WorldWideScience

Sample records for emissions irreversibly leading

  1. Irreversible climate change due to carbon dioxide emissions

    Science.gov (United States)

    Solomon, Susan; Plattner, Gian-Kasper; Knutti, Reto; Friedlingstein, Pierre

    2009-01-01

    The severity of damaging human-induced climate change depends not only on the magnitude of the change but also on the potential for irreversibility. This paper shows that the climate change that takes place due to increases in carbon dioxide concentration is largely irreversible for 1,000 years after emissions stop. Following cessation of emissions, removal of atmospheric carbon dioxide decreases radiative forcing, but is largely compensated by slower loss of heat to the ocean, so that atmospheric temperatures do not drop significantly for at least 1,000 years. Among illustrative irreversible impacts that should be expected if atmospheric carbon dioxide concentrations increase from current levels near 385 parts per million by volume (ppmv) to a peak of 450–600 ppmv over the coming century are irreversible dry-season rainfall reductions in several regions comparable to those of the “dust bowl” era and inexorable sea level rise. Thermal expansion of the warming ocean provides a conservative lower limit to irreversible global average sea level rise of at least 0.4–1.0 m if 21st century CO2 concentrations exceed 600 ppmv and 0.6–1.9 m for peak CO2 concentrations exceeding ≈1,000 ppmv. Additional contributions from glaciers and ice sheet contributions to future sea level rise are uncertain but may equal or exceed several meters over the next millennium or longer. PMID:19179281

  2. Reversible and irreversible impacts of greenhouse gas emissions in multi-century projections with the NCAR global coupled carbon cycle-climate model

    Energy Technology Data Exchange (ETDEWEB)

    Froelicher, Thomas L.; Joos, Fortunat [University of Bern, Climate and Environmental Physics, Physics Institute, Bern (Switzerland); University of Bern, Oeschger Centre for Climate Change Research, Bern (Switzerland)

    2010-12-15

    The legacy of historical and the long-term impacts of 21st century greenhouse gas emissions on climate, ocean acidification, and carbon-climate feedbacks are investigated with a coupled carbon cycle-climate model. Emission commitment scenarios with zero emissions after year 2100 and 21st century emissions of 1,800, 900, and 0 gigatons of carbon are run up to year 2500. The reversibility and irreversibility of impacts is quantified by comparing anthropogenically-forced regional changes with internal, unforced climate variability. We show that the influence of historical emissions and of non-CO{sub 2} agents is largely reversible on the regional scale. Forced changes in surface temperature and precipitation become smaller than internal variability for most land and ocean grid cells in the absence of future carbon emissions. In contrast, continued carbon emissions over the 21st century cause irreversible climate change on centennial to millennial timescales in most regions and impacts related to ocean acidification and sea level rise continue to aggravate for centuries even if emissions are stopped in year 2100. Undersaturation of the Arctic surface ocean with respect to aragonite, a mineral form of calcium carbonate secreted by marine organisms, is imminent and remains widespread. The volume of supersaturated water providing habitat to calcifying organisms is reduced from preindustrial 40 to 25% in 2100 and to 10% in 2300 for the high emission case. We conclude that emission trading schemes, related to the Kyoto Process, should not permit trading between emissions of relatively short-lived agents and CO{sub 2} given the irreversible impacts of anthropogenic carbon emissions. (orig.)

  3. Examination of various postulates of irreversibility

    Energy Technology Data Exchange (ETDEWEB)

    Salmon, J [Conservatoire National des Arts et Metiers (CNAM), 75 - Paris (France)

    1977-01-01

    Firstly, it is shown that it is necessary to break the reversible character of the B.B.G.K.Y. system of equations by means of a postulate of irreversibility to obtain a kinetic equation compatible with the second principle of thermodynamics. Next, three postulates of irreversibility are examined: that of molecular chaos, that of linear relaxation and, finally, that of superposition. Then the corresponding kinetic equations and the expressions for the viscosity coefficient to which they lead are determined. Comparison with experiment is made each time. Lastly, an attempt to obtain an irreversible kinetic equation without introducing a postulate of irreversibility in the B.B.G.K.Y. system is realized. This consists in adding a complementary irreversible term to the fundamental equation of the dynamics of a particle. The suggested term is of quantum origin and leads to a kinetic equation of the Fokker-Planck type.

  4. Irreversible impacts of heat on the emissions of monoterpenes, sesquiterpenes, phenolic BVOC and green leaf volatiles from several tree species

    Directory of Open Access Journals (Sweden)

    E. Kleist

    2012-12-01

    Full Text Available Climate change will induce extended heat waves to parts of the vegetation more frequently. High temperatures may act as stress (thermal stress on plants changing emissions of biogenic volatile organic compounds (BVOCs. As BVOCs impact the atmospheric oxidation cycle and aerosol formation, it is important to explore possible alterations of BVOC emissions under high temperature conditions. Applying heat to European beech, Palestine oak, Scots pine, and Norway spruce in a laboratory setup either caused the well-known exponential increases of BVOC emissions or induced irreversible changes of BVOC emissions. Considering only irreversible changes of BVOC emissions as stress impacts, we found that high temperatures decreased the de novo emissions of monoterpenes, sesquiterpenes and phenolic BVOC. This behaviour was independent of the tree species and whether the de novo emissions were constitutive or induced by biotic stress.

    In contrast, application of thermal stress to conifers amplified the release of monoterpenes stored in resin ducts of conifers and induced emissions of green leaf volatiles. In particular during insect attack on conifers, the plants showed de novo emissions of sesquiterpenes and phenolic BVOCs, which exceeded constitutive monoterpene emissions from pools. The heat-induced decrease of de novo emissions was larger than the increased monoterpene release caused by damage of resin ducts. For insect-infested conifers the net effect of thermal stress on BVOC emissions could be an overall decrease.

    Global change-induced heat waves may put hard thermal stress on plants. If so, we project that BVOC emissions increase is more than predicted by models only in areas predominantly covered with conifers that do not emit high amounts of sesquiterpenes and phenolic BVOCs. Otherwise overall effects of high temperature stress will be lower increases of BVOC emissions than predicted by algorithms that do

  5. Quantification of atmospheric lead emissions from 70 years of leaded petrol consumption in Australia

    Science.gov (United States)

    Kristensen, Louise Jane

    2015-06-01

    Lead is a persistent pollutant and the subject of many environmental studies, yet, in Australia, the extent of atmospheric lead emissions from the use of leaded petrol is unquantified. This paper details the first comprehensive account of leaded petrol sales and its lead concentrations over the 70 years of use in Australia. The resulting atmospheric lead emissions are calculated to provide the most complete understanding of the volume of lead released to the Australian continent from the consumption of leaded petrol. Atmospheric emissions of lead to the entire Australian continent from leaded petrol are calculated to total 240,510 tonnes over seven decades of use, peaking at 7869 tonnes in 1974. Total emissions for individual states and territories range from 1745 to 67,893 tonnes, with New South Wales responsible for the largest emissions. The effect of regulations on allowable concentrations of tetraethyl-lead additives are observed in the reduction of lead emissions in New South Wales and Victoria. The consequences to human health and the environment of leaded petrol consumption in Australia's populous cities are examined against historical air quality data and blood lead levels.

  6. How to account for irreversibility in integrated assessment of climate change?

    International Nuclear Information System (INIS)

    Ha Duong, M.

    1998-04-01

    How to account for irreversibility in integrated assessment of climate change? This Ph. D. thesis in Economics balances discounting, technical progress and the inertia of existing capital stock against uncertainty and the inertia of socio-economic systems to examine the issue of near term limitations of greenhouse gases emissions. After a general overview in chapter 2, and a more historical presentation of the debates in chapter 3, chapter 4 proceeds to review a large number of integrated assessment models. Chapter 5 introduces a Model on the Dynamics of Inertia and Adaptability of energy systems: DIAM, used to discuss how much previous studies might have overestimated the long term costs of CO 2 limitations and underestimated adjustment costs. It shows that, given a target date for atmospheric CO 2 concentration stabilisation, a higher inertia implies a lower optimal concentration trajectory. In a sequential decision framework, chapter 6 shows that current uncertainties about which CO 2 concentration ceiling would not present dangerous interference with the climate system justifies precautionary action. Finally, chapter 7 uses the irreversibility effect theory to define formally situations of decision under controversy and compare the irreversibility of CO 2 accumulation with the irreversibility of investments needed to moderate it. An option value for greenhouse gases emissions limitations is computed. (author)

  7. Irreversible social change

    NARCIS (Netherlands)

    Pols, A.J.K.; Romijn, H.A.; Collste, G.; Reuter, L.

    2014-01-01

    In this paper we evaluate how irreversible social change should be evaluated from an ethical perspective. First; we analyse the notion of irreversibility in general terms. We define a general notion of what makes a change irreversible; drawing on discussions in ecology and economics. This notion is

  8. Intrinsic irreversibility in quantum theory

    International Nuclear Information System (INIS)

    Prigogine, I.; Petrosky, T.Y.

    1987-01-01

    Quantum theory has a dual structure: while solutions of the Schroedinger equation evolve in a deterministic and time reversible way, measurement introduces irreversibility and stochasticity. This presents a contrast to Bohr-Sommerfeld-Einstein theory, in which transitions between quantum states are associated with spontaneous and induced transitions, defined in terms of stochastic processes. A new form of quantum theory is presented here, which contains an intrinsic form of irreversibility, independent of observation. This new form applies to situations corresponding to a continuous spectrum and to quantum states with finite life time. The usual non-commutative algebra associated to quantum theory is replaced by more general algebra, in which operators are also non-distributive. Our approach leads to a number of predictions, which hopefully may be verified or refuted in the next years. (orig.)

  9. Stochastic wave-function simulation of irreversible emission processes for open quantum systems in a non-Markovian environment

    Science.gov (United States)

    Polyakov, Evgeny A.; Rubtsov, Alexey N.

    2018-02-01

    When conducting the numerical simulation of quantum transport, the main obstacle is a rapid growth of the dimension of entangled Hilbert subspace. The Quantum Monte Carlo simulation techniques, while being capable of treating the problems of high dimension, are hindered by the so-called "sign problem". In the quantum transport, we have fundamental asymmetry between the processes of emission and absorption of environment excitations: the emitted excitations are rapidly and irreversibly scattered away. Whereas only a small part of these excitations is absorbed back by the open subsystem, thus exercising the non-Markovian self-action of the subsystem onto itself. We were able to devise a method for the exact simulation of the dominant quantum emission processes, while taking into account the small backaction effects in an approximate self-consistent way. Such an approach allows us to efficiently conduct simulations of real-time dynamics of small quantum subsystems immersed in non-Markovian bath for large times, reaching the quasistationary regime. As an example we calculate the spatial quench dynamics of Kondo cloud for a bozonized Kodno impurity model.

  10. The Social Cost of Stochastic and Irreversible Climate Change

    Science.gov (United States)

    Cai, Y.; Judd, K. L.; Lontzek, T.

    2013-12-01

    Many scientists are worried about climate change triggering abrupt and irreversible events leading to significant and long-lasting damages. For example, a rapid release of methane from permafrost may lead to amplified global warming, and global warming may increase the frequency and severity of heavy rainfall or typhoon, destroying large cities and killing numerous people. Some elements of the climate system which might exhibit such a triggering effect are called tipping elements. There is great uncertainty about the impact of anthropogenic carbon and tipping elements on future economic wellbeing. Any rational policy choice must consider the great uncertainty about the magnitude and timing of global warming's impact on economic productivity. While the likelihood of tipping points may be a function of contemporaneous temperature, their effects are long lasting and might be independent of future temperatures. It is assumed that some of these tipping points might occur even in this century, but also that their duration and post-tipping impact are uncertain. A faithful representation of the possibility of tipping points for the calculation of social cost of carbon would require a fully stochastic formulation of irreversibility, and accounting for the deep layer of uncertainties regarding the duration of the tipping process and also its economic impact. We use DSICE, a DSGE extension of the DICE2007 model of William Nordhaus, which incorporates beliefs about the uncertain economic impact of possible climate tipping events and uses empirically plausible parameterizations of Epstein-Zin preferences to represent attitudes towards risk. We find that the uncertainty associated with anthropogenic climate change imply carbon taxes much higher than implied by deterministic models. This analysis indicates that the absence of uncertainty in DICE2007 and similar IAM models may result in substantial understatement of the potential benefits of policies to reduce GHG emissions.

  11. Attribution of irreversible loss to anthropogenic climate change

    Science.gov (United States)

    Huggel, Christian; Bresch, David; Hansen, Gerrit; James, Rachel; Mechler, Reinhard; Stone, Dáithí; Wallimann-Helmer, Ivo

    2016-04-01

    of land area due to coastal and hillslope erosion and sea level change; loss of plant and animal species, loss of ecosystems and biodiversity; loss of human lives, homelands, and cultural identity. Attribution to anthropogenic climate change is analyzed based on recent progress following from the IPCC AR5. Generally, high confidence in attributing irreversible loss to anthropogenic climate change is found in physical systems and more specifically in cryosphere environments, both in mountain and polar regions. Detected loss in terrestrial ecosystems has typically low confidence in attribution whereas loss in some ocean ecosystems (corals) has high confidence. Impacts in human systems that may be classified as irreversible loss are of low confidence in terms of attribution except for the Arctic where higher confidence for a relation with anthropogenic emissions was found. Our analysis suggests that scientific progress in detection and attribution is now at a level that would likely allow policy, or courts, to define mechanisms, or take decisions, as related to irreversible loss in many cryosphere systems. On the other hand, policy may need to consider that at least in the near future it will be difficult to establish clear tracks between irreversible loss in most human systems and anthropogenic climate change, a domain, which however is at the forefront of discussions. We end our discussion with setting out ideas for further clarification of different categories of irreversible loss, including in human systems, and the role of attribution in any policy or legal mechanism in order to help in the development of just and sensible solutions.

  12. Reversible and Irreversible Binding of Nanoparticles to Polymeric Surfaces

    Directory of Open Access Journals (Sweden)

    Wolfgang H. Binder

    2009-01-01

    Full Text Available Reversible and irreversible binding of CdSe-nanoparticles and nanorods to polymeric surfaces via a strong, multiple hydrogen bond (= Hamilton-receptor/barbituric acid is described. Based on ROMP-copolymers, the supramolecular interaction on a thin polymer film is controlled by living polymerization methods, attaching the Hamilton-receptor in various architectures, and concentrations. Strong binding is observed with CdSe-nanoparticles and CdSe-nanorods, whose surfaces are equipped with matching barbituric acid-moieties. Addition of polar solvents, able to break the hydrogen bonds leads to the detachment of the nanoparticles from the polymeric film. Irreversible binding is observed if an azide/alkine-“click”-reaction is conducted after supramolecular recognition of the nanoparticles on the polymeric surface. Thus reversible or irreversible attachment of the nanosized objects can be achieved.

  13. Classical many-body theory with retarded interactions: Dynamical irreversibility and determinism without probabilities

    Energy Technology Data Exchange (ETDEWEB)

    Zakharov, A.Yu., E-mail: Anatoly.Zakharov@novsu.ru; Zakharov, M.A., E-mail: ma_zakharov@list.ru

    2016-01-28

    The exact equations of motion for microscopic density of classical many-body system with account of inter-particle retarded interactions is derived. It is shown that interactions retardation leads to irreversible behavior of many-body systems. - Highlights: • A new form of equation of motion of classical many-body system is proposed. • Interactions retardation as one of the mechanisms of many-body system irreversibility. • Irreversibility and determinism without probabilities. • The possible way to microscopic foundation of thermodynamics.

  14. Time in Science: Reversibility vs. Irreversibility

    Science.gov (United States)

    Pomeau, Yves

    To discuss properly the question of irreversibility one needs to make a careful distinction between reversibility of the equations of motion and the choice of the initial conditions. This is also relevant for the rather confuse philosophy of the wave packet reduction in quantum mechanics. The explanation of this reduction requires also to make precise assumptions on what initial data are accessible in our world. Finally I discuss how a given (and long) time record can be shown in an objective way to record an irreversible or reversible process. Or: can a direction of time be derived from its analysis? This leads quite naturally to examine if there is a possible spontaneous breaking of the time reversal symmetry in many body systems, a symmetry breaking that would be put in evidence objectively by looking at certain specific time correlations.

  15. A new approach to irreversibility in deep inelastic collisions

    International Nuclear Information System (INIS)

    Nemes, M.C.

    1982-01-01

    We use concepts of statistical mechanics to discuss the irreversible character of the experimental data in deep inelastic collisions. A definition of irreversibility proposed by Ruch permits a unified overview on current theories which describe these reactions. An information theoretical analysis of the data leads to a Fokker-Planck equation for the collective variables (excitation energy, charge and mass). The concept of mixing distance can serve as a quantitative measure to characterize the 'approach to equilibrium'. We apply it to the brownian motion as an illustration and also to the phenomenological analysis of deep inelastic scattering data with interesting results. (orig.)

  16. Development and validation of a lead emission inventory for the Greater Cairo area

    Directory of Open Access Journals (Sweden)

    Zeinab Safar

    2014-09-01

    Full Text Available Studies that investigate the environmental health risks to Cairo residents invariably conclude that lead is one of the area’s major health hazards. The Cairo Air Improvement Project (CAIP, which was implemented by a team led by Chemonics International, funded by USAID in partnership with the Egyptian Environmental Affairs Agency (EEAA, started developing a lead emission inventory for the greater Cairo (GC area in 1998. The inventory contains a list by major source of the annual lead emissions in the GC area. Uses of the inventory and associated database include developing effective regulatory and control strategies, assessing emissions trends, and conducting modeling exercises. This paper describes the development of the current lead emissions inventory (1999–2010, along with an approach to develop site specific emission factors and measurements to validate the inventory. This paper discusses the major sources of lead in the GC area, which include lead smelters, Mazout (heavy fuel oil combustion, lead manufacturing batteries factories, copper foundries, and cement factories. Included will be the trend in the lead emissions inventory with regard to the production capacity of each source category. In addition, the lead ambient measurements from 1999 through 2010 are described and compared with the results of Source Attribution Studies (SAS conducted in 1999, 2002, and 2010. Due to EEAA/CAIP efforts, a remarkable decrease in more than 90% in lead emissions was attained for 2007.

  17. Irreversibility and Action of the Heat Conduction Process

    Directory of Open Access Journals (Sweden)

    Yu-Chao Hua

    2018-03-01

    Full Text Available Irreversibility (that is, the “one-sidedness” of time of a physical process can be characterized by using Lyapunov functions in the modern theory of stability. In this theoretical framework, entropy and its production rate have been generally regarded as Lyapunov functions in order to measure the irreversibility of various physical processes. In fact, the Lyapunov function is not always unique. In the represent work, a rigorous proof is given that the entransy and its dissipation rate can also serve as Lyapunov functions associated with the irreversibility of the heat conduction process without the conversion between heat and work. In addition, the variation of the entransy dissipation rate can lead to Fourier’s heat conduction law, while the entropy production rate cannot. This shows that the entransy dissipation rate, rather than the entropy production rate, is the unique action for the heat conduction process, and can be used to establish the finite element method for the approximate solution of heat conduction problems and the optimization of heat transfer processes.

  18. Irreversible processes kinetic theory

    CERN Document Server

    Brush, Stephen G

    2013-01-01

    Kinetic Theory, Volume 2: Irreversible Processes deals with the kinetic theory of gases and the irreversible processes they undergo. It includes the two papers by James Clerk Maxwell and Ludwig Boltzmann in which the basic equations for transport processes in gases are formulated, together with the first derivation of Boltzmann's ""H-theorem"" and a discussion of this theorem, along with the problem of irreversibility.Comprised of 10 chapters, this volume begins with an introduction to the fundamental nature of heat and of gases, along with Boltzmann's work on the kinetic theory of gases and s

  19. Mathematical models and equilibrium in irreversible microeconomics

    Directory of Open Access Journals (Sweden)

    Anatoly M. Tsirlin

    2010-07-01

    Full Text Available A set of equilibrium states in a system consisting of economic agents, economic reservoirs, and firms is considered. Methods of irreversible microeconomics are used. We show that direct sale/purchase leads to an equilibrium state which depends upon the coefficients of supply/demand functions. To reach the unique equilibrium state it is necessary to add either monetary exchange or an intermediate firm.

  20. A Light-Induced Reaction with Oxygen Leads to Chromophore Decomposition and Irreversible Photobleaching in GFP-Type Proteins.

    Science.gov (United States)

    Grigorenko, Bella L; Nemukhin, Alexander V; Polyakov, Igor V; Khrenova, Maria G; Krylov, Anna I

    2015-04-30

    Photobleaching and photostability of proteins of the green fluorescent protein (GFP) family are crucially important for practical applications of these widely used biomarkers. On the basis of simulations, we propose a mechanism for irreversible bleaching in GFP-type proteins under intense light illumination. The key feature of the mechanism is a photoinduced reaction of the chromophore with molecular oxygen (O2) inside the protein barrel leading to the chromophore's decomposition. Using quantum mechanics/molecular mechanics (QM/MM) modeling we show that a model system comprising the protein-bound Chro(-) and O2 can be excited to an electronic state of the intermolecular charge-transfer (CT) character (Chro(•)···O2(-•)). Once in the CT state, the system undergoes a series of chemical reactions with low activation barriers resulting in the cleavage of the bridging bond between the phenolic and imidazolinone rings and disintegration of the chromophore.

  1. 76 FR 9409 - National Emission Standards for Hazardous Air Pollutants: Primary Lead Smelting

    Science.gov (United States)

    2011-02-17

    ... National Emission Standards for Hazardous Air Pollutants: Primary Lead Smelting; Proposed Rule #0;#0... Emission Standards for Hazardous Air Pollutants: Primary Lead Smelting AGENCY: Environmental Protection... standards for hazardous air pollutants (NESHAP) for Primary Lead Smelting to address the results of the...

  2. Extended irreversible thermodynamics and the Jeffreys type constitutive equations

    International Nuclear Information System (INIS)

    Serdyukov, S.I.

    2003-01-01

    A postulate of extended irreversible thermodynamics is considered, according to which the entropy density is a function of the internal energy, the specific volume, and their material time derivatives. On the basis of this postulate, entropy balance equations and phenomenological equations are obtained, which directly lead to the Jeffreys type constitutive equations

  3. Irreversibility and self-organization in spin glasses. 1. Origin of irreversibility in spin glasses

    International Nuclear Information System (INIS)

    Kovrov, V.P.; Kurbatov, A.M.

    1989-05-01

    The origin of irreversibility in spin glasses is found out on the basis of the analytical study of the well-known TAP equations. Connection between irreversible jumpwise transitions and a positive feedback in spin glasses is discussed. (author). 7 refs, 4 figs

  4. The analysis of irreversibility, uncertainty and dynamic technical inefficiency on the investment decision in the Spanish olive sector

    NARCIS (Netherlands)

    Lambarraa, Fatima; Stefanou, Spiro; Gil, José M.

    2016-01-01

    This study addresses irreversible investment decision-making in the context of uncertainty when allowing for inefficiency to be transmitted over time. Both irreversibility and persistence in technical inefficiency can lead to sluggish adjustment of quasi-fixed factors of production. The context

  5. Transition from reversible to irreversible magnetic exchange-spring processes in antiferromagnetically exchange-coupled hard/soft/hard trilayer structures

    International Nuclear Information System (INIS)

    Wang Xiguang; Guo Guanghua; Zhang Guangfu

    2011-01-01

    The demagnetization processes of antiferromagnetically exchange-coupled hard/soft/hard trilayer structures have been studied based on the discrete one-dimensional atomic chain model and the linear partial domain-wall model. It is found that, when the magnetic anisotropy of soft layer is taken into account, the changes of the soft layer thickness and the interfacial exchange coupling strength may lead a transition of demagnetization process in soft layer from the reversible to the irreversible magnetic exchange-spring process. For the trilayer structures with very thin soft layer, the demagnetization process exhibits typical reversible exchange-spring behavior. However, as the thickness of soft layer is increased, there is a crossover point t c , after which the process becomes irreversible. Similarly, there is also a critical interfacial exchange coupling constant A sh c , above which the exchange-spring process is reversible. When A sh sh c , the irreversible exchange-spring process is achieved. The phase diagram of reversible and irreversible exchange-spring processes is mapped in the plane of the interfacial exchange coupling A sh and soft layer thickness N s . - Research highlights: → A differing magnetic exchange-spring process is found in antiferromagnetically exchange-coupled hard/soft/hard trilayers if the magnetic anisotropy of the soft layers is taken into account. → The change of the soft layer thickness may lead to a transition of demagnetization process in soft layer from the reversible to the irreversible exchange-spring process. → The change of the soft-hard interfacial exchange coupling strength may lead a transition of demagnetization process in soft layer from the reversible to the irreversible exchange-spring process. → The phase diagram of reversible and irreversible exchange-spring processes is mapped in the plane of the interfacial exchange coupling and soft layer thickness.

  6. Fluctuation theorems in feedback-controlled open quantum systems: Quantum coherence and absolute irreversibility

    Science.gov (United States)

    Murashita, Yûto; Gong, Zongping; Ashida, Yuto; Ueda, Masahito

    2017-10-01

    The thermodynamics of quantum coherence has attracted growing attention recently, where the thermodynamic advantage of quantum superposition is characterized in terms of quantum thermodynamics. We investigate the thermodynamic effects of quantum coherent driving in the context of the fluctuation theorem. We adopt a quantum-trajectory approach to investigate open quantum systems under feedback control. In these systems, the measurement backaction in the forward process plays a key role, and therefore the corresponding time-reversed quantum measurement and postselection must be considered in the backward process, in sharp contrast to the classical case. The state reduction associated with quantum measurement, in general, creates a zero-probability region in the space of quantum trajectories of the forward process, which causes singularly strong irreversibility with divergent entropy production (i.e., absolute irreversibility) and hence makes the ordinary fluctuation theorem break down. In the classical case, the error-free measurement ordinarily leads to absolute irreversibility, because the measurement restricts classical paths to the region compatible with the measurement outcome. In contrast, in open quantum systems, absolute irreversibility is suppressed even in the presence of the projective measurement due to those quantum rare events that go through the classically forbidden region with the aid of quantum coherent driving. This suppression of absolute irreversibility exemplifies the thermodynamic advantage of quantum coherent driving. Absolute irreversibility is shown to emerge in the absence of coherent driving after the measurement, especially in systems under time-delayed feedback control. We show that absolute irreversibility is mitigated by increasing the duration of quantum coherent driving or decreasing the delay time of feedback control.

  7. Ecological optimization for generalized irreversible Carnot refrigerators

    International Nuclear Information System (INIS)

    Chen Lingen; Zhu Xiaoqin; Sun Fengrui; Wu Chih

    2005-01-01

    The optimal ecological performance of a Newton's law generalized irreversible Carnot refrigerator with the losses of heat resistance, heat leakage and internal irreversibility is derived by taking an ecological optimization criterion as the objective, which consists of maximizing a function representing the best compromise between the exergy output rate and exergy loss rate (entropy production rate) of the refrigerator. Numerical examples are given to show the effects of heat leakage and internal irreversibility on the optimal performance of generalized irreversible refrigerators

  8. Entropy, Extropy and the Physical Driver of Irreversibility

    Directory of Open Access Journals (Sweden)

    Attila Grandpierre

    2012-06-01

    Full Text Available We point out that the fundamental irreversibility of Nature requires the introduction of a suitable measure for the distance from equilibrium. We show that entropy, which is widely held to be such a measure, suffers from the problem that it does not have a physical meaning, since it is introduced on the basis of mathematical arguments. As a consequence, the basic physics beyond irreversibility has remained obscure. We present here a simple but transparent physical approach for solving the problem of irreversibility. This approach shows that extropy, the fundamental thermodynamic variable introduced by Katalin Martinás, is the suitable measure for the distance from equilibrium, since it corresponds to the actual driver of irreversible processes. Since extropy explicitly contains in its definition all the general thermodynamic forces that drive irreversible processes, extropy is the suitable physical measure of irreversibility.

  9. Anderson localized state as a predissipative state: irreversible emission of thermalized quanta from a dynamically delocalized state.

    Science.gov (United States)

    Yamada, Hiroaki; Ikeda, Kensuke S

    2002-04-01

    It was shown that localization in one-dimensional disordered (quantum) electronic system is destroyed against coherent harmonic perturbations and the delocalized electron exhibits an unlimited diffusive motion [Yamada and Ikeda, Phys. Rev. E 59, 5214 (1999)]. The appearance of diffusion implies that the system has potential for irreversibility and dissipation. In the present paper, we investigate dissipative property of the dynamically delocalized state, and we show that an irreversible quasistationary energy flow indeed appears in the form of a "heat" flow when we couple the system with another dynamical degree of freedom. In the concrete we numerically investigate dissipative properties of a one-dimensional tight-binding electronic system perturbed by time-dependent harmonic forces, by coupling it with a quantum harmonic oscillator or a quantum anharmonic oscillator. It is demonstrated that if the on-site potential is spatially irregular an irreversible energy transfer from the scattered electron to the test oscillator occurs. Moreover, the test oscillator promptly approaches a thermalized state characterized by a well-defined time-dependent temperature. On the contrary, such a relaxation process cannot be observed at all for periodic potential systems. Our system is one of the minimal quantum systems in which a distinct nonequilibrium statistical behavior is self-induced.

  10. Canonical formalism, fundamental equation, and generalized thermomechanics for irreversible fluids with heat transfer

    International Nuclear Information System (INIS)

    Sieniutycz, S.; Berry, R.S.

    1993-01-01

    A Lagrangian with dissipative (e.g., Onsager's) potentials is constructed for the field description of irreversible heat-conducting fluids, off local equilibrium. Extremum conditions of action yield Clebsch representations of temperature, chemical potential, velocities, and generalized momenta, including a thermal momentum introduced recently [R. L. Selinger and F. R. S. Whitham, Proc. R. Soc. London, Ser. A 302, 1 (1968); S. Sieniutycz and R. S. Berry, Phys. Rev. A 40, 348 (1989)]. The basic question asked is ''To what extent may irreversibility, represented by a given form of the entropy source, influence the analytical form of the conservation laws for the energy and momentum?'' Noether's energy for a fluid with heat flow is obtained, which leads to a fundamental equation and extended Hamiltonian dynamics obeying the second law of thermodynamics. While in the case of the Onsager potentials this energy coincides numerically with the classical energy E, it contains an extra term (vanishing along the path) still contributing to an irreversible evolution. Components of the energy-momentum tensor preserve all terms regarded standardly as ''irreversible'' (heat, tangential stresses, etc.) generalized to the case when thermodynamics includes the state gradients and the so-called thermal phase, which we introduce here. This variable, the Lagrange multiplier of the entropy generation balance, is crucial for consistent treatment of irreversible processes via an action formalism. We conclude with the hypothesis that embedding the first and second laws in the context of the extremal behavior of action under irreversible conditions may imply accretion of an additional term to the classical energy

  11. Irreversible dynamics, Onsager-Casimir symmetry, and an application to turbulence.

    Science.gov (United States)

    Ottinger, Hans Christian

    2014-10-01

    Irreversible contributions to the dynamics of nonequilibrium systems can be formulated in terms of dissipative, or irreversible, brackets. We discuss the structure of such irreversible brackets in view of a degeneracy implied by energy conservation, where we consider different types of symmetries of the bracket corresponding to the Onsager and Casimir symmetries of linear irreversible thermodynamics. Slip and turbulence provide important examples of antisymmetric irreversible brackets and offer guidance for the more general modeling of irreversible dynamics without entropy production. Conversely, turbulence modeling could benefit from elucidating thermodynamic structure. The examples suggest constructing antisymmetric irreversible brackets in terms of completely antisymmetric functions of three indices. Irreversible brackets without well-defined symmetry properties can arise for rare events, causing big configurational changes.

  12. Hydraulically irreversible fouling on ceramic MF/UF membranes: comparison of fouling indices, foulant composition and irreversible pore narrowing

    KAUST Repository

    Shang, Ran; Vuong, Francois; Hu, Jingyi; Li, Sheng; Kemperman, Antoine J.B.; Nijmeijer, Kitty; Cornelissen, Emile R.; Heijman, Sebastiaan G.J.; Rietveld, Luuk C.

    2015-01-01

    The application of ceramic membranes in water treatment is becoming increasing attractive because of their long life time and excellent chemical, mechanical and thermal stability. However, fouling of ceramic membranes, especially hydraulically irreversible fouling, is still a critical aspect affecting the operational cost and energy consumption in water treatment plants. In this study, four ceramic membranes with pore sizes or molecular weight cut-off (MWCO) of 0.20 μm, 0.14 μm, 300 kDa and 50 kDa were compared during natural surface water filtration with respect to hydraulically irreversible fouling index (HIFI), foulant composition and narrowing of pore size due to the irreversible fouling. Our results showed that the hydraulically irreversible fouling index (HIFI) was proportional to the membrane pore size (r2=0.89) when the same feed water was filtrated. The UF membranes showed lower HIFI values than the MF membranes. Pore narrowing (internal fouling) was found to be a main fouling pattern of the hydraulically irreversible fouling. The internal fouling was caused by monolayer adsorption of foulants with different sizes that is dependent on the size of the membrane pore.

  13. Hydraulically irreversible fouling on ceramic MF/UF membranes: comparison of fouling indices, foulant composition and irreversible pore narrowing

    KAUST Repository

    Shang, Ran

    2015-05-06

    The application of ceramic membranes in water treatment is becoming increasing attractive because of their long life time and excellent chemical, mechanical and thermal stability. However, fouling of ceramic membranes, especially hydraulically irreversible fouling, is still a critical aspect affecting the operational cost and energy consumption in water treatment plants. In this study, four ceramic membranes with pore sizes or molecular weight cut-off (MWCO) of 0.20 μm, 0.14 μm, 300 kDa and 50 kDa were compared during natural surface water filtration with respect to hydraulically irreversible fouling index (HIFI), foulant composition and narrowing of pore size due to the irreversible fouling. Our results showed that the hydraulically irreversible fouling index (HIFI) was proportional to the membrane pore size (r2=0.89) when the same feed water was filtrated. The UF membranes showed lower HIFI values than the MF membranes. Pore narrowing (internal fouling) was found to be a main fouling pattern of the hydraulically irreversible fouling. The internal fouling was caused by monolayer adsorption of foulants with different sizes that is dependent on the size of the membrane pore.

  14. Isothermal chemical denaturation of large proteins: Path-dependence and irreversibility.

    Science.gov (United States)

    Wafer, Lucas; Kloczewiak, Marek; Polleck, Sharon M; Luo, Yin

    2017-12-15

    State functions (e.g., ΔG) are path independent and quantitatively describe the equilibrium states of a thermodynamic system. Isothermal chemical denaturation (ICD) is often used to extrapolate state function parameters for protein unfolding in native buffer conditions. The approach is prudent when the unfolding/refolding processes are path independent and reversible, but may lead to erroneous results if the processes are not reversible. The reversibility was demonstrated in several early studies for smaller proteins, but was assumed in some reports for large proteins with complex structures. In this work, the unfolding/refolding of several proteins were systematically studied using an automated ICD instrument. It is shown that: (i) the apparent unfolding mechanism and conformational stability of large proteins can be denaturant-dependent, (ii) equilibration times for large proteins are non-trivial and may introduce significant error into calculations of ΔG, (iii) fluorescence emission spectroscopy may not correspond to other methods, such as circular dichroism, when used to measure protein unfolding, and (iv) irreversible unfolding and hysteresis can occur in the absence of aggregation. These results suggest that thorough confirmation of the state functions by, for example, performing refolding experiments or using additional denaturants, is needed when quantitatively studying the thermodynamics of protein unfolding using ICD. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Irreversibility and dissipation in finite-state automata

    International Nuclear Information System (INIS)

    Ganesh, Natesh; Anderson, Neal G.

    2013-01-01

    Irreversibility and dissipation in finite-state automata (FSA) are considered from a physical-information-theoretic perspective. A quantitative measure for the computational irreversibility of finite automata is introduced, and a fundamental lower bound on the average energy dissipated per state transition is obtained and expressed in terms of FSA irreversibility. The irreversibility measure and energy bound are germane to any realization of a deterministic automaton that faithfully registers abstract FSA states in distinguishable states of a physical system coupled to a thermal environment, and that evolves via a sequence of interactions with an external system holding a physical instantiation of a random input string. The central result, which is shown to follow from quantum dynamics and entropic inequalities alone, can be regarded as a generalization of Landauer's Principle applicable to FSAs and tailorable to specified automata. Application to a simple FSA is illustrated.

  16. Extended Irreversible Thermodynamics

    CERN Document Server

    Jou, David

    2010-01-01

    This is the 4th edition of the highly acclaimed monograph on Extended Irreversible Thermodynamics, a theory that goes beyond the classical theory of irreversible processes. In contrast to the classical approach, the basic variables describing the system are complemented by non-equilibrium quantities. The claims made for extended thermodynamics are confirmed by the kinetic theory of gases and statistical mechanics. The book covers a wide spectrum of applications, and also contains a thorough discussion of the foundations and the scope of the current theories on non-equilibrium thermodynamics. For this new edition, the authors critically revised existing material while taking into account the most recent developments in fast moving fields such as heat transport in micro- and nanosystems or fast solidification fronts in materials sciences. Several fundamental chapters have been revisited emphasizing physics and applications over mathematical derivations. Also, fundamental questions on the definition of non-equil...

  17. Irreversible entropy model for damage diagnosis in resistors

    Energy Technology Data Exchange (ETDEWEB)

    Cuadras, Angel, E-mail: angel.cuadras@upc.edu; Crisóstomo, Javier; Ovejas, Victoria J.; Quilez, Marcos [Instrumentation, Sensor and Interfaces Group, Electronic Engineering Department, Escola d' Enginyeria de Telecomunicació i Aeronàutica de Castelldefels EETAC, Universitat Politècnica de Catalunya, Barcelona Tech (UPC), Castelldefels-Barcelona (Spain)

    2015-10-28

    We propose a method to characterize electrical resistor damage based on entropy measurements. Irreversible entropy and the rate at which it is generated are more convenient parameters than resistance for describing damage because they are essentially positive in virtue of the second law of thermodynamics, whereas resistance may increase or decrease depending on the degradation mechanism. Commercial resistors were tested in order to characterize the damage induced by power surges. Resistors were biased with constant and pulsed voltage signals, leading to power dissipation in the range of 4–8 W, which is well above the 0.25 W nominal power to initiate failure. Entropy was inferred from the added power and temperature evolution. A model is proposed to understand the relationship among resistance, entropy, and damage. The power surge dissipates into heat (Joule effect) and damages the resistor. The results show a correlation between entropy generation rate and resistor failure. We conclude that damage can be conveniently assessed from irreversible entropy generation. Our results for resistors can be easily extrapolated to other systems or machines that can be modeled based on their resistance.

  18. Irreversible entropy model for damage diagnosis in resistors

    International Nuclear Information System (INIS)

    Cuadras, Angel; Crisóstomo, Javier; Ovejas, Victoria J.; Quilez, Marcos

    2015-01-01

    We propose a method to characterize electrical resistor damage based on entropy measurements. Irreversible entropy and the rate at which it is generated are more convenient parameters than resistance for describing damage because they are essentially positive in virtue of the second law of thermodynamics, whereas resistance may increase or decrease depending on the degradation mechanism. Commercial resistors were tested in order to characterize the damage induced by power surges. Resistors were biased with constant and pulsed voltage signals, leading to power dissipation in the range of 4–8 W, which is well above the 0.25 W nominal power to initiate failure. Entropy was inferred from the added power and temperature evolution. A model is proposed to understand the relationship among resistance, entropy, and damage. The power surge dissipates into heat (Joule effect) and damages the resistor. The results show a correlation between entropy generation rate and resistor failure. We conclude that damage can be conveniently assessed from irreversible entropy generation. Our results for resistors can be easily extrapolated to other systems or machines that can be modeled based on their resistance

  19. Effectiveness of lead aprons in positron emission tomography

    International Nuclear Information System (INIS)

    Bezerra Fonseca, R.; Amaral, A.

    2008-01-01

    Full text: In the last two decades, Positron Emission Tomography (PET) has emerged as clinical diagnostic technique, becoming one of the fastest growing imaging tools in modern nuclear medicine. Because 511 keV annihilation photon energy is much higher than the photon with mean energy of 140 keV emitted in Single Photon Computed Tomography (SPECT), medical staff working in PET studies receive a higher dose than those working only with SPECT tracers do. As a result, special attention must be paid to keep radiation exposure as low as reasonably achievable (ALARA principle). Lead equivalent apron is the principal personal protective equipment for technologists occupationally exposed to ionizing radiation in medical procedures and may be an important component in the ALARA program. However, in practices involving PET, 0.5 mm lead equivalent aprons have been used regardless of photon's energy. In this context, this work was designed for evaluating radioprotective effectiveness of such aprons in PET procedures. For this, the operational quantities personal dose equivalent H p (0.07) and H p (10) have been assessed by using MCNP4C code in a model of individual exposure to small source of 511 keV photons, representing the situation of injection of the radiopharmaceutical, in two situations: technologists wearing and not wearing 0.5 mm lead aprons. To represent the technologist a mathematical anthropomorphic phantom was employed, and the simulated source to subject distances varied between 40 to 100 cm, in steps of 10 cm. The results showed no significant differences between the values obtained for H p (10) in the two situations, pointing out that that there is no radioprotective influence of wearing such aprons on PET practices. Compared to simulations without such device, H p (0.07) increased up about 26% when technologist is wearing radioprotective aprons, depending on the source to subject distance. On the basis of this work, 0.5 mm lead equivalent aprons should not be

  20. How to account for irreversibility in integrated assessment of climate change?; Comment tenir compte de l'irreversibilite dans l'evaluation integree du changement climatique?

    Energy Technology Data Exchange (ETDEWEB)

    Ha Duong, M

    1998-04-15

    How to account for irreversibility in integrated assessment of climate change? This Ph. D. thesis in Economics balances discounting, technical progress and the inertia of existing capital stock against uncertainty and the inertia of socio-economic systems to examine the issue of near term limitations of greenhouse gases emissions. After a general overview in chapter 2, and a more historical presentation of the debates in chapter 3, chapter 4 proceeds to review a large number of integrated assessment models. Chapter 5 introduces a Model on the Dynamics of Inertia and Adaptability of energy systems: DIAM, used to discuss how much previous studies might have overestimated the long term costs of CO{sub 2} limitations and underestimated adjustment costs. It shows that, given a target date for atmospheric CO{sub 2} concentration stabilisation, a higher inertia implies a lower optimal concentration trajectory. In a sequential decision framework, chapter 6 shows that current uncertainties about which CO{sub 2} concentration ceiling would not present dangerous interference with the climate system justifies precautionary action. Finally, chapter 7 uses the irreversibility effect theory to define formally situations of decision under controversy and compare the irreversibility of CO{sub 2} accumulation with the irreversibility of investments needed to moderate it. An option value for greenhouse gases emissions limitations is computed. (author)

  1. Antimicrobial activity and properties of irreversible hydrocolloid impression materials incorporated with silver nanoparticles.

    Science.gov (United States)

    Ginjupalli, Kishore; Alla, Rama Krishna; Tellapragada, Chaitanya; Gupta, Lokendra; Upadhya Perampalli, Nagaraja

    2016-06-01

    Conventional spray and the immersion disinfection of irreversible hydrocolloid impression materials may lead to dimensional changes. The purpose of this in vitro study was to investigate the antimicrobial activity and properties of irreversible hydrocolloid impression materials incorporated with silver nanoparticles. The antimicrobial activity and properties of 2 commercially available irreversible hydrocolloid impression materials were evaluated after incorporating varying concentrations of silver nanoparticles. Antimicrobial activity was determined using the disk diffusion method. The gel strength, permanent deformation, flow, and gelation time were measured according to American Dental Association specification #18. Analysis of variance was used to identify the significant differences within and across the groups (α=.05). Adding silver nanoparticles to irreversible hydrocolloid impression materials resulted in superior antimicrobial activity without adversely affecting their properties. Adding silver nanoparticles to Zelgan significantly increased the gel strength compared with the control group, except at 5 wt%. However, the gel strength of Tropicalgin was unaffected except at 5 wt%. An increase in the permanent deformation was found with the incorporation of silver nanoparticles in both Zelgan and Tropicalgin. The flow of Zelgan increased with the incorporation of silver nanoparticles, whereas a decrease in the flow of Tropicalgin was observed at 1 wt% and 2 wt%. An increase in the gelation time of both Zelgan and Tropicalgin was observed with the incorporation of silver nanoparticles. Based on this in vitro study, silver nanoparticles can be incorporated into irreversible hydrocolloid impression materials as antimicrobial agents without adversely affecting their properties. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  2. On the existence of physiological age based on functional hierarchy: a formal definition related to time irreversibility.

    Science.gov (United States)

    Chauvet, Gilbert A

    2006-09-01

    The present approach of aging and time irreversibility is a consequence of the theory of functional organization that I have developed and presented over recent years (see e.g., Ref. 11). It is based on the effect of physically small and numerous perturbations known as fluctuations, of structural units on the dynamics of the biological system during its adult life. Being a highly regulated biological system, a simple realistic hypothesis, the time-optimum regulation between the levels of organization, leads to the existence of an internal age for the biological system, and time-irreversibility associated with aging. Thus, although specific genes are controlling aging, time-irreversibility of the system may be shown to be due to the degradation of physiological functions. In other words, I suggest that for a biological system, the nature of time is specific and is an expression of the highly regulated integration. An internal physiological age reflects the irreversible course of a living organism towards death because of the irreversible course of physiological functions towards dysfunction, due to the irreversible changes in the regulatory processes. Following the works of Prigogine and his colleagues in physics, and more generally in the field of non-integrable dynamical systems (theorem of Poincaré-Misra), I have stated this problem in terms of the relationship between the macroscopic irreversibility of the functional organization and the basic mechanisms of regulation at the lowest "microscopic" level, i.e., the molecular, lowest level of organization. The neuron-neuron elementary functional interaction is proposed as an illustration of the method to define aging in the nervous system.

  3. Contribution of the irreversible displacement of domain walls to the piezoelectric effect in barium titanate and lead zirconate titanate ceramics

    CERN Document Server

    Damjanovic, D

    1997-01-01

    The contribution from the irreversible displacement of non-180 deg domain walls to the direct longitudinal piezoelectric d sub 3 sub 3 coefficient of BaTiO sub 3 and Pb(Zr, Ti)O sub 3 ceramics was determined quantitatively by using the Rayleigh law. Effects of the crystal structure and microstructure of the ceramics as well as the external d.c. pressure on the domain wall contribution to d sub 3 sub 3 were examined. In barium titanate, this domain wall contribution is large (up to 35% of the total d sub 3 sub 3 , under the experimental conditions used) and dependent on the external d.c. pressure in coarse grained ceramics, and much smaller and independent of the external d.c. pressure in fine-grained samples. The presence of internal stresses in fine-grained ceramics could account for the observed behaviour. The analysis shows that the domain-wall contribution to the d sub 3 sub 3 in lead zirconate titanate ceramics is large in compositions close to the morphotropic phase boundary that contain a mixture of te...

  4. Generalized irreversible heat-engine experiencing a complex heat-transfer law

    International Nuclear Information System (INIS)

    Chen Lingen; Li Jun; Sun Fengrui

    2008-01-01

    The fundamental optimal relation between optimal power-output and efficiency of a generalized irreversible Carnot heat-engine is derived based on a generalized heat-transfer law, including a generalized convective heat-transfer law and a generalized radiative heat-transfer law, q ∝ (ΔT n ) m . The generalized irreversible Carnot-engine model incorporates several internal and external irreversibilities, such as heat resistance, bypass heat-leak, friction, turbulence and other undesirable irreversibility factors. The added irreversibilities, besides heat resistance, are characterized by a constant parameter and a constant coefficient. The effects of heat-transfer laws and various loss terms are analyzed. The results obtained corroborate those in the literature

  5. Absorption media for irreversibly gettering thionyl chloride

    Science.gov (United States)

    Buffleben, George; Goods, Steven H.; Shepodd, Timothy; Wheeler, David R.; Whinnery, Jr., LeRoy

    2002-01-01

    Thionyl chloride is a hazardous and reactive chemical used as the liquid cathode in commercial primary batteries. Contrary to previous thinking, ASZM-TEDA.RTM. carbon (Calgon Corporation) reversibly absorbs thionyl chloride. Thus, several candidate materials were examined as irreversible getters for thionyl chloride. The capacity, rate and effect of temperature were also explored. A wide variety of likely materials were investigated through screening experiments focusing on the degree of heat generated by the reaction as well as the material absorption capacity and irreversibility, in order to help narrow the group of possible getter choices. More thorough, quantitative measurements were performed on promising materials. The best performing getter was a mixture of ZnO and ASZM-TEDA.RTM. carbon. In this example, the ZnO reacts with thionyl chloride to form ZnCl.sub.2 and SO.sub.2. The SO.sub.2 is then irreversibly gettered by ASZM-TEDA.RTM. carbon. This combination of ZnO and carbon has a high capacity, is irreversible and functions effectively above -20.degree. C.

  6. The Value of Fighting Irreversible Demise by Softening the Irreversible Cost

    NARCIS (Netherlands)

    Magis, P.; Sbuelz, A.

    2005-01-01

    We study a novel issue in the real-options-based technology innovation literature by means of double barrier contingent claims analysis.We show how much a ¯rm with the monopoly over a project is willing to spend in investment technology innovation that softens the irreversible cost of accessing the

  7. Irreversible work in a thermal medium with colored noise

    International Nuclear Information System (INIS)

    Ohkuma, Takahiro

    2009-01-01

    Irreversible work and its fluctuations in a classical system governed by non-Markovian stochastic dynamics are investigated. The production of irreversible work depends not only on the protocol of an operation but also on the details of the non-Markovian memory. We consider a generalized Langevin equation with a memory kernel and derive an expression for the irreversible work in the case of slow operations by carrying out an expansion of this memory kernel in the parameter representing the length of the memory. We apply our formulation to a harmonically trapped system and demonstrate the efficiency of a cycle by evaluating the irreversible work. It is found that a decrease in the irreversible work due to the memory effect can occur for an operation through which the trap is squeezed. The results for this harmonic system are verified exactly in the case that the memory kernel has exponential decay

  8. Irreversible work in a thermal medium with colored noise

    Science.gov (United States)

    Ohkuma, Takahiro

    2009-10-01

    Irreversible work and its fluctuations in a classical system governed by non-Markovian stochastic dynamics are investigated. The production of irreversible work depends not only on the protocol of an operation but also on the details of the non-Markovian memory. We consider a generalized Langevin equation with a memory kernel and derive an expression for the irreversible work in the case of slow operations by carrying out an expansion of this memory kernel in the parameter representing the length of the memory. We apply our formulation to a harmonically trapped system and demonstrate the efficiency of a cycle by evaluating the irreversible work. It is found that a decrease in the irreversible work due to the memory effect can occur for an operation through which the trap is squeezed. The results for this harmonic system are verified exactly in the case that the memory kernel has exponential decay.

  9. Irreversible thermodynamic analysis and application for molecular heat engines

    Science.gov (United States)

    Lucia, Umberto; Açıkkalp, Emin

    2017-09-01

    Is there a link between the macroscopic approach to irreversibility and microscopic behaviour of the systems? Consumption of free energy keeps the system away from a stable equilibrium. Entropy generation results from the redistribution of energy, momentum, mass and charge. This concept represents the essence of the thermodynamic approach to irreversibility. Irreversibility is the result of the interaction between systems and their environment. The aim of this paper is to determine lost works in a molecular engine and compare results with macro (classical) heat engines. Firstly, irreversible thermodynamics are reviewed for macro and molecular cycles. Secondly, irreversible thermodynamics approaches are applied for a quantum heat engine with -1/2 spin system. Finally, lost works are determined for considered system and results show that macro and molecular heat engines obey same limitations. Moreover, a quantum thermodynamic approach is suggested in order to explain the results previously obtained from an atomic viewpoint.

  10. Exergetic efficiency optimization for an irreversible heat pump ...

    Indian Academy of Sciences (India)

    side ... For irreversible cycle, the internal irreversibility, i.e., non-isentropic losses in the ... constant thermal capacitance rate (the product of mass flow rate and specific heat), .... reversed Brayton cycle is dependent on the external heat transfer ...

  11. The detection of local irreversibility in time series based on segmentation

    Science.gov (United States)

    Teng, Yue; Shang, Pengjian

    2018-06-01

    We propose a strategy for the detection of local irreversibility in stationary time series based on multiple scale. The detection is beneficial to evaluate the displacement of irreversibility toward local skewness. By means of this method, we can availably discuss the local irreversible fluctuations of time series as the scale changes. The method was applied to simulated nonlinear signals generated by the ARFIMA process and logistic map to show how the irreversibility functions react to the increasing of the multiple scale. The method was applied also to series of financial markets i.e., American, Chinese and European markets. The local irreversibility for different markets demonstrate distinct characteristics. Simulations and real data support the need of exploring local irreversibility.

  12. Lead pollution recorded in Greenland ice indicates European emissions tracked plagues, wars, and imperial expansion during antiquity.

    Science.gov (United States)

    McConnell, Joseph R; Wilson, Andrew I; Stohl, Andreas; Arienzo, Monica M; Chellman, Nathan J; Eckhardt, Sabine; Thompson, Elisabeth M; Pollard, A Mark; Steffensen, Jørgen Peder

    2018-05-29

    Lead pollution in Arctic ice reflects midlatitude emissions from ancient lead-silver mining and smelting. The few reported measurements have been extrapolated to infer the performance of ancient economies, including comparisons of economic productivity and growth during the Roman Republican and Imperial periods. These studies were based on sparse sampling and inaccurate dating, limiting understanding of trends and specific linkages. Here we show, using a precisely dated record of estimated lead emissions between 1100 BCE and 800 CE derived from subannually resolved measurements in Greenland ice and detailed atmospheric transport modeling, that annual European lead emissions closely varied with historical events, including imperial expansion, wars, and major plagues. Emissions rose coeval with Phoenician expansion, accelerated during expanded Carthaginian and Roman mining primarily in the Iberian Peninsula, and reached a maximum under the Roman Empire. Emissions fluctuated synchronously with wars and political instability particularly during the Roman Republic, and plunged coincident with two major plagues in the second and third centuries, remaining low for >500 years. Bullion in silver coinage declined in parallel, reflecting the importance of lead-silver mining in ancient economies. Our results indicate sustained economic growth during the first two centuries of the Roman Empire, terminated by the second-century Antonine plague.

  13. High Quantum Yield Blue Emission from Lead-Free Inorganic Antimony Halide Perovskite Colloidal Quantum Dots.

    Science.gov (United States)

    Zhang, Jian; Yang, Ying; Deng, Hui; Farooq, Umar; Yang, Xiaokun; Khan, Jahangeer; Tang, Jiang; Song, Haisheng

    2017-09-26

    Colloidal quantum dots (QDs) of lead halide perovskite have recently received great attention owing to their remarkable performances in optoelectronic applications. However, their wide applications are hindered from toxic lead element, which is not environment- and consumer-friendly. Herein, we utilized heterovalent substitution of divalent lead (Pb 2+ ) with trivalent antimony (Sb 3+ ) to synthesize stable and brightly luminescent Cs 3 Sb 2 Br 9 QDs. The lead-free, full-inorganic QDs were fabricated by a modified ligand-assisted reprecipitation strategy. A photoluminescence quantum yield (PLQY) was determined to be 46% at 410 nm, which was superior to that of other reported halide perovskite QDs. The PL enhancement mechanism was unraveled by surface composition derived quantum-well band structure and their large exciton binding energy. The Br-rich surface and the observed 530 meV exciton binding energy were proposed to guarantee the efficient radiative recombination. In addition, we can also tune the inorganic perovskite QD (Cs 3 Sb 2 X 9 ) emission wavelength from 370 to 560 nm via anion exchange reactions. The developed full-inorganic lead-free Sb-perovskite QDs with high PLQY and stable emission promise great potential for efficient emission candidates.

  14. How to account for irreversibility in integrated assessment of climate change?; Comment tenir compte de l'irreversibilite dans l'evaluation integree du changement climatique?

    Energy Technology Data Exchange (ETDEWEB)

    Ha Duong, M

    1998-04-15

    How to account for irreversibility in integrated assessment of climate change? This Ph. D. thesis in Economics balances discounting, technical progress and the inertia of existing capital stock against uncertainty and the inertia of socio-economic systems to examine the issue of near term limitations of greenhouse gases emissions. After a general overview in chapter 2, and a more historical presentation of the debates in chapter 3, chapter 4 proceeds to review a large number of integrated assessment models. Chapter 5 introduces a Model on the Dynamics of Inertia and Adaptability of energy systems: DIAM, used to discuss how much previous studies might have overestimated the long term costs of CO{sub 2} limitations and underestimated adjustment costs. It shows that, given a target date for atmospheric CO{sub 2} concentration stabilisation, a higher inertia implies a lower optimal concentration trajectory. In a sequential decision framework, chapter 6 shows that current uncertainties about which CO{sub 2} concentration ceiling would not present dangerous interference with the climate system justifies precautionary action. Finally, chapter 7 uses the irreversibility effect theory to define formally situations of decision under controversy and compare the irreversibility of CO{sub 2} accumulation with the irreversibility of investments needed to moderate it. An option value for greenhouse gases emissions limitations is computed. (author)

  15. General thermodynamic performance of irreversible absorption heat pump

    International Nuclear Information System (INIS)

    Zhao Xiling; Fu Lin; Zhang Shigang

    2011-01-01

    The absorption heat pump (AHP) was studied with thermodynamics. A four reservoirs model of absorption heat pump was established considering the heat resistance, heat leak and the internal irreversibility. The reasonable working regions, the performance effects of irreversibility, heat leak and the correlation of four components were studied. When studying the effects of internal irreversibility, two internal irreversibility parameters (I he for generator-absorber assembly and I re for evaporator-condenser assembly) were introduced to distinguish the different effects. When studying the heat transfer relations of four components, a universal relationship between the main parameters were deduced. The results which have more realized meaning show that, the reduction of the friction, heat loss, and internal dissipations of the evaporator-condenser assembly are more important than its reduction of generator-absorber assembly, and lessening the heat leak of generator are more important than its reduction of other components to improve the AHP performance.

  16. Effects of reaction conditions on the emission behaviors of arsenic, cadmium and lead during sewage sludge pyrolysis.

    Science.gov (United States)

    Han, Hengda; Hu, Song; Syed-Hassan, Syed Shatir A; Xiao, Yiming; Wang, Yi; Xu, Jun; Jiang, Long; Su, Sheng; Xiang, Jun

    2017-07-01

    Sewage sludge is an important class of bioresources whose energy content could be exploited using pyrolysis technology. However, some harmful trace elements in sewage sludge can escape easily to the gas phase during pyrolysis, increasing the potential of carcinogenic material emissions to the atmosphere. This study investigates emission characteristics of arsenic, cadmium and lead under different pyrolysis conditions for three different sewage sludge samples. The increased temperature (within 723-1123K) significantly promoted the cadmium and lead emissions, but its influence on arsenic emission was not pronounced. The releasing rate order of the three trace elements is volatile arsenic compounds>cadmium>lead in the beginning of pyrolysis. Fast heating rates promoted the emission of trace elements for the sludge containing the highest amount of ash, but exhibited an opposite effect for other studied samples. Overall, the high ash sludge released the least trace elements almost under all reaction conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Stochastic dynamics and irreversibility

    CERN Document Server

    Tomé, Tânia

    2015-01-01

    This textbook presents an exposition of stochastic dynamics and irreversibility. It comprises the principles of probability theory and the stochastic dynamics in continuous spaces, described by Langevin and Fokker-Planck equations, and in discrete spaces, described by Markov chains and master equations. Special concern is given to the study of irreversibility, both in systems that evolve to equilibrium and in nonequilibrium stationary states. Attention is also given to the study of models displaying phase transitions and critical phenomema both in thermodynamic equilibrium and out of equilibrium. These models include the linear Glauber model, the Glauber-Ising model, lattice models with absorbing states such as the contact process and those used in population dynamic and spreading of epidemic, probabilistic cellular automata, reaction-diffusion processes, random sequential adsorption and dynamic percolation. A stochastic approach to chemical reaction is also presented.The textbook is intended for students of ...

  18. Irreversible stochastic processes on lattices

    International Nuclear Information System (INIS)

    Nord, R.S.

    1986-01-01

    Models for irreversible random or cooperative filling of lattices are required to describe many processes in chemistry and physics. Since the filling is assumed to be irreversible, even the stationary, saturation state is not in equilibrium. The kinetics and statistics of these processes are described by recasting the master equations in infinite hierarchical form. Solutions can be obtained by implementing various techniques: refinements in these solution techniques are presented. Programs considered include random dimer, trimer, and tetramer filling of 2D lattices, random dimer filling of a cubic lattice, competitive filling of two or more species, and the effect of a random distribution of inactive sites on the filling. Also considered is monomer filling of a linear lattice with nearest neighbor cooperative effects and solve for the exact cluster-size distribution for cluster sizes up to the asymptotic regime. Additionally, a technique is developed to directly determine the asymptotic properties of the cluster size distribution. Finally cluster growth is considered via irreversible aggregation involving random walkers. In particular, explicit results are provided for the large-lattice-size asymptotic behavior of trapping probabilities and average walk lengths for a single walker on a lattice with multiple traps. Procedures for exact calculation of these quantities on finite lattices are also developed

  19. Irreversible thermodynamics of Poisson processes with reaction.

    Science.gov (United States)

    Méndez, V; Fort, J

    1999-11-01

    A kinetic model is derived to study the successive movements of particles, described by a Poisson process, as well as their generation. The irreversible thermodynamics of this system is also studied from the kinetic model. This makes it possible to evaluate the differences between thermodynamical quantities computed exactly and up to second-order. Such differences determine the range of validity of the second-order approximation to extended irreversible thermodynamics.

  20. Constructal theory through thermodynamics of irreversible processes framework

    International Nuclear Information System (INIS)

    Tescari, S.; Mazet, N.; Neveu, P.

    2011-01-01

    Highlights: → Point to area flow problem is solved through Thermodynamics of irreversible processes. → A new optimisation criterion is defined: the exergy or entropy impedance. → Optimisation is performed following two different routes, constructal or global. → Global optimisation is more efficient than constructal optimisation. → Global optimisation enhances the domain of construct benefits. - Abstract: Point to volume flow problem is revisited on a thermodynamics of irreversible processes (TIP) basis. The first step consists in evaluating the local entropy production of the system, and deducing from this expression the phenomenological laws. Then, the total entropy production can be simply evaluated. It is demonstrated that total entropy production can be written in a remarkable form: the product of the so-called entropy impedance with the square of the heat flux. As the heat flux is given, optimisation consists in minimising the entropy impedance. It is also shown that minimising entropy impedance minimises the maximum temperature difference. Applied to the elemental volume, this optimisation process leads to a shape factor close to the one already published. For the first construction, the equivalent system is defined as stated by Prigogine: when subjected to the same constraints, two systems are thermodynamically equivalent if their entropy production is equal. Two optimisation routes are then investigated: a global optimisation where all scales are taken into account and the constructal optimisation where the system is optimised scale by scale. In this second case, results are close to Ghodossi's work. When global optimisation is performed, it is demonstrated that conductive paths have to be spread uniformly in the active material (i.e. the number of elemental volumes must go to infinite). Comparing the two routes, global optimisation leads to better performance than constructal optimisation. Moreover, global optimisation enlarges the domain of

  1. Trigeminocardiac reflex during non-surgical root canal treatment of teeth with irreversible pulpitis

    Directory of Open Access Journals (Sweden)

    James I.-Sheng Huang

    2018-06-01

    Full Text Available Background/Purpose: Trigeminocardiac reflex (TCR is a unique clinical incident of acute change in hemodynamic balance, which may lead to hypotension, bradycardia, and even clinical crisis. Up to date, no study so far considers the impact of non-surgical root canal treatment (NSRCT of irreversible pulpitis teeth under either local infiltration or block anesthesia on hemodynamic change possibly related to TCR. Methods: This study enrolled 111 patients with 138 irreversible pulpitis teeth that were treated by two sessions of NSRCT. The first session involved mainly the removal of vital pulp tissue with the direct stimulation of the dental branches of the trigeminal nerve, and the second session included the root canal enlargement and debridement with minimal disturbance to the dental branches of the trigeminal nerve. Vital signs mainly the blood pressure were recorded during both NSRCT sessions. Results: The incidences of NSRCT patients with MABP decrease ≧10%, ≧15%, or ≧20% were all significantly higher in the first NSRCT session than in the second NSRCT session (all the P-values < 0.001. In the first NSRCT session, the incidence of patients with MABP decrease ≧10% was significantly associated with tooth type. For both upper and lower teeth, the patients with premolars treated by NSRCR had significantly higher incidences of MABP decrease ≧10% than those with either anterior or molar teeth treated by NSRCR (all the P-values < 0.05. Conclusion: We conclude that vital pulp extirpation may lead to a substantial drop in patient's blood pressure possibly related to TCR. Keywords: Trigeminocardiac reflex, Non-surgical root canal treatment, Irreversible pulpitis, Mean arterial blood pressure, Hypotension, Teeth

  2. Thermodynamic Analysis of an Irreversible Maisotsenko Reciprocating Brayton Cycle

    Directory of Open Access Journals (Sweden)

    Fuli Zhu

    2018-03-01

    Full Text Available An irreversible Maisotsenko reciprocating Brayton cycle (MRBC model is established using the finite time thermodynamic (FTT theory and taking the heat transfer loss (HTL, piston friction loss (PFL, and internal irreversible losses (IILs into consideration in this paper. A calculation flowchart of the power output (P and efficiency (η of the cycle is provided, and the effects of the mass flow rate (MFR of the injection of water to the cycle and some other design parameters on the performance of cycle are analyzed by detailed numerical examples. Furthermore, the superiority of irreversible MRBC is verified as the cycle and is compared with the traditional irreversible reciprocating Brayton cycle (RBC. The results can provide certain theoretical guiding significance for the optimal design of practical Maisotsenko reciprocating gas turbine plants.

  3. Antibiotic use for irreversible pulpitis.

    Science.gov (United States)

    Agnihotry, Anirudha; Fedorowicz, Zbys; van Zuuren, Esther J; Farman, Allan G; Al-Langawi, Jassim Hasan

    2016-02-17

    Irreversible pulpitis, which is characterised by acute and intense pain, is one of the most frequent reasons that patients attend for emergency dental care. Apart from removal of the tooth, the customary way of relieving the pain of irreversible pulpitis is by drilling into the tooth, removing the inflamed pulp (nerve) and cleaning the root canal. However, a significant number of dentists continue to prescribe antibiotics to stop the pain of irreversible pulpitis.This review updates the previous version published in 2013. To assess the effects of systemic antibiotics for irreversible pulpitis. We searched the Cochrane Oral Health Group's Trials Register (to 27 January 2016); the Cochrane Central Register of Controlled Trials (CENTRAL) (The Cochrane Library 2015, Issue 12); MEDLINE via Ovid (1946 to 27 January 2016); EMBASE via Ovid (1980 to 27 January 2016), ClinicalTrials.gov (to 27 January 2016) and the WHO International Clinical Trials Registry Platform (to 27 January 2016). There were no language restrictions in the searches of the electronic databases. Randomised controlled trials which compared pain relief with systemic antibiotics and analgesics, against placebo and analgesics in the acute preoperative phase of irreversible pulpitis. Two review authors screened studies and extracted data independently. We assessed the quality of the evidence of included studies using GRADEpro software. Pooling of data was not possible and a descriptive summary is presented. One trial assessed at low risk of bias, involving 40 participants was included in this update of the review. The quality of the body of evidence was rated low for the different outcomes. There was a close parallel distribution of the pain ratings in both the intervention and placebo groups over the seven-day study period. There was insufficient evidence to claim or refute a benefit for penicillin for pain intensity. There was no significant difference in the mean total number of ibuprofen tablets over the

  4. Optimization of an irreversible Stirling regenerative cycle

    International Nuclear Information System (INIS)

    Aragón-González, G; Cano-Bianco, M; León-Galicia, A; Rivera-Camacho, J M

    2015-01-01

    In this work a Stirling regenerative cycle with some irreversibilities is analyzed. The analyzed irreversibilities are located at the heat exchangers. They receive a finite amount of heat and heat leakage occurs between both reservoirs. Using this model, power and the efficiency at maximum power are obtained. Some optimal design parameters for the exchanger heat areas and thermal conductances are presented. The relation between the power, efficiency and the results obtained are shown graphically

  5. A Temporal Association between Accumulated Petrol (Gasoline Lead Emissions and Motor Neuron Disease in Australia

    Directory of Open Access Journals (Sweden)

    Mark A. S. Laidlaw

    2015-12-01

    Full Text Available Background: The age standardised death rate from motor neuron disease (MND has increased from 1.29 to 2.74 per 100,000, an increase of 112.4% between 1959 and 2013. It is clear that genetics could not have played a causal role in the increased rate of MND deaths over such a short time span. We postulate that environmental factors are responsible for this rate increase. We focus on lead additives in Australian petrol as a possible contributing environmental factor. Methods: The associations between historical petrol lead emissions and MND death trends in Australia between 1962 and 2013 were examined using linear regressions. Results: Regression results indicate best fit correlations between a 20 year lag of petrol lead emissions and age-standardised female death rate (R2 = 0.86, p = 4.88 × 10−23, male age standardised death rate (R2 = 0.86, p = 9.4 × 10−23 and percent all cause death attributed to MND (R2 = 0.98, p = 2.6 × 10−44. Conclusion: Legacy petrol lead emissions are associated with increased MND death trends in Australia. Further examination of the 20 year lag between exposure to petrol lead and the onset of MND is warranted.

  6. Application of proton-induced X-ray emission method to determination of lead content in blood

    International Nuclear Information System (INIS)

    Slominska, D.; Jarczyk, L.; Rokita, E.; Strzalkowski, A.; Losiowski, A.; Macheta, A.; Sych, M.; Moszkowicz, S.

    1979-01-01

    The proton induced X-ray emission method is applied for determination of lead content in the blood of the people exposed to contact with ethyline vapours and people working in lead-zinc works. (author)

  7. Reversible and irreversible heat engine and refrigerator cycles

    Science.gov (United States)

    Leff, Harvey S.

    2018-05-01

    Although no reversible thermodynamic cycles exist in nature, nearly all cycles covered in textbooks are reversible. This is a review, clarification, and extension of results and concepts for quasistatic, reversible and irreversible processes and cycles, intended primarily for teachers and students. Distinctions between the latter process types are explained, with emphasis on clockwise (CW) and counterclockwise (CCW) cycles. Specific examples of each are examined, including Carnot, Kelvin and Stirling cycles. For the Stirling cycle, potentially useful task-specific efficiency measures are proposed and illustrated. Whether a cycle behaves as a traditional refrigerator or heat engine can depend on whether it is reversible or irreversible. Reversible and irreversible-quasistatic CW cycles both satisfy Carnot's inequality for thermal efficiency, η ≤ η C a r n o t . Irreversible CCW cycles with two reservoirs satisfy the coefficient of performance inequality K ≤ K C a r n o t . However, an arbitrary reversible cycle satisfies K ≥ K C a r n o t when compared with a reversible Carnot cycle operating between its maximum and minimum temperatures, a potentially counterintuitive result.

  8. Superconductivity in nanostructured lead

    Science.gov (United States)

    Lungu, Anca; Bleiweiss, Michael; Amirzadeh, Jafar; Saygi, Salih; Dimofte, Andreea; Yin, Ming; Iqbal, Zafar; Datta, Timir

    2001-01-01

    Three-dimensional nanoscale structures of lead were fabricated by electrodeposition of pure lead into artificial porous opal. The size of the metallic regions was comparable to the superconducting coherence length of bulk lead. Tc as high as 7.36 K was observed, also d Tc/d H was 2.7 times smaller than in bulk lead. Many of the characteristics of these differ from bulk lead, a type I superconductor. Irreversibility line and magnetic relaxation rates ( S) were also studied. S( T) displayed two maxima, with a peak value about 10 times smaller than that of typical high- Tc superconductors.

