WorldWideScience

Sample records for emittance measurement device

  1. A device for electron gun emittance measurement

    International Nuclear Information System (INIS)

    Aune, B.; Corveller, P.; Jablonka, M.; Joly, J.M.

    1985-05-01

    In order to improve the final emittance of the beam delivered by the ALS electron linac a new gun is going to be installed. To measure its emittance and evaluate the contribution of different factors to emittance growth we have developed an emittance measurement device. We describe the experimental and mathematical procedure we have followed, and give some results of measurements

  2. Beam diagnostics using an emittance measurement device

    International Nuclear Information System (INIS)

    Sarstedt, M.; Becker, R.; Klein, H.; Maaser, A.; Mueller, J.; Thomae, R.; Weber, M.

    1995-01-01

    For beam diagnostics aside from Faraday cups for current measurements and analysing magnets for the determination of beam composition and energy the most important tool is an emittance measurement device. With such a system the distribution of the beam particles in phase-space can be determined. This yields information not only on the position of the particles but also on their angle with respect to the beam axis. There are different kinds of emittance measurement devices using either circular holes or slits for separation of part of the beam. The second method (slit-slit measurement), though important for the determination of the rms-emittance, has the disadvantage of integrating over the y- and y'-coordinate (measurement in xx'-plane assumed). This leads to different emittance diagrams than point-point measurements, since in xx'-plane for each two corresponding points of rr'-plane there exists a connecting line. With regard to beam aberrations this makes xx'-emittances harder to interpret. In this paper the two kinds of emittance diagrams are discussed. Additionally the influence of the slit height on the xx'-emittance is considered. The analytical results are compared to experimental measurements in rr'-, rx'- and xx'-phase-space. (orig.)

  3. Control and Data Analysis for Emittance Measuring Devices

    CERN Document Server

    Hoffmann, T

    2001-01-01

    Due to the wide range of heavy ion beam intensities and energies in the GSI linac and the associated transfer channel to the synchrotron, several different types of emittance measurement systems have been established. Many common devices such as slit/grid or dipole-sweep systems are integrated into the GSI control system. Other systems like the single shot pepper pot method using CCD-cameras or stand-alone slit/grid set-ups are connected to personal computers. An overview is given about the various systems and their software integration. Main interest is directed on the software development for emittance front-end control and data analysis such as evaluation algorithms or graphical presentation of the results. In addition, special features for improved usability of the software such as data export, project databases and automatic report generation will be presented. An outlook on a unified evaluation procedure for all different types of emittance measurement is given.

  4. Design and Development of Emittance Measurement Device by Using the Pepper-pot Technique

    Science.gov (United States)

    Pakluea, S.; Rimjaem, S.

    2017-09-01

    Transverse emittance of a charged particle beam is one of the most important properties that reveals the quality of the beam. It is related to charge density, transvers size and angular displacement of the beam in transverse phase space. There are several techniques to measure the transverse emittance value. One of practical methods is the pepper-pot technique, which can measure both horizontal and vertical emittance value in a single measurement. This research concentrates on development of a pepper-pot device to measure the transverse emittance of electron beam produced from an accelerator injector system, which consists of a thermionic cathode RF electron gun and an alpha magnet, at the Plasma and Beam Physics Research Facility, Chiang Mai University. Simulation of beam dynamics was conducted with programs PARMELA, ELEGANT and self-developed codes using C and MATLAB. The geometry, dimensions and location of the pepper-pot as well as its corresponding screen station position were included in the simulation. The result from this study will be used to design and develop a practical pepper-pot experimental station.

  5. Design of a 4D emittance measurement device for high charge state ECR ion sources

    International Nuclear Information System (INIS)

    Zhao Yangyang; Yang Yao; Zhao Hongwei; Sun Liangting; Cao Yun; Wang Yun

    2013-01-01

    For the purpose of on-line beam quality diagnostics and transverse emittance coupling investigation of the ion beams delivered by an Electron Cyclotron Resonance (ECR) ion source, a real-time 4D Pepper Pot type emittance scanner is under development at IMP (Institute of Moden Physics, Chinese Academy of Sciences). The high charge state ECR ion source at IMP could produce CW or pulsed heavy ion beam intensities in the range of 1 eμA∼1 emA with the kinetic energy of 10∼35 keV/q, which needs the design of the Pepper Pot scanner to be optimized accordingly. The Pepper Pot scanner has many features, such as very short response time and wide dynamic working range that the device could be applied. Since intense heavy ion beam bombardment is expected for this device, the structure and the material selection for the device is specially considered during the design, and a feasible solution to analyze the pictures acquired after the data acquisition is also made. (authors)

  6. BEAM EMITTANCE MEASUREMENT TOOL FOR CEBAF OPERATIONS

    International Nuclear Information System (INIS)

    Chevtsov, Pavel; Tiefenback, Michael

    2008-01-01

    A new software tool was created at Jefferson Lab to measure the emittance of the CEBAF electron beams. The tool consists of device control and data analysis applications. The device control application handles the work of wire scanners and writes their measurement results as well as the information about accelerator settings during these measurements into wire scanner data files. The data analysis application reads these files and calculates the beam emittance on the basis of a wire scanner data processing model. Both applications are computer platform independent but are mostly used on LINUX PCs recently installed in the accelerator control room. The new tool significantly simplifies beam emittance measurement procedures for accelerator operations and contributes to a very high availability of the CEBAF machine for the nuclear physics program at Jefferson Lab.

  7. Measuring emittances and sigma matrices

    International Nuclear Information System (INIS)

    Rees, J.; Rivkin, L.

    1984-03-01

    The method used for measuring emittance at the SLAC Linac and the linear collider damping ring is described. The basis of the method is derived using one two-by-two matrix to specify the state of the input beam (sigma matrix) and another to describe the lens-drift transport system (R-matrix)

  8. Complementary methods of transverse emittance measurement

    Energy Technology Data Exchange (ETDEWEB)

    Zagel, James; Hu, Martin; Jansson, Andreas; Thurman-Keup, Randy; Yan, Ming-Jen; /Fermilab

    2008-05-01

    Several complementary transverse emittance monitors have been developed and used at the Fermilab accelerator complex. These include Ionization profile Monitors (IPM), Flying Wires, Schottky detectors and a Synchrotron Light Monitor (Synchlite). Mechanical scrapers have also been used for calibration purposes. This paper describes the various measurement devices by examining their basic features, calibration requirements, systematic uncertainties, and applications to collider operation. A comparison of results from different kinds of measurements is also presented.

  9. Emittance measurements by variable quadrupole method

    International Nuclear Information System (INIS)

    Toprek, D.

    2005-01-01

    The beam emittance is a measure of both the beam size and beam divergence, we cannot directly measure its value. If the beam size is measured at different locations or under different focusing conditions such that different parts of the phase space ellipse will be probed by the beam size monitor, the beam emittance can be determined. An emittance measurement can be performed by different methods. Here we will consider the varying quadrupole setting method.

  10. Emittance measurements of the CLIO electron beam

    Science.gov (United States)

    Chaput, R.; Devanz, G.; Joly, P.; Kergosien, B.; Lesrel, J.

    1997-02-01

    We have designed a setup to measure the transverse emittance at the CLIO accelerator exit, based on the "3 gradients" method. The beam transverse size is measured simply by scanning it with a steering coil across a fixed jaw and recording the transmitted current, at various quadrupole strengths. A code then performs a complete calculation of the emittance using the transfer matrix of the quadrupole instead of the usual classical lens approximation. We have studied the influence of various parameters on the emittance: Magnetic field on the e-gun and the peak current. We have also improved a little the emittance by replacing a mismatched pipe between the buncher and accelerating section to avoid wake-field effects; The resulting improvements of the emittance have led to an increase in the FEL emitted power.

  11. Beam emittance measurement from CERN thermionic guns

    International Nuclear Information System (INIS)

    Kester, O.; Rao, R.; Rinolfi, L.

    1992-01-01

    In the LEP Injector Linacs (LIL) a thermionic gun provides electron beams with different peak intensities at an energy of 80 keV. The beam emittances were estimated from the EGUN programme. Since the gun is of triode type, the main contribution to the emittance comes from the grid. The simulation programme does not model the real geometry by assuming a cylindrical symmetry, while the grid does not have such symmetry. A Gun Test Facility (GTF), allowing emittance measurements, based on the 3-gradients-method was installed. The experimental results are presented. (author) 6 refs.; 6 figs

  12. Beam emittance measurements on multicusp ion sources

    Energy Technology Data Exchange (ETDEWEB)

    Sarstedt, M.; Lee, Y.; Leung, K.N. [and others

    1995-08-01

    Multicusp ion sources are used for various applications. Presently, the implementation of this type of ion source planned for the development of an ion beam lithography machine, which will be used for the projection of sub-0.2 {mu}m patterns onto a wafer substrate. Since, for this application, a very good beam quality and a small ion energy spread are required, emittance measurements have been performed on a multicusp ion source for various source conditions. It is shown that the installation of proper capacitors between the extraction electrodes is necessary to avoid rf-pickup, which otherwise leads to a distortion of the beam emittance. The influence of the magnetic filter field on the beam emittance has been investigated, and the beam emittance of a dc filament-discharge plasma has also been compared to that of an rf-generated plasma.

  13. Beam emittance measurements on multicusp ion sources

    International Nuclear Information System (INIS)

    Sarstedt, M.; Lee, Y.; Leung, K.N.

    1995-08-01

    Multicusp ion sources are used for various applications. Presently, the implementation of this type of ion source planned for the development of an ion beam lithography machine, which will be used for the projection of sub-0.2 μm patterns onto a wafer substrate. Since, for this application, a very good beam quality and a small ion energy spread are required, emittance measurements have been performed on a multicusp ion source for various source conditions. It is shown that the installation of proper capacitors between the extraction electrodes is necessary to avoid rf-pickup, which otherwise leads to a distortion of the beam emittance. The influence of the magnetic filter field on the beam emittance has been investigated, and the beam emittance of a dc filament-discharge plasma has also been compared to that of an rf-generated plasma

  14. Development and calibration of a portable detection device for in vivo measurement of high-energy photon emitters incorporated by humans

    International Nuclear Information System (INIS)

    Soares, A.B.; Arbach, M.N.; Lucena, E.A.; Dantas, A.L.A.; Dantas, B.M.

    2017-01-01

    This work presents the evaluation of the applicability and sensitivity of a portable detection device specially designed for in vivo measurement of high-energy photon emitters in the human body. The calibration was performed at the In-Vivo Monitoring Laboratory of the IRD. The equipment consists of a lead-collimated NaI (Tl) 3″ x 3″ scintillation detector assembled on a tripod. The detector and its compact associated electronics are connected via USB cable to a portable PC. Spectrum acquisition and analysis is controlled by specific commercially available software. The calibration was performed using a standard liquid source of 152 Eu contained in 3 L polyethylene bottles. The evaluation of the system is based on the estimation of the minimum committed effective doses associated to the minimum detectable activities, calculated using current biokinetic and dosimetric models available in the literature. The dose detection limits for selected radionuclides of interest in an emergency scenario have shown to be far below 1 mSv allowing the system to be useful in accident situations. (author)

  15. Development and calibration of a portable detection device for in vivo measurement of high-energy photon emitters incorporated by humans

    Energy Technology Data Exchange (ETDEWEB)

    Soares, A.B.; Arbach, M.N.; Lucena, E.A.; Dantas, A.L.A.; Dantas, B.M., E-mail: alexandrebaso@globo.com [Instituto de Radioproteção e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil). Lab. de Monitoração Interna

    2017-07-01

    This work presents the evaluation of the applicability and sensitivity of a portable detection device specially designed for in vivo measurement of high-energy photon emitters in the human body. The calibration was performed at the In-Vivo Monitoring Laboratory of the IRD. The equipment consists of a lead-collimated NaI (Tl) 3″ x 3″ scintillation detector assembled on a tripod. The detector and its compact associated electronics are connected via USB cable to a portable PC. Spectrum acquisition and analysis is controlled by specific commercially available software. The calibration was performed using a standard liquid source of {sup 152}Eu contained in 3 L polyethylene bottles. The evaluation of the system is based on the estimation of the minimum committed effective doses associated to the minimum detectable activities, calculated using current biokinetic and dosimetric models available in the literature. The dose detection limits for selected radionuclides of interest in an emergency scenario have shown to be far below 1 mSv allowing the system to be useful in accident situations. (author)

  16. Quadrupole Transfer Function for Emittance Measurement

    CERN Document Server

    Cameron, Peter; Jansson, Andreas; Tan, Cheng-Yang

    2008-01-01

    Historically the use of the quadrupole moment measurement has been impeded by the requirement for large dynamic range, as well as measurement sensitivity to beam position. We investigate the use of the transfer function technique [1-3] in combination with the sensitivity and 160dB revolution line rejection of the direct diode detection analog front end [4] to open the possibility of an emittance diagnostic that may be implemented without operational complication, quasi- parasitic to the operation of existing tune measurement systems. Such a diagnostic would be particularly useful as an emittance monitor during acceleration ramp development in machines like RHIC and the LHC.

  17. Emittance measuring system on the UNILAC

    International Nuclear Information System (INIS)

    Ehrich, A.; Glatz, J.; Strahl, P.

    A description is given of one of the beam emittance measuring systems designed for the UNILAC at GSI. The measuring system mechanics and the detector system are detailed, and the associated electronics are discussed. Computer programming and data processing and evaluation are described

  18. Measurements of Thermal Emittance for Cesium Telluride Photocathodes at PITZ

    CERN Document Server

    Miltchev, V; Grabosch, H J; Han, J H; Krasilnikov, M; Oppelt, A; Petrosian, B; Staykov, L; Stephan, F

    2005-01-01

    The thermal emittance determines the lower emittance limit and its measurement is of high importance to understand the ultimate injector performance. In this contribution we present results of thermal emittance measurements under rf operation conditions for various Cs2Te cathodes and different accelerating gradients. Measurements of thermal emittance scaling with the cathode laser spot size are presented and analysed. The significance of the Schottky effect in the emittance formation process is discussed.

  19. Device for the radiation centering at electron emitters

    International Nuclear Information System (INIS)

    Panzer, S.; Ardenne, T. von; Jessat, K.; Bahr, G.

    1985-01-01

    The invention has been directed at a device for a simplified and reliable centering of electron beams at electron emitters in particular for welding and thermal surface modifications. The electron beam has been focussed relatively to an electron-optical lens. A movable masked electron detector has been arranged at the electron beam deflection plane. The electron detector is connected with an electronic data evaluation equipment

  20. Longitudinal emittance measurement at the ATS

    International Nuclear Information System (INIS)

    Cottingame, W.B.; Cortez, J.H.; Higgins, W.W.; Sander, O.R.; Sandoval, D.P.

    1986-01-01

    With increasing brightness, beam diagnostic techniques requiring interception of the beam become impractical. For H - particle beams, solutions for this problem based on the phenomenon of photodissociation are now being investigated at the Los Alamos National Laboratory accelerator test stand (ATS). A laser can be used to selectively neutralize portions of the beam than can be characterized after the charged particles have been swept away. We have used this technique for measuring longitudinal emittance at the output of the ATS radio-frequency quadrupole

  1. Simple emittance measurement of negative hydrogen ion beam using pepper-pot method

    International Nuclear Information System (INIS)

    Hamabe, M.; Tsumori, K.; Takeiri, Y.; Kaneko, O.; Asano, E.; Kawamoto, T.; Kuroda, T.; Guharay, S.K.

    1997-01-01

    A simple apparatus for emittance measurement using pepper-pot method is developed. The pepper-pot patterns are directly exposed and recorded on a Kapton foil. Using this apparatus, emittance was measured in the case of the negative hydrogen (H - ) beam from the large negative ion source, which is the 1/3 scaled test device for the negative-ion-based neutral beam injection (N-NBI) on the Large Helical Device (LHD). As the consequence of the first trial, the 95% normalized emittance value is measured as 0.59 mm mrad. (author)

  2. Simple emittance measurement of negative hydrogen ion beam using pepper-pot method

    Energy Technology Data Exchange (ETDEWEB)

    Hamabe, M.; Tsumori, K.; Takeiri, Y.; Kaneko, O.; Asano, E.; Kawamoto, T.; Kuroda, T. [National Inst. for Fusion Science, Nagoya (Japan); Guharay, S.K.

    1997-02-01

    A simple apparatus for emittance measurement using pepper-pot method is developed. The pepper-pot patterns are directly exposed and recorded on a Kapton foil. Using this apparatus, emittance was measured in the case of the negative hydrogen (H{sup -}) beam from the large negative ion source, which is the 1/3 scaled test device for the negative-ion-based neutral beam injection (N-NBI) on the Large Helical Device (LHD). As the consequence of the first trial, the 95% normalized emittance value is measured as 0.59 mm mrad. (author)

  3. Emittance measurements from the LLUMC proton accelerator

    International Nuclear Information System (INIS)

    Coutrakon, G.; Gillespie, G.H.; Hubbard, J.; Sanders, E.

    2005-01-01

    A new method of calculating beam emittances at the extraction point of a particle accelerator is presented. The technique uses the optimization programs NPSOL and MINOS developed at Stanford University in order to determine the initial values of beam size, divergence and correlation parameters (i.e. beam sigma matrix, σ ij ) that best fit measured beam parameters. These σ ij elements are then used to compute the Twiss parameters α, β, and the phase space area, ε, of the beam at the extraction point. Beam size measurements in X and Y throughout the transport line were input to the optimizer along with the magnetic elements of bends, quads, and drifts. The σ ij parameters were optimized at the accelerator's extraction point by finding the best agreement between these measured beam sizes and those predicted by TRANSPORT. This expands upon a previous study in which a 'trial and error' technique was used instead of the optimizer software, and which yielded similar results. The Particle Beam Optics Laboratory (PBO Lab TM ) program used for this paper integrates particle beam optics and other codes into a single intuitive graphically-based computing environment. This new software provides a seamless interface between the NPSOL and MINOS optimizer and TRANSPORT calculations. The results of these emittance searches are presented here for the eight clinical energies between 70 and 250 MeV currently being used at LLUMC

  4. Measurement of emittance of metal interface in molten salt

    International Nuclear Information System (INIS)

    Araki, N.; Makino, A.; Nakamura, Y.

    1995-01-01

    A new technique for measuring the total normal emittance of a metal in a semi-transparent liquid has been proposed and this technique has been applied to measure the emittance of stainless steel (SUS304), nickel, and gold in molten potassium nitrate KNO 3 . These emittance data are indispensable to analyzing the radiative heat transfer between a metal and a semitransparent liquid, such as a molten salt

  5. Emittance formula for slits and pepper-pot measurement

    International Nuclear Information System (INIS)

    Zhang, M.

    1996-10-01

    In this note, a rigid formula for slits and pepper-pot emittance measurement is derived. The derivation is based on the one- dimensional slit measurement setup. A mathematical generalization of the slit emittance formula to the pepper-pot measurement is discussed

  6. Measuring Beam Sizes and Ultra-Small Electron Emittances Using an X-ray Pinhole Camera.

    Science.gov (United States)

    Elleaume, P; Fortgang, C; Penel, C; Tarazona, E

    1995-09-01

    A very simple pinhole camera set-up has been built to diagnose the electron beam emittance of the ESRF. The pinhole is placed in the air next to an Al window. An image is obtained with a CCD camera imaging a fluorescent screen. The emittance is deduced from the size of the image. The relationship between the measured beam size and the electron beam emittance depends upon the lattice functions alpha, beta and eta, the screen resolution, pinhole size and photon beam divergence. The set-up is capable of measuring emittances as low as 5 pm rad and is presently routinely used as both an electron beam imaging device and an emittance diagnostic.

  7. Extracting the emitter orientation in organic light-emitting diodes from external quantum efficiency measurements

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, Tobias D., E-mail: Tobias.Schmidt@physik.uni-augsburg.de; Reichardt, Lukas J.; Wehrmeister, Sebastian; Scholz, Bert J.; Mayr, Christian; Brütting, Wolfgang, E-mail: Wolfgang.Bruetting@physik.uni-augsburg.de [Institute of Physics, University of Augsburg, 86135 Augsburg (Germany); Rausch, Andreas F.; Wehlus, Thomas; Reusch, Thilo C. G. [OSRAM OLED GmbH, Wernerwerkstrasse 2, 93049 Regensburg (Germany); Ciarnáin, Rossá Mac; Danz, Norbert [Fraunhofer Institute for Applied Optics and Precision Engineering, 07745 Jena (Germany)

    2014-07-28

    Emitter orientation will play a major role in future applications of organic light-emitting diodes due to its strong impact on the efficiency of the devices. Up to now, determining the orientation of transition dipole moments required elaborate angular-dependent measurements of the light emission pattern. In this paper, we present a simplified and straightforward method to extract the emitter orientation from external quantum efficiency measurements. We demonstrate the validity of the method on three different dye-doped emitting systems.

  8. MEV Energy Electrostatic Accelerator Ion Beam Emittance Measurement

    OpenAIRE

    I.G. Ignat’ev; M.I. Zakharets; S.V. Kolinko; D.P. Shulha

    2014-01-01

    The testing equipment was designed, manufactured and tried out permitting measurements of total current, current profile and emittance of an ion beam extracted from the ion beam. MeV energy electrostatic accelerator ion H + beam emittance measurement results are presented.

  9. Measurement of the transverse emittance for the NSC Pelletron

    International Nuclear Information System (INIS)

    Rodriques, G.; Mandal, A.; Chopra, S.; Joshi, R.; Datta, S.K.; Roy, A.

    1998-01-01

    The knowledge of the emittance (transverse and longitudinal) of the NSC pelletron is essential for matching the acceptance of the LINAC which is to be installed to augment the pelletron beam energies. The transverse emittance of NSC pelletron has been measured by employing a focussing element and a down-stream beam profile monitor

  10. Simple emittance measurement of H- beams from a large plasma source

    International Nuclear Information System (INIS)

    Guharay, S.K.; Tsumori, K.; Hamabe, M.; Takeiri, Y.; Kaneko, O.; Kuroda, T.

    1996-03-01

    An emittance meter is developed using pepper-pot method. Kapton foils are used to detect intensity distributions of small beamlets at the 'image' plane of the pepper-pot. Emittance of H - beams from a large plasma source for the neutral beam injector of the Large Helical Device (LHD) has been measured. The normalized emittance (95%) of a 6 mA H - beam with emission current density of about 10 mA/cm 2 is ∼0.59 mm mrad. The present system is very simple, and it eliminates many complexities of the existing schemes. (author)

  11. Theory and measurements of emittance preservation in plasma wakefield acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Frederico, Joel

    2016-12-01

    In this dissertation, we examine the preservation and measurement of emittance in the plasma wakefield acceleration blowout regime. Plasma wakefield acceleration (PWFA) is a revolutionary approach to accelerating charged particles that has been demonstrated to have the potential for gradients orders of magnitude greater than traditional approaches. The application of PWFA to the design of a linear collider will make new high energy physics research possible, but the design parameters must first be shown to be competitive with traditional methods. Emittance preservation is necessary in the design of a linear collider in order to maximize luminosity. We examine the conditions necessary for circular symmetry in the PWFA blowout regime, and demonstrate that current proposals meet these bounds. We also present an application of beam lamentation which describes the process of beam parameter and emittance matching. We show that the emittance growth saturates as a consequence of energy spread in the beam. The initial beam parameters determine the amount of emittance growth, while the contribution of energy spread is negligible. We also present a model for ion motion in the presence of a beam that is much more dense than the plasma. By combining the model of ion motion and emittance growth, we find the emittance growth due to ion motion is minimal in the case of marginal ion motion. In addition, we present a simulation that validates the ion motion model, which is under further development to examine emittance growth of both marginal and pronounced ion motion. Finally, we present a proof-of-concept of an emittance measurement which may enable the analysis of emittance preservation in future PWFA experiments.

  12. Transverse Emittance Measurement and Preservation at the LHC

    CERN Document Server

    AUTHOR|(CDS)2082907

    The Large Hadron Collider (LHC) at CERN is a high energy storage ring that provides proton and heavy ion collisions to study fundamental particle physics. The luminosity production is closely linked to emittance preservation in the accelerator. The transverse emittance is the phase space density of the beam and should be conserved when the particle beam is transformed through the accelerator. Perturbing effects, however, can lead to emittance increase and hence luminosity degradation. Measuring the emittance growth is a complex task with high intensity beams and changing energies. The machine optics and the transverse beam size have to be measured as accurately as possible. Beta function measurements with k-modulation will be discussed. With this method the quadrupole focussing strength is varied and the resulting tune change is traced to determine the beta function at the quadrupole. A new k-modulation measurement tool was developed for the LHC. The fully automatic and online measurement system takes constra...

  13. A Program to Generate a Particle Distribution from Emittance Measurements

    CERN Document Server

    Bouma, DS; Lallement, JB

    2010-01-01

    We have written a program to generate a particle distribution based on emittance measurements in x-x’ and y-y’. The accuracy of this program has been tested using real and constructed emittance measurements. Based on these tests, the distribution generated by the program can be used to accurately simulate the beam in multi-particle tracking codes, as an alternative to a Gaussian or uniform distribution.

  14. Transverse emittance measurement at REGAE via a solenoid scan

    Energy Technology Data Exchange (ETDEWEB)

    Hachmann, Max

    2012-12-15

    The linear accelerator REGAE at DESY produces short and low charged electron bunches, on the one hand to resolve the excitation transitions of atoms temporally by pump probe electron diffraction experiments and on the other hand to investigate principal mechanisms of laser plasma acceleration. For both cases a high quality electron beam is required. A quantity to rate the beam quality is the beam emittance. In the course of this thesis transverse emittance measurements by a solenoid scan could be realized and beyond that an improved theoretical description of a solenoid was successful. The foundation of emittance measurements are constituted by theoretical models which describe the envelope of a beam. Two different models were derived. The first is an often used model to determine the transverse beam emittance without considering space charge effects. More interesting and challenging was the development of an envelope model taking space charge effects into account. It is introduced and cross checked with measurements and simulations.

  15. Emittance measuring unit for 100% duty factor linac injector beams

    Energy Technology Data Exchange (ETDEWEB)

    Shubaly, M R; Pachner, J Jr; Ormrod, J H; Ungrin, J; Schriber, S O [ed.

    1976-11-01

    A description is given of a system to measure the emittance of a 750 keV 100 mA dc proton beam suitable for injection into a 100% duty factor linear accelerator. A relatively slowly pulsed 45/sup 0/ magnet switches the beam to a beam dump inside the emittance measuring unit for approx. 10 s. A fast pulsed 5/sup 0/ magnet then deflects the beam to a multiple aperture ''pepper-pot'' plate for 300 ..mu..s. Beamlets passing through the plate travel 520 mm and produce a pattern on a scintillator screen. A photograph of the pattern is analyzed to determine beam emittance. Preliminary results on low current beams show a gross increase in the emittance in the horizontal plane.

  16. Emittance measurements in low energy ion storage rings

    Science.gov (United States)

    Hunt, J. R.; Carli, C.; Resta-López, J.; Welsch, C. P.

    2018-07-01

    The development of the next generation of ultra-low energy antiproton and ion facilities requires precise information about the beam emittance to guarantee optimum performance. In the Extra-Low ENergy Antiproton storage ring (ELENA) the transverse emittances will be measured by scraping. However, this diagnostic measurement faces several challenges: non-zero dispersion, non-Gaussian beam distributions due to effects of the electron cooler and various systematic errors such as closed orbit offsets and inaccurate rms momentum spread estimation. In addition, diffusion processes, such as intra-beam scattering might lead to emittance overestimates. Here, we present algorithms to efficiently address the emittance reconstruction in presence of the above effects, and present simulation results for the case of ELENA.

  17. Transverse emittance measurement at REGAE via a solenoid scan

    Energy Technology Data Exchange (ETDEWEB)

    Hachmann, Max; Mayet, Frank; Gruener, Florian [Institut fuer Experimentalphysik, Universitaet Hamburg (Germany); Floettmann, Klaus [DESY, Hamburg (Germany)

    2013-07-01

    The linear accelerator REGAE at DESY produces short and low charged electron bunches, on the one hand to resolve the excitation transitions of atoms temporally by pump probe electron diffraction experiments and on the other hand to investigate principal mechanisms of laser plasma acceleration. For both cases a high quality electron beam is required which can be identified with a small beam emittance. The current method to measure the transverse beam emittance at REGAE and results are presented.

  18. Measured emittance dependence on injection method in laser plasma accelerators

    Science.gov (United States)

    Barber, Samuel; van Tilborg, Jeroen; Schroeder, Carl; Lehe, Remi; Tsai, Hai-En; Swanson, Kelly; Steinke, Sven; Nakamura, Kei; Geddes, Cameron; Benedetti, Carlo; Esarey, Eric; Leemans, Wim

    2017-10-01

    The success of many laser plasma accelerator (LPA) based applications relies on the ability to produce electron beams with excellent 6D brightness, where brightness is defined as the ratio of charge to the product of the three normalized emittances. As such, parametric studies of the emittance of LPA generated electron beams are essential. Profiting from a stable and tunable LPA setup, combined with a carefully designed single-shot transverse emittance diagnostic, we present a direct comparison of charge dependent emittance measurements of electron beams generated by two different injection mechanisms: ionization injection and shock induced density down-ramp injection. Notably, the measurements reveal that ionization injection results in significantly higher emittance. With the down-ramp injection configuration, emittances less than 1 micron at spectral charge densities up to 2 pC/MeV were measured. This work was supported by the U.S. DOE under Contract No. DE-AC02-05CH11231, by the NSF under Grant No. PHY-1415596, by the U.S. DOE NNSA, DNN R&D (NA22), and by the Gordon and Betty Moore Foundation under Grant ID GBMF4898.

  19. Transverse emittance measurement and preservation at the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Kuhn, Maria

    2016-06-20

    The Large Hadron Collider (LHC) at CERN is a high energy storage ring that provides proton and heavy ion collisions to study fundamental particle physics. The luminosity production is closely linked to emittance preservation in the accelerator. The transverse emittance is the phase space density of the beam and should be conserved when the particle beam is transformed through the accelerator. Perturbing effects, however, can lead to emittance increase and hence luminosity degradation. Measuring the emittance growth is a complex task with high intensity beams and changing energies. The machine optics and the transverse beam size have to be measured as accurately as possible. Beta function measurements with k-modulation are discussed. With this method the quadrupole focussing strength is varied and the resulting tune change is traced to determine the beta function at the quadrupole. A new k-modulation measurement tool was developed for the LHC. The fully automatic and online measurement system takes constraints of various systems such as tune measurement precision and powering limitations of the LHC superconducting circuits into account. With sinusoidal k-modulation record low beta function measurement uncertainties in the LHC have been reached. 2015 LHC beta function and β*, which is the beta function at the collision point, measurements with k-modulation will be presented. Wire scanners and synchrotron light monitors are presently used in the LHC to measure the transverse beam size. Accuracy and limitations of the LHC transverse profile monitors are discussed. During the 2012 LHC proton run it was found that wire scanner photomultiplier saturation added significant uncertainty on all measurements. A large discrepancy between emittances from wire scanners and luminosity was discovered but not solved. During Long Shutdown 1 the wire scanner system was upgraded with new photomultipliers. A thorough study of LHC wire scanner measurement precision in 2015 is presented

  20. Mathematical design of a novel input/instruction device using a moving acoustic emitter

    Science.gov (United States)

    Wang, Xianchao; Guo, Yukun; Li, Jingzhi; Liu, Hongyu

    2017-10-01

    This paper is concerned with the mathematical design of a novel input/instruction device using a moving emitter. The emitter acts as a point source and can be installed on a digital pen or worn on the finger of the human being who desires to interact/communicate with the computer. The input/instruction can be recognized by identifying the moving trajectory of the emitter performed by the human being from the collected wave field data. The identification process is modelled as an inverse source problem where one intends to identify the trajectory of a moving point source. There are several salient features of our study which distinguish our result from the existing ones in the literature. First, the point source is moving in an inhomogeneous background medium, which models the human body. Second, the dynamical wave field data are collected in a limited aperture. Third, the reconstruction method is independent of the background medium, and it is totally direct without any matrix inversion. Hence, it is efficient and robust with respect to the measurement noise. Both theoretical justifications and computational experiments are presented to verify our novel findings.

  1. Measurement of transverse emittance in the Fermilab booster

    Energy Technology Data Exchange (ETDEWEB)

    Graves, William Sproull [Wisconsin U., Madison

    1994-01-01

    A new beam profile monitor has been built and installed in the Fermilab Booster synchrotron. It nondestructively measures the beam's vertical density distribution on a fast turn-by-turn basis. This enables one to measure the beam's transverse emittance and to observe emittance growth as it occurs. For high intensities (>2 times 10^{12 } protons), the normalized 95% emittance was observed to grow from 6pi mm-mrad at injection to 16pi mm-mrad at extraction. The initial (<5 msec) emittance growth and beam losses are shown to be caused by the space charge tune shift onto integer and 1/2 integer resonance lines. The growth near injection accounts for approximately 40% of the observed emittance increase throughout the acceleration cycle. The remaining 60% is due to two factors: slow linear growth due to betatron-motion driven by noise in the rf system; and faster growth after the transition energy that is caused by coupling of the longitudinal beam motion into the transverse planes.

  2. Passive emitter location with Doppler frequency and interferometric measurements

    NARCIS (Netherlands)

    Groot, J.S.; Dam, F.A.M.; Theil, A.

    2008-01-01

    Ground based emitters can be located with a receiver installed on an airborne platform. This paper discusses techniques based on Doppler frequency and differential phase measurements (interferometry). Measurements of the first technique are provided, while we discuss and compare the theoretical

  3. Emittance measurement for high-brightness electron guns

    International Nuclear Information System (INIS)

    Kobayashi, H.; Kurihara, T.; Sato, I.; Asami, A.; Yamazaki, Y.; Otani, S.; Ishizawa, Y.

    1992-01-01

    An emittance measurement system based on a high-precision pepper-pot technique has been developed for electron guns with low emittance of around πmm-mrad. Electron guns with a 1 mmφ cathode, the material of which is impregnated tungsten or single-crystal lanthanum hexaboride (La 1-x Ce x )B 6 , have been developed. The performance has been evaluated by putting stress on cathode roughness, which gives rise to an angular divergence, according to the precise emittance measurement system. A new type of cathode holder, which is a modified version of the so called Vogel type, was developed and the beam uniformity has been improved. (Author) 5 figs., tab., 9 refs

  4. Transverse and longitudinal emittance measurements in the ELSA linac

    International Nuclear Information System (INIS)

    Loulergue, A.; Dowell, D.H.; Joly, S.; De Brion, J.P.; Haouat, G.; Schumann, F.

    1997-01-01

    The ELSA RF linac photoinjector has been designed to deliver high-brightness electron beams. The present paper deals with the transverse and longitudinal emittance measurements, at different locations along the ELSA beam line, and the analysis of their variations as a function of the photoinjector parameters : magnetic field generated by the anode focusing lens, bunch charge and pulse duration. While transverse emittance has been already studied in other similar installations, there has been little study of the electron beam longitudinal dynamics. Experimental results are presented and compared to simulation-code expectations. For 2.0 nC, 85 A electron bunches, a normalized rms emittance of 2 π mm mrad and a brightness of 4.5 x 10 13 A/(π m rad) 2 at the linac exit have been measured as well as less than 10 keV rms energy spread (or less than 0.1% at 16.5 MeV). (orig.)

  5. Emittance measurements in Grumman 1 MeV beamline

    International Nuclear Information System (INIS)

    Debiak, T.; Gammel, G.; Melnychuk, S.

    1992-01-01

    The emittance of a 30 keV H - beam has been measured with an Allison type electrostatic analyser at two positions separated by 85 cm along the Grumman 1 MeV beamline LEBT at low currents (about 4 mA, no Cs 2 O additive in the source) and at higher currents (10-15 mA, with Cs 2 O additive in the source). No emittance growth was observed between the two positions, but, at the higher current level, the emittance was about 60% higher than at the low current level (Σ n ,rms = .0045 π cm-mrad vs. 0070 π cm-mrad). Argon was then introduced up to a partial pressure of 4x10 -5 torr, and the emittance decreased back to a range corresponding to that found at the lower currents. However, beam noise was observed at the downstream position, and there is evidence for a small amount of emittance growth (<20%) between the two positions

  6. Selective solar absorber emittance measurement at elevated temperature

    Science.gov (United States)

    Giraud, Philémon; Braillon, Julien; Raccurt, Olivier

    2017-06-01

    Durability of solar components for CSP (Concentrated Solar Power Plant) technologies is a key point to lower cost and ensure their large deployment. These technologies concentrated the solar radiation by means of mirrors on a receiver tube where it is collected as thermal energy. The absorbers are submitted to strong environmental constraints and the degradation of their optical properties (emittance and solar absorbance) have a direct impact on performance. The characterization of a material in such condition is complicated and requires advanced apparatuses, and different measurement methods exist for the determination of the two quantities of relevance regarding an absorber, which are its emittance and its solar absorbance. The objective is to develop new optical equipment for measure the emittance of this solar absorber at elevated temperature. In this paper, we present an optical bench developed for emittance measurement on absorbers is conditions of use. Results will be shown, with a discussion of some factors of influence over this measurement and how to control them.

  7. Accurate measurement of directional emittance of solar energy materials

    NARCIS (Netherlands)

    Nijnatten, van P.A.; Hugo-Le Gof, A.; Granqvist, C.-G.; Lampert, C.M.

    1992-01-01

    Directional emittance plays an important role in the calculation of radiative heat exchange. It partly determines the thermal insulation of single and multiple glazing and the efficiency of solar collectors. An emissiometer has been designed and built, capable for measurements of the directional

  8. Shadow photography method for beam emittance measurement

    International Nuclear Information System (INIS)

    Kashkovskij, V.V.; Lisin, V.A.

    1988-01-01

    Improved technique of shadow photography which allows to measure rather simply and accurately the angular distribution of electrons extracted from betatron is described. Measurement accuracy of particle flight angles is determined by setting of rods relatively to the plane of photographic paper sheet, their diameter and shadow trace length. Incidental angle deviation of rod axes contributes mainly into the error. Mean root-square error constituted 2-3% according to the results of several measurements of angles

  9. Rose, a rotating system for 4D emittance measurements

    Energy Technology Data Exchange (ETDEWEB)

    Maier, Michael; Groening, Lars; Xiao, Chen; Mickat, Sascha; Du, Xiaonan; Gerhard, Peter; Vormann, Hartmut [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH (Germany)

    2016-07-01

    A ROtating System for Emittance measurements ROSE, to measure the full 4 dimensional transverse beam matrix of a heavy ion beam has been developed and commissioned. Different heavy ion beams behind the HLI at GSI have been used in two commissioning beam times. All technical aspects of Rose have been tested, Rose has been benchmarked against existing emittance scanners for horizontal and vertical projections and the method, hard- and software to measure the 4D beam matrix has been upgraded, refined and successfully commissioned. The inter plane correlations of the HLI beam have been measured, yet as no significant initial correlations were found to be present, controlled coupling of the beam by using a skew triplet has been applied and confirmed with Rose. The next step is to use ROSE to measure and remove the known inter plane correlations of a Uranium beam before SIS18 injection.

  10. Emittance Measurements from a Laser Driven Electron Injector

    Energy Technology Data Exchange (ETDEWEB)

    Reis, David A

    2003-07-28

    The Gun Test Facility (GTF) at the Stanford Linear Accelerator Center was constructed to develop an appropriate electron beam suitable for driving a short wavelength free electron laser (FEL) such as the proposed Linac Coherent Light Source (LCLS). For operation at a wavelength of 1.5 {angstrom}, the LCLS requires an electron injector that can produce an electron beam with approximately 1 {pi} mm-mrad normalized rms emittance with at least 1 nC of charge in a 10 ps or shorter bunch. The GTF consists of a photocathode rf gun, emittance-compensation solenoid, 3 m linear accelerator (linac), drive laser, and diagnostics to measure the beam. The rf gun is a symmetrized 1.6 cell, s-band high gradient, room temperature, photocathode structure. Simulations show that this gun when driven by a temporally and spatially shaped drive laser, appropriately focused with the solenoid, and further accelerated in linac can produce a beam that meets the LCLS requirements. This thesis describes the initial characterization of the laser and electron beam at the GTF. A convolved measurement of the relative timing between the laser and the rf phase in the gun shows that the jitter is less than 2.5 ps rms. Emittance measurements of the electron beam at 35 MeV are reported as a function of the (Gaussian) pulse length and transverse profile of the laser as well as the charge of the electron beam at constant phase and gradient in both the gun and linac. At 1 nC the emittance was found to be {approx} 13 {pi} mm-mrad for 5 ps and 8 ps long laser pulses. At 0.5 nC the measured emittance decreased approximately 20% in the 5 ps case and 40% in the 8 ps case. These measurements are between 40-80% higher than simulations for similar experimental conditions. In addition, the thermal emittance of the electron beam was measured to be 0.5 {pi} mm-mrad.

  11. Emittance Measurement for Beamline Extension at the PET Cyclotron

    Directory of Open Access Journals (Sweden)

    Sae-Hoon Park

    2016-01-01

    Full Text Available Particle-induced X-ray emission is used for determining the elemental composition of materials. This method uses low-energy protons (of several MeV, which can be obtained from high-energy (of tens MeV accelerators. Instead of manufacturing an accelerator for generating the MeV protons, the use of a PET cyclotron has been suggested for designing the beamline for multipurpose applications, especially for the PIXE experiment, which has a dedicated high-energy (of tens MeV accelerator. The beam properties of the cyclotron were determined at this experimental facility by using an external beamline before transferring the ion beam to the experimental chamber. We measured the beam profile and calculated the emittance using the pepper-pot method. The beam profile was measured as the beam current using a wire scanner, and the emittance was measured as the beam distribution at the beam dump using a radiochromic film. We analyzed the measurement results and are planning to use the results obtained in the simulations of external beamline and aligned beamline components. We will consider energy degradation after computing the beamline simulation. The experimental study focused on measuring the emittance from the cyclotron, and the results of this study are presented in this paper.

  12. Wire scanner data analysis for the SSC Linac emittance measurement

    International Nuclear Information System (INIS)

    Yao, C.Y.; Hurd, J.W.; Sage, J.

    1993-07-01

    The wire scanners are designed in the SSC Linac for measurement of beam emittance at various locations. In order to obtain beam parameters from the scan signal, a data analysis program was developed that considers the problems of noise reduction, machine modeling, parameter fitting, and correction. This program is intended as a tool for Linac commissioning and also as part of the Linac control program. Some of the results from commissioning runs are presented

  13. Generalized emittance measurements in a beam transport line

    International Nuclear Information System (INIS)

    Skelly, J.; Gardner, C.; Luccio, A.; Kponou, A.; Reece, K.

    1991-01-01

    Motivated by the need to commission 3 beam transport lines for the new AGS Booster project, we have developed a generalized emittance-measurement program; beam line specifics are entirely resident in data tables, not in program code. For instrumentation, the program requires one or more multi-wire profile monitors; one or multiple profiles are acquired from each monitor, corresponding to one or multiple tunes of the transport line. Emittances and Twiss parameters are calculated using generalized algorithms. The required matix descriptions of the beam optics are constructed by an on-line general beam modeling program. Design of the program, its algorithms, and initial experience with it will be described. 4 refs., 2 figs., 1 tab

  14. Noninterceptive transverse emittance measurements using BPM for Chinese ADS R&D project

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhi-Jun, E-mail: wangzj@impcas.ac.cn [Institute of Modern Physics, The Chinese Academy of Sciences, Lanzhou 73000 (China); Feng, Chi [Institute of Modern Physics, The Chinese Academy of Sciences, Lanzhou 73000 (China); He, Yuan, E-mail: hey@impcas.ac.cn [Institute of Modern Physics, The Chinese Academy of Sciences, Lanzhou 73000 (China); Dou, Weiping [Institute of Modern Physics, The Chinese Academy of Sciences, Lanzhou 73000 (China); Tao, Yue; Chen, Wei-long [Institute of Modern Physics, The Chinese Academy of Sciences, Lanzhou 73000 (China); University of the Chinese Academy of Sciences, Beijing 100049 (China); Jia, Huan; Liu, Shu-hui; Wang, Wang-sheng; Zhang, Yong; Wu, Jian-qiang; Zhang, Sheng-hu; Zhang, X.L. [Institute of Modern Physics, The Chinese Academy of Sciences, Lanzhou 73000 (China)

    2016-04-21

    The noninterceptive four-dimensional transverse emittance measurements are essential for commissioning the high power continue-wave (CW) proton linacs as well as their operations. The conventional emittance measuring devices such as slits and wire scanners are not well suited under these conditions due to sure beam damages. Therefore, the method of using noninterceptive Beam Position Monitor (BPM) is developed and demonstrated on Injector Scheme II at the Chinese Accelerator Driven Sub-critical System (China-ADS) proofing facility inside Institute of Modern Physics (IMP) [1]. The results of measurements are in good agreements with wire scanners and slits at low duty-factor pulsed (LDFP) beam. In this paper, the detailed experiment designs, data analysis and result benchmarking are presented.

  15. A Laboratory Goniometer System for Measuring Reflectance and Emittance Anisotropy

    Directory of Open Access Journals (Sweden)

    Arjan de Jong

    2012-12-01

    Full Text Available In this paper, a laboratory goniometer system for performing multi-angular measurements under controlled illumination conditions is described. A commercially available robotic arm enables the acquisition of a large number of measurements over the full hemisphere within a short time span making it much faster than other goniometers. In addition, the presented set-up enables assessment of anisotropic reflectance and emittance behaviour of soils, leaves and small canopies. Mounting a spectrometer enables acquisition of either hemispherical measurements or measurements in the horizontal plane. Mounting a thermal camera allows directional observations of the thermal emittance. This paper also presents three showcases of these different measurement set-ups in order to illustrate its possibilities. Finally, suggestions for applying this instrument and for future research directions are given, including linking the measured reflectance anisotropy with physically-based anisotropy models on the one hand and combining them with field goniometry measurements for joint analysis with remote sensing data on the other hand. The speed and flexibility of the system offer a large added value to the existing pool of laboratory goniometers.

  16. Measurement of Alpha Emitters Concentration in Imported Cigarettes

    International Nuclear Information System (INIS)

    Nasser Allah, Z.K.; Musa, W.A.; AL-Rawi, A.A.S.

    2011-01-01

    The aime of this study was to measured the alpha emitters concentration of (15) different kinds of imported cigarettes. the nuclear reaction used U-235(n, f) obtained by the bombardment of U-235 with thermal neutrons from (Am B e)neutron source with thermal flux of(5*10 3 n.cm -2 .s -1 ). The Results obtained showed the values of the Uranium concentration, and varies from (0.041 ppm) in five stares kind to (2.374ppm) in Machbeth (chocolate) 100's kind. All the result obtained are within the limit levels as given by UNSCAR data

  17. Multiwire secondary-emission monitor and the emittance measurement of the AGS beam

    International Nuclear Information System (INIS)

    Weng, W.T.; Chiang, I.H.; Smith, G.A.; Soukas, A.

    1983-01-01

    For CBA injection the transverse emittances and the Twiss parameters of the AGS beam have to be well defined to minimize the phase space dilution in CBA. Althoug there exists a profile monitor device at U165, there are three reasons why construction of multiwire profile monitor system at three locations from U500 to U168 is required: (1) the dispersion function is not zero at U165 which makes it harder to interpret the measurement; (2) the original single wire device takes five minutes to traverse the whole beam; (3) a three station multiwire system can provide the profile information at all locations in one pulse which makes on-line analysis possible. In summary, a set of three stations of Multiwire Secondary Emission Monitor (MSEM) has been built and installed in the fast external beam line for the measurement of beam profiles. Each unit consists of two planes each with 30 nickel wires having a diameter of 5 mils. The signal is linear within the range of 10 10 to 10 13 incident protons on the wire and the resolution of the signal is well within a few percent. A least-square fitting routine has been used to extract the emittance and phase space parameters of the beam. The emittances obtained at various intensities will help us to understand the AGS acceleration process and to choose the optimal injection scheme for CBA

  18. Emittance measurement and modeling for the Fermilab Booster

    Directory of Open Access Journals (Sweden)

    Xiaobiao Huang

    2006-01-01

    Full Text Available Turn-by-turn beam profile data measured at the Fermilab Booster are studied. Lattice models with experimental accelerator ramping parameters are used to obtain the lattice functions for data analysis. We studied the horizontal and vertical emittance growth behavior in different stages of a booster ramping cycle and its relation to the beam intensity. The transverse and longitudinal components in the horizontal beam width are separated by a fitting model which makes use of the different scaling rules of the beam momentum. We analyze the post-transition horizontal beam size oscillation based on a model where the longitudinal phase-space mismatch has resulted from rf voltage mismatch during the transition-energy crossing. We carried out systematic multiparticle simulation to show that the source of the vertical emittance growth is a combination of the random errors in skew-quadrupole and dipole fields, and the systematic Montague resonance. The effect of random quadrupole field is small for the Fermilab Booster because the betatron envelope tunes are reasonably far away from the half-integer stop band.

  19. Emittance Measurements from a Laser Driven Electron Injector

    CERN Document Server

    Reis, D

    2003-01-01

    The Gun Test Facility (GTF) at the Stanford Linear Accelerator Center was constructed to develop an appropriate electron beam suitable for driving a short wavelength free electron laser (FEL) such as the proposed Linac Coherent Light Source (LCLS). For operation at a wavelength of 1.5 (angstrom), the LCLS requires an electron injector that can produce an electron beam with approximately 1 pi mm-mrad normalized rms emittance with at least 1 nC of charge in a 10 ps or shorter bunch. The GTF consists of a photocathode rf gun, emittance-compensation solenoid, 3 m linear accelerator (linac), drive laser, and diagnostics to measure the beam. The rf gun is a symmetrized 1.6 cell, s-band high gradient, room temperature, photocathode structure. Simulations show that this gun when driven by a temporally and spatially shaped drive laser, appropriately focused with the solenoid, and further accelerated in linac can produce a beam that meets the LCLS requirements. This thesis describes the initial characterization of the ...

  20. Dependence of the modulation response of quantum dot based nanocavity devices on the number of emitters

    DEFF Research Database (Denmark)

    Lorke, Michael; Nielsen, Torben Roland; Mørk, Jesper

    2011-01-01

    A microscopic theory is used to study the dynamical properties of semiconductor quantum dot based nanocavity laser systems. The carrier kinetics and photon populations are determined using a fully quantum mechanical treatment of the light‐matter coupling. In this work, we investigate the dependency...... of the modulation response in such devices on the number of emitters coupled to the cavity mode. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)...

  1. Effects of emitter junction and passive base region on low dose rate effect in bipolar devices

    International Nuclear Information System (INIS)

    Pershenkov, V.S.; Cherepko, S.V.; Maslov, V.B.; Belyakov, V.V.; Sogoyan, A.V.; Ulimov, N.; Emelianov, V.V.

    1999-01-01

    Low dose rate effect in bipolar devices consists in the increase of peripheral surface recombination current with dose rate decrease. This is due to the more rapid positive oxide charge and interface trap density build-up as the dose rate becomes lower. High dose rate elevated temperature irradiation is proposed for simulation if the low dose rate effect. In the present we tried to separate the effect of radiation-induced charge in the thick passivation oxide over the emitter junction and passive base regions of npn bipolar transistor. Its goal is to improve bipolar device design for use in space environments and nuclear installations. Three experiments were made during this work. 1. Experiment on radiation-induced charge neutralization (RICN) effect under elevated temperature was performed to show transistor degradation dependence on emitter-base bias. 2. High dose rate elevated and room temperature irradiation of bipolar transistors were performed to separate effects of emitter-junction and passive base regions. 3. Pre- and post- irradiation hydrogen ambient storage was used to investigate its effect on radiation-induced charge build-up over the passive base region. All experiments were performed with npn and pnp transistors. (authors)

  2. Phosphorescent Organic Light-Emitting Devices: Working Principle and Iridium Based Emitter Materials

    Directory of Open Access Journals (Sweden)

    Emil J. W. List

    2008-08-01

    Full Text Available Even though organic light-emitting device (OLED technology has evolved to a point where it is now an important competitor to liquid crystal displays (LCDs, further scientific efforts devoted to the design, engineering and fabrication of OLEDs are required for complete commercialization of this technology. Along these lines, the present work reviews the essentials of OLED technology putting special focus on the general working principle of single and multilayer OLEDs, fluorescent and phosphorescent emitter materials as well as transfer processes in host materials doped with phosphorescent dyes. Moreover, as a prototypical example of phosphorescent emitter materials, a brief discussion of homo- and heteroleptic iridium(III complexes is enclosed concentrating on their synthesis, photophysical properties and approaches for realizing iridium based phosphorescent polymers.

  3. Measurement of transverse emittance at the source of spin-polarized electrons at the S-DALINAC

    Energy Technology Data Exchange (ETDEWEB)

    Eckardt, Christian; Barday, Roman; Bonnes, Uwe; Eichhorn, Ralf; Enders, Joachim; Hessler, Christoph; Patalakha, Oleksandr; Platz, Markus; Poltoratska, Yuliya; Rick, Wolfgang [Institut fuer Kernphysik, TU Darmstadt (Germany); Ackermann, Wolfgang; Mueller, Wolfgang F.O.; Steiner, Bastian; Weiland, Thomas [Institut fuer Theorie Elektromagnetischer Felder, TU Darmstadt (Germany)

    2008-07-01

    A new injector concept for 100 keV spin-polarized electrons (SPIN) at the S-DALINAC has been developed. The transverse emittance was measured for beam characterization. The emittance is a quantity concerning the quality of the beam, describing the phase space area. Determination of the emittance requires measurement of the beam profile and knowledge of the focal length of a beam focussing device. A wire scanner unit consisting of two 50 {mu}m diameter tungsten wires is used for the beam-profile measurement. Data analysis is performed by fitting a gaussian model distribution to estimate the 1{sigma} beam radius. Each determined beam width is correlated to the corresponding focal length of a magnetic lens, and a parabola fit is applied to calculate the parameters of the {sigma}-matrix. The square root of the determinant of the {sigma}-matrix defines the emittance. The results of the calculation are presented and the emittance is compared to theoretical estimates.

  4. Emittance preservation

    Energy Technology Data Exchange (ETDEWEB)

    Kain, V; Arduini, G; Goddard, B; Holzer, B J; Jowett, J M; Meddahi, M; Mertens, T; Roncarolo, F; Schaumann, M; Versteegen, R; Wenninger, J [European Organization for Nuclear Research, Geneva (Switzerland)

    2012-07-01

    Emittance measurements during the LHC proton run 2011 indicated a blow-up of 20 % to 30 % from LHC injection to collisions. This presentation will show the emittance preservation throughout the different parts of the LHC cycle and discuss the current limitations on emittance determination. An overview of emittance preservation through the injector complex as function of bunch intensity will also be given. Possible sources for the observed blow-up and required tests in 2012 will be presented. Possible improvements of emittance diagnostics and analysis tools for 2012 will be shown.

  5. Improvement of Control System Based on Labview for Beam Emittance Measurement

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dae-Il; Kim, Jae-Ha; Kwon, Hyeok-Jung; Kim, Han-Sung; Lee, Seok-Geun; Cho, Yong-Sub [Korea Atomic Energy Research Institute, Gyeongju (Korea, Republic of)

    2016-10-15

    Some ion sources have been developing at KOMAC. It is important to measure the beam properties to characterize the ion sources such as beam emittance. An electric sweep scanner (ESS) was used to measure the beam distribution in phase space. For performance of ESS, it consists of control system based on NI PXI devices and GUI (graphic user interface) based on Labview. In this paper, a control system with algorism applied reliable sequence for data acquisition is presented. In a sequence with 1 Hz of repetition rate, in case of time 6 s and interval 0.2 V on panel, DC output voltage increases with interval of 0.2 V from -3.6 V to + 3.6 V every 6 seconds. Total period is 216 second. In this case, 6 files are saved in every step. But first one of 6 could not be used because of unreliable signal with variation of DC output voltage. The control system based on Labview was developed for beam emittance measurement. And it was improved by the modification of algorism and the use of external tools applied global variable. In Future, the control system will be used in other ion sources of KOMAC.

  6. Measurements of Transverse Emittance for RF Photocathode Gun at the PAL

    CERN Document Server

    Park Jang Ho; Park, Sung-Ju; Soo Ko In; Wang, Xijie; Woon Parc, Yong; Xiang, Dao

    2005-01-01

    A BNL GUN-IV type RF photo-cathode gun is under fabrication for use in the FIR (Far Infra-Red) facility being built at the Pohang Accelerator Laboratory (PAL). Performance test of the gun will include the measurement of transverse emittance profile along the longitudinal direction. Successful measurement of the emittance profile will provide powerful tool for the commissioning of the 4GLS (4th generation light source) injectors based on the emittance compensation principle. We are going to achieve this withthe use of pepper-pot based emittance meters that can be moved along the longitudinal direction. In this article, we present design considerations on the emittance meter with the resolution of 1 mm mrad.

  7. Polarization measurements made on LFRA and OASIS emitter arrays

    Science.gov (United States)

    Geske, Jon; Sparkman, Kevin; Oleson, Jim; Laveigne, Joe; Sieglinger, Breck; Marlow, Steve; Lowry, Heard; Burns, James

    2008-04-01

    Polarization is increasingly being considered as a method of discrimination in passive sensing applications. In this paper the degree of polarization of the thermal emission from the emitter arrays of two new Santa Barbara Infrared (SBIR) micro-bolometer resistor array scene projectors was characterized at ambient temperature and at 77 K. The emitter arrays characterized were from the Large Format Resistive Array (LFRA) and the Optimized Arrays for Space-Background Infrared Simulation (OASIS) scene projectors. This paper reports the results of this testing.

  8. Position measuring device

    International Nuclear Information System (INIS)

    Maeda, Kazuyuki; Takahashi, Shuichi; Maruyama, Mayumi

    1998-01-01

    The present invention provides a device capable of measuring accurate position and distance easily even at places where operator can not easily access, such as cell facilities for vitrifying radioactive wastes. Referring to a case of the vitrifying cell, an objective equipment settled in the cell is photographed by a photographing device. The image is stored in a position measuring device by way of an image input device. After several years, when the objective equipment is exchanged, a new objective equipment is photographed by a photographing device. The image is also stored in the position measuring device. The position measuring device compares the data of both of the images on the basis of pixel unit. Based on the image of the equipment before the exchange as a reference, extent of the displacement of the installation position of the equipment on the image after the exchange caused by installation error and manufacturing error is determined to decide the position of the equipment after exchange relative to the equipment before exchange. (I.S.)

  9. An experimental method for making spectral emittance and surface temperature measurements of opaque surfaces

    International Nuclear Information System (INIS)

    Moore, Travis J.; Jones, Matthew R.; Tree, Dale R.; Daniel Maynes, R.; Baxter, Larry L.

