal color vision.

    Science.gov (United States)

    2014-05-01

    To save energy, the FAA is planning to convert from incandescent lights to light-emitting diodes (LEDs) in : precision approach path indicator (PAPI) systems. Preliminary work on the usability of LEDs by color vision-waivered pilots (Bullough, Skinne...

  5. Improving Reliability of High Power Quasi-CW Laser Diode Arrays Operating in Long Pulse Mode

    Science.gov (United States)

    Amzajerdian, Farzin; Meadows, Byron L.; Barnes, Bruce W.; Lockard, George E.; Singh, Upendra N.; Kavaya, Michael J.; Baker, Nathaniel R.

    2006-01-01

    Operating high power laser diode arrays in long pulse regime of about 1 msec, which is required for pumping 2-micron thulium and holmium-based lasers, greatly limits their useful lifetime. This paper describes performance of laser diode arrays operating in long pulse mode and presents experimental data of the active region temperature and pulse-to-pulse thermal cycling that are the primary cause of their premature failure and rapid degradation. This paper will then offer a viable approach for determining the optimum design and operational parameters leading to the maximum attainable lifetime.

  6. Improving Lifetime of Quasi-CW Laser Diode Arrays for Pumping 2-Micron Solid State Lasers

    Science.gov (United States)

    Amzajerdian, Farzin; Meadows, Byron L.; Baker, Nathaniel R.; Barnes, Bruce W.; Singh, Upendra N.; Kavaya, Michael J.

    2007-01-01

    Operating high power laser diode arrays in long pulse regime of about 1 msec, which is required for pumping 2-micron thulium and holmium-based lasers, greatly limits their useful lifetime. This paper describes performance of laser diode arrays operating in long pulse mode and presents experimental data on the active region temperature and pulse-to-pulse thermal cycling that are the primary cause of their premature failure and rapid degradation. This paper will then offer a viable approach for determining the optimum design and operational parameters leading to the maximum attainable lifetime.

  7. Non-doped white organic light-emitting diodes based on aggregation-induced emission

    Energy Technology Data Exchange (ETDEWEB)

    Chen Shuming; Kwok, Hoi Sing [Center for Display Research, Department of Electronic and Computer Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon (Hong Kong); Zhao Zujin; Tang, Ben Zhong, E-mail: eekwok@ust.h [Department of Chemistry, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon (Hong Kong)

    2010-03-10

    Non-doped white organic light-emitting diodes (WOLEDs) based on newly synthesized bluish-green light-emitting material 1,3,6,8-tetrakis [4-(1,2,2-triphenylvinyl)phenyl]pyrene (TTPEPy) and red light-emitting material 4-(4-(1,2,2-triphenylvinyl)phenyl)-7-(5-(4-(1,2,2-triphenylvinyl) phenyl)thiophen-2-yl)benzo[c][1,2,5]thiadiazole (BTPETTD) have been demonstrated. A maximum efficiency of 7.4 cd A{sup -1}, 4 lm W{sup -1} and brightness of 18 000 cd m{sup -2} have been achieved by employing 3 nm thick 4, 4'-bis [N-(1-naphthyl-1-)-N-phenyl-amino]- biphenyl (NPB) as an electron-blocking layer. The WOLEDs exhibit a high colour rendering index of 90 and moderate colour stability with 1931 Commision International de L'Eclairage coordinates changing from (0.41, 0.41) to (0.38, 0.40) over a wide range of driving voltages. Moreover, the non-doped WOLEDs enjoy a reduced efficiency roll-off due to their nature of aggregation-induced emission.

  8. Non-doped white organic light-emitting diodes based on aggregation-induced emission

    International Nuclear Information System (INIS)

    Chen Shuming; Kwok, Hoi Sing; Zhao Zujin; Tang, Ben Zhong

    2010-01-01

    Non-doped white organic light-emitting diodes (WOLEDs) based on newly synthesized bluish-green light-emitting material 1,3,6,8-tetrakis [4-(1,2,2-triphenylvinyl)phenyl]pyrene (TTPEPy) and red light-emitting material 4-(4-(1,2,2-triphenylvinyl)phenyl)-7-(5-(4-(1,2,2-triphenylvinyl) phenyl)thiophen-2-yl)benzo[c][1,2,5]thiadiazole (BTPETTD) have been demonstrated. A maximum efficiency of 7.4 cd A -1 , 4 lm W -1 and brightness of 18 000 cd m -2 have been achieved by employing 3 nm thick 4, 4'-bis [N-(1-naphthyl-1-)-N-phenyl-amino]- biphenyl (NPB) as an electron-blocking layer. The WOLEDs exhibit a high colour rendering index of 90 and moderate colour stability with 1931 Commision International de L'Eclairage coordinates changing from (0.41, 0.41) to (0.38, 0.40) over a wide range of driving voltages. Moreover, the non-doped WOLEDs enjoy a reduced efficiency roll-off due to their nature of aggregation-induced emission.

  9. Color-tunable and high-efficiency organic light-emitting diode by adjusting exciton bilateral migration zone

    Science.gov (United States)

    Liu, Shengqiang; Wu, Ruofan; Huang, Jiang; Yu, Junsheng

    2013-09-01

    A voltage-controlled color-tunable and high-efficiency organic light-emitting diode (OLED) by inserting 16-nm N,N'-dicarbazolyl-3,5-benzene (mCP) interlayer between two complementary emitting layers (EMLs) was fabricated. The OLED emitted multicolor ranging from blue (77.4 cd/A @ 6 V), white (70.4 cd/A @ 7 V), to yellow (33.7 cd/A @ 9 V) with voltage variation. An equivalent model was proposed to reveal the color-tunable and high-efficiency emission of OLEDs, resulting from the swing of exciton bilateral migration zone near mCP/blue-EML interface. Also, the model was verified with a theoretical arithmetic using single-EML OLEDs to disclose the crucial role of mCP exciton adjusting layer.

  10. Contact light-emitting diodes based on vertical ZnO nanorods

    Energy Technology Data Exchange (ETDEWEB)

    Panin, G. N. [Dongguk University, Seoul (Korea, Republic of); Russian Academy of Sciences, Chernogolovka, Moscow district (Russian Federation); Cho, H. D.; Lee, S. W.; Kang, T. W. [Dongguk University, Seoul (Korea, Republic of)

    2014-05-15

    We report vertical contact light-emitting diodes (VCLEDs), that are based on heterojunctions formed by using the point contacts of n-ZnO nanorods (NRs) to the p-type semiconductor substrate and that are fabricated using a new approach to the formation of LEDs (Appl. Phys. Lett. 98, 093110 (2011)). A p-type GaN film grown on a sapphire substrate was used to form n-ZnO NRs/pGaN VCLEDs on a large area of about 4 cm{sup 2}. The VCLEDs emitted a pure blue electroluminescence with high efficiency. Electroluminescence at 470 nm, which is visible to the naked eye, started at small current of about 50 μA and is attributed to the good optical properties of the structurally perfect heterojunctions in the point contacts. The VCLED configuration allows the creation of ZnO/p-GaN nano-LEDs of high density and high-quality with a greatly reduced concentration of nonradiative defects in the active regions. The VCLEDs showed the high brightness of light required for active matrix displays and general solid-state lighting.

  11. Simulations of emission from microcavity tandem organic light-emitting diodes

    International Nuclear Information System (INIS)

    Biswas, Rana; Xu, Chun; Zhao, Weijun; Liu, Rui; Shinar, Ruth; Shinar, Joseph

    2011-01-01

    Microcavity tandem organic light-emitting diodes (OLEDs) are simulated and compared to experimental results. The simulations are based on two complementary techniques: rigorous finite element solutions of Maxwell's equations and Fourier space scattering matrix solutions. A narrowing and blue shift of the emission spectrum relative to the noncavity single unit OLED is obtained both theoretically and experimentally. In the simulations, a distribution of emitting sources is placed near the interface of the electron transport layer tris(8-hydroxyquinoline) Al (Alq 3 ) and the hole transport layer (N,N'-bis(naphthalen-1-yl)-N,N'-bis(phenyl)benzidine) (α-NPB). Far-field electric field intensities are simulated. The simulated widths of the emission peaks also agree with the experimental results. The simulations of the 2-unit tandem OLEDs shifted the emission to shorter wavelength, in agreement with experimental measurements. The emission spectra's dependence on individual layer thicknesses also agreed well with measurements. Approaches to simulate and improve the light emission intensity from these OLEDs, in particular for white OLEDs, are discussed.

  12. InGaN/AlGaInN-based ultraviolet light-emitting diodes with indium gallium tin oxide electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sukwon; Kim, Tae Geun, E-mail: tgkim1@korea.ac.kr

    2015-09-30

    In this study, In- and Sn-doped GaO (IGTO) is proposed as an alternative transparent conductive electrode for indium tin oxide (ITO) to improve the performance of InGaN/AlGaInN-based near ultraviolet light-emitting diodes (NUV LEDs). IGTO films were prepared by co-sputtering the ITO and Ga{sub 2}O{sub 3} targets under various target power ratios. Among those, IGTO films post-annealed at 700 °C under a hydrogen environment gave rise to a transmittance of 94% at 385 nm and a contact resistance of 9.4 × 10{sup −3} Ω-cm{sup 2} with a sheet resistance of 124 Ω/ϒ. Compared to ITO-based NUV LEDs, the IGTO-based NUV LED showed a 9% improvement in the light output power, probably due to IGTO's higher transmittance, although the forward voltage was still higher by 0.23 V. - Highlights: • Indium gallium tin oxide (IGTO) for near-ultraviolet light-emitting diode is proposed. • IGTO is fabricated by co-sputtering the ITO and Ga{sub 2}O{sub 3} targets and hydrogen annealing. • IGTO shows a 94% transmittance at 385 nm and a 9.4 × 10{sup −3} Ω-cm{sup 2} contact resistance. • Near-ultraviolet light-emitting diode with IGTO shows improved optical performance.

  13. Proton Irradiation Effects in Oxide-Confined Vertical Cavity Surface Emitting Laser (VCSEL) Diodes

    International Nuclear Information System (INIS)

    Armendariz, M.G.; Barnes, C.E.; Choquette, K.D.; Guertin, S.; Hash, G.L.; Schwank, J.R.; Swift, G.M.

    1999-01-01

    Recent space experience has shown that the use of commercial optocouplers can be problematic in spacecraft, such as TOPEX/Poseidon, that must operate in significant radiation environments. Radiation--induced failures of these devices have been observed in space and have been further documented at similar radiation doses in the laboratory. The ubiquitous use of optocouplers in spacecraft systems for a variety of applications, such as electrical isolation, switching and power transfer, is indicative of the need for optocouplers that can withstand the space radiation environment. In addition, the distributed nature of their use implies that it is not particularly desirable to shield optocouplers for use in radiation environments. Thus, it will be important for the space community to have access to radiation hardened/tolerant optocouplers. For many microelectronic and photonic devices, it is difficult to achieve radiation hardness without sacrificing performance. However, in the case of optocouplers, one should be able to achieve both superior radiation hardness and performance for such characteristics as switching speed, current transfer ratio (CTR), minimum power usage and array power transfer, if standard light emitting diodes (LEDs), such as those in the commercial optocouplers mentioned above, are avoided, and VCSELs are employed as the emitter portion of the optocoupler. The physical configuration of VCSELs allows one to achieve parallel use of an array of devices and construct a multichannel optocoupler in the standard fashion with the emitters and detectors looking at each other. In addition, detectors similar in structure to the VCSELs can be fabricated which allows bidirectional functionality of the optocoupler. Recent discussions suggest that VCSELs will enjoy widespread applications in the telecommunications and data transfer fields

  14. Microcontact printing of self-assembled monolayers to pattern the light-emission of polymeric light-emitting diodes

    NARCIS (Netherlands)

    Brondijk, J. J.; Li, X.; Akkerman, H. B.; Blom, P. W. M.; de Boer, B.

    By patterning a self-assembled monolayer (SAM) of thiolated molecules with opposing dipole moments on a gold anode of a polymer light-emitting diode (PLED), the charge injection and, therefore, the light-emission of the device can be controlled with a micrometer-scale resolution. Gold surfaces were

  15. Manipulating the Local Light Emission in Organic Light-Emitting Diodes by using Patterned Self-Assembled Monolayers

    NARCIS (Netherlands)

    Mathijssen, S.G.J.; Hal, P.A. van; Biggelaar, T.J.M. van den; Smits, E.C.P.; Boer, B. de; Kemerink, M.; Janssen, R.A.J.; Leeuw, D.M. de

    2008-01-01

    In organic light-emitting diodes (OLEDs), interface dipoles play an important role in the process of charge injection from the metallic electrode into the active organic layer.[1,2] An oriented dipole layer changes the effective work function of the electrode because of its internal electric field.

  16. A Strategy for Architecture Design of Crystalline Perovskite Light-Emitting Diodes with High Performance.

    Science.gov (United States)

    Shi, Yifei; Wu, Wen; Dong, Hua; Li, Guangru; Xi, Kai; Divitini, Giorgio; Ran, Chenxin; Yuan, Fang; Zhang, Min; Jiao, Bo; Hou, Xun; Wu, Zhaoxin

    2018-06-01

    All present designs of perovskite light-emitting diodes (PeLEDs) stem from polymer light-emitting diodes (PLEDs) or perovskite solar cells. The optimal structure of PeLEDs can be predicted to differ from PLEDs due to the different fluorescence dynamics and crystallization between perovskite and polymer. Herein, a new design strategy and conception is introduced, "insulator-perovskite-insulator" (IPI) architecture tailored to PeLEDs. As examples of FAPbBr 3 and MAPbBr 3 , it is experimentally shown that the IPI structure effectively induces charge carriers into perovskite crystals, blocks leakage currents via pinholes in the perovskite film, and avoids exciton quenching simultaneously. Consequently, as for FAPbBr 3 , a 30-fold enhancement in the current efficiency of IPI-structured PeLEDs compared to a control device with poly(3,4ethylenedioxythiophene):poly(styrene sulfonate) as hole-injection layer is achieved-from 0.64 to 20.3 cd A -1 -while the external quantum efficiency is increased from 0.174% to 5.53%. As the example of CsPbBr 3 , compared with the control device, both current efficiency and lifetime of IPI-structured PeLEDs are improved from 1.42 and 4 h to 9.86 cd A -1 and 96 h. This IPI architecture represents a novel strategy for the design of light-emitting didoes based on various perovskites with high efficiencies and stabilities. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Tandem white organic light-emitting diodes adopting a C60:rubrene charge generation layer

    International Nuclear Information System (INIS)

    Bi Wen-Tao; Wu Xiao-Ming; Hua Yu-Lin; Sun Jin-E; Xiao Zhi-Hui; Wang Li; Yin Shou-Gen

    2014-01-01

    Organic bulk heterojunction fullerence (C 60 ) doped 5, 6, 11, 12-tetraphenylnaphthacene (rubrene) as the high quality charge generation layer (CGL) with high transparency and superior charge generating capability for tandem organic light emitting diodes (OLEDs) is developed. This CGL shows excellent optical transparency about 90%, which can reduce the optical interference effect formed in tandem OLEDs. There is a stable white light emission including 468 nm and 500 nm peaks from the blue emitting layer and 620 nm peak from the red emitting layer in tandem white OLEDs. A high efficiency of about 17.4 cd/A and CIE coordinates of (0.40, 0.35) at 100 cd/m 2 and (0.36, 0.34) at 1000 cd/m 2 have been demonstrated by employing the developed CGL, respectively. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  18. Topical methyl-aminolevulinate photodynamic therapy using red light-emitting diode light for treatment of multiple actinic keratoses: A randomized, double-blind, placebo-controlled study.

    Science.gov (United States)

    Pariser, David; Loss, Robert; Jarratt, Michael; Abramovits, William; Spencer, James; Geronemus, Roy; Bailin, Philip; Bruce, Suzanne

    2008-10-01

    The use of light-emitting diode light offers practical advantages in photodynamic therapy (PDT) with topical methyl-aminolevulinate (MAL) for management of actinic keratoses (AK). We sought to evaluate the efficacy of MAL PDT using red light-emitting diode light. We conducted a multicenter, double-blind, randomized study. A total of 49 patients with 363 AK lesions had 16.8% MAL cream applied under occlusion for 3 hours, and 47 patients with 360 AK lesions had vehicle cream similarly applied. The lesions were then illuminated (630 nm, light dose 37 J/cm2) with repeated treatment 1 week later. Complete lesion and patient (all lesions showing complete response) response rates were evaluated 3 months after last treatment. MAL PDT was superior (PAK. MAL PDT using red light-emitting diode light is an appropriate treatment alternative for multiple AK lesions.

  19. Phosphorescent Organic Light Emitting Diodes Implementing Platinum Complexes

    Science.gov (United States)

    Ecton, Jeremy Exton

    Organic light emitting diodes (OLEDs) are a promising approach for display and solid state lighting applications. However, further work is needed in establishing the availability of efficient and stable materials for OLEDs with high external quantum efficiency's (EQE) and high operational lifetimes. Recently, significant improvements in the internal quantum efficiency or ratio of generated photons to injected electrons have been achieved with the advent of phosphorescent complexes with the ability to harvest both singlet and triplet excitons. Since then, a variety of phosphorescent complexes containing heavy metal centers including Os, Ni, Ir, Pd, and Pt have been developed. Thus far, the majority of the work in the field has focused on iridium based complexes. Platinum based complexes, however, have received considerably less attention despite demonstrating efficiency's equal to or better than their iridium analogs. In this study, a series of OLEDs implementing newly developed platinum based complexes were demonstrated with efficiency's or operational lifetimes equal to or better than their iridium analogs for select cases. In addition to demonstrating excellent device performance in OLEDs, platinum based complexes exhibit unique photophysical properties including the ability to form excimer emission capable of generating broad white light emission from a single emitter and the ability to form narrow band emission from a rigid, tetradentate molecular structure for select cases. These unique photophysical properties were exploited and their optical and electrical properties in a device setting were elucidated. Utilizing the unique properties of a tridentate Pt complex, Pt-16, a highly efficient white device employing a single emissive layer exhibited a peak EQE of over 20% and high color quality with a CRI of 80 and color coordinates CIE(x=0.33, y=0.33). Furthermore, by employing a rigid, tetradentate platinum complex, PtN1N, with a narrow band emission into a

  20. Color Shift Modeling of Light-Emitting Diode Lamps in Step-Loaded Stress Testing

    OpenAIRE

    Cai, Miao; Yang, Daoguo; Huang, J.; Zhang, Maofen; Chen, Xianping; Liang, Caihang; Koh, S.W.; Zhang, G.Q.

    2017-01-01

    The color coordinate shift of light-emitting diode (LED) lamps is investigated by running three stress-loaded testing methods, namely step-up stress accelerated degradation testing, step-down stress accelerated degradation testing, and constant stress accelerated degradation testing. A power model is proposed as the statistical model of the color shift (CS) process of LED products. Consequently, a CS mechanism constant is obtained for detecting the consistency of CS mechanisms among various s...

  1. Optical design of adjustable light emitting diode for different lighting requirements

    International Nuclear Information System (INIS)

    Lu Jia-Ning; Yu Jie; Tong Yu-Zhen; Zhang Guo-Yi

    2012-01-01

    Light emitting diode (LED) sources have been widely used for illumination. Optical design, especially freedom compact lens design is necessary to make LED sources applied in lighting industry, such as large-range interior lighting and small-range condensed lighting. For different lighting requirements, the size of target planes should be variable. In our paper we provide a method to design freedom lens according to the energy conservation law and Snell law through establishing energy mapping between the luminous flux emitted by a Lambertian LED source and a certain area of the target plane. The algorithm of our design can easily change the radius of each circular target plane, which makes the size of the target plane adjustable. Ray-tracing software Tracepro is used to validate the illuminance maps and polar-distribution maps. We design lenses for different sizes of target planes to meet specific lighting requirements. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  2. The fabrication of small molecule organic light-emitting diode pixels by laser-induced forward transfer

    Science.gov (United States)

    Shaw-Stewart, J. R. H.; Mattle, T.; Lippert, T. K.; Nagel, M.; Nüesch, F. A.; Wokaun, A.

    2013-01-01

    Laser-induced forward transfer (LIFT) is a versatile organic light-emitting diode (OLED) pixel deposition process, but has hitherto been applied exclusively to polymeric materials. Here, a modified LIFT process has been used to fabricate small molecule Alq3 organic light-emitting diodes (SMOLEDs). Small molecule thin films are considerably more mechanically brittle than polymeric thin films, which posed significant challenges for LIFT of these materials. The LIFT process presented here uses a polymeric dynamic release layer, a reduced environmental pressure, and a well-defined receiver-donor gap. The Alq3 pixels demonstrate good morphology and functionality, even when compared to conventionally fabricated OLEDs. The Alq3 SMOLED pixel performances show a significant amount of fluence dependence, not observed with polymerical OLED pixels made in previous studies. A layer of tetrabutyl ammonium hydroxide has been deposited on top of the aluminium cathode, as part of the donor substrate, to improve electron injection to the Alq3, by over 600%. These results demonstrate that this variant of LIFT is applicable for the deposition of functional small molecule OLEDs as well as polymeric OLEDs.

  3. A Portable Diode Array Spectrophotometer.

    Science.gov (United States)

    Stephenson, David

    2016-05-01

    A cheap portable visible light spectrometer is presented. The spectrometer uses readily sourced items and could be constructed by anyone with a knowledge of electronics. The spectrometer covers the wavelength range 450-725 nm with a resolution better than 5 nm. The spectrometer uses a diffraction grating to separate wavelengths, which are detected using a 128-element diode array, the output of which is analyzed using a microprocessor. The spectrum is displayed on a small liquid crystal display screen and can be saved to a micro SD card for later analysis. Battery life (2 × AAA) is estimated to be 200 hours. The overall dimensions of the unit are 120 × 65 × 60 mm, and it weighs about 200 g. © The Author(s) 2016.

  4. III-nitride based light emitting diodes and applications

    CERN Document Server

    Han, Jung; Amano, Hiroshi; Morkoç, Hadis

    2017-01-01

    The revised edition of this important book presents updated and expanded coverage of light emitting diodes (LEDs) based on heteroepitaxial GaN on Si substrates, and includes new chapters on tunnel junction LEDs, green/yellow LEDs, and ultraviolet LEDs. Over the last two decades, significant progress has been made in the growth, doping and processing technologies of III-nitride based semiconductors, leading to considerable expectations for nitride semiconductors across a wide range of applications. LEDs are already used in traffic signals, signage lighting, and automotive applications, with the ultimate goal of the global replacement of traditional incandescent and fluorescent lamps, thus reducing energy consumption and cutting down on carbon-dioxide emission. However, some critical issues must be addressed to allow the further improvements required for the large-scale realization of solid-state lighting, and this book aims to provide the readers with details of some contemporary issues on which the performanc...

  5. Fabrication and improvement of nanopillar InGaN/GaN light-emitting diodes using nanosphere lithography

    DEFF Research Database (Denmark)

    Fadil, Ahmed; Ou, Yiyu; Zhan, Teng

    2015-01-01

    Surface-patterning technologies have enabled the improvement of currently existinglight-emitting diodes (LEDs) and can be used to overcome the issue of low quantum efficiency ofgreen GaN-based LEDs. We have applied nanosphere lithography to fabricate nanopillars onInGaN∕GaN quantum-well LEDs. By ...

  6. Luminescence properties of novel red-emitting phosphor InNb1-xPxO4:Eu3+ for white light emitting-diodes

    Directory of Open Access Journals (Sweden)

    Tang An

    2015-06-01

    Full Text Available InNb1-xPxO4:Eu3+ red phosphors were synthesized by solid-state reaction and their luminescence properties were also studied through photoluminescence spectra. The excitation and emission spectra make it clear that the as-prepared phosphors can be effectively excited by near-ultraviolet (UV 394 nm light and blue 466 nm light to emit strong red light located at 612 nm, due to the Eu3+ transition of 5D0 → 7F2. The luminescence intensity is dependent on phosphorus content, and it achieves the maximum at x = 0.4. Excessive phosphorus in the phosphors can result in reduction of luminescence intensity owing to concentration quenching.With the increasing content of phosphorus, the phosphors are prone to emit pure red light. This shows that the InNb1.6P0.4O4:0.04Eu3+ phosphor may be a potential candidate as a red component for white light emitting-diodes.

  7. Efficiency Drop in Green InGaN /GaN Light Emitting Diodes: The Role of Random Alloy Fluctuations

    Science.gov (United States)

    Auf der Maur, Matthias; Pecchia, Alessandro; Penazzi, Gabriele; Rodrigues, Walter; Di Carlo, Aldo

    2016-01-01

    White light emitting diodes (LEDs) based on III-nitride InGaN /GaN quantum wells currently offer the highest overall efficiency for solid state lighting applications. Although current phosphor-converted white LEDs have high electricity-to-light conversion efficiencies, it has been recently pointed out that the full potential of solid state lighting could be exploited only by color mixing approaches without employing phosphor-based wavelength conversion. Such an approach requires direct emitting LEDs of different colors, including, in particular, the green-yellow range of the visible spectrum. This range, however, suffers from a systematic drop in efficiency, known as the "green gap," whose physical origin has not been understood completely so far. In this work, we show by atomistic simulations that a consistent part of the green gap in c -plane InGaN /GaN -based light emitting diodes may be attributed to a decrease in the radiative recombination coefficient with increasing indium content due to random fluctuations of the indium concentration naturally present in any InGaN alloy.

  8. Printable candlelight-style organic light-emitting diode

    Science.gov (United States)

    Jou, J. H.; Singh, M.; Song, W. C.; Liu, S. H.

    2017-06-01

    Candles or oil lamps are currently the most friendly lighting source to human eyes, physiology, ecosystems, artifacts, environment, and night skies due to their blue light-less emission. Candle light also exhibits high light-quality that provides visual comfort. However, they are relatively low in power efficacy (0.3 lm/W), making them energy-wasting, besides having problems like scorching hot, burning, catching fire, flickering, carbon blacking, oxygen consuming, and release of green house gas etc. In contrast, candlelight organic light-emitting diode (OLED) can be made blue-hazard free and energy-efficient. The remaining challenges are to maximize its light-quality and enable printing feasibility, the latter of which would pave a way to cost-effective manufacturing. We hence demonstrate herein the design and fabrication of a candlelight OLED via wet-process. From retina protection perspective, its emission is 13, 12 and 8 times better than those of the blue-enriched white CFL, LED and OLED. If used at night, it is 9, 6 and 4 times better from melatonin generation perspective.

  9. Effect of the thickness of Zn(BTZ){sub 2} emitting layer on the electroluminescent spectra of white organic light-emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, F.J. [Institute of Material Physics, Tianjin University of Technology, Tianjin 300191 (China); Hua, Y.L. [Institute of Material Physics, Tianjin University of Technology, Tianjin 300191 (China)]. E-mail: yulinhua@tjut.edu.cn; Yin, S.G. [Institute of Material Physics, Tianjin University of Technology, Tianjin 300191 (China); Deng, J.C. [Institute of Material Physics, Tianjin University of Technology, Tianjin 300191 (China); Wu, K.W. [Institute of Material Physics, Tianjin University of Technology, Tianjin 300191 (China); Niu, X. [Institute of Material Physics, Tianjin University of Technology, Tianjin 300191 (China); Wu, X.M. [Institute of Modern Optics, Nankai University, Tianjin 300191 (China); Petty, M.C. [Centre for Molecular and Nanoscale Electronics, University of Durham, Durham DH1 3LE (United Kingdom)

    2007-01-15

    White organic light-emitting diodes (OLEDs) are fabricated with a simple bilayer structure: ITO/TPD/ Zn(BTZ){sub 2}/Al. White emission is composed of two parts: one is 470 nm, which originates from exciton emission in Zn(BTZ){sub 2} emitting layer; the other is 580 nm, which originates from exciplexes formation at the interface of TPD and Zn(BTZ){sub 2}. Specially, the thickness of Zn(BTZ){sub 2} layer effects the relative intensity of two emissions. When the Zn(BTZ){sub 2} layer becomes thin (or thick), the 470 nm (or 580 nm) emission intensity turns into weak (or strong). Finally, We successfully fabricated pure white OLED when the thickness of Zn(BTZ){sub 2} layer was 65 nm.