  9. Formation of Irreversible H-bonds in Cellulose Materials

    Science.gov (United States)

    Umesh P. Agarwal; Sally A. Ralph; Rick S. Reiner; Nicole M. Stark

    2015-01-01

    Understanding of formation of irreversible Hbonds in cellulose is important in a number of fields. For example, fields as diverse as pulp and paper and enzymatic saccharification of cellulose are affected. In the present investigation, the phenomenon of formation of irreversible H-bonds is studied in a variety of celluloses and under two different drying conditions....

  10. Positive Feedback of NDT80 Expression Ensures Irreversible Meiotic Commitment in Budding Yeast

    Science.gov (United States)

    Tsuchiya, Dai; Yang, Yang; Lacefield, Soni

    2014-01-01

    In budding yeast, meiotic commitment is the irreversible continuation of the developmental path of meiosis. After reaching meiotic commitment, cells finish meiosis and gametogenesis, even in the absence of the meiosis-inducing signal. In contrast, if the meiosis-inducing signal is removed and the mitosis-inducing signal is provided prior to reaching meiotic commitment, cells exit meiosis and return to mitosis. Previous work has shown that cells commit to meiosis after prophase I but before entering the meiotic divisions. Since the Ndt80 transcription factor induces expression of middle meiosis genes necessary for the meiotic divisions, we examined the role of the NDT80 transcriptional network in meiotic commitment. Using a microfluidic approach to analyze single cells, we found that cells commit to meiosis in prometaphase I, after the induction of the Ndt80-dependent genes. Our results showed that high-level expression of NDT80 is important for the timing and irreversibility of meiotic commitment. A modest reduction in NDT80 levels delayed meiotic commitment based on meiotic stages, although the timing of each meiotic stage was similar to that of wildtype cells. A further reduction of NDT80 resulted in the surprising finding of inappropriately uncommitted cells: withdrawal of the meiosis-inducing signal and addition of the mitosis-inducing signal to cells at stages beyond metaphase I caused return to mitosis, leading to multi-nucleate cells. Since Ndt80 enhances its own transcription through positive feedback, we tested whether positive feedback ensured the irreversibility of meiotic commitment. Ablating positive feedback in NDT80 expression resulted in a complete loss of meiotic commitment. These findings suggest that irreversibility of meiotic commitment is a consequence of the NDT80 transcriptional positive feedback loop, which provides the high-level of Ndt80 required for the developmental switch of meiotic commitment. These results also illustrate the

  11. Irreversibility and self-organization in spin glasses. 2. Irreversibility and the problem of configuration averaging

    International Nuclear Information System (INIS)

    Kovrov, V.P.; Kurbatov, A.M.

    1989-05-01

    The generalization of a configuration averaging to a system displaying irreversible effects is suggested. The properties of the ''pathological'' equilibrium state at low temperatures are determined and discussed. (author). 16 refs, 3 figs

  12. Measurement of local blood flow and oxygen consumption in evolving irreversible cerebral infarction: an in vivo study in man

    International Nuclear Information System (INIS)

    Baron, J.C.; Rougemont, D.; Lebrun-Grandie, P.; Bousser, M.G.; Cabanis, E.; Bories, J.; Comar, D.; Castaigne, P.

    1982-09-01

    Positron emission tomography (PET) allows in vivo measurement of local cerebral blood flow (1CBF), oxygen consumption rate (1CMRO 2 ) and glucose utilisation (1CMRG1c) in man. Although 1CMRG1c is accessible in animals, this is not the case for 1CMRO 2 , an excellent index of local functional state. PET imaging of the local interrelationship of CBF and metabolism in completed ischemic stroke has attracted considerable interest because of its potential to differentiate irreversibly damaged from viable tissue on the basis of the CBF- metabolism patterns. Several qualitative or semi-quantitative pioneering studies provided a limited insight into this question, while the single truly quantitative study was only briefly reported. We report here a detailed study of the local CBF-CMRO 2 quantitative patterns in irreversibly infarcted brain regions

  13. Size-resolved dust and aerosol contaminants associated with copper and lead smelting emissions: Implications for emission management and human health

    Energy Technology Data Exchange (ETDEWEB)

    Csavina, Janae [Department of Chemical and Environmental Engineering, The University of Arizona, Tucson, AZ 85721 (United States); Taylor, Mark P. [Environmental Science, Faculty of Science, Macquarie University, North Ryde, Sydney, NSW 2109 (Australia); Félix, Omar [Department of Chemical and Environmental Engineering, The University of Arizona, Tucson, AZ 85721 (United States); Rine, Kyle P. [Department of Atmospheric Sciences, The University of Arizona, Tucson, AZ 85721 (United States); Eduardo Sáez, A., E-mail: esaez@email.arizona.edu [Department of Chemical and Environmental Engineering, The University of Arizona, Tucson, AZ 85721 (United States); Betterton, Eric A., E-mail: betterton@atmo.arizona.edu [Department of Atmospheric Sciences, The University of Arizona, Tucson, AZ 85721 (United States)

    2014-09-15

    Mining operations, including crushing, grinding, smelting, refining, and tailings management, are a significant source of airborne metal and metalloid contaminants such as As, Pb and other potentially toxic elements. In this work, we show that size-resolved concentrations of As and Pb generally follow a bimodal distribution with the majority of contaminants in the fine size fraction (< 1 μm) around mining activities that include smelting operations at various sites in Australia and Arizona. This evidence suggests that contaminated fine particles (< 1 μm) are the result of vapor condensation and coagulation from smelting operations while coarse particles are most likely the result of windblown dust from contaminated mine tailings and fugitive emissions from crushing and grinding activities. These results on the size distribution of contaminants around mining operations are reported to demonstrate the ubiquitous nature of this phenomenon so that more effective emission management and practices that minimize health risks associated with metal extraction and processing can be developed. - Highlights: • Lead and copper smelting produce significant atmospheric concentrations of lead and arsenic. • Atmospheric lead and arsenic concentrations depend on particle size. • Lead isotopic analysis can be used to assess source of atmospheric contamination from smelters.

  14. Study and characterization of the irreversible transformation of electrically stressed planar Ti/TiO{sub x}/Ti junctions

    Energy Technology Data Exchange (ETDEWEB)

    Guillaume, N.; Puyoo, E., E-mail: etienne.puyoo@insa-lyon.fr; Le Berre, M.; Albertini, D.; Baboux, N.; Chevalier, C.; Ayadi, K.; Grégoire, J.; Gautier, B.; Calmon, F. [Institut des Nanotechnologies de Lyon, Université de Lyon, INL UMR 5270, CNRS, INSA de Lyon, Villeurbanne F-69621 (France)

    2015-10-14

    We investigate the properties and characteristics of planar Ti/TiO{sub x}/Ti junctions, which consist of transverse TiO{sub x} lines drawn on Ti test patterns. Junctions are elaborated by means of local anodic oxidation using atomic force microscopy. An irreversible morphological transformation occurring in a reproducible manner is observed when these planar junctions are electrically stressed under ambient atmosphere. Structural and chemical analyses based on transmission electron microscopy techniques reveal the extension of the initial amorphous TiO{sub x} into a crystalline rutile phase. This irreversible transformation is proven to vanish completely if the electrical stress occurs under vacuum atmosphere. Finally, we carry out temperature dependent electrical measurements in order to elucidate their conduction mechanism: Schottky emission above an ultra-low potential barrier is assumed to dominate under vacuum atmosphere whereas ionic conduction seems to prevail in air.

  15. Optimization at different loads by minimization of irreversibilities

    International Nuclear Information System (INIS)

    Wong, K.F.V.; Niu, Z.

    1991-01-01

    This paper reports that the irreversibility of the power cycle was chosen as the objective function as this function can successfully measure both the quality and quantity of energy flow in the cycle. Minimization of the irreversibility ensures that the power cycle will operate more efficiently. One feature of the present work is that the boiler, turbine, condenser and heaters are treated as one system for the purpose of optimization. In the optimization model, nine regression formulae are used, which are obtained from the measured test data. From the results of the present work, it can be seen that the optimization model developed can represent the effect of operational parameters on the power plant first and second law efficiency. Some of the results can be used to provide guidance for the optimal operation of the power plant. When the power cycle works at full load, the main steam temperature and pressure should be at the upper limit for minimal irreversibility of the system. If the load is less than 65% of its design capacity, the steam temperature and pressure should be decreased for a lower irreversibility of the system

  16. Intrinsic Lead Ion Emissions in Zero-Dimensional Cs4PbBr6 Nanocrystals

    KAUST Repository

    Yin, Jun

    2017-11-07

    We investigate the intrinsic lead ion (Pb2+) emissions in zero-dimensional (0D) perovskite nanocrystals (NCs) using a combination of experimental and theoretical approaches. The temperature-dependent photoluminescence experiments for both “nonemissive” (highly suppressed green emission) and emissive (bright green emission) Cs4PbBr6 NCs show a splitting of emission spectra into high- and low-energy transitions in the ultraviolet (UV) spectral range. In the nonemissive case, we attribute the high-energy UV emission at approximately 350 nm to the allowed optical transition of 3P1 to 1S0 in Pb2+ ions and the low-energy UV emission at approximately 400 nm to the charge-transfer state involved in the 0D NC host lattice (D-state). In the emissive Cs4PbBr6 NCs, in addition to the broad UV emission, we demonstrate that energy transfer occurs from Pb2+ ions to green luminescent centers. The optical phonon modes in Cs4PbBr6 NCs can be assigned to both Pb–Br stretching and rocking motions from density functional theory calculations. Our results address the origin of the dual broadband Pb2+ ion emissions observed in Cs4PbBr6 NCs and provide insights into the mechanism of ionic exciton–optical phonon interactions in these 0D perovskites.

  17. Emissions from urban waste

    International Nuclear Information System (INIS)

    Chacha, J.S.

    1998-01-01

    Indiscriminate emission of gases and fumes from improper storage, transport systems and wastes disposals have polluted the environment especially surface and underground water and air. This has irreversibly affects on the environment some of which can be devastating to life.Some of the potential adverse effects on environment include the ozone depletion, acid rain,soil degradation and climate change

  18. 90 deg.Neutron emission from high energy protons and lead ions on a thin lead target

    CERN Document Server

    Agosteo, S; Foglio-Para, A; Mitaroff, W A; Silari, Marco; Ulrici, L

    2002-01-01

    The neutron emission from a relatively thin lead target bombarded by beams of high energy protons/pions and lead ions was measured at CERN in one of the secondary beam lines of the Super Proton Synchrotron for radiation protection and shielding calculations. Measurements were performed with three different beams: sup 2 sup 0 sup 8 Pb sup 8 sup 2 sup + lead ions at 40 GeV/c per nucleon and 158 GeV/c per nucleon, and 40 GeV/c mixed protons/pions. The neutron yield and spectral fluence per incident ion on target were measured at 90 deg.with respect to beam direction. Monte-Carlo simulations with the FLUKA code were performed for the case of protons and pions and the results found in good agreement with the experimental data. A comparison between simulations and experiment for protons, pions and lead ions have shown that--for such high energy heavy ion beams--a reasonable estimate can be carried out by scaling the result of a Monte-Carlo calculation for protons by the projectile mass number to the power of 0.80-0...

  19. Hotspots of gross emissions from the land use sector: patterns, uncertainties, and leading emission sources for the period 2000-2005 in the tropics

    Science.gov (United States)

    Roman-Cuesta, Rosa Maria; Rufino, Mariana C.; Herold, Martin; Butterbach-Bahl, Klaus; Rosenstock, Todd S.; Herrero, Mario; Ogle, Stephen; Li, Changsheng; Poulter, Benjamin; Verchot, Louis; Martius, Christopher; Stuiver, John; de Bruin, Sytze

    2016-07-01

    According to the latest report of the Intergovernmental Panel on Climate Change (IPCC), emissions must be cut by 41-72 % below 2010 levels by 2050 for a likely chance of containing the global mean temperature increase to 2 °C. The AFOLU sector (Agriculture, Forestry and Other Land Use) contributes roughly a quarter ( ˜ 10-12 Pg CO2e yr-1) of the net anthropogenic GHG emissions mainly from deforestation, fire, wood harvesting, and agricultural emissions including croplands, paddy rice, and livestock. In spite of the importance of this sector, it is unclear where the regions with hotspots of AFOLU emissions are and how uncertain these emissions are. Here we present a novel, spatially comparable dataset containing annual mean estimates of gross AFOLU emissions (CO2, CH4, N2O), associated uncertainties, and leading emission sources, in a spatially disaggregated manner (0.5°) for the tropics for the period 2000-2005. Our data highlight the following: (i) the existence of AFOLU emissions hotspots on all continents, with particular importance of evergreen rainforest deforestation in Central and South America, fire in dry forests in Africa, and both peatland emissions and agriculture in Asia; (ii) a predominant contribution of forests and CO2 to the total AFOLU emissions (69 %) and to their uncertainties (98 %); (iii) higher gross fluxes from forests, which coincide with higher uncertainties, making agricultural hotspots appealing for effective mitigation action; and (iv) a lower contribution of non-CO2 agricultural emissions to the total gross emissions (ca. 25 %), with livestock (15.5 %) and rice (7 %) leading the emissions. Gross AFOLU tropical emissions of 8.0 (5.5-12.2) were in the range of other databases (8.4 and 8.0 Pg CO2e yr-1 in FAOSTAT and the Emissions Database for Global Atmospheric Research (EDGAR) respectively), but we offer a spatially detailed benchmark for monitoring progress in reducing emissions from the land sector in the tropics. The location of

  20. Lead Emissions and Population Vulnerability in the Detroit (Michigan, USA) Metropolitan Area, 2006-2013: A Spatial and Temporal Analysis.

    Science.gov (United States)

    Moody, Heather; Grady, Sue C

    2017-11-23

    Objective : The purpose of this research is to geographically model airborne lead emission concentrations and total lead deposition in the Detroit Metropolitan Area (DMA) from 2006 to 2013. Further, this study characterizes the racial and socioeconomic composition of recipient neighborhoods and estimates the potential for IQ (Intelligence Quotient) loss of children residing there. Methods : Lead emissions were modeled from emitting facilities in the DMA using AERMOD (American Meteorological Society/Environmental Protection Agency Regulatory Model). Multilevel modeling was used to estimate local racial residential segregation, controlling for poverty. Global Moran's I bivariate spatial autocorrelation statistics were used to assess modeled emissions with increasing segregation. Results : Lead emitting facilities were primarily located in, and moving to, highly black segregated neighborhoods regardless of poverty levels-a phenomenon known as environmental injustice. The findings from this research showed three years of elevated airborne emission concentrations in these neighborhoods to equate to a predicted 1.0 to 3.0 reduction in IQ points for children living there. Across the DMA there are many areas where annual lead deposition was substantially higher than recommended for aquatic (rivers, lakes, etc.) and terrestrial (forests, dunes, etc.) ecosystems. These lead levels result in decreased reproductive and growth rates in plants and animals, and neurological deficits in vertebrates. Conclusions : This lead-hazard and neighborhood context assessment will inform future childhood lead exposure studies and potential health consequences in the DMA.

  1. Four decades of gasoline lead emissions and control policies in Europe. A retrospective assessment

    Energy Technology Data Exchange (ETDEWEB)

    Von Storch, Hans; Costa-Cabral, Mariza; Hagner, Charlotte; Feser, Frauke [Institute for Coastal Research, GKSS Research Centre, 21502 Geesthacht (Germany); Pacyna, Jozef; Pacyna, Elisabeth [Norwegian Institute for Air Research (NILU) (Norway); Kolb, Steffen [Institute for Journalism and Communication Research, University of Hamburg, Hamburg (Germany)

    2003-07-20

    Over decades, large amounts of the neurotoxin lead were released into the European environment, mostly from gasoline lead additives. Emissions were growing unabatedly until the 1970s, when a series of regulations on the allowed gasoline lead content were adopted. As a result, in the 1990s most gasoline contained only small amounts of lead. We have examined this case of environmental pollution and regulation, and performed a retrospective assessment of the extent of regional-scale lead pollution and the effects of gasoline lead regulations in Europe. With the help of a regional climate model, NCEP re-analyses, spatially disaggregated lead emissions from road traffic and point sources, and various local data, the airborne pathways and depositions of gasoline lead in Europe since 1958 were reconstructed. It turns out that this approach is successful in describing the time-variable, spatially disaggregated deposition of gasoline lead. Additional data from analyses of concentrations in biota, including plant leaves, mussels and human blood, allows an assessment about the impact of the lead phase-out on the quality of the environment. Demonstrating the success of the lead policies, concentrations in leaves and human blood have steadily declined since the early 1980s. At the same time, the economic repercussions that had been feared did not emerge. Instead, the affected mineral oil and car manufacturing industries in Germany (our case-study) were able to deal with the effort without incurring significant extra costs. We suggest that our method of quantitatively reconstructing and anticipating fluxes and depositions of substances can be applied to other relevant substances as well, such as, for example, Persistent Organic Pollutants, radioactive substances or pollens.

  2. Substance P and CGRP expression in dental pulps with irreversible pulpitis.

    Science.gov (United States)

    Sattari, Mandana; Mozayeni, Mohammad Ali; Matloob, Arash; Mozayeni, Maryam; Javaheri, Homan H

    2010-08-01

    The purpose of this study was to compare substance P (SP) and calcitonin gene-related peptide (CGRP) expression in pulp tissue with clinically diagnosed symptomatic and asymptomatic irreversible pulpitis. Healthy pulps acted as controls. Five normal pulps and 40 with irreversible pulpitis (20 symptomatic and 20 asymptomatic) were obtained from 45 different patients. SP and CGRP expression was determined by competition binding assays using enzyme immunoassay. anova and Mann-Whitney tests were used to ascertain if there were statistically significant differences between the groups. The results showed that neuropeptides were found in all pulp samples. The highest and the lowest expressions for SP and CGRP were found in symptomatic irreversible pulpitis and healthy pulps groups, respectively. The differences between healthy pulps and the groups of pulps having irreversible pulpitis were significant (P pulpitis groups (P pulpitis groups were not significant. This study demonstrated that the expression of CGRP and SP is significantly higher in pulps with irreversible pulpitis compared with healthy pulps.

  3. Blood lead level and seizure: a narrative review

    Directory of Open Access Journals (Sweden)

    Ahmad Shah Farhat

    2015-01-01

    Full Text Available Environmental pollution is one of the most serious and fast-growing problems in the world of today. Lead poisoning is a threatening environmental situation with the potential of causing irreversible health issues and serious negative consequences in adults and children. Lead proves to have almost no clear biological function. However, once it enters the body, it is known to cause severe health effects, which might be irreversible. In this article, we aimed to review the related literature to find evidence concerning the effect of lead toxicity on CNS, particularly its role in febrile convulsion. In this review, PubMed database was searched using MeSH terms. One hundred and fifty seven articles were retrieved, most of which were irrelevant to the topic. After a thorough search in PubMed and Google Scholar, seizure was shown to be one of the consequences of lead toxicity, but there was no evidence of epilepsy or febrile convulsion, induced by this metal contamination.

  4. Selective effect of irreversible electroporation on parenchyma of the pancreas and its vascular structures - an in vivo experiment on a porcine model

    Directory of Open Access Journals (Sweden)

    Roman Svatoň

    2016-01-01

    Full Text Available Irreversible electroporation is a local, non-thermal ablation method, where short electrical pulses of high voltage lead to changes in cell membrane permeability and cell death. Recent experimental studies have shown that it does not lead to damage of blood vessels, nerves, bile duct or ureters. The aim of our experimental study was to evaluate the negative effect of irreversible electroporation regarding damage to the vascular wall and porcine pancreatic tissue. Irreversible electroporation of the pancreas was performed in 6 pigs after medial laparotomy. Irreversible electroporation was applied to each pig to the splenic lobe of the pancreas in order to assess damage to the pancreatic tissue and to the duodenal lobe of the pancreas to assess damage to the vascular structure of the pancreatic tissue. Higher ablation electric intensity (minimum 500 V/cm – maximum 1,750 V/cm, step 250 V/cm in 90 μs pulses was utilized on each pig. After 7 days, macroscopic and microscopic evaluations of en bloc resected specimen (pancreas with duodenum were performed. During 7 post-ablation days, no deaths or clinical worsening occurred in any of the pigs. Necrotic changes in the pancreatic tissue were recorded at an electric intensity of 750 V/cm. Changes in the outer layers of the wall of the arteries and veins occurred at 1,000 V/cm. Transmural vascular wall damage was not recorded in any case. Irreversible electroporation allows for relatively efficient cell death in the target tissues. Our independent experimental work confirms the safety of this method towards vascular structures located in the ablation zone.

  5. Guinea pig ductus arteriosus. II - Irreversible closure after birth.

    Science.gov (United States)

    Fay, F. S.; Cooke, P. H.

    1972-01-01

    To investigate the mechanism underlying irreversibility of ductal closure after birth, studies were undertaken to determine the exact time course for the onset of irreversible closure of the guinea pig ductus arteriosus. Parallel studies of the reactivity of ductal smooth muscle to oxygen and studies of the postpartum cellular changes within the vessel were also carried out.

  6. Multiscale time irreversibility of heart rate and blood pressure variability during orthostasis

    International Nuclear Information System (INIS)

    Chladekova, L; Czippelova, B; Turianikova, Z; Tonhajzerova, I; Calkovska, A; Javorka, M; Baumert, M

    2012-01-01

    Time irreversibility is a characteristic feature of non-equilibrium, complex systems such as the cardiovascular control mediated by the autonomic nervous system (ANS). Time irreversibility analysis of heart rate variability (HRV) and blood pressure variability (BPV) represents a new approach to assess cardiovascular regulatory mechanisms. The aim of this paper was to assess the changes in HRV and BPV irreversibility during the active orthostatic test (a balance of ANS shifted towards sympathetic predominance) in 28 healthy young subjects. We used three different time irreversibility indices—Porta’s, Guzik's and Ehler's indices (P%, G% and E, respectively) derived from data segments containing 1000 beat-to-beat intervals on four timescales. We observed an increase in the HRV and a decrease in the BPV irreversibility during standing compared to the supine position. The postural change in irreversibility was confirmed by surrogate data analysis. The differences were more evident in G% and E than P% and for higher scale factors. Statistical analysis showed a close relationship between G% and E. Contrary to this, the association between P% and G% and P% and E was not proven. We conclude that time irreversibility of beat-to-beat HRV and BPV is significantly altered during orthostasis, implicating involvement of the autonomous nervous system in its generation. (paper)

  7. Irreversibility and conditional probability

    International Nuclear Information System (INIS)

    Stuart, C.I.J.M.

    1989-01-01

    The mathematical entropy - unlike physical entropy - is simply a measure of uniformity for probability distributions in general. So understood, conditional entropies have the same logical structure as conditional probabilities. If, as is sometimes supposed, conditional probabilities are time-reversible, then so are conditional entropies and, paradoxically, both then share this symmetry with physical equations of motion. The paradox is, of course that probabilities yield a direction to time both in statistical mechanics and quantum mechanics, while the equations of motion do not. The supposed time-reversibility of both conditionals seems also to involve a form of retrocausality that is related to, but possibly not the same as, that described by Costa de Beaurgard. The retrocausality is paradoxically at odds with the generally presumed irreversibility of the quantum mechanical measurement process. Further paradox emerges if the supposed time-reversibility of the conditionals is linked with the idea that the thermodynamic entropy is the same thing as 'missing information' since this confounds the thermodynamic and mathematical entropies. However, it is shown that irreversibility is a formal consequence of conditional entropies and, hence, of conditional probabilities also. 8 refs. (Author)

  8. Performance Optimization of Irreversible Air Heat Pumps Considering Size Effect

    Science.gov (United States)

    Bi, Yuehong; Chen, Lingen; Ding, Zemin; Sun, Fengrui

    2018-06-01

    Considering the size of an irreversible air heat pump (AHP), heating load density (HLD) is taken as thermodynamic optimization objective by using finite-time thermodynamics. Based on an irreversible AHP with infinite reservoir thermal-capacitance rate model, the expression of HLD of AHP is put forward. The HLD optimization processes are studied analytically and numerically, which consist of two aspects: (1) to choose pressure ratio; (2) to distribute heat-exchanger inventory. Heat reservoir temperatures, heat transfer performance of heat exchangers as well as irreversibility during compression and expansion processes are important factors influencing on the performance of an irreversible AHP, which are characterized with temperature ratio, heat exchanger inventory as well as isentropic efficiencies, respectively. Those impacts of parameters on the maximum HLD are thoroughly studied. The research results show that HLD optimization can make the size of the AHP system smaller and improve the compactness of system.

  9. Kinetic theory of nonequilibrium ensembles, irreversible thermodynamics, and generalized hydrodynamics

    CERN Document Server

    Eu, Byung Chan

    2016-01-01

    This book presents the fundamentals of irreversible thermodynamics for nonlinear transport processes in gases and liquids, as well as for generalized hydrodynamics extending the classical hydrodynamics of Navier, Stokes, Fourier, and Fick. Together with its companion volume on relativistic theories, it provides a comprehensive picture of the kinetic theory formulated from the viewpoint of nonequilibrium ensembles in both nonrelativistic and, in Vol. 2, relativistic contexts. Theories of macroscopic irreversible processes must strictly conform to the thermodynamic laws at every step and in all approximations that enter their derivation from the mechanical principles. Upholding this as the inviolable tenet, the author develops theories of irreversible transport processes in fluids (gases or liquids) on the basis of irreversible kinetic equations satisfying the H theorem. They apply regardless of whether the processes are near to or far removed from equilibrium, or whether they are linear or nonlinear with respe...

  10. Transition to Clean Capital, Irreversible Investment and Stranded Assets

    OpenAIRE

    Rozenberg, Julie; Vogt-Schilb, Adrien; Hallegatte, Stephane

    2014-01-01

    This paper uses a Ramsey model with two types of capital to analyze the optimal transition to clean capital when polluting investment is irreversible. The cost of climate mitigation decomposes as a technical cost of using clean instead of polluting capital and a transition cost from the irreversibility of pre-existing polluting capital. With a carbon price, the transition cost can be limit...

  11. Spectral line intensity irreversibility in circulatory plasma magnetization processes

    Science.gov (United States)

    Qu, Z. Q.; Dun, G. T.

    2012-01-01

    Spectral line intensity variation is found to be irreversible in circulatory plasma magnetization process by experiments described in this paper, i.e., the curves illustrating spectral line photon fluxes irradiated from a light source immerged in a magnetic field by increasing the magnetic induction cannot be reproduced by decreasing the magnetic induction within the errors. There are two plasma magnetization patterns found. One shows that the intensities are greater at the same magnetic inductions during the magnetic induction decreasing process after the increasing, and the other gives the opposite effect. This reveals that the magneto-induced excitation and de-excitation process is irreversible like ferromagnetic magnetization. But the two irreversible processes are very different in many aspects stated in the text.

  12. Ecological optimization and parametric study of irreversible Stirling and Ericsson heat pumps

    International Nuclear Information System (INIS)

    Tyagi, S.K.; Kaushik, S.C.; Salohtra, R.

    2002-01-01

    This communication presents the ecological optimization and parametric study of irreversible Stirling and Ericsson heat pump cycles, in which the external irreversibility is due to finite temperature difference between working fluid and external reservoirs while the internal irreversibilities are due to regenerative heat loss and other entropy generations within the cycle. The ecological function is defined as the heating load minus the irreversibility (power loss) which is ambient temperature times the entropy generation. The ecological function is optimized with respect to working fluid temperatures, and the expressions for various parameters at the optimal operating condition are obtained. The effects of different operating parameters on the performance of these cycles have been studied. It is found that the effect of internal irreversibility parameter is more pronounced than the other parameters on the performance of these cycles. (author)

  13. Ictal time-irreversible intracranial EEG signals as markers of the epileptogenic zone.

    Science.gov (United States)

    Schindler, Kaspar; Rummel, Christian; Andrzejak, Ralph G; Goodfellow, Marc; Zubler, Frédéric; Abela, Eugenio; Wiest, Roland; Pollo, Claudio; Steimer, Andreas; Gast, Heidemarie

    2016-09-01

    To show that time-irreversible EEG signals recorded with intracranial electrodes during seizures can serve as markers of the epileptogenic zone. We use the recently developed method of mapping time series into directed horizontal graphs (dHVG). Each node of the dHVG represents a time point in the original intracranial EEG (iEEG) signal. Statistically significant differences between the distributions of the nodes' number of input and output connections are used to detect time-irreversible iEEG signals. In 31 of 32 seizure recordings we found time-irreversible iEEG signals. The maximally time-irreversible signals always occurred during seizures, with highest probability in the middle of the first seizure half. These signals spanned a large range of frequencies and amplitudes but were all characterized by saw-tooth like shaped components. Brain regions removed from patients who became post-surgically seizure-free generated significantly larger time-irreversibilities than regions removed from patients who still had seizures after surgery. Our results corroborate that ictal time-irreversible iEEG signals can indeed serve as markers of the epileptogenic zone and can be efficiently detected and quantified in a time-resolved manner by dHVG based methods. Ictal time-irreversible EEG signals can help to improve pre-surgical evaluation in patients suffering from pharmaco-resistant epilepsies. Copyright © 2016 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  14. Irreversible properties of YBCO coated conductors

    International Nuclear Information System (INIS)

    Vostner, A.

    2001-02-01

    Over the past few years substantial efforts were made to optimize the fabrication techniques of various high temperature superconductors for commercial applications. In addition to Bi-2223 tapes, Y-123 coated conductors have the potential for large-scale production and are considered as the second generation of superconducting 'wires' for high current applications. This work reports on magnetic and transport current investigations of Y-123 thick films deposited on either single crystalline substrates by liquid phase epitaxy (LPE) or on metallic substrates by pulsed laser deposition (PLD). At the beginning, a short introduction of the general idea of a coated conductor and of the different production techniques is presented, followed by a description of the different experimental set-ups and the evaluation methods. The main part starts with the results obtained from SQUID magnetometry and ac-susceptibility measurements including the transition temperatures T c , the field dependence of the magnetic critical current densities and the irreversibility lines. In addition, some issues concerning the granular structure and the inter- and intragranular current distribution of the superconducting films are discussed. The investigations by transport currents are focused on the behavior of the application relevant irreversible parameters. These are the angular and the field dependence of the critical transport current densities at 77 and 60 K, as well as the temperature dependence of the irreversibility fields up to 6 T. To gain more insight into the defect structure of the films, neutron irradiation studies were performed on some samples. The introduction of these artificial pinning centers causes large enhancements of the magnetic J c in LPE specimens for the field parallel to the c-axis (H//c) at higher temperatures and magnetic fields. The granular structure of the samples does not change up to the highest neutron fluences. However, the enhancements of the transport J c

  15. Irreversibility analysis in the process of solar distillation

    International Nuclear Information System (INIS)

    Chávez, S; Terres, H; Lizardi, A; López, R; Lara, A

    2017-01-01

    In this work an irreversibility analysis for the thermal process of solar distillation of three different substances is presented, for which it employs a solar still of a slope where three experimental tests with 5.5 L of brine, river water and MgCl 2 were performed. Temperature data principally in the glass cover, absorber plate, fluid, environment and the incident solar radiation on the device were obtained. With measurements of temperature, solar radiation and exergetic balance, irreversibilities are found on the device. The results show that the highest values of irreversibilities are concentrated in the absorber plate with an average of 321 W, 342 W and 276 W, followed by the cover glass with an average of 75.8 W, 80.4 W and 86.7 W and finally the fluid with 15.3 W, 15.9 W and 16 W, for 5.5 L of brine, river water and MgCl 2 . (paper)

  16. Performance of an irreversible quantum Ericsson cooler at low temperature limit

    International Nuclear Information System (INIS)

    Wu Feng; Chen Lingen; Wu Shuang; Sun Fengrui

    2006-01-01

    The purpose of this paper is to investigate the effect of quantum properties of the working medium on the performance of an irreversible quantum Ericsson cooler with spin-1/2. The cooler is studied with the losses of heat resistance, heat leakage and internal irreversibility. The optimal relationship between the dimensionless cooling load R * versus the coefficient of performance ε for the irreversible quantum Ericsson cooler is derived. In particular, the performance characteristics of the cooler at the low temperature limit are discussed

  17. Irreversibility and higher-spin conformal field theory

    CERN Document Server

    Anselmi, D

    2000-01-01

    I discuss the idea that quantum irreversibility is a general principle of nature and a related "conformal hypothesis", stating that all fundamental quantum field theories should be renormalization-group (RG) interpolations between ultraviolet and infrared conformal fixed points. In particular, the Newton constant should be viewed as a low-energy effect of the RG scale. This approach leads naturally to consider higher-spin conformal field theories, which are here classified, as candidate high-energy theories. Bosonic conformal tensors have a positive-definite action, equal to the square of a field strength, and a higher-derivative gauge invariance. The central charges c and a are well defined and positive. I calculate their values and study the operator-product structure. Fermionic theories have no gauge invariance and can be coupled to Abelian and non-Abelian gauge fields in a renormalizable way. At the quantum level, they contribute to the one-loop beta function with the same sign as ordinary matter, admit a...

  18. The thermomechanics of nonlinear irreversible behaviors an introduction

    CERN Document Server

    Maugin, Gérard A

    1999-01-01

    In this invaluable book, macroscopic irreversible thermodynamics is presented in its realm and its splendor by appealing to the notion of internal variables of state. This applies to both fluids and solids with or without microstructures of mechanical or electromagnetic origin. This unmatched richness of essentially nonlinear behaviors is the result of the use of modern mathematical techniques such as convex analysis in a clear-cut framework which allows one to put under the umbrella of "irreversible thermodynamics" behaviors which until now have been commonly considered either not easily cove

  19. Lead Emissions and Population Vulnerability in the Detroit (Michigan, USA Metropolitan Area, 2006–2013: A Spatial and Temporal Analysis

    Directory of Open Access Journals (Sweden)

    Heather Moody

    2017-11-01

    Full Text Available Objective: The purpose of this research is to geographically model airborne lead emission concentrations and total lead deposition in the Detroit Metropolitan Area (DMA from 2006 to 2013. Further, this study characterizes the racial and socioeconomic composition of recipient neighborhoods and estimates the potential for IQ (Intelligence Quotient loss of children residing there. Methods: Lead emissions were modeled from emitting facilities in the DMA using AERMOD (American Meteorological Society/Environmental Protection Agency Regulatory Model. Multilevel modeling was used to estimate local racial residential segregation, controlling for poverty. Global Moran’s I bivariate spatial autocorrelation statistics were used to assess modeled emissions with increasing segregation. Results: Lead emitting facilities were primarily located in, and moving to, highly black segregated neighborhoods regardless of poverty levels—a phenomenon known as environmental injustice. The findings from this research showed three years of elevated airborne emission concentrations in these neighborhoods to equate to a predicted 1.0 to 3.0 reduction in IQ points for children living there. Across the DMA there are many areas where annual lead deposition was substantially higher than recommended for aquatic (rivers, lakes, etc. and terrestrial (forests, dunes, etc. ecosystems. These lead levels result in decreased reproductive and growth rates in plants and animals, and neurological deficits in vertebrates. Conclusions: This lead-hazard and neighborhood context assessment will inform future childhood lead exposure studies and potential health consequences in the DMA.

  20. Multiscale Analysis of Time Irreversibility Based on Phase-Space Reconstruction and Horizontal Visibility Graph Approach

    Science.gov (United States)

    Zhang, Yongping; Shang, Pengjian; Xiong, Hui; Xia, Jianan

    Time irreversibility is an important property of nonequilibrium dynamic systems. A visibility graph approach was recently proposed, and this approach is generally effective to measure time irreversibility of time series. However, its result may be unreliable when dealing with high-dimensional systems. In this work, we consider the joint concept of time irreversibility and adopt the phase-space reconstruction technique to improve this visibility graph approach. Compared with the previous approach, the improved approach gives a more accurate estimate for the irreversibility of time series, and is more effective to distinguish irreversible and reversible stochastic processes. We also use this approach to extract the multiscale irreversibility to account for the multiple inherent dynamics of time series. Finally, we apply the approach to detect the multiscale irreversibility of financial time series, and succeed to distinguish the time of financial crisis and the plateau. In addition, Asian stock indexes away from other indexes are clearly visible in higher time scales. Simulations and real data support the effectiveness of the improved approach when detecting time irreversibility.

  1. Percutaneous Irreversible Electroporation of Unresectable Hilar Cholangiocarcinoma (Klatskin Tumor): A Case Report

    Energy Technology Data Exchange (ETDEWEB)

    Melenhorst, Marleen C. A. M., E-mail: m.melenhorst@vumc.nl; Scheffer, Hester J., E-mail: hj.scheffer@vumc.nl; Vroomen, Laurien G. P. H., E-mail: la.vroomen@vumc.nl [VU University Medical Center, Department of Radiology and Nuclear Medicine (Netherlands); Kazemier, Geert, E-mail: g.kazemier@vumc.nl; Tol, M. Petrousjka van den, E-mail: mp.vandentol@vumc.nl [VU University Medical Center, Department of Surgery (Netherlands); Meijerink, Martijn R., E-mail: mr.meijerink@vumc.nl [VU University Medical Center, Department of Radiology and Nuclear Medicine (Netherlands)

    2016-01-15

    Irreversible electroporation (IRE) is a novel image-guided ablation technique that is rapidly gaining popularity in the treatment of malignant tumors located near large vessels or bile ducts. The presence of metal objects in the ablation zone, such as Wallstents, is generally considered a contraindication for IRE, because tissue heating due to power conduction may lead to thermal complications. This report describes a 66-year-old female with a Bismuth–Corlette stage IV unresectable cholangiocarcinoma with a metallic Wallstent in the common bile duct, who was safely treated with percutaneous IRE with no signs for relapse 1 year after the procedure.

  2. A kinetic equation for irreversible aggregation

    International Nuclear Information System (INIS)

    Zanette, D.H.

    1990-09-01

    We introduce a kinetic equation for describing irreversible aggregation in the ballistic regime, including velocity distributions. The associated evolution for the macroscopic quantities is studied, and the general solution for Maxwell interaction models is obtained in the Fourier representation. (author). 23 refs

  3. Anisotropic shift of the irreversibility line by neutron irradiation

    International Nuclear Information System (INIS)

    Sauerzopf, F.M.; Wiesinger, H.P.; Weber, H.W.; Crabtree, G.W.; Frischherz, M.C.; Kirk, M.A.

    1991-09-01

    The irreversibility line of high-T c superconductors is shifted considerably by irradiating the material with fast neutrons. The anisotropic and non-monotonous shift is qualitatively explained by a simple model based on an interaction between three pinning mechanisms, the intrinsic pinning by the ab-planes, the weak pinning by the pre-irradiation defect structure, and strong pinning by neutron induced defect cascades. A correlation between the cascade density and the position of the irreversibility line is observed

  4. Measures of thermodynamic irreversibility in deterministic and stochastic dynamics

    International Nuclear Information System (INIS)

    Ford, Ian J

    2015-01-01

    It is generally observed that if a dynamical system is sufficiently complex, then as time progresses it will share out energy and other properties amongst its component parts to eliminate any initial imbalances, retaining only fluctuations. This is known as energy dissipation and it is closely associated with the concept of thermodynamic irreversibility, measured by the increase in entropy according to the second law. It is of interest to quantify such behaviour from a dynamical rather than a thermodynamic perspective and to this end stochastic entropy production and the time-integrated dissipation function have been introduced as analogous measures of irreversibility, principally for stochastic and deterministic dynamics, respectively. We seek to compare these measures. First we modify the dissipation function to allow it to measure irreversibility in situations where the initial probability density function (pdf) of the system is asymmetric as well as symmetric in velocity. We propose that it tests for failure of what we call the obversibility of the system, to be contrasted with reversibility, the failure of which is assessed by stochastic entropy production. We note that the essential difference between stochastic entropy production and the time-integrated modified dissipation function lies in the sequence of procedures undertaken in the associated tests of irreversibility. We argue that an assumed symmetry of the initial pdf with respect to velocity inversion (within a framework of deterministic dynamics) can be incompatible with the Past Hypothesis, according to which there should be a statistical distinction between the behaviour of certain properties of an isolated system as it evolves into the far future and the remote past. Imposing symmetry on a velocity distribution is acceptable for many applications of statistical physics, but can introduce difficulties when discussing irreversible behaviour. (paper)

  5. Fundamental economic irreversibilities influence policies for enhancing international forest phytosanitary security

    Science.gov (United States)

    Thomas P. Holmes; Will Allen; Robert G. Haight; E. Carina H. Keskitalo; Mariella Marzano; Maria Pettersson; Christopher P. Quine; E. R. Langer

    2017-01-01

    National and international efforts to manage forest biosecurity create tension between opposing sources of ecological and economic irreversibility. Phytosanitary policies designed to protect national borders from biological invasions incur sunk costs deriving from economic and political irreversibilities that incentivizes wait-and-see decision-making. However, the...

  6. The use of TiO2 nanoparticles to reduce refrigerator ir-reversibility

    International Nuclear Information System (INIS)

    Padmanabhan, Venkataramana Murthy V.; Palanisamy, Senthilkumar

    2012-01-01

    Highlights: ► COP of hydrocarbons mixture VCRSs increases less when compared to R134a. ► Compressor ir-reversibility of VCRSs decreases by 33% (R134a), 14% (R436A and R436B). ► Total ir-reversibility of selected VCRSs decreases. ► Exergy efficiency of R134a is exceptionally low at lower reference temperature. ► Exergy efficiency of selected VCRSs increases. - Abstract: The ir-reversibility at the process of a vapour-compression refrigeration system (VCRS) with nanoparticles in the working fluid was investigated experimentally. Mineral oil (MO) with 0.1 g L −1 TiO 2 nanoparticles mixture were used as the lubricant instead of Polyol-ester (POE) oil in the R134a, R436A (R290/R600a-56/44-wt.%) and R436B (R290/R600a-52/48-wt.%)VCRSs. The VCRS ir-reversibility at the process with the nanoparticles was investigated using second law of thermodynamics. The results indicate that R134a, R436A and R436B and MO with TiO 2 nanoparticles work normally and safely in the VCRS. The VCRSs total ir-reversibility (529, 588 and 570 W) at different process was better than the R134a, R436A and R436B and POE oil system (777, 697 and 683 W). The same tests with Al 2 O 3 nanoparticles showed that the different nanoparticles properties have little effect on the VCRS ir-reversibility. Thus, TiO 2 nanoparticles can be used in VCRS with reciprocating compressor to considerably reduce ir-reversibility at the process.

  7. Occupational exposures to leaded and unleaded gasoline engine emissions and lung cancer risk.

    Science.gov (United States)

    Xu, Mengting; Siemiatycki, Jack; Lavoué, Jérôme; Pasquet, Romain; Pintos, Javier; Rousseau, Marie-Claude; Richardson, Lesley; Ho, Vikki

    2018-04-01

    To determine whether occupational exposure to gasoline engine emissions (GEE) increased the risk of lung cancer and more specifically whether leaded or unleaded GEE increased the risk. Two population-based case-control studies were conducted in Montreal, Canada. The first was conducted in the early 1980s and included many types of cancer including lung cancer. The second was conducted in the late 1990s and focused on lung cancer. Population controls were used in both studies. Altogether, there were 1595 cases and 1432 population controls. A comprehensive expert-based exposure assessment procedure was implemented and exposure was assessed for 294 agents, including unleaded GEE, leaded GEE and diesel engine emissions (DEE). Logistic regression analyses were conducted to estimate ORs between various metrics of GEE exposure and lung cancer, adjusting for smoking, DEE and other potential confounders. About half of all controls were occupationally exposed to GEE. Irrespective of the metrics of exposure (any exposure, duration of exposure and cumulative exposure) and the type of lung cancer, and the covariates included in models, none of the point estimates of the ORs between occupational exposure to leaded or unleaded GEE and lung cancer were above 1.0. Pooling two studies, the OR for any exposure to leaded GEE was 0.82 (0.68-1.00). Our results do not support the hypothesis that occupational exposure to GEE increases the risk of lung cancer. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  8. Influence of lead-doped hydroponic medium on the adsorption/bioaccumulation processes of lead and phosphorus in roots and leaves of the aquatic macrophyte Eicchornia crassipes.

    Science.gov (United States)

    Espinoza-Quiñones, Fernando R; Módenes, Aparecido Nivaldo; de Oliveira, Ana Paula; Trigueros, Daniela Estelita Goes

    2013-11-30

    In this study, lead bioaccumulation by the living free-floating aquatic macrophyte Eicchornia crassipes in different hydroponic conditions with variations in phosphorus and lead concentrations was investigated. A set of growth experiments in hydroponic media doped with lead and phosphorus within a wide concentration range was performed for 32 days in a greenhouse. All experiments were carried out with periodic replacement of all nutrients and lead. The concentration of lead and nutrients in biomass was determined by synchrotron radiation-excited total reflection X-ray fluorescence. By increasing the lead concentration in the medium, a reduction in biomass growth was observed, but a higher phosphorus retention in roots and leaves was shown at lower lead concentrations. In addition, an increase in the amount of bioaccumulated lead and phosphorus in roots was observed for higher lead and phosphorus concentrations in the medium, reaching saturation values of 4 mg Pb g(-1) and 7 mg P g(-1), respectively. Four non-structural kinetic models were tested, to represent the bioaccumulation of lead and phosphorus in roots. Pseudo-second order and irreversible kinetic models described the lead bioaccumulation data well, however, an irreversible kinetic model better fitted phosphorus uptake in roots. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Irreversible Local Markov Chains with Rapid Convergence towards Equilibrium

    Science.gov (United States)

    Kapfer, Sebastian C.; Krauth, Werner

    2017-12-01

    We study the continuous one-dimensional hard-sphere model and present irreversible local Markov chains that mix on faster time scales than the reversible heat bath or Metropolis algorithms. The mixing time scales appear to fall into two distinct universality classes, both faster than for reversible local Markov chains. The event-chain algorithm, the infinitesimal limit of one of these Markov chains, belongs to the class presenting the fastest decay. For the lattice-gas limit of the hard-sphere model, reversible local Markov chains correspond to the symmetric simple exclusion process (SEP) with periodic boundary conditions. The two universality classes for irreversible Markov chains are realized by the totally asymmetric SEP (TASEP), and by a faster variant (lifted TASEP) that we propose here. We discuss how our irreversible hard-sphere Markov chains generalize to arbitrary repulsive pair interactions and carry over to higher dimensions through the concept of lifted Markov chains and the recently introduced factorized Metropolis acceptance rule.

  10. A Fingerprint Encryption Scheme Based on Irreversible Function and Secure Authentication

    Directory of Open Access Journals (Sweden)

    Yijun Yang

    2015-01-01

    Full Text Available A fingerprint encryption scheme based on irreversible function has been designed in this paper. Since the fingerprint template includes almost the entire information of users’ fingerprints, the personal authentication can be determined only by the fingerprint features. This paper proposes an irreversible transforming function (using the improved SHA1 algorithm to transform the original minutiae which are extracted from the thinned fingerprint image. Then, Chinese remainder theorem is used to obtain the biokey from the integration of the transformed minutiae and the private key. The result shows that the scheme has better performance on security and efficiency comparing with other irreversible function schemes.

  11. Microwave emission from lead zirconate titanate induced by impulsive mechanical load

    Energy Technology Data Exchange (ETDEWEB)

    Aman, A., E-mail: alexander.aman@ovgu.de [Department of Engineering, Brandenburg University of Applied Science, 14470 Brandenburg an derHavel (Germany); Packaging Group, Institute of Micro- and Sensorsytems, Otto-von-Guericke University, Universitätsplatz 2, 39106 Magdeburg (Germany); Majcherek, S. [Packaging Group, Institute of Micro- and Sensorsytems, Otto-von-Guericke University, Universitätsplatz 2, 39106 Magdeburg (Germany); Hirsch, S. [Department of Engineering, Brandenburg University of Applied Science, 14470 Brandenburg an derHavel (Germany); Schmidt, B. [Chair of Micorsystem Technology, Institute of Micro- and Sensorsytems, Otto-von-Guericke University, Universitätsplatz 2, 39106 Magdeburg (Germany)

    2015-10-28

    This paper focuses on microwave emission from Lead zirconate titanate Pb [Zr{sub x}Ti{sub 1−x}] O{sub 3} (PZT) induced by mechanical stressing. The mechanical stress was initiated by impact of a sharp tungsten indenter on the upper surface of PZT ceramic. The sequences of microwave and current impulses, which flew from indenter to electric ground, were detected simultaneously. The voltage between the upper and lower surface of ceramic was measured to obtain the behavior of mechanical force acting on ceramic during the impact. It was found that the amplitude, form, and frequency of measured microwave impulses were different by compression and restitution phase of impact. Two different mechanisms of electron emission, responsible for microwave impulse generation, were proposed based on the dissimilar impulse behavior. The field emission from tungsten indenter is dominant during compression, whereas ferroemission dominates during restitution phase. Indeed, it was observed that the direction of the current flow, i.e., sign of current impulses is changed by transitions from compression to restitution phase of impact. The observed dissimilar behavior of microwave impulses, caused by increasing and decreasing applied force, can be used to calculate the contact time and behavior of mechanical force during mechanical impact on ceramic surface. It is shown that the generation of microwave impulses exhibits high reproducibility, impulse intensity, a low damping factor, and high mechanical failure resistance. Based on these microwave emission properties of PZT, the development of new type of stress sensor with spatial resolution of few microns becomes possible.

  12. Irreversible particle motion in surfactant-laden interfaces due to pressure-dependent surface viscosity

    Science.gov (United States)

    Manikantan, Harishankar; Squires, Todd M.

    2017-09-01

    The surface shear viscosity of an insoluble surfactant monolayer often depends strongly on its surface pressure. Here, we show that a particle moving within a bounded monolayer breaks the kinematic reversibility of low-Reynolds-number flows. The Lorentz reciprocal theorem allows such irreversibilities to be computed without solving the full nonlinear equations, giving the leading-order contribution of surface pressure-dependent surface viscosity. In particular, we show that a disc translating or rotating near an interfacial boundary experiences a force in the direction perpendicular to that boundary. In unbounded monolayers, coupled modes of motion can also lead to non-intuitive trajectories, which we illustrate using an interfacial analogue of the Magnus effect. This perturbative approach can be extended to more complex geometries, and to two-dimensional suspensions more generally.

  13. Optima and bounds for irreversible thermodynamic processes

    International Nuclear Information System (INIS)

    Hoffmann, K.H.

    1990-01-01

    In this paper bounds and optima for irreversible thermodynamic processes and their application in different fields are discussed. The tools of finite time thermodynamics are presented and especially optimal control theory is introduced. These methods are applied to heat engines, including models of the Diesel engine and a light-driven engine. Further bounds for irreversible processes are introduced, discussing work deficiency and its relation to thermodynamic length. Moreover the problem of dissipation in systems composed of several subsystems is studied. Finally, the methods of finite time thermodynamics are applied to thermodynamic processes described on a more microscopic level. The process used as an example is simulated annealing. It is shown how optimal control theory is applied to find the optimal cooling schedule for this important stochastic optimization method

  14. Advertising and Irreversible Opinion Spreading in Complex Social Networks

    Science.gov (United States)

    Candia, Julián

    Irreversible opinion spreading phenomena are studied on small-world and scale-free networks by means of the magnetic Eden model, a nonequilibrium kinetic model for the growth of binary mixtures in contact with a thermal bath. In this model, the opinion of an individual is affected by those of their acquaintances, but opinion changes (analogous to spin flips in an Ising-like model) are not allowed. We focus on the influence of advertising, which is represented by external magnetic fields. The interplay and competition between temperature and fields lead to order-disorder transitions, which are found to also depend on the link density and the topology of the complex network substrate. The effects of advertising campaigns with variable duration, as well as the best cost-effective strategies to achieve consensus within different scenarios, are also discussed.

  15. A minimal dissipation type-based classification in irreversible thermodynamics and microeconomics

    Science.gov (United States)

    Tsirlin, A. M.; Kazakov, V.; Kolinko, N. A.

    2003-10-01

    We formulate the problem of finding classes of kinetic dependencies in irreversible thermodynamic and microeconomic systems for which minimal dissipation processes belong to the same type. We show that this problem is an inverse optimal control problem and solve it. The commonality of this problem in irreversible thermodynamics and microeconomics is emphasized.

  16. Irreversible energy flow in forced Vlasov dynamics

    KAUST Repository

    Plunk, Gabriel G.; Parker, Joseph T.

    2014-01-01

    © EDP Sciences, Società Italiana di Fisica, Springer-Verlag. The recent paper of Plunk [G.G. Plunk, Phys. Plasmas 20, 032304 (2013)] considered the forced linear Vlasov equation as a model for the quasi-steady state of a single stable plasma wavenumber interacting with a bath of turbulent fluctuations. This approach gives some insight into possible energy flows without solving for nonlinear dynamics. The central result of the present work is that the forced linear Vlasov equation exhibits asymptotically zero (irreversible) dissipation to all orders under a detuning of the forcing frequency and the characteristic frequency associated with particle streaming. We first prove this by direct calculation, tracking energy flow in terms of certain exact conservation laws of the linear (collisionless) Vlasov equation. Then we analyze the steady-state solutions in detail using a weakly collisional Hermite-moment formulation, and compare with numerical solution. This leads to a detailed description of the Hermite energy spectrum, and a proof of no dissipation at all orders, complementing the collisionless Vlasov result.

  17. Irreversible energy flow in forced Vlasov dynamics

    KAUST Repository

    Plunk, Gabriel G.

    2014-10-01

    © EDP Sciences, Società Italiana di Fisica, Springer-Verlag. The recent paper of Plunk [G.G. Plunk, Phys. Plasmas 20, 032304 (2013)] considered the forced linear Vlasov equation as a model for the quasi-steady state of a single stable plasma wavenumber interacting with a bath of turbulent fluctuations. This approach gives some insight into possible energy flows without solving for nonlinear dynamics. The central result of the present work is that the forced linear Vlasov equation exhibits asymptotically zero (irreversible) dissipation to all orders under a detuning of the forcing frequency and the characteristic frequency associated with particle streaming. We first prove this by direct calculation, tracking energy flow in terms of certain exact conservation laws of the linear (collisionless) Vlasov equation. Then we analyze the steady-state solutions in detail using a weakly collisional Hermite-moment formulation, and compare with numerical solution. This leads to a detailed description of the Hermite energy spectrum, and a proof of no dissipation at all orders, complementing the collisionless Vlasov result.

  18. Optimization of the performance characteristics in an irreversible magnetic Brayton refrigeration cycle

    International Nuclear Information System (INIS)

    Wang Hao; Liu Sanqiu

    2008-01-01

    An irreversible cycle model of magnetic Brayton refrigerators is established, in which the thermal resistance and irreversibility in the two adiabatic processes are taken into account. Expressions for several important performance parameters, such as the coefficient of performance, cooling rate and power input are derived. Moreover, the optimal performance parameters are obtained at the maximum coefficient of performance. The optimization region (or criteria) for an irreversible magnetic Brayton refrigerator is obtained. The results obtained here have general significance and will be helpful to understand deeply the performance of a magnetic Brayton refrigeration cycle

  19. BNNT-mediated irreversible electroporatio: its potential on cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Vittoria Raffa, Cristina Riggio, Michael W. Smith, Kevin C. Jordan, Wei Cao, Alfred Cuschieri

    2012-10-01

    Tissue ablation, i.e., the destruction of undesirable tissues, has become an important minimally invasive technique alternative to resection surgery for the treatment of tumours. Several methods for tissue ablation are based on thermal techniques using cold, e.g. cryosurgery [1] or heat, e.g. radiofrequency [2] or high-intensity focused ultrasound [3] or nanoparticle-mediated irradiation [4]. Alternatively, irreversible electroporation (IRE) has been proposed as non thermal technique for minimally invasive tissue ablation based on the use of electrical pulses. When the electric field is applied to a cell, a change in transmembrane potential is induced, which can cause biochemical and physiological changes of the cell. When the threshold value of the transmembrane potential is exceeded, the cell membrane becomes permeable, thus allowing entrance of molecules that otherwise cannot cross the membrane [5]. A further increase in the electric field intensity may cause irreversible membrane permeabilization and cell death. These pulses create irreversible defects (pores) in the cell membrane lipid bilayer, causing cell death through loss of cell homeostasis [6]. This is desirable in tumour ablation in order to produce large cell death, without the use of cytostatic drugs. A study of Davalos, Mir and Rubinsky showed that IRE can ablate substantial volumes of tissue without inducing a thermal effect and therefore serve as an independent and new tissue ablation modality; this opened the way to the use of IRE in surgery [7]. Their finding was subsequently confirmed in studies on cells [8], small animal models [9] and in large animal models in the liver [10] and the heart [11]. The most important finding in these papers is that irreversible electroporation produces precisely delineated ablation zones with cell scale resolution between ablated and non-ablated areas, without zones in which the extent of damage changes gradually as during thermal ablation. Furthermore, it is

  20. Double pulse laser induced breakdown spectroscopy: Experimental study of lead emission intensity dependence on the wavelengths and sample matrix

    Energy Technology Data Exchange (ETDEWEB)

    Piscitelli S, V; Martinez L, M A; Fernandez C, A J [Laboratorio de Espectroscopia Laser, Escuela de Quimica, Facultad de Ciencias, Universidad Central de Venezuela, Caracas, DC 1020 (Venezuela, Bolivarian Republic of); Gonzalez, J J; Mao, X L [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Russo, R.E. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States)], E-mail: RERusso@lbl.gov

    2009-02-15

    Lead (Pb) emission intensity (atomic line 405.78 nm) dependence on the sample matrix (metal alloy) was studied by means of collinear double pulse (DP)-laser induced breakdown spectroscopy (LIBS). The measurement of the emission intensity produced by three different wavelength combinations (i.e. I:532 nm-II:1064 nm, I:532 nm-II:532 nm, and I:532 nm-II:355 nm) from three series of standard reference materials showed that the lead atomic line 405.78 nm emission intensity was dependent on the sample matrix for all the combination of wavelengths, however reduced dependency was found for the wavelength combination I:532 nm-II:355 nm. Two series of standard reference materials from the National Institute of Standards and Technology (NIST) and one series from the British Chemical Standards (BCS) were used for these experiments. Calibration curves for lead ablated from NIST 626-630 ('Zn{sub 95}Al{sub 4}Cu{sub 1}') provided higher sensitivity (slope) than those calibration curves produced from NIST 1737-1741 ('Zn{sub 99.5}Al{sub 0.5}') and with the series BCS 551-556 ('Cu{sub 87}Sn{sub 11}'). Similar trends between lead emission intensity (calibration curve sensitivities) and reported variations in plasma temperatures caused by the differing ionization potentials of the major and minor elements in these samples were established.

  1. Irreversible adsorption of phenolic compounds by activated carbons

    Energy Technology Data Exchange (ETDEWEB)

    Grant, T.M.; King, C.J.

    1988-12-01

    Studies were undertaken to determine the reasons why phenolic sorbates can be difficult to remove and recover from activated carbons. The chemical properties of the sorbate and the adsorbent surface, and the influences of changes in the adsorption and desorption conditions were investigated. Comparison of isotherms established after different contact times or at different temperatures indicated that phenolic compounds react on carbon surfaces. The reaction rate is a strong function of temperature. Regeneration of carbons by leaching with acetone recovered at least as much phenol as did regeneration with other solvents or with displacers. The physiochemical properties of adsorbents influences irreversible uptakes. Sorbates differed markedly in their tendencies to undergo irreversible adsorption. 64 refs., 47 figs., 32 tabs.

  2. Irreversible adsorption of phenolic compounds by activated carbons

    International Nuclear Information System (INIS)

    Grant, T.M.; King, C.J.

    1988-12-01

    Studies were undertaken to determine the reasons why phenolic sorbates can be difficult to remove and recover from activated carbons. The chemical properties of the sorbate and the adsorbent surface, and the influences of changes in the adsorption and desorption conditions were investigated. Comparison of isotherms established after different contact times or at different temperatures indicated that phenolic compounds react on carbon surfaces. The reaction rate is a strong function of temperature. Regeneration of carbons by leaching with acetone recovered at least as much phenol as did regeneration with other solvents or with displacers. The physiochemical properties of adsorbents influences irreversible uptakes. Sorbates differed markedly in their tendencies to undergo irreversible adsorption. 64 refs., 47 figs., 32 tabs

  3. Port contact systems for irreversible thermodynamical systems

    NARCIS (Netherlands)

    Eberard, D.; Maschke, B.M.; Schaft, A.J. van der

    2005-01-01

    In this paper we propose a definition of control contact systems, generalizing input-output Hamiltonian systems, to cope with models arising from irreversible Thermodynamics. We exhibit a particular subclass of these systems, called conservative, that leaves invariant some Legendre submanifold (the

  4. β-characterization by irreversibility analysis: A thermoeconomic diagnosis method

    International Nuclear Information System (INIS)

    Zaleta-Aguilar, Alejandro; Olivares-Arriaga, Abraham; Cano-Andrade, Sergio; Rodriguez-Alejandro, David A.

    2016-01-01

    This paper presents a reconciliation methodology for the diagnosis of energy systems. The methodology is based on the characterization of irreversibilities in the components of an energy system. These irreversibilities can be attributed to malfunctions or dysfunctions. The characterization of irreversibilities as presented here makes possible to reconcile the Actual Operating Condition (AOC) versus the Reference Operating Condition (ROC) of the energy system in a real-time manner. The diagnosis methodology introduces a parameter β, which represents the total exergy or useful work of a component in terms of its inlet and output streams at either design (full-load) or off-design (partial-load) conditions. The methodology is applied to the diagnosis of an actual Natural Gas Combined Cycle (NGCC) power plant. Data for the model is obtained directly from the plant by monitoring its performance at every time; thus, a real-time thermodynamic diagnosis for the system is obtained. Results show that the methodology presented here is able to detect and quantify the deviations on the performance of the NGCC power plant during its real-time operation. Based on the detection and quantification of these deviations, the user is able to make recommendations to schedule maintenance on the components where the irreversibilities are present. - Highlights: • A new methodology for thermoeconomic diagnosis of energy systems is presented. • A parameter β is defined for characterization of the components of an energy system. • The β characterization methodology is tested in a real 420 MW NGCC power plant. • Results show that the complexity of a diagnosis analysis is reduced substantially.

  5. Variability of Irreversible Poleward Transport in the Lower Stratosphere

    Science.gov (United States)

    Olsen, Mark; Douglass, Anne; Newman, Paul; Nash, Eric; Witte, Jacquelyn; Ziemke, Jerry

    2011-01-01

    The ascent and descent of the Brewer-Dobson circulation plays a large role in determining the distributions of many constituents in the extratropical lower stratosphere. However, relatively fast, quasi-horizontal transport out of the tropics and polar regions also significantly contribute to determining these distributions. The tropical tape recorder signal assures that there must be outflow from the tropics into the extratropical lower stratosphere. The phase of the quasi-biennial oscillation (QBO) and state of the polar vortex are known to modulate the transport from the tropical and polar regions, respectively. In this study we examine multiple years of ozone distributions in the extratropical lower stratosphere observed by the Aura Microwave Limb Sounder (MLS) and the Aura High Resolution Dynamic Limb Sounder (HIRDLS). The distributions are compared with analyses of irreversible, meridional isentropic transport. We show that there is considerable year-to-year seasonal variability in the amount of irreversible transport from the tropics, which is related to both the phase of the QBO and the state of the polar vortex. The reversibility of the transport is consistent with the number of observed breaking waves. The variability of the atmospheric index of refraction in the lower stratosphere is shown to be significantly correlated with the wave breaking and amount of irreversible transport. Finally, we will show that the seasonal extratropical stratosphere to troposphere transport of ozone can be substantially modulated by the amount of irreversible meridional transport in the lower stratosphere and we investigate how observable these differences are in data of tropospheric ozone.

  6. Quantum thermodynamics: Microscopic foundations of entropy and of entropy generation by irreversibility

    Directory of Open Access Journals (Sweden)

    Beretta, Gian Paolo

    2008-02-01

    Full Text Available What is the physical significance of entropy? What is the physical origin of irreversibility? Do entropy and irreversibility exist only for complex and macroscopic systems? Most physicists still accept and teach that the rationalization of these fundamental questions is given by Statistical Mechanics. Indeed, for everyday laboratory physics, the mathematical formalism of Statistical Mechanics (canonical and grand-canonical, Boltzmann, Bose-Einstein and Fermi-Dirac distributions allows a successful description of the thermodynamic equilibrium properties of matter, including entropy values. However, as already recognized by Schrodinger in 1936, Statistical Mechanics is impaired by conceptual ambiguities and logical inconsistencies, both in its explanation of the meaning of entropy and in its implications on the concept of state of a system. An alternative theory has been developed by Gyftopoulos, Hatsopoulos and the present author to eliminate these stumbling conceptual blocks while maintaining the mathematical formalism so successful in applications. To resolve both the problem of the meaning of entropy and that of the origin of irreversibility we have built entropy and irreversibility into the laws of microscopic physics. The result is a theory, that we call Quantum Thermodynamics, that has all the necessary features to combine Mechanics and Thermodynamics uniting all the successful results of both theories, eliminating the logical inconsistencies of Statistical Mechanics and the paradoxes on irreversibility, and providing an entirely new perspective on the microscopic origin of irreversibility, nonlinearity (therefore including chaotic behavior and maximal-entropy-generation nonequilibrium dynamics. In this paper we discuss the background and formalism of Quantum Thermodynamics including its nonlinear equation of motion and the main general results. Our objective is to show in a not-too-technical manner that this theory provides indeed a

  7. Ac irreversibility line of bismuth-based high temperature superconductors

    International Nuclear Information System (INIS)

    Mehdaoui, A.; Beille, J.; Berling, D.; Loegel, B.; Noudem, J.G.; Tournier, R.

    1997-01-01

    We discuss the magnetic properties of lead doped Bi-2223 bulk samples obtained through combined magnetic melt texturing and hot pressing (MMTHP). The ac complex susceptibility measurements are achieved over a broad ac field range (1 Oe ac <100 Oe) and show highly anisotropic properties. The intergranular coupling is improved in the direction perpendicular to the applied stress and magnetic field direction, and an intragranular loss peak is observed for the first time. A comparison is made with other bismuth-based compounds and it is shown that the MMTHP process shifts the ac irreversibility line (ac IL) toward higher fields. It is also shown that all the ac IL close-quote s for quasi 2D bismuth-based compounds show a nearly quadratic temperature dependence and deviate therefore strongly from the linear behavior observed in quasi 3D compounds and expected from a critical state model.copyright 1997 Materials Research Society

  8. Spontaneous emission by moving atoms

    International Nuclear Information System (INIS)

    Meystre, P.; Wilkens, M.

    1994-01-01

    It is well known that spontaneous emission is not an intrinsic atomic property, but rather results from the coupling of the atom to the vacuum modes of the electromagnetic field. As such, it can be modified by tailoring the electromagnetic environment into which the atom can radiate. This was already realized by Purcell, who noted that the spontaneous emission rate can be enhanced if the atom placed inside a cavity is resonant with one of the cavity is resonant with one of the cavity modes, and by Kleppner, who discussed the opposite case of inhibited spontaneous emission. It has also been recognized that spontaneous emission need not be an irreversible process. Indeed, a system consisting of a single atom coupled to a single mode of the electromagnetic field undergoes a periodic exchange of excitation between the atom and the field. This periodic exchange remains dominant as long as the strength of the coupling between the atom and a cavity mode is itself dominant. 23 refs., 6 figs

  9. Extremum principles for irreversible processes

    International Nuclear Information System (INIS)

    Hillert, M.; Agren, J.

    2006-01-01

    Hamilton's extremum principle is a powerful mathematical tool in classical mechanics. Onsager's extremum principle may play a similar role in irreversible thermodynamics and may also become a valuable tool. His principle may formally be regarded as a principle of maximum rate of entropy production but does not have a clear physical interpretation. Prigogine's principle of minimum rate of entropy production has a physical interpretation when it applies, but is not strictly valid except for a very special case

  10. Stimulated emission of surface plasmon polaritons by lead-sulphide quantum dots at near infra-red wavelengths

    DEFF Research Database (Denmark)

    Radko, Ilya P.; Nielsen, Michael Grøndahl; Albrektsen, Ole

    2010-01-01

    Amplification of surface plasmon polaritons (SPPs) in planar metal-dielectric structure through stimulated emission is investigated using leakage-radiation microscopy configuration. The gain medium is a thin polymethylmethacrylate layer doped with lead-sulphide nanocrystals emitting at near-infrared...

  11. Irreversible performance of a quantum harmonic heat engine

    Science.gov (United States)

    Rezek, Yair; Kosloff, Ronnie

    2006-05-01

    The unavoidable irreversible loss of power in a heat engine is found to be of quantum origin. Following thermodynamic tradition, a model quantum heat engine operating in an Otto cycle is analysed, where the working medium is composed of an ensemble of harmonic oscillators and changes in volume correspond to changes in the curvature of the potential well. Equations of motion for quantum observables are derived for the complete cycle of operation. These observables are sufficient to determine the state of the system and with it all thermodynamical variables. Once the external controls are set, the engine settles to a limit cycle. Conditions for optimal work, power and entropy production are derived. At high temperatures and quasistatic operating conditions, the efficiency at maximum power coincides with the endoreversible result \\eta_q=1-\\sqrt{{T_c}/{T_h}} . The optimal compression ratio varies from {\\cal C} =\\sqrt{T_h/T_c} in the quasistatic limit where the irreversibility is dominated by heat conductance to {\\cal C} =(T_h/T_c)^{1/4} in the sudden limit when the irreversibility is dominated by friction. When the engine deviates from adiabatic conditions, the performance is subject to friction. The origin of this friction can be traced to the noncommutability of the kinetic and potential energy of the working medium.

  12. The genotoxic effect of lead and zinc on bambara groundnut (Vigna ...

    African Journals Online (AJOL)

    Oladele Sunday

    pollution can lead to some irreversible cytogenetic effects in plants and higher organisms. ... disease caused by consumption of mercury. .... Chromosome aberrations in bambara groundnut root tips cells treated with different concentrations of ...

  13. Risk Aversion, Price Uncertainty and Irreversible Investments

    NARCIS (Netherlands)

    van den Goorbergh, R.W.J.; Huisman, K.J.M.; Kort, P.M.

    2003-01-01

    This paper generalizes the theory of irreversible investment under uncertainty by allowing for risk averse investors in the absence of com-plete markets.Until now this theory has only been developed in the cases of risk neutrality, or risk aversion in combination with complete markets.Within a

  14. The economic consequences of elevated body-lead burdens in urban children

    International Nuclear Information System (INIS)

    Agree, M.D.