    2011-01-01

    An experimental procedure has been developed to make spectral emittance and temperature measurements. The spectral emittance of an object is calculated using measurements of the spectral emissive power and of the surface temperature of the object obtained using a Fourier transform infrared (FTIR) spectrometer. A calibration procedure is described in detail which accounts for the temperature dependence of the detector. The methods used to extract the spectral emissive power and surface temperature from measured infrared spectra were validated using a blackbody radiator at known temperatures. The average error in the measured spectral emittance was 2.1% and the average difference between the temperature inferred from the recorded spectra and the temperature indicated on the blackbody radiator was 1.2%. The method was used to measure the spectral emittance of oxidized copper at various temperatures.

  10. Emittance Measurements For Future LHC Beams Using The PS Booster Measurement Line

    CERN Document Server

    Abelleira, Jose; Mikulec, Bettina; Di Giovanni, Gian Piero; CERN. Geneva. ATS Department

    2017-01-01

    The CERN PS Booster measurement line contains three pairs of SEM grids separated by drift space that measures the beam size in both planes. The combined analysis of these grids allows calculating a value for the transverse beam emittances. The precision of such a measurement depends on the ratio of RMS beam size and wire spacing. Within the LIU-PSB upgrade the extraction kinetic energy of the PSB will be increased from the current 1.4 GeV to 2.0 GeV. This will result in smaller transverse beam sizes for some of the future beams. The present layout of the transverse emittance measurement line is reviewed to verify if it will satisfy future requirements.

  11. Temperature measuring device

    International Nuclear Information System (INIS)

    Brixy, H.

    1977-01-01

    The temperature measuring device is equipped with an electric resistor installed within a metal shroud tube so as to be insulated from it, the noise voltage of which resistor is fed to a measuring unit. The measuring junctions of one or two thermocouples are connected with the electric resistor and the legs of one or both thermocouples can be connected to the measuring unit by means of a switch. (orig.) [de

  12. Thermal Emittance Measurement of the Cs2Te Photocathode in FZD Superconducting RF

    CERN Document Server

    Xiang, R; Michel, P; Murcek, P; Teichert, J

    2010-01-01

    The thermal emittance of the photocathode is an interesting physical property for the photoinjector, because it decides the minimum emittance the photoinjector can finally achieve. In this paper we will report the latest results of the thermal emittance of the Cs2Te photocathode in FZD Superconducting RF gun. The measurement is performed with solenoid scan method with very low bunch charge and relative large laser spot on cathode, in order to reduce the space charge effect as much as possible, and meanwhile to eliminate the wake fields and the effect from beam halos.

  13. Coating thickness measuring device

    International Nuclear Information System (INIS)

    Joffe, B.B.; Sawyer, B.E.; Spongr, J.J.

    1984-01-01

    A device especially adapted for measuring the thickness of coatings on small, complexly-shaped parts, such as, for example, electronic connectors, electronic contacts, or the like. The device includes a source of beta radiation and a radiation detector whereby backscatter of the radiation from the coated part can be detected and the thickness of the coating ascertained. The radiation source and detector are positioned in overlying relationship to the coated part and a microscope is provided to accurately position the device with respect to the part. Means are provided to control the rate of descent of the radiation source and radiation detector from its suspended position to its operating position and the resulting impact it makes with the coated part to thereby promote uniformity of readings from operator to operator, and also to avoid excessive impact with the part, thereby improving accuracy of measurement and eliminating damage to the parts

  14. Radiation flux measuring device

    International Nuclear Information System (INIS)

    Corte, E.; Maitra, P.

    1977-01-01

    A radiation flux measuring device is described which employs a differential pair of transistors, the output of which is maintained constant, connected to a radiation detector. Means connected to the differential pair produce a signal representing the log of the a-c component of the radiation detector, thereby providing a signal representing the true root mean square logarithmic output. 3 claims, 2 figures

  15. Radiation ray measuring device

    International Nuclear Information System (INIS)

    Maekawa, Tatsuyuki; Ida, Masaki.

    1997-01-01

    The present invention provides a chained-radiation ray monitoring system which can be applied to an actual monitoring system of a nuclear power plant or the like. Namely, this device comprises a plurality of scintillation detectors. Each of the detectors has two light take-out ports for emitting light corresponding to radiation rays irradiated from the object of the measurement to optical fibers. In addition, incident light from the optical fiber by way of one of the light take-out optical ports is transmitted to the other of the ports and sent from the other optical port to the fibers. Plurality sets of measuring systems are provided in which each of the detectors are disposed corresponding to a plurality of objects to be measured. A signal processing device is (1) connected with optical fibers of plurality sets of measuring systems in conjunction, (2) detects the optical pulses inputted from the optical fibers to identify the detector from which the optical pulses are sent and (3) measures the amount of radiation rays detected by the identified detector. As a result, the device of the present invention can form a measuring system with redundancy. (I.S.)

  16. Neutron measuring device

    International Nuclear Information System (INIS)

    Hatayama, Akiyoshi; Seki, Eiji; Kita, Yoshio; Nishitani, Takeo.

    1993-01-01

    The device of the present invention concerns measurement for neutrons in a tokamak type thermonuclear device and it can measure total amount of generated neutrons accurately throughout the operation period even if an error is caused in counted values by plasma disruption. That is, the device comprises (1) a means for detecting presence or absence of occurrence of plasma disruption and the time for the initiation of the occurrence, (2) a first data processing means for processing detection signals, (3) a means for detecting neutrons generated in plasmas and (4) a second data processing means for calculating integrated values for the number of neutrons generated from the start to the completion of electric discharge when no disruption occurs and calculating integrated values for the number of generated neutrons from the start of electric discharge to the time at the initiation of occurrence of the disruption when disruption is present. In the thus constituted device, even if an error is caused by frequent occurrence of plasma disruption, total time integrated amount of neutrons generated in the plasmas can be measured accurately. (I.S.)

  17. Transverse emittance measurement of high-current single pulse beams using pepper-pot method

    International Nuclear Information System (INIS)

    Ke Jianlin; Zhou Changgeng; Qiu Rui

    2013-01-01

    A pepper pot-imaging plate system has been developed and used to measure the 4-D transverse emittance of a vacuum arc ion source. Single beam pulses of tens to hundreds milliamperes were extracted from the plasma with 64 kV high voltage. An imaging plate was laid after the pepper pot to visualize the ion beamlets passing though the holes on the pepper pot. An application program was developed to show the phase-space distribution and calculate the ellipse and RMS emittances. The normalized RMS emittances are about 6.41 π·mm·mrad in x-direction and 4.61 π·mm·mrad in y-direction. It is shown that the emittance of the vacuum arc ion source is much larger than that of other types of ion sources, which is mainly attributed to the high current and the convex meniscus of this source. (authors)

  18. Comparison of two methods for measuring the emittance of a beam

    International Nuclear Information System (INIS)

    Parain, J.

    Two methods of measuring beam emittance were analyzed. The three-distance method is based on measurement of the dimensions of the beam at three points, while the three-slope method uses beam dimension measurements under three focusing conditions. Allowing for the errors in measuring the dimensions of the beam, the two methods are of equal accuracy. The three-distance method requires three detectors, but it has the advantage of making it possible to measure the emittance on a single cycle of the accelerator, and can therefore be used to perform control measurements on each cycle. (auth)

  19. [Multiple emissions in organic electroluminescent device using a mixed layer as an emitter].

    Science.gov (United States)

    Zhu, Wen-qing; Wu, You-zhi; Zheng, Xin-you; Jiang, Xue-yin; Zhang, Zhi-lin; Sun, Run-guang; Xu, Shao-hong

    2005-04-01

    A organic electroluminescent device has been fabricated by using a mixed layer as an emitter. The configuration of the device is ITO/TPD/TPD: PBD(equimole)/PBD/A1, in which TPD (N,N'-diphenyl-N,N'-bis(3-methylphenyl)-1,1'-biphenyl-4,4'-diamine) and PBD (2-(4'-biphenyl)-5-(4''-tert-butylphenyl)-1,3,4-oxadiazole) are used as hole transport material and electron transport material, respectively. Broad and red-shifted electroluminescent spectra related to the fluorescence of constituent materials were observed. It is suggested that the monomer, exciplex and electroplex emissions are simultaneously involved in EL spectra by comparison of the EL with the PL spectra and decomposition of the EL spectrum. The type of exciplex is the interaction between the excited state TPD (TPD*) and PBD in the ground state, and the type of electroplex is a (D+-A-)* complex by cross-recombination of hole on the charged hole transport molecule (D+) and electron on the charged electron transport molecule (A-). All types of excited states show different formation mechanisms and recombination processes under electric field. The change of emission strengths from monomer and excited complexes lead to a blue-shift of the emissive spectra with an increasing electric field. The maximum luminance and external quantum efficiency of this device are 240 cd x (cm2)(-1) and 0.49%, respectively. The emissions from exciplex or electroplex formation at the organic solid interface generally present a broad and red-shifted emissive band, providing an effective method for tuning of emission color in organic electroluminescent devices.

  20. A power measuring device

    International Nuclear Information System (INIS)

    As, R. van.

    1985-01-01

    As a part of the klystron test facility of the Dutch NIKHEF-K accelerator, a sensitive power measuring device has been built. The high-frequency power of a klystron is stored in a water-cooled dummy load. Using a microcomputer, the increase of the water temperature and the water flow rate are transformed to a digital indication of the klystron power. (Auth.)

  1. Temperature measuring device

    Energy Technology Data Exchange (ETDEWEB)

    Lauf, R.J.; Bible, D.W.; Sohns, C.W.

    1999-10-19

    Systems and methods are described for a wireless instrumented silicon wafer that can measure temperatures at various points and transmit those temperature readings to an external receiver. The device has particular utility in the processing of semiconductor wafers, where it can be used to map thermal uniformity on hot plates, cold plates, spin bowl chucks, etc. without the inconvenience of wires or the inevitable thermal perturbations attendant with them.

  2. Total hemispherical emittance measured at high temperatures by the calorimetric method

    International Nuclear Information System (INIS)

    DiFilippo, F.; Mirtich, M.J.; Banks, B.A.; Stidham, C.; Kussmaul, M.

    1994-01-01

    A calorimetric vacuum emissometer (CVE) capable of measuring total hemispherical emittance of surfaces at elevated temperatures was designed, built, and tested. Several materials with a wide range of emittances were measured in the CVE between 773 to 923 K. These results were compared to values calculated from spectral emittance curves measured in a room temperature Hohlraum reflectometer and in an open-air elevated temperature emissometer. The results differed by as much as 0.2 for some materials but were in closer agreement for the more highly-emitting, diffuse-reflecting samples. The differences were attributed to temperature, atmospheric, and directional effects, and errors in the Hohlraum and emissometer measurements (± 5 percent). The probable error of the CVE measurements was typically less than 1 percent

  3. Emittance measurements at the new UNILAC-pre-stripper using a pepper-pot with a PC-controlled CCD-camera

    CERN Document Server

    Dolinska, M E; Forck, P; Hoffmann, T; Liakin, D; Peters, A; Strehl, P

    2000-01-01

    The complex mathematical algorithms and procedures to extract emittance data from intensity distributions measured with a single shot pepper-pot device are described. First results of mathematical evaluation from the commissioning of the new GSI pre-stripper linac structures are presented.

  4. Measurements of electron beam emittance in the Accelerator Test Facility damping ring operated in multibunch modes

    Directory of Open Access Journals (Sweden)

    Yosuke Honda

    2003-09-01

    Full Text Available We present the measurement results of electron beam emittance in the Accelerator Test Facility damping ring operated in multibunch modes. The measurements were carried out with an upgraded laser wire beam profile monitor. The monitor has now a vertical wire as well as a horizontal one and is able to make much faster measurements thanks to an increased effective laser power inside the cavity. The measured emittance shows no large bunch-to-bunch dependence in either the horizontal or vertical directions. The values of the vertical emittance are similar to those obtained in the single-bunch operation. The present results are an important step toward the realization of a high-energy linear collider.

  5. Temperature measurement device

    International Nuclear Information System (INIS)

    Fournier, Christian; Lions, Noel.

    1975-01-01

    The present invention relates to a temperature measuring system that can be applied in particular to monitoring the temperature of the cooling liquid metal of the outlet of the core assemblies of a fast reactor. Said device combines a long hollow metallic pole, at least partially dipped into the liquid metal and constituting a first thermocouple junction between said pole, and two metallic conductors of different nature, joined at one of their ends to constitute the second thermocouple junction. Said conductors suitably insulated are arranged inside a sheath. Said sheath made of the same metals as the pole extends inside the latter and is connected with the pole through a soldered joint. Said reliable system permits an instantaneous measurement of a quantity representing the variations in the recorded temperature and a measurement of the mean surrounding temperature that can be direcly used as a reference for calibrating the first one [fr

  6. A critical study of emittance measurements of intense low-energy proton beams

    CERN Document Server

    Evans, Lyndon R

    1972-01-01

    The measurement of emittance in low energy proton beams suffers from two perturbing effects: 1) the neutralisation of the beam by backstreaming secondary electrons and 2) the space charge blowup of the beam sample between defining and analysing apparatus. An experimental study shows a significant change of the emittance orientation when bias is used to eliminate the secondary electrons. Biased and non-biased cases are also compared with computed dynamics including space charge. Criteria for the slit size and drift distance which make the space charge blow-up negligible are derived. In addition a transverse coherent oscillation of the proton beam, which was revealed the measurements, is discussed briefly. (11 refs).

  7. Reactor power measuring device

    International Nuclear Information System (INIS)

    Izumi, Mikio; Sano, Yuji; Seki, Eiji; Yoshida, Toshifumi; Ito, Toshiaki.

    1993-01-01

    The present invention provides a self-powered long detector having a sensitivity over the entire length of a reactor core as an entire control rod withdrawal range of a BWR type reactor, and a reactor power measuring device using a gamma ray thermometer which scarcely causes sensitivity degradation. That is, a hollow protection pipe is disposed passing through the reactor core from the outside of a reactor pressure vessel. The self-powered long detectors and the gamma ray thermometers are inserted and installed in the protection pipe. An average reactor power in an axial direction of the reactor relative to a certain position in the horizontal cross section of the reactor core is determined based on the power of the self-powered long detector over the entire length of the reactor core. Since the response of the self-powered detector relative to a local power change is rapid, the output is used as an input signal to a safety protection device of the reactor core. Further, a gamma ray thermometer secured in the reactor and having scarce sensitivity degradation is used instead of an incore travelling neutron monitor used for relative calibration of an existent neutron monitor secured in the reactor. (I.S.)

  8. Parametric emittance measurements of electron beams produced by a laser plasma accelerator

    Science.gov (United States)

    Barber, S. K.; van Tilborg, J.; Schroeder, C. B.; Lehe, R.; Tsai, H.-E.; Swanson, K. K.; Steinke, S.; Nakamura, K.; Geddes, C. G. R.; Benedetti, C.; Esarey, E.; Leemans, W. P.

    2018-05-01

    Laser plasma accelerators (LPA) offer an exciting possibility to deliver high energy, high brightness electrons beams in drastically smaller distance scales than is typical for conventional accelerators. As such, LPAs draw considerable attention as potential drivers for next generation light sources and for a compact linear collider. In order to asses the viability of an LPA source for a particular application, the brightness of the source should be properly characterized. In this paper, we present charge dependent transverse emittance measurements of LPA sources using both ionization injection and shock induced density down ramp injection, with the latter delivering smaller transverse emittances by a factor of two when controlling for charge density. The single shot emittance method is described in detail with a discussion on limitations related to second order transport effects. The direct role of space charge is explored through a series of simulations and found to be consistent with experimental observations.

  9. Emittance measurements of high charge state argon beams from a PIG source

    International Nuclear Information System (INIS)

    Bex, L.; Clark, D.J.; Ellsworth, C.E.; Estrella, R.M.; Gough, R.A.; Holley, W.R.

    1976-01-01

    The emittances of beams of Ar 4+ to Ar 8+ were measured in the axial and radial planes. The extraction voltage was 10 kV and the magnetic field was varied from about 0.5 to 0.6 Tesla. The anode slit was varied in its distance from the arc which was run both dc and pulsed. The emittance was found to be nearly independent of charge state but to increase with total beam current. A small bowing of the arc column was discovered, which made evaluation of mirror field effects difficult

  10. Emittance measurements of high charge state argon beams from a pig source

    International Nuclear Information System (INIS)

    Bex, L.; Clark, D.J.; Ellsworth, C.E.; Estrella, R.M.; Gough, R.A.; Holley, W.R.

    1975-10-01

    The emittances of beams of Ar 4+ to Ar 8+ were measured in the axial and radial planes. The extraction voltage was 10 kV and the magnetic field was varied from about 0.5 to 0.6 Tesla. The anode slit was varied in distance from the arc, which was run both dc and pulsed. The emittance was nearly independent of charge state, but increased with total beam current. A small bowing of the arc column, which made evaluation of mirror field effects difficult, was discovered

  11. Using Spread Spectrum Transform for Fast and Robust Simultaneous Measurement in Active Sensors with Multiple Emitters

    DEFF Research Database (Denmark)

    Harbo, Anders La-Cour; Stoustrup, Jakob

    2002-01-01

    We present a signal processing algorithm for making robust and simultaneous measurements in an active sensor, which has one or more emitters and a receiver, and which employs some sort of signal processing hardware. Robustness means low sensitivity to time and frequency localized disturbances......-cost active sensors....

  12. A Single Pulse Beam Emittance Measurement for the CERN Heavy Ion Linac

    CERN Document Server

    Crescenti, M

    1995-01-01

    A new device for transverse emittance measurement has been installed in the 4.2 MeV/u filter region of the CERN Heavy Ion Linac (Linac 3). It allows to obtain pulse-to-pulse (every 1.2 sec) visualisation of the Linac 3 beam parameters in order to tune the machine and to match the beam for injection into the first circular accelerator, the PS Booster. The system is based on the "multi-slit" technique similar to the well-known "pepper pot" method. A plate with a series of horizontal or vertical slits is placed in the beam, defining positions in the phase plane. Particles pass through the slits and drift to a scintillator screen where they produce light. The screen is looked at by an externally triggered high resolution CCD camera. For each slit position the light intensity distribution, in the limit of infinitesimal slit aperture, is proportional to the angle distribution of the particles and therefore, provides the angular distribution in the phase plane. The video signal from the camera is digitised and the r...

  13. Test results of the signal processing and amplifier unit for the emittance measurement system

    International Nuclear Information System (INIS)

    Stawiszynski, L.; Schneider, S.

    1984-01-01

    The signal processing and amplifier unit for the emittance measurement system is the unit with which the beam current on the harp-wires and the slit is measured and converted to a digital output. Temperature effects are very critical at low currents and the purpose of the test measurements described in this report was mainly to establish the accuracy and repeatability of the measurements under the influence of temperature variations

  14. Triggered Infrared Emitter Displays for Individual Identify Friend-or-Foe (IIFF) and Vehicular Mounted Identify Friend-or-Foe (VMIFF) Devices

    National Research Council Canada - National Science Library

    Williams, Patrick S

    2007-01-01

    ..., and emitter intensity decay as a function of multiple activations and time. Key results include observation at distances in excess of 700 meters and device functionality in a temperature range from -40 degrees C to 71 degrees C...

  15. Hybrid white organic light-emitting devices consisting of a non-doped thermally activated delayed fluorescent emitter and an ultrathin phosphorescent emitter

    International Nuclear Information System (INIS)

    Zhao, Juan; Wang, Zijun; Wang, Run; Chi, Zhenguo; Yu, Junsheng

    2017-01-01

    Hybrid white organic light-emitting devices (OLEDs) are fabricated by employing non-doped emitting layers (EMLs), which are consisted of a blue thermally activated delayed fluorescent (TADF) emitter 9,9-dimethyl-9,10-dihydroacridine-diphenylsulfone (DMAC-DPS) and an ultrathin yellow iridium complex bis[2-(4-tertbutylphenyl)benzothiazolato-N,C 2′ ] iridium (acetylacetonate) [(tbt) 2 Ir(acac)]. With thickness optimization of DMAC-DPS, a white OLED achieves maximum current efficiency, power efficiency and external quantum efficiency of 34.9 cd/A, 29.2 lm/W and 11.4%, respectively, as well as warm white emission with relatively stable electroluminescence spectra. The results suggest that, bipolar charge carrier transport property and concentration independent property of DMAC-DPS, charge carrier trapping effect of the ultrathin (tbt) 2 Ir(acac), and balanced self-emission process and energy transfer process between DMAC-DPS and (tbt) 2 Ir(acac), contribute to high device performance.

  16. Hybrid white organic light-emitting devices consisting of a non-doped thermally activated delayed fluorescent emitter and an ultrathin phosphorescent emitter

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Juan [State Key Laboratory of Electronic Thin Film and Integrated Devices, School of Optoelectronic Information, University of Electronic Science and Technology of China, Chengdu 610054 (China); School of Chemistry, Sun Yat-sen University, Guangzhou 510275 (China); Wang, Zijun; Wang, Run [State Key Laboratory of Electronic Thin Film and Integrated Devices, School of Optoelectronic Information, University of Electronic Science and Technology of China, Chengdu 610054 (China); Chi, Zhenguo, E-mail: chizhg@mail.sysu.edu.cn [School of Chemistry, Sun Yat-sen University, Guangzhou 510275 (China); Yu, Junsheng, E-mail: jsyu@uestc.edu.cn [State Key Laboratory of Electronic Thin Film and Integrated Devices, School of Optoelectronic Information, University of Electronic Science and Technology of China, Chengdu 610054 (China)

    2017-04-15

    Hybrid white organic light-emitting devices (OLEDs) are fabricated by employing non-doped emitting layers (EMLs), which are consisted of a blue thermally activated delayed fluorescent (TADF) emitter 9,9-dimethyl-9,10-dihydroacridine-diphenylsulfone (DMAC-DPS) and an ultrathin yellow iridium complex bis[2-(4-tertbutylphenyl)benzothiazolato-N,C{sup 2′}] iridium (acetylacetonate) [(tbt){sub 2}Ir(acac)]. With thickness optimization of DMAC-DPS, a white OLED achieves maximum current efficiency, power efficiency and external quantum efficiency of 34.9 cd/A, 29.2 lm/W and 11.4%, respectively, as well as warm white emission with relatively stable electroluminescence spectra. The results suggest that, bipolar charge carrier transport property and concentration independent property of DMAC-DPS, charge carrier trapping effect of the ultrathin (tbt){sub 2}Ir(acac), and balanced self-emission process and energy transfer process between DMAC-DPS and (tbt){sub 2}Ir(acac), contribute to high device performance.

  17. MICE: the Muon Ionization Cooling Experiment. Step I: First Measurement of Emittance with Particle Physics Detectors

    CERN Document Server

    Bravar, U; Karadzhov, Y; Kolev, D; Russinov, I; Tsenov, R; Wang, L; Xu, F Y; Zheng, S X; Bertoni, R; Bonesini, M; Mazza, R; Palladino, V; Cecchet, G; de Bari, A; Capponi, M; Iaciofano, A; Orestano, D; Pastore, F; Tortora, L; Ishimoto, S; Suzuki, S; Yoshimura, K; Mori, Y; Kuno, Y; Sakamoto, H; Sato, A; Yano, T; Yoshida, M; Filthaut, F; Vretenar, M; Ramberger, S; Blondel, A; Cadoux, F; Masciocchi, F; Graulich, J S; Verguilov, V; Wisting, H; Petitjean, C; Seviour, R; Ellis, M; Kyberd, P; Littlefield, M; Nebrensky, J J; Forrest, D; Soler, F J P; Walaron, K; Cooke, P; Gamet, R; Alecou, A; Apollonio, M; Barber, G; Dobbs, A; Dornan, P; Fish, A; Hare, R; Jamdagni, A; Kasey, V; Khaleeq, M; Long, K; Pasternak, J; Sakamoto, H; Sashalmi, T; Blackmore, V; Cobb, J; Lau, W; Rayner, M; Tunnell, C D; Witte, H; Yang, S; Alexander, J; Charnley, G; Griffiths, S; Martlew, B; Moss, A; Mullacrane, I; Oats, A; York, S; Apsimon, R; Alexander, R J; Barclay, P; Baynham, D E; Bradshaw, T W; Courthold, M; Hayler, R Edgecock T; Hills, M; Jones, T; McNubbin, N; Murray, W J; Nelson, C; Nicholls, A; Norton, P R; Prior, C; Rochford, J H; Rogers, C; Spensley, W; Tilley, K; Booth, C N; Hodgson, P; Nicholson, R; Overton, E; Robinson, M; Smith, P; Adey, D; Back, J; Boyd, S; Harrison, P; Norem, J; Bross, A D; Geer, S; Moretti, A; Neuffer, D; Popovic, M; Qian, Z; Raja, R; Stefanski, R; Cummings, M A C; Roberts, T J; DeMello, A; Green, M A; Li, D; Sessler, A M; Virostek, S; Zisman, M S; Freemire, B; Hanlet, P; Huang, D; Kafka, G; Kaplan, D M; Snopok, P; Torun, Y; Onel, Y; Cline, D; Lee, K; Fukui, Y; Yang, X; Rimmer, R A; Cremaldi, L M; Hart, T L; Summers, D J; Coney, L; Fletcher, R; Hanson, G G; Heidt, C; Gallardo, J; Kahn, S; Kirk, H; Palmer, R B; C11-08-09

    2011-01-01

    The Muon Ionization Cooling Experiment (MICE) is a strategic R&D project intended to demonstrate the only practical solution to providing high brilliance beams necessary for a neutrino factory or muon collider. MICE is under development at the Rutherford Appleton Laboratory (RAL) in the United Kingdom. It comprises a dedicated beamline to generate a range of input muon emittances and momenta, with time-of-flight and Cherenkov detectors to ensure a pure muon beam. The emittance of the incoming beam will be measured in the upstream magnetic spectrometer with a scintillating fiber tracker. A cooling cell will then follow, alternating energy loss in Liquid Hydrogen (LH2) absorbers to RF cavity acceleration. A second spectrometer, identical to the first, and a second muon identification system will measure the outgoing emittance. In the 2010 run at RAL the muon beamline and most detectors were fully commissioned and a first measurement of the emittance of the muon beam with particle physics (time-of-flight) de...

  18. Underwater radiation measuring device

    International Nuclear Information System (INIS)

    Seki, Noriyuki; Suzuki, Yasuo

    1998-01-01

    The present invention provides a device for measuring, under water, radiation from spent fuels (long members to be detected) of nuclear power plants and reprocessing facilities. Namely, a detecting insertion tube (insertion tube) is disposed so as to be in parallel with axial direction of the long member to be detected stored underwater. A γ-ray detector is inserted to the inside of the insertion tube. A driving mechanism is disposed for moving the γ-ray detector in axial direction inside of the insertion tube. The driving mechanism preferably has a system that it moves the γ-ray detector by winding a detection signal cable around a driving drum. The driving mechanism is formed by inserting and securing a driving tube having screws formed on the side surface and inserting it into the insertion tube. It may have a system of moving the γ-ray detector together with the driving tube while engaging the teeth of a driving transfer mechanism with the screws of the driving tube. (I.S.)

  19. Benchmarking of measurement and simulation of transverse rms-emittance growth

    Directory of Open Access Journals (Sweden)

    L. Groening

    2008-09-01

    Full Text Available Transverse emittance growth along the Alvarez drift tube linac (DTL section is a major concern with respect to the preservation of beam quality of high current beams at the GSI UNILAC. In order to define measures to reduce this growth, appropriate tools to simulate the beam dynamics are indispensable. This paper is about the benchmarking of three beam dynamics simulation codes, i.e. DYNAMION, PARMILA, and PARTRAN against systematic measurements of beam emittances for different transverse phase advances along the DTL. Special emphasis is put on the modeling of the initial distribution for the simulations. The concept of rms equivalence is expanded from full intensity to fractions of less than 100% of the beam. The experimental setup, data reduction, preparation of the simulations, and the evaluation of the simulations are described. In the experiments and in the simulations, a minimum of the rms-emittance growth was observed at zero current phase advances of about 60°. In general, good agreement was found between simulations and experiment for the mean values of horizontal and vertical emittances at the DTL exit.

  20. An emittance measurement system for a wide range of bunch charges

    International Nuclear Information System (INIS)

    Dunham, B.; Engwall, D.; Hofler, A.; Keesee, M.; Legg, R.

    1997-01-01

    As a part of the emittance measurements planned for the FEL injector at the Thomas Jefferson National Accelerator Facility (Jefferson Lab), the authors have developed an emittance measurement system that covers the wide dynamic range of bunch charges necessary to fully characterize the high-DC-voltage photocathode gun. The measurements are carried out with a variant of the classical two-slit method using a slit to sample the beam in conjunction with a wire scanner to measure the transmitted beam profile. The use of commercial, ultra-low noise picoammeters makes it possible to cover the wide range of desired bunch charges, with the actual measurements made over the range of 0.25 pC to 125 pC. The entire system, including its integration into the EPICS control system, is discussed

  1. Hybrid white organic light-emitting devices based on phosphorescent iridium-benzotriazole orange-red and fluorescent blue emitters

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Zhen-Yuan, E-mail: xiazhenyuan@hotmail.com [Key Laboratory for Advanced Materials and Institute of Fine Chemicals, East China University of Science and Technology, Shanghai 200237 (China); Su, Jian-Hua [Key Laboratory for Advanced Materials and Institute of Fine Chemicals, East China University of Science and Technology, Shanghai 200237 (China); Chang, Chi-Sheng; Chen, Chin H. [Display Institute, Microelectronics and Information Systems Research Center, National Chiao Tung University, Hsinchu, Taiwan 300 (China)

    2013-03-15

    We demonstrate that high color purity or efficiency hybrid white organic light-emitting devices (OLEDs) can be generated by integrating a phosphorescent orange-red emitter, bis[4-(2H-benzotriazol-2-yl)-N,N-diphenyl-aniline-N{sup 1},C{sup 3}] iridium acetylacetonate, Ir(TBT){sub 2}(acac) with fluorescent blue emitters in two different emissive layers. The device based on deep blue fluorescent material diphenyl-[4-(2-[1,1 Prime ;4 Prime ,1 Double-Prime ]terphenyl-4-yl-vinyl)-phenyl]-amine BpSAB and Ir(TBT){sub 2}(acac) shows pure white color with the Commission Internationale de L'Eclairage (CIE) coordinates of (0.33,0.30). When using sky-blue fluorescent dopant N,N Prime -(4,4 Prime -(1E,1 Prime E)-2,2 Prime -(1,4-phenylene)bis(ethene-2,1-diyl) bis(4,1-phenylene))bis(2-ethyl-6-methyl-N-phenylaniline) (BUBD-1) and orange-red phosphor with a color-tuning phosphorescent material fac-tris(2-phenylpyridine) iridium (Ir(ppy){sub 3} ), it exhibits peak luminance yield and power efficiency of 17.4 cd/A and 10.7 lm/W, respectively with yellow-white color and CIE color rendering index (CRI) value of 73. - Highlights: Black-Right-Pointing-Pointer An iridium-based orange-red phosphor Ir(TBT){sub 2}(acac) was applied in hybrid white OLEDs. Black-Right-Pointing-Pointer Duel- and tri-emitter WOLEDs were achieved with either high color purity or efficiency performance. Black-Right-Pointing-Pointer Peak luminance yield of tri-emitter WOLEDs was 17.4 cd/A with yellow-white color and color rendering index (CRI) value of 73.

  2. Hybrid white organic light-emitting devices based on phosphorescent iridium–benzotriazole orange–red and fluorescent blue emitters

    International Nuclear Information System (INIS)

    Xia, Zhen-Yuan; Su, Jian-Hua; Chang, Chi-Sheng; Chen, Chin H.

    2013-01-01

    We demonstrate that high color purity or efficiency hybrid white organic light-emitting devices (OLEDs) can be generated by integrating a phosphorescent orange–red emitter, bis[4-(2H-benzotriazol-2-yl)-N,N-diphenyl-aniline-N 1 ,C 3 ] iridium acetylacetonate, Ir(TBT) 2 (acac) with fluorescent blue emitters in two different emissive layers. The device based on deep blue fluorescent material diphenyl-[4-(2-[1,1′;4′,1″]terphenyl-4-yl-vinyl)-phenyl]-amine BpSAB and Ir(TBT) 2 (acac) shows pure white color with the Commission Internationale de L'Eclairage (CIE) coordinates of (0.33,0.30). When using sky-blue fluorescent dopant N,N′-(4,4′-(1E,1′E)-2,2′-(1,4-phenylene)bis(ethene-2,1-diyl) bis(4,1-phenylene))bis(2-ethyl-6-methyl-N-phenylaniline) (BUBD-1) and orange–red phosphor with a color-tuning phosphorescent material fac-tris(2-phenylpyridine) iridium (Ir(ppy) 3 ), it exhibits peak luminance yield and power efficiency of 17.4 cd/A and 10.7 lm/W, respectively with yellow-white color and CIE color rendering index (CRI) value of 73. - Highlights: ► An iridium-based orange–red phosphor Ir(TBT) 2 (acac) was applied in hybrid white OLEDs. ► Duel- and tri-emitter WOLEDs were achieved with either high color purity or efficiency performance. ► Peak luminance yield of tri-emitter WOLEDs was 17.4 cd/A with yellow-white color and color rendering index (CRI) value of 73.

  3. Alpha emitters activity measurement using the defined solid angle method

    International Nuclear Information System (INIS)

    Blanchis, P.

    1983-01-01

    The defined solid angle counting method can reach a very high accuracy, specially for heavy ions as alpha particles emitted by a radioactive source. The activity measurement of such sources with a relative uncertainty of the order of 0.01% is investigated. Such an accuracy is available only under suitable conditions: the radiation emitted by the source must be isotropic and all the particles emitted in the effective solid angle must be detected. The efficiency detection value must be equal to unity and phenomena such as absorption or scattering must be null. It is shown that corrections often become necessary. All parameters which can influence the measurements are studied [fr

  4. Transverse-emittance measurements on an S-band photocathode RF electron gun

    CERN Document Server

    Schmerge, J F; Clendenin, J E; Decker, Franz Josef; Dowell, D H; Gierman, S M; Limborg, C G; Murphy, B F

    2002-01-01

    Proposed fourth-generation light sources using SASE FELs to generate short pulse, coherent, X-rays require demonstration of high brightness electron sources. The gun test facility at SLAC was built to test high brightness sources for the proposed linac coherent light source at SLAC. The transverse-emittance measurements are made at nearly 30 MeV by measuring the spot size on a YAG screen using the quadrupole scan technique. The emittance was measured to vary from 1 to 3.5 mm mrad as the charge is increased from 50 to 350 pC using a laser pulse width of 2 ps FWHM. The measurements are in good agreement with simulation results using the LANL version of PARMELA.

  5. Comparison of Different Methods for Transverse Emittance Measurement and Recent Results from LEP

    CERN Document Server

    Bovet, Claude; Jung, R

    1997-01-01

    The knowledge of its position and angular transverse distributions is of utmost interest to assess the good behaviour of a beam within an accelerator. After a short reminder of beam "emittance" definitions, a review is made of various measurement techniques used so far both in single pass machines and colliders. Results of measurements made at CERN in the future LHC injection complex and in LEP are presented and discussed.

  6. Method of measuring the current density distribution and emittance of pulsed electron beams

    International Nuclear Information System (INIS)

    Schilling, H.B.

    1979-07-01

    This method of current density measurement employs an array of many Faraday cups, each cup being terminated by an integrating capacitor. The voltages of the capacitors are subsequently displayed on a scope, thus giving the complete current density distribution with one shot. In the case of emittance measurements, a moveable small-diameter aperture is inserted at some distance in front of the cup array. Typical results with a two-cathode, two-energy electron source are presented. (orig.)

  7. Analysis of measured radar data for specific emitter identification

    CSIR Research Space (South Africa)

    Conning, M

    2010-05-01

    Full Text Available and can be used more efficiently to determine the exact times when a pulse starts and ends [3]. Other statistical methods are also available, as mentioned below. To determine the start of a signal, [4] and [5] used a variance fractal dimension... measure together with a Bayesian step change detector. Temporal, nonstationary signals’ fractal dimensions change over time. Multifractals can be used with such signals, e.g. radar pulses that have time-varying fractal dimensions [4], [6] and [7]. A...

  8. A correction for emittance-measurement errors caused by finite slit and collector widths

    International Nuclear Information System (INIS)

    Connolly, R.C.

    1992-01-01

    One method of measuring the transverse phase-space distribution of a particle beam is to intercept the beam with a slit and measure the angular distribution of the beam passing through the slit using a parallel-strip collector. Together the finite widths of the slit and each collector strip form an acceptance window in phase space whose size and orientation are determined by the slit width, the strip width, and the slit-collector distance. If a beam is measured using a detector with a finite-size phase-space window, the measured distribution is different from the true distribution. The calculated emittance is larger than the true emittance, and the error depends both on the dimensions of the detector and on the Courant-Snyder parameters of the beam. Specifically, the error gets larger as the beam drifts farther from a waist. This can be important for measurements made on high-brightness beams, since power density considerations require that the beam be intercepted far from a waist. In this paper we calculate the measurement error and we show how the calculated emittance and Courant-Snyder parameters can be corrected for the effects of finite sizes of slit and collector. (Author) 5 figs., 3 refs

  9. A high-DC-voltage GaAs photoemission gun: Transverse emittance and momentum spread measurements

    International Nuclear Information System (INIS)

    Engwall, D.; Bohn, C.; Cardman, L.

    1997-01-01

    We have built a high-DC-voltage photoemission gun and a diagnostic beamline permitting us to measure rms transverse emittance (ε x ) and rms momentum spread (δ) of short-duration electron pulses produced by illuminating the cathode with light from a mode-locked, frequency-doubled Nd:YLF laser. The electron gun is a GaAs photocathode source designed to operate at 500kV. We have measured ε x and δ for conditions ranging from emittance-dominated to space-charge-dominated. We report these measurements as functions of microbunch charge for different beam radii, pulse lengths, and voltages/field gradients at the cathode, and compare them with PARMELA calculations

  10. Sensitive measurement of positron emitters eluted from HPLC

    International Nuclear Information System (INIS)

    Takei, Makoto; Kida, Takayo; Suzuki, Kazutoshi

    2001-01-01

    For sensitive analysis of the radioactive-metabolite in human PET, a radio-HPLC system coupled to a newly designed positron detector was constructed. The detector had the advantages of low noise level (1.7±1.0 cpm) and high sensitivity (32±1%) due to coincidence counting and large BGO crystals. Furthermore, the detector was easy to move, since a pair of the BGO housings coupled to photomultipliers was effectively arranged in parallel and a HPLC cell with different volume could be inserted between the BGO housing. This radio-HPLC system was useful for analyzing samples with low radioactivity. It was applied to the measurement of [ 11 C]FLB457 in plasma, having high affinity and high selectivity with dopamine D2 receptors. Extremely low radioactivity of [ 11 C]FLB457 (2500 dpm) could be analyzed by using the radio-HPLC system. The performance of this detector was compared with those of commercially available systems that had been used as sensitive detectors for HPLC

  11. Overview of laserwire beam profile and emittance measurements for high power proton accelerators

    CERN Document Server

    Gibson, S M; Bosco, A; Gabor, C; Pozimski, J; Savage, P; Hofmann, T

    2013-01-01

    Laserwires were originally developed to measure micron-sized electron beams via Compton scattering, where traditional wire scanners are at the limit of their resolution. Laserwires have since been applied to larger beamsize, high power H$^-$ ion beams, where the non-invasive method can probe beam densities that would damage traditional diagnostics. While photo-detachment of H$^-$ ions is now routine to measure beam profiles, extending the technique to transverse and longitudinal emittance measurements is a key aim of the laserwire emittance scanner under construction at the Front End Test Stand (FETS) at the RAL. A pulsed, 30 kHz, 8kW peak power laser is fibrecoupled to motorized collimating optics, which controls the position and thickness of the laserwire delivered to the H- interaction chamber. The laserwire slices out a beamlet of neutralized particles, which propagate to a downstream scintillator and camera. The emittance is reconstructed from 2D images as the laserwire position is scanned. Results from ...

  12. Software Tools for Emittance Measurement and Matching for 12 GeV CEBAF

    Energy Technology Data Exchange (ETDEWEB)

    Turner, Dennis L. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2016-05-01

    This paper discusses model-driven setup of the Continuous Electron Beam Accelerator Facility (CEBAF) for the 12GeV era, focusing on qsUtility. qsUtility is a set of software tools created to perform emittance measurements, analyze those measurements, and compute optics corrections based upon the measurements.qsUtility was developed as a toolset to facilitate reducing machine configuration time and reproducibility by way of an accurate accelerator model, and to provide Operations staff with tools to measure and correct machine optics with little or no assistance from optics experts.

  13. Space Charge Correction on Emittance Measurement of Low Energy Electron Beams

    Energy Technology Data Exchange (ETDEWEB)

    Treado, Colleen J.; /Massachusetts U., Amherst

    2012-09-07

    The goal of any particle accelerator is to optimize the transport of a charged particle beam along a set path by confining the beam to a small region close to the design trajectory and directing it accurately along the beamline. To do so in the simplest fashion, accelerators use a system of magnets that exert approximately linear electromagnetic forces on the charged beam. These electromagnets bend the beam along the desired path, in the case of bending magnets, and constrain the beam to the desired area through alternating focusing and defocusing effects, in the case of quadrupole magnets. We can model the transport of such a beam through transfer matrices representing the actions of the various beamline elements. However, space charge effects, produced from self electric fields within the beam, defocus the beam and must be accounted for in the calculation of beam emittance. We present below the preliminary results of a MATLAB code built to model the transport of a charged particle beam through an accelerator and measure the emittance under the influence of space charge effects. We demonstrate the method of correctly calculating the emittance of a beam under space charge effects using a least square fit to determine the initial properties of the beam given the beam size measured at a specific point after transport.

  14. On the feasibility of sub-100 nm rad emittance measurement in plasma accelerators using permanent magnetic quadrupoles

    Science.gov (United States)

    Li, F.; Wu, Y. P.; Nie, Z.; Guo, B.; Zhang, X. H.; Huang, S.; Zhang, J.; Cheng, Z.; Ma, Y.; Fang, Y.; Zhang, C. J.; Wan, Y.; Xu, X. L.; Hua, J. F.; Pai, C. H.; Lu, W.; Gu, Y. Q.

    2018-01-01

    Low emittance (sub-100 nm rad) measurement of electron beams in plasma accelerators has been a challenging issue for a while. Among various measurement schemes, measurements based on single-shot quad-scan using permanent magnetic quadrupoles (PMQs) has been recently reported with emittance as low as ˜200 nm Weingartner (2012 Phys. Rev. Spec. Top. Accel. Beams 15 111302). However, the accuracy and reliability of this method have not been systematically analyzed. Such analysis is critical for evaluating the potential of sub-100 nm rad emittance measurement using any scheme. In this paper, we analyze the effects of various nonideal physical factors on the accuracy and reliability using the PMQ method. These factors include aberration induced by a high order field, PMQ misalignment and angular fluctuation of incoming beams. Our conclusions are as follows: (i) the aberrations caused by high order fields of PMQs are relatively weak for low emittance measurement as long as the PMQs are properly constructed. A series of PMQs were manufactured and measured at Tsinghua University, and using numerical simulations their high order field effects were found to be negligible . (ii) The largest measurement error of emittance is caused by the angular misalignment between PMQs. For low emittance measurement of ˜100 MeV beams, an angular alignment accuracy of 0.1° is necessary. This requirement can be eased for beams with higher energies. (iii) The transverse position misalignment of PMQs and angular fluctuation of incoming beams only cause a translational and rotational shift of measured signals, respectively, therefore, there is no effect on the measured value of emittance. (iv) The spatial resolution and efficiency of the detection system need to be properly designed to guarantee the accuracy of sub-100 nm rad emittance measurement.

  15. Temperature measurement device

    International Nuclear Information System (INIS)

    Oltman, B.G.; Eckerman, K.F.; Romberg, G.P.; Prepejchal, W.

    1975-01-01

    Thermoluminescent dosimeter (TLD) material is exposed to a known amount of radiation and then exposed to the environment where temperature measurements are to be taken. After a predetermined time period, the TLD material is read in a known manner to determine the amount of radiation energy remaining in the TLD material. The difference between the energy originally stored by irradiation and that remaining after exposure to the temperature ofthe environment is a measure of the average temperature of the environment during the exposure. (U.S.)

  16. Preparation and Characterisation of Amorphous-silicon Photovoltaic Devices Having Microcrystalline Emitters

    International Nuclear Information System (INIS)

    Gutierrez, M. T.; Gandia, J. J.; Carabe, J.

    1999-01-01

    The present work summarises the essential aspects of the research carried out so far at CIEMAT on amorphous-silicon solar cells. The experience accumulated on the preparation and characterisation of amorphous and microcrystalline silicon has allowed to start from intrinsic (absorbent) and p- and n-type (emitters) materials not only having excellent optoelectronic properties, but enjoying certain technological advantages with respect to those developed by other groups. Among these are absorbent-layer growth rates between 5 and 10 times as fast as conventional ones and microcrystalline emitters prepared without using hydrogen. The preparation of amorphous-silicon cells has required the solution of a number of problems, such as those related to pinholes, edge leak currents and diffusion of metals into the semiconductor. Once such constraints have been overcome, it has been demonstrated not only that the amorphous-silicon technology developed at CIEMAT is valid for making solar cells, but also that the quality of the semiconductor material is good for the application according to the partial results obtained. The development of thin-film laser-scribing technology is considered essential. Additionally it has been concluded that cross contamination, originated by the fact of using a single-chamber reactor, is the basic factor limiting the quality of the cells developed at CIEMAT. The present research activity is highly focused on the solution of this problem. (Author)23 refs

  17. Turbocharged molecular discovery of OLED emitters: from high-throughput quantum simulation to highly efficient TADF devices

    Science.gov (United States)

    Gómez-Bombarelli, Rafael; Aguilera-Iparraguirre, Jorge; Hirzel, Timothy D.; Ha, Dong-Gwang; Einzinger, Markus; Wu, Tony; Baldo, Marc A.; Aspuru-Guzik, Alán.

    2016-09-01

    Discovering new OLED emitters requires many experiments to synthesize candidates and test performance in devices. Large scale computer simulation can greatly speed this search process but the problem remains challenging enough that brute force application of massive computing power is not enough to successfully identify novel structures. We report a successful High Throughput Virtual Screening study that leveraged a range of methods to optimize the search process. The generation of candidate structures was constrained to contain combinatorial explosion. Simulations were tuned to the specific problem and calibrated with experimental results. Experimentalists and theorists actively collaborated such that experimental feedback was regularly utilized to update and shape the computational search. Supervised machine learning methods prioritized candidate structures prior to quantum chemistry simulation to prevent wasting compute on likely poor performers. With this combination of techniques, each multiplying the strength of the search, this effort managed to navigate an area of molecular space and identify hundreds of promising OLED candidate structures. An experimentally validated selection of this set shows emitters with external quantum efficiencies as high as 22%.

  18. High-precision branching-ratio measurement for the superallowed β+ emitter 26Alm

    Science.gov (United States)

    Finlay, P.; Ball, G. C.; Leslie, J. R.; Svensson, C. E.; Andreoiu, C.; Austin, R. A. E.; Bandyopadhyay, D.; Cross, D. S.; Demand, G.; Djongolov, M.; Ettenauer, S.; Garrett, P. E.; Green, K. L.; Grinyer, G. F.; Hackman, G.; Leach, K. G.; Pearson, C. J.; Phillips, A. A.; Rand, E. T.; Sumithrarachchi, C. S.; Triambak, S.; Williams, S. J.

    2012-05-01

    A high-precision branching-ratio measurement for the superallowed β+ emitter 26Alm was performed at the TRIUMF-ISAC radioactive ion beam facility. An upper limit of ⩽12 ppm at 90% confidence level was found for the second forbidden β+ decay of 26Alm to the 21+ state at 1809 keV in 26Mg. An inclusive upper limit of ⩽15 ppm at 90% confidence level was found when considering all possible nonanalog β+/EC decay branches of 26Alm, resulting in a superallowed branching ratio of 100.0000-0.0015+0%.

  19. Energy measurement and longitudinal beam emittance reconstruction in L4T line

    CERN Document Server

    Meng, C; Garoby, R; Lallement, JB; Lombardi, A; Tang, J Y; Yarmohammadi Satri, M; CERN. Geneva. ATS Department

    2013-01-01

    LINAC4 is a new linear accelerator for H- ion which will replace proton Linac2 as injector for the CERN proton accelerator complex. LINAC4 accelerates H− ions from 45 keV to 160 MeV in a sequence of normal conducting structures. Then, H- ions with a kinetic energy of 160 MeV will be sent to the PS Booster. This note describes two energy measurement methods and a improved method that will be used for longitudinal emittance reconstruction with space charge by multi-particle tracking code and the expected results.

  20. Measurement of X-ray beam emittance using crystal optics at an X-ray undulator beamline

    International Nuclear Information System (INIS)

    Kohmura, Yoshiki; Suzuki, Yoshio; Awaji, Mitsuhiro; Tanaka, Takashi; Hara, Toru; Goto, Shunji; Ishikawa, Tetsuya

    2000-01-01

    We present a method of using crystal optics to measure the emittance of the X-ray source. Two perfect crystals set in (++) configuration work as a high-resolution collimator. The phase-space diagram (i.e. beam cross-section and angular distribution) could be determined without any assumptions on the light source. When the measurement is done at short wavelength radiation from undulator, the electron beam emittance is larger than the diffraction limit of the X-rays. Therefore, the electron beam emittance could be estimated. The measurement was done with the hard X-rays of 18.5 and 55 keV from an undulator beamline, BL 47XU, of SPring-8. The horizontal emittance of the X-ray beam was estimated to be about 7.6 nmrad, close to the designed electron beam emittance of the storage ring (7 nmrad). Some portions of the instrumental functions, such as the scattering by filters and windows along the beamline and the slight bent of the crystal planes of the monochromator, could not be precisely evaluated, but an upper limit for the vertical emittance of the electron beam could be obtained as 0.14 nmrad

  1. Nonintercepting emittance monitor

    International Nuclear Information System (INIS)

    Miller, R.H.; Clendenin, J.E.; James, M.B.; Sheppard, J.C.

    1983-08-01

    A nonintercepting emittance monitor is a helpful device for measuring and improving particle beams in accelerators and storage rings as it allows continuous monitoring of the beam's distribution in phase space, and perhaps closed loop computer control of the distributions. Stripline position monitors are being investigated for use as nonintercepting emittance monitors for a beam focused by a FODO array in the first 100 meters of our linear accelerator. The technique described here uses the signal from the four stripline probes of a single position monitor to measure the quadrupole mode of the wall current in the beam pipe. This current is a function of the quadrupole moment of the beam, sigma 2 /sub x/ - sigma 2 /sub y/. In general, six independent measurements of the quadrupole moment are necessary to determine the beam emittance. This technique is dependent on the characteristically large variations of sigma 2 /sub x/ - sigma 2 /sub y/ in a FODO array. It will not work in a focusing system where the beam is round at each focusing element

  2. Magnetic Waveform Measurements of the PS Injection Kicker KFA45 and Future Emittance Growth Estimates

    CERN Document Server

    Forte, Vincenzo; Ferrero Colomo, Alvaro; CERN. Geneva. ATS Department

    2018-01-01

    In the framework of the LHC Injectors Upgrade (LIU) project [1], this document summarises the beam-based measurement of the magnetic waveform of the PS injection kicker KFA45 [2], from data collected during several Machine Development (MD) sessions in 2016 and 2017. In the first part of the document, the measurement methodology is introduced and the results presented and compared with the specification required for a clean transfer of the bunches coming from the PSB after the upgrade. These measurements represent, to date, the only way to reconstruct the magnetic waveform. In the second part, kicker magnetic waveform PSpice®[3] simulations are compared and tuned to the measurements. Finally the simulated (validated through measurements) waveforms are used to estimate the future expected emittance growth for the different PS injection schemes, both for (LIU target) LHC and fixed target beams.

  3. Inducer Hydrodynamic Load Measurement Devices

    Science.gov (United States)

    Skelley, Stephen E.; Zoladz, Thomas F.

    2002-01-01

    Marshall Space Flight Center (MSFC) has demonstrated two measurement devices for sensing and resolving the hydrodynamic loads on fluid machinery. The first - a derivative of the six component wind tunnel balance - senses the forces and moments on the rotating device through a weakened shaft section instrumented with a series of strain gauges. This "rotating balance" was designed to directly measure the steady and unsteady hydrodynamic loads on an inducer, thereby defining both the amplitude and frequency content associated with operating in various cavitation modes. The second device - a high frequency response pressure transducer surface mounted on a rotating component - was merely an extension of existing technology for application in water. MSFC has recently completed experimental evaluations of both the rotating balance and surface-mount transducers in a water test loop. The measurement bandwidth of the rotating balance was severely limited by the relative flexibility of the device itself, resulting in an unexpectedly low structural bending mode and invalidating the higher frequency response data. Despite these limitations, measurements confirmed that the integrated loads on the four-bladed inducer respond to both cavitation intensity and cavitation phenomena. Likewise, the surface-mount pressure transducers were subjected to a range of temperatures and flow conditions in a non-rotating environment to record bias shifts and transfer functions between the transducers and a reference device. The pressure transducer static performance was within manufacturer's specifications and dynamic response accurately followed that of the reference.

  4. Cryogenic Thermal Emittance Measurements on Small-Diameter Stainless Steel Tubing

    Science.gov (United States)

    Jahromi, Amir E.; Tuttle, James G.; Canavan, Edgar R.

    2017-01-01

    The Mid Infrared Instrument aboard the James Webb Space Telescope includes a mechanical cryocooler which cools its detectors to their 6 K operating temperature. The refrigerant flows through several meters of 2 mm diameter 304L stainless steel tubing, with some sections gold plated, and some not, which are exposed to their environment. An issue of water freezing onto the tube surfaces is mitigated by running a warm gas through the lines to sublimate the frozen water. To model the effect of this process on nearby instruments, an accurate measure of the tube emittance is needed. Previously we reported the absorptance of the gold plated stainless steel tubing as a function of source temperature (i.e. its environment). In this work the thermal emittance of the uncoated tubing is measured as a function of its temperature between 100 and 280 K. These values lead to an accurate prediction of the minimum length of time required to thermally recycle the system. We report the technique and present the results.

  5. Measurement of precise particle distributions in emittance phase plane in the JHP LEBT

    International Nuclear Information System (INIS)

    Fujimura, S.; Ueno, A.

    1996-01-01

    A low energy beam transport (LEBT), in which any practical emittance growth due to the lens-aberration would not be caused, was developed for the Japanese Hadron Project (JHP). In the LEBT, we measured the precise distributions in the transverse emittance phase plane of the particles, which were extracted from the volume production H - ion source (VPIS) operated without cesium. The measured results showed good agreements with the simulation results using the initial particles at the exit of the VPIS generated with Ueno-Yokoya distribution (UY-dst), in which the particles are distributed uniformly in the real space (concerning with x and y) and distributed in Gaussian way concerning with x' and y'. We also detected the unexpectedly strong space-charge neutralization effect only with the residual H 2 gas with a pressure of 3.7 x 10 -6 Torr. In this condition, 93% of the beam intensity was neutralized with almost no beam loss due to electron stripping by collisions with H 2 gas. (author)

  6. Emittance measurements for optimum operation of the J-PARC RF-driven H{sup −} ion source

    Energy Technology Data Exchange (ETDEWEB)

    Ueno, A., E-mail: akira.ueno@j-parc.jp; Ohkoshi, K.; Ikegami, K.; Takagi, A.; Yamazaki, S.; Oguri, H. [J-PARC Center, Tokai-mura, Naka-gun, Ibaraki-ken 319-1195 (Japan)

    2015-04-08

    In order to satisfy the Japan Proton Accelerator Research Complex (J-PARC) second stage requirements of an H{sup −} ion beam of 60mA within normalized emittances of 1.5πmm•mrad both horizontally and vertically, a flat top beam duty factor of 1.25% (500μs×25Hz) and a life-time of longer than 1month, the J-PARC cesiated RF-driven H{sup −} ion source was developed by using an internal-antenna developed at the Spallation Neutron Source (SNS). The transverse emittances of the source were measured with various conditions to find out the optimum operation conditions minimizing the horizontal and vertical rms normalized emittances. The transverse emittances were most effectively reduced by operating the source with the plasma electrode temperature lower than 70°C. The optimum value of the cesium (Cs) density around the beam hole of the plasma electrode seems to be proportional to the plasma electrode temperature. The fine control of the Cs density is indispensable, since the emittances seem to increase proportionally to the excessiveness of the Cs density. Furthermore, the source should be operated with the Cs density beyond a threshold value, since the plasma meniscus shape and the ellipse parameters of the transverse emittances seem to be changed step-function-likely on the threshold Cs value.

  7. Carbon Nanotube Field Emitters Synthesized on Metal Alloy Substrate by PECVD for Customized Compact Field Emission Devices to Be Used in X-Ray Source Applications

    Directory of Open Access Journals (Sweden)

    Sangjun Park

    2018-05-01

    Full Text Available In this study, a simple, efficient, and economical process is reported for the direct synthesis of carbon nanotube (CNT field emitters on metal alloy. Given that CNT field emitters can be customized with ease for compact and cold field emission devices, they are promising replacements for thermionic emitters in widely accessible X-ray source electron guns. High performance CNT emitter samples were prepared in optimized plasma conditions through the plasma-enhanced chemical vapor deposition (PECVD process and subsequently characterized by using a scanning electron microscope, tunneling electron microscope, and Raman spectroscopy. For the cathode current, field emission (FE characteristics with respective turn on (1 μA/cm2 and threshold (1 mA/cm2 field of 2.84 and 4.05 V/μm were obtained. For a field of 5.24 V/μm, maximum current density of 7 mA/cm2 was achieved and a field enhancement factor β of 2838 was calculated. In addition, the CNT emitters sustained a current density of 6.7 mA/cm2 for 420 min under a field of 5.2 V/μm, confirming good operational stability. Finally, an X-ray generated image of an integrated circuit was taken using the compact field emission device developed herein.

  8. Fixed type incore measuring device

    International Nuclear Information System (INIS)

    Oda, Naotaka; Ito, Hitoshi; Maeda, Hiroyuki

    1998-01-01

    The present invention concerns a measuring device using gamma thermometers to be used in a BWR type reactor. An input switch is inserted to the vicinity of a detection signal input portion of a signal cable connecting GT with the detection signal input portion of a fixed type incore measuring device, and a loop resistance measuring means is disposed to the input switch on the side of the GT by way of a measurement switch. Upon measuring loop resistance, the GT measuring circuit is switched from the detection signal input portion to the loop resistance measuring means by a switching operation of the input switch and the measurement switch thereby enabling to confirm the value of the loop resistance. In addition, the lowering of the voltage in the loop resistance is compensated to confirm the accurate measurement values to be used thereby enabling to measure GT detection signals accurately. A diagnosing means for diagnosing the state of GT based on the results of the measurement for the loop resistance is disposed, and the results are reported to an operator. (N.H.)