  10. 270 nm Pseudomorphic Ultraviolet Light-Emitting Diodes with Over 60 mW Continuous Wave Output Power

    Science.gov (United States)

    Grandusky, James R.; Chen, Jianfeng; Gibb, Shawn R.; Mendrick, Mark C.; Moe, Craig G.; Rodak, Lee; Garrett, Gregory A.; Wraback, Michael; Schowalter, Leo J.

    2013-03-01

    In this letter, the achievement of over 60 mW output power from pseudomorphic ultraviolet light-emitting diodes in continuous wave operation is reported. Die thinning and encapsulation improved the photon extraction efficiency to over 15%. Improved thermal management and a high characteristic temperature resulted in a low thermal rolloff up to 300 mA injection current with an output power of 67 mW, an external quantum efficiency (EQE) of 4.9%, and a wall plug efficiency (WPE) of 2.5% for a single-chip device emitting at 271 nm in continuous wave operation.

  11. Operation voltage behavior of organic light emitting diodes with polymeric buffer layers doped by weak electron acceptor

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Hyeon Soo; Cho, Sang Hee [Department of Information Display and Advanced Display Research Center, Kyung Hee University, Seoul 130-701 (Korea, Republic of); Seo, Jaewon; Park, Yongsup [Department of Physics, Kyung Hee University, Seoul 130-701 (Korea, Republic of); Suh, Min Chul, E-mail: mcsuh@khu.ac.kr [Department of Information Display and Advanced Display Research Center, Kyung Hee University, Seoul 130-701 (Korea, Republic of)

    2013-11-01

    We present polymeric buffer materials based on poly[2,7-(9,9-dioctyl-fluorene)-co-(1,4-phenylene -((4-sec-butylphenyl)imino)-1,4-phenylene)] (TFB) for highly efficient solution processed organic light emitting diodes (OLEDs). Doped TFB with 9,10-dicyanoanthracene, a weak electron acceptor results in significant improvement of current flow and driving voltage. Maximum current- and power-efficiency value of 12.6 cd/A and 18.1 lm/W are demonstrated from phosphorescent red OLEDs with this doped polymeric anode buffer system. - Highlights: • Polymeric buffer materials for organic light emitting diodes (OLEDs). • Method to control hole conductivity of polymeric buffer layer in OLED device. • Enhanced current density of buffer layers upon 9,10-dicyanoanthracene (DCA) doping. • Comparison of OLED devices having polymeric buffer layer with or without DCA. • Effect on operating voltage by doping DCA in the buffer layer.

  12. White light-emitting diodes (LEDs) using (oxy)nitride phosphors

    International Nuclear Information System (INIS)

    Xie, R-J; Hirosaki, N; Sakuma, K; Kimura, N

    2008-01-01

    (Oxy)nitride phosphors have attracted great attention recently because they are promising luminescent materials for phosphor-converted white light-emitting diodes (LEDs). This paper reports the luminescent properties of (oxy)nitride phosphors in the system of M-Si-Al-O-N (M = Li, Ca or Sr), and optical properties of white LEDs using a GaN-based blue LED and (oxy)nitride phosphors. The phosphors show high conversion efficiency of blue light, suitable emission colours and small thermal quenching. The bichromatic white LEDs exhibit high luminous efficacy (∼55 lm W -1 ) and the multi-phosphor converted white LEDs show high colour rendering index (Ra 82-95). The results indicate that (oxy)nitride phosphors demonstrate their superior suitability to use as down-conversion luminescent materials in white LEDs

  13. Surface displacement imaging by interferometry with a light emitting diode

    International Nuclear Information System (INIS)

    Dilhaire, Stefan; Grauby, Stephane; Jorez, Sebastien; Lopez, Luis David Patino; Rampnoux, Jean-Michel; Claeys, Wilfrid

    2002-01-01

    We present an imaging technique to measure static surface displacements of electronic components. A device is supplied by a transient current that creates a variation of temperature, thus a surface displacement. To measure the latter, a setup that is based on a Michelson interferometer is used. To avoid the phenomenon of speckle and the drawbacks inherent to it, we use a light emitting diode as the light source for the interferometer. The detector is a visible CCD camera that analyzes the optical signal containing the information of surface displacement of the device. Combining images, we extract the amplitude of the surface displacement. Out-of-plane surface-displacement images of a thermoelectric device are presented

  14. Highly Efficient Spectrally Stable Red Perovskite Light-Emitting Diodes.

    Science.gov (United States)

    Tian, Yu; Zhou, Chenkun; Worku, Michael; Wang, Xi; Ling, Yichuan; Gao, Hanwei; Zhou, Yan; Miao, Yu; Guan, Jingjiao; Ma, Biwu

    2018-05-01

    Perovskite light-emitting diodes (LEDs) have recently attracted great research interest for their narrow emissions and solution processability. Remarkable progress has been achieved in green perovskite LEDs in recent years, but not blue or red ones. Here, highly efficient and spectrally stable red perovskite LEDs with quasi-2D perovskite/poly(ethylene oxide) (PEO) composite thin films as the light-emitting layer are reported. By controlling the molar ratios of organic salt (benzylammonium iodide) to inorganic salts (cesium iodide and lead iodide), luminescent quasi-2D perovskite thin films are obtained with tunable emission colors from red to deep red. The perovskite/polymer composite approach enables quasi-2D perovskite/PEO composite thin films to possess much higher photoluminescence quantum efficiencies and smoothness than their neat quasi-2D perovskite counterparts. Electrically driven LEDs with emissions peaked at 638, 664, 680, and 690 nm have been fabricated to exhibit high brightness and external quantum efficiencies (EQEs). For instance, the perovskite LED with an emission peaked at 680 nm exhibits a brightness of 1392 cd m -2 and an EQE of 6.23%. Moreover, exceptional electroluminescence spectral stability under continuous device operation has been achieved for these red perovskite LEDs. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. High performance inkjet printed phosphorescent organic light emitting diodes based on small molecules commonly used in vacuum processes

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Sung-Hoon [Department of Materials Science and Engineering, Seoul National University, Seoul, 151-742 (Korea, Republic of); Kim, Jang-Joo, E-mail: jjkim@snu.ac.kr [Department of Materials Science and Engineering, Seoul National University, Seoul, 151-742 (Korea, Republic of); Kim, Hyong-Jun, E-mail: hkim@kongju.ac.kr [Department of Chemical Engineering, Kongju National University, Cheonan, 330-717 (Korea, Republic of)

    2012-09-30

    High efficiency phosphorescent organic light emitting diodes (OLEDs) are realized by inkjet printing based on small molecules commonly used in vacuum processes in spite of the limitation of the limited solubility. The OLEDs used the inkjet printed 5 wt.% tris(2-phenylpyridine)iridium(III) (Ir(ppy){sub 3}) doped in 4,4 Prime -Bis(carbazol-9-yl)biphenyl (CBP) as the light emitting layer on various small molecule based hole transporting layers, which are widely used in the fabrication of OLEDs by vacuum processes. The OLEDs resulted in the high power and the external quantum efficiencies of 29.9 lm/W and 11.7%, respectively, by inkjet printing the CBP:Ir(ppy){sub 3} on a 40 nm thick 4,4 Prime ,4 Double-Prime -tris(carbazol-9-yl)triphenylamine layer. The performance was very close to a vacuum deposited device with a similar structure. - Highlights: Black-Right-Pointing-Pointer Effective inkjet printed organic light emitting diode (OLED) technique is explored. Black-Right-Pointing-Pointer Solution process on commonly used hole transporting material (HTM) is demonstrated. Black-Right-Pointing-Pointer Triplet energy overlap of HTM and emitting material is the key to the performance. Black-Right-Pointing-Pointer Simple inkjet printed OLED provides the high current efficiency of 40 cd/A.

  16. Optimization of emission color and efficiency of organic light emitting diodes for lighting applications

    Energy Technology Data Exchange (ETDEWEB)

    Seidel, Stefan; Krause, Ralf [Department of Materials Science VI, University of Erlangen-Nuernberg (Germany); Siemens AG, CT MM 1, Erlangen (Germany); Kozlowski, Fryderyk; Schmid, Guenter; Hunze, Arvid [Siemens AG, CT MM 1, Erlangen (Germany); Winnacker, Albrecht [Department of Materials Science VI, University of Erlangen-Nuernberg (Germany)

    2008-07-01

    In recent years the performance of organic light emitting diodes (OLEDs) has reached a level where OLED lighting presents an interesting application target. Research activities therefore focus amongst other things on the development of high efficient and stable white light emitting devices. We demonstrate how the color coordinates can be adjusted to achieve a warm white emission spectrum, whereas the OLED stack contains phosphorescent red and green dyes combined with a fluorescent blue one. Detailed results are presented with respect to a variation of layer thicknesses and dopant concentrations of the emission layers. Furthermore the influence of various dye molecules and hence different energy level alignments between host and dopants on color and efficiency will be discussed.

  17. Efficient Flexible Organic/Inorganic Hybrid Perovskite Light-Emitting Diodes Based on Graphene Anode.

    Science.gov (United States)

    Seo, Hong-Kyu; Kim, Hobeom; Lee, Jaeho; Park, Min-Ho; Jeong, Su-Hun; Kim, Young-Hoon; Kwon, Sung-Joo; Han, Tae-Hee; Yoo, Seunghyup; Lee, Tae-Woo

    2017-03-01

    Highly efficient organic/inorganic hybrid perovskite light-emitting diodes (PeLEDs) based on graphene anode are developed for the first time. Chemically inert graphene avoids quenching of excitons by diffused metal atom species from indium tin oxide. The flexible PeLEDs with graphene anode on plastic substrate show good bending stability; they provide an alternative and reliable flexible electrode for highly efficient flexible PeLEDs. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Point-of-use water disinfection using ultraviolet and visible light-emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Lui, Gough Yumu, E-mail: gough@student.unsw.edu.au [UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052 (Australia); School of Photovoltaics and Renewable Energy Engineering, University of New South Wales, Sydney, NSW 2052 (Australia); Roser, David, E-mail: djroser@unsw.edu.au [UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052 (Australia); Corkish, Richard, E-mail: r.corkish@unsw.edu.au [School of Photovoltaics and Renewable Energy Engineering, University of New South Wales, Sydney, NSW 2052 (Australia); Ashbolt, Nicholas J., E-mail: ashbolt@ualberta.ca [UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052 (Australia); School of Public Health, South Academic Building, University of Alberta, Edmonton, Alberta T6G 2G7 (Canada); Stuetz, Richard, E-mail: r.stuetz@unsw.edu.au [UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052 (Australia)

    2016-05-15

    Improvements in point-of-use (POU) drinking water disinfection technologies for remote and regional communities are urgently needed. Conceptually, UV-C light-emitting diodes (LEDs) overcome many drawbacks of low-pressure mercury tube based UV devices, and UV-A or visible light LEDs also show potential. To realistically evaluate the promise of LED disinfection, our study assessed the performance of a model 1.3 L reactor, similar in size to solar disinfection bottles. In all, 12 different commercial or semi-commercial LED arrays (270–740 nm) were compared for their ability to inactivate Escherichia coli K12 ATCC W3110 and Enterococcus faecalis ATCC 19433 over 6 h. Five log{sub 10} and greater reductions were consistently achieved using the 270, 365, 385 and 405 nm arrays. The output of the 310 nm array was insufficient for useful disinfection while 430 and 455 nm performance was marginal (≈ 4.2 and 2.3-log{sub 10}s E. coli and E. faecalis over the 6 h). No significant disinfection was observed with the 525, 590, 623, 660 and 740 nm arrays. Delays in log-phase inactivation of E. coli were observed, particularly with UV-A wavelengths. The radiation doses required for > 3-log{sub 10} reduction of E. coli and E. faecalis differed by 10 fold at 270 nm but only 1.5–2.5 fold at 365–455 nm. Action spectra, consistent with the literature, were observed with both indicators. The design process revealed cost and technical constraints pertaining to LED electrical efficiency, availability and lifetime. We concluded that POU LED disinfection using existing LED technology is already technically possible. UV-C LEDs offer speed and energy demand advantages, while UV-A/violet units are safer. Both approaches still require further costing and engineering development. Our study provides data needed for such work. - Highlights: • Disinfection of E. coli and E. faecalis achieved with 270 and 365–455 nm LEDs • No significant disinfection was found with 310 and > 455 nm LEDs

  19. Point-of-use water disinfection using ultraviolet and visible light-emitting diodes

    International Nuclear Information System (INIS)

    Lui, Gough Yumu; Roser, David; Corkish, Richard; Ashbolt, Nicholas J.; Stuetz, Richard

    2016-01-01

    Improvements in point-of-use (POU) drinking water disinfection technologies for remote and regional communities are urgently needed. Conceptually, UV-C light-emitting diodes (LEDs) overcome many drawbacks of low-pressure mercury tube based UV devices, and UV-A or visible light LEDs also show potential. To realistically evaluate the promise of LED disinfection, our study assessed the performance of a model 1.3 L reactor, similar in size to solar disinfection bottles. In all, 12 different commercial or semi-commercial LED arrays (270–740 nm) were compared for their ability to inactivate Escherichia coli K12 ATCC W3110 and Enterococcus faecalis ATCC 19433 over 6 h. Five log_1_0 and greater reductions were consistently achieved using the 270, 365, 385 and 405 nm arrays. The output of the 310 nm array was insufficient for useful disinfection while 430 and 455 nm performance was marginal (≈ 4.2 and 2.3-log_1_0s E. coli and E. faecalis over the 6 h). No significant disinfection was observed with the 525, 590, 623, 660 and 740 nm arrays. Delays in log-phase inactivation of E. coli were observed, particularly with UV-A wavelengths. The radiation doses required for > 3-log_1_0 reduction of E. coli and E. faecalis differed by 10 fold at 270 nm but only 1.5–2.5 fold at 365–455 nm. Action spectra, consistent with the literature, were observed with both indicators. The design process revealed cost and technical constraints pertaining to LED electrical efficiency, availability and lifetime. We concluded that POU LED disinfection using existing LED technology is already technically possible. UV-C LEDs offer speed and energy demand advantages, while UV-A/violet units are safer. Both approaches still require further costing and engineering development. Our study provides data needed for such work. - Highlights: • Disinfection of E. coli and E. faecalis achieved with 270 and 365–455 nm LEDs • No significant disinfection was found with 310 and > 455 nm LEDs. • UV

  20. Enhancing Light Emission of ZnO-Nanofilm/Si-Micropillar Heterostructure Arrays by Piezo-Phototronic Effect.

    Science.gov (United States)

    Li, Xiaoyi; Chen, Mengxiao; Yu, Ruomeng; Zhang, Taiping; Song, Dongsheng; Liang, Renrong; Zhang, Qinglin; Cheng, Shaobo; Dong, Lin; Pan, Anlian; Wang, Zhong Lin; Zhu, Jing; Pan, Caofeng

    2015-06-22

    n-ZnO nanofilm/p-Si micropillar heterostructure light-emitting diode (LED) arrays for white light emissions are achieved and the light emission intensity of LED array is enhanced by 120% under -0.05% compressive strains. These results indicate a promising approach to fabricate Si-based light-emitting components with high performances enhanced by piezo-phototronic effect, with potential applications in touchpad technology, personalized signatures, smart skin, and silicon-based photonic integrated circuits. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Bluish-green color emitting Ba2Si3O8:Eu2+ ceramic phosphors for white light-emitting diodes.

    Science.gov (United States)

    Xiao, F; Xue, Y N; Zhang, Q Y

    2009-10-15

    This paper reports on the structural and optical properties of Eu(2+) activated Ba(2)Si(3)O(8) ceramic phosphors synthesized by a sol-gel method. The ceramic phosphors have been characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM) and fluorescence measurements. The structural characterization results suggest that the as-prepared phosphors are of single phase monoclinic Ba(2)Si(3)O(8) with rod-like morphology. A broad excitation band ranging from 300 to 410 nm matches well with the ultraviolet (UV) radiation of light-emitting diodes (LEDs). Upon 380 nm UV light excitation, these phosphors emit bluish-green emission centered at 500 nm with color coordination (x=0.25, y=0.40). All the obtained results indicate that the Ba(2)Si(3)O(8):Eu(2+) ceramic phosphors are promising bluish-green candidates for the phosphor-converted white LEDs.

  2. Blue-emitting LaSi3N5:Ce3+ fine powder phosphor for UV-converting white light-emitting diodes

    Science.gov (United States)

    Suehiro, Takayuki; Hirosaki, Naoto; Xie, Rong-Jun; Sato, Tsugio

    2009-08-01

    We have synthesized the pure ternary nitride phosphor, LaSi3N5:Ce3+ from the multicomponent oxide system La2O3-CeO2-SiO2, by using the gas-reduction-nitridation method. Highly pure, single-phase LaSi3N5:Ce3+ powders possessing particle sizes of ˜0.4-0.6 μm were obtained with the processing temperature ≤1500 °C. The synthesized LaSi3N5:Ce3+ exhibits tunable blue broadband emission with the dominant wavelength of 464-475 nm and the external quantum efficiency of ˜34%-67% under excitation of 355-380 nm. A high thermal stability of LaSi3N5:Ce3+ compared to the existing La-Si-O-N hosts was demonstrated, indicating the promising applicability as a blue-emitting phosphor for UV-converting white light-emitting diodes.

  3. Towards developing a tandem of organic solar cell and light emitting diode

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Jai [School of Engineering and IT, B-purple-12, Faculty of EHS, Charles Darwin University, Darwin, NT 0909 (Australia)

    2011-01-15

    It is proposed here to design a tandem of organic solar cell (OSC) and white organic light emitting diode (WOLED) which can generate power in the day time from the sun and provide lighting at night. With the advancement of chemical technology, such device is expected to be very-cost effective and reasonably efficient. A device thus fabricated has the potential of meeting the world's sustainable domestic and commercial power and lighting needs (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  4. Optimization of white organic light emitting diodes based on emitting layer charge carrier conduction properties

    International Nuclear Information System (INIS)

    Baek, H I; Lee, C H

    2008-01-01

    We have fabricated white organic light emitting diodes (OLEDs) with multi-emitting layer (EML) structures in which 4,4'-N,N'-dicarbazole-biphenyl (CBP) layers doped with the phosphorescent dopants fac-tris(2-phenylpyridine) iridium (Ir(ppy) 3 ) and bis(2-(2'-benzo[4,5-a]thienyl)pyridinato-N,C3')iridium(acetylacetonate) (btp 2 Ir(acac)) and the fluorescent dopant 4,4'-bis[2-{4-(N,N-diphenylamino) phenyl}vinyl]biphenyl (DPAVBi) were used as green (G), red (R) and blue (B) EMLs, respectively. A higher efficiency was expected with the R/G/B EML sequence from the hole transport layer interface than with the G/R/B sequence because of the differences in the charge carrier conduction properties of the EMLs doped with phosphorescent dopants and the luminance balance between the phosphorescent and fluorescent emissions. A high efficiency of 18.3 cd A -1 (an external quantum efficiency of 8.5%) at 100 cd m -2 and good colour stability were achieved with the R/G/B EML sequence as expected, with an additional non-doped CBP interlayer used between the G and B EMLs. In addition, the OLED with this sequence was found to have the longest lifetime of the white devices we tested

  5. Radial Nanowire Light-Emitting Diodes in the (AlxGa1-x)yIn1-yP Material System

    DEFF Research Database (Denmark)

    Berg, Alexander; Yazdi, Sadegh; Nowzari, Ali

    2016-01-01

    layer for emission and AlGaInP as charge carrier barriers. The different layers were analyzed by X-ray diffraction to ensure lattice-matched radial structures. Furthermore, we evaluated the material composition and heterojunction interface sharpness by scanning transmission electron microscopy energy......Nanowires have the potential to play an important role for next-generation light-emitting diodes. In this work, we present a growth scheme for radial nanowire quantum-well structures in the AlGaInP material system using a GaInP nanowire core as a template for radial growth with GaInP as the active...... dispersive X-ray spectroscopy. The electro-optical properties were investigated by injection luminescence measurements. The presented results can be a valuable track toward radial nanowire light-emitting diodes in the AlGaInP material system in the red/orange/yellow color spectrum....

  6. Measurement of central nickel density in Doublet III plasmas with a soft x-ray diode array

    International Nuclear Information System (INIS)

    Groebner, R.J.; Jahns, G.L.; Ejima, S.; Hsieh, C.L.

    1985-01-01

    An array of soft x-ray diodes has been used to obtain central nickel densities for discharges in the Doublet III tokamak, during operation with an inconel primary limiter, in which nickel L-line radiation dominated the diode signals. The nature of the diode signals is determined primarily by comparison with soft x-ray spectra. The contribution of the continuum portion of the spectra to the central diode signal can be calculated and compared to the observed signal. When the diode signal is dominated by nickel L-line emission, the observed signal is considerably larger than the calculated continuum contribution. Chordal data from the array of diodes are inverted to provide the spatial profile of soft x-ray emission. Because the diodes are absolute detectors of radiation, the soft x-ray emission profile is used to obtain the absolute nickel concentration and density profile in the center of the plasma. A computer code, including over 100 nickel L-line transitions, has been developed to obtain the nickel density. The nickel L-line cooling rate, calculated with the code, is presented. The nickel density obtained by this technique agrees well with that obtained from the K/sub α/ line intensity measured with a soft x-ray spectrometer and that obtained from a bolometric measurement of central radiated power coupled with a coronal equilibrium model of the radiation

  7. III-nitride based light emitting diodes and applications

    CERN Document Server

    Han, Jung; Amano, Hiroshi; Morkoç, Hadis

    2013-01-01

    Light emitting diodes (LEDs) are already used in traffic signals, signage lighting, and automotive applications. However, its ultimate goal is to replace traditional illumination through LED lamps since LED lighting significantly reduces energy consumption and cuts down on carbon-dioxide emission. Despite dramatic advances in LED technologies (e.g., growth, doping and processing technologies), however, there remain critical issues for further improvements yet to be achieved for the realization of solid-state lighting. This book aims to provide the readers with some contemporary LED issues, which have not been comprehensively discussed in the published books and, on which the performance of LEDs is seriously dependent. For example, most importantly, there must be a breakthrough in the growth of high-quality nitride semiconductor epitaxial layers with a low density of dislocations, in particular, in the growth of Al-rich and and In-rich GaN-based semiconductors. The materials quality is directly dependent on th...

  8. Development and future of ultraviolet light-emitting diodes: UV-LED will replace the UV lamp

    Science.gov (United States)

    Muramoto, Yoshihiko; Kimura, Masahiro; Nouda, Suguru

    2014-06-01

    Ultraviolet light-emitting diodes (UV-LEDs) have started replacing UV lamps. The power per LED of high-power LED products has reached 12 W (14 A), which is 100 times the values observed ten years ago. In addition, the cost of these high-power LEDs has been decreasing. In this study, we attempt to understand the technologies and potential of UV-LEDs.

  9. Peculiarities of electrooptical characteristics of gallium phosphide light-emitting diodes in high injection level conditions

    Directory of Open Access Journals (Sweden)

    O. M. Hontaruk

    2015-04-01

    Full Text Available Electroluminescence of green N-doped gallium phosphide light-emitting diodes was studied. The negative differential resistance region in the current-voltage characteristics was found at low temperature (Т ≤ 90 К. Possible reason of this phenomenon is the redistribution of recombinational flows between annihilation channels on isolated nitrogen atoms and annihilation channel on the NN1 pairs.

  10. Light emitting diode package element with internal meniscus for bubble free lens placement

    Science.gov (United States)

    Tarsa, Eric; Yuan, Thomas C.; Becerra, Maryanne; Yadev, Praveen

    2010-09-28

    A method for fabricating a light emitting diode (LED) package comprising providing an LED chip and covering at least part of the LED chip with a liquid encapsulant having a radius of curvature. An optical element is provided having a bottom surface with at least a portion having a radius of curvature larger than the liquid encapsulant. The larger radius of curvature portion of the optical element is brought into contact with the liquid encapsulant. The optical element is then moved closer to the LED chip, growing the contact area between said optical element and said liquid encapsulant. The liquid encapsulant is then cured. A light emitting diode comprising a substrate with an LED chip mounted to it. A meniscus ring is on the substrate around the LED chip with the meniscus ring having a meniscus holding feature. An inner encapsulant is provided over the LED chip with the inner encapsulant having a contacting surface on the substrate, with the meniscus holding feature which defines the edge of the contacting surface. An optical element is included having a bottom surface with at least a portion that is concave. The optical element is arranged on the substrate with the concave portion over the LED chip. A contacting encapsulant is included between the inner encapsulant and optical element.

  11. Origin of thermal degradation of Sr 2-xSi 5N 8 : Eu x phosphors in air for light-emitting diodes

    NARCIS (Netherlands)

    Yeh, C.W.; Chen, W.T.; Liu, R.S.; Hu, S.F.; Sheu, H.S.; Chen, J.M.; Hintzen, H.T.

    2012-01-01

    The orange-red emitting phosphors based on M 2Si 5N 8:Eu (M = Sr, Ba) are widely utilized in white light-emitting diodes (WLEDs) because of their improvement of the color rendering index (CRI), which is brilliant for warm white light emission. Nitride-based phosphors are adopted in high-performance

  12. Efficiency Control in Iridium Complex-Based Phosphorescent Light-Emitting Diodes

    Directory of Open Access Journals (Sweden)

    Boucar Diouf

    2012-01-01

    Full Text Available Key factors to control the efficiency in iridium doped red and green phosphorescent light emitting diodes (PhOLEDs are discussed in this review: exciton confinement, charge trapping, dopant concentration and dopant molecular structure. They are not independent from each other but we attempt to present each of them in a situation where its specific effects are predominant. A good efficiency in PhOLEDs requires the triplet energy of host molecules to be sufficiently high to confine the triplet excitons within the emitting layer (EML. Furthermore, triplet excitons must be retained within the EML and should not drift into the nonradiative levels of the electron or hole transport layer (resp., ETL or HTL; this is achieved by carefully choosing the EML’s adjacent layers. We prove how reducing charge trapping results in higher efficiency in PhOLEDs. We show that there is an ideal concentration for a maximum efficiency of PhOLEDs. Finally, we present the effects of molecular structure on the efficiency of PhOLEDs using red iridium complex dopant with different modifications on the ligand to tune its highest occupied molecular orbital (HOMO and lowest unoccupied molecular orbital (LUMO energies.

  13. Electroluminescent refrigeration by ultra-efficient GaAs light-emitting diodes

    Science.gov (United States)

    Patrick Xiao, T.; Chen, Kaifeng; Santhanam, Parthiban; Fan, Shanhui; Yablonovitch, Eli

    2018-05-01

    Electroluminescence—the conversion of electrons to photons in a light-emitting diode (LED)—can be used as a mechanism for refrigeration, provided that the LED has an exceptionally high quantum efficiency. We investigate the practical limits of present optoelectronic technology for cooling applications by optimizing a GaAs/GaInP double heterostructure LED. We develop a model of the design based on the physics of detailed balance and the methods of statistical ray optics, and predict an external luminescence efficiency of ηext = 97.7% at 263 K. To enhance the cooling coefficient of performance, we pair the refrigerated LED with a photovoltaic cell, which partially recovers the emitted optical energy as electricity. For applications near room temperature and moderate power densities (1.0-10 mW/cm2), we project that an electroluminescent refrigerator can operate with up to 1.7× the coefficient of performance of thermoelectric coolers with ZT = 1, using the material quality in existing GaAs devices. We also predict superior cooling efficiency for cryogenic applications relative to both thermoelectric and laser cooling. Large improvements to these results are possible with optoelectronic devices that asymptotically approach unity luminescence efficiency.