    1991-01-01

    The following analysis develops the theory and implementation of the observed behavior technique in an altruistic setting, to assess the health benefits of reducing environmental lead exposure in urban children. Three models are presented which allow for endogenous body lead burden, risk of irreversible neurological damages, and Bayesian information. Conditions are derived under which the observed behavior technique can be modified to value the health consequences of exposure to a general class of persistent micropollutants (PMP's): the heavy metals. Benefit expressions reflect the tradeoff between parental wealth and child health when children are exposed to low level doses of lead. The purpose is to derive exact measures of marginal welfare change associated with variations in child body lead burden, and to determine the conditions under which these measures will be functions of observable parameters. The analysis presents an entirely ex ante approach to the recovery of benefit estimates when PMP exposure involves risk of irreversible health damages. In doing so, an empirical estimate is also obtained for the parental value of child health information that is used in the revision of prior risk beliefs. Risk of chronic irreversible health effects in younger generations from environmental lead exposure may be experienced by a large share of metropolitan population in the US. Given the large numbers of possible victims, the aggregate social value of avoiding this risk is an important policy issues. Moreover, the value of health risk information is potentially important to the use of an information program as a policy instrument in reducing health risk because it would enable the comparison of societal benefits from an information program to the cost of it's implementation

  15. Ac irreversibility line of bismuth-based high temperature superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Mehdaoui, A. [Laboratoire de Physique et de Spectroscopie Electronique, URA 1435 Faculte des Sciences, Universite de Haute Alsace 4, rue des Freres Lumiere, 68093 Mulhouse Cedex (France); Beille, J. [Laboratoire Louis Neel, CNRS, BP 166, 38042 Grenoble Cedex 9 (France); Berling, D.; Loegel, B. [Laboratoire de Physique et de Spectroscopie Electronique, URA 1435 Faculte des Sciences, Universite de Haute Alsace 4, rue des Freres Lumiere, 68093 Mulhouse Cedex (France); Noudem, J.G.; Tournier, R. [EPM-MATFORMAG, Laboratoire dElaboration par Procede Magnetique, CNRS, BP 166, 38042 Grenoble Cedex 9 (France)

    1997-09-01

    We discuss the magnetic properties of lead doped Bi-2223 bulk samples obtained through combined magnetic melt texturing and hot pressing (MMTHP). The ac complex susceptibility measurements are achieved over a broad ac field range (1 Oe{lt}h{sub ac}{lt}100 Oe) and show highly anisotropic properties. The intergranular coupling is improved in the direction perpendicular to the applied stress and magnetic field direction, and an intragranular loss peak is observed for the first time. A comparison is made with other bismuth-based compounds and it is shown that the MMTHP process shifts the ac irreversibility line (ac IL) toward higher fields. It is also shown that all the ac IL{close_quote}s for quasi 2D bismuth-based compounds show a nearly quadratic temperature dependence and deviate therefore strongly from the linear behavior observed in quasi 3D compounds and expected from a critical state model.{copyright} {ital 1997 Materials Research Society.}

  16. Irreversible Markov chains in spin models: Topological excitations

    Science.gov (United States)

    Lei, Ze; Krauth, Werner

    2018-01-01

    We analyze the convergence of the irreversible event-chain Monte Carlo algorithm for continuous spin models in the presence of topological excitations. In the two-dimensional XY model, we show that the local nature of the Markov-chain dynamics leads to slow decay of vortex-antivortex correlations while spin waves decorrelate very quickly. Using a Fréchet description of the maximum vortex-antivortex distance, we quantify the contributions of topological excitations to the equilibrium correlations, and show that they vary from a dynamical critical exponent z∼ 2 at the critical temperature to z∼ 0 in the limit of zero temperature. We confirm the event-chain algorithm's fast relaxation (corresponding to z = 0) of spin waves in the harmonic approximation to the XY model. Mixing times (describing the approach towards equilibrium from the least favorable initial state) however remain much larger than equilibrium correlation times at low temperatures. We also describe the respective influence of topological monopole-antimonopole excitations and of spin waves on the event-chain dynamics in the three-dimensional Heisenberg model.

  17. Health Technology Assessment of CEM Pulpotomy in Permanent Molars with Irreversible Pulpitis

    Science.gov (United States)

    Yazdani, Shahram; Jadidfard, Mohammad-Pooyan; Tahani, Bahareh; Kazemian, Ali; Dianat, Omid; Alim Marvasti, Laleh

    2014-01-01

    Introduction: Teeth with irreversible pulpitis usually undergo root canal therapy (RCT). This treatment modality is often considered disadvantageous as it removes vital pulp tissue and weakens the tooth structure. A relatively new concept has risen which suggests vital pulp therapy (VPT) for irreversible pulpitis. VPT with calcium enriched mixture (VPT/CEM) has demonstrated favorable treatment outcomes when treating permanent molars with irreversible pulpitis. This study aims to compare patient related factors, safety and organizational consideration as parts of health technology assessment (HTA) of the new VPT/CEM biotechnology when compared with RCT. Materials and Methods: Patient related factors were assessed by looking at short- and long-term clinical success; safety related factors were evaluated by a specialist committee and discussion board involved in formulating healthcare policies. Organizational evaluation was performed and the social implications were assessed by estimating the costs, availability, accessibility and acceptability. The impact of VPT/CEM biotechnology was assessed by investigating the incidence of irreversible pulpitis and the effect of this treatment on reducing the burden of disease. Results: VPT/CEM biotechnology was deemed feasible and acceptable like RCT; however, it was more successful, accessible, affordable, available and also safer than RCT. Conclusion: When considering socioeconomic implications on oral health status and oral health-related quality of life of VPT/CEM, the novel biotechnology can be more effective and more efficient than RCT in mature permanent molars with irreversible pulpitis. PMID:24396372

  18. Onsager's reciprocity theorem in extended irreversible thermodynamics

    International Nuclear Information System (INIS)

    Garcia-Colin, L.S.; Velasco, R.M.

    1992-01-01

    In this paper we shall discuss the Onsager relations for the transport coefficients in a dilute monatomic gas described by the extended irreversible thermodynamics. Our discussion is based on a 26 variables description of the system and its corresponding comparison with the kinetic reciprocity between coefficients is shown (Author)

  19. Lie-admissible invariant treatment of irreversibility for matter and antimatter at the classical and operator levels

    International Nuclear Information System (INIS)

    Santilli, R.M.

    2006-01-01

    It was generally believed throughout the 20th century that irreversibility is a purely classical event without operator counterpart. however, a classical irreversible system cannot be consistently decomposed into a finite number of reversible quantum particles (and. vive versa), thus establishing that the origin of irreversibility is basically unknown at the dawn of the 21-st century. To resolve this problem. we adopt the historical analytical representation of irreversibility by Lagrange and Hamilton, that with external terms in their analytic equations; we show that, when properly written, the brackets of the time evolution characterize covering Lie-admissible algebras; we prove that the formalism has fully consistent operator counterpart given by the Lie-admissible branch of hadronic mechanics; we identify mathematical and physical inconsistencies when irreversible formulations are treated with the conventional mathematics used for reversible systems; we show that when the dynamical equations are treated with a novel irreversible mathematics, Lie-admissible formulations are fully consistent because invariant at both the classical and operator levels; and we complete our analysis with a number of explicit applications to irreversible processes in classical mechanics, particle physics and thermodynamics. The case of closed-isolated systems verifying conventional total conservation laws, yet possessing an irreversible structure, is treated via the simpler Lie-isotopic branch of hadronic mechanics. The analysis is conducted for both matter and antimatter at the classical and operator levels to prevent insidious inconsistencies occurring for the sole study of matter or, separately, antimatter

  20. The effects of isoprene and NOx on secondary organic aerosols formed through reversible and irreversible uptake to aerosol water

    Science.gov (United States)

    El-Sayed, Marwa M. H.; Ortiz-Montalvo, Diana L.; Hennigan, Christopher J.

    2018-01-01

    Isoprene oxidation produces water-soluble organic gases capable of partitioning to aerosol liquid water. The formation of secondary organic aerosols through such aqueous pathways (aqSOA) can take place either reversibly or irreversibly; however, the split between these fractions in the atmosphere is highly uncertain. The aim of this study was to characterize the reversibility of aqSOA formed from isoprene at a location in the eastern United States under substantial influence from both anthropogenic and biogenic emissions. The reversible and irreversible uptake of water-soluble organic gases to aerosol water was characterized in Baltimore, Maryland, USA, using measurements of particulate water-soluble organic carbon (WSOCp) in alternating dry and ambient configurations. WSOCp evaporation with drying was observed systematically throughout the late spring and summer, indicating reversible aqSOA formation during these times. We show through time lag analyses that WSOCp concentrations, including the WSOCp that evaporates with drying, peak 6 to 11 h after isoprene concentrations, with maxima at a time lag of 9 h. The absolute reversible aqSOA concentrations, as well as the relative amount of reversible aqSOA, increased with decreasing NOx / isoprene ratios, suggesting that isoprene epoxydiol (IEPOX) or other low-NOx oxidation products may be responsible for these effects. The observed relationships with NOx and isoprene suggest that this process occurs widely in the atmosphere, and is likely more important in other locations characterized by higher isoprene and/or lower NOx levels. This work underscores the importance of accounting for both reversible and irreversible uptake of isoprene oxidation products to aqueous particles.

  1. Spectral deformation techniques applied to the study of quantum statistical irreversible processes

    International Nuclear Information System (INIS)

    Courbage, M.

    1978-01-01

    A procedure of analytic continuation of the resolvent of Liouville operators for quantum statistical systems is discussed. When applied to the theory of irreversible processes of the Brussels School, this method supports the idea that the restriction to a class of initial conditions is necessary to obtain an irreversible behaviour. The general results are tested on the Friedrichs model. (Auth.)

  2. Articaine for supplemental intraosseous anesthesia in patients with irreversible pulpitis.

    Science.gov (United States)

    Bigby, Jason; Reader, Al; Nusstein, John; Beck, Mike; Weaver, Joel

    2006-11-01

    The purpose of this study was to determine the anesthetic efficacy and heart rate effect of 4% articaine with 1:100,000 epinephrine for supplemental intraosseous injection in mandibular posterior teeth diagnosed with irreversible pulpitis. Thirty-seven emergency patients, diagnosed with irreversible pulpitis of a mandibular posterior tooth, received an inferior alveolar nerve block and had moderate-to-severe pain upon endodontic access. The Stabident system was used to administer 1.8 ml of 4% articaine with 1:100,000 epinephrine. Success of the intraosseous injection was defined as none or mild pain upon endodontic access or initial instrumentation. The results demonstrated that anesthetic success was obtained in 86% (32 of 37) of the patients. Maximum mean heart rate was increased 32 beats/minute during the intraosseous injection. We can conclude that when the inferior alveolar nerve block fails to provide profound pulpal anesthesia, the intraosseous injection of 4% articaine with 1:100,000 epinephrine would be successful 86% of the time in achieving pulpal anesthesia in mandibular posterior teeth of patients presenting with irreversible pulpitis.

  3. FINITE TIME THERMODYNAMIC MODELING AND ANALYSIS FOR AN IRREVERSIBLE ATKINSON CYCLE

    Directory of Open Access Journals (Sweden)

    Yanlin Ge

    2010-01-01

    Full Text Available Performance of an air-standard Atkinson cycle is analyzed by using finite-time thermodynamics. The irreversible cycle model which is more close to practice is founded. In this model, the non-linear relation between the specific heats of working fluid and its temperature, the friction loss computed according to the mean velocity of the piston, the internal irreversibility described by using the compression and expansion efficiencies, and heat transfer loss are considered. The relations between the power output and the compression ratio, between the thermal efficiency and the compression ratio, as well as the optimal relation between power output and the efficiency of the cycle are derived by detailed numerical examples. Moreover, the effects of internal irreversibility, heat transfer loss and friction loss on the cycle performance are analyzed. The results obtained in this paper may provide guidelines for the design of practical internal combustion engines.

  4. A Derivation of a Microscopic Entropy and Time Irreversibility From the Discreteness of Time

    Directory of Open Access Journals (Sweden)

    Roland Riek

    2014-06-01

    Full Text Available The basic microsopic physical laws are time reversible. In contrast, the second law of thermodynamics, which is a macroscopic physical representation of the world, is able to describe irreversible processes in an isolated system through the change of entropy ΔS > 0. It is the attempt of the present manuscript to bridge the microscopic physical world with its macrosocpic one with an alternative approach than the statistical mechanics theory of Gibbs and Boltzmann. It is proposed that time is discrete with constant step size. Its consequence is the presence of time irreversibility at the microscopic level if the present force is of complex nature (F(r ≠ const. In order to compare this discrete time irreversible mechamics (for simplicity a “classical”, single particle in a one dimensional space is selected with its classical Newton analog, time reversibility is reintroduced by scaling the time steps for any given time step n by the variable sn leading to the Nosé-Hoover Lagrangian. The corresponding Nos´e-Hoover Hamiltonian comprises a term Ndf kB T ln sn (kB the Boltzmann constant, T the temperature, and Ndf the number of degrees of freedom which is defined as the microscopic entropy Sn at time point n multiplied by T. Upon ensemble averaging this microscopic entropy Sn in equilibrium for a system which does not have fast changing forces approximates its macroscopic counterpart known from thermodynamics. The presented derivation with the resulting analogy between the ensemble averaged microscopic entropy and its thermodynamic analog suggests that the original description of the entropy by Boltzmann and Gibbs is just an ensemble averaging of the time scaling variable sn which is in equilibrium close to 1, but that the entropy

  5. Ecological optimization and performance study of irreversible Stirling and Ericsson heat engines

    International Nuclear Information System (INIS)

    Tyagi, S K; Kaushik, S C; Salhotra, R

    2002-01-01

    The concept of finite time thermodynamics is used to determine the ecological function of irreversible Stirling and Ericsson heat engine cycles. The ecological function is defined as the power output minus power loss (irreversibility), which is the ambient temperature times, the entropy generation rate. The ecological function is maximized with respect to cycle temperature ratio and the expressions for the corresponding power output and thermal efficiency are derived at the optimal operating conditions. The effect of different operating parameters, the effectiveness on the hot, cold and the regenerative side heat exchangers, the cycle temperature ratio, heat capacitance ratio and the internal irreversibility parameter on the maximum ecological function are studied. It is found that the effect of regenerator effectiveness is more than the hot and cold side heat exchangers and the effect of the effectiveness on cold side heat exchanger is more than the effectiveness on the hot side heat exchanger on the maximum ecological function. It is also found that the effect of internal irreversibility parameter is more than the other parameters not only on the maximum ecological function but also on the corresponding power output and the thermal efficiency

  6. Performance characteristics and parametric optimization of an irreversible magnetic Ericsson heat-pump

    International Nuclear Information System (INIS)

    Wei Fang; Lin Guoxing; Chen Jincan; Brueck, Ekkes

    2011-01-01

    Taking into account the finite-rate heat transfer in the heat-transfer processes, heat leak between the two external heat reservoirs, regenerative loss, regeneration time, and internal irreversibility due to dissipation of the cycle working substance, an irreversible magnetic Ericsson heat-pump cycle is presented. On the basis of the thermodynamic properties of magnetic materials, the performance characteristics of the irreversible magnetic Ericsson heat-pump are investigated and the relationship between the optimal heating load and the coefficient of performance (COP) is derived. Moreover, the maximum heating load and the corresponding COP as well as the maximum COP and the corresponding heating load are obtained. Furthermore, the other optimal performance characteristics are discussed in detail. The results obtained here may provide some new information for the optimal parameter design and the development of real magnetic Ericsson heat-pumps. -- Research Highlights: →The effects of multi-irreversibilities on the performance of a magnetic heat-pump are revealed. →Mathematical expressions of the heating load and the COP are derived and the optimal performance and operating parameters are analyzed and discussed. →Several important performance bounds are determined.

  7. Ecological optimization and performance study of irreversible Stirling and Ericsson heat engines

    Science.gov (United States)

    Tyagi, S. K.; Kaushik, S. C.; Salhotra, R.

    2002-10-01

    The concept of finite time thermodynamics is used to determine the ecological function of irreversible Stirling and Ericsson heat engine cycles. The ecological function is defined as the power output minus power loss (irreversibility), which is the ambient temperature times, the entropy generation rate. The ecological function is maximized with respect to cycle temperature ratio and the expressions for the corresponding power output and thermal efficiency are derived at the optimal operating conditions. The effect of different operating parameters, the effectiveness on the hot, cold and the regenerative side heat exchangers, the cycle temperature ratio, heat capacitance ratio and the internal irreversibility parameter on the maximum ecological function are studied. It is found that the effect of regenerator effectiveness is more than the hot and cold side heat exchangers and the effect of the effectiveness on cold side heat exchanger is more than the effectiveness on the hot side heat exchanger on the maximum ecological function. It is also found that the effect of internal irreversibility parameter is more than the other parameters not only on the maximum ecological function but also on the corresponding power output and the thermal efficiency.

  8. Thermodynamic Optimality criteria for biological systems in linear irreversible thermodynamics

    International Nuclear Information System (INIS)

    Chimal, J C; Sánchez, N; Ramírez, PR

    2017-01-01

    In this paper the methodology of the so-called Linear Irreversible Thermodynamics (LIT) is applied; although traditionally used locally to study general systems in non-equilibrium states in which it is consider both internal and external contributions to the entropy increments in order to analyze the efficiency of two coupled processes with generalized fluxes J 1 , J 2 and their corresponding forces X 1 , X 2 . We extend the former analysis to takes into account two different operating regimes namely: Omega Function and Efficient Power criterion, respectively. Results show analogies in the optimal performance between and we can say that there exist a criteria of optimization which can be used specially for biological systems where a good design of the biological parameters made by nature at maximum efficient power conditions lead to more efficient engines than those at the maximum power conditions or ecological conditions. (paper)

  9. Ecological optimization of an irreversible quantum Carnot heat engine with spin-1/2 systems

    International Nuclear Information System (INIS)

    Liu Xiaowei; Chen Lingen; Wu Feng; Sun Fengrui

    2010-01-01

    A model of a quantum heat engine with heat resistance, internal irreversibility and heat leakage and many non-interacting spin-1/2 systems is established in this paper. The quantum heat engine cycle is composed of two isothermal processes and two irreversible adiabatic processes and is referred to as a spin quantum Carnot heat engine. Based on the quantum master equation and the semi-group approach, equations of some important performance parameters, such as power output, efficiency, entropy generation rate and ecological function (a criterion representing the optimal compromise between exergy output rate and exergy loss rate), for the irreversible spin quantum Carnot heat engine are derived. The optimal ecological performance of the heat engine in the classical limit is analyzed with numerical examples. The effects of internal irreversibility and heat leakage on ecological performance are discussed in detail.

  10. Assessment of the effects of the Japanese shift to lead-free solders and its impact on material substitution and environmental emissions by a dynamic material flow analysis

    International Nuclear Information System (INIS)

    Fuse, Masaaki; Tsunemi, Kiyotaka

    2012-01-01

    Lead-free electronics has been extensively studied, whereas their adoption by society and their impact on material substitution and environmental emissions are not well understood. Through a material flow analysis (MFA), this paper explores the life cycle flows for solder-containing metals in Japan, which leads the world in the shift to lead-free solders in electronics. The results indicate that the shift has been progressing rapidly for a decade, and that substitutes for lead in solders, which include silver and copper, are still in the early life cycle stages. The results also show, however, that such substitution slows down during the late life cycle stages owing to long electronic product lifespans. This deceleration of material substitution in the solder life cycle may not only preclude a reduction in lead emissions to air but also accelerate an increase in silver emissions to air and water. As an effective measure against ongoing lead emissions, our scenario analysis suggests an aggressive recycling program for printed circuit boards that utilizes an existing recycling scheme. -- Highlights: ► We model the life cycle flows for solder-containing metals in Japan. ► The Japanese shift to lead-free solders progresses rapidly for a decade. ► Substitution for lead in solders slows down during the late life cycle stages. ► The deceleration of substitution precludes a reduction in lead emissions to air.

  11. Profit rate performance optimization for a generalized irreversible ...

    Indian Academy of Sciences (India)

    fer law system generalized irreversible combined refrigeration cycle model with finite-rate heat ...... Chen L, Sun F, Wu C 2004b Optimum allocation of heat exchanger area for refrigeration and air conditioning plants. Appl. Energy 77(3): 339– ...

  12. Fatigue studies in compensated bulk lead zirconate titanate

    International Nuclear Information System (INIS)

    Verdier, Cyril; Morrison, Finlay D.; Lupascu, Doru C.; Scott, James F.

    2005-01-01

    Impedance analysis studies were carried out on compensated bulk lead zirconate titanate samples. Fatigue is concomitant with the onset of dielectric loss. This is shown to be dominantly due to an irreversibly modified near-surface layer that can be polished off. The highly compensated nature of these samples minimizes the role of oxygen vacancies

  13. Irreversible electroporation: state of the art

    Directory of Open Access Journals (Sweden)

    Wagstaff PGK

    2016-04-01

    Full Text Available Peter GK Wagstaff,1 Mara Buijs,1 Willemien van den Bos,1 Daniel M de Bruin,2 Patricia J Zondervan,1 Jean JMCH de la Rosette,1 M Pilar Laguna Pes1 1Department of Urology, 2Department of Biomedical Engineering and Physics, Academic Medical Center, Amsterdam, the Netherlands Abstract: The field of focal ablative therapy for the treatment of cancer is characterized by abundance of thermal ablative techniques that provide a minimally invasive treatment option in selected tumors. However, the unselective destruction inflicted by thermal ablation modalities can result in damage to vital structures in the vicinity of the tumor. Furthermore, the efficacy of thermal ablation intensity can be impaired due to thermal sink caused by large blood vessels in the proximity of the tumor. Irreversible electroporation (IRE is a novel ablation modality based on the principle of electroporation or electropermeabilization, in which electric pulses are used to create nanoscale defects in the cell membrane. In theory, IRE has the potential of overcoming the aforementioned limitations of thermal ablation techniques. This review provides a description of the principle of IRE, combined with an overview of in vivo research performed to date in the liver, pancreas, kidney, and prostate. Keywords: irreversible electroporation, IRE, tumor, ablation, focal therapy, cancer

  14. The degree of irreversibility in deterministic finite automata

    DEFF Research Database (Denmark)

    Axelsen, Holger Bock; Holzer, Markus; Kutrib, Martin

    2016-01-01

    the language, and show that the degree induces a strict infinite hierarchy of languages. We examine how the degree of irreversibility behaves under the usual language operations union, intersection, complement, concatenation, and Kleene star, showing tight bounds (some asymptotically) on the degree....

  15. Exergetic efficiency optimization for an irreversible heat pump ...

    Indian Academy of Sciences (India)

    This paper deals with the performance analysis and optimization for irreversible heat pumps working on reversed Brayton cycle with constant-temperature heat reservoirs by taking exergetic efficiency as the optimization objective combining exergy concept with finite-time thermodynamics (FTT). Exergetic efficiency is ...

  16. One-dimensional organic lead halide perovskites with efficient bluish white-light emission

    Science.gov (United States)

    Yuan, Zhao; Zhou, Chenkun; Tian, Yu; Shu, Yu; Messier, Joshua; Wang, Jamie C.; van de Burgt, Lambertus J.; Kountouriotis, Konstantinos; Xin, Yan; Holt, Ethan; Schanze, Kirk; Clark, Ronald; Siegrist, Theo; Ma, Biwu

    2017-01-01

    Organic-inorganic hybrid metal halide perovskites, an emerging class of solution processable photoactive materials, welcome a new member with a one-dimensional structure. Herein we report the synthesis, crystal structure and photophysical properties of one-dimensional organic lead bromide perovskites, C4N2H14PbBr4, in which the edge sharing octahedral lead bromide chains [PbBr4 2-]∞ are surrounded by the organic cations C4N2H14 2+ to form the bulk assembly of core-shell quantum wires. This unique one-dimensional structure enables strong quantum confinement with the formation of self-trapped excited states that give efficient bluish white-light emissions with photoluminescence quantum efficiencies of approximately 20% for the bulk single crystals and 12% for the microscale crystals. This work verifies once again that one-dimensional systems are favourable for exciton self-trapping to produce highly efficient below-gap broadband luminescence, and opens up a new route towards superior light emitters based on bulk quantum materials.

  17. Peptide Drug Release Behavior from Biodegradable Temperature-Responsive Injectable Hydrogels Exhibiting Irreversible Gelation

    Directory of Open Access Journals (Sweden)

    Kazuyuki Takata

    2017-10-01

    Full Text Available We investigated the release behavior of glucagon-like peptide-1 (GLP-1 from a biodegradable injectable polymer (IP hydrogel. This hydrogel shows temperature-responsive irreversible gelation due to the covalent bond formation through a thiol-ene reaction. In vitro sustained release of GLP-1 from an irreversible IP formulation (F(P1/D+PA40 was observed compared with a reversible (physical gelation IP formulation (F(P1. Moreover, pharmaceutically active levels of GLP-1 were maintained in blood after subcutaneous injection of the irreversible IP formulation into rats. This system should be useful for the minimally invasive sustained drug release of peptide drugs and other water-soluble bioactive reagents.

  18. Irreversible denaturation of maltodextrin glucosidase studied by differential scanning calorimetry, circular dichroism, and turbidity measurements.

    Science.gov (United States)

    Goyal, Megha; Chaudhuri, Tapan K; Kuwajima, Kunihiro

    2014-01-01

    Thermal denaturation of Escherichia coli maltodextrin glucosidase was studied by differential scanning calorimetry, circular dichroism (230 nm), and UV-absorption measurements (340 nm), which were respectively used to monitor heat absorption, conformational unfolding, and the production of solution turbidity. The denaturation was irreversible, and the thermal transition recorded at scan rates of 0.5-1.5 K/min was significantly scan-rate dependent, indicating that the thermal denaturation was kinetically controlled. The absence of a protein-concentration effect on the thermal transition indicated that the denaturation was rate-limited by a mono-molecular process. From the analysis of the calorimetric thermograms, a one-step irreversible model well represented the thermal denaturation of the protein. The calorimetrically observed thermal transitions showed excellent coincidence with the turbidity transitions monitored by UV-absorption as well as with the unfolding transitions monitored by circular dichroism. The thermal denaturation of the protein was thus rate-limited by conformational unfolding, which was followed by a rapid irreversible formation of aggregates that produced the solution turbidity. It is thus important to note that the absence of the protein-concentration effect on the irreversible thermal denaturation does not necessarily means the absence of protein aggregation itself. The turbidity measurements together with differential scanning calorimetry in the irreversible thermal denaturation of the protein provided a very effective approach for understanding the mechanisms of the irreversible denaturation. The Arrhenius-equation parameters obtained from analysis of the thermal denaturation were compared with those of other proteins that have been reported to show the one-step irreversible thermal denaturation. Maltodextrin glucosidase had sufficiently high kinetic stability with a half-life of 68 days at a physiological temperature (37°C).

  19. Anesthetic Efficacy in Irreversible Pulpitis: A Randomized Clinical Trial.

    Science.gov (United States)

    Allegretti, Carlos E; Sampaio, Roberta M; Horliana, Anna C R T; Armonia, Paschoal L; Rocha, Rodney G; Tortamano, Isabel Peixoto

    2016-01-01

    Inferior alveolar nerve block has a high failure rate in the treatment of mandibular posterior teeth with irreversible pulpitis. The aim of this study was to compare the anesthetic efficacy of 4% articaine, 2% lidocaine and 2% mepivacaine, all in combination with 1:100,000 epinephrine, in patients with irreversible pulpitis of permanent mandibular molars during a pulpectomy procedure. Sixty-six volunteers from the Emergency Center of the School of Dentistry, University of São Paulo, randomly received 3.6 mL of local anesthetic as a conventional inferior alveolar nerve block (IANB). The subjective signal of lip numbness, pulpal anesthesia and absence of pain during the pulpectomy procedure were evaluated respectively, by questioning the patient, stimulation using an electric pulp tester and a verbal analogue scale. All patients reported the subjective signal of lip numbness. Regarding pulpal anesthesia success as measured with the pulp tester, the success rate was respectively 68.2% for mepivacaine, 63.6% for articaine and 63.6% for lidocaine. Regarding patients who reported no pain or mild pain during the pulpectomy, the success rate was, respectively 72.7% for mepivacaine, 63.6% for articaine and 54.5% for lidocaine. These differences were not statistically significant. Neither of the solutions resulted in 100% anesthetic success in patients with irreversible pulpitis of mandibular molars.

  20. Optimal allocation of thermodynamic irreversibility for the integrated design of propulsion and thermal management systems

    Science.gov (United States)

    Maser, Adam Charles

    work losses over the time history of the mission. The characterization of the thermodynamic irreversibility distribution helps give the propulsion systems designer an absolute and consistent view of the tradeoffs associated with the design of the entire integrated system. Consequently, this leads directly to the question of the proper allocation of irreversibility across each of the components. The process of searching for the most favorable allocation of this irreversibility is the central theme of the research and must take into account production cost and vehicle mission performance. The production cost element is accomplished by including an engine component weight and cost prediction capability within the system model. The vehicle mission performance is obtained by directly linking the propulsion and thermal management model to a vehicle performance model and flying it through a mission profile. A canonical propulsion and thermal management systems architecture is then presented to experimentally test each element of the methodology separately: first the integrated modeling and simulation, then the irreversibility, cost, and mission performance considerations, and then finally the proper technique to perform the optimal allocation. A goal of this research is the description of the optimal allocation of system irreversibility to enable an engine cycle design with improved performance and cost at the vehicle-level. To do this, a numerical optimization was first used to minimize system-level production and operating costs by fixing the performance requirements and identifying the best settings for all of the design variables. There are two major drawbacks to this approach: It does not allow the designer to directly trade off the performance requirements and it does not allow the individual component losses to directly factor into the optimization. An irreversibility allocation approach based on the economic concept of resource allocation is then compared to the

  1. Sample size effect on the determination of the irreversibility line of high-Tc superconductors

    International Nuclear Information System (INIS)

    Li, Q.; Suenaga, M.; Li, Q.; Freltoft, T.

    1994-01-01

    The irreversibility lines of a high-J c superconducting Bi 2 Sr 2 Ca 2 Cu 3 O x /Ag tape were systematically measured upon a sequence of subdivisions of the sample. The irreversibility field H r (T) (parallel to the c axis) was found to change approximately as L 0.13 , where L is the effective dimension of the superconducting tape. Furthermore, it was found that the irreversibility line for a grain-aligned Bi 2 Sr 2 Ca 2 Cu 3 O x specimen can be approximately reproduced by the extrapolation of this relation down to a grain size of a few tens of micrometers. The observed size effect could significantly obscure the real physical meaning of the irreversibility lines. In addition, this finding surprisingly indicated that the Bi 2 Sr 2 Ca 2 Cu 2 O x /Ag tape and grain-aligned specimen may have similar flux line pinning strength

  2. Irreversible absorption heat-pump and its optimal performance

    International Nuclear Information System (INIS)

    Chen Lingen; Qin Xiaoyong; Sun Fengrui; Wu Chih

    2005-01-01

    On the basis of an endoreversible absorption heat-pump cycle, a generalized irreversible four-heat-reservoir absorption heat-pump cycle model is established by taking account of the heat resistances, heat leak and irreversibilities due to the internal dissipation of the working substance. The heat transfer between the heat reservoir and the working substance is assumed to obey the linear (Newtonian) heat-transfer law, and the overall heat-transfer surface area of the four heat-exchangers is assumed to be constant. The fundamental optimal relations between the coefficient of performance (COP) and the heating-load, the maximum COP and the corresponding heating-load, the maximum heating load and the corresponding COP, as well as the optimal temperatures of the working substance and the optimal heat-transfer surface areas of the four heat-exchangers are derived by using finite-time thermodynamics. Moreover, the effects of the cycle parameters on the characteristics of the cycle are studied by numerical examples

  3. Quantum mechanical irreversibility and measurement

    CERN Document Server

    Grigolini, P

    1993-01-01

    This book is intended as a tutorial approach to some of the techniques used to deal with quantum dissipation and irreversibility, with special focus on their applications to the theory of measurements. The main purpose is to provide readers without a deep expertise in quantum statistical mechanics with the basic tools to develop a critical judgement on whether the major achievements in this field have to be considered a satisfactory solution of quantum paradox, or rather this ambitious achievement has to be postponed to when a new physics, more general than quantum and classical physics, will

  4. Interference with cardiac pacemakers by magnetic resonance imaging: are there irreversible changes at 0.5 Tesla?

    Science.gov (United States)

    Vahlhaus, C; Sommer, T; Lewalter, T; Schimpf, R; Schumacher, B; Jung, W; Lüderitz, B

    2001-04-01

    The safety and feasibility of magnetic resonance imaging (MRI) in patients with cardiac pacemakers is an issue of gaining significance. The effect of MRI on patients' pacemaker systems has only been analyzed retrospectively in some case reports. Therefore, this study prospectively investigated if MRI causes irreversible changes in patients' pacemaker systems. The effect of MRI at 0.5 Tesla on sensing and stimulation thresholds, lead impedance and battery voltage, current, and impedance was estimated during 34 MRI examinations in 32 patients with implanted pacemakers. After measurements at baseline and with documentation of intrinsic rhythm and modification of the pacing mode, patients underwent MRI. The rest of the function time of the pacemaker was calculated. Measurements were again performed after 99.5 +/- 29.6 minutes (mean +/- SD), immediately after MRI examination, and 3 months later. Lead impedance and sensing and stimulation thresholds did not change after MRI. Battery voltage decreased immediately after MRI and recovered 3 months later. Battery current and impedance tended to increase. The calculated rest of function time did not change immediately after MRI. MRI affected neither pacemaker programmed data, nor the ability to interrogate, program, or use telemetry. Surprisingly, in the gantry of the scanner, temporary deactivation of the reed switch occurred in 12 of 32 patients when positioned in the center of the magnetic field. Missing activation of the reed switch through the static magnetic field at 0.5 Tesla is not unusual. MRI at 0.5 Tesla does not cause irreversible changes in patients' pacemaker systems.

  5. Reversing the irreversible: From limit cycles to emergent time symmetry

    Science.gov (United States)

    Cortês, Marina; Smolin, Lee

    2018-01-01

    In 1979 Penrose hypothesized that the arrows of time are explained by the hypothesis that the fundamental laws are time irreversible [R. Penrose, in General Relativity: An Einstein Centenary Survey (1979)]. That is, our reversible laws, such as the standard model and general relativity are effective, and emerge from an underlying fundamental theory which is time irreversible. In [M. Cortês and L. Smolin, Phys. Rev. D 90, 084007 (2014), 10.1103/PhysRevD.90.084007; 90, 044035 (2014), 10.1103/PhysRevD.90.044035; 93, 084039 (2016), 10.1103/PhysRevD.93.084039] we put forward a research program aiming at realizing just this. The aim is to find a fundamental description of physics above the Planck scale, based on irreversible laws, from which will emerge the apparently reversible dynamics we observe on intermediate scales. Here we continue that program and note that a class of discrete dynamical systems are known to exhibit this very property: they have an underlying discrete irreversible evolution, but in the long term exhibit the properties of a time reversible system, in the form of limit cycles. We connect this to our original model proposal in [M. Cortês and L. Smolin, Phys. Rev. D 90, 084007 (2014), 10.1103/PhysRevD.90.084007], and show that the behaviors obtained there can be explained in terms of the same phenomenon: the attraction of the system to a basin of limit cycles, where the dynamics appears to be time reversible. Further than that, we show that our original models exhibit the very same feature: the emergence of quasiparticle excitations obtained in the earlier work in the space-time description is an expression of the system's convergence to limit cycles when seen in the causal set description.

  6. Nonequilibrium and irreversibility

    CERN Document Server

    Gallavotti, Giovanni

    2014-01-01

    This book concentrates on the properties of the stationary states in chaotic systems of particles or fluids, leaving aside the theory of the way they can be reached. The stationary states of particles or of fluids (understood as probability distributions on microscopic configurations or on the fields describing continua) have received important new ideas and data from numerical simulations and reviews are needed. The starting point is to find out which time invariant distributions come into play in physics. A special feature of this book is the historical approach. To identify the problems the author analyzes the papers of the founding fathers Boltzmann, Clausius and Maxwell including translations of the relevant (parts of ) historical documents. He also establishes a close link between treatment of irreversible phenomena in statistical mechanics and the theory of chaotic systems at and beyond the onset of turbulence as developed by Sinai, Ruelle, Bowen (SRB) and others: the author gives arguments intending t...

  7. Investment Irreversibility and Precautionary Savings in General Equilibrium

    DEFF Research Database (Denmark)

    Ejarque, João

    than irreversibility effects. If shocks are idiosyncratic and affect a cross section of agents over capital, an increase in their variance may induce an increase in aggregate investment even if all agents have an incentive to invest less, because zero investment is now an active lower bound for part...

  8. Benzylic oxidation of gemfibrozil-1-O-beta-glucuronide by P450 2C8 leads to heme alkylation and irreversible inhibition.

    Science.gov (United States)

    Baer, Brian R; DeLisle, Robert Kirk; Allen, Andrew

    2009-07-01

    Gemfibrozil-1-O-beta-glucuronide (GEM-1-O-gluc), a major metabolite of the antihyperlipidemic drug gemfibrozil, is a mechanism-based inhibitor of P450 2C8 in vitro, and this irreversible inactivation may lead to clinical drug-drug interactions between gemfibrozil and other P450 2C8 substrates. In light of this in vitro finding and the observation that the glucuronide conjugate does not contain any obvious structural alerts, the current study was conducted to determine the potential site of GEM-1-O-gluc bioactivation and the subsequent mechanism of P450 2C8 inhibition (i.e., modification of apoprotein or heme). LC/MS analysis of a reaction mixture containing recombinant P450 2C8 and GEM-1-O-gluc revealed that the substrate was covalently linked to the heme prosthetic heme group during catalysis. A combination of mass spectrometry and deuterium isotope effects revealed that a benzylic carbon on the 2',5'-dimethylphenoxy group of GEM-1-O-gluc was covalently bound to the heme of P450 2C8. The regiospecificity of substrate addition to the heme group was not confirmed experimentally, but computational modeling experiments indicated that the gamma-meso position was the most likely site of modification. The metabolite profile, which consisted of two benzyl alcohol metabolites and a 4'-hydroxy-GEM-1-O-gluc metabolite, indicated that oxidation of GEM-1-O-gluc was limited to the 2',5'-dimethylphenoxy group. These results are consistent with an inactivation mechanism wherein GEM-1-O-gluc is oxidized to a benzyl radical intermediate, which evades oxygen rebound, and adds to the gamma-meso position of heme. Mechanism-based inhibition of P450 2C8 can be rationalized by the formation of the GEM-1-O-gluc-heme adduct and the consequential restriction of additional substrate access to the catalytic iron center.

  9. Linear irreversible thermodynamics and Onsager reciprocity for information-driven engines

    Science.gov (United States)

    Yamamoto, Shumpei; Ito, Sosuke; Shiraishi, Naoto; Sagawa, Takahiro

    2016-11-01

    In the recent progress in nonequilibrium thermodynamics, information has been recognized as a kind of thermodynamic resource that can drive thermodynamic current without any direct energy injection. In this paper, we establish the framework of linear irreversible thermodynamics for a broad class of autonomous information processing. In particular, we prove that the Onsager reciprocity holds true with information: The linear response matrix is well-defined and is shown symmetric with both of the information affinity and the conventional thermodynamic affinity. As an application, we derive a universal bound for the efficiency at maximum power for information-driven engines in the linear regime. Our result reveals the fundamental role of information flow in linear irreversible thermodynamics.

  10. Endodontic therapy of a mandibular canine tooth with irreversible pulpitis secondary to dentigerous cyst.

    Science.gov (United States)

    MacGee, Scott

    2014-01-01

    Dentigerous cysts are uncommon, yet are being reported with increasing frequency in the veterinary literature. Dentigerous cysts are a type of benign odontogenic cyst associated with impacted teeth, most commonly the mandibular first premolar tooth. Significant bone destruction can occur secondary to the expansion of a dentigerous cyst. The expanding cyst can lead to pathology of neighboring teeth, which can include external root resorption or pulpitis. Intraoral dental radiographs are imperative to properly assess the presence and extent of a dentigerous cyst, as well as the status of the neighboring teeth. This case report describes treatment for dentigerous cyst including cyst lining curettage, mandibular bone regeneration, and endodontic therapy for a canine tooth with irreversible pulpitis.

  11. Features of alpha-synuclein that could explain the progression and irreversibility of Parkinson's disease

    Directory of Open Access Journals (Sweden)

    Scarlet eGallegos

    2015-03-01

    Full Text Available Alpha-synuclein is a presynaptic protein expressed throughout the central nervous system, and it is the main component of Lewy bodies, one of the histopathological features of Parkinson’s disease (PD which is a progressive and irreversible neurodegenerative disorder. The conformational flexibility of α-synuclein allows it to adopt different conformations, i.e. bound to membranes or form aggregates, the oligomers are believed to be the more toxic species. In this review, we will focus on two major features of α-synuclein, transmission and toxicity that could help to understand the pathological characteristics of PD. One important feature of α-synuclein is its ability to be transmitted from neuron to neuron using mechanisms such as endocytosis, plasma membrane penetration or through exosomes, thus propagating the Lewy body pathology to different brain regions thereby contributing to the progressiveness of PD. The second feature of α-synuclein is that it confers cytotoxicity to recipient cells, principally when it is in an oligomeric state. This form causes mitochondrial dysfunction, endoplasmic reticulum stress, oxidative stress, proteasome impairment, disruption of plasma membrane and pore formation, and lead to apoptosis pathway activation and consequent cell death. The complexity of α-synuclein oligomerization and formation of toxic species could be a major factor for the irreversibility of PD and could also explain the lack of successful therapies to halt the disease.

  12. Anistropically varying conductivity in irreversible electroporation simulations.

    Science.gov (United States)

    Labarbera, Nicholas; Drapaca, Corina

    2017-11-01

    One recent area of cancer research is irreversible electroporation (IRE). Irreversible electroporation is a minimally invasive procedure where needle electrodes are inserted into the body to ablate tumor cells with electricity. The aim of this paper is to propose a mathematical model that incorporates a tissue's conductivity increasing more in the direction of the electrical field as this has been shown to occur in experiments. It was necessary to mathematically derive a valid form of the conductivity tensor such that it is dependent on the electrical field direction and can be easily implemented into numerical software. The derivation of a conductivity tensor that can take arbitrary functions for the conductivity in the directions tangent and normal to the electrical field is the main contribution of this paper. Numerical simulations were performed for isotropic-varying and anisotropic-varying conductivities to evaluate the importance of including the electrical field's direction in the formulation for conductivity. By starting from previously published experimental results, this paper derived a general formulation for an anistropic-varying tensor for implementation into irreversible electroporation modeling software. The anistropic-varying tensor formulation allows the conductivity to take into consideration both electrical field direction and magnitude, as opposed to previous published works that only took into account electrical field magnitude. The anisotropic formulation predicts roughly a five percent decrease in ablation size for the monopolar simulation and approximately a ten percent decrease in ablation size for the bipolar simulations. This is a positive result as previously reported results found the isotropic formulation to overpredict ablation size for both monopolar and bipolar simulations. Furthermore, it was also reported that the isotropic formulation overpredicts the ablation size more for the bipolar case than the monopolar case. Thus, our

  13. Ecological optimization for an irreversible magnetic Ericsson refrigeration cycle

    International Nuclear Information System (INIS)

    Wang Hao; Wu Guo-Xing

    2013-01-01

    An irreversible Ericsson refrigeration cycle model is established, in which multi-irreversibilities such as finite-rate heat transfer, regenerative loss, heat leakage, and the efficiency of the regenerator are taken into account. Expressions for several important performance parameters, such as the cooling rate, coefficient of performance (COP), power input, exergy output rate, entropy generation rate, and ecological function are derived. The influences of the heat leakage and the time of the regenerative processes on the ecological performance of the refrigerator are analyzed. The optimal regions of the ecological function, cooling rate, and COP are determined and evaluated. Furthermore, some important parameter relations of the refrigerator are revealed and discussed in detail. The results obtained here have general significance and will be helpful in gaining a deep understanding of the magnetic Ericsson refrigeration cycle. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  14. Positron emission tomography takes lead

    International Nuclear Information System (INIS)

    Simms, R.

    1989-01-01

    Positron emission tomography (PET)'s ability to detect functional abnormalities before they manifest anatomically is examined and some of its most common applications are outlined. It is emphasised that when PET facility and Australian Nuclear Science and Technology Organization's national cyclotron are established at the Royal Prince Alfred Hospital, the availability of short-lived tracers such as oxygen 15, nitrogen 13 and fluorine 18 would improve the specificity of tests(e.g. for brain tumors or cardiac viability) further. Construction of the cyclotron will start shortly and is due to be completed and operating by the end of 1991

  15. Detailed Modeling and Irreversible Transfer Process Analysis of a Multi-Element Thermoelectric Generator System

    Science.gov (United States)

    Xiao, Heng; Gou, Xiaolong; Yang, Suwen

    2011-05-01

    Thermoelectric (TE) power generation technology, due to its several advantages, is becoming a noteworthy research direction. Many researchers conduct their performance analysis and optimization of TE devices and related applications based on the generalized thermoelectric energy balance equations. These generalized TE equations involve the internal irreversibility of Joule heating inside the thermoelectric device and heat leakage through the thermoelectric couple leg. However, it is assumed that the thermoelectric generator (TEG) is thermally isolated from the surroundings except for the heat flows at the cold and hot junctions. Since the thermoelectric generator is a multi-element device in practice, being composed of many fundamental TE couple legs, the effect of heat transfer between the TE couple leg and the ambient environment is not negligible. In this paper, based on basic theories of thermoelectric power generation and thermal science, detailed modeling of a thermoelectric generator taking account of the phenomenon of energy loss from the TE couple leg is reported. The revised generalized thermoelectric energy balance equations considering the effect of heat transfer between the TE couple leg and the ambient environment have been derived. Furthermore, characteristics of a multi-element thermoelectric generator with irreversibility have been investigated on the basis of the new derived TE equations. In the present investigation, second-law-based thermodynamic analysis (exergy analysis) has been applied to the irreversible heat transfer process in particular. It is found that the existence of the irreversible heat convection process causes a large loss of heat exergy in the TEG system, and using thermoelectric generators for low-grade waste heat recovery has promising potential. The results of irreversibility analysis, especially irreversible effects on generator system performance, based on the system model established in detail have guiding significance for

  16. Alternatives to the discrete cosine transform for irreversible tomographic image compression

    International Nuclear Information System (INIS)

    Villasenor, J.D.

    1993-01-01

    Full-frame irreversible compression of medical images is currently being performed using the discrete cosine transform (DCT). Although the DCT is the optimum fast transform for video compression applications, the authors show here that it is out-performed by the discrete Fourier transform (DFT) and discrete Hartley transform (DHT) for images obtained using positron emission tomography (PET) and magnetic resonance imaging (MRI), and possibly for certain types of digitized radiographs. The difference occurs because PET and MRI images are characterized by a roughly circular region D of non-zero intensity bounded by a region R in which the Image intensity is essentially zero. Clipping R to its minimum extent can reduce the number of low-intensity pixels but the practical requirement that images be stored on a rectangular grid means that a significant region of zero intensity must remain an integral part of the image to be compressed. With this constraint imposed, the DCT loses its advantage over the DFT because neither transform introduces significant artificial discontinuities. The DFT and DHT have the further important advantage of requiring less computation time than the DCT

  17. Optical properties versus temperature of Cr-doped γ- and α-Al{sub 2}O{sub 3}: Irreversible thermal sensors application

    Energy Technology Data Exchange (ETDEWEB)

    Salek, G.; Devoti, A.; Lataste, E.; Demourgues, A.; Garcia, A.; Jubera, V., E-mail: veronique.jubera@u-bordeaux.fr; Gaudon, M.

    2016-11-15

    A thorough investigation by X-ray diffraction, UV–vis and luminescence spectroscopy is carried out to demonstrate how the chromium content of alumina matrices impacts the temperature of the γ→α irreversible phase transition. The Cr{sup 3+} contents influence slightly the phase transition temperature but control the brightness of the powders. Nice colorimetric contrasts from green to pink are observed between the two allotropic forms. Furthermore, drastic changes of the spectral distribution and of the intensity of luminescence are observed, thus allowing to use this pigment as a both thermochromic and luminescent thermal sensor. Additional measurements at low temperature revealed that the Cr{sup 3+} emission of the γ-Al{sub 2}O{sub 3} matrix is constituted by a large band. A configurational diagram schematic approach suggested for the first time that this emission is due to spin-allowed {sup 4}T{sub 2}→{sup 4}A{sub 2} transition on this largely investigated γ-Al{sub 2}O{sub 3} compound.

  18. Irreversible JPEG 2000 compression of abdominal CT for primary interpretation: assessment of visually lossless threshold

    International Nuclear Information System (INIS)

    Lee, Kyoung Ho; Kim, Young Hoon; Kim, Bo Hyoung; Kim, Kil Joong; Kim, Tae Jung; Kim, Hyuk Jung; Hahn, Seokyung

    2007-01-01

    To estimate the visually lossless threshold for Joint Photographic Experts Group (JPEG) 2000 compression of contrast-enhanced abdominal computed tomography (CT) images, 100 images were compressed to four different levels: a reversible (as negative control) and irreversible 5:1, 10:1, and 15:1. By alternately displaying the original and the compressed image on the same monitor, six radiologists independently determined if the compressed image was distinguishable from the original image. For each reader, we compared the proportion of the compressed images being rated distinguishable from the original images between the reversible compression and each of the three irreversible compressions using the exact test for paired proportions. For each reader, the proportion was not significantly different between the reversible (0-1%, 0/100 to 1/100) and irreversible 5:1 compression (0-3%). However, the proportion significantly increased with the irreversible 10:1 (95-99%) and 15:1 compressions (100%) versus reversible compression in all readers (P < 0.001); 100 and 95% of the 5:1 compressed images were rated indistinguishable from the original images by at least five of the six readers and all readers, respectively. Irreversibly 5:1 compressed abdominal CT images are visually lossless and, therefore, potentially acceptable for primary interpretation. (orig.)

  19. Liquid electrode plasma-optical emission spectrometry combined with solid-phase preconcentration for on-site analysis of lead.

    Science.gov (United States)

    Barua, Suman; Rahman, Ismail M M; Alam, Iftakharul; Miyaguchi, Maho; Sawai, Hikaru; Maki, Teruya; Hasegawa, Hiroshi

    2017-08-15

    A relatively rapid and precise method is presented for the determination of lead in aqueous matrix. The method consists of analyte quantitation using the liquid electrode plasma-optical emission spectrometry (LEP-OES) coupled with selective separation/preconcentration by solid-phase extraction (SPE). The impact of operating variables on the retention of lead in SPEs such as pH, flow rate of the sample solution; type, volume, flow rate of the eluent; and matrix effects were investigated. Selective SPE-separation/preconcentration minimized the interfering effect due to manganese in solution and limitations in lead-detection in low-concentration samples by LEP-OES. The LEP-OES operating parameters such as the electrical conductivity of sample solution; applied voltage; on-time, off-time, pulse count for applied voltage; number of measurements; and matrix effects have also been optimized to obtain a distinct peak for the lead at λ max =405.8nm. The limit of detection (3σ) and the limit of quantification (10σ) for lead determination using the technique were found as 1.9 and 6.5ng mL -1 , respectively. The precision, as relative standard deviation, was lower than 5% at 0.1μg mL -1 Pb, and the preconcentration factor was found to be 187. The proposed method was applied to the analysis of lead contents in the natural aqueous matrix (recovery rate:>95%). The method accuracy was verified using certified reference material of wastewaters: SPS-WW1 and ERM-CA713. The results from LEP-OES were in good agreement with inductively coupled plasma optical emission spectrometry measurements of the same samples. The application of the method is rapid (≤5min, without preconcentration) with a reliable detection limit at trace levels. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Prostaglandin E2 to diagnose between reversible and irreversible pulpitis.

    Science.gov (United States)

    Petrini, M; Ferrante, M; Ciavarelli, L; Brunetti, L; Vacca, M; Spoto, G

    2012-01-01

    The aim of this work is to verify a correlation between the grade of inflammation and the concentration of PGE2 in human dental pulp. A total of 25 human dental pulps were examined by histological analysis and radioimmunologic dosage of PGE2. The pulps used in this experiment were from healthy and symptomatic teeth; the first ones were collected from teeth destined to be extracted for orthodontic reasons. An increase was observed of PGE2 in reversible pulpitis compared with healthy pulps and with the irreversible pulpitis and the clear decrease of these when NSAIDs are taken. This study demonstrates that PGE2 level is correlated to histological analysis thus allowing to distinguish symptomatic teeth in reversible and irreversible pulpitis.

  1. Direct and irreversible inhibition of cyclooxygenase-1 by nitroaspirin (NCX 4016).

    Science.gov (United States)

    Corazzi, Teresa; Leone, Mario; Maucci, Raffaella; Corazzi, Lanfranco; Gresele, Paolo

    2005-12-01

    Benzoic acid, 2-(acetyl-oxy)-3-[(nitrooxy)methyl]phenyl ester (NCX 4016), a new drug made by an aspirin molecule linked, through a spacer, to a nitric oxide (NO)-donating moiety, is now under clinical testing for the treatment of atherothrombotic conditions. Aspirin exerts its antithrombotic activity by irreversibly inactivating platelet cyclooxygenase (COX)-1. NCX 4016 in vivo undergoes metabolism into deacetylated and/or denitrated metabolites, and it is not known whether NCX 4016 needs to liberate aspirin to inhibit COX-1, or whether it can block it as a whole molecule. The aim of our study was to evaluate the effects of NCX 4016 and its analog or metabolites on platelet COX-1 and whole blood COX-2 and on purified ovine COX (oCOX)-1 and oCOX-2. In particular, we have compared the mechanism by which NCX 4016 inhibits purified oCOX enzymes with that of aspirin using a spectrophotometric assay. All the NCX 4016 derivatives containing acetylsalicylic acid inhibited the activity of oCOX-1 and oCOX-2, whereas the deacetylated metabolites and the nitric oxide-donating moiety were inactive. Dialysis experiments showed that oCOX-1 inhibition by NCX 4016, similar to aspirin, is irreversible. Reversible COX inhibitors (indomethacin) or salicylic acid incubated with the enzyme before NCX 4016 prevent the irreversible inhibition of oCOX-1 by NCX 4016 as well as by aspirin. In conclusion, our data show that NCX 4016 acts as a direct and irreversible inhibitor of COX-1 and that the presence of a spacer and NO-donating moiety in the molecule slows the kinetics of COX-1 inhibition by NCX 4016, compared with aspirin.

  2. Study of lead pollution from automobile emissions in Khartoum

    International Nuclear Information System (INIS)

    Ibrahim, A.S.

    2002-07-01

    Aerosol and soil samples were collected from places near the main roads in Khartoum area. The samples were analyzed by energy Dispersive x-ray fluorescence (EDXRF) technique, to study the lead (Pb) concentration in air and soil near roadsides due to automobile emissions. The aim of the study was also to make a comparison with the results of previous measurements made in the same field (Ahmed, 1983) . Thee aerosol samples were taken from three sites in Khartoum area. Tuti island taken as a control area, central Khartoum as a commercial area and south of Khartoum as a residential area. Soil samples were taken from a place near Al Gurashi Park and another near Abu Hamama traffic junction in Khartoum area. The data obtained of (Pb) concentrations in the roadside air were statistically analyzed. Comparisons were made between the concentrations at the various times of the day and correlation were made with meteorological parameters. The (Pb) concentrations in the roadside soil were observed to be inversely proportional to the distance from the road and the depth from the layer of the earth. Finally, the results obtained are discussed and some recommendations are suggested. (Author)

  3. Effects of Thickness, Pulse Duration, and Size of Strip Electrode on Ferroelectric Electron Emission of Lead Zirconate Titanate Films

    Science.gov (United States)

    Yaseen, Muhammad; Ren, Wei; Chen, Xiaofeng; Feng, Yujun; Shi, Peng; Wu, Xiaoqing

    2018-02-01

    Sol-gel-derived lead zirconate titanate (PZT) thin-film emitters with thickness up to 9.8 μm have been prepared on Pt/TiO2/SiO2/Si wafer via chemical solution deposition with/without polyvinylpyrrolidone (PVP) modification, and the relationship between the film thickness and electron emission investigated. Notable electron emission was observed on application of a trigger voltage of 120 V for PZT film with thickness of 1.1 μm. Increasing the film thickness decreased the threshold field to initiate electron emission for non-PVP-modified films. In contrast, the electron emission behavior of PVP-modified films did not show significant dependence on film thickness, probably due to their porous structure. The emission current increased with decreasing strip width and space between strips. Furthermore, it was observed that increasing the duration of the applied pulse increased the magnitude of the emission current. The stray field on the PZT film thickness was also calculated and found to increase with increasing ferroelectric sample thickness. The PZT emitters were found to be fatigue free up to 105 emission cycles. Saturated emission current of around 25 mA to 30 mA was achieved for the electrode pattern used in this work.

  4. Positron emission tomography for the assessment of myocardial viability

    International Nuclear Information System (INIS)

    Schelbert, H.R.

    1991-01-01

    The detection of viable myocardium or ischemically injured myocardium with a reversible impairment of contractile function remains clinically important but challenging. Detection of reversible dysfunction and distinction from irreversible tissue injury by positron emission tomography is based on identification of preserved or even enhanced glucose metabolism with F-18 2-fluoro 2-deoxyglucose. Regional patterns of myocardial glucose utilization and blood flow, defined as perfusion-metabolism mismatches or matches, on positron emission tomography in patients with chronic or even acute ischemic heart disease are highly accurate in predicting the functional outcome after interventional revascularization. Compared with thallium-201 redistribution scintigraphy, positron emission tomography appears to be diagnostically more accurate, especially in patients with severely impaired left ventricular function. While larger clinical trials are needed for further confirmation, positron emission tomography has already proved clinically useful for stratifying patients with poor left ventricular function to the most appropriate therapeutic approach

  5. Pinning and irreversibility in superconducting bulk MgB{sub 2} with added nanodiamonds

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Anurag [Superconductivity and Cryogenics Division, National Physical Laboratory (CSIR), New Delhi-110012 (India); Narlikar, A V, E-mail: anurag@mail.nplindia.ernet.i [UGC-DAE Consortium for Scientific Research, University Campus, Khandwa Road, Indore-452017, MP (India)

    2009-12-15

    Resistance, R(T), and magnetization, M(B), studies on superconducting bulk MgB{sub 2} samples containing nanodiamonds (ND) as additives (wt% of ND: x = 0%, 1%, 3%, 5%, 7% and 10%) were recently published in two articles (Vajpayee et al 2007 Supercond. Sci. Technol. 20 S155, Vajpayee et al 2008 J. Appl. Phys. 103 07C708). The main observations reported were significant improvements in the critical current density J{sub c}(B), irreversibility line B{sub irr}(T) and upper critical field B{sub c2}(T) with ND addition. However, a closer look shows that as regards the potential of this technologically important material at higher magnetic fields and temperatures, there is still a lot of room for improvement. With that in mind we revisit the R(T) and M(B) data and analyze them, in the present work. We show that, despite ND addition, J{sub c} depends strongly on B in the high field region and tends to vanish at irreversibility lines that lie deep, i.e. at around 0.3 B{sub c2}(T), in the B-T phase diagram. The irreversibility lines, determined by R(T){yields}0 in the presence of B, are found to lie at around 0.5 B{sub c2}(T) in the phase diagram. These results for pinning and irreversibility lines are discussed in the light of various models such as those of surface sheath superconductivity, magnetically introduced percolation in polycrystalline MgB{sub 2}, thermally assisted flux motion (TAFM) and a modified flux line shear mechanism. Our analysis hints at TAFM and weak pinning channels with distributed superconducting properties percolating in our samples determining the irreversibility and pinning properties.

  6. Antibacterial efficacy and effect of chlorhexidine mixed with irreversible hydrocolloid for dental impressions: a randomized controlled trial.

    Science.gov (United States)

    Cubas, Glória; Valentini, Fernanda; Camacho, Guilherme Brião; Leite, Fábio; Cenci, Maximiliano Sérgio; Pereira-Cenci, Tatiana

    2014-01-01

    This study aimed to evaluate whether chlorhexidine mixed with irreversible hydrocolloid powder decreases microbial contamination during impression taking without affecting the resulting casts. Twenty volunteers were randomly divided into two groups (n = 10) according to the liquid used for impression taking in conjunction with irreversible hydrocolloid: 0.12% chlorhexidine or water. Surface roughness and dimensional stability of the casts were evaluated. Chlorhexidine mixed with irreversible hydrocolloid decreased the percentage of microorganisms when compared with water (P impression quality.

  7. Inequalities for trace anomalies, length of the RG flow, distance between the fixed points and irreversibility

    International Nuclear Information System (INIS)

    Anselmi, Damiano

    2004-01-01

    I discuss several issues about the irreversibility of the RG flow and the trace anomalies c, a and a'. First I argue that in quantum field theory: (i) the scheme-invariant area Δ a' of the graph of the effective beta function between the fixed points defines the length of the RG flow; (ii) the minimum of Δ a' in the space of flows connecting the same UV and IR fixed points defines the (oriented) distance between the fixed points and (iii) in even dimensions, the distance between the fixed points is equal to Δ a = a UV - a IR . In even dimensions, these statements imply the inequalities 0 ≤ Δ a ≤ Δ a' and therefore the irreversibility of the RG flow. Another consequence is the inequality a ≤ c for free scalars and fermions (but not vectors), which can be checked explicitly. Secondly, I elaborate a more general axiomatic set-up where irreversibility is defined as the statement that there exist no pairs of non-trivial flows connecting interchanged UV and IR fixed points. The axioms, based on the notions of length of the flow, oriented distance between the fixed points and certain 'oriented-triangle inequalities', imply the irreversibility of the RG flow without a global a function. I conjecture that the RG flow is also irreversible in odd dimensions (without a global a function). In support of this, I check the axioms of irreversibility in a class of d = 3 theories where the RG flow is integrable at each order of the large N expansion

  8. Irreversible thermodynamics, parabolic law and self-similar state in grain growth

    International Nuclear Information System (INIS)

    Rios, P.R.

    2004-01-01

    The formalism of the thermodynamic theory of irreversible processes is applied to grain growth to investigate the nature of the self-similar state and its corresponding parabolic law. Grain growth does not reach a steady state in the sense that the entropy production remains constant. However, the entropy production can be written as a product of two factors: a scale factor that tends to zero for long times and a scaled entropy production. It is suggested that the parabolic law and the self-similar state may be associated with the minimum of this scaled entropy production. This result implies that the parabolic law and the self-similar state have a sound irreversible thermodynamical basis

  9. The universal power and efficiency characteristics for irreversible reciprocating heat engine cycles

    CERN Document Server

    Qin Xiao Yong; Sun Feng Rui; Wu Chih

    2003-01-01

    The performance of irreversible reciprocating heat engine cycles with heat transfer loss and friction-like term loss is analysed using finite-time thermodynamics. The universal relations between the power output and the compression ratio, between the thermal efficiency and the compression ratio, and the optimal relation between power output and the efficiency of the cycles are derived. Moreover, analysis and optimization of the model were carried out in order to investigate the effect of cycle processes on the performance of the cycle using numerical examples. The results obtained herein include the performance characteristics of irreversible reciprocating Diesel, Otto, Atkinson and Brayton cycles.

  10. A general nonlinear evolution equation for irreversible conservative approach to stable equilibrium

    International Nuclear Information System (INIS)

    Beretta, G.P.

    1986-01-01

    This paper addresses a mathematical problem relevant to the question of nonequilibrium and irreversibility, namely, that of ''designing'' a general evolution equation capable of describing irreversible but conservative relaxtion towards equilibrium. The objective is to present an interesting mathematical solution to this design problem, namely, a new nonlinear evolution equation that satisfies a set of very stringent relevant requirements. Three different frameworks are defined from which the new equation could be adopted, with entirely different interpretations. Some useful well-known mathematics involving Gram determinants are presented and a nonlinear evolution equation is given which meets the stringent design specifications

  11. Irreversibility analysis for gravity driven non-Newtonian liquid film along an inclined isothermal plate

    International Nuclear Information System (INIS)

    Makinde, O.D.

    2005-10-01

    In this paper, the first and second law of thermodynamics are employed in order to study the inherent irreversibility for a gravity driven non-Newtonian Ostwald-de Waele power law liquid film along an inclined isothermal plate. Based on some simplified assumptions, the governing equations are obtained and solved analytically. Expressions for fluid velocity, temperature, volumetric entropy generation numbers, irreversibility distribution ratio and the Bejan number are also determined. (author)

  12. White-Light Emission and Structural Distortion in New Corrugated Two-Dimensional Lead Bromide Perovskites.

    Science.gov (United States)

    Mao, Lingling; Wu, Yilei; Stoumpos, Constantinos C; Wasielewski, Michael R; Kanatzidis, Mercouri G

    2017-03-29

    Hybrid inorganic-organic perovskites are developing rapidly as high performance semiconductors. Recently, two-dimensional (2D) perovskites were found to have white-light, broadband emission in the visible range that was attributed mainly to the role of self-trapped excitons (STEs). Here, we describe three new 2D lead bromide perovskites incorporating a series of bifunctional ammonium dications as templates which also emit white light: (1) α-(DMEN)PbBr 4 (DMEN = 2-(dimethylamino)ethylamine), which adopts a unique corrugated layered structure in space group Pbca with unit cell a = 18.901(4) Å, b = 11.782(2) Å, and c = 23.680(5) Å; (2) (DMAPA)PbBr 4 (DMAPA = 3-(dimethylamino)-1-propylamine), which crystallizes in P2 1 /c with a = 10.717(2) Å, b = 11.735(2) Å, c = 12.127(2) Å, and β = 111.53(3)°; and (3) (DMABA)PbBr 4 (DMABA = 4-dimethylaminobutylamine), which adopts Aba2 with a = 41.685(8) Å, b = 23.962(5) Å, and c = 12.000(2) Å. Photoluminescence (PL) studies show a correlation between the distortion of the "PbBr 6 " octahedron in the 2D layer and the broadening of PL emission, with the most distorted structure having the broadest emission (183 nm full width at half-maximum) and longest lifetime (τ avg = 1.39 ns). The most distorted member α-(DMEN)PbBr 4 exhibits white-light emission with a color rendering index (CRI) of 73 which is similar to a fluorescent light source and correlated color temperature (CCT) of 7863 K, producing "cold" white light.

  13. Quadriplegia due to lead-contaminated opium--case report.

    Science.gov (United States)

    Beigmohammadi, Mohammad Taghi; Aghdashi, Moosa; Najafi, Atabak; Mojtahedzadeh, Mojtaba; Karvandian, Kassra

    2008-10-01

    Utilization of lead-contaminated opium may lead to severe motor neuron impairment and quadriplegia. Forty years oriented old male, opium addict, was admitted to the ICU, with headache, nausea and abdominal pain, and weakness in his lower and upper extremities without definitive diagnosis. The past medical and occupational history was negative. Laboratory investigation showed; anemia (Hb 7.7 g/dl), slightly elevated liver function tests, elevated total bilirubin, and ESR. Abdominal sonography and brain CT scan were normal. EMG and NCV results and neurologic examination were suggestive for Guillain-Barre. He underwent five sessions of plasmapheresis. Blood lead level was > 200 microg/dl. He received dimercaprol (BAL) and calcium disodium edetate (CaEDTA) for two five days session. Upon discharge from ICU all laboratory tests were normal and blood lead level was reduced, but he was quadriplegic. The delayed treatment of lead poisoning may lead to irreversible motor neuron defect.

  14. Determination of the shapes and sizes of the regions in which in hadron-nucleus collisions reactions leading to the nucleon emission, particle production, and fragment evaporation occur

    International Nuclear Information System (INIS)

    Strugalski, Z.

    1985-01-01

    Shapes and sizes of the regions in target-nuclei in which reactions leading to the nucleon emission, particle production and fragment evaporation occur are determined. The region of nucleon emission is of cylindrical shape, with the diameter as large as two nucleon diameters, centered on the incident hadron course. The reactions leading to the particle production happen predominantly along the incident hadron course in nuclear matter. The fragment evaporation goes from the surface layer of the part of the target-nucleus damaged in nucleon emission process

  15. Treatise on irreversible and statistical thermodynamics an introduction to nonclassical thermodynamics

    CERN Document Server

    Yourgrau, Wolfgang; Raw, Gough

    2002-01-01

    Extensively revised edition of a much-respected work examines thermodynamics of irreversible processes, general principles of statistical thermodynamics, assemblies of noninteracting structureless particles, and statistical theory. 1966 edition.

  16. Influence of delayed pouring on irreversible hydrocolloid properties

    Directory of Open Access Journals (Sweden)

    Stéfani Becker Rodrigues

    2012-10-01

    Full Text Available The aim of this study was to evaluate the physical properties of irreversible hydrocolloid materials poured immediately and after different storage periods. Four alginates were tested: Color Change (Cavex; Hydrogum (Zhermack; Hydrogum 5 (Zhermack; and Hydro Print Premium (Coltene. Their physical properties, including the recovery from deformation (n = 3, compressive strength (n = 3, and detail reproduction and gypsum compatibility (n = 3, were analyzed according to ANSI/ADA specification no. 18. Specimens were stored at 23ºC and humidity and were then poured with gypsum immediately and after 1, 2, 3, 4, and 5 days. The data were analyzed by two-way analysis of variance (ANOVA and Tukey's test at p < 0.05. All of the alginate impression materials tested exhibited detail reproduction and gypsum compatibility at all times. Hydro Print Premium and Hydrogum 5 showed recovery from deformation, as established by ANSI/ADA specification no. 18, after 5 days of storage. As the storage time increased, the compressive strength values also increased. Considering the properties of compounds' recovery from deformation, compressive strength, and detail reproduction and gypsum compatibility, irreversible hydrocolloids should be poured immediately.

  17. Advanced Caries Microbiota in Teeth with Irreversible Pulpitis.

    Science.gov (United States)

    Rôças, Isabela N; Lima, Kenio C; Assunção, Isauremi V; Gomes, Patrícia N; Bracks, Igor V; Siqueira, José F

    2015-09-01

    Bacterial taxa in the forefront of caries biofilms are candidate pathogens for irreversible pulpitis and are possibly the first ones to invade the pulp and initiate endodontic infection. This study examined the microbiota of the most advanced layers of dentinal caries in teeth with irreversible pulpitis. DNA extracted from samples taken from deep dentinal caries associated with pulp exposures was analyzed for the presence and relative levels of 33 oral bacterial taxa by using reverse-capture checkerboard hybridization assay. Quantification of total bacteria, streptococci, and lactobacilli was also performed by using real-time quantitative polymerase chain reaction. Associations between the target bacterial taxa and clinical signs/symptoms were also evaluated. The most frequently detected taxa in the checkerboard assay were Atopobium genomospecies C1 (53%), Pseudoramibacter alactolyticus (37%), Streptococcus species (33%), Streptococcus mutans (33%), Parvimonas micra (13%), Fusobacterium nucleatum (13%), and Veillonella species (13%). Streptococcus species, Dialister invisus, and P. micra were significantly associated with throbbing pain, S. mutans with pain to percussion, and Lactobacillus with continuous pain (P pulpitis is suspected. Copyright © 2015 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  18. Loschmidt echo in many-spin systems: a quest for intrinsic decoherence and emergent irreversibility

    Science.gov (United States)

    Zangara, Pablo R.; Pastawski, Horacio M.