  9. High-Precision Half-life Measurements for the Superallowed β+ Emitter 14O

    Science.gov (United States)

    Laffoley, A. T.; Svensson, C. E.; Andreoiu, C.; Austin, R. A. E.; Ball, G. C.; Blank, B.; Bouzomita, H.; Cross, D. S.; Diaz Varela, A.; Dunlop, R.; Finlay, P.; Garnsworthy, A. B.; Garrett, P. E.; Giovinazzo, J.; Grinyer, G. F.; Hackman, G.; Hadinia, B.; Jamieson, D. S.; Ketelhut, S.; Leach, K. G.; Leslie, J. R.; Tardiff, E. R.; Thomas, J. C.; Unsworth, C.

    2014-03-01

    The half-life of 14O, a superallowed Fermi β+ emitter, has been determined via simultaneous γ and β counting experiments at TRIUMF's Isotope Separator and Accelerator facility. Following the implantation of 14O samples at the center of the 8π spectrometer, a γ counting measurement was performed by detecting the 2313 keV γ-rays emitted from the first excited state of the daughter 14N using 20 high-purity germanium (HPGe) detectors. A simultaneous β counting experiment was performed using a fast plastic scintillator positioned directly behind the implantation site. The results, T½(γ) = 70:632 ± 0:094 s and T½(β) = 70:610 ± 0:030 s, are consistent with one another and, together with eight previous measurements, establish a new average for the 14O half-life of T½ = 70:619 ± 0:011 s with a reduced χ2 of 0.99.

  10. Measurement of X-ray beam emittance using crystal optics at an X-ray undulator beamline

    CERN Document Server

    Kohmura, Y; Awaji, M; Tanaka, T; Hara, T; Goto, S; Ishikawa, T

    2000-01-01

    We present a method of using crystal optics to measure the emittance of the X-ray source. Two perfect crystals set in (++) configuration work as a high-resolution collimator. The phase-space diagram (i.e. beam cross-section and angular distribution) could be determined without any assumptions on the light source. When the measurement is done at short wavelength radiation from undulator, the electron beam emittance is larger than the diffraction limit of the X-rays. Therefore, the electron beam emittance could be estimated. The measurement was done with the hard X-rays of 18.5 and 55 keV from an undulator beamline, BL 47XU, of SPring-8. The horizontal emittance of the X-ray beam was estimated to be about 7.6 nmrad, close to the designed electron beam emittance of the storage ring (7 nmrad). Some portions of the instrumental functions, such as the scattering by filters and windows along the beamline and the slight bent of the crystal planes of the monochromator, could not be precisely evaluated, but an upper li...

  11. Methods of measuring of the ion beam transversal emittance in the injection channel of the cyclotron DC-72

    CERN Document Server

    Kazarinov, N; Kalagin, I V; Kazacha, V I

    2002-01-01

    The methods of measuring of the transversal emittance of ion beams in the cyclotron DC-72 injection channel with the help of the 'pepper-pot' and gradient means are discussed in this work. Two ways for the reconstruction of the ion beam transversal emittance are proposed for the 'pepper-pot' method. The first one can be used for beams having the uniform distribution of particles in the phase space. At that the values of the Twiss matrix and the full beam emittance are reconstructed according to the measurement results with the help of the phase ellipse fitting by the least-squares method. The corresponding FORTRAN code was created. On simulation the beam emittance was reconstructed with accuracy of 5%. The second method of the beam emittance reconstruction can be used in the common case at the arbitrary particle distribution in the phase space. It is based on calculation of the mean-square parameters of the beam according to the measurement results in the plane of the 'pepper-pot' mask. The mean-square emitta...

  12. High-Precision Half-Life Measurement for the Superallowed β+ Emitter Alm26

    Science.gov (United States)

    Finlay, P.; Ettenauer, S.; Ball, G. C.; Leslie, J. R.; Svensson, C. E.; Andreoiu, C.; Austin, R. A. E.; Bandyopadhyay, D.; Cross, D. S.; Demand, G.; Djongolov, M.; Garrett, P. E.; Green, K. L.; Grinyer, G. F.; Hackman, G.; Leach, K. G.; Pearson, C. J.; Phillips, A. A.; Sumithrarachchi, C. S.; Triambak, S.; Williams, S. J.

    2011-01-01

    A high-precision half-life measurement for the superallowed β+ emitter Alm26 was performed at the TRIUMF-ISAC radioactive ion beam facility yielding T1/2=6346.54±0.46stat±0.60systms, consistent with, but 2.5 times more precise than, the previous world average. The Alm26 half-life and ft value, 3037.53(61) s, are now the most precisely determined for any superallowed β decay. Combined with recent theoretical corrections for isospin-symmetry-breaking and radiative effects, the corrected Ft value for Alm26, 3073.0(12) s, sets a new benchmark for the high-precision superallowed Fermi β-decay studies used to test the conserved vector current hypothesis and determine the Vud element of the Cabibbo-Kobayashi-Maskawa quark mixing matrix.

  13. Measurements of emittance growth through the achromatic bend at the BNL Accelerator Test Facility

    International Nuclear Information System (INIS)

    Wang, X.J.; Kehne, D.

    1997-07-01

    Measurements of emittance growth in a high peak current beam as it passes through an achromatic double bend are summarized. Experiments were performed using the ATF at Brookhaven National Laboratory by X.J. Wang and D. Kehne as a collaboration resulting from the proposal attached at the end of the document. The ATF consists off an RF gun (1 MeV), two sections of linac (40-75 MeV), a diagnostic section immediately following the linac, a 20 degree bend magnet, a variable aperture slit at a high dispersion point, 5 quadrupoles, then another 20 degree bend followed by another diagnostic section. The TRANSPORT deck describing the region from the end of the linac to the end of the diagnostic line following the achromatic bends is attached to the end of this document. Printouts of the control screens are also attached

  14. The Electroluminescence Mechanism of Solution-Processed TADF Emitter 4CzIPN Doped OLEDs Investigated by Transient Measurements

    Directory of Open Access Journals (Sweden)

    Peng Wang

    2016-10-01

    Full Text Available High efficiency, solution-processed, organic light emitting devices (OLEDs, using a thermally-activated delayed fluorescent (TADF emitter, 1,2,3,5-tetrakis(carbazol-9-yl-4,6-dicyanobenzene (4CzIPN, are fabricated, and the transient electroluminescence (EL decay of the device with a structure of [ITO/PEDOT: PSS/4CzIPN 5 wt % doped 4,40-N,N0-dicarbazolylbiphenyl(CBP/bis-4,6-(3,5-di-4-pyridylphenyl-2-methylpyrimidine (B4PyMPM/lithium fluoride (LiF/Al], is systematically studied. The results shed light on the dominant operating mechanism in TADF-based OLEDs. Electroluminescence in the host–guest system is mainly produced from the 4CzIPN emitter, rather than the exciplex host materials.

  15. Device for measuring well twistings

    Energy Technology Data Exchange (ETDEWEB)

    Kostin, Yu S; Golubin, S V; Keller, V F; Merzheyevskiy, A B; Zdorov, V P

    1982-01-01

    The device for measuring the well twistings with the use of fluids (poured into a vessel and which leave an imprint on the walls), containing a housing and adapter, is distinguished by the fact that in order to improve the accuracy of measurement by obtaining a clear imprint, it is equipped with cylinder that is spring-loaded in relation to the adapter, forming a vessel for fluid with the adapter. The adapter is made of two parts, one of which is made of neutral metal in relation to the fluid, and the other, from active in relation to the same fluid.

  16. Measurement of the most exotic beta-delayed neutron emitters at N=50 and N=126

    Science.gov (United States)

    Dillmann, Iris

    2017-09-01

    Beta-delayed neutron (βn)-emission will be the dominant decay mechanism of neutron-rich nuclei and plays an important role in the stellar nucleosynthesis of heavy elements in the ``r process''. It leads to a detour of the material β-decaying back to stability and the released neutrons increase the neutron-to-seed ratio, and are re-captured during the freeze-out phase and thus influence the final solar r-abundance curve. Thus the neutron branching ratio of very neutron-rich isotopes is a crucial parameter in astrophysical simulations. In addition, β-decay half-lives can be deduced from the time-dependent detection of βn's. I will talk about two recent experimental campaigns. The neutron detector BELEN was used at GSI Darmstadt to measure half-lives and neutron-branching ratios of the heaviest presently accessible βn-emitters at N=126. For isotopes between 204Au and 220Bi nine half-lives and eight neutron-branching ratios were measured for the first time and provide an important input for benchmarking theoretical models in this mass region. Its successor is the BRIKEN detector (``Beta-delayed neutron measurements at RIKEN for nuclear structure, astrophysics, and applications''), the most efficient neutron detector used so far for nuclear structure studies. In conjunction with two clover detectors and the ``Advanced Implantation Detector Array'' (AIDA) the setup has been used a few months ago to measure the most neutron-rich isotopes around 78Ni, 132Sn, and the Rare Earth Region. Some preliminary results are shown from the campaign covering the 78Ni region where the neutron-branching ratio of 78Ni and 28 more isotopes were measured for the first time, as well as the half-lives of 20 isotopes. The BRIKEN campaign aims to (re-)measure almost all βn-emitters between 76Co and 167Eu, many of them for the first time. An extension of the campaign to lighter masses is planned. This work has been supported by the NSERC and NRC in Canada, the US DOE, the Spanish

  17. Electroluminescence Properties of IrQ(ppy)2 Dual-Emitter Organometallic Compound in Organic Light-Emitting Devices

    Science.gov (United States)

    Ciobotaru, Constantin Claudiu; Polosan, Silviu; Ciobotaru, Iulia Corina

    2018-02-01

    This paper reports the influence of the charge carrier mobility on the electroluminescent properties of a dual-emitter organometallic compound dispersed in two conjugated organic small-molecule host materials and embedded in organic light-emitting devices (OLEDs). The electroluminescent processes in OLEDs are strongly influenced by the host-guest interaction. The charge carrier mobility in the host material plays an important role in the electroluminescent processes but also depends on the triplet-triplet interaction with the organometallic compound. The low charge carrier mobility in 4,4'-bis( N-carbazolyl)-1,1'-biphenyl (CBP) host material reduces the electroluminescent processes, but they are slightly enhanced by the triplet-triplet exothermic charge transfer. The higher charge carrier mobility in the case of N, N'-bis(3-methylphenyl)- N, N'-diphenylbenzidine (TPD) host material influences the electroluminescent processes by the endothermic energy transfer at room temperature, which facilitates the triplet-triplet harvesting in the host-guest system. The excitation is transferred to the guest molecules by triplet-triplet interaction as a Dexter transfer, which occurs by endothermic transfer from the triplet exciton in the host to the triplet exciton in the guest.

  18. Mass Measurements of an Electrospray Beam from a Single Emitter Ionic Liquid Ferrofluid Electrospray Source

    Data.gov (United States)

    National Aeronautics and Space Administration — The research that will be conducted in its broadest sense is experimentally measuring the electric field that is used in micro-scale propulsion devices. The key...

  19. Single-shot measurements of low emittance beams from laser-plasma accelerators comparing two triggered injection methods

    Science.gov (United States)

    van Tilborg, Jeroen

    2017-10-01

    The success of laser plasma accelerator (LPA) based applications, such as a compact x-ray free electron laser (FEL), relies on the ability to produce electron beams with excellent 6D brightness, where brightness is defined as the ratio of charge to the product of the three normalized emittances. As such, parametric studies of the emittance of LPA generated electron beams are essential. Profiting from a stable and tunable LPA setup, combined with a carefully designed single-shot energy-dispersed emittance diagnostic, we present a direct comparison of charge dependent emittance measurements of electron beams generated by two different injection mechanisms: ionization injection and shock-induced density down-ramp injection. Both injection mechanisms have gained in popularity in recent years due to their demonstrated stable LPA performance. For the down-ramp injection configuration, normalized emittances a factor of two lower were recorded: less than 1 micron at spectral charge densities up to 2 pC/MeV. For both injection mechanisms, a contributing correlation of space charge to the emittance was identified. This measurement technique in general, and these results specifically, are critical to the evaluation of LPA injection methods and development of high-quality LPA beam lines worldwide. This work is supported by the U.S. DOE under Contract No. DE-AC02-05CH11231, by the U.S. DOE NNSA, DNN R&D (NA22), by the National Science Foundation under Grant No. PHY-1415596, and by the Gordon and Betty Moore Foundation under Grant ID GBMF4898.

  20. Studies on space charge neutralization and emittance measurement of beam from microwave ion source

    Energy Technology Data Exchange (ETDEWEB)

    Misra, Anuraag; Goswami, A.; Sing Babu, P.; Srivastava, S.; Pandit, V. S., E-mail: pandit@vecc.gov.in, E-mail: vspandit12@gmail.com [Variable Energy Cyclotron Centre, 1-AF, Bidhannagar, Kolkata 700 064 (India)

    2015-11-15

    A 2.45 GHz microwave ion source together with a beam transport system has been developed at VECC to study the problems related with the injection of high current beam into a compact cyclotron. This paper presents the results of beam profile measurement of high current proton beam at different degrees of space charge neutralisation with the introduction of neon gas in the beam line using a fine leak valve. The beam profiles have been measured at different pressures in the beam line by capturing the residual gas fluorescence using a CCD camera. It has been found that with space charge compensation at the present current level (∼5 mA at 75 keV), it is possible to reduce the beam spot size by ∼34%. We have measured the variation of beam profile as a function of the current in the solenoid magnet under the neutralised condition and used these data to estimate the rms emittance of the beam. Simulations performed using equivalent Kapchinsky-Vladimirsky beam envelope equations with space charge neutralization factor are also presented to interpret the experimental results.

  1. Measurement techniques for low emittance tuning and beam dynamics at CESR

    Science.gov (United States)

    Billing, M. G.; Dobbins, J. A.; Forster, M. J.; Kreinick, D. L.; Meller, R. E.; Peterson, D. P.; Ramirez, G. A.; Rendina, M. C.; Rider, N. T.; Sagan, D. C.; Shanks, J.; Sikora, J. P.; Stedinger, M. G.; Strohman, C. R.; Williams, H. A.; Palmer, M. A.; Holtzapple, R. L.; Flanagan, J.

    2018-03-01

    After operating as a High Energy Physics electron-positron collider, the Cornell Electron-positron Storage Ring (CESR) has been converted to become a dedicated synchrotron light source for the Cornell High Energy Synchrotron Source (CHESS). Over the course of several years CESR was adapted for accelerator physics research as a test accelerator, capable of studying topics relevant to future damping rings, colliders and light sources. Initially some specific topics were targeted for accelerator physic research with the storage ring in this mode, labeled CesrTA. These topics included 1) tuning techniques to produce low emittance beams, 2) the study of electron cloud (EC) development in a storage ring and 3) intra-beam scattering effects. The complete conversion of CESR to CesrTA occurred over a several year period, described elsewhere [1–3]. A number of specific instruments were developed for CesrTA. Much of the pre-existing instrumentation was modified to accommodate the scope of these studies and these are described in a companion paper [4]. To complete this research, a number of procedures were developed or modified, often requiring coordinated measurements among different instruments [5]. This paper provides an overview of types of measurements employed for the study of beam dynamics during the operation of CesrTA.

  2. Smith-Purcell experiment utilizing a field-emitter array cathode: measurements of radiation

    International Nuclear Information System (INIS)

    Ishizuka, H.; Kawamura, Y.; Yokoo, K.; Shimawaki, H.; Hosono, A.

    2001-01-01

    Smith-Purcell (SP) radiation at wavelengths of 350-750 nm was produced in a tabletop experiment using a field-emitter array (FEA) cathode. The electron gun was 5 cm long, and a 25 mmx25 mm holographic replica grating was placed behind the slit provided in the anode. A regulated DC power supply accelerated electron beams in excess of 10 μA up to 45 keV, while a small Van de Graaff generator accelerated smaller currents to higher energies. The grating had a 0.556 μm period, 30 deg. blaze and a 0.2 μm thick aluminum coating. Spectral characteristics of the radiation were measured both manually and automatically; in the latter case, the spectrometer was driven by a stepping motor to scan the wavelength, and AD-converted signals from a photomultiplier tube were processed by a personal computer. The measurement, made at 80 deg. relative to the electron beam, showed good agreement with theoretical wavelengths of the SP radiation. Diffraction orders were -2 and -3 for beam energies higher than 45 keV, -3 to -5 at 15-25 keV, and -2 to -4 in between. The experiment has thus provided evidence for the practical applicability of FEAs to compact radiation sources

  3. High-precision half-life measurements for the superallowed Fermi β+ emitter 14O

    Science.gov (United States)

    Laffoley, A. T.; Svensson, C. E.; Andreoiu, C.; Austin, R. A. E.; Ball, G. C.; Blank, B.; Bouzomita, H.; Cross, D. S.; Diaz Varela, A.; Dunlop, R.; Finlay, P.; Garnsworthy, A. B.; Garrett, P. E.; Giovinazzo, J.; Grinyer, G. F.; Hackman, G.; Hadinia, B.; Jamieson, D. S.; Ketelhut, S.; Leach, K. G.; Leslie, J. R.; Tardiff, E.; Thomas, J. C.; Unsworth, C.

    2013-07-01

    The half-life of the superallowed Fermi β+ emitter 14O has been determined via simultaneous direct β and γ counting experiments at TRIUMF's Isotope Separator and Accelerator (ISAC) facility. A γ-ray counting measurement was performed by detecting the 2312.6-keV γ rays emitted from an excited state of the daughter 14N following the implantation of samples at the center of the 8π γ-ray spectrometer, a spherical array of 20 high-purity germanium (HPGe) detectors. A simultaneous β counting experiment was performed using a fast plastic scintillator positioned behind the implantation site with a solid angle coverage of ˜20%. The results, T1/2(β)=70.610±0.030s and T1/2(γ)=70.632±0.094s, form a consistent set and, together with eight previous measurements, establish a new average for the 14O half-life of T1/2=70.619±0.011s with a reduced χ2 of 0.99.

  4. High-precision branching ratio measurement for the superallowed β+ emitter Ga62

    Science.gov (United States)

    Finlay, P.; Ball, G. C.; Leslie, J. R.; Svensson, C. E.; Towner, I. S.; Austin, R. A. E.; Bandyopadhyay, D.; Chaffey, A.; Chakrawarthy, R. S.; Garrett, P. E.; Grinyer, G. F.; Hackman, G.; Hyland, B.; Kanungo, R.; Leach, K. G.; Mattoon, C. M.; Morton, A. C.; Pearson, C. J.; Phillips, A. A.; Ressler, J. J.; Sarazin, F.; Savajols, H.; Schumaker, M. A.; Wong, J.

    2008-08-01

    A high-precision branching ratio measurement for the superallowed β+ decay of Ga62 was performed at the Isotope Separator and Accelerator (ISAC) radioactive ion beam facility. The 8π spectrometer, an array of 20 high-purity germanium detectors, was employed to detect the γ rays emitted following Gamow-Teller and nonanalog Fermi β+ decays of Ga62, and the SCEPTAR plastic scintillator array was used to detect the emitted β particles. Thirty γ rays were identified following Ga62 decay, establishing the superallowed branching ratio to be 99.858(8)%. Combined with the world-average half-life and a recent high-precision Q-value measurement for Ga62, this branching ratio yields an ft value of 3074.3±1.1 s, making Ga62 among the most precisely determined superallowed ft values. Comparison between the superallowed ft value determined in this work and the world-average corrected F tmacr value allows the large nuclear-structure-dependent correction for Ga62 decay to be experimentally determined from the CVC hypothesis to better than 7% of its own value, the most precise experimental determination for any superallowed emitter. These results provide a benchmark for the refinement of the theoretical description of isospin-symmetry breaking in A⩾62 superallowed decays.

  5. Smith-Purcell experiment utilizing a field-emitter array cathode measurements of radiation

    CERN Document Server

    Ishizuka, H; Yokoo, K; Shimawaki, H; Hosono, A

    2001-01-01

    Smith-Purcell (SP) radiation at wavelengths of 350-750 nm was produced in a tabletop experiment using a field-emitter array (FEA) cathode. The electron gun was 5 cm long, and a 25 mmx25 mm holographic replica grating was placed behind the slit provided in the anode. A regulated DC power supply accelerated electron beams in excess of 10 mu A up to 45 keV, while a small Van de Graaff generator accelerated smaller currents to higher energies. The grating had a 0.556 mu m period, 30 deg. blaze and a 0.2 mu m thick aluminum coating. Spectral characteristics of the radiation were measured both manually and automatically; in the latter case, the spectrometer was driven by a stepping motor to scan the wavelength, and AD-converted signals from a photomultiplier tube were processed by a personal computer. The measurement, made at 80 deg. relative to the electron beam, showed good agreement with theoretical wavelengths of the SP radiation. Diffraction orders were -2 and -3 for beam energies higher than 45 keV, -3 to -5 ...

  6. Electron emitter pulsed-type cylindrical IEC

    International Nuclear Information System (INIS)

    Miley, G.H.; Gu, Y.; Stubbers, R.; Zich, R.; Anderl, R.; Hartwell, J.

    1997-01-01

    A cylindrical version of the single grid Inertial Electrostatic Confinement (IEC) device (termed the C-device) has been developed for use as a 2.5-MeV D-D fusion neutron source for neutron activation analysis. The C-device employs a hollow-tube type cathode with similar anodes backed up by ''reflector'' dishes. The resulting discharge differs from a conventional hollow cathode discharge, by creating an explicit ion beam which is ''pinched'' in the cathode region. Resulting fusion reactions generate ∼10 6 neutron/s. A pulsed version is under development for applications requiring higher fluxes. Several pulsing techniques are under study, including an electron emitter (e-emitter) assisted discharge in a thorated tungsten wire emitter located behind a slotted area in the reflector dishes. Pulsing is initiated after establishing a low power steady-state discharge by pulsing the e-emitter current using a capacitor switch type circuit. The resulting electron jet, coupled with the discharge by the biased slot array, creates a strong pulse in the pinched ion beam. The pulse length/repetition rate are controlled by the e-emitter pulse circuit. Typical parameters in present studies are ∼30micros, 10Hz and 1-amp ion current. Corresponding neutron measurements are an In-foil type activation counter for time averaged rates. Results for a wide variety of operating conditions are presented

  7. Design, Fabrication and Characterization of MIM Diodes and Frequency Selective Thermal Emitters for Solar Energy Harvesting and Detection Devices

    Science.gov (United States)

    Sharma, Saumya

    Energy harvesting using rectennas for infrared radiation continues to be a challenge due to the lack of fast switching diodes capable of rectification at THz frequencies. Metal insulator metal diodes which may be used at 30 THz must show adequate nonlinearity for small signal rectification such as 30 mV. In a rectenna assembly, the voltage signal received as an output from a single nanoantenna can be as small as ~30microV. Thus, only a hybrid array of nanoantennas can be sufficient to provide a signal in the ~30mV range for the diode to be able to rectify around 30THz. A metal-insulator-metal diode with highly nonlinear I-V characteristics is required in order for such small signal rectification to be possible. Such diode fabrication was found to be faced with two major fabrication challenges. The first one being the lack of a precisely controlled deposition process to allow a pinhole free insulator deposition less than 3nm in thickness. Another major challenge is the deposition of a top metal contact on the underlying insulating thin film. As a part of this research study, most of the MIM diodes were fabricated using Langmuir Blodgett monolayers deposited on a thin Ni film that was sputter coated on a silicon wafer. UV induced polymerization of the Langmuir Blodgett thin film was used to allow intermolecular crosslinking. A metal top contact was sputtered onto the underlying Langmuir Blodgett film assembly. In addition to material characterization of all the individual films using IR, UV-VIS spectroscopy, electron microscopy and atomic force microscopy, the I-V characteristics, resistance, current density, rectification ratio and responsivity with respect to the bias voltage were also measured for the electrical characterization of these MIM diodes. Further improvement in the diode rectification ratio and responsivity was obtained with Langmuir Blodgett films grown by the use of horizontally oriented organic molecules, due to a smaller tunneling distance that

  8. Radiation dose rate measuring device

    International Nuclear Information System (INIS)

    Sorber, R.

    1987-01-01

    A portable device is described for in-field usage for measuring the dose rate of an ambient beta radiation field, comprising: a housing, substantially impervious to beta radiation, defining an ionization chamber and having an opening into the ionization chamber; beta radiation pervious electrically-conductive window means covering the opening and entrapping, within the ionization chamber, a quantity of gaseous molecules adapted to ionize upon impact with beta radiation particles; electrode means disposed within the ionization chamber and having a generally shallow concave surface terminating in a generally annular rim disposed at a substantially close spacing to the window means. It is configured to substantially conform to the window means to define a known beta radiation sensitive volume generally between the window means and the concave surface of the electrode means. The concave surface is effective to substantially fully expose the beta radiation sensitive volume to the radiation field over substantially the full ambient area faced by the window means

  9. New devices for radon measurements

    International Nuclear Information System (INIS)

    Sevostyanov, V.N.

    2004-01-01

    This work includes the description of two new devices for radon surveys developed by the authors and produced in Kazakhstan. The first appliance is 'Ramon-Radon-01' used to measure 222 Rn radon in various mediums such as air, water, soil, and radon exhalation. The major advantage of the appliance lies in the absence of radioactive pollution in it after measurements. The appliances widely used in the CIS such as 'RAA-01', 'Alpharad' (produced by 'MTM Zaschita', Russia) and 'Alphaguard' (Germany) take samples directly to the measuring camera. For instance, the activity concentration of samples after they are taken by 'RAA-01' and 'Alpharad' is measured by means of electrostatic precipitation of RaA ( 218 Po) atoms to the square of semiconductor detector with subsequent registration of RaA alpha decay. The obvious disadvantage is that the subsequent measurement of relatively small 222 Rn activity concentration values after great values of 222 Rn activity concentration have been obtained requires a considerable exposure of the appliance sometimes exceeding 10 hours. Therefore, appliances register a relatively low value of the top measurement range of 20 KBq/m 3 . 'Alphaguard' has similar limitation resulting from precipitation of radon daughter decay products on the walls of ionizing chamber where radon activity concentration is measured. The radioactive lag of 'RAA-01', 'Alpharad' and 'Alphaguard' makes them of little use as well for automatic monitoring in the conditions of abruptly time negative derivatives on change of radon activity concentration. The second advantage is that 'Ramon-Radon-01', as opposed to above described appliances, registers almost zero radioactive lag, thanks to its constructive peculiarities which enable an abrupt increase of top range of measured value up to 5x10 5 Bq/m 3 , only limited by velocity of electron units of the appliance. The third advantage is that measurement discontinuity is determined only by time of full measurement cycle

  10. A low-emittance lattice for SPEAR

    International Nuclear Information System (INIS)

    Safranek, J.; Wiedemann, H.

    1992-01-01

    The design and implementation of a low emittance lattice for the SPEAR storage ring including measurements of the performance of the lattice are presented (J. Safranek, Ph. D. thesis, Stanford University, 1991). The low emittance lattice is designed to optimize the performance of SPEAR as a synchrotron radiation source while keeping SPEAR hardware changes at a minimum. The horizontal emittance of the electron beam in the low emittance lattice is reduced by a factor of 4 from the previous lattice. This reduces the typical horizontal source size and divergence of the photon beams by a factor of 2 each and increases the photon beam brightness. At 3 GeV the horizontal emittance is 129 π nm rad, which makes the low emittance lattice the lowest emittance, runnning synchroton radiation source in the world in the 1.5 to 4.0 GeV energy range for the emittance scaled to 3 GeV. The measured vertical emittance was reduced to half that typically seen at SPEAR in the past. The brightness of the photon beams was further incrased by reducing β y at the insertion devices to 1.1 m and reducing the energy dispersion at the insertion devices by more than a factor of 2 on average. The horizontal despersion at the rf cavities was reduced by a factor of nearly 4 which gives much less problems with synchrobetatron resonances. The dynamic and physical apertures of the lattice are large, giving long beam lifetimes and easy injection of electrons. The measurements of the linear optics and intensity dependent phenomena gave resonable agreement with the design . The overall performance of the machine was very good. Injection rates of 10 to 20 mA/min and larger were achieved routinely, and 100 mA total current was stored. Repeated ramping of stored beam from the injection energy of 2.3 GeV to the running energy of 3.0 GeV was achieved with very little beam loss. This low emittance configuration is expected to be the operating configuration for SPEAR starting in January 1992. (orig.)

  11. Measurement of concentrations of {gamma}-ray emitters induced in the concrete shield of the JAERI electron linac facility

    Energy Technology Data Exchange (ETDEWEB)

    Endo, Akira; Kawasaki, Katsuya; Kikuchi, Masamitsu [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Harada, Yasunori

    1997-07-01

    Measurement has been made to study distributions of {gamma}-ray emitters induced in the concrete shield of the JAERI electron linac facility. Core boring was carried out at seven positions to take samples from the concrete shield, and {gamma}-ray counting rates and {gamma}-ray spectra of these samples were measured with a NaI(Tl) detector and a Ge semiconductor detector, respectively. The following radionuclides were detected in the concrete samples: {sup 60}Co, {sup 134}Cs, {sup 152}Eu and {sup 154}Eu generated through thermal neutron capture reaction, and {sup 22}Na and {sup 54}Mn generated through nuclear reactions by bremsstrahlung and fast neutrons. The relation between the distributions of {gamma}-ray emitters, as a function of the depth of concrete, and the positions of core boring is discussed. (author)

  12. Optical sensing system based on wireless paired emitter detector diode device and ionogels for lab-on-a-disc water quality analysis.

    Science.gov (United States)

    Czugala, Monika; Gorkin, Robert; Phelan, Thomas; Gaughran, Jennifer; Curto, Vincenzo Fabio; Ducrée, Jens; Diamond, Dermot; Benito-Lopez, Fernando

    2012-12-07

    This work describes the first use of a wireless paired emitter detector diode device (PEDD) as an optical sensor for water quality monitoring in a lab-on-a-disc device. The microfluidic platform, based on an ionogel sensing area combined with a low-cost optical sensor, is applied for quantitative pH and qualitative turbidity monitoring of water samples at point-of-need. The autonomous capabilities of the PEDD system, combined with the portability and wireless communication of the full device, provide the flexibility needed for on-site water testing. Water samples from local fresh and brackish sources were successfully analysed using the device, showing very good correlation with standard bench-top systems.

  13. Reactor power region measuring device

    International Nuclear Information System (INIS)

    Kashiwa, Takao.

    1996-01-01

    The device of the present invention can rapidly detect abnormality of a local power region monitor (LPRM) even at a low power region caused such as upon start-up of a BWR type reactor. Namely, the present invention comprises (1) an LPRM detector for measuring neutron fluxes in the reactor, (2) a gamma thermo detector for calibrating the sensitivity of the LPRM detector, (3) a comparison circuit for comparing the detected values of the detectors (1) and (2), and (4) an alarm circuit for outputting an alarm when the comparative difference of the output of the circuit (3) exceeds a predetermined value. Signals of an alarm for a lower limit of the LPRM detector have been issued continuously upon start-up and shut down of the reactor since neutron fluxes in the reactor are reduced. However, the gamma thermo detector is always secured in the inside of the reactor different from a travelling-type incore probe monitor (TIP) disposed so far for the same purpose. Accordingly, the alarm generated upon usual start-up can be eliminated by comparing the detected values of the detector (2) and abnormality of the detector (1) can be rapidly detected by judging the abnormality of the comparative difference. (I.S.)

  14. Emittance measurement and optimization for the photocathode RF gun with laser profile shaping

    International Nuclear Information System (INIS)

    Liu Shengguang; Masafumi Fukuda; Sakae Araki; Nobuhiro Terunuma; Junji Urakawa

    2010-01-01

    The Laser Undulator Compact X-ray source (LUCX) is a test bench for a compact high brightness X-ray generator, based on inverse Compton Scattering at KEK, which requires high intensity multi-bunch trains with low transverse emittance. A photocathode RF gun with emittance compensation solenoid is used as an electron source. Much endeavor has been made to increase the beam intensity in the multi-bunch trains. The cavity of the RF gun is tuned into an unbalanced field in order to reduce space charge effects, so that the field gradient on the cathode surface is relatively higher when the forward RF power into gun cavity is not high enough. A laser profile shaper is employed to convert the driving laser profile from Gaussian into uniform. In this research we seek to find the optimized operational conditions for the decrease of the transverse emittance. With the uniform driving laser and the unbalanced RF gun, the RMS transverse emittance of a 1 nC bunch has been improved effectively from 5.46 πmm.mrad to 3.66 πmm·mrad. (authors)

  15. Modulation characteristics of graphene-based thermal emitters

    Science.gov (United States)

    Mahlmeister, Nathan Howard; Lawton, Lorreta Maria; Luxmoore, Isaac John; Nash, Geoffrey Richard

    2016-01-01

    We have investigated the modulation characteristics of the emission from a graphene-based thermal emitter both experimentally and through simulations using finite element method modelling. Measurements were performed on devices containing square multilayer graphene emitting areas, with the devices driven by a pulsed DC drive current over a range of frequencies. Simulations show that the dominant heat path is from the emitter to the underlying substrate, and that the thermal resistance between the graphene and the substrate determines the modulation characteristics. This is confirmed by measurements made on devices in which the emitting area is encapsulated by hexagonal boron nitride.

  16. High-Precision Half-Life Measurements for the Superallowed Fermi β+ Emitters 14O and 18Ne

    Science.gov (United States)

    Laffoley, A. T.; Andreoiu, C.; Austin, R. A. E.; Ball, G. C.; Bender, P. C.; Bidaman, H.; Bildstein, V.; Blank, B.; Bouzomita, H.; Cross, D. S.; Deng, G.; Diaz Varela, A.; Dunlop, M. R.; Dunlop, R.; Finlay, P.; Garnsworthy, A. B.; Garrett, P.; Giovinazzo, J.; Grinyer, G. F.; Grinyer, J.; Hadinia, B.; Jamieson, D. S.; Jigmeddorj, B.; Ketelhut, S.; Kisliuk, D.; Leach, K. G.; Leslie, J. R.; MacLean, A.; Miller, D.; Mills, B.; Moukaddam, M.; Radich, A. J.; Rajabali, M. M.; Rand, E. T.; Svensson, C. E.; Tardiff, E.; Thomas, J. C.; Turko, J.; Voss, P.; Unsworth, C.

    High-precision half-life measurements, at the level of ±0.04%, for the superallowed Fermi emitters 14O and 18Ne have been performed at TRIUMF's Isotope Separator and Accelerator facility. Using 3 independent detector systems, a gas-proportional counter, a fast plastic scintillator, and a high-purity germanium array, a series of direct β and γ counting measurements were performed for each of the isotopes. In the case of 14O, these measurements were made to help resolve an existing discrepancy between detection methods, whereas for 18Ne the half-life precision has been improved in anticipation of forthcoming high-precision branching ratio measurements.

  17. High-precision half-life and branching-ratio measurements for superallowed Fermi β+ emitters at TRIUMF - ISAC

    Science.gov (United States)

    Laffoley, A. T.; Dunlop, R.; Finlay, P.; Grinyer, G. F.; Andreoiu, C.; Austin, R. A. E.; Ball, G. C.; Bandyopadhyay, D.; Blank, B.; Bouzomita, H.; Chagnon-Lessard, S.; Chester, A.; Cross, D. S.; Demand, G.; Diaz Varela, A.; Djongolov, M.; Ettenauer, S.; Garnsworthy, A. B.; Garrett, P. E.; Giovinazzo, J.; Glister, J.; Green, K. L.; Hackman, G.; Hadinia, B.; Jamieson, D. S.; Ketelhut, S.; Leach, K. G.; Leslie, J. R.; Pearson, C. J.; Phillips, A. A.; Rand, E. T.; Starosta, K.; Sumithrarachchi, C. S.; Svensson, C. E.; Tardiff, E. R.; Thomas, J. C.; Towner, I. S.; Triambak, S.; Unsworth, C.; Williams, S. J.; Wong, J.; Yates, S. W.; Zganjar, E. F.

    2014-03-01

    A program of high-precision half-life and branching-ratio measurements for superallowed Fermi β emitters is being carried out at TRIUMF's Isotope Separator and Accelerator (ISAC) radioactive ion beam facility. Recent half-life measurements for the superallowed decays of 14O, 18Ne, and 26Alm, as well as branching-ratio measurements for 26Alm and 74Rb are reported. These results provide demanding tests of the Standard Model and the theoretical isospin symmetry breaking (ISB) corrections in superallowed Fermi β decays.

  18. A device for measuring electron beam characteristics

    Directory of Open Access Journals (Sweden)

    M. Andreev

    2017-01-01

    Full Text Available This paper presents a device intended for diagnostics of electron beams and the results obtained with this device. The device comprises a rotating double probe operating in conjunction with an automated probe signal collection and processing system. This provides for measuring and estimating the electron beam characteristics such as radius, current density, power density, convergence angle, and brightness.

  19. Device for measuring mass of air. Einrichtung zur Luftmassenmessung

    Energy Technology Data Exchange (ETDEWEB)

    Sass, W

    1989-09-28

    In a device for measuring the mass of air, particularly for vehicles with internal combustion engines, with a measurement bridge, in one branch of which an air flow resistance, particularly a hot film sensor, which has air flowing round it, is connected in series with a measuring resistance and in another branch of which a compensation resistance measuring the air temperature is connected in series with a fixed resistor, where the bridge differential voltage is measured in the zero branch of the measuring bridge and the resulting signal is used to control a transistor valve situated in the bridge supply path of a bridge supply source with an emitter connected to the bridge via the transistor base for bridge compensation and where the voltage at the measurement resistance after bridge compensation is evaluated as a measure of the air flow, the invention proposes that the transistor valve should be made as an npn transistor blocking for negative voltage peaks in the bridge supply path. This ensures that for netgative voltage peaks in the supply line, the transistor valve closes temporarily and overheating of the measurement bridge is prevented. Such overheating would lead to measurement of too great air mass flow and therefore to a dangerously too rich fuel/air mixture, for example (instead the negative voltage peaks give a safe temporary lean mixture).

  20. Rare Earth Garnet Selective Emitter

    Science.gov (United States)

    Lowe, Roland A.; Chubb, Donald L.; Farmer, Serene C.; Good, Brian S.

    1994-01-01

    Thin film Ho-YAG and Er-YAG emitters with a platinum substrate exhibit high spectral emittance in the emission band (epsilon(sub lambda) approx. = 0.75, sup 4)|(sub 15/2) - (sup 4)|(sub 13/2),for Er-YAG and epsilon(sub lambda) approx. = 0.65, (sup 5)|(sub 7) - (sup 5)|(sub 8) for Ho-YAG) at 1500 K. In addition, low out-of-band spectral emittance, epsilon(sub lambda) less than 0.2, suggest these materials would be excellent candidates for high efficiency selective emitters in thermophotovoltaic (TPV) systems operating at moderate temperatures (1200-1500 K). Spectral emittance measurements of the thin films were made (1.2 less than lambda less than 3.0 microns) and compared to the theoretical emittances calculated using measured values of the spectral extinction coefficient. In this paper we present the results for a new class of rare earth ion selective emitters. These emitters are thin sections (less than 1 mm) of yttrium aluminum garnet (YAG) single crystal with a rare earth substitutional impurity. Selective emitters in the near IR are of special interest for thermophotovoltaic (TPV) energy conversion. The most promising solid selective emitters for use in a TPV system are rare earth oxides. Early spectral emittance work on rare earth oxides showed strong emission bands in the infrared (0.9 - 3 microns). However, the emittance outside the emission band was also significant and the efficiency of these emitters was low. Recent improvements in efficiency have been made with emitters fabricated from fine (5 - 10 microns) rare earth oxide fibers similar to the Welsbach mantle used in gas lanterns. However, the rare earth garnet emitters are more rugged than the mantle type emitters. A thin film selective emitter on a low emissivity substrate such as gold, platinum etc., is rugged and easily adapted to a wide variety of thermal sources. The garnet structure and its many subgroups have been successfully used as hosts for rare earth ions, introduced as substitutional

  1. Pepper-pot diagnostic method to define emittance and Twiss parameters on low energies accelerators

    CERN Document Server

    Dolinska, M E

    2002-01-01

    The new complex mathematical algorithm to determine beam transverse emittance data and the Twiss parameters from intensity measured with pepper-por diagnostic device on rf low energies accelerators is described.

  2. Reactor water level measuring device

    International Nuclear Information System (INIS)

    Kuroki, Reiji; Asano, Tamotsu.

    1996-01-01

    A condensation vessel is connected to the upper portion of a reactor pressure vessel by way of a pipeline. The lower portion of the condensation vessel is connected to a low pressure side of a differential pressure transmission device by way of a reference leg pipeline. The high pressure side of the differential pressure transmission device is connected to the lower portion of the pressure vessel by way of a pipeline. The condensation vessel is equipped with a temperature sensor. When a temperature of a gas phase portion in the condensation vessel is lowered below a predetermined level, and incondensible gases in the condensation vessel starts to be dissolved in water, signals are sent from the temperature sensor to a control device and a control valve is opened. With such a constitution, CRD driving water flows into the condensation vessel, and water in which gases at the upper portion of the condensation vessel is dissolved flows into the pressure vessel by way of a pipeline. Then, gases dissolved in a reference water column in the reference leg pipeline are eliminated and the value of a reference water pressure does not change even upon abrupt lowering of pressure. (I.N.)

  3. Method and device for measuring fluid flow

    International Nuclear Information System (INIS)

    Atherton, R.; Marinkovich, P.S.; Spadaro, P.R.; Stout, J.W.

    1976-01-01

    The invention is a fluid flow measuring device for determining the coolant flow at the entrance to a specific nuclear reactor fuel region. The device comprises a plurality of venturis having the upstream inlet and throat pressure of each respectively manifolded together to provide one static pressure signal for each region monitored. The device provides accurate flow measurement with low pressure losses and uniform entrance and discharge flow distribution. 1 claim, 7 figures

  4. New Devices for Electret Measurement

    Directory of Open Access Journals (Sweden)

    ROMANIUC Ilie

    2013-05-01

    Full Text Available Green energy research have increased in recent decades and interest in unconventional energy production systems is becoming more pronounced. Such unconventional energy generation system is alsobased on electret generator. The electret, is a dielectric material that has a quasi-permanent electric charge. This paper, provides a brief history of the Carnauba wax electret, will be described the process of electret making and will be presented two devices formeasuring the carnauba wax electrets, one of which uses magnetostrictive phenomenon and the second design is achieved with an oscilomotor.

  5. Improvements in backscatter measurement devices

    International Nuclear Information System (INIS)

    Saunders, J.; Hay, W.D.

    1978-01-01

    Improvements in measuring the thickness of a coating on a substrate by the technique of backscattered particles are described. These improvements enable the measurements to be carried out continuously as an integral part of the coating production line and also permit measurements where the coated elements are separated from one another by a predetermined distance. The former is achieved by situating the backscatter probe and detector on the rim of the measurement wheel and rotating this wheel at a speed such that the coated element and probe are stationary relative to one another. The latter improvement is achieved by an indexing apparatus which automatically positions the probe beside a coated element. (U.K.)

  6. Design of a control system for stepper motors with micro-metric precision employed in the beam emittance measurement of the Linac4 at CERN

    CERN Document Server

    AUTHOR|(CDS)2207212; Dueñas Díaz, José Antonio

    A new linear accelerator (Linac4) is being designed to replace its predecessor (Linac2) at CERN. The new Linac4 will double the initial intensity giving an injection energy of up to 160 MeV. It will be an essential component of the LHC (Large Hadron Collider). To assess the quality of the beam, monitoring systems are placed along the beam pipe, being one of them devoted to measure its emittance, the so-called emittance scanner. The measurement of the emittance is important since it constitutes one of the two main parameters that limits the overall LHC performance, being the other parameter the energy of the beam. While the energy level of the beam can be modified during different phases at CERN, the beam emittance cannot; it is determined by the first source that produces the beam. The beam emittance directly influences the amount of particles colliding. For this purpose, the Linac4 emittance scanner will be placed on the very first step of the whole CERN accelerator complex right after the particles sour...

  7. ALS insertion device block measurement and inspection

    International Nuclear Information System (INIS)

    Marks, S.; Carrieri, J.; Cook, C.; Hassenzahl, W.V.; Hoyer, E.; Plate, D.

    1991-05-01

    The performance specifications for ALS insertion devices require detailed knowledge and strict control of the Nd-Fe-B permanent magnet blocks incorporated in these devices. This paper describes the measurement and inspection apparatus and the procedures designed to qualify and characterize these blocks. A detailed description of a new, automated Helmholtz coil facility for measurement of the three components of magnetic moment is included. Physical block inspection and magnetic moment measurement procedures are described. Together they provide a basis for qualifying blocks and for specifying placement of blocks within an insertion devices' magnetic structures. 1 ref., 4 figs

  8. Laser based stripping system for measurement of the transverse emittance of H-beams at the CERN Linac4

    CERN Document Server

    Hofmann, T; Raich, U; Roncarolo, F; Cheymol, B

    2013-01-01

    The new LINAC4 at CERN will accelerate H- particles to 160 MeV and allow high brightness proton beam transfers to the Proton Synchrotron Booster, via a charge-exchange injection scheme. This paper describes the conceptual design of a laser system proposed for transverse profile and emittance measurements based on photon detachment of electrons from the H- ions. The binding energy of the outer electron is only 0.75 eV and can easily be stripped with a laser beam. Measuring the electron signal as function of the laser position allows the transverse beam profile to be reconstructed. A downstream dipole can also be used to separate the laser neutralized H0 atoms from the main H- beam. By imaging these H0 atoms as a function of laser position the transverse emittance can be reconstructed in the same way as in traditional slit-and-grid systems. By properly dimensioning the laser power and spot size, this method results in negligible beam losses and is therefore non-destructive. In addition, the absence of material ...

  9. ''Blood flow measurements in the irradiated pig skin using β emitters radionuclides''

    International Nuclear Information System (INIS)

    Daburon, F.; Lefaix, J.L.; Leplat, J.J.; Fayart, G.; Delacroix, D.; Le Thanh, P.

    1997-01-01

    Non invasive methods of study of the skin blood flow are numerous, but generally do not give any indication on the cutaneous micro-circulatory flow, except for cutaneous laser Doppler. The isotopic exploration of the skin with injected γ radionuclides, even of weak energy, doe snot allow to characterize the skin blood flow, because of the important contribution of the subcutaneous tissues. The use of β emitters energy spectrum, analyzed by different quantitative methods, are proportional to the thickness of the screen localized between the radioactive source and detector. Using simple and complex phantoms composed of tissue equivalent screens, with 32 P sources placed at different depths, it was possible to study the degradation of β spectra, simulating respectively the sub-epidermis and sub-dermis vascular levels. A modelization and an experimental study in-vivo are proposed in this work, with 32 P phosphate administered intravenously in pigs. (author)

  10. Highly Simplified Tandem Organic Light-Emitting Devices Incorporating a Green Phosphorescence Ultrathin Emitter within a Novel Interface Exciplex for High Efficiency.

    Science.gov (United States)

    Xu, Ting; Zhou, Jun-Gui; Huang, Chen-Chao; Zhang, Lei; Fung, Man-Keung; Murtaza, Imran; Meng, Hong; Liao, Liang-Sheng

    2017-03-29

    Herein we report a novel design philosophy of tandem OLEDs incorporating a doping-free green phosphorescent bis[2-(2-pyridinyl-N)phenyl-C](acetylacetonato)iridium(III) (Ir(ppy) 2 (acac)) as an ultrathin emissive layer (UEML) into a novel interface-exciplex-forming structure of 1,1-bis[(di-4-tolylamino)phenyl]cyclohexane (TAPC) and 1,3,5-tri(p-pyrid-3-yl-phenyl)benzene (TmPyPB). Particularly, relatively low working voltage and remarkable efficiency are achieved and the designed tandem OLEDs exhibit a peak current efficiency of 135.74 cd/A (EQE = 36.85%) which is two times higher than 66.2 cd/A (EQE = 17.97%) of the device with a single emitter unit. This might be one of the highest efficiencies of OLEDs applying ultrathin emitters without light extraction. Moreover, with the proposed structure, the color gamut of the displays can be effectively increased from 76% to 82% NTSC if the same red and blue emissions as those in the NTSC are applied. A novel form of harmonious fusion among interface exciplex, UEML, and tandem structure is successfully realized, which sheds light on further development of ideal OLED structure with high efficiency, simplified fabrication, low power consumption, low cost, and improved color gamut, simultaneously.

  11. Radiation emitter-detector package

    International Nuclear Information System (INIS)

    O'Brien, J.T.; Limm, A.C.; Nyul, P.; Tassia, V.S. Jr.

    1978-01-01

    Mounted on the metallic base of a radiation emitter-detector is a mounting block is a first projection, and a second projection. A radiation detector is on the first projection and a semiconductor electroluminescent device, i.e., a radiation emitter, is on the second projection such that the plane of the recombination region of the electroluminescent device is perpendicular to the radiation incident surface of the radiation detector. The electroluminescent device has a primary emission and a secondary emission in a direction different from the primary emission. A radiation emitter-detector package as described is ideally suited to those applications wherein the secondary radiation of the electroluminescent device is fed into a feedback circuit regulating the biasing current of the electroluminescent device

  12. Device for radioactivity measurement of liquid samples

    International Nuclear Information System (INIS)

    Lamaziere, J.

    1983-01-01

    The device for low activity gamma measurements comprises an automatic changer for sample transfer from a conveyor to a measuring chamber. The conveyor includes a horizontal table were are regularly distributed sample holders. A lift allows a vertical motion of a plate for the exposition in front of a detector [fr

  13. Scattering measurements in Tokamak type devices

    International Nuclear Information System (INIS)

    Matoba, Tohru

    1975-03-01

    Theories, experiments and proposals for light scattering in Tokamak type devices are reviewed. Thomson scattering, measuring method of the current density distribution by scattering and resonance fluorescence are summarily described. These methods may be useful for diagnosis of the fusion plasmas. The report may help planning of the measuring apparatus for the fusion plasmas in future. (auth.)

  14. Device measures static friction of magnetic tape

    Science.gov (United States)

    Cole, P. T.

    1967-01-01

    Device measures the coefficient of static friction of magnetic tape over a range of temperatures and relative humidities. It uses a strain gage to measure the force of friction between a reference surface and the tape drawn at a constant velocity of approximately 0.0001 inch per second relative to the reference surface.

  15. High power beam test and measurement of emittance evolution of a 1.6-cell photocathode RF gun at Pohang Accelerator Laboratory

    International Nuclear Information System (INIS)

    Park, Jang-Ho; Park, Sung-Ju; Kim, Changbum; Huang, Jung-Yun; Ko, In Soo; Parc, Yong-Woon; Hong, Ju-Ho; Xiang Dao; Wang, Xijie

    2007-01-01

    A Brookhaven National Laboratory (BNL) GUN-IV type photocathode rf gun has been fabricated to use in femtosecond electron diffraction (FED), femtosecond far infrared radiation (fs-FIR) facility, and X-ray free electron laser (XFEL) facilities at the Pohang Accelerator Laboratory (PAL). The gun consists of a 1.6-cell cavity with a copper cathode, a solenoid magnet, beam diagnostic components and auxiliary systems. We report here the measurement of the basic beam parameters which confirm a successful fabrication of the photocathode RF gun system. The emittance evolution is measured by an emittance meter and compared with the PARMELA simulation, which shows a good agreement. (author)

  16. Measurement of the internal bremsstrahlung spectrum of a 89Sr beta emitter in the 1–100 keV photon energy regime

    International Nuclear Information System (INIS)

    Singh, Amrit; Dhaliwal, A.S.

    2015-01-01

    The internal bremsstrahlung (IB) spectrum of 89 Sr, which is a unique first forbidden beta emitter, is studied in the 1–100 keV photon energy regime. The IB spectrum is experimentally measured using a Si(Li) detector, which is efficient in this photon energy regime, and is compared with the IB distributions that are predicted by the Knipp, Uhlenbeck and Bloch (KUB), Nilsson, and Lewis and Ford theories. In the soft energy regime up to 15 keV, the measured results are in agreement with all the aforementioned theories. However, from 16–30 keV, the experimental results are in agreement with the Lewis and Ford theory, which applies to forbidden transitions, and at higher photon energies, the Nilsson theory best describes the measured results. The differences among the different theories also increase with the photon energy. The effect of the electrostatic Coulomb field on the IB process for beta emitters with different end-point energies is investigated by comparing the ratio of the IB probabilities predicted using the KUB and Nilsson theories for 35 S and 89 Sr, i.e., soft and hard beta emitters, respectively. The Coulomb effect is shown to be significant in the high photon energy regime and for beta emitters with low end-point energies. - Highlights: • Internal bremsstrahlung spectrum of 89 Sr, a unique first forbidden beta emitter, is studied. • The measurements are taken in the photon energy regions of 1–100 keV with Si(Li) detector. • The measured results are deviating from Lewis and Ford theory and are close to the Nilsson theory. • The effect of Coulomb field on the IB process for different end point energy sources is investigated. • Effect of Coulomb field is more for low energy beta emitter towards the high energy end

  17. Shielding in ungated field emitter arrays

    Energy Technology Data Exchange (ETDEWEB)

    Harris, J. R. [U.S. Navy Reserve, Navy Operational Support Center New Orleans, New Orleans, Louisiana 70143 (United States); Jensen, K. L. [Code 6854, Naval Research Laboratory, Washington, D.C. 20375 (United States); Shiffler, D. A. [Directed Energy Directorate, Air Force Research Laboratory, Albuquerque, New Mexico 87117 (United States); Petillo, J. J. [Leidos, Billerica, Massachusetts 01821 (United States)

    2015-05-18

    Cathodes consisting of arrays of high aspect ratio field emitters are of great interest as sources of electron beams for vacuum electronic devices. The desire for high currents and current densities drives the cathode designer towards a denser array, but for ungated emitters, denser arrays also lead to increased shielding, in which the field enhancement factor β of each emitter is reduced due to the presence of the other emitters in the array. To facilitate the study of these arrays, we have developed a method for modeling high aspect ratio emitters using tapered dipole line charges. This method can be used to investigate proximity effects from similar emitters an arbitrary distance away and is much less computationally demanding than competing simulation approaches. Here, we introduce this method and use it to study shielding as a function of array geometry. Emitters with aspect ratios of 10{sup 2}–10{sup 4} are modeled, and the shielding-induced reduction in β is considered as a function of tip-to-tip spacing for emitter pairs and for large arrays with triangular and square unit cells. Shielding is found to be negligible when the emitter spacing is greater than the emitter height for the two-emitter array, or about 2.5 times the emitter height in the large arrays, in agreement with previously published results. Because the onset of shielding occurs at virtually the same emitter spacing in the square and triangular arrays, the triangular array is preferred for its higher emitter density at a given emitter spacing. The primary contribution to shielding in large arrays is found to come from emitters within a distance of three times the unit cell spacing for both square and triangular arrays.

  18. A comparison of 'radon' measurement devices

    International Nuclear Information System (INIS)

    Rolle, R.

    2004-01-01

    For the indoor concentration measurement of Rn decay chain members, instruments ranging from long-term integrating passive devices to far more sensitive active devices with good time resolution are in use. The former are used mainly to screen for potentially high exposure locations, while the latter are useful for assessing the exposure dynamics of encumbered premises, with potential clarification (modelling) for optimal remediation, before, during and after such process. Concentration measurement of any one decay chain member always involves its complete decay chain. The 222 Rn gas concentration can be measured with gas measuring devices or with spectrometric measuring instruments that concentrate the decay products. The latter generally offer far more accurate measurement per time of the 222 Rn concentration, than mere Rn gas measuring devices, and also give the decay product concentrations and thus activity ratios which are related to air exchange. The concentrations of the unattached Rn decay products may be measured simultaneously with inline screen measurement. In premises steady state ventilation conditions are rare. Rapidly changing concentrations can be measured more accurately with the more sensitive concentrating instruments - the inherent instrumental time lag of detected signals from chain decay, relative to time of sampling, should however be corrected where rates of concentration change approximate chain decay constants. Counting of beta-signals in addition to alpha-spectrometry, and quasi-continuous sampling while continuously measuring, enhances the sensitivity, and particularly measurement time lag correction, where concentration ratios are sought for elucidating air exchange. Appropriate software ought to be made available to evaluate the spectrometric data and to link it to suitable compartment ventilation models (automatic adjustment for a dynamic change in alpha-calibration could be incorporated) - this would constitute the modern version of

  19. Experimental Measurement-Device-Independent Entanglement Detection

    Science.gov (United States)

    Nawareg, Mohamed; Muhammad, Sadiq; Amselem, Elias; Bourennane, Mohamed

    2015-02-01

    Entanglement is one of the most puzzling features of quantum theory and of great importance for the new field of quantum information. The determination whether a given state is entangled or not is one of the most challenging open problems of the field. Here we report on the experimental demonstration of measurement-device-independent (MDI) entanglement detection using witness method for general two qubits photon polarization systems. In the MDI settings, there is no requirement to assume perfect implementations or neither to trust the measurement devices. This experimental demonstration can be generalized for the investigation of properties of quantum systems and for the realization of cryptography and communication protocols.

  20. Using Teacher-Made Measurement Devices.

    Science.gov (United States)

    Mehrens, William A.; Lehmann, Irvin J.

    1987-01-01

    Classroom measurement devices, when tailored to fit a teacher's particular instructional objectives, are essential for optimal teaching and learning. Teachers use test data to assess students' progress but often fail to analyze tests for validity. This article shows how locally and correctly developed assessment tools may serve a variety of…

  1. Two devices for atmospheric electric field measurement

    International Nuclear Information System (INIS)

    Colombet, Andre; Hubert, Pierre.

    1977-02-01

    Two instruments installed at St Privat d'Allier for electric field measurement in connection with the rocket triggered lighting experiment program are described. The first one is a radioactive probe electrometer used as a warning device. The second is a field mill used for tape recording of electric field variation during the triggering events. Typical examples of such records are given [fr

  2. Measuring ionizing radiation with a mobile device

    Science.gov (United States)

    Michelsburg, Matthias; Fehrenbach, Thomas; Puente León, Fernando

    2012-02-01

    In cases of nuclear disasters it is desirable to know one's personal exposure to radioactivity and the related health risk. Usually, Geiger-Mueller tubes are used to assess the situation. Equipping everyone with such a device in a short period of time is very expensive. We propose a method to detect ionizing radiation using the integrated camera of a mobile consumer device, e.g., a cell phone. In emergency cases, millions of existing mobile devices could then be used to monitor the exposure of its owners. In combination with internet access and GPS, measured data can be collected by a central server to get an overview of the situation. During a measurement, the CMOS sensor of a mobile device is shielded from surrounding light by an attachment in front of the lens or an internal shutter. The high-energy radiation produces free electrons on the sensor chip resulting in an image signal. By image analysis by means of the mobile device, signal components due to incident ionizing radiation are separated from the sensor noise. With radioactive sources present significant increases in detected pixels can be seen. Furthermore, the cell phone application can make a preliminary estimate on the collected dose of an individual and the associated health risks.