  14. Efficient hole injection in organic light-emitting diodes using polyvinylidenefluoride as an interlayer

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Soon Ok; Soo Yook, Kyoung [Department of Polymer Science and Engineering, Dankook University, Jukjeon-dong, Suji-gu, Yongin-si, Gyeonggi 448-701 (Korea, Republic of); Lee, Jun Yeob, E-mail: leej17@dankook.ac.k [Department of Polymer Science and Engineering, Dankook University, Jukjeon-dong, Suji-gu, Yongin-si, Gyeonggi 448-701 (Korea, Republic of)

    2010-10-15

    The effect of the polyvinylidenefluoride (PVDF) interlayer on the hole injection and the device performances of the green phosphorescent organic light-emitting diodes (PHOLEDs) was investigated. The hole current density of the hole only device was improved and the power efficiency of the green PHOLEDs was enhanced from 10.5 to 12.5 lm/W by the PVDF interlayer. The reduction of the interfacial energy barrier was responsible for the high hole current density in the PVDF interlayer based green PHOLEDs.

  15. Ultraviolet electroluminescence from zinc oxide nanorods/deoxyribonucleic acid hybrid bio light-emitting diode

    Science.gov (United States)

    Gupta, Rohini Bhardwaj; Nagpal, Swati; Arora, Swati; Bhatnagar, Pramod Kumar; Mathur, Parmatma Chandra

    2011-01-01

    Ultraviolet (UV) light-emitting diode using salmon deoxyribonucleic acid (sDNA)-cetyltrimethylammonium complex as an electron blocking layer and zinc oxide (ZnO) nanorods as emissive material was fabricated. UV emission, which was blue shifted up to 335 nm with respect to the band edge emission of 390 nm, was observed. This blue shift was caused due to accumulation of electrons in the conduction band of ZnO because of a high potential barrier existing at the sDNA/ZnO interface.

  16. Quantitative description of charge-carrier transport in a white organic light-emitting diode

    Science.gov (United States)

    Schober, M.; Anderson, M.; Thomschke, M.; Widmer, J.; Furno, M.; Scholz, R.; Lüssem, B.; Leo, K.

    2011-10-01

    We present a simulation model for the analysis of charge-carrier transport in organic thin-film devices, and apply it to a three-color white hybrid organic light-emitting diode (OLED) with fluorescent blue and phosphorescent red and green emission. We simulate a series of single-carrier devices, which reconstruct the OLED layer sequence step by step. Thereby, we determine the energy profiles for hole and electron transport, show how to discern bulk from interface limitation, and identify trap states.

  17. Charge injection and transport properties of an organic light-emitting diode

    Directory of Open Access Journals (Sweden)

    Peter Juhasz

    2016-01-01

    Full Text Available The charge behavior of organic light emitting diode (OLED is investigated by steady-state current–voltage technique and impedance spectroscopy at various temperatures to obtain activation energies of charge injection and transport processes. Good agreement of activation energies obtained by steady-state and frequency-domain was used to analyze their contributions to the charge injection and transport. We concluded that charge is injected into the OLED device mostly through the interfacial states at low voltage region, whereas the thermionic injection dominates in the high voltage region. This comparison of experimental techniques demonstrates their capabilities of identification of major bottleneck of charge injection and transport.

  18. Organometal halide perovskite light-emitting diodes with laminated carbon nanotube electrodes

    Science.gov (United States)

    Shan, Xin; Bade, Sri Ganesh R.; Geske, Thomas; Davis, Melissa; Smith, Rachel; Yu, Zhibin

    2017-08-01

    Organometal halide perovskite light-emitting diodes (LEDs) with laminated carbon nanotube (CNT) electrodes are reported. The LEDs have an indium tin oxide (ITO) bottom electrode, a screen printed methylammonium lead tribromide (MAPbBr3)/polymer composite thin film as the emissive layer, and laminated CNT as the top electrode. The devices can be turned on at 2.2 V, reaching a brightness of 4,960 cd m-2 and a current efficiency of 1.54 cd A-1 at 6.9 V. The greatly simplified fabrication process in this work can potentially lead to the scalable manufacturing of large size and low cost LED panels in the future.

  19. Compact light-emitting diode lighting ring for video-assisted thoracic surgery.

    Science.gov (United States)

    Lu, Ming-Kuan; Chang, Feng-Chen; Wang, Wen-Zhe; Hsieh, Chih-Cheng; Kao, Fu-Jen

    2014-01-01

    In this work, a foldable ring-shaped light-emitting diode (LED) lighting assembly, designed to attach to a rubber wound retractor, is realized and tested through porcine animal experiments. Enabled by the small size and the high efficiency of LED chips, the lighting assembly is compact, flexible, and disposable while providing direct and high brightness lighting for more uniform background illumination in video-assisted thoracic surgery (VATS). When compared with a conventional fiber bundle coupled light source that is usually used in laparoscopy and endoscopy, the much broader solid angle of illumination enabled by the LED assembly allows greatly improved background lighting and imaging quality in VATS.

  20. Compact light-emitting diode lighting ring for video-assisted thoracic surgery

    Science.gov (United States)

    Lu, Ming-Kuan; Chang, Feng-Chen; Wang, Wen-Zhe; Hsieh, Chih-Cheng; Kao, Fu-Jen

    2014-10-01

    In this work, a foldable ring-shaped light-emitting diode (LED) lighting assembly, designed to attach to a rubber wound retractor, is realized and tested through porcine animal experiments. Enabled by the small size and the high efficiency of LED chips, the lighting assembly is compact, flexible, and disposable while providing direct and high brightness lighting for more uniform background illumination in video-assisted thoracic surgery (VATS). When compared with a conventional fiber bundle coupled light source that is usually used in laparoscopy and endoscopy, the much broader solid angle of illumination enabled by the LED assembly allows greatly improved background lighting and imaging quality in VATS.

  1. Anatomical features of pepper plants (Capsicum annuum L.) grown under red light-emitting diodes supplemented with blue or far-red light

    Science.gov (United States)

    Schuerger, A. C.; Brown, C. S.; Stryjewski, E. C.

    1997-01-01

    Pepper plants (Capsicum annuum L. cv., Hungarian Wax) were grown under metal halide (MH) lamps or light-emitting diode (LED) arrays with different spectra to determine the effects of light quality on plant anatomy of leaves and stems. One LED (660) array supplied 90% red light at 660 nm (25nm band-width at half-peak height) and 1% far-red light between 700-800nm. A second LED (660/735) array supplied 83% red light at 660nm and 17% far-red light at 735nm (25nm band-width at half-peak height). A third LED (660/blue) array supplied 98% red light at 660nm, 1% blue light between 350-550nm, and 1% far-red light between 700-800nm. Control plants were grown under broad spectrum metal halide lamps. Plants were gron at a mean photon flux (300-800nm) of 330 micromol m-2 s-1 under a 12 h day-night photoperiod. Significant anatomical changes in stem and leaf morphologies were observed in plants grown under the LED arrays compared to plants grown under the broad-spectrum MH lamp. Cross-sectional areas of pepper stems, thickness of secondary xylem, numbers of intraxylary phloem bundles in the periphery of stem pith tissues, leaf thickness, numbers of choloplasts per palisade mesophyll cell, and thickness of palisade and spongy mesophyll tissues were greatest in peppers grown under MH lamps, intermediate in plants grown under the 660/blue LED array, and lowest in peppers grown under the 660 or 660/735 LED arrays. Most anatomical features of pepper stems and leaves were similar among plants grown under 660 or 660/735 LED arrays. The effects of spectral quality on anatomical changes in stem and leaf tissues of peppers generally correlate to the amount of blue light present in the primary light source.

  2. Online analysis by a fiber-optic diode array spectrophotometer

    International Nuclear Information System (INIS)

    Van Hare, D.R.; Prather, W.S.; O'Rourke, P.E.

    1987-01-01

    An online photometric analyzer has been developed which can make remote measurements over the 350 to 900 nm region at distances of up to 100 feet. The analyzer consists of a commercially available diode array spectrophotometer interfaced to a fiber-optic multiplexer to allow online monitoring of up to ten locations sequentially. The development of the fiber-optic interface is discussed and data from several online applications are presented to demonstrate the capabilities of the measurement system

  3. Application of Surface Plasmonics for Semiconductor Light-Emitting Diodes

    DEFF Research Database (Denmark)

    Fadil, Ahmed

    This thesis addresses the lack of an efficient semiconductor light source at green emission colours. Considering InGaN based quantum-well (QW) light-emitters and light-emitting diodes (LEDs), various ways of applying surface plasmonics and nano-patterning to improve the efficiency, are investigated....... By placing metallic thin films or nanoparticles (NPs) in the near-field of QW light-emitters, it is possible to improve their internal quantum efficiency (IQE) through the Purcell enhancement effect. It has been a general understanding that in order to achieve surface plasmon (SP) coupling with QWs......-QW coupling does not necessarily lead to emission enhancement. The findings of this work show that the scattering and absorption properties of NPs play a crucial role in determining whether the implementation will improve or degrade the optical performance. By applying these principles, a novel design...

  4. Two stacked tandem white organic light-emitting diodes employing WO3 as a charge generation layer

    Science.gov (United States)

    Bin, Jong-Kwan; Lee, Na Yeon; Lee, SeungJae; Seo, Bomin; Yang, JoongHwan; Kim, Jinook; Yoon, Soo Young; Kang, InByeong

    2016-09-01

    Recently, many studies have been conducted to improve the electroluminescence (EL) performance of organic lightemitting diodes (OLEDs) by using appropriate organic or inorganic materials as charge generation layer (CGL) for their application such as full color displays, backlight units, and general lighting source. In a stacked tandem white organic light-emitting diodes (WOLEDs), a few emitting units are electrically interconnected by a CGL, which plays the role of generating charge carriers, and then facilitate the injection of it into adjacent emitting units. In the present study, twostacked WOLEDs were fabricated by using tungsten oxide (WO3) as inorganic charge generation layer and 1,4,5,8,9,11- hexaazatriphenylene hexacarbonitrile (HAT-CN) as organic charge generation layer (P-CGL). Organic P-CGL materials were used due to their ease of use in OLED fabrication as compared to their inorganic counterparts. To obtain high efficiency, we demonstrate two-stacked tandem WOLEDs as follows: ITO/HIL/HTL/HTL'/B-EML/ETL/N-CGL/P-CGL (WO3 or HAT-CN)/HTL″/YG-EML/ETL/LiF/Al. The tandem devices with blue- and yellow-green emitting layers were sensitive to the thickness of an adjacent layer, hole transporting layer for the YG emitting layer. The WOLEDs containing the WO3 as charge generation layer reach a higher power efficiency of 19.1 lm/W and the current efficiency of 51.2 cd/A with the white color coordinate of (0.316, 0.318) than the power efficiency of 13.9 lm/W, and the current efficiency of 43.7 cd/A for organic CGL, HAT-CN at 10 mA/cm2, respectively. This performance with inserting WO3 as CGL exhibited the highest performance with excellent CIE color coordinates in the two-stacked tandem OLEDs.

  5. Electroluminescence of colloidal quasi-two-dimensional semiconducting CdSe nanostructures in a hybrid light-emitting diode

    Energy Technology Data Exchange (ETDEWEB)

    Selyukov, A. S., E-mail: vslebedev.mobile@gmail.com; Vitukhnovskii, A. G.; Lebedev, V. S.; Vashchenko, A. A. [Russian Academy of Sciences, Lebedev Physical Institute (Russian Federation); Vasiliev, R. B.; Sokolikova, M. S. [Moscow State University (Russian Federation)

    2015-04-15

    We report on the results of studying quasi-two-dimensional nanostructures synthesized here in the form of semiconducting CdSe nanoplatelets with a characteristic longitudinal size of 20–70 nm and a thick-ness of a few atomic layers. Their morphology is studied using TEM and AFM and X-ray diffraction analysis; the crystal structure and sizes are determined. At room and cryogenic temperatures, the spectra and kinetics of the photoluminescence of such structures (quantum wells) are investigated. A hybrid light-emitting diode operating on the basis of CdSe nanoplatelets as a plane active element (emitter) is developed using the organic materials TAZ and TPD to form electron and hole transport layers, respectively. The spectral and current-voltage characteristics of the constructed device with a radiation wavelength λ = 515 nm are obtained. The device triggering voltage is 5.5 V (visible glow). The use of quasi-two-dimensional structures of this type is promising for hybrid light-emitting diodes with pure color and low operating voltages.

  6. Electroluminescence of colloidal quasi-two-dimensional semiconducting CdSe nanostructures in a hybrid light-emitting diode

    International Nuclear Information System (INIS)

    Selyukov, A. S.; Vitukhnovskii, A. G.; Lebedev, V. S.; Vashchenko, A. A.; Vasiliev, R. B.; Sokolikova, M. S.

    2015-01-01

    We report on the results of studying quasi-two-dimensional nanostructures synthesized here in the form of semiconducting CdSe nanoplatelets with a characteristic longitudinal size of 20–70 nm and a thick-ness of a few atomic layers. Their morphology is studied using TEM and AFM and X-ray diffraction analysis; the crystal structure and sizes are determined. At room and cryogenic temperatures, the spectra and kinetics of the photoluminescence of such structures (quantum wells) are investigated. A hybrid light-emitting diode operating on the basis of CdSe nanoplatelets as a plane active element (emitter) is developed using the organic materials TAZ and TPD to form electron and hole transport layers, respectively. The spectral and current-voltage characteristics of the constructed device with a radiation wavelength λ = 515 nm are obtained. The device triggering voltage is 5.5 V (visible glow). The use of quasi-two-dimensional structures of this type is promising for hybrid light-emitting diodes with pure color and low operating voltages

  7. Chip-scale white flip-chip light-emitting diode containing indium phosphide/zinc selenide quantum dots

    Science.gov (United States)

    Fan, Bingfeng; Yan, Linchao; Lao, Yuqin; Ma, Yanfei; Chen, Zimin; Ma, Xuejin; Zhuo, Yi; Pei, Yanli; Wang, Gang

    2017-08-01

    A method for preparing a quantum dot (QD)-white light-emitting diode (WLED) is reported. Holes were etched in the SiO2 layer deposited on the sapphire substrate of the flip-chip LED by inductively coupled plasma, and these holes were then filled with QDs. An ultraviolet-curable resin was then spin-coated on top of the QD-containing SiO2 layer, and the resin was cured to act as a protecting layer. The reflective sidewall structure minimized sidelight leakage. The fabrication of the QD-WLED is simple in preparation and compatible with traditional LED processes, which was the minimum size of the WLED chip-scale integrated package. InP/ZnS core-shell QDs were used as the converter in the WLED. A blue light-emitting diode with a flip-chip structure was used as the excitation source. The QD-WLED exhibited color temperatures from 5900 to 6400 K and Commission Internationale De L'Elcairage color coordinates from (0.315, 0.325) to (0.325, 0.317), under drive currents from 100 to 400 mA. The QD-WLED exhibited stable optoelectronic properties.

  8. White organic light-emitting diodes with 4 nm metal electrode

    Science.gov (United States)

    Lenk, Simone; Schwab, Tobias; Schubert, Sylvio; Müller-Meskamp, Lars; Leo, Karl; Gather, Malte C.; Reineke, Sebastian

    2015-10-01

    We investigate metal layers with a thickness of only a few nanometers as anode replacement for indium tin oxide (ITO) in white organic light-emitting diodes (OLEDs). The ultrathin metal electrodes prove to be an excellent alternative that can, with regard to the angular dependence and efficiency of the OLED devices, outperform the ITO reference. Furthermore, unlike ITO, the thin composite metal electrodes are readily compatible with demanding architectures (e.g., top-emission or transparent OLEDs, device unit stacking, etc.) and flexible substrates. Here, we compare the sheet resistance of both types of electrodes on polyethylene terephthalate for different bending radii. The electrical performance of ITO breaks down at a radius of 10 mm, while the metal electrode remains intact even at radii smaller than 1 mm.

  9. Fabrication of Light Extraction Efficiency of Organic Light-Emitting Diodes with 3D Aspherical Microlens by Using Dry Etching Process

    Directory of Open Access Journals (Sweden)

    Y. C. Chen

    2013-01-01

    Full Text Available organic light-emitting diode (OLED can enable a greater artificial contrast ratio and viewing angle compared to liquid crystal display (LCD because OLED pixels directly emit light. There is a shortcoming that the internal quantum efficiency can reach values close to 100%, but about 80% light disperses because of the difference among the refractive indices of the substrate, anode, indium tin oxide (ITO film, and air. In this paper, three dimensions aspherical microlens arrays (3D A-MLAs with substrate modifications are developed to simulate the optical luminous field by using FRED software. This study modified parameters of 3D A-MLAs such as the diameter, fill-factor, aspect ratio, dry etching parameters, and electroforming rates of microlens to improve the extraction efficiency of the OLED. In dry etching, not only the aspect ratio with better extraction rate can be obtained by reactive ion etching (RIE dry etching, but also an undercutting phenomenon can be avoided. The dimensions of 3D A-MLAs can be accurately controlled in the electroforming process used to make a nickel-cobalt (Ni-Co metal mold to achieve the designed dimensions. According to the measured results, the average luminance efficacy of the OLEDs with 3D A-MLAs can be enhanced.

  10. Improved power efficiency of blue fluorescent organic light-emitting diode with intermixed host structure

    Energy Technology Data Exchange (ETDEWEB)

    Yue, Shouzhen; Zhang, Shiming; Zhang, Zhensong; Wu, Yukun; Wang, Peng; Guo, Runda; Chen, Yu; Qu, Dalong; Wu, Qingyang; Zhao, Yi, E-mail: yizhao@jlu.edu.cn; Liu, Shiyong

    2013-11-15

    High power efficiency (PE) p-bis(p-N,N-diphenyl-aminostyryl)benzene (DSA-ph) based fluorescent blue organic light-emitting diode (OLED) is demonstrated by utilizing intermixed host (IH) structure. The PE outperforms those devices based on single host (SH), mixed host (MH), and double emitting layers (DELs). By further optimizing the intermixed layer, peak PE of the IH device is increased up to 8.7 lm/W (1.7 times higher than conventional SH device), which is the highest value among the DSA-ph based blue device reported so far. -- Highlights: • DSA-ph based blue fluorescent OLEDs are fabricated. • The intermixed host structure is first introduced into the blue devices. • Blue device with the highest power efficiency based on DSA-ph is obtained.

  11. Demonstration Assessment of Light-Emitting Diode (LED) Post-Top Lighting at Central Park in New York City

    Energy Technology Data Exchange (ETDEWEB)

    Myer, Michael; Goettel, Russell T.; Kinzey, Bruce R.

    2012-09-30

    A review of five post-top light-emitting diode (LED) pedestrian luminaires installed in New York City's Central Park for possible replacement to the existing metal halide post-top luminaire. This report reviews the energy savings potential and lighting delivered by the LED post-top luminaires.

  12. GaN-Based Multiple-Quantum-Well Light-Emitting Diodes Employing Nanotechnology for Photon Management

    KAUST Repository

    Hsiao, Yu Hsuan

    2015-03-01

    Nanostructures have been proved to be an efficient way of modifying/improving the performance of GaN-based light-emitting diodes (LEDs). The achievements in photon management include strain relaxation, light extraction enhancement, radiation pattern control, and white-light devices. In this paper, we discuss the impact and the underlying physics of applying nanotechnology on LEDs. A variety of nanostructures are introduced, as well as the fabrication techniques. © 1972-2012 IEEE.

  13. Top emitting white OLEDs

    Energy Technology Data Exchange (ETDEWEB)

    Freitag, Patricia; Luessem, Bjoern; Leo, Karl [Technische Universitaet Dresden, Institut fuer Angewandte Photophysik, George-Baehr-Strasse 1, 01069 Dresden (Germany)

    2009-07-01

    Top emitting organic light emitting diodes (TOLEDs) provide a number of interesting opportunities for new applications, such as the opportunity to fabricate ITO-free devices by using opaque substrates. This makes it possible to manufacture low cost OLEDs for signage and lighting applications. A general top emitting device consists of highly reflecting metal contacts as anode and semitransparent cathode, the latter one for better outcouling reasons. In between several organic materials are deposited as charge transporting, blocking, and emission layers. Here, we show a top emitting white organic light emitting diode with silver electrodes arranged in a p-i-n structure with p- and n-doped charge transport layers. The centrical emission layer consists of two phosphorescent (red and green) and one fluorescent (blue) emitter systems separated by an ambipolar interlayer to avoid mutual exciton quenching. By adding an additional dielectric capping layer on top of the device stack, we achieve a reduction of the strong microcavity effects which appear due to the high reflection of both metal electrodes. Therefore, the outcoupled light shows broad and nearly angle-independent emission spectra, which is essential for white light emitting diodes.

  14. Crossbar memory array of organic bistable rectifying diodes for nonvolatile data storage

    NARCIS (Netherlands)

    Asadi, Kamal; Li, Mengyuan; Stingelin, Natalie; Blom, Paul W. M.; de Leeuw, Dago M.

    2010-01-01

    Cross-talk in memories using resistive switches in a cross-bar geometry can be prevented by integration of a rectifying diode. We present a functional cross bar memory array using a phase separated blend of a ferroelectric and a semiconducting polymer as storage medium. Each intersection acts

  15. Gamma-ray vulnerability of light-emitting diodes injection-laser diodes and pin-photodiodes for 1.3 μm wavelength-fiber optics

    International Nuclear Information System (INIS)

    Breuze, G.; Serre, J.

    1992-01-01

    With the increasing use of optical data links, it becomes essential to test for radiation vulnerability not only the transmission support - fiber and cable - but also fiber-end electro-optical components that could be exposed to hostile environment. Presently there is a significant number of radiation tests of optical fibers [1,2,3[. Here are only given a few results obtained on gradient index multimode fibers with and without phosphor. These data provide an important contribution to the improvement of all standard electro-optical pigtailed components working on the 1.3 μm wavelength: light-emitting diodes (LED), injection-laser diode modules (LDM) and pin-photodiodes (PD). Multicomponent LDM behaviour under CO 60 exposure was extensively tested. Hardened optical data links allow now to ensure medium data transmission rates on appreciable fiber - lengths despite medium steady - state gamma-ray exposure

  16. Development and future of ultraviolet light-emitting diodes: UV-LED will replace the UV lamp

    International Nuclear Information System (INIS)

    Muramoto, Yoshihiko; Kimura, Masahiro; Nouda, Suguru

    2014-01-01

    Ultraviolet light-emitting diodes (UV-LEDs) have started replacing UV lamps. The power per LED of high-power LED products has reached 12 W (14 A), which is 100 times the values observed ten years ago. In addition, the cost of these high-power LEDs has been decreasing. In this study, we attempt to understand the technologies and potential of UV-LEDs. (invited article)

  17. Diode array pumped, non-linear mirror Q-switched and mode-locked

    Indian Academy of Sciences (India)

    A non-linear mirror consisting of a lithium triborate crystal and a dichroic output coupler are used to mode-lock (passively) an Nd : YVO4 laser, pumped by a diode laser array. The laser can operate both in cw mode-locked and simultaneously Q-switched and mode-locked (QML) regime. The peak power of the laser while ...

  18. Blue and white phosphorescent organic light emitting diode performance improvement by confining electrons and holes inside double emitting layers

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, Yu-Sheng; Hong, Lin-Ann; Juang, Fuh-Shyang; Chen, Cheng-Yin

    2014-09-15

    In this research, complex emitting layers (EML) were fabricated using TCTA doping hole-transport material in the front half of a bipolar 26DCzPPy as well as PPT doping electron-transport material in the back half of 26DCzPPy. Blue dopant FIrpic was also mixed inside the complex emitting layer to produce a highly efficient blue phosphorescent organic light emitting diode (OLED). The hole and electron injection and carrier recombination rate were effectively increased. The fabricated complex emitting layers exhibited current efficiency of 42 cd/A and power efficiency of 30 lm/W when the luminance was 1000 cd/m{sup 2}, driving voltage was 4.4 V, and current density was 2.4 mA/cm{sup 2}. A white OLED component was then manufactured by doping red dopant [Os(bpftz){sub 2}(PPh{sub 2}Me){sub 2}] (Os) in proper locations. When the Os dopant was doped in between the complex emitting layers, excitons were effectively confined within, increasing the recombination rate and therefore reducing the color shift. The resulting Commission Internationale de L’Eclairage (CIE) coordinates shifted from 4 to 10 V is (Δx=−0.04, Δy=+0.01). The component had a current efficiency of 35.7 cd/A, a power efficiency of 24 lm/W, driving voltage of 4.6 V and a CIE{sub x,y} of (0.31,0.35) at a luminance of 1000 cd/m{sup 2}, with a maximum luminance of 15,600 cd/m{sup 2} at 10 V. Attaching an outcoupling enhancement film was applied to increase the luminance efficiency to 30 lm/W. - Highlights: • Used the complex double emitting layers. • Respectively doped hole and electron transport material in the bipolar host. • Electrons and holes are effectively confined within EMLs to produce excitons.

  19. Blue and white phosphorescent organic light emitting diode performance improvement by confining electrons and holes inside double emitting layers

    International Nuclear Information System (INIS)

    Tsai, Yu-Sheng; Hong, Lin-Ann; Juang, Fuh-Shyang; Chen, Cheng-Yin

    2014-01-01

    In this research, complex emitting layers (EML) were fabricated using TCTA doping hole-transport material in the front half of a bipolar 26DCzPPy as well as PPT doping electron-transport material in the back half of 26DCzPPy. Blue dopant FIrpic was also mixed inside the complex emitting layer to produce a highly efficient blue phosphorescent organic light emitting diode (OLED). The hole and electron injection and carrier recombination rate were effectively increased. The fabricated complex emitting layers exhibited current efficiency of 42 cd/A and power efficiency of 30 lm/W when the luminance was 1000 cd/m 2 , driving voltage was 4.4 V, and current density was 2.4 mA/cm 2 . A white OLED component was then manufactured by doping red dopant [Os(bpftz) 2 (PPh 2 Me) 2 ] (Os) in proper locations. When the Os dopant was doped in between the complex emitting layers, excitons were effectively confined within, increasing the recombination rate and therefore reducing the color shift. The resulting Commission Internationale de L’Eclairage (CIE) coordinates shifted from 4 to 10 V is (Δx=−0.04, Δy=+0.01). The component had a current efficiency of 35.7 cd/A, a power efficiency of 24 lm/W, driving voltage of 4.6 V and a CIE x,y of (0.31,0.35) at a luminance of 1000 cd/m 2 , with a maximum luminance of 15,600 cd/m 2 at 10 V. Attaching an outcoupling enhancement film was applied to increase the luminance efficiency to 30 lm/W. - Highlights: • Used the complex double emitting layers. • Respectively doped hole and electron transport material in the bipolar host. • Electrons and holes are effectively confined within EMLs to produce excitons

  20. Light-emitting diodes based on nontoxic zinc-alloyed silver-indium-sulfide (AIZS) nanocrystals

    Science.gov (United States)

    Bhaumik, Saikat; Guchhait, Asim; Pal, Amlan J.

    2014-04-01

    We report solution-processed growth of zinc-alloyed silver-indium-sulfide (AIZS) nanocrystals followed by fabrication and characterization of light-emitting diodes (LEDs) based on such nanostructures. While growing the low dimensional crystals, we vary the ratio between the silver and zinc contents that in turn tunes the bandgap and correspondingly their photoluminescence (PL) emission. We also dope the AIZS nanocrystals with manganese, so that their PL emission, which appears due to a radiative transition between the d-states of the dopants, becomes invariant in energy when the diameter of the quantum dots or the dopant concentration in the nanostructures varies. The LEDs fabricated with such undoped and manganese-doped AIZS nanocrystals emit electroluminescence (EL) that matches the PL spectrum of the respective nanomaterial. The results demonstrate examples of quantum dot LEDs (QDLEDs) based on nontoxic AIZS nanocrystals.