    2017-03-01

    If a magnetic polarization excess is locally injected in a crystal of interacting spins in thermal equilibrium, this ‘excitation’ would spread as consequence of spin-spin interactions. Such an apparently irreversible process is known as spin diffusion and it can lead the system back to ‘equilibrium’. Even so, a unitary quantum dynamics would ensure a precise memory of the non-equilibrium initial condition. Then, if at a certain time, say t/2, an experimental protocol reverses the many-body dynamics by changing the sign of the effective Hamiltonian, it would drive the system back to the initial non-equilibrium state at time t. As a matter of fact, the reversal is always perturbed by small experimental imperfections and/or uncontrolled internal or environmental degrees of freedom. This limits the amount of signal M(t) recovered locally at time t. The degradation of M(t) accounts for these perturbations, which can also be seen as the sources of decoherence. This general idea defines the Loschmidt echo (LE), which embodies the various time-reversal procedures implemented in nuclear magnetic resonance. Here, we present an invitation to the study of the LE following the pathway induced by the experiments. With such a purpose, we provide a historical and conceptual overview that briefly revisits selected phenomena that underlie the LE dynamics including chaos, decoherence, localization and equilibration. This guiding thread ultimately leads us to the discussion of decoherence and irreversibility as an emergent phenomenon. In addition, we introduce the LE formalism by means of spin-spin correlation functions in a manner suitable for presentation in a broad scope physics journal. Last, but not least, we present new results that could trigger new experiments and theoretical ideas. In particular, we propose to transform an initially localized excitation into a more complex initial state, enabling a dynamically prepared LE. This induces a global definition of the LE in

  19. Microbiome of Deep Dentinal Caries Lesions in Teeth with Symptomatic Irreversible Pulpitis.

    Science.gov (United States)

    Rôças, Isabela N; Alves, Flávio R F; Rachid, Caio T C C; Lima, Kenio C; Assunção, Isauremi V; Gomes, Patrícia N; Siqueira, José F

    2016-01-01

    This study used a next-generation sequencing approach to identify the bacterial taxa occurring in the advanced front of caries biofilms associated with pulp exposure and irreversible pulpitis. Samples were taken from the deepest layer of dentinal caries lesions associated with pulp exposure in 10 teeth diagnosed with symptomatic irreversible pulpitis. DNA was extracted and the microbiome was characterized on the basis of the V4 hypervariable region of the 16S rRNA gene by using paired-end sequencing on Illumina MiSeq device. Bacterial taxa were mapped to 14 phyla and 101 genera composed by 706 different OTUs. Three phyla accounted for approximately 98% of the sequences: Firmicutes, Actinobacteria and Proteobacteria. These phyla were also the ones with most representatives at the species level. Firmicutes was the most abundant phylum in 9/10 samples. As for genera, Lactobacillus accounted for 42.3% of the sequences, followed by Olsenella (13.7%), Pseudoramibacter (10.7%) and Streptococcus (5.5%). Half of the samples were heavily dominated by Lactobacillus, while in the other half lactobacilli were in very low abundance and the most dominant genera were Pseudoramibacter, Olsenella, Streptococcus, and Stenotrophomonas. High bacterial diversity occurred in deep dentinal caries lesions associated with symptomatic irreversible pulpitis. The microbiome could be classified according to the relative abundance of Lactobacillus. Except for Lactobacillus species, most of the highly prevalent and abundant bacterial taxa identified in this study have been commonly detected in infected root canals. The detected taxa can be regarded as candidate pathogens for irreversible pulpitis and possibly the pioneers in pulp invasion to initiate endodontic infection.

  20. Microbiome of Deep Dentinal Caries Lesions in Teeth with Symptomatic Irreversible Pulpitis.

    Directory of Open Access Journals (Sweden)

    Isabela N Rôças

    Full Text Available This study used a next-generation sequencing approach to identify the bacterial taxa occurring in the advanced front of caries biofilms associated with pulp exposure and irreversible pulpitis. Samples were taken from the deepest layer of dentinal caries lesions associated with pulp exposure in 10 teeth diagnosed with symptomatic irreversible pulpitis. DNA was extracted and the microbiome was characterized on the basis of the V4 hypervariable region of the 16S rRNA gene by using paired-end sequencing on Illumina MiSeq device. Bacterial taxa were mapped to 14 phyla and 101 genera composed by 706 different OTUs. Three phyla accounted for approximately 98% of the sequences: Firmicutes, Actinobacteria and Proteobacteria. These phyla were also the ones with most representatives at the species level. Firmicutes was the most abundant phylum in 9/10 samples. As for genera, Lactobacillus accounted for 42.3% of the sequences, followed by Olsenella (13.7%, Pseudoramibacter (10.7% and Streptococcus (5.5%. Half of the samples were heavily dominated by Lactobacillus, while in the other half lactobacilli were in very low abundance and the most dominant genera were Pseudoramibacter, Olsenella, Streptococcus, and Stenotrophomonas. High bacterial diversity occurred in deep dentinal caries lesions associated with symptomatic irreversible pulpitis. The microbiome could be classified according to the relative abundance of Lactobacillus. Except for Lactobacillus species, most of the highly prevalent and abundant bacterial taxa identified in this study have been commonly detected in infected root canals. The detected taxa can be regarded as candidate pathogens for irreversible pulpitis and possibly the pioneers in pulp invasion to initiate endodontic infection.

  1. Effects of irreversibility and economics on the performance of a heat engine

    International Nuclear Information System (INIS)

    Ibrahim, O.M.; Klein, S.A.; Mitchell, J.W.

    1992-01-01

    In this paper, optimization of the power output of an internally irreversible heat engine is considered for finite capacitance rates of the external fluid streams. The method of Lagrange multipliers is used to solve for working fluid temperatures which yield maximum power. Analytical expressions for the maximum power and the cycle efficiency at miximum power are obtained. The effects of irreversibility and economics on the performance of a heat engine are investigated. A relationship between the maximum power point and economically optimum design is identified. It is demonstrated that, with certain reasonable economic assumptions, the maximum power point of a heat engine corresponds to a point of minimum life-cycle costs

  2. Ethacrynic acid improves the antitumor effects of irreversible epidermal growth factor receptor tyrosine kinase inhibitors in breast cancer.

    Science.gov (United States)

    Liu, Bing; Huang, XinPing; Hu, YunLong; Chen, TingTing; Peng, BoYa; Gao, NingNing; Jin, ZhenChao; Jia, TieLiu; Zhang, Na; Wang, ZhuLin; Jin, GuangYi

    2016-09-06

    Prolonged treatment of breast cancer with epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) often results in acquired resistance and a narrow therapeutic index. One strategy to improve the therapeutic effects of EGFR TKIs is to combine them with drugs used for other clinical indications. Ethacrynic acid (EA) is an FDA approved drug that may have antitumor effects and may enhance the cytotoxicity of chemotherapeutic agents by binding to glutathione and inhibiting WNT signaling. While the α,β-unsaturated-keto structure of EA is similar to that of irreversible TKIs, the mechanism of action of EA when combined with irreversible EGFR TKIs in breast cancer remains unknown. We therefore investigated the combination of irreversible EGFR TKIs and EA. We found that irreversible EGFR TKIs and EA synergistically inhibit breast cancer both in vitro and in vivo. The combination of EGFR TKIs and EA induces necrosis and cell cycle arrest and represses WNT/β-catenin signaling as well as MAPK-ERK1/2 signaling. We conclude that EA synergistically enhances the antitumor effects of irreversible EGFR TKIs in breast cancer.

  3. {beta}-adrenergic receptor density and adenylate cyclase activity in lead-exposed rat brain after cessation of lead exposure

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Huoy-Rou [I-Shou University, Department of Biomedical Engineering, Dashu Shiang, Kaohsiung County (Taiwan); Tsao, Der-An [Fooyin University of Technology, Department of Medical Technology (Taiwan); Yu, Hsin-Su [Taiwan University, Department of Dermatology, College of Medicine (Taiwan); Ho, Chi-Kung [Kaohsiung Medical University, Occupational Medicine (Taiwan); Kaohsiung Medical University, Graduate Institute of Medicine, Research Center for Occupational Disease (Taiwan)

    2005-01-01

    To understanding the reversible or irreversible harm to the {beta}-adrenergic system in the brain of lead-exposed rats, this study sets up an animal model to estimate the change in the sympathetic nervous system of brain after lead exposure was withdrawn. We address the following topics in this study: (a) the relationship between withdrawal time of lead exposure and brain {beta}-adrenergic receptor, blood lead level, and brain lead level in lead-exposed rats after lead exposure was stopped; and (b) the relationship between lead level and {beta}-adrenergic receptor and cyclic AMP (c-AMP) in brain. Wistar rats were chronically fed with 2% lead acetate and water for 2 months. Radioligand binding was assayed by a method that fulfilled strict criteria of {beta}-adrenergic receptor using the ligand [{sup 125}I]iodocyanopindolol. The levels of lead were determined by electrothermal atomic absorption spectrometry. The c-AMP level was determined by radioimmunoassay. The results showed a close relationship between decreasing lead levels and increasing numbers of brain {beta}-adrenergic receptors and brain adenylate cyclase activity after lead exposure was withdrawn. The effect of lead exposure on the {beta}-adrenergic system of the brain is a partly reversible condition. (orig.)

  4. Dimensional Stability of Color-Changing Irreversible Hydrocolloids after Disinfection

    Directory of Open Access Journals (Sweden)

    Khaledi AAR

    2015-03-01

    Full Text Available Statement of Problem: Disinfection of dental impressions is a weak point in the dental hygiene chain. In addition, dental office personnel and dental technicians are endangered by cross-contamination. Objectives: This study aimed to investigate the dimensional stability of two color-changing irreversible hydrocolloid materials (IH after disinfection with glutaraldehyde. Materials and Methods: In this in vitro study, impressions were made of a master maxillary arch containing three reference inserts on the occlucal surface of the left and right maxillary second molars and in the incisal surface of the maxillary central incisors. Two types of color-changing irreversible hydrocolloid (tetrachrom, cavex were used. Glutaraldehyde 2% was used in two methods of spraying and immersion to disinfect the impressions. The control group was not disinfected. Casts were made of type IV gypsum. The linear dimensional change of the stone casts was measured with a profile projector. For statistical analysis, Kruskall-Wallis and Mann-Witney tests were used (α=0.05. Results: By immersion method, the casts fabricated from tetrachrom were 0.36% larger in the anteroposterior (AP and 0.05% smaller in cross arch (CA dimensions; however, the casts prepared after spraying of tetrachrom were 0.44% larger in the AP and 0.10% smaller in CA dimensions. The casts made from Cavex were 0.05% smaller in the AP and 0.02% smaller in CA dimensions after spraying and 0.01% smaller in the AP and 0.003% smaller in CA dimensions after immersion. Generally there were not significant differences in AP and CA dimensions of the experimental groups compared to the control (p > 0.05. Conclusions: Disinfection of the tested color-changing irreversible hydrocolloids by glutaraldahyde 2% did not compromise the accuracy of the obtained casts.

  5. Development of small-diameter lead-glass-tube matrices for gamma-ray conversion in positron emission tomography

    International Nuclear Information System (INIS)

    Schwartz, G.M.

    1985-05-01

    A gamma-ray converter for a multiwire proportional chamber (MWPC) positron emission tomograph is described. The converter is made of small-diameter (0.48 mm inner diameter, 0.06 mm wall thickness) lead-oxide-glass tubes fused to form a honeycomb matrix. The surfaces of the tubes are reduced in a hydrogen atmosphere to provide the drift electric field for detection of the conversion electrons. The detection efficiency for a 10 mm thick converter is 6.65%, with a time resolution of 160 ns (FWHM). A scheme which will improve the spatial resolution of the tomograph by use of the self quenching streamer mode of chamber operation is described. Details of construction of the converters and the MWPC are presented, as well as the design performance of a high spatial resolution positron emission tomograph (HISPET). 40 refs., 22 figs

  6. Behavior of the irreversibility line in the new superconductor La1.5+xBa1.5+x-yCayCu3Oz

    International Nuclear Information System (INIS)

    Parra Vargas, C.A.; Pimentel, J.L.; Pureur, P.; Landínez Téllez, D.A.; Roa-Rojas, J.

    2012-01-01

    The irreversibility properties of high-T c superconductors are of major importance for technological applications. For example, a high irreversibility magnetic field is a more desirable quality for a superconductor . The irreversibility line in the H-T plane is constituted by experimental points, which divides the irreversible and reversible behavior of the magnetization. The irreversibility lines for series of La 1.5+x Ba 1.5+x-y Ca y Cu 3 O z polycrystalline samples with different doping were investigated. The samples were synthesized using the usual solid estate reaction method. Rietveld-type refinement of x-ray diffraction patterns permitted to determine the crystallization of material in a tetragonal structure. Curves of magnetization ZFC-FC for the system La 1.5+x Ba 1.5+x-y Ca y Cu 3 O z , were measured in magnetic fields of the 10-20,000 Oe, and allowed to obtain the values for the irreversibility and critical temperatures. The data of irreversibility temperature allowed demarcating the irreversibility line, T irr (H). Two main lines are used for the interpretation of the irreversibility line: one of those which suppose that the vortexes are activated thermally and the other proposes that associated to T irr a phase transition occurs. The irreversibility line is described by a power law. The obtained results allow concluding that in the system La 1.5+x Ba 1.5+x-y Ca y Cu 3 O z a characteristic bend of the Almeida-Thouless (AT) tendency is dominant for low fields and a bend Gabay-Toulouse (GT) behavior for high magnetic fields. This feature of the irreversibility line has been reported as a characteristic of granular superconductors and it corroborates the topological effects of vortexes mentioned by several authors .

  7. Magnetic irreversibility in granular superconductors: ac susceptibility study

    International Nuclear Information System (INIS)

    Perez, F.; Obradors, X.; Fontcuberta, J.; Vallet, M.; Gonzalez-Calbet, J.

    1991-01-01

    Ac susceptibility measurements of a ceramic weak-coupled superconductor in very low ac fields (2mG, 111Hz) are reported. We present evidence for the observation of the magnetic irreversibility following a ZFC-FC thermal cycling by means of ac susceptibilty measurements. It is shown that this technique also reflect local magnetic field effects in granular superconductors, as previously suggested in microwave surface resistance and I-V characteristics. (orig.)

  8. Effect of disinfection on irreversible hydrocolloid and alternative impression materials and the resultant gypsum casts.

    Science.gov (United States)

    Suprono, Montry S; Kattadiyil, Mathew T; Goodacre, Charles J; Winer, Myron S

    2012-10-01

    Many new products have been introduced and marketed as alternatives to traditional irreversible hydrocolloid materials. These alternative materials have the same structural formula as addition reaction silicone, also known as vinyl polysiloxane (VPS), impression materials. Currently, there is limited in vitro and in vivo research on these products, including on the effects of chemical disinfectants on the materials. The purpose of this study was to compare the effects of a spray disinfecting technique on a traditional irreversible hydrocolloid and 3 new alternative impression materials in vitro. The tests were performed in accordance with the American National Standards Institute/American Dental Association (ANSI/ADA) Specification Nos. 18 and 19. Under standardized conditions, 100 impressions were made of a ruled test block with an irreversible hydrocolloid and 3 alternative impression materials. Nondisinfected irreversible hydrocolloid was used as the control. The impressions were examined for surface detail reproduction before and after disinfection with a chloramine-T product. Type III and Type V dental stone casts were evaluated for linear dimensional change and gypsum compatibility. Comparisons of linear dimensional change were analyzed with 2-way ANOVA of mean ranks with the Scheffé post hoc comparisons (α=.05). Data for surface detail reproduction were analyzed with the Wilcoxon Signed-Rank procedure and gypsum compatibility with the Kruskal-Wallis Rank procedure (α=.05). The alternative impression materials demonstrated significantly better outcomes with all 3 parameters tested. Disinfection with chloroamine-T did not have any effect on the 3 alternative impression materials. The irreversible hydrocolloid groups produced the most variability in the measurements of linear dimensional change. All of the tested materials were within the ADA's acceptable limit of 1.0% for linear dimensional change, except for the disinfected irreversible hydrocolloid

  9. Irreversible dilation of NaCl contaminated lime-cement mortar due to crystallization cycles

    International Nuclear Information System (INIS)

    Lubelli, B.; Hees, R.P.J. van; Huinink, H.P.; Groot, C.J.W.P.

    2006-01-01

    The mechanism of damage occurring in NaCl contaminated materials has not been clarified yet. Apart from crystallization pressure, other hypotheses have been proposed to explain the cause of decay. Irreversible dilation has been observed in a few cases but has never been studied in a more systematic way. The aim of the research is to contribute to the modeling of this phenomenon. In the present paper the effect of NaCl on the hydric and hygric behavior of a lime-cement mortar is extensively studied. The results indicate that NaCl influences the hydric and hygric dilation behavior of the material. The material contaminated with NaCl shrinks during dissolution and dilates during crystallization of the salt. This dilation is irreversible and sufficient to damage the material after few dissolution/crystallization cycles. This behavior is not restricted to NaCl, but is observed in the presence of other salts as well (NaNO 3 and KCl). Outcomes of electron microscopy studies suggest that salts causing irreversible dilation tend to crystallize as layers on the pore wall

  10. Unifying principles of irreversibility minimization for efficiency maximization in steady-flow chemically-reactive engines

    International Nuclear Information System (INIS)

    Ramakrishnan, Sankaran; Edwards, Christopher F.

    2014-01-01

    Systems research has led to the conception and development of various steady-flow, chemically-reactive, engine cycles for stationary power generation and propulsion. However, the question that remains unanswered is: What is the maximum-efficiency steady-flow chemically-reactive engine architecture permitted by physics? On the one hand the search for higher-efficiency cycles continues, often involving newer processes and devices (fuel cells, carbon separation, etc.); on the other hand the design parameters for existing cycles are continually optimized in response to improvements in device engineering. In this paper we establish that any variation in engine architecture—parametric change or process-sequence change—contributes to an efficiency increase via one of only two possible ways to minimize total irreversibility. These two principles help us unify our understanding from a large number of parametric analyses and cycle-optimization studies for any steady-flow chemically-reactive engine, and set a framework to systematically identify maximum-efficiency engine architectures. - Highlights: • A unified thermodynamic model to study chemically-reactive engine architectures is developed. • All parametric analyses of efficiency are unified by two irreversibility-minimization principles. • Variations in internal energy transfers yield a net work increase that is greater than engine irreversibility reduced. • Variations in external energy transfers yield a net work increase that is lesser than engine irreversibility reduced

  11. The effect of ethanol-gasoline blends on performance and exhaust emissions of a spark ignition engine through exergy analysis

    International Nuclear Information System (INIS)

    Doğan, Battal; Erol, Derviş; Yaman, Hayri; Kodanli, Evren

    2017-01-01

    Highlights: • Examining the performance of ethanol-gasoline blend. • Evaluation of the exhaust emissions. • Energy and exergy analysis. • Calculation of irreversibility from cooling system and the exhaust resulting. - Abstract: Ethanol which is considered as an environmentally cleaner alternative to fossil fuels is used on its own or blended with other fuels in different ratios. In this study, ethanol which has high octane rating, low exhaust emission, and which is easily obtained from agricultural products has been used in fuels prepared by blending it with gasoline in various ratios (E0, E10, E20, and E30). Ethanol-gasoline blends have been used in a four-cylinder four-stroke spark ignition engine for performance and emission analysis under full load. In the experimental studies, engine torque, fuel and cooling water flow rates, and exhaust and engine surface temperature have been measured. Engine energy distribution, irreversible processes in the cooling system and the exhaust, and the exergy distribution have been calculated using the experimental data and the formulas for the first and second laws of thermodynamics. Experiments and theoretical calculations showed that ethanol added fuels show reduction in carbon monoxide (CO), carbon dioxide (CO_2) and nitrogen oxide (NO_X) emissions without significant loss of power compared to gasoline. But it was measured that the reduction of the temperature inside the cylinder increases the hydrocarbon (HC) emission.

  12. Enzymatic treatment for controlling irreversible membrane fouling in cross-flow humic acid-fed ultrafiltration

    International Nuclear Information System (INIS)

    Yu, Chien-Hwa; Fang, Lung-Chen; Lateef, Shaik Khaja; Wu, Chung-Hsin; Lin, Cheng-Fang

    2010-01-01

    Exploring reasonable ways to remove foulant is of great importance in order to allow sustainable operation of ultrafiltration (UF) membranes in water/wastewater treatment technology. Compounds of organic and inorganic origin largely contribute to irreversible fouling. This study attempted to remove problem of UF membrane fouling by using four different enzymes including α-amylase, lipase, cellulase and protease. This investigation showed that none of the above mentioned enzymes was found to be effective for the removal of foulant when used alone. However, when these enzymes were used in combination with NaOH and citric acid, about 90% cleaning was achieved. The addition of non-ionic surfactant to the enzymatic solution appears to increase the efficiency of flux recovery by reducing the adhesion of foulant species to the membrane surface through the decrease of contact angle. Field emission gun scanning electron microscopy, Fourier transform infrared spectroscopy and atomic force microscopy (AFM) techniques were employed to qualitatively illustrate the foulant characteristics. The surface roughness through AFM was used to explain the potential mechanism for the enzymatic cleaning.

  13. Enzymatic treatment for controlling irreversible membrane fouling in cross-flow humic acid-fed ultrafiltration

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Chien-Hwa [Department of Civil and Environment Engineering, Nanya Institute of Technology, Taoyuan, Taiwan (China); Fang, Lung-Chen; Lateef, Shaik Khaja [Graduate Institute of Environmental Engineering, National Taiwan University, Taipei, Taiwan (China); Wu, Chung-Hsin, E-mail: chunghsinwu@yahoo.com.tw [Department of Chemical and Materials Engineering, National Kaohsiung University of Applied Sciences, 415 Chien Kung Road, Kaohsiung 807, Taiwan (China); Lin, Cheng-Fang [Graduate Institute of Environmental Engineering, National Taiwan University, Taipei, Taiwan (China)

    2010-05-15

    Exploring reasonable ways to remove foulant is of great importance in order to allow sustainable operation of ultrafiltration (UF) membranes in water/wastewater treatment technology. Compounds of organic and inorganic origin largely contribute to irreversible fouling. This study attempted to remove problem of UF membrane fouling by using four different enzymes including {alpha}-amylase, lipase, cellulase and protease. This investigation showed that none of the above mentioned enzymes was found to be effective for the removal of foulant when used alone. However, when these enzymes were used in combination with NaOH and citric acid, about 90% cleaning was achieved. The addition of non-ionic surfactant to the enzymatic solution appears to increase the efficiency of flux recovery by reducing the adhesion of foulant species to the membrane surface through the decrease of contact angle. Field emission gun scanning electron microscopy, Fourier transform infrared spectroscopy and atomic force microscopy (AFM) techniques were employed to qualitatively illustrate the foulant characteristics. The surface roughness through AFM was used to explain the potential mechanism for the enzymatic cleaning.

  14. Antibacterial efficacy and effect of Morinda citrifolia L. mixed with irreversible hydrocolloid for dental impressions: A randomized controlled trial.

    Science.gov (United States)

    Ahmed, A Shafath; Charles, P David; Cholan, R; Russia, M; Surya, R; Jailance, L

    2015-08-01

    This study aimed to evaluate whether the extract of Morinda citrifolia L. mixed with irreversible hydrocolloid powder decreases microbial contamination during impression making without affecting the resulting casts. Twenty volunteers were randomly divided into two groups (n = 10). Group A 30 ml extract of M. citrifolia L diluted in 30 ml of water was mixed to make the impression with irreversible hydrocolloid material. Group B 30 ml deionized water was mixed with irreversible hydrocolloid material to make the impressions following which the surface roughness and dimensional stability of casts were evaluated. Extract of M. citrifolia L. mixed with irreversible hydrocolloid decreased the percentage of microorganisms when compared with water (P impression quality.

  15. Phase control of light amplification with dynamically irreversible pathways of population transfer in a Λ system

    International Nuclear Information System (INIS)

    Yuan Shi; Wu Jinhui; Gao Jinyue; Pan Chunliu

    2002-01-01

    We use the relative phase of two coherent fields for the control of light amplification with dynamically irreversible pathways of population transfer in a Λ system. The population inversion and gain with dynamically irreversible pathways of population transfer are shown as the relative phase is varied. We support our results by numerical calculation and analytical explanation

  16. Logic reversibility and thermodynamic irreversibility demonstrated by DNAzyme-based Toffoli and Fredkin logic gates.

    Science.gov (United States)

    Orbach, Ron; Remacle, Françoise; Levine, R D; Willner, Itamar

    2012-12-26

    The Toffoli and Fredkin gates were suggested as a means to exhibit logic reversibility and thereby reduce energy dissipation associated with logic operations in dense computing circuits. We present a construction of the logically reversible Toffoli and Fredkin gates by implementing a library of predesigned Mg(2+)-dependent DNAzymes and their respective substrates. Although the logical reversibility, for which each set of inputs uniquely correlates to a set of outputs, is demonstrated, the systems manifest thermodynamic irreversibility originating from two quite distinct and nonrelated phenomena. (i) The physical readout of the gates is by fluorescence that depletes the population of the final state of the machine. This irreversible, heat-releasing process is needed for the generation of the output. (ii) The DNAzyme-powered logic gates are made to operate at a finite rate by invoking downhill energy-releasing processes. Even though the three bits of Toffoli's and Fredkin's logically reversible gates manifest thermodynamic irreversibility, we suggest that these gates could have important practical implication in future nanomedicine.

  17. Some studies of lead and iron adsorption on the W(100) surface by field emission microscopy

    International Nuclear Information System (INIS)

    Jones, J.P.; Roberts, E.W.

    1978-01-01

    The behaviour of lead and iron adsorbed on the W(100) surface has been studied by probe hole field emission microscopy, field desorption, and by measurement of the total energy distribution (TED) of field-emitted electrons. Lead adsorbed at 300 K which reduces the work function of W(100) can be completely removed at 78 K by field desorption below 3.2 V A -1 and the resulting surface has both the work function and TED, which are characteristic of the clean plane. Condensation at 800 K followed by field desorption, results in a plane surface of work function 4.17 eV and an altered TED. This effect is attributed to the microfacetting, which is observed by LEED. The Swanson peak in the W(100) TED which is removed by submonolayer amounts of lead re-emerges at monolayer coverage when lead adopts the (1 X 1) structure. Such behaviour is consistent with the model proposed by Kar and Soven. A spectral peak observed when lead is adsorbed on the reconstructed W(100) surface is thought to derive for the atomic 1 D state. Adsorption of iron on a W(100) surface reduces phi considerably due to dipole formation and efficiently quenches the Swanson peak. (Auth.)

  18. Extended irreversible thermodynamics and non-equilibrium temperature

    Directory of Open Access Journals (Sweden)

    Casas-Vazquez, Jose'

    2008-02-01

    Full Text Available We briefly review the concept of non-equilibrium temperature from the perspectives of extended irreversible thermodynamics, fluctuation theory, and statistical mechanics. The relations between different proposals are explicitly examined in two especially simple systems: an ideal gas in steady shear flow and a forced harmonic oscillator in a thermal bath. We examine with special detail temperatures related to the average molecular kinetic energy along different spatial directions, to the average configurational energy, to the derivative of the entropy with respect to internal energy, to fluctuation-dissipation relation and discuss their measurement.

  19. Statistical mechanics out of equilibrium the irreversibility

    International Nuclear Information System (INIS)

    Alvarez Estrada, R. F.

    2001-01-01

    A Round Table about the issue of Irreversibility and related matters has taken place during the last (20th) Statistical Mechanics Conference, held in Paris (July 1998). This article tries to provide a view (necessarily limited, and hence, uncompleted) of some approaches to the subject: the one based upon deterministic chaos (which is currently giving rise to a very active research) and the classical interpretation due to Boltzmann. An attempt has been made to write this article in a self-contained way, and to avoid a technical presentation wherever possible. (Author) 29 refs

  20. Understanding Irreversible Degradation of Nb3Sn Wires with Fundamental Fracture Mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Zhai, Yuhu [PPPL; Calzolaio, Ciro [Univ of Geneva; Senatore, Carmine [Univ of Geneva

    2014-08-01

    Irreversible performance degradation of advanced Nb3Sn superconducting wires subjected to transverse or axial mechanical loading is a critical issue for the design of large-scale fusion and accelerator magnets such as ITER and LHC. Recent SULTAN tests indicate that most cable-in-conduit conductors for ITER coils made of Nb3Sn wires processed by various fabrication techniques show similar performance degradation under cyclic loading. The irreversible degradation due to filament fracture and local strain accumulation in Nb3Sn wires cannot be described by the existing strand scaling law. Fracture mechanic modeling combined with X-ray diffraction imaging of filament micro-crack formation inside the wires under mechanical loading may reveal exciting insights to the wire degradation mechanisms. We apply fundamental fracture mechanics with a singularity approach to study influence of wire filament microstructure of initial void size and distribution to local stress concentration and potential crack propagation. We report impact of the scale and density of the void structure on stress concentration in the composite wire materials for crack initiation. These initial defects result in an irreversible degradation of the critical current beyond certain applied stress. We also discuss options to minimize stress concentration in the design of the material microstructure for enhanced wire performance for future applications.

  1. Acoustic emission monitoring of activation behavior of LaNi5 hydrogen storage alloy

    Directory of Open Access Journals (Sweden)

    Igor Maria De Rosa, Alessandro Dell'Era, Mauro Pasquali, Carlo Santulli and Fabrizio Sarasini

    2011-01-01

    Full Text Available The acoustic emission technique is proposed for assessing the irreversible phenomena occurring during hydrogen absorption/desorption cycling in LaNi5. In particular, we have studied, through a parametric analysis of in situ detected signals, the correlation between acoustic emission (AE parameters and the processes occurring during the activation of an intermetallic compound. Decreases in the number and amplitude of AE signals suggest that pulverization due to hydrogen loading involves progressively smaller volumes of material as the number of cycles increases. This conclusion is confirmed by electron microscopy observations and particle size distribution measurements.

  2. Determining the complex modulus of alginate irreversible hydrocolloid dental material.

    Science.gov (United States)

    King, Shalinie; See, Howard; Thomas, Graham; Swain, Michael

    2008-11-01

    The aim of the study is to investigate the visco-elastic response of an alginate irreversible hydrocolloid dental impression material during setting. A novel squeeze film Micro-Fourier Rheometer (MFR, GBC Scientific Equipment, Australia) was used to determine the complex modulus of an alginate irreversible hydrocolloid dental impression material (Algident, ISO 1563 Class A Type 1, Dentalfarm Australia Pty. Ltd.) during setting after mixing. Data was collected every 30s for 10 min in one study and every 10 min for a total of 60 min in another study. A high level of repeatability was observed. The results indicate that the MFR is capable of recording the complex shear modulus of alginate irreversible hydrocolloid for 60 min from the start of mixing and to simultaneously report the changing visco-elastic parameters at all frequencies between 1 Hz and 100 Hz. The storage modulus shows a dramatic increase to 370% of its starting value after 6 min and then reduces to 55% after 60 min. The loss modulus increases to a maximum of 175% of its starting value after 10 min and then reduces to 94% after 60 min. The MFR enables the changes in the complex modulus through the complete setting process to be followed. It is anticipated this approach may provide a better method to compare the visco-elastic properties of impression materials and assist with identification of optimum types for different clinical requirements. The high stiffness of the instrument and the use of band-limited pseudo-random noise as the input signal are the main advantages of this technique over conventional rheometers for determining the changes in alginate visco-elasticity.

  3. Irreversibility analysis for optimization design of plate fin heat exchangers using a multi-objective cuckoo search algorithm

    International Nuclear Information System (INIS)

    Wang, Zhe; Li, Yanzhong

    2015-01-01

    Highlights: • The first application of IMOCS for plate-fin heat exchanger design. • Irreversibility degrees of heat transfer and fluid friction are minimized. • Trade-off of efficiency, total cost and pumping power is achieved. • Both EGM and EDM methods have been compared in the optimization of PFHE. • This study has superiority over other single-objective optimization design. - Abstract: This paper introduces and applies an improved multi-objective cuckoo search (IMOCS) algorithm, a novel met-heuristic optimization algorithm based on cuckoo breeding behavior, for the multi-objective optimization design of plate-fin heat exchangers (PFHEs). A modified irreversibility degree of the PFHE is separated into heat transfer and fluid friction irreversibility degrees which are adopted as two initial objective functions to be minimized simultaneously for narrowing the search scope of the design. The maximization efficiency, minimization of pumping power, and total annual cost are considered final objective functions. Results obtained from a two dimensional normalized Pareto-optimal frontier clearly demonstrate the trade-off between heat transfer and fluid friction irreversibility. Moreover, a three dimensional Pareto-optimal frontier reveals a relationship between efficiency, total annual cost, and pumping power in the PFHE design. Three examples presented here further demonstrate that the presented method is able to obtain optimum solutions with higher accuracy, lower irreversibility, and fewer iterations as compared to the previous methods and single-objective design approaches

  4. Anesthetic efficacy of articaine for inferior alveolar nerve blocks in patients with symptomatic versus asymptomatic irreversible pulpitis.

    Science.gov (United States)

    Argueta-Figueroa, Liliana; Arzate-Sosa, Gabriel; Mendieta-Zeron, Hugo

    2012-01-01

    This study sought to determine the anesthetic efficacy of 4% articaine with 1:100,000 epinephrine in patients with symptomatic and asymptomatic irreversible pulpitis in mandibular posterior teeth and if individual patient factors, pulpal disease characteristics, and previous medication are correlated to local anesthetic success. A second objective was to determine the specificity and sensibility of a cold test for prediction of anesthetic success prior to endodontic treatment. Seventy patients diagnosed with irreversible pulpitis in mandibular posterior teeth received 1.6 mL of 4% articaine with 1:100,000 epinephrine for an inferior alveolar nerve block (IANB) using a metal guide. The anesthetic solution was injected with a computer-preprogrammed delivery system for local anesthesia. Endodontic access was begun 15 minutes after solution deposition; later, patients rated their discomfort using the visual analog scale (VAS). The success rate for the IA NB using articaine was 64.2% in patients with symptomatic irreversible pulpitis and 86.9% in patients with asymptomatic irreversible pulpitis. Cold test prior to root canal treatment had a specificity and sensibility of 12.5% and 87.1%, respectively. The anesthetic efficacy of articaine in irreversible pulpitis is moderately acceptable, and anesthetic success increases when the patient has been premedicated with NSAIDs. The cold test appears to be a favorable indicator for predicting anesthetic success.

  5. Lagrangian formulation of irreversible thermodynamics and the second law of thermodynamics.

    Science.gov (United States)

    Glavatskiy, K S

    2015-05-28

    We show that the equations which describe irreversible evolution of a system can be derived from a variational principle. We suggest a Lagrangian, which depends on the properties of the normal and the so-called "mirror-image" system. The Lagrangian is symmetric in time and therefore compatible with microscopic reversibility. The evolution equations in the normal and mirror-imaged systems are decoupled and describe therefore independent irreversible evolution of each of the systems. The second law of thermodynamics follows from a symmetry of the Lagrangian. Entropy increase in the normal system is balanced by the entropy decrease in the mirror-image system, such that there exists an "integral of evolution" which is a constant. The derivation relies on the property of local equilibrium, which states that the local relations between the thermodynamic quantities in non-equilibrium are the same as in equilibrium.

  6. Long range correlations, leading particle spectrum and correlations with leading particles

    International Nuclear Information System (INIS)

    Ilgenfritz, E.M.

    1976-05-01

    The unitary cluster emission model by de Groot and Ruijgrok is discussed as an approach to understand the leading particle behaviour. Consequences of the model concerning co--rrelations between leading particles and produced particles in the central region are considered. No satisfactory agreement was found. Production of leading clusters is argued for being an essential feature of these correlations. (author)

  7. Revisiting the Glansdorff–Prigogine criterion for stability within irreversible thermodynamics

    Czech Academy of Sciences Publication Activity Database

    Maes, C.; Netočný, Karel

    2015-01-01

    Roč. 159, č. 6 (2015), s. 1286-1299 ISSN 0022-4715 R&D Projects: GA ČR GAP204/12/0897 Institutional support: RVO:68378271 Keywords : irreversible processes * thermodynamic stability * excess entropy production * nonequilibrium free energy * Clausius heat theorem Subject RIV: BE - Theoretical Physics Impact factor: 1.537, year: 2015

  8. Incorrectly Interpreting the Carbon Mass Balance Technique Leads to Biased Emissions Estimates from Global Vegetation Fires

    Science.gov (United States)

    Surawski, N. C.; Sullivan, A. L.; Roxburgh, S. H.; Meyer, M.; Polglase, P. J.

    2016-12-01

    Vegetation fires are a complex phenomenon and have a range of global impacts including influences on climate. Even though fire is a necessary disturbance for the maintenance of some ecosystems, a range of anthropogenically deleterious consequences are associated with it, such as damage to assets and infrastructure, loss of life, as well as degradation to air quality leading to negative impacts on human health. Estimating carbon emissions from fire relies on a carbon mass balance technique which has evolved with two different interpretations in the fire emissions community. Databases reporting global fire emissions estimates use an approach based on `consumed biomass' which is an approximation to the biogeochemically correct `burnt carbon' approach. Disagreement between the two methods occurs because the `consumed biomass' accounting technique assumes that all burnt carbon is volatilized and emitted. By undertaking a global review of the fraction of burnt carbon emitted to the atmosphere, we show that the `consumed biomass' accounting approach overestimates global carbon emissions by 4.0%, or 100 Teragrams, annually. The required correction is significant and represents 9% of the net global forest carbon sink estimated annually. To correctly partition burnt carbon between that emitted to the atmosphere and that remaining as a post-fire residue requires the post-burn carbon content to be estimated, which is quite often not undertaken in atmospheric emissions studies. To broaden our understanding of ecosystem carbon fluxes, it is recommended that the change in carbon content associated with burnt residues be accounted for. Apart from correctly partitioning burnt carbon between the emitted and residue pools, it enables an accounting approach which can assess the efficacy of fire management operations targeted at sequestering carbon from fire. These findings are particularly relevant for the second commitment period for the Kyoto protocol, since improved landscape fire

  9. Quantum degeneracy effect on performance of irreversible Otto cycle with ideal Bose gas

    International Nuclear Information System (INIS)

    Wu Feng; Chen Lingen; Sun Fengrui; Wu Chih; Guo Fangzhong; Li Qing

    2006-01-01

    An Otto cycle working with an ideal Bose gas is called a Bose Otto cycle. The internal irreversibility of the cycle is included in the factors of internal irreversibility degree. The quantum degeneracy effect on the performance of the cycle is investigated based on quantum statistical mechanics and thermodynamics. Variations of the maximum work output ratio R W and the efficiency ratio y with temperature ratio τ are examined, which reveal the influence of the quantum degeneracy of the working substance on the performance of a Bose Otto cycle. It is shown that the results obtained herein are valid under both classical and quantum ideal gas conditions

  10. Evaluation of properties of irreversible hydrocolloid impression materials mixed with disinfectant liquids

    Directory of Open Access Journals (Sweden)

    Arul Amalan

    2013-01-01

    Conclusion: Chlorhexidine solution can be used to mix irreversible hydrocolloid impression materials in regular dental practice as it did not significantly alter the properties. This may ensure effective disinfection of impressions.

  11. [The morphofunctional state of the bone marrow in lead and zinc intoxication].

    Science.gov (United States)

    Vladimtseva, T M; Pashkevich, I A; Salmina, A B

    2006-01-01

    The nucleolus is a compulsory nuclear structure of all cells of eukaryotes. The quantitative and qualitative characteristics of nuclei show the functional activity of a cell, the rate of its synthesis of RNA and portents, and its metabolic state. Heavy metals (zinc chloride and lead acetate) were comparatively investigated for their effects on the nucleolar apparatus of bone marrow cells in in vivo experiments. Zinc chloride and lead acetate were ascertained to damage the nucleolar apparatus of cells, thus decreasing their transcriptional activity or irreversibly damaging them.

  12. Irreversibility in room temperature current–voltage characteristics of NiFe_2O_4 nanoparticles: A signature of electrical memory effect

    International Nuclear Information System (INIS)

    Dey, P.; Debnath, Rajesh; Singh, Swati; Mandal, S.K.; Roy, J.N.

    2017-01-01

    Room temperature I–V characteristics study, both in presence and absence of magnetic field (1800 Oe), has been performed on NiFe_2O_4 nanoparticles, having different particle size (φ~14, 21 and 31 nm). Our experiments on these nanoparticles provide evidences for: (1) electrical irreversibility or hysteretic behaviour; (2) positive magnetoresistance and (3) magnetic field dependent electrical irreversibility or hysteresis in the sample. “Hysteretic” nature of I–V curve reveals the existence of electrical memory effect in the sample. Significantly, such hysteresis has been found to be tuned by magnetic field. In order to explain the observed electrical irreversibility, we have proposed a phenomenological model on the light of induced polarization in the sample. Both the positive magnetoresistance and the observed magnetic field dependence of electrical irreversibility have been explained through magnetostriction phenomenon. Interestingly, such effects are found to get reduced with increasing particle size. For NiFe_2O_4 nanoparticles having φ=31 nm, we did not observe any irreversibility effect. This feature has been attributed to the enhanced grain surface effect that in turn gives rise to the residual polarization and hence electrical memory effect in NiFe_2O_4 nanoparticles, having small nanoscopic particle size. - Highlights: • I-V characteristics study of NiFe_2O_4 nanoparticles with varying particle sizes. • Experiments evident electrical hysteretic behaviour, i.e., electrical memory effect. • Magnetic field dependent electrical irreversibility is due to magnetostriction. • A phenomenological model has been proposed on the light of induced polarization. • Such electrical irreversibility decreases with increasing particle sizes.

  13. Model for an irreversible bias current in the superconducting qubit measurement process

    International Nuclear Information System (INIS)

    Hutchinson, G. D.; Williams, D. A.; Holmes, C. A.; Stace, T. M.; Spiller, T. P.; Barrett, S. D.; Milburn, G. J.; Hasko, D. G.

    2006-01-01

    The superconducting charge-phase ''quantronium'' qubit is considered in order to develop a model for the measurement process used in the experiment of Vion et al. [Science 296, 886 (2002)]. For this model we propose a method for including the bias current in the readout process in a fundamentally irreversible way, which to first order is approximated by the Josephson junction tilted-washboard potential phenomenology. The decohering bias current is introduced in the form of a Lindblad operator and the Wigner function for the current-biased readout Josephson junction is derived and analyzed. During the readout current pulse used in the quantronium experiment we find that the coherence of the qubit initially prepared in a symmetric superposition state is lost at a time of 0.2 ns after the bias current pulse has been applied, a time scale that is much shorter than the experimental readout time. Additionally we look at the effect of Johnson-Nyquist noise with zero mean from the current source during the qubit manipulation and show that the decoherence due to the irreversible bias current description is an order of magnitude smaller than that found through adding noise to the reversible tilted-washboard potential model. Our irreversible bias current model is also applicable to persistent-current-based qubits where the state is measured according to its flux via a small-inductance direct-current superconducting quantum interference device

  14. How Effective Is Supplemental Intraseptal Anesthesia in Patients with Symptomatic Irreversible Pulpitis?

    Science.gov (United States)

    Webster, Stephen; Drum, Melissa; Reader, Al; Fowler, Sara; Nusstein, John; Beck, Mike

    2016-10-01

    Previous studies have reported high levels of success with intraseptal injection for various dental procedures but provide limited information on the use of the injection during endodontic treatment. Therefore, the purpose of this prospective study was to determine the anesthetic efficacy of the supplemental intraseptal technique in mandibular posterior teeth diagnosed with symptomatic irreversible pulpitis when the conventional inferior alveolar nerve (IAN) block failed. One hundred patients with a diagnosis of symptomatic irreversible pulpitis in a mandibular posterior tooth were recruited. Following profound lip numbness after the administration of the conventional IAN block, endodontic treatment was initiated. Patients still experiencing moderate to severe pain during treatment were administered mesial and distal supplemental intraseptal injections using 0.7 mL 4% articaine with 1:000,000 epinephrine administered with a computer-controlled local anesthetic delivery unit. Success was defined as the ability to perform endodontic access and instrumentation with mild to no pain. Success with the IAN block was achieved in 25% of patients. Supplemental intraseptal injections provided success in 29% of patients. Supplemental intraseptal injections achieved profound pulpal anesthesia in 29% of patients when the IAN block failed. This low level of success would not provide predictable levels of anesthesia for patients requiring emergency endodontic treatment for symptomatic irreversible pulpitis in mandibular posterior teeth. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  15. The apparent irreversibility of particle creation: A study of time scales and of the mechanisms responsible for entropy production in quantum field theory

    International Nuclear Information System (INIS)

    Rau, J.

    1993-01-01

    In the presence of strong gravitational, electromagnetic or other gauge fields, particle-antiparticle pairs are created out of the vacuum. Creation processes of this type are responsible for, e.g., hadron production in heavy ion collisions or the radiation of black holes. They lead to an increase in entropy, thus contributing to the thermalization of the system under consideration. This suggests that particle creation in strong fields is an irreversible process. Key issues to be addressed are: (1) under which conditions particle creation is indeed irreversible, and how this can be reconciled with the time-reversal invariance of the underlying microscopic dynamics: (ii) if-and if so, how-particle creation can be described within the framework of a theory of nonequilibrium processes: (iii) how the associated entropy is defined; and (iv) how particle creation can be incorporated into a kinetic equation that also accounts for subsequent acceleration and collisions. These issues are studied by means of the projection method. After a comprehensive introduction to that method, it is applied to a simple model from quantum electrodynamics which incorporates acceleration, collisions, and pair creation due to the Schwinger mechanism. For this model, the author obtains: (1) the complete set of time scales, which furnishes a precise mathematical criterion for the irreversibility of particle creation; (2) the associated relevant entropy to which the H-theorem applies; and (3) a generalization of the quantum Boltzmann equation which includes a source term derived from first principles

  16. Archives of Atmospheric Lead Pollution

    Science.gov (United States)

    Weiss, Dominik; Shotyk, William; Kempf, Oliver

    Environmental archives such as peat bogs, sediments, corals, trees, polar ice, plant material from herbarium collections, and human tissue material have greatly helped to assess both ancient and recent atmospheric lead deposition and its sources on a regional and global scale. In Europe detectable atmospheric lead pollution began as early as 6000years ago due to enhanced soil dust and agricultural activities, as studies of peat bogs reveal. Increased lead emissions during ancient Greek and Roman times have been recorded and identified in many long-term archives such as lake sediments in Sweden, ice cores in Greenland, and peat bogs in Spain, Switzerland, the United Kingdom, and the Netherlands. For the period since the Industrial Revolution, other archives such as corals, trees, and herbarium collections provide similar chronologies of atmospheric lead pollution, with periods of enhanced lead deposition occurring at the turn of the century and since 1950. The main sources have been industry, including coal burning, ferrous and nonferrous smelting, and open waste incineration until c.1950 and leaded gasoline use since 1950. The greatest lead emissions to the atmosphere all over Europe occurred between 1950 and 1980 due to traffic exhaust. A marked drop in atmospheric lead fluxes found in most archives since the 1980s has been attributed to the phasing out of leaded gasoline. The isotope ratios of lead in the various archives show qualitatively similar temporal changes, for example, the immediate response to the introduction and phasing out of leaded gasoline. Isotope studies largely confirm source assessments based on lead emission inventories and allow the contributions of various anthropogenic sources to be calculated.

  17. Tunable surface plasmon instability leading to emission of radiation

    Energy Technology Data Exchange (ETDEWEB)

    Gumbs, Godfrey [Department of Physics and Astronomy, Hunter College of the City University of New York, 695 Park Avenue, New York, New York 10065 (United States); Donostia International Physics Center (DIPC), P de Manuel Lardizabal, 4, 20018 San Sebastian, Basque Country (Spain); Iurov, Andrii, E-mail: aiurov@chtm.unm.edu [Department of Physics and Astronomy, Hunter College of the City University of New York, 695 Park Avenue, New York, New York 10065 (United States); Center for High Technology Materials, University of New Mexico, Albuquerque, New Mexico 87106 (United States); Huang, Danhong [Air Force Research Laboratory, Space Vehicles Directorate, Kirtland Air Force Base, New Mexico 87117 (United States); Pan, Wei [Sandia National Laboratory, Albuquerque, New Mexico 87185 (United States)

    2015-08-07

    We propose a new approach for energy conversion from a dc electric field to tunable terahertz emission based on hybrid semiconductors by combining two-dimensional (2D) crystalline layers and a thick conducting material with possible applications for chemical analysis, security scanning, medical (single-molecule) imaging, and telecommunications. The hybrid nano-structure may consist of a single or pair of sheets of graphene, silicene, or a 2D electron gas. When an electric current is passed through a 2D layer, we discover that two low-energy plasmon branches exhibit a characteristic loop in their dispersion before they merge into an unstable region beyond a critical wave vector q{sub c}. This finite q{sub c} gives rise to a wavenumber cutoff in the emission dispersion of the surface plasmon induced instability and emission of radiation (spiler). However, there is no instability for a single driven layer far from the conductor, and the instability of an isolated pair of 2D layers occurs without a wavenumber cutoff. The wavenumber cutoff is found to depend on the conductor electron density, layer separation, distances of layers from the conductor surface, and the driving-current strength.

  18. Elevated atmospheric CO2 concentration leads to increased whole-plant isoprene emission in hybrid aspen (Populus tremula × Populus tremuloides).

    Science.gov (United States)

    Sun, Zhihong; Niinemets, Ülo; Hüve, Katja; Rasulov, Bahtijor; Noe, Steffen M

    2013-05-01

    Effects of elevated atmospheric [CO2] on plant isoprene emissions are controversial. Relying on leaf-scale measurements, most models simulating isoprene emissions in future higher [CO2] atmospheres suggest reduced emission fluxes. However, combined effects of elevated [CO2] on leaf area growth, net assimilation and isoprene emission rates have rarely been studied on the canopy scale, but stimulation of leaf area growth may largely compensate for possible [CO2] inhibition reported at the leaf scale. This study tests the hypothesis that stimulated leaf area growth leads to increased canopy isoprene emission rates. We studied the dynamics of canopy growth, and net assimilation and isoprene emission rates in hybrid aspen (Populus tremula × Populus tremuloides) grown under 380 and 780 μmol mol(-1) [CO2]. A theoretical framework based on the Chapman-Richards function to model canopy growth and numerically compare the growth dynamics among ambient and elevated atmospheric [CO2]-grown plants was developed. Plants grown under elevated [CO2] had higher C : N ratio, and greater total leaf area, and canopy net assimilation and isoprene emission rates. During ontogeny, these key canopy characteristics developed faster and stabilized earlier under elevated [CO2]. However, on a leaf area basis, foliage physiological traits remained in a transient state over the whole experiment. These results demonstrate that canopy-scale dynamics importantly complements the leaf-scale processes, and that isoprene emissions may actually increase under higher [CO2] as a result of enhanced leaf area production. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  19. Synergetcs - a field beyond irreversible thermodynamics

    International Nuclear Information System (INIS)

    Haken, H.

    1978-01-01

    This lecture introduces the reader to synergetics, a very young field of interdisciplinary research, which is devoted to the question of self-organization and, quite generally, to the birth of new qualities. After comparing the role of thermodynamics, irreversible thermodynamics and synergetics in the description of phenomena we give a few examples for self-oragnizing systems. Next we outline the mathematical approach and consider the generalized Ginzburg-Landau equations for non equilibrium phase transitions. We continue by applying these equations to the problem of morphogenesis in biology. We close our lecture by extending the formalism to spatially inhomogeneous or oscillating systems and arrive at order-parameter equations which are capable of describing new large classes of higher bifurcation schemes. (HJ)

  20. Capital dissipation minimization for a class of complex irreversible resource exchange processes

    Science.gov (United States)

    Xia, Shaojun; Chen, Lingen

    2017-05-01

    A model of a class of irreversible resource exchange processes (REPes) between a firm and a producer with commodity flow leakage from the producer to a competitive market is established in this paper. The REPes are assumed to obey the linear commodity transfer law (LCTL). Optimal price paths for capital dissipation minimization (CDM) (it can measure economic process irreversibility) are obtained. The averaged optimal control theory is used. The optimal REP strategy is also compared with other strategies, such as constant-firm-price operation and constant-commodity-flow operation, and effects of the amount of commodity transferred and the commodity flow leakage on the optimal REP strategy are also analyzed. The commodity prices of both the producer and the firm for the CDM of the REPes with commodity flow leakage change with the time exponentially.

  1. Irreversible thermodynamics of dark energy on the entropy-corrected apparent horizon

    Energy Technology Data Exchange (ETDEWEB)

    Karami, K; Sahraei, N [Department of Physics, University of Kurdistan, Pasdaran Street, Sanandaj (Iran, Islamic Republic of); Jamil, M, E-mail: KKarami@uok.ac.i, E-mail: mjamil@camp.nust.edu.p [Center for Advanced Mathematics and Physics (CAMP), National University of Sciences and Technology (NUST), Islamabad (Pakistan)

    2010-10-15

    We study the irreversible (non-equilibrium) thermodynamics of the Friedmann-Robertson-Walker (FRW) universe containing only dark energy. Using the modified entropy-area relation that is motivated by loop quantum gravity, we calculate the entropy-corrected form of the apparent horizon of the FRW universe.

  2. Pulpitis irreversible como forma de presentación de un odontoma

    OpenAIRE

    Berástegui, Esther; Buenechea Imaz, Ramón

    1997-01-01

    Se presenta un caso de odontoma compuesto que provocó pulpitis irreversible en el incisivo central superior derecho (1,1) en una joven de 20 años. El tratamiento fue la biopulpectomía total y extirpación quirúrgica del tumor.

  3. Use of a high density lead glass tubing projection chamber in positron emission tomography and in high energy physics

    International Nuclear Information System (INIS)

    Conti, M.; Guerra, A.D.; Habel, R.; Mulera, T.; Perez-Mendez, V.; Schwartz, G.

    1985-10-01

    We describe the principle of operation of a high density Projection Chamber, in which the converter/radiator and drift field shaping structures are combined in the form of high density (5 to 6 g/cm 3 ) lead glass tubing. The main applications of this type of detector to Medical Physics (Positron Emission Tomography) and High Energy Physics (Electromagnetic Calorimetry) are discussed

  4. Stationary sources of airborne lead: a comparison of emissions data for southern California.

    Science.gov (United States)

    Harris, Allison R; Fifarek, Brian J; Davidson, Cliff I; Blackmon, Rebecca Lankey

    2006-04-01

    Estimates for the air releases of lead from stationary point sources are considered for the South Coast Air Basin of California. We have examined four databases published by U.S. Environmental Protection Agency, the California Air Resources Board, and the South Coast Air Quality Management District. Our analysis indicates that none of the databases includes every emitting facility in the South Coast Air Basin of California and that other discrepancies among the databases exist. Additionally, the data have been analyzed for temporal variation, and some of the California Air Resources Board data are not current. The South Coast Air Quality Management District inventory covers 12 times more facilities in 2001 than in 1996. From this analysis, we conclude that all four of the databases would benefit by sharing data, increasing transparency, analyzing uncertainty, and standardizing emission estimation methods.

  5. Is thermodynamic irreversibility a consequence of the expansion of the Universe?

    Science.gov (United States)

    Osváth, Szabolcs

    2018-02-01

    This paper explains thermodynamic irreversibility by applying the expansion of the Universe to thermodynamic systems. The effect of metric expansion is immeasurably small on shorter scales than intergalactic distances. Multi-particle systems, however, are chaotic, and amplify any small disturbance exponentially. Metric expansion gives rise to time-asymmetric behaviour in thermodynamic systems in a short time (few nanoseconds in air, few ten picoseconds in water). In contrast to existing publications, this paper explains without any additional assumptions the rise of thermodynamic irreversibility from the underlying reversible mechanics of particles. Calculations for the special case which assumes FLRW metric, slow motions (v ≪ c) and approximates space locally by Euclidean space show that metric expansion causes entropy increase in isolated systems. The rise of time-asymmetry, however, is not affected by these assumptions. Any influence of the expansion of the Universe on the local metric causes a coupling between local mechanics and evolution of the Universe.

  6. Time irreversibility and intrinsics revealing of series with complex network approach

    Science.gov (United States)

    Xiong, Hui; Shang, Pengjian; Xia, Jianan; Wang, Jing

    2018-06-01

    In this work, we analyze time series on the basis of the visibility graph algorithm that maps the original series into a graph. By taking into account the all-round information carried by the signals, the time irreversibility and fractal behavior of series are evaluated from a complex network perspective, and considered signals are further classified from different aspects. The reliability of the proposed analysis is supported by numerical simulations on synthesized uncorrelated random noise, short-term correlated chaotic systems and long-term correlated fractal processes, and by the empirical analysis on daily closing prices of eleven worldwide stock indices. Obtained results suggest that finite size has a significant effect on the evaluation, and that there might be no direct relation between the time irreversibility and long-range correlation of series. Similarity and dissimilarity between stock indices are also indicated from respective regional and global perspectives, showing the existence of multiple features of underlying systems.

  7. Linear Dimensional Stability of Irreversible Hydrocolloid Materials Over Time.

    Science.gov (United States)

    Garrofé, Analía B; Ferrari, Beatriz A; Picca, Mariana; Kaplan, Andrea E

    2015-12-01

    The aim of this study was to evaluate the linear dimensional stability of different irreversible hydrocolloid materials over time. A metal mold was designed with custom trays made of thermoplastic sheets (Sabilex, sheets 0.125 mm thick). Perforations were made in order to improve retention of the material. Five impressions were taken with each of the following: Kromopan 100 (LASCOD) [AlKr], which has dimensional stability of 100 hours, and Phase Plus (ZHERMACK) [AlPh], which has dimensional stability of 48 hours. Standardized digital photographs were taken at different time intervals (0, 15, 30, 45, 60, 120 minutes; 12, 24 and 96 hours), using an "ad-hoc" device. The images were analyzed with software (UTHSCSA Image Tool) by measuring the distance between intersection of the lines previously made at the top of the mold. The results were analyzed by ANOVA for repeated measures. Initial and final values were (mean and standard deviation): AlKr: 16.44 (0.22) and 16.34 (0.11), AlPh: 16.40 (0.06) and 16.18 (0.06). Statistical evaluation showed significant effect of material and time factors. Under the conditions in this study, time significantly affects the linear dimensional stability of irreversible hydrocolloid materials. Sociedad Argentina de Investigación Odontológica.

  8. Irreversible membrane fouling abatement through pre-deposited layer of hierarchical porous carbons

    KAUST Repository

    Hamad, Juma; Dua, Rubal; Kurniasari, Novita; Kennedy, Maria Dolores; Wang, Peng; Amy, Gary L.

    2014-01-01

    In this work, dual-templated hierarchical porous carbons (HPCs), produced from a coupled ice-hard templating approach, are shown to be a highly effective solution to the commonly occurring problem of irreversible fouling of low-pressure membranes

  9. Environmental lead exposure risks associated with children's outdoor playgrounds

    International Nuclear Information System (INIS)

    Taylor, Mark Patrick; Camenzuli, Danielle; Kristensen, Louise Jane; Forbes, Miriam; Zahran, Sammy

    2013-01-01

    This study examines exposure risks associated with lead smelter emissions at children's public playgrounds in Port Pirie, South Australia. Lead and other metal values were measured in air, soil, surface dust and on pre- and post-play hand wipes. Playgrounds closest to the smelter were significantly more lead contaminated compared to those further away (t(27.545) = 3.76; p = .001). Port Pirie post-play hand wipes contained significantly higher lead loadings (maximum hand lead value of 49,432 μg/m 2 ) than pre-play hand wipes (t(27) = 3.57, p = .001). A 1% increase in air lead (μg/m 3 ) was related to a 0.713% increase in lead dust on play surfaces (95% CI, 0.253–1.174), and a 0.612% increase in post-play wipe lead (95% CI, 0.257–0.970). Contaminated dust from smelter emissions is determined as the source and cause of childhood lead poisoning at a rate of approximately one child every third day. -- Highlights: •Spatial and temporal variations in lead exposure due to smelter emissions is examined. •Exposure to lead and other metals is evaluated using pre and post-play hand wipe measures. •The relationship of smelter emissions to surface and hand lead exposures is modelled. •A 1% increase in air lead (μg/m 3 ) was related to a 0.713% increase in lead dust on play surfaces. -- Playgrounds in Port Pirie are seriously contaminated by smelter emissions, with levels of surface dust and hand dust that pose a significant risk of harm to human health

  10. Anomalies, Unitarity and Quantum Irreversibility

    CERN Document Server

    Anselmi, D

    1999-01-01

    The trace anomaly in external gravity is the sum of three terms at criticality: the square of the Weyl tensor, the Euler density and Box R, with coefficients, properly normalized, called c, a and a', the latter being ambiguously defined by an additive constant. Unitarity and positivity properties of the induced actions allow us to show that the total RG flows of a and a' are equal and therefore the a'-ambiguity can be consistently removed through the identification a'=a. The picture that emerges clarifies several long-standing issues. The interplay between unitarity and renormalization implies that the flux of the renormalization group is irreversible. A monotonically decreasing a-function interpolating between the appropriate values is naturally provided by a'. The total a-flow is expressed non-perturbatively as the invariant (i.e. scheme-independent) area of the graph of the beta function between the fixed points. We test this prediction to the fourth loop order in perturbation theory, in QCD with Nf ~< ...

  11. Irreversible pulpitis and achieving profound anesthesia: Complexities and managements

    OpenAIRE

    Modaresi, Jalil; Davoudi, Amin; Badrian, Hamid; Sabzian, Roya

    2016-01-01

    Dental pain management is one of the most critical aspects of modern dentistry. Irreversible pulpitis and further root canal therapy might cause an untolerated pain to the patients. The improvements in anesthetic agents and techniques were one of the advantages of studying nerve biology and stimulation. This article tried to overview of the nerve activities in inflammatory environments or induced pain. Furthermore, the proper advises, and supplementary techniques were reviewed for better pain...

  12. Cumulative exergy losses associated with the production of lead metal

    Energy Technology Data Exchange (ETDEWEB)

    Szargut, J [Technical Univ. of Silesia, Gliwice (PL). Inst. of Thermal-Engineering; Morris, D R [New Brunswick Univ., Fredericton, NB (Canada). Dept. of Chemical Engineering

    1990-08-01

    Cumulative exergy losses result from the irreversibility of the links of a technological network leading from raw materials and fuels extracted from nature to the product under consideration. The sum of these losses can be apportioned into partial exergy losses (associated with particular links of the technological network) or into constituent exergy losses (associated with constituent subprocesses of the network). The methods of calculation of the partial and constituent exergy losses are presented, taking into account the useful byproducts substituting the major products of other processes. Analyses of partial and constituent exergy losses are made for the technological network of lead metal production. (author).

  13. Irreversibility and multiplicity: two criteria for the disposal of nuclear wastes

    International Nuclear Information System (INIS)

    Rochlin, G.

    1976-01-01

    Two criteria are suggested for comparing waste management methods: technical irreversibility and site multiplicity. These criteria can be used to reduce future risk in the face of inherent uncertainty and to provide for safe disposal without requiring guaranteed future ability to recognize, detect or repair areas of failure

  14. Local equilibrium and the second law of thermodynamics for irreversible systems with thermodynamic inertia.

    Science.gov (United States)

    Glavatskiy, K S

    2015-10-28

    Validity of local equilibrium has been questioned for non-equilibrium systems which are characterized by delayed response. In particular, for systems with non-zero thermodynamic inertia, the assumption of local equilibrium leads to negative values of the entropy production, which is in contradiction with the second law of thermodynamics. In this paper, we address this question by suggesting a variational formulation of irreversible evolution of a system with non-zero thermodynamic inertia. We introduce the Lagrangian, which depends on the properties of the normal and the so-called "mirror-image" systems. We show that the standard evolution equations, in particular, the Maxwell-Cattaneo-Vernotte equation, can be derived from the variational procedure without going beyond the assumption of local equilibrium. We also argue that the second law of thermodynamics in non-equilibrium should be understood as a consequence of the variational procedure and the property of local equilibrium. For systems with instantaneous response this leads to the standard requirement of the local instantaneous entropy production being always positive. However, if a system is characterized by delayed response, the formulation of the second law of thermodynamics should be altered. In particular, the quantity, which is always positive, is not the instantaneous entropy production, but the entropy production averaged over a proper time interval.

  15. Local equilibrium and the second law of thermodynamics for irreversible systems with thermodynamic inertia

    International Nuclear Information System (INIS)

    Glavatskiy, K. S.

    2015-01-01

    Validity of local equilibrium has been questioned for non-equilibrium systems which are characterized by delayed response. In particular, for systems with non-zero thermodynamic inertia, the assumption of local equilibrium leads to negative values of the entropy production, which is in contradiction with the second law of thermodynamics. In this paper, we address this question by suggesting a variational formulation of irreversible evolution of a system with non-zero thermodynamic inertia. We introduce the Lagrangian, which depends on the properties of the normal and the so-called “mirror-image” systems. We show that the standard evolution equations, in particular, the Maxwell-Cattaneo-Vernotte equation, can be derived from the variational procedure without going beyond the assumption of local equilibrium. We also argue that the second law of thermodynamics in non-equilibrium should be understood as a consequence of the variational procedure and the property of local equilibrium. For systems with instantaneous response this leads to the standard requirement of the local instantaneous entropy production being always positive. However, if a system is characterized by delayed response, the formulation of the second law of thermodynamics should be altered. In particular, the quantity, which is always positive, is not the instantaneous entropy production, but the entropy production averaged over a proper time interval

  16. Exactly solvable irreversible processes on one-dimensional lattices

    International Nuclear Information System (INIS)

    Wolf, N.O.; Evans, J.W.; Hoffman, D.K.

    1984-01-01

    We consider the kinetics of a process where the sites of an infinite 1-D lattice are filled irreversibly and, in general, cooperatively by N-mers (taking N consecutive sites at a time). We extend the previously available exact solution for nearest neighbor cooperative effects to range N cooperative effects. Connection with the continuous ''cooperative car parking problem'' is indicated. Both uniform and periodic lattices, and empty and certain partially filled lattice initial conditions are considered. We also treat monomer ''filling in stages'' for certain highly autoinhibitory cooperative effects of arbitrary range

  17. Origin of the irreversibility line in thin YBa2Cu3O7-δ films with and without columnar defects

    International Nuclear Information System (INIS)

    Prozorov, R.; Konczykowski, M.; Schmidt, B.; Yeshurun, Y.; Shaulov, A.; Villard, C.; Koren, G.

    1996-01-01

    We report on measurements of the angular dependence of the irreversibility temperature T irr (θ) in YBa 2 Cu 3 O 7-δ thin films, defined by the onset of a third-harmonic signal and measured by a miniature Hall probe. From the functional form of T irr (θ) we conclude that the origin of the irreversibility line in unirradiated films is a dynamic crossover from an unpinned to a pinned vortex liquid. In irradiated films the irreversibility temperature is determined by the trapping angle. copyright 1996 The American Physical Society

  18. The effects of irreversible electroporation (IRE on nerves.

    Directory of Open Access Journals (Sweden)

    Wei Li

    Full Text Available BACKGROUND: If a critical nerve is circumferentially involved with tumor, radical surgery intended to cure the cancer must sacrifice the nerve. Loss of critical nerves may lead to serious consequences. In spite of the impressive technical advancements in nerve reconstruction, complete recovery and normalization of nerve function is difficult to achieve. Though irreversible electroporation (IRE might be a promising choice to treat tumors near or involved critical nerve, the pathophysiology of the nerve after IRE treatment has not be clearly defined. METHODS: We applied IRE directly to a rat sciatic nerve to study the long term effects of IRE on the nerve. A sequence of 10 square pulses of 3800 V/cm, each 100 µs long was applied directly to rat sciatic nerves. In each animal of group I (IRE the procedure was applied to produce a treated length of about 10 mm. In each animal of group II (Control the electrodes were only applied directly on the sciatic nerve for the same time. Electrophysiological, histological, and functional studies were performed on immediately after and 3 days, 1 week, 3, 5, 7 and 10 weeks following surgery. FINDINGS: Electrophysiological, histological, and functional results show the nerve treated with IRE can attain full recovery after 7 weeks. CONCLUSION: This finding is indicative of the preservation of nerve involving malignant tumors with respect to the application of IRE pulses to ablate tumors completely. In summary, IRE may be a promising treatment tool for any tumor involving nerves.

  19. Irreversible colloidal agglomeration in presence of associative inhibitors: Computer simulation study

    International Nuclear Information System (INIS)

    Barcenas, Mariana; Duda, Yurko

    2007-01-01

    Monte Carlo simulation is employed to study the irreversible particle-cluster agglomeration of valence-limited colloids affected by associative inhibitors. The cluster size distribution and number of connections between colloids are analyzed as a function of density and inhibitor concentration. The influence of colloid functionality on its aggregation is discussed

  20. [CH4 emission features of leading super-rice varieties and their relationships with the varieties growth characteristics in Yangtze Delta of China].

    Science.gov (United States)

    Yan, Xiao-Jun; Wang, Li-Li; Jiang, Yu; Deng, Ai-Xing; Tian, Yun-Lu; Zhang, Wei-Jian

    2013-09-01

    A pot experiment was conducted to study the CH4 emission features of fourteen leading super-rice varieties (six Japonica rice varieties and eight Indica hybrid rice varieties) and their relationships with the varieties growth characteristics in Yangtze Delta. Two distinct peaks of CH4 emission were detected during the entire growth period of the varieties, one peak occurred at full-tillering stage, and the other appeared at booting stage. The average total CH4 emission of Japonica rice varieties was 37.6% higher than that of the Indica hybrid rice varieties (Price types occurred at the post-anthesis phase. For all the varieties, there was a significant positive correlation between the total CH4 emission and the maximum leaf area, but the correlations between the CH4 emission and the other growth characteristics varied with variety type. The total CH4 emission of Japonica rice varieties had a significant positive correlation with plant height, while the correlations between the total CH4 emission of Indica hybrid rice varieties and their plant height were not significant. The total CH4 emission of Indica hybrid rice varieties had significant negative correlations with the total aboveground biomass, grain yield, and harvest index, but the correlations were not significant for Japonica rice varieties. The lower CH4 emission of Indica hybrid rice varieties was likely due to their significantly higher root biomass, as compared with Japonica rice varieties.

  1. Acoustic emission on thermoelastic martensitic transformations in alloys in the course of mechanical loading

    International Nuclear Information System (INIS)

    Plotnikov, V.A.; Kokhanenko, D.V.

    2004-01-01

    The connection of the emission process with the process of the deformation accumulation and relaxation in the cycle of the martensitic transformations is studied. The martensitic transformations cycling was investigated by cycling change in the temperature in the Ti 50 Ni 50 Cu 10 alloys. The deformation accumulation and recovery is observed in the alloys undergoing the thermoelastic martensitic transformations under the mechanical loading conditions. The acoustic emission, accompanying the martensitic transformations, reflects the peculiarities of the alloy deformation behavior by the martensitic transformations. The anomalous acoustic effect correlates with the reversible deformation accumulation and does not correlates with the irreversible deformation accumulation [ru

  2. Coupled Reversible and Irreversible Bistable Switches Underlying TGFβ-induced Epithelial to Mesenchymal Transition

    Science.gov (United States)

    Tian, Xiao-Jun; Zhang, Hang; Xing, Jianhua

    2013-01-01

    Epithelial to mesenchymal transition (EMT) plays an important role in embryonic development, tissue regeneration, and cancer metastasis. Whereas several feedback loops have been shown to regulate EMT, it remains elusive how they coordinately modulate EMT response to TGF-β treatment. We construct a mathematical model for the core regulatory network controlling TGF-β-induced EMT. Through deterministic analyses and stochastic simulations, we show that EMT is a sequential two-step program in which an epithelial cell first is converted to partial EMT then to the mesenchymal state, depending on the strength and duration of TGF-β stimulation. Mechanistically the system is governed by coupled reversible and irreversible bistable switches. The SNAIL1/miR-34 double-negative feedback loop is responsible for the reversible switch and regulates the initiation of EMT, whereas the ZEB/miR-200 feedback loop is accountable for the irreversible switch and controls the establishment of the mesenchymal state. Furthermore, an autocrine TGF-β/miR-200 feedback loop makes the second switch irreversible, modulating the maintenance of EMT. Such coupled bistable switches are robust to parameter variation and molecular noise. We provide a mechanistic explanation on multiple experimental observations. The model makes several explicit predictions on hysteretic dynamic behaviors, system response to pulsed stimulation, and various perturbations, which can be straightforwardly tested. PMID:23972859

  3. Model of the Evolution of Deformation Defects and Irreversible Strain at Thermal Cycling of Stressed TiNi Alloy Specimen

    Directory of Open Access Journals (Sweden)

    Volkov Aleksandr E.