  3. Temperature measurement with industrial color camera devices

    Science.gov (United States)

    Schmidradler, Dieter J.; Berndorfer, Thomas; van Dyck, Walter; Pretschuh, Juergen

    1999-05-01

    This paper discusses color camera based temperature measurement. Usually, visual imaging and infrared image sensing are treated as two separate disciplines. We will show, that a well selected color camera device might be a cheaper, more robust and more sophisticated solution for optical temperature measurement in several cases. Herein, only implementation fragments and important restrictions for the sensing element will be discussed. Our aim is to draw the readers attention to the use of visual image sensors for measuring thermal radiation and temperature and to give reasons for the need of improved technologies for infrared camera devices. With AVL-List, our partner of industry, we successfully used the proposed sensor to perform temperature measurement for flames inside the combustion chamber of diesel engines which finally led to the presented insights.

  4. The activity of γ-emitters as measured by ionisation chambers the determination of the specific emission coefficient γ for some radio-elements (1961)

    International Nuclear Information System (INIS)

    Engelmann, J.

    1962-06-01

    The object of this work is to study techniques of measurement using the gamma ionisation chamber, making it possible either to measure the activities of radioactive sources, or to determine the specific emission coefficient γ (or the coefficient K) of a given radioelement. The ionisation chambers studied belong to two categories: graphites cavity-chambers, and 4 π γ chambers. For the cavity-chamber measurements, the different correction factors of which account must be taken have been calculated, in particular the geometric and hygrometric corrections. The absorption and auto-absorption corrections have led to the introduction of the notion of the 'effective energy γ' of a radioelement. In the case of 4 π γ chambers, it has been shown that appropriately shaped electrodes make it possible to improve their performances. One of the chambers described permits the measurement of β emitters using the associated Bremsstrahlung. In order to measure the K coefficient of some radioelements, it has been found useful a 4 π γ chamber with graphite walls, the measurement being carried out by comparison with a radium standard. The validity of the method was checked with radioelements for whom the K coefficient values are well-known ( 24 Na, 60 Co, 131 I, 198 Au). For other radioelements, the following values were obtained (expressed in r cm 3 mc -1 h -1 ): 51 Cr: 0,18; 56 Mn: 8,8; 65 Zn: 3,05; 124 Sb: 9,9; 134 Cs: 9,3; 137 Cs: 3,35; 141 Ce: 0,46; 170 Tm: 0,023; 192 Ir: 24,9; 203 Hg: 1,18; These values have been corrected for the contribution to the dose of the fluorescent radiation which may be emitted by the source, except in the case of Tm 170 . In the last part of this work, the performances of the different electro-metric devices used were compared. (author) [fr

  5. Pressure measurements in magnetic-fusion devices

    International Nuclear Information System (INIS)

    Dylla, H.F.

    1981-11-01

    Accurate pressure measurements are important in magnetic fusion devices for: (1) plasma diagnostic measurements of particle balance and ion temperature; (2) discharge cleaning optimization; (3) vacuum system performance; and (4) tritium accountability. This paper reviews the application, required accuracy, and suitable instrumentation for these measurements. Demonstrated uses of ionization-type and capacitance-diaphragm gauges for various pressure and gas-flow measurements in tokamaks are presented, with specific reference to the effects of magnetic fields on gauge performance and the problems associated with gauge calibration

  6. Pressure measurements in magnetic-fusion devices

    Energy Technology Data Exchange (ETDEWEB)

    Dylla, H.F.

    1981-11-01

    Accurate pressure measurements are important in magnetic fusion devices for: (1) plasma diagnostic measurements of particle balance and ion temperature; (2) discharge cleaning optimization; (3) vacuum system performance; and (4) tritium accountability. This paper reviews the application, required accuracy, and suitable instrumentation for these measurements. Demonstrated uses of ionization-type and capacitance-diaphragm gauges for various pressure and gas-flow measurements in tokamaks are presented, with specific reference to the effects of magnetic fields on gauge performance and the problems associated with gauge calibration.

  7. Device for measuring fission product density

    International Nuclear Information System (INIS)

    Kaneda, Mitsunori.

    1980-01-01

    Purpose: To determine the fission product density of xenon or the like and enable measurement of real time of fission product density in a reactor by calculating the disintegration and annihilation of the fission product on the basis of neutron detected output. Constitution: The neutron flux in a reactor is detected by a detector, and applied to first and second density calculators. Second fission product density signal of xenon or the like outputted from first device is again inputted to the device to form an annihilation signal due to disintegration to determine the present density of the second fission product of xenon or the like corresponding to the decrease of the neutron due to the poison of xeron or the like. Similarly, second device determines the first fission product density of iodine or the like. (Sekiya, K.)

  8. Emission measurement of diesel vehicles in Hong Kong through on-road remote sensing: Performance review and identification of high-emitters.

    Science.gov (United States)

    Huang, Yuhan; Organ, Bruce; Zhou, John L; Surawski, Nic C; Hong, Guang; Chan, Edward F C; Yam, Yat Shing

    2018-06-01

    A two-year remote sensing measurement program was carried out in Hong Kong to obtain a large dataset of on-road diesel vehicle emissions. Analysis was performed to evaluate the effect of vehicle manufacture year (1949-2015) and engine size (0.4-20 L) on the emission rates and high-emitters. The results showed that CO emission rates of larger engine size vehicles were higher than those of small vehicles during the study period, while HC and NO were higher before manufacture year 2006 and then became similar levels between manufacture years 2006 and 2015. CO, HC and NO of all vehicles showed an unexpectedly increasing trend during 1998-2004, in particular ≥6001 cc vehicles. However, they all decreased steadily in the last decade (2005-2015), except for NO of ≥6001 cc vehicles during 2013-2015. The distributions of CO and HC emission rates were highly skewed as the dirtiest 10% vehicles emitted much higher emissions than all the other vehicles. Moreover, this skewness became more significant for larger engine size or newer vehicles. The results indicated that remote sensing technology would be very effective to screen the CO and HC high-emitters and thus control the on-road vehicle emissions, but less effective for controlling NO emissions. No clear correlation was observed between the manufacture year and percentage of high-emitters for ≤3000 cc vehicles. However, the percentage of high-emitters decreased with newer manufacture year for larger vehicles. In addition, high-emitters of different pollutants were relatively independent, in particular NO emissions, indicating that high-emitter screening criteria should be defined on a CO-or-HC-or-NO basis, rather than a CO-and-HC-and-NO basis. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Device for measuring atmospheric radon activity

    International Nuclear Information System (INIS)

    Deml, F.; Jansky, Z.; Smejkal, Z.

    1989-01-01

    The device consists of a lightproof case pivoted on a stand. Minimally two chambers are provided in the case for holding glass scintillation chambers, each with an opening in its bottom. The centers of the openings lie on a common circle with its center in the center of rotation of the case. An opening for the passage of light is provided in the stand. The opening also is on the common circle of the centres of the openings. A photomultiplier is placed below the opening. Measurement always proceeds with one scintillation chamber only. Thus, replacement of scintillation chambers can take place simultaneously with measurement and rapid and continuous measurement can be secured. Case rotation can be controlled automatically. The device can be used not only in monitoring air pollution but also in monitoring solid materials, aquifers, mine corridors, natural materials, etc. (J.B.). 1 fig

  10. Ultra-High Precision Half-Life Measurement for the Superallowed &+circ; Emitter ^26Al^m

    Science.gov (United States)

    Finlay, P.; Demand, G.; Garrett, P. E.; Leach, K. G.; Phillips, A. A.; Sumithrarachchi, C. S.; Svensson, C. E.; Triambak, S.; Grinyer, G. F.; Leslie, J. R.; Andreoiu, C.; Cross, D.; Austin, R. A. E.; Ball, G. C.; Bandyopadhyay, D.; Djongolov, M.; Ettenauer, S.; Hackman, G.; Pearson, C. J.; Williams, S. J.

    2009-10-01

    The calculated nuclear structure dependent correction for ^26Al^m (δC-δNS= 0.305(27)% [1]) is smaller by nearly a factor of two than the other twelve precision superallowed cases, making it an ideal case to pursue a reduction in the experimental errors contributing to the Ft value. An ultra-high precision half-life measurement for the superallowed &+circ; emitter ^26Al^m has been made at the Isotope Separator and Accelerator (ISAC) facility at TRIUMF in Vancouver, Canada. A beam of ˜10^5 ^26Al^m/s was delivered in October 2007 and its decay was observed using a 4π continuous gas flow proportional counter as part of an ongoing experimental program in superallowed Fermi β decay studies. With a statistical precision of ˜0.008%, the present work represents the single most precise measurement of any superallowed half-life to date. [4pt] [1] I.S. Towner and J.C. Hardy, Phys. Rev. C 79, 055502 (2009).

  11. High-Precision Half-Life and Branching Ratio Measurements for the Superallowed β+ Emitter 26Alm

    Science.gov (United States)

    Finlay, P.; Svensson, C. E.; Demand, G. A.; Garrett, P. E.; Green, K. L.; Leach, K. G.; Phillips, A. A.; Rand, E. T.; Ball, G.; Bandyopadhyay, D.; Djongolov, M.; Ettenauer, S.; Hackman, G.; Pearson, C. J.; Leslie, J. R.; Andreoiu, C.; Cross, D.; Austin, R. A. E.; Grinyer, G. F.; Sumithrarachchi, C. S.; Williams, S. J.; Triambak, S.

    2013-03-01

    High-precision half-life and branching-ratio measurements for the superallowed β+ emitter 26Alm were performed at the TRIUMF-ISAC radioactive ion beam facility. An upper limit of ≤ 15 ppm at 90% C.L. was determined for the sum of all possible non-analogue β+/EC decay branches of 26Alm, yielding a superallowed branching ratio of 100.0000+0-0.0015%. A value of T1/2 = 6:34654(76) s was determined for the 26Alm half-life which is consistent with, but 2.5 times more precise than, the previous world average. Combining these results with world-average measurements yields an ft value of 3037.58(60) s, the most precisely determined for any superallowed emitting nucleus to date. This high-precision ft value for 26Alm provides a new benchmark to refine theoretical models of isospin-symmetry-breaking effects in superallowed β decays.

  12. Paired emitter-detector light emitting diodes for the measurement of lead(II) and cadmium(II)

    Energy Technology Data Exchange (ETDEWEB)

    Lau, K.-T. [Adaptive Sensors Group, National Centre for Sensor Research, School of Chemical Sciences, Dublin City University, Dublin 9 (Ireland)]. E-mail: kim.lau@dcu.ie; McHugh, Eimear [Adaptive Sensors Group, National Centre for Sensor Research, School of Chemical Sciences, Dublin City University, Dublin 9 (Ireland); Baldwin, Susan [Adaptive Sensors Group, National Centre for Sensor Research, School of Chemical Sciences, Dublin City University, Dublin 9 (Ireland); Diamond, Dermot [Adaptive Sensors Group, National Centre for Sensor Research, School of Chemical Sciences, Dublin City University, Dublin 9 (Ireland)]. E-mail: Dermot.diamond@dcu.ie

    2006-05-31

    A transmittance mode optical device based on using a reverse biased light emitting diode (LED) as light detector has been developed for colorimetric analysis. This new optical device was validated with bromocresol green dye for absorbance measurements before being employed for detecting cadmium(II) and lead(II) in water. Results show that the performance of this LED-based device is comparable to much more expensive bench top UV-vis instruments, but with the advantages of being low cost, low power and simple to operate.

  13. Paired emitter-detector light emitting diodes for the measurement of lead(II) and cadmium(II)

    International Nuclear Information System (INIS)

    Lau, K.-T.; McHugh, Eimear; Baldwin, Susan; Diamond, Dermot

    2006-01-01

    A transmittance mode optical device based on using a reverse biased light emitting diode (LED) as light detector has been developed for colorimetric analysis. This new optical device was validated with bromocresol green dye for absorbance measurements before being employed for detecting cadmium(II) and lead(II) in water. Results show that the performance of this LED-based device is comparable to much more expensive bench top UV-vis instruments, but with the advantages of being low cost, low power and simple to operate

  14. Measuring device for control rod driving time

    International Nuclear Information System (INIS)

    Tanaka, Kazuhiko; Hanabusa, Masatoshi.

    1993-01-01

    The present invention concerns a measuring device for control driving time having a function capable of measuring a selected control rod driving time and measuring an entire control rod driving time simultaneously. A calculation means and a store means for the selected rod control rod driving time, and a calculation means and a store means for the entire control rod driving time are disposed individually. Each of them measures the driving time and stores the data independent of each other based on a selected control rod insert ion signal and an entire control rod insertion signal. Even if insertion of selected and entire control rods overlaps, each of the control rod driving times can be measured reliably to provide an advantageous effect capable of more accurately conducting safety evaluation for the nuclear reactor based on the result of the measurement. (N.H.)

  15. Asymmetrical field emitter

    Science.gov (United States)

    Fleming, J.G.; Smith, B.K.

    1995-10-10

    A method is disclosed for providing a field emitter with an asymmetrical emitter structure having a very sharp tip in close proximity to its gate. One preferred embodiment of the present invention includes an asymmetrical emitter and a gate. The emitter having a tip and a side is coupled to a substrate. The gate is connected to a step in the substrate. The step has a top surface and a side wall that is substantially parallel to the side of the emitter. The tip of the emitter is in close proximity to the gate. The emitter is at an emitter potential, and the gate is at a gate potential such that with the two potentials at appropriate values, electrons are emitted from the emitter. In one embodiment, the gate is separated from the emitter by an oxide layer, and the emitter is etched anisotropically to form its tip and its asymmetrical structure. 17 figs.

  16. Radiation detector device for measuring ionizing radiation

    International Nuclear Information System (INIS)

    Brake, D. von der.

    1983-01-01

    The device contains a compensating filter circuit, which guarantees measurement of the radiation dose independent of the energy or independent of the energy and direction. The compensating filter circuit contains a carrier tube of a slightly absorbing metal with an order number not higher than 35, which surrounds a tubular detector and which carries several annular filter parts on its surface. (orig./HP) [de

  17. Measurement system to detect minute quantity of plutonium and other alpha emitter

    International Nuclear Information System (INIS)

    Simon, G.G.; Eyrich, W.

    1990-01-01

    Presently, the most highly developed method in use is the time correlation analysis method (TCA). With special equipped electronics and computer system designed for the TCA method, the time correlation of the registered events is used to determine the contribution of different multiplets. Thus, the efficiency of the measurement system and the isotopic composition of the probe can be determined and thereby the Plutonium content is calculated. In the case of minute contents of Plutonium, the TCA method is insufficient to calculate the efficiency of the measurement system because of the large statistical error relative to the fluctuation of the background counting rate. This paper reports that in addition to the TCA method, the local correlation analysis (LCA) was developed at the Nuclear Research Center in Karlsruhe (KfK) to yield more information. The efficiency of the measurement system can be calculated taking into account the lifetime of the neutrons in the measurement system and the probe position

  18. Precise half-life measurement of the superallowed emitter 30S

    Science.gov (United States)

    Iacob, V. E.; Hardy, J. C.; Chen, L.; Horvat, V.; Bencomo, M.; Nica, N.; Park, H. I.; Roeder, B. T.; Saastamoinen, A.

    2018-03-01

    We have measured the half-life of 30S, the parent of a superallowed 0+→0+β transition, to a high precision using very pure sources and a 4 π proportional gas counter to detect the decay positrons. Our result for the half-life is 1.179 92(34) s. As a by-product of this measurement, we determine the half-life of its daughter, 30P, to be 2.501(2) min.

  19. Precise half-life measurement of the superallowed β+ emitter 38Km

    International Nuclear Information System (INIS)

    Ball, G. C.; Boisvert, G.; Bricault, P.; Churchman, R.; Dombsky, M.; Lindner, T.; Macdonald, J. A.; Vandervoort, E.; Bishop, S.; D'Auria, J. M.; Hardy, J. C.; Iacob, V. E.; Leslie, J. R.; Mak, H.-B.

    2010-01-01

    The half-life of 38 K m has been measured to be 924.46(14) ms, a result that is a factor of two more precise than any of the five previous measurements of this quantity. The previous results are not consistent with one another, but our result agrees well with the two most recent ones. The derived ft value for 38 K m is now one of the three most precisely known superallowed ft values.

  20. Study on influences of experimental factors on energy and absolute activity measurements of alpha-emitters

    International Nuclear Information System (INIS)

    Terini, R.A.

    1991-01-01

    This work presents firstly a review of the fundamental results and conclusions obtained through alpha-spectrometry and alpha-counting, and the influence of energy straggling, energy loss, self-absorption and backscattering, on the determination of the energy and the absolute activity of alpha samples. Is is shown that the techniques of source fabrication and the methods of measurements play a capital influence on the obtained results. Moreover, measurements made by us, with a silicon surface barrier detector, show that the peak-asymmetry and peak-shift of an alpha-spectrum increases with the angle of emission, and that the magnitude of this effect depends on the thickness and homogeneity of the sample, as well as on the geometry of the measuring system. Through an analysis of the angular distribution of the emitted particles, the degree of isotropy of some thin Am sup(241) sources was measured and the influence of source backing and the geometry was analysed. We can conclude that, in general, there is a larger precision in measurements made under very small solid angles around the normal to the sample, and we enphasize the necessary cares required on the production of the source and on the set up of the measuring system. (author)

  1. In vivo detection, localization and measurement of radionuclides in man: a detection system for the localization and measurement of small amounts of photon emitters. Progress report, March 1, 1982-June 30, 1983

    International Nuclear Information System (INIS)

    Laurer, G.R.

    1983-01-01

    The objective was the design, construction and testing of a photon detection system which will yield, simultaneously, information proportional to both the magnitude and the site(s) of deposition of radioactivity accidentally inhaled or ingested or otherwise deposited in the body. The operating principle of the detector system, active collimation, allows the resolution of the position and outline, in space, of the radioactive deposit, i.e., the image of the emitter(s), without the use of separate, external collimating devices. The result of this is an imaging detection system with a much higher counting efficiency than other currently available systems. 20 references, 29 figures

  2. Measurements of β or α emitter long lived radionuclides using inductively coupled plasma mass spectrometry

    International Nuclear Information System (INIS)

    Provitina, O.

    1993-01-01

    The measurement of long-lived radionuclides is highly important for characterizing nuclear wastes for their later storage. The main techniques for characterizing these isotopes are α spectrometry, β counting and γ spectrometry. The large period of these isotopes leads to low specific activity needing time consuming measurements in order to obtain significant signals. Moreover, the radiometric techniques are often limited by problems of interferences involving several steps of pretreatments. Among these steps, the specific extraction with crown ethers is highly selective for the separation of 99 Tc, 129 I and 135 Cs particularly. The radiometric techniques are here replaced by inductively coupled plasma mass spectroscopy (ICP-MS) the advantages of which are: few interferences, sensitivity which does not depend on the radiologic period as compared to radiochemistry. ICP-MS can then measure 237 Np in enriched uranium matrix and thereby reduce by a factor of 4 the sample pretreatment and the duration of the analysis usually performed by α spectrometry. Another technique, electrothermal vaporization (ETV), is consequently used. Crown ether extraction-ETV-ICP-MS is employed for measuring the long lived radionuclides 99 Tc and 129 I. The conditions of the extraction and the parameters of the ETV and the ICP-MS are studied and optimized. The methods optimized (extraction, electrothermal vaporization) are validated in the case of 99 Tc, in real samples. The spike method is required to quantify technetium, the quantification with calibration leading to bad results. The results obtained are in good agreement with the expected values. Extraction of technetium on anionic resin and its measurement by the spike method with pneumatic nebulization-ICP-MS is also performed on other samples. Measured values are also in agreement with expected values, but the method of extraction is more time consuming (half a day) than the extraction with crown ether (one hour). (author). 54 figs

  3. High-precision branching-ratio measurement for the superallowed β+ emitter 74Rb

    Science.gov (United States)

    Dunlop, R.; Ball, G. C.; Leslie, J. R.; Svensson, C. E.; Towner, I. S.; Andreoiu, C.; Chagnon-Lessard, S.; Chester, A.; Cross, D. S.; Finlay, P.; Garnsworthy, A. B.; Garrett, P. E.; Glister, J.; Hackman, G.; Hadinia, B.; Leach, K. G.; Rand, E. T.; Starosta, K.; Tardiff, E. R.; Triambak, S.; Williams, S. J.; Wong, J.; Yates, S. W.; Zganjar, E. F.

    2013-10-01

    A high-precision branching-ratio measurement for the superallowed β+ decay of 74Rb was performed at the TRIUMF Isotope Separator and Accelerator (ISAC) radioactive ion-beam facility. The scintillating electron-positron tagging array (SCEPTAR), composed of 10 thin plastic scintillators, was used to detect the emitted β particles; the 8π spectrometer, an array of 20 Compton-suppressed HPGe detectors, was used for detecting γ rays that were emitted following Gamow-Teller and nonanalog Fermi β+ decays of 74Rb; and the Pentagonal Array of Conversion Electron Spectrometers (PACES), an array of 5 Si(Li) detectors, was employed for measuring β-delayed conversion electrons. Twenty-three excited states were identified in 74Kr following 8.241(4)×108 detected 74Rb β decays. A total of 58 γ-ray and electron transitions were placed in the decay scheme, allowing the superallowed branching ratio to be determined as B0=99.545(31)%. Combined with previous half-life and Q-value measurements, the superallowed branching ratio measured in this work leads to a superallowed ft value of 3082.8(65) s. Comparisons between this superallowed ft value and the world-average-corrected Ft¯ value, as well as the nonanalog Fermi branching ratios determined in this work, provide guidance for theoretical models of the isospin-symmetry-breaking corrections in this mass region.

  4. The Citizen Observatory of Radioactivity - Assessment of results - Measurement of gamma emitters. Year 2009

    International Nuclear Information System (INIS)

    2010-01-01

    This document proposes a set of tables containing different information and data regarding measurements of gamma radioactivity made during the first and second half-year of 2009 in different marine and water environments (algae, sands, sea water, molluscs, sediments, water mosses, vegetal) in different locations: a bay close to the AREVA plant in La Hague, different locations on the Normandy coast, around the AREVA plant in La Hague, waterways in Normandy and in other river near the Chinon and Civaux nuclear power stations. These tables contain information about the sampling (date, location, quantity, analysed fraction, and so on) and results of measurements of artificial (isotopes of cobalt, ruthenium-rhodium, silver, iodine, caesium, americium, europium) and natural (potassium, beryllium, lead, bismuth, etc.) radionuclides

  5. a High-Precision Branching-Ratio Measurement for the Superallowed β+ Emitter 74Rb

    Science.gov (United States)

    Dunlop, R.; Chagnon-Lessard, S.; Finlay, P.; Garrett, P. E.; Hadinia, B.; Leach, K. G.; Svensson, C. E.; Wong, J.; Ball, G.; Garnsworthy, A. B.; Glister, J.; Hackman, G.; Tardiff, E. R.; Triambak, S.; Williams, S. J.; Leslie, J. R.; Andreoiu, C.; Chester, A.; Cross, D.; Starosta, K.; Yates, S. W.; Zganjar, E. F.

    2013-03-01

    Precision measurements of superallowed Fermi beta decay allow for tests of the Cabibbo-Kobayashi-Maskawa matrix (CKM) unitarity, the conserved vector current hypothesis, and the magnitude of isospin-symmetry-breaking effects in nuclei. A high-precision measurement of the branching ratio for the β+ decay of 74Rb has been performed at the Isotope Separator and ACcelerator (ISAC) facility at TRIUMF. The 8π spectrometer, an array of 20 close-packed HPGe detectors, was used to detect gamma rays emitted following the decay of 74Rb. PACES, an array of 5 Si(Li) detectors, was used to detect emitted conversion electrons, while SCEPTAR, an array of plastic scintillators, was used to detect emitted beta particles. A total of 51γ rays have been identified following the decay of 21 excited states in the daughter nucleus 74Kr.

  6. Experimental system using an active method for the measurement of low alpha emitter grades

    International Nuclear Information System (INIS)

    Bernard, P.; Cance, M.

    1986-06-01

    The diversity of waste produced in France, the limitations of passive neutron measurements, the new safety requirements in the field of low level waste disposal have induced us to develop active neutron techniques. Two experimental pulsed neutron interrogation systems are described giving a sensitivity lower than 10 mg Pu 239 in 200 l drums. This project is the result of a close cooperation between the CEA, SGN and SODERN

  7. Improved color purity and efficiency by a coguest emitter system in doped red light-emitting devices

    Energy Technology Data Exchange (ETDEWEB)

    Chen Jiangshan [State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Graduate School of Chinese Academy of Sciences, Changchun 130022 (China); Ma Dongge [State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Graduate School of Chinese Academy of Sciences, Changchun 130022 (China)]. E-mail: mdg1014@ciac.jl.cn

    2007-01-15

    We demonstrate red organic light-emitting diodes (OLEDs) with improved color purity and electroluminescence (EL) efficiency by codoping a green fluorescent sensitizer 10-(2-benzothiazolyl)-2,3,6,7-tetrahydro-1,1,7,7-tetramethyl-1H,5H,11H -(1)-benzopyropyrano(6,7-8-i,j)quinolizin-11-one (C545T) as the second dopant and a red fluorescent dye 4-(dicyanomethylene)-2-t-butyl-6(1,1,7,7-tetramethyljulolidyl-9-enyl) -4H-pyran (DCJTB) as the lumophore into tris(8-hydroquinoline) aluminum (Alq{sub 3}) host. It was found that the C545T dopant did not by itself emit but assisted the carrier trapping from the host Alq{sub 3} to the red emitting dopant. The red OLEDs realized by this approach not only kept the purity of the emission color, but also significantly improved the EL efficiency. The current efficiency and power efficiency, respectively, reached 12cd/A at a current density of 0.3mA/cm{sup 2} and 10lm/W at a current density of 0.02mA/cm{sup 2}, which are enhanced by 1.4 and 2.6 times compared with devices where the emissive layer is composed of the DCJTB doped Alq{sub 3}, and a stable red emission (chromaticity coordinates: x=0.64, y=0.36) was obtained in a wide range of voltage. Our results indicate that the coguest system is a promising method for obtaining high-efficiency red OLEDs.

  8. Review of measurement techniques for stack monitoring of long-lived alpha emitters

    International Nuclear Information System (INIS)

    Kordas, J.F.; Phelps, P.L.

    1978-01-01

    As a result of the promulgation of new guidelines by the Environmental Protection Agency (40 CFR 190) for releases of long-lived, alpha-emitting substances, the stack-monitoring requirements for measuring long-lived alpha particles may change in terms of both monitored isotopes and the detection levels. This paper briefly reviews stack-monitoring requirements for long-lived alpha-emitting particles. It also examines the currently deployed alpha-particulate, stack-monitoring systems and discusses prototype systems that may be applicable to stack monitoring

  9. Use of proportional gas scintillator in absolute measurements of alpha-gamma emitter activities

    International Nuclear Information System (INIS)

    Tobias, C.C.B.

    1987-01-01

    The absolute activity of U-235 contained in a U 3 O 8 sample was measured utilizing a sum-coincidence circuit which selects only the alpha particles which are simultaneous with the 143 KeV and 186 KeV gamma radiations from the Th-231 (product nucleus). The alpha particles were detected by means of a new type of a gas scintillating chamber, in which the light emitted by excitation of the gas atoms, due to the passage of a charged incoming particle, has its intensity increased by the action of an applied electric field. The gamma radiations were detected by means of a NaI(Tl) 1'' x 1 1/2'' scintillation detector. The value obtained for the half-life of U-235 was compared with the data available from various observers which used different experimental techniques. It is shown tht the results, are in excellent agreement with the best international data available on the subject and that, therefore, the sum-coincidence technique constitutes an important method for such measurements. (Author) [pt

  10. High-precision branching ratio measurement for the superallowed β+ emitter 62Ga

    International Nuclear Information System (INIS)

    Finlay, P.E.J.

    2007-01-01

    A high-precision branching ratio measurement for the superallowed β + decay of 62 Ga was performed at the Isotope Separator and Accelerator radioactive ion beam facility. An array of 20 high-purity germanium detectors known as the 8π spectrometer was employed to detect the rays emitted following the Gamow-Teller and non-analog Fermi decays of 62 Ga, while the plastic scintillator array known as SCEPTAR was used to detect the emitted particles. A total of 32 γ rays were identified, establishing the superallowed branching ratio to be 99:859(8)%. Combined with the most recent half-life and Q-value measurements for 62 Ga, this branching ratio yields an ft-value of 3074.3 ± 1.1 s. Comparisons between the superallowed ft-value determined in this work and the world average Ft-bar are made, providing a benchmark for the refinement of theoretical models used to describe isospin-symmetry breaking in A ≥ 62 nuclei. (author)

  11. Measurement of the absolute activity of alpha or beta emitters by measuring product nuclei (daughter) activity increase or by studing its radioactive decay

    International Nuclear Information System (INIS)

    Campos, L.C. de.

    1981-01-01

    A new method for determining absolute activity of alpha or beta emitters by measuring daughter product radioactive decay is presented. The separation method of UX from hexahydrated uranyl nitrate UO 2 (NO 3 ) 2 6H 2 O based on its dissolution in ethyl ether is described and the accuracy of this method is shown. The factors which accuate on total efficiency of a Geiger Mueller detector for beta particles are determined. The possibility to determine the mass of precursor element by daughter nuclei activity is shown. The results are compared with the one obtained by direct measurement of the mass (or number of atoms) of precursor radioactive substance and with theoretical values calculated for isotopes in secular equilibrium. (Author) [pt

  12. Measurements of Compression and Emittance Growth after the First LCLS Bunch Compressor Chicane

    International Nuclear Information System (INIS)

    Emma, P.

    2007-01-01

    The Linac Coherent Light Source (LCLS) is a SASE xray free-electron laser project presently under construction at SLAC. The injector section from RF photocathode gun through first bunch compressor chicane was installed during the fall of 2006. The first bunch compressor is located at 250 MeV and nominally compresses a 1-nC electron bunch from an rms length of about 1 mm to 0.2 mm. Transverse phase space and bunch length diagnostics are located immediately after the chicane. We present preliminary measurements and simulations of the longitudinal and transverse phase space after the chicane in various beam conditions, including extreme compression with micron-scale current spikes

  13. Measurement-Device-Independent Approach to Entanglement Measures

    Science.gov (United States)

    Shahandeh, Farid; Hall, Michael J. W.; Ralph, Timothy C.

    2017-04-01

    Within the context of semiquantum nonlocal games, the trust can be removed from the measurement devices in an entanglement-detection procedure. Here, we show that a similar approach can be taken to quantify the amount of entanglement. To be specific, first, we show that in this context, a small subset of semiquantum nonlocal games is necessary and sufficient for entanglement detection in the local operations and classical communication paradigm. Second, we prove that the maximum payoff for these games is a universal measure of entanglement which is convex and continuous. Third, we show that for the quantification of negative-partial-transpose entanglement, this subset can be further reduced down to a single arbitrary element. Importantly, our measure is measurement device independent by construction and operationally accessible. Finally, our approach straightforwardly extends to quantify the entanglement within any partitioning of multipartite quantum states.

  14. A measurement device for electromagnetic flow tomography

    Science.gov (United States)

    Vauhkonen, M.; Hänninen, A.; Lehtikangas, O.

    2018-01-01

    Electromagnetic flow meters have succesfully been used in many industries to measure the mean flow velocity of conductive liquids. This technology works reliably in single phase flows with axisymmetric flow profiles but can be inaccurate with asymmetric flows, which are encountered, for example, in multiphase flows, pipe elbows and T-junctions. Some computational techniques and measurement devices with multiple excitation coils and measurement electrodes have recently been proposed to be used in cases of asymmetric flows. In earlier studies, we proposed a computational approach for electromagnetic flow tomography (EMFT) for estimating velocity fields utilizing several excitation coils and a set of measurement electrodes attached to the surface of the pipe. This approach has been shown to work well with simulated data but has not been tested extensively with real measurements. In this paper, an EMFT system with four excitation coils and 16 measurement electrodes is introduced. The system is capable of using both square wave and sinusoidal coil current excitations and all the coils can be excited individually, also enabling parallel excitations with multiple frequencies. The studies undertaken in the paper demonstrate that the proposed EMFT system, together with the earlier introduced velocity field reconstruction approach, is capable of producing reliable velocify field estimates in a laboratory environment with both axisymmetric and asymmetric single phase flows.

  15. Measurement-device-independent quantum digital signatures

    Science.gov (United States)

    Puthoor, Ittoop Vergheese; Amiri, Ryan; Wallden, Petros; Curty, Marcos; Andersson, Erika

    2016-08-01

    Digital signatures play an important role in software distribution, modern communication, and financial transactions, where it is important to detect forgery and tampering. Signatures are a cryptographic technique for validating the authenticity and integrity of messages, software, or digital documents. The security of currently used classical schemes relies on computational assumptions. Quantum digital signatures (QDS), on the other hand, provide information-theoretic security based on the laws of quantum physics. Recent work on QDS Amiri et al., Phys. Rev. A 93, 032325 (2016);, 10.1103/PhysRevA.93.032325 Yin, Fu, and Zeng-Bing, Phys. Rev. A 93, 032316 (2016), 10.1103/PhysRevA.93.032316 shows that such schemes do not require trusted quantum channels and are unconditionally secure against general coherent attacks. However, in practical QDS, just as in quantum key distribution (QKD), the detectors can be subjected to side-channel attacks, which can make the actual implementations insecure. Motivated by the idea of measurement-device-independent quantum key distribution (MDI-QKD), we present a measurement-device-independent QDS (MDI-QDS) scheme, which is secure against all detector side-channel attacks. Based on the rapid development of practical MDI-QKD, our MDI-QDS protocol could also be experimentally implemented, since it requires a similar experimental setup.

  16. Measuring device for bending of beryllium reflector

    International Nuclear Information System (INIS)

    Nishida, Seiri; Sakamoto, Naoki.

    1994-01-01

    The device of the present invention can measure bending of a beryllium reflector formed in a reactor core of a nuclear reactor by a relatively easy operation. Namely, a sensor portion comprises a long-support that can be inserted to a fuel element-insertion hole disposed in the reactor and a plurality of distance sensors disposed in a longitudinal direction of the support. A supersonic wave sensor which is advantageous in the heat resistance, the size and the accuracy and can conduct measurement in water relatively easily is used as the distance sensors. However, other sensors, instead of the sensor described above, may also be used. The plurality of distance sensors detect the bending amount of the beryllium reflector in the longitudinal direction by such an easy operation of inserting such a sensor portion to the fuel element-insertion hole upon exchange of fuel elements. (I.S.)

  17. 21 CFR 864.6400 - Hematocrit measuring device.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Hematocrit measuring device. 864.6400 Section 864.6400 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Manual Hematology Devices § 864.6400 Hematocrit measuring...

  18. Burnup degree measuring device for spent fuel

    International Nuclear Information System (INIS)

    Doi, Hideo; Imaizumi, Hideki; Endo, Yasumi; Itahara, Kuniyuki.

    1994-01-01

    The present invention provides a small-sized and convenient device for measuring a burnup degree of spent fuels, which can be installed without remodelling an existent fuel storage pool. Namely, a gamma-ray detecting portion incorporates a Cd-Te detector for measuring intensity ratio of gamma-rays. A neutron detecting portion incorporates a fission counter tube. The Cd-Te detector comprises a neutron shielding member for reducing radiation damages and a background controlling plate for reducing low energy gamma-rays entering from a collimator. Since the Cd-Td detector for use in a gamma-ray spectroscopy can be used at a normal temperature and can measure even a relatively strong radiation field, it can measure the intensity of gamma-rays from Cs-137 and Cs-134 in spent fuels accurately at a resolving power of less than 10 keV. Further, in a case where a cooling period is less than one year, gamma-rays from Rh-106 and Nb-95 can also be measured. (I.S.)

  19. Application of activity pencil beam algorithm using measured distribution data of positron emitter nuclei for therapeutic SOBP proton beam

    International Nuclear Information System (INIS)

    Miyatake, Aya; Nishio, Teiji

    2013-01-01

    Purpose: Recently, much research on imaging the clinical proton-irradiated volume using positron emitter nuclei based on target nuclear fragment reaction has been carried out. The purpose of this study is to develop an activity pencil beam (APB) algorithm for a simulation system for proton-activated positron-emitting imaging in clinical proton therapy using spread-out Bragg peak (SOBP) beams.Methods: The target nuclei of activity distribution calculations are 12 C nuclei, 16 O nuclei, and 40 Ca nuclei, which are the main elements in a human body. Depth activity distributions with SOBP beam irradiations were obtained from the material information of ridge filter (RF) and depth activity distributions of compounds of the three target nuclei measured by BOLPs-RGp (beam ON-LINE PET system mounted on a rotating gantry port) with mono-energetic Bragg peak (MONO) beam irradiations. The calculated data of depth activity distributions with SOBP beam irradiations were sorted in terms of kind of nucleus, energy of proton beam, SOBP width, and thickness of fine degrader (FD), which were verified. The calculated depth activity distributions with SOBP beam irradiations were compared with the measured ones. APB kernels were made from the calculated depth activity distributions with SOBP beam irradiations to construct a simulation system using the APB algorithm for SOBP beams.Results: The depth activity distributions were prepared using the material information of RF and the measured depth activity distributions with MONO beam irradiations for clinical therapy using SOBP beams. With the SOBP width widening, the distal fall-offs of depth activity distributions and the difference from the depth dose distributions were large. The shapes of the calculated depth activity distributions nearly agreed with those of the measured ones upon comparison between the two. The APB kernels of SOBP beams were prepared by making use of the data on depth activity distributions with SOBP beam

  20. Proximity measuring device with backscattering radiation usable noticeably in remote handling or robotics and related data processing system. Proximetre a rayonnement retrodiffuse utilisable notamment en telemanipulation ou robotique et systeme de traitement associe

    Energy Technology Data Exchange (ETDEWEB)

    Andre, G; Espiau, B

    1985-05-03

    The invention is aimed at a proximity measuring device whose emitter, an electroluminescent diode, is controlled by control means to emit short duration (< 10 microseconds), high intensity (> 1A) flashes with periods higher than 100 microseconds. Emetter-object distance can be precisely measured on an 0-30 cm interval with the help of data processing of the response given by the proximity device receiver. This device can be used in remote handling and robotics.

  1. Analysis of insertion device magnet measurements for the Advanced Light Source

    International Nuclear Information System (INIS)

    Marks, S.; Humphries, D.; Kincaid, B.M.; Schlueter, R.; Wang, C.

    1993-07-01

    The Advanced Light Source (ALS), which is currently being commissioned at Lawrence Berkeley Laboratory, is a third generation light source designed to produce XUV radiation of unprecedented brightness. To meet the high brightness goal the storage ring has been designed for very small electron beam emittance and the undulators installed in the ALS are built to a high degree of precision. The allowable magnetic field errors are driven by electron beam and radiation requirements. Detailed magnetic measurements and adjustments are performed on each undulator to qualify it for installation in the ALS. The first two ALS undulators, IDA and IDB, have been installed. This paper describes the program of measurements, data analysis, and adjustments carried out for these two devices. Calculations of the radiation spectrum, based upon magnetic measurements, are included. Final field integral distributions are also shown. Good field integral uniformity has been achieved using a novel correction scheme, which is also described

  2. Measurement device-independent quantum dialogue

    Science.gov (United States)

    Maitra, Arpita

    2017-12-01

    Very recently, the experimental demonstration of quantum secure direct communication (QSDC) with state-of-the-art atomic quantum memory has been reported (Zhang et al. in Phys Rev Lett 118:220501, 2017). Quantum dialogue (QD) falls under QSDC where the secrete messages are communicated simultaneously between two legitimate parties. The successful experimental demonstration of QSDC opens up the possibilities for practical implementation of QD protocols. Thus, it is necessary to analyze the practical security issues of QD protocols for future implementation. Since the very first proposal for QD by Nguyen (Phys Lett A 328:6-10, 2004), a large number of variants and extensions have been presented till date. However, all of those leak half of the secret bits to the adversary through classical communications of the measurement results. In this direction, motivated by the idea of Lo et al. (Phys Rev Lett 108:130503, 2012), we propose a measurement device-independent quantum dialogue scheme which is resistant to such information leakage as well as side-channel attacks. In the proposed protocol, Alice and Bob, two legitimate parties, are allowed to prepare the states only. The states are measured by an untrusted third party who may himself behave as an adversary. We show that our protocol is secure under this adversarial model. The current protocol does not require any quantum memory, and thus, it is inherently robust against memory attacks. Such robustness might not be guaranteed in the QSDC protocol with quantum memory (Zhang et al. 2017).

  3. 32 CFR 634.27 - Speed-measuring devices.

    Science.gov (United States)

    2010-07-01

    ... 32 National Defense 4 2010-07-01 2010-07-01 true Speed-measuring devices. 634.27 Section 634.27 National Defense Department of Defense (Continued) DEPARTMENT OF THE ARMY (CONTINUED) LAW ENFORCEMENT AND CRIMINAL INVESTIGATIONS MOTOR VEHICLE TRAFFIC SUPERVISION Traffic Supervision § 634.27 Speed-measuring devices. Speed-measuring devices will be...

  4. 21 CFR 864.5950 - Blood volume measuring device.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Blood volume measuring device. 864.5950 Section 864.5950 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Automated and Semi-Automated Hematology Devices...

  5. Measurement-Device-Independent Quantum Cryptography

    Science.gov (United States)

    Tang, Zhiyuan

    Quantum key distribution (QKD) enables two legitimate parties to share a secret key even in the presence of an eavesdropper. The unconditional security of QKD is based on the fundamental laws of quantum physics. Original security proofs of QKD are based on a few assumptions, e.g., perfect single photon sources and perfect single-photon detectors. However, practical implementations of QKD systems do not fully comply with such assumptions due to technical limitations. The gap between theory and implementations leads to security loopholes in most QKD systems, and several attacks have been launched on sophisticated QKD systems. Particularly, the detectors have been found to be the most vulnerable part of QKD. Much effort has been put to build side-channel-free QKD systems. Solutions such as security patches and device-independent QKD have been proposed. However, the former are normally ad-hoc, and cannot close unidentified loopholes. The latter, while having the advantages of removing all assumptions on devices, is impractical to implement today. Measurement-device-independent QKD (MDI-QKD) turns out to be a promising solution to the security problem of QKD. In MDI-QKD, all security loopholes, including those yet-to-be discovered, have been removed from the detectors, the most critical part in QKD. In this thesis, we investigate issues related to the practical implementation and security of MDI-QKD. We first present a demonstration of polarization-encoding MDI-QKD. Taking finite key effect into account, we achieve a secret key rate of 0.005 bit per second (bps) over 10 km spooled telecom fiber, and a 1600-bit key is distributed. This work, together with other demonstrations, shows the practicality of MDI-QKD. Next we investigate a critical assumption of MDI-QKD: perfect state preparation. We apply the loss-tolerant QKD protocol and adapt it to MDI-QKD to quantify information leakage due to imperfect state preparation. We then present an experimental demonstration of

  6. Interconnection network architectures based on integrated orbital angular momentum emitters

    Science.gov (United States)

    Scaffardi, Mirco; Zhang, Ning; Malik, Muhammad Nouman; Lazzeri, Emma; Klitis, Charalambos; Lavery, Martin; Sorel, Marc; Bogoni, Antonella

    2018-02-01

    Novel architectures for two-layer interconnection networks based on concentric OAM emitters are presented. A scalability analysis is done in terms of devices characteristics, power budget and optical signal to noise ratio by exploiting experimentally measured parameters. The analysis shows that by exploiting optical amplifications, the proposed interconnection networks can support a number of ports higher than 100. The OAM crosstalk induced-penalty, evaluated through an experimental characterization, do not significantly affect the interconnection network performance.

  7. α-spectrometric device equipped with semi-conductors for direct measurement of transuranium elements on large area filters

    International Nuclear Information System (INIS)

    Fessler, H.; Pawelzik, J.

    1984-10-01

    A device was developed with an array of 8 silicon surface barrier detectors inside a vacuum chamber containing a rotating sample holder for large areas (200 mm diameter) aerosol filters. It serves for quick identification of α-emitters on these aerosol filters, and allows to measure the α-particles with a relatively constant efficiency along a filter diameter. Thus, the radiochemical treatment of single filters can be avoided. Troubles appeared in the course of development of defective semiconductors and their temperature dependence. To suppress the influence of temperature a cooling device was built. During practical testing a cross-efficiency of 13.6% was measured. It is possible to identify α-emitting nuclides with an activity of 10 -1 Bq per sample during about 2 hours of measuring time. Appropriate methodes of calculation are indicated. The data output of the device is suited for transfer to a computer. (orig./HP) [de

  8. Emittance investigation of RF photo-injector

    CERN Document Server

    Yang Mao Rong; Li Zheng; Li Ming; Xu Zhou

    2002-01-01

    A high-power laser beam illuminates a photocathode surface placed on an end wall of an RF cavity. The emitted electrons are accelerated immediately to a relativistic energy by the strong RF find in the cavity. But space charge effect induces beam emittance growth especially near the cathode where the electrons are still nonrelativistic. The author analyzes the factors which lead the transverse emittance growth and method how to resolve this problem. After introducing solenoidal focusing near the photocathode, the beam emittance growth is suppressed dramatically. The beam emittance is given also after compensation and simulation results. The measurements show these results are coincident

  9. Oscillation measuring device for body of rotation

    International Nuclear Information System (INIS)

    Komita, Hideo.

    1994-01-01

    The present invention concerns an internal pump of a BWR type reactor and provides a device for detecting oscillations of a rotational shaft. Namely, recesses are formed along an identical circumference on the outer circumferential surface of the rotating portion each at a predetermined distance. The recesses rotate along with the rotation. An eddy current type displacement gage measures the distance to the outer circumferential surface of the rotating portion. The recesses are detected by the displacement gage as pulse signals. When the rotating portion oscillates, it is detected by the displacement gage as waveform signals. Accordingly, the output signals of the eddy current type displacement gage are formed by pulse signals superposed on the waveform signals. A rising detection circuit detects the rising position of the pulse signals as the components of the number of rotation of the rotating portion, and fall detection circuit detects the falling position. A comparator circuit is disposed in parallel with both of rising/falling detection circuits. A predetermined threshold value is set in the comparator circuit to output a signal when the inputted signal exceeds the value. (I.S.)

  10. A Simple Device For Measuring Skin Friction

    Directory of Open Access Journals (Sweden)

    Gupta A.B

    1995-01-01

    Full Text Available A simple device for measuring skin friction in vivo is described. The frictional coefficient of normal Indian skin and the effect of hydration and application of talc and glycerol on the frictional coefficient and also the friction of ichthyotic skin have been determined with its help. The average value of friction of friction of normal India skin at forearm is found to be 0.41 +- 0.08, the hydration raises the value to 0.71 +- 0.11 and the effect of glycerol is also to school it up to 0.70+- 0.05, almost equal to that of water. The effect of talc however is opposite and its application lowers the friction to 0.21+-0.07. The mean coeff of friction for ichthyotic skin is found to be 0.21+- 0.0.5, which closely agrees with talc-treated normal skin. A good positive correlation (p<0.01 between friction and sebum level at skin site, with r = 0.64, has been observed.

  11. Cross-Device Tracking: Measurement and Disclosures

    Directory of Open Access Journals (Sweden)

    Brookman Justin

    2017-04-01

    Full Text Available Internet advertising and analytics technology companies are increasingly trying to find ways to link behavior across the various devices consumers own. This cross-device tracking can provide a more complete view into a consumer’s behavior and can be valuable for a range of purposes, including ad targeting, research, and conversion attribution. However, consumers may not be aware of how and how often their behavior is tracked across different devices. We designed this study to try to assess what information about cross-device tracking (including data flows and policy disclosures is observable from the perspective of the end user. Our paper demonstrates how data that is routinely collected and shared online could be used by online third parties to track consumers across devices.

  12. Guidelines on calibration of neutron measuring devices

    International Nuclear Information System (INIS)

    Burger, G.

    1988-01-01

    The International Atomic Energy Agency and the World Health Organization have agreed to establish an IAEA/WHO Network of Secondary Standard Dosimetry Laboratories (SSDLs) in order to improve accuracy in applied radiation dosimetry throughout the world. These SSDLs must be equipped with, and maintain, secondary standard instruments, which have been calibrated against primary standards, and must be nominated by their governments for membership of the network. The majority of the existing SSDLs were established primarily to work with photon radiation (X-rays and gamma rays). Neutron sources are, however, increasingly being applied in industrial processes, research, nuclear power development and radiation biology and medicine. Thus, it is desirable that the SSDLs in countries using neutron sources on a regular basis should also fulfil the minimum requirements to calibrate neutron measuring devices. It is the primary purpose of this handbook to provide guidance on calibration of instruments for radiation protection. A calibration laboratory should also be in a position to calibrate instrumentation being used for the measurement of kerma and absorbed dose and their corresponding rates. This calibration is generally done with photons. In addition, since each neutron field is usually contaminated by photons produced in the source or by scatter in the surrounding media, neutron protection instrumentation has to be tested with respect to its intrinsic photon response. The laboratory will therefore need to possess equipment for photon calibration. This publication deals primarily with methods of applying radioactive neutron sources for calibration of instrumentation, and gives an indication of the space, manpower and facilities needed to fulfil the minimum requirements of a calibration laboratory for neutron work. It is intended to serve as a guide for centres about to start on neutron dosimetry standardization and calibration. 94 refs, 8 figs, 12 tabs

  13. Device for measuring the temperature of flowing hot gases

    Energy Technology Data Exchange (ETDEWEB)

    Reed, R D

    1977-05-12

    The invention pertains to a device to measure the temperature of a hot gas flowing through a closed tube. The device will have a simple and inexpensive design and avoid heat losses due to heat radiation near the thermal sensor.

  14. Optical characterization of OLED emitter properties by radiation pattern analyses

    Energy Technology Data Exchange (ETDEWEB)

    Flaemmich, Michael

    2011-09-08

    Researches in both, academia and industry are investigating optical loss channels in OLED layered systems by means of optical simulation tools in order to derive promising concepts for a further enhancement of the overall device performance. Besides other factors, the prospects of success of such optimization strategies rely severely on the credibility of the optical input data. The present thesis provides a guideline to measure the active optical properties of OLED emitter materials in situ by radiation pattern analyses. Reliable and widely applicable methods are introduced to determine the internal electroluminescence spectrum, the profile of the emission zone, the dipole emitter orientation, and the internal luminescence quantum efficiency of emissive materials from the optical far field emission of OLEDs in electrical operation. The proposed characterization procedures are applied to sets of OLEDs containing both, fluorescent polymeric materials as well as phosphorescent small-molecular emitters, respectively. On the one hand, quite expected results are obtained. On the other hand, several novel and truly surprising results are found. Most importantly, this thesis contains the first report of a non-isotropic, mainly parallel emitter orientation in a phosphorescent small-molecular guest-host system (Ir(MDQ)2(acac) in a-NPD). Due to the latter result, emitter orientation based optimization of phosphorescent OLEDs seems to be within reach. Since parallel dipoles emit preferably into air, the utilization of smart emissive materials with advantageous molecular orientation is capable to boost the efficiency of phosphorescent OLEDs by 50%. Materials design, the influence of the matrix material and the substrate, as well as film deposition conditions are just a few parameters that need to be studied further in order to exploit the huge potential of the dipole emitter orientation in phosphorescent OLEDs.

  15. Digital Thickness Measurement of a Transparent Plastic Orthodontic Device

    Science.gov (United States)

    Kim, Yoon-Hwan; Rhim, Sung-Han

    2018-05-01

    A transparent orthodontic device is used to move the teeth to the final calibration position to form a proper set of teeth. Because the uniform thickness of the device plays an important role in tooth positioning, the accuracy of the device's thickness profile is important for effective orthodontic treatment. However, due to the complexity of the device's geometry and the transparency of the device's material, measuring the complete thickness profile has been difficult. In the present study, a new optical scanning method to measure the thickness profile of transparent plastic orthodontic devices is proposed and evaluated by using scanning electron microscopy (SEM). The error of the new measurement method is less than ±18 μm. The new method can be used to measure the thickness of non-specific, multi-curved, transparent orthodontic devices.

  16. Pressure and Relative Humidity Measurement Devices for Mars 2020 Rover

    Science.gov (United States)

    Hieta, M.; Genzer, M.; Nikkanen, T.; Haukka, H.; Harri, A.-M.; Polkko, J.; Rodriguez-Manfredi, J. A.

    2017-09-01

    One of the scientific payloads onboard the NASA Mars 2020 rover mission is Mars Environmental Dynamic Analyzer (MEDA): a set of environmental sensors for Mars surface weather measurements. Finnish Meteorological Institute (FMI) provides a pressure measurement device (MEDA PS) and a relative humidity measurement device (MEDA HS) for MEDA.

  17. Measurement of guided mode wave vectors by analysis of the transfer matrix obtained with multi-emitters and multi-receivers in contact

    Energy Technology Data Exchange (ETDEWEB)

    Minonzio, Jean-Gabriel; Talmant, Maryline; Laugier, Pascal, E-mail: jean-gabriel.minonzio@upmc.fr [UPMC Univ Paris 06, UMR 7623, LIP, 15 rue de l' ecole de medecine F-75005, Paris (France)

    2011-01-01

    Different quantitative ultrasound techniques are currently developed for clinical assessment of human bone status. This paper is dedicated to axial transmission: emitters and receivers are linearly arranged on the same side of the skeletal site, preferentially the forearm. In several clinical studies, the signal velocity of the earliest temporal event has been shown to discriminate osteoporotic patients from healthy subjects. However, a multi parameter approach might be relevant to improve bone diagnosis and this be could be achieved by accurate measurement of guided waves wave vectors. For clinical purposes and easy access to the measurement site, the length probe is limited to about 10 mm. The limited number of acquisition scan points on such a short distance reduces the efficiency of conventional signal processing techniques, such as spatio-temporal Fourier transform. The performance of time-frequency techniques was shown to be moderate in other studies. Thus, optimised signal processing is a critical point for a reliable estimate of guided mode wave vectors. Toward this end, a technique, taking benefit of using both multiple emitters and multiple receivers, is proposed. The guided mode wave vectors are obtained using a projection in the singular vectors basis. Those are determined by the singular values decomposition of the transmission matrix between the two arrays at different frequencies. This technique enables us to recover accurately guided waves wave vectors for moderately large array.

  18. Half-life, branching-ratio, and Q-value measurement for the superallowed 0+→0+β+ emitter 42Ti

    International Nuclear Information System (INIS)

    Nieto, T. Kurtukian; Souin, J.; Audirac, L.; Blank, B.; Giovinazzo, J.; Eronen, T.; Aeystoe, J.; Elomaa, V.-V.; Hager, U.; Hakala, J.; Jokinen, A.; Kankainen, A.; Karvonen, P.; Kessler, T.; Moore, I. D.; Penttilae, H.; Rahaman, S.; Reponen, M.; Rissanen, J.; Saastamoinen, A.

    2009-01-01

    The half-life, the branching ratio, and the decay Q value of the superallowed β emitter 42 Ti were measured in an experiment performed at the JYFLTRAP facility of the Accelerator Laboratory of the University of Jyvaeskylae. 42 Ti is the heaviest T z =-1 nucleus for which high-precision measurements of these quantities have been tried. The half-life (T 1/2 =208.14±0.45 ms) and the Q value [Q EC =7016.83(25) keV] are close to or reach the required precision of about 0.1%. The branching ratio for the superallowed decay branch [BR=47.7(12)%], a by-product of the half-life measurement, does not reach the necessary precision yet. Nonetheless, these results allow one to determine the experimental ft value and the corrected Ft value to be 3114(79) and 3122(79) s, respectively.

  19. Development of a wireless blood pressure measuring device with smart mobile device.

    Science.gov (United States)

    İlhan, İlhan; Yıldız, İbrahim; Kayrak, Mehmet

    2016-03-01

    Today, smart mobile devices (telephones and tablets) are very commonly used due to their powerful hardware and useful features. According to an eMarketer report, in 2014 there were 1.76 billion smartphone users (excluding users of tablets) in the world; it is predicted that this number will rise by 15.9% to 2.04 billion in 2015. It is thought that these devices can be used successfully in biomedical applications. A wireless blood pressure measuring device used together with a smart mobile device was developed in this study. By means of an interface developed for smart mobile devices with Android and iOS operating systems, a smart mobile device was used both as an indicator and as a control device. The cuff communicating with this device through Bluetooth was designed to measure blood pressure via the arm. A digital filter was used on the cuff instead of the traditional analog signal processing and filtering circuit. The newly developed blood pressure measuring device was tested on 18 patients and 20 healthy individuals of different ages under a physician's supervision. When the test results were compared with the measurements made using a sphygmomanometer, it was shown that an average 93.52% accuracy in sick individuals and 94.53% accuracy in healthy individuals could be achieved with the new device. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  20. Device to measure elastic modulus of superconducting windings

    CERN Multimedia

    CERN PhotoLab

    1979-01-01

    This device was made to measure elastic modulus of the Po dipole superconducting coils. More elaborated devices, but based on the same concept, were later used to measure the apparent elastic moduli of the LHC superconducting magnet coils. See also 7903547X, 7901386.

  1. Device to measure level in a steam drum of NPP

    International Nuclear Information System (INIS)

    Vinogradov, Yu.A.

    1988-01-01

    Gravitation-hydrostatic device for measuring coolant level in a steam drum of NPP is described. The device enables to improve the accuracy and sensitivity of measuring coolant level above and below the submerged perforated sheet of the steam drum and decrease the amount of levelling vessels in the unit by 50%. 1 fig

  2. The effects of emitter-tied field plates on lateral PNP ionizing radiation response

    International Nuclear Information System (INIS)

    Barnaby, H.J.; Schrimpf, R.D.; Cirba, C.R.; Pease, R.L.; Fleetwood, D.M.; Kosier, S.L.