  1. White emission from organic light-emitting diodes with a super-thin BCP layer

    International Nuclear Information System (INIS)

    Hao Jingang; Deng Zhenbo; Yang Shengyi

    2007-01-01

    We report a method to achieve white emission from organic light-emitting diodes (OLEDs) in which a super-thin (3 nm) hole blocking layer, 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP), was inserted between electron-transport layer 8-hydroxyquinoline aluminum (Alq 3 ) and 4-(dicyanomethylene)-2-t-butyl-6(1,1,7,7-tetramethyljulolidyl-9-enyl) -4H-pyran (DCJTB) doped poly-vinlycarbazole (PVK) layer. The BCP layer can not only confine exciton in the emitting layer but also control energy transfer proportion from PVK to Alq 3 and then from Alq 3 to DCJTB through BCP layer. In this way, pure white emission with CIE coordinate of (0.32, 0.32) was obtained and it was voltage independent. The brightness reached 270 cd/m 2 at 18 V with an efficiency of 0.166 cd/A

  2. Stolephorus sp Behavior in Different LED (Light Emitting Diode) Color and Light Intensities

    Science.gov (United States)

    Fitri Aristi, D. P.; Ramadanita, I. A.; Hapsari, T. D.; Susanto, A.

    2018-02-01

    This research aims to observe anchovy (Stolephorus sp) behavior under different LED light intensities that affect eye physiology (cell cone structure). The materials used were Stolephorus sp taken from the waters off Jepara and 13 and 10 watt light emitting diode (LED). The research method was an experiment conducted from March through August 2015 in the waters off Jepara. Data analysis of visual histology and fish respond was carried out at the fishing gear material laboratory, anatomy and cultivate. Cone cell structure (mosaic cone) of Stolephorus sp forms a connected regular square pattern with every single cone surrounded by four double cones, which indicate that anchovies are sensitive to light. The 13 watt LED (628 lux) has faster response than the 10 watt LED (531 lux) as it has wider and higher emitting intensity, which also attracts fish to gather quicker.

  3. Modeling of light-emitting diode wavefronts for the optimization of transmission holograms.

    Science.gov (United States)

    Karthaus, Daniela; Giehl, Markus; Sandfuchs, Oliver; Sinzinger, Stefan

    2017-06-20

    The objective of applying transmission holograms in automotive headlamp systems requires the adaptation of holograms to divergent and polychromatic light sources like light-emitting diodes (LEDs). In this paper, four different options to describe the scalar light waves emitted by a typical automotive LED are regarded. This includes a new approach to determine the LED's wavefront from interferometric measurements. Computer-generated holograms are designed considering the different LED approximations and recorded into a photopolymer. The holograms are reconstructed with the LED and the resulting images are analyzed to evaluate the quality of the wave descriptions. In this paper, we show that our presented new approach leads to better results in comparison to other wave descriptions. The enhancement is evaluated by the correlation between reconstructed and ideal images. In contrast to the next best approximation, a spherical wave, the correlation coefficient increased by 0.18% at 532 nm, 1.69% at 590 nm, and 0.75% at 620 nm.

  4. Enhancement of mosquito trapping efficiency by using pulse width modulated light emitting diodes

    OpenAIRE

    Liu, Yu-Nan; Liu, Yu-Jen; Chen, Yi-Chian; Ma, Hsin-Yi; Lee, Hsiao-Yi

    2017-01-01

    In this study, a light-driving bug zapper is presented for well controlling the diseases brought by insects, such as mosquitoes. In order to have the device efficient to trap the insect pests in off-grid areas, pulse width modulated light emitting diodes (PWM-LED) combined with a solar power module are proposed and implemented. With specific PWM electric signals to drive the LED, it is found that no matter what the ability of catching insects or the consumed power efficiency can be enhanced t...

  5. Light emitting diodes as an alternative ambient illumination source in photolithography environment

    DEFF Research Database (Denmark)

    Corell, Dennis Dan; Ou, Haiyan; Dam-Hansen, Carsten

    2009-01-01

    We explored an alternative light emitting diode (LED) - based solution to replace the existing yellow fluorescent light tubes (YFT) used in photolithography rooms. A no-blue LED lamp was designed and a prototype was fabricated. For both solutions, the spectral power distribution (SPD) was measured......, the colorimetric values were calculated, and a visual comparison using Gretagmacbeth colorcharts was performed. The visual comparison showed that the LED bulb was better to render colors despite a low color rendering index (CRI). Furthermore, the LED bulb was tested in a photolithography room...... and there was no exposure to the photoresist even after 168 hours illumination....

  6. Coherence characteristics of light-emitting diodes

    International Nuclear Information System (INIS)

    Mehta, Dalip Singh; Saxena, Kanchan; Dubey, Satish Kumar; Shakher, Chandra

    2010-01-01

    We report the measurement of coherence characteristics of light-emitting diodes (LEDs). Experiments were performed using red and green color LEDs directly illuminating the Young's double slit kept in the far-zone. Fourier transform fringe analysis technique was used for the measurement of the visibility of interference fringes from which the modulus of degree of spectral coherence was determined. Low degree of spectral coherence, typically 0.4 for red and 0.2 for green LED with double-slit separation of 400 μm was observed. A variable slit was then kept in front of the LEDs and the double slit was illuminated with the light coming out of the slit. Experiments were performed with various slit sizes and the visibility of the interference fringes was observed. It was found that visibility of the interference fringes changes drastically in presence of variable slit kept in front of LEDs and a high degree of spectral coherence, typically 0.85 for red and 0.8 for green LED with double-slit separation of 400 μm and rectangular slit opening of 500 μm was observed. The experimental results are compared with the theoretical counterparts. Coherence lengths of both the LEDs were also determined and it was obtained 5.8±2 and 24±4 μm for green and red LEDs, respectively.

  7. Fluorescence digital photography of acne using a light-emitting diode illuminator.

    Science.gov (United States)

    Ahn, Hyo Hyun; Kim, Soo Nam; Kye, Young Chul

    2006-11-01

    The fluorescence findings of several dermatological diseases, such as erythrasma, tinea versicolor, and acne are helpful for diagnosis and follow-up. However, many experience difficulty taking photographic images of fluorescence. The aim of this study was to develop a 405 nm light-emitting diode (LED) system for fluorescence digital photography of acne and to determine whether such a diode can be used to evaluate acne. Eight healthy acne patients were compared with controls by fluorescence digital photography using a digital camera equipped with a 405 nm LED illuminator. Digital photographs were taken by two different ways of exposure, i.e. appropriate exposure level and longer exposure. One side of the nose, cheek, and glabella was compared. The numbers and extents of fluorescence dots were counted and measured. As normal controls, seven individuals with apparent oiliness and no acne were enrolled. Red fluorescent facial dots were observed and photographed digitally using the 405 nm LED illuminator. These were more numerous and extensive on the glabella and cheeks of acne patients. Fluorescence digital photography of acne was successfully performed using a 405 nm LED illuminator. This illuminator could be used for acne evaluations.

  8. White polymer light-emitting diodes based on star-shaped polymers with an orange dendritic phosphorescent core.

    Science.gov (United States)

    Zhu, Minrong; Li, Yanhu; Cao, Xiaosong; Jiang, Bei; Wu, Hongbin; Qin, Jingui; Cao, Yong; Yang, Chuluo

    2014-12-01

    A series of new star-shaped polymers with a triphenylamine-based iridium(III) dendritic complex as the orange-emitting core and poly(9,9-dihexylfluorene) (PFH) chains as the blue-emitting arms is developed towards white polymer light-emitting diodes (WPLEDs). By fine-tuning the content of the orange phosphor, partial energy transfer and charge trapping from the blue backbone to the orange core is realized to achieve white light emission. Single-layer WPLEDs with the configuration of ITO (indium-tin oxide)/poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS)/polymer/CsF/Al exhibit a maximum current efficiency of 1.69 cd A(-1) and CIE coordinates of (0.35, 0.33), which is very close to the pure white-light point of (0.33, 0.33). To the best of our knowledge, this is the first report on star-shaped white-emitting single polymers that simultaneously consist of fluorescent and phosphorescent species. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. White organic light-emitting diodes based on electroplex from polyvinyl carbazole and carbazole oligomers blends

    International Nuclear Information System (INIS)

    Fei-Peng, Chen; Bin, Xu; Wen-Jing, Tian; Zu-Jin, Zhao; Ping, Lü; Chan, Im

    2010-01-01

    White organic light-emitting diodes with a blue emitting material fluorene-centred ethylene-liked carbazole oligomer (Cz6F) doped into polyvinyl carbazole (PVK) as the single light-emitting layer are reported. The optical properties of Cz6F, PVK, and PVK:Cz6F blends are studied. Single and double layer devices are fabricated by using PVK: Cz6F blends, and the device with the configuration of indium tin oxide (ITO)/PVK:Cz6F/tris(8-hydroxyquinolinate)aluminium (Alq 3 )/LiF/A1 exhibits white light emission with Commission Internationale de l'Éclairage chromaticity coordinates of (0.30, 0.33) and a brightness of 402 cd/m 2 . The investigation reveals that the white light is composed of a blue–green emission originating from the excimer of Cz6F molecules and a red emission from an electroplex from the PVK:Cz6F blend films

  10. White organic light-emitting diodes based on electroplex from polyvinyl carbazole and carbazole oligomers blends

    Science.gov (United States)

    Chen, Fei-Peng; Xu, Bin; Zhao, Zu-Jin; Tian, Wen-Jing; Lü, Ping; Im, Chan

    2010-03-01

    White organic light-emitting diodes with a blue emitting material fluorene-centred ethylene-liked carbazole oligomer (Cz6F) doped into polyvinyl carbazole (PVK) as the single light-emitting layer are reported. The optical properties of Cz6F, PVK, and PVK:Cz6F blends are studied. Single and double layer devices are fabricated by using PVK: Cz6F blends, and the device with the configuration of indium tin oxide (ITO)/PVK:Cz6F/tris(8-hydroxyquinolinate)aluminium (Alq3)/LiF/A1 exhibits white light emission with Commission Internationale de l'Éclairage chromaticity coordinates of (0.30, 0.33) and a brightness of 402 cd/m2. The investigation reveals that the white light is composed of a blue-green emission originating from the excimer of Cz6F molecules and a red emission from an electroplex from the PVK:Cz6F blend films.

  11. Optimization of white organic light emitting diodes based on emitting layer charge carrier conduction properties

    Energy Technology Data Exchange (ETDEWEB)

    Baek, H I; Lee, C H [School of Electrical Engineering and Computer Science and Inter-University Semiconductor Research Center, Seoul National University, Seoul 151-744 (Korea, Republic of)], E-mail: hibaek75@snu.ac.kr

    2008-05-21

    We have fabricated white organic light emitting diodes (OLEDs) with multi-emitting layer (EML) structures in which 4,4'-N,N'-dicarbazole-biphenyl (CBP) layers doped with the phosphorescent dopants fac-tris(2-phenylpyridine) iridium (Ir(ppy){sub 3}) and bis(2-(2'-benzo[4,5-a]thienyl)pyridinato-N,C3')iridium(acetylacetonate) (btp{sub 2}Ir(acac)) and the fluorescent dopant 4,4'-bis[2-{l_brace}4-(N,N-diphenylamino) phenyl{r_brace}vinyl]biphenyl (DPAVBi) were used as green (G), red (R) and blue (B) EMLs, respectively. A higher efficiency was expected with the R/G/B EML sequence from the hole transport layer interface than with the G/R/B sequence because of the differences in the charge carrier conduction properties of the EMLs doped with phosphorescent dopants and the luminance balance between the phosphorescent and fluorescent emissions. A high efficiency of 18.3 cd A{sup -1} (an external quantum efficiency of 8.5%) at 100 cd m{sup -2} and good colour stability were achieved with the R/G/B EML sequence as expected, with an additional non-doped CBP interlayer used between the G and B EMLs. In addition, the OLED with this sequence was found to have the longest lifetime of the white devices we tested.

  12. Quantum-dot light-emitting diodes utilizing CdSe /ZnS nanocrystals embedded in TiO2 thin film

    Science.gov (United States)

    Kang, Seung-Hee; Kumar, Ch. Kiran; Lee, Zonghoon; Kim, Kyung-Hyun; Huh, Chul; Kim, Eui-Tae

    2008-11-01

    Quantum-dot (QD) light-emitting diodes (LEDs) are demonstrated on Si wafers by embedding core-shell CdSe /ZnS nanocrystals in TiO2 thin films via plasma-enhanced metallorganic chemical vapor deposition. The n-TiO2/QDs /p-Si LED devices show typical p-n diode current-voltage and efficient electroluminescence characteristics, which are critically affected by the removal of QD surface ligands. The TiO2/QDs /Si system we presented can offer promising Si-based optoelectronic and electronic device applications utilizing numerous nanocrystals synthesized by colloidal solution chemistry.

  13. Efficient red phosphorescent organic light emitting diodes with double emission layers

    International Nuclear Information System (INIS)

    Ben Khalifa, M; Mazzeo, M; Maiorano, V; Mariano, F; Carallo, S; Melcarne, A; Cingolani, R; Gigli, G

    2008-01-01

    We demonstrate efficient red phosphorescent organic light emitting diodes with a bipolar emission structure (D-EML) formed by two different layers doped with a red phosphorescent dye. Due to its self-balancing character, the recombination zone is shifted far from the emission/carrier-blocking-layer interfaces. This prevents the accumulation of carriers at the interfaces and reduces the triplet-triplet annihilation, resulting in an improved efficiency of the D-EML device compared with the standard single-EML architecture. However, a current efficiency of 8.4 cd A -1 at 10 mA cm -2 is achieved in the D-EML device compared with 3.7 cd A -1 in the single-EML device

  14. Single nanowire green InGaN/GaN light emitting diodes

    Science.gov (United States)

    Zhang, Guogang; Li, Ziyuan; Yuan, Xiaoming; Wang, Fan; Fu, Lan; Zhuang, Zhe; Ren, Fang-Fang; Liu, Bin; Zhang, Rong; Tan, Hark Hoe; Jagadish, Chennupati

    2016-10-01

    Single nanowire (NW) green InGaN/GaN light-emitting diodes (LEDs) were fabricated by top-down etching technology. The electroluminescence (EL) peak wavelength remains approximately constant with an increasing injection current in contrast to a standard planar LED, which suggests that the quantum-confined Stark effect is significantly reduced in the single NW device. The strain relaxation mechanism is studied in the single NW LED using Raman scattering analysis. As compared to its planar counterpart, the EL peak of the NW LED shows a redshift, due to electric field redistribution as a result of changes in the cavity mode pattern after metallization. Our method has important implication for single NW optoelectronic device applications.

  15. Polymer Light-Emitting Diodes Efficiency Dependence on Bipolar Charge Traps Concentration

    Directory of Open Access Journals (Sweden)

    Luis Morgado

    2009-01-01

    Full Text Available The efficiency of light-emitting diodes (LEDs based on poly[(9,9-dioctylfluorenyl-2,7-diyl-alt-1,4-benzo-{2,1′-3}-thiadiazole], F8BT, is optimized upon simultaneous doping with a hole and an electron trapping molecule, namely, N,N′-Bis(3-methylphenyl-N,N′-diphenylbenzidine and 2-(4-biphenylyl-5-(4-tert-butylphenyl-1,3,4-oxadiazole, respectively. It is shown that, for devices with poly(3,4-ethylene dioxythiophene doped with polystyrene sulfonic acid as hole-injection layer material and magnesium cathodes, the efficiency is nearly doubled (from ca. 2.5 to 3.7 cd/A upon doping with ca. 0.34% by weight of both compounds.

  16. Efficient red phosphorescent organic light emitting diodes with double emission layers

    Energy Technology Data Exchange (ETDEWEB)

    Ben Khalifa, M; Mazzeo, M; Maiorano, V; Mariano, F; Carallo, S; Melcarne, A; Cingolani, R; Gigli, G [NNL, National Nanotechnology Laboratory of CNR-INFM, Distretto tecnologico ISUFI, Universita del Salento, Italy, Via per Arnesano, Km.5, 73100 Lecce (Italy)], E-mail: mohamed.benkhalifa@unile.it

    2008-08-07

    We demonstrate efficient red phosphorescent organic light emitting diodes with a bipolar emission structure (D-EML) formed by two different layers doped with a red phosphorescent dye. Due to its self-balancing character, the recombination zone is shifted far from the emission/carrier-blocking-layer interfaces. This prevents the accumulation of carriers at the interfaces and reduces the triplet-triplet annihilation, resulting in an improved efficiency of the D-EML device compared with the standard single-EML architecture. However, a current efficiency of 8.4 cd A{sup -1} at 10 mA cm{sup -2} is achieved in the D-EML device compared with 3.7 cd A{sup -1} in the single-EML device.

  17. Host-free, yellow phosphorescent material in white organic light-emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Meng-Ting; Chu, Miao-Tsai; Lin, Jin-Sheng; Tseng, Mei-Rurng, E-mail: osolomio.ac89g@nctu.edu.t [Material and Chemical Research Laboratories, Industrial Technology Research Institute (ITRI), Hsinchu, Taiwan 310 (China)

    2010-11-10

    A white organic light-emitting diode (WOLED) with a high power efficiency has been demonstrated by dispersing a host-free, yellow phosphorescent material in between double blue phosphorescent emitters. The device performance achieved a comparable value to that of using a complicated host-guest doping system to form the yellow emitter in WOLEDs. Based on this device concept as well as the molecular engineering of blue phosphorescent host material and light-extraction film, a WOLED with a power efficiency of 65 lm W{sup -1} at a practical brightness of 1000 cd m{sup -2} with Commission Internationale d'Echariage coordinates (CIE{sub x,y}) of (0.37, 0.47) was achieved. (fast track communication)

  18. Azimuthal anisotropy of light extraction from photonic crystal light-emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Lai, Chun-Feng; Lu, T.C.; Wang, S.C. [Department of Photonics and Institute of Electro-Optical Engineering, National Chiao-Tung University, Hsinchu 300, Taiwan (China); Chao, C.H.; Hsueh, H.T.; Wang, J.F.T.; Yeh, W.Y.; Chi, J.Y. [Electronics and Optoelectronics Research Laboratories, Industrial Technology Research Institute, Hsinchu 310, Taiwan (China); Kuo, H.C.

    2008-07-01

    Photonic crystal (PhC) light-emitting diodes (LEDs) exhibiting anisotropic light extraction have been investigated experimentally and theoretically. It is found that the anisotropic light extraction strongly depends on the lattice constant and orientation. Optical images of the anisotropy in the azimuthal direction are obtained using annular structure with triangular lattice. 6-fold symmetric light extraction patterns with varying number of petals are observed. More petals in multiple of 6 appear in the observed image with lattice constant increasing. This anisotropic behavior suggests a new means to optimize the PhC design of GaN LED for light extraction. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  19. Enhancing the Out-Coupling Efficiency of Organic Light-Emitting Diodes Using Two-Dimensional Periodic Nanostructures

    Directory of Open Access Journals (Sweden)

    Qingyang Yue

    2012-01-01

    Full Text Available The out-coupling efficiency of planar organic light emitting diodes (OLEDs is only about 20% due to factors, such as, the total internal reflection, surface plasmon coupling, and metal absorption. Two-dimensional periodic nanostructures, such as, photonic crystals (PhCs and microlenses arrays offer a potential method to improve the out-coupling efficiency of OLEDs. In this work, we employed the finite-difference time-domain (FDTD method to explore different mechanisms that embedded PhCs and surface PhCs to improve the out-coupling efficiency. The effects of several parameters, including the filling factor, the depth, and the lattice constant were investigated. The result showed that embedded PhCs play a key role in improving the out-coupling efficiency, and an enhancement factor of 240% was obtained in OLEDs with embedded PhCs, while the enhancement factor of OLEDs with surface PhCs was only 120%. Furthermore, the phenomena was analyzed using the mode theory and it demonstrated that the overlap between the mode and PhCs was related to the distribution of vertical mode profiles. The enhancement of the extraction efficiency in excess of 290% was observed for the optimized OLEDs structure with double PhCs. This proposed structure could be a very promising candidate for high extraction efficiency OLEDs.

  20. Kinetic Monte Carlo simulation of the efficiency roll-off, emission color, and degradation of organic light-emitting diodes

    NARCIS (Netherlands)

    Coehoorn, R.; van Eersel, H.; Bobbert, P.A.; Janssen, R.A.J.

    2015-01-01

    The performance of Organic Light Emitting Diodes (OLEDs) is determined by a complex interplay of the charge transport and excitonic processes in the active layer stack. We have developed a three-dimensional kinetic Monte Carlo (kMC) OLED simulation method which includes all these processes in an

  1. High performance multilayered nano-crystalline silicon/silicon-oxide light-emitting diodes on glass substrates

    Energy Technology Data Exchange (ETDEWEB)

    Darbari, S; Shahmohammadi, M; Mortazavi, M; Mohajerzadeh, S [Thin Film and Nano-Electronic Laboratory, School of ECE, University of Tehran, Tehran (Iran, Islamic Republic of); Abdi, Y [Nano-Physics Research Laboratory, Department of Physics, University of Tehran, Tehran (Iran, Islamic Republic of); Robertson, M; Morrison, T, E-mail: mohajer@ut.ac.ir [Department of Physics, Acadia University, Wolfville, NS (Canada)

    2011-09-16

    A low-temperature hydrogenation-assisted sequential deposition and crystallization technique is reported for the preparation of nano-scale silicon quantum dots suitable for light-emitting applications. Radio-frequency plasma-enhanced deposition was used to realize multiple layers of nano-crystalline silicon while reactive ion etching was employed to create nano-scale features. The physical characteristics of the films prepared using different plasma conditions were investigated using scanning electron microscopy, transmission electron microscopy, room temperature photoluminescence and infrared spectroscopy. The formation of multilayered structures improved the photon-emission properties as observed by photoluminescence and a thin layer of silicon oxy-nitride was then used for electrical isolation between adjacent silicon layers. The preparation of light-emitting diodes directly on glass substrates has been demonstrated and the electroluminescence spectrum has been measured.

  2. Current path in light emitting diodes based on nanowire ensembles

    International Nuclear Information System (INIS)

    Limbach, F; Hauswald, C; Lähnemann, J; Wölz, M; Brandt, O; Trampert, A; Hanke, M; Jahn, U; Calarco, R; Geelhaar, L; Riechert, H

    2012-01-01

    Light emitting diodes (LEDs) have been fabricated using ensembles of free-standing (In, Ga)N/GaN nanowires (NWs) grown on Si substrates in the self-induced growth mode by molecular beam epitaxy. Electron-beam-induced current analysis, cathodoluminescence as well as biased μ-photoluminescence spectroscopy, transmission electron microscopy, and electrical measurements indicate that the electroluminescence of such LEDs is governed by the differences in the individual current densities of the single-NW LEDs operated in parallel, i.e. by the inhomogeneity of the current path in the ensemble LED. In addition, the optoelectronic characterization leads to the conclusion that these NWs exhibit N-polarity and that the (In, Ga)N quantum well states in the NWs are subject to a non-vanishing quantum confined Stark effect. (paper)

  3. Combination of carbon dot and polymer dot phosphors for white light-emitting diodes.

    Science.gov (United States)

    Sun, Chun; Zhang, Yu; Sun, Kai; Reckmeier, Claas; Zhang, Tieqiang; Zhang, XiaoYu; Zhao, Jun; Wu, Changfeng; Yu, William W; Rogach, Andrey L

    2015-07-28

    We realized white light-emitting diodes with high color rendering index (85-96) and widely variable color temperatures (2805-7786 K) by combining three phosphors based on carbon dots and polymer dots, whose solid-state photoluminescence self-quenching was efficiently suppressed within a polyvinyl pyrrolidone matrix. All three phosphors exhibited dominant absorption in the UV spectral region, which ensured the weak reabsorption and no energy transfer crosstalk. The WLEDs showed excellent color stability against the increasing current because of the similar response of the tricolor phosphors to the UV light variation.

  4. Near infrared organic light-emitting diodes based on acceptor-donor-acceptor (ADA) using novel conjugated isatin Schiff bases

    International Nuclear Information System (INIS)

    Taghi Sharbati, Mohammad; Soltani Rad, Mohammad Navid; Behrouz, Somayeh; Gharavi, Alireza; Emami, Farzin

    2011-01-01

    Fabrications of a single layer organic light emitting diodes (OLEDs) based on two conjugated acceptor-donor-acceptor (ADA) isatin Schiff bases are described. The electroluminescent spectra of these materials range from 630 to 700 nm and their band gaps were measured between 1.97 and 1.77 eV. The measured maximum external quantum efficiencies (EQE) for fabricated OLEDs are 0.0515% and 0.054% for two acceptor-donor-acceptor chromophores. The Commission International De L'Eclairage (CIE) (1931) coordinates of these two compounds were attained and found to be (0.4077, 0.4128) and (0.4411, 0.4126) for two used acceptor-donor-acceptor chromophores. The measured I-V curves demonstrated the apparent diode behavior of two ADA chromophores. The turn-on voltages in these OLEDs are directly dependent on the thickness. These results have demonstrated that ADA isatin Schiff bases could be considered as promising electroluminescence-emitting materials for fabrication of OLEDs.

  5. Highly efficient red phosphorescent organic light-emitting diodes based on solution processed emissive layer

    International Nuclear Information System (INIS)

    Liu, Baiquan; Xu, Miao; Tao, Hong; Ying, Lei; Zou, Jianhua; Wu, Hongbin; Peng, Junbiao

    2013-01-01

    Highly efficient red phosphorescent organic polymer light-emitting diodes (PhOLEDs) were fabricated based on a solution-processed small-molecule host 4,4′-bis(N-carbazolyl)-1,1′-biphenyl (CBP) by doping an iridium complex, tris(1-(2,6-dimethylphenoxy)-4-(4-chlorophenyl)phthalazine)iridium (III) (Ir(MPCPPZ) 3 ). A hole blocking layer 1,3,5-tri(1-phenyl-1H-benzo[d]imidazol-2-yl)phenyl (TPBI) with a function of electron transport was thermally deposited onto the top of CBP layer. The diode with the structure of ITO/PEDOT:PSS (50 nm)/CBP:Ir(MPCPPZ) 3 (55 nm)/TPBI (30 nm)/Ba (4 nm)/Al (120 nm) showed an external quantum efficiency (QE ext ) of 19.3% and luminous efficiency (LE) of 18.3 cd/A at a current density of 0.16 mA/cm 2 , and Commission International de I'Eclairage (CIE) coordinates of (0.607, 0.375). It was suggested that the diodes using TPBI layer exhibited nearly 100% internal quantum efficiency and one order magnitude enhanced LE or QE ext efficiencies. -- Highlights: • Efficient red PhOLEDs based on a solution-processed small-molecule host were fabricated. • By altering volume ratio of chloroform/chlorobenzene solvent, we got best film quality of CBP. • EQE of the diode was 19.3%, indicating nearly 100% internal quantum yield was achieved

  6. InP/ZnS nanocrystals for colour conversion in white light emitting diodes

    DEFF Research Database (Denmark)

    Shirazi, Roza

    In this work a comprehensive study of a colloidal InP/ZnS nanocrystals (NC) as the colour conversion material for white light emitting diodes (WLED) is shown. Studied nanocrystals were synthesised by wet chemistry using one pot, hot injection method. A quantum efficiency (QE) of photoluminescence......, radiative and non-radiative recombination rates were determined and QE of 63% for the population of NCs that emit light was derived. A search for source of exciton losses in bright nanocrystals temperature resolved TRPL was studied and it revealed carrier trapping most likely at core-shell interface as well...... as at the surface and which competes with bright and dark exciton states. A presence of long-lived dark excitons and trapped charges lead to strong Auger recombination at high (relative to the trapping times) excitation. A colour conversion efficiency of the nanocrystals upon light absorption and in a process...