    2015-01-01

    Full Text Available This microstructural model deals with simulation both of the reversible and irreversible deformation of a shape memory alloy (SMA. The martensitic transformation and the irreversible deformation due to the plastic accommodation of martensite are considered on the microscopic level. The irreversible deformation is described from the standpoint of the plastic flow theory. Isotropic hardening and kinematic hardening are taken into account and are related to the densities of scattered and oriented deformation defects. It is supposed that the phase transformation and the micro plastic deformation are caused by the generalized thermodynamic forces, which are the derivatives of the Gibbs’ potential of the two-phase body. In terms of these forces conditions for the phase transformation and for the micro plastic deformation on the micro level are formulated. The macro deformation of the representative volume of the polycrystal is calculated by averaging of the micro strains related to the evolution of the martensite Bain’s variants in each grain comprising this volume. The proposed model allowed simulating the evolution of the reversible and of the irreversible strains of a stressed SMA specimen under thermal cycles. The results show a good qualitative agreement with available experimental data. Specifically, it is shown that the model can describe a rather big irreversible strain in the first thermocycle and its fast decrease with the number of cycles.

  4. Energy Efficient Operation of Distillation Columns and a Reactor Applying Irreversible Thermodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Koeijer, Gelein M. de

    2002-05-01

    In this thesis the entropy production rates of diabatic distillation columns and a SO{sub 2} converter were minimised. This is the same as maximising the second law energy efficiency of the systems. The development of chemical industry can be made more sustainable by knowing this minimum. We found that the entropy production rate of distillation could be reduced up to 50 %. In order to achieve this reduction, heat exchangers were added on each tray. The characteristics of an optimum distillation column were presented. Furthermore, the entropy production rate of a SO{sub 2} converter was reduced with 16.7 % by altering the heights of catalytic beds, transfer areas of heat exchangers, and temperature differences over heat exchangers. These reductions show that there is still a large improvement potential in chemical industry. By applying the improved operations the world oil production can be reduced in the order of magnitude of 1 %. A similar reduction in the emission of the greenhouse gas CO{sub 2} can be expected. For deriving the entropy production rate in a systematic manner the theory of irreversible thermodynamics was useful. A simpler and a more complicated equation for the entropy production rate of distillation were derived. The simpler equation used only one force-flux product. It was suitable for minimisation of the entropy production rate of columns with the assumption of equilibrium between the outlets on each tray. The more complicated equation was able to describe satisfactorily the entropy production rate of an experimental column that separated the non-ideal mixture water-ethanol. It was next used to derive an extended set of transport equations for distillation, that includes the interface and the Soret effect (or thermal diffusion). Finally, irreversible thermodynamics was used to describe the contribution to the entropy production rate of heat transfer in heat exchangers. This contribution had a significant impact on the results of the

  5. Fermi-Pasta-Ulam Recurrence in Nonlinear Fiber Optics: The Role of Reversible and Irreversible Losses

    Directory of Open Access Journals (Sweden)

    Arnaud Mussot

    2014-03-01

    Full Text Available The discovery of the Fermi-Pasta-Ulam (FPU recurrence phenomenon in the 1950 s was a major step in science that later led to the discovery of solitons in nonlinear physics. More recently, it was shown that optical fibers can serve as a medium for observing the FPU phenomenon. In the present work, we have found experimentally and numerically that in the low-dispersion region of an optical fiber, the recurrence is strongly influenced by the third-order-dispersion (TOD term. Namely, the presence of TOD leads to several disappearances and recoveries of the FPU recurrence when the central frequency of the pump wave is varied. The effect is highly nontrivial and can be explained in terms of reversible and irreversible losses caused by Cherenkov radiations interacting with a multiplicity of modes sharing the optical energy in the process of its partition.

  6. Interferon-gamma improves impaired dentinogenic and immunosuppressive functions of irreversible pulpitis-derived human dental pulp stem cells

    OpenAIRE

    Soichiro Sonoda; Haruyoshi Yamaza; Lan Ma; Yosuke Tanaka; Erika Tomoda; Reona Aijima; Kazuaki Nonaka; Toshio Kukita; Songtao Shi; Fusanori Nishimura; Takayoshi Yamaza

    2016-01-01

    Clinically, irreversible pulpitis is treated by the complete removal of pulp tissue followed by replacement with artificial materials. There is considered to be a high potential for autologous transplantation of human dental pulp stem cells (DPSCs) in endodontic treatment. The usefulness of DPSCs isolated from healthy teeth is limited. However, DPSCs isolated from diseased teeth with irreversible pulpitis (IP-DPSCs) are considered to be suitable for dentin/pulp regeneration. In this study, we...

  7. Determination of lead in bone tissues by axially viewed inductively coupled plasma multichannel-based emission spectrometry.

    Science.gov (United States)

    Grotti, Marco; Abelmoschi, Maria Luisa; Dalla Riva, Simona; Soggia, Francesco; Frache, Roberto

    2005-04-01

    A new procedure for determining low levels of lead in bone tissues has been developed. After wet acid digestion in a pressurized microwave-heated system, the solution was analyzed by inductively coupled plasma multichannel-based emission spectrometry. Internal standardization using the Co 228.615 nm reference line was chosen as the optimal method to compensate for the matrix effects from the presence of calcium and nitric acid at high concentration levels. The detection limit of the procedure was 0.11 microg Pb g(-1) dry mass. Instrumental precision at the analytical concentration of approximately 10 microg l(-1) ranged from 6.1 to 9.4%. Precision of the sample preparation step was 5.4%. The concentration of lead in SRM 1486 (1.32+/-0.04 microg g(-1)) found using the new procedure was in excellent agreement with the certified level (1.335+/-0.014 microg g(-1)). Finally, the method was applied to determine the lead in various fish bone tissues, and the analytical results were found to be in good agreement with those obtained through differential pulse anodic stripping voltammetry. The method is therefore suitable for the reliable determination of lead at concentration levels of below 1 microg g(-1) in bone samples. Moreover, the multi-element capability of the technique allows us to simultaneously determine other major or trace elements in order to investigate inter-element correlation and to compute enrichment factors, making the proposed procedure particularly useful for investigating lead occurrence and pathways in fish bone tissues in order to find suitable biomarkers for the Antarctic marine environment.

  8. Why irreversibility? The formulation of classical and quantum mechanics for nonintegrable systems

    International Nuclear Information System (INIS)

    Prigogine, I.

    1995-01-01

    Nonintegrable Poincare systems with a continuous spectrum lead to the appearance of diffusive terms in the frame of classical or quantum dynamics. These terms break time symmetry. They lead, therefore, to limitations to classical trajectory theory and of wave-function formalism. These diffusive terms correspond to well-defined classes of dynamical processes. The diffusive effects are amplified in situations corresponding to persistent interactions. As a result, we have to include, already, in the fundamental dynamical description the two basic aspects, probability and irreversibility, which are so conspicuous on the macroscopic level. We have to formulate both classical and quantum mechanics on the Liouville level of probability distributions. For integrable systems, we recover the usual formulation of classical or quantum mechanics. Instead of being primitive concepts, which cannot be further analyzed, trajectories and wave functions appear as special solutions of the Liouville-von Neumann equations. This extension of classical and quantum dynamics permits us to unify the two concepts of nature that we inherited from the nineteenth century, based, on the one hand, on dynamical time-reversible laws and, on the other, on an evolutionary view associated to entropy. It leads also to a unified formulation of quantum theory, avoiding the conventional dual structure based on Schroedinger's equation, on the one hand, and on the open-quotes collapseclose quotes of the wave function, on the other. A dynamical interpretation is given to processes such as decoherence or approach to equilibrium without any appeal to extra dynamic considerations. There is a striking parallelism between classical and quantum theory. For large Poincare systems (LPS), we have, in general, both a open-quotes collapseclose quotes of trajectories and of wave functions. In both cases, we need a generalized formulation of dynamics in terms of probability distributions or density matrices

  9. Irreversibility in physics stemming from unpredictable symbol-handling agents

    Science.gov (United States)

    Myers, John M.; Madjid, F. Hadi

    2016-05-01

    The basic equations of physics involve a time variable t and are invariant under the transformation t --> -t. This invariance at first sight appears to impose time reversibility as a principle of physics, in conflict with thermodynamics. But equations written on the blackboard are not the whole story in physics. In prior work we sharpened a distinction obscured in today's theoretical physics, the distinction between obtaining evidence from experiments on the laboratory bench and explaining that evidence in mathematical symbols on the blackboard. The sharp distinction rests on a proof within the mathematics of quantum theory that no amount of evidence, represented in quantum theory in terms of probabilities, can uniquely determine its explanation in terms of wave functions and linear operators. Building on the proof we show here a role in physics for unpredictable symbol-handling agents acting both at the blackboard and at the workbench, communicating back and forth by means of transmitted symbols. Because of their unpredictability, symbol-handling agents introduce a heretofore overlooked source of irreversibility into physics, even when the equations they write on the blackboard are invariant under t --> -t. Widening the scope of descriptions admissible to physics to include the agents and the symbols that link theory to experiments opens up a new source of time-irreversibility in physics.

  10. International emissions trading

    DEFF Research Database (Denmark)

    Boom, Jan Tjeerd

    This thesis discusses the design and political acceptability of international emissions trading. It is shown that there are several designs options for emissions trading at the national level that have a different impact on output and thereby related factors such as employment and consumer prices....... The differences in impact of the design make that governments may prefer different designs of emissions trading in different situations. The thesis furthermore establishes that international emissions trading may lead to higher overall emissions, which may make it a less attractive instrument....

  11. Concerning the study of the irreversible magnetic behaviour of superconductivity; Contribution a l'etude du comportement magnetique irreversible des supraconducteurs

    Energy Technology Data Exchange (ETDEWEB)

    Kuhn, G [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1965-03-01

    The influence of the presence of extended lattice defects on the magnetic behaviour has been studied for the case of type I superconductors, such as Re and Ta, and in a more quantitative manner for the type II superconductor niobium. In this case, measurements of the thermal conductivity have given an estimate of the relative concentration of lattice defects in each specimen. These measurements show that the larger the number of lattice defects, the more irreversible becomes the magnetization curve, and the larger becomes the values of the critical current, which is related by a simple model to the magnetization values. Finally, a study by transmission electron microscopy has confirmed on the one hand the diversity of the extended lattice defects and on the other hand has allowed the formulation of several hypothesis on their respective influence. [French] L'influence de la presence de defauts etendus sur le comportement magnetique a ete etudie pour des supraconducteurs de premiere espece, tels que le rhenium et le tantale, et plus quantitativement pour un supraconducteur de deuxieme espece, le niobium. Dans ce cas, des mesures de conductibilite thermique ont permis d'estimer la concentration relative des defauts du reseau dans chaque echantillon. Ces mesures montrent que plus les defauts du reseau sont nombreux, plus la courbe d'aimantation est irreversible, et plus les valeurs du courant critique, reliees par un modele simple aux valeurs de l'aimantation, sont elevees. Enfin une etude par microscopie electronique en transmission - a permis d'une part de constater la diversite des defauts etendus et d'autre part de formuler quelques hypotheses sur leurs influences respectives.

  12. Application of exergetic sustainability index to a nano-scale irreversible Brayton cycle operating with ideal Bose and Fermi gasses

    Energy Technology Data Exchange (ETDEWEB)

    Açıkkalp, Emin, E-mail: eacikkalp@gmail.com [Department of Mechanical and Manufacturing Engineering, Engineering Faculty, Bilecik S.E. University, Bilecik (Turkey); Caner, Necmettin [Department of Chemistry, Faculty of Arts and Sciences, Eskisehir Osmangazi University, Eskisehir (Turkey)

    2015-09-25

    Highlights: • An irreversible Brayton cycle operating quantum gasses is considered. • Exergetic sustainability index is derived for nano-scale cycles. • Nano-scale effects are considered. • Calculation are conducted for irreversible cycles. • Numerical results are presented and discussed. - Abstract: In this study, a nano-scale irreversible Brayton cycle operating with quantum gasses including Bose and Fermi gasses is researched. Developments in the nano-technology cause searching the nano-scale machines including thermal systems to be unavoidable. Thermodynamic analysis of a nano-scale irreversible Brayton cycle operating with Bose and Fermi gasses was performed (especially using exergetic sustainability index). In addition, thermodynamic analysis involving classical evaluation parameters such as work output, exergy output, entropy generation, energy and exergy efficiencies were conducted. Results are submitted numerically and finally some useful recommendations were conducted. Some important results are: entropy generation and exergetic sustainability index are affected mostly for Bose gas and power output and exergy output are affected mostly for the Fermi gas by x. At the high temperature conditions, work output and entropy generation have high values comparing with other degeneracy conditions.

  13. Entransy analysis of irreversible heat pump using Newton and Dulong–Petit heat transfer laws and relations with its performance

    International Nuclear Information System (INIS)

    Açıkkalp, Emin

    2014-01-01

    Highlights: • Entransy analysis was made for irreversible heat pump. • Newton and Dulong–Petit heat transfer laws were used. • Entransy dissipations were defined and determined. • Relations between entransy and other thermodynamic parameters were determined. - Abstract: An irreversible heat pump was investigated via entransy analysis and performance criteria. In the analyses, two different convective heat transfer laws were applied to the considered system: the Newton and Dulong–Petit heat transfer laws. The irreversibilities in the system are the result of a finite heat transfer rate, a heat leak and internal irreversibilities, including friction, turbulence etc. In this study, a thermodynamic analysis was performed in detail, and the numerical solutions were used for the conducted analysis. The maximum entransy dissipation (critical points) ranges from 18436.7 kW K to 18855.3 kW K according to y for Newton’s law; however, there is no maximum point for the Dulon–Petit law. It can be concluded from this study that entransy should be used among the basic thermodynamic criteria

  14. High-frequency irreversible electroporation (H-FIRE for non-thermal ablation without muscle contraction

    Directory of Open Access Journals (Sweden)

    Arena Christopher B

    2011-11-01

    Full Text Available Abstract Background Therapeutic irreversible electroporation (IRE is an emerging technology for the non-thermal ablation of tumors. The technique involves delivering a series of unipolar electric pulses to permanently destabilize the plasma membrane of cancer cells through an increase in transmembrane potential, which leads to the development of a tissue lesion. Clinically, IRE requires the administration of paralytic agents to prevent muscle contractions during treatment that are associated with the delivery of electric pulses. This study shows that by applying high-frequency, bipolar bursts, muscle contractions can be eliminated during IRE without compromising the non-thermal mechanism of cell death. Methods A combination of analytical, numerical, and experimental techniques were performed to investigate high-frequency irreversible electroporation (H-FIRE. A theoretical model for determining transmembrane potential in response to arbitrary electric fields was used to identify optimal burst frequencies and amplitudes for in vivo treatments. A finite element model for predicting thermal damage based on the electric field distribution was used to design non-thermal protocols for in vivo experiments. H-FIRE was applied to the brain of rats, and muscle contractions were quantified via accelerometers placed at the cervicothoracic junction. MRI and histological evaluation was performed post-operatively to assess ablation. Results No visual or tactile evidence of muscle contraction was seen during H-FIRE at 250 kHz or 500 kHz, while all IRE protocols resulted in detectable muscle contractions at the cervicothoracic junction. H-FIRE produced ablative lesions in brain tissue that were characteristic in cellular morphology of non-thermal IRE treatments. Specifically, there was complete uniformity of tissue death within targeted areas, and a sharp transition zone was present between lesioned and normal brain. Conclusions H-FIRE is a feasible technique for

  15. Challenge for real-time and real-space resolved spectroscopy of surface chemical reactions. Aiming at trace of irreversible and inhomogeneous reactions

    International Nuclear Information System (INIS)

    Amemiya, Kenta

    2015-01-01

    A novel experimental technique, time-resolved wavelength-dispersive soft X-ray imaging spectroscopy, is proposed in order to achieve real-time and real-space resolved spectroscopy for the observation of irreversible and inhomogeneous surface chemical reactions. By combining the wavelength-dispersed soft X rays, in which the X-ray wavelength (photon energy) changes as a function of position on the sample, with the photoelectron emission microscope, the soft X-ray absorption spectra are separately obtained at different positions on the sample without scanning the X-ray monochromator. Therefore, the real-time resolved measurement of site-selective soft X-ray absorption spectroscopy is realized in one event without repeating the chemical reaction. It is expected that the spatial distribution of different chemical species is traced during the surface chemical reaction, which is essential to understand the reaction mechanism. (author)

  16. New method for evaluating irreversible adsorption and stationary phase bleed in gas chromatographic capillary columns.

    Science.gov (United States)

    Wright, Bob W; Wright, Cherylyn W

    2012-10-26

    A novel method is described for the evaluation of irreversible adsorption and column bleed in gas chromatographic (GC) columns using a tandem GC approach. This work specifically determined the degree of irreversible adsorption behavior of specific sulfur and phosphorous containing test probe compounds at levels ranging from approximately 50 picograms (pg) to 1 nanogram (ng) on selected gas chromatographic columns. This method does not replace existing evaluation methods that characterize reversible adsorption but provides an additional tool. The test compounds were selected due to their ease of adsorption and their importance in the specific trace analytical detection methodology being developed. Replicate chromatographic columns with 5% phenylmethylpolysiloxane (PMS), polyethylene glycol (wax), trifluoropropylpolysiloxane (TFP), or 78% cyanopropylpolysiloxane stationary phases from a variety of vendors were evaluated. As expected, the results demonstrate that the different chromatographic phases exhibit differing degrees of irreversible adsorption behavior. The results also indicate that all manufacturers do not produce equally inert columns nor are columns from a given manufacturer identical. The wax-coated columns for the test probes used were more inert as a group than 5% PMS coated columns, and they were more reproducibly manufactured. Both TFP and 78% cyanopropylpolysiloxane columns displayed superior inertness to the test compounds compared to either 5% PMS- or wax-coated columns. Irreversible adsorption behavior was characterized for a limited range of stationary phase film thicknesses. In addition, the method was shown effective for characterizing column bleed and methods to remove bleed components. This method is useful in screening columns for demanding applications and to obtain diagnostic information related to improved preparation methods. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Thermodynamic restrictions on linear reversible and irreversible thermo-electro-magneto-mechanical processes

    Directory of Open Access Journals (Sweden)

    Sushma Santapuri

    2016-10-01

    Full Text Available A unified thermodynamic framework for the characterization of functional materials is developed. This framework encompasses linear reversible and irreversible processes with thermal, electrical, magnetic, and/or mechanical effects coupled. The comprehensive framework combines the principles of classical equilibrium and non-equilibrium thermodynamics with electrodynamics of continua in the infinitesimal strain regime.In the first part of this paper, linear Thermo-Electro-Magneto-Mechanical (TEMM quasistatic processes are characterized. Thermodynamic stability conditions are further imposed on the linear constitutive model and restrictions on the corresponding material constants are derived. The framework is then extended to irreversible transport phenomena including thermoelectric, thermomagnetic and the state-of-the-art spintronic and spin caloritronic effects. Using Onsager's reciprocity relationships and the dissipation inequality, restrictions on the kinetic coefficients corresponding to charge, heat and spin transport processes are derived. All the constitutive models are accompanied by multiphysics interaction diagrams that highlight the various processes that can be characterized using this framework. Keywords: Applied mathematics, Materials science, Thermodynamics

  18. Thermal mechanisms responsible for the irreversible degradation of superconductivity in commercial superconductors

    Science.gov (United States)

    Romanovskii, V. R.

    2017-08-01

    Conditions for the irreversible propagation of thermal instabilities in commercial superconductors subjected to intense and soft cooling have been formulated. An analysis has been conducted using two types of the superconductor's I-V characteristics, i.e., an ideal I-V characteristic, which assumes a step superconducting-to-normal transition, and a continuous I-V characteristic, which is described by a power law. The propagation rate of thermal instabilities along the superconducting composite has been determined. Calculations have been made for both subcritical and supercritical values of the current. It has been shown that they propagate along a commercial superconductor in the form of a switching wave. In rapidly cooled commercial superconductors, the steady-state rate of thermal instability propagation in the longitudinal direction can only be positive because there is no region of steady stabilization. It has been proved that, in the case of thermal instability irreversible propagation, the rise in the commercial superconductor temperature is similar to diffusion processes that occur in explosive chain reactions.

  19. Beta-lactam antibiotic-induced platelet dysfunction: Evidence for irreversible inhibition of platelet activation in vitro and in vivo after prolonged exposure to penicillin

    International Nuclear Information System (INIS)

    Burroughs, S.F.; Johnson, G.J.

    1990-01-01

    beta-Lactam antibiotics cause platelet dysfunction with bleeding complications. Previous in vitro studies documented reversible inhibition of agonist-receptor interaction. This mechanism is inadequate to explain the effect of beta-lactam antibiotics in vivo. Platelet function does not return to normal immediately after drug treatment, implying irreversible inhibition of platelet function. We report here evidence of irreversible platelet functional and biochemical abnormalities after in vitro and in vivo exposure to beta-lactam antibiotics. Irreversible binding of [14C]-penicillin (Pen) occurred in vitro. After 24 hours' in vitro incubation with 10 to 20 mmol/L Pen, or ex vivo after antibiotic treatment, irreversible functional impairment occurred; but no irreversible inhibition of alpha 2 adrenergic receptors, measured with [3H]-yohimbine, or high-affinity thromboxane A2/prostaglandin H2 (TXA2/PGH2) receptors, measured with agonist [3H]-U46619 and antagonist [3H]-SQ29548, occurred. However, low-affinity platelet TXA2/PGH2 receptors were decreased 40% after Pen exposure in vitro or in vivo, indicating irreversible membrane alteration. Two postreceptor biochemical events were irreversibly inhibited in platelets incubated with Pen for 24 hours in vitro or ex vivo after antibiotic treatment. Thromboxane synthesis was inhibited 28.3% to 81.7%. Agonist-induced rises in cytosolic calcium ([Ca2+]i) were inhibited 40.1% to 67.5% in vitro and 26.6% to 52.2% ex vivo. Therefore, Pen binds to platelets after prolonged exposure, resulting in irreversible dysfunction attributable to inhibition of TXA2 synthesis and impairment of the rise in [Ca2+]i. The loss of low-affinity TXA2/PGH2 receptors suggests that the primary site of action of these drugs is on the platelet membrane

  20. Effect of preoperative alprazolam on the success of inferior alveolar nerve block for teeth with irreversible pulpitis.

    Science.gov (United States)

    Khademi, Abbas Ali; Saatchi, Masoud; Minaiyan, Mohsen; Rostamizadeh, Nasim; Sharafi, Fatemeh

    2012-10-01

    Success of inferior alveolar nerve (IAN) block decreases in patients with irreversible pulpitis. The purpose of this study was to evaluate the effect of preoperative administration of alprazolam on the success of the IAN block for teeth with irreversible pulpitis. Sixty patients with irreversible pulpitis of a mandibular molar were selected for this prospective, randomized, double-blind, placebo-controlled study. The patients received identical capsules of either 0.5 mg of alprazolam or placebo 45 minutes before the administration of a conventional IAN block. Access cavity preparation was initiated 15 minutes after the IAN block injection. Lip numbness was recorded for all the patients. Success was defined as no or mild pain on the basis of visual analogue scale recordings during access cavity preparation and initial instrumentation. Data were analyzed by t test, Mann-Whitney, and χ(2) tests. The success rate was 53% for alprazolam group and 40% for placebo group, with no significant difference between the 2 groups (P = .301). Within the scope of the current study, preoperative oral administration of 0.5 mg of alprazolam did not improve the success of the IAN block in mandibular molars in patients with irreversible pulpitis, and the success rate was not adequate to ensure profound pulpal anesthesia. Copyright © 2012 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  1. Conducts of disinfection, pouring and storage of irreversible hydrocolloid impressions by undergraduate students

    Directory of Open Access Journals (Sweden)

    Thalisson Saymo de Oliveira SILVA

    Full Text Available Abstract Introduction Obtaining dental models that accurately represent the molded oral tissue requires professional attention, especially when using irreversible hydrocolloid as a molding material. Objective To evaluate the conducts of undergraduate dental students at different internships for the disinfecting procedures, pouring, and storage of irreversible hydrocolloid impressions. Material and method This is an observational, cross-sectional and descriptive study with a census sample of 89 students enrolled in the supervised internships I, II, III and IV. Data collection was performed using a structured questionnaire containing eight questions. Data were analyzed at the 5% significance level. Result Most of the students (88.8% performed the disinfection procedure, for which the most widely used method (64.6% was the application of sodium hypochlorite 1% spray stored in a sealed container. The most common disinfection time was 10 minutes (86.1%. Students in the early internships performed better in regard to the proportion of water/plaster to be used compared with students in the final internships. At all internships, pouring and storage of the ensemble of mold and model were neglected during the setting reaction. There was a statistically significant association between the stage and the disinfection method, the ratio of water/powder and pouring of the model (p<0.05. Conclusion Students exhibited appropriate conduct of disinfection; however, they should be encouraged to use evidence-based clinical practices in order to improve the procedures of pouring and storage of irreversible hydrocolloid molds.

  2. Antibiotics are not useful to reduce pain associated with irreversible pulpitis.

    Science.gov (United States)

    Hoskin, Eileen; Veitz-Keenan, Analia

    2016-09-01

    Data sourcesCochrane Oral Health Group's Trials Register, the Cochrane Central Register of Controlled Trials, MEDLINE, EMBASE, Clinical Trials.gov and the WHO International Clinical Trials Registry Platform. There were no language restrictions.Study selectionRandomised controlled trials which compared the relief of pain with systemic antibiotics and analgesics against placebo and analgesics in the preoperative phase of irreversible pulpitis. The primary interest was pain control with an antibiotic or without one in the presence of analgesics. The secondary outcomes were type, dose and frequency of medication for pain relief and any adverse effects related to hypersensitivity or other reactions to either the antibiotic or analgesics.Data extraction and synthesisTwo authors independently assessed the results of the searches. Data extraction and risk bias assessment were also carried out independently. A third reviewer settled any disagreement on inclusion. Since only one study was included a meta-analysis could not be performed.ResultsOnly one double blind randomised clinical trial involving 40 participants with a diagnosis of irreversible pulpitis in one of their teeth was included in this review. This was a low risk, well-constructed double blind study. Half of the participants were treated with penicillin 500 mg, the other with a placebo every six hours over a seven- day period. In addition, all the participants were instructed to initially take one tablet of ibuprofen every 4-6 hours as needed and to take acetaminophen with codeine (two tablets every 4-6 hours) only if the ibuprofen did not relieve the pain.There was no significant difference in the mean total number of ibuprofen tablets over the study period; 9.2(standard deviation (SD) 6.02) in the penicillin group versus, 9.6 (SD 6.34) in the placebo group; mean difference -0.40 (95% CI -4.23 to 3.43); P value = 0.84.The mean total number of Tylenol tablets, 6.9 (SD 6.87), used in the penicillin group versus 4

  3. Irreversibility in room temperature current–voltage characteristics of NiFe{sub 2}O{sub 4} nanoparticles: A signature of electrical memory effect

    Energy Technology Data Exchange (ETDEWEB)

    Dey, P., E-mail: pujaiitkgp2007@gmail.com [Department of Physics, Kazi Nazrul University, Asansol, W.B. 713340 (India); Debnath, Rajesh; Singh, Swati; Mandal, S.K. [Department of Physics, National Institute of Technology Agartala, Tripura 799046 (India); Roy, J.N. [Department of Physics, Kazi Nazrul University, Asansol, W.B. 713340 (India); Department of Physics, National Institute of Technology Agartala, Tripura 799046 (India)

    2017-01-01

    Room temperature I–V characteristics study, both in presence and absence of magnetic field (1800 Oe), has been performed on NiFe{sub 2}O{sub 4} nanoparticles, having different particle size (φ~14, 21 and 31 nm). Our experiments on these nanoparticles provide evidences for: (1) electrical irreversibility or hysteretic behaviour; (2) positive magnetoresistance and (3) magnetic field dependent electrical irreversibility or hysteresis in the sample. “Hysteretic” nature of I–V curve reveals the existence of electrical memory effect in the sample. Significantly, such hysteresis has been found to be tuned by magnetic field. In order to explain the observed electrical irreversibility, we have proposed a phenomenological model on the light of induced polarization in the sample. Both the positive magnetoresistance and the observed magnetic field dependence of electrical irreversibility have been explained through magnetostriction phenomenon. Interestingly, such effects are found to get reduced with increasing particle size. For NiFe{sub 2}O{sub 4} nanoparticles having φ=31 nm, we did not observe any irreversibility effect. This feature has been attributed to the enhanced grain surface effect that in turn gives rise to the residual polarization and hence electrical memory effect in NiFe{sub 2}O{sub 4} nanoparticles, having small nanoscopic particle size. - Highlights: • I-V characteristics study of NiFe{sub 2}O{sub 4} nanoparticles with varying particle sizes. • Experiments evident electrical hysteretic behaviour, i.e., electrical memory effect. • Magnetic field dependent electrical irreversibility is due to magnetostriction. • A phenomenological model has been proposed on the light of induced polarization. • Such electrical irreversibility decreases with increasing particle sizes.

  4. Both physiology and epidemiology support zero tolerable blood lead levels.

    Science.gov (United States)

    Shefa, Syeda T; Héroux, Paul

    2017-10-05

    Inorganic lead is one of the most common causes of environmental metal poisonings, and its adverse effects on multiple body systems are of great concern. The brain, along with the kidneys, are critically susceptible to lead toxicity for their hosting of high affinity lead binding proteins, and very sensitive physiology. Prolonged low-lead exposure frequently remains unrecognized, causes subtle changes in these organ systems, and manifests later at an irreversible stage. With the repeated documentation of "no safe blood lead level", the pernicious effects of lead at any measurable concentration need to be emphasized. In this review, we surveyed articles on chronic low-level lead exposures with a blood lead concentrations lead on both nervous and renal systems were obvious at a blood lead concentration of 2μg/dL, with the absence of any detectable threshold. The deleterious effect of lead on two different organ systems at such low concentrations drew our attention to the various extracellular and intracellular events that might be affected by minimal concentration of body lead, especially blood lead. Is there a true common ground between low-level lead toxicity in both the nervous system and the kidney? Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Does EU ETS lead to emission reductions through trade? The case of the Swedish emissions trading sector participants

    International Nuclear Information System (INIS)

    Sandoff, Anders; Schaad, Gabriela

    2009-01-01

    The first trading period of the European Emissions Trading Scheme (EU ETS) has recently come to an end. The experiences of the actors in the trading sector will be of great importance in evaluating the aim and direction of this 'Grand Policy Experiment'. This paper gives an account of the attitudes and actions of the companies included in the Swedish emissions trading sector after about 15 months of experience with the system. The data are based on a study commissioned by the Swedish Environmental Protection Agency, and is a comprehensive survey that encompasses all companies operating installations included in the Swedish Emission Trading Registry. However, the results point in a somewhat disquieting direction. Although the Swedish companies have shown significant interest in reducing emissions, this survey indicates that this is done without close attention to the pricing mechanism of the market-based instruments. If this praxis is widespread within the European trading sector, it can have a serious negative effect on the efficiency of the system.

  6. Electrochemical characterization of irreversibly adsorbed germanium on platinum stepped surfaces vicinal to Pt(1 0 0)

    International Nuclear Information System (INIS)

    Rodriguez, P.; Herrero, E.; Solla-Gullon, J.; Vidal-Iglesias, F.J.; Aldaz, A.; Feliu, J.M.

    2005-01-01

    The electrochemical behavior of germanium irreversibly adsorbed at stepped surfaces vicinal to the Pt(1 0 0) pole is reported. The process taking part on the (1 0 0) terraces is evaluated from charge density measurements and calibration lines versus the terrace dimension are plotted. On the series Pt(2n - 1,1,1) having (1 1 1) monoatomic steps, the charge involved in the redox process undergone by the irreversibly adsorbed germanium is able to account for (n - 0.5) terrace atoms, thus suggesting some steric difficulties in the growth of the adlayer on the (1 0 0) terraces. Conversely, no steric problems are apparent in the series Pt(n,1,0) in which more open (1 0 0) steps are present on the (1 0 0) terraces. In this latter case the charge density under the germanium redox peaks is proportional to the number of terrace atoms. Some comparison is made with other stepped surfaces to understand the behavior and stability of germanium irreversibly adsorbed on the different platinum surface sites

  7. Lactational Lead Exposure Perturbates Androgenesis in Juvenile and Pubertal Wistar Rats

    Directory of Open Access Journals (Sweden)

    Odukoya SOA

    2017-10-01

    Full Text Available Background: High to low lead (Pb concentrations in breast milk has been found to perturb some biological events in the postnatal life. While postnatal Pb exposure has been reported to impair some andrological parameters in mammals, the age-dependent andrological signature of lactational Pb poisoning is not clear. Aims and Objectives: This study investigated the effects of Pb exposure during lactational period on the testicular andrological profiles of rats at certain postlactational ages using varying doses of Pb. Material and Methods: Lactating mothers and their pups were randomly divided into 4 groups comprising 24 pups each. The treatment groups received 10mg/dL, 30mg/dL, and 70mg/dLof lead acetate in their drinking water from postnatal day one (P1 to P21 of the lactational period. The control rats received distilled water. At P22, P60, P90 and P120, the pups from each group were euthanized, testes were collected, homogenized and the supernatant was used to assay for testosterone and oestrogen using standard methods. Results: Lactational lead poisoning was associated with depressed testicular testosterone productions (P<0.05 compared with controls and abnormally high levels of testicular oestrogen. These statistically significant differences (P<0.05 in androgens levels were corrected to near normal with increasing postnatal ages at low doses. Conclusion: These results show that lactational Pb intoxication causes reversible androgenic perturbations at low doses but irreversible damage at high doses during postnatal life. Conclusively, high lactational Pb is associated with post-lactational irreversible impairment of androgenic profiles.

  8. Dietary Nitrate for Methane Mitigation Leads to Nitrous Oxide Emissions from Dairy Cows

    DEFF Research Database (Denmark)

    Petersen, Søren O; Hellwing, Anne Louise Frydendahl; Brask, Maike

    2015-01-01

    Nitrate supplements to cattle diets can reduce enteric CH4 emissions. However, if NO3- metabolism stimulates N2O emissions, this will reduce the effectiveness of dietary NO3- for CH4 mitigation. We quantified N2O emissions as part of a dairy cow feeding experiment where urea was substituted...

  9. IRREVERSIBILITY GENERATION IN SUGAR, ALCOHOL AND BIOGAS INTEGRATED PRODUCTIONS

    Directory of Open Access Journals (Sweden)

    Meilyn González Cortés

    2017-01-01

    Full Text Available In this work, the stages of losses and lower exergetic efficiency are determined when the sugar production process is integrated with others for the production of products such as biogas, torula yeast and electricity. The study is carried out in three scenarios of integrated processes for obtaining the indicated products. A sugar factory in which sugar and electricity are produced is considered as the base scenario and from this; a second scenario is inferred in which alcohol is produced from the molasses of the sugar process and biogas from the vinasse of the alcohol distillation process. Finally, a third scenario is exergetically evaluated in which sugar, electricity, biogas and alcohol are produced, but this last one from juices and molasses of the sugar process. For the exergetic analysis the integrated scheme was divided into 8 subsystems. From the analysis of results, the major subsystems that generate irreversibilities are: cogeneration (64.36-65.98%, juice extraction (8.85-9.85%, crystallization and cooking, (8.48 -9.02%, fermentation (4.12-4.94% and distillation (2.74-3.2%. Improvements are proposed to minimize irreversibilities, including the thermal integration of processes, technological modifications in the fermentation process and the introduction of more efficient equipment for the generation of electricity. The exergetic efficiency is between 78.95-81.10%, obtaining greater exergetic efficiency in the scheme of joint operation to produce sugar, alcohol and biogas.

  10. Composition-dependent emission linewidth broadening in lead bromide perovskite (APbBr3, A = Cs and CH3NH3) nanoparticles.

    Science.gov (United States)

    Ham, Sujin; Chung, Heejae; Kim, Tae-Woo; Kim, Jiwon; Kim, Dongho

    2018-02-01

    Lead halide perovskite nanoparticles (NPs) are attractive as they exhibit excellent color purity and have a tunable band gap, and can thus be applied in highly efficient photovoltaic and light-emitting diodes. Fundamental studies of emission linewidth broadening due to spectral shifts in perovskite NPs may suggest a way to improve their color purity. However, the carrier-induced Stark shift that causes spectral diffusion still requires investigation. In this study, we explore composition-related emission linewidth broadening by comparing CsPbBr3 and CH 3 NH 3 PbBr 3 (MAPbBr3) perovskite NPs. We find that the MAPbBr3 NPs are more sensitive to fluctuations in the local electric fields than the CsPbBr3 NPs due to an intrinsic difference in the dipole moment between the two A cations (Cs and MA), which shows a carrier-induced Stark shift. The results indicate that the compositions of perovskite NPs are closely associated with emission linewidth broadening and they also provide insights into the development of NP-based devices with high color purity.

  11. Intrinsic Lead Ion Emissions in Zero-Dimensional Cs4PbBr6 Nanocrystals

    KAUST Repository

    Yin, Jun; Zhang, Yuhai; Bruno, Annalisa; Soci, Cesare; Bakr, Osman; Bredas, Jean-Luc; Mohammed, Omar F.

    2017-01-01

    -energy UV emission at approximately 350 nm to the allowed optical transition of 3P1 to 1S0 in Pb2+ ions and the low-energy UV emission at approximately 400 nm to the charge-transfer state involved in the 0D NC host lattice (D-state). In the emissive Cs4PbBr6

  12. [11C]CURB: Evaluation of a novel radiotracer for imaging fatty acid amide hydrolase by positron emission tomography

    International Nuclear Information System (INIS)

    Wilson, Alan A.; Garcia, Armando; Parkes, Jun; Houle, Sylvain; Tong, Junchao; Vasdev, Neil

    2011-01-01

    Introduction: Fatty acid amide hydrolase (FAAH) is the enzyme responsible for metabolising the endogenous cannabinoid, anandamide, and thus represents an important target for molecular imaging. To date, no radiotracer has been shown to be useful for imaging of FAAH using either positron emission tomography (PET) or single photon emission computed tomography (SPECT). We here determine the suitability of a novel carbon-11-labeled inhibitor of FAAH via ex vivo biodistribution studies in rat brain in conjunction with pharmacological challenges. Methods: A potent irreversible inhibitor of FAAH, URB694, radiolabeled with carbon-11 in the carbonyl position ([ 11 C]CURB), was administered to male rats via tail-vein injection. Rats were sacrificed at various time points postinjection, and tissue samples were dissected, counted and weighed. Specific binding to FAAH was investigated by pretreatment of animals with URB694 or URB597. For metabolism and mechanism of binding studies, whole brains were excised post-radiotracer injection, homogenised and extracted exhaustively with 80% aq. acetonitrile to determine the time course and fraction of radioactivity that was irreversibly bound to brain parenchyma. Results: Upon intravenous injection into rats, [ 11 C]CURB showed high brain uptake [standard uptake value (SUV) of 1.6-2.4 at 5 min] with little washout over time, which is characteristic of irreversible binding. Highest uptake of radioactivity was seen in the cortex, intermediate in the cerebellum and lowest in the hypothalamus, reflecting the reported distribution of FAAH. Brain uptake of radioactivity was decreased in a dose-dependent manner by pretreatment with increasing amounts of URB694, demonstrating that binding was saturable. Pretreatment with the well-characterised FAAH inhibitor, URB597, reduced binding in all brain regions by 70-80%. Homogenised brain extraction experiments demonstrated unequivocally that [ 11 C]CURB was irreversibly bound to FAAH. Conclusions

  13. Thermomagnetic behaviour and compositional irreversibility on (Fe/Si)3 multilayer films

    International Nuclear Information System (INIS)

    Badía-Romano, L.; Rubín, J.; Magén, C.; Bartolomé, F.; Sesé, J.; Ibarra, M.R.; Bartolomé, J.

    2014-01-01

    This work presents the correlation between the morphology and magnetic properties of (Fe/Si) 3 multilayers with different Fe layer thicknesses and fixed Si spacer thickness in a broad temperature range (5 R /M S ratios and saturation fields are related to several types of interlayer exchange coupling. 90°-coupling and a superposition of 90° and antiferromagnetic interlayer exchange coupling are found depending on the Fe layer thickness. Magnetization curves were investigated as a function of temperature by in situ annealing. They show an irreversible thermal process as temperature increases from 300 to 450 K that is correlated to the formation of a ferromagnetic silicide phase. At higher temperature this phase transforms into a paramagnetic Fe–Si phase. - Highlights: • A thermomagnetic study on (Fe/Si) 3 multilayers is performed by in situ annealing. • We assess on the Fe layer thickness dependence, while the Si spacer is fixed. • 90° and AF interlayer exchange couplings are found depending on the Fe thickness. • We report an irreversible thermal process, correlated to chemical transformations. • The integrity of these (Fe/Si) 3 films is conserved just till T≈410K

  14. Which elements are involved in reversible and irreversible cartilage degradation in osteoarthritis?

    DEFF Research Database (Denmark)

    Bay-Jensen, Anne-Christine; Hoegh-Madsen, Suzi; Dam, Erik

    2010-01-01

    -physiology of the joint and whether the joint damage is reversible or irreversible. In this review, we compile emerging data on cellular and pathological aspects of OA, and ask whether these data could give clue to when cartilage degradation is reversible and whether a point-of-no-return exists. We highlight different...

  15. Relationship between soil lead and airborne lead concentrations at Springfield, Missouri, USA

    Energy Technology Data Exchange (ETDEWEB)

    Sheets, R W; Kyger, J R; Biagioni, R N; Probst, S [Department of Chemistry, Southwest Missouri State University, 65804 Springfield, MO (United States); Boyer, R; Barke, K [Greene County Health Department, 65802 Springfield, MO (United States)

    2001-04-23

    This study tests whether lead deposited to soil from automobiles during past years in a medium-sized US city (population 150000) may present a current health risk. It examines the relationship between current soil lead concentrations at nine locations within the city of Springfield, Missouri, and airborne lead levels measured at the same locations during years (1975-1981) when lead emissions from automobiles were much greater than at present. A strong, significant correlation is found between soil and airborne lead levels at eight of the sites (r=0.91, P<0.005 for soil lead vs. 1979 airborne lead), in low-traffic areas as well as in areas adjacent to heavy traffic flow. Residual lead concentrations in these soils are relatively low, even for the high-traffic sites, as expected for a medium sized city.

  16. Relationship between soil lead and airborne lead concentrations at Springfield, Missouri, USA.

    Science.gov (United States)

    Sheets, R W; Kyger, J R; Biagioni, R N; Probst, S; Boyer, R; Barke, K

    2001-04-23

    This study tests whether lead deposited to soil from automobiles during past years in a medium-sized US city (population 150,000) may present a current health risk. It examines the relationship between current soil lead concentrations at nine locations within the city of Springfield, Missouri, and airborne lead levels measured at the same locations during years (1975-1981) when lead emissions from automobiles were much greater than at present. A strong, significant correlation is found between soil and airborne lead levels at eight of the sites (r = 0.91, P lead vs. 1979 airborne lead), in low-traffic areas as well as in areas adjacent to heavy traffic flow. Residual lead concentrations in these soils are relatively low, even for the high-traffic sites, as expected for a medium sized city.

  17. Nε-Acryloyllysine Piperazides as Irreversible Inhibitors of Transglutaminase 2: Synthesis, Structure-Activity Relationships, and Pharmacokinetic Profiling.

    Science.gov (United States)

    Wodtke, Robert; Hauser, Christoph; Ruiz-Gómez, Gloria; Jäckel, Elisabeth; Bauer, David; Lohse, Martin; Wong, Alan; Pufe, Johanna; Ludwig, Friedrich-Alexander; Fischer, Steffen; Hauser, Sandra; Greif, Dieter; Pisabarro, M Teresa; Pietzsch, Jens; Pietsch, Markus; Löser, Reik

    2018-05-24

    Transglutaminase 2 (TGase 2)-catalyzed transamidation represents an important post-translational mechanism for protein modification with implications in physiological and pathophysiological conditions, including fibrotic and neoplastic processes. Consequently, this enzyme is considered a promising target for the diagnosis of and therapy for these diseases. In this study, we report on the synthesis and kinetic characterization of N ε -acryloyllysine piperazides as irreversible inhibitors of TGase 2. Systematic structural modifications on 54 new compounds were performed with a major focus on fluorine-bearing substituents due to the potential of such compounds to serve as radiotracer candidates for positron emission tomography. The determined inhibitory activities ranged from 100 to 10 000 M -1 s -1 , which resulted in comprehensive structure-activity relationships. Structure-activity correlations using various substituent parameters accompanied by covalent docking studies provide an advanced understanding of the molecular recognition for this inhibitor class within the active site of TGase 2. Selectivity profiling of selected compounds for other transglutaminases demonstrated an excellent selectivity toward transglutaminase 2. Furthermore, an initial pharmacokinetic profiling of selected inhibitors was performed, including the assessment of potential membrane permeability and liver microsomal stability.

  18. Deterioration and modification of the biosphere leading to irreversible climatic change of the global ecosystem

    Science.gov (United States)

    1975-01-01

    The level, intensity, nature and impact of man's activities upon weather and climatic changes are explored. It is shown that industrialization leads to increased CO2 levels, atmospheric dust content and land surfaces changes. This in turn causes global climatic interactions which results in a general cooling trend. Global cooperation is advocated to stem environmental degradation and weather pattern interruption by the use of corrective mechanisms.

  19. Incidence of missed inferior alveolar nerve blocks in vital asymptomatic subjects and in patients with symptomatic irreversible pulpitis.

    Science.gov (United States)

    Fowler, Sara; Reader, Al; Beck, Mike

    2015-05-01

    The purpose of this retrospective study was to determine the incidence of missed inferior alveolar nerve (IAN) blocks by using a 1- or 2-cartridge volume of 2% lidocaine with 1:100,000 epinephrine in vital asymptomatic teeth and in emergency patients with symptomatic irreversible pulpitis. As part of 37 studies, 3169 subjects/patients were evaluated for missed IAN blocks. The study included 2450 asymptomatic subjects and 719 emergency patients presenting with symptomatic irreversible pulpitis. Each subject or patient received either a 1- or 2-cartridge volume of 2% lidocaine with 1:100,000 epinephrine. A missed block was defined as no lip numbness at 15-20 minutes after the IAN block. The effect of anesthetic volume on the incidence of missed blocks was assessed by using mixed models logistic regression with individual studies as a random effect. The incidence of missed blocks for asymptomatic subjects was 6.3% for the 1-cartridge volume and 3.8% for the 2-cartridge volume. For patients presenting with irreversible pulpitis, the incidence of missed blocks was 7.7% for the 1-cartridge volume and 2.3% for the 2-cartridge volume. In both asymptomatic subjects and patients with irreversible pulpitis, the 2-cartridge volume was significantly (P = .0395) better than the 1-cartridge volume. There were no significant effects for pulpal diagnosis (P = .7523) or the pulpal diagnosis and anesthetic volume interaction (P = .3973). Concerning missed IAN blocks, we concluded that administration of a 2-cartridge volume was significantly better (P = .0395) than a 1-cartridge volume in both asymptomatic subjects and emergency patients presenting with irreversible pulpitis. Copyright © 2015 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  20. Basic quantum irreversibility in neutron interferometry

    International Nuclear Information System (INIS)

    Rauch, H

    2009-01-01

    The transition between the quantum and classical world is a topical problem in quantum physics, which can be investigated by neutron interferometric methods. Here we discuss unavoidable quantum losses as they appear in neutron phase-echo and spin rotation experiments and we show how entanglement effects in a single-particle system demonstrate quantum contextuality, i.e. an entanglement between external and internal degrees of freedom in single-particle systems. This contextuality phenomenon also shows that a quantum system carries much more information than usually extracted. In all cases of an interaction, parasitic beams are produced which cannot be recombined completely with the original beam. This means that a complete reconstruction of the original state is, in principle, impossible which causes a kind of intrinsic irreversibility. Even small interaction potentials can have huge effects when they are applied in quantum Zeno-like experiments. The path towards advanced neutron quantum optics will be discussed.

  1. A relation between irreversibility and unlinkability for biometric template protection algorithms

    OpenAIRE

    井沼, 学

    2014-01-01

    For biometric recognition systems, privacy protection of enrolled users’ biometric information, which are called biometric templates, is a critical problem. Recently, various template protection algorithms have been proposed and many related previous works have discussed security notions to evaluate the protection performance of these protection algorithms. Irreversibility and unlinkability are important security notions discussed in many related previous works. In this paper, we prove that u...

  2. Competing irreversible cooperative reactions on polymer chains

    International Nuclear Information System (INIS)

    Evans, J.W.; Hoffman, D.K.; Burgess, D.R.

    1984-01-01

    We analyze model processes involving competition between several irreversible reactions at the sites of a 1D, infinite, uniform polymer chain. These reactions can be cooperative, i.e., the corresponding rates depend on the state of the surrounding sites. An infinite hierarchy of rate equations is readily derived for the probabilities of various subconfigurations. By exploiting a shielding property of suitable blocks of unreacted sites, we show how exact hierarchy truncation and solution is sometimes possible. The behavior of solutions is illustrated in several cases by plotting families of ''reaction trajectories'' for varying ratios of reactant concentrations. As a specific application, we consider competition between coordination of ZnCl 2 to pairs of oxygen atoms and to single oxygen atoms in poly(propylene oxide). The observed glass transition temperature behavior is eludicated

  3. Magnetic resonance measurement of turbulent kinetic energy for the estimation of irreversible pressure loss in aortic stenosis.

    Science.gov (United States)

    Dyverfeldt, Petter; Hope, Michael D; Tseng, Elaine E; Saloner, David

    2013-01-01

    The authors sought to measure the turbulent kinetic energy (TKE) in the ascending aorta of patients with aortic stenosis and to assess its relationship to irreversible pressure loss. Irreversible pressure loss caused by energy dissipation in post-stenotic flow is an important determinant of the hemodynamic significance of aortic stenosis. The simplified Bernoulli equation used to estimate pressure gradients often misclassifies the ventricular overload caused by aortic stenosis. The current gold standard for estimation of irreversible pressure loss is catheterization, but this method is rarely used due to its invasiveness. Post-stenotic pressure loss is largely caused by dissipation of turbulent kinetic energy into heat. Recent developments in magnetic resonance flow imaging permit noninvasive estimation of TKE. The study was approved by the local ethics review board and all subjects gave written informed consent. Three-dimensional cine magnetic resonance flow imaging was used to measure TKE in 18 subjects (4 normal volunteers, 14 patients with aortic stenosis with and without dilation). For each subject, the peak total TKE in the ascending aorta was compared with a pressure loss index. The pressure loss index was based on a previously validated theory relating pressure loss to measures obtainable by echocardiography. The total TKE did not appear to be related to global flow patterns visualized based on magnetic resonance-measured velocity fields. The TKE was significantly higher in patients with aortic stenosis than in normal volunteers (p < 0.001). The peak total TKE in the ascending aorta was strongly correlated to index pressure loss (R(2) = 0.91). Peak total TKE in the ascending aorta correlated strongly with irreversible pressure loss estimated by a well-established method. Direct measurement of TKE by magnetic resonance flow imaging may, with further validation, be used to estimate irreversible pressure loss in aortic stenosis. Copyright © 2013 American

  4. [{sup 11}C]CURB: Evaluation of a novel radiotracer for imaging fatty acid amide hydrolase by positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Alan A., E-mail: alan.wilson@camhpet.c [PET Centre, Centre for Addiction and Mental Health, Toronto, Ontario, M5T 1R8 (Canada); Human Neurochemical Pathology Laboratory, Centre for Addiction and Mental Health, Toronto, Ontario, M5T 1R8 (Canada); Garcia, Armando; Parkes, Jun [PET Centre, Centre for Addiction and Mental Health, Toronto, Ontario, M5T 1R8 (Canada); Houle, Sylvain [PET Centre, Centre for Addiction and Mental Health, Toronto, Ontario, M5T 1R8 (Canada); Human Neurochemical Pathology Laboratory, Centre for Addiction and Mental Health, Toronto, Ontario, M5T 1R8 (Canada); Tong, Junchao [Department of Psychiatry, University of Toronto, Toronto, Ontario, M5T 1R8 (Canada); Vasdev, Neil [PET Centre, Centre for Addiction and Mental Health, Toronto, Ontario, M5T 1R8 (Canada); Human Neurochemical Pathology Laboratory, Centre for Addiction and Mental Health, Toronto, Ontario, M5T 1R8 (Canada)

    2011-02-15

    Introduction: Fatty acid amide hydrolase (FAAH) is the enzyme responsible for metabolising the endogenous cannabinoid, anandamide, and thus represents an important target for molecular imaging. To date, no radiotracer has been shown to be useful for imaging of FAAH using either positron emission tomography (PET) or single photon emission computed tomography (SPECT). We here determine the suitability of a novel carbon-11-labeled inhibitor of FAAH via ex vivo biodistribution studies in rat brain in conjunction with pharmacological challenges. Methods: A potent irreversible inhibitor of FAAH, URB694, radiolabeled with carbon-11 in the carbonyl position ([{sup 11}C]CURB), was administered to male rats via tail-vein injection. Rats were sacrificed at various time points postinjection, and tissue samples were dissected, counted and weighed. Specific binding to FAAH was investigated by pretreatment of animals with URB694 or URB597. For metabolism and mechanism of binding studies, whole brains were excised post-radiotracer injection, homogenised and extracted exhaustively with 80% aq. acetonitrile to determine the time course and fraction of radioactivity that was irreversibly bound to brain parenchyma. Results: Upon intravenous injection into rats, [{sup 11}C]CURB showed high brain uptake [standard uptake value (SUV) of 1.6-2.4 at 5 min] with little washout over time, which is characteristic of irreversible binding. Highest uptake of radioactivity was seen in the cortex, intermediate in the cerebellum and lowest in the hypothalamus, reflecting the reported distribution of FAAH. Brain uptake of radioactivity was decreased in a dose-dependent manner by pretreatment with increasing amounts of URB694, demonstrating that binding was saturable. Pretreatment with the well-characterised FAAH inhibitor, URB597, reduced binding in all brain regions by 70-80%. Homogenised brain extraction experiments demonstrated unequivocally that [{sup 11}C]CURB was irreversibly bound to FAAH

  5. Voter model with arbitrary degree dependence: clout, confidence and irreversibility

    Science.gov (United States)

    Fotouhi, Babak; Rabbat, Michael G.

    2014-03-01

    The voter model is widely used to model opinion dynamics in society. In this paper, we propose three modifications to incorporate heterogeneity into the model. We address the corresponding oversimplifications of the conventional voter model which are unrealistic. We first consider the voter model with popularity bias. The influence of each node on its neighbors depends on its degree. We find the consensus probabilities and expected consensus times for each of the states. We also find the fixation probability, which is the probability that a single node whose state differs from every other node imposes its state on the entire system. In addition, we find the expected fixation time. Then two other extensions to the model are proposed and the motivations behind them are discussed. The first one is confidence, where in addition to the states of neighbors, nodes take their own state into account at each update. We repeat the calculations for the augmented model and investigate the effects of adding confidence to the model. The second proposed extension is irreversibility, where one of the states is given the property that once nodes adopt it, they cannot switch back. This is motivated by applications where, agents take an irreversible action such as seeing a movie, purchasing a music album online, or buying a new product. The dynamics of densities, fixation times and consensus times are obtained.

  6. Zinc, lead and copper in human teeth measured by induced coupled argon plasma atomic emission spectroscopy (ICP-AES)

    Energy Technology Data Exchange (ETDEWEB)

    Chew, L.T.; Bradley, D.A. E-mail: D.A.Bradley@exeter.ac.uk; Mohd, Y.; Jamil, M

    2000-11-15

    Inductively Coupled Argon Plasma Atomic Emission Spectroscopy (ICP-AES) has been used to determine Pb, Zn and Cu levels in 47 exfoliated human teeth (all of which required extraction for orthodontic reasons). Lead concentrations for the group were 1.7 {mu}g (g tooth mass){sup -1} to 40.5 {mu}g (g tooth mass){sup -1}, with a median of 9.8 {mu}g (g tooth mass){sup -1}. A median lead level in excess of the group value was found for the teeth of six lorry drivers who were included in the study. A more significant enhancement was found for the seven subjects whose age was in excess of 60 years. The median values for Zn and Cu were 123.0 and 0.6 {mu}g (g tooth mass){sup -1} respectively. Present values for tooth-Zn are lower than published data for other ethnic groups.

  7. Performance analysis of irreversible molten carbonate fuel cell – Braysson heat engine with ecological objective approach

    International Nuclear Information System (INIS)

    Açıkkalp, Emin

    2017-01-01

    Highlights: • An irreversible MCFC - Braysson heat engine is considered. • Its performance is investigated with ecological approach. • A new ecological criteria are presented called as modified ecological function. • Result are obtained numerically and discussed. - Abstract: An irreversible hybrid molten carbonate fuel cell-Braysson heat engine is taken into account. Basic thermodynamics parameters including power output, efficiency and exergy destruction rate are considered. In addition ecological function and new criteria, which is based on ecological function, for heat engines called as modified ecological function is suggested. Optimum conditions for mentioned parameters above are determined. Numerical results are obtained and plotted. Finally, results are discussed.

  8. Evaluation of radiolabeled ML04, a putative irreversible inhibitor of epidermal growth factor receptor, as a bioprobe for PET imaging of EGFR-overexpressing tumors

    International Nuclear Information System (INIS)

    Abourbeh, Galith; Dissoki, Samar; Jacobson, Orit; Litchi, Amir; Daniel, Revital Ben; Laki, Desirediu; Levitzki, Alexander; Mishani, Eyal

    2007-01-01

    Overexpression of epidermal growth factor receptor (EGFR) has been implicated in tumor development and malignancy. Evaluating the degree of EGFR expression in tumors could aid in identifying patients for EGFR-targeted therapies and in monitoring treatment. Nevertheless, no currently available assay can reliably quantify receptor content in tumors. Radiolabeled inhibitors of EGFR-TK could be developed as bioprobes for positron emission tomography imaging. Such imaging agents would not only provide a noninvasive quantitative measurement of EGFR content in tumors but also serve as radionuclide carriers for targeted radiotherapy. The potency, reversibility, selectivity and specific binding characteristics of ML04, an alleged irreversible inhibitor of EGFR, were established in vitro. The distribution of the F-18-labeled compound and the extent of EGFR-specific tumor uptake were evaluated in tumor-bearing mice. ML04 demonstrated potent, irreversible and selective inhibition of EGFR, combined with specific binding to the receptor in intact cells. In vivo distribution of the radiolabeled compound revealed tumor/blood and tumor/muscle activity uptake ratios of about 7 and 5, respectively, 3 h following administration of a radiotracer. Nevertheless, only minor EGFR-specific uptake of the compound was detected in these studies, using either EGFR-negative tumors or blocking studies as controls. To improve the in vivo performance of ML04, administration via prolonged intravenous infusion is proposed. Detailed pharmacokinetic characterization of this bioprobe could assist in the development of a kinetic model that would afford accurate measurement of EGFR content in tumors

  9. [Mineral trioxide aggragate pulpotomy for the treatment of immature permanent teeth with irreversible pulpitis: a preliminary clinical study].

    Science.gov (United States)

    Peng, Chufang; Zhao, Yuming; Yang, Yuan; Qin, Man

    2015-12-01

    To evaluate the preliminary clinical effect of mineral trioxide aggragate (MTA) pulpotomy on immature permanent teeth with irreversible pulpitis. Twenty-six immature permanent teeth with irreversible pulpitis were recuited from Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology. These teeth were treated with partial or full pulpotomy according to the condition of pulp bleeding. MTA was used as pulp capping material. Patients were recalled periodically after the treatment. Clinical and radiographic effects were evaluated. At one year follow-up, 20 teeth were evaluated as healed or healing, 2 teeth were evaluated as failure and 4 teeth were dropped out. The success rate was considered 91% (20/22). A dentinal bridge was radiographcally observed underneath the pulpotomy site in 13 teeth(65%, 13/20). MTA pulpotomy is an effective method for the treatment of immature permanent teeth with irreversible pulpitis. But further research with longer follow up period is required.

  10. Behavior of the irreversibility line in the new superconductor La{sub 1.5+x}Ba{sub 1.5+x-y}Ca{sub y}Cu{sub 3}O{sub z}

    Energy Technology Data Exchange (ETDEWEB)

    Parra Vargas, C.A. [Grupo de Fisica de Materiales, Escuela de Fisica, Universidad Pedagogica y Tecnologica de Colombia, Tunja (Colombia); Pimentel, J.L.; Pureur, P. [Instituto de Fisica, Universidade Federal do Rio Grande do Sul, 91501-970 Porto Alegre, RS (Brazil); Landinez Tellez, D.A. [Grupo de Fisica de Nuevos Materiales, Departamento de Fisica, Universidad Nacional de Colombia, AA 5997, Bogota DC (Colombia); Roa-Rojas, J., E-mail: carlos.parra@uptc.edu.co [Grupo de Fisica de Nuevos Materiales, Departamento de Fisica, Universidad Nacional de Colombia, AA 5997, Bogota DC (Colombia)

    2012-08-15

    The irreversibility properties of high-T{sub c} superconductors are of major importance for technological applications. For example, a high irreversibility magnetic field is a more desirable quality for a superconductor . The irreversibility line in the H-T plane is constituted by experimental points, which divides the irreversible and reversible behavior of the magnetization. The irreversibility lines for series of La{sub 1.5+x}Ba{sub 1.5+x-y}Ca{sub y}Cu{sub 3}O{sub z} polycrystalline samples with different doping were investigated. The samples were synthesized using the usual solid estate reaction method. Rietveld-type refinement of x-ray diffraction patterns permitted to determine the crystallization of material in a tetragonal structure. Curves of magnetization ZFC-FC for the system La{sub 1.5+x}Ba{sub 1.5+x-y}Ca{sub y}Cu{sub 3}O{sub z}, were measured in magnetic fields of the 10-20,000 Oe, and allowed to obtain the values for the irreversibility and critical temperatures. The data of irreversibility temperature allowed demarcating the irreversibility line, T{sub irr}(H). Two main lines are used for the interpretation of the irreversibility line: one of those which suppose that the vortexes are activated thermally and the other proposes that associated to T{sub irr} a phase transition occurs. The irreversibility line is described by a power law. The obtained results allow concluding that in the system La{sub 1.5+x}Ba{sub 1.5+x-y}Ca{sub y}Cu{sub 3}O{sub z} a characteristic bend of the Almeida-Thouless (AT) tendency is dominant for low fields and a bend Gabay-Toulouse (GT) behavior for high magnetic fields. This feature of the irreversibility line has been reported as a characteristic of granular superconductors and it corroborates the topological effects of vortexes mentioned by several authors .

  11. A green lead hydrometallurgical process based on a hydrogen-lead oxide fuel cell.

    Science.gov (United States)

    Pan, Junqing; Sun, Yanzhi; Li, Wei; Knight, James; Manthiram, Arumugam

    2013-01-01

    The automobile industry consumed 9 million metric tons of lead in 2012 for lead-acid batteries. Recycling lead from spent lead-acid batteries is not only related to the sustainable development of the lead industry, but also to the reduction of lead pollution in the environment. The existing lead pyrometallurgical processes have two main issues, toxic lead emission into the environment and high energy consumption; the developing hydrometallurgical processes have the disadvantages of high electricity consumption, use of toxic chemicals and severe corrosion of metallic components. Here we demonstrate a new green hydrometallurgical process to recover lead based on a hydrogen-lead oxide fuel cell. High-purity lead, along with electricity, is produced with only water as the by-product. It has a >99.5% lead yield, which is higher than that of the existing pyrometallurgical processes (95-97%). This greatly reduces lead pollution to the environment.

  12. Assessing "dangerous climate change": required reduction of carbon emissions to protect young people, future generations and nature.

    Directory of Open Access Journals (Sweden)

    James Hansen

    Full Text Available We assess climate impacts of global warming using ongoing observations and paleoclimate data. We use Earth's measured energy imbalance, paleoclimate data, and simple representations of the global carbon cycle and temperature to define emission reductions needed to stabilize climate and avoid potentially disastrous impacts on today's young people, future generations, and nature. A cumulative industrial-era limit of ∼500 GtC fossil fuel emissions and 100 GtC storage in the biosphere and soil would keep climate close to the Holocene range to which humanity and other species are adapted. Cumulative emissions of ∼1000 GtC, sometimes associated with 2°C global warming, would spur "slow" feedbacks and eventual warming of 3-4°C with disastrous consequences. Rapid emissions reduction is required to restore Earth's energy balance and avoid ocean heat uptake that would practically guarantee irreversible effects. Continuation of high fossil fuel emissions, given current knowledge of the consequences, would be an act of extraordinary witting intergenerational injustice. Responsible policymaking requires a rising price on carbon emissions that would preclude emissions from most remaining coal and unconventional fossil fuels and phase down emissions from conventional fossil fuels.

  13. Assessing "dangerous climate change": required reduction of carbon emissions to protect young people, future generations and nature.

    Science.gov (United States)

    Hansen, James; Kharecha, Pushker; Sato, Makiko; Masson-Delmotte, Valerie; Ackerman, Frank; Beerling, David J; Hearty, Paul J; Hoegh-Guldberg, Ove; Hsu, Shi-Ling; Parmesan, Camille; Rockstrom, Johan; Rohling, Eelco J; Sachs, Jeffrey; Smith, Pete; Steffen, Konrad; Van Susteren, Lise; von Schuckmann, Karina; Zachos, James C

    2013-01-01

    We assess climate impacts of global warming using ongoing observations and paleoclimate data. We use Earth's measured energy imbalance, paleoclimate data, and simple representations of the global carbon cycle and temperature to define emission reductions needed to stabilize climate and avoid potentially disastrous impacts on today's young people, future generations, and nature. A cumulative industrial-era limit of ∼500 GtC fossil fuel emissions and 100 GtC storage in the biosphere and soil would keep climate close to the Holocene range to which humanity and other species are adapted. Cumulative emissions of ∼1000 GtC, sometimes associated with 2°C global warming, would spur "slow" feedbacks and eventual warming of 3-4°C with disastrous consequences. Rapid emissions reduction is required to restore Earth's energy balance and avoid ocean heat uptake that would practically guarantee irreversible effects. Continuation of high fossil fuel emissions, given current knowledge of the consequences, would be an act of extraordinary witting intergenerational injustice. Responsible policymaking requires a rising price on carbon emissions that would preclude emissions from most remaining coal and unconventional fossil fuels and phase down emissions from conventional fossil fuels.

  14. Assessing 'Dangerous Climate Change': Required Reduction of Carbon Emissions to Protect Young People, Future Generations and Nature

    Science.gov (United States)

    Hansen, James; Kharecha, Pushker; Sato, Makiko; Masson-Demotte, Valerie; Ackerman, Frank; Beerling, David J.; Hearty, Paul J.; Hoegh-Guldberg, Ove; Hsu, Shi-Ling; Parmesan, Camille; hide

    2013-01-01

    We assess climate impacts of global warming using ongoing observations and paleoclimate data. We use Earth's measured energy imbalance, paleoclimate data, and simple representations of the global carbon cycle and temperature to define emission reductions needed to stabilize climate and avoid potentially disastrous impacts on today's young people, future generations, and nature. A cumulative industrial-era limit of approx.500 GtC fossil fuel emissions and 100 GtC storage in the biosphere and soil would keep climate close to the Holocene range to which humanity and other species are adapted. Cumulative emissions of approx.1000 GtC, sometimes associated with 2 C global warming, would spur "slow" feedbacks and eventual warming of 3-4 C with disastrous consequences. Rapid emissions reduction is required to restore Earth's energy balance and avoid ocean heat uptake that would practically guarantee irreversible effects. Continuation of high fossil fuel emissions, given current knowledge of the consequences, would be an act of extraordinary witting intergenerational injustice. Responsible policymaking requires a rising price on carbon emissions that would preclude emissions from most remaining coal and unconventional fossil fuels and phase down emissions from conventional fossil fuels.

  15. Reducing Methane Emissions: The Other Climate Change Challenge

    International Nuclear Information System (INIS)

    Dessus, Benjamin; Laponche, Bernard

    2008-08-01

    Climate change studies show that it is vital to massively reduce atmospheric concentrations of greenhouse gases in the coming decades in order to limit the global average temperature rise ultimately to 2 or 3 deg. C and to prevent the occurrence of irreversible phenomena such as the melting of permafrost. To achieve these targets, climate experts construct scenarios estimating the changes in atmospheric concentrations of the different greenhouse gases, and determine the maximum levels that these concentrations should reach. Climate change policy targets are then set in terms of greenhouse gas emission reductions. In order to simplify the global assessment of the impact of emissions of these different greenhouse gases on global warming, the international community has adopted rules of equivalence to make it possible to take into account the emissions of non-CO_2 greenhouse gases within one single unit: the ton of CO_2 equivalent (t CO_2 eq). This is achieved by using the 'Global Warming Potential' (GWP) indicator which indicates the ratio of the respective climate impacts of a pulse emission of the greenhouse gas considered over a given period of time to a pulse emission of CO_2 of the same volume in the same year. A reference period of 100 years was defined and this means therefore that in terms of climate impacts, the emission of 1 ton of CH_4 is 'worth' the emission of 21 tons of CO_2. The study presented in this document shows that the widespread use of this equivalence to calculate not only past emissions, but also future emissions anticipated or emissions avoided over a period in the past or in the future, has led to the climate impact of CH_4 emissions being underestimated. This is because the GWP of CH_4 varies considerably depending on the period under consideration. This underestimation is accentuated even more if the respective impacts of avoided emissions of CO_2 and CH_4 are compared, either on a permanent basis or over a limited period of time. Thus

  16. Irreversibility of world-sheet renormalization group flow

    International Nuclear Information System (INIS)

    Oliynyk, T.; Suneeta, V.; Woolgar, E.

    2005-01-01

    We demonstrate the irreversibility of a wide class of world-sheet renormalization group (RG) flows to first order in α ' in string theory. Our techniques draw on the mathematics of Ricci flows, adapted to asymptotically flat target manifolds. In the case of somewhere-negative scalar curvature (of the target space), we give a proof by constructing an entropy that increases monotonically along the flow, based on Perelman's Ricci flow entropy. One consequence is the absence of periodic solutions, and we are able to give a second, direct proof of this. If the scalar curvature is everywhere positive, we instead construct a regularized volume to provide an entropy for the flow. Our results are, in a sense, the analogue of Zamolodchikov's c-theorem for world-sheet RG flows on noncompact spacetimes (though our entropy is not the Zamolodchikov C-function)

  17. Mass balance for lead in the California South Coast Air Basin: An update

    International Nuclear Information System (INIS)

    Lankey, R.L.; Davidson, C.I.; McMichael, F.C.

    1998-01-01

    A mass balance for lead for the year 1989 in the South Coast Air Basin has inputs to the atmosphere of 600 ± 190 kg/day and outputs of 580 ± 160 kg/day, showing rough agreement. Stationary sources are responsible for only about 5% of the total lead emissions. The bulk of the lead is emitted from vehicles using leaded gasoline (37%) and unleaded gasoline (15%), as well as from resuspension of previously deposited lead on roads (43%). Over half of the total emitted lead deposits on roads and nearby soil, while about one-third is carried out of the basin by wind. A small amount, less than 10%, is deposited on surfaces throughout the basin. These percentages are approximately the same as those in a mass balance for the same region calculated for 1972, when lead emissions from leaded gasoline were about a factor of 70 greater than leaded gas emissions in 1989. When the lead emissions re used as inputs o a simple continuously stirred flow reactor model for the basin, reasonable, agreement is obtained between calculated and measured concentrations

  18. 76 FR 70833 - National Emission Standards for Hazardous Air Pollutant Emissions for Primary Lead Processing

    Science.gov (United States)

    2011-11-15

    ... INFORMATION: For specific information regarding the modeling methodology, contact Dr. Michael Stewart, Office... there is a malfunction, the emission limitation is still enforceable through injunctive relief. While... (GEP) stack height of 330 feet (as was done in the SIP and in modeling submitted by the Doe Run Company...