    1998-03-01

    Radiation response comparisons of lateral PNP bipolar technologies reveal that device hardening may be achieved by extending the emitter contact over the active base. The emitter-tied field plate suppresses recombination of carriers with interface traps

  3. Preparation and Characterisation of Amorphous-silicon Photovoltaic Devices Having Microcrystalline Emitters; Preparacion y Caracterizacion de Dispositivos Fotovoltaicos de Silicio Amorfo con Emisiones Microcristalinos

    Energy Technology Data Exchange (ETDEWEB)

    Gutierrez, M. T.; Gandia, J. J.; Carabe, J. [CIEMAT. Madrid (Spain)

    1999-11-01

    The present work summarises the essential aspects of the research carried out so far at CIEMAT on amorphous-silicon solar cells. The experience accumulated on the preparation and characterisation of amorphous and microcrystalline silicon has allowed to start from intrinsic (absorbent) and p-and n-type (emitters) materials not only having excellent optoelectronic properties, but enjoying certain technological advantages with respect to those developed by other groups. Among these are absorbent-layer growth rates between 5 and 10 times as fast as conventional ones and microcrystalline emitters prepared without using hydrogen. The preparation of amorphous-silicon cells has required the solution of a number of problems, such as those related to pinholes, edge leak currents and diffusion of metals into the semiconductor. Once such constraints have been overcome, it has been demonstrated not only that the amorphous-silicon technology developed at CIEMAT is valid for making solar cells, but also that the quality of the semiconductor material is good for the application according to the partial results obtained. The development of thin-film laser-scribing technology is considered essential. Additionally it has been concluded that cross contamination, originated by the fact of using a single-chamber reactor, is the basic factor limiting the quality of the cells developed at CIEMAT. The present research activity is highly focused on the solution of this problem. (Author)

  4. Development and optimization of a device for diferencial pressure measurement

    International Nuclear Information System (INIS)

    Santarine, G.A.

    1980-01-01

    The measurements of reduced values of diferencial pressure, are studied. Several situations are described where the diferencial pressure accurate measurement is necessary in routine works in the Thermohydraulic Laboratory, as well as, the major pressure measurement devices and their respective range are studied. The development of a device for diferencial pressure measurement followed by the design development of the calibration bench covering the foreseen range, start up tests realization, optimization, calibration, performance analysis and conclusions, is showed. (Author) [pt

  5. Correlation Measurements on Small Mobile Devices

    DEFF Research Database (Denmark)

    Yanakiev, Boyan Radkov; Nielsen, Jesper Ødum; Christensen, Morten

    2012-01-01

    Here, analysis of the antenna correlation at the design stage is done, with focus on measurement techniques. Various theoretical definitions of correlations are used with the corresponding measured data required. The problems related to the coaxial measurement cables, when calculating correlation...

  6. Low emittance configuration for spear

    International Nuclear Information System (INIS)

    Blumberg, L.N.; Harris, J.; Stege, R.; Cerino, J.; Hettel, R.; Hofmann, A.; Liu, R.Z.; Wiedemann, H.; Winick, H.

    1985-01-01

    The quality of synchrotron radiation beams from SPEAR, in particular the brilliance of undulator radiation, can be improved significantly by reducing the emittance of the stored electron beam. A reduction of the horizontal emittance by a factor of 3.5 to a value of 130 nanometer-radians (nm-r) at 3 GeV has been achieved by using stronger focussing, mainly in the horizontal plane. The low emittance configuration also reduces the dispersion and vertical beta functions in the straight sections, making them more suitable for wigglers. The higher betatron tunes lead to a larger phase advance between the two kickers, which has to be corrected during injection by shunting current from some quadrupoles. The configuration was optimized within SPEAR hardware limitations and tested for dynamic aperture with the tracking program PATRICIA. After implementation of this scheme, beam was successfully injected and accumulated. The measured emittance of the stored beam was in agreement with calculations. Presently the configuration is being made operational

  7. Optical vibration measurement of mechatronics devices

    Science.gov (United States)

    Yanabe, Shigeo

    1993-09-01

    An optical vibration measuring system which enables to detect both linear and angular displacement of 25 nm and 5 prad was developed. The system is mainly composed of a He-Ne laser, a displacement detecting photo-diode and lenses, and has linear and angular displacement magnification mechanism using two different principles of optical lever. The system was applied to measure vibrational characteristics of magnetic head slider of hard disk drives and to measure stator teeth driving velocities of ultrasonic motor.

  8. Test device for measuring permeability of a barrier material

    Science.gov (United States)

    Reese, Matthew; Dameron, Arrelaine; Kempe, Michael

    2014-03-04

    A test device for measuring permeability of a barrier material. An exemplary device comprises a test card having a thin-film conductor-pattern formed thereon and an edge seal which seals the test card to the barrier material. Another exemplary embodiment is an electrical calcium test device comprising: a test card an impermeable spacer, an edge seal which seals the test card to the spacer and an edge seal which seals the spacer to the barrier material.

  9. Studies on the nondestructive emittance measurement at a negative-hydrogen-ion beam; Untersuchungen zur zerstoerungsfreien Emittanzmessung an einem negativen Wasserstoffionenstrahl

    Energy Technology Data Exchange (ETDEWEB)

    Gabor, C.

    2007-07-01

    In the present thesis the already known idea to apply photodetechment for the diagnosis at a H{sup -} beam has be newly interpretated and improved. Thereby a nondestructive emittance measurement method was developed, which is especially suited for future high-current accelerator projects. For emittance measurements thereby mechanical components can be totally abandoned, if at a small part of the H{sup -} ions the additional with only 0.754 eV weak bound electron is separated by photodetachment {Dirac_h}{omega}+H{sup -}{yields}H{sup 0}+e{sup -}. The neutralized H{sup -} ions can be magnetically or electrostatically separated from the electrons and the remaining H{sup -} ions. Especially the neutral particles are offered by their insensitivity against external electromagnetic fields for the determination of the phase-space distribution of the ion beam. Also the momentum transfer by photodetechment can be neglected at the neutralized ions. The detection of the divergence angle has been pursued by a scintillator with a CCD camera. For the calculation of the number of neutralized particles a simplified model under assumption of homogeneous density distributions was developed. The aim of the approximation was to make statements about the requirement on the laser system and the detector. Thereby especially the suitability of the measurement for high beam currents and beam parameters, as they are typically present behind a RFQ. Further aspects like the influence of the angle between laser and ion beams, relativistic ion beam, as well as the position and angular resolution have been also object of the discussion.

  10. Methods of radon measurement and devices

    International Nuclear Information System (INIS)

    Miles, J.

    2004-01-01

    The following topics and instrumentation are discussed: The quantity to be measured; Active measurement methods (scintillation cells, ionisation chambers, electrostatic collection of decay products); Passive measurement methods (charcoal detectors; electret ion chambers; etched track detectors); and Detector considerations for large-scale surveys ('always on' or 'switchable' detectors?; response to radon-220; avoidance of electrostatic effects; quality assurance for passive radon detectors; quality control within the laboratory; external quality assurance; detectors need to be easily deliverable). It is concluded that the ideal detector for large scale surveys of radon in houses is a small, closed detector in a conducting holder which excludes radon-220, supported by rigorous quality assurance procedures. (P.A.)

  11. Photonic emitters and circuits based on colloidal quantum dot composites

    Science.gov (United States)

    Menon, Vinod M.; Husaini, Saima; Valappil, Nikesh; Luberto, Matthew

    2009-02-01

    We discuss our work on light emitters and photonic circuits realized using colloidal quantum dot composites. Specifically we will report our recent work on flexible microcavity laser, microdisk emitters and integrated active - passive waveguides. The entire microcavity laser structure was realized using spin coating and consisted of an all-polymer distributed Bragg reflector with a poly-vinyl carbazole cavity layer embedded with InGaP/ZnS colloidal quantum dots. These microcavities can be peeled off the substrate yielding a flexible structure that can conform to any shape and whose emission spectra can be mechanically tuned. The microdisk emitters and the integrated waveguide structures were realized using soft lithography and photo-lithography, respectively and were fabricated using a composite consisting of quantum dots embedded in SU8 matrix. Finally, we will discuss the effect of the host matrix on the optical properties of the quantum dots using results of steady-state and time-resolved luminescence measurements. In addition to their specific functionalities, these novel device demonstrations and their development present a low cost alternative to the traditional photonic device fabrication techniques.

  12. Radiation protection measuring device SSM-1

    International Nuclear Information System (INIS)

    Anon.

    1988-01-01

    Product information from the producer on a universal measuring instrument for alpha, beta and gamma radiation designed for stationary and field use by military, police and fire brigades. 4 figs. (qui)

  13. Methods and Devices used to Measure Friction

    DEFF Research Database (Denmark)

    Jeswiet, Jack; Arentoft, Mogens; Henningsen, Poul

    2004-01-01

    . To gain a good understanding of the mechanisms at the interface and to be able to verify the friction and tribology models that exist, friction sensors are needed. Designing sensors to measure friction-stress in metal working has been pursued by many researchers. This paper surveys methods, which have...... been tried in the past and discusses some of the recent sensor designs, which can now be used to measure Friction in both production situations and for research purposes....

  14. Self-powered detectors with thulium emitter

    International Nuclear Information System (INIS)

    Haller, P.; Klar, E.

    1978-01-01

    In addition to fission chambers, prompt-indicating self-powered (SPN) detectors are used for measuring the neutron flux density in the core of power reactors. Although current SPN detectors with a cobalt emitter give satisfactora results, detectors with other emitter materials have been analyzed and tested. The author describes the properties and decay pattern of the nuclide thulium and presents the results of measurements made while testing thulium detectors. (orig.) [de

  15. PHYSICAL PROPERTIES OF Ly{alpha} EMITTERS AT z {approx} 0.3 FROM UV-TO-FIR MEASUREMENTS

    Energy Technology Data Exchange (ETDEWEB)

    Oteo, I.; Bongiovanni, A.; Perez Garcia, A. M.; Cepa, J.; Pintos-Castro, I. [Instituto de Astrofisica de Canarias (IAC), E-38200 La Laguna, Tenerife (Spain); Ederoclite, A. [Centro de Estudios de Fisica del Cosmos de Aragon, Plaza San Juan 1, Planta 2, Teruel, 44001 (Spain); Sanchez-Portal, M.; Altieri, B. [Herschel Science Centre (ESAC), Villafranca del Castillo (Spain); Perez-Martinez, R. [XMM/Newton Science Operations Centre (ESAC), Villafranca del Castillo (Spain); Lutz, D.; Berta, S.; Foerster Schreiber, N.; Genzel, R.; Magnelli, B. [Max-Planck-Institut fuer Extraterrestrische Physik (MPE), Postfach 1312, 85741 Garching (Germany); Andreani, P. [ESO, Karl-Schwarzchild-Str. 2, D-85748 Garching (Germany); Aussel, H.; Daddi, E.; Elbaz, D.; Le Floc' h, E. [Commissariat a l' Energie Atomique (CEA-SAp) Saclay (France); Cimatti, A. [Dipartimento di Astronomia, Universita di Bologna, Via Ranzani 1, 40127 Bologna (Italy); and others

    2012-06-01

    The analysis of the physical properties of low-redshift Ly{alpha} emitters (LAEs) can provide clues in the study of their high-redshift analogs. At z {approx} 0.3, LAEs are bright enough to be detected over almost the entire electromagnetic spectrum and it is possible to carry out a more precise and complete study than at higher redshifts. In this work, we examine the UV and IR emission, dust attenuation, star formation rate (SFR), and morphology of a sample of 23 GALEX-discovered star-forming LAEs at z {approx} 0.3 with direct UV (GALEX), optical (ACS), and FIR (PACS and MIPS) data. Using the same UV and IR limiting luminosities, we find that LAEs at z {approx} 0.3 tend to be less dusty, have slightly higher total SFRs, have bluer UV continuum slopes, and are much smaller than other galaxies that do not exhibit Ly{alpha} emission in their spectrum (non-LAEs). These results suggest that at z {approx} 0.3, Ly{alpha} photons tend to escape from small galaxies with low dust attenuation. Regarding their morphology, LAEs belong to Irr/merger classes, unlike non-LAEs. Size and morphology represent the most noticeable difference between LAEs and non-LAEs at z {approx} 0.3. Furthermore, the comparison of our results with those obtained at higher redshifts indicates either that the Ly{alpha} technique picks up different kind of galaxies at different redshifts or that the physical properties of LAEs are evolving with redshift.

  16. Small Device For Short-Range Antenna Measurements Using Optics

    DEFF Research Database (Denmark)

    Yanakiev, Boyan Radkov; Nielsen, Jesper Ødum; Christensen, Morten

    2011-01-01

    This paper gives a practical solution for implementing an antenna radiation pattern measurement device using optical fibers. It is suitable for anechoic chambers as well as short range channel sounding. The device is optimized for small size and provides a cheap and easy way to make optical antenna...

  17. Miniature ingestible telemeter devices to measure deep-body temperature

    Science.gov (United States)

    Pope, J. M.; Fryer, T. B. (Inventor)

    1976-01-01

    A telemetry device comprised of a pill-size ingestible transmitter developed to obtain deep body temperature measurements of a human is described. The device has particular utility in the medical field where deep body temperatures provide an indication of general health.

  18. Video integrated measurement system. [Diagnostic display devices

    Energy Technology Data Exchange (ETDEWEB)

    Spector, B.; Eilbert, L.; Finando, S.; Fukuda, F.

    1982-06-01

    A Video Integrated Measurement (VIM) System is described which incorporates the use of various noninvasive diagnostic procedures (moire contourography, electromyography, posturometry, infrared thermography, etc.), used individually or in combination, for the evaluation of neuromusculoskeletal and other disorders and their management with biofeedback and other therapeutic procedures. The system provides for measuring individual diagnostic and therapeutic modes, or multiple modes by split screen superimposition, of real time (actual) images of the patient and idealized (ideal-normal) models on a video monitor, along with analog and digital data, graphics, color, and other transduced symbolic information. It is concluded that this system provides an innovative and efficient method by which the therapist and patient can interact in biofeedback training/learning processes and holds considerable promise for more effective measurement and treatment of a wide variety of physical and behavioral disorders.

  19. Advanced devices and systems for radiation measurements

    International Nuclear Information System (INIS)

    Knoll, G.F.; Wehe, D.K.; He, Z.; Barrett, C.; Miyamoto, J.

    1996-06-01

    The authors' most recent work continues their long-standing efforts to develop semiconductor detectors based on the collection of only a single type of charge carrier. Their best results are an extension of the principle of coplanar electrodes first described by Paul Luke of Lawrence Berkeley Laboratory 18 months ago. This technique, described in past progress reports, has the effect of deriving an output signal from detectors that depends only on the motion of carriers close to one surface. Since nearly all of these carriers are of one type (electrons) that are attracted to that electrode, the net effect is to nearly eliminate the influence of hole motion on the properties of the output signal. The result is that the much better mobility of electrons in compound semiconductors materials such as CZT can now be exploited without the concurrent penalty of poor hole collection. They have also developed new techniques in conjunction with the coplanar electrode principle that extends the technique into a new dimension. By proper processing of signals from the opposite electrode (the cathode) from the coplanar surface, they are able to derive a signal that is a good indication of the depth of interaction at which the charge carriers were initially formed. They have been the first group to demonstrate this technique, and examples of separate pulse height spectra recorded at a variety of different depths of interaction are shown in several of the figures that follow. Obtaining depth information is one step in the direction of obtaining volumetric point-of-interaction information from the detector. If one could known the coordinates of each specific interaction, then corrections could be applied to account for the inhomogeneities that currently plague many room-temperature devices

  20. RFQ1 diagnostic devices

    International Nuclear Information System (INIS)

    Chidley, B.G.; Arbique, G.M.; de Jong, M.S.; McMichael, G.E.; Michel, W.L.; Smith, B.H.

    1991-01-01

    The diagnostic devices in use on RFQ1 will be described. They consist of a double-slit emittance-measuring unit, a 45 degree deflection energy-analysis magnet, parametric current transformers, optical beam sensors, beam-stop current monitors, and an x-ray end-point analyzer. All of these devices are able to operate up to the full output current of RFQ1 (75 mA cw at 0.6 MeV)

  1. Liquid temperature measuring method and device therefor

    Energy Technology Data Exchange (ETDEWEB)

    Maruyama, Fumi; Karasawa, Hirokazu

    1995-06-02

    In the present invention, temperature of liquid metal in coolants in an FBR type reactor can accurately be measured at rapid response time. Namely, ultrasonic waves are emitted from an ultrasonic wave sensor disposed in the air to a guide wave tube. Ultrasonic waves are reflected at reflection plates disposed at front and back or upper and lower portions of a small hole disposed to the wave guide tube. The reflected waves are received by the sensor described above. The difference of the reaching time of the reflected waves from the reflecting plates disposed at the front and the back or the upper and lower portions is measured. The speed of sounds in this case is determined based on the size of the small hole and the distance of the upper and the lower reflection plates. The speed of sounds is determined by the formula below: V(m/s) = 2500 - 0.52 T, where T: temperature. The temperature of the liquid can easily be calculated based on the formula. Accordingly, since the speed of the ultrasonic waves from their emission to the reception is msec order, and the processing of the signals are simple, the temperature can be measured at a response time of several msecs. In addition, since the ultrasonic wave sensor is disposed at the outside of the reactor, no special countermeasure for environmental circumstances is necessary, to improve maintenance ability. (I.S.).

  2. Modified sine bar device measures small angles with high accuracy

    Science.gov (United States)

    Thekaekara, M.

    1968-01-01

    Modified sine bar device measures small angles with enough accuracy to calibrate precision optical autocollimators. The sine bar is a massive bar of steel supported by two cylindrical rods at one end and one at the other.

  3. Zero G Mass Measurement Device (ZGMMD), Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The Zero G Mass Measurement Device (ZGMMD) will provide the ability to quantify the mass of objects up to 2,000 grams, including live animal specimens in a zero G...

  4. Accuracy of portable devices in measuring peak cough flow

    International Nuclear Information System (INIS)

    Kulnik, Stefan Tino; Kalra, Lalit; MacBean, Victoria; Birring, Surinder Singh; Moxham, John; Rafferty, Gerrard Francis

    2015-01-01

    Peak cough flow (PCF) measurements can be used as indicators of cough effectiveness. Portable peak flow meters and spirometers have been used to measure PCF, but little is known about their accuracy compared to pneumotachograph systems. The aim of this study was to compare the accuracy of four portable devices (Mini–Wright and Assess peak flow meters, SpiroUSB and Microlab spirometers) in measuring PCF with a calibrated laboratory based pneumotachograph system. Twenty healthy volunteers (mean (SD) age 45 (16) years) coughed through a pneumotachograph connected in series with each portable device in turn, and the differences in PCF readings were analysed. In addition, mechanically generated flow waves of constant peak flow were delivered through each device both independently and when connected in series with the pneumotachograph. Agreement between PCF readings obtained with the pneumotachograph and the portable devices was poor. Peak flow readings were on average lower by approximately 50 L min −1 when measured using the portable devices; 95% limits of agreement spanned approximately 150 L min −1 . The findings highlight the potential for inaccuracy when using portable devices for the measurement of PCF. Depending on the measurement instrument used, absolute values of PCF reported in the literature may not be directly comparable. (paper)

  5. Beam envelope solution of a finite emittance beam including space charge and acceleration

    International Nuclear Information System (INIS)

    Larson, D.J.; Cole, F.T.; Mills, F.E.

    1985-01-01

    The intermediate-energy electron-cooling effort at the University of Wisconsin began as a collaboration with the University of California - Santa Barbara free electron laser group to measure the emittance of their test device. The measurement indicated that the optics of the FEL test device were extremely good; there was no emittance degradation throughout the system. For this reason, the electron gun for the electron-cooling effort has been designed to be optically identical to the UCSB gun designed by Hermannsfeldt of SLAC. The optics program used to investigate the gun behavior is EGUN, written by Hermannsfeldt. Because of the complicated problem of electron optics at the start of the Pelletron accelerating column, the first 120 kV of acceleration in the Pelletron is included in the gun optical study. At that point in the Pelletron, the electric field no longer has any significant radial component and the following optical treatment of the device is done

  6. Simple-to-prepare multipoint field emitter

    Science.gov (United States)

    Sominskii, G. G.; Taradaev, E. P.; Tumareva, T. A.; Mishin, M. V.; Kornishin, S. Yu.

    2015-07-01

    We investigate multitip field emitters prepared by electroerosion treatment of the surface of molybdenum samples. Their characteristics are determined for operation with a protecting activated fullerene coating. Our experiments indicate that such cathodes are promising for high-voltage electron devices operating in technical vacuum.

  7. Device-Independent Certification of a Nonprojective Qubit Measurement

    Science.gov (United States)

    Gómez, Esteban S.; Gómez, Santiago; González, Pablo; Cañas, Gustavo; Barra, Johanna F.; Delgado, Aldo; Xavier, Guilherme B.; Cabello, Adán; Kleinmann, Matthias; Vértesi, Tamás; Lima, Gustavo

    2016-12-01

    Quantum measurements on a two-level system can have more than two independent outcomes, and in this case, the measurement cannot be projective. Measurements of this general type are essential to an operational approach to quantum theory, but so far, the nonprojective character of a measurement can only be verified experimentally by already assuming a specific quantum model of parts of the experimental setup. Here, we overcome this restriction by using a device-independent approach. In an experiment on pairs of polarization-entangled photonic qubits we violate by more than 8 standard deviations a Bell-like correlation inequality that is valid for all sets of two-outcome measurements in any dimension. We combine this with a device-independent verification that the system is best described by two qubits, which therefore constitutes the first device-independent certification of a nonprojective quantum measurement.

  8. 40 CFR 1065.275 - N2O measurement devices.

    Science.gov (United States)

    2010-07-01

    ... measurement devices. (a) General component requirements. We recommend that you use an analyzer that meets the... functions of other gaseous measurements and the engine's known or assumed fuel properties. The target value... gaseous measurements. The target value for any compensation algorithm is 0.0% (that is, no bias high and...

  9. Radon Measurement Proficiency (RMP) Program methods and devices

    International Nuclear Information System (INIS)

    Harrison, J.; Hoornbeek, J.; Jalbert, P.; Sensintaffar, E.; Hopper, R.

    1991-01-01

    The US EPA developed the voluntary Radon Measurement Proficiency Program in 1986 in response to a Federal and State need for measurement services firms to demonstrate their proficiency with radon measurement methods and devices. Since that time, the program has set basic standards for the radon measurement industry. The program has grown dramatically since its inception. In 1986, fewer than 50 companies participated in the program. By 1989, more than 5,000 companies were participating. Participants represent firms with an analytical capability as well as firms that rely upon another firm for analysis service. Since the beginning of the RMP Program, the Agency has learned a great deal about radon measurement methods and devices. This paper reviews the measurement devices used in the program and what the EPA has learned about them since the program's inception. Performance data from the RMP Program are used to highlight relevant findings

  10. Development of technique for quantifying gamma emitters in metal waste. New technique of precise and automatic measurements for confirmation of clearance level of metal waste

    International Nuclear Information System (INIS)

    Hattori, Takatoshi

    2002-01-01

    A New technique of precise and automatic measurements of gamma emitters in metal waste has been developed using 3D non-contact shape measurement and monte-carlo calculation techniques in order to confirm that specific radioactivity level of metal waste satisfies the clearance level and furthermore the surface contamination level of the metal waste is below the legal standard level. The technique can give a calibration factor every measurement target automatically and realize an automatic correction for reduction of background count rate in gamma measurements due to self-shield effect of the measurement target. The accuracy of the present method has been made clear using mock-metal wastes with various types of shape, number and size. Assuming the goal of the detection limit for practical use is 25OBq in radioactivity, a concept of the practical gamma monitor has been designed so as to be able to confirm both the clearance level and surface contamination level simultaneously and to cope with the metal waste at a speed of 2-10 ton a day. (author)

  11. Measuring device for soft X-rays

    International Nuclear Information System (INIS)

    Dissing, E.

    1978-09-01

    An instrument for the measurement of the absorbed energy per unit area of diagnostic X-rays in soft human tissue was developed. The instrument is intended for dosimetry applications in the field of dental and small skeleton radiography and for mammography. The detector assembly consists of a Polyvinyltoluene scintillator 2.54 diametre x 5.08 cm CsSb semitransparent head-on vacuum phototube. Polyvinyltoluene being a pure hydrocarbon may be considered a good representative material of human soft tissue concerning the absorption of X-rays. In the photon energy range of interest, 5 - 40 keV, the mass energy absorption coefficient for muscle tissue and for PVT differ about a factor 2 due to the considerable content of Oxygen in muscle tissue. This is to some extend reflected in the photon energy response characteristic for the instrument. For human adipose, the characteristic is practically flat from 5- 40 keV. The instrument is integrating the absorbed power per unit area and the digital display shows Joules/m 2 . The range for the instrument is from 000.1 μJ/m 2 to 19.99 J/m 2 (absorbed energy in 5 cm tissue). (author)

  12. Device for measuring a burnup degree

    International Nuclear Information System (INIS)

    Ito, Toshiaki; Goto, Seiichiro

    1979-01-01

    Purpose: To measure the burnup degree at high efficiency and accuracy. Constitution: The outer metal wall of fuel assemblies is heated under gamma radiation with long half life gamma rays in inverse proportion to the burnup degree and issues infrared radiation in proportion to the intensity of the gamma rays. An image pick-up tube is opposed to one surface of the fuel assemblies to detect the radiated infrared rays. Since the output signal from the pick-up tube is subjected to the absorptive damping by the distance between the pick-up tube and the fuel assembly, as well as water filled in the gap therebetween, it is corrected through a main amplifier comprising a signal correction circuit composed of a characteristic section inverse to the absorption property and a characteristic section inverse to the square of the distance. The corrected output signal is displayed on a display unit such as CRT or recorded in a film or a magnetic tape. (Furukawa, Y.)

  13. Device for the alternative option of temperature measurement

    Science.gov (United States)

    Jargus, Jan; Nedoma, Jan; Fajkus, Marcel; Novak, Martin; Cubik, Jakub; Cvejn, Daniel; Vasinek, Vladimir

    2017-10-01

    Polydimethylsiloxane (PDMS) has good optical properties, and its composition offers the possibility of use in many applications (industry, security device, medicine applications and etc.). We focused on the alternative option of temperature measurement in this article. Our approach is based on measuring changes of chromaticity correlated temperature corresponding to changes in temperature. Described device uses an optical fiber with a defined layer of PDMS and luminophore and we assume that it can find use also in the field of security. The article describes the process of making the prototype of the device and its verification based on laboratory results. The measured temperature depends mainly on the type of optical fiber and the measured temperature range is determined by the thermal resistance of used optical fiber. Using a calibration measurement can determine the value of temperature with an accuracy of +/- 2,5 %.

  14. Development of Emittance Analysis Software for Ion Beam Characterization

    International Nuclear Information System (INIS)

    Padilla, M.J.; Liu, Yuan

    2007-01-01

    Transverse beam emittance is a crucial property of charged particle beams that describes their angular and spatial spread. It is a figure of merit frequently used to determine the quality of ion beams, the compatibility of an ion beam with a given beam transport system, and the ability to suppress neighboring isotopes at on-line mass separator facilities. Generally, a high-quality beam is characterized by a small emittance. In order to determine and improve the quality of ion beams used at the Holifield Radioactive Ion Beam Facility (HRIBF) for nuclear physics and nuclear astrophysics research, the emittances of the ion beams are measured at the off-line Ion Source Test Facilities. In this project, emittance analysis software was developed to perform various data processing tasks for noise reduction, to evaluate root-mean-square emittance, Twiss parameters, and area emittance of different beam fractions. The software also provides 2D and 3D graphical views of the emittance data, beam profiles, emittance contours, and RMS. Noise exclusion is essential for accurate determination of beam emittance values. A Self-Consistent, Unbiased Elliptical Exclusion (SCUBEEx) method is employed. Numerical data analysis techniques such as interpolation and nonlinear fitting are also incorporated into the software. The software will provide a simplified, fast tool for comprehensive emittance analysis. The main functions of the software package have been completed. In preliminary tests with experimental emittance data, the analysis results using the software were shown to be accurate

  15. DEVELOPMENT OF EMITTANCE ANALYSIS SOFTWARE FOR ION BEAM CHARACTERIZATION

    Energy Technology Data Exchange (ETDEWEB)

    Padilla, M. J.; Liu, Y.

    2007-01-01

    Transverse beam emittance is a crucial property of charged particle beams that describes their angular and spatial spread. It is a fi gure of merit frequently used to determine the quality of ion beams, the compatibility of an ion beam with a given beam transport system, and the ability to suppress neighboring isotopes at on-line mass separator facilities. Generally a high quality beam is characterized by a small emittance. In order to determine and improve the quality of ion beams used at the Holifi eld Radioactive Ion beam Facility (HRIBF) for nuclear physics and nuclear astrophysics research, the emittances of the ion beams are measured at the off-line Ion Source Test Facilities. In this project, emittance analysis software was developed to perform various data processing tasks for noise reduction, to evaluate root-mean-square emittance, Twiss parameters, and area emittance of different beam fractions. The software also provides 2D and 3D graphical views of the emittance data, beam profi les, emittance contours, and RMS. Noise exclusion is essential for accurate determination of beam emittance values. A Self-Consistent, Unbiased Elliptical Exclusion (SCUBEEx) method is employed. Numerical data analysis techniques such as interpolation and nonlinear fi tting are also incorporated into the software. The software will provide a simplifi ed, fast tool for comprehensive emittance analysis. The main functions of the software package have been completed. In preliminary tests with experimental emittance data, the analysis results using the software were shown to be accurate.

  16. Device independent quantum key distribution secure against coherent attacks with memoryless measurement devices

    International Nuclear Information System (INIS)

    McKague, Matthew

    2009-01-01

    Device independent quantum key distribution (QKD) aims to provide a higher degree of security than traditional QKD schemes by reducing the number of assumptions that need to be made about the physical devices used. The previous proof of security by Pironio et al (2009 New J. Phys. 11 045021) applies only to collective attacks where the state is identical and independent and the measurement devices operate identically for each trial in the protocol. We extend this result to a more general class of attacks where the state is arbitrary and the measurement devices have no memory. We accomplish this by a reduction of arbitrary adversary strategies to qubit strategies and a proof of security for qubit strategies based on the previous proof by Pironio et al and techniques adapted from Renner.

  17. Backscattering measurement device for measuring the thickness of a layer

    International Nuclear Information System (INIS)

    Weinstock, J.; Lieber, D.; Hay, W.D.

    1978-01-01

    There is provided for a measuring wheel on the run of which backscattering probes are mounted, serving for irradiation and measurement of the radiation reflected from a strip of substrate tape coated e.g. with Au. The probes are of the model HH-3 of Unit Process Assemblies Inc. The material strip is guided on the outside of the wheel run. The measuring wheel is rotating with such speed that the tangential velocity of a point on the run is equal to the speed of the strip. Therefore the movement of the strip need not be stopped during measurement (on-line measurement). (DG) [de

  18. Hybrid Integration of Solid-State Quantum Emitters on a Silicon Photonic Chip.

    Science.gov (United States)

    Kim, Je-Hyung; Aghaeimeibodi, Shahriar; Richardson, Christopher J K; Leavitt, Richard P; Englund, Dirk; Waks, Edo

    2017-12-13

    Scalable quantum photonic systems require efficient single photon sources coupled to integrated photonic devices. Solid-state quantum emitters can generate single photons with high efficiency, while silicon photonic circuits can manipulate them in an integrated device structure. Combining these two material platforms could, therefore, significantly increase the complexity of integrated quantum photonic devices. Here, we demonstrate hybrid integration of solid-state quantum emitters to a silicon photonic device. We develop a pick-and-place technique that can position epitaxially grown InAs/InP quantum dots emitting at telecom wavelengths on a silicon photonic chip deterministically with nanoscale precision. We employ an adiabatic tapering approach to transfer the emission from the quantum dots to the waveguide with high efficiency. We also incorporate an on-chip silicon-photonic beamsplitter to perform a Hanbury-Brown and Twiss measurement. Our approach could enable integration of precharacterized III-V quantum photonic devices into large-scale photonic structures to enable complex devices composed of many emitters and photons.

  19. Nuclear-burst strength detecting and measuring device

    International Nuclear Information System (INIS)

    Balut, J.A.L.G.; Lemaire, P.E.G.K.; Loisy, C.M.

    1976-01-01

    A continuous-operation automatic device is described for detection and accurate measurement of the strength of a burst generating an emission from luminous or infrared sources. This device characterizes and analyzes the maxima and minima of a ''thermal flux/time'' curve. The device comprises a master time element and an assembly of photoelectric detectors, an electronic processing system coupled to the detectors, and a mechanical system securing the rigidity and positioning of the photoelectric detector assembly with respect to an octahedral prism based on a horizontal plane

  20. An Innovative Flow-Measuring Device: Thermocouple Boundary Layer Rake

    Science.gov (United States)

    Hwang, Danny P.; Fralick, Gustave C.; Martin, Lisa C.; Wrbanek, John D.; Blaha, Charles A.

    2001-01-01

    An innovative flow-measuring device, a thermocouple boundary layer rake, was developed. The sensor detects the flow by using a thin-film thermocouple (TC) array to measure the temperature difference across a heater strip. The heater and TC arrays are microfabricated on a constant-thickness quartz strut with low heat conductivity. The device can measure the velocity profile well into the boundary layer, about 65 gm from the surface, which is almost four times closer to the surface than has been possible with the previously used total pressure tube.

  1. Propagation Measurements for Device-to-Device Communication in Forest Terrain

    DEFF Research Database (Denmark)

    Hejselbæk, Johannes; Nielsen, Jesper Ødum; Drewes, Christian

    2018-01-01

    In this paper, we present a measurement campaign conducted in forest terrain with focus on path-loss. The aim of the measurement campaign is to study the coverage in a Device-to-Device (D2D) communication scenario. The measurement campaign was conducted in the LTE band 8 at 917.5 MHz...... with measurement ranges extending to more than 2.5 km. The measurements have been conducted using a purpose-developed measurement system with a dynamic range of 180 dB. The measurements showed that a D2D system with transmit and receive antenna at heights of 1.5 m could achieve a range of approximately 2 km using...

  2. Emittance calculations for the Stanford Linear Collider injector

    International Nuclear Information System (INIS)

    Sheppard, J.C.; Clendenin, J.E.; Helm, R.H.; Lee, M.J.; Miller, R.H.; Blocker, C.A.

    1983-03-01

    A series of measurements have been performed to determine the emittance of the high intensity, single bunch beam that is to be injected into the Stanford Linear Collider. On-line computer programs were used to control the Linac for the purpose of data acquisition and to fit the data to a model in order to deduce the beam emittance. This paper will describe the method of emittance calculation and present some of the measurement results

  3. Device for measuring the tritium concentration in a measuring gas

    International Nuclear Information System (INIS)

    Koran, P.

    1987-01-01

    The measuring gas is brought into contact via a measuring gas path with a diaphragm permeable to water, which separates the measuring gas path from a counter gas path leading to a proportional detector. The measuring gas path and the counter gas path are in counterflow in the area of diaphragm. The preferably hose diaphragm consists of a well-known ion exchange material, which can be used for gas drying purposes, which is permeable to water and tritium compounds similar to water, but is impermeable to other gases and liquids contained in air, particularly rare gases. In this way, the tritium concentration can be measured with great rare gas suppression. (orig./HP) [de

  4. Cancer from internal emitters

    International Nuclear Information System (INIS)

    Boecker, B.B.; Griffith, W.C. Jr.

    1995-01-01

    Irradiation from internal emitters, or internally deposited radionuclides, is an important component of radiation exposures encountered in the workplace, home, or general environment. Long-term studies of human populations exposed to various internal emitters by different routes of exposure are producing critical information for the protection of workers and members of the general public. The purpose of this report is to examine recent developments and discuss their potential importance for understanding lifetime cancer risks from internal emitters. The major populations of persons being studied for lifetime health effects from internally deposited radionuclides are well known: Lung cancer in underground miners who inhaled Rn progeny, liver cancer from persons injected with the Th-containing radiographic contrast medium Thorotrast, bone cancer from occupational or medical intakes of 226 Ra or medical injections of 224 Ra, and thyroid cancer from exposures to iodine radionuclides in the environment or for medical purposes

  5. Low emittance photoinjectors

    International Nuclear Information System (INIS)

    Ferrario, Massimo

    2001-01-01

    Photon colliders require high charge polarized electron beams with very low normalized emittances, possibly lower than the actual damping rings design goals. Recent analytical and numerical efforts in understanding beam dynamics in RF photoinjectors have raised again the question as to whether the performances of an RF electron gun based injector could be competitive with respect to a damping ring. As a matter of discussion we report in this paper the most recent results concerning low emittance photoinjector designs: the production of polarized electron beams by DC and/or RF guns is illustrated together with space charge compensation techniques and thermal emittance effects. New ideas concerning multi-gun injection system and generation of flat beams by RF gun are also discussed

  6. Measurement Devices and the Psychophysiology of Consumer Behaviour

    DEFF Research Database (Denmark)

    Schwarzkopf, Stefan

    2015-01-01

    of the type of subjectivity that underlies consumer behaviour. I argue instead that a posthuman view of the relationship between brain, mind and behaviour underpinned neurophysiological research into consumers from its very beginning in the late nineteenth century. By tracing the biopolitical potentialities...... of neuromarketing back to the Fin-de-Siècle neurophysiological laboratory, I show that consumers' bodies and later on their brains became reconfigured as part of a dispositif made up of laboratory-based artefacts (measurement devices) and new ways of seeing the human brain and human behaviour. This dispositif......From the 1890s, psychophysiological measurement devices have played an important, but as yet under-theorized role in marketing and consumer research. Because of the recent advances made in neuromarketing, it is often assumed that these measurement devices ushered in a radically new understanding...

  7. SHORT COMMUNICATION: Time measurement device with four femtosecond stability

    Science.gov (United States)

    Panek, Petr; Prochazka, Ivan; Kodet, Jan

    2010-10-01

    We present the experimental results of extremely precise timing in the sense of time-of-arrival measurements in a local time scale. The timing device designed and constructed in our laboratory is based on a new concept using a surface acoustic wave filter as a time interpolator. Construction of the device is briefly described. The experiments described were focused on evaluating the timing precision and stability. Low-jitter test pulses with a repetition frequency of 763 Hz were generated synchronously to the local time base and their times of arrival were measured. The resulting precision of a single measurement was typically 900 fs RMS, and a timing stability TDEV of 4 fs was achieved for time intervals in the range from 300 s to 2 h. To our knowledge this is the best value reported to date for the stability of a timing device. The experimental results are discussed and possible improvements are proposed.

  8. Development of a magnetic measurement device for thin ribbon samples

    International Nuclear Information System (INIS)

    Sato, Yuta; Todaka, Takashi; Enokizono, Masato

    2008-01-01

    This paper presents a magnetic measurement device for thin ribbon samples, which are produced by rapid cooling technique. This device enables us to measure magnetic properties easily by only inserting a ribbon sample into a sample holder. The sample holder was made by bakelite to fix any width sample. A long solenoid coil was used to generate a uniform magnetic field and the sample holder was placed at the mid part of the solenoid. The magnetic field strength was measured using a shunt resistor and the magnetic flux density and magnetization in sample ribbons were evaluated by using search coils. The accuracy of measurement was verified with an amorphous metal ribbon sample. Next, we have measured magnetic properties of some magnetic shape memory alloys, which have different compositions. The measured results are compared and we clarified the effect of Sm contents on the magnetic properties

  9. An Automatic System for Determining Solar Absorptance and Thermal Emittance of Surfaces from Spectral Normal Reflectance Measurements

    National Research Council Canada - National Science Library

    Teichman, Louis

    1965-01-01

    .... The system consists of two spectrophotometers used to make optical reflectance measurements, electronic digitizing equipment to record the data, and a high-speed electronic computer to calculate the desired results...

  10. Dynamic pipe control with a multiple digit automatic measuring device

    International Nuclear Information System (INIS)

    Jenzer, P.

    1984-01-01

    With the flow rotating method, thin-walled pipes can be produced with very tight tolerances and high mechanical sturdiness. The measuring device permits a dynamic control of these pipes, the outer diameter of which can lie between 70 and 300 mm, the length between 500 and 2000 mm and the wall thickness between 0,5 and 10 mm. Depending on the pipe type, up to 27 measurements in a maximum of 5 measuring levels are to be controlled. (orig.) [de

  11. Use of piezoelectric multicomponent force measuring devices in fluid mechanics

    Science.gov (United States)

    Richter, A.; Stefan, K.

    1979-01-01

    The characterisitics of piezoelectric multicomponent transducers are discussed, giving attention to the advantages of quartz over other materials. The main advantage of piezoelectric devices in aerodynamic studies is their ability to indicate rapid changes in the values of physical parameters. Problems in the accuracy of measurments by piezoelectric devices can be overcome by suitable design approaches. A practical example is given of how such can be utilized to measure rapid fluctuations of fluid forces exerted on a circular cylinder mounted in a water channel.

  12. Comparative analysis of colour change measurement devices in textile industry

    Directory of Open Access Journals (Sweden)

    Paulina Gilewicz

    2014-08-01

    Full Text Available In the paper there is presented a trial of application of new measurement principle of colour change with the use of DigiEye device. Comparison of DigiEye with commonly use in the textile industry spectrophotometer Macbeth 2020 was an aim of determination of relationship between parameters of both measurement systems. Samples for the colour change assessment on both measurement systems were first aged in the Xenotest 150. Ageing process was done according to the method of blues scale. Results were obtained by the colour measurement devices before and after the ageing test each releasing the diaphragms during exposing the examined samples on the light. Result of colour change were obtained in the colour system CIE L*a*b*. The measurements were done for PES fabrics destined on the outer layers of clothing. [b]Keywords[/b]: textiles, spectrophotometer, colorimeter [b][/b

  13. Emittance Growth during Bunch Compression in the CTF-II

    Energy Technology Data Exchange (ETDEWEB)

    Raubenheimer, Tor O

    1999-02-26

    Measurements of the beam emittance during bunch compression in the CLIC Test Facility (CTF-II) are described. The measurements were made with different beam charges and different energy correlations versus the bunch compressor settings which were varied from no compression through the point of full compression and to over-compression. Significant increases in the beam emittance were observed with the maximum emittance occurring near the point of full (maximal) compression. Finally, evaluation of possible emittance dilution mechanisms indicate that coherent synchrotron radiation was the most likely cause.

  14. Realisation of a ultra-high vacuum system and technique development of microscopical emitters preparation in silicium. First measurements of field emission current and field photoemission

    International Nuclear Information System (INIS)

    El Manouni, A.

    1990-12-01

    The development of research in the domain of photocathode (electron sources) illuminated by laser light to produce intense multiple bunches of electrons in short time is needed by many applications as linear collider e + e - , free electron laser, lasertron, etc... In this way, after a study of field emission, of photoemission and of photofield emission, we prepared microscopical emitters in silicium heavy and weakly doped a boron using a technique of microlithography. Then, we realized a system of ultra-high vacuum of studying property of emission from photocathodes realized. The experiment results obtained in field emission and photofield emission have shown that a behaviour unexpected for P-silicium tips array compared to P + -silicon tips array. With P-type silicon, a quantum yield of 21 percent has been measured for laser power of 140 mW and for applied field of 1.125 x 10 7 V/m and an instantaneous response to laser light beam has been observed. It has been noted that presence of oxyde at the surface of photocathode limits extensively the emission current. The fluctuations of emission current are due to quality of vacuum [fr

  15. SU-G-201-12: Investigation of Beta-Emitter 90Sr-90Y Dose Distribution Using Gafchromic EBT3 Film for Application On Conformal Skin Brachytherapy Device

    International Nuclear Information System (INIS)

    Ferreira, C; Johnson, D; Ahmad, S; Rasmussen, K; Jung, J

    2016-01-01

    Purpose: To investigate 90 Sr- 90 Y as a high dose rate (HDR) source for application in a conformal skin brachytherapy (CSBT) device. The CSBT device has been previously developed to provide patient specific treatment for small inoperable lesions and irregular surfaces. Methods: A popular beta emitter, 90 Sr- 90 Y was tested for feasibility in a CSBT device. A 1 cm diameter plaque was used to deliver dose to a solid water phantom containing EBT3 Gafchromic films arranged at the surface and perpendicular to it. Additionally, a 1 cm diameter 6 MeV electron beam was used to irradiate EBT3 film at 100 cm SSD with a 0.5 cm bolus. Films were digitized with an Epson Expression 10000 XL scanner and calibrated with a 6 MeV electron specific dose curve. Normalized percent depth doses (PDD) and dose profiles for both techniques were analyzed using ImageJ. Results: Dose distributions achieved with the 90 Sr- 90 Y sources were compared with those of external electron beam radiation therapy (EBRT). Penumbra (20%- 80%) for EBRT and 90Sr-90Y were 4.3 mm and 1.6 mm, respectively. PDD values of 50% (normalized to 2 mm) were 10.1 mm and 2.8 mm for electron and 90 Sr- 90 Y, respectively. Flatness (80% of the central beam profile) was 14.1% at a 5 mm depth for EBRT and 4.0% at surface for the 90 Sr- 90 Y. Conclusion: As expected, the PDDs of 90 Sr- 90 Y in water are shallower than that of external electron beams for the same field size. 90 Sr- 90 Y can be used in CSBT to provide patient specific treatment where shallower depth doses than that provided by electron external beams may be required: e.g. eyelids, nose, lips, ears, etc. The customizability of EBRT could be replicated by using multiple adjacent 90 Sr- 90 Y plaque placements.

  16. Absolute measurement of {beta} emitters with a 4 {pi} counter; Mesure absolue des emetteurs {beta} au compteur 4 {pi}

    Energy Technology Data Exchange (ETDEWEB)

    Le Gallic, Y. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1959-06-15

    The object of this work is to investigate the conditions under which the activity of {beta}-emitting radionuclides may be measured with a maximum of precision, and as a result to study the relevant corrections. The various problems relating to activity measurements with a 4 {pi} counter have been examined successively: - comparison of 4 {pi}, GM and proportional counters; - study of the preparation of sources; - corrections on the counting of sources; - self-absorption; - correction for absorption. The precision obtained on these measurements varies from 1.2 to 3 per cent, with the result that the 4 {pi} counter can be considered a very satisfactory calibration instrument. (author) [French] Le but de ce travail est de rechercher les conditions permettant d'obtenir avec le maximum de precision, la mesure de l'activite des radionuclides se desintegrant par emission et par consequent d'etudier les corrections qui s'y rapportent. Nous avons examine successivement les differents problemes se rapportant aux mesures d'activite au compteur 4 {pi}: - Comparaison des compteurs 4 {pi}, GM et proportionnel; - etude de la preparation des sources; - corrections sur la numeration des sources; - auto-absorption; - correction d'absorption. La precision obtenue dans ces mesures, variant de 1,2 a 3 pour cent, on peut donc considerer le compteur 4 {pi} comme un instrument d'etalonnage tres satisfaisant. (auteur)

  17. Absolute measurement of {beta} emitters with a 4 {pi} counter; Mesure absolue des emetteurs {beta} au compteur 4 {pi}

    Energy Technology Data Exchange (ETDEWEB)

    Le Gallic, Y [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1959-06-15

    The object of this work is to investigate the conditions under which the activity of {beta}-emitting radionuclides may be measured with a maximum of precision, and as a result to study the relevant corrections. The various problems relating to activity measurements with a 4 {pi} counter have been examined successively: - comparison of 4 {pi}, GM and proportional counters; - study of the preparation of sources; - corrections on the counting of sources; - self-absorption; - correction for absorption. The precision obtained on these measurements varies from 1.2 to 3 per cent, with the result that the 4 {pi} counter can be considered a very satisfactory calibration instrument. (author) [French] Le but de ce travail est de rechercher les conditions permettant d'obtenir avec le maximum de precision, la mesure de l'activite des radionuclides se desintegrant par emission et par consequent d'etudier les corrections qui s'y rapportent. Nous avons examine successivement les differents problemes se rapportant aux mesures d'activite au compteur 4 {pi}: - Comparaison des compteurs 4 {pi}, GM et proportionnel; - etude de la preparation des sources; - corrections sur la numeration des sources; - auto-absorption; - correction d'absorption. La precision obtenue dans ces mesures, variant de 1,2 a 3 pour cent, on peut donc considerer le compteur 4 {pi} comme un instrument d'etalonnage tres satisfaisant. (auteur)

  18. FACET Emittance Growth

    Energy Technology Data Exchange (ETDEWEB)

    Frederico, J; Hogan, M.J.; Nosochkov, Y.; Litos, M.D.; Raubenheimer, T.; /SLAC

    2011-04-05

    FACET, the Facility for Advanced Accelerator and Experimental Tests, is a new facility being constructed in sector 20 of the SLAC linac primarily to study beam driven plasma wakefield acceleration. The FACET beamline consists of a chicane and final focus system to compress the 23 GeV, 3.2 nC electron bunches to {approx}20 {micro}m long and {approx}10 {micro}m wide. Simulations of the FACET beamline indicate the short-duration and large, 1.5% rms energy spread beams may suffer a factor of four emittance growth from a combination of chromaticity, incoherent synchrotron radiation (ISR), and coherent synchrotron radiation (CSR). Emittance growth is directly correlated to head erosion in plasma wakefield acceleration and is a limiting factor in single stage performance. Studies of the geometric, CSR, and ISR components are presented. Numerical calculation of the rms emittance can be overwhelmed by long tails in the simulated phase space distributions; more useful definitions of emittance are given. A complete simulation of the beamline is presented as well, which agrees with design specifications.

  19. FACET Emittance Growth

    International Nuclear Information System (INIS)

    Frederico, Joel

    2011-01-01

    FACET, the Facility for Advanced Accelerator and Experimental Tests, is a new facility being constructed in sector 20 of the SLAC linac primarily to study beam driven plasma wakefield acceleration. The FACET beamline consists of a chicane and final focus system to compress the 23 GeV, 3.2 nC electron bunches to ∼20 (micro)m long and ∼10 (micro)m wide. Simulations of the FACET beamline indicate the short-duration and large, 1.5% rms energy spread beams may suffer a factor of four emittance growth from a combination of chromaticity, incoherent synchrotron radiation (ISR), and coherent synchrotron radiation (CSR). Emittance growth is directly correlated to head erosion in plasma wakefield acceleration and is a limiting factor in single stage performance. Studies of the geometric, CSR, and ISR components are presented. Numerical calculation of the rms emittance can be overwhelmed by long tails in the simulated phase space distributions; more useful definitions of emittance are given. A complete simulation of the beamline is presented as well, which agrees with design specifications.

  20. Gain stabilization circuit of measuring devices with photomultipliers

    International Nuclear Information System (INIS)

    Seda, J.; Sabol, J.

    1974-01-01

    A circuit is designed for the stabilization of the gain of measuring devices with photomultipliers, suitable especially for the stabilization of scintillation detection systems, in which the correction signal is applied to the photomultiplier grid placed between the photocathode and the first dynode. (J.K.)

  1. PEPR and other CRT scanning and measuring devices

    Energy Technology Data Exchange (ETDEWEB)

    Pless, Irwin A. (Massachusetts Institute of Technology, Cambridge, MA 02139 (United States))

    1994-07-01

    This talk concentrates on the brief history of the PEPR (Precision Encoding and Pattern Recognition) scanning and measuring device.I restrict this reminiscence to just a short history of PEPR, the other various CRT scanners, a short summary of the capabilities of this scanner and some fond memories. ((orig.))

  2. Electron density measurement in an evolving plasma. Experimental devices

    International Nuclear Information System (INIS)

    Consoli, Terenzio; Dagai, Michel

    1960-01-01

    The experimental devices described here allow the electron density measurements in the 10 16 e/m 3 to 10 20 e/m 3 interval. Reprint of a paper published in Comptes rendus des seances de l'Academie des Sciences, t. 250, p. 1223-1225, sitting of 15 February 1960 [fr

  3. PEPR and other CRT scanning and measuring devices

    International Nuclear Information System (INIS)

    Pless, Irwin A.

    1994-01-01

    This talk concentrates on the brief history of the PEPR (Precision Encoding and Pattern Recognition) scanning and measuring device.I restrict this reminiscence to just a short history of PEPR, the other various CRT scanners, a short summary of the capabilities of this scanner and some fond memories. ((orig.))

  4. 21 CFR 886.1450 - Corneal radius measuring device.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Corneal radius measuring device. 886.1450 Section 886.1450 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... corneal size by superimposing the image of the cornea on a scale at the focal length of the lens of a...

  5. From Large-Scale Synthesis to Lighting Device Applications of Ternary I-III-VI Semiconductor Nanocrystals: Inspiring Greener Material Emitters.

    Science.gov (United States)

    Chen, Bingkun; Pradhan, Narayan; Zhong, Haizheng

    2018-01-18

    Quantum dots with fabulous size-dependent and color-tunable emissions remained as one of the most exciting inventories in nanomaterials for the last 3 decades. Even though a large number of such dot nanocrystals were developed, CdSe still remained as unbeatable and highly trusted lighting nanocrystals. Beyond these, the ternary I-III-VI family of nanocrystals emerged as the most widely accepted greener materials with efficient emissions tunable in visible as well as NIR spectral windows. These bring the high possibility of their implementation as lighting materials acceptable to the community and also to the environment. Keeping these in mind, in this Perspective, the latest developments of ternary I-III-VI nanocrystals from their large-scale synthesis to device applications are presented. Incorporating ZnS, tuning the composition, mixing with other nanocrystals, and doping with Mn ions, light-emitting devices of single color as well as for generating white light emissions are also discussed. In addition, the future prospects of these materials in lighting applications are also proposed.

  6. A Practical Device for Measuring the Luminance Distribution

    Directory of Open Access Journals (Sweden)

    Thijs Kruisselbrink

    2017-06-01

    Full Text Available Various applications in building lighting such as automated daylight systems, dynamic lighting control systems, lighting simulations, and glare analyzes can be optimized using information on the actual luminance distributions of the surroundings. Currently, commercially available luminance distribution measurement devices are often not suitable for these kind of applications or simply too expensive for broad application. This paper describes the development of a practical and autonomous luminance distribution measurement device based on a credit card-sized single-board computer and a camera system. The luminance distribution was determined by capturing High Dynamic Range images and translating the RGB information to the CIE XYZ color space. The High Dynamic Range technology was essential to accurately capture the data needed to calculate the luminance distribution because it allows to capture luminance ranges occurring in real scenarios. The measurement results were represented in accordance with established methods in the field of daylighting. Measurements showed that the accuracy of the luminance distribution measurement device ranged from 5% to 20% (worst case which was deemed acceptable for practical measurements and broad applications in the building realm.

  7. Assembly for electrical conductivity measurements in the piston cylinder device

    Science.gov (United States)

    Watson, Heather Christine [Dublin, CA; Roberts, Jeffrey James [Livermore, CA

    2012-06-05

    An assembly apparatus for measurement of electrical conductivity or other properties of a sample in a piston cylinder device wherein pressure and heat are applied to the sample by the piston cylinder device. The assembly apparatus includes a body, a first electrode in the body, the first electrode operatively connected to the sample, a first electrical conductor connected to the first electrode, a washer constructed of a hard conducting material, the washer surrounding the first electrical conductor in the body, a second electrode in the body, the second electrode operatively connected to the sample, and a second electrical conductor connected to the second electrode.

  8. Prediction of the maximum dosage to man from the fallout of nuclear devices V. Estimation of the maximum dose from internal emitters in aquatic food supply

    International Nuclear Information System (INIS)

    Tamplin, A.R.; Fisher, H.L.; Chapman, W.H.

    1968-01-01

    A method is described for estimating the maximum internal dose that could result from the radionuclides released to an aquatic environment. By means of this analysis one can identify the nuclides that could contribute most to the internal dose, and determine the contribution of each nuclide to the total dose. The calculations required to estimate the maximum dose to an infant's bone subsequent to the construction of a sea-level canal are presented to illustrate the overall method. The results are shown to serve the basic aims of preshot rad-safe analysis and of guidance for postshot documentation. The usefulness of the analysis in providing guidance for device design is further pointed out. (author)

  9. A device for automated phase space measurement of ion beams

    International Nuclear Information System (INIS)

    Lukas, J.; Priller, A.; Steier, P.

    2007-01-01

    Equipment for automated phase-space measurements was developed at the VERA Lab. The measurement of the beam's intensity distribution, as well as its relative position with respect to the reference orbit is performed at two locations along the beam line. The device basically consists of moveable slits and a beam profile monitor, which are both coordinated and controlled by an embedded controller. The operating system of the controller is based on Linux with real-time extension. It controls the movement of the slits and records the data synchronized to the movement of the beam profile monitor. The data is sent via TCP/IP to the data acquisition system of VERA where visualization takes place. The duration of one phase space measurement is less than 10 s, which allows for using the device during routine beam tuning

  10. Single-Image Distance Measurement by a Smart Mobile Device.

    Science.gov (United States)

    Chen, Shangwen; Fang, Xianyong; Shen, Jianbing; Wang, Linbo; Shao, Ling

    2017-12-01

    Existing distance measurement methods either require multiple images and special photographing poses or only measure the height with a special view configuration. We propose a novel image-based method that can measure various types of distance from single image captured by a smart mobile device. The embedded accelerometer is used to determine the view orientation of the device. Consequently, pixels can be back-projected to the ground, thanks to the efficient calibration method using two known distances. Then the distance in pixel is transformed to a real distance in centimeter with a linear model parameterized by the magnification ratio. Various types of distance specified in the image can be computed accordingly. Experimental results demonstrate the effectiveness of the proposed method.

  11. Transverse beam emittance optimization for the injection into BESSY II

    Energy Technology Data Exchange (ETDEWEB)

    Kramer, Felix [Helmholtz Zentrum Berlin, Institut Beschleunigerphysik (Germany); Humboldt-Universitaet zu Berlin, Institut fuer Physik (Germany)

    2016-07-01

    For top up injection into the storage ring BESSY II an average injection efficiency of at least 90% is required. In low alpha mode the injection efficiency does not meet the requirements. Future BESSY II features will include shorter bunches in the storage ring (VSR) and user transparent injection with a non linear kicker. These will raise the demands on the quality of the injected beam even further. This work investigates the development of transverse emittance over the acceleration cycle in the synchrotron and the possibility of transverse emittance exchange by a sequence of skew quadrupoles in the transfer line. Results of emittance measurements and emittance exchange simulations will be given.