  7. White emission from organic light-emitting diodes with a super-thin BCP layer

    Energy Technology Data Exchange (ETDEWEB)

    Hao Jingang [Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology, Beijing Jiaotong University, Beijing 100044 (China); Deng Zhenbo [Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology, Beijing Jiaotong University, Beijing 100044 (China)]. E-mail: zbdeng@center.njtu.edu.cn; Yang Shengyi [Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology, Beijing Jiaotong University, Beijing 100044 (China)

    2007-01-15

    We report a method to achieve white emission from organic light-emitting diodes (OLEDs) in which a super-thin (3 nm) hole blocking layer, 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP), was inserted between electron-transport layer 8-hydroxyquinoline aluminum (Alq{sub 3}) and 4-(dicyanomethylene)-2-t-butyl-6(1,1,7,7-tetramethyljulolidyl-9-enyl) -4H-pyran (DCJTB) doped poly-vinlycarbazole (PVK) layer. The BCP layer can not only confine exciton in the emitting layer but also control energy transfer proportion from PVK to Alq{sub 3} and then from Alq{sub 3} to DCJTB through BCP layer. In this way, pure white emission with CIE coordinate of (0.32, 0.32) was obtained and it was voltage independent. The brightness reached 270 cd/m{sup 2} at 18 V with an efficiency of 0.166 cd/A.

  8. Highly efficient inverted top emitting organic light emitting diodes using a transparent top electrode with color stability on viewing angle

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jung-Bum; Lee, Jeong-Hwan; Moon, Chang-Ki; Kim, Jang-Joo, E-mail: jjkim@snu.ac.kr [Department of Materials Science and Engineering, Seoul National University, Seoul 151-742 (Korea, Republic of)

    2014-02-17

    We report a highly efficient phosphorescent green inverted top emitting organic light emitting diode with excellent color stability by using the 1,4,5,8,9,11-hexaazatriphenylene-hexacarbonitrile/indium zinc oxide top electrode and bis(2-phenylpyridine)iridium(III) acetylacetonate as the emitter in an exciplex forming co-host system. The device shows a high external quantum efficiency of 23.4% at 1000 cd/m{sup 2} corresponding to a current efficiency of 110 cd/A, low efficiency roll-off with 21% at 10 000 cd/m{sup 2} and low turn on voltage of 2.4 V. Especially, the device showed very small color change with the variation of Δx = 0.02, Δy = 0.02 in the CIE 1931 coordinates as the viewing angle changes from 0° to 60°. The performance of the device is superior to that of the metal/metal cavity structured device.

  9. Effect of Dopant Activation on Device Characteristics of InGaN-based Light Emitting Diodes

    Science.gov (United States)

    Lacroce, Nicholas; Liu, Guangyu; Tan, Chee-Keong; Arif, Ronald A.; Lee, Soo Min; Tansu, Nelson

    2015-03-01

    Achieving high uniformity in growths and device characteristics of InGaN-based light-emitting diodes (LEDs) is important for large scale manufacturing. Dopant activation and maintaining control of variables affecting dopant activation are critical steps in the InGaN-based light emitting diodes (LEDs) fabrication process. In the epitaxy of large scale production LEDs, in-situ post-growth annealing is used for activating the Mg acceptor dopant in the p-AlGaN and p-GaN of the LEDs. However, the annealing temperature varies with respect to position in the reactor chamber, leading to severe uniform dopant activation issue across the devices. Thus, it is important to understand how the temperature gradient and the resulting variance in Mg acceptor activation will alter the device properties. In this work, we examine the effect of varying p-type doping levels in the p-GaN layers and AlGaN electron blocking layer of the GaN LEDs on the optoelectronic properties including the band profile, carrier concentration, current density, output power and quantum efficiency. By understanding the variations and its effect, the identification of the most critical p-type doping layer strategies to address this variation will be clarified.

  10. The different physical origins of 1/f noise and superimposed RTS noise in light-emitting quantum dot diodes

    NARCIS (Netherlands)

    Belyakov, A.V.; Vandamme, L.K.J.; Perov, M.Y.; Yakimov, A.V.

    2003-01-01

    Low frequency noise characteristics of light-emitting diodes with InAs quantum dots in GaInAs layer are investigated. Two noise components were found in experimental noise records: RTS, caused by burst noise, and 1/f Gaussian noise. Extraction of burst noise component from Gaussian noise background

  11. Solid State pH Sensor Based on Light Emitting Diodes (LED) As Detector Platform

    OpenAIRE

    Lau, King Tong; Shepherd, R.; Diamond, Danny; Diamond, Dermot

    2006-01-01

    A low-power, high sensitivity, very low-cost light emitting diode (LED)-based device developed for low-cost sensor networks was modified with bromocresol green membrane to work as a solid-state pH sensor. In this approach, a reverse-biased LED functioning as a photodiode is coupled with a second LED configured in conventional emission mode. A simple timer circuit measures how long (in microsecond) it takes for the photocurrent generated on the detector LED to discharge its capacitance from lo...

  12. Direct Growth of III-Nitride Nanowire-Based Yellow Light-Emitting Diode on Amorphous Quartz Using Thin Ti Interlayer

    KAUST Repository

    Prabaswara, Aditya

    2018-02-06

    Consumer electronics have increasingly relied on ultra-thin glass screen due to its transparency, scalability, and cost. In particular, display technology relies on integrating light-emitting diodes with display panel as a source for backlighting. In this study, we undertook the challenge of integrating light emitters onto amorphous quartz by demonstrating the direct growth and fabrication of a III-nitride nanowire-based light-emitting diode. The proof-of-concept device exhibits a low turn-on voltage of 2.6 V, on an amorphous quartz substrate. We achieved ~ 40% transparency across the visible wavelength while maintaining electrical conductivity by employing a TiN/Ti interlayer on quartz as a translucent conducting layer. The nanowire-on-quartz LED emits a broad linewidth spectrum of light centered at true yellow color (~ 590 nm), an important wavelength bridging the green-gap in solid-state lighting technology, with significantly less strain and dislocations compared to conventional planar quantum well nitride structures. Our endeavor highlighted the feasibility of fabricating III-nitride optoelectronic device on a scalable amorphous substrate through facile growth and fabrication steps. For practical demonstration, we demonstrated tunable correlated color temperature white light, leveraging on the broadly tunable nanowire spectral characteristics across red-amber-yellow color regime.

  13. Processes for design, construction and utilisation of arrays of light-emitting diodes and light-emitting diode-coupled optical fibres for multi-site brain light delivery.

    Science.gov (United States)

    Bernstein, Jacob G; Allen, Brian D; Guerra, Alexander A; Boyden, Edward S

    2015-05-01

    Optogenetics enables light to be used to control the activity of genetically targeted cells in the living brain. Optical fibers can be used to deliver light to deep targets, and LEDs can be spatially arranged to enable patterned light delivery. In combination, arrays of LED-coupled optical fibers can enable patterned light delivery to deep targets in the brain. Here we describe the process flow for making LED arrays and LED-coupled optical fiber arrays, explaining key optical, electrical, thermal, and mechanical design principles to enable the manufacturing, assembly, and testing of such multi-site targetable optical devices. We also explore accessory strategies such as surgical automation approaches as well as innovations to enable low-noise concurrent electrophysiology.

  14. Semiconductor Laser Diode Pumps for Inertial Fusion Energy Lasers

    International Nuclear Information System (INIS)

    Deri, R.J.

    2011-01-01

    Solid-state lasers have been demonstrated as attractive drivers for inertial confinement fusion on the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL) and at the Omega Facility at the Laboratory for Laser Energetics (LLE) in Rochester, NY. For power plant applications, these lasers must be pumped by semiconductor diode lasers to achieve the required laser system efficiency, repetition rate, and lifetime. Inertial fusion energy (IFE) power plants will require approximately 40-to-80 GW of peak pump power, and must operate efficiently and with high system availability for decades. These considerations lead to requirements on the efficiency, price, and production capacity of the semiconductor pump sources. This document provides a brief summary of these requirements, and how they can be met by a natural evolution of the current semiconductor laser industry. The detailed technical requirements described in this document flow down from a laser ampl9ifier design described elsewhere. In brief, laser amplifiers comprising multiple Nd:glass gain slabs are face-pumped by two planar diode arrays, each delivering 30 to 40 MW of peak power at 872 nm during a ∼ 200 (micro)s quasi-CW (QCW) pulse with a repetition rate in the range of 10 to 20 Hz. The baseline design of the diode array employs a 2D mosaic of submodules to facilitate manufacturing. As a baseline, they envision that each submodule is an array of vertically stacked, 1 cm wide, edge-emitting diode bars, an industry standard form factor. These stacks are mounted on a common backplane providing cooling and current drive. Stacks are conductively cooled to the backplane, to minimize both diode package cost and the number of fluid interconnects for improved reliability. While the baseline assessment in this document is based on edge-emitting devices, the amplifier design does not preclude future use of surface emitting diodes, which may offer appreciable future cost reductions and

  15. Determination of flavonoids in plant material by HPLC with diode-array and electro-array detections.

    Science.gov (United States)

    Mattila, P; Astola, J; Kumpulainen, J

    2000-12-01

    A high-performance liquid chromatographic (HPLC) method with in-line connected diode-array (DAD) and electro-array (EC) detection to identify and quantify 17 flavonoids in plant-derived foods is described. Catechins were extracted from the samples using ethyl acetate, and quantification of these compounds was performed with the EC detector. Other flavonoids were quantified with DAD after acid hydrolysis. The methods developed were effective for the determination of catechins and other flavonoids in plant-derived foods. Responses of the detection systems were linear within the range evaluated, 20-200 ng/injection (DAD) and 20-100 ng/injection (EC), with correlation coefficients exceeding 0.999. Coefficient of variation was under 10.5%, and recoveries of flavonoids ranged from 70 to 124%. Purity of the flavonoid peaks was confirmed by combining the spectral and voltammetric data.

  16. Mobility balance in the light-emitting layer governs the polaron accumulation and operational stability of organic light-emitting diodes

    Science.gov (United States)

    Kim, Jae-Min; Lee, Chang-Heon; Kim, Jang-Joo

    2017-11-01

    Organic light-emitting diode (OLED) displays are lighter and more flexible, have a wider color gamut, and consume less power than conventional displays. Stable materials and the structural design of the device are important for OLED longevity. Control of charge transport and accumulation in the device is particularly important because the interaction of excitons and polarons results in material degradation. This research investigated the charge dynamics of OLEDs experimentally and by drift-diffusion modeling. Parallel capacitance-voltage measurements of devices provided knowledge of charge behavior at different driving voltages. A comparison of exciplex-forming co-host and single host structures established that the mobility balance in the emitting layers determined the amount of accumulated polarons in those layers. Consequently, an exciplex-forming co-host provides a superior structure in terms of device lifetime and efficiency because of its well-balanced mobility. Minimizing polaron accumulation is key to achieving long OLED device lifetimes. This is a crucial aspect of device physics that must be considered in the device design structure.

  17. Efficient perovskite light-emitting diodes featuring nanometre-sized crystallites

    Science.gov (United States)

    Xiao, Zhengguo; Kerner, Ross A.; Zhao, Lianfeng; Tran, Nhu L.; Lee, Kyung Min; Koh, Tae-Wook; Scholes, Gregory D.; Rand, Barry P.

    2017-01-01

    Organic-inorganic hybrid perovskite materials are emerging as highly attractive semiconductors for use in optoelectronics. In addition to their use in photovoltaics, perovskites are promising for realizing light-emitting diodes (LEDs) due to their high colour purity, low non-radiative recombination rates and tunable bandgap. Here, we report highly efficient perovskite LEDs enabled through the formation of self-assembled, nanometre-sized crystallites. Large-group ammonium halides added to the perovskite precursor solution act as a surfactant that dramatically constrains the growth of 3D perovskite grains during film forming, producing crystallites with dimensions as small as 10 nm and film roughness of less than 1 nm. Coating these nanometre-sized perovskite grains with longer-chain organic cations yields highly efficient emitters, resulting in LEDs that operate with external quantum efficiencies of 10.4% for the methylammonium lead iodide system and 9.3% for the methylammonium lead bromide system, with significantly improved shelf and operational stability.

  18. Dr. Harry Whelan With the Light Emitting Diode Probe

    Science.gov (United States)

    1999-01-01

    The red light from the Light Emitting Diode (LED) probe shines through the fingers of Dr. Harry Whelan, a pediatric neurologist at the Children's Hospital of Wisconsin in Milwaukee. Dr. Whelan uses the long waves of light from the LED surgical probe to activate special drugs that kill brain tumors. Laser light previously has been used for this type of surgery, but the LED light illuminates through all nearby tissues, reaching parts of tumors that shorter wavelengths of laser light carnot. The new probe is safer because the longer wavelengths of light are cooler than the shorter wavelengths of laser light, making the LED less likely to injure normal brain tissue near the tumor. Also, it can be used for hours at a time while still remaining cool to the touch. The probe was developed for photodynamic cancer therapy under a NASA Small Business Innovative Research Program grant. The program is part of NASA's Technology Transfer Department at the Marshall Space Flight Center.

  19. Kinetics of transient electroluminescence in organic light emitting diodes

    Science.gov (United States)

    Shukla, Manju; Kumar, Pankaj; Chand, Suresh; Brahme, Nameeta; Kher, R. S.; Khokhar, M. S. K.

    2008-08-01

    Mathematical simulation on the rise and decay kinetics of transient electroluminescence (EL) in organic light emitting diodes (OLEDs) is presented. The transient EL is studied with respect to a step voltage pulse. While rising, for lower values of time, the EL intensity shows a quadratic dependence on (t - tdel), where tdel is the time delay observed in the onset of EL, and finally attains saturation at a sufficiently large time. When the applied voltage is switched off, the initial EL decay shows an exponential dependence on (t - tdec), where tdec is the time when the voltage is switched off. The simulated results are compared with the transient EL performance of a bilayer OLED based on small molecular bis(2-methyl 8-hydroxyquinoline)(triphenyl siloxy) aluminium (SAlq). Transient EL studies have been carried out at different voltage pulse amplitudes. The simulated results show good agreement with experimental data. Using these simulated results the lifetime of the excitons in SAlq has also been calculated.

  20. Kinetics of transient electroluminescence in organic light emitting diodes

    International Nuclear Information System (INIS)

    Shukla, Manju; Brahme, Nameeta; Kumar, Pankaj; Chand, Suresh; Kher, R S; Khokhar, M S K

    2008-01-01

    Mathematical simulation on the rise and decay kinetics of transient electroluminescence (EL) in organic light emitting diodes (OLEDs) is presented. The transient EL is studied with respect to a step voltage pulse. While rising, for lower values of time, the EL intensity shows a quadratic dependence on (t - t del ), where t del is the time delay observed in the onset of EL, and finally attains saturation at a sufficiently large time. When the applied voltage is switched off, the initial EL decay shows an exponential dependence on (t - t dec ), where t dec is the time when the voltage is switched off. The simulated results are compared with the transient EL performance of a bilayer OLED based on small molecular bis(2-methyl 8-hydroxyquinoline)(triphenyl siloxy) aluminium (SAlq). Transient EL studies have been carried out at different voltage pulse amplitudes. The simulated results show good agreement with experimental data. Using these simulated results the lifetime of the excitons in SAlq has also been calculated

  1. Multilayer polymer light-emitting diodes by blade coating method

    Science.gov (United States)

    Tseng, Shin-Rong; Meng, Hsin-Fei; Lee, Kuan-Chen; Horng, Sheng-Fu

    2008-10-01

    Multilayer polymer light-emitting diodes fabricated by blade coating are presented. Multilayer of polymers can be easily deposited by blade coating on a hot plate. The multilayer structure is confirmed by the total thickness and the cross section view in the scanning electron microscope. The film thickness variation is only 3.3% in 10cm scale and the film roughness is about 0.3nm in the micron scale. The efficiency of single layer poly(para-phenylene vinylene) copolymer Super Yellow and poly(9,9-dioctylfluorene) (PFO, deep blue) devices are 9 and 1.7cd/A, respectively, by blade coating. The efficiency of the PFO device is raised to 2.9cd/A with a 2-(4-tert-butylphenyl)-5-(4-biphenylyl)-1,3,4-oxadiazole (PBD) hole-blocking layer and to 2.3cd/A with a poly[(9,9-dioctylfluorenyl-2,7-diyl)-co-(4,4'-(N-(4-sec-butylphenyl))diphenylamine)] elec-tron-blocking layer added by blade coating.

  2. High efficiency electrophosphorescence from bilayer organic light emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Li Minghang; Lin, Ming-Te; Shepherd, Nigel D [Department of Material Science and Engineering, University of North Texas, Denton, TX (United States); Chen, Wei-Hsuan; Oswald, Iain; Omary, Mohammad [Department of Chemeistry, University of North Texas, Denton, TX (United States)

    2011-09-14

    An electron mobility of 2.7 x 10{sup -5} cm{sup 2} V{sup -1} s{sup -1} was measured for the phosphorescent emitter bis[3,5-bis(2-pyridyl)-1,2,4-triazolato]platinum(II)(Pt(ptp)2), which prompted its evaluation as both the emissive layer and electron transport layer in organic light emitting diodes with a simple bilayer structure. Power and external quantum efficiencies of 54.0 {+-} 0.2 lm W{sup -1} and 15.9% were obtained, which as far as we could ascertain are amongst the highest reported values for bilayer devices. We ascribe the high device efficiency to the combination of the high electron mobility, short excited-state lifetime (117 ns) and high luminescence quantum yield (60%) of the bis[3,5-bis(2-pyridyl)-1,2,4-triazolato]platinum(II). The colour temperature of the devices was 2855 K at 5 V, which places the emission in the 'warm' light spectral region.

  3. Instense red phosphors for UV light emitting diode devices.

    Science.gov (United States)

    Cao, Fa-Bin; Tian, Yan-Wen; Chen, Yong-Jie; Xiao, Lin-Jiu; Liu, Yun-Yi

    2010-03-01

    Ca(x)Sr1-x-1.5y-0.5zMoO4:yEu3+ zNa+ red phosphors were prepared by solid-state reaction using Na+ as charge supply for LEDs (light emitting diodes). The content of charge compensator, Ca2+ concentration, synthesis temperature, reaction time, and Eu3+ concentration were the keys to improving the properties of luminescence and crystal structure of red phosphors. The photoluminescence spectra shows the red phosphors are effectively excited at 616 nm by 311 nm, 395 nm, and 465 nm light. The wavelengths of 395 and 465 nm nicely match the widely applied emission wavelengths of ultraviolet or blue LED chips. Its chromaticity coordinates (CIE) are calculated to be x = 0.65, y = 0.32. Bright red light can be observed by the naked eye from the LED-based Ca0.60Sr0.25MoO4:0.08Eu3+ 0.06Na+.

  4. Organic light-emitting diodes based on 9-(2-naphthyl)anthracene derivatives with a triphenylsilane unit as the deep-blue emitting layer

    Energy Technology Data Exchange (ETDEWEB)

    Song, Ji Young; Lee, Seul Bee [Department of Chemistry, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Lee, Seok Jae [Department of Information Display, Hongik University, Seoul 121-791 (Korea, Republic of); Kim, Young Kwan, E-mail: kimyk@wow.hongik.ac.kr [Department of Information Display, Hongik University, Seoul 121-791 (Korea, Republic of); Yoon, Seung Soo, E-mail: ssyoon@skku.edu [Department of Chemistry, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of)

    2015-02-27

    A series of 9-(2-naphthyl)anthracene derivatives with a triphenylsilane unit, which prevented molecular aggregation and self-quenching effect, was designed and synthesized. By using various bridges between the 9-(2-naphthyl)anthracene group and the triphenylsilane unit, five deep-blue emitters were obtained and applied as non-doped emitting materials in organic light-emitting diodes (OLEDs) with a device structure of indium–tin-oxide (ITO) (180 nm)/4,4-bis(N-(1-naphthyl)-N-phenylamino)biphenyl (NPB) (50 nm)/emitting materials (30 nm)/4,7-diphenyl-1,10-phenanthroline (Bphen) (30 nm)/lithium quinolate (Liq) (2 nm)/Aluminium (100 nm). All devices showed blue emissions and their electroluminescence efficiencies are sensitive to the structural changes of the emitting materials. In particular, a device using 9-(2-naphthalenyl)-10-[6-(triphenylsilyl)-2-naphthalenyl]-anthracene (4) exhibited high luminous, power and quantum efficiencies of 2.28 cd/A, 1.42 lm/W and 2.40% at 20 mA/cm{sup 2}, respectively, and this device showed the deep blue emission with the CIE coordinates of (0.16, 0.10) at 6.0 V. - Highlights: • We synthesized 9-(2-naphthyl)anthracene derivatives with a triphenylsilane unit. • We study the conjugation-length effect on the electroluminescence properties. • The bulky triphenylsilane-anthracene derivatives show resistance to self-aggregation.

  5. Fabrication of high-brightness GaN-based light-emitting diodes via thermal nanoimprinting of ZnO-nanoparticle-dispersed resin

    International Nuclear Information System (INIS)

    Byeon, Kyeong-Jae; Cho, Joong-Yeon; Jo, Han-Byeol; Lee, Heon

    2015-01-01

    Highlights: • A various high-refractive-index ZnO patterns were formed on LED using imprinting. • Mechanism of light extraction enhancement was demonstrated by simulation and EL. • Light output power of patterned LED was improved up 19.6% by light waveguide effect. - Abstract: We fabricated high-brightness GaN-based light-emitting diodes (LEDs) with highly refractive patterned structures by using a thermal nanoimprint lithography (NIL). A highly refractive ZnO-nanoparticle-dispersed resin (ZNDR) was used in NIL, and a submicron hole, a submicron high-aspect-ratio pillar, and microconvex arrays were fabricated on the indium tin oxide (ITO) top electrode of GaN-based LED devices. We analyzed the light extraction mechanism for each of the three types of patterns by using a finite element method simulation, and found that the high-aspect-ratio pillar had a great ability to improve light extraction owing to its waveguide effect and prominent scattering effect. As a result, the light output power, which was measured in an integrating sphere, of the LED device was enhanced by up to 19.6% when the high-aspect-ratio pillar array was formed on the top ITO electrode of the device. Further, the electrical properties of none of the patterned LED devices fabricated using ZNDR degraded in comparison to those of bare LED devices

  6. Power saving regulated light emitting diode circuit

    International Nuclear Information System (INIS)

    Haville, G. D.

    1985-01-01

    A power saving regulated light source circuit, comprising a light emitting diode (LED), a direct current source and a switching transistor connected in series with the LED, a control voltage producing resistor connected in series with the LED to produce a control voltage corresponding to the current through the LED, a storage capacitor connected in parallel with the series combination of the LED and the resistor, a comparator having its output connected to the input of the transistor, the comparator having a reference input and a control input, a stabilized biasing source for supplying a stabilized reference voltage to the reference input, the control input of the comparator being connected to the control voltage producing resistor, the comparator having a high output state when the reference voltage exceeds the control voltage while having a low output state when the control voltage exceeds the reference voltage, the transistor being conductive in response to the high state while being nonconductive in response to the low state, the transistor when conductive being effective to charge the capacitor and to increase the control voltage, whereby the comparator is cycled between the high and low output states while the transistor is cycled between conductive and nonconductive states

  7. Inkjet-Printed Small-Molecule Organic Light-Emitting Diodes: Halogen-Free Inks, Printing Optimization, and Large-Area Patterning.

    Science.gov (United States)

    Zhou, Lu; Yang, Lei; Yu, Mengjie; Jiang, Yi; Liu, Cheng-Fang; Lai, Wen-Yong; Huang, Wei

    2017-11-22

    Manufacturing small-molecule organic light-emitting diodes (OLEDs) via inkjet printing is rather attractive for realizing high-efficiency and long-life-span devices, yet it is challenging. In this paper, we present our efforts on systematical investigation and optimization of the ink properties and the printing process to enable facile inkjet printing of conjugated light-emitting small molecules. Various factors on influencing the inkjet-printed film quality during the droplet generation, the ink spreading on the substrates, and its solidification processes have been systematically investigated and optimized. Consequently, halogen-free inks have been developed and large-area patterning inkjet printing on flexible substrates with efficient blue emission has been successfully demonstrated. Moreover, OLEDs manufactured by inkjet printing the light-emitting small molecules manifested superior performance as compared with their corresponding spin-cast counterparts.

  8. Al x Ga1‑ x N-based semipolar deep ultraviolet light-emitting diodes

    Science.gov (United States)

    Akaike, Ryota; Ichikawa, Shuhei; Funato, Mitsuru; Kawakami, Yoichi

    2018-06-01

    Deep ultraviolet (UV) emission from Al x Ga1‑ x N-based light-emitting diodes (LEDs) fabricated on semipolar (1\\bar{1}02) (r-plane) AlN substrates is presented. The growth conditions are optimized. A high NH3 flow rate during metalorganic vapor phase epitaxy yields atomically flat Al y Ga1‑ y N (y > x) on which Al x Ga1‑ x N/Al y Ga1‑ y N multiple quantum wells with abrupt interfaces and good periodicity are fabricated. The fabricated r-Al x Ga1‑ x N-based LED emits at 270 nm, which is in the germicidal wavelength range. Additionally, the emission line width is narrow, and the peak wavelength is stable against the injection current, so the semipolar LED shows promise as a UV emitter.

  9. Trap effect of an ultrathin DCJTB layer in organic light-emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Wang Yuanmin [Institute of Optoelectronic Technology, Key Laboratory for Information Storage, Displays and Materials, Beijing Jiaotong University, Beijing 100044 (China); Teng Feng [Institute of Optoelectronic Technology, Key Laboratory for Information Storage, Displays and Materials, Beijing Jiaotong University, Beijing 100044 (China)]. E-mail: advanced9898@126.com; Xu Zheng [Institute of Optoelectronic Technology, Key Laboratory for Information Storage, Displays and Materials, Beijing Jiaotong University, Beijing 100044 (China); Hou Yanbing [Institute of Optoelectronic Technology, Key Laboratory for Information Storage, Displays and Materials, Beijing Jiaotong University, Beijing 100044 (China); Yang Shengyi [Institute of Optoelectronic Technology, Key Laboratory for Information Storage, Displays and Materials, Beijing Jiaotong University, Beijing 100044 (China); Xu Xurong [Institute of Optoelectronic Technology, Key Laboratory for Information Storage, Displays and Materials, Beijing Jiaotong University, Beijing 100044 (China)

    2005-08-15

    An improved performance of organic light-emitting diodes has been obtained by using 4-(dicyanomethylene)-2-t-butyl-6-(1,1,7,7-tetramethyljulolidyl-9-enyl) -4Hpyran (DCJTB) as an ultrathin emitting layer. When 0.1 nm DCJTB was inserted between the hole-transporting layer and electron-transporting layer, for an unoptimized device indium-tin oxide (ITO)/naphtylphenyliphenyl diamine (NPB)/DCJTB (0.1 nm)/8-hydroxyquinoline aluminum (Alq{sub 3})/Al, the maximum brightness was 1531 cd m{sup -2} at 15 V. Compared with doped devices ITO/NPB/Alq{sub 3}:DCJTB (1%)/Alq{sub 3}/LiF/Al, a higher efficiency has been achieved. Compared with the conventional device ITO/NPB/Alq{sub 3}/Al, the inserted device has a slightly higher current efficiency and lower turn-on voltage. We suggest the ultrathin DCJTB layer acts as trap for carriers, and the accumulated holes at the hole-transport layer/electron-transport layer interface have enhanced the electric field in the electron-transport layer and improved the electron injection at the cathode.