  19. Buccal infiltration versus inferior alveolar nerve block in mandibular 2nd premolars with irreversible pulpitis.

    Science.gov (United States)

    Yilmaz, K; Tunga, U; Ozyurek, T

    2018-04-01

    The purpose of this study is to compare the success rates of inferior alveolar nerve block (IANB) and buccal infiltration anesthesia of mandibular second premolar with irreversible pulpitis and to evaluate the level of patient discomfort with these methods. Forty patients, who had irreversible pulpitis in the mandibular 2 nd premolar teeth, were included in the study. Patients were randomly distributed in two groups. In one group IANB, in the other group buccal infiltration anesthesia were performed. The efficacy of these two different anesthesia techniques on the related teeth was investigated with the Heft-Parker visual analog scale. In addition, with a pulse oximetry device, the changes in the patients' heart rates were compared between the groups. The obtained data were evaluated statistically. Both anesthesia techniques reduced the pain significantly in patients before the administration (P 0.05). Both of the anesthesia techniques increased the heart rate (P < 0.05). The increase in the heart rate of the patients was significantly higher in the buccal infiltration anesthesia group than the other anesthesia group (P < 0.05). Within the limitation of this in vivo study, there was no difference between the efficacies of the buccal infiltration anesthesia and IANB anesthesia in the mandibular 2 nd premolar teeth with irreversible pulpitis. Buccal infiltration anesthesia caused more discomfort in the patients compared with the IANB during the administration.

  20. Endothelial dysfunction and atherosclerosis in children with irreversible pulmonary hypertension due to congenital heart disease

    International Nuclear Information System (INIS)

    Çiftel, Murat; Şimşek, Ayse; Turan, Özlem; Kardelen, Firat; Akçurin, Gayaz; Ertuğ, Halil

    2012-01-01

    To assess endothelial dysfunction and the risk for coronary atherosclerosis in children with irreversible pulmonary hypertension due to congenital heart disease (CHD). The study included 18 cyanotic patients (the mean age was 12.28 ± 3.26 years) who developed irreversible pulmonary hypertension due to cyanotic and acyanotic CHDs, and 18 control patients (the mean age was 11.78 ± 3.00 years). Study groups were compared for flow-mediated dilatation (FMD), carotid intima media thickness (CIMT) and atherosclerotic risk factors. Compared to the control group, the mean FMD was significantly reduced in the cyanotic group (5.26 ± 2.42% and 9.48 ± 2.60%, respectively; P-value < 0.001). No significant difference was observed between the groups in CIMT (0.41 ± 0.08 mm and 0.39 ± 0.06 mm, respectively; P-value = 0.299). The levels of total cholesterol, low-density lipoprotein–cholesterol and very low-density lipoprotein–cholesterol were statistically significantly lower compared tothe control group (P-value = 0.001, 0.006 and 0.014, respectively), whereas no statistically significant difference was found in the levels of high-density lipoprotein–cholesterol and triglycerides (P-value = 0.113 and 0.975, respectively). Systemic endothelial dysfunction in children with irreversible pulmonary hypertension due to CHD was noted but there was no increased risk for atherosclerosis

  1. Irreversible dilation of NaCl contaminated lime-cement mortar due to crystallization cycles

    NARCIS (Netherlands)

    Lubelli, B.; van Hees, R.P.J.; Huinink, H.P.; Groot, C.J.W.P.

    2006-01-01

    The mechanism of damage occurring in NaCl contaminated materials has not been clarified yet. Apart from crystn. pressure, other hypotheses have been proposed to explain the cause of decay. Irreversible dilation has been obsd. in a few cases but has never been studied in a more systematic way. The

  2. Alpha 2-adrenergic receptor turnover in adipose tissue and kidney: irreversible blockade of alpha 2-adrenergic receptors by benextramine

    International Nuclear Information System (INIS)

    Taouis, M.; Berlan, M.; Lafontan, M.

    1987-01-01

    The recovery of post- and extrasynaptic alpha 2-adrenergic receptor-binding sites was studied in vivo in male golden hamsters after treatment with an irreversible alpha-adrenoceptor antagonist benextramine, a tetramine disulfide that possesses a high affinity for alpha 2-binding sites. The kidney alpha 2-adrenergic receptor number was measured with [ 3 H]yohimbine, whereas [ 3 H]clonidine was used for fat cell and brain membrane alpha 2-binding site identification. Benextramine treatment of fat cell, kidney, and brain membranes reduced or completely suppressed, in an irreversible manner, [ 3 H] clonidine and [ 3 H]yohimbine binding without modifying adenosine (A1-receptor) and beta-adrenergic receptor sites. This irreversible binding was also found 1 and 2 hr after intraperitoneal administration of benextramine to the hamsters. Although it bound irreversibly to peripheral and central alpha 2-adrenergic receptors on isolated membranes, benextramine was unable to cross the blood-brain barrier of the hamster at the concentrations used (10-20 mg/kg). After the irreversible blockade, alpha 2-binding sites reappeared in kidney and adipose tissue following a monoexponential time course. Recovery of binding sites was more rapid in kidney than in adipose tissue; the half-lives of the receptor were 31 and 46 hr, respectively in the tissues. The rates of receptor production were 1.5 and 1.8 fmol/mg of protein/hr in kidney and adipose tissue. Reappearance of alpha 2-binding sites was associated with a rapid recovery of function (antilipolytic potencies of alpha 2-agonists) in fat cells inasmuch as occupancy of 15% of [ 3 H]clonidine-binding sites was sufficient to promote 40% inhibition of lipolysis. Benextramine is a useful tool to estimate turnover of alpha 2-adrenergic receptors under normal and pathological situations

  3. X-tip intraosseous injection system as a primary anesthesia for irreversible pulpitis of posterior mandibular teeth: A randomized clinical trail

    OpenAIRE

    Razavian, Hamid; Kazemi, Shantia; Khazaei, Saber; Jahromi, Maryam Zare

    2013-01-01

    Background: Successful anesthesia during root canal therapy may be difficult to obtain. Intraosseous injection significantly improves anesthesia′s success as a supplemental pulpal anesthesia, particularly in cases of irreversible pulpitis. The aim of this study was to compare the efficacy of X-tip intraosseous injection and inferior alveolar nerve (IAN) block in primary anesthesia for mandibular posterior teeth with irreversible pulpitis. Materials and Methods: Forty emergency patients wi...

  4. Performance evaluation of an irreversible Miller cycle comparing FTT (finite-time thermodynamics) analysis and ANN (artificial neural network) prediction

    International Nuclear Information System (INIS)

    Mousapour, Ashkan; Hajipour, Alireza; Rashidi, Mohammad Mehdi; Freidoonimehr, Navid

    2016-01-01

    In this paper, the first and second-laws efficiencies are applied to performance analysis of an irreversible Miller cycle. In the irreversible cycle, the linear relation between the specific heat of the working fluid and its temperature, the internal irreversibility described using the compression and expansion efficiencies, the friction loss computed according to the mean velocity of the piston and the heat-transfer loss are considered. The effects of various design parameters, such as the minimum and maximum temperatures of the working fluid and the compression ratio on the power output and the first and second-laws efficiencies of the cycle are discussed. In the following, a procedure named ANN is used for predicting the thermal efficiency values versus the compression ratio, and the minimum and maximum temperatures of the Miller cycle. Nowadays, Miller cycle is widely used in the automotive industry and the obtained results of this study will provide some significant theoretical grounds for the design optimization of the Miller cycle. - Highlights: • The performance of an irreversible Miller cycle is investigated using FFT. • The effects of design parameters on the performance of the cycle are investigated. • ANN is applied to predict the thermal efficiency and the power output values. • There is an excellent correlation between FTT and ANN data. • ANN can be applied to predict data where FTT analysis has not been performed.

  5. Irreversibility Curve on Y1–xLuxBa2Cu3O7–δ (x=0.4, 0.5 and 0.6) superconducting

    International Nuclear Information System (INIS)

    Grimaldos, J F Cepeda; Supelano G, I; Santos, A Sarmiento; Chiquillo, M V; Martínez B, D; Vargas, C A Parra

    2014-01-01

    The irreversibility line in the H–T plane divides the irreversible and reversible behaviour of the magnetization which is of importance for the characterization of high T c superconductors. In this work, we report the production of Y 1–X Lu X Ba 2 Cu 3 O 7–δ (X=0.4, 0.5 and 0.6) superconducting system using the usual solid state reaction method. The irreversibility line H–T plane for the Y 1–X Lu X Ba 2 Cu 3 O 7–δ polycrystalline sample was investigated. The curves of magnetization ZFC (cero field cooled)- FC (field cooled) were measured in magnetic fields between 100 Oe and 4000 Oe, and allowed to obtain the values for irreversibility and critical temperatures

  6. Decreasing emissions of a secondary lead smelter by installation of a battery breaker. Emissionsminderung einer Sekundaerbleihuette durch Integration einer Akkuschrott-Aufbereitung

    Energy Technology Data Exchange (ETDEWEB)

    Lamm, K F

    1986-11-01

    Dust and lead emissions of a secondary lead smelter mainly from the area of stockyards, handling, transport, charge preparing as well as the further treatment in rotary furnaces. A 60% decrease is obtained by compact assembling of covered battery stockyard, battery breaker and charge preparation and direct connection to the existing smelter area. The breaker itself contains a wet screen trommel and a filter press for separation of paste. The heavy-media sink-float-system has been replaced by dynamic water separation, which results in cleaner qualities of all fractions. In spite of a 100% wet separation plant, a bagfilter can be used with expected clean gas dust contents below 5 mg/m{sup 3} and below 2.5 mg Pb/m{sup 3}. Over a 2 years-period, dust and lead contents have been below 1 mg/m{sup 3}. (orig.) With 5 refs., 2 flowsheets, 10 figs.

  7. Assessing “Dangerous Climate Change”: Required Reduction of Carbon Emissions to Protect Young People, Future Generations and Nature

    Science.gov (United States)

    Hansen, James; Kharecha, Pushker; Sato, Makiko; Masson-Delmotte, Valerie; Ackerman, Frank; Beerling, David J.; Hearty, Paul J.; Hoegh-Guldberg, Ove; Hsu, Shi-Ling; Parmesan, Camille; Rockstrom, Johan; Rohling, Eelco J.; Sachs, Jeffrey; Smith, Pete; Steffen, Konrad; Van Susteren, Lise; von Schuckmann, Karina; Zachos, James C.

    2013-01-01

    We assess climate impacts of global warming using ongoing observations and paleoclimate data. We use Earth’s measured energy imbalance, paleoclimate data, and simple representations of the global carbon cycle and temperature to define emission reductions needed to stabilize climate and avoid potentially disastrous impacts on today’s young people, future generations, and nature. A cumulative industrial-era limit of ∼500 GtC fossil fuel emissions and 100 GtC storage in the biosphere and soil would keep climate close to the Holocene range to which humanity and other species are adapted. Cumulative emissions of ∼1000 GtC, sometimes associated with 2°C global warming, would spur “slow” feedbacks and eventual warming of 3–4°C with disastrous consequences. Rapid emissions reduction is required to restore Earth’s energy balance and avoid ocean heat uptake that would practically guarantee irreversible effects. Continuation of high fossil fuel emissions, given current knowledge of the consequences, would be an act of extraordinary witting intergenerational injustice. Responsible policymaking requires a rising price on carbon emissions that would preclude emissions from most remaining coal and unconventional fossil fuels and phase down emissions from conventional fossil fuels. PMID:24312568

  8. Treatment Outcomes of Full Pulpotomy as an Alternative to Tooth Extraction in Molars with Hyperplastic/Irreversible Pulpitis: A Case Report

    Science.gov (United States)

    Asgary, Saeed; Verma, Prashant; Nosrat, Ali

    2017-01-01

    Root canal therapy (RCT) is a common and successful treatment for irreversible pulpitis due to carious pulp exposure in mature permanent teeth. However, it is often an expensive procedure, may require multiple appointments, and requires a high level of training and clinical skill, specifically in molars. Uninsured patients, low-income patients, and patients with limited access to specialist care often elect for extraction of restorable teeth with irreversible pulpitis. There is a need for an alternative affordable treatment option to preserve their teeth and maintain chewing function. A case of pulpotomy using calcium-enriched mixture (CEM) cement in two maxillary molars (#14 and 15) in a healthy 36-year-old patient is presented. Both teeth were diagnosed with symptomatic hyperplastic/irreversible pulpitis. Patient did not have dental insurance, was unable to afford RCT, and refused to extract the teeth. CEM pulpotomy and amalgam build-ups were done as an alternative to extraction. At 2-year recall, both teeth were functional with no signs/symptoms of inflammation/infection. Periapical radiographs and 3D images showed normal PDL around all roots. Pulpotomy with CEM biomaterial might be a viable alternative to tooth extraction for mature permanent teeth with hyperplastic/irreversible pulpitis, and can result in long-term tooth retention and improved oral health. PMID:28512498

  9. Monopolistic pricing power for transgenic crops when technology adopters face irreversible benefits and costs

    NARCIS (Netherlands)

    Weaver, R.D.; Wesseler, J.H.H.

    2004-01-01

    Pricing of biotechnology innovation under a patent grant is reconsidered in a model with uncertain returns and irreversible costs and benefits. Past results oil restricted monopoly pricing in the presence of competing technologies showed that pricing power is reduced. The timing of adoption of an

  10. Chemical kinetics, stochastic processes, and irreversible thermodynamics

    CERN Document Server

    Santillán, Moisés

    2014-01-01

    This book brings theories in nonlinear dynamics, stochastic processes, irreversible thermodynamics, physical chemistry, and biochemistry together in an introductory but formal and comprehensive manner.  Coupled with examples, the theories are developed stepwise, starting with the simplest concepts and building upon them into a more general framework.  Furthermore, each new mathematical derivation is immediately applied to one or more biological systems.  The last chapters focus on applying mathematical and physical techniques to study systems such as: gene regulatory networks and ion channels. The target audience of this book are mainly final year undergraduate and graduate students with a solid mathematical background (physicists, mathematicians, and engineers), as well as with basic notions of biochemistry and cellular biology.  This book can also be useful to students with a biological background who are interested in mathematical modeling, and have a working knowledge of calculus, differential equatio...

  11. Oncogenic ras-driven cancer cell vesiculation leads to emission of double-stranded DNA capable of interacting with target cells

    International Nuclear Information System (INIS)

    Lee, Tae Hoon; Chennakrishnaiah, Shilpa; Audemard, Eric; Montermini, Laura; Meehan, Brian; Rak, Janusz

    2014-01-01

    Highlights: • Oncogenic H-ras stimulates emission of extracellular vesicles containing double-stranded DNA. • Vesicle-associated extracellular DNA contains mutant N-ras sequences. • Vesicles mediate intercellular transfer of mutant H-ras DNA to normal fibroblasts where it remains for several weeks. • Fibroblasts exposed to vesicles containing H-ras DNA exhibit increased proliferation. - Abstract: Cell free DNA is often regarded as a source of genetic cancer biomarkers, but the related mechanisms of DNA release, composition and biological activity remain unclear. Here we show that rat epithelial cell transformation by the human H-ras oncogene leads to an increase in production of small, exosomal-like extracellular vesicles by viable cancer cells. These EVs contain chromatin-associated double-stranded DNA fragments covering the entire host genome, including full-length H-ras. Oncogenic N-ras and SV40LT sequences were also found in EVs emitted from spontaneous mouse brain tumor cells. Disruption of acidic sphingomyelinase and the p53/Rb pathway did not block emission of EV-related oncogenic DNA. Exposure of non-transformed RAT-1 cells to EVs containing mutant H-ras DNA led to the uptake and retention of this material for an extended (30 days) but transient period of time, and stimulated cell proliferation. Thus, our study suggests that H-ras-mediated transformation stimulates vesicular emission of this histone-bound oncogene, which may interact with non-transformed cells

  12. Oncogenic ras-driven cancer cell vesiculation leads to emission of double-stranded DNA capable of interacting with target cells

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Tae Hoon; Chennakrishnaiah, Shilpa [Montreal Children’s Hospital, Research Institute of McGill University Health Centre, McGill University, Montreal, Quebec (Canada); Audemard, Eric [McGill University and Genome Quebec Innovation Centre, Montreal, Quebec (Canada); Montermini, Laura; Meehan, Brian [Montreal Children’s Hospital, Research Institute of McGill University Health Centre, McGill University, Montreal, Quebec (Canada); Rak, Janusz, E-mail: janusz.rak@mcgill.ca [Montreal Children’s Hospital, Research Institute of McGill University Health Centre, McGill University, Montreal, Quebec (Canada)

    2014-08-22

    Highlights: • Oncogenic H-ras stimulates emission of extracellular vesicles containing double-stranded DNA. • Vesicle-associated extracellular DNA contains mutant N-ras sequences. • Vesicles mediate intercellular transfer of mutant H-ras DNA to normal fibroblasts where it remains for several weeks. • Fibroblasts exposed to vesicles containing H-ras DNA exhibit increased proliferation. - Abstract: Cell free DNA is often regarded as a source of genetic cancer biomarkers, but the related mechanisms of DNA release, composition and biological activity remain unclear. Here we show that rat epithelial cell transformation by the human H-ras oncogene leads to an increase in production of small, exosomal-like extracellular vesicles by viable cancer cells. These EVs contain chromatin-associated double-stranded DNA fragments covering the entire host genome, including full-length H-ras. Oncogenic N-ras and SV40LT sequences were also found in EVs emitted from spontaneous mouse brain tumor cells. Disruption of acidic sphingomyelinase and the p53/Rb pathway did not block emission of EV-related oncogenic DNA. Exposure of non-transformed RAT-1 cells to EVs containing mutant H-ras DNA led to the uptake and retention of this material for an extended (30 days) but transient period of time, and stimulated cell proliferation. Thus, our study suggests that H-ras-mediated transformation stimulates vesicular emission of this histone-bound oncogene, which may interact with non-transformed cells.

  13. Unravelling the origin of irreversible capacity loss in NaNiO 2 for high voltage sodium ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Liguang; Wang, Jiajun; Zhang, Xiaoyi; Ren, Yang; Zuo, Pengjian; Yin, Geping; Wang, Jun

    2017-04-01

    Layered transition metal compounds have attracted much attention due to their high theoretical capacity and energy density for sodium ion batteries. However, this kind of material suffers from serious irreversible capacity decay during the charge and discharge process. Here, using synchrotron-based operando transmission X-ray microscopy and high-energy X-ray diffraction combined with electrochemical measurements, the visualization of the dissymmetric phase transformation and structure evolution mechanism of layered NaNiO2 material during initial charge and discharge cycles are clarified. Phase transformation and deformation of NaNiO2 during the voltage range of below 3.0 V and over 4.0 V are responsible for the irreversible capacity loss during the first cycling, which is also confirmed by the evolution of reaction kinetics behavior obtained by the galvanostatic intermittent titration technique. These findings reveal the origin of the irreversibility of NaNiO2 and offer valuable insight into the phase transformation mechanism, which will provide underlying guidance for further development of high-performance sodium ion batteries.

  14. Comprehensive performance analyses and optimization of the irreversible thermodynamic cycle engines (TCE) under maximum power (MP) and maximum power density (MPD) conditions

    International Nuclear Information System (INIS)

    Gonca, Guven; Sahin, Bahri; Ust, Yasin; Parlak, Adnan

    2015-01-01

    This paper presents comprehensive performance analyses and comparisons for air-standard irreversible thermodynamic cycle engines (TCE) based on the power output, power density, thermal efficiency, maximum dimensionless power output (MP), maximum dimensionless power density (MPD) and maximum thermal efficiency (MEF) criteria. Internal irreversibility of the cycles occurred during the irreversible-adiabatic processes is considered by using isentropic efficiencies of compression and expansion processes. The performances of the cycles are obtained by using engine design parameters such as isentropic temperature ratio of the compression process, pressure ratio, stroke ratio, cut-off ratio, Miller cycle ratio, exhaust temperature ratio, cycle temperature ratio and cycle pressure ratio. The effects of engine design parameters on the maximum and optimal performances are investigated. - Highlights: • Performance analyses are conducted for irreversible thermodynamic cycle engines. • Comprehensive computations are performed. • Maximum and optimum performances of the engines are shown. • The effects of design parameters on performance and power density are examined. • The results obtained may be guidelines to the engine designers

  15. Putative Stem Cells in Human Dental Pulp with Irreversible Pulpitis-An Exploratory Study

    Science.gov (United States)

    Wang, Z.; Pan, J.; Wright, JT; Bencharit, S.; Zhang, S.; Everett, ET; Teixeira, FB; Preisser, JS

    2010-01-01

    Introduction Although human dental pulp stem cells isolated from healthy teeth have been extensively characterized, it is unknown whether stem cells also exist in clinically compromised teeth with irreversible pulpitis. Here we explored whether cells retrieved from clinically compromised dental pulp have stem cell-like properties. Methods Pulp cells were isolated from healthy teeth (control group) and from teeth with clinically diagnosed irreversible pulpitis (diseased group). Cell proliferation, stem cell marker STRO-1 expression and cell odonto-osteo-genic differentiation competence were compared. Results Cells from the diseased group demonstrated decreased colony formation capacity and a slightly decreased cell proliferation rate but had similar STRO-1 expression, and exhibited a similar percentage of positive ex vivo osteogenic induction and dentin sialophosphoprotein expression from STRO-1-enriched pulp cells. Conclusion Our study provides preliminary evidence that clinically compromised dental pulp may contain putative cells with certain stem cell properties. Further characterization of these cells will provide insight regarding whether they could serve as a source of endogenous multipotent cells in tissue regeneration based dental pulp therapy. PMID:20416426

  16. Effects of cadmium, zinc, lead, and mercury on respiration and fermentation of Saccharomyces cerevisiae

    Energy Technology Data Exchange (ETDEWEB)

    Grafl, H J; Schwantes, H O

    1983-01-01

    Zinc and lead did not affect the rate of respiration and fermentation. Concentrations of cadmium higher than 10/sup -7/ M and concentrations of mercury higher than 5 x 10/sup -5/ M significantly reduced the O/sub 2/ consumption and the CO/sub 2/ production. 10/sup -2/ M cadmium and 10/sup -3/ M mercury completely inhibited respiration and fermentation. Low concentrations of mercury inhibited respiration irreversibly and fermentation reversibly. High concentrations of zinc reduced the toxicity of low concentrations of cadmium but they enhanced the effects of high concentrations of cadmium and mercury. No interactions between lead and the other tested heavy metals were observed.

  17. Electron emission during multicharged ion-metal surface interactions

    International Nuclear Information System (INIS)

    Zeijlmans van Emmichoven, P.A.; Havener, C.C.; Hughes, I.G.; Overbury, S.H.; Robinson, M.T.; Zehner, D.M.; Meyer, F.W.

    1992-01-01

    The electron emission during multicharged ion-metal surface interactions will be discussed. The interactions lead to the emission of a significant number of electrons. Most of these electrons have energies below 30 eV. For incident ions with innershell vacancies the emission of Auger electrons that fill these vacancies has been found to occur mainly below the surface. We will present recently measured electron energy distributions which will be used to discuss the mechanisms that lead to the emission of Auger and of low-energy electrons

  18. In vivo non-thermal irreversible electroporation impact on rat liver galvanic apparent internal resistance

    International Nuclear Information System (INIS)

    Golberg, A; Laufer, S; Rabinowitch, H D; Rubinsky, B

    2011-01-01

    Non-thermal irreversible electroporation (NTIRE) is a biophysical phenomenon which involves application of electric field pulses to cells or tissues, causing certain rearrangements in the membrane structure leading to cell death. The treated tissue ac impedance changes induced by electroporation were shown to be the indicators for NTIRE efficiency. In a previous study we characterized in vitro tissue galvanic apparent internal resistance (GAIR) changes due to NTIRE. Here we describe an in vivo study in which we monitored the GAIR changes of a rat liver treated by NTIRE. Electrical pulses were delivered through the same Zn/Cu electrodes by which GAIR was measured. GAIR was measured before and for 3 h after the treatment at 15 min intervals. The results were compared to the established ac bioimpedance measurement method. A decrease of 33% was measured immediately after the NTIRE treatment and a 40% decrease was measured after 3 h in GAIR values; in the same time 40% and 47% decrease respectively were measured by ac bioimpedance analyses. The temperature increase due to the NTIRE was only 0.5 deg. C. The results open the way for an inexpensive, self-powered in vivo real-time NTIRE effectiveness measurement.

  19. In vivo non-thermal irreversible electroporation impact on rat liver galvanic apparent internal resistance

    Energy Technology Data Exchange (ETDEWEB)

    Golberg, A; Laufer, S [Center for Bioengineering in the Service of Humanity and Society, School of Computer Science and Engineering, Hebrew University of Jerusalem, Jerusalem 91904 (Israel); Rabinowitch, H D [Robert H Smith Faculty of Agriculture, Food and Environment, Robert H Smith Institute of Plant Science and Genetics in Agriculture, Hebrew University of Jerusalem, Rehovot 76 100 (Israel); Rubinsky, B, E-mail: Rabin@agri.huji.ac.il [Department of Mechanical Engineering, Graduate Program in Biophysics, University of California at Berkeley, Berkeley, CA 84720 (United States)

    2011-02-21

    Non-thermal irreversible electroporation (NTIRE) is a biophysical phenomenon which involves application of electric field pulses to cells or tissues, causing certain rearrangements in the membrane structure leading to cell death. The treated tissue ac impedance changes induced by electroporation were shown to be the indicators for NTIRE efficiency. In a previous study we characterized in vitro tissue galvanic apparent internal resistance (GAIR) changes due to NTIRE. Here we describe an in vivo study in which we monitored the GAIR changes of a rat liver treated by NTIRE. Electrical pulses were delivered through the same Zn/Cu electrodes by which GAIR was measured. GAIR was measured before and for 3 h after the treatment at 15 min intervals. The results were compared to the established ac bioimpedance measurement method. A decrease of 33% was measured immediately after the NTIRE treatment and a 40% decrease was measured after 3 h in GAIR values; in the same time 40% and 47% decrease respectively were measured by ac bioimpedance analyses. The temperature increase due to the NTIRE was only 0.5 deg. C. The results open the way for an inexpensive, self-powered in vivo real-time NTIRE effectiveness measurement.

  20. Substrate clamping effects on irreversible domain wall dynamics in lead zirconate titanate thin films.

    Science.gov (United States)

    Griggio, F; Jesse, S; Kumar, A; Ovchinnikov, O; Kim, H; Jackson, T N; Damjanovic, D; Kalinin, S V; Trolier-McKinstry, S

    2012-04-13

    The role of long-range strain interactions on domain wall dynamics is explored through macroscopic and local measurements of nonlinear behavior in mechanically clamped and released polycrystalline lead zirconate-titanate (PZT) films. Released films show a dramatic change in the global dielectric nonlinearity and its frequency dependence as a function of mechanical clamping. Furthermore, we observe a transition from strong clustering of the nonlinear response for the clamped case to almost uniform nonlinearity for the released film. This behavior is ascribed to increased mobility of domain walls. These results suggest the dominant role of collective strain interactions mediated by the local and global mechanical boundary conditions on the domain wall dynamics. The work presented in this Letter demonstrates that measurements on clamped films may considerably underestimate the piezoelectric coefficients and coupling constants of released structures used in microelectromechanical systems, energy harvesting systems, and microrobots.

  1. Contribution of in situ acoustic emission analysis coupled with thermogravimetry to study zirconium alloy oxidation

    International Nuclear Information System (INIS)

    Al Haj, O.; Peres, V.; Serris, E.; Cournil, M.; Grosjean, F.; Kittel, J.; Ropital, F.

    2015-01-01

    Zirconium alloy (zircaloy-4) corrosion behavior under oxidizing atmosphere at high temperature was studied using thermogravimetric experiment associated with acoustic emission analysis. Under a mixture of oxygen and air in helium, an acceleration of the corrosion is observed due to the detrimental effect of nitrogen which produces zirconium nitride. The kinetic rate increases significantly after a kinetic transition (breakaway). This acceleration is accompanied by an acoustic emission (AE) activity. Most of the acoustic emission bursts were recorded after the kinetic transition or during the cooling of the sample. Acoustic emission signals analysis allows us to distinguish different populations of cracks in the ZrO 2 layer. These cracks have also been observed by SEM on post mortem cross section of oxidized samples and by in-situ microscopy observations on the top surface of the sample during oxidation. The numerous small convoluted thin cracks observed deeper in the zirconia scale are not detected by the AE technique. From these studies we can conclude that mechanisms as irreversible mechanisms, as cracks initiation and propagation, generate AE signals

  2. Plasma Membrane ATPase Activity following Reversible and Irreversible Freezing Injury 1

    Science.gov (United States)

    Iswari, S.; Palta, Jiwan P.

    1989-01-01

    Plasma membrane ATPase has been proposed as a site of functional alteration during early stages of freezing injury. To test this, plasma membrane was purified from Solanum leaflets by a single step partitioning of microsomes in a dextran-polyethylene glycol two phase system. Addition of lysolecithin in the ATPase assay produced up to 10-fold increase in ATPase activity. ATPase activity was specific for ATP with a Km around 0.4 millimolar. Presence of the ATPase enzyme was identified by immunoblotting with oat ATPase antibodies. Using the phase partitioning method, plasma membrane was isolated from Solanum commersonii leaflets which had four different degrees of freezing damage, namely, slight (reversible), partial (partially reversible), substantial and total (irreversible). With slight (reversible) damage the plasma membrane ATPase specific activity increased 1.5- to 2-fold and its Km was decreased by about 3-fold, whereas the specific activity of cytochrome c reductase and cytochrome c oxidase in the microsomes were not different from the control. However, with substantial (lethal, irreversible) damage, there was a loss of membrane protein, decrease in plasma membrane ATPase specific activity and decrease in Km, while cytochrome c oxidase and cytochrome c reductase were unaffected. These results support the hypothesis that plasma membrane ATPase is altered by slight freeze-thaw stress. Images Figure 1 Figure 2 PMID:16666856

  3. Optimal thermoeconomic performance of an irreversible regenerative ferromagnetic Ericsson refrigeration cycle

    International Nuclear Information System (INIS)

    Xu, Zhichao; Guo, Juncheng; Lin, Guoxing; Chen, Jincan

    2016-01-01

    On the basis of the Langevin theory of classical statistical mechanics, the magnetization, entropy, and iso-field heat capacity of ferromagnetic materials are analyzed and their mathematical expressions are derived. An irreversible regenerative Ericsson refrigeration cycle by using a ferromagnetic material as the working substance is established, in which finite heat capacity rates of low and high temperature reservoirs, non-perfect regenerative heat of the refrigeration cycle, additional regenerative heat loss, etc. are taken into account. Based on the regenerative refrigeration cycle model, a thermoeconomic function is introduced as one objective function and optimized with respect to the temperatures of the working substance in the two iso-thermal processes. By means of numerical calculation, the effects of the effective factor of the heat exchangers in high/low temperature reservoir sides, efficiency of the regenerator, heat capacity rate of the low temperature reservoir, and applied magnetic field on the optimal thermoeconomic function as well as the corresponding cooling rate and coefficient of performance are revealed. The results obtained in this paper can provide some theoretical guidance for the optimal design of actual regenerative magnetic refrigerator cycle. - Highlights: • Thermodynamic performance of ferromagnetic material is analyzed. • An irreversible regenerative ferromagnetic Ericsson refrigeration cycle is set up. • The thermoeconomic objective function is introduced and optimized. • Impacts of the thermoeconomic and other parameters are discussed.

  4. A Comparison of Different Volumes of Articaine for Inferior Alveolar Nerve Block for Molar Teeth with Symptomatic Irreversible Pulpitis.

    Science.gov (United States)

    Abazarpoor, Ramin; Parirokh, Masoud; Nakhaee, Nouzar; Abbott, Paul V

    2015-09-01

    Achieving anesthesia in mandibular molar teeth with irreversible pulpitis is very difficult. The aim of this study was to compare the efficacy of 1.8 mL and 3.6 mL articaine for an inferior alveolar nerve block (IANB) when treating molars with symptomatic irreversible pulpitis. In a randomized, double-blind clinical trial, 82 first mandibular molar teeth with symptomatic irreversible pulpitis randomly received conventional IANB injection either with 1 (1.8 mL) or 2 cartridges (3.6 mL) of 4% articaine with 1:100,000 epinephrine. The patients recorded their pain before and during access cavity preparation as well as during root canal instrumentation using a Heft-Parker visual analog scale. No or mild pain was considered as successful anesthesia. Data were analyzed by t and chi-square tests. Eighty patients were eligible to participate in this study, which showed that 3.6 mL articaine provided a significantly higher success rate (77.5%) of IANBs compared with 1.8 mL of the same anesthetic solution (27.5%) although neither group had 100% successful anesthesia (P < .001). Increasing the volume of articaine provided a significantly higher success rate of IANBs in mandibular first molar teeth with symptomatic irreversible pulpitis, but it did not result in 100% anesthetic success. Copyright © 2015 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  5. Homogeneous Emission Line Broadening in the Organo Lead Halide Perovskite CH3NH3PbI3-xClx.

    Science.gov (United States)

    Wehrenfennig, Christian; Liu, Mingzhen; Snaith, Henry J; Johnston, Michael B; Herz, Laura M

    2014-04-17

    The organic-inorganic hybrid perovskites methylammonium lead iodide (CH3NH3PbI3) and the partially chlorine-substituted mixed halide CH3NH3PbI3-xClx emit strong and broad photoluminescence (PL) around their band gap energy of ∼1.6 eV. However, the nature of the radiative decay channels behind the observed emission and, in particular, the spectral broadening mechanisms are still unclear. Here we investigate these processes for high-quality vapor-deposited films of CH3NH3PbI3-xClx using time- and excitation-energy dependent photoluminescence spectroscopy. We show that the PL spectrum is homogenously broadened with a line width of 103 meV most likely as a consequence of phonon coupling effects. Further analysis reveals that defects or trap states play a minor role in radiative decay channels. In terms of possible lasing applications, the emission spectrum of the perovskite is sufficiently broad to have potential for amplification of light pulses below 100 fs pulse duration.

  6. Particulate emissions from diesel engines: correlation between engine technology and emissions.

    Science.gov (United States)

    Fiebig, Michael; Wiartalla, Andreas; Holderbaum, Bastian; Kiesow, Sebastian

    2014-03-07

    In the last 30 years, diesel engines have made rapid progress to increased efficiency, environmental protection and comfort for both light- and heavy-duty applications. The technical developments include all issues from fuel to combustion process to exhaust gas aftertreatment. This paper provides a comprehensive summary of the available literature regarding technical developments and their impact on the reduction of pollutant emission. This includes emission legislation, fuel quality, diesel engine- and exhaust gas aftertreatment technologies, as well as particulate composition, with a focus on the mass-related particulate emission of on-road vehicle applications. Diesel engine technologies representative of real-world on-road applications will be highlighted.Internal engine modifications now make it possible to minimize particulate and nitrogen oxide emissions with nearly no reduction in power. Among these modifications are cooled exhaust gas recirculation, optimized injections systems, adapted charging systems and optimized combustion processes with high turbulence. With introduction and optimization of exhaust gas aftertreatment systems, such as the diesel oxidation catalyst and the diesel particulate trap, as well as NOx-reduction systems, pollutant emissions have been significantly decreased. Today, sulfur poisoning of diesel oxidation catalysts is no longer considered a problem due to the low-sulfur fuel used in Europe. In the future, there will be an increased use of bio-fuels, which generally have a positive impact on the particulate emissions and do not increase the particle number emissions.Since the introduction of the EU emissions legislation, all emission limits have been reduced by over 90%. Further steps can be expected in the future. Retrospectively, the particulate emissions of modern diesel engines with respect to quality and quantity cannot be compared with those of older engines. Internal engine modifications lead to a clear reduction of the

  7. Study suggests Arctic sea ice loss not irreversible

    Science.gov (United States)

    Balcerak, Ernie

    2011-10-01

    The Arctic has been losing sea ice as Earth's climate warms, and some studies have suggested that the Arctic could reach a tipping point, beyond which ice would not recover even if global temperatures cooled down again. However, a new study by Armour et al. that uses a state-of-the-art atmosphere-ocean global climate model found no evidence of such irreversibility. In their simulations, the researchers increased atmospheric carbon dioxide levels until Arctic sea ice disappeared year-round and then watched what happened as global temperatures were then decreased. They found that sea ice steadily recovered as global temperatures dropped. An implication of this result is that future sea ice loss will occur only as long as global temperatures continue to rise. (Geophysical Research Letters, doi:10.1029/2011GL048739, 2011)

  8. Onset of photosynthesis in spring speeds up monoterpene synthesis and leads to emission bursts.

    Science.gov (United States)

    Aalto, J; Porcar-Castell, A; Atherton, J; Kolari, P; Pohja, T; Hari, P; Nikinmaa, E; Petäjä, T; Bäck, J

    2015-11-01

    Emissions of biogenic volatile organic compounds (BVOC) by boreal evergreen trees have strong seasonality, with low emission rates during photosynthetically inactive winter and increasing rates towards summer. Yet, the regulation of this seasonality remains unclear. We measured in situ monoterpene emissions from Scots pine shoots during several spring periods and analysed their dynamics in connection with the spring recovery of photosynthesis. We found high emission peaks caused by enhanced monoterpene synthesis consistently during every spring period (monoterpene emission bursts, MEB). The timing of the MEBs varied relatively little between the spring periods. The timing of the MEBs showed good agreement with the photosynthetic spring recovery, which was studied with simultaneous measurements of chlorophyll fluorescence, CO2 exchange and a simple, temperature history-based proxy for state of photosynthetic acclimation, S. We conclude that the MEBs were related to the early stages of photosynthetic recovery, when the efficiency of photosynthetic carbon reactions is still low whereas the light harvesting machinery actively absorbs light energy. This suggests that the MEBs may serve a protective functional role for the foliage during this critical transitory state and that these high emission peaks may contribute to atmospheric chemistry in the boreal forest in springtime. © 2015 John Wiley & Sons Ltd.

  9. Mineral trioxide aggregate pulpotomy for permanent molars with clinical signs indicative of irreversible pulpitis: a preliminary study.

    Science.gov (United States)

    Qudeimat, M A; Alyahya, A; Hasan, A A

    2017-02-01

    To prospectively investigate the clinical and radiographic success rates of pulpotomy in permanent molars with clinical signs and symptoms suggestive of irreversible pulpitis using mineral trioxide aggregate (MTA) as a pulp dressing agent. Sixteen patients with 23 restorable permanent molars exhibiting signs and symptoms indicative of irreversible pulpitis were enrolled. A standardized operative procedure was followed for all participants. All teeth were isolated with a dental dam and caries was removed, and then, pulpotomy performed with a sterile round and/or flame shape diamond burs. Haemostasis was achieved with 5% sodium hypochlorite (NaOCl). A mixture of MTA was placed against the wound, and a moistened cotton pellet was placed over the MTA. Teeth were temporized with a glass-ionomer restoration. Three to ten days later, the interim restoration was removed and setting of MTA was evaluated. Teeth were restored with stainless steel crowns. Follow-up evaluations were scheduled at 3, 6, 12 months and annually thereafter. Descriptive statistics were used to assess outcomes. The age of patients at time of pulpotomy ranged between 7.6 and 13.6 years (mean = 10.7± 1.7 yrs). The majority of teeth (91%) had clinical signs and symptoms consistent with a diagnosis of symptomatic irreversible pulpitis and symptomatic apical periodontitis (78%). The follow-up examination period ranged from 18.9 to 73.6 months. Clinically and radiographically, all pulpotomies were considered successful at the end of the follow-up period. Radiographically, a hard tissue barrier was noticed in 13 (57%) teeth. In children, MTA was associated with high clinical and radiographic success as a pulpotomy agent in permanent teeth with clinical signs and symptoms suggestive of irreversible pulpitis. © 2016 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  10. Effect of irreversible processes on the thermodynamic performance of open-cycle desiccant cooling cycles

    International Nuclear Information System (INIS)

    La, Dong; Li, Yong; Dai, Yanjun; Ge, Tianshu; Wang, Ruzhu

    2013-01-01

    Highlights: ► Effects of irreversible processes on the performance of desiccant cooling cycle are identified. ► The exergy destructions involved are classified by the properties of the individual processes. ► Appropriate indexes for thermodynamic evaluation are proposed based on thermodynamic analyses. - Abstract: Thermodynamic analyses of desiccant cooling cycle usually focus on the overall cycle performance in previous study. In this paper, the effects of the individual irreversible processes in each component on thermodynamic performance are analyzed in detail. The objective of this paper is to reveal the elemental features of the individual components, and to show their effects on the thermodynamic performance of the whole cycle in a fundamental way. Appropriate indexes for thermodynamic evaluation are derived based on the first and second law analyses. A generalized model independent of the connection of components is developed. The results indicate that as the effectiveness of the desiccant wheel increases, the cycle performance is increased principally due to the significant reduction in exergy carried out by exhaust air. The corresponding exergy destruction coefficient of the cycle with moderate performance desiccant wheel is decreased greatly to 3.9%, which is more than 50% lower than that of the cycle with low performance desiccant wheel. The effect of the heat source is similar. As the temperature of the heat source increases from 60 °C to 90 °C, the percentage of exergy destruction raised by exhaust air increases sharply from 5.3% to 21.8%. High heat exchanger effectiveness improves the cycle performance mainly by lowering the irreversibility of the heat exchanger, using less regeneration heat and pre-cooling the process air effectively

  11. Reversible and irreversible magnetization of the Chevrel-phase superconductor PbMo6S8

    International Nuclear Information System (INIS)

    Zheng, D.N.; Ramsbottom, H.D.; Hampshire, D.P.

    1995-01-01

    Magnetic measurements have been carried out on the hot-isostatically-pressed Chevrel-phase superconductor PbMo 6 S 8 at temperatures from 4.2 K to T c and for magnetic fields up to 12 T. The results show that for the PbMo 6 S 8 compound there is a wide magnetically reversible region, between the irreversibility field B irr and the upper critical field B c2 , on the isothermal magnetic hysteresis curves. The B irr (T) line, i.e., the irreversibility line, was found to obey a power-law expression: B irr =B * (1-T/T c ) α with α∼1.5. Magnetic relaxation measurements revealed that the flux-creep effect in the material studied is substantial and is greater than those observed in conventional metallic alloys, but smaller than in high-temperature superconductors. The existence of the irreversibility line and pronounced flux-creep effect in PbMo 6 S 8 is attributed to the short coherence length of the material. From the reversible magnetization data, the values of the penetration depth, the coherence length, and the critical fields are obtained together with the Ginzburg-Landau parameter κ. At 4.2 K, the critical current density J c is 10 9 A m -2 at zero field, and decreases to 2x10 8 A m -2 at 10 T. Pinning force curves measured at different temperatures obey a Kramer-scaling law of the form: F p (=J c xB)∝b 1/2 (1-b) 2 , which indicates that the J c is limited by one predominant flux-pinning mechanism

  12. Parametric analysis of an irreversible proton exchange membrane fuel cell/absorption refrigerator hybrid system

    International Nuclear Information System (INIS)

    Yang, Puqing; Zhang, Houcheng

    2015-01-01

    A hybrid system mainly consisting of a PEMFC (proton exchange membrane fuel cell) and an absorption refrigerator is proposed, where the PEMFC directly converts the chemical energy contained in the hydrogen into electrical and thermal energies, and the thermal energy is transferred to drive the bottoming absorption refrigerator for cooling purpose. By considering the existing irreversible losses in the hybrid system, the operating current density region of the PEMFC permits the absorption refrigerator to exert its function is determined and the analytical expressions for the equivalent power output and efficiency of the hybrid system under different operating conditions are specified. Numerical calculations show that the equivalent maximum power density and the corresponding efficiency of the hybrid system can be respectively increased by 5.3% and 6.8% compared to that of the stand-alone PEMFC. Comprehensive parametric analyses are conducted to reveal the effects of the internal irreversibility of the absorption refrigerator, operating current density, operating temperature and operating pressure of the PEMFC, and some integrated parameters related to the thermodynamic losses on the performance of the hybrid system. The model presented in the paper is more general than previous study, and the results for some special cases can be directly derived from this paper. - Highlights: • A CHP system composed of a PEMFC and an absorption refrigerator is proposed. • Current density region enables the absorption refrigerator to work is determined. • Multiple irreversible losses in the system are analytically characterized. • Maximum power density and corresponding efficiency can be increased by 5.3% and 6.8%. • Effects of some designing and operating parameters on the performance are discussed

  13. Irreversible inhibition of RANK expression as a possible mechanism for IL-3 inhibition of RANKL-induced osteoclastogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Khapli, Shruti M.; Tomar, Geetanjali B.; Barhanpurkar, Amruta P.; Gupta, Navita; Yogesha, S.D.; Pote, Satish T. [National Center for Cell Science, University of Pune Campus, Pune 411 007 (India); Wani, Mohan R., E-mail: mohanwani@nccs.res.in [National Center for Cell Science, University of Pune Campus, Pune 411 007 (India)

    2010-09-03

    Research highlights: {yields} IL-3 inhibits receptor activator of NF-{kappa}B ligand (RANKL)-induced osteoclastogenesis. {yields} IL-3 inhibits RANKL-induced JNK activation. {yields} IL-3 down-regulates expression of c-Fos and NFATc1 transcription factors. {yields} IL-3 down-regulates RANK expression posttranscriptionally and irreversibly. {yields} IL-3 inhibits in vivo RANK expression. -- Abstract: IL-3, a cytokine secreted by activated T lymphocytes, stimulates the proliferation, differentiation and survival of pluripotent hematopoietic stem cells. In this study, we investigated the mechanism of inhibitory action of IL-3 on osteoclast differentiation. We show here that IL-3 significantly inhibits receptor activator of NF-{kappa}B (RANK) ligand (RANKL)-induced activation of c-Jun N-terminal kinase (JNK). IL-3 down-regulates expression of c-Fos and nuclear factor of activated T cells (NFATc1) transcription factors. In addition, IL-3 down-regulates RANK expression posttranscriptionally in both purified osteoclast precursors and whole bone marrow cells. Furthermore, the inhibitory effect of IL-3 on RANK expression was irreversible. Interestingly, IL-3 inhibits in vivo RANK expression in mice. Thus, we provide the first evidence that IL-3 irreversibly inhibits RANK expression that results in inhibition of important signaling molecules induced by RANKL.

  14. Irreversible inhibition of RANK expression as a possible mechanism for IL-3 inhibition of RANKL-induced osteoclastogenesis

    International Nuclear Information System (INIS)

    Khapli, Shruti M.; Tomar, Geetanjali B.; Barhanpurkar, Amruta P.; Gupta, Navita; Yogesha, S.D.; Pote, Satish T.; Wani, Mohan R.

    2010-01-01

    Research highlights: → IL-3 inhibits receptor activator of NF-κB ligand (RANKL)-induced osteoclastogenesis. → IL-3 inhibits RANKL-induced JNK activation. → IL-3 down-regulates expression of c-Fos and NFATc1 transcription factors. → IL-3 down-regulates RANK expression posttranscriptionally and irreversibly. → IL-3 inhibits in vivo RANK expression. -- Abstract: IL-3, a cytokine secreted by activated T lymphocytes, stimulates the proliferation, differentiation and survival of pluripotent hematopoietic stem cells. In this study, we investigated the mechanism of inhibitory action of IL-3 on osteoclast differentiation. We show here that IL-3 significantly inhibits receptor activator of NF-κB (RANK) ligand (RANKL)-induced activation of c-Jun N-terminal kinase (JNK). IL-3 down-regulates expression of c-Fos and nuclear factor of activated T cells (NFATc1) transcription factors. In addition, IL-3 down-regulates RANK expression posttranscriptionally in both purified osteoclast precursors and whole bone marrow cells. Furthermore, the inhibitory effect of IL-3 on RANK expression was irreversible. Interestingly, IL-3 inhibits in vivo RANK expression in mice. Thus, we provide the first evidence that IL-3 irreversibly inhibits RANK expression that results in inhibition of important signaling molecules induced by RANKL.

  15. Breakdown of antiferromagnet order in polycrystalline NiFe/NiO bilayers probed with acoustic emission

    Science.gov (United States)

    Lebyodkin, M. A.; Lebedkina, T. A.; Shashkov, I. V.; Gornakov, V. S.

    2017-07-01

    Magnetization reversal of polycrystalline NiFe/NiO bilayers was investigated using magneto-optical indicator film imaging and acoustic emission techniques. Sporadic acoustic signals were detected in a constant magnetic field after the magnetization reversal. It is suggested that they are related to elastic waves excited by sharp shocks in the NiO layer with strong magnetostriction. Their probability depends on the history and number of repetitions of the field cycling, thus testifying the thermal-activation nature of the long-time relaxation of an antiferromagnetic order. These results provide evidence of spontaneous thermally activated switching of the antiferromagnetic order in NiO grains during magnetization reversal in ferromagnet/antiferromagnet (FM/AFM) heterostructures. The respective deformation modes are discussed in terms of the thermal fluctuation aftereffect in the Fulcomer and Charap model which predicts that irreversible breakdown of the original spin orientation can take place in some antiferromagnetic grains with disordered anisotropy axes during magnetization reversal of exchange-coupled FM/AFM structures. The spin reorientation in the saturated state may induce abrupt distortion of isolated metastable grains because of the NiO magnetostriction, leading to excitation of shock waves and formation of plate (or Lamb) waves.

  16. Studies of lead pollution in the air of Shanghai by multiple techniques

    International Nuclear Information System (INIS)

    Tan, M.G.; Zhang, G.L.; Li, X.L.; Zhang, Y.X.; Yue, W.S.; Chen, J.M.; Wang, Y.S.; Li, A.G.; Li, Y.; Zhang, Y.M.; Shan, Z.C.

    2005-01-01

    Lead pollution in atmosphere has been one of the worrisome environmental problems since the tetraethyl lead was used as an antiknock agent in combustion engines. The presence of lead in urban air, even at low doses, may cause neurological impairments of fetuses and young children. Studies also show that lead may be a factor in high blood pressure and subsequent heart disease. Atmospheric lead has various origins, such as gasoline, industrial emissions and coal burning etc. The present work reports the lead levels in air particulate matter samples of PM 10 collected in recent years to evaluate the effect of the use of unleaded gasoline in Shanghai since 1997. The chemical species of lead in PM 10 and their origins were also studied. To our knowledge it is a first time to give an estimation of lead contribution to air in a city from different emission sources quantitatively. Proton-induced X-ray emission analysis (PIXE), proton microprobe (μ-PIXE), inductively coupled plasma-mass spectrometry (ICP-MS) and X-ray absorption fine structure (XAFS) techniques were used to study the concentration, the chemical species and the source assignment of Pb in the atmospheric aerosol particles of PM 10 . Average values of 369±74. ng/m 3 and 237±45 ng/m 3 of Pb concentration were obtained from the 19 monitor sites in Shanghai in the winter of 2002 and 2003, respectively. Comparing with the earlier data of 466 ng/m 3 in 1997 and 515 ng/m 3 in 2001, it can be observed that the yearly mean lead levels in PM 10 decline significantly. However, it is also found that rather high levels of lead still remain. in the air of Shanghai after the use of unleaded gasoline. The results of XAFS showed that PbCl 2 , PbSO 4 and PbO were probably the main chemical forms of Pb in atmospheric particulate matter. Based on the lead isotope ratios technique and chemical mass balance analysis, the calculation showed that the main emission sources of Pb in the atmosphere of Shanghai were coal combustors

  17. Problems of saturation of the excitation and creation of irreversible changes in solid after laser irradiation

    International Nuclear Information System (INIS)

    Sakhnyuk, L.A.; Trokhimchuck, P.P.

    2009-01-01

    The problem of modeling of processes of the irreversible interaction light and solid is discussed. This problem is connected with the processes of the saturation the excitation of respective scattering centers. The possible cascades of these processes are analyzed. The correlation between nonequilibrium and irreversible phenomena are analyzed. Two-dimensional sphalerite lattice of InSb was used for the kinetic modeling of the hierarchic processes of saturation of the excitation respective chemical bonds. The cascade characteristics of these processes were estimated for the cylindrical form of 'zone of energy scattering' of photon. The comparative analyses these results with results, which were received with the help straight method and method the spherical form of 'zone of energy scattering' of photon, is represented too. The good concordance of experimental and theoretical data was received. (authors)

  18. National pollutants emission limits

    International Nuclear Information System (INIS)

    Chmielewski, A.G.; Pawelec, A.

    2011-01-01

    Fossil fuels are the main energy sources. Unfortunately the vast quantities of pollutants are emitted to the atmosphere during their combustion. These emissions lead to the environment degradation and affect human health. Therefore most of the countries have introduced the standards concerning emission control. These regulations for some countries are presented in the paper. (author)

  19. National pollutants emission limits

    Energy Technology Data Exchange (ETDEWEB)

    Chmielewski, A. G.; Pawelec, A. [Institute of Nuclear Chemistry and Technology, Warsaw (Poland)

    2011-07-01

    Fossil fuels are the main energy sources. Unfortunately the vast quantities of pollutants are emitted to the atmosphere during their combustion. These emissions lead to the environment degradation and affect human health. Therefore most of the countries have introduced the standards concerning emission control. These regulations for some countries are presented in the paper. (author)

  20. Carbon emissions and an equitable emission reduction criterion

    International Nuclear Information System (INIS)

    Golomb, Dan

    1999-01-01

    In 1995 the world-wide carbon emissions reached 5.8 billion metric tonnes per year (GTC/y). The Kyoto protocol calls for a reduction of carbon emissions from the developed countries (Annex I countries) of 6-8% below 1990 levels on the average, and unspecified commitments for the less developed (non-Annex I) countries. It is doubtful that the Kyoto agreement will be ratified by some parliaments, especially the USA Congress. Furthermore, it is shown that if the non-Annex I countries will not curtail their carbon emissions drastically, the global emissions will soar to huge levels by the middle of the next century. An equitable emission criterion is proposed which may lead to a sustainable rate of growth of carbon emissions, and be acceptable to all countries of the world. The criterion links the rate of growth of carbon emissions to the rate of growth of the Gross Domestic Product (GDP). A target criterion is proposed R = 0.15 KgC/SGDP, which is the current average for western European countries and Japan. This allows for both the growth of the GDP and carbon emissions. However, to reach the target in a reasonable time, the countries for which R≤ 0.3 would be allowed a carbon emission growth rate of 1%./y, and countries for which R≥ 0.3, 0.75%/y. It is shown that by 2050 the world-wide carbon emissions would reach about 10 GTC/y, which is about 3 times less than the Kyoto agreement would allow. (Author)

  1. Evaluation of the Gow-Gates and Vazirani-Akinosi techniques in patients with symptomatic irreversible pulpitis: a prospective randomized study.

    Science.gov (United States)

    Click, Vivian; Drum, Melissa; Reader, Al; Nusstein, John; Beck, Mike

    2015-01-01

    Few studies have evaluated the effectiveness of the Gow-Gates and Vazirani-Akinosi techniques in patients presenting with symptomatic irreversible pulpitis. Therefore, the purpose of this prospective, randomized study was to evaluate the anesthetic efficacy of the Gow-Gates and Vazirani-Akinosi techniques using 3.6 mL 2% lidocaine with 1:100,000 epinephrine in mandibular posterior teeth in patients presenting with symptomatic irreversible pulpitis. One hundred twenty-five emergency patients diagnosed with symptomatic irreversible pulpitis randomly received either a Gow-Gates or Vazirani-Akinosi injection using 3.6 mL 2% lidocaine with 1:100,000 epinephrine to block the inferior alveolar nerve before endodontic access. Subjective lip numbness was recorded. Pulpal anesthetic success of the injection was defined as no pain or mild pain upon endodontic access and instrumentation as measured on a visual analog scale. Subjective lip numbness was obtained 92% of the time with the Gow-Gates technique and 63% of the time with the Vazirani-Akinosi technique. The difference was statistically significant (P = .0001). For the patients achieving lip numbness, successful pulpal anesthesia was obtained 35% of the time with the Gow-Gates technique and 16% of the time with the Vazirani-Akinosi technique. The difference was statistically significant (P = .0381). We concluded that for patients who achieved lip numbness neither the Gow-Gates technique nor the Vazirani-Akinosi technique provided adequate pulpal anesthesia for mandibular posterior teeth in patients presenting with symptomatic irreversible pulpitis. Both injections would require supplemental anesthesia. Copyright © 2015 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  2. Origin of unusual bandgap shift and dual emission in organic-inorganic lead halide perovskites.

    Science.gov (United States)

    Dar, M Ibrahim; Jacopin, Gwénolé; Meloni, Simone; Mattoni, Alessandro; Arora, Neha; Boziki, Ariadni; Zakeeruddin, Shaik Mohammed; Rothlisberger, Ursula; Grätzel, Michael

    2016-10-01

    Emission characteristics of metal halide perovskites play a key role in the current widespread investigations into their potential uses in optoelectronics and photonics. However, a fundamental understanding of the molecular origin of the unusual blueshift of the bandgap and dual emission in perovskites is still lacking. In this direction, we investigated the extraordinary photoluminescence behavior of three representatives of this important class of photonic materials, that is, CH 3 NH 3 PbI 3 , CH 3 NH 3 PbBr 3 , and CH(NH 2 ) 2 PbBr 3 , which emerged from our thorough studies of the effects of temperature on their bandgap and emission decay dynamics using time-integrated and time-resolved photoluminescence spectroscopy. The low-temperature (photoluminescence of CH 3 NH 3 PbI 3 and CH 3 NH 3 PbBr 3 reveals two distinct emission peaks, whereas that of CH(NH 2 ) 2 PbBr 3 shows a single emission peak. Furthermore, irrespective of perovskite composition, the bandgap exhibits an unusual blueshift by raising the temperature from 15 to 300 K. Density functional theory and classical molecular dynamics simulations allow for assigning the additional photoluminescence peak to the presence of molecularly disordered orthorhombic domains and also rationalize that the unusual blueshift of the bandgap with increasing temperature is due to the stabilization of the valence band maximum. Our findings provide new insights into the salient emission properties of perovskite materials, which define their performance in solar cells and light-emitting devices.

  3. The impact of molecular emission in compositional depth profiling using Glow Discharge-Optical Emission Spectroscopy

    International Nuclear Information System (INIS)

    Bengtson, Arne

    2008-01-01

    The scope of this paper is to investigate and discuss how molecular emission can affect elemental analysis in glow discharge optical emission (GD-OES), particularly in compositional depth profiling (CDP) applications. Older work on molecular emission in glow discharges is briefly reviewed, and the nature of molecular emission spectra described. Work on the influence of hydrogen in the plasma, in particular elevated background due to a continuum spectrum, is discussed. More recent work from sputtering of polymers and other materials with a large content of light elements in a Grimm type source is reviewed, where substantial emission has been observed from several light diatomic molecules (CO, CH, OH, NH, C 2 ). It is discussed how the elevated backgrounds from such molecular emission can lead to significant analytical errors in the form of 'false' depth profile signals of several atomic analytical lines. Results from a recent investigation of molecular emission spectra from mixed gases in a Grimm type glow discharge are presented. An important observation is that dissociation and subsequent recombination processes occur, leading to formation of molecular species not present in the original plasma gas. Experimental work on depth profiling of a polymer coating and a thin silicate film, using a spectrometer equipped with channels for molecular emission lines, is presented. The results confirm that molecular emission gives rise to apparent depth profiles of elements not present in the sample. The possibilities to make adequate corrections for such molecular emission in CDP of organic coatings and very thin films are discussed

  4. The impact of molecular emission in compositional depth profiling using Glow Discharge-Optical Emission Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Bengtson, Arne [Corrosion and Metals Research Institute, Dr. Kristinas vaeg 48, Stockholm (Sweden)], E-mail: arne.bengtson@kimab.com

    2008-09-15

    The scope of this paper is to investigate and discuss how molecular emission can affect elemental analysis in glow discharge optical emission (GD-OES), particularly in compositional depth profiling (CDP) applications. Older work on molecular emission in glow discharges is briefly reviewed, and the nature of molecular emission spectra described. Work on the influence of hydrogen in the plasma, in particular elevated background due to a continuum spectrum, is discussed. More recent work from sputtering of polymers and other materials with a large content of light elements in a Grimm type source is reviewed, where substantial emission has been observed from several light diatomic molecules (CO, CH, OH, NH, C{sub 2}). It is discussed how the elevated backgrounds from such molecular emission can lead to significant analytical errors in the form of 'false' depth profile signals of several atomic analytical lines. Results from a recent investigation of molecular emission spectra from mixed gases in a Grimm type glow discharge are presented. An important observation is that dissociation and subsequent recombination processes occur, leading to formation of molecular species not present in the original plasma gas. Experimental work on depth profiling of a polymer coating and a thin silicate film, using a spectrometer equipped with channels for molecular emission lines, is presented. The results confirm that molecular emission gives rise to apparent depth profiles of elements not present in the sample. The possibilities to make adequate corrections for such molecular emission in CDP of organic coatings and very thin films are discussed.

  5. Irreversible Sorption of Contaminants During Ferrihydrite Transformation

    International Nuclear Information System (INIS)

    Anderson, H.L.; Arthur, S.E.; Brady, P.V.; Cygan, R.T.; Nagy, K.L.; Westrich, H.R.

    1999-01-01

    A better understanding of the fraction of contaminants irreversibly sorbed by minerals is necessary to effectively quantify bioavailability. Ferrihydrite, a poorly crystalline iron oxide, is a natural sink for sorbed contaminants. Contaminants may be sorbed/occluded as ferrihydrite precipitates in natural waters or as it ages and transforms to more crystalline iron oxides such as goethite or hematite. Laboratory studies indicate that Cd, Co, Cr, Cu, Ni, Np, Pb, Sr, U, and Zn are irreversibly sorbed to some extent during the aging and transformation of synthetic ferrihydrite. Barium, Ra and Sr are known to sorb on ferrihydrite in the pH range of 6 to 10 and sorb more strongly at pH values above its zero point of charge (pH> 8). We will review recent literature on metal retardation, including our laboratory and modeling investigation of Ba (as an analogue for Ra) and Sr adsorption/resorption, during ferrihydrite transformation to more crystalline iron oxides. Four ferrihydrite suspensions were aged at pH 12 and 50 C with or without Ba in 0.01 M KN03 for 68 h or in 0.17 M KN03 for 3424 h. Two ferrihydrite suspensions were aged with and without Sr at pH 8 in 0.1 M KN03 at 70C. Barium or Sr sorption, or resorption, was measured by periodically centrifuging suspension subsamples, filtering, and analyzing the filtrate for Ba or Sr. Solid subsamples were extracted with 0.2 M ammonium oxalate (pH 3 in the dark) and with 6 M HCl to determine the Fe and Ba or Sr attributed to ferrihydrite (or adsorbed on the goethite/hematite stiace) and the total Fe and Ba or Sr content, respectively. Barium or Sr occluded in goethite/hematite was determined by the difference between the total Ba or Sr and the oxalate extractable Ba or Sr. The percent transformation of ferrihydrite to goethite/hematite was estimated from the ratio of oxalate and HC1 extractable Fe. All Ba was retained in the precipitates for at least 20 h. Resorption of Ba reached a maximum of 7 to 8% of the Ba2+ added for

  6. Irreversible Aspects of Continuum Mechanics and Transfer of Physical Characteristics in Moving Fluids : Symposia

    CERN Document Server

    Sedov, L

    1968-01-01

    At its meeting on April 23, 1965 in Paris the Bureau of IUTAM decided to have a Symposium on the Irreversible Aspects of Continaum Mechanics held in June 1966 in Vienna. In addition, a Symposium on the Transfer of Physical Characteristics in Moving Fluids which, orig­ inally, had been scheduled to take place in Stockholm was rescheduled to be held in Vienna immediately following the Symposium on the Irre­ versible Aspects of Continuum Mechanics. It was felt that the subjects of the two symposia were so closely related that participants should be given an opportunity to attend both. Both decisions were unanimously approved by the members of the General Assembly of IUTAM. Prof. H. PARKUS, Vienna, was appointed Chairman of the Symposium on the Irreversible Aspects, and Prof. L. I. SEDOV, Moscow, was appointed Chairman of the Symposium on the Transfer of Physical Characteristics, with Prof. P ARKUS being re­ sponsible for the local organization of both symposia. In accordance with the policy set forth by IUTAM...

  7. Australian atmospheric lead deposition reconstructed using lead concentrations and isotopic compositions of archival lichen and fungi

    International Nuclear Information System (INIS)

    Wu, Liqin; Taylor, Mark Patrick; Handley, Heather K.; Wu, Michael

    2016-01-01

    Lead concentrations and their isotopic compositions were measured in lichen genera Cladonia and Usnea and fungi genus Trametes from the Greater Sydney region (New South Wales, Australia) that had been collected and archived over the past 120 years. The median lead concentrations were elevated in lichens and fungi prior to the introduction of leaded petrol (Cladonia 12.5 mg/kg; Usnea 15.6 mg/kg; Trametes 1.85 mg/kg) corresponding to early industrial development. During the period of leaded petrol use in Australian automobiles from 1932 to 2002, total median lead concentrations rose: Cladonia 18.8 mg/kg; Usnea 21.5 mg/kg; Trametes 4.3 mg/kg. Following the cessation of leaded petrol use, median total lead concentrations decreased sharply in the 2000s: Cladonia 4.8 mg/kg; Usnea 1.7 mg/kg. The lichen and fungi isotopic compositions reveal a significant decrease in "2"0"6Pb/"2"0"7Pb ratios from the end of 19th century to the 1970s. The following decades were characterised by lower allowable levels of lead additive in fuel and the introduction of unleaded petrol in 1985. The environmental response to these regulatory changes was that lichen and fungi "2"0"6Pb/"2"0"7Pb ratios increased, particularly from 1995 onwards. Although the lead isotope ratios of lichens continued to increase in the 2000s they do not return to pre-leaded petrol values. This demonstrates that historic leaded petrol emissions, inter alia other sources, remain a persistent source of anthropogenic contamination in the Greater Sydney region. - Highlights: • Total lead and isotopic composition can be measured in historic lichen and fungi. • Historic lichen and fungi samples can distinguish polluted and unpolluted areas. • Former leaded petrol depositions remain a significant environmental contaminant. - Analysis of a 120-year record of lichens and fungi from the Greater Sydney basin reveal marked shifts in total lead concentrations and lead isotope ratios in response to geogenic inputs

  8. Irreversible Change of the Pore Structure of ZIF-8 in Carbon Dioxide Capture with Water Coexistence

    DEFF Research Database (Denmark)

    Liu, Huang; Guo, Ping; Regueira Muñiz, Teresa

    2016-01-01

    The performance of zeolitic imidazolate framework 8 (ZIF-8) for CO2 capture under three different conditions (wetted ZIF-8, ZIF-8/water slurry, and ZIF-8/water-glycol slurry) was systemically investigated. This investigation included the study of the pore structure stability of ZIF-8 by using X......-ray diffraction, scanning electron microscopy, Fourier transform infrared spectroscopy, and Raman detection technologies. Our results show that the CO2 adsorption ability of ZIF-8 could be substantially increased under the existence of liquid water. However, the structure characterization of the recovered ZIF-8...... showed an irreversible change of its framework, which occurs during the CO2 capture process. It was found that there is an irreversible chemical reaction among ZIF-8, water, and CO2, which creates both zinc carbonate (or zinc carbonate hydroxides) and single 2-methylimidazole crystals, and therefore...

  9. Spectrochemical determination of lead in wines

    Directory of Open Access Journals (Sweden)

    DRAGAN MARKOVIC

    2000-06-01

    Full Text Available The determination of lead in wines of different origin was performed by means of atomic emission spectroscopy with argon stabilized DC. U-shaped arc and electrothermal atomic absorption spectrometry. The comparison of the results obtained by the direct and standard addition method has indicated the presence of a depressive effect of the complex organic matrix. The effect is avoided successfully by mineralization, as well as by dissolution of the samples. Thus, a relative simple but precise and sensitive method involving the application of a stabilized arc and photoelectric detection with time integration of the emission signals is recommended for the determination of low concentrations of lead in wines. The complex organic matrix was investigated by recording the IR spectra of different wine fractions.

  10. Structural transition models for a class or irreversible aggregates

    International Nuclear Information System (INIS)

    Canessa, E.

    1995-02-01

    A progress report on two recent theoretical approaches proposed to understand the physics of irreversible fractal aggregates showing up a structural transition from a rather dense to a more multibranched growth is presented. In the first approach the transition is understood by solving the Poisson equation on a squared lattice. The second approach is based on the discretization of the Biharmonic equation. Within these models the transition appears when the growth velocity at the fractal surface presents a minimum. The effects of the surrounding medium and geometrical constraints for the seed particles are considered. By using the optical diffraction method, the structural transition is further characterized by a decrease in the fractal dimension for this peculiar class of aggregates. (author). 17 refs, 4 figs

  11. In vitro antimicrobial activity of irreversible hydrocolloid impressions against 12 oral microorganisms

    OpenAIRE

    Casemiro,Luciana Assirati; Pires-de-Souza,Fernanda de Carvalho Panzeri; Panzeri,Heitor; Martins,Carlos Henrique Gomes; Ito,Isabel Yoko

    2007-01-01

    This study evaluated in vitro the antimicrobial activity of irreversible hydrocolloids (one containing an antimicrobial agent) prepared with water or with a 0.2% chlorhexidine digluconate solution against 12 strains of the oral microbiota. Twenty specimens (0.5 x 1.0 cm) for each group (1. Jeltrate mixed with water; 2. Jeltrate mixed with 0.2% chlorhexidine digluconate solution; 3. Greengel mixed with water; 4. Greengel mixed with 0.2% chlorhexidine digluconate solution) were prepared under s...

  12. The significance of lead-210, polonium-210 and protactinium-231 in emissions from coal-fired power stations: a comparison with natural environmental sources

    International Nuclear Information System (INIS)

    Corbett, J.O.

    1981-04-01

    Recently published calculations have suggested that a hypothetical individual may receive an effective radiation dose equivalent of 23 mrem/y from coal-fired power station emissions through the ingestion of lead-210, polonium-210 and protactinium-231. It is shown that the model used in those calculations is over-pessimistic by one or two orders of magnitude when applied to the deposition of Pb-210 and Po-210 derived from the decay of radon naturally present in the atmosphere. A more recent assessment of metabolic data for Pa-231 suggests that estimated doses from this nuclide also can be reduced by about a factor of twenty. It is concluded that the maximum effective dose equivalent from power station emissions probably does not exceed 1-2 mrem/y. (author)

  13. Pain Reduction in Untreated Symptomatic Irreversible Pulpitis Using Liposomal Bupivacaine (Exparel): A Prospective, Randomized, Double-blind Trial.

    Science.gov (United States)

    Bultema, Kristy; Fowler, Sara; Drum, Melissa; Reader, Al; Nusstein, John; Beck, Mike

    2016-12-01

    In the treatment of patients with symptomatic irreversible pulpitis, endodontic debridement is a predictable method to relieve pain. However, there are clinical situations in which emergency care cannot be provided immediately. An unexplored treatment option in these cases may be the use of a long-acting anesthetic to reduce pain in untreated irreversible pulpitis. Some medical studies have shown potential for infiltrations of liposomal bupivacaine (Exparel; Pacira Pharmaceuticals, San Diego, CA) to prolong pain relief and reduce opioid use postoperatively. The Food and Drug Administration has approved Exparel only for infiltrations; therefore, the purpose of this study was to compare an infiltration of liposomal bupivacaine versus bupivacaine for pain control in untreated, symptomatic irreversible pulpitis. Ninety-five emergency patients received 2% lidocaine with 1:100,000 epinephrine via infiltration or an inferior alveolar nerve block to relieve their initial presenting pain. Patients then randomly received either 4 mL liposomal bupivacaine (13.3 mg/mL) or 4 mL 0.5% bupivacaine with 1:200,000 epinephrine by infiltration. Patients received a diary for the day of the appointment and 3 days postinjection to record soft tissue numbness, pain levels, and analgesic (non-narcotic and narcotic) use. No significant differences (P pulpitis. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  14. Comparison of the anesthetic efficacy between bupivacaine and lidocaine in patients with irreversible pulpitis of mandibular molar.