  12. A TECHNIQUE OF MEASURING OF RESISTANCE OF A GROUNDING DEVICE

    Directory of Open Access Journals (Sweden)

    I.V. Nizhevskyi

    2016-06-01

    Full Text Available Introduction. Measurement of resistance of the grounding device (GD by means of a three-electrode system. This requires not only the right choice of installation locations of measuring electrodes, but also the determination of the point of zero potential. Implementation of these requirements quite time-consuming, and in some cases impossible. Aim. Develop a new technique for measuring the electrical resistance of the GD. Task. The method of measuring the resistance of the GD with the help of a three-electrode setup is necessary to exclude the determination of the point of zero potential. Method. Mathematical modeling and calculation engine. Results. A three-electrode system for measuring the resistance of grounding devices (GD for various purposes is considered. On the basis of Maxwell equations a theoretical substantiation of a new technique for measuring the resistance of any GD of any construction in random soil structure has been proposed. An equation system of the sixth order has been obtained, its solution makes it possible to measure its own mutual resistance in the three-electrode installation with sufficiently high accuracy. Peculiarities of drawing up a calculation scheme of substitution of a three-electrode installation with lumped parameters: self and mutual impedance. Use of the principle of reciprocity eliminates the need of finding a point of zero potential which is a rather difficult task. The technique allows to minimize the spacing of measuring electrodes outside the GD, which substantially reduces the length of wiring of the measurement circuit and increases the «signal-to-interference» ratio and also removes the restrictions on the development of the territory outside the GD being tested. Conclusion. The procedure allows to evaluate the self and mutual impedance grounding all the electrodes in a three-electrode measuring installation of the grounding resistance of the device without finding the point of zero potential.

  13. Improving the accuracy of smart devices to measure noise exposure.

    Science.gov (United States)

    Roberts, Benjamin; Kardous, Chucri; Neitzel, Richard

    2016-11-01

    Occupational noise exposure is one of the most frequent hazards present in the workplace; up to 22 million workers have potentially hazardous noise exposures in the U.S. As a result, noise-induced hearing loss is one of the most common occupational injuries in the U.S. Workers in manufacturing, construction, and the military are at the highest risk for hearing loss. Despite the large number of people exposed to high levels of noise at work, many occupations have not been adequately evaluated for noise exposure. The objective of this experiment was to investigate whether or not iOS smartphones and other smart devices (Apple iPhones and iPods) could be used as reliable instruments to measure noise exposures. For this experiment three different types of microphones were tested with a single model of iPod and three generations of iPhones: the internal microphones on the device, a low-end lapel microphone, and a high-end lapel microphone marketed as being compliant with the International Electrotechnical Commission's (IEC) standard for a Class 2-microphone. All possible combinations of microphones and noise measurement applications were tested in a controlled environment using several different levels of pink noise ranging from 60-100 dBA. Results were compared to simultaneous measurements made using a Type 1 sound level measurement system. Analysis of variance and Tukey's honest significant difference (HSD) test were used to determine if the results differed by microphone or noise measurement application. Levels measured with external microphones combined with certain noise measurement applications did not differ significantly from levels measured with the Type 1 sound measurement system. Results showed that it may be possible to use iOS smartphones and smart devices, with specific combinations of measurement applications and calibrated external microphones, to collect reliable, occupational noise exposure data under certain conditions and within the limitations of the

  14. Real-time precision measuring device of tree diameter growth

    Science.gov (United States)

    Guo, Mingming; Chen, Aijun; Li, Dongsheng; Liu, Nan; Yao, Jingyuan

    2016-01-01

    DBH(diameter at breast height) is an important factor to reflect of the quality of plant growth, also an important parameter indispensable in forest resources inventory and forest carbon sink, the accurate measurement of DBH or not is directly related to the research of forest resources inventory and forest carbon sink. In this paper, the principle and the mathematical model of DBH measurement device were introduced, the fixture measuring device and the hardware circuit for this tree diameter were designed, the measurement software programs were compiled, and the precision measuring device of tree diameter growth was developed. Some experiments with Australia fir were conducted. Based on experiment data, the correlations among the DBH variation of Australian fir, the environment temperature, air humility and PAR(photosynthetically active radiation) were obtained. The effects of environmental parameters (environment temperature, air humility and PAR) on tree diameter were analyzed. Experimental results show that there is a positive correlation between DBH variation of Australian fir and environment temperature, a negative correlation between DBH variation of Australian fir and air humility , so is PAR.

  15. Radiation detection and measurement concepts, methods and devices

    CERN Document Server

    McGregor, Douglas

    2019-01-01

    This text on radiation detection and measurement is a response to numerous requests expressed by students at various universities, in which the most popularly used books do not provide adequate background material, nor explain matters in understandable terms. This work provides a modern overview of radiation detection devices and radiation measurement methods. The topics selected in the book have been selected on the basis of the author’s many years of experience designing radiation detectors and teaching radiation detection and measurement in a classroom environment.

  16. Device for the integral measurement of ionizing radiations

    International Nuclear Information System (INIS)

    Micheron, Francois.

    1980-01-01

    This invention relates to devices for the integral determination of ionizing radiations, particularly to the construction of a portable dosemeter. Portable measuring instruments have been suggested in the past, particularly dosemeters in which the discharge of a capacitor under the action of ionizing radiations is measured. Since the charge of a capacitor is not stable owing to dielectric imperfections, these measuring instruments have to be recalibrated at frequent intervals. To overcome this drawback, the invention suggests using the discharge of an electret, electrically charged to a pre-set initial value, under the action of ionizing radiations, as the transducer means of a dosemeter used in conjunction with display or warning systems [fr

  17. First demonstration of orange-yellow light emitter devices in InGaP/InAlGaP laser structure using strain-induced quantum well intermixing technique

    KAUST Repository

    Majid, Mohammed A.

    2016-03-07

    In this paper, a novel strain-induced quantum well intermixing (QWI) technique is employed on InGaP/InAlGaP material system to promote interdiffusion via application of a thick-dielectric encapsulant layer, in conjunction with cycle annealing at elevated temperature. Broad area devices fabricated from this novel cost-effective QWI technique lased at room-temperature at a wavelength as short as 608nm with a total output power of ~46mW. This is the shortest- wavelength electrically pumped visible semiconductor laser, and the first report of lasing action yet reported from post- growth interdiffused process. Furthermore, we also demonstrate the first yellow superluminescent diode (SLD) at a wavelength of 583nm with a total two-facet output power of ~4.5mW - the highest optical power ever reported at this wavelength in this material system. The demonstration of the yellow SLD without complicated multiquantum barriers to suppress the carrier overflow will have a great impact in realizing the yellow laser diode. © (2016) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.

  18. First demonstration of orange-yellow light emitter devices in InGaP/InAlGaP laser structure using strain-induced quantum well intermixing technique

    KAUST Repository

    Majid, Mohammed Abdul; Al-Jabr, Ahmad; Elafandy, Rami T.; Oubei, Hassan M.; Alias, Mohd Sharizal; Alnahhas, Bayan A.; Anjum, Dalaver H.; Ng, Tien Khee; Shehata, Mohamed; Ooi, Boon S.

    2016-01-01

    In this paper, a novel strain-induced quantum well intermixing (QWI) technique is employed on InGaP/InAlGaP material system to promote interdiffusion via application of a thick-dielectric encapsulant layer, in conjunction with cycle annealing at elevated temperature. Broad area devices fabricated from this novel cost-effective QWI technique lased at room-temperature at a wavelength as short as 608nm with a total output power of ~46mW. This is the shortest- wavelength electrically pumped visible semiconductor laser, and the first report of lasing action yet reported from post- growth interdiffused process. Furthermore, we also demonstrate the first yellow superluminescent diode (SLD) at a wavelength of 583nm with a total two-facet output power of ~4.5mW - the highest optical power ever reported at this wavelength in this material system. The demonstration of the yellow SLD without complicated multiquantum barriers to suppress the carrier overflow will have a great impact in realizing the yellow laser diode. © (2016) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.

  19. Low-emittance Storage Rings

    CERN Document Server

    Wolski, Andrzej

    2014-01-01

    The effects of synchrotron radiation on particle motion in storage rings are discussed. In the absence of radiation, particle motion is symplectic, and the beam emittances are conserved. The inclusion of radiation effects in a classical approximation leads to emittance damping: expressions for the damping times are derived. Then, it is shown that quantum radiation effects lead to excitation of the beam emittances. General expressions for the equilibrium longitudinal and horizontal (natural) emittances are derived. The impact of lattice design on the natural emittance is discussed, with particular attention to the special cases of FODO-, achromat- and theoretical-minimum-emittance-style lattices. Finally, the effects of betatron coupling and vertical dispersion (generated by magnet alignment and lattice tuning errors) on the vertical emittance are considered.

  20. Spherical proton emitters

    International Nuclear Information System (INIS)

    Berg, S.; Semmes, P.B.; Nazarewicz, W.

    1997-01-01

    Various theoretical approaches to proton emission from spherical nuclei are investigated, and it is found that all the methods employed give very similar results. The calculated decay widths are found to be qualitatively insensitive to the parameters of the proton-nucleus potential, i.e., changing the potential parameters over a fairly large range typically changes the decay width by no more than a factor of ∼3. Proton half-lives of observed heavy proton emitters are, in general, well reproduced by spherical calculations with the spectroscopic factors calculated in the independent quasiparticle approximation. The quantitative agreement with experimental data obtained in our study requires that the parameters of the proton-nucleus potential be chosen carefully. It also suggests that deformed proton emitters will provide invaluable spectroscopic information on the angular momentum decomposition of single-proton orbitals in deformed nuclei. copyright 1997 The American Physical Society

  1. A new method to compare vehicle emissions measured by remote sensing and laboratory testing: high-emitters and potential implications for emission inventories.

    Science.gov (United States)

    Smit, Robin; Bluett, Jeff

    2011-06-01

    A new method is presented which is designed to investigate whether laboratory test data used in the development of vehicle emission models adequately reflects emission distributions, and in particular the influence of high-emitting vehicles. The method includes the computation of a 'high-emitter' or 'emission distribution' correction factor for use in emission inventories. In order to make a valid comparison we control for a number of factors such as vehicle technology, measurement technique and driving conditions and use a variable called 'Pollution Index' (g/kg). Our investigation into one vehicle class has shown that laboratory and remote sensing data are substantially different for CO, HC and NO(x) emissions, both in terms of their distributions as well as in their mean and 99-percentile values. Given that the remote sensing data has larger mean values for these pollutants, the analysis suggests that high-emitting vehicles may not be adequately captured in the laboratory test data. The paper presents two different methods for the computation of weighted correction factors for use in emission inventories based on laboratory test data: one using mean values for six 'power bins' and one using multivariate regression functions. The computed correction factors are substantial leading to an increase for laboratory-based emission factors with a factor of 1.7-1.9 for CO, 1.3-1.6 for HC and 1.4-1.7 for NO(x) (actual value depending on the method). However, it also clear that there are points that require further examination before these correction factors should be applied. One important step will be to include a comparison with other types of validation studies such as tunnel studies and near-road air quality assessments to examine if these correction factors are confirmed. If so, we would recommend using the correction factors in emission inventories for motor vehicles. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. Dosimetry of internal emitters

    International Nuclear Information System (INIS)

    Anon.

    1982-01-01

    The Dosimetry of Internal Emitter Program endeavors to refine the correlation between radiation dose and observed biological effects. The program is presently engaged in the development of studies that will demonstrate the applicability of microdosimetry models developed under the Microdosimetry of Internal Sources Program. The program also provides guidance and assistance to Pacific Northwest Laboratory's Biology Department in the dosimetric analysis of internally deposited radionuclides. This report deals with alpha particle dosimetry plutonium 239 inhalation, and in vitro studies of chromosomal observations

  3. Head-Impact–Measurement Devices: A Systematic Review

    Science.gov (United States)

    O'Connor, Kathryn L.; Rowson, Steven; Duma, Stefan M.; Broglio, Steven P.

    2017-01-01

    Context: With an estimated 3.8 million sport- and recreation-related concussions occurring annually, targeted prevention and diagnostic methods are needed. Biomechanical analysis of head impacts may provide quantitative information that can inform both prevention and diagnostic strategies. Objective: To assess available head-impact devices and their clinical utility. Data Sources: We performed a systematic search of the electronic database PubMed for peer-reviewed publications, using the following phrases: accelerometer and concussion, head impact telemetry, head impacts and concussion and sensor, head impacts and sensor, impact sensor and concussion, linear acceleration and concussion, rotational acceleration and concussion, and xpatch concussion. In addition to the literature review, a Google search for head impact monitor and concussion monitor yielded 15 more devices. Study Selection: Included studies were performed in vivo, used commercially available devices, and focused on sport-related concussion. Data Extraction: One author reviewed the title and abstract of each study for inclusion and exclusion criteria and then reviewed each full-text article to confirm inclusion criteria. Controversial articles were reviewed by all authors to reach consensus. Data Synthesis: In total, 61 peer-reviewed articles involving 4 head-impact devices were included. Participants in boxing, football, ice hockey, soccer, or snow sports ranged in age from 6 to 24 years; 18% (n = 11) of the studies included female athletes. The Head Impact Telemetry System was the most widely used device (n = 53). Fourteen additional commercially available devices were presented. Conclusions: Measurements collected by impact monitors provided real-time data to estimate player exposure but did not have the requisite sensitivity to concussion. Proper interpretation of previously reported head-impact kinematics across age, sport, and position may inform future research and enable staff clinicians

  4. The insertion device magnetic measurement facility: Prototype and operational procedures

    International Nuclear Information System (INIS)

    Burkel, L.; Dejus, R.; Maines, J.; O'Brien, J.; Vasserman, I.; Pfleuger, J.

    1993-03-01

    This report is a description of the current status of the magnetic measurement facility and is a basic instructional manual for the operation of the facility and its components. Please refer to the appendices for more detailed information about specific components and procedures. The purpose of the magnetic measurement facility is to take accurate measurements of the magnetic field in the gay of the IDs in order to determine the effect of the ID on the stored particle beam and the emitted radiation. The facility will also play an important role when evaluating new ideas, novel devices, and inhouse prototypes as part of the ongoing research and development program at the APS. The measurements will be performed with both moving search coils and moving Hall probes. The IDs will be evaluated by computer modeling of the emitted radiation for any given (measured) magnetic field map. The quality of the magnetic field will be described in terms of integrated multipoles for the effect on Storage Ring performance and in terms of the derived trajectories for the emitted radiation. Before being installed on the Storage Ring, every device will be measured and characterized to assure that it is compatible with Storage Ring requirements and radiation specifications. The accuracy that the APS needs to achieve for magnetic measurements will be based on these specifications

  5. Surface photovoltage measurements and finite element modeling of SAW devices.

    Energy Technology Data Exchange (ETDEWEB)

    Donnelly, Christine

    2012-03-01

    Over the course of a Summer 2011 internship with the MEMS department of Sandia National Laboratories, work was completed on two major projects. The first and main project of the summer involved taking surface photovoltage measurements for silicon samples, and using these measurements to determine surface recombination velocities and minority carrier diffusion lengths of the materials. The SPV method was used to fill gaps in the knowledge of material parameters that had not been determined successfully by other characterization methods. The second project involved creating a 2D finite element model of a surface acoustic wave device. A basic form of the model with the expected impedance response curve was completed, and the model is ready to be further developed for analysis of MEMS photonic resonator devices.

  6. A handheld optical device for skin profile measurement

    Science.gov (United States)

    Sun, Jiuai; Liu, Xiaojin

    2018-04-01

    This paper describes a portable optical scanning device designed for skin surface measurement on both colour and 3D geometry through a relative easy and cost effective multiple light source photometric stereo method. The validation of colour recovered had been verified through its application on skin lesion segmentation in our early work. This paper focuses on the reconstructed topographic data which are subject to further evaluation and advancement. The evaluation work takes the skin in vitro as an application scenario and compares the experimental result to that obtained by using a commercial product. The experiments show that this handheld device can measure the skin profile significantly closer to that of the ground truth and have the additional function of skin colour recovery.

  7. Spectrally-engineered solar thermal photovoltaic devices

    Science.gov (United States)

    Lenert, Andrej; Bierman, David; Chan, Walker; Celanovic, Ivan; Soljacic, Marin; Wang, Evelyn N.; Nam, Young Suk; McEnaney, Kenneth; Kraemer, Daniel; Chen, Gang

    2018-03-27

    A solar thermal photovoltaic device, and method of forming same, includes a solar absorber and a spectrally selective emitter formed on either side of a thermally conductive substrate. The solar absorber is configured to absorb incident solar radiation. The solar absorber and the spectrally selective emitter are configured with an optimized emitter-to-absorber area ratio. The solar thermal photovoltaic device also includes a photovoltaic cell in thermal communication with the spectrally selective emitter. The spectrally selective emitter is configured to permit high emittance for energies above a bandgap of the photovoltaic cell and configured to permit low emittance for energies below the bandgap.

  8. Development of signal acquisition device of rotating coil measurement system

    International Nuclear Information System (INIS)

    Zhou Jianxin; Li Li; Kang Wen; Deng Chengdong; Yin Baogui; Fu Shinian

    2013-01-01

    A new rotating coil magnetic measurement system using the technical solution of the combination of a dynamic signal acquisition card and software with specific functions was developed. The acquisition device of the system successfully implemented the function of the PDI-5025 integrator. The sampling rate, the range, the accuracy and the flexibility of the system were improved. The development program of signal acquisition equipment, the realization of the acquisition function and the reliability and stability of the system were introduced. (authors)

  9. Design of Gear Churning Power Loss Measurement Device

    OpenAIRE

    Wang Bin; Zhou Ya Jie; Wang Ping

    2017-01-01

    To explore the impacts of gear churning power losses, a research was conducted to achieve the internal causes of power losses of churning gear by designing a gear churning power losses measurement device. The gear churning power losses could be influenced by different gear modules, the number of teeth and the axial position of gear. Finally, the impacts of gear churning power losses were discussed by comparing experimental data and theoretical data.

  10. Opto-mechanical design of small infrared cloud measuring device

    Science.gov (United States)

    Zhang, Jiao; Yu, Xun; Tao, Yu; Jiang, Xu

    2018-01-01

    In order to make small infrared cloud measuring device can be well in a wide temperature range and day-night environment, a design idea using catadioptric infrared panoramic imaging optical system and simple mechanical structure for realizing observation clode under all-weather conditions was proposed. Firstly, the optical system of cloud measuring device was designed. An easy-to-use numerical method was proposed to acquire the profile of a catadioptric mirror, which brought the property of equidistance projection and played the most important role in a catadioptric panoramic lens. Secondly, the mechanical structure was studied in detail. Overcoming the limitations of traditional primary mirror support structure, integrative design was used for refractor and mirror support structure. Lastly, temperature adaptability and modes of the mirror support structure were analyzed. Results show that the observation range of the cloud measuring device is wide and the structure is simple, the fundamental frequency of the structure is greater than 100 Hz, the surface precision of the system reflector reaches PV of λ/10 and RMS of λ/40under the load of temperature range - 40 60°C, it can meet the needs of existing meteorological observation.

  11. Calculating emittance for Gaussian and Non-Gaussian distributions by the method of correlations for slits

    International Nuclear Information System (INIS)

    Tan, Cheng-Yang; Fermilab

    2006-01-01

    One common way for measuring the emittance of an electron beam is with the slits method. The usual approach for analyzing the data is to calculate an emittance that is a subset of the parent emittance. This paper shows an alternative way by using the method of correlations which ties the parameters derived from the beamlets to the actual parameters of the parent emittance. For parent distributions that are Gaussian, this method yields exact results. For non-Gaussian beam distributions, this method yields an effective emittance that can serve as a yardstick for emittance comparisons

  12. Speckle interferometry application for erosion measurements in fusion devices

    Energy Technology Data Exchange (ETDEWEB)

    Gauthier, E.; Roupillard, R. [Association Euratom-CEA Cadarache, 13 - Saint-Paul-lez-Durance (France). Dept. de Recherches sur la Fusion Controlee

    2003-07-01

    In order to measure erosion/redeposition in fusion devices, a new diagnostic based on speckle interferometry is investigated. First experiments performed on carbon fibre composite (CFC) materials have shown that this technique is able to measure a modification of the surface in the range of 1 {mu}m. Further experiments have been performed on different materials using a second wavelength in order to carry out 3-dimensional measurements of the surface and to increase the dynamic range of the depth measurement. A diagnostic, based on two-wavelength TV-holography to measure in situ erosion/redeposition during long duration discharges on the CIEL limiter in Tore Supra, is under development at CEA Cadarache. (authors)

  13. Using Smart Devices to Measure Intermittent Noise in the Workplace

    Directory of Open Access Journals (Sweden)

    Benjamin Roberts

    2017-01-01

    Full Text Available Purpose: To determine the accuracy of smart devices (iPods to measure intermittent noise and integrate a noise dose in the workplace. Materials and Methods: In experiment 1, four iPods were each paired with a Larson Davis Spark dosimeter and exposed to randomly fluctuating pink noise in a reverberant sound chamber. Descriptive statistics and the mean difference between the iPod and its paired dosimeter were calculated for the 1-s data logged measurements. The calculated time weighted average (TWA was also compared between the devices. In experiment 2, 15 maintenance workers and 14 office workers wore an iPod and dosimeter during their work-shift for a maximum of five workdays. A mixed effects linear regression model was used to control for repeated measures and to determine the effect of the device type on the projected 8-h TWA. Results: In experiment 1, a total of 315,306 1-s data logged measurements were made. The interquartile range of the mean difference fell within ±2.0 A-weighted decibels (dBA, which is the standard used by the American National Standards Institute to classify a type 2 sound level meter. The mean difference of the calculated TWA was within ±0.5 dBA except for one outlier. In experiment 2, the results of the mixed effects model found that, on average, iPods measured an 8-h TWA 1.7 dBA higher than their paired dosimeters. Conclusion: This study shows that iPods have the ability to make reasonably accurate noise measurements in the workplace, but they are not as accurate as traditional noise dosimeters.

  14. Improved sample utilization in thermal ionization mass spectrometry isotope ratio measurements: refined development of porous ion emitters for nuclear forensic applications

    Energy Technology Data Exchange (ETDEWEB)

    Baruzzini, Matthew Louis [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-05-08

    The precise and accurate determination of isotopic composition in nuclear forensic samples is vital for assessing origin, intended use and process history. Thermal ionization mass spectrometry (TIMS) is widely accepted as the gold standard for high performance isotopic measurements and has long served as the workhorse in the isotopic ratio determination of nuclear materials. Nuclear forensic and safeguard specialists have relied heavily on such methods for both routine and atypical e orts. Despite widespread use, TIMS methods for the assay of actinide systems continue to be hindered by poor ionization e ciency, often less than tenths of a percent; the majority of a sample is not measured. This represents a growing challenge in addressing nextgeneration nuclear detection needs by limiting the ability to analyze ultratrace quantities of high priority elements that could potentially provide critical nuclear forensic signatures. Porous ion emitter (PIE) thermal ion sources were developed in response to the growing need for new TIMS ion source strategies for improved ionization e ciency, PIEs have proven to be simple to implement, straightforward approach to boosting ion yield. This work serves to expand the use of PIE techniques for the analysis of trace quantities of plutonium and americium. PIEs exhibited superior plutonium and americium ion yields when compared to direct lament loading and the resin bead technique, one of the most e cient methods for actinide analysis, at similar mass loading levels. Initial attempts at altering PIE composition for the analysis of plutonium proved to enhance sample utilization even further. Preliminary investigations of the instrumental fractionation behavior of plutonium and uranium analyzed via PIE methods were conducted. Data collected during these initial trial indicate that PIEs fractionate in a consistent, reproducible manner; a necessity for high precision isotope ratio measurements. Ultimately, PIEs methods were applied for

  15. Nuclear reactor fuel assembly grid measuring method and device

    International Nuclear Information System (INIS)

    Fink, D.J.; Cooper, F.W. Jr.

    1987-01-01

    A device is described for remotely measuring a dimension of a workpiece, comprising: (a) first means for measuring the dimension of the workpiece; (b) second means for limiting the force exerted by the first means against the workpiece; (c) third means connected to the first means for moving the first means in the X, Y, Z axes simultaneously relative to the workpiece; (d) fourth means for limiting the force exerted by the third means moving the first means in the X, Y, Z axes; and (e) fifth means remote from the workpiece for monitoring and controlling the movement of the first means relative to the workpiece

  16. Electrical measuring device for a high temperature reactor

    International Nuclear Information System (INIS)

    Elter, C.; Handel, H.; Schoening, J.; Schmitt, H.

    1982-01-01

    The device for measuring the low or high neutron flux during start-up or at load is accommodated in an armoured guide tube projecting into the floor. A gas-tight capsule is formed as the measuring column with outer dome with a lid solidly connected by a flange to the armoured tube situated on the side wall of the concrete reactor vessel, together with the armoured guide tube. Two shielding shutters prevent the passage of radiation through the armoured tube. (DG) [de

  17. DATA PROCESSING FROM THE MEASURING DEVICE BALLBAR QC20

    Directory of Open Access Journals (Sweden)

    Matúš Košinár

    2014-03-01

    Full Text Available The paper presents an innovative method of data processing from the measurement device – Ballbar QC20W. It was created with a program for data transformation (Visual Basic.NET and it used Fourier transformation. The paper deals with the measuring method of CNC machine tools using Ballbar QC20W. There is an influence between qualitative parameters of machine tools and qualitative parameters of products (tolerances, roughness, etc.. It is very important to hold the stability of qualitative parameters of products as a key factor of production quality. Therefore, is also important to evaluate the accuracy of machine tools and make prediction of possible accuracy.

  18. Establishment and application of standard devices for radioactivity measurement

    International Nuclear Information System (INIS)

    Zhou Changgui; Li Xingyuan; Chen Zigen

    1991-03-01

    In order to establish the radioactivity measurement standards a 4πβ-γ coincidence apparatus and a 4πγ ionization chamber have been installed in the laboratory. The 4πβ-γ coincidence apparatus is for absolute measurement, and its uncertainty is ±(0.3∼5)%. The 4πγ ionization chamber is for working standard, and its uncertainty is ±(1∼5)%. The combination of these devices can meet the quality requirements controlled by National Verification System in the transfer of radioactivity values

  19. Studies of emittance growth in the ATF

    International Nuclear Information System (INIS)

    Zimmermann, F.

    1997-03-01

    Several different mechanisms of emittance growth in the Accelerator Test Facility (ATF) at KEK are investigated: the author calculates rise times of the fast beam-ion instability for the damping ring (DR), and discusses the emittance growth caused by coherent synchrotron radiation in the beam-transport line (BT), the effect of quadrupole wake fields in the injector linac, and, finally, a single-bunch head-tail ion effect that can occur in both the DR and the BT. A first attempt to measure the quadrupole wake on the real machine is also reported

  20. SU-G-201-12: Investigation of Beta-Emitter 90Sr-90Y Dose Distribution Using Gafchromic EBT3 Film for Application On Conformal Skin Brachytherapy Device

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, C; Johnson, D; Ahmad, S [University of Oklahoma Health Sciences Center, Oklahoma City, OK (United States); Rasmussen, K [University of Texas HSC SA, San Antonio, TX (United States); Jung, J [East Carolina University Greenville, NC (United States)

    2016-06-15

    Purpose: To investigate {sup 90}Sr-{sup 90}Y as a high dose rate (HDR) source for application in a conformal skin brachytherapy (CSBT) device. The CSBT device has been previously developed to provide patient specific treatment for small inoperable lesions and irregular surfaces. Methods: A popular beta emitter, {sup 90}Sr-{sup 90}Y was tested for feasibility in a CSBT device. A 1 cm diameter plaque was used to deliver dose to a solid water phantom containing EBT3 Gafchromic films arranged at the surface and perpendicular to it. Additionally, a 1 cm diameter 6 MeV electron beam was used to irradiate EBT3 film at 100 cm SSD with a 0.5 cm bolus. Films were digitized with an Epson Expression 10000 XL scanner and calibrated with a 6 MeV electron specific dose curve. Normalized percent depth doses (PDD) and dose profiles for both techniques were analyzed using ImageJ. Results: Dose distributions achieved with the {sup 90}Sr-{sup 90}Y sources were compared with those of external electron beam radiation therapy (EBRT). Penumbra (20%- 80%) for EBRT and 90Sr-90Y were 4.3 mm and 1.6 mm, respectively. PDD values of 50% (normalized to 2 mm) were 10.1 mm and 2.8 mm for electron and {sup 90}Sr-{sup 90}Y, respectively. Flatness (80% of the central beam profile) was 14.1% at a 5 mm depth for EBRT and 4.0% at surface for the {sup 90}Sr-{sup 90}Y. Conclusion: As expected, the PDDs of {sup 90}Sr-{sup 90}Y in water are shallower than that of external electron beams for the same field size. {sup 90}Sr-{sup 90}Y can be used in CSBT to provide patient specific treatment where shallower depth doses than that provided by electron external beams may be required: e.g. eyelids, nose, lips, ears, etc. The customizability of EBRT could be replicated by using multiple adjacent {sup 90}Sr-{sup 90}Y plaque placements.

  1. Device for measurement of gas mass flow. Einrichtung zur Gasmassenstrommessung

    Energy Technology Data Exchange (ETDEWEB)

    Sass, W

    1989-09-28

    The invention is concerned with a device for the measurement of gas mass flow, particularly measuring air mass flow for vehicles with internal combustion engines, with a measurement bridge, in one branch of which a gas flow resistance, particularly a hot film sensor, with gas flowing round it, is connected in series with a measurement resistance and in another branch of which a compensation resistance measuring the gas temperature is connected in series with a fixed resistor, where the bridge differential voltage is measured in the zero branch of the measuring bridge and a control parameter is produced from this, in order to control a transistor valve situated in the bridge supply path of a DC voltage source via its control electrode until the bridge is balanced, and where the voltage at the measurement resistance after the bridge is balanced is used as a measure of the gas mass flow. In order to obtain exact results of measurement in spite of relatively high interference noise from the cables, it is proposed that an increased supply DC voltage appreciably decreasing the occurring interference noise from the cables should be produced from a small DC voltage and that the output of the DC/DC voltage converter should be connected to the control electrode of the transistor valve, so that the control parameter for the control electrode is derived from the raised DC supply voltage through reducers depending on the gas flow.

  2. Measurement-device-independent quantum communication with an untrusted source

    Science.gov (United States)

    Xu, Feihu

    2015-07-01

    Measurement-device-independent quantum key distribution (MDI-QKD) can provide enhanced security compared to traditional QKD, and it constitutes an important framework for a quantum network with an untrusted network server. Still, a key assumption in MDI-QKD is that the sources are trusted. We propose here a MDI quantum network with a single untrusted source. We have derived a complete proof of the unconditional security of MDI-QKD with an untrusted source. Using simulations, we have considered various real-life imperfections in its implementation, and the simulation results show that MDI-QKD with an untrusted source provides a key generation rate that is close to the rate of initial MDI-QKD in the asymptotic setting. Our work proves the feasibility of the realization of a quantum network. The network users need only low-cost modulation devices, and they can share both an expensive detector and a complicated laser provided by an untrusted network server.

  3. Monolithic multinozzle emitters for nanoelectrospray mass spectrometry

    Science.gov (United States)

    Wang, Daojing [Daly City, CA; Yang, Peidong [Kensington, CA; Kim, Woong [Seoul, KR; Fan, Rong [Pasadena, CA

    2011-09-20

    Novel and significantly simplified procedures for fabrication of fully integrated nanoelectrospray emitters have been described. For nanofabricated monolithic multinozzle emitters (NM.sup.2 emitters), a bottom up approach using silicon nanowires on a silicon sliver is used. For microfabricated monolithic multinozzle emitters (M.sup.3 emitters), a top down approach using MEMS techniques on silicon wafers is used. The emitters have performance comparable to that of commercially-available silica capillary emitters for nanoelectrospray mass spectrometry.

  4. Control device intended for a gamma radiation measuring instrument

    International Nuclear Information System (INIS)

    1976-01-01

    This invention concerns a monitoring device for a gamma radiation measuring instrument or radiation meter, in which the radiation to be measured brings about, inter alia, the ionisation of a gas and the generation of current pulses. The dial of this meter is generally calibrated in roentgens per hour, i.e. in radiation rate units. This instrument of very simple design is remarkable for its operating reliability. Preferably placed at the inlet to a radioactive area, it enables every user of a ratemeter to check, over the entire measuring range of this instrument, its proper operation prior to entering the area. To this effect, the monitoring device in question has a thick wall lead castle, having an internal cavity in which is mounted a radioactive source delivering a gamma radiation with given constant characteristics, through a measurement window closed by a calibrated plug. Lead doors articulated on the castle can be superimposed on this window to bring about a given attenuation of the radiation coming from the source and delivered to the exterior of the castle [fr

  5. An unheated permeation device for calibrating atmospheric VOC measurements

    Directory of Open Access Journals (Sweden)

    J. Brito

    2011-10-01

    Full Text Available The development of an unpowered permeation device for continuous calibration of in-situ instruments measuring atmospheric volatile organic compounds (VOCs is described. Being lightweight and compact, and containing only negligible amounts of chemicals, the device is especially suited for field use such as on board aircraft. Its speciality is to maintain the permeation process in thermal equilibrium, so that the instantaneous permeation rate can be ascribed to a simple temperature measurement. This equilibrium state is maintained by a combination of three features: (i a thin PTFE membrane as permeation medium which guarantees short stabilization times, (ii a water bath as heat buffer, and (iii a vacuum-panel based insulation, in which features (ii and (iii minimize temperature drifts to ~30 mK h−1 per Kelvin temperature difference to the environment. The respective uncertainty of the permeation rate due to thermal non-equilibrium is kept below 1%. An extensive theory part details the major permeation processes of gases through porous polymers, being Fick's diffusion, Knudsen flow, and viscous flow. Both the measured stabilization time and the measured temperature dependence of the permeation rate independently indicate that the permeation can be described by a viscous flow model, where diffusion of the gas molecules in large pores (having a diameter of >0.05 μm dominates.

  6. Evaluations of carbon nanotube field emitters for electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Nakahara, Hitoshi, E-mail: nakahara@nagoya-u.jp [Department of Quantum Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); Kusano, Yoshikazu; Kono, Takumi; Saito, Yahachi [Department of Quantum Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan)

    2009-11-30

    Brightness of carbon nanotube (CNT) emitters was already reported elsewhere. However, brightness of electron emitter is affected by a virtual source size of the emitter, which strongly depends on electron optical configuration around the emitter. In this work, I-V characteristics and brightness of a CNT emitter are measured under a practical field emission electron gun (e-gun) configuration to investigate availability of CNT for electron microscopy. As a result, it is obtained that an emission area of MWNT is smaller than its tip surface area, and the emission area corresponds to a five-membered-ring with 2nd nearest six-membered-rings on the MWNT cap surface. Reduced brightness of MWNT is measured as at least 2.6x10{sup 9} A/m{sup 2} sr V. It is concluded that even a thick MWNT has enough brightness under a practical e-gun electrode configuration and suitable for electron microscopy.

  7. Evaluations of carbon nanotube field emitters for electron microscopy

    Science.gov (United States)

    Nakahara, Hitoshi; Kusano, Yoshikazu; Kono, Takumi; Saito, Yahachi

    2009-11-01

    Brightness of carbon nanotube (CNT) emitters was already reported elsewhere. However, brightness of electron emitter is affected by a virtual source size of the emitter, which strongly depends on electron optical configuration around the emitter. In this work, I- V characteristics and brightness of a CNT emitter are measured under a practical field emission electron gun (e-gun) configuration to investigate availability of CNT for electron microscopy. As a result, it is obtained that an emission area of MWNT is smaller than its tip surface area, and the emission area corresponds to a five-membered-ring with 2nd nearest six-membered-rings on the MWNT cap surface. Reduced brightness of MWNT is measured as at least 2.6×109 A/m 2 sr V. It is concluded that even a thick MWNT has enough brightness under a practical e-gun electrode configuration and suitable for electron microscopy.

  8. Low emittance electron storage rings

    Science.gov (United States)

    Levichev, E. B.

    2018-01-01

    Low-emittance electron (positron) beams are essential for synchrotron light sources, linear collider damping rings, and circular Crab Waist colliders. In this review, the principles and methods of emittance minimization are discussed, prospects for developing relativistic electron storage rings with small beam phase volume are assessed, and problems related to emittance minimization are examined together with their possible solutions. The special features and engineering implementation aspects of various facilities are briefly reviewed.

  9. Movement of Irrigation Water in Soil from a Surface Emitter

    Directory of Open Access Journals (Sweden)

    Ibrahim Abbas Dawood

    2016-09-01

    Full Text Available rickle irrigation is one of the most conservative irrigation techniques since it implies supplying water directly on the soil through emitters. Emitters dissipate energy of water at the end of the trickle irrigation system and provide water at emission points. The area wetted by an emitter depends upon the discharge of emitter, soil texture, initial soil water content, and soil permeability. The objectives of this research were to predict water distribution profiles through different soils for different conditions and quantify the distribution profiles in terms of main characteristics of soil and emitter. The wetting patterns were simulated at the end of each hour for a total time of application of 12 hrs, emitter discharges of 0.5, 0.75, 1, 2, 3, 4, and 5 lph, and five initial volumetric soil water contents. Simulation of water flow from a single surface emitter was carried out by using the numerically-based software Hydrus-2D/3D, Version 2.04. Two approaches were used in developing formulas to predict the domains of the wetted pattern. In order to verify the results obtained by implementing the software Hydrus-2D/3D a field experiment was conducted to measure the wetted diameter and compare measured values with simulated ones. The results of the research showed that the developed formulas to express the wetted diameter and depth in terms of emitter discharge, time of application, and initial soil water content are very general and can be used with very good accuracy.

  10. Device for measuring active, reactive and apparent power

    Energy Technology Data Exchange (ETDEWEB)

    Bartosinski, E.; Wieland, J.

    1982-09-30

    The plan consists of a traditional electrodynamic mechanism for measuring power (IM) supplemented by three switches, two rectifiers, resistor, included in parallel, and phaseshifting throttle included in series with the voltage coil of the IM. This makes it possible by selection to perform three types of measurements: active power of alternating current or power of direct current, only the voltage coils and the IM current are engaged; reactive power, the resistor and the throttle are additionally engaged by the aforementioned method; complete (apparent) power--the current and the voltage are supplied directly to the IM coils, but in contrast to the first case, through rectifiers. The influence of the highest harmonic components of voltage and current which are not significant for industrial measurements can be eliminated in necessary cases using filtering devices.

  11. Mechanical Design of the Intensity Measurement Devices for the LHC

    CERN Document Server

    Belorhad, D; Odier, P; Thoulet, S

    2008-01-01

    The intensity measurement for the LHC ring is provided by eight current transformers (2×DCCT, 2×FBCT per beam). The measurement resolution of 1?Arms at 1s average for the DCCTs and ±10^9p in 25ns for the FBCTs is required. Such constraints call for low noise electronics and a compact magnetically shielded mechanical design. Correct integration of these devices into the vacuum system also requires the vacuum chambers equipped with the non-evaporable getter (NEG) film. The NEG is activated by heating the vacuum chamber to 200?C and more. Such temperatures affect the structure of the magnetic materials, which form the base part of the intensity measurement devices, and degrade their performace. A cooling circuit is needed. Due to the mechanical constraints, the cooling circuit, as well as heating element must form an integral part of the design. The aim of this paper is to present the solutions to these problems and discuss the mechanical construction of the DCCTs and FBCTs currently being installed in the LH...

  12. The transient electric field measurement system for EAST device

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Y., E-mail: wayong@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui (China); Ji, Z.S. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui (China); Zhu, C.M. [The Experiment & Verification Center of State Grid Electric Power Research Institute (The Automation Equipment EMC Lab. of State Grid Co.), Nanjing, Jiangsu (China); Zhang, Z.C.; Ma, T.F.; Xu, Z.H. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui (China)

    2016-11-15

    The electromagnetic environment around the Experimental Advanced Superconducting Tokamak (EAST) device is very complex during plasma discharge experiment. In order to fully monitor the changes of electric field around the EAST device during plasma discharge, a transient electric field measurement system based on PCI eXtensions for Instrumentation (PXI) platform has been designed. A digitizer is used for high-speed data acquisition of raw signals from electric field sensors, and a Field Programmable Gate Array (FPGA) module is used for realizing an on-the-fly fast Fourier transform (FFT) and inverse fast Fourier transform (IFFT) algorithm including a beforehand identified antenna factor (AF) to achieve finally a calibrated and filtered electric field measurement, then these signals can be displayed and easily analyzed. The raw signals from electric field sensors are transferred through optical fiber by optical isolation to reduce electromagnetic interference (EMI). The high speed data streaming technology is used for data storage. A prototype of this system has been realized to measure the transient electric field strength, with the real-time processing and continuous acquisition ability of one channel of 14-bit resolution and up to 50 MHz sampling rate, and 6 KHz FFT frequency resolution.

  13. ROLE OF DIAMOND SECONDARY EMITTERS IN HIGH BRIGHTNESS ELECTRON SOURCES

    International Nuclear Information System (INIS)

    2005-01-01

    In this paper we explore the possibility of using diamond secondary emitter in a high average current electron injector to amplify the current from the photocathode and to isolate the cathode and the injector from each other to increase the life time of the cathode and preserve the performance of the injector. Secondary electron yield of 225 and current density of 0.8 a/cm 2 have been measured in the transmission mode from type 2 a natural diamond. Although the diamond will be heated during normal operation in the injector, calculations indicate that by cryogenically cooling the diamond, the temperature gradient along the diamond can be maintained within the acceptable range. The electron energy and temporal distributions are expected to be narrow from this device resulting in high brightness beams. Plans are underway to measure the SEY in emission mode, fabricate photocathode-diamond capsule and test diamond and capsule in superconducting RF injector

  14. Microfluidic device for cell capture and impedance measurement.

    Science.gov (United States)

    Jang, Ling-Sheng; Wang, Min-How

    2007-10-01

    This work presents a microfluidic device to capture physically single cells within microstructures inside a channel and to measure the impedance of a single HeLa cell (human cervical epithelioid carcinoma) using impedance spectroscopy. The device includes a glass substrate with electrodes and a PDMS channel with micro pillars. The commercial software CFD-ACE+ is used to study the flow of the microstructures in the channel. According to simulation results, the probability of cell capture by three micro pillars is about 10%. An equivalent circuit model of the device is established and fits closely to the experimental results. The circuit can be modeled electrically as cell impedance in parallel with dielectric capacitance and in series with a pair of electrode resistors. The system is operated at low frequency between 1 and 100 kHz. In this study, experiments show that the HeLa cell is successfully captured by the micro pillars and its impedance is measured by impedance spectroscopy. The magnitude of the HeLa cell impedance declines at all operation voltages with frequency because the HeLa cell is capacitive. Additionally, increasing the operation voltage reduces the magnitude of the HeLa cell because a strong electric field may promote the exchange of ions between the cytoplasm and the isotonic solution. Below an operating voltage of 0.9 V, the system impedance response is characteristic of a parallel circuit at under 30 kHz and of a series circuit at between 30 and 100 kHz. The phase of the HeLa cell impedance is characteristic of a series circuit when the operation voltage exceeds 0.8 V because the cell impedance becomes significant.

  15. Device for measuring hole elongation in a bolted joint

    Science.gov (United States)

    Wichorek, Gregory R. (Inventor)

    1987-01-01

    A device to determine the operable failure mode of mechanically fastened lightweight composite joints by measuring the hole elongation of a bolted joint is disclosed. The double-lap joint test apparatus comprises a stud, a test specimen having a hole, two load transfer plates, and linear displacement measuring instruments. The test specimen is sandwiched between the two load transfer plates and clamped together with the stud. Spacer washers are placed between the test specimen and each load transfer plate to provide a known, controllable area for the determination of clamping forces around the hole of the specimen attributable to bolt torque. The spacer washers also provide a gap for the mounting of reference angles on each side of the test specimen. Under tensile loading, elongation of the hole of the test specimen causes the stud to move away from the reference angles. This displacement is measured by the voltage output of two linear displacement measuring instruments that are attached to the stud and remain in contact with the reference angles throughout the tensile loading. The present invention obviates previous problems in obtaining specimen deformation measurements by monitoring the reference angles to the test specimen and the linear displacement measuring instruments to the stud.

  16. Design of a device for sky light polarization measurements.

    Science.gov (United States)

    Wang, Yujie; Hu, Xiaoping; Lian, Junxiang; Zhang, Lilian; Xian, Zhiwen; Ma, Tao

    2014-08-14

    Sky polarization patterns can be used both as indicators of atmospheric turbidity and as a sun compass for navigation. The objective of this study is to improve the precision of sky light polarization measurements by optimal design of the device used. The central part of the system is composed of a Charge Coupled Device (CCD) camera; a fish-eye lens and a linear polarizer. Algorithms for estimating parameters of the polarized light based on three images are derived and the optimal alignments of the polarizer are analyzed. The least-squares estimation is introduced for sky light polarization pattern measurement. The polarization patterns of sky light are obtained using the designed system and they follow almost the same patterns of the single-scattering Rayleigh model. Deviations of polarization angles between observation and the theory are analyzed. The largest deviations occur near the sun and anti-sun directions. Ninety percent of the deviations are less than 5° and 40% percent of them are less than 1°. The deviations decrease evidently as the degree of polarization increases. It also shows that the polarization pattern of the cloudy sky is almost identical as in the blue sky.

  17. Measuring device for water quality at reactor bottom

    Energy Technology Data Exchange (ETDEWEB)

    Urata, Hidehiro; Takagi, Jun-ichi

    1995-10-27

    The present invention concerns measurement for water quality at the bottom of a reactor of a BWR type plant, in which reactor water is sampled and analyzed in a state approximate to conditions in a pressure vessel. Based on the result, hydrogen injection amount is controlled during hydrogen injection operation. Namely, a monitor for water quality is disposed to a sampling line in communication with the bottom of a pressure vessel. A water quality monitor is disposed to a drain sampling line in communication with the bottom of the pressure vessel. A corrosion potentiometer is disposed to the pressure sampling line or the drain sampling line. A dissolved oxygen measuring device is disposed to the pressure vessel sampling line or the drain sampling line. With such a constitution, the reactor water can be sampled and analyzed in a state approximate to the conditions in the pressure vessel. In addition, signals from the water quality monitor are inputted to a hydrogen injection amount control device. As a result, the amount of hydrogen injected to primary coolants can be controlled in a state approximate to the conditions in the pressure vessel. (I.S.).

  18. Measuring device for water quality at reactor bottom

    International Nuclear Information System (INIS)

    Urata, Hidehiro; Takagi, Jun-ichi.

    1995-01-01

    The present invention concerns measurement for water quality at the bottom of a reactor of a BWR type plant, in which reactor water is sampled and analyzed in a state approximate to conditions in a pressure vessel. Based on the result, hydrogen injection amount is controlled during hydrogen injection operation. Namely, a monitor for water quality is disposed to a sampling line in communication with the bottom of a pressure vessel. A water quality monitor is disposed to a drain sampling line in communication with the bottom of the pressure vessel. A corrosion potentiometer is disposed to the pressure sampling line or the drain sampling line. A dissolved oxygen measuring device is disposed to the pressure vessel sampling line or the drain sampling line. With such a constitution, the reactor water can be sampled and analyzed in a state approximate to the conditions in the pressure vessel. In addition, signals from the water quality monitor are inputted to a hydrogen injection amount control device. As a result, the amount of hydrogen injected to primary coolants can be controlled in a state approximate to the conditions in the pressure vessel. (I.S.)

  19. Radioactivity concentration measuring device for radiation waste containing vessel

    International Nuclear Information System (INIS)

    Goto, Tetsuo.

    1994-01-01

    The device of the present invention can precisely and accurately measure a radioactive concentration of radioactive wastes irrespective of the radioactivity concentration distribution. Namely, a Ge detector having a collimator and a plurality of radiation detectors are placed at the outside of the radioactive waste containing vessel in such a way that it can rotate and move vertically relative to the vessel. The plurality of radiation detectors detect radiation coefficient signals at an assumed segment unit of a predetermined length in vertical direction and for every predetermined angle unit in the rotational direction. A weight measuring device determines the weight of the vessel. A computer calculates an average density of radioactivity for the region filled with radioactivity based on the determined net weight and radiation coefficient signals assuming that the volume of the radioactivity is constant. In addition, the computer calculates the amount of radioactivity in the assumed segment by conducting γ -ray absorption compensation calculation for the material in the vessel. Each of the amount of radioactivity is integrated to determine the amount of radioactivity in the vessel. (I.S.)

  20. Electron cyclotron beam measurement system in the Large Helical Device

    Energy Technology Data Exchange (ETDEWEB)

    Kamio, S., E-mail: kamio@nifs.ac.jp; Takahashi, H.; Kubo, S.; Shimozuma, T.; Yoshimura, Y.; Igami, H.; Ito, S.; Kobayashi, S.; Mizuno, Y.; Okada, K.; Osakabe, M.; Mutoh, T. [National Institute for Fusion Science, Toki 509-5292 (Japan)

    2014-11-15

    In order to evaluate the electron cyclotron (EC) heating power inside the Large Helical Device vacuum vessel and to investigate the physics of the interaction between the EC beam and the plasma, a direct measurement system for the EC beam transmitted through the plasma column was developed. The system consists of an EC beam target plate, which is made of isotropic graphite and faces against the EC beam through the plasma, and an IR camera for measuring the target plate temperature increase by the transmitted EC beam. This system is applicable to the high magnetic field (up to 2.75 T) and plasma density (up to 0.8 × 10{sup 19} m{sup −3}). This system successfully evaluated the transmitted EC beam profile and the refraction.

  1. Localization of Narrowband Single Photon Emitters in Nanodiamonds.

    Science.gov (United States)

    Bray, Kerem; Sandstrom, Russell; Elbadawi, Christopher; Fischer, Martin; Schreck, Matthias; Shimoni, Olga; Lobo, Charlene; Toth, Milos; Aharonovich, Igor

    2016-03-23

    Diamond nanocrystals that host room temperature narrowband single photon emitters are highly sought after for applications in nanophotonics and bioimaging. However, current understanding of the origin of these emitters is extremely limited. In this work, we demonstrate that the narrowband emitters are point defects localized at extended morphological defects in individual nanodiamonds. In particular, we show that nanocrystals with defects such as twin boundaries and secondary nucleation sites exhibit narrowband emission that is absent from pristine individual nanocrystals grown under the same conditions. Critically, we prove that the narrowband emission lines vanish when extended defects are removed deterministically using highly localized electron beam induced etching. Our results enhance the current understanding of single photon emitters in diamond and are directly relevant to fabrication of novel quantum optics devices and sensors.

  2. Commissioning of the SPARC Movable Emittance Meter and Its First Operation at PITZ

    CERN Document Server

    Catani, L; Cianchi, A

    2005-01-01

    For the SPARC Project a novel diagnostic device, called "Emittance-meter", has been conceived and constructed to perform a detailed study of the emittance compensation process in the SPARC photo-injector and to optimize the RF-gun and the accelerator working point. It consists of a movable emittance measurement system, based on the 1D pepper-pot method, installed between two long bellows with the possibility to scan a region 1.5 m long downstream the RF-gun. The construction of the device was completed in the first part of this year and a series of laboratory tests, to evaluate its performances, were carried out in Spring 2005. At the beginning of the summer the complete system was moved to DESY at Zeuthen to be installed on the Photo Injector Test Facility PITZ. After the commissioning it will used for measurements of the PITZ electron beam in the framework of a collaboration between the SPARC and PITZ Projects aiming on studies and operations with photo injectors.

  3. Emittance growth in rf linacs

    International Nuclear Information System (INIS)

    Jameson, R.A.

    1979-01-01

    As the space-charge limit is approached, the current that can be accelerated in an rf linac and the output emittance that can be expected are discussed. The role of the envelope equations to estimate limits is outlined. The results of numerical experiments to explore general properties of emittance growth are given

  4. Beam phase space and emittance

    International Nuclear Information System (INIS)

    Buon, J.

    1990-12-01

    The classical and elementary results for canonical phase space, the Liouville theorem and the beam emittance are reviewed. Then, the importance of phase portraits to obtain a geometrical description of motion is emphasized, with examples in accelerator physics. Finally, a statistical point of view is used to define beam emittance, to study its law of approximate conservation and to treat two particular examples

  5. Dose rate measuring device and dose rate measuring method using the same

    International Nuclear Information System (INIS)

    Urata, Megumu; Matsushita, Takashi; Hanazawa, Sadao; Konno, Takahiro; Chiba, Yoshinori; Yumitate, Tadahiro

    1998-01-01

    The device of the present invention comprises a scintillation fiber scope having a shape elongated in the direction of the height of a pressure vessel and emitting light by incident of radiation to detect radiation, a radioactivity measuring device for measuring a dose rate based on the detection of the fiber scope and a reel means for dispensing and taking up the fiber scope, and it constituted such that the dose rate of the pressure vessel and that of a shroud are determined independently. Then, when the taken out shroud is contained in an container, excessive shielding is not necessary, in addition, this device can reliably be inserted to or withdrawn from complicated places between the pressure vessel and the shroud, and further, the dose rate of the pressure vessel and that of the shroud can be measured approximately accurately even when the thickness of them is different greatly. (N.H.)

  6. Dose rate measuring device and dose rate measuring method using the same

    Energy Technology Data Exchange (ETDEWEB)

    Urata, Megumu; Matsushita, Takashi; Hanazawa, Sadao; Konno, Takahiro; Chiba, Yoshinori; Yumitate, Tadahiro

    1998-11-13

    The device of the present invention comprises a scintillation fiber scope having a shape elongated in the direction of the height of a pressure vessel and emitting light by incident of radiation to detect radiation, a radioactivity measuring device for measuring a dose rate based on the detection of the fiber scope and a reel means for dispensing and taking up the fiber scope, and it constituted such that the dose rate of the pressure vessel and that of a shroud are determined independently. Then, when the taken out shroud is contained in an container, excessive shielding is not necessary, in addition, this device can reliably be inserted to or withdrawn from complicated places between the pressure vessel and the shroud, and further, the dose rate of the pressure vessel and that of the shroud can be measured approximately accurately even when the thickness of them is different greatly. (N.H.)

  7. Testing limits to airflow perturbation device (APD measurements

    Directory of Open Access Journals (Sweden)

    Jamshidi Shaya

    2008-10-01

    Full Text Available Abstract Background The Airflow Perturbation Device (APD is a lightweight, portable device that can be used to measure total respiratory resistance as well as inhalation and exhalation resistances. There is a need to determine limits to the accuracy of APD measurements for different conditions likely to occur: leaks around the mouthpiece, use of an oronasal mask, and the addition of resistance in the respiratory system. Also, there is a need for resistance measurements in patients who are ventilated. Method Ten subjects between the ages of 18 and 35 were tested for each station in the experiment. The first station involved testing the effects of leaks of known sizes on APD measurements. The second station tested the use of an oronasal mask used in conjunction with the APD during nose and mouth breathing. The third station tested the effects of two different resistances added in series with the APD mouthpiece. The fourth station tested the usage of a flexible ventilator tube in conjunction with the APD. Results All leaks reduced APD resistance measurement values. Leaks represented by two 3.2 mm diameter tubes reduced measured resistance by about 10% (4.2 cmH2O·sec/L for control and 3.9 cm H2O·sec/L for the leak. This was not statistically significant. Larger leaks given by 4.8 and 6.4 mm tubes reduced measurements significantly (3.4 and 3.0 cm cmH2O·sec/L, respectively. Mouth resistance measured with a cardboard mouthpiece gave an APD measurement of 4.2 cm H2O·sec/L and mouth resistance measured with an oronasal mask was 4.5 cm H2O·sec/L; the two were not significantly different. Nose resistance measured with the oronasal mask was 7.6 cm H2O·sec/L. Adding airflow resistances of 1.12 and 2.10 cm H2O·sec/L to the breathing circuit between the mouth and APD yielded respiratory resistance values higher than the control by 0.7 and 2.0 cm H2O·sec/L. Although breathing through a 52 cm length of flexible ventilator tubing reduced the APD

  8. The device for measuring amplitude spectra of ionizing irradiation

    International Nuclear Information System (INIS)

    Polyak, Yu.V.; Nebesnyj, A.F.

    1996-01-01

    The front-end electronic device for measuring of amplitude spectra of ionizing radiation have been made. The device have connection interface with the ionizing radiation detector, the pulse former, adapter, memory, electron ray tube with diode, supply unit and the regime setting unit of the work of electron ray tube. There are linear transmission scheme, level discriminator, pulse series - channel code converter, dividing capacitor in the device. Dynode of electron ray tube has been made in the form of rack or pads installed in the line parallel to axis of vertical scanning and electrically joined with each other. The distance between next tooth of rack or pads is Δy≥0,5 d, where d - diameter of focused electron beam of electron ray tube. The output of pulse former is joined with level discriminator and the first entrance of linear transmission scheme. The output of linear transmission scheme is joined with the entrance of pulse delay scheme, and the second entrance is joined with the first output of level discriminator. The output of pulse delay scheme is joined with Y-deflecting plate of electron ray tube. The first and the second entrance of pulse series - channel code converter are joined correspondingly with the output of adapter and the second output of level discriminator, and its output - with the entrance of memory unit. The first pin of loading resistor is joined through dividing capacitor with the entrance of adapter, its second pin - with the anode output nearest to dynode of electron ray tube. (E.V.Kh.)

  9. A low emittance configuration for spear

    International Nuclear Information System (INIS)

    Blumberg, L.N.; Cerino, J.; Harris, J.; Hettel, R.; Hofmann, A.; Liu, R.Z.; Stego, R.; Wiedemann, H.; Winick, H.

    1985-01-01

    The quality of synchrotron radiation beams from SPEAR, in particular the brilliance of undulator radiation, can be improved significantly by reducing the emittance of the stored electron beam. A reduction of the horizontal emittance by a factor of 3.5 to a value of 130 nanometer-radians (nm-r) at 3 GeV has been achieved by using stronger focussing, mainly in the horizontal plane. The low emittance configuration also reduces the dispersion and vertical beta functions in the straight sections, making them more suitable for wigglers. The higher betatron tunes lead to a larger phase advance between the two kickers, which has to be corrected during injection by shunting current from some quadrupoles. The configuration was optimized within SPEAR hardware limitations and tested for dynamic aperture with the tracking program PATRICIA. After implementation of this scheme, beam was successfully injected and accumulated. The measured emittance of the stored beam was in agreement with calculations. Presently the configuration is being made operational

  10. Device for accurately measuring mass flow of gases

    Science.gov (United States)

    Hylton, James O.; Remenyik, Carl J.

    1994-01-01

    A device for measuring mass flow of gases which utilizes a substantially buoyant pressure vessel suspended within a fluid/liquid in an enclosure. The pressure vessel is connected to a weighing device for continuously determining weight change of the vessel as a function of the amount of gas within the pressure vessel. In the preferred embodiment, this pressure vessel is formed from inner and outer right circular cylindrical hulls, with a volume between the hulls being vented to the atmosphere external the enclosure. The fluid/liquid, normally in the form of water typically with an added detergent, is contained within an enclosure with the fluid/liquid being at a level such that the pressure vessel is suspended beneath this level but above a bottom of the enclosure. The buoyant pressure vessel can be interconnected with selected valves to an auxiliary pressure vessel so that initial flow can be established to or from the auxiliary pressure vessel prior to flow to or from the buoyant pressure vessel.