  10. Storage of charge carriers on emitter molecules in organic light-emitting diodes

    Science.gov (United States)

    Weichsel, Caroline; Burtone, Lorenzo; Reineke, Sebastian; Hintschich, Susanne I.; Gather, Malte C.; Leo, Karl; Lüssem, Björn

    2012-08-01

    Organic light-emitting diodes (OLEDs) using the red phosphorescent emitter iridium(III)bis(2-methyldibenzo[f,h]quinoxaline) (acetylacetonate) [Ir(MDQ)2(acac)] are studied by time-resolved electroluminescence measurements. A transient overshoot after voltage turn-off is found, which is attributed to electron accumulation on Ir(MDQ)2(acac) molecules. The mechanism is verified via impedance spectroscopy and by application of positive and negative off-voltages. We calculate the density of accumulated electrons and find that it scales linearly with the doping concentration of the emitter. Using thin quenching layers, we locate the position of the emission zone during normal OLED operation and after voltage turn-off. In addition, the transient overshoot is also observed in three-color white-emitting OLEDs. By time- and spectrally resolved measurements using a streak camera, we directly attribute the overshoot to electron accumulation on Ir(MDQ)2(acac). We propose that similar processes are present in many state-of-the-art OLEDs and believe that the quantification of charge carrier storage will help to improve the efficiency of OLEDs.

  11. Polymer Light-Emitting Diode Prepared by Floating-Off Film-Transfer Technique

    KAUST Repository

    Park, Jihoon

    2015-12-22

    © 2015 Copyright Taylor & Francis Group, LLC. Floating-off film-transfer technique was used for the formation of semiconducting polymer multi-layers and the effect on the performance of polymer light-emitting diode (PLED) was studied. This method made it possible to avoid the solvent compatibility problem that was typically encountered in successive coating of polymeric multilayer by solution processing. F8BT and MEH-PPV were used for electron transporting layer (ETL) and for emissive layer, respectively. Current-voltage-luminance characteristics and luminescence efficiency results showed that the insertion of ETL by floating-off film-transfer technique followed by proper heat treatment resulted in a significant improvement in PLED operation due to its electron-transporting and hole-blocking abilities.

  12. Cooling analysis of a light emitting diode automotive fog lamp

    Directory of Open Access Journals (Sweden)

    Zadravec Matej

    2017-01-01

    Full Text Available Efficiency of cooling fins inside of a light emitting diode fog lamp is studied using computational fluid dynamics. Diffusion in heat sink, natural convection and radiation are the main principles of the simulated heat transfer. The Navier-Stokes equations were solved by the computational fluid dynamics code, including Monte Carlo radiation model and no additional turbulence model was needed. The numerical simulation is tested using the existing lamp geometry and temperature measurements. The agreement is excellent inside of few degrees at all measured points. The main objective of the article is to determine the cooling effect of various heat sink parts. Based on performed simulations, some heat sink parts are found to be very ineffective. The geometry and heat sink modifications are proposed. While radiation influence is significant, compressible effects are found to be minor.

  13. Origin of electrophosphorescence from a doped polymer light emitting diode

    International Nuclear Information System (INIS)

    Lane, P. A.; Palilis, L. C.; O'Brien, D. F.; Giebeler, C.; Cadby, A. J.; Lidzey, D. G.; Campbell, A. J.; Blau, W.; Bradley, D. D. C.

    2001-01-01

    The origin of electrophosphorescence from a doped polymer light emitting diode (LED) has been investigated. A luminescent polymer host, poly(9,9-dioctylfluorene) (PFO), was doped with a red phosphorescent dye, 2,3,7,8,12,13,17,18-octaethyl-21H,23H-porphyrin platinum(II) (PtOEP). The maximum external quantum efficiency of 3.5% was obtained at a concentration of 4% PtOEP by weight. Energy transfer mechanisms between PFO and PtOEP were studied by absorption, photoluminescence, and photoinduced absorption spectroscopy. Even though electroluminescence spectra were dominated by PtOEP at a concentration of only 0.2 wt% PtOEP, Forster transfer of singlet excitons was weak and there was no evidence for Dexter transfer of triplet excitons. We conclude that the dominant emission mechanism in doped LED's is charge trapping followed by recombination on PtOEP molecules

  14. All-solution processed composite hole transport layer for quantum dot light emitting diode

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiaoli [Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Science, Tianjin University, Tianjin 300072 (China); Synergetic Innovation Center of Chemical Science and Engineering, Tianjin (China); Dai, Haitao, E-mail: htdai@tju.edu.cn [Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Science, Tianjin University, Tianjin 300072 (China); Zhao, Junliang; Wang, Shuguo [Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Science, Tianjin University, Tianjin 300072 (China); Sun, Xiaowei [Department of Electrical & Electronic Engineering, South University of Science and Technology of China, Tangchang Road 1088, Shenzhen, Guangdong 518055 (China)

    2016-03-31

    In the present work, poly-TPD and TCTA composite hole transport layer (HTL) was employed in solution processed CdSe/ZnS quantum dot light emitting diodes (QLEDs). As the doping level of TCTA can determine the carriers transport efficiency of HTL, the proper mixing ratio of TCTA and poly-TPD should be found to optimize the performance of composite HTL for QLEDs. The doping of poly-TPD by low TCTA content can make its HOMO level lower and then reduce the energy barrier height from HTL to quantum dots (QDs), whereas the doping of poly-TPD by the concentrated TCTA results in the degraded performance of QLEDs due to its decreased hole transport mobility. By using the optimized composition with poly-TPD:TCTA (3:1) as the hole transport layer, the luminescence of the device exhibits about double enhancement compared with that of poly-TPD based device. The improvement of luminescence is mainly attributed to the lower energy barrier of hole injection. The Förster resonant energy transfer (FRET) mechanism in the devices was investigated through theoretical and experimental analysis and the results indicate that the TCTA doping makes no difference on FRET. Therefore, the charge injection mechanism dominates the improved performance of the devices. - Highlights: • Quantum dot light emitting diodes (QLEDs) were fabricated by all solution method. • The performance of QLEDs was optimized by varying the composite hole transport layer. • The blend HTL could promote hole injection by optimizing HOMO levels. • The energy transfer mechanism was analyzed by studying Förster resonant energy transfer process.

  15. Optimization of light quality from color mixing light-emitting diode systems for general lighting

    DEFF Research Database (Denmark)

    Thorseth, Anders

    2012-01-01

    are simulated using radiometrically measured single LED spectra. The method uses electrical input powers as input parameters and optimizes the resulting spectral power distribution with regard to color rendering index, correlated color temperature and chromaticity distance. The results indicate Pareto optimal......To address the problem of spectral light quality from color mixing light-emitting diode systems, a method for optimizing the spectral output of multicolor LED system with regards to standardized quality parameters has been developed. The composite spectral power distribution from the LEDs...

  16. Blue emitting 1,8-naphthalimides with electron transport properties for organic light emitting diode applications

    Science.gov (United States)

    Ulla, Hidayath; Kiran, M. Raveendra; Garudachari, B.; Ahipa, T. N.; Tarafder, Kartick; Adhikari, Airody Vasudeva; Umesh, G.; Satyanarayan, M. N.

    2017-09-01

    In this article, the synthesis, characterization and use of two novel naphthalimides as electron-transporting emitter materials for organic light emitting diode (OLED) applications are reported. The molecules were obtained by substituting electron donating chloro-phenoxy group at the C-4 position. A detailed optical, thermal, electrochemical and related properties were systematically studied. Furthermore, theoretical calculations (DFT) were performed to get a better understanding of the electronic structures. The synthesized molecules were used as electron transporters and emitters in OLEDs with three different device configurations. The devices with the molecules showed blue emission with efficiencies of 1.89 cdA-1, 0.98 lmW-1, 0.71% at 100 cdm-2. The phosphorescent devices with naphthalimides as electron transport materials displayed better performance in comparison to the device without any electron transporting material and were analogous with the device using standard electron transporting material, Alq3. The results demonstrate that the naphthalimides could play a significant part in the progress of OLEDs.

  17. Formulating CdSe quantum dots for white light-emitting diodes with high color rendering index

    International Nuclear Information System (INIS)

    Li, Fei; Li, Wan-Nan; Fu, Shao-Yun; Xiao, Hong-Mei

    2015-01-01

    Generation of white light using CdSe quantum dots (QDs) alone presents exciting possibilities for solid state lighting technology. In this work, Cd(Ac) 2 ·2H 2 O and Na 2 SeSO 3 are used as precursors to synthesize CdSe-QDs with an average diameter ranging from 2.77 to 4.65 nm at the low temperature from 60 to 180 °C. Smaller CdSe-QDs with an average diameter of 2.29 nm are got by an oxidation etching process using H 2 O 2 as oxidant. The structural and optical properties of these QDs are investigated and proper formulation of CdSe QDs with various sizes is carefully designed to achieve white light with a high color rendering index (CRI). It is observed for the first time that the as-prepared white light-emitting diodes from single CdSe-QDs show the Commission Inernationale del’Eclairage coordinate (CIE) of (0.30,0.34) very close to that (0.33,0.33) of pure white light and a high CRI of 84. Owing to these advantages, the as-prepared white light-emitting diodes from a single compound are promising for lighting applications. - Highlights: • CdSe-quantum dots (QDs) with a continuously changing size from 2.31 to 4.74 nm are prepared. • The obtained CdSe-QDs emit lights with tunable colors in the whole visible range. • The obtained mixture sample generates white light with a high color rendering index of 84. • The sample yields white light with the CIE coordinate (0.30, 0.34) very close to that of pure white light

  18. The Use of Light-Emitting Diodes (LEDs) as Green and Red/Far-Red Light Sources in Plant Physiology.

    Science.gov (United States)

    Jackson, David L.; And Others

    1985-01-01

    The use of green, red, and far-red light-emitting diodes (LEDs) as light sources for plant physiological studies is outlined and evaluated. Indicates that LED lamps have the advantage over conventional light sources in that they are lightweight, low-cost, portable, easily constructed, and do not require color filters. (Author/DH)

  19. Integrated porous-silicon light-emitting diodes: A fabrication process using graded doping profiles

    International Nuclear Information System (INIS)

    Barillaro, G.; Diligenti, A.; Pieri, F.; Fuso, F.; Allegrini, M.

    2001-01-01

    A fabrication process, compatible with an industrial bipolar+complementary metal - oxide - semiconductor (MOS)+diffusion MOS technology, has been developed for the fabrication of efficient porous-silicon-based light-emitting diodes. The electrical contact is fabricated with a double n + /p doping, achieving a high current injection efficiency and thus lower biasing voltages. The anodization is performed as the last step of the process, thus reducing potential incompatibilities with industrial processes. The fabricated devices show yellow-orange electroluminescence, visible with the naked eye in room lighting. A spectral characterization of light emission is presented and briefly discussed. [copyright] 2001 American Institute of Physics

  20. Electrically pumped all photonic crystal 2nd order DFB lasers arrays emitting at 2.3 μm

    Directory of Open Access Journals (Sweden)

    B. Adelin

    2017-03-01

    Full Text Available Single-mode, widely tunable laser diodes in the mid-infrared range are highly interesting for demanding spectroscopic applications involving multi-species discrimination. We report on an alternative approach using single frequency laser arrays. Single-mode laser arrays were fabricated using all-photonic-crystal electrically pumped distributed feedback cavities on GaSb. The fabricated lasers exhibit thresholds in the 3.2 kA/cm2 range in a continuous wave regime at room temperature. The maximum output power reaches 1 mW and single mode operation with a side-mode suppression ratio of 30 dB is demonstrated. These lasers were used to perform tunable diode laser absorption spectroscopy of several gases in standard gas cells. Continuous spectral coverage of a 40 nm band using 10 lasers seems an achievable goal using laser arrays with PhC lattice constant variations of 1 nm from laser to laser.

  1. High-efficiency pyrene-based blue light emitting diodes: Aggregation suppression using a calixarene 3D-scaffold

    KAUST Repository

    Chan, Khaileok

    2012-01-01

    An efficient blue light emitting diode based on solution processable pyrene-1,3-alt-calix[4]arene is demonstrated, providing a record current efficiency of 10.5 cd A -1 in a simple non-doped OLED configuration. Complete suppression of pyrene aggregation in the solid state is achieved by controlling chromophore dispersion using the 1,3-alt-calix[4]arene scaffold. © 2012 The Royal Society of Chemistry.

  2. Phosphorescent cyclometalated complexes for efficient blue organic light-emitting diodes

    Science.gov (United States)

    Suzuri, Yoshiyuki; Oshiyama, Tomohiro; Ito, Hiroto; Hiyama, Kunihisa; Kita, Hiroshi

    2014-10-01

    Phosphorescent emitters are extremely important for efficient organic light-emitting diodes (OLEDs), which attract significant attention. Phosphorescent emitters, which have a high phosphorescence quantum yield at room temperature, typically contain a heavy metal such as iridium and have been reported to emit blue, green and red light. In particular, the blue cyclometalated complexes with high efficiency and high stability are being developed. In this review, we focus on blue cyclometalated complexes. Recent progress of computational analysis necessary to design a cyclometalated complex is introduced. The prediction of the radiative transition is indispensable to get an emissive cyclometalated complex. We summarize four methods to control phosphorescence peak of the cyclometalated complex: (i) substituent effect on ligands, (ii) effects of ancillary ligands on heteroleptic complexes, (iii) design of the ligand skeleton, and (iv) selection of the central metal. It is considered that novel ligand skeletons would be important to achieve both a high efficiency and long lifetime in the blue OLEDs. Moreover, the combination of an emitter and a host is important as well as the emitter itself. According to the dependences on the combination of an emitter and a host, the control of exciton density of the triplet is necessary to achieve both a high efficiency and a long lifetime, because the annihilations of the triplet state cause exciton quenching and material deterioration.

  3. White Polymer Light-Emitting Diodes Based on Exciplex Electroluminescence from Polymer Blends and a Single Polymer.

    Science.gov (United States)

    Liang, Junfei; Zhao, Sen; Jiang, Xiao-Fang; Guo, Ting; Yip, Hin-Lap; Ying, Lei; Huang, Fei; Yang, Wei; Cao, Yong

    2016-03-09

    In this Article, we designed and synthesized a series of polyfluorene derivatives, which consist of the electron-rich 4,4'-(9-alkyl-carbazole-3,6-diyl)bis(N,N-diphenylaniline) (TPA-Cz) in the side chain and the electron-deficient dibenzothiophene-5,5-dioxide (SO) unit in the main chain. The resulting copolymer PF-T25 that did not comprise the SO unit exhibited blue light-emission with the Commission Internationale de L'Eclairage coordinates of (0.16, 0.10). However, by physically blending PF-T25 with a blue light-emitting SO-based oligomer, a novel low-energy emission correlated to exciplex emerged due to the appropriate energy level alignment of TPA-Cz and the SO-based oligomers, which showed extended exciton lifetime as confirmed by time-resolved photoluminescent spectroscopy. The low-energy emission was also identified in copolymers consisting of SO unit in the main chain, which can effectively compensate for the high-energy emission to produce binary white light-emission. Polymer light-emitting diodes based on the exciplex-type single greenish-white polymer exhibit the peak luminous efficiency of 2.34 cd A(-1) and the maximum brightness of 12 410 cd m(-2), with Commission Internationale de L'Eclairage color coordinates (0.27, 0.39). The device based on such polymer showed much better electroluminescent stability than those based on blending films. These observations indicated that developing a single polymer with the generated exciplex emission can be a novel and effective molecular design strategy toward highly stable and efficient white polymer light-emitting diodes.

  4. Multi-solution processes of small molecule for flexible white organic light-emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, Yu-Sheng, E-mail: ystsai@nfu.edu.tw [Institute of Electro-optical and Materials Science, National Formosa University, Yunlin 63201, Taiwan, ROC (China); Chittawanij, Apisit; Hong, Lin-Ann; Guo, Siou-Wei [Institute of Electro-optical and Materials Science, National Formosa University, Yunlin 63201, Taiwan, ROC (China); Wang, Ching-Chiun [Department of Solid State Lighting Technology, Mechanical and Systems Research Laboratories, Industrial Technology Research Institute, Hsinchu 31040, Taiwan, ROC (China); Juang, Fuh-Shyang [Institute of Electro-optical and Materials Science, National Formosa University, Yunlin 63201, Taiwan, ROC (China); Lai, Shih-Hsiang [Department of Solid State Lighting Technology, Mechanical and Systems Research Laboratories, Industrial Technology Research Institute, Hsinchu 31040, Taiwan, ROC (China); Lin, Yang-Ching [Institute of Electro-optical and Materials Science, National Formosa University, Yunlin 63201, Taiwan, ROC (China)

    2016-04-01

    Most small molecule organic light emitting diode (SM-OLED) device structures are made in one layer using solution-based processing because the solution is usually a high dissolvent material that easily attacks the layer below it. We demonstrate a simple and reliable stamping technique for fabricating multi-solution process flexible white SM-OLEDs. The structure is anode/spin-hole injection layer/spin-emitting layer/stamping-electron transport layer/cathode. Poly(di-methyl silane) (PDMS) stamp is used for transferring electron transport layer. An intermediate ultraviolet-ozone surface treatment is introduced to temporarily modify the PDMS stamp surface. Then, the solution-based electron transport layer film can therefore be uniformly formed on top of the PDMS surface. After that the electron transport layer film on the PDMS stamp is transfer-printed onto the emitting layer with suitable heating and pressing. A solution-based processing is successfully established to efficiently fabricate flexible white SM-OLEDs. The SM-OLEDs were obtained at the current density of 20 mA/cm{sup 2}, luminance of 1062 cd/m{sup 2}, current efficiency of 5.57 cd/A, and Commission internationale de l'éclairage coordinate of (0.32, 0.35). - Highlights: • All solution-processed small molecule materials (emitting layer, electron transport layer). • Poly(di-methylsilane) (PDMS) stamp is subsequently used for stamping transfer. • The flexible white SM-OLEDs are based on solution-processes with a low-cost method.

  5. Multi-solution processes of small molecule for flexible white organic light-emitting diodes

    International Nuclear Information System (INIS)

    Tsai, Yu-Sheng; Chittawanij, Apisit; Hong, Lin-Ann; Guo, Siou-Wei; Wang, Ching-Chiun; Juang, Fuh-Shyang; Lai, Shih-Hsiang; Lin, Yang-Ching

    2016-01-01

    Most small molecule organic light emitting diode (SM-OLED) device structures are made in one layer using solution-based processing because the solution is usually a high dissolvent material that easily attacks the layer below it. We demonstrate a simple and reliable stamping technique for fabricating multi-solution process flexible white SM-OLEDs. The structure is anode/spin-hole injection layer/spin-emitting layer/stamping-electron transport layer/cathode. Poly(di-methyl silane) (PDMS) stamp is used for transferring electron transport layer. An intermediate ultraviolet-ozone surface treatment is introduced to temporarily modify the PDMS stamp surface. Then, the solution-based electron transport layer film can therefore be uniformly formed on top of the PDMS surface. After that the electron transport layer film on the PDMS stamp is transfer-printed onto the emitting layer with suitable heating and pressing. A solution-based processing is successfully established to efficiently fabricate flexible white SM-OLEDs. The SM-OLEDs were obtained at the current density of 20 mA/cm"2, luminance of 1062 cd/m"2, current efficiency of 5.57 cd/A, and Commission internationale de l'éclairage coordinate of (0.32, 0.35). - Highlights: • All solution-processed small molecule materials (emitting layer, electron transport layer). • Poly(di-methylsilane) (PDMS) stamp is subsequently used for stamping transfer. • The flexible white SM-OLEDs are based on solution-processes with a low-cost method.

  6. Effects of doping parameters on the CIE value of flexible white organic light emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Juang Fuhshyang; Lin Mingyein; Yang Chanyi [Institute of Electro-Optical and Materials Science, National Huwei University of Science and Technology, Huwei, Yunlin (Taiwan); Tsai Yusheng [Department of Electro-Optics Engineering, National Huwei University of Science and Technology, Huwei, Yunlin (Taiwan); Lin, David [Windell Corporation, 1F, No. 9, Kung-Yen 7 Road, Industrial Zone, Taichung (Taiwan); Wang Wentunn; Shen Chaiyuan [Electronics Research and Service Organization, Industrial Technology Research Institute, 195 Chung Hsing Rd., Sec. 4 Chu Tung, Hsin Chu (Taiwan)

    2004-09-01

    Red dopants were doped in different emitters, blue and green, respectively, to fabricate white organic light emitting diodes on flexible substrates. The competitive emission between blue and red emitters with various doped-zones was studied. When the DCJT doped zone was located far away from the hole-injection layer, both the blue and red color can be emitted. An appropriate red-dopant position in the device enhanced the green emission from 8-hydroxyquinoline aluminum (Alq3) which was combined with the red and blue emission to generate a white light. Finally, a white emission with the CIE value, (0.30, 0.32), independent of the applied voltage, was obtained with the optimum doped width and location. (copyright 2004 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  7. Efficiency enhancement of InGaN/GaN light-emitting diodes with pin-doped GaN quantum barrier

    International Nuclear Information System (INIS)

    Sirkeli, Vadim P; Al-Daffaie, Shihab; Oprea, Ion; Küppers, Franko; Hartnagel, Hans L; Yilmazoglu, Oktay; Ong, Duu Sheng

    2017-01-01

    Blue InGaN/GaN light-emitting diodes with undoped, heavily Si-doped, Si delta-doped, heavily Mg-doped, Mg delta-doped, and Mg–Si pin-doped GaN barrier are investigated numerically. The simulation results demonstrate that the Mg–Si pin-doping in the GaN barrier effectively reduces the polarization-induced electric field between the InGaN well and the GaN barrier in the multiple quantum well, suppresses the quantum-confined Stark effect, and enhances the hole injection and electron confinement in the active region. For this light-emitting diode (LED) device structure, we found that the turn-on voltage is 2.8 V, peak light emission is at 415.3 nm, and internal quantum efficiency is 85.9% at 100 A cm −2 . It is established that the LED device with Mg–Si pin-doping in the GaN barrier has significantly improved efficiency and optical output power performance, and lower efficiency droop up to 400 A cm −2 compared with LED device structures with undoped or Si(Mg)-doped GaN barrier. (paper)

  8. Effect of the polymer emission on the electroluminescence characteristics of n-ZnO nanorods/p-polymer hybrid light emitting diode

    Science.gov (United States)

    Zaman, S.; Zainelabdin, A.; Amin, G.; Nur, O.; Willander, M.

    2011-09-01

    Hybrid light emitting diodes (LEDs) based on zinc oxide (ZnO) nanorods and polymers (single and blended) were fabricated and characterized. The ZnO nanorods were grown by the chemical bath deposition method at 50°C. Three different LEDs, with blue emitting, orange-red emitting or their blended polymer together with ZnO nanorods, were fabricated and studied. The current-voltage characteristics show good diode behavior with an ideality factor in the range of 2.1 to 2.27 for all three devices. The electroluminescence spectrum (EL) of the blended device has an emission range from 450 nm to 750 nm, due to the intermixing of the blue emission generated by poly(9,9-dioctylfluorene) denoted as PFO with orange-red emission produced by poly(2-methoxy-5(20-ethyl-hexyloxy)-1,4-phenylenevinylene) 1,4-phenylenevinylene) symbolized as MEH PPV combined with the deep-band emission (DBE) of the ZnO nanorods, i.e. it covers the whole visible region and is manifested as white light. The CIE color coordinates showed bluish, orange-red and white emission from the PFO, MEH PPV and blended LEDs with ZnO nanorods, respectively. These results indicate that the choice of the polymer with proper concentration is critical to the emitted color in ZnO nanorods/p-organic polymer LEDs and careful design should be considered to obtain intrinsic white light sources.

  9. High performance tunnel injection InGaN/GaN quantum Dot light emitting diodes emitting in the green (λ=495nm)

    KAUST Repository

    Zhang, Meng

    2011-05-01

    InGaN/GaN self-organized quantum dots with density of (2-5)×10 10 cm-2, internal quantum efficiency of 32% and a reduced recombination lifetime of 0.6 ns were grown by plasma assisted molecular beam epitaxy. The photoluminescence spectra of the dots peak at 495 nm at 300 K. The characteristics of tunnel injection InGaN/GaN quantum dot light emitting diodes are presented. The current density at maximum efficiency is 90.2 A/cm 2, which is superior to equivalent multiquantum well devices. © 2010 Elsevier B.V. All rights reserved.

  10. Self-assembly surface modified indium-tin oxide anodes for single-layer light-emitting diodes

    CERN Document Server

    Morgado, J; Charas, A; Matos, M; Alcacer, L; Cacialli, F

    2003-01-01

    We study the effect of indium-tin oxide surface modification by self assembling of highly polar molecules on the performance of single-layer light-emitting diodes (LEDs) fabricated with polyfluorene blends and aluminium cathodes. We find that the efficiency and light-output of such LEDs is comparable to, and sometimes better than, the values obtained for LEDs incorporating a hole injection layer of poly(3,4-ethylene dioxythiophene) doped with polystyrene sulphonic acid. This effect is attributed to the dipole-induced work function modification of indium-tin oxide.

  11. Self-assembly surface modified indium-tin oxide anodes for single-layer light-emitting diodes

    International Nuclear Information System (INIS)

    Morgado, Jorge; Barbagallo, Nunzio; Charas, Ana; Matos, Manuel; Alcacer, Luis; Cacialli, Franco

    2003-01-01

    We study the effect of indium-tin oxide surface modification by self assembling of highly polar molecules on the performance of single-layer light-emitting diodes (LEDs) fabricated with polyfluorene blends and aluminium cathodes. We find that the efficiency and light-output of such LEDs is comparable to, and sometimes better than, the values obtained for LEDs incorporating a hole injection layer of poly(3,4-ethylene dioxythiophene) doped with polystyrene sulphonic acid. This effect is attributed to the dipole-induced work function modification of indium-tin oxide

  12. Enhanced Efficiency of Polymer Light-Emitting Diodes by Dispersing Dehydrated Nanotube Titanic Acid in the Hole-buffer Layer

    Energy Technology Data Exchange (ETDEWEB)

    Qian, L., E-mail: qian_lei@126.com; Xu, Z.; Teng, F.; Duan, X.-X. [Beijing Jiaotong University, Institute of Optoelectronic Technology (China); Jin, Z.-S.; Du, Z.-L. [Henan University, Key Laboratory on special functional materials (China); Li, F.-S.; Zheng, M.-J. [State Key Laboratory for Artificial Microstructures and Mesoscopic Physics, Peking University, Department of Physics (China); Wang, Y.-S. [Beijing Jiaotong University, Institute of Optoelectronic Technology (China)

    2007-06-15

    Efficiency of polymer light-emitting diodes (PLEDs) with poly(2-methoxy-5-(2-ethyl hexyloxy)-p-phenylene vinylene) (MEH-PPV) as an emitting layer was improved if a dehydrated nanotubed titanic acid (DNTA) doped hole-buffer layer polyethylene dioxythiophene (PEDOT) was used. Photoluminescence (PL) and Raman spectra indicated a stronger interaction between DNTA and sulfur atom in thiophene of PEDOT, which suppresses the chemical interaction between vinylene of MEH-PPV and thiophene of PEDOT. The interaction decreases the defect states in an interface region to result in enhancement in device efficiency, even though the hole transporting ability of PEDOT was decreased.

  13. Enhanced Efficiency of Polymer Light-Emitting Diodes by Dispersing Dehydrated Nanotube Titanic Acid in the Hole-buffer Layer

    Science.gov (United States)

    Qian, L.; Xu, Z.; Teng, F.; Duan, X.-X.; Jin, Z.-S.; Du, Z.-L.; Li, F.-S.; Zheng, M.-J.; Wang, Y.-S.