    Science.gov (United States)

    Sampaio, Roberta Moura; Carnaval, Talita Girio; Lanfredi, Camila Bernardeli; Horliana, Anna Carolina Ratto Tempestini; Rocha, Rodney Garcia; Tortamano, Isabel Peixoto

    2012-05-01

    The purpose of this study was to compare the anesthetic efficacy of 0.5% bupivacaine with 1:200,000 epinephrine with that of 2% lidocaine with 1:100,000 epinephrine during pulpectomy in patients with irreversible pulpitis in mandibular posterior teeth. Seventy volunteers, patients with irreversible pulpitis admitted to the Emergency Center of the School of Dentistry at the University of São Paulo, randomly received a conventional inferior alveolar nerve block containing 3.6 mL of either 0.5% bupivacaine with 1:200,000 epinephrine or 2% lidocaine with 1:100,000 epinephrine. During the subsequent pulpectomy, we recorded the patients' subjective assessments of lip anesthesia, the absence/presence of pulpal anesthesia through electric pulp stimulation, and the absence/presence of pain through a verbal analog scale. All patients reported lip anesthesia after the application of either inferior alveolar nerve block. By measuring pulpal anesthesia success with the pulp tester, lidocaine had a higher success rate (42.9%) than bupivacaine (20%). For patients reporting none or mild pain during pulpectomy, the success rate of bupivacaine was 80% and lidocaine was 62.9%. There were only statistically significant differences to the success of pulpal anesthesia. Neither of the solutions resulted in an effective pain control during irreversible pulpitis treatments of mandibular molars. Copyright © 2012 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  15. Electron Emission And Beam Generation Using Ferroelectric Cathodes (electron Beam Generation, Lead Lanthanum Zicronate Titanate, High Power Traveling Wave Tube Amplfier)

    CERN Document Server

    Flechtner, D D

    1999-01-01

    In 1989, researchers at CERN published the discovery of significant electron emission (1– 100 A/cm2) from Lead- Lanthanum-Zirconate-Titanate (PLZT). The publication of these results led to international interest in ferroelectric cathodes studies for use in pulsed power devices. At Cornell University in 1991, experiments with Lead-Zirconate-Titanate (PZT) compositions were begun to study the feasibility of using this ferroelectric material as a cathode in the electron gun section of High Power Traveling Wave Tube Amplifier Experiments. Current-voltage characteristics were documented for diode voltages ranging from 50– 500,000 V with anode cathode gaps of.5– 6 cm. A linear current-voltage relation was found for voltages less than 50 kV. For diode voltages ≥ 200 kV, a typical Child-Langmuir V3/2 dependence was observed...

  16. Use of cadmium in solution in the EL 4 reactor moderator irreversible fixing of cadmium on the metallic surfaces; Utilisation du cadmium en solution dans le moderateur du reacteur EL 4 - fixation irreversible du cadmium sur les surfaces metalliques

    Energy Technology Data Exchange (ETDEWEB)

    Croix, O; Paoli, O; Lecomte, J; Dolle, L; Gallic, Y [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1964-07-01

    In the framework of research into the poisoning of the EL-4 reactor by cadmium sulphate, measurements have been made by two different methods of the residual amounts of cadmium liable to be fixed irreversibly on the surfaces in contact with the heavy water. A marked influence of the pH has been noticed. The mechanism of the irreversible fixing is compatible with the hypothesis of an ion-exchange in the surface oxide layer. In a sufficiently wide range of pH the cadmium thus fixed causes very little residual poisoning. The stability of the cadmium sulphate solutions is however rather low in the conditions of poisoning. (authors) [French] Dans le cadre des etudes sur l'empoisonnement du reacteur EL-4 par le sulfate de cadmium, les quantites residuelles de cadmium susceptibles de se fixer irreversiblement sur les parois que mouillerait l'eau lourde, ont ete mesurees experimentalement par deux methodes differentes. On observe une influence nette du pH. Le mecanisme de la fixation irreversible est compatible avec l'hypothese d'un echange d'ions dans la pellicule d'oxyde superficielle. Dans des limites suffisamment larges de pH, la cadmium ainsi fixe n'occasionne pas d'empoisonnement residuel important. La stabilite des solutions de sulfate de cadmium dans les conditions de l'empoisonnement est cependant mediocre. (auteurs)

  17. PENGUKURAN KADAR NATRIUM ALGINAT DARI ALGA COKELAT SPESIES Sargassum sp. SEBAGAI BAHAN DASAR PEMBUATAN BAHAN CETAK KEDOKTERAN GIGI (IRREVERSIBLE HYDROCOLLOID/DENTAL IMPRESSION MATERIAL)

    OpenAIRE

    MUTMAINNAH SUNAR, SITI

    2016-01-01

    2015 Pengukuran Kadar Natrium Alginate dari Alga Cokelat Spesies Sargassum sp. sebagai Bahan Dasar Pembuatan Bahan Cetak Kedokteran Gigi (Irreversible Hydrocolloid/Dental Impression Material) Siti Mutmainnah Sunar Abstrak Latar belakang : Irreversible hydrocolloid merupakan bahan cetak yang relatif sering digunakan di bidang kedokteran gigi. Namun, bahan baku dari bahan cetak ini masih diimpor dari luar negeri. Natrium alginate sebagai bahan baku masih menggunakan ekstraksi alga c...

  18. Anaesthetic efficacy of lidocaine/clonidine for inferior alveolar nerve block in patients with irreversible pulpitis.

    Science.gov (United States)

    Shadmehr, E; Aminozarbian, M G; Akhavan, A; Mahdavian, P; Davoudi, A

    2017-06-01

    This prospective, randomized, double-blind study aimed to compare the efficacy of lidocaine with epinephrine versus lidocaine with clonidine for inferior alveolar nerve block (IANB) and hemodynamic stability (heart rate, systolic blood pressure, diastolic blood pressure and mean arterial pressure) in patients with irreversible pulpitis. One hundred patients with irreversible pulpitis in mandibular molar teeth randomly received 1.8 mL of 2% lidocaine with clonidine (15 μg mL -1 ) or 1.8 mL of 2% lidocaine with epinephrine (12.5 μg mL -1 ), using a conventional IANB technique. Endodontic access cavities were prepared 15 min after solution deposition, and all patients were required to have profound lip numbness. Success was defined as no or mild pain (visual analog scale recording) upon endodontic access cavity preparation or initial canal instrumentation. The hemodynamic parameters were measured before, during and 5, 10 and 30 min after administration. Finally, the collected data were subjected to independent t-test, chi-square and Fisher's exact test using spss software ver.20 at a significant level of 0.05. The success rates for IANB using lidocaine with epinephrine and lidocaine with clonidine solutions were 29% and 59%, respectively. The clonidine group exhibited a significantly higher success rate (P < 0.05). Five minutes after drug administration, systolic blood pressure and heart rate significantly increased in the lidocaine with epinephrine group and insignificantly decreased in lidocaine with clonidine group. For mandibular molars with irreversible pulpitis, addition of clonidine to lidocaine improved the success rate of IANB compared to a standard lidocaine/epinephrine solution. © 2016 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  19. Angle-dependent reversible and irreversible magnetic torque in single-crystalline Y2Ba4Cu8O16

    International Nuclear Information System (INIS)

    Zech, D.; Rossel, C.; Lesne, L.; Keller, H.; Lee, S.L.; Karpinski, J.

    1996-01-01

    A systematic study of the angle-dependent reversible and irreversible magnetic torque in single-crystalline Y 2 Ba 4 Cu 8 O 16 is presented. The high purity of the crystals allows us to show some intrinsic pinning properties of vortices due to the layered crystal structure. The irreversible component of the torque, which is unusually small, exhibits a peculiar angular dependence: It is minimal as the magnetic field B is applied along the ab plane and displays a pronounced maximum at finite angles, reminiscent of the open-quote open-quote fishtail close-quote close-quote effect. The unusual shape of the irreversible torque is attributed to the pinning of the vortex core, which becomes discontinuous below the two- to three-dimensional (2D-3D) crossover temperature. Another property shown by the angle-dependent torque is the lock-in of the vortex lines between the CuO 2 layers for B parallel to the ab plane. Applying the anisotropic 3D London model to fit the reversible torque data, we derive the in-plane London penetration depth λ ab =143 nm, the coherence length ξ ab =1.9 nm, and the effective mass anisotropy ratio γ=12.3 for Y 2 Ba 4 Cu 8 O 16 . copyright 1996 The American Physical Society

  20. Greenhouse gas emissions increase global warming

    OpenAIRE

    Mohajan, Haradhan

    2011-01-01

    This paper discusses the greenhouse gas emissions which cause the global warming in the atmosphere. In the 20th century global climate change becomes more sever which is due to greenhouse gas emissions. According to International Energy Agency data, the USA and China are approximately tied and leading global emitters of greenhouse gas emissions. Together they emit approximately 40% of global CO2 emissions, and about 35% of total greenhouse gases. The developed and developing industrialized co...

  1. The effect of growth temperature on the irreversibility line of MPMG YBCO bulk with Y2O3 layer

    Science.gov (United States)

    Kurnaz, Sedat; Çakır, Bakiye; Aydıner, Alev

    2017-07-01

    In this study, three kinds of YBCO samples which are named Y1040, Y1050 and Y1060 were fabricated by Melt-Powder-Melt-Growth (MPMG) method without a seed crystal. Samples seem to be single crystal. The compacted powders were located on a crucible with a buffer layer of Y2O3 to avoid liquid to spread on the furnace plate and also to support crystal growth. YBCO samples were investigated by magnetoresistivity (ρ-T) and magnetization (M-T) measurements in dc magnetic fields (parallel to c-axis) up to 5 T. Irreversibility fields (Hirr) and upper critical fields (Hc2) were obtained using 10% and 90% criteria of the normal state resistivity value from ρ-T curves. M-T measurements were carried out using the zero field cooling (ZFC) and field cooling (FC) processes to get irreversible temperature (Tirr). Fitting of the irreversibility line results to giant flux creep and vortex glass models were discussed. The results were found to be consistent with the results of the samples fabricated using a seed crystal. At the fabrication of MPMG YBCO, optimized temperature for crystal growth was determined to be around 1050-1060 °C.

  2. Optimal transformations leading to normal distributions of positron emission tomography standardized uptake values

    Science.gov (United States)

    Scarpelli, Matthew; Eickhoff, Jens; Cuna, Enrique; Perlman, Scott; Jeraj, Robert

    2018-02-01

    The statistical analysis of positron emission tomography (PET) standardized uptake value (SUV) measurements is challenging due to the skewed nature of SUV distributions. This limits utilization of powerful parametric statistical models for analyzing SUV measurements. An ad-hoc approach, which is frequently used in practice, is to blindly use a log transformation, which may or may not result in normal SUV distributions. This study sought to identify optimal transformations leading to normally distributed PET SUVs extracted from tumors and assess the effects of therapy on the optimal transformations. Methods. The optimal transformation for producing normal distributions of tumor SUVs was identified by iterating the Box-Cox transformation parameter (λ) and selecting the parameter that maximized the Shapiro-Wilk P-value. Optimal transformations were identified for tumor SUVmax distributions at both pre and post treatment. This study included 57 patients that underwent 18F-fluorodeoxyglucose (18F-FDG) PET scans (publically available dataset). In addition, to test the generality of our transformation methodology, we included analysis of 27 patients that underwent 18F-Fluorothymidine (18F-FLT) PET scans at our institution. Results. After applying the optimal Box-Cox transformations, neither the pre nor the post treatment 18F-FDG SUV distributions deviated significantly from normality (P  >  0.10). Similar results were found for 18F-FLT PET SUV distributions (P  >  0.10). For both 18F-FDG and 18F-FLT SUV distributions, the skewness and kurtosis increased from pre to post treatment, leading to a decrease in the optimal Box-Cox transformation parameter from pre to post treatment. There were types of distributions encountered for both 18F-FDG and 18F-FLT where a log transformation was not optimal for providing normal SUV distributions. Conclusion. Optimization of the Box-Cox transformation, offers a solution for identifying normal SUV transformations for when

  3. Alpha-Difluoromethylornithine, an Irreversible Inhibitor of Polyamine Biosynthesis, as a Therapeutic Strategy against Hyperproliferative and Infectious Diseases

    Directory of Open Access Journals (Sweden)

    Nicole LoGiudice

    2018-02-01

    Full Text Available The fluorinated ornithine analog α-difluoromethylornithine (DFMO, eflornithine, ornidyl is an irreversible suicide inhibitor of ornithine decarboxylase (ODC, the first and rate-limiting enzyme of polyamine biosynthesis. The ubiquitous and essential polyamines have many functions, but are primarily important for rapidly proliferating cells. Thus, ODC is potentially a drug target for any disease state where rapid growth is a key process leading to pathology. The compound was originally discovered as an anticancer drug, but its effectiveness was disappointing. However, DFMO was successfully developed to treat African sleeping sickness and is currently one of few clinically used drugs to combat this neglected tropical disease. The other Food and Drug Administration (FDA approved application for DFMO is as an active ingredient in the hair removal cream Vaniqa. In recent years, renewed interest in DFMO for hyperproliferative diseases has led to increased research and promising preclinical and clinical trials. This review explores the use of DFMO for the treatment of African sleeping sickness and hirsutism, as well as its potential as a chemopreventive and chemotherapeutic agent against colorectal cancer and neuroblastoma.

  4. Atmospheric and children's blood lead as indicators of vehicular traffic and other emission sources in Mumbai, India

    Energy Technology Data Exchange (ETDEWEB)

    Tripathi, R.M.; Raghunath, R.; Vinod Kumar, A.; Sastry, V.N.; Sadasivan, S. [Environmental Assessment Division, Bhabha Atomic Research Centre, 400 085 Mumbai (India)

    2001-02-21

    Average concentration of Pb in atmospheric air particulates in different suburbs of Mumbai was studied for almost a decade and its spatial and temporal profiles are discussed in relation to emission sources. In general the concentration of Pb in all the residential suburban atmosphere is well below the Central Pollution Control Board (CPCB, 1994) prescribed limit of 1.5 {mu}g m{sup -3} barring a few exceptions for some residential/industrial sites, such as those of Thane and Kurla scrap yards. The correlation between blood lead of children and air lead reveals that the blood Pb level in children could increase by 3.6 {mu}g dl{sup -1} for an incremental rise of 1.0 {mu}g Pb m{sup -3} of air. The temporal profile of air Pb values indicates a decreasing trend in residential suburbs (Khar: 1984, 0.39 {mu}g m{sup -3}; 1996, 0.17 {mu}g m{sup -3}) as well as in suburban residential areas with low traffic (Goregaon: 1984, 0.53 {mu}g m{sup -3}; 1996, 0.30 {mu}g m{sup -3})

  5. The change of β-adrenergic system after cessation of lead exposure

    International Nuclear Information System (INIS)

    Chang, H.-R.; Tsao, D.-A.; Yu, H.-S.; Ho, C.-K.

    2005-01-01

    For understanding a reversible or irreversible harm of β-adrenergic system in lead induced cardiovascular disease (hypertension), We set up animal model to estimate the change of blood pressure and sympathetic nervous system after lead exposure withdrawn in the study. We address three topics in this study: (a) the relationship between withdrawal time of lead exposure and β-adrenergic receptor, plasma catecholamine level, blood pressure, and lead level in heart, aorta, and kidney in lead-induced hypertensive rats after lead exposure stopped; (b) the relationship between blood pressure and β-adrenergic receptor in heart, aorta, and kidney; (c) the estimation of relationship between lead withdrawn and the variation of β-adrenergic system. Wistar rats were chronically fed with 2% lead acetate (experimental group) and water (control group) for 2 months. The rats were divided into 8 groups by withdrawal time of lead exposure stopped. Plasma catecholamine level was measured by high-performance liquid chromatography. Radioligand binding assay was measured by a method that fulfilled strict criteria of β-adrenergic receptor using the ligand [ 125 I]iodocyanopindolol. The levels of lead were determined by electrothermal atomic absorption spectrometry. The results showed that a close relation between reduced lead level and the plasma catecholamine level decreased, aorta β-adrenergic receptor increased, kidney β-adrenergic receptor diminished, heart β-adrenergic receptor increased, and blood pressure dropped after lead exposure withdrawn. The study on the regulation of β-adrenergic system in lead-induced hypertension after lead withdrawn might also provide insight about the nature of this disease state

  6. Wall heat flux influence on the thermodynamic optimisation of irreversibilities of a circulating fluidised bed combustor

    CSIR Research Space (South Africa)

    Baloyi, J

    2016-07-01

    Full Text Available . The irreversibilities generated were arrived at by computing the entropy generation rates due to the combustion and frictional pressure drop processes. For the combustor where the wall condition was changed from adiabatic to negative heat flux (that is heat leaving...

  7. Determination of lead isotopic composition of airborne particulate matter by ICPMS: implications for lead atmospheric emissions in Canada

    International Nuclear Information System (INIS)

    Celo, V.; Dabek-Zlotorzynska, E.

    2009-01-01

    Full text: Quadrupole ICPMS was used for determination of trace metal concentrations and lead isotopic composition in fine particulate matter (PM 2.5 ) collected at selected sites within the Canadian National Air Pollution Surveillance network, from February 2005 to February 2007. High enrichment factors indicated that lead is mostly of anthropogenic origin and consequently, the lead isotopic composition is directly related to that of pollution sources. The 206 Pb/ 207 Pb and 208 Pb/ 207 Pb ratios were measured and the results were compared to the isotopic signatures of lead from different sources. Various approaches were used to assess the impact of relevant sources and the meteorological conditions in the occurrence and distribution of lead in Canadian atmospheric aerosols. (author)

  8. Lead contamination and transfer in urban environmental compartments analyzed by lead levels and isotopic compositions.

    Science.gov (United States)

    Hu, Xin; Sun, Yuanyuan; Ding, Zhuhong; Zhang, Yun; Wu, Jichun; Lian, Hongzhen; Wang, Tijian

    2014-04-01

    Lead levels and isotopic compositions in atmospheric particles (TSP and PM2.5), street dust and surface soil collected from Nanjing, a mega city in China, were analyzed to investigate the contamination and the transfer of lead in urban environmental compartments. The lead contents in TSP and PM2.5 are significantly higher than them in the surface soil and street dust (p lead to the major crustal elements (Al, Sr, Ti and Fe) indicates significant lead enrichment in atmospheric particles. The plots of (206)Pb/(207)Pb vs.(208)Pb/(206)Pb and (206)Pb/(207)Pb vs. 1/Pb imply that the street dust and atmospheric particles (TSP and PM2.5) have very similar lead sources. Coal emissions and smelting activities may be the important lead sources for street dust and atmospheric particles (TSP and PM2.5), while the deposition of airborne lead is an important lead source for urban surface soil. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Lead isotope analyses of standard rock samples

    International Nuclear Information System (INIS)

    Koide, Yoshiyuki; Nakamura, Eizo

    1990-01-01

    New results on lead isotope compositions of standard rock samples and their analytical procedures are reported. Bromide form anion exchange chromatography technique was adopted for the chemical separation lead from rock samples. The lead contamination during whole analytical procedure was low enough to determine lead isotope composition of common natural rocks. Silica-gel activator method was applied for emission of lead ions in the mass spectrometer. Using the data reduction of 'unfractionated ratios', we obtained good reproducibility, precision and accuracy on lead isotope compositions of NBS SRM. Here we present new reliable lead isotope compositions of GSJ standard rock samples and USGS standard rock, BCR-1. (author)

  10. Anthropogenic signatures of lead in the Northeast Atlantic

    NARCIS (Netherlands)

    Rusiecka, D.; Gledhill, M.; Milne, A.; Achterberg, E.P.; Annett, A.L.; Atkinson, S.; Birchill, A.; Karstensen, J.; Lohan, M.; Mariez, C.; Middag, R.; Rolison, J.M.; Tanhua, T.; Ussher, S.; Connelly, D.

    2018-01-01

    Anthropogenic activities have resulted in enhanced lead (Pb) emissions to the environment over the past century, mainly through the combustion of leaded gasoline. Here we present the first combined dissolved (DPb), labile (LpPb), and particulate (PPb) Pb data set from the Northeast Atlantic (Celtic

  11. Discharges of copper, zinc and lead to water and soil. Analysis of the emission pathways and possible emission reduction measures; Eintraege von Kuper, Zink und Blei in Gewaesser und Boeden. Analyse der Emissionspfade und moeglicher Emissionsminderungsmassnahmen

    Energy Technology Data Exchange (ETDEWEB)

    Hillenbrand, Thomas; Toussaint, Dominik; Boehm, Eberhard [Fraunhofer-Institut fuer Systemtechnik und Innovationsforschung (ISI), Karlsruhe (Germany); Fuchs, Stephan; Scherer, Ulrike [Karlsruhe Univ. (T.H.) (Germany). Inst. fuer Siedlungswasserwirtschaft; Rudolphi, Alexander; Hoffmann, Martin [Gesellschaft fuer Oekologische Bautechnik Berlin mbH (GFOeB) (Germany)

    2005-08-15

    Because of the pollution situation for copper, zinc and lead and due to the significance of non-point sources, there is a basic need for action to reduce the environmental burden due to non-point emissions of these heavy metals. Therefore the aim of the project was first to quantify the application-related discharges of these heavy metals into water and soil. Based on this, specific strategies to reduce the emissions to water were developed. Additionally a guideline for architects and builders for the outdoor use of the substances in the building sector was drawn up with the objective of supplying information and aids on the environmentally-compatible use of these substances. Furthermore, existing life cycle assessment methods were examined for the use of various roofing materials as well as the possibilities to further develop these methods. The results of the emission calculations show the great significancy of the application areas vehicles, building sector, water supply and other specific sources (i.e. galvanized products). The examination of different measures to reduce the emissions gives a review and an assessment of the possibilities, taking into account the relevant boundary conditions. This information can also serve as the basis for elaborating a programme of measures within the scope of a future river basin management. (orig.)

  12. Exergy analysis on the irreversibility of rotary air preheater in thermal power plant

    International Nuclear Information System (INIS)

    Wang Hongyue; Zhao Lingling; Zhou Qiangtai; Xu Zhigao; Kim, Hyung Taek

    2008-01-01

    Energy recovery devices can have a substantial impact on process efficiency and their relevance to the problem of conservation of energy resources is generally recognized to be beyond dispute. One type of such a device, which is commonly used in thermal power plants and air conditioning systems, is the rotary air preheater. A major disadvantage of the rotary air preheater is that there is an unavoidable leakage due to carry over and pressure difference. There are gas streams involved in the heat transfer and mixing processes. There are also irreversibilities, or exergy destruction, due to mixing, pressure losses and temperature gradients. Therefore, the purpose of this research paper is based from the second law of thermodynamics, which is to build up the relationship between the efficiency of the thermal power plant and the total process of irreversibility in the rotary air preheater using exergy analysis. For this, the effects of the variation of the principal design parameters on the rotary air preheater efficiency, the exergy efficiency, and the efficiency of the thermal power plant are examined by changing a number of parameters of rotary air preheater. Furthermore, some conclusions are reached and recommendations are made so as to give insight on designing some optimal parameters

  13. Irreversible barrier to the reprogramming of donor cells in cloning with mouse embryos and embryonic stem cells.

    Science.gov (United States)

    Ono, Yukiko; Kono, Tomohiro

    2006-08-01

    Somatic cloning does not always result in ontogeny in mammals, and development is often associated with various abnormalities and embryo loss with a high frequency. This is considered to be due to aberrant gene expression resulting from epigenetic reprogramming errors. However, a fundamental question in this context is whether the developmental abnormalities reported to date are specific to somatic cloning. The aim of this study was to determine the stage of nuclear differentiation during development that leads to developmental abnormalities associated with embryo cloning. In order to address this issue, we reconstructed cloned embryos using four- and eight-cell embryos, morula embryos, inner cell mass (ICM) cells, and embryonic stem cells as donor nuclei and determined the occurrence of abnormalities such as developmental arrest and placentomegaly, which are common characteristics of all mouse somatic cell clones. The present analysis revealed that an acute decline in the full-term developmental competence of cloned embryos occurred with the use of four- and eight-cell donor nuclei (22.7% vs. 1.8%) in cases of standard embryo cloning and with morula and ICM donor nuclei (11.4% vs. 6.6%) in serial nuclear transfer. Histological observation showed abnormal differentiation and proliferation of trophoblastic giant cells in the placentae of cloned concepti derived from four-cell to ICM cell donor nuclei. Enlargement of placenta along with excessive proliferation of the spongiotrophoblast layer and glycogen cells was observed in the clones derived from morula embryos and ICM cells. These results revealed that irreversible epigenetic events had already started to occur at the four-cell stage. In addition, the expression of genes involved in placentomegaly is regulated at the blastocyst stage by irreversible epigenetic events, and it could not be reprogrammed by the fusion of nuclei with unfertilized oocytes. Hence, developmental abnormalities such as placentomegaly as

  14. Relativistic thermodynamics of irreversible processes I. Heat conduction, diffusion, viscous flow and chemical reactions; formal part

    NARCIS (Netherlands)

    Kluitenberg, G.A.; Groot, S.R. de; Mazur, P.

    1953-01-01

    The relativistic thermodynamics of irreversible processes is developed for an isotropic mixture in which heat conduction, diffusion, viscous flow, chemical reactions and their cross-phenomena may occur. The four-vectors, representing the relative flows of matter, are defined in such a way that, in

  15. Irreversible traps, their influence on the embrittlement of high strength steel

    International Nuclear Information System (INIS)

    Mariano, I; Mansilla, G

    2012-01-01

    Hydrogen (H) can be trapped in lattice defects such as vacancies, dislocations, grain boundaries and interfaces between the matrix and precipitates. The effect on the mechanical properties depends on factors inherent in materials such as the activation energy of irreversible traps (H trapped in Network Places) and its sensitivity to embrittlement. Differential scanning calorimetry (DSC) allows the study of those processes in which enthalpy variation occurs. The purpose is to record the difference in enthalpy change that occurs in the sample as a function of temperature or time. This work represents a study of H embrittlement of high strength steel resulfurized

  16. A quantum analogy for the linear thermodynamics of irreversible processes

    International Nuclear Information System (INIS)

    Ibanez-Mengual, J.A.; Tejerina-Garcia, A.F.

    1981-01-01

    In this paper, a model for the transport through a liquid junction of two solutions of the same components, based on quantum-mechanical considerations, is established. A small energy difference, compared with the molecules' energy, among the molecules placed at both sides of the junction is assumed to exist. The liquid junction is assimilated to a potential barrier, getting the material flow from the transmission coefficient of the barrier, when the energy difference is caused by a temperature gradient, a concentration gradient, or both gradients acting together. In all cases, equations formally identical to those of the thermodynamics of irreversible processes are obtained. In the last case, the heat flow is also determined. (author)

  17. Effect of hybrid system battery performance on determining CO2 emissions of hybrid electric vehicles in real-world conditions

    International Nuclear Information System (INIS)

    Alvarez, Robert; Schlienger, Peter; Weilenmann, Martin

    2010-01-01

    Hybrid electric vehicles (HEVs) can potentially reduce vehicle CO 2 emissions by using recuperated kinetic vehicle energy stored as electric energy in a hybrid system battery (HSB). HSB performance affects the individual net HEV CO 2 emissions for a given driving pattern, which is considered to be equivalent to unchanged net energy content in the HSB. The present study investigates the influence of HSB performance on the statutory correction procedure used to determine HEV CO 2 emissions in Europe based on chassis dynamometer measurements with three identical in-use examples of a full HEV model featuring different mileages. Statutory and real-world driving cycles and full electric vehicle operation modes have been considered. The main observation is that the selected HEVs can only use 67-80% of the charge provided to the HSB, which distorts the outcomes of the statutory correction procedure that does not consider such irreversibility. CO 2 emissions corrected according to this procedure underestimate the true net CO 2 emissions of one HEV by approximately 13% in real-world urban driving. The correct CO 2 emissions are only reproduced when considering the HSB performance in this driving pattern. The statutory procedure for correcting HEV CO 2 emissions should, therefore, be adapted.

  18. Review report on the literature that links environmental and economic threshold effects

    NARCIS (Netherlands)

    Wesseler, J.H.H.

    2008-01-01

    The decision whether or not to implement a project is one subject to uncertainty and irreversibility. Irreversible effects of a project include effects on: human health, due to changes in emissions; biodiversity; climate change, due to changes in greenhouse gas emissions; sunk costs and;

  19. Biogenic emissions of isoprenoids and NO in China and comparison to anthropogenic emissions

    International Nuclear Information System (INIS)

    Tie Xuexi; Li Guohui; Ying, Zhuming; Guenther, Alex; Madronich, Sasha

    2006-01-01

    northeastern and southern China, there are relatively large biogenic emissions of isoprenoids, leading to an important impact on the ozone production in these regions. Furthermore, the emissions of isoprenoids are highest during summer and noontime, which correlates to the peak of ozone production period. For example, the ratio between summer and winter for the emissions of isoprenoids is about 15 in China. As a result, the biogenic emissions of isoprenoids are significantly larger than the anthropogenic emissions of VOCs in China during daytime in summer. Biogenic NO emissions are mostly produced by agricultural soils which co-exist with large populations and human activity. As a result, the biogenic emissions of NO are mostly overlapped with the anthropogenic emissions of NO, leading to the enhancement in NO concentrations in the high anthropogenic NO emission regions. Finally, the future emissions of isoprene and monoterpenes over China are estimated. The results show that the future biogenic emissions may increase significantly due to land cover changes in central eastern China, which could have a very important impact on ozone formation in this region. However, these estimates are highly uncertain and are presented as a potential scenario to show the importance of possible changes of biogenic emissions in China

  20. Biogenic emissions of isoprenoids and NO in China and comparison to anthropogenic emissions.

    Science.gov (United States)

    Tie, Xuexi; Li, Guohui; Ying, Zhuming; Guenther, Alex; Madronich, Sasha

    2006-12-01

    northeastern and southern China, there are relatively large biogenic emissions of isoprenoids, leading to an important impact on the ozone production in these regions. Furthermore, the emissions of isoprenoids are highest during summer and noontime, which correlates to the peak of ozone production period. For example, the ratio between summer and winter for the emissions of isoprenoids is about 15 in China. As a result, the biogenic emissions of isoprenoids are significantly larger than the anthropogenic emissions of VOCs in China during daytime in summer. Biogenic NO emissions are mostly produced by agricultural soils which co-exist with large populations and human activity. As a result, the biogenic emissions of NO are mostly overlapped with the anthropogenic emissions of NO, leading to the enhancement in NO concentrations in the high anthropogenic NO emission regions. Finally, the future emissions of isoprene and monoterpenes over China are estimated. The results show that the future biogenic emissions may increase significantly due to land cover changes in central eastern China, which could have a very important impact on ozone formation in this region. However, these estimates are highly uncertain and are presented as a potential scenario to show the importance of possible changes of biogenic emissions in China.

  1. The usefulness of computed tomography in distinguishing between asthma with irreversible air-flow limitation and pulmonary emphysema

    International Nuclear Information System (INIS)

    Taniguchi, Hiroyuki; Ogawa, Kenji; Nakajima, Yoko; Amano, Masao; Kondo, Yasuhiro; Matsumoto, Kohei; Yokoyama, Sigeki; Matsubara, Kazuhito

    1988-01-01

    Chronic asthma may develop irreversible air-flow limitation and in this circumstance, it is clinically difficult to distinguish between asthma and pulmonary emphysema. Recently, it has been reported that computed tomography (CT) may assist in detecting changes in the lung specific for emphysema. We examined patients who suffered from asthma before the age of 45 which led to irreversible air-flow limitation (BA group; n = 17, mean age = 65.9) and patients with pulmonary emphysema (CPE group; n = 19, mean age = 69.8). Pulmonary function testing and CT were performed on all patients. In assessment of CT, areas of low attenuation and vascular disruption were considered to be suggestive of emphysema, and the Emphysema Score (ES) was calculated according to the method of Bergin et al. There was no significant difference in FEV1.0, % FEV1.0, % FEV1.0/FVC, % RV and RV/TLC between the BA group and the CPE group. In contrast, there was a significant decrease in the % DLco in CPE group compared with that of the BA group (p < 0.001). The ES in total lung was 54.9 ± 18.6 % in the CPE group and 7.8 ± 11.0 % in BA group (p < 0.001). There was a significant correlation between the % DLco and the ES in the CPE group (p < 0.01). We conclude that the CT is useful in distinguishing between asthma with irreversible air-flow limitation and pulmonary emphysema. (author)

  2. Nitric oxide-related species-induced protein oxidation: reversible, irreversible, and protective effects on enzyme function of papain.

    Science.gov (United States)

    Väänänen, Antti J; Kankuri, Esko; Rauhala, Pekka

    2005-04-15

    Protein oxidation, irreversible modification, and inactivation may play key roles in various neurodegenerative disorders. Therefore, we studied the effects of the potentially in vivo occurring nitric oxide-related species on two different markers of protein oxidation: protein carbonyl generation on bovine serum albumine (BSA) and loss of activity of a cysteine-dependent protease, papain, in vitro by using Angeli's salt, papanonoate, SIN-1, and S-nitrosoglutathione (GSNO) as donors of nitroxyl, nitric oxide, peroxynitrite, and nitrosonium ions, respectively. Angeli's salt, SIN-1, and papanonoate (0-1000 microM) all generated a concentration-dependent increase in carbonyl formation on BSA (107, 60, and 45%, respectively). GSNO did not affect carbonyl formation. Papain was inhibited by Angeli's salt, SIN-1, papanonoate, and GSNO with IC50 values of 0.62, 2.3, 54, and 80 microM, respectively. Angeli's salt (3.16 microM)-induced papain inactivation was only partially reversible, while the effects of GSNO (316 microM) and papanonoate (316 microM) were reversible upon addition of excess DTT. The Angeli's salt-mediated DTT-irreversible inhibition of papain was prevented by GSNO or papanonoate pretreatment, hypothetically through mixed disulfide formation or S-nitrosylation of the catalytically critical thiol group of papain. These results, for the first time, compare the generation of carbonyls in proteins by Angeli's salt, papanonoate, and SIN-1. Furthermore, these results suggest that S-nitrosothiols may have a novel function in protecting critical thiols from irreversible oxidative damage.

  3. Performance evaluation and optimization of fluidized bed boiler in ethanol plant using irreversibility analysis

    Directory of Open Access Journals (Sweden)

    Nugroho Agung Pambudi

    2017-09-01

    Full Text Available This research aims to evaluate the performance of a fluidized bed boiler in an ethanol production plant through exergy and irreversibility analysis. The study also includes the optimization of the pre-heater and the deaerator in order to improve the system efficiency. Operational data from the ethanol production plant was collected between 2015 and early 2016. The total exergy derived from the fuel was determined to be 7783 kJ/s, while the exergy efficiency of the system was found to be 26.19%, with 2214 kJ/s used in steam production, while 71.55% was lost to component irreversibility and waste heat from the pre-heater. The exergy efficiencies of individual components of the system such as the boiler, deaerator, and pre-heater were found to be 25.82%, 40.13%, and 2.617%, respectively, with the pre-heater having the lowest efficiency. Thus, the pre-heater has the highest potential to significantly improve the efficiency of the boiler system. The optimization of the pre-heater shows that a rise in temperature in the outlet of the pre-heater positively affects the exergy efficiency of the deaerator.

  4. Evaporation Controlled Emission in Ventilated Rooms

    DEFF Research Database (Denmark)

    Topp, Claus; Nielsen, Peter V.; Heiselberg, Per

    -scale ventilated room when the emission is fully or partly evaporation controlled. The objective of the present research work has been to investigate the change of emission rates from small-scale experiments to full-scale ventilated rooms and to investigate the influence of the local air velocity field near......Emission of volatile organic compounds (VOCs) from materials is traditionally determined from tests carried out in small-scale test chambers. However, a difference in scale may lead to a difference in the measured emission rate in a small-scale test chamber and the actual emission rate in a full...

  5. Study of luminous emissions associated to electron emissions in radiofrequency cavities; Etude des emissions lumineuses associees aux emissions electroniques dans les cavites hyperfrequences

    Energy Technology Data Exchange (ETDEWEB)

    Maissa, S

    1996-11-26

    This study investigates luminous emissions simultaneously to electron emissions and examines their features in order to better understand the field electron emission phenomenon. A RF cavity, operating at room temperature and in pulsed mode, joined to a sophisticated experimental apparatus has been especially developed. The electron and luminous emissions are investigated on cleaned or with metallic, graphitic and dielectric particles contaminated RF surfaces in order to study their influence on these phenomena. During the surface processing, unstable luminous spots glowing during one RF pulse are detected. Their apparition is promoted in the vicinity of the metallic particles or scratches. Two hypotheses could explain their origin: the presence of micro-plasmas associated to electronic explosive emission during processing or the thermal radiation of the melted metal during this emission. Stable luminous spots glowing during several RF pulses are also detected and appear to increase on RF surfaces contaminated with dielectric particles, leading to strong and explosive luminous emissions. Two interpretations are considered: the initiation of surface breakdowns on the dielectric particles or the heating by the RF field at temperatures sufficiently intense to provoke their thermal radiation then their explosion. Finally a superconducting cavity has been adapted to observe luminous spots, which differ from the former ones bu their star shape and could be associated to micro-plasmas, revealed by the starbursts observed on superconducting cavity walls. (author) 102 refs.

  6. The isotopic composition of lead in man and the environment in Finland: isotope ratios of lead as indicators of pollutant source

    International Nuclear Information System (INIS)

    Keinonen, M.

    1989-01-01

    The isotopic composition of lead was determined in samples from the Helsinki area: in emission sources (gasoline, incinerator and lead smelter emissions, coal), in sources of intake to man (air, diet), in samples representing long-term deposition (lichen, soil, lake sediments) and in human tissue. The measurements of the isotope ratios 206 Pb/ 204 Pb and 206 Pb/ 207 Pb were done by thermal ionization mass spectrometry after chemical separation of lead by anion exchange and cathodic electrodeposition. The origin of lead in man and the environment in the Helsinki area was evaluated by using the differences in the measured isotope ratios as an indicator. The means of the ratios in gasoline ( 206 Pb/ 207 Pb 1.124+-0.026, 206 Pb/ 204 Pb 17.45+-0.42) and the ratios in other emission sources in Helsinki ( 206 Pb/ 207 Pb 1.149-1.226, 206 Pb/ 204 Pb 17.94-19.24) were significantly different. Lead in air samples from Helsinki (1.123+-0.013) could be attributed to gasoline, as lead in soil near a highway (1.136+-0.003). By contrast, isotope ratios measured in lichen (1.148+-0.006) indicated considerable amounts of lead from sources with higher 206 Pb abundances, evidently industrial sources. The isotope ratios in human liver, lung, and bone ( 206 Pb/ 207 Pb 1.142+-0.015, 1.151+-0.011, and 1.156+-0.013, respectively and 206 Pb/ 204 Pb 17.76+-0.28, 17.91+-0.20, and 17.96+-0.09, respectively) were practically the same and no significant dependence of the isotope ratios on age or concentration of lead was seen. In lake sediment cores a correlation was found between the isotope ratios, lead concentration, and depth. The non-anthropogenic lead of high isotope ratios from bedrock was the major component at depths dated older than 100 years. At the surface of the sediment atmospheric lead prevailed, with ratios similar to those of gasoline, air samples and lichen. In the post-1900 layers, anthropogenic lead made up about 40-60% of the total sedimentary lead

  7. The anti-inflammatory effects of matrix metalloproteinase-3 on irreversible pulpitis of mature erupted teeth.

    Directory of Open Access Journals (Sweden)

    Hisanori Eba

    Full Text Available Matrix metalloproteinases (MMPs are involved in extracellular matrix degradation and the modulation of cell behavior. These proteinases have also been implicated in tissue repair and regeneration. Our previous studies have demonstrated that MMP-3 elicits stimulatory effects on the proliferation and the migration of endothelial cells as well as anti-apoptotic effects on these cells in vitro. In addition, we found that MMP-3 enhanced the regeneration of lost pulp tissue in a rat incisor pulp injury model. However, continuously erupting rodent incisors exhibit significantly different pulp organization compared with mature erupted teeth. Therefore, we have further extended these studies using a canine irreversible pulpitis model to investigate the effects of MMP-3. In this study, the crowns of the canine mature premolars were removed and the pulp tissues were amputated. The amputated pulp tissues remained exposed for 24 or 72 hours to induce mild or severe irreversible pulpitis, respectively, followed by sealing of the cavities. In both models, the whole pulp tissues became necrotic by day 14. In this mild pulpitis model, the regeneration of pulp tissue with vasculature and nerves was observed until 14 days after sealing with MMP-3, followed by extracellular matrix formation in the regenerated pulp tissues until day 28. The treatment with MMP-3 resulted in a decrease in the number of macrophage and antigen-presenting cells and a significant inhibition of IL-6 expression on day 3. The inhibition of MMP-3 activity abolished these anti-inflammatory effects. Immunofluorescence staining demonstrated that MMP-3 was involved in the modification of serum-derived hyaluronan-associated proteins and hyaluronan (SHAP-HA complexes possibly through the degradation of versican. These results demonstrate that MMP-3 can act as an anti-inflammatory agent and suggest that MMP-3 might represent a useful therapy for the treatment of mild irreversible pulpitis.

  8. The anti-inflammatory effects of matrix metalloproteinase-3 on irreversible pulpitis of mature erupted teeth.

    Science.gov (United States)

    Eba, Hisanori; Murasawa, Yusuke; Iohara, Koichiro; Isogai, Zenzo; Nakamura, Hiroshi; Nakamura, Hiroyuki; Nakashima, Misako

    2012-01-01

    Matrix metalloproteinases (MMPs) are involved in extracellular matrix degradation and the modulation of cell behavior. These proteinases have also been implicated in tissue repair and regeneration. Our previous studies have demonstrated that MMP-3 elicits stimulatory effects on the proliferation and the migration of endothelial cells as well as anti-apoptotic effects on these cells in vitro. In addition, we found that MMP-3 enhanced the regeneration of lost pulp tissue in a rat incisor pulp injury model. However, continuously erupting rodent incisors exhibit significantly different pulp organization compared with mature erupted teeth. Therefore, we have further extended these studies using a canine irreversible pulpitis model to investigate the effects of MMP-3. In this study, the crowns of the canine mature premolars were removed and the pulp tissues were amputated. The amputated pulp tissues remained exposed for 24 or 72 hours to induce mild or severe irreversible pulpitis, respectively, followed by sealing of the cavities. In both models, the whole pulp tissues became necrotic by day 14. In this mild pulpitis model, the regeneration of pulp tissue with vasculature and nerves was observed until 14 days after sealing with MMP-3, followed by extracellular matrix formation in the regenerated pulp tissues until day 28. The treatment with MMP-3 resulted in a decrease in the number of macrophage and antigen-presenting cells and a significant inhibition of IL-6 expression on day 3. The inhibition of MMP-3 activity abolished these anti-inflammatory effects. Immunofluorescence staining demonstrated that MMP-3 was involved in the modification of serum-derived hyaluronan-associated proteins and hyaluronan (SHAP-HA) complexes possibly through the degradation of versican. These results demonstrate that MMP-3 can act as an anti-inflammatory agent and suggest that MMP-3 might represent a useful therapy for the treatment of mild irreversible pulpitis.

  9. Cardiological applications of positron emission tomography

    International Nuclear Information System (INIS)

    Schelbert, H.; Czernin, J.

    1994-01-01

    Positron emission tomography (PET) expands the diagnostic possibilities of nuclear medicine techniques for the diagnosis of coronary artery disease and, especially, for the identification of myocardial viability. The presence of coronary artery disease can be detected by evaluation of myocardial blood flow at rest and during pharmacologically induced hyperemia with a sensitivity of 84 to 98% and a specificity of 78 to 100% according to recent studies. Comparative investigations in the same patients have demonstrated a significant gain in the diagnostic accuracy of PET as compared with single photon emission computed tomography (SPECT). PET has influenced even more profoundly the identification of myocardial viability. Measured against the functional outcome of regional contractile function after successful revascularization, an increase of glucose utilization relative to regional myocardial blood flow is 77 to 85% accurate in identifying reversibly injured myocardium. Conversely, PET is 78 to 92% accurate in identifying myocardium as irreversibly injured when pre-operative glucose uptake was reduced or absent. Recent studies have indicated that it is possible to predict to some extent post-revascularization improvement in left ventricular function as well as in congestive heart failure related symptoms in patients with ischemic cardiomyopathy. Furthermore, PET can identify patients with an increased risk of mortality and morbidity as a result of ischemic heart disease and, thus, stratify patients to the most appropriate and cost-effective therapeutic approach. (authors)

  10. Lead Exposure: A Summary of Global Studies and the Need for New Studies from Saudi Arabia

    Directory of Open Access Journals (Sweden)

    A. P. Shaik

    2014-01-01

    Full Text Available Lead poisoning (plumbism can cause irreversible genetic and reproductive toxicity, hematological effects, neurological damage, and cardiovascular effects. Despite many efforts to minimize lead poisoning, it continues to be a major health concern in many developing and developed countries. Despite efforts to control lead exposure and toxicity, serious cases of lead poisoning increasingly occur as a result of higher vehicular traffic and industrialization. The biomarkers for identification of genetic susceptibility to a particular disease are useful to identify individuals who are at risk for lead poisoning. Although many such studies have been taken up elsewhere, very few studies were performed in Saudi Arabia to assess susceptibility to lead poisoning. This indicates an urgent need for testing of susceptible individuals. The present paper was planned to understand the genetic susceptibility to lead toxicity in the various population studies conducted worldwide and also to correlate it with the current scenario in Saudi Arabia. Such studies are necessary for appropriate precautions in terms of diet and avoiding exposure to be used in order to prevent adverse health effects.

  11. Kinetics of irreversible thermal decomposition of dissociating nitrogen dioxide with nitrogen oxide or oxygen additions

    International Nuclear Information System (INIS)

    Gvozdev, A.A.

    1987-01-01

    The effect of NO or O 2 admixtures on kinetics of the irreversible thermal decomposition of nitrogen dioxide at temperatures 460-520 deg C and pressures 4-7 MPa has been studied. It follows from experimental data that the rate of N 2 O 4 formation reduces with the increase of partial pressure of oxygen or decrease of partial pressure of nitrogen oxide. The same regularity is seen for the rate of nitrogen formation. The rate constants of N 2 O formation in dissociating nitrogen tetroxide with oxygen or nitrogen oxide additions agree satisfactorily with previously published results, obtained in stoichiometric mixtures. The appreciable discrepancy at 520 deg C is bind with considerable degree of nitrogen oxide transformation which constitutes approximately 14%. It is determined that the kinetics of formation of the products of irreversible N 2 O and N 2 decomposition in stoichiometric and non-stoichiometric 2NO 2 ↔ 2NO+O 2 mixtures is described by identical 3NO → N 2 O+NO 2 and N 2 O+NO → N 2 +NO 2 reactions

  12. The effect of pouring time on the dimensional accuracy of casts made from different irreversible hydrocolloid impression materials

    Directory of Open Access Journals (Sweden)

    Supneet Singh Wadhwa

    2013-01-01

    Full Text Available Aims and Objectives: To determine the time dependent accuracy of casts made from three different irreversible hydrocolloids. Materials and Methods: The effect of delayed pouring on the accuracy of three different irreversible hydrocolloid impression materials - Regular set CA 37(Cavex, The Netherlands, regular set chromatic (Jeltrate, Dentsply, and fast set (Hydrogum soft, Zhermack Clinical was investigated. A brass master die that contained two identical posts simulating two complete crown-tapered abutment preparations with reference grooves served as a standardized master model. A total of 120 impressions were made using specially prepared stock-perforated brass tray with 40 impressions of each material. The impressions were further sub-grouped according to four different storage time intervals: 0 min (immediately, 12 min, 30 min, and 1 h. The impressions were stored at room temperature in a zip-lock plastic bag. Interabutment and intraabutment distances were measured in the recovered stone dies (Type IV, Kalrock using a profile projector with an accuracy of 0.001 mm. The data so obtained was analyzed statistically. Results: Results of this study showed no statistically significant differences in the accuracy of casts obtained at different time intervals. Conclusion: Because it is not always possible to pour the impression immediately in routine clinical practice, all irreversible hydrocolloid materials studied could be stored in a zip-lock plastic bag for upto 1 h without any significant distortion.

  13. Lead in the environment

    Science.gov (United States)

    Pattee, Oliver H.; Pain, Deborah J.; Hoffman, David J.; Rattner, Barnett A.; Burton, G. Allen; Cairns, John

    2003-01-01

    Anthropogenic uses of lead have probably altered its availability and environmental distribution more than any other toxic element. Consequently, lead concentrations in many living organisms may be approaching thresholds of toxicity for the adverse effects of lead. Such thresholds are difficult to define, as they vary with the chemical and physical form of lead, exposure regime, other elements present and also vary both within and between species. The technological capability to accurately quantify low lead concentrations has increased over the last decade, and physiological and behavioral effects have been measured in wildlife with tissue lead concentrations below those previously considered safe for humans.s.236 Consequently. lead criteria for the protection of wildlife and human health are frequently under review, and 'thresholds' of lead toxicity are being reconsidered. Proposed lead criteria for the protection of natural resources have been reviewed by Eisler. Uptake of lead by plants is limited by its generally low availability in soils and sediments, and toxicity may be limited by storage mechanisms and its apparently limited translocation within most plants. Lead does not generally accumulate within the foliar parts of plants, which limits its transfer to higher trophic levels. Although lead may concentrate in plant and animal tissues, no evidence of biomagnification exists. Acid deposition onto surface waters and soils with low buffering capacity may influence the availability of lead for uptake by plants and animals, and this may merit investigation at susceptible sites. The biological significance of chronic low-level lead exposure to wildlife is sometimes difficult to quantify. Animals living in urban environments or near point sources of lead emission are inevitably subject to greater exposure to lead and enhanced risk of lead poisoning. Increasingly strict controls on lead emissions in many countries have reduced exposure to lead from some sources

  14. Understanding the effects of potassium ferricyanide on lead hydride formation in tetrahydroborate system and its application for determination of lead in milk using hydride generation inductively coupled plasma optical emission spectrometry

    International Nuclear Information System (INIS)

    Deng, Biyang; Xu, Xiangshu; Xiao, Yan; Zhu, Pingchuan; Wang, Yingzi

    2015-01-01

    Highlights: • Proposed a novel explanation for plumbane generation. • Expounded the role of K 3 Fe(CN) 6 in plumbane generation. • Clarified the controversial aspects in the mechanism of K 3 Fe(CN) 6 enhancement. • Used X-ray diffractometry to analyze the intermediates. • Developed a method to analyze lead in milk using K 3 Fe(CN) 6 and K 4 Fe(CN) 6 as new additives. - Absract: To understand the formation of plumbane in the Pb II -NaBH 4 -K 3 Fe(CN) 6 system, the intermediate products produced in the reaction of lead(II) and NaBH 4 in the presence of K 3 Fe(CN) 6 were studied. The produced plumbane and elemental lead were measured through continuous flow hydride generation (HG)-inductively coupled plasma optical emission spectrometry (ICP OES) and X-ray diffraction spectrometry techniques, respectively. Based on the experimental results, the explanations can be depicted in the following steps: (1) plumbane and black lead sediment (black Pb) are formed in the reaction of lead(II) and NaBH 4 ; (2) the black Pb is oxidized by K 3 Fe(CN) 6 to form Pb 2 [Fe(CN) 6 ], which further reacts with NaBH 4 to form more plumbane and black Pb; and (3) another round starts in which the produced black Pb from the step 2 is then oxidized continuously by K 3 Fe(CN) 6 to form more Pb 2 [Fe(CN) 6 ] complex, which would produce more plumbane. In short, the black Pb and Pb 2 [Fe(CN) 6 ] complex are the key intermediate products for the formation of plumbane in the Pb II -NaBH 4 -K 3 Fe(CN) 6 system. Based on the enhancement effect of potassium ferricyanide and potassium ferrocyanide, a method was developed to analyze lead in milk with HG-ICP OES technique. The detection limit of the method was observed as 0.081 μg L −1 . The linearity range of lead was found between 0.3 and 50,000 μg L −1 with correlation coefficient of 0.9993. The recovery of lead was determined as 97.6% (n = 5) for adding 10 μg L −1 lead into the milk sample

  15. Time-resolved single-shot terahertz time-domain spectroscopy for ultrafast irreversible processes

    Science.gov (United States)

    Zhai, Zhao-Hui; Zhong, Sen-Cheng; Li, Jun; Zhu, Li-Guo; Meng, Kun; Li, Jiang; Liu, Qiao; Peng, Qi-Xian; Li, Ze-Ren; Zhao, Jian-Heng

    2016-09-01

    Pulsed terahertz spectroscopy is suitable for spectroscopic diagnostics of ultrafast events. However, the study of irreversible or single shot ultrafast events requires ability to record transient properties at multiple time delays, i.e., time resolved at single shot level, which is not available currently. Here by angular multiplexing use of femtosecond laser pulses, we developed and demonstrated a time resolved, transient terahertz time domain spectroscopy technique, where burst mode THz pulses were generated and then detected in a single shot measurement manner. The burst mode THz pulses contain 2 sub-THz pulses, and the time gap between them is adjustable up to 1 ns with picosecond accuracy, thus it can be used to probe the single shot event at two different time delays. The system can detect the sub-THz pulses at 0.1 THz-2.5 THz range with signal to noise ratio (SNR) of ˜400 and spectrum resolution of 0.05 THz. System design was described here, and optimizations of single shot measurement of THz pulses were discussed in detail. Methods to improve SNR were also discussed in detail. A system application was demonstrated where pulsed THz signals at different time delays of the ultrafast process were successfully acquired within single shot measurement. This time resolved transient terahertz time domain spectroscopy technique provides a new diagnostic tool for irreversible or single shot ultrafast events where dynamic information can be extracted at terahertz range within one-shot experiment.

  16. Lead State Implementation Plan (SIP) Checklist Guide

    Science.gov (United States)

    Guidance documents and examples to assist air quality agencies of non-attainment areas in developing plans to implement national ambient air quality standards (NAAQS), including the lead air emissions standard.

  17. Activation of cathepsin L contributes to the irreversible depolarization induced by oxygen and glucose deprivation in rat hippocampal CA1 neurons.

    Science.gov (United States)

    Kikuta, Shogo; Murai, Yoshinaka; Tanaka, Eiichiro

    2017-01-01

    Oxygen and glucose deprivation (OGD) elicits a rapid and irreversible depolarization with a latency of ∼5min in intracellular recordings of hippocampal CA1 neurons in rat slice preparations. In the present study, we examined the role of cathepsin L in the OGD-induced depolarization. OGD-induced depolarizations were irreversible as no recovery of membrane potential was observed. The membrane potential reached 0mV when oxygen and glucose were reintroduced immediately after the onset of the OGD-induced rapid depolarization. The OGD-induced depolarizations became reversible when the slice preparations were pre-incubated with cathepsin L inhibitors (types I and IV at 0.3-2nM and 0.3-30nM, respectively). Moreover, pre-incubation with these cathepsin inhibitors prevented the morphological changes, including swelling of the cell soma and fragmentation of dendrites, observed in control neurons after OGD. These findings suggest that the activation of cathepsin L contributes to the irreversible depolarization produced by OGD. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  18. The international research progress of Ammonia(NH3) emissions and emissions reduction technology in farmland ecosystem

    Science.gov (United States)

    Yang, W. Z.; Jiao, Y.

    2017-03-01

    NH3 is the important factor leading to the grey haze, and one of the main causes of environmental problems of serious ecological imbalance, such as acid rain and air quality deterioration. The fertilizer excessive application of the current farmland results NH3 emissions intensity greatly. In order to clear the farmland NH3 emissions research status and achievements, the literature of farmland NH3 emission related were retrievaled by the SCI journals and Chinese science citation database. Some factors of NH3 emission were analyzed such as soil factors, climate factors and farmland management measures. The research progress was inductived on farmland NH3 emission reduction technology. The results will help to clarify farmland NH3 emissions research progress. The theoretical guidance was provided on the future of farmland NH3 emissions research.

  19. Phase-out of leaded gasoline: a prescription for Lebanon

    International Nuclear Information System (INIS)

    Hashisho, Z.; El-Fadel, M.; Ayoub, G.; Baaj, H.

    2000-01-01

    Full text.Lead is a toxic heavy metal. Nevertheless, it has been mined and used for more than 800 years. Among the different contemporary sources of lead pollution, emissions from the combustion of leaded gasoline is of particular concern, as it can constitutes more than 90 percent of total lead emissions into the atmosphere in congested urban areas. Concentrations of lead in air and blood are strongly correlated with gasoline lead content and traffic volume. As a result of the increasing awareness about the dangers of lead to human health and the measures to manage urban air pollution, the use of leaded gasoline has been decreasing worldwide. In Lebanon, in the absence of policies to reduce the use of lead in gasoline or to favor the use of unleaded gasoline, leaded gasoline is the predominant grade. The objective of this research work is to analyze the current status of gasoline, and to assess the feasibility and prospect of such action. For this purpose, background information are presented, data about gasoline usage and specifications have been collected, field measurements have been performed and a public survey has been conducted. The comparison of the expected cost savings from phasing out leaded gasoline with the potential costs indicates that such action is economically highly justified. If effective regulatory measures are undertaken, leaded gasoline can be phased-out immediately without a significant cost

  20. The Air Quality and Economic Impact of Atmospheric Lead from General Aviation Aircraft in the United States

    Science.gov (United States)

    Wolfe, P. J.; Selin, N. E.; Barrett, S. R. H.

    2015-12-01

    While leaded fuels for automobiles were phased-out of use in the United States by 1996, lead (Pb) continues to be used as an anti-knock additive for piston-driven aircraft. We model the annual concentration of atmospheric lead attributable to piston driven aircraft emissions in the continental United States using the Community Multi-scale Air Quality (CMAQ) model. Using aircraft emissions inventories for 2008, we then calculate annual economic damages from lead as lifetime employment losses for a one-year cohort exposed to elevated atmospheric lead concentrations using a range of concentration response functions from literature. Mean and median estimates of annual damages attributable to lifetime lost earnings are 1.06 and 0.60 billion respectively. Economy-wide impacts of IQ-deficits on productivity and labor increase expected damages by 54%. Damages are sensitive to background lead concentrations; as emissions decrease from other sources, the damages attributable to aviation are expected to increase holding aviation emissions constant. The monetary impact of General Aviation lead emissions on the environment is the same order of magnitude as noise, climate change, and air quality degradation from all commercial operations.

  1. Historical record of lead accumulation and source in the tidal flat of Haizhou Bay, Yellow Sea: Insights from lead isotopes

    International Nuclear Information System (INIS)

    Zhang, Rui; Guan, Minglei; Shu, Yujie; Shen, Liya; Chen, Xixi; Zhang, Fan; Li, Tiegang

    2016-01-01

    In order to investigate the historical records of lead contamination and source in coastal region of Haizhou Bay, Yellow Sea, a sediment core was collected from tidal flat, dated by 210 Pb and 137 Cs. Lead and its stable isotopic ratios were determined. The profiles of enrichment factor (EF) and Pb isotope ratios showed increasing trend upward throughout the core, correlating closely with the experience of a rapid economic and industrial development of the catchment. According to Pb isotopic ratios, coal combustion emission mainly contributed to the Pb burden in sediments. Based on end-member model, coal combustion emission dominated anthropogenic Pb sources in recent decades contributing from 48% to 67% in sediment. And the contribution of leaded gasoline was lower than 20%. A stable increase of coal combustion source was found in sediment core, while the contribution of leaded gasoline had declined recently, with the phase-out of leaded gasoline in China. - Highlights: •Pb contamination in tidal flat of Haizhou Bay was chronicled by a sediment core. •The coal combustion source dominated Pb contamination of Haizhou Bay. •Coal combustion source showed an increasing trend in four decades in Haizhou Bay.

  2. Blood pressure reduction in patients with irreversible pulpitis teeth treated by non-surgical root canal treatment

    Directory of Open Access Journals (Sweden)

    James I-Sheng Huang

    2017-12-01

    Full Text Available Background/purpose: The hypotension in patients during non-surgical root canal treatment (NSRCT has not yet investigated. This study aimed to assess the mean systolic blood pressure (MSBP, mean diastolic blood pressure (MDBP, and mean arterial blood pressure (MABP reduction percentages in patients with irreversible pulpitis teeth treated by NSRCT. Materials and methods: We prospectively recruited 111 patients with a total of 138 irreversible pulpitis teeth. All patients underwent two NSRCT sessions. The first NSRCT session involved mainly the removal of vital pulp tissue with the direct stimulation of the dental branches of the trigeminal nerve, and the second NSRCT session included the root canal debridement and enlargement with minimal disturbance to the dental nerves. The blood pressure of each patient was recorded before and during both NSRCT sessions. Results: There were significantly higher reduction percentages of MSBP, MDBP, and MABP in the first NSRCT session than in the second NSRCT session for all treated patients (all the P-values < 0.001. If the patients were divided into 2 or more groups according to the clinical variables including the patients' gender, age, tooth type, and anesthesia type, we also found significantly higher reduction percentages of MSBP, MDBP, and MABP in the first NSRCT session than in the second NSRCT session for all treated patients except for patients below 40 years of age and for patients with lower anterior teeth treated (all the P-values < 0.05. Conclusion: The decrease in blood pressure in patients receiving vital pulpal extirpation is a relatively common phenomenon. Keywords: hypotension, irreversible pulpitis teeth, non-surgical root canal treatment, blood pressure, parasympathetic effect, vital pulpal extirpation

  3. Irreversible Thermodynamics of the Universe: Constraints from Planck Data

    International Nuclear Information System (INIS)

    Saha, Subhajit; Chakraborty, Subenoy; Biswas, Atreyee

    2014-01-01

    The present work deals with irreversible universal thermodynamics. The homogenous and isotropic flat model of the universe is chosen as open thermodynamical system and nonequilibrium thermodynamics comes into picture. For simplicity, entropy flow is considered only due to heat conduction. Further, due to Maxwell-Cattaneo modified Fourier law for nonequilibrium phenomenon, the temperature satisfies damped wave equation instead of heat conduction equation. Validity of generalized second law of thermodynamics (GSLT) has been investigated for universe bounded by apparent or event horizon with cosmic substratum as perfect fluid with constant or variable equation of state or interacting dark species. Finally, we have used three Planck data sets to constrain the thermal conductivity λ and the coupling parameter b 2 . These constraints must be satisfied in order for GSLT to hold for universe bounded by apparent or event horizons

  4. Regional myocardial metabolism in patients with acute myocardial infarction assessed by positron emission tomography

    International Nuclear Information System (INIS)

    Schwaiger, M.; Brunken, R.; Grover-McKay, M.; Krivokapich, J.; Child, J.; Tillisch, J.H.; Phelps, M.E.; Schelbert, H.R.

    1986-01-01

    Positron emission tomography has been shown to distinguish between reversible and irreversible ischemic tissue injury. Using this technique, 13 patients with acute myocardial infarction were studied within 72 hours of onset of symptoms to evaluate regional blood flow and glucose metabolism with nitrogen (N)-13 ammonia and fluorine (F)-18 deoxyglucose, respectively. Serial noninvasive assessment of wall motion was performed to determine the prognostic value of metabolic indexes for functional tissue recovery. Segmental blood flow and glucose utilization were evaluated using a circumferential profile technique and compared with previously established semiquantitative criteria. Relative N-13 ammonia uptake was depressed in 32 left ventricular segments. Sixteen segments demonstrated a concordant decrease in flow and glucose metabolism. Regional function did not change over time in these segments. In contrast, 16 other segments with reduced blood flow revealed maintained F-18 deoxyglucose uptake consistent with remaining viable tissue. The average wall motion score improved significantly in these segments (p less than 0.01), yet the degree of recovery varied considerably among patients. Coronary anatomy was defined in 9 of 13 patients: patent infarct vessels supplied 8 of 10 segments with F-18 deoxyglucose uptake, while 10 of 13 segments in the territory of an occluded vessel showed concordant decreases in flow and metabolism (p less than 0.01). Thus, positron emission tomography reveals a high incidence of residual tissue viability in ventricular segments with reduced flow and impaired function during the subacute phase of myocardial infarction. Absence of residual tissue metabolism is associated with irreversible injury, while preservation of metabolic activity identifies segments with a variable outcome.(ABSTRACT TRUNCATED AT 250 WORDS)

  5. Edge-shape barrier irreversibility and decomposition of vortices in Bi 2Sr 2CaCu 2O 8

    Science.gov (United States)

    Indenbom, M. V.; D'Anna, G.; André, M.-O.; Kabanov, V. V.; Benoit, W.

    1994-12-01

    Magnetic flux dynamics is studied in Bi 2Sr 2CaCu 2O 8 single crystals by means of magneto-optical technique. It is clearly demonstrated that the magnetic irreversibility of these crystals in a magnetic field perpendicular to the basal plane at temperatures higher than approximately 35 K is governed by an edge-shape barrier and its disappearance determines the high temperature part of the magnetic irreversibility line which is commonly associated in the literature with vortex lattice melting. We argue that this barrier exists because of the non ellipsoidal shape of the samples and can disappear only when the flux lines lose their rigidity decomposing into pancakes, which is the only true magnetic phase transition on the B-T diagram for Bi 2Sr 2CaCu 2O 8.

  6. Effect of hybrid system battery performance on determining CO{sub 2} emissions of hybrid electric vehicles in real-world conditions

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez, Robert; Schlienger, Peter; Weilenmann, Martin [Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Internal Combustion Engines, Ueberlandstrasse 129, CH-8600 Duebendorf (Switzerland)

    2010-11-15

    Hybrid electric vehicles (HEVs) can potentially reduce vehicle CO{sub 2} emissions by using recuperated kinetic vehicle energy stored as electric energy in a hybrid system battery (HSB). HSB performance affects the individual net HEV CO{sub 2} emissions for a given driving pattern, which is considered to be equivalent to unchanged net energy content in the HSB. The present study investigates the influence of HSB performance on the statutory correction procedure used to determine HEV CO{sub 2} emissions in Europe based on chassis dynamometer measurements with three identical in-use examples of a full HEV model featuring different mileages. Statutory and real-world driving cycles and full electric vehicle operation modes have been considered. The main observation is that the selected HEVs can only use 67-80% of the charge provided to the HSB, which distorts the outcomes of the statutory correction procedure that does not consider such irreversibility. CO{sub 2} emissions corrected according to this procedure underestimate the true net CO{sub 2} emissions of one HEV by approximately 13% in real-world urban driving. The correct CO{sub 2} emissions are only reproduced when considering the HSB performance in this driving pattern. The statutory procedure for correcting HEV CO{sub 2} emissions should, therefore, be adapted. (author)

  7. Observer detection of image degradation caused by irreversible data compression processes

    Science.gov (United States)

    Chen, Ji; Flynn, Michael J.; Gross, Barry; Spizarny, David

    1991-05-01

    Irreversible data compression methods have been proposed to reduce the data storage and communication requirements of digital imaging systems. In general, the error produced by compression increases as an algorithm''s compression ratio is increased. We have studied the relationship between compression ratios and the detection of induced error using radiologic observers. The nature of the errors was characterized by calculating the power spectrum of the difference image. In contrast with studies designed to test whether detected errors alter diagnostic decisions, this study was designed to test whether observers could detect the induced error. A paired-film observer study was designed to test whether induced errors were detected. The study was conducted with chest radiographs selected and ranked for subtle evidence of interstitial disease, pulmonary nodules, or pneumothoraces. Images were digitized at 86 microns (4K X 5K) and 2K X 2K regions were extracted. A full-frame discrete cosine transform method was used to compress images at ratios varying between 6:1 and 60:1. The decompressed images were reprinted next to the original images in a randomized order with a laser film printer. The use of a film digitizer and a film printer which can reproduce all of the contrast and detail in the original radiograph makes the results of this study insensitive to instrument performance and primarily dependent on radiographic image quality. The results of this study define conditions for which errors associated with irreversible compression cannot be detected by radiologic observers. The results indicate that an observer can detect the errors introduced by this compression algorithm for compression ratios of 10:1 (1.2 bits/pixel) or higher.

  8. Psychologic adjustment to irreversible vision loss in adults: a systematic review.

    Science.gov (United States)

    Senra, Hugo; Barbosa, Fernando; Ferreira, Patrícia; Vieira, Cristina R; Perrin, Paul B; Rogers, Heather; Rivera, Diego; Leal, Isabel

    2015-04-01

    To summarize relevant evidence investigating the psychologic adjustment to irreversible vision loss (IVL) in adults. Irreversible vision loss entails a challenging medical condition in which rehabilitation outcomes are strongly dependent on the patient's psychologic adjustment to illness and impairment. So far, no study has systematically reviewed the psychologic adjustment to IVL in adults. We reviewed all articles examining the psychologic adjustment to IVL in adults. We included articles published in English in peer-reviewed journals. We performed a keyword literature search using 4 databases (PubMed, EBSCO, Cochrane Library, and Science Direct) for all years through July 2014. We assessed risk of bias of selected studies using the RTI Item Bank for Assessing Risk of Bias and Confounding for Observational Studies of Interventions or Exposures and the Cochrane risk of bias tool for randomized controlled trials. Of a total of 3948 citations retrieved, we selected 52 eligible studies published between 1946 and 2014. The majority of studies were observational and cross-sectional in nature. Our review suggests that high levels of depression occur during the adjustment to IVL. Better adjustment to IVL was associated with greater acceptance of vision loss and use of instrumental coping, good social support, positivity, and use of assistive aids. The overall findings indicate that IVL often has negative effects on patients' quality of life and mental health and that such effects tend to remain over time. Specific factors and variables associated with the adjustment to IVL need to be clarified through further in-depth and longitudinal research. Copyright © 2015 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.

  9. Leading research report for fiscal 1998 on the next-generation cold emission technology; 1998 nendo jisedai cold emission gijutsu no chosa kenkyu sendo kenkyu hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    The report covers the fruits of researches into technologies of cold emission control and cold emission application conducted in fiscal 1998. In the study relative to the current status of cold emission control technology, emitter materials that govern electron emitting characteristics are discussed, such as metallic materials, silicon, carbon systems, semiconductors, liquid metal, etc. In relation with the application of semiconductor process technology, the tunnel emitter is taken up that utilizes the semiconductor tunnel cathode. In relation with the cold emission process, an emitter high in aspect ratio is described, obtained by the inductive emitter deposition method in which organic metallic gas is decomposed by an electron beam. In the study of the cold emission control system and instrumentation, the merits and demerits of control by MOSFET (MOS field effect transistor) are discussed. In relation with the technology of cold emission application, FED (field effect display) development and problems, current status of sensor technology and problems, RF application technology, application to power systems, etc., are mentioned. (NEDO)

  10. Irreversibility of entanglement distillation for a class of symmetric states

    International Nuclear Information System (INIS)

    Vollbrecht, Karl Gerd H.; Wolf, Michael M.; Werner, Reinhard F.

    2004-01-01

    We investigate the irreversibility of entanglement distillation for a symmetric (d+1)-parameter family of mixed bipartite quantum states acting on Hilbert spaces of arbitrary dimension dxd. We prove that in this family the entanglement cost is generically strictly larger than the distillable entanglement, so that the set of states for which the distillation process is asymptotically reversible is of measure zero. This remains true even if the distillation process is catalytically assisted by pure-state entanglement and every operation is allowed, which preserves the positivity of the partial transpose. It is shown that reversibility occurs only in cases where the state is a tagged mixture. The reversible cases are shown to be completely characterized by minimal uncertainty vectors for entropic uncertainty relations

  11. Global analysis of myocardial peptides containing cysteines with irreversible sulfinic and sulfonic Acid post-translational modifications

    DEFF Research Database (Denmark)

    Paulech, Jana; Liddy, Kiersten A; Engholm-Keller, Kasper

    2015-01-01

    ) and others (Cys sulfinic [Cys-SO2H] and sulfonic [Cys-SO3H] acids) that are considered "irreversible." We developed an enrichment method to isolate Cys-SO2H/SO3H-containing peptides from complex tissue lysates that is compatible with tandem mass spectrometry (MS/MS). The acidity of these post...