  11. High brightness fiber laser pump sources based on single emitters and multiple single emitters

    Science.gov (United States)

    Scheller, Torsten; Wagner, Lars; Wolf, Jürgen; Bonati, Guido; Dörfel, Falk; Gabler, Thomas

    2008-02-01

    Driven by the potential of the fiber laser market, the development of high brightness pump sources has been pushed during the last years. The main approaches to reach the targets of this market had been the direct coupling of single emitters (SE) on the one hand and the beam shaping of bars and stacks on the other hand, which often causes higher cost per watt. Meanwhile the power of single emitters with 100μm emitter size for direct coupling increased dramatically, which also pushed a new generation of wide stripe emitters or multi emitters (ME) of up to 1000μm emitter size respectively "minibars" with apertures of 3 to 5mm. The advantage of this emitter type compared to traditional bars is it's scalability to power levels of 40W to 60W combined with a small aperture which gives advantages when coupling into a fiber. We show concepts using this multiple single emitters for fiber coupled systems of 25W up to 40W out of a 100μm fiber NA 0.22 with a reasonable optical efficiency. Taking into account a further efficiency optimization and an increase in power of these devices in the near future, the EUR/W ratio pushed by the fiber laser manufacturer will further decrease. Results will be shown as well for higher power pump sources. Additional state of the art tapered fiber bundles for photonic crystal fibers are used to combine 7 (19) pump sources to output powers of 100W (370W) out of a 130μm (250μm) fiber NA 0.6 with nominal 20W per port. Improving those TFB's in the near future and utilizing 40W per pump leg, an output power of even 750W out of 250μm fiber NA 0.6 will be possible. Combined Counter- and Co-Propagated pumping of the fiber will then lead to the first 1kW fiber laser oscillator.

  12. One-sided measurement-device-independent quantum key distribution

    Science.gov (United States)

    Cao, Wen-Fei; Zhen, Yi-Zheng; Zheng, Yu-Lin; Li, Li; Chen, Zeng-Bing; Liu, Nai-Le; Chen, Kai

    2018-01-01

    Measurement-device-independent quantum key distribution (MDI-QKD) protocol was proposed to remove all the detector side channel attacks, while its security relies on the trusted encoding systems. Here we propose a one-sided MDI-QKD (1SMDI-QKD) protocol, which enjoys detection loophole-free advantage, and at the same time weakens the state preparation assumption in MDI-QKD. The 1SMDI-QKD can be regarded as a modified MDI-QKD, in which Bob's encoding system is trusted, while Alice's is uncharacterized. For the practical implementation, we also provide a scheme by utilizing coherent light source with an analytical two decoy state estimation method. Simulation with realistic experimental parameters shows that the protocol has a promising performance, and thus can be applied to practical QKD applications.

  13. Method and device for measuring the smoke concentration in air

    International Nuclear Information System (INIS)

    Rennemo, B.

    1994-01-01

    The patent deals with a method and a device for measuring the smoke concentration in air. In a smoke chamber are located two electrodes, connected to a voltage source for forming a circuit in which a DC current flows. A radioactive radiation source to ionize the air molecules is located in the vicinity of the smoke chamber, so that the number of ionized air molecules which are formed is dependent upon the radiation intensity of the ion source and the concentration of smoke particles in the smoke chamber. The charging voltage will further imply that a cloud of high ion concentration is built up close to the surface of the electrodes. The ion cloud will be discharged capacitively upon a plurality of short voltages pulses applied to the electrodes to thereby result in current pulses substantially greater than the DC current flowing through the chamber. 8 figs

  14. Low-temperature mobility measurements on CMOS devices

    International Nuclear Information System (INIS)

    Hairpetian, A.; Gitlin, D.; Viswanathan, C.R.

    1989-01-01

    The surface channel mobility of carriers in eta- and rho-MOS transistors fabricated in a CMOS process was accurately determined at low temperatures down to 5 Κ. The mobility was obtained by an accurate measurement of the inversion charge density using a split C-V technique and the conductance at low drain voltages. The split C-V technique was validated at all temperatures using a one-dimensional Poisson solver (MOSCAP), which was modified for low-temperature application. The mobility dependence on the perpendicular electric field for different substrate bias values appears to have different temperature dependence for eta- and rho-channel devices. The electron mobility increases with a decrease in temperature at all gate voltages. On the other hand, the hole mobility exhibits a different temperature behavior depending upon whether the gate voltage corresponds to strong inversion or is near threshold

  15. Memory-assisted measurement-device-independent quantum key distribution

    Science.gov (United States)

    Panayi, Christiana; Razavi, Mohsen; Ma, Xiongfeng; Lütkenhaus, Norbert

    2014-04-01

    A protocol with the potential of beating the existing distance records for conventional quantum key distribution (QKD) systems is proposed. It borrows ideas from quantum repeaters by using memories in the middle of the link, and that of measurement-device-independent QKD, which only requires optical source equipment at the user's end. For certain memories with short access times, our scheme allows a higher repetition rate than that of quantum repeaters with single-mode memories, thereby requiring lower coherence times. By accounting for various sources of nonideality, such as memory decoherence, dark counts, misalignment errors, and background noise, as well as timing issues with memories, we develop a mathematical framework within which we can compare QKD systems with and without memories. In particular, we show that with the state-of-the-art technology for quantum memories, it is potentially possible to devise memory-assisted QKD systems that, at certain distances of practical interest, outperform current QKD implementations.

  16. Clinical assessment of the accuracy of blood glucose measurement devices.

    Science.gov (United States)

    Pfützner, Andreas; Mitri, Michael; Musholt, Petra B; Sachsenheimer, Daniela; Borchert, Marcus; Yap, Andrew; Forst, Thomas

    2012-04-01

    Blood glucose meters for patient self-measurement need to comply with the accuracy standards of the ISO 15197 guideline. We investigated the accuracy of the two new blood glucose meters BG*Star and iBG*Star (Sanofi-Aventis) in comparison to four other competitive devices (Accu-Chek Aviva, Roche Diagnostics; FreeStyle Freedom Lite, Abbott Medisense; Contour, Bayer; OneTouch Ultra 2, Lifescan) at different blood glucose ranges in a clinical setting with healthy subjects and patients with type 1 and type 2 diabetes. BGStar and iBGStar are employ dynamic electrochemistry, which is supposed to result in highly accurate results. The study was performed on 106 participants (53 female, 53 male, age (mean ± SD): 46 ± 16 years, type 1: 32 patients, type 2: 34 patients, and 40 healthy subjects). Two devices from each type and strips from two different production lots were used for glucose assessment (∼200 readings/meter). Spontaneous glucose assessments and glucose or insulin interventions under medical supervision were applied to perform measurements in the different glucose ranges in accordance with the ISO 15197 requirements. Sample values 400 mg/dL were prepared by laboratory manipulations. The YSI glucose analyzer (glucose oxidase method) served as the standard reference method which may be considered to be a limitation in light of glucose hexokinase-based meters. For all devices, there was a very close correlation between the glucose results compared to the YSI reference method results. The correlation coefficients were r = 0.995 for BGStar and r = 0.992 for iBGStar (Aviva: 0.995, Freedom Lite: 0.990, Contour: 0.993, Ultra 2: 0.990). Error-grid analysis according to Parkes and Clarke revealed both 100% of the readings to be within the clinically acceptable areas (Clarke: A + B with BG*Star (100 + 0), Aviva (97 + 3), and Contour (97 + 3); and 99.5% with iBG*Star (97.5 + 2), Freedom Lite (98 + 1.5), and Ultra 2 (97.5 + 2

  17. Modular low-voltage electron emitters

    International Nuclear Information System (INIS)

    Berejka, Anthony J.

    2005-01-01

    Modular, low-voltage electron emitters simplify electron beam (EB) technology for many industrial uses and for research and development. Modular electron emitters are produced in quantity as sealed systems that are evacuated at the factory, eliminating the need for vacuum pumps at the point of use. A plug-out-plug-in method of replacement facilitates servicing. By using an ultra-thin 6-7 μm titanium foil window, solid-state power supplies, an innovative design to extract and spread the beam (enabling systems to be placed adjacent to each other to extend beam width) and touch-screen computer controls, these modular units combine ease of use and electrical transfer efficiency at voltages that can be varied between 80 kV and 150 kV with beam currents up to 40 mA per 25 cm across the beam window. These new devices have been made in three widths: 5 cm, 25 cm, and 40 cm. Details of the beam construction and illustrations of industrial uses will be presented. Traditional uses in the graphic arts and coatings areas have welcomed this modular technology as well as uses for surface sterilization. Being compact and lightweight (∼15 kg/emitter), these modular beams have been configured around complex shapes to achieve three-dimensional surface curing at high production rates

  18. Modular low-voltage electron emitters

    Science.gov (United States)

    Berejka, Anthony J.

    2005-12-01

    Modular, low-voltage electron emitters simplify electron beam (EB) technology for many industrial uses and for research and development. Modular electron emitters are produced in quantity as sealed systems that are evacuated at the factory, eliminating the need for vacuum pumps at the point of use. A plug-out-plug-in method of replacement facilitates servicing. By using an ultra-thin 6-7 μm titanium foil window, solid-state power supplies, an innovative design to extract and spread the beam (enabling systems to be placed adjacent to each other to extend beam width) and touch-screen computer controls, these modular units combine ease of use and electrical transfer efficiency at voltages that can be varied between 80 kV and 150 kV with beam currents up to 40 mA per 25 cm across the beam window. These new devices have been made in three widths: 5 cm, 25 cm, and 40 cm. Details of the beam construction and illustrations of industrial uses will be presented. Traditional uses in the graphic arts and coatings areas have welcomed this modular technology as well as uses for surface sterilization. Being compact and lightweight (∼15 kg/emitter), these modular beams have been configured around complex shapes to achieve three-dimensional surface curing at high production rates.

  19. OVERVIEW OF NEUTRON MEASUREMENTS IN JET FUSION DEVICE.

    Science.gov (United States)

    Batistoni, P; Villari, R; Obryk, B; Packer, L W; Stamatelatos, I E; Popovichev, S; Colangeli, A; Colling, B; Fonnesu, N; Loreti, S; Klix, A; Klosowski, M; Malik, K; Naish, J; Pillon, M; Vasilopoulou, T; De Felice, P; Pimpinella, M; Quintieri, L

    2017-10-05

    The design and operation of ITER experimental fusion reactor requires the development of neutron measurement techniques and numerical tools to derive the fusion power and the radiation field in the device and in the surrounding areas. Nuclear analyses provide essential input to the conceptual design, optimisation, engineering and safety case in ITER and power plant studies. The required radiation transport calculations are extremely challenging because of the large physical extent of the reactor plant, the complexity of the geometry, and the combination of deep penetration and streaming paths. This article reports the experimental activities which are carried-out at JET to validate the neutronics measurements methods and numerical tools used in ITER and power plant design. A new deuterium-tritium campaign is proposed in 2019 at JET: the unique 14 MeV neutron yields produced will be exploited as much as possible to validate measurement techniques, codes, procedures and data currently used in ITER design thus reducing the related uncertainties and the associated risks in the machine operation. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. Mobile Communication Devices, Ambient Noise, and Acoustic Voice Measures.

    Science.gov (United States)

    Maryn, Youri; Ysenbaert, Femke; Zarowski, Andrzej; Vanspauwen, Robby

    2017-03-01

    The ability to move with mobile communication devices (MCDs; ie, smartphones and tablet computers) may induce differences in microphone-to-mouth positioning and use in noise-packed environments, and thus influence reliability of acoustic voice measurements. This study investigated differences in various acoustic voice measures between six recording equipments in backgrounds with low and increasing noise levels. One chain of continuous speech and sustained vowel from 50 subjects with voice disorders (all separated by silence intervals) was radiated and re-recorded in an anechoic chamber with five MCDs and one high-quality recording system. These recordings were acquired in one condition without ambient noise and in four conditions with increased ambient noise. A total of 10 acoustic voice markers were obtained in the program Praat. Differences between MCDs and noise condition were assessed with Friedman repeated-measures test and posthoc Wilcoxon signed-rank tests, both for related samples, after Bonferroni correction. (1) Except median fundamental frequency and seven nonsignificant differences, MCD samples have significantly higher acoustic markers than clinical reference samples in minimal environmental noise. (2) Except median fundamental frequency, jitter local, and jitter rap, all acoustic measures on samples recorded with the reference system experienced significant influence from room noise levels. Fundamental frequency is resistant to recording system, environmental noise, and their combination. All other measures, however, were impacted by both recording system and noise condition, and especially by their combination, often already in the reference/baseline condition without added ambient noise. Caution is therefore warranted regarding implementation of MCDs as clinical recording tools, particularly when applied for treatment outcomes assessments. Copyright © 2017 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  1. Test measurements on the RF charge breeder device BRIC

    International Nuclear Information System (INIS)

    Variale, Vincenzo; Boggia, Antonio; Clauser, Tarcisio; Raino, Antonio; Valentino, Vincenzo; Verrone, Grazia; Bak, Petr; Kustenzov, Gennady; Skarbo, Boris; Tiunov, Michael

    2004-01-01

    The 'charge state breeder' BRIC (BReeding Ion Charge) is based on an EBIS source and it is designed to accept Radioactive Ion Beam (RIB) with charge state +1, in a slow injection mode, to increase their charge state up to +n. BRIC has been developed at the INFN section of Bari (Italy) during these last 3 years with very limited funds. Now, it has been assembled at the LNL (Italy) where are in progress the first tests as stand alone source and where, in the future, with some implementation, it will be tested as charge breeder at ISOL/TS facility of that laboratory. BRIC could be considered as a solution for the charge state breeder of the SPES project under study also at the LNL. The new feature of BRIC, with respect to the classical EBIS, is given by the insertion, in the ion drift chamber, of a radio frequency (RF) - quadrupole aiming to filter the unwanted masses and then making a more efficient containment of the wanted ions. In this paper, the first ion charge state measurements and analysis and the effect of the RF field applied on the ion chamber will be reported and discussed. The first RF test measurements seem confirm, as foreseen by simulation results carried out previously, that a selective containment can be obtained. However, most accurate measurements needed to study with more details the effect. For this reason, few implementations of the system are in order to improve the accuracy of the measurements. The proposed modifications of the BRIC device, then, will be also presented and shortly discussed

  2. Measurements of the Exerted Pressure by Pelvic Circumferential Compression Devices

    Science.gov (United States)

    Knops, Simon P; van Riel, Marcel P.J.M; Goossens, Richard H.M; van Lieshout, Esther M.M; Patka, Peter; Schipper, Inger B

    2010-01-01

    Background: Data on the efficacy and safety of non-invasive Pelvic Circumferential Compression Devices (PCCDs) is limited. Tissue damage may occur if a continuous pressure on the skin exceeding 9.3 kPa is sustained for more than two or three hours. The aim of this study was to gain insight into the pressure build-up at the interface, by measuring the PCCD-induced pressure when applying pulling forces to three different PCCDs (Pelvic Binder® , SAM-Sling ® and T-POD® ) in a simplified model. Methods: The resulting exerted pressures were measured at four ‘anatomical’ locations (right, left, posterior and anterior) in a model using a pressure measurement system consisting of pressure cuffs. Results: The exerted pressure varied substantially between the locations as well as between the PCCDs. Maximum pressures ranged from 18.9-23.3 kPa and from 19.2-27.5 kPa at the right location and left location, respectively. Pressures at the posterior location stayed below 18 kPa. At the anterior location pressures varied markedly between the different PCCDs. Conclusion: The circumferential compression by the different PCCDs showed high pressures measured at the four locations using a simplified model. Difference in design and functional characteristics of the PCCDs resulted in different pressure build-up at the four locations. When following the manufacturer’s instructions, the exerted pressure of all three PCCDs tested exceeded the tissue damaging level (9.3 kPa). In case of prolonged use in a clinical situation this might put patients at risk for developing tissue damage. PMID:20361001

  3. Electromagnetic compatibility of implantable neurostimulators to RFID emitters.

    Science.gov (United States)

    Pantchenko, Oxana S; Seidman, Seth J; Guag, Joshua W; Witters, Donald M; Sponberg, Curt L

    2011-06-09

    The objective of this study is to investigate electromagnetic compatibility (EMC) of implantable neurostimulators with the emissions from radio frequency identification (RFID) emitters. Six active implantable neurostimulators with lead systems were tested for susceptibility to electromagnetic fields generated by 22 RFID emitters. These medical devices have been approved for marketing in the U.S. for a number of intended uses that include: epilepsy, depression, incontinence, Parkinsonian tremor and pain relief. Each RFID emitter had one of the following carrier frequencies: 125 kHz, 134 kHz, 13.56 MHz, 433 MHz, 915 MHz and 2.45 GHz. The test results showed the output of one of the implantable neurostimulators was inhibited by 134 kHz RFID emitter at separation distances of 10 cm or less. The output of the same implantable neurostimulator was also inhibited by another 134 kHz RFID emitter at separation distances of 10 cm or less and also showed inconsistent pulsing rate at a separation distance of 15 cm. Both effects occurred during and lasted through out the duration of the exposure. The clinical significance of the effects was assessed by a clinician at the U.S. Food and Drug Administration. The effects were determined to be clinically significant only if they occurred for extended period of time. There were no observed effects from the other 5 implantable neurostimulators or during exposures from other RFID emitters.

  4. Electromagnetic compatibility of implantable neurostimulators to RFID emitters

    Directory of Open Access Journals (Sweden)

    Guag Joshua W

    2011-06-01

    Full Text Available Abstract Background The objective of this study is to investigate electromagnetic compatibility (EMC of implantable neurostimulators with the emissions from radio frequency identification (RFID emitters. Methods Six active implantable neurostimulators with lead systems were tested for susceptibility to electromagnetic fields generated by 22 RFID emitters. These medical devices have been approved for marketing in the U.S. for a number of intended uses that include: epilepsy, depression, incontinence, Parkinsonian tremor and pain relief. Each RFID emitter had one of the following carrier frequencies: 125 kHz, 134 kHz, 13.56 MHz, 433 MHz, 915 MHz and 2.45 GHz Results The test results showed the output of one of the implantable neurostimulators was inhibited by 134 kHz RFID emitter at separation distances of 10 cm or less. The output of the same implantable neurostimulator was also inhibited by another 134 kHz RFID emitter at separation distances of 10 cm or less and also showed inconsistent pulsing rate at a separation distance of 15 cm. Both effects occurred during and lasted through out the duration of the exposure. Conclusions The clinical significance of the effects was assessed by a clinician at the U.S. Food and Drug Administration. The effects were determined to be clinically significant only if they occurred for extended period of time. There were no observed effects from the other 5 implantable neurostimulators or during exposures from other RFID emitters.

  5. Evaluation of spectrum measurement devices for operational use

    CERN Document Server

    Devine, R T; Gray, D W; Seagraves, D T; Olsher, R H; Johnson, J P

    2002-01-01

    Several neutron spectrometers manufactured by Bubble Technology Industries (BTI) were tested and evaluated in a variety of neutron fields. Findings and conclusions are presented for the following BTI instruments: a modification of the Rotational Spectrometer (ROSPEC) that includes a thermal and epithermal capability, the Simple Scintillation Spectrometer that is used in conjunction with the ROSPEC to extend its high-energy range, and the MICROSPEC N-Probe which is capable of providing a crude spectrum over the energy range from thermal to 18 MeV. The main objective of these measurements was to determine the accuracy of both the energy spectrum and dose equivalent information generated by these devices. In addition, the dose response of the Wide-Energy Neutron Detection Instrument (WENDI-II) was measured in all neutron fields relative to a bare sup 2 sup 5 sup 2 Cf calibration. The performance of the WENDI-II rem meter was compared to the dose information generated by the neutron spectrometers. The instruments...

  6. Are wearable devices ready for HTTPS? Measuring the cost of secure communication protocols on wearable devices

    OpenAIRE

    Kolamunna, Harini; Chauhan, Jagmohan; Hu, Yining; Thilakarathna, Kanchana; Perino, Diego; Makaroff, Dwight; Seneviratne, Aruna

    2016-01-01

    The majority of available wearable devices require communication with Internet servers for data analysis and storage, and rely on a paired smartphone to enable secure communication. However, wearable devices are mostly equipped with WiFi network interfaces, enabling direct communication with the Internet. Secure communication protocols should then run on these wearables itself, yet it is not clear if they can be efficiently supported. In this paper, we show that wearable devices are ready for...

  7. Top-down fabrication of plasmonic nanostructures for deterministic coupling to single quantum emitters

    NARCIS (Netherlands)

    Pfaff, W.; Vos, A.; Hanson, R.

    2013-01-01

    Metal nanostructures can be used to harvest and guide the emission of single photon emitters on-chip via surface plasmon polaritons. In order to develop and characterize photonic devices based on emitter-plasmon hybrid structures, a deterministic and scalable fabrication method for such structures

  8. [Mobile Health: IEEE Standard for Wearable Cuffless Blood Pressure Measuring Devices].

    Science.gov (United States)

    Zhou, Xia; Wu, Wenli; Bao, Shudi

    2015-07-01

    IEEE Std 1708-2014 breaks through the traditional standards of cuff based blood pressure measuring devices and establishes a normative definition of wearable cuffless blood pressure measuring devices and the objective performance evaluation of this kind of devices. This study firstly introduces the background of the new standard. Then, the standard details will be described, and the impact of cuffless blood pressure measuring devices with the new standard on manufacturers and end users will be addressed.

  9. Mesoscopic quantum emitters coupled to plasmonic nanostructures

    DEFF Research Database (Denmark)

    Andersen, Mads Lykke

    for the spontaneous emission of mesoscopic quantum emitters is developed. The light-matter interaction is in this model modied beyond the dipole expectancy and found to both suppress and enhance the coupling to plasmonic modes in excellent agreement with our measurements. We demonstrate that this mesoscopic effect......This thesis reports research on quantum dots coupled to dielectric and plasmonic nano-structures by way of nano-structure fabrication, optical measurements, and theoretical modeling. To study light-matter interaction, plasmonic gap waveguides with nanometer dimensions as well as samples for studies...... to allow for e- cient plasmon-based single-photon sources. Theoretical studies of coupling and propagation properties of plasmonic waveguides reveal that a high-refractive index of the medium surrounding the emitter, e.g. nGaAs = 3.5, limits the realizability of ecient plasmon-based single-photon sources...

  10. A DAQ-Device-Based Continuous Wave Near-Infrared Spectroscopy System for Measuring Human Functional Brain Activity

    Directory of Open Access Journals (Sweden)

    Gang Xu

    2014-01-01

    Full Text Available In the last two decades, functional near-infrared spectroscopy (fNIRS is getting more and more popular as a neuroimaging technique. The fNIRS instrument can be used to measure local hemodynamic response, which indirectly reflects the functional neural activities in human brain. In this study, an easily implemented way to establish DAQ-device-based fNIRS system was proposed. Basic instrumentation components (light sources driving, signal conditioning, sensors, and optical fiber of the fNIRS system were described. The digital in-phase and quadrature demodulation method was applied in LabVIEW software to distinguish light sources from different emitters. The effectiveness of the custom-made system was verified by simultaneous measurement with a commercial instrument ETG-4000 during Valsalva maneuver experiment. The light intensity data acquired from two systems were highly correlated for lower wavelength (Pearson’s correlation coefficient r = 0.92, P < 0.01 and higher wavelength (r = 0.84, P < 0.01. Further, another mental arithmetic experiment was implemented to detect neural activation in the prefrontal cortex. For 9 participants, significant cerebral activation was detected in 6 subjects (P < 0.05 for oxyhemoglobin and in 8 subjects (P < 0.01 for deoxyhemoglobin.

  11. Electrohydrodynamic emitters of ion beams

    International Nuclear Information System (INIS)

    Dudnikov, V.G.; Shabalin, A.L.

    1990-01-01

    Physical processes determining generation of ion beams with high emission current density in electrohydrodynamic emitters are considered. Electrohydrodynamic effects developing in ion emission features and kinetics of ion interaction in beams with high density are discussed. Factors determining the size of the emission zone, emission stability at high and low currents, cluster generation, increase of energy spread and decrease of brightness are analyzed. Problems on practical provision of stable EHD emitter functioning are considered. 94 refs.; 8 figs.; 1 tab

  12. Diamondoid monolayers as electron emitters

    Science.gov (United States)

    Yang, Wanli [El Cerrito, CA; Fabbri, Jason D [San Francisco, CA; Melosh, Nicholas A [Menlo Park, CA; Hussain, Zahid [Orinda, CA; Shen, Zhi-Xun [Stanford, CA

    2012-04-10

    Provided are electron emitters based upon diamondoid monolayers, preferably self-assembled higher diamondoid monolayers. High intensity electron emission has been demonstrated employing such diamondoid monolayers, particularly when the monolayers are comprised of higher diamondoids. The application of such diamondoid monolayers can alter the band structure of substrates, as well as emit monochromatic electrons, and the high intensity electron emissions can also greatly improve the efficiency of field-effect electron emitters as applied to industrial and commercial applications.

  13. Nanodiamond Emitters of Single Photons

    Directory of Open Access Journals (Sweden)

    Vlasov I.I.

    2015-01-01

    Full Text Available Luminescence properties of single color centers were studied in nanodiamonds of different origin. It was found that single photon emitters could be realized even in molecularsized diamond (less than 2 nm capable of housing stable luminescent center “silicon-vacancy.” First results on incorporation of single-photon emitters based on luminescent nanodiamonds in plasmonic nanoantennas to enhance the photon count rate and directionality, diminish the fluorescence decay time, and provide polarization selectivity are presented.

  14. Radial arrays of nano-electrospray ionization emitters and methods of forming electrosprays

    Science.gov (United States)

    Kelly, Ryan T [West Richland, WA; Tang, Keqi [Richland, WA; Smith, Richard D [Richland, WA

    2010-10-19

    Electrospray ionization emitter arrays, as well as methods for forming electrosprays, are described. The arrays are characterized by a radial configuration of three or more nano-electrospray ionization emitters without an extractor electrode. The methods are characterized by distributing fluid flow of the liquid sample among three or more nano-electrospray ionization emitters, forming an electrospray at outlets of the emitters without utilizing an extractor electrode, and directing the electrosprays into an entrance to a mass spectrometry device. Each of the nano-electrospray ionization emitters can have a discrete channel for fluid flow. The nano-electrospray ionization emitters are circularly arranged such that each is shielded substantially equally from an electrospray-inducing electric field.

  15. 77 FR 35745 - Highway Safety Programs; Conforming Products List of Screening Devices To Measure Alcohol in...

    Science.gov (United States)

    2012-06-14

    ..., battery powered device with a semiconductor sensor. (2) Alcohol Countermeasure Systems Corp., submitted...-0062] Highway Safety Programs; Conforming Products List of Screening Devices To Measure Alcohol in... Screening Devices to Measure Alcohol in Bodily Fluids dated, March 31, 2008 (73 FR 16956). DATES: Effective...

  16. Measuring device for the temperature coefficient of reactor moderators

    International Nuclear Information System (INIS)

    Nakano, Yuzo.

    1987-01-01

    Purpose: To rapidly determine by automatic calculation the temperature coefficient for moderators which has been determined so far by a log of manual processings. Constitution: Each of signals from a control rod position indicator, a reactor reactivity, instrument and moderator temperature meter are inputted, and each of the signals and designed valued for the doppler temperature coefficients are stored. Recurling calculation is conducted based on the reactivity and the moderator temperature at an interval where the temperature changes of the moderators are equalized at an identical control rod position, to determine isothermic coefficient. Then, the temperature coefficient for moderator are calculated from the isothermic coefficient and the doppler temperature coefficient. The relationship between the reactivity and the moderator temperature is plotted on a X-Y recorder. The stored signals and the calculated temperature coefficient for moderators are sequentially displayed and the results are printed out when the measurement is completed. According to the present device, since the real time processing is conducted, the processing time can be shortened remarkably. Accordingly, it is possible to save the man power for the test of the nuclear reactor and improve the reactor operation performance. (Kamimura, M.)

  17. Memory-assisted measurement-device-independent quantum key distribution

    International Nuclear Information System (INIS)

    Panayi, Christiana; Razavi, Mohsen; Ma, Xiongfeng; Lütkenhaus, Norbert

    2014-01-01

    A protocol with the potential of beating the existing distance records for conventional quantum key distribution (QKD) systems is proposed. It borrows ideas from quantum repeaters by using memories in the middle of the link, and that of measurement-device-independent QKD, which only requires optical source equipment at the user's end. For certain memories with short access times, our scheme allows a higher repetition rate than that of quantum repeaters with single-mode memories, thereby requiring lower coherence times. By accounting for various sources of nonideality, such as memory decoherence, dark counts, misalignment errors, and background noise, as well as timing issues with memories, we develop a mathematical framework within which we can compare QKD systems with and without memories. In particular, we show that with the state-of-the-art technology for quantum memories, it is potentially possible to devise memory-assisted QKD systems that, at certain distances of practical interest, outperform current QKD implementations. (paper)

  18. Emittance growth from rotated quadrupoles in heavy ion accelerators

    International Nuclear Information System (INIS)

    Barnard, J.J.

    1995-01-01

    We derive a set of moment equations which incorporates linear quadrupolar focusing and space-charge defocusing, in the presence of rotational misalignments of the quadrupoles about the direction of beam propagation. Although the usual beam emittance measured relative to fixed transverse x and y coordinate axes is not constant, a conserved emittance-like quantity has been found. Implications for alignment tolerances in accelerators for heavy-ion inertial fusion are discussed

  19. Ghost signals in Allison emittance scanners

    International Nuclear Information System (INIS)

    Stockli, Martin P.; Leitner, M.; Moehs, D.P.; Keller, R.; Welton, R.F.

    2004-01-01

    For over 20 years, Allison scanners have been used to measure emittances of low-energy ion beams. We show that scanning large trajectory angles produces ghost signals caused by the sampled beamlet impacting on an electric deflection plate. The ghost signal strength is proportional to the amount of beam entering the scanner. Depending on the ions, and their velocity, the ghost signals can have the opposite or the same polarity as the main beam signals. The ghost signals cause significant errors in the emittance estimates because they appear at large trajectory angles. These ghost signals often go undetected because they partly overlap with the real signals, are mostly below the 1% level, and often hide in the noise. A simple deflection plate modification is shown to reduce the ghost signal strength by over 99%

  20. Ghost Signals In Allison Emittance Scanners

    International Nuclear Information System (INIS)

    Stockli, Martin P.; Leitner, M.; Keller, R.; Moehs, D.P.; Welton, R. F.

    2005-01-01

    For over 20 years, Allison scanners have been used to measure emittances of low-energy ion beams. We show that scanning large trajectory angles produces ghost signals caused by the sampled beamlet impacting on an electric deflection plate. The ghost signal strength is proportional to the amount of beam entering the scanner. Depending on the ions, and their velocity, the ghost signals can have the opposite or the same polarity as the main beam signals. The ghost signals cause significant errors in the emittance estimates because they appear at large trajectory angles. These ghost signals often go undetected because they partly overlap with the real signals, are mostly below the 1% level, and often hide in the noise. A simple deflection plate modification is shown to reduce the ghost signal strength by over 99%

  1. A device for fresh water sampling before radioactive measurements

    International Nuclear Information System (INIS)

    Maubert, Henri; Picat, Philippe.

    1982-06-01

    On account of the many field operations carried out by the laboratory, a water sampling device has been developed. This portable autonomous device performs in situ water filtration and concentration on ion exchange resins and activated carbon columns. The device is described and the trapping performance for 8 radionuclides is given. A comparison is made with the so-called evaporation method. The effects of the treatment of the filtrating elements on the radioactive results are studied. This sampling method is very sensitive [fr

  2. The effect of fluorine in low thermal budget polysilicon emitters for SiGe heterojunction bipolar transistors

    International Nuclear Information System (INIS)

    Schiz, F.J.W.

    1999-03-01

    This thesis investigates the behaviour of fluorine in two types of polysilicon emitter. In the first type the emitter is deposited at 610 deg. C as polycrystalline silicon (p-Si). In the second type the emitter is deposited at 560 deg. C as amorphous silicon (α-Si). The amorphous silicon 1 then regrows to polysilicon during subsequent high temperature anneals. Remarkably different behaviour of fluorine is seen in as-deposited α-Si and as-deposited p-Si emitter bipolar transistors. In the most extreme case, fluorine-implanted as-deposited p-Si devices show a base current increase by a factor of 1.5 and equivalent α-Si devices a base current decrease by a factor of 10.0 compared to unimplanted devices. Cross-section TEM observations are made to study the structure of the polysilicon/silicon interface and SIMS measurements to study the distribution of the fluorine in the polysilicon. The TEM results correlate well with the electrical results and show that fluorine accelerates interfacial oxide breakup. Furthermore, they show that for a given thermal budget, more interfacial oxide breakup and thus more epitaxial regrowth is obtained for transistors with p-Si polysilicon emitters. This results in a lower emitter resistance, for example as low as 12Ωμm 2 for as-deposited p-Si devices. The base current suppression for as-deposited α-Si devices is explained by fluorine passivation of trapping states at the interface. Analysis of the fluorine SIMS profiles suggests that they do not resemble normal diffusion profiles, but are due to fluorine trapped at defects. It is shown that a reciprocal relationship exists between the fluorine dose in the bulk polysilicon layer and the fluorine dose at the interface. In as-deposited α-Si devices, there is more fluorine trapped at defects in the bulk polysilicon layer, so less is available to diffuse to the interface. As a result there is less interfacial oxide breakup and more passivation in the as-deposited α-Si devices. These

  3. Spectrum of classes of point emitters of electromagnetic wave fields.

    Science.gov (United States)

    Castañeda, Román

    2016-09-01

    The spectrum of classes of point emitters has been introduced as a numerical tool suitable for the design, analysis, and synthesis of non-paraxial optical fields in arbitrary states of spatial coherence. In this paper, the polarization state of planar electromagnetic wave fields is included in the spectrum of classes, thus increasing its modeling capabilities. In this context, optical processing is realized as a filtering on the spectrum of classes of point emitters, performed by the complex degree of spatial coherence and the two-point correlation of polarization, which could be implemented dynamically by using programmable optical devices.

  4. The development of an enhanced strain measurement device to support testing of radioactive material packages

    International Nuclear Information System (INIS)

    Uncapkher, W.L.; Arviso, M.

    1995-01-01

    Radioactive material package designers use structural testing to verify and demonstrate package performance. A major part of evaluating structural response is the collection of reliable instrumentation measurement data. Over the last four decades, Sandia National Laboratories (SNL) has been actively involved in the development, testing, and evaluation of measurement devices for a broad range of applications, resulting in the commercialization of several measurement devices commonly used today. SNL maintains an ongoing program sponsored by the US Department of Energy (DOE) to develop and evaluate measurement devices to support testing of packages used to transport radioactive or hazardous materials. The development of the enhanced strain measurement device is part of this program

  5. Experimental investigation of thermal emittance components of copper photocathode

    Directory of Open Access Journals (Sweden)

    H. J. Qian

    2012-04-01

    Full Text Available With progress of photoinjector technology, thermal emittance has become the primary limitation of electron beam brightness. Extensive efforts have been devoted to study thermal emittance, but experiment results differ between research groups and few can be well interpreted. Besides the ambiguity of photoemission mechanism, variations of cathode surface conditions during cathode preparation, such as work function, field enhancement factor, and surface roughness, will cause thermal emittance differences. In this paper, we report an experimental study of electric field dependence of copper cathode quantum efficiency (QE and thermal emittance in a radio frequency (rf gun, through which in situ cathode surface parameters and thermal emittance contributions from photon energy, Schottky effect, and surface roughness are extracted. It is found the QE of a copper cathode illuminated by a 266 nm UV laser increased substantially to 1.5×10^{-4} after cathode cleaning during rf conditioning, and a copper work function of 4.16 eV, which is much lower than nominal value (4.65 eV, was measured. Experimental results also show a thermal emittance growth as much as 0.92  mm mrad/mm at 50  MV/m due to the cathode surface roughness effect, which is consistent with cathode surface morphology measurements.

  6. High efficiency and stable white OLED using a single emitter

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jian [Arizona State Univ., Tempe, AZ (United States). School of Mechanical, Aerospace, Chemical and Materials Engineering

    2016-01-18

    The ultimate objective of this project was to demonstrate an efficient and stable white OLED using a single emitter on a planar glass substrate. The focus of the project is on the development of efficient and stable square planar phosphorescent emitters and evaluation of such class of materials in the device settings. Key challenges included improving the emission efficiency of molecular dopants and excimers, controlling emission color of emitters and their excimers, and improving optical and electrical stability of emissive dopants. At the end of this research program, the PI has made enough progress to demonstrate the potential of excimer-based white OLED as a cost-effective solution for WOLED panel in the solid state lighting applications.

  7. Design and Functional Validation of a Complex Impedance Measurement Device for Characterization of Ultrasonic Transducers

    International Nuclear Information System (INIS)

    De-Cock, Wouter; Cools, Jan; Leroux, Paul

    2013-06-01

    This paper presents the design and practical implementation of a complex impedance measurement device capable of characterization of ultrasonic transducers. The device works in the frequency range used by industrial ultrasonic transducers which is below the measurement range of modern high end network analyzers. The device uses the Goertzel algorithm instead of the more common FFT algorithm to calculate the magnitude and phase component of the impedance under test. A theoretical overview is given followed by a practical approach and measurement results. (authors)

  8. On the role of diluted magnetic cobalt-doped ZnO electrodes in efficiency improvement of InGaN light emitters

    International Nuclear Information System (INIS)

    Liu, Hong-Ru; Wang, Shih-Yin; Ou, Sin-Liang; Wuu, Dong-Sing

    2016-01-01

    The 120-nm-thick cobalt-doped ZnO (Co-doped ZnO, CZO) dilute magnetic films deposited by pulsed laser deposition were employed as the n-electrodes for both lateral-type blue (450 nm) and green (520 nm) InGaN light emitters. In comparison to the conventional blue and green emitters, there were 15.9% and 17.7% enhancements in the output power (@350 mA) after fabricating the CZO n-electrode on the n-GaN layer. Observations on the role of CZO n-electrodes in efficiency improvement of InGaN light emitters were performed. Based on the results of Hall measurements, the carrier mobilities were 176 and 141 cm"2/V s when the electrons passed through the n-GaN and the patterned-CZO/n-GaN, respectively. By incorporating the CZO n-electrode into the InGaN light emitters, the electrons would be scattered because of the collisions between the magnetic atoms and the electrons as the device is driven, leading to the reduction of the electron mobility. Therefore, the excessively large mobility difference between electron and hole carriers occurred in the conventional InGaN light emitter can be efficiently decreased after preparing the CZO n-electrode on the n-GaN layer, resulting in the increment of carrier recombination rate and the improvement of light output power.

  9. Study of Thermal-Field Emission Properties and Investigation of Temperature dependent Noise in the Emission Current form vertical Carbon nanotube emitters

    KAUST Repository

    Kolekar, Sadhu

    2017-05-05

    We have investigated temperature dependent field electron emission characteristics of vertical carbon nanotubes (CNTs). The generalized expression for electron emission from well defined cathode surface is given by Millikan and Lauritsen [1] for the combination of temperature and electric field effect. The same expression has been used to explain the electron emission characteristics from vertical CNT emitters. Furthermore, this has been applied to explain the electron emission for different temperatures ranging from room temperature to 1500 K. The real-time field electron emission images at room temperature and 1500 K are recorded by using Charge Coupled Device (CCD), in order to understand the effect of temperature on electron emission spots in image morphology (as indicated by ring like structures) and electron emission spot intensity of the emitters. Moreover, the field electron emission images can be used to calculate the total number of emitters per cm2 for electron emission. The calculated number of emitters per cm2 is 4.5x107 and, the actual number emitters per cm2 present for electron emission calculated from Atomic Force Microscopy (AFM) data is 1.2x1012. The measured Current-Voltage (I-V) characteristics obey the Folwer-Nordheim (F-N) type behavior. The fluctuations in the emission current are recorded at different temperatures and, temperature dependence of power spectral density obeys power law relation s(f)=I2/f2 with that of emission current and frequency.

  10. Graphene field emitters: A review of fabrication, characterization and properties

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Leifeng, E-mail: chlf@hdu.edu.cn [College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018 (China); State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027 (China); Yu, Hu; Zhong, Jiasong; Song, Lihui [College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018 (China); Wu, Jun, E-mail: wujun@hdu.edu.cn [Institute of Electron Device & Application, Hangzhou Dianzi University, Hangzhou, Zhejiang 310018 (China); Su, Weitao [College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018 (China)

    2017-06-15

    Highlights: • The preparation, characterization and field emission properties for Gs are reviewed. • The review provides an updated progress on design and construction of Gs field emitters. • The review offers fundamental insights into understanding and design of Gs emitters. • The review can broach the subject and inspire readers in field of Gs based emitters. - Abstract: Graphenes are beneficial to electrons field emission due to its high aspect ratio, high carrier density, the larger carrier mobility, excellent electrical and thermal conductivity, excellent mechanical strength and chemical stability. In recent years, graphene or reduced oxide graphene field emitters have been successfully constructed by various methods such as chemical vapor deposition, chemical exfoliation, electrophoretic deposition, screen-printing and chemical synthesis methods. Graphene emitters are tried to construct in distribution with some angles or vertical orientation with respect to the substrate surface. The vertical alignment of graphene sheets or edges arrays can facilitate efficient electron emission from the atomically thick sheets. Therefore they have even more a low turn-on and threshold-field electronic field, high field enhancement factor, high current stability and high luminance. In this review, we shortly survey and discuss recent research progress in graphene field emission properties with particular an emphasis on their preparing method, characterization and applications in devices especially for vertical graphene and single layer graphene, also including their challenges and future prospects.

  11. Computer aided collimation gamma (Cacao): a new approach in measuring and visualizing the distribution of X and gamma ray emitters in contaminate wounds

    International Nuclear Information System (INIS)

    Douiri, A.; Jeanguillaume, C.; Franck, D.; Carlan, L. de; Quartuccio, M.; Begot, S.

    2003-01-01

    The treatment of contaminated wounds can be greatly improved by visualizing the distribution of the radioactivity that is present. The low sensitivity of the conventional Anger camera means that it can only be used where there is a high level of activity. Moreover, these gamma cameras cannot make full use of the recent progress made in high spatial resolution semi-conductor detectors. In order to increase sensitivity while at the same time maintaining a sufficient resolution of the reconstructed image, the principle of the Computer aided collimation gamma camera (CACAO in French) was proposed as a possible means of using gamma cameras in intern dosimetry. This principle is based on the combined use of collimators with holes that are wider- than the intrinsic resolution of the detector, circular and linear scanning movements, a detector sensitive to the source depth and a specific reconstruction algorithm. This article presents the recent developments of the CACAO system and illustrates by a theoretical and experimental study, its performances compared with the classic tomography system. We start with a general overview of the CACAO system and its reconstruction algorithm. First of all, the superiority of the CACAO system is demonstrated by a simulation ,study. Then, an experimental bench was developed using an implanted silicon pixel detector specifically designed to allow the visualization of a subject contaminated with low energy X and gamma emitters. The study presented here shows images obtained from a phantom composed of three sources of Americium 341 Am. Although the comparison between the conventional and CACAO approaches were not carried out with optimal parameters, especially for CACAO, the initial results show that CACAO has an improved sensitivity and a superior resolution. Finally, the transposition of this system to the practical study of contaminated wounds is discussed. (authors)

  12. Method of measuring the degree of fluid pollution

    International Nuclear Information System (INIS)

    Mortensen, A.; Hammer, E.A.

    1995-01-01

    The invention relates to an method and device for measuring the degree of pollution from particulates in fluids. The device consists of an emitter sending out green and red light in succession through the fluid to a light recorder. The recorder itself includes a unit designed for comparing the measured intensity of light with the values of known pollution degree in fluids. 2 figs

  13. Beam phase space and emittance

    International Nuclear Information System (INIS)

    Buon, J.

    1992-02-01

    The classical and elementary results for canonical phase space, the Liouville theorem and the beam emittance are reviewed. Then, the importance of phase portraits to obtain a geometrical description of motion is emphasized, with examples in accelerator physics. Finally, a statistical point of view is used to define beam emittance, to study its law of approximate conservation, with three particular examples, and to introduce a beam envelope-ellipse and the β-function, emphasing the statistical features of its properties. (author) 14 refs.; 11 figs

  14. Combustion powered thermophotovoltaic emitter system

    Energy Technology Data Exchange (ETDEWEB)

    McHenry, R.S. [Naval Academy, Annapolis, MD (United States). Naval Architecture, Ocean and Marine Engineering

    1995-07-01

    The US Naval Academy (USNA) has recently completed an engineering design project for a high temperature thermophotovoltaic (TPV) photon emitter. The final apparatus was to be portable, completely self contained, and was to incorporate cycle efficiency optimization such as exhaust stream recuperation. Through computer modeling and prototype experimentation, a methane fueled emitter system was designed from structural ceramic materials to fulfill the high temperature requirements necessary for high system efficiency. This paper outlines the engineering design process, discusses obstacles and solutions encountered, and presents the final design.

  15. Narrowband infrared emitters for combat ID

    Science.gov (United States)

    Pralle, Martin U.; Puscasu, Irina; Daly, James; Fallon, Keith; Loges, Peter; Greenwald, Anton; Johnson, Edward

    2007-04-01

    There is a strong desire to create narrowband infrared light sources as personnel beacons for application in infrared Identify Friend or Foe (IFF) systems. This demand has augmented dramatically in recent years with the reports of friendly fire casualties in Afghanistan and Iraq. ICx Photonics' photonic crystal enhanced TM (PCE TM) infrared emitter technology affords the possibility of creating narrowband IR light sources tuned to specific IR wavebands (near 1-2 microns, mid 3-5 microns, and long 8-12 microns) making it the ideal solution for infrared IFF. This technology is based on a metal coated 2D photonic crystal of air holes in a silicon substrate. Upon thermal excitation the photonic crystal modifies the emitted yielding narrowband IR light with center wavelength commensurate with the periodicity of the lattice. We have integrated this technology with microhotplate MEMS devices to yield 15mW IR light sources in the 3-5 micron waveband with wall plug efficiencies in excess of 10%, 2 orders of magnitude more efficient that conventional IR LEDs. We have further extended this technology into the LWIR with a light source that produces 9 mW of 8-12 micron light at an efficiency of 8%. Viewing distances >500 meters were observed with fielded camera technologies, ideal for ground to ground troop identification. When grouped into an emitter panel, the viewing distances were extended to 5 miles, ideal for ground to air identification.

  16. Design and test of 4πβ-γ coincidence measurement device based on DSP technology

    International Nuclear Information System (INIS)

    Zeng Herong; Feng Qijie; Leng Jun; Qian Dazhi; Bai Lixin; Zhang Yiyun

    2012-01-01

    The paper illustrates the hardware and software of the 4πβ-γ coincidence measurement device based on DSP technology in detail. In such device, the single-channel analyzer, gate generator, coincidence circuit and scalar in the traditional coincidence measurement device are replaced by the digital coincidence acquirer which is researched and manufactured by ourselves. Doing so, the measurement efficiency will be respectively improved, and the hardware cost will be lowered. The comparison experiment shows that the design of such device is a success. (authors)

  17. New beam-based and direct magnetic waveform measurements of the BTx.KFA10(20) vertical recombination kickers and induced emittance blow-up simulations at 1.4 and 2 GeV

    CERN Document Server

    Forte, Vincenzo; Borburgh, Jan; Sermeus, Luc; CERN. Geneva. ATS Department

    2018-01-01

    In the framework of the LHC Injectors Upgrade (LIU) project [1], this document summarises a new reconstruction methodology for the measurement of the magnetic waveforms of the vertical re-combination kickers BT1.KFA10, BT4.KFA10 and BT2.KFA20, from data collected during several Machine Development (MD) sessions. The reconstruction has been performed in order to verify the LIU specification of the recombination kickers, which is required for a clean transfer of the longer bunches coming from the PSB after the upgrade. A beam-based methodology was developed to measure the transient magnetics dynamics of the kicker where the bunch length is comparable to the rise and/or fall times. These measurements represent a valuable way to reconstruct the mag-netic waveform of the kickers where removing them to make direct probe measurements is time consuming. A benchmarking of the beam-based measurements with field probe measurements is presented, together with realistic simulations of the vertical emittance blow-up at 1...

  18. Calculations of emittance and damping time effects in the SLC damping rings

    International Nuclear Information System (INIS)

    Limberg, T.; Moshammer, H.; Raubenheimer, T.; Spencer, J.; Siemann, R.

    1992-03-01

    In a recent NDR machine experiment the transverse emittance was studied as a function of store time and tune. To explain the observed transverse emittance damping time constants, the magnetic measurement data of the longitudinal field of the bending magnets had to be taken into account. The variation of the transverse emittances with tune due to misalignments and the associated anomalous dispersion is studied as well as the effect of synchrobetatron coupling due to dispersion in the RF cavities

  19. Assessment of a portable device for the quantitative measurement of ankle joint stiffness in spastic individuals

    DEFF Research Database (Denmark)

    Lorentzen, Jakob; Grey, Michael J; Geertsen, Svend Sparre

    2012-01-01

    was measured with the portable device and a stationary torque motor. Inter- and intra-rater reliability was assessed with the intra-class correlation coefficient (ICC). RESULTS: Stiffness measures with the portable and stationary devices were significantly correlated for controls and MS participants (p...

  20. Measuring devices for the modular switch system; Messgeraete fuer den Schaltschrank

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, Rudolf [Janitza Electronics GmbH, Lahnau (Germany). Sales und Marketing

    2008-10-15

    The advantages of digital universal measuring instruments are: lower device cost for more information and functionality. Furtheron digital measuring technology is more exactly during service life. Cost advantages result due to low installation cost and reduced installation of wires and cables. So universal devices replace all analogue systems and offer further functions. (orig./GL)

  1. 30 CFR 75.320 - Air quality detectors and measurement devices.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Air quality detectors and measurement devices... COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Ventilation § 75.320 Air quality detectors and measurement devices. (a) Tests for methane shall be made by a qualified person with...

  2. Recommendations for blood pressure measuring devices for office/clinic use in low resource settings

    NARCIS (Netherlands)

    Parati, G.; Mendis, S.; Abegunde, D.; Asmar, R.; Mieke, S.; Murray, A.; Shengelia, B.; Steenvoorden, G.; Montfrans, G. van; O'Brien, E.

    2005-01-01

    This paper, which summarizes the conclusions of a WHO Expert meeting, is aimed at proposing indications to develop technical specifications for an accurate and affordable blood pressure measuring device for office/ clinic use in low resource settings. Blood pressure measuring devices to be used in

  3. Experimental device for measuring the dynamic properties of diaphragm motors

    Science.gov (United States)

    Fojtášek, Kamil; Dvořák, Lukáš; Mejzlík, Jan

    The subject of this paper is to design and description of the experimental device for the determination dynamic properties of diaphragm pneumatic motors. These motors are structurally quite different from conventional pneumatic linear cylinders. The working fluid is typically compressed air, the piston of motor is replaced by an elastic part and during the working cycle there is a contact of two elastic environments. In the manufacturers catalogs of these motors are not given any working characteristics. Description of the dynamic behavior of diaphragm motor will be used for verification of mathematical models.

  4. Accuracy of an improved device for remote measuring of tree-trunk diameters

    International Nuclear Information System (INIS)

    Matsushita, T.; Kato, S.; Komiyama, A.

    2000-01-01

    For measuring the diameters of tree trunks from a distant position, a recent device using a laser beam was developed by Kantou. We improved this device to serve our own practical purposes. The improved device consists of a 1-m-long metal caliper and a small telescope sliding smoothly onto it. Using the cross hairs in the scope, one can measure both edges of an object on the caliper and calculate its length. The laser beam is used just for guiding the telescopic sights to the correct positions on the object. In this study, the accuracy of this new device was examined by measuring objects of differing lengths, the distance from the object, and the angle of elevation to the object. Since each result of the experiment predicted absolute errors of measurement of less than 3 mm, this new device will be suitable for the measurement of trunk diameters in the field

  5. Microcontroller based motion control interface unit for double slit type beam emittance monitor for H- ion source

    International Nuclear Information System (INIS)

    Holikatti, A.C.; Jain, Rahul; Karnewar, A.K.; Sonawane, B.B.; Maurya, N.K.; Puntambekar, T.A.

    2015-01-01

    The Indian Spallation Neutron Source (ISNS), proposed to be developed at RRCAT, will use a 1 GeV H - linac and an accumulator ring to produce high flux of pulsed neutrons via spallation process. The development activity of front end of 1H - linac for ISNS is under progress at RRCAT, for which a pulsed H - ion source of 50 keV energy, 30 mA current with pulse width of 500 μs has been developed at RRCAT. In this paper, we present the design and development of a microcontroller based motion control interface unit for double slit type beam emittance monitor for the H - ion source. This is an interceptive type of beam diagnostic device, which is used for the quantitative measurement of transverse emittance and beam intensity profile

  6. Sub-nanometer emittance monitor for high brightness synchrotron radiation source

    International Nuclear Information System (INIS)

    Nakajima, K.

    1991-01-01

    Method of measuring a very small beam emittance in electron storage rings is presented. The monitor can sense an intrinsic emittance of beam particles by detecting the angular distribution of Compton scatterings of laser photons on beam electrons. It is possible to achieve measurement resolution smaller than 10 -9 m-rad without difficulty. (author)

  7. Development of a Force Measurement Device for Lower-Body Muscular Strength Measuring of Skaters

    Science.gov (United States)

    Kim, Dong Ki; Lee, Jeong Tae

    This paper presents a force measurement system that can measure a lower-body muscular strength of skaters. The precise measurement and analysis of the left and right lower-body strength of skaters is necessary, because a left/right lower-body strength balance is helpful to improve the athletes' performance and to protect them from injury. The system is constructed with a skate sliding board, a couple of sensor-units with load cell, indicator and control box, guard, force pad, and support bracket. The developed force measurement system is calibrated by the calibration setup, and the uncertainty of the force sensing unit on the left is within 0.087% and the uncertainty of the force sensing unit on the right is within 0.109%. In order to check the feasibility of the developed measurement device, a kinematic analysis is conducted with skater. As a result, the subject shows the deviation of left and right of 12.1 N with respect to average strength and 39.1 N with respect to the maximum strength. This evaluation results are reliable enough to make it possible to measure a lower-body muscular strength of skaters. The use of this measurement system will be expected to correct the posture of skaters and record the sports dynamics data for each athlete. It is believed that through the development of this equipment, skaters in elementary, middle, high schools, colleges, and the professional level have the systematic training to compete with world-class skaters.

  8. Device for measuring the flow rate of a fluid moving through a pipe

    International Nuclear Information System (INIS)

    Barge, Gilles; Bouchard, Patrick; Chaix, J.E.; Rigaud, J.L.; Vivaldi, Andre.

    1981-01-01

    A device is described for measuring the flow rate, in particular through large section pipes, such as those found in water type nuclear reactors, thermal power stations and gas loops. This device includes a plate drilled with holes crossed by a fluid and held in the pipe by deformable components on which are secured strain gauges forming the detecting element of an electronic device for processing the signal emitted by the gauges. This device can be employed, for instance, for measuring the flow rate of a coolant in the primary system of a nuclear reactor [fr

  9. Development and evaluation of measurement devices used to support testing of radioactive material transportation packages

    International Nuclear Information System (INIS)

    Uncapher, W.L.; Ammerman, D.J.; Stenberg, D.R.; Bronowski, D.R.; Arviso, M.

    1992-01-01

    Radioactive material package designers use structural testing to verify and demonstrate package performance. A major part of evaluating structural response is the collection of instrumentation measurement data. Sandia National Laboratories (SNL) has an ongoing program to develop and evaluate measurement devices to support testing of radioactive material packages. Measurement devices developed in support of this activity include evaluation channels, ruggedly constructed linear variable differential transformers, and piezoresistive accelerometers with enhanced measurement capabilities. In addition to developing measurement devices, a method has been derived to evaluate accelerometers and strain gages for measurement repeatability, ruggedness, and manufacturers' calibration data under both laboratory and field conditions. The developed measurement devices and evaluation technique will be discussed and the results of the evaluation will be presented

  10. Pneumatic strength assessment device: design and isometric measurement.

    Science.gov (United States)

    Paulus, David C; Reiser, Raoul F; Troxell, Wade O

    2004-01-01

    In order to load a muscle optimally during resistance exercise, it should be heavily taxed throughout the entire range of motion for that exercise. However, traditional constant resistance squats only tax the lower-extremity muscles to their limits at the "sticking region" or a critical joint configuration of the exercise cycle. Therefore, a linear motion (Smith) exercise machine was modified with pneumatics and appropriate computer control so that it could be capable of adjusting force to control velocity within a repetition of the squat exercise or other exercise performed with the device. Prior to application of this device in a dynamic squat setting, the maximum voluntary isometric force (MVIF) produced over a spectrum of knee angles is needed. This would reveal the sticking region and overall variation in strength capacity. Five incremental knee angles (90, 110, 130, 150, and 170 degrees, where 180 degrees defined full extension) were examined. After obtaining university-approved informed consent, 12 men and 12 women participated in the study. The knee angle was set, and the pneumatic cylinder was pressurized such that the subject could move the barbell slightly but no more than two-centimeters. The peak pressure exerted over a five-second maximum effort interval was recorded at each knee angle in random order and then repeated. The average of both efforts was then utilized for further analysis. The sticking region occurred consistently at a 90 degrees knee angle, however, the maximum force produced varied between 110 degrees and 170 degrees with the greatest frequency at 150 degrees for both men and women. The percent difference between the maximum and minimum MVIF was 46% for men and 57% for women.

  11. COMPARISON OF A HEAD MOUNTED IMPACT MEASUREMENT DEVICE TO THE HYBRID III ANTHROPOMORPHIC TESTING DEVICE IN A CONTROLLED LABORATORY SETTING.

    Science.gov (United States)

    Schussler, Eric; Stark, David; Bolte, John H; Kang, Yun Seok; Onate, James A

    2017-08-01

    Reports estimate that 1.6 to 3.8 million cases of concussion occur in sports and recreation each year in the United States. Despite continued efforts to reduce the occurrence of concussion, the rate of diagnosis continues to increase. The mechanisms of concussion are thought to involve linear and rotational head accelerations and velocities. One method of quantifying the kinematics experienced during sport participation is to place measurement devices into the athlete's helmet or directly on the athlete's head. The purpose of this research to determine the accuracy of a head mounted device for measuring the head accelerations experienced by the wearer. This will be accomplished by identifying the error in Peak Linear Acceleration (PLA), Peak Rotational Acceleration (PRA) and Peak Rotational Velocity (PRV) of the device. Laboratory study. A helmeted Hybrid III 50th percentile male headform was impacted via a pneumatic ram from the front, side, rear, front oblique and rear oblique at speeds from 1.5 to 5 m/s. The X2 Biosystems xPatch® (Seattle, WA) sensor was placed on the headform's right side at the approximate location of the mastoid process. Measures of PLA, PRA, PRV from the xPatch ® and Hybrid III were analyzed for Root Mean Square Error (RMSE), and Absolute and Relative Error (AE, RE). Seventy-six impacts were analyzed. All measures of correlation, fixed through the origin, were found to be strong: PLA R 2 =0.967 pstandard yet above the average error of testing devices in both PLA and PRA, but a low error in PRV. PLA measures from the xPatch® system demonstrated a high level of correlation with the PLA data from the Hybrid III mounted data collection system. 3.