    2007-06-01

    Efficiency of polymer light-emitting diodes (PLEDs) with poly(2-methoxy-5-(2-ethyl hexyloxy)- p-phenylene vinylene) (MEH-PPV) as an emitting layer was improved if a dehydrated nanotubed titanic acid (DNTA) doped hole-buffer layer polyethylene dioxythiophene (PEDOT) was used. Photoluminescence (PL) and Raman spectra indicated a stronger interaction between DNTA and sulfur atom in thiophene of PEDOT, which suppresses the chemical interaction between vinylene of MEH-PPV and thiophene of PEDOT. The interaction decreases the defect states in an interface region to result in enhancement in device efficiency, even though the hole transporting ability of PEDOT was decreased.

  14. Zinc oxide nanorods/polymer hybrid heterojunctions for white light emitting diodes

    Science.gov (United States)

    Willander, M.; Nur, O.; Zaman, S.; Zainelabdin, A.; Bano, N.; Hussain, I.

    2011-06-01

    Zinc oxide (ZnO) with its deep level defect emission covering the whole visible spectrum holds promise for the development of intrinsic white lighting sources with no need of using phosphors for light conversion. ZnO nanorods (NRs) grown on flexible plastic as substrate using a low temperature approach (down to 50 °C) were combined with different organic semiconductors to form hybrid junction. White electroluminescence (EL) was observed from these hybrid junctions. The configuration used for the hybrid white light emitting diodes (LEDs) consists of two-layers of polymers on the flexible plastic with ZnO NRs on the top. The inorganic/organic hybrid heterojunction has been fabricated by spin coating the p-type polymer poly (3,4-ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT : PSS) for hole injection with an ionization potential of 5.1 eV and poly(9, 9-dioctylfluorene) (PFO) is used as blue emitting material with a bandgap of 3.3 eV. ZnO NRs are grown on top of the organic layers. Two other configurations were also fabricated; these are using a single MEH PPV (red-emitting polymer) instead of the PFO and the third configuration was obtained from a blend of the PFO and the MEH PPV. The white LEDs were characterized by scanning electron microscope, x-ray diffraction (XRD), current-voltage (I-V) characteristics, room temperature photoluminescence (PL) and EL. The EL spectrum reveals a broad emission band covering the range from 420 to 800 nm, and the emissions causing this white luminescence were identified.

  15. Zinc oxide nanorods/polymer hybrid heterojunctions for white light emitting diodes

    International Nuclear Information System (INIS)

    Willander, M; Nur, O; Zaman, S; Zainelabdin, A; Bano, N; Hussain, I

    2011-01-01

    Zinc oxide (ZnO) with its deep level defect emission covering the whole visible spectrum holds promise for the development of intrinsic white lighting sources with no need of using phosphors for light conversion. ZnO nanorods (NRs) grown on flexible plastic as substrate using a low temperature approach (down to 50 0 C) were combined with different organic semiconductors to form hybrid junction. White electroluminescence (EL) was observed from these hybrid junctions. The configuration used for the hybrid white light emitting diodes (LEDs) consists of two-layers of polymers on the flexible plastic with ZnO NRs on the top. The inorganic/organic hybrid heterojunction has been fabricated by spin coating the p-type polymer poly (3,4-ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT : PSS) for hole injection with an ionization potential of 5.1 eV and poly(9, 9-dioctylfluorene) (PFO) is used as blue emitting material with a bandgap of 3.3 eV. ZnO NRs are grown on top of the organic layers. Two other configurations were also fabricated; these are using a single MEH PPV (red-emitting polymer) instead of the PFO and the third configuration was obtained from a blend of the PFO and the MEH PPV. The white LEDs were characterized by scanning electron microscope, x-ray diffraction (XRD), current-voltage (I-V) characteristics, room temperature photoluminescence (PL) and EL. The EL spectrum reveals a broad emission band covering the range from 420 to 800 nm, and the emissions causing this white luminescence were identified.

  16. Proposed Use of Zero Bias Diode Arrays as Thermal Electric Noise Rectifiers and Non-Thermal Energy Harvesters

    Science.gov (United States)

    Valone, Thomas F.

    2009-03-01

    The well known built-in voltage potential for some select semiconductor p-n junctions and various rectifying devices is proposed to be favorable for generating DC electricity at "zero bias" (with no DC bias voltage applied) in the presence of Johnson noise or 1/f noise which originates from the quantum vacuum (Koch et al., 1982). The 1982 Koch discovery that certain solid state devices exhibit measurable quantum noise has also recently been labeled a finding of dark energy in the lab (Beck and Mackey, 2004). Tunnel diodes are a class of rectifiers that are qualified and some have been credited with conducting only because of quantum fluctuations. Microwave diodes are also good choices since many are designed for zero bias operation. A completely passive, unamplified zero bias diode converter/detector for millimeter (GHz) waves was developed by HRL Labs in 2006 under a DARPA contract, utilizing a Sb-based "backward tunnel diode" (BTD). It is reported to be a "true zero-bias diode." It was developed for a "field radiometer" to "collect thermally radiated power" (in other words, 'night vision'). The diode array mounting allows a feed from horn antenna, which functions as a passive concentrating amplifier. An important clue is the "noise equivalent power" of 1.1 pW per root hertz and the "noise equivalent temperature difference" of 10° K, which indicate sensitivity to Johnson noise (Lynch, et al., 2006). There also have been other inventions such as "single electron transistors" that also have "the highest signal to noise ratio" near zero bias. Furthermore, "ultrasensitive" devices that convert radio frequencies have been invented that operate at outer space temperatures (3 degrees above zero point: 3° K). These devices are tiny nanotech devices which are suitable for assembly in parallel circuits (such as a 2-D array) to possibly produce zero point energy direct current electricity with significant power density (Brenning et al., 2006). Photovoltaic p-n junction

  17. Applications of Light Emitting Diodes in Health Care.

    Science.gov (United States)

    Dong, Jianfei; Xiong, Daxi

    2017-11-01

    Light emitting diodes (LEDs) have become the main light sources for general lighting, due to their high lumen efficiency and long life time. Moreover, their high bandwidth and the availability of diverse wavelength contents ranging from ultraviolet to infrared empower them with great controllability in tuning brightness, pulse durations and spectra. These parameters are the essential ingredients of the applications in medical imaging and therapies. Despite the fast advances in both LED technologies and their applications, few reviews have been seen to link the controllable emission properties of LEDs to these applications. The objective of this paper is to bridge this gap by reviewing the main control techniques of LEDs that enable creating enhanced lighting patterns for imaging and generating effective photon doses for photobiomodulation. This paper also provides the basic mechanisms behind the effective LED therapies in treating cutaneous and neurological diseases. The emerging field of optogenetics is also discussed with a focus on the application of LEDs. The multidisciplinary topics reviewed in this paper can help the researchers in LEDs, imaging, light therapy and optogenetics better understand the basic principles in each other's field; and hence to stimulate the application of LEDs in health care.

  18. Time-dependent simulation of organic light-emitting diodes

    International Nuclear Information System (INIS)

    Sharifi, M J

    2009-01-01

    Several methods to simulate the behavior of organic light-emitting diodes (OLEDs) have been proposed in the past. In this paper, we develop a previous method, based on the master equation, in order to allow the simulation of time-dependent behavior and transient states. The calculation algorithm of the program that we have written is described. The time-dependent behaviors of two simple monolayer devices and of a more complicated three-layer device were simulated by means of this program, and the results are discussed. The results show that the turn-off speed of an OLED might be very slow, especially in the case of a multilayer device. This behavior is related to the low mobility of the organic material in weak electric fields. An interesting feature of the time behavior is pointed out, whereby the recombination rate may become considerably larger after the falling edge of an applied voltage pulse. Moreover, the validity of the transient electro-luminescent method for measuring carrier mobility in organic material has been examined by means of simulation. The results show that there is some inconsistency especially in high electric fields

  19. Tunable blue organic light emitting diode based on aluminum calixarene supramolecular complex

    Science.gov (United States)

    Legnani, C.; Reyes, R.; Cremona, M.; Bagatin, I. A.; Toma, H. E.

    2004-07-01

    In this letter, the results of supramolecular organic light emitting diodes using a calix[4] arene complex thin film as emitter and electron transporting layer are presented. The devices were grown onto glass substrates coated with indium-tin-oxide layer and aluminum thick (150nm) cathode. By applying a dc voltage between the device electrodes in forward bias condition, a blue light emission in the active area of the device was observed. It was found that the electroluminescent emission peak can be tuned between 470 and 510nm changing the applied voltage bias from 4.3 to 5.4V. The observed tunable emission can be associated with an energy transfer from the calixarene compound.

  20. Developing Quantum Dot Phosphor-Based Light-Emitting Diodes for Aviation Lighting Applications

    International Nuclear Information System (INIS)

    Wu, F.; Dawei, Z.; Shuzhen, S.; Yiming, Z.; Songlin, Z.; Jian, X.

    2012-01-01

    We have investigated the feasibility of employing quantum dot (QD) phosphor-based light-emitting diodes (LEDs) in aviation applications that request Night Vision Imaging Systems (NVIS) compliance. Our studies suggest that the emerging QD phosphor-based LED technology could potentially be superior to conventional aviation lighting technology by virtue of the marriage of tight spectral control and broad wavelength tunability. This largely arises from the fact that the optical properties of semiconductor nano crystal QDs can be tailored by varying the nano crystal size without any compositional changes. It is envisioned that the QD phosphor-based LEDs hold great potentials in cockpit illumination, back light sources of monitor screens, as well as the LED indicator lights of aviation panels.

  1. Dual light-emitting diode-based multichannel microscopy for whole-slide multiplane, multispectral and phase imaging.

    Science.gov (United States)

    Liao, Jun; Wang, Zhe; Zhang, Zibang; Bian, Zichao; Guo, Kaikai; Nambiar, Aparna; Jiang, Yutong; Jiang, Shaowei; Zhong, Jingang; Choma, Michael; Zheng, Guoan

    2018-02-01

    We report the development of a multichannel microscopy for whole-slide multiplane, multispectral and phase imaging. We use trinocular heads to split the beam path into 6 independent channels and employ a camera array for parallel data acquisition, achieving a maximum data throughput of approximately 1 gigapixel per second. To perform single-frame rapid autofocusing, we place 2 near-infrared light-emitting diodes (LEDs) at the back focal plane of the condenser lens to illuminate the sample from 2 different incident angles. A hot mirror is used to direct the near-infrared light to an autofocusing camera. For multiplane whole-slide imaging (WSI), we acquire 6 different focal planes of a thick specimen simultaneously. For multispectral WSI, we relay the 6 independent image planes to the same focal position and simultaneously acquire information at 6 spectral bands. For whole-slide phase imaging, we acquire images at 3 focal positions simultaneously and use the transport-of-intensity equation to recover the phase information. We also provide an open-source design to further increase the number of channels from 6 to 15. The reported platform provides a simple solution for multiplexed fluorescence imaging and multimodal WSI. Acquiring an instant focal stack without z-scanning may also enable fast 3-dimensional dynamic tracking of various biological samples. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Embeded photonic crystal at the interface of p-GaN and Ag reflector to improve light extraction of GaN-based flip-chip light-emitting diode

    International Nuclear Information System (INIS)

    Zhen, Aigong; Ma, Ping; Zhang, Yonghui; Guo, Enqing; Tian, Yingdong; Liu, Boting; Guo, Shikuan; Shan, Liang; Wang, Junxi; Li, Jinmin

    2014-01-01

    In this experiment, a flip-chip light-emitting diode with photonic crystal was fabricated at the interface of p-GaN and Ag reflector via nanospheres lithography technique. In this structure, photonic crystal could couple with the guide-light efficiently by reason of the little distance between photonic crystal and active region. The light output power of light emitting diode with embedded photonic crystal was 1.42 times larger than that of planar flip-chip light-emitting diode. Moreover, the embedded photonic crystal structure makes the far-field divergence angle decreased by 18° without spectra shift. The three-dimensional finite difference time domain simulation results show that photonic crystal could improve the light extraction, and enhance the light absorption caused by Ag reflector simultaneously, because of the roughed surface. The depth of photonic crystal is the key parameter affecting the light extraction and absorption. Light extraction efficiency increases with the depth photonic crystal structure rapidly, and reaches the maximum at the depth 80 nm, beyond which light extraction decrease drastically

  3. High-efficient and brightness white organic light-emitting diodes operated at low bias voltage

    Science.gov (United States)

    Zhang, Lei; Yu, Junsheng; Yuan, Kai; Jian, Yadong

    2010-10-01

    White organic light-emitting diodes (OLEDs) used for display application and lighting need to possess high efficiency, high brightness, and low driving voltage. In this work, white OLEDs consisted of ambipolar 9,10-bis 2-naphthyl anthracene (ADN) as a host of blue light-emitting layer (EML) doped with tetrabutyleperlene (TBPe) and a thin codoped layer consisted of N, N'-bis(naphthalen-1-yl)-N,N'-bis(phenyl)-benzidine (NPB) as a host of yellow light-emitting layer doped with 4-(dicyanomethylene)-2-tert-butyl-6-(1,1,7,7-tetramethyljulolidin-4-yl-vinyl)-4H-pyran (DCJTB) were investigated. With appropriate tuning in the film thickness, position, and dopant concentration of the co-doped layer, a white OLED with a luminance yield of 10.02 cd/A with the CIE coordinates of (0.29, 0.33) has been achieved at a bias voltage of 9 V and a luminance level of over 10,000 cd/m2. By introducing the PIN structure with both HIL and bis(10- hydroxybenzo-quinolinato)-beryllium (BeBq2) ETL, the power efficiency of white OLED was improved.

  4. High-power light-emitting diode based facility for plant cultivation

    Energy Technology Data Exchange (ETDEWEB)

    Tamulaitis, G [Institute of Materials Science and Applied Research, Vilnius University, Sauletekio al. 9-III, LT-10222 Vilnius (Lithuania); Duchovskis, P [Lithuanian Institute of Horticulture, Babtai, LT-54333 Kaunas District (Lithuania); Bliznikas, Z [Institute of Materials Science and Applied Research, Vilnius University, Sauletekio al. 9-III, LT-10222 Vilnius (Lithuania); Breive, K [Institute of Materials Science and Applied Research, Vilnius University, Sauletekio al. 9-III, LT-10222 Vilnius (Lithuania); Ulinskaite, R [Lithuanian Institute of Horticulture, Babtai, LT-54333 Kaunas District (Lithuania); Brazaityte, A [Lithuanian Institute of Horticulture, Babtai, LT-54333 Kaunas District (Lithuania); Novickovas, A [Institute of Materials Science and Applied Research, Vilnius University, Sauletekio al. 9-III, LT-10222 Vilnius (Lithuania); Zukauskas, A [Institute of Materials Science and Applied Research, Vilnius University, Sauletekio al. 9-III, LT-10222 Vilnius (Lithuania)

    2005-09-07

    Based on perspectives of the development of semiconductor materials systems for high-power light-emitting diodes (LEDs), an illumination facility for greenhouse plant cultivation was designed with the dominating 640 nm photosynthetically active component delivered by AlGaInP LEDs and supplementary components from AlGaN (photothropic action, 455 nm) and AlGaAs (photosynthetic 660 nm and photomorphogenetic 735 nm) LEDs. Photosynthesis intensity, photosynthetic productivity and growth morphology as well as chlorophyll and phytohormone concentrations were investigated in radish and lettuce grown in phytotron chambers under the LED-based illuminators and under high-pressure sodium (HPS) lamps with an equivalent photon flux density. Advantages of the high-power LED-based illuminators over conventional HPS lamps, applicability of AlGaInP LEDs for photosynthesis and control of plant growth by circadian manipulation of a relatively weak far-red component were demonstrated.

  5. Hybrid daylight/light-emitting diode illumination system for indoor lighting.

    Science.gov (United States)

    Ge, Aiming; Qiu, Peng; Cai, Jinlin; Wang, Wei; Wang, Junwei

    2014-03-20

    A hybrid illumination method using both daylight and light-emitting diodes (LEDs) for indoor lighting is presented in this study. The daylight can be introduced into the indoor space by a panel-integration system. The daylight part and LEDs are combined within a specific luminaire that can provide uniform illumination. The LEDs can be turned on and dimmed through closed-loop control when the daylight illuminance is inadequate. We simulated the illumination and calculated the indoor lighting efficiency of our hybrid daylight and LED lighting system, and compared this with that of LED and fluorescent lighting systems. Simulation results show that the efficiency of the hybrid daylight/LED illumination method is better than that of LED and traditional lighting systems, under the same lighting conditions and lighting time; the method has hybrid lighting average energy savings of T5 66.28%, and that of the LEDs is 41.62%.

  6. High-power light-emitting diode based facility for plant cultivation

    International Nuclear Information System (INIS)

    Tamulaitis, G; Duchovskis, P; Bliznikas, Z; Breive, K; Ulinskaite, R; Brazaityte, A; Novickovas, A; Zukauskas, A

    2005-01-01

    Based on perspectives of the development of semiconductor materials systems for high-power light-emitting diodes (LEDs), an illumination facility for greenhouse plant cultivation was designed with the dominating 640 nm photosynthetically active component delivered by AlGaInP LEDs and supplementary components from AlGaN (photothropic action, 455 nm) and AlGaAs (photosynthetic 660 nm and photomorphogenetic 735 nm) LEDs. Photosynthesis intensity, photosynthetic productivity and growth morphology as well as chlorophyll and phytohormone concentrations were investigated in radish and lettuce grown in phytotron chambers under the LED-based illuminators and under high-pressure sodium (HPS) lamps with an equivalent photon flux density. Advantages of the high-power LED-based illuminators over conventional HPS lamps, applicability of AlGaInP LEDs for photosynthesis and control of plant growth by circadian manipulation of a relatively weak far-red component were demonstrated

  7. High color rendering index white organic light-emitting diode using levofloxacin as blue emitter

    International Nuclear Information System (INIS)

    Miao Yan-Qin; Zhang Ai-Qin; Li Yuan-Hao; Wang Hua; Jia Hu-Sheng; Liu Xu-Guang; Gao Zhi-Xiang; Tsuboi Taijuf

    2015-01-01

    Levofloxacin (LOFX), which is well-known as an antibiotic medicament, was shown to be useful as a 452-nm blue emitter for white organic light-emitting diodes (OLEDs). In this paper, the fabricated white OLED contains a 452-nm blue emitting layer (thickness of 30 nm) with 1 wt% LOFX doped in CBP (4,4’-bis(carbazol-9-yl)biphenyl) host and a 584-nm orange emitting layer (thickness of 10 nm) with 0.8 wt% DCJTB (4-(dicyanomethylene)-2-tert-butyl-6-(1,1,7, 7-tetramethyljulolidin-4-yl-vinyl)-4H-pyran) doped in CBP, which are separated by a 20-nm-thick buffer layer of TPBi (2,2’,2”-(benzene-1,3,5-triyl)-tri(1-phenyl-1H-benzimidazole). A high color rendering index (CRI) of 84.5 and CIE chromaticity coordinates of (0.33, 0.32), which is close to ideal white emission CIE (0.333, 0.333), are obtained at a bias voltage of 14 V. Taking into account that LOFX is less expensive and the synthesis and purification technologies of LOFX are mature, these results indicate that blue fluorescence emitting LOFX is useful for applications to white OLEDs although the maximum current efficiency and luminance are not high. The present paper is expected to become a milestone to using medical drug materials for OLEDs. (paper)

  8. Degradation of Bilayer Organic Light-Emitting Diodes Studied by Impedance Spectroscopy.

    Science.gov (United States)

    Sato, Shuri; Takata, Masashi; Takada, Makoto; Naito, Hiroyoshi

    2016-04-01

    The degradation of bilayer organic light-emitting diodes (OLEDs) with a device structure of N,N'-di(1-naphthyl)-N,N'-diphenylbenzidine (α-NPD) (hole transport layer) and tris-(8-hydroxyquinolate)aluminum (Alq3) (emissive layer and electron transport layer) has been studied by impedance spectroscopy and device simulation. Two modulus peaks are found in the modulus spectra of the OLEDs below the electroluminescence threshold. After aging of the OLEDs, the intensity of electroluminescence is degraded and the modulus peak due to the Alq3 layer is shifted to lower frequency, indicating that the resistance of the Alq3 layer is increased. Device simulation reveals that the increase in the resistance of the Alq3 layer is due to the decrease in the electron mobility in the Alq3 layer.

  9. White organic light-emitting diodes with 4 nm metal electrode

    Energy Technology Data Exchange (ETDEWEB)

    Lenk, Simone; Schwab, Tobias; Schubert, Sylvio; Müller-Meskamp, Lars; Leo, Karl; Reineke, Sebastian [Institut für Angewandte Photophysik, Technische Universität Dresden, George-Bähr-Straße 1, 01069 Dresden (Germany); Gather, Malte C. [Institut für Angewandte Photophysik, Technische Universität Dresden, George-Bähr-Straße 1, 01069 Dresden (Germany); Organic Semiconductor Centre, SUPA, School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews KY16 9SS (United Kingdom)

    2015-10-19

    We investigate metal layers with a thickness of only a few nanometers as anode replacement for indium tin oxide (ITO) in white organic light-emitting diodes (OLEDs). The ultrathin metal electrodes prove to be an excellent alternative that can, with regard to the angular dependence and efficiency of the OLED devices, outperform the ITO reference. Furthermore, unlike ITO, the thin composite metal electrodes are readily compatible with demanding architectures (e.g., top-emission or transparent OLEDs, device unit stacking, etc.) and flexible substrates. Here, we compare the sheet resistance of both types of electrodes on polyethylene terephthalate for different bending radii. The electrical performance of ITO breaks down at a radius of 10 mm, while the metal electrode remains intact even at radii smaller than 1 mm.

  10. Note: A flexible light emitting diode-based broadband transient-absorption spectrometer

    Science.gov (United States)

    Gottlieb, Sean M.; Corley, Scott C.; Madsen, Dorte; Larsen, Delmar S.

    2012-05-01

    This Note presents a simple and flexible ns-to-ms transient absorption spectrometer based on pulsed light emitting diode (LED) technology that can be incorporated into existing ultrafast transient absorption spectrometers or operate as a stand-alone instrument with fixed-wavelength laser sources. The LED probe pulses from this instrument exhibit excellent stability (˜0.5%) and are capable of producing high signal-to-noise long-time (>100 ns) transient absorption signals either in a broadband multiplexed (spanning 250 nm) or in tunable narrowband (20 ns) operation. The utility of the instrument is demonstrated by measuring the photoinduced ns-to-ms photodynamics of the red/green absorbing fourth GMP phosphodiesterase/adenylyl cyclase/FhlA domain of the NpR6012 locus of the nitrogen-fixing cyanobacterium Nostoc punctiforme.

  11. Visible-light electroluminescence in Mn-doped GaAs light-emitting diodes

    International Nuclear Information System (INIS)

    Nam Hai, Pham; Maruo, Daiki; Tanaka, Masaaki

    2014-01-01

    We observed visible-light electroluminescence (EL) due to d-d transitions in light-emitting diodes with Mn-doped GaAs layers (here, referred to as GaAs:Mn). Besides the band-gap emission of GaAs, the EL spectra show two peaks at 1.89 eV and 2.16 eV, which are exactly the same as 4 A 2 ( 4 F) → 4 T 1 ( 4 G) and 4 T 1 ( 4 G) → 6 A 1 ( 6 S) transitions of Mn atoms doped in ZnS. The temperature dependence and the current-density dependence are consistent with the characteristics of d-d transitions. We explain the observed EL spectra by the p-d hybridized orbitals of the Mn d electrons in GaAs

  12. Exciplex formation and electroluminescent absorption in ultraviolet organic light-emitting diodes

    International Nuclear Information System (INIS)

    Zhang Qi; Zhang Hao; Xu Tao; Wei Bin; Zhang Xiao-Wen

    2015-01-01

    We investigated the formation of exciplex and electroluminescent absorption in ultraviolet organic light-emitting diodes (UV OLEDs) using different heterojunction structures. It is found that an energy barrier of over 0.3 eV between the emissive layer (EML) and adjacent transport layer facilitates exciplex formation. The electron blocking layer effectively confines electrons in the EML, which contributes to pure UV emission and enhances efficiency. The change in EML thickness generates tunable UV emission from 376 nm to 406 nm. In addition, the UV emission excites low-energy organic function layers and produces photoluminescent emission. In UV OLED, avoiding the exciplex formation and averting light absorption can effectively improve the purity and efficiency. A maximum external quantum efficiency of 1.2% with a UV emission peak of 376 nm is realized. (paper)

  13. Development and evaluation of a light-emitting diode endoscopic light source

    Science.gov (United States)

    Clancy, Neil T.; Li, Rui; Rogers, Kevin; Driscoll, Paul; Excel, Peter; Yandle, Ron; Hanna, George; Copner, Nigel; Elson, Daniel S.

    2012-03-01

    Light-emitting diode (LED) based endoscopic illumination devices have been shown to have several benefits over arclamp systems. LEDs are energy-efficient, small, durable, and inexpensive, however their use in endoscopy has been limited by the difficulty in efficiently coupling enough light into the endoscopic light cable. We have demonstrated a highly homogenised lightpipe LED light source that combines the light from four Luminus LEDs emitting in the red, green, blue and violet using innovative dichroics that maximise light throughput. The light source spectrally combines light from highly divergent incoherent sources that have a Lambertian intensity profile to provide illumination matched to the acceptance numerical aperture of a liquid light guide or fibre bundle. The LED light source was coupled to a standard laparoscope and performance parameters (power, luminance, colour temperature) compared to a xenon lamp. Although the total illuminance from the endoscope was lower, adjustment of the LEDs' relative intensities enabled contrast enhancement in biological tissue imaging. The LED light engine was also evaluated in a minimally invasive surgery (MIS) box trainer and in vivo during a porcine MIS procedure where it was used to generate 'narrowband' images. Future work using the violet LED could enable photodynamic diagnosis of bladder cancer.

  14. Recent advances in light outcoupling from white organic light-emitting diodes

    Science.gov (United States)

    Gather, Malte C.; Reineke, Sebastian

    2015-01-01

    Organic light-emitting diodes (OLEDs) have been successfully introduced to the smartphone display market and have geared up to become contenders for applications in general illumination where they promise to combine efficient generation of white light with excellent color quality, glare-free illumination, and highly attractive designs. Device efficiency is the key requirement for such white OLEDs, not only from a sustainability perspective, but also because at the high brightness required for general illumination, losses lead to heating and may, thus, cause rapid device degradation. The efficiency of white OLEDs increased tremendously over the past two decades, and internal charge-to-photon conversion can now be achieved at ˜100% yield. However, the extraction of photons remains rather inefficient (typically physics of outcoupling in white OLEDs and review recent progress toward making light extraction more efficient. We describe how structures that scatter, refract, or diffract light can be attached to the outside of white OLEDs (external outcoupling) or can be integrated close to the active layers of the device (internal outcoupling). Moreover, the prospects of using top-emitting metal-metal microcavity designs for white OLEDs and of tuning the average orientation of the emissive molecules within the OLED are discussed.

  15. Solution-Processed Phosphorescent Organic Light-Emitting Diodes with Ultralow Driving Voltage and Very High Power Efficiency

    OpenAIRE

    Wang, Shumeng; Wang, Xingdong; Yao, Bing; Zhang, Baohua; Ding, Junqiao; Xie, Zhiyuan; Wang, Lixiang

    2015-01-01

    To realize power efficient solution-processed phosphorescent organic light-emitting diodes (s-PhOLEDs), the corresponding high driving voltage issue should be well solved. To solve it, efforts have been devoted to the exploitation of novel host or interfacial materials. However, the issues of charge trapping of phosphor and/or charge injection barrier are still serious, largely restraining the power efficiency (PE) levels. Herein, with the utilization of an exciplex-forming couple 4, 4?, 4? -...

  16. Cyclometalated Iridium(III) Carbene Phosphors for Highly Efficient Blue Organic Light-Emitting Diodes.

    Science.gov (United States)

    Chen, Zhao; Wang, Liqi; Su, Sikai; Zheng, Xingyu; Zhu, Nianyong; Ho, Cheuk-Lam; Chen, Shuming; Wong, Wai-Yeung

    2017-11-22

    Five deep blue carbene-based iridium(III) phosphors were synthesized and characterized. Interestingly, one of them can be fabricated into deep blue, sky blue and white organic light-emitting diodes (OLEDs) through changing the host materials and exciton blocking layers. These deep and sky blue devices exhibit Commission Internationale de l'Éclairage (CIE) coordinates of (0.145, 0.186) and (0.152, 0.277) with external quantum efficiency (EQE) of 15.2% and 9.6%, respectively. The EQE of the deep blue device can be further improved up to 19.0% by choosing a host with suitable energy level of its lowest unoccupied molecular orbital (LUMO).

  17. Infrared Organic Light-Emitting Diodes with Carbon Nanotube Emitters.

    Science.gov (United States)

    Graf, Arko; Murawski, Caroline; Zakharko, Yuriy; Zaumseil, Jana; Gather, Malte C

    2018-03-01

    While organic light-emitting diodes (OLEDs) covering all colors of the visible spectrum are widespread, suitable organic emitter materials in the near-infrared (nIR) beyond 800 nm are still lacking. Here, the first OLED based on single-walled carbon nanotubes (SWCNTs) as the emitter is demonstrated. By using a multilayer stacked architecture with matching charge blocking and charge-transport layers, narrow-band electroluminescence at wavelengths between 1000 and 1200 nm is achieved, with spectral features characteristic of excitonic and trionic emission of the employed (6,5) SWCNTs. Here, the OLED performance is investigated in detail and it is found that local conduction hot-spots lead to pronounced trion emission. Analysis of the emissive dipole orientation shows a strong horizontal alignment of the SWCNTs with an average inclination angle of 12.9° with respect to the plane, leading to an exceptionally high outcoupling efficiency of 49%. The SWCNT-based OLEDs represent a highly attractive platform for emission across the entire nIR. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Thermally Activated Delayed Fluorescence Emitters for Deep Blue Organic Light Emitting Diodes: A Review of Recent Advances

    Directory of Open Access Journals (Sweden)

    Thanh-Tuân Bui

    2018-03-01

    Full Text Available Organic light-emitting diodes offer attractive perspectives for the next generation display and lighting technologies. The potential is huge and the list of potential applications is almost endless. So far, blue emitters still suffer from noticeably inferior electroluminescence performances in terms of efficiency, lifespan, color quality, and charge injection/transport when compared to that of the other colors. Emitting materials matching the NTSC standard blue of coordinates (0.14, 0.08 are extremely rare and still constitutes the focus of numerous academic and industrial researches. In this context, we review herein the recent developments on highly emissive deep-blue thermally activated delayed fluorescence emitters that constitute the third-generation electroluminescent materials.

  19. Highly Efficient White Organic Light-Emitting Diodes with Ultrathin Emissive Layers and a Spacer-Free Structure

    Science.gov (United States)

    Wu, Shengfan; Li, Sihua; Sun, Qi; Huang, Chenchao; Fung, Man-Keung

    2016-05-01

    Ultrathin emissive layers (UEMLs) of phosphorescent materials with a layer thickness of less than 0.3 nm were introduced for high-efficiency organic light-emitting diodes (OLEDs). All the UEMLs for white OLEDs can be prepared without the use of interlayers or spacers. Compared with devices fabricated with interlayers inserted in-between the UEMLs, our spacer-free structure not only significantly improves device efficiency, but also simplifies the fabrication process, thus it has a great potential in lowering the cost of OLED panels. In addition, its spacer-free structure decreases the number of interfaces which often introduce unnecessary energy barriers in these devices. In the present work, UEMLs of red, green and blue-emitting phosphorescent materials and yellow and blue phosphorescent emitters are utilized for the demonstration of spacer-free white OLEDs. Upon optimization of the device structure, we demonstrated spacer-free and simple-structured white-emitting OLEDs with a good device performance. The current and power efficiencies of our white-emitting devices are as high as 56.0 cd/A and 55.5 lm/W, respectively. These efficiencies are the highest ever reported for OLEDs fabricated with the UEML approach.

  20. Efficient polymer white-light-emitting diodes with a single-emission layer of fluorescent polymer blend

    International Nuclear Information System (INIS)

    Niu Qiaoli; Xu Yunhua; Jiang Jiaxing; Peng Junbiao; Cao Yong

    2007-01-01

    Efficient polymer white-light-emitting diodes (WPLEDs) have been fabricated with a single layer of fluorescent polymer blend. The device structure consists of ITO/PEDOT/PVK/emissive layer/Ba/Al. The emissive layer is a blend of poly(9,9-dioctylfluorene) (PFO), phenyl-substituted PPV derivative (P-PPV) and a copolymer of 9,9-dioctylfluorene and 4,7-di(4-hexylthien-2-yl)-2,1,3-benzothiadiazole (PFO-DHTBT), which, respectively, emits blue, green and red light. The emission of pure and efficient white light was implemented by tuning the blend weight ratio of PFO: P-PPV: PFO-DHTBT to 96:4:0.4. The maximum current efficiency and luminance are, respectively, 7.6 cd/A at 6.7 V and 11930 cd/m 2 at 11.2 V. The CIE coordinates of white-light emission were stable with the drive voltages

  1. Preparation of indium tin oxide anodes using energy filtrating technique for top-emitting organic light-emitting diode

    Energy Technology Data Exchange (ETDEWEB)

    Zhaoyong, Wang [School of Physical Engineering and Laboratory of Material Physics, Zhengzhou University, Zhengzhou 450052 (China); School of Mathematics and Physics, Henan Urban Construction University, Pingdingshan 467036 (China); Ning, Yao, E-mail: yaoning@zzu.edu.cn [School of Physical Engineering and Laboratory of Material Physics, Zhengzhou University, Zhengzhou 450052 (China); Changbao, Han; Xing, Hu [School of Physical Engineering and Laboratory of Material Physics, Zhengzhou University, Zhengzhou 450052 (China)

    2014-01-01

    Indium tin oxide (ITO) anodes were deposited by an improved magnetron sputtering technique (energy filtrating magnetron sputtering technique, EFMS) for top-emitting organic light-emitting diodes (TOLEDs). The phases, surface morphologies and optical properties were examined by X-ray diffraction (XRD), scanning electron microscope (SEM), atomic force microscopy (AFM) and spectroscopic ellipsometer. The sheet resistances were measured by the sheet resistance meter. The electrical properties were tested by the Hall measurement system. The electro-optic characteristics were examined by a special home-made measurement system. Results indicated that ITO anode deposited by EFMS had a more uniform and smoother surface with smaller grains. ITO film was prepared with the electrical property of the lowest resistivity (4.56 × 10{sup −4} Ω cm), highest carrier density (6.48 × 10{sup 20} cm{sup −3}) and highest carrier mobility (21.1 cm{sup 2}/V/s). The average transmissivity of the ITO film was 87.0% in the wavelength range of 400–800 nm. The TOLEDs based on this ITO anode had a lower turn-on voltage of 2 V (>0.02 mA/cm{sup 2}), higher current density of 58.4 mA/cm{sup 2} at 30 V, higher current efficiency of 1.374 cd/A and higher luminous efficiency of 0.175 lm/W. The possible mechanism of the technique was discussed in detail.

  2. 303 nm continuous wave ultraviolet laser generated by intracavity frequency-doubling of diode-pumped Pr3+:LiYF4 laser

    Science.gov (United States)

    Zhu, Pengfei; Zhang, Chaomin; Zhu, Kun; Ping, Yunxia; Song, Pei; Sun, Xiaohui; Wang, Fuxin; Yao, Yi

    2018-03-01

    We demonstrate an efficient and compact ultraviolet laser at 303 nm generated by intracavity frequency doubling of a continuous wave (CW) laser diode-pumped Pr3+:YLiF4 laser at 607 nm. A cesium lithium borate (CLBO) crystal, cut for critical type I phase matching at room temperature, is used for second-harmonic generation (SHG) of the fundamental laser. By using an InGaN laser diode array emitting at 444.3 nm with a maximum incident power of 10 W, as high as 68 mW of CW output power at 303 nm is achieved. The output power stability in 4 h is better than 2.85%. To the best of our knowledge, this is high efficient UV laser generated by frequency doubling of an InGaN laser diode array pumped Pr3+:YLiF4 laser.

  3. Paired emitter-detector light emitting diodes for the measurement of lead(II) and cadmium(II)

    International Nuclear Information System (INIS)

    Lau, K.-T.; McHugh, Eimear; Baldwin, Susan; Diamond, Dermot

    2006-01-01

    A transmittance mode optical device based on using a reverse biased light emitting diode (LED) as light detector has been developed for colorimetric analysis. This new optical device was validated with bromocresol green dye for absorbance measurements before being employed for detecting cadmium(II) and lead(II) in water. Results show that the performance of this LED-based device is comparable to much more expensive bench top UV-vis instruments, but with the advantages of being low cost, low power and simple to operate

  4. Paired emitter-detector light emitting diodes for the measurement of lead(II) and cadmium(II)

    Energy Technology Data Exchange (ETDEWEB)

    Lau, K.-T. [Adaptive Sensors Group, National Centre for Sensor Research, School of Chemical Sciences, Dublin City University, Dublin 9 (Ireland)]. E-mail: kim.lau@dcu.ie; McHugh, Eimear [Adaptive Sensors Group, National Centre for Sensor Research, School of Chemical Sciences, Dublin City University, Dublin 9 (Ireland); Baldwin, Susan [Adaptive Sensors Group, National Centre for Sensor Research, School of Chemical Sciences, Dublin City University, Dublin 9 (Ireland); Diamond, Dermot [Adaptive Sensors Group, National Centre for Sensor Research, School of Chemical Sciences, Dublin City University, Dublin 9 (Ireland)]. E-mail: Dermot.diamond@dcu.ie

    2006-05-31

    A transmittance mode optical device based on using a reverse biased light emitting diode (LED) as light detector has been developed for colorimetric analysis. This new optical device was validated with bromocresol green dye for absorbance measurements before being employed for detecting cadmium(II) and lead(II) in water. Results show that the performance of this LED-based device is comparable to much more expensive bench top UV-vis instruments, but with the advantages of being low cost, low power and simple to operate.

  5. Pinning, flux diodes and ratchets for vortices interacting with conformal pinning arrays

    International Nuclear Information System (INIS)

    Olson Reichhardt, C. J.; Wang, Y. L.; Argonne National Laboratory; Xiao, Z. L.; Northern Illinois University, DeKalb, IL

    2016-01-01

    A conformal pinning array can be created by conformally transforming a uniform triangular pinning lattice to produce a new structure in which the six-fold ordering of the original lattice is conserved but where there is a spatial gradient in the density of pinning sites. Here we examine several aspects of vortices interacting with conformal pinning arrays and how they can be used to create a flux flow diode effect for driving vortices in different directions across the arrays. Under the application of an ac drive, a pronounced vortex ratchet effect occurs where the vortices flow in the easy direction of the array asymmetry. When the ac drive is applied perpendicular to the asymmetry direction of the array, it is possible to realize a transverse vortex ratchet effect where there is a generation of a dc flow of vortices perpendicular to the ac drive due to the creation of a noise correlation ratchet by the plastic motion of the vortices. We also examine vortex transport in experiments and compare the pinning effectiveness of conformal arrays to uniform triangular pinning arrays. In conclusion, we find that a triangular array generally pins the vortices more effectively at the first matching field and below, while the conformal array is more effective at higher fields where interstitial vortex flow occurs.

  6. Experimental study of the organic light emitting diode with a p-type silicon anode

    International Nuclear Information System (INIS)

    Ma, G.L.; Xu, A.G.; Ran, G.Z.; Qiao, Y.P.; Zhang, B.R.; Chen, W.X.; Dai, L.; Qin, G.G.

    2006-01-01

    We have fabricated and studied an organic light emitting diode (OLED) with a p-type silicon anode and a SiO 2 buffer layer between the anode and the organic layers which emits light from a semitransparent top Yb/Au cathode. The luminance of the OLED is up to 5600 cd/m 2 at 17 V and 1800 mA/cm 2 , the current efficiency is 0.31 cd/A. Both its luminance and current efficiency are much higher than those of the OLEDs with silicon as the anodes reported previously. The enhancement of the luminance and efficiency can be attributed to an improved balance between the hole- and electron-injection through two efficient ways: 1) restraining the hole-injection by inserting an ultra-thin SiO 2 buffer layer between the Si anode and the organic layers; and 2) enhancing the electron-injection by using a low work function, low optical reflectance and absorption semitransparent Yb/Au cathode

  7. Arbitrary helicity control of circularly polarized light from lateral-type spin-polarized light-emitting diodes at room temperature

    Science.gov (United States)

    Nishizawa, Nozomi; Aoyama, Masaki; Roca, Ronel C.; Nishibayashi, Kazuhiro; Munekata, Hiro

    2018-05-01

    We demonstrate arbitrary helicity control of circularly polarized light (CPL) emitted at room temperature from the cleaved side facet of a lateral-type spin-polarized light-emitting diode (spin-LED) with two ferromagnetic electrodes in an antiparallel magnetization configuration. Driving alternate currents through the two electrodes results in polarization switching of CPL with frequencies up to 100 kHz. Furthermore, tuning the current density ratio in the two electrodes enables manipulation of the degree of circular polarization. These results demonstrate arbitrary electrical control of polarization with high speed, which is required for the practical use of lateral-type spin-LEDs as monolithic CPL light sources.

  8. Effect of 660 nm Light-Emitting Diode on the Wound Healing in Fibroblast-Like Cell Lines

    Directory of Open Access Journals (Sweden)

    Myung-Sun Kim

    2015-01-01

    Full Text Available Light in the red to near-infrared (NIR range (630–1000 nm, which is generated using low energy laser or light-emitting diode (LED arrays, was reported to have a range of beneficial biological effects in many injury models. NIR via a LED is a well-accepted therapeutic tool for the treatment of infected, ischemic, and hypoxic wounds as well as other soft tissue injuries in humans and animals. This study examined the effects of exposure to 660 nm red LED light at intensities of 2.5, 5.5, and 8.5 mW/cm2 for 5, 10, and 20 min on wound healing and proliferation in fibroblast-like cells, such as L929 mouse fibroblasts and human gingival fibroblasts (HGF-1. A photo illumination-cell culture system was designed to evaluate the cell proliferation and wound healing of fibroblast-like cells exposed to 600 nm LED light. The cell proliferation was evaluated by MTT assay, and a scratched wound assay was performed to assess the rate of migrating cells and the healing effect. Exposure to the 660 nm red LED resulted in an increase in cell proliferation and migration compared to the control, indicating its potential use as a phototherapeutic agent.

  9. Blue phosphorescent organic light-emitting diodes using an exciplex forming co-host with the external quantum efficiency of theoretical limit.

    Science.gov (United States)

    Shin, Hyun; Lee, Sunghun; Kim, Kwon-Hyeon; Moon, Chang-Ki; Yoo, Seung-Jun; Lee, Jeong-Hwan; Kim, Jang-Joo

    2014-07-16

    A high-efficiency blue-emitting organic light-emitting diode (OLED) approaching theoretical efficiency using an exciplex-forming co-host composed of N,N'-dicarbazolyl-3,5-benzene (mCP) and bis-4,6-(3,5-di-3-pyridylphenyl)- 2-methylpyrimidine (B3PYMPM) is fabricated. Iridium(III)bis[(4,6-difluorophenyl)- pyridinato-N,C2']picolinate (FIrpic) is used as the emitter, which turns out to have a preferred horizontal dipole orientation in the emitting layer. The OLED shows a maximum external quantum efficiency of 29.5% (a maximum current efficiency of 62.2 cd A(-1) ), which is in perfect agreement with the theoretical prediction. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. High-quality vertical light emitting diodes fabrication by mechanical lift-off technique

    Science.gov (United States)

    Tu, Po-Min; Hsu, Shih-Chieh; Chang, Chun-Yen

    2011-10-01

    We report the fabrication of mechanical lift-off high quality thin GaN with Hexagonal Inversed Pyramid (HIP) structures for vertical light emitting diodes (V-LEDs). The HIP structures were formed at the GaN/sapphire substrate interface under high temperature during KOH wet etching process. The average threading dislocation density (TDD) was estimated by transmission electron microscopy (TEM) and found the reduction from 2×109 to 1×108 cm-2. Raman spectroscopy analysis revealed that the compressive stress of GaN epilayer was effectively relieved in the thin-GaN LED with HIP structures. Finally, the mechanical lift-off process is claimed to be successful by using the HIP structures as a sacrificial layer during wafer bonding process.

  11. Ultrastrong light-matter coupling in electrically doped microcavity organic light emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Mazzeo, M., E-mail: marco.mazzeo@unisalento.it [Dipartimento di Matematica e Fisica “Ennio De Giorgi”, Università del Salento, Via Monteroni, 73100 Lecce (Italy); NNL, Istituto Nanoscienze - CNR, Via Arnesano, 73100 Lecce (Italy); Genco, A. [Dipartimento di Matematica e Fisica “Ennio De Giorgi”, Università del Salento, Via Monteroni, 73100 Lecce (Italy); Gambino, S. [NNL, Istituto Nanoscienze - CNR, Via Arnesano, 73100 Lecce (Italy); CBN, Istituto Italiano Tecnologia, Via Barsanti 1, 73010 Lecce (Italy); Ballarini, D.; Mangione, F.; Sanvitto, D. [NNL, Istituto Nanoscienze - CNR, Via Arnesano, 73100 Lecce (Italy); Di Stefano, O.; Patanè, S.; Savasta, S. [Dipartimento di Fisica e Scienze della Terra, Università di Messina, Viale F. Stagno d' Alcontres 31, 98166 Messina (Italy); Gigli, G. [Dipartimento di Matematica e Fisica “Ennio De Giorgi”, Università del Salento, Via Monteroni, 73100 Lecce (Italy); NNL, Istituto Nanoscienze - CNR, Via Arnesano, 73100 Lecce (Italy); CBN, Istituto Italiano Tecnologia, Via Barsanti 1, 73010 Lecce (Italy)

    2014-06-09

    The coupling of the electromagnetic field with an electronic transition gives rise, for strong enough light-matter interactions, to hybrid states called exciton-polaritons. When the energy exchanged between light and matter becomes a significant fraction of the material transition energy an extreme optical regime called ultrastrong coupling (USC) is achieved. We report a microcavity embedded p-i-n monolithic organic light emitting diode working in USC, employing a thin film of squaraine dye as active layer. A normalized coupling ratio of 30% has been achieved at room temperature. These USC devices exhibit a dispersion-less angle-resolved electroluminescence that can be exploited for the realization of innovative optoelectronic devices. Our results may open the way towards electrically pumped polariton lasers.

  12. Pulsed operation of high-power light emitting diodes for imaging flow velocimetry

    International Nuclear Information System (INIS)

    Willert, C; Klinner, J; Moessner, S; Stasicki, B

    2010-01-01

    High-powered light emitting diodes (LED) are investigated for possible uses as light sources in flow diagnostics, in particular, as an alternative to laser-based illumination in particle imaging flow velocimetry in side-scatter imaging arrangements. Recent developments in solid state illumination resulted in mass-produced LEDs that provide average radiant power in excess of 10 W. By operating these LEDs with short duration, pulsed currents that are considerably beyond their continuous current damage threshold, light pulses can be generated that are sufficient to illuminate and image micron-sized particles in flow velocimetry. Time-resolved PIV measurements in water at a framing rate of 2kHz are presented. The feasibility of LED-based PIV measurements in air is also demonstrated

  13. Developing Quantum Dot Phosphor-Based Light-Emitting Diodes for Aviation Lighting Applications

    Directory of Open Access Journals (Sweden)

    Fengbing Wu

    2012-01-01

    Full Text Available We have investigated the feasibility of employing quantum dot (QD phosphor-based light-emitting diodes (LEDs in aviation applications that request Night Vision Imaging Systems (NVIS compliance. Our studies suggest that the emerging QD phosphor-based LED technology could potentially be superior to conventional aviation lighting technology by virtue of the marriage of tight spectral control and broad wavelength tunability. This largely arises from the fact that the optical properties of semiconductor nanocrystal QDs can be tailored by varying the nanocrystal size without any compositional changes. It is envisioned that the QD phosphor-based LEDs hold great potentials in cockpit illumination, back light sources of monitor screens, as well as the LED indicator lights of aviation panels.

  14. Carrier-injection studies in GaN-based light-emitting-diodes

    Science.gov (United States)

    Nguyen, Dinh Chuong; Vaufrey, David; Leroux, Mathieu

    2015-09-01

    Although p-type GaN has been achieved by Mg doping, the low hole-mobility still remains a difficulty for GaN-based light-emitting diodes (LEDs). Due to the lack of field-dependent-velocity model for holes, in GaN-based LED simulations, the hole mobility is usually supposed to remain constant. However, as the p-GaN-layer conductivity is lower than the n-GaN-layer conductivity, a strong electric-field exists in the p-side of an LED when the applied voltage exceeds the LED's built-in voltage. Under the influence of this field, the mobilities of electrons and holes are expected to decrease. Based on a field-dependent-velocity model that is usually used for narrow-bandgap materials, an LED structure is modelled with three arbitrarily chosen hole saturation-velocities. The results show that a hole saturation-velocity lower than 4x106 cm/s can negatively affect the LED's behaviors.

  15. The efficiency challenge of nitride light-emitting diodes for lighting

    KAUST Repository

    Weisbuch, Claude

    2015-03-13

    © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. We discuss the challenges of light-emitting diodes in view of their application to solid-state lighting. The requirement is to at least displace the quite efficient fluorescent, sodium, and high intensity discharge lamps used today in the main energy consuming lighting sectors, industrial, commercial and outdoors, with more efficient and better light quality lamps. We show that both from the point of view of cost of ownership and carbon emissions reduction, the relevant metric is efficiency, more than the cost of lumens. Then, progress from present performance requires identification of the loss mechanisms in light emission from LEDs, and solutions competing with mainstream c-plane LEDS grown on sapphire need to be on par with these. Special attention is devoted to a discussion of the efficiency droop mechanisms, and of a recent direct measurement of Auger generated electrons which appear to be responsible for droop.

  16. High-performance organic light-emitting diodes comprising ultrastable glass layers

    Science.gov (United States)

    Rodríguez-Viejo, Javier

    2018-01-01

    Organic light-emitting diodes (OLEDs) are one of the key solid-state light sources for various applications including small and large displays, automotive lighting, solid-state lighting, and signage. For any given commercial application, OLEDs need to perform at their best, which is judged by their device efficiency and operational stability. We present OLEDs that comprise functional layers fabricated as ultrastable glasses, which represent the thermodynamically most favorable and, thus, stable molecular conformation achievable nowadays in disordered solids. For both external quantum efficiencies and LT70 lifetimes, OLEDs with four different phosphorescent emitters show >15% enhancements over their respective reference devices. The only difference to the latter is the growth condition used for ultrastable glass layers that is optimal at about 85% of the materials’ glass transition temperature. These improvements are achieved through neither material refinements nor device architecture optimization, suggesting a general applicability of this concept to maximize the OLED performance, no matter which specific materials are used. PMID:29806029

  17. High-efficiency green phosphorescent organic light-emitting diodes with double-emission layer and thick N-doped electron transport layer

    Energy Technology Data Exchange (ETDEWEB)

    Nobuki, Shunichiro, E-mail: shunichiro.nobuki.nb@hitachi.com [Hitachi Research Laboratory, Hitachi Ltd., 7-1-1 Omika-cho, Hitachi-city, Ibaraki 319-1292 (Japan); Wakana, Hironori; Ishihara, Shingo [Hitachi Research Laboratory, Hitachi Ltd., 7-1-1 Omika-cho, Hitachi-city, Ibaraki 319-1292 (Japan); Mikami, Akiyoshi [Dept. of Electrical Engineering, Kanazawa Institute of Technology, 7-1 Ohgigaoka, Nonoichimachi, Ishikawa 921-8501 (Japan)

    2014-03-03

    We have developed green phosphorescent organic light-emitting diodes (OLEDs) with high external quantum efficiency of 59.7% and power efficiency of 243 lm/W at 2.73 V at 0.053 mA/cm{sup 2}. A double emission layer and a thick n-doped electron transport layer were adopted to improve the exciton recombination factor. A high refractive index hemispherical lens was attached to a high refractive index substrate for extracting light trapped inside the substrate and the multiple-layers of OLEDs to air. Additionally, we analyzed an energy loss mechanism to clarify room for the improvement of our OLEDs including the charge balance factor. - Highlights: • We developed high efficiency green phosphorescent organic light-emitting diode (OLED). • Our OLED had external quantum efficiency of 59.7% and power efficiency of 243 lm/W. • A double emission layer and thick n-doped electron transport layer were adopted. • High refractive index media (hemispherical lens and substrate) were also used. • We analyzed an energy loss mechanism to clarify the charge balance factor of our OLED.

  18. Noniterative algorithm for improving the accuracy of a multicolor-light-emitting-diode-based colorimeter

    Science.gov (United States)

    Yang, Pao-Keng

    2012-05-01

    We present a noniterative algorithm to reliably reconstruct the spectral reflectance from discrete reflectance values measured by using multicolor light emitting diodes (LEDs) as probing light sources. The proposed algorithm estimates the spectral reflectance by a linear combination of product functions of the detector's responsivity function and the LEDs' line-shape functions. After introducing suitable correction, the resulting spectral reflectance was found to be free from the spectral-broadening effect due to the finite bandwidth of LED. We analyzed the data for a real sample and found that spectral reflectance with enhanced resolution gives a more accurate prediction in the color measurement.

  19. Organic semiconductor heterojunctions and its application in organic light-emitting diodes

    CERN Document Server

    Ma, Dongge

    2017-01-01

    This book systematically introduces the most important aspects of organic semiconductor heterojunctions, including the basic concepts and electrical properties. It comprehensively discusses the application of organic semiconductor heterojunctions as charge injectors and charge generation layers in organic light-emitting diodes (OLEDs). Semiconductor heterojunctions are the basis for constructing high-performance optoelectronic devices. In recent decades, organic semiconductors have been increasingly used to fabricate heterojunction devices, especially in OLEDs, and the subject has attracted a great deal of attention and evoked many new phenomena and interpretations in the field. This important application is based on the low dielectric constant of organic semiconductors and the weak non-covalent electronic interactions between them, which means that they easily form accumulation heterojunctions. As we know, the accumulation-type space charge region is highly conductive, which is an important property for high...

  20. High-luminosity blue and blue-green gallium nitride light-emitting diodes.

    Science.gov (United States)

    Morkoç, H; Mohammad, S N

    1995-01-06

    Compact and efficient sources of blue light for full color display applications and lighting eluded and tantalized researchers for many years. Semiconductor light sources are attractive owing to their reliability and amenability to mass manufacture. However, large band gaps are required to achieve blue color. A class of compound semiconductors formed by metal nitrides, GaN and its allied compounds AIGaN and InGaN, exhibits properties well suited for not only blue and blue-green emitters, but also for ultraviolet emitters and detectors. What thwarted engineers and scientists from fabricating useful devices from these materials in the past was the poor quality of material and lack of p-type doping. Both of these obstacles have recently been overcome to the point where highluminosity blue and blue-green light-emitting diodes are now available in the marketplace.