  12. Anesthetic efficacy of X-tip intraosseous injection using 2% lidocaine with 1:80,000 epinephrine in patients with irreversible pulpitis after inferior alveolar nerve block: A clinical study.

    Science.gov (United States)

    Verma, Pushpendra Kumar; Srivastava, Ruchi; Ramesh, Kumar M

    2013-03-01

    The inferior alveolar nerve block (IAN) is the most frequently used mandibular injection technique for achieving local anesthesia in endodontics. Supplemental injections are essential to overcome failure of IAN block in patients with irreversible pulpitis. To evaluate the anesthetic efficacy of X-tip intraosseous injection (2% lidocaine with 1:80,000 epinephrine) in patients with irreversible pulpitis in mandibular posterior teeth when conventional IAN block failed. Thirty emergency patients diagnosed with irreversible pulpitis in a mandibular posterior tooth received an IAN block and experienced moderate to severe pain on endodontic access or initial instrumentation. The X-tip system was used to administer 1.8 ml of 2% lidocaine with 1:80,000 epinephrine. The success of X-tip intraosseous injection was defined as none or mild pain (Heft-Parker visual analogue scale ratings intraosseous injection using 2% lignocaine with 1:80,000 epinephrine has a statistically significant influence in achieving pulpal anesthesia in patients with irreversible pulpitis.

  13. Anesthetic efficacy of X-tip intraosseous injection using 2% lidocaine with 1:80,000 epinephrine in patients with irreversible pulpitis after inferior alveolar nerve block: A clinical study

    Science.gov (United States)

    Verma, Pushpendra Kumar; Srivastava, Ruchi; Ramesh, Kumar M

    2013-01-01

    Introduction: The inferior alveolar nerve block (IAN) is the most frequently used mandibular injection technique for achieving local anesthesia in endodontics. Supplemental injections are essential to overcome failure of IAN block in patients with irreversible pulpitis. Aim: To evaluate the anesthetic efficacy of X-tip intraosseous injection (2% lidocaine with 1:80,000 epinephrine) in patients with irreversible pulpitis in mandibular posterior teeth when conventional IAN block failed. Materials and Methods: Thirty emergency patients diagnosed with irreversible pulpitis in a mandibular posterior tooth received an IAN block and experienced moderate to severe pain on endodontic access or initial instrumentation. The X-tip system was used to administer 1.8 ml of 2% lidocaine with 1:80,000 epinephrine. The success of X-tip intraosseous injection was defined as none or mild pain (Heft-Parker visual analogue scale ratings intraosseous injection using 2% lignocaine with 1:80,000 epinephrine has a statistically significant influence in achieving pulpal anesthesia in patients with irreversible pulpitis. PMID:23716971

  14. DOES ELECTRIC CAR PRODUCE EMISSIONS?

    Directory of Open Access Journals (Sweden)

    Vladimír RIEVAJ

    2017-03-01

    Full Text Available This article focuses on the comparison of the amount of emissions produced by vehicles with a combustion engine and electric cars. The comparison, which is based on the LCA factor results, indicates that an electric car produces more emissions than a vehicle with combustion engine. The implementation of electric cars will lead to an increase in the production of greenhouse gases.

  15. N2O and NO2 Emissions from Heavy-Duty Diesel Trucks with Advanced Emission Controls

    Science.gov (United States)

    Preble, C.; Harley, R.; Kirchstetter, T.

    2014-12-01

    Diesel engines are the largest source of nitrogen oxides (NOx) emissions nationally, and also a major contributor to the black carbon (BC) fraction of fine particulate matter (PM). Recently, diesel particle filter (DPF) and selective catalytic reduction (SCR) emission control systems that target exhaust PM and NOx have become standard equipment on new heavy-duty diesel trucks. However, the deliberate catalytic oxidation of engine-out nitric oxide (NO) to nitrogen dioxide (NO2) in continuously regenerating DPFs leads to increased tailpipe emission of NO2. This is of potential concern due to the toxicity of NO2 and the resulting increases in atmospheric formation of other air pollutants such as ozone, nitric acid, and fine PM. While use of SCR reduces emissions of both NO and NO2, it may lead to increased emissions of nitrous oxide (N2O), a potent greenhouse gas. Here we report results from on-road measurements of heavy-duty diesel truck emissions conducted at the Port of Oakland and the Caldecott Tunnel in the San Francisco Bay Area. Emission factors (g pollutant per kg of diesel) were linked via recorded license plates to individual truck attributes, including engine model year and installed emission control equipment. Between 2009 and 2013, the fraction of DPF-equipped trucks at the Port of Oakland increased from 2 to 99%, and median engine age decreased from 11 to 6 years. Over the same period, fleet-average emission factors for black carbon and NOx decreased by 76 ± 22% and 53 ± 8%, respectively. However, direct emissions of NO2 increased, and consequently the NO2/NOx emission ratio increased from 0.03 ± 0.02 to 0.18 ± 0.03. Older trucks retrofitted with DPFs emitted approximately 3.5 times more NO2 than newer trucks equipped with both DPF and SCR. Preliminary data from summer 2014 measurements at the Caldecott Tunnel suggest that some older trucks have negative emission factors for N2O, and that for newer trucks, N2O emission factors have changed sign and

  16. Strong Photonic-Band-Gap Effect on the Spontaneous Emission in 3D Lead Halide Perovskite Photonic Crystals.

    Science.gov (United States)

    Zhou, Xue; Li, Mingzhu; Wang, Kang; Li, Huizeng; Li, Yanan; Li, Chang; Yan, Yongli; Zhao, Yongsheng; Song, Yanlin

    2018-03-25

    Stimulated emission in perovskite-embedded polymer opal structures is investigated. A polymer opal structure is filled with a perovskite, and perovskite photonic crystals are prepared. The spontaneous emission of the perovskite embedded in the polymer opal structures exhibits clear signatures of amplified spontaneous emission (ASE) via gain modulation. The difference in refractive-index contrast between the perovskite and the polymer opal is large enough for retaining photonic-crystals properties. The photonic band gap has a strong effect on the fluorescence emission intensity and lifetime. The stimulated emission spectrum exhibits a narrow ASE rather than a wide fluorescence peak in the thin film. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Preliminary study of steep pulse irreversible electroporation technology in human large cell lung cancer cell lines L9981

    Directory of Open Access Journals (Sweden)

    Song Zuoqing

    2013-01-01

    Full Text Available Our aim was to validate the effectiveness of steep pulse irreversible electroporation technology in human large cell lung cancer cells and to screen the optimal treatment of parameters for human large cell lung cancer cells. Three different sets of steep pulse therapy parameters were applied on the lung cancer cell line L9981. The cell line L9981 inhibition rate and proliferation capacity were detected by Vi-Cell vitality analysis and MTT. Steep pulsed irreversible electroporation technology for large cell lung cancer L9981 presents killing effects with various therapy parameters. The optimal treatment parameters are at a voltage amplitude of 2000V/cm, pulse width of 100μs, pulse frequency of 1 Hz, pulse number 10. With this group of parameters, steep pulse could have the best tumor cell-killing effects.

  18. Gaseous emissions from coal stockpiles

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-01-15

    Stockpiled coal undergoes atmospheric oxidation and desorption processes during open air storage. These processes release gases to the environment which may effect health and safety by their toxicity and flammability. In extreme cases, this could lead to a fire. This report discusses gaseous emissions from coal stockpiles. It covers gas emission mechanisms, and gas sampling and testing methods, before examining in more detail the principal gases that have been emitted. It concludes that there is limited research in this area and more data are needed to evaluate the risks of gaseous emissions. Some methods used to prevent coal self-heating and spontaneous combustion can be applied to reduce emissions from coal stockpiles.

  19. Effect of nitrous oxide on the efficacy of the inferior alveolar nerve block in patients with symptomatic irreversible pulpitis.

    Science.gov (United States)

    Stanley, William; Drum, Melissa; Nusstein, John; Reader, Al; Beck, Mike

    2012-05-01

    The inferior alveolar nerve (IAN) block does not always result in successful pulpal anesthesia. Anesthetic success rates might be affected by increased anxiety. Nitrous oxide has been shown to have both anxiolytic and analgesic properties. Therefore, the purpose of this prospective, randomized, double-blind, placebo-controlled study was to determine the effect of nitrous oxide on the anesthetic success of the IAN block in patients experiencing symptomatic irreversible pulpitis. One hundred emergency patients diagnosed with symptomatic irreversible pulpitis of a mandibular posterior tooth were enrolled in this study. Each patient was randomly assigned to receive an inhalation regimen of nitrous oxide/oxygen mix or room air/oxygen mix (placebo) 5 minutes before the administration of the IAN block. Endodontic access was begun 15 minutes after completion of the IAN block, and all patients had profound lip numbness. Success was defined as no or mild pain (visual analog scale recordings) on access or instrumentation. The success rate for the IAN block was 50% for the nitrous oxide group and 28% for the placebo group. There was a statistically significant difference between the 2 groups (P = .024). For mandibular teeth diagnosed with symptomatic irreversible pulpitis, administration of 30%-50% nitrous oxide resulted in a statistically significant increase in the success of the IAN block compared with room air/oxygen. Copyright © 2012 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  20. The Environmental Burdens of Lead-Acid Batteries in China: Insights from an Integrated Material Flow Analysis and Life Cycle Assessment of Lead

    Directory of Open Access Journals (Sweden)

    Sha Chen

    2017-11-01

    Full Text Available Lead-acid batteries (LABs, a widely used energy storage equipment in cars and electric vehicles, are becoming serious problems due to their high environmental impact. In this study, an integrated method, combining material flow analysis with life cycle assessment, was developed to analyze the environmental emissions and burdens of lead in LABs. The environmental burdens from other materials in LABs were not included. The results indicated that the amount of primary lead used in LABs accounted for 77% of the total lead production in 2014 in China. The amount of discharged lead into the environment was 8.54 × 105 tonnes, which was mainly from raw material extraction (57.2%. The largest environmental burden was from the raw materials extraction and processing, which accounted for 81.7% of the total environmental burdens. The environmental burdens of the environmental toxicity potential, human toxicity potential-cancer, human toxicity potential-non-cancer, water footprint and land use accounted for more than 90% at this stage. Moreover, the environmental burdens from primary lead was much more serious than regenerated lead. On the basis of the results, main practical measures and policies were proposed to reduce the lead emissions and environmental burdens of LABs in China, namely establishing an effective LABs recycling system, enlarging the market share of the legal regenerated lead, regulating the production of regenerated lead, and avoiding the long-distance transportation of the waste LABs.

  1. A master equation for force distributions in soft particle packings - Irreversible mechanical responses to isotropic compression and decompression

    NARCIS (Netherlands)

    Saitoh, K.; Magnanimo, Vanessa; Luding, Stefan

    2016-01-01

    Mechanical responses of soft particle packings to quasi-static deformations are determined by the microscopic restructuring of force-chain networks, where complex non-affine displacements of constituent particles cause the irreversible macroscopic behavior. Recently, we have proposed a master

  2. Assessment of children environmental exposure to secondary emission of nickel, lead and copper

    Directory of Open Access Journals (Sweden)

    Jerzy Kwapuliński

    2012-12-01

    Full Text Available Introduction: Total rating impact of particulate matter in ground air layer recently takes on particular significance in evaluation of health risk. Indeed particulate matter is of interest to many research centres, however in so far PM related works the probability of adverse health impacts were not taken into account triggered with impact of additional presence of particulate matter from secondary dusting. The aim of the work: The work target was determination of secondary emission of Cu, Ni and Pb measured in streets with high traffic volume in many towns of Silesia Voivodeship. Materials and methods: Dust collected from the distance of about 200 m from busy roads in Upper Silesia cities was analyzed by the method of plasma spectrophotometry. The phenomenon of secondary dusting was defined by few coefficients of: secondary emission, enrichment, contamination and parameter of extra mass of a given metal in widespread air pollution. Results: It was concluded that absorbed dose of Cu and Pb changes depends on the area under study and decreases along with child’s age. Decrease of absorbed age depending doses is explained, so far, by significant increase of body mass in comparison to anatomically conditioned size of respiratory system.Also health risk estimated in relation to children residing in selected areas is diversified.. And it also decreases along with the children growing older. It appears, however, that health risk is determined by the volume of secondary PM emission and to children mostly threatened with Ni belong those who are particularly exposed to secondary emission of this metal. The secondary dusting is particularly dangerous for respiratory system and plays more important role than averaged content of this chemical in the environment.

  3. Reversibility and irreversibility from an initial value formulation

    International Nuclear Information System (INIS)

    Muriel, A.

    2013-01-01

    From a time evolution equation for the single particle distribution function derived from the N-particle distribution function (A. Muriel, M. Dresden, Physica D 101 (1997) 297), an exact solution for the 3D Navier–Stokes equation – an old problem – has been found (A. Muriel, Results Phys. 1 (2011) 2). In this Letter, a second exact conclusion from the above-mentioned work is presented. We analyze the time symmetry properties of a formal, exact solution for the single-particle distribution function contracted from the many-body Liouville equation. This analysis must be done because group theoretic results on time reversal symmetry of the full Liouville equation (E.C.G. Sudarshan, N. Mukunda, Classical Mechanics: A Modern Perspective, Wiley, 1974). no longer applies automatically to the single particle distribution function contracted from the formal solution of the N-body Liouville equation. We find the following result: if the initial momentum distribution is even in the momentum, the single particle distribution is reversible. If there is any asymmetry in the initial momentum distribution, no matter how small, the system is irreversible.

  4. Matrix digestion of soil and sediment samples for extraction of lead, cadmium and antimony and their direct determination by inductively coupled plasma-mass spectrometry and atomic emission spectrometry

    International Nuclear Information System (INIS)

    Chattopadhyay, P.; Fisher, A.S.; Henon, D.N.; Hill, S.J.

    2004-01-01

    An environmentally friendly and simple method has been developed for complete digestion of lead, cadmium and antimony from soil samples using a magnesium nitrate assisted dry ashing procedure. Statistical data for a series of experiments with standard reference materials are presented, and precision values are found to be comparable for inductively coupled plasma-mass spectrometry and for inductively coupled plasma-atomic emission spectrometry. From a single digest solution all analytes are quantified without involving any preconcentration routes. Inter-method comparison of inductively coupled plasma-mass spectrometry (ICP-MS) and inductively coupled plasma-atomic emission spectrometry (ICP-AES) shows that the probability of the results being different is less than 99 %. (author)

  5. Disinfection procedures: their efficacy and effect on dimensional accuracy and surface quality of an irreversible hydrocolloid impression material.

    LENUS (Irish Health Repository)

    Rentzia, A

    2011-02-01

    This study investigated the antibacterial efficacy and effect of 0.55% ortho-phthalaldehyde (Cidex OPA(®)) and 0.5% sodium hypochlorite (NaOCl) on the dimensional accuracy and surface quality of gypsum casts retrieved from an irreversible hydrocolloid impression material.

  6. Anesthetic efficacy of the supplemental X-tip intraosseous injection using 4% articaine with 1:100,000 adrenaline in patients with irreversible pulpitis: An in vivo study.

    Science.gov (United States)

    Bhuyan, Atool Chandra; Latha, Satheesh Sasidharan; Jain, Shefali; Kataki, Rubi

    2014-11-01

    Pain management remains the utmost important qualifying criteria in minimizing patient agony and establishing a strong dentist-patient rapport. Symptomatic irreversible pulpitis is a painful condition necessitating immediate attention and supplemental anesthetic techniques are often resorted to in addition to conventional inferior alveolar nerve block. The purpose of the study was to evaluate the anesthetic efficacy of X-tip intraosseous injection in patients with symptomatic irreversible pulpitis, in mandibular posterior teeth, using 4% Articaine with 1:100,000 adrenaline as local anesthetic, when the conventional inferior alveolar nerve block proved ineffective. X-tip system was used to administer 1.7 ml of 4% articaine with 1:100,000 adrenaline in 30 patients diagnosed with irreversible pulpitis of mandibular posterior teeth with moderate to severe pain on endodontic access after administration of an inferior alveolar nerve block. The results of the study showed that 25 X-tip injections (83.33%) were successful and 5 X-tip injections (16.66%) were unsuccessful. When the inferior alveolar nerve block fails to provide adequate pulpal anesthesia, X-tip system using 4% articaine with 1:100,000 adrenaline was successful in achieving pulpal anesthesia in patients with irreversible pulpitis.

  7. External costs of atmospheric lead emissions from a waste-to-energy plant: a follow-up assessment of indirect neurotoxic impacts via topsoil ingestion

    DEFF Research Database (Denmark)

    Pizzol, Massimo; Møller, Flemming; Thomsen, Marianne

    2013-01-01

    The link between anthropogenic emissions and the monetary value of their impacts, so-called external cost, can be determined via the impact pathway approach. This method is used in the present study to calculate the indirect costs, via topsoil ingestion, of lead emitted into atmosphere from a waste......-to-energy facility in Denmark. The Operational Meteorological air-quality model, the Simplified Fate and Speciation Model, and the Age Dependent Biokinetic Model are used to determine the metals’ atmospheric transport, its deposition and accumulation in topsoil, and its bio-accumulation in the human body...

  8. Lead precipitation fluxes at tropical oceanic sites determined from 210Pb measurements

    International Nuclear Information System (INIS)

    Settle, D.M.; Patterson, C.C.; Turekian, K.K.; Cochran, J.K.

    1982-01-01

    Concentrations of lead, 210 Pb, and 210 Po were measured in rain selected for least influence by local sources of contamination at several tropical and subtropical islands (Enewetak; Pigeon Key, Florida; and American Samoa) and shipboard stations (near Bermuda and Tahiti). Ratios expressed as ng Pb/dpm 210 Pb in rain were 250--900 for Pigeon Key (assuming 12% adsorption for 210 Pb and no adsorption for lead), depending on whether the air masses containing the analyzed rain came from the Caribbean or from the continent, respectively; about 390 for the northern Sargasso Sea downwind from emissions of industrial lead in North America; 65 for Enewetak, remote from continental emissions of industrial lead in the northern hemisphere; and 14 near Tahiti, a remote location in the southern hemisphere where industrial lead emissions to the atmosphere are much less than in the northern hemisphere. (The American Samoa sample yielded a higher ratio than Tahiti; the reason for this is not clear but may be due to local Pb sources). The corresponding fluxes of lead to the oceans, based on measured or modeled 210 Pb precipitation fluxes, are about 4 ng Pb/cm 2 y for Tahiti, 10 for Enewetak, and 270 for the Sargasso Sea site, and between 110 to 390 at Pigeon Key

  9. Multiscale analysis of heart rate dynamics: entropy and time irreversibility measures.

    Science.gov (United States)

    Costa, Madalena D; Peng, Chung-Kang; Goldberger, Ary L

    2008-06-01

    Cardiovascular signals are largely analyzed using traditional time and frequency domain measures. However, such measures fail to account for important properties related to multiscale organization and non-equilibrium dynamics. The complementary role of conventional signal analysis methods and emerging multiscale techniques, is, therefore, an important frontier area of investigation. The key finding of this presentation is that two recently developed multiscale computational tools--multiscale entropy and multiscale time irreversibility--are able to extract information from cardiac interbeat interval time series not contained in traditional methods based on mean, variance or Fourier spectrum (two-point correlation) techniques. These new methods, with careful attention to their limitations, may be useful in diagnostics, risk stratification and detection of toxicity of cardiac drugs.

  10. Study of luminous emissions associated to electron emissions in radiofrequency cavities

    International Nuclear Information System (INIS)

    Maissa, S.

    1996-01-01

    This study investigates luminous emissions simultaneously to electron emissions and examines their features in order to better understand the field electron emission phenomenon. A RF cavity, operating at room temperature and in pulsed mode, joined to a sophisticated experimental apparatus has been especially developed. The electron and luminous emissions are investigated on cleaned or with metallic, graphitic and dielectric particles contaminated RF surfaces in order to study their influence on these phenomena. During the surface processing, unstable luminous spots glowing during one RF pulse are detected. Their apparition is promoted in the vicinity of the metallic particles or scratches. Two hypotheses could explain their origin: the presence of micro-plasmas associated to electronic explosive emission during processing or the thermal radiation of the melted metal during this emission. Stable luminous spots glowing during several RF pulses are also detected and appear to increase on RF surfaces contaminated with dielectric particles, leading to strong and explosive luminous emissions. Two interpretations are considered: the initiation of surface breakdowns on the dielectric particles or the heating by the RF field at temperatures sufficiently intense to provoke their thermal radiation then their explosion. Finally a superconducting cavity has been adapted to observe luminous spots, which differ from the former ones bu their star shape and could be associated to micro-plasmas, revealed by the starbursts observed on superconducting cavity walls. (author)

  11. Reversible and irreversible deactivation of Cu-CHA NH3-SCR catalysts by SO2 and SO3

    DEFF Research Database (Denmark)

    Hammershøi, Peter S.; Jangjou, Yasser; Epling, William S.

    2018-01-01

    be divided into two parts: a reversible deactivation that is restored by the regeneration treatment, and an irreversible part. The irreversible deactivation does not affect the activation energy for NH3-SCR and display a 1:1 correlation with the S-content, consistent with deactivation by Cu-sulfate formation...... is always higher when exposed at 200 °C than at 550 °C, and in wet conditions, compared to a dry feed. The deactivation is predominantly reversible, making regeneration at 550 °C a realistic approach to handle S-poisoning in exhaust systems....

  12. Lead contamination and transfer in urban environmental compartments analyzed by lead levels and isotopic compositions

    International Nuclear Information System (INIS)

    Hu, Xin; Sun, Yuanyuan; Ding, Zhuhong; Zhang, Yun; Wu, Jichun; Lian, Hongzhen; Wang, Tijian

    2014-01-01

    Lead levels and isotopic compositions in atmospheric particles (TSP and PM 2.5 ), street dust and surface soil collected from Nanjing, a mega city in China, were analyzed to investigate the contamination and the transfer of lead in urban environmental compartments. The lead contents in TSP and PM 2.5 are significantly higher than them in the surface soil and street dust (p  206 Pb/ 207 Pb vs. 208 Pb/ 206 Pb and 206 Pb/ 207 Pb vs. 1/Pb imply that the street dust and atmospheric particles (TSP and PM 2.5 ) have very similar lead sources. Coal emissions and smelting activities may be the important lead sources for street dust and atmospheric particles (TSP and PM 2.5 ), while the deposition of airborne lead is an important lead source for urban surface soil. - Highlights: • Lead levels and isotope ratios in atmospheric particles, street dust and surface soil. • Significant enrichment of lead in atmospheric particles was observed. • Street dust and atmospheric particles have similar lead sources. • Endmembers of soil lead differ from street dust and atmospheric particles. • Airborne lead poses the main risks to unban environmental quality. - Transfer of airborne particle bound lead into street dust and surface soil in unban environmental based on lead levels and isotopic compositions

  13. Advanced valve-regulated lead-acid batteries for hybrid vehicle applications

    Science.gov (United States)

    Soria, M. L.; Trinidad, F.; Lacadena, J. M.; Sánchez, A.; Valenciano, J.

    Future vehicle applications require the development of reliable and long life batteries operating under high-rate partial-state-of-charge (HRPSoC) working conditions. Work presented in this paper deals with the study of different design parameters, manufacturing process and charging conditions of spiral wound valve-regulated lead-acid (VRLA) batteries, in order to improve their reliability and cycle life for hybrid vehicle applications. Test results show that both electrolyte saturation and charge conditions have a strong effect on cycle life at HRPSoC performance, presumably because water loss finally accelerates battery failure, which is linked to irreversible sulphation in the upper part of the negative electrodes. By adding expanded graphite to the negative active mass formulation, increasing the electrolyte saturation degree (>95%) and controlling overcharge during regenerative braking periods (voltage limitation and occasional boosting) it is possible to achieve up to 220,000 cycles at 2.5% DOD, equivalent to 5500 capacity throughput. These results could make lead acid batteries a strong competitor for HEV applications versus other advanced systems such as Ni-MH or Li-ion batteries.

  14. Defect dependence of the irreversibility line in Bi2Sr2CaCu2O8 single crystals

    Science.gov (United States)

    Lombardo, L. W.; Mitzi, D. B.; Kapitulnik, A.; Leone, A.

    1992-09-01

    The c-axis irreversibility line (IL) of pristine single-crystal Bi2Sr2CaCu2O8 is shown to exhibit three regimes: For fields less than 0.1 T, it obeys a power law, Hirr=H0(1-Tirr/Tc)μ, where μ and H0 vary with Tc. For fields greater than 2 T, the IL becomes linear with a slope of 0.7 T/K. For intermediate fields, there is a crossover region, which corresponds to the onset of collective vortex behavior. Defects produced by proton irradiation shift the IL in all three regimes: The high-field regime moves to higher temperatures, the low-field regime moves to lower temperatures, and the crossover to collective behavior becomes obscured. A maximal increase in the irreversibility temperature in the high-field regime is found to occur at a defect density of nearly one defect per vortex core disk.

  15. Resolution of Loschmidt's paradox: The origin of irreversible behavior in reversible atomistic dynamics

    International Nuclear Information System (INIS)

    Holian, B.L.; Hoover, W.G.; Posch, H.A.

    1987-01-01

    We show that Nosromane-bar mechanics provides a link between computer simulations of nonequilibrium processes and real-world experiments. Reversible Nose-bar equations of motion, when used to constrain non- equilibrium boundary regions, generate stable dissipative behavior within an adjoining bulk sample governed by Newton's equations of motion. Thus, irreversible behavior consistent with the second law of thermodynamics arises from completely reversible microscopic motion. Loschmidt's reversibility paradox is surmounted by this Nose-bar-Newton system, because the steady-state nonequilibrium probability density in the many-body phase space is confined to a zero-volume attractor

  16. On the application of acoustic emission analysis in research. Pt. 1

    International Nuclear Information System (INIS)

    Eisenblaetter, J.; Fanninger, G.

    1977-01-01

    The sound emission analysis is based on the phenomenon that processes in solids involving a rapid release of elastically stored energy lead to the emission of short sound pulses. This phenomenon is more and more utilized in research and engineering to detect deformations, phase transitions, formation of defects, leakages and others. Especially in the testing and controlling of large size parts like pressure vessels and pipelines the sound emission analysis can lead to a substantial reduction in time and costs. (orig.) [de

  17. Electro-Kinetic Pumping with Slip Irreversibility in Heat Exchange of CSP-Powered Bio-Digester Assemblies

    OpenAIRE

    Ogedengbe, Emmanuel; Rosen, Marc

    2012-01-01

    Parametric studies of the effects of slip irreversibility in concentrating solar power (CSP)-powered bio-digester assemblies are investigated. Complexities regarding the identification of the appropriate electro-kinetic phenomena for certain electrolyte phases are reviewed. The application of exergy analysis to the design of energy conversion devices, like solar thermal collectors, for the required heat of formation in a downdraft waste food bio-digester, is discussed. Thermal management in t...

  18. Research on Acoustic Emission and Electromagnetic Emission Characteristics of Rock Fragmentation at Different Loading Rates

    Directory of Open Access Journals (Sweden)

    Fujun Zhao

    2018-01-01

    Full Text Available The relationships among the generation of acoustic emission, electromagnetic emission, and the fracture stress of rock grain are investigated, which are based on the mechanism of acoustic emission and electromagnetic emission produced in the process of indenting rock. Based on the relationships, the influence of loading rate on the characteristics of acoustic emission and electromagnetic emission of rock fragmentation is further discussed. Experiment on rock braking was carried out with three loading rates of 0.001 mm/s, 0.01 mm/s, and 0.1 mm/s. The results show that the phenomenon of acoustic emission and electromagnetic emission is produced during the process of loading and breaking rock. The wave forms of the two signals and the curve of the cutter indenting load show jumping characteristics. Both curves have good agreement with each other. With the increase of loading rate, the acoustic emission and electromagnetic emission signals are enhanced. Through analysis, it is found that the peak count rate, the energy rate of acoustic emission, the peak intensity, the number of pulses of the electromagnetic emission, and the loading rate have a positive correlation with each other. The experimental results agree with the theoretical analysis. The proposed studies can lead to an in-depth understanding of the rock fragmentation mechanism and help to prevent rock dynamic disasters.

  19. Evaluating the periapical status of teeth with irreversible pulpitis by using cone-beam computed tomography scanning and periapical radiographs.

    Science.gov (United States)

    Abella, Francesc; Patel, Shanon; Duran-Sindreu, Fernando; Mercadé, Montse; Bueno, Rufino; Roig, Miguel

    2012-12-01

    The purpose of this study was to compare the prevalence of apical periodontitis (AP) on individual roots of teeth with irreversible pulpitis viewed with periapical (PA) radiographs and cone-beam computed tomography (CBCT) scans. PA radiographs and CBCT scans were taken of 138 teeth in 130 patients diagnosed with irreversible pulpitis (symptomatic and asymptomatic). Two calibrated examiners assessed the presence or absence of AP lesions by analyzing the PA and CBCT images. A consensus was reached in the event of any disagreement. The data were analyzed using the hypothesis test, and significance was set at P ≤ .05. Three hundred seven paired roots were assessed with both PA and CBCT images. A comparison of the 307 paired roots revealed that AP lesions were present in 10 (3.3%) and absent in 297 (96.7%) pairs of roots when assessed with PA radiography. When the same 307 sets of roots were assessed with CBCT scans, AP lesions were present in 42 (13.7%) and absent in 265 (86.3%) paired roots. The prevalence of AP lesions detected with CBCT was significantly higher in the symptomatic group compared with the asymptomatic group (P < .05). An additional 22 roots were identified with CBCT alone. The present study highlights the advantages of using CBCT for detecting AP lesions, especially in teeth with symptomatic irreversible pulpitis. Copyright © 2012 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  20. The angular ordering in soft-gluon emission

    International Nuclear Information System (INIS)

    Tesima, K.

    1987-01-01

    The way to evaluate multi-parton cross-sections systematically is discussed. In the leading-double-log approximation in QCD, the successive emission of soft gluons is at successively smaller angles. The angular ordering, however, is violated in the next-to-leading order

  1. Critical current density, irreversibility line, and flux creep activation energy in silver-sheathed Bi2Sr2Ca2Cu3Ox superconducting tapes

    International Nuclear Information System (INIS)

    Shi, D.; Wang, Z.; Sengupta, S.; Smith, M.; Goodrich, L.F.; Dou, S.X.; Liu, H.K.; Guo, Y.C.

    1992-08-01

    Transport data, magnetic hysteresis and flux creep activation energy experimental results are presented for silver-sheathed high-T c Bi 2 Sr 2 Ca 2 Cu 3 O x superconducting tapes. The 110 K superconducting phase was formed by lead doping in a Bi-Sr-Ca-Cu-0 system. The transport critical current density was measured at 4.0 K to be 0.7 x 10 5 A/cm 2 (the corresponding critical current is 74 A) at zero field and 1.6 x 10 4 A/cm 2 at 12 T for H parallel ab. Excellent grain alignment in the a-b plane was achieved by a short-melting method, which considerably improved the critical current density and irreversibility line. Flux creep activation energy as a function of current is obtained based on the magnetic relaxation measurements

  2. 40 CFR Appendix Xi to Part 266 - Lead-Bearing Materials That May be Processed in Exempt Lead Smelters

    Science.gov (United States)

    2010-07-01

    ... PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR THE MANAGEMENT OF SPECIFIC HAZARDOUS... pallets Water treatment sludges, filter cakes, residues, and solids Emission control dusts, sludges, filter cakes, residues, and solids from lead-associated industries (e.g., K069 and D008 wastes) Spent...

  3. X-tip intraosseous injection system as a primary anesthesia for irreversible pulpitis of posterior mandibular teeth: A randomized clinical trail.

    Science.gov (United States)

    Razavian, Hamid; Kazemi, Shantia; Khazaei, Saber; Jahromi, Maryam Zare

    2013-03-01

    Successful anesthesia during root canal therapy may be difficult to obtain. Intraosseous injection significantly improves anesthesia's success as a supplemental pulpal anesthesia, particularly in cases of irreversible pulpitis. The aim of this study was to compare the efficacy of X-tip intraosseous injection and inferior alveolar nerve (IAN) block in primary anesthesia for mandibular posterior teeth with irreversible pulpitis. Forty emergency patients with an irreversible pulpitis of mandibular posterior teeth were randomly assigned to receive either intraosseous injection using the X-tip intraosseous injection system or IAN block as the primary injection method for pulpal anesthesia. Pulpal anesthesia was evaluated using an electric pulp tester and endo ice at 5-min intervals for 15 min. Anesthesia's success or failure rates were recorded and analyzed using SPSS version 12 statistical software. Success or failure rates were compared using a Fisher's exact test, and the time duration for the onset of anesthesia was compared using Mann-Whitney U test. P Intraosseous injection system resulted in successful anesthesia in 17 out of 20 patients (85%). Successful anesthesia was achieved with the IAN block in 14 out of 20 patients (70%). However, the difference (15%) was not statistically significant (P = 0.2). Considering the relatively expensive armamentarium, probability of penetrator separation, temporary tachycardia, and possibility of damage to root during drilling, the authors do not suggest intraosseous injection as a suitable primary technique.

  4. Anesthetic efficacy of the supplemental X-tip intraosseous injection using 4% articaine with 1:100,000 adrenaline in patients with irreversible pulpitis: An in vivo study

    Science.gov (United States)

    Bhuyan, Atool Chandra; Latha, Satheesh Sasidharan; Jain, Shefali; Kataki, Rubi

    2014-01-01

    Introduction: Pain management remains the utmost important qualifying criteria in minimizing patient agony and establishing a strong dentist–patient rapport. Symptomatic irreversible pulpitis is a painful condition necessitating immediate attention and supplemental anesthetic techniques are often resorted to in addition to conventional inferior alveolar nerve block. Aim: The purpose of the study was to evaluate the anesthetic efficacy of X-tip intraosseous injection in patients with symptomatic irreversible pulpitis, in mandibular posterior teeth, using 4% Articaine with 1:100,000 adrenaline as local anesthetic, when the conventional inferior alveolar nerve block proved ineffective. Materials and Methods: X-tip system was used to administer 1.7 ml of 4% articaine with 1:100,000 adrenaline in 30 patients diagnosed with irreversible pulpitis of mandibular posterior teeth with moderate to severe pain on endodontic access after administration of an inferior alveolar nerve block. Results: The results of the study showed that 25 X-tip injections (83.33%) were successful and 5 X-tip injections (16.66%) were unsuccessful. Conclusion: When the inferior alveolar nerve block fails to provide adequate pulpal anesthesia, X-tip system using 4% articaine with 1:100,000 adrenaline was successful in achieving pulpal anesthesia in patients with irreversible pulpitis. PMID:25506137

  5. Model for traffic emissions estimation

    Science.gov (United States)

    Alexopoulos, A.; Assimacopoulos, D.; Mitsoulis, E.

    A model is developed for the spatial and temporal evaluation of traffic emissions in metropolitan areas based on sparse measurements. All traffic data available are fully employed and the pollutant emissions are determined with the highest precision possible. The main roads are regarded as line sources of constant traffic parameters in the time interval considered. The method is flexible and allows for the estimation of distributed small traffic sources (non-line/area sources). The emissions from the latter are assumed to be proportional to the local population density as well as to the traffic density leading to local main arteries. The contribution of moving vehicles to air pollution in the Greater Athens Area for the period 1986-1988 is analyzed using the proposed model. Emissions and other related parameters are evaluated. Emissions from area sources were found to have a noticeable share of the overall air pollution.

  6. Estimation of Lead (Pb in Toys Using X-Ray Fluorescence Technology

    Directory of Open Access Journals (Sweden)

    Sandipayan Dutta

    2016-01-01

    Full Text Available Background: Lead exists extensively in the environment and it is a heavy metal, which is neurotoxic in nature which is harmful to children. In contrast to trace elements such as iron (Fe and zinc (Zn, lead has no recognized benecial effects in human body. With the economic development in India in recent years, the concentration of lead has increased in the environment and henceforth, lead pollution has become a severe problem in the country. Lead poisoning can create an immense damage and irreversible harm to foetal growth, the growth of teenagers and psychological, behavioural and cognitive development. Aim and Objectives: To estimate the lead content in the sample of toys. Material and Methods: 97 different toys were collected and coded as TS, these toys were kept in plastic lock cover which were lead proof. At rst the toys were arranged in order according to the serial number of the code (TS1 – TS97. The FP X-ray uorescence (Innov-X ray analyzer instrument was placed with the window of the analyzer on the surface of the toy vertically in such a way that there was no gap between the toy surface and the sampling window. The parts per million (ppm values of all toys were recorded. Results: Out of 97 samples tested, 22 samples were above permissible limits. The different materials demonstrate signicant correlation with the lead content in ppm. Lead is used as a stabilizer in some toys as well as children's items made from PVC plastic. Baby toys made up of plastic have higher concentration of lead. Lead can leach out of products when children handle and swallow them involuntarily.

  7. Understanding the effects of potassium ferricyanide on lead hydride formation in tetrahydroborate system and its application for determination of lead in milk using hydride generation inductively coupled plasma optical emission spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Biyang, E-mail: dengby16@163.com; Xu, Xiangshu; Xiao, Yan; Zhu, Pingchuan; Wang, Yingzi

    2015-01-01

    Highlights: • Proposed a novel explanation for plumbane generation. • Expounded the role of K{sub 3}Fe(CN){sub 6} in plumbane generation. • Clarified the controversial aspects in the mechanism of K{sub 3}Fe(CN){sub 6} enhancement. • Used X-ray diffractometry to analyze the intermediates. • Developed a method to analyze lead in milk using K{sub 3}Fe(CN){sub 6} and K{sub 4}Fe(CN){sub 6} as new additives. - Absract: To understand the formation of plumbane in the Pb{sup II}-NaBH{sub 4}-K{sub 3}Fe(CN){sub 6} system, the intermediate products produced in the reaction of lead(II) and NaBH{sub 4} in the presence of K{sub 3}Fe(CN){sub 6} were studied. The produced plumbane and elemental lead were measured through continuous flow hydride generation (HG)-inductively coupled plasma optical emission spectrometry (ICP OES) and X-ray diffraction spectrometry techniques, respectively. Based on the experimental results, the explanations can be depicted in the following steps: (1) plumbane and black lead sediment (black Pb) are formed in the reaction of lead(II) and NaBH{sub 4}; (2) the black Pb is oxidized by K{sub 3}Fe(CN){sub 6} to form Pb{sub 2}[Fe(CN){sub 6}], which further reacts with NaBH{sub 4} to form more plumbane and black Pb; and (3) another round starts in which the produced black Pb from the step 2 is then oxidized continuously by K{sub 3}Fe(CN){sub 6} to form more Pb{sub 2}[Fe(CN){sub 6}] complex, which would produce more plumbane. In short, the black Pb and Pb{sub 2}[Fe(CN){sub 6}] complex are the key intermediate products for the formation of plumbane in the Pb{sup II}-NaBH{sub 4}-K{sub 3}Fe(CN){sub 6} system. Based on the enhancement effect of potassium ferricyanide and potassium ferrocyanide, a method was developed to analyze lead in milk with HG-ICP OES technique. The detection limit of the method was observed as 0.081 μg L{sup −1}. The linearity range of lead was found between 0.3 and 50,000 μg L{sup −1} with correlation coefficient of 0

  8. Study of the anesthetic efficacy of inferior alveolar nerve block using articaine in irreversible pulpitis.

    Science.gov (United States)

    Ahmad, Zeeshan H; Ravikumar, H; Karale, Rupali; Preethanath, R S; Sukumaran, Anil

    2014-01-01

    The purpose of this study was to determine the anesthetic efficacy of inferior alveolar nerve block (IANB) using 4% articaine and 2% lidocaine supplemented with buccal infiltration. Forty five patients, diagnosed with irreversible pulpitis of a mandibular posterior tooth were included in the study. The first group of 15 patients received 2% lidocaine with 1:200000 epinephrine, the second group 2% lidocaine with 1: 80,000 epinephrine and the third group of 15 subjects received 4% articaine with 1:100000 epinephrine. During the access cavity preparation those patients who complained of pain received an additional buccal infiltration. The percentage of subjects who got profound anesthesia and failure to achieve anesthesia were calculated and tabulated using a visual analog scale. The results revealed that 87% of subjects who received 4% Articaine with 1:100,000 epinephrine got satisfactory anesthesia with inferior alveolar nerve block alone. Only 2 (13%) subjects received an additional buccal infiltration and none of the patients failed to obtain complete anesthesia with articaine. In comparison only 40% of subjects got complete anesthesia with 2% lidocaine with 1:200000 and 60% with 2% lidocaine with 1:80,000. It can be concluded that 4% articaine can be used effectively for obtaining profound anesthesia for endodontic procedures in patients with irreversible pulpitis.

  9. Comparative study of irreversibilities in an aqua-ammonia absorption refrigeration system

    Energy Technology Data Exchange (ETDEWEB)

    Ataer, O E [Gazi Univ., Ankara (TR). Mechanical Engineering Dept.; Gogus, Y [Middle East Technical Univ., Ankara (Turkey)

    1991-03-01

    Irreversibilities in components of an aqua-ammonia absorption refrigeration system (ARS) have been determined by second law analysis. The components of the ARS are as follows: condenser, evaporator, absorber, generator, pump, expansion valves, mixture heat exchanger and refrigerant heat exchanger. It is assumed that the ammonia concentration at the generator exit is, independent of the other parameters, equal to 0.999 and at the evaporator exit the gas is saturated vapour. Pressure losses between the generator and condenser, and the evaporator and absorber are taken into consideration. In the results the dimensionless exergy loss of each component, the exergetic coefficient of performance, the coefficient of performance and the circulation ratio are given graphically for each different generator, evaporator, condenser and absorber temperature. (author).

  10. A comparison of lead pollution record in Sphagnum peat with known historical Pb emission rates in the British isles and the Czech Republic

    Energy Technology Data Exchange (ETDEWEB)

    Novak, M.; Erel, Y.; Zemanova, L.; Bottrell, S.H.; Adamova, M. [Czech Geological Survey, Prague (Czech Republic)

    2008-12-15

    Vertical Pb concentration gradients and isotope ratios (Pb-206/Pb-207, Pb-208/Pb-207) are reported for five Pb-210-dated Sphagnum peat profiles. The studied peat bogs are in the British Isles (Thorne Moors, England; Mull, Scotland; and Connemara, Eire) and central Europe (Ocean, northern Czech Republic: Rybarenska slat, southern Czech Republic). Both the U.K. and the Czech Republic experienced maximum Pb emissions from Ag-Pb smelting around 1880. Pb emissions from coal burning peaked in 1955 in the U.K, and in the 1980s in the Czech Republic. In both countries, use of alkyl-lead additives to gasoline resulted in large Pb emissions between 1950 and 2000. We hypothesized that peaks in Pb emissions from smelting, coal burning and gasoline burning, respectively, should be mirrored in the peat profiles. However, a more complicated pattern emerged. Maximum annual Pb accumulation rates occurred in 1870 at Ocean, 1940 at Thorne Moors, 1988 at Rybarenska slat, and 1990 at Mull and Connemara. Atmospheric Pb inputs decreased in the order Thorne Moors {ge} Ocean > Rybarenska slat > Mull > Connemara. The Ocean bog was unique in the central European region in that its maximum Pb pollution dated back to the 19th century and coincided with maximum Pb smelting at Freiberg and Pribram. In contrast, numerous previously studied sites showed no Pb accumulation maximum in the 19th century, but increasing pollution until the 1980s. It remains unclear why Ocean did not record the regional peak in Pb emissions caused by high coal and gasoline burning around 1980, while an array of nearby bogs studied previously did record the 1980 coal/gasoline peak, but no 1880 smelting peak. Mean Pb-206/Pb-207 ratios of potential pollution sources were 1.07 and 1.11 for gasoline, 1.17 and 1.17 for local ores, and 1.18 and 1.19 for coal in the U.K. and the Czech Republic, respectively.

  11. ESTIMATION OF IRREVERSIBLE DAMAGEABILITY AT FATIGUE OF CARBON STEEL

    Directory of Open Access Journals (Sweden)

    I. O. Vakulenko

    2014-04-01

    Full Text Available Purpose. Damageability estimation of carbon steel in the conditions of cyclic loading. Methodology. The steel fragments of railway wheel rim and rail head served as material for research with chemical composition 0.65 % С, 0.67 % Mn, 0.3 % Si, 0.027 % P, 0.028 % S и 0.7 % C, 0.82 % Mn, 0.56 % Si, 0.025 % P, 0.029 % S accordingly. The microstructure of tested steels corresponded to the state of metal after a hot plastic deformation. The fatigue research was conducted in the conditions of symmetric bend using the proof-of-concept machine of type «Saturn-10». Full Wohler diagrams and the lines corresponding to forming of sub-and micro cracks were constructed. The distribution analysis of internal stresses in the metal under cyclic loading was carried out using the microhardness tester of PMT-3 type.Findings. On the basis of fatigue curves for high-carbon steels analysis the positions of borders dividing the areas of convertible and irreversible damages were determined. The article shows that with the growth of carbon concentration in the steel at invariability of the structural state an increase of fatigue limit is observed. At the same time the acceleration of processes, which determine transition terms from the stage of forming of submicrocracks to the microcracks occurs. The research of microhardness distribution in the metal after destruction confirmed the nature of carbon amount influence on the carbon steel characteristics. Originality. Regardless on the stages of breakdown site forming the carbon steels behavior at a fatigue is determined by the ration between the processes of strengthening and softening. At a cyclic loading the heterogeneity of internal stresses distribution decreases with the increase of distance from the destruction surface. Analysis of metal internal restructuring processes at fatigue loading made it possible to determine that at the stages prior to incubation period in the metal microvolumes the cells are already

  12. Is the Use of Dexamethasone Effective in Controlling Pain Associated with Symptomatic Irreversible Pulpitis? A Systematic Review.

    Science.gov (United States)

    Nogueira, Brenna M L; Silva, Ludmylla G; Mesquita, Carla R M; Menezes, Sílvio A F; Menezes, Tatiany O A; Faria, Antônio G M; Porpino, Mariana T M

    2018-05-01

    Endodontic pain is a symptom of pulpal and/or periapical inflammation. One strategy for pain reduction is using medications, such as dexamethasone. A definitive protocol for preventing and controlling pain caused by irreversible pulpitis during endodontic treatment has not yet been established. This is a systematic review to answer the following question: is the use of dexamethasone effective in controlling pain associated with symptomatic irreversible pulpitis? This study was registered in the PROSPERO database (CRD42017058704), and Preferred Reporting Items for Systematic Reviews and Meta-Analyses statement recommendations were followed. MEDLINE, Scopus, ScienceDirect, Web of Science, Latin American Caribbean Health Sciences Literature, Cochrane Library, and Google Scholar databases were used in our research. No restrictions were applied to dates or language of publication. All records identified electronically were organized and evaluated by 2 independent authors, and, in case of doubt, a third author made the decision. The Cochrane Collaboration tool was used. The data were analyzed with RevMan 5 software (The Cochrane Collaboration, Copenhagen, Denmark), and data from eligible studies were dichotomous (with and without pain). A total of 4825 studies were identified. After screening, 523 studies were selected, and, after careful evaluation, only 5 articles remained. All meta-analyses revealed a global effect (P < .05, P < .05, and P < .05), which means that 4 mg dexamethasone helps relieve pain, sometimes for up to 8, 12, and 24 hours. The pain felt by patients diagnosed with symptomatic irreversible pulpitis may be alleviated by administering 4 mg dexamethasone either by mouth or through intraligamentary and mainly supraperiosteal injections into the root canal for up to 24 hours. Copyright © 2018 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  13. Cooperative emission in ion implanted Yb:YAG waveguides

    Energy Technology Data Exchange (ETDEWEB)

    Vazquez, G V; Desirena, H; De la Rosa, E [Centro de Investigaciones en Optica, Loma del Bosque 115, Lomas del Campestre, 37150 Leon, Guanajuato (Mexico); Flores-Romero, E; Rickards, J; Trejo-Luna, R [Instituto de Fisica, UNAM, Apartado Postal 20364, 01000 Mexico, D. F. (Mexico); Marquez, H, E-mail: gvvazquez@cio.mx [Departamento de Optica, CICESE, Km 107 Carr. Tijuana-Ensenada, 22860 Ensenada, B. C. (Mexico)

    2011-01-01

    In this work, we report the analysis of spectroscopic properties of waveguides fabricated by ion implantation in YAG doped with Yb{sup 3+} ions. Three emission bands were detected in the blue, green and red regions under 970-nm excitation. The strong blue-green emission can be explained by a cooperative process between ytterbium ion pairs, leading to emission centered at 514 nm. The additional blue bands as well as green and red emission bands are attributed to the presence of Tm{sup 3+} and Er{sup 3+} traces. The results include absorption and emission curves as well as decay time rates.

  14. Cooperative emission in ion implanted Yb:YAG waveguides

    International Nuclear Information System (INIS)

    Vazquez, G V; Desirena, H; De la Rosa, E; Flores-Romero, E; Rickards, J; Trejo-Luna, R; Marquez, H

    2011-01-01

    In this work, we report the analysis of spectroscopic properties of waveguides fabricated by ion implantation in YAG doped with Yb 3+ ions. Three emission bands were detected in the blue, green and red regions under 970-nm excitation. The strong blue-green emission can be explained by a cooperative process between ytterbium ion pairs, leading to emission centered at 514 nm. The additional blue bands as well as green and red emission bands are attributed to the presence of Tm 3+ and Er 3+ traces. The results include absorption and emission curves as well as decay time rates.

  15. Ibrutinib is an irreversible molecular inhibitor of ITK driving a Th1-selective pressure in T lymphocytes

    Science.gov (United States)

    Dubovsky, Jason A.; Beckwith, Kyle A.; Natarajan, Gayathri; Woyach, Jennifer A.; Jaglowski, Samantha; Zhong, Yiming; Hessler, Joshua D.; Liu, Ta-Ming; Chang, Betty Y.; Larkin, Karilyn M.; Stefanovski, Matthew R.; Chappell, Danielle L.; Frissora, Frank W.; Smith, Lisa L.; Smucker, Kelly A.; Flynn, Joseph M.; Jones, Jeffrey A.; Andritsos, Leslie A.; Maddocks, Kami; Lehman, Amy M.; Furman, Richard; Sharman, Jeff; Mishra, Anjali; Caligiuri, Michael A.; Satoskar, Abhay R.; Buggy, Joseph J.; Muthusamy, Natarajan; Johnson, Amy J.

    2013-01-01

    Given its critical role in T-cell signaling, interleukin-2–inducible kinase (ITK) is an appealing therapeutic target that can contribute to the pathogenesis of certain infectious, autoimmune, and neoplastic diseases. Ablation of ITK subverts Th2 immunity, thereby potentiating Th1-based immune responses. While small-molecule ITK inhibitors have been identified, none have demonstrated clinical utility. Ibrutinib is a confirmed irreversible inhibitor of Bruton tyrosine kinase (BTK) with outstanding clinical activity and tolerability in B-cell malignancies. Significant homology between BTK and ITK alongside in silico docking studies support ibrutinib as an immunomodulatory inhibitor of both ITK and BTK. Our comprehensive molecular and phenotypic analysis confirms ITK as an irreversible T-cell target of ibrutinib. Using ibrutinib clinical trial samples along with well-characterized neoplastic (chronic lymphocytic leukemia), parasitic infection (Leishmania major), and infectious disease (Listeria monocytogenes) models, we establish ibrutinib as a clinically relevant and physiologically potent ITK inhibitor with broad therapeutic utility. This trial was registered at www.clinicaltrials.gov as #NCT01105247 and #NCT01217749. PMID:23886836

  16. Ibrutinib is an irreversible molecular inhibitor of ITK driving a Th1-selective pressure in T lymphocytes.

    Science.gov (United States)

    Dubovsky, Jason A; Beckwith, Kyle A; Natarajan, Gayathri; Woyach, Jennifer A; Jaglowski, Samantha; Zhong, Yiming; Hessler, Joshua D; Liu, Ta-Ming; Chang, Betty Y; Larkin, Karilyn M; Stefanovski, Matthew R; Chappell, Danielle L; Frissora, Frank W; Smith, Lisa L; Smucker, Kelly A; Flynn, Joseph M; Jones, Jeffrey A; Andritsos, Leslie A; Maddocks, Kami; Lehman, Amy M; Furman, Richard; Sharman, Jeff; Mishra, Anjali; Caligiuri, Michael A; Satoskar, Abhay R; Buggy, Joseph J; Muthusamy, Natarajan; Johnson, Amy J; Byrd, John C

    2013-10-10

    Given its critical role in T-cell signaling, interleukin-2-inducible kinase (ITK) is an appealing therapeutic target that can contribute to the pathogenesis of certain infectious, autoimmune, and neoplastic diseases. Ablation of ITK subverts Th2 immunity, thereby potentiating Th1-based immune responses. While small-molecule ITK inhibitors have been identified, none have demonstrated clinical utility. Ibrutinib is a confirmed irreversible inhibitor of Bruton tyrosine kinase (BTK) with outstanding clinical activity and tolerability in B-cell malignancies. Significant homology between BTK and ITK alongside in silico docking studies support ibrutinib as an immunomodulatory inhibitor of both ITK and BTK. Our comprehensive molecular and phenotypic analysis confirms ITK as an irreversible T-cell target of ibrutinib. Using ibrutinib clinical trial samples along with well-characterized neoplastic (chronic lymphocytic leukemia), parasitic infection (Leishmania major), and infectious disease (Listeria monocytogenes) models, we establish ibrutinib as a clinically relevant and physiologically potent ITK inhibitor with broad therapeutic utility. This trial was registered at www.clinicaltrials.gov as #NCT01105247 and #NCT01217749.

  17. Quantified, localized health benefits of accelerated carbon dioxide emissions reductions

    Science.gov (United States)

    Shindell, Drew; Faluvegi, Greg; Seltzer, Karl; Shindell, Cary

    2018-04-01

    Societal risks increase as Earth warms, and increase further for emissions trajectories accepting relatively high levels of near-term emissions while assuming future negative emissions will compensate, even if they lead to identical warming as trajectories with reduced near-term emissions1. Accelerating carbon dioxide (CO2) emissions reductions, including as a substitute for negative emissions, hence reduces long-term risks but requires dramatic near-term societal transformations2. A major barrier to emissions reductions is the difficulty of reconciling immediate, localized costs with global, long-term benefits3,4. However, 2 °C trajectories not relying on negative emissions or 1.5 °C trajectories require elimination of most fossil-fuel-related emissions. This generally reduces co-emissions that cause ambient air pollution, resulting in near-term, localized health benefits. We therefore examine the human health benefits of increasing 21st-century CO2 reductions by 180 GtC, an amount that would shift a `standard' 2 °C scenario to 1.5 °C or could achieve 2 °C without negative emissions. The decreased air pollution leads to 153 ± 43 million fewer premature deaths worldwide, with 40% occurring during the next 40 years, and minimal climate disbenefits. More than a million premature deaths would be prevented in many metropolitan areas in Asia and Africa, and >200,000 in individual urban areas on every inhabited continent except Australia.

  18. Reversible Concentration-Dependent Photoluminescence Quenching and Change of Emission Color in CsPbBr3 Nanowires and Nanoplatelets.

    Science.gov (United States)

    Di Stasio, Francesco; Imran, Muhammad; Akkerman, Quinten A; Prato, Mirko; Manna, Liberato; Krahne, Roman

    2017-06-15

    We discuss the photoluminescence (PL) of quantum-confined CsPbBr 3 colloidal nanocrystals of two different shapes (nanowires and nanoplatelets) at different concentrations in solution and in solid-state films. Upon increasing the nanocrystal concentration in solution, a constant drop in photoluminescence quantum yield is observed, accompanied by a significant PL red shift. This effect is reversible, and the original PL can be restored by diluting to the original concentration. We show that this effect can be in part attributed to self-absorption and partly to aggregation. In particular, for nanoplatelets, where the aggregation is mostly irreversible, while the self-absorption effect is reversible, the two contributions can be well separated. Finally, when dry solid-state films are prepared, the emission band is shifted into the green spectral region, close to the bulk CsPbBr 3 band gap, thus preventing blue emission from such films.

  19. Tin- and Lead-Based Perovskite Solar Cells under Scrutiny: An Environmental Perspective

    DEFF Research Database (Denmark)

    Serrano-Luján, Lucía; Espinosa Martinez, Nieves; Larsen-Olsen, Thue Trofod

    2015-01-01

    The effect of substituting lead with tin in perovskite-based solar cells (PSCs) has shows that lead is preferred over tin by a lower cumulative energy demand. The results, which also include end-of-life management, show that a recycling scenario that carefully handles emission of lead enables use...

  20. External costs of atmospheric Pb emissions: valuation of neurotoxic impacts due to inhalation

    DEFF Research Database (Denmark)

    Pizzol, Massimo; Thomsen, Marianne; Frohn, Lise

    2010-01-01

    The Impact Pathway Approach (IPA) is an innovative methodology to establish links between emissions, related impacts and monetary estimates. Only few attempts have so far been presented regarding emissions of metals; in this study the external costs of airborne lead (Pb) emissions are assessed...... using the IPA. Exposure to Pb is known to provoke impacts especially on children's cognition. As cognitive abilities (measured as IQ, intelligence quotient) are known to have implications for lifetime income, a pathway can be established leading from figures for Pb emissions to the implied loss...

  1. A randomized placebo-blind study of the effect of low power laser on pain caused by irreversible pulpitis.

    Science.gov (United States)

    Ramalho, Karen Müller; de Souza, Lárissa Marcondes Paladini; Tortamano, Isabel Peixoto; Adde, Carlos Alberto; Rocha, Rodney Garcia; de Paula Eduardo, Carlos

    2016-12-01

    This randomized placebo-blind study aimed to evaluate the effect of laser phototherapy (LPT) on pain caused by symptomatic irreversible pulpitis (SIP). Sixty patients diagnosed with SIP were randomly assigned to treatment groups (n = 15): G1 (control), G2 (laser placebo-sham irradiation), G3 (laser irradiation at 780 nm, 40 mW, 4 J/cm 2 ), and G4 (laser irradiation at 780 nm, 40 mW, 40 J/cm 2 ). Spontaneous pain was recorded using a VAS score before (T0), immediately after (T1), and 15 min after treatment (T2). Local anesthetics failure during emergency endodontic treatment was also assessed. There was no pain difference in T1 and T2 between the experimental laser groups (G3 and G4) and the placebo group (G2). The 4-J/cm 2 (G3) irradiation resulted in significant increase in the local anesthetics failure in lower jar teeth. This effect could be suggested as consequence of the LPT improvement in local circulation and vasodilatation that would result in the increase of local anesthetic agent absorption. The application of 780-nm diode laser irradiation, at 4 and 40 J/cm 2 , showed no effect in reducing the pain in SIP in comparison to the placebo group. The fluence of 4 J/cm 2 showed a negative effect in local anesthetics, resulting in significant increase of complimentary local anesthesia during emergency endodontic treatment. This work provides evidence of the consequence of LPT application on teeth with symptomatic irreversible pulpitis. LPT should be avoided in teeth with pain due to irreversible pulpitis.

  2. Assessment of maximum available work of a hydrogen fueled compression ignition engine using exergy analysis

    International Nuclear Information System (INIS)

    Chintala, Venkateswarlu; Subramanian, K.A.

    2014-01-01

    This work is aimed at study of maximum available work and irreversibility (mixing, combustion, unburned, and friction) of a dual-fuel diesel engine (H 2 (hydrogen)–diesel) using exergy analysis. The maximum available work increased with H 2 addition due to reduction in irreversibility of combustion because of less entropy generation. The irreversibility of unburned fuel with the H 2 fuel also decreased due to the engine combustion with high temperature whereas there is no effect of H 2 on mixing and friction irreversibility. The maximum available work of the diesel engine at rated load increased from 29% with conventional base mode (without H 2 ) to 31.7% with dual-fuel mode (18% H 2 energy share) whereas total irreversibility of the engine decreased drastically from 41.2% to 39.3%. The energy efficiency of the engine with H 2 increased about 10% with 36% reduction in CO 2 emission. The developed methodology could also be applicable to find the effect and scope of different technologies including exhaust gas recirculation and turbo charging on maximum available work and energy efficiency of diesel engines. - Highlights: • Energy efficiency of diesel engine increases with hydrogen under dual-fuel mode. • Maximum available work of the engine increases significantly with hydrogen. • Combustion and unburned fuel irreversibility decrease with hydrogen. • No significant effect of hydrogen on mixing and friction irreversibility. • Reduction in CO 2 emission along with HC, CO and smoke emissions

  3. Biaxially mechanical tuning of 2-D reversible and irreversible surface topologies through simultaneous and sequential wrinkling.

    Science.gov (United States)

    Yin, Jie; Yagüe, Jose Luis; Boyce, Mary C; Gleason, Karen K

    2014-02-26

    Controlled buckling is a facile means of structuring surfaces. The resulting ordered wrinkling topologies provide surface properties and features desired for multifunctional applications. Here, we study the biaxially dynamic tuning of two-dimensional wrinkled micropatterns under cyclic mechanical stretching/releasing/restretching simultaneously or sequentially. A biaxially prestretched PDMS substrate is coated with a stiff polymer deposited by initiated chemical vapor deposition (iCVD). Applying a mechanical release/restretch cycle in two directions loaded simultaneously or sequentially to the wrinkled system results in a variety of dynamic and tunable wrinkled geometries, the evolution of which is investigated using in situ optical profilometry, numerical simulations, and theoretical modeling. Results show that restretching ordered herringbone micropatterns, created through sequential release of biaxial prestrain, leads to reversible and repeatable surface topography. The initial flat surface and the same wrinkled herringbone pattern are obtained alternatively after cyclic release/restretch processes, owing to the highly ordered structure leaving no avenue for trapping irregular topological regions during cycling as further evidenced by the uniformity of strains distributions and negligible residual strain. Conversely, restretching disordered labyrinth micropatterns created through simultaneous release shows an irreversible surface topology whether after sequential or simultaneous restretching due to creation of irregular surface topologies with regions of highly concentrated strain upon formation of the labyrinth which then lead to residual strains and trapped topologies upon cycling; furthermore, these trapped topologies depend upon the subsequent strain histories as well as the cycle. The disordered labyrinth pattern varies after each cyclic release/restretch process, presenting residual shallow patterns instead of achieving a flat state. The ability to

  4. Quadriplegia due to lead-contaminated opium: a case report

    Directory of Open Access Journals (Sweden)

    Baigmohammadi MT

    2008-10-01

    Full Text Available "n Normal 0 false false false EN-US X-NONE AR-SA MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:Arial; mso-bidi-theme-font:minor-bidi;} Background: Lead poisoning could be associated with gastrointestinal renal, hematologic complications and neurologic deficit."n"n Case report: The patient was an opium addict, forty one years old male, to hospital admitted with gastrointestinal signs, constipation, abdominal pain, severe weakness of upper and lower limbs without any sensory impairment and with anemia, leukocytosis, and slightly increased liver function tests. Serum level of lead was more than 200µg/dl. After treatment with dimercaprol (BAL, CaNa2EDTA for two five days sessions that followed with oral succimer for three days, signs and symptoms relieved, all laboratory tests became normal and blood level of lead reduced but the patient was discharged with quadriplegia. There was no fecal or urinary incontinence."n"n Conclusions: Because of irreversibility and severity of lead related neuronal injury, we should suspect to lead poisoning in each patient with neuronal involvement and concurrent GI and hematologic signs."n"n Keywords: Lead poisoning, motor palsy, opium, neuropathy, quadriplegia.

  5. The effect of motor vehicle emission towards lead (Pb content of rice field soil with different clay content

    Directory of Open Access Journals (Sweden)

    C.C.Wati

    2015-10-01

    Full Text Available Motor vehicle gas emission contains lead (Pb which is a hazardous and toxic substance. Agricultural land, especially rice field, which is located nearby roads passed by many motor vehicle, are susceptible to the accumulation of Pb. If Pb is permeated by plants cultivated in the rice field, it will be very hazardous for humans as they are the final consumers. Hence, it is essential to identify Pb content of rice-field soil initiated by motor vehicle gas emission. This study was aimed to identify the effects of motor vehicle density, the distance between rice-field and road, and the clay content of soil towards Pb content of soils in Blitar and Ngawi Regencies of East Java. The method used for the study was survey method managed by using three-factor nested design with three replicates. The results of this study showed that motor vehicle density and the distance of rice field to road provide significant affected the total of Pb content of soil. However, the dissemination pattern of Pb in the soil was irregular due to the factors of climate and environment. Before Pb reached soil surface, Pb was spread out in the air due to the effect of temperature, wind velocity, vehicle velocity, size of vehicle, and road density. Consequently, the location with low motor vehicle density and positioned faraway to the road had higher total rate of Pb than the location with high motor vehicle density and positioned nearby the road. Clay content affected the total rate of Pb content as much as 37%, every 1% increase of clay content increased the total rate of Pb as much as 0.08 mg/kg.

  6. Early prosthetic aortic valve infection identified with the use of positron emission tomography in a patient with lead endocarditis.

    Science.gov (United States)

    Amraoui, Sana; Tlili, Ghoufrane; Sohal, Manav; Bordenave, Laurence; Bordachar, Pierre

    2016-12-01

    18-Fluorodeoxyglucose positron emission tomography/computerized tomography (FDG PET/CT) scanning has recently been proposed as a diagnostic tool for lead endocarditis (LE). FDG PET/CT might be also useful to localize associated septic emboli in patients with LE. We report an interesting case of a LE patient with a prosthetic aortic valve in whom a trans-esophageal echocardiogram did not show associated aortic endocarditis. FDG PET/CT revealed prosthetic aortic valve infection. A second TEE performed 2 weeks after identified aortic vegetation. A longer duration of antimicrobial therapy with serial follow-up echocardiography was initiated. There was also increased uptake in the sigmoid colon, corresponding to focal polyps resected during a colonoscopy. FDG PET/CT scanning seems to be highly sensitive for prosthetic aortic valve endocarditis diagnosis. This promising diagnostic tool may be beneficial in LE patients, by identifying septic emboli and potential sites of pathogen entry.

  7. Posterior Reversible Encephalopathy Syndrome (PRES): Restricted Diffusion does not Necessarily Mean Irreversibility.

    Science.gov (United States)

    Wagih, Alaa; Mohsen, Laila; Rayan, Moustafa M; Hasan, Mo'men M; Al-Sherif, Ashraf H

    2015-01-01

    Restricted diffusion is the second most common atypical presentation of PRES. This has a very important implication, as lesions with cytotoxic edema may progress to infarction. Several studies suggested the role of DWI in the prediction of development of infarctions in these cases. Other studies, however, suggested that PRES is reversible even with cytotoxic patterns. Our aim was to evaluate whether every restricted diffusion in PRES is reversible and what factors affect this reversibility. Thirty-six patients with acute neurological symptoms suggestive of PRES were included in our study. Inclusion criteria comprised imaging features of atypical PRES where DWI images and ADC maps show restricted diffusion. Patients were imaged with 0.2-T and 1.5-T machines. FLAIR images were evaluated for the severity of the disease and a FLAIR/DWI score was used. ADC values were selectively recorded from the areas of diffusion restriction. A follow-up MRI study was carried out in all patients after 2 weeks. Patients were classified according to reversibility into: Group 1 (reversible PRES; 32 patients) and Group 2 (irreversible changes; 4 patients). The study was approved by the University's research ethics committee, which conforms to the declaration of Helsinki. The age and blood pressure did not vary significantly between both groups. The total number of regions involved and the FLAIR/DWI score did not vary significantly between both groups. Individual regions did not reveal any tendency for the development of irreversible lesions. Similarly, ADC values did not reveal any significant difference between both groups. PRES is completely reversible in the majority of patients, even with restricted diffusion. None of the variables under study could predict the reversibility of PRES lesions. It seems that this process is individual-dependent.

  8. Insufficient evidence to assess the effectiveness of antibiotics for irreversible pulpitis.

    Science.gov (United States)

    George, Roy

    2014-03-01

    The Cochrane Oral Health Group's Trials Register, the Cochrane Central Register of Controlled Trials (CENTRAL), Medline, Embase and the US National Institutes of Health Trials Register. Randomised controlled trials (RCTs) which compared pain relief with systemic antibiotics and analgesics, against placebo and analgesics in the acute preoperative phase of irreversible pulpitis. Study selection, risk of bias assessment and data extraction were carried out independently by two reviewers. Pooling of data was not possible and a descriptive summary is presented. One trial assessed at low risk of bias, involving 40 participants, was included in this update of the review. The quality of the body of evidence was rated low for the different outcomes. There was a close parallel distribution of the pain ratings in both the intervention and placebo groups over the seven-day study period.There was insufficient evidence to claim or refute a benefit for penicillin for pain intensity. There was no significant difference in the mean total number of ibuprofen tablets taken over the study period: 9.2 (standard deviation (SD) 6.02) in the penicillin group versus 9.6 (SD 6.34) in the placebo group; mean difference -0.40 (95% confidence interval (CI) -4.23 to 3.43; P value = 0.84). This applied equally for the mean total number of Tylenol tablets: 6.9 (SD 6.87) used in the penicillin group versus 4.45 (SD 4.82) in the placebo group; mean difference 2.45 (95% CI -1.23 to 6.13; P value = 0.19). Our secondary outcome on reporting of adverse events was not addressed in this study. This systematic, review which was based on one low-powered small sample trial assessed as a low risk of bias, illustrates that there is insufficient evidence to determine whether antibiotics reduce pain or not compared to not having antibiotics. The results of this review confirm the necessity for further larger sample and methodologically sound trials that can provide additional evidence as to whether antibiotics

  9. Transportation Emissions: some basics

    DEFF Research Database (Denmark)

    Kontovas, Christos A.; Psaraftis, Harilaos N.

    2016-01-01

    transportation and especially carbon dioxide emissions are at the center stage of discussion by the world community through various international treaties, such as the Kyoto Protocol. The transportation sector also emits non-CO2 pollutants that have important effects on air quality, climate, and public health......Transportation is the backbone of international trade and a key engine driving globalization. However, there is growing concern that the Earth’s atmospheric composition is being altered by human activities, including transportation, which can lead to climate change. Air pollution from....... The main purpose of this chapter is to introduce some basic concepts that are relevant in the quest of green transportation logistics. First, we present the basics of estimating emissions from transportation activities, the current statistics and future trends, as well as the total impact of air emissions...

  10. Quantified, Localized Health Benefits of Accelerated Carbon Dioxide Emissions Reductions.

    Science.gov (United States)

    Shindell, Drew; Faluvegi, Greg; Seltzer, Karl; Shindell, Cary

    2018-01-01

    Societal risks increase as Earth warms, but also for emissions trajectories accepting relatively high levels of near-term emissions while assuming future negative emissions will compensate even if they lead to identical warming [1]. Accelerating carbon dioxide (CO 2 ) emissions reductions, including as a substitute for negative emissions, hence reduces long-term risks but requires dramatic near-term societal transformations [2]. A major barrier to emissions reductions is the difficulty of reconciling immediate, localized costs with global, long-term benefits [3, 4]. However, 2°C trajectories not relying on negative emissions or 1.5°C trajectories require elimination of most fossil fuel related emissions. This generally reduces co-emissions that cause ambient air pollution, resulting in near-term, localized health benefits. We therefore examine the human health benefits of increasing ambition of 21 st century CO 2 reductions by 180 GtC; an amount that would shift a 'standard' 2°C scenario to 1.5°C or could achieve 2°C without negative emissions. The decreased air pollution leads to 153±43 million fewer premature deaths worldwide, with ~40% occurring during the next 40 years, and minimal climate disbenefits. More than a million premature deaths