  12. Barium depletion in hollow cathode emitters

    International Nuclear Information System (INIS)

    Polk, James E.; Mikellides, Ioannis G.; Katz, Ira; Capece, Angela M.

    2016-01-01

    Dispenser hollow cathodes rely on a consumable supply of Ba released by BaO-CaO-Al 2 O 3 source material in the pores of a tungsten matrix to maintain a low work function surface. The examination of cathode emitters from long duration tests shows deposits of tungsten at the downstream end that appear to block the flow of Ba from the interior. In addition, a numerical model of Ba transport in the cathode plasma indicates that the Ba partial pressure in the insert may exceed the equilibrium vapor pressure of the dominant Ba-producing reaction, and it was postulated previously that this would suppress Ba loss in the upstream part of the emitter. New measurements of the Ba depletion depth from a cathode insert operated for 8200 h reveal that Ba loss is confined to a narrow region near the downstream end, confirming this hypothesis. The Ba transport model was modified to predict the depletion depth with time. A comparison of the calculated and measured depletion depths gives excellent qualitative agreement, and quantitative agreement was obtained assuming an insert temperature 70 °C lower than measured beginning-of-life values

  13. Improvements in emittance wake field optimization for the SLAC Linear Collider

    CERN Document Server

    Decker, Franz Josef

    2003-01-01

    The transverse emittances in the SLAC Linear Collider can be severely diluted by collective wakefield effects and dispersion. For the 1997/98 SLC/SLD run important changes were implemented in the way the emittance is optimized. Early in the linac, where the energy spread is large due to BNS damping, the emittance growth is dominated by dispersion. In this regime emittance tuning bumps may introduce additional wakefield tails and their use is now avoided. At the end of the linac the energy spread is minimal and the emittance measurement is most sensitive to wakefield emittance dilution. In previous years, the emittances were tuned on wire scanners located near but not at the end of the linac (after about 90% of its length). Simulations show that emittance growth of up to 100% can occur in the remaining 10%. In this run wire scanners at the entrance of the Final Focus, the last place where the emittances can be measured, were used for the optimization. Screens at the end of the linac allow additional real time ...

  14. A thermionic energy converter with A molybdenum alumina cermet emitter

    NARCIS (Netherlands)

    Gubbels, G.H.M.; Wolff, L.R.; Metselaar, R.; Yogi Goswami, D.

    1988-01-01

    The I-V characteristics of a thermionic converter equipped with a Mo-1w/o AI203 emitter and a Mo collector were measured. The conditions were varied over a limited range without, as well as with Cs. Work functions of Mo as well as Mo-1w/o AI203 were determined. Measurements were carried out in a

  15. Emittance growth in the DARHT Axis-II Downstream Transport

    Energy Technology Data Exchange (ETDEWEB)

    Ekdahl, Jr., Carl August [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Schulze, Martin E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-04-14

    Using a particle-in-cell (PIC) code, we investigated the possibilities for emittance growth through the quadrupole magnets of the system used to transport the high-current electron beam from an induction accelerator to the bremsstrahlung converter target used for flash radiography. We found that even highly mismatched beams exhibited little emittance growth (< 6%), which we attribute to softening of their initial hard edge current distributions. We also used this PIC code to evaluate the accuracy of emittance measurements using a solenoid focal scan following the quadrupole magnets. If the beam is round after the solenoids, the simulations indicate that the measurement is highly accurate, but it is substantially inaccurate for elliptical beams

  16. A simple laser-based device for simultaneous microbial culture and absorbance measurement

    Science.gov (United States)

    Abrevaya, X. C.; Cortón, E.; Areso, O.; Mauas, P. J. D.

    2013-07-01

    In this work we present a device specifically designed to study microbial growth with several applications related to environmental microbiology and other areas of research as astrobiology. The Automated Measuring and Cultivation device (AMC-d) enables semi-continuous absorbance measurements directly during cultivation. It can measure simultaneously up to 16 samples. Growth curves using low and fast growing microorganism were plotted, including Escherichia coli and Haloferax volcanii, a halophilic archaeon.

  17. A Simple Laser-Based Device for Simultaneous Microbial Culture and Absorbance Measurement

    OpenAIRE

    Abrevaya, X. C.; Cortón, E.; Areso, O.; Mauas, P. J. D.

    2012-01-01

    In this work we present a device specifically designed to study microbial growth with several applications related to environmental microbiology and other areas of research as astrobiology. The Automated Measuring and Cultivation device (AMC-d) enables semi-continuous absorbance measurements directly during cultivation. It can measure simultaneously up to 16 samples. Growth curves using low and fast growing microorganism were plotted, including Escherichia coli and Haloferax volcanii, a halop...

  18. 27 CFR 19.277 - Measuring devices and proofing instruments.

    Science.gov (United States)

    2010-04-01

    ... proof or volume. (b) Instruments. Hydrometers and thermometers used by proprietors to gauge spirits... made in conjunction with the volumetric measurement of spirits by meter. If a meter does not have a...

  19. Method and device for measuring formation characteristics of geological formations

    International Nuclear Information System (INIS)

    Antkiw, S.; Murphy, R.D.

    1981-01-01

    A well-logging system is described which uses a pulsed neutron source and which by combining measurements of gamma spectra and neutron characteristics enables such parameters as salinity, porosity, water saturation, lithology and schistosity to be registered directly. (JIW)

  20. A pilot study of a new spectrophotometry device to measure tissue oxygen saturation.

    Science.gov (United States)

    Abel, Gemma; Allen, John; Drinnan, Michael

    2014-09-01

    Tissue oxygen saturation (SO2) measurements have the potential for far wider use than at present but are limited by device availability and portability for many potential applications. A device based on a small, low-cost general-purpose spectrophotometer (the Harrison device) might facilitate wider use. The aim of this study was to compare the Harrison device with a commercial instrument, the LEA O2C.Measurements were carried out on the forearm and finger of 20 healthy volunteers, using a blood pressure cuff on the upper arm to induce different levels of oxygenation. Repeatability of both devices was assessed, and the Bland-Altman method was used to assess agreement between them.The devices showed agreement in overall tracking of changes in SO2. Test-retest agreement for the Harrison device was worse than for O2C, with SD repeatability of 10.6% (forearm) or 18.6% (finger). There was no overall bias between devices, but mean (SD) difference of 1.2 (11.8%) (forearm) or 4.4 (11.5%) (finger) were outside of a clinically acceptable range.Disagreements were attributed to the stability of the Harrison probe and the natural SO2 variations across the skin surface increasing the random error. Therefore, though not equivalent to the LEA O2C, a probe redesign and averaged measurements may help establish the Harrison device as a low cost alternative.

  1. A pilot study of a new spectrophotometry device to measure tissue oxygen saturation

    International Nuclear Information System (INIS)

    Abel, Gemma; Allen, John; Drinnan, Michael

    2014-01-01

    Tissue oxygen saturation (SO2) measurements have the potential for far wider use than at present but are limited by device availability and portability for many potential applications. A device based on a small, low-cost general-purpose spectrophotometer (the Harrison device) might facilitate wider use. The aim of this study was to compare the Harrison device with a commercial instrument, the LEA O2C. Measurements were carried out on the forearm and finger of 20 healthy volunteers, using a blood pressure cuff on the upper arm to induce different levels of oxygenation. Repeatability of both devices was assessed, and the Bland–Altman method was used to assess agreement between them. The devices showed agreement in overall tracking of changes in SO2. Test–retest agreement for the Harrison device was worse than for O2C, with SD repeatability of 10.6% (forearm) or 18.6% (finger). There was no overall bias between devices, but mean (SD) difference of 1.2 (11.8%) (forearm) or 4.4 (11.5%) (finger) were outside of a clinically acceptable range. Disagreements were attributed to the stability of the Harrison probe and the natural SO2 variations across the skin surface increasing the random error. Therefore, though not equivalent to the LEA O2C, a probe redesign and averaged measurements may help establish the Harrison device as a low cost alternative. (paper)

  2. From classical to quantum plasmonics: Classical emitter and SPASER

    Science.gov (United States)

    Balykin, V. I.

    2018-02-01

    The key advantage of plasmonics is in pushing our control of light down to the nanoscale. It is possible to envision lithographically fabricated plasmonic devices for future quantum information processing or cryptography at the nanoscale in two dimensions. A first step in this direction is a demonstration of a highly efficient nanoscale light source. Here we demonstrate two types of nanoscale sources of optical fields: 1) the classical metallic nanostructure emitter and 2) the plasmonic nanolaser - SPASER.

  3. Classification of methods for measuring current-voltage characteristics of semiconductor devices

    Directory of Open Access Journals (Sweden)

    Iermolenko Ia. O.

    2014-06-01

    Full Text Available It is shown that computer systems for measuring current-voltage characteristics are very important for semiconductor devices production. The main criteria of efficiency of such systems are defined. It is shown that efficiency of such systems significantly depends on the methods for measuring current-voltage characteristics of semiconductor devices. The aim of this work is to analyze existing methods for measuring current-voltage characteristics of semiconductor devices and to create the classification of these methods in order to specify the most effective solutions in terms of defined criteria. To achieve this aim, the most common classifications of methods for measuring current-voltage characteristics of semiconductor devices and their main disadvantages are considered. Automated and manual, continuous, pulse, mixed, isothermal and isodynamic methods for measuring current-voltage characteristics are analyzed. As a result of the analysis and generalization of existing methods the next classification criteria are defined: the level of automation, the form of measurement signals, the condition of semiconductor device during the measurements, and the use of mathematical processing of the measurement results. With the use of these criteria the classification scheme of methods for measuring current-voltage characteristics of semiconductor devices is composed and the most effective methods are specified.

  4. Validating a new device for measuring tear evaporation rates.

    Science.gov (United States)

    Rohit, Athira; Ehrmann, Klaus; Naduvilath, Thomas; Willcox, Mark; Stapleton, Fiona

    2014-01-01

    To calibrate and validate a commercially available dermatology instrument to measure tear evaporation rate of contact lens wearers. A dermatology instrument was modified by attaching a swim goggle cup such that the cup sealed around the eye socket. Results for the unmodified instrument are dependent on probe area and enclosed volume. Calibration curves were established using a model eye, to account for individual variations in chamber volume and exposed area. Fifteen participants were recruited and the study included a contact lens wear and a no contact lens wear stage. Day and diurnal variation of the measurements were assessed by taking the measurement three times a day over 2 days. The coefficient of repeatability of the measurement was calculated and a linear mixed model assessed the influence of humidity, temperature, contact lens wear, day and diurnal variations on tear evaporation rate. The associations between variables were assessed using Pearson correlation coefficient. Absolute evaporation rates with and without contact lens wear were calculated based on the new calibration. The measurements were most repeatable during the evening with no lens wear (COR = 49 g m⁻² h) and least repeatable during the evening with contact lens wear (COR = 93 g m⁻² h). Humidity (p = 0.007), and contact lens wear (p evaporation rate. However, temperature (p = 0.54) diurnal variation (p = 0.85) and different days (p = 0.65) had no significant effect after controlling for humidity. Tear evaporation rates can be measured using a modified dermatology instrument. Measurements were higher and more variable with lens wear consistent with previous literature. Control of environmental conditions is important as a higher humidity results in a reduced evaporation rate. © 2013 The Authors Ophthalmic & Physiological Optics © 2013 The College of Optometrists.

  5. Alpha particle emitters in medicine

    International Nuclear Information System (INIS)

    Fisher, D.R.

    1989-09-01

    Radiation-induced cancer of bone, liver and lung has been a prominent harmful side-effect of medical applications of alpha emitters. In recent years, however, the potential use of antibodies labeled with alpha emitting radionuclides against cancer has seemed promising because alpha particles are highly effective in cell killing. High dose rates at high LET, effectiveness under hypoxic conditions, and minimal expectancy of repair are additional advantages of alpha emitters over antibodies labeled with beta emitting radionuclides for cancer therapy. Cyclotron-produced astatine-211 ( 211 At) and natural bismuth-212 ( 212 Bi) have been proposed and are under extensive study in the United States and Europe. Radium-223 ( 223 Ra) also has favorable properties as a potential alpha emitting label, including a short-lived daughter chain with four alpha emissions. The radiation dosimetry of internal alpha emitters is complex due to nonuniformly distributed sources, short particle tracks, and high relative specific ionization. The variations in dose at the cellular level may be extreme. Alpha-particle radiation dosimetry, therefore, must involve analysis of statistical energy deposition probabilities for cellular level targets. It must also account fully for nonuniform distributions of sources in tissues, source-target geometries, and particle-track physics. 18 refs., 4 figs

  6. Comparison of the methods for determination of calibration and verification intervals of measuring devices

    Directory of Open Access Journals (Sweden)

    Toteva Pavlina

    2017-01-01

    Full Text Available The paper presents different determination and optimisation methods for verification intervals of technical devices for monitoring and measurement based on the requirements of some widely used international standards, e.g. ISO 9001, ISO/IEC 17020, ISO/IEC 17025 etc., maintained by various organizations implementing measuring devices in practice. Comparative analysis of the reviewed methods is conducted in terms of opportunities for assessing the adequacy of interval(s for calibration of measuring devices and their optimisation accepted by an organization – an extension or reduction depending on the obtained results. The advantages and disadvantages of the reviewed methods are discussed, and recommendations for their applicability are provided.

  7. Measuring device for the coolant flowrate in a reactor core

    International Nuclear Information System (INIS)

    Sawa, Toshihiko.

    1983-01-01

    Purpose: To improve the operation performance by enabling direct and accurate measurement for the reactor core recycling flowrate. Constitution: A control rod guide is disposed to the upper end of a control rod drive mechanism housing passing through the bottom of a reactor pressure vessel and it is inserted into the through hole of a reactor core support plate. A water flow passage is formed through the reactor core support plate for the flowrate measurement of coolants recycled within the reactor core. The static pressure difference between the upper and the lower sides of the reactor core support plate is measured by a pressure difference detector of a pressure difference measuring mechanism, and an output signal from the pressure different detector is inputted to a calculation means, in which the amount of the coolants passing through the water flow passage is calculated based on the output signal corresponding to the pressure difference. Then, the total recycling flowrate in the reactor core is determined in the calculation means based on the relation between the measured flowrate and a predetermined total reactor core recycling flowrate. (Horiuchi, T.)

  8. On-line display used with cathode ray tube film measuring device

    International Nuclear Information System (INIS)

    Fortney, L.R.; Robertson, W.J.

    1981-01-01

    An improved display has been developed for use on our computer controlled measuring device (RIPPLE). The device features a television image of the film and a digital presentation on the same X, Y display. The television image is formed using a modified left and right raster scan which can cover 50% more area in the same time as the traditional raster

  9. Measurement campaign on connectivity of mesh networks formed by mobile devices

    DEFF Research Database (Denmark)

    Pietrarca, Beatrice; Sasso, Giovanni; Perrucci, Gian Paolo

    2007-01-01

    This paper reports the results of a measurement campaign on the connectivity level of mobile devices using Bluetooth (BT) to form cooperative mobile mesh networks. Such mobile mesh networks composed of mobile devices are the basis for any peer-to-peer communication like wireless grids or social...

  10. A New Cuffless Device for Measuring Blood Pressure: A Real-Life Validation Study

    NARCIS (Netherlands)

    Schoot, T.S.; Weenk, M.; Belt, T.H. van de; Engelen, L.J.L.P.G.; Goor, H. van; Bredie, S.J.H.

    2016-01-01

    BACKGROUND: Cuffless blood pressure (BP) monitoring devices, based on pulse transit time, are being developed as an easy-to-use, more convenient, fast, and relatively cheap alternative to conventional BP measuring devices based on cuff occlusion. Thereby they may provide a great alternative to BP

  11. Methods and devices used to measure friction in rolling

    DEFF Research Database (Denmark)

    Jeswiet, J.; Arentoft, Mogens; Henningsen, Poul

    2006-01-01

    Friction at the workpiece-die boundary, in both bulk forming and sheet forming is, arguably, the single most important physical parameter influencing the processing of metals; yet it remains the least understood. Hence there is a need for basic research into metal-die interface mechanisms. To gain...... a good understanding of the mechanisms at the interface and to be able to verify the friction and tribology models that exist, friction sensors are needed. Designing sensors to measure frictional stress in metal working has been pursued by many researchers. This paper surveys methods that have been used...... to measure friction in rolling in the past and discusses some of the recent sensor designs that can now be used to measure friction both in production situations and for research purposes....

  12. Localized corrosion information using high resolution measurement devices

    DEFF Research Database (Denmark)

    Ambat, Rajan

    2005-01-01

    High performance demand for several engineering alloys and components, and miniaturization of electronics and development of MEMS requires better understanding of local corrosion characteristics frequently down to µm scale. This is because in metallic materials corrosion is a sensitive function...... in conjunction with microstructural analysis, using advanced microscopic tools, becomes very important. Corrosion of microelectronics circuits and MEMs is also a recent problem, which demands measurement resolution down to few microns as the components are extremely small, and measurement needs to be carried out...

  13. Emittance growth and tune spectra at PETRA III

    International Nuclear Information System (INIS)

    Wanzenberg, R.

    2011-08-01

    At DESY the PETRA ring has been converted into a synchrotron radiation facility, called PETRA III. 20 damping wigglers have been installed to achieve an emittance of 1 nm. The commissioning with beam started in April 2009 and user runs have been started in 2010. The design current is 100 mA and the bunch to bunch distance is 8 ns for one particular filling pattern with 960 bunches. At a current of about 50 mA a strong vertical emittance increase has been observed. During machine studies it was found that the emittance increase depends strongly on the bunch filling pattern. For the user operation a filling scheme has been found which mitigates the increase of the vertical emittance. In August 2010 PETRA III has been operated without damping wigglers for one week. The vertical emittance growth was not significantly smaller without wigglers. Furthermore tune spectra at PETRA III show characteristic lines which have been observed at other storage rings in the connection with electron clouds. Measurements at PETRA III are presented for different bunch filling patterns and with and without wiggler magnets. (orig.)

  14. Interlaboratory comparison of techniques for measuring lung burdens of low-energy X-ray emitters. Part of a coordinated programme on the calibration of burdens of inhaled plutonium by external counting

    International Nuclear Information System (INIS)

    Newton, D.; Fry, F.A.; Taylor, B.T.; Eagle, M.C.; Sharma, R.C.

    1978-02-01

    An interlaboratory exercise has been conducted to assess techniques of detection and calibration in the direct measurement of lung contamination with plutonium and other nuclides emitting only low-energy X-rays. Three volunteers, of small, intermediate and large physique, inhaled an aerosol incorporating Pd-103, a 20-keV X-ray emitter, and visited 13 other laboratories in the UK, Europe and North America. Participants in the exercise were asked to estimate each subject's lung content, using their procedures for assessing burdens of plutonium, and their estimates were compared with values derived independently from measurements of Cr-51, also incorporated in the inhaled particles, by gamma-ray spectrometry. Laboratories' calibration procedures were in most cases based on elaborate thorax phantoms, and these generally led to underestimates of the subjects' contents, in some instances by a factor of three or more; only one such laboratory produced estimates in satisfactory agreement with the independently-known values. The ''phoswich'' detectors, employed by most participants, appeared to be more sensitive than gas counters. If a standard configuration were required, offering the highest sensitivity in most situations, the choice would be a pair of 12-cm diameter phoswich detectors viewing the left and right anterior surfaces of the upper thorax. No improvement in sensitivity would result from increasing the size, although larger units may offer other advantages

  15. Experimental Characterization of Close-Emitter Interference in an Optical Camera Communication System.

    Science.gov (United States)

    Chavez-Burbano, Patricia; Guerra, Victor; Rabadan, Jose; Rodríguez-Esparragón, Dionisio; Perez-Jimenez, Rafael

    2017-07-04

    Due to the massive insertion of embedded cameras in a wide variety of devices and the generalized use of LED lamps, Optical Camera Communication (OCC) has been proposed as a practical solution for future Internet of Things (IoT) and smart cities applications. Influence of mobility, weather conditions, solar radiation interference, and external light sources over Visible Light Communication (VLC) schemes have been addressed in previous works. Some authors have studied the spatial intersymbol interference from close emitters within an OCC system; however, it has not been characterized or measured in function of the different transmitted wavelengths. In this work, this interference has been experimentally characterized and the Normalized Power Signal to Interference Ratio (NPSIR) for easily determining the interference in other implementations, independently of the selected system devices, has been also proposed. A set of experiments in a darkroom, working with RGB multi-LED transmitters and a general purpose camera, were performed in order to obtain the NPSIR values and to validate the deduced equations for 2D pixel representation of real distances. These parameters were used in the simulation of a wireless sensor network scenario in a small office, where the Bit Error Rate (BER) of the communication link was calculated. The experiments show that the interference of other close emitters in terms of the distance and the used wavelength can be easily determined with the NPSIR. Finally, the simulation validates the applicability of the deduced equations for scaling the initial results into real scenarios.

  16. Experimental Characterization of Close-Emitter Interference in an Optical Camera Communication System

    Science.gov (United States)

    Chavez-Burbano, Patricia; Rabadan, Jose; Perez-Jimenez, Rafael

    2017-01-01

    Due to the massive insertion of embedded cameras in a wide variety of devices and the generalized use of LED lamps, Optical Camera Communication (OCC) has been proposed as a practical solution for future Internet of Things (IoT) and smart cities applications. Influence of mobility, weather conditions, solar radiation interference, and external light sources over Visible Light Communication (VLC) schemes have been addressed in previous works. Some authors have studied the spatial intersymbol interference from close emitters within an OCC system; however, it has not been characterized or measured in function of the different transmitted wavelengths. In this work, this interference has been experimentally characterized and the Normalized Power Signal to Interference Ratio (NPSIR) for easily determining the interference in other implementations, independently of the selected system devices, has been also proposed. A set of experiments in a darkroom, working with RGB multi-LED transmitters and a general purpose camera, were performed in order to obtain the NPSIR values and to validate the deduced equations for 2D pixel representation of real distances. These parameters were used in the simulation of a wireless sensor network scenario in a small office, where the Bit Error Rate (BER) of the communication link was calculated. The experiments show that the interference of other close emitters in terms of the distance and the used wavelength can be easily determined with the NPSIR. Finally, the simulation validates the applicability of the deduced equations for scaling the initial results into real scenarios. PMID:28677613

  17. Clinical use of a portable electronic device to measure haematocrit ...

    African Journals Online (AJOL)

    Mean plasma total protein and albumin concentrations were lower compared with normal reference ranges. Six of the 24 patients were acidotic and 4 alkalotic. Leucocyte counts obtained randomly from 13 patients were elevated. Changes in measurements which could influence conductivity did not affect the BEM reading.

  18. Field evaluation of a novel haemoglobin measuring device ...

    African Journals Online (AJOL)

    Objective. To evaluate the use of a robust, cheap method for haemoglobin estimation by non-laboratory-trained personnel in a rural setting. Design. Comparative study. Setting. Tintswalo Hospital. Acomhoek. Participants. 7 nursing sisters, 4 medical students, 2 lay persons. Outcome measures. Haemoglobin estimates ...

  19. Device for measuring neutron-flux distribution density

    International Nuclear Information System (INIS)

    Rozenbljum, N.D.; Mitelman, M.G.; Kononovich, A.A.; Kirsanov, V.S.; Zagadkin, V.A.

    1977-01-01

    An arrangement is described for measuring the distribution of neutron flux density over the height of a nuclear reactor core and which may be used for monitoring energy release or for detecting deviations of neutron flux from an optimal level so that subsequent balance can be achieved. It avoids mutual interference of detectors. Full constructional details are given. (UK)

  20. Device accurately measures and records low gas-flow rates

    Science.gov (United States)

    Branum, L. W.

    1966-01-01

    Free-floating piston in a vertical column accurately measures and records low gas-flow rates. The system may be calibrated, using an adjustable flow-rate gas supply, a low pressure gage, and a sequence recorder. From the calibration rates, a nomograph may be made for easy reduction. Temperature correction may be added for further accuracy.

  1. Device for measuring the dose rate of pulsed neutrons

    International Nuclear Information System (INIS)

    Klett, A.

    2009-01-01

    The author presents a new apparatus, developed in collaboration by Berthold Technologies and the German company DESY, allowing neutron pulsed fields to be measured. It is based on the activation by high energy neutrons of carbon 12 present in the sensor materials, and on the decay of short life radionuclides produced by this activation. The detection principle and system are briefly presented

  2. High precision wavefront control in point spread function engineering for single emitter localization

    NARCIS (Netherlands)

    Siemons, M.E.; Thorsen, R.Ø; Smith, C.S.; Stallinga, S.

    2018-01-01

    Point spread function (PSF) engineering is used in single emitter localization to measure the emitter position in 3D and possibly other parameters such as the emission color or dipole orientation as well. Advanced PSF models such as spline fits to experimental PSFs or the vectorial PSF model can

  3. Is transverse feedback necessary for the SSC emittance preservation? (Vibration noise analysis and feedback parameters optimization)

    International Nuclear Information System (INIS)

    Parkhomchuk, V.V.; Shiltsev, V.D.

    1993-06-01

    The paper considers the Superconducting Super Collider (SSC) site ground motion measurements as well as data from accelerators worldwide about noises that worsen beam performance. Unacceptably fast emittance growth due to these noises is predicted for the SSC. A transverse feedback system was found to be the only satisfactory alternative to prevent emittance decay. Optimization of the primary feedback parameters was done

  4. Tellurium adsorption on single crystal faces of molybdenum and tungsten field emitters

    International Nuclear Information System (INIS)

    Collins, R.A.; Kiwanga, C.A.

    1978-01-01

    The purpose of this letter is to report the extension of previous studies of Te adsorption on Mo and W field emitters to measurements on single crystal planes. The adsorption of semiconductors on metallic emitters has been found to be characterized by simultaneous decreases in emission current and the Fowler-Nordheim work function for adsorbate coverages of less than a monolayer. (Auth.)

  5. Understanding quantum mechanics by measuring the properties of mesoscopic devices

    International Nuclear Information System (INIS)

    Webb, R.

    1993-01-01

    Measurements of the electrical transport and magnetic properties of micron-size scale insulators, metals, semi-metals, and semiconductors at low temperatures have uncovered a wealth of unexpected phenomena. The only way to understand these new properties is by invoking many of the postulates of quantum mechanics. The author has confirmed that the electron acts as a long-range phase-coherent wave and conventional classical forces are not as important as scalar and vector potentials in determining the response of the electron as it moves through its environment. This talk will focus on the measurement of the Aharonov-Bohm self-interference effects, nonlocal transport phenomena, and persistent currents in normal metal ring structures that have been observed in these nanostructures

  6. Design and testing of an innovative solar radiation measurement device

    International Nuclear Information System (INIS)

    Badran, Omar; Al-Salaymeh, Ahmed; El-Tous, Yousif; Abdala, Wasfi

    2010-01-01

    After review of studies conducted on the solar radiation measuring systems, a new innovative instrument that would help in measuring the accurate solar radiation on horizontal surfaces has been designed and tested. An advanced instrument with ease of use and high precision that would enable the user to take the readings in terms of solar intensity (W/m 2 ) has been tested. Also, the innovative instrument can record instantaneous readings of the solar intensities as well as the averages value of the solar radiation flux during certain periods of time. The instrument based in its design on being programmed by programmable interfacing controller (PIC). Furthermore, the power supply circuit is fed by the solar energy cells and does not need an external power source.

  7. Emittance studies of the BNL/SLAC/UCLA 1.6 cell photocathode rf gun

    International Nuclear Information System (INIS)

    Palmer, D.T.; Miller, R.H.; Wang, X.J.

    1997-01-01

    The symmetrized 1.6 cell S-band photocathode gun developed by the BNL/SLAC/UCLA collaboration is in operation at the Brookhaven Accelerator Test Facility (ATF). A novel emittance compensation solenoid magnet has also been designed, built and is in operation at the ATF. These two subsystems form an emittance compensated photoinjector used for beam dynamics, advanced acceleration and free electron laser experiments at the ATF. The highest acceleration field achieved on the copper cathode is 150 MV/m, and the guns normal operating field is 130 MV/m. The maximum rf pulse length is 3 micros. The transverse emittance of the photoelectron beam were measured for various injection parameters. The 1 nC emittance results are presented along with electron bunch length measurements that indicated that at above the 400 pC, space charge bunch lengthening is occurring. The thermal emittance, ε o , of the copper cathode has been measured

  8. Achievement of ultralow emittance coupling in the Australian Synchrotron storage ring

    Directory of Open Access Journals (Sweden)

    R. Dowd

    2011-01-01

    Full Text Available Investigations into producing an electron beam with ultralow vertical emittance have been conducted using the Australian Synchrotron 3 GeV storage ring. A method of tuning the emittance coupling (ϵ_{y}/ϵ_{x} has been developed using a machine model calibrated through the linear optics from closed orbits method. Direct measurements of the beam emittance have not been possible due to diagnostic limitations, however two independent indirect measurements both indicate a vertical emittance of 1.2–1.3 pm rad (ϵ_{y}/ϵ_{x}=0.01%. Other indirect measurements support the validity of these results. This result is the smallest vertical emittance currently achieved in a storage ring.

  9. Mean-Square Error Due to Gradiometer Field Measuring Devices

    Science.gov (United States)

    1991-06-01

    convolving the gradiometer data with the inverse transform of I /T(a, 13), applying an ap- Hence (2) may be expressed in the transform domain as propriate... inverse transform of I / T(ot, 1) will not be possible quency measurements," Superconductor Applications: SQUID’s and because its inverse does not exist...and because it is a high- Machines, B. B. Schwartz and S. Foner, Eds. New York: Plenum pass function its use in an inverse transform technique Press

  10. Ion concentration in micro and nanoscale electrospray emitters.

    Science.gov (United States)

    Yuill, Elizabeth M; Baker, Lane A

    2018-06-01

    Solution-phase ion transport during electrospray has been characterized for nanopipettes, or glass capillaries pulled to nanoscale tip dimensions, and micron-sized electrospray ionization emitters. Direct visualization of charged fluorophores during the electrospray process is used to evaluate impacts of emitter size, ionic strength, analyte size, and pressure-driven flow on heterogeneous ion transport during electrospray. Mass spectrometric measurements of positively- and negatively-charged proteins were taken for micron-sized and nanopipette emitters under low ionic strength conditions to further illustrate a discrepancy in solution-driven transport of charged analytes. A fundamental understanding of analyte electromigration during electrospray, which is not always considered, is expected to provide control over selective analyte depletion and enrichment, and can be harnessed for sample cleanup. Graphical abstract Fluorescence micrographs of ion migration in nanoscale pipettes while solution is electrosprayed.

  11. An electrochemical sensor device for measuring blood ammonia at the point of care.

    Science.gov (United States)

    Brannelly, N T; Killard, A J

    2017-05-15

    The level of ammonia in blood is relevant in a number of medical conditions. While ammonia is a marker of dysfunction, elevated ammonia is itself a serious medical emergency and can lead to significant and permanent neurological impairment if not addressed quickly. Blood ammonia testing is typically performed in the central laboratory. While a number of point of care devices have been developed, these are based on classical enzymatic or colorimetric principles and have not been widely adopted. In this work, an electrochemical sensor device was developed for measuring blood ammonia. The device was based on the deposition of polyaniline nanoparticle films onto screen printed interdigitated electrodes using inkjet printing and their integration into a polymer microfabricated device with a polytetrafluoroethylene membrane. The device required a 52µL serum sample and measured the change in impedance of the sensor with respect to air at 1kHz, 5mV rms. The device was capable of the measurement of ammonia in serum across the physiologically relevant range of 25-200µM (r 2 =0.9984) and had a limit of detection of 12µM (n =3). The device showed no significant issues with common electrochemical interferences in blood. The device was also validated against a commercial spectrophotometric assay which resulted in excellent correlation (r =0.9699, pair (n =12) and could be stored in desiccant for at least five months. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Poster Abstract: Automatic Calibration of Device Attitude in Inertial Measurement Unit Based Traffic Probe Vehicles

    KAUST Repository

    Mousa, Mustafa; Sharma, Kapil; Claudel, Christian

    2016-01-01

    to replace them with inertial measurement units onboard vehicles, to estimate vehicle location and attitude using inertial data only. While promising, this technology requires one to carefully calibrate the orientation of the device inside the vehicle

  13. Development of an Automated Gear Tooth Contour Measuring Device.

    Science.gov (United States)

    1982-04-12

    even under the Influence of body beatL " and changng air temperature. Operating the machine in the fluid-filled mode greatly 5-1... the finaL Phase I report incorporating draft corrections. 19. Key WRDS (Coafw so.. me Mo od*f se**p ow somse W, 610 mA..) Mensuration Coordinate...Measuring Machine Noncontact Optic Probe Surface Wear Assessment 2L &911 RACY (Coneaa Me me... odds N msoosw mW SOMWI IV Wle"m " This report covers the

  14. The wave vane - A device to measure the breaker angle

    Digital Repository Service at National Institute of Oceanography (India)

    Chandramohan, P.; Nayak, B.U.; Anand, N.M.

    directional wave gauge at a considerable cost. For economic and practical considerations, visual measurements on the breaker height, the breaker period and the breaker angle are generally made in the LEO pro- gramme. The breaker height is recorded... of the fins. Flag masts are fixed on either end of the arms. The whole assembly thus revolves around the spindle resting on the sleeve. WORKING PRINCIPLE The flag masts, two on the revolving arms and one on the top of the spindle lie always in a straight...

  15. Shaf rotation speed measurement device, its checking and variations checking

    International Nuclear Information System (INIS)

    Gadrault, Robert.

    1976-01-01

    Appliance for measuring the rotational speed of a shaft and monitoring of this speed and its changes. The uses to be made specifically concern the nuclear field and in this field the drive shafts of water coolant feed pumps. Detecting te rotation of the shaft concerned may be resolved with electronic sensors or proximity detectors which, because they are not in mechanical connexion with the shaft the speed of which they are to help detect, do not bring any lack of precision. The accuracy of the determination them depends only on the downstream processing of the data supplied by the sensor [fr

  16. Time measurements with a mobile device using sound

    Science.gov (United States)

    Wisman, Raymond F.; Spahn, Gabriel; Forinash, Kyle

    2018-05-01

    Data collection is a fundamental skill in science education, one that students generally practice in a controlled setting using equipment only available in the classroom laboratory. However, using smartphones with their built-in sensors and often free apps, many fundamental experiments can be performed outside the laboratory. Taking advantage of these tools often require creative approaches to data collection and exploring alternative strategies for experimental procedures. As examples, we present several experiments using smartphones and apps that record and analyze sound to measure a variety of physical properties.

  17. Precision Branching Ratio Measurement for the Superallowed β+ Emitter Ga62 and Isospin-Symmetry-Breaking Corrections in A≥62 Nuclei

    Science.gov (United States)

    Hyland, B.; Svensson, C. E.; Ball, G. C.; Leslie, J. R.; Achtzehn, T.; Albers, D.; Andreoiu, C.; Bricault, P.; Churchman, R.; Cross, D.; Dombsky, M.; Finlay, P.; Garrett, P. E.; Geppert, C.; Grinyer, G. F.; Hackman, G.; Hanemaayer, V.; Lassen, J.; Lavoie, J. P.; Melconian, D.; Morton, A. C.; Pearson, C. J.; Pearson, M. R.; Phillips, A. A.; Schumaker, M. A.; Smith, M. B.; Towner, I. S.; Valiente-Dobón, J. J.; Wendt, K.; Zganjar, E. F.

    2006-09-01

    A high-precision branching ratio measurement for the superallowed β+ decay of Ga62 was performed at the Isotope Separator and Accelerator radioactive ion beam facility. Nineteen γ rays emitted following β+ decay of Ga62 were identified, establishing the dominant superallowed branching ratio to be (99.861±0.011)%. Combined with recent half-life and Q-value measurements, this branching ratio yields a superallowed ft value of 3075.6±1.4s for Ga62 decay. These results demonstrate the feasibility of high-precision superallowed branching ratio measurements in the A≥62 mass region and provide the first stringent tests of the large isospin-symmetry-breaking effects predicted for these decays.

  18. Device for measuring flow rate in a nuclear reactor core

    International Nuclear Information System (INIS)

    Hamano, Jiro.

    1980-01-01

    Purpose: To always calculate core flow rate automatically and accurately in BWR type nuclear power plants. Constitution: Jet pumps are provided to the recycling pump and to the inside of the pressure vessel of a nuclear reactor. The jet pumps comprise a plurality of calibrated jet pumps for forcively convecting the coolants and a plurality of not calibrated jet pumps in order to cool the heat generated in the reactor core. The difference in the pressures between the upper and the lower portions in both of the jet pumps is measured by difference pressure transducers. Further, a thermo-sensitive element is provided to measure the temperature of recycling water at the inlet of the recycling pump. The output signal from the difference pressure transducer is inputted to a process computer, calculated periodically based on predetermined calculation equations, compensated for the temperature by a recycling water temperature signal and outputted as a core flow rate signal to a recoder. The signal is also used for the power distribution calculation in the process computer and the minimum limit power ratio as the thermal limit value for the fuels is outputted. (Furukawa, Y.)

  19. Device for measuring high temperature heat conductivity of solids and melts

    International Nuclear Information System (INIS)

    Magomedov, Ya.B.; Gadzhiev, G.G.

    1990-01-01

    A modification of a device for measuring heat conductivity by a compensation method when a thermocouple with gadolinium sulfide being used is suggested. Such a device has less error of measurement (8%), wider interval of working temperatures (300-1600K) and it permits to investigate the material in the wide range of heat conductivity values (0.5-30 W/(mxK)). The stainless steel 12Kh18N10T, lanthanum sulfide and melted quartz were used for the device calibration. The results obtained and the literature data on these materials agree well between each other

  20. Light collection optics for measuring flux and spectrum from light-emitting devices

    Science.gov (United States)

    McCord, Mark A.; DiRegolo, Joseph A.; Gluszczak, Michael R.

    2016-05-24

    Systems and methods for accurately measuring the luminous flux and color (spectra) from light-emitting devices are disclosed. An integrating sphere may be utilized to directly receive a first portion of light emitted by a light-emitting device through an opening defined on the integrating sphere. A light collector may be utilized to collect a second portion of light emitted by the light-emitting device and direct the second portion of light into the integrating sphere through the opening defined on the integrating sphere. A spectrometer may be utilized to measure at least one property of the first portion and the second portion of light received by the integrating sphere.

  1. Development of advanced materials and devices for nuclear radiation measurements

    International Nuclear Information System (INIS)

    Gadkari, S.C.

    2015-01-01

    Single crystals of technologically important materials are grown in the Crystal Technology Section of the Technical Physics Division, BARC. These crystals find applications as scintillators and dosimeters in nuclear radiation detection/measurements. Scintillator crystals of some advanced materials like cerium doped Gd 3 Ga 3 Al 2 O 12 , Lu 2 SiO 5 , YAIO 3 etc and some conventional materials such as Bi 4 Ge 3 O 12 , CsI:Tl, NaI:Tl, etc have been grown from melts using the Czochralski and Bridgman techniques. Portable gamma-ray spectrometers that work from a USB port of a laptop have been developed using the grown scintillator crystals. In recent years there has been a flurry of research activities on materials containing Li 6 , B 10 , etc that have large capture cross-sections for neutrons to develop solid state detectors for neutrons. For this purpose single crystals of cerium doped Li 6 Y(BO 3 ) 3 and silver doped Li 2 B 4 O 7 have been developed. Optical, thermo-luminescence, photo-luminescence and scintillation properties of these crystals have been investigated with a view to develop detectors and dosimeters. The Li 2 B 4 O 7 :Ag is a tissue equivalent material (Z eff = 7.3 close to 7.4 of tissue) useful in the personal and medical dosimetry applications. As the emission of Ag + lies in the UV region (267 nm), a customized TL measurement set-up has been developed using a solar blind PMT that enabled the measurement of very low doses below 5 μGy and linearity up to 100 Gy. Films of CsI:TI in the 10 nm to 3 μm thickness range were deposited on silicon substrates using the physical vapor deposition technique under vacuum conditions. The deposited films investigated using SEM and AFM revealed a columnar growth behavior with a preferential orientation along <200>. The growth of single crystals from melts, recent efforts in the development of detectors and results of experiments conducted to detect thermal neutrons are described. (author)

  2. Measurements of the PLT and PDX device activation

    International Nuclear Information System (INIS)

    Stavely, J.; Barnes, C.W.; Chrien, R.E.; Strachan, J.D.

    1981-09-01

    Measurements of the activation levels around the PLT and PDX tokamaks have been made using a Ge(Li) gamma spectrometer and a Geiger counter. The activation results from radiation induced in the plasma by 14 MeV neutrons from the d(t,n)α fusion reaction, 14.7 MeV protons from the d( 3 He,p)α fusion reaction, 10 → 20 MeV hard x-rays from runaway electron induced bremmstrahlung, and 2.5 MeV neutrons from the d(d,n) 3 He fusion reaction. The magnitude of the activation is compared to that predicted for PDX on the basis of one-dimensional activation codes

  3. Experimental arrangement to measure dispersion in optical fiber devices

    Energy Technology Data Exchange (ETDEWEB)

    Armas Rivera, Ivan [Benemerita Universidad Autonoma de Puebla, Facultad de Ciencias de la Electronica (Mexico); Beltran Perez, Georgina; Castillo Mixcoatl, Juan; Munoz Aguirre, Severino [Benemerita Universidad Autonoma de Puebla, Facultad de Ciencias Fisico Matematicas (Mexico); Zaca Moran, Placido, E-mail: ivan_rr1@hotmail.com [Benemerita Universidad Autonoma de Puebla, Fisicoquimica de Materiales ICUAP (Mexico)

    2011-01-01

    Dispersion is a quite important parameter in systems based on optical fiber, especially in pulsed emission lasers, where the temporal width is affected by such parameter. Therefore, it is necessary to consider the dispersion provoked by each component in the cavity. There are various experimental interferometric arrangements to evaluate this parameter. Generally, these systems modify the wavelength to obtain information about the n({lambda}) dependency, which is contained in the interferogram phase. However, this makes the system quite slow and it requires tunable and narrow bandwidth laser sources. In the present work, results obtained from an arrangement based on Mach-Zehnder interferometer where one of the arms is the optical fiber under study, while the reference one is air, are presented. In order to determine the n({lambda}) dependency, a wide spectrum light source was used in the wavelength range of interest. The phase information was evaluated from the interferometric signal measured by an optical spectrum analyzer.

  4. Experimental arrangement to measure dispersion in optical fiber devices

    International Nuclear Information System (INIS)

    Armas Rivera, Ivan; Beltran Perez, Georgina; Castillo Mixcoatl, Juan; Munoz Aguirre, Severino; Zaca Moran, Placido

    2011-01-01

    Dispersion is a quite important parameter in systems based on optical fiber, especially in pulsed emission lasers, where the temporal width is affected by such parameter. Therefore, it is necessary to consider the dispersion provoked by each component in the cavity. There are various experimental interferometric arrangements to evaluate this parameter. Generally, these systems modify the wavelength to obtain information about the n(λ) dependency, which is contained in the interferogram phase. However, this makes the system quite slow and it requires tunable and narrow bandwidth laser sources. In the present work, results obtained from an arrangement based on Mach-Zehnder interferometer where one of the arms is the optical fiber under study, while the reference one is air, are presented. In order to determine the n(λ) dependency, a wide spectrum light source was used in the wavelength range of interest. The phase information was evaluated from the interferometric signal measured by an optical spectrum analyzer.

  5. Measurement-Device Independency Analysis of Continuous-Variable Quantum Digital Signature

    Directory of Open Access Journals (Sweden)

    Tao Shang

    2018-04-01

    Full Text Available With the practical implementation of continuous-variable quantum cryptographic protocols, security problems resulting from measurement-device loopholes are being given increasing attention. At present, research on measurement-device independency analysis is limited in quantum key distribution protocols, while there exist different security problems for different protocols. Considering the importance of quantum digital signature in quantum cryptography, in this paper, we attempt to analyze the measurement-device independency of continuous-variable quantum digital signature, especially continuous-variable quantum homomorphic signature. Firstly, we calculate the upper bound of the error rate of a protocol. If it is negligible on condition that all measurement devices are untrusted, the protocol is deemed to be measurement-device-independent. Then, we simplify the calculation by using the characteristics of continuous variables and prove the measurement-device independency of the protocol according to the calculation result. In addition, the proposed analysis method can be extended to other quantum cryptographic protocols besides continuous-variable quantum homomorphic signature.

  6. Beam emittance of the Stony Brook Tandem-LINAC booster

    International Nuclear Information System (INIS)

    Scholldorf, A.H.

    1984-01-01

    This dissertation is primarily a study of the longitudinal and transverse beam emittance of the Stony Brook Heavy Ion Tandem LINAC Accelerator Facility, with a secondary emphasis on the beam dynamical design of two key elements of the system: a low energy double-drift buncher, and an achromatic double-90 0 LINAC injection system. A transverse emittance measuring system consisting of two translation stages controlled by stepper motors is described. Each stage carried a pair of beam defining slits mounted so that both horizontal and vertical emittances could be measured with only linear motion of the stage assembly. Beam currents were measured directly by a low-noise, high-sensitivity electrometer circuit integrated with the second slit-stage assembly. A mini-computer controlled the motors and acquired and displayed the data. Transverse emittance areas of beams of 12 C, 16 O, 32 S, and 58 Ni were measured at ion source extraction potential, after ion source acceleration, after tandem acceleration, and after LINAC acceleration. The results were analyzed in terms of source sputter-cone geometry, angle straggling in gas and foil strippers, and a variety of other factors

  7. The Citizen Observatory of Radioactivity - Assessment of results for the second half-year 2008 - Measurement of gamma emitters and tritium in water

    International Nuclear Information System (INIS)

    2010-01-01

    This document proposes a set of tables containing different information and data regarding measurements of gamma radioactivity, of tritium level in different marine and water environments (algae, sands, sea water, molluscs, sediments, water mosses, vegetal) in different locations for the second half-year 2008: a bay close to the AREVA plant in La Hague, different locations on the Normandy coast, around the AREVA plant in La Hague, waterways in Normandy and near the Brennilis nuclear power station in Brittany. These tables contain information about the sampling (date, location, quantity, analysed fraction, and so on) and results of measurements of artificial (isotopes of cobalt, ruthenium-rhodium, silver, iodine, caesium, americium, europium) and natural (potassium, beryllium, lead, bismuth, etc.) radionuclides

  8. Digital Measuring Devices Used for Injector Hydraulic Test

    Directory of Open Access Journals (Sweden)

    S. N. Leontiev

    2015-01-01

    Full Text Available To ensure a high specific impulse of the LRE (liquid-propellant engine chamber it is necessary to have optimally organized combustion of the fuel components. This can be ensured by choosing the optimum geometry of gas-dynamic contour of the LRE combustor, as well as by improving the sputtering processes and mixing the fuel components, for example, by selection of the optimum type, characteristics, and location of injectors on the mixing unit of the chamber.These particular reasons arise the interest in the injector characteristics in terms of science, and technological aspects determine the need for control of underlying design parameters in their manufacture.The objective of this work is to give an experimental justification on used digital measurement instrumentation and research the hydraulic characteristics of injectors.To determine injector parameters most widely were used the units with sectional collectors. A technique to control injector parameters using the sectional collectors involves spraying the liquid by injector at a given pressure drop on it for a certain time (the longer, the higher the accuracy and reliability of the results and then determining the amount of liquid in each section to calculate the required parameters of injector.In this work the liquid flow through the injector was determined by high-precision flowmeters FLONET FN2024.1 of electromagnetic type, which have very high metrological characteristics, in particular a flow rate error does not exceed 0.5% in a range of water flow from Qmin= 0.0028 l/s to Qmax Qmax = 0.28 l/s. To determine the coefficient of uneven spray were used differential pressure sensors DMD 331-ASLX of company "DB Sensors RUS", which have an error of 0.075% with a range of differential pressure 0 ... 5 kPa. Measuring complex MIC-200 of company "NPP Measure" and WinPos software for processing array information provided entry, recording, and processing of all the data of the experiment.In this

  9. Waveform measurement in mocrowave device characterization: impact on power amplifiers design

    Directory of Open Access Journals (Sweden)

    Roberto Quaglia

    2016-07-01

    Full Text Available This paper describes an example of a measurement setup enabling waveform measurements during the load-pull characterization of a microwave power device. The significance of this measurement feature is highlighted showing how waveform engineering can be exploited to design high efficiency microwave power amplifiers.

  10. Measurement of Skin Dose from Using the Treatment Immobilization Devices

    International Nuclear Information System (INIS)

    Je, Jae Yong; Park, Chul Woo; Noh, Kyung Suk

    2009-01-01

    The research was about the relation between the dorsal side dose measured by using the phantom body (Alderson Rando Phantom) and factors like contacted material of the patients, the size of the field, angle of incidence. Compared with mylar (tennis racket), the dose on 10 x 10 cm 2 field size of cotton was increased by 2% and by 8% in the case of breast board. In the case of 15 x 15 cm 2 field size, the dose was increased by 6% compared with 10 x 10 cm 2 size. The field size of 20 x 20 cm 2 resulted in 10% increase of dose, while 5 x 5 cm 2 produced 13% decrease. Compared with incident angle 0 degree, the cases for the incident angle 5 degrees had 0.4% less dose for breast board, 0.5% for tennis racket, 1.1% for cotton. The cases for the incident angle 10 degrees had 1.5% less dose for breast board, 1.9% for tennis racket, 2.6% for cotton. For the incident angle 15 degrees, breast board, tennis racket, cotton caused decrease of dose by 3.9%, 2.6%, 3.86% respectively. Resultantly carbon material can cause more skin dose in treatment field. By the results of this study, we recommend that one should avoid the contact between the carbon material and skin.

  11. Waveguide resonances with selectable polarization in an infrared thermal emitter

    Directory of Open Access Journals (Sweden)

    Wei-Lun Huang

    2017-08-01

    Full Text Available A multi-band infrared thermal emitter with polarized waveguide resonances was investigated. The device is constructed by embedding the metallic grating strips within the resonant cavity of a metal/dielectric/metal (MDM structure. The proposed arrangement makes it possible to generate waveguide resonances with mutually orthogonal polarization, thereby providing an additional degree of freedom to vary the resonant wavelengths and polarizations in the medium infrared region. The measured reflection spectra and the finite-difference time-domain (FDTD simulation indicated that the electric fields of the waveguide modes with two orthogonal polarizations are distributed in different regions of the cavity. Resonant wavelengths in different polarizations can be adjusted by altering the period, the metallic line width, or the position of the embedded gold strips. The ratio of the full width at half maximum (FWHM to the peak wavelength was achieved to be smaller than 0.035. This study demonstrated a multi-band infrared thermal emission featuring a narrow bandwidth and polarization characteristics, which is quite suitable to be applied to the non-dispersive infrared (NDIR detection system.

  12. Analysis of the external and internal quantum efficiency of multi-emitter, white organic light emitting diodes

    Science.gov (United States)

    Furno, Mauro; Rosenow, Thomas C.; Gather, Malte C.; Lüssem, Björn; Leo, Karl

    2012-10-01

    We report on a theoretical framework for the efficiency analysis of complex, multi-emitter organic light emitting diodes (OLEDs). The calculation approach makes use of electromagnetic modeling to quantify the overall OLED photon outcoupling efficiency and a phenomenological description for electrical and excitonic processes. From the comparison of optical modeling results and measurements of the total external quantum efficiency, we obtain reliable estimates of internal quantum yield. As application of the model, we analyze high-efficiency stacked white OLEDs and comment on the various efficiency loss channels present in the devices.

  13. Proof of Concept: Design and Initial Evaluation of a Device to Measure Gastrointestinal Transit Time.

    Science.gov (United States)

    Wagner, Robert H; Savir-Baruch, Bital; Halama, James R; Venu, Mukund; Gabriel, Medhat S; Bova, Davide

    2017-09-01

    Chronic constipation and gastrointestinal motility disorders constitute a large part of a gastroenterology practice and have a significant impact on a patient's quality of life and lifestyle. In most cases, medications are prescribed to alleviate symptoms without there being an objective measurement of response. Commonly used investigations of gastrointestinal transit times are currently limited to radiopaque markers or electronic capsules. Repeated use of these techniques is limited because of the radiation exposure and the significant cost of the devices. We present the proof of concept for a new device to measure gastrointestinal transit time using commonly available and inexpensive materials with only a small amount of radiotracer. Methods: We assembled gelatin capsules containing a 67 Ga-citrate-radiolabeled grain of rice embedded in paraffin for use as a point-source transit device. It was tested for stability in vitro and subsequently was given orally to 4 healthy volunteers and 10 patients with constipation or diarrhea. Imaging was performed at regular intervals until the device was excreted. Results: The device remained intact and visible as a point source in all subjects until excretion. When used along with a diary of bowel movement times and dates, the device could determine the total transit time. The device could be visualized either alone or in combination with a barium small-bowel follow-through study or a gastric emptying study. Conclusion: The use of a point-source transit device for the determination of gastrointestinal transit time is a feasible alternative to other methods. The device is inexpensive and easy to assemble, requires only a small amount of radiotracer, and remains inert throughout the gastrointestinal tract, allowing for accurate determination of gastrointestinal transit time. Further investigation of the device is required to establish optimum imaging parameters and reference values. Measurements of gastrointestinal transit time

  14. Optoelectronic device for the measurement of the absolute linear position in the micrometric displacement range

    Science.gov (United States)

    Morlanes, Tomas; de la Pena, Jose L.; Sanchez-Brea, Luis M.; Alonso, Jose; Crespo, Daniel; Saez-Landete, Jose B.; Bernabeu, Eusebio

    2005-07-01

    In this work, an optoelectronic device that provides the absolute position of a measurement element with respect to a pattern scale upon switch-on is presented. That means that there is not a need to perform any kind of transversal displacement after the startup of the system. The optoelectronic device is based on the process of light propagation passing through a slit. A light source with a definite size guarantees the relation of distances between the different elements that constitute our system and allows getting a particular optical intensity profile that can be measured by an electronic post-processing device providing the absolute location of the system with a resolution of 1 micron. The accuracy of this measuring device is restricted to the same limitations of any incremental position optical encoder.

  15. Passivated emitters in silicon solar cells

    International Nuclear Information System (INIS)

    King, R.R.; Gruenbaum, P.E.; Sinton, R.A.; Swanson, R.M.

    1990-01-01

    In high-efficiency silicon solar cells with low metal contact coverage fractions and high bulk lifetimes, cell performance is often dominated by recombination in the oxide-passivated diffusions on the cell surface. Measurements of the emitter saturation current density, J o , of oxide-passivated, boron and phosphorus diffusions are presented, and from these measurements, the dependence of surface recombination velocity on dopant concentration was extracted. The lowest observed values of J o which are stable under UV light are given for both boron- and phosphorus-doped, oxide-passivated diffusions, for both textured and untextured surfaces. Contour plots which incorporate the above data have been applied to two types of backside-contact solar cells with large area (37.5 cm 2 ) and one-sun efficiencies up to 22.7%

  16. Innovative measuring sensor for the detection of alpha emitters in aquatic media; Innovativer Messsensor zur Detektion von Alphastrahlern in aquatischen Medien

    Energy Technology Data Exchange (ETDEWEB)

    Diener, Alexander; Hoeppener-Kramar, Ursula; Lude, Sabine; Wilhelm, Christoph [Karlsruher Institut fuer Technologie (KIT), Eggenstein-Leopoldshafen (Germany). Sicherheitsmanagement - Analytische Labore

    2014-04-01

    The objective of this research project is the realization of an improved alpha-particle detection system for dissolved actinides, directly working in water without any pre-enrichment. The advantages of the new sensor comprise that a matrix separation is mostly not necessary. The test sensor consists of a boron doped diamond entrance window on top of a silicon-diode, the whole alpha activity can be investigated in a good resolution, the electro-precipitation is quickly reversible and the activity on the sensor surface can be measured in-situ. (orig.)

  17. Emittance control in linear colliders

    International Nuclear Information System (INIS)

    Ruth, R.D.

    1991-01-01

    Before completing a realistic design of a next-generation linear collider, the authors must first learn the lessons taught by the first generation, the SLC. Given that, they must make designs fault tolerant by including correction and compensation in the basic design. They must also try to eliminate these faults by improved alignment and stability of components. When these two efforts cross, they have a realistic design. The techniques of generation and control of emittance reviewed here provide a foundation for a design which can obtain the necessary luminosity in a next-generation linear collider

  18. Design of the device of auto-measuring radon continuously based on FPGA

    International Nuclear Information System (INIS)

    Wang Yan; Shen Zhengqin; Chen Qiong

    2004-01-01

    This paper introduces the design of the device of auto-measuring radon continuously. The core of the system is the design of controlling system by FPGA, which consists of preset module, electrical calendar module and driving module. The system can automatically measure the consistence of the radon and the separating out rate of it. The information data is displayed by LCD. The high speed micro printer is used to print the measuring result. It adopts FPGA to design the measuring system of the device, which can improve the precision and stability of the system. (authors)

  19. Emittance Growth in the NLCTA First Chicane

    International Nuclear Information System (INIS)

    Sun, Yipeng

    2011-01-01

    In this paper, the emittance growth in the NLCTA (Next Linear Collider Test Accelerator) first chicane region is evaluated by simulation studies. It is demonstrated that the higher order fields of the chicane dipole magnet and the dipole corrector magnet (which is attached on the quadrupoles) are the main contributions for the emittance growth, especially for the case with a large initial emittance (γε 0 = 5 (micro)m for instance). These simulation results agree with the experimental observations.

  20. Production of alpha emitters for therapy

    International Nuclear Information System (INIS)

    Vucina, J.; Orlic, M.; Lukic, D.

    2006-01-01

    The basis for the introduction of alpha emitters into nuclear medical practice are their radiobiological properties. High LET values and short ranges in biological tissues are advantageous in comparison with nowadays most often used beta emitters, primarily 90 Y and 131 I. Given are the most important criteria for the introduction of a given radionuclide in the routine use. Shown are the procedures for the production of the most important alpha emitters 211 At, 212 Bi and 213 Bi. (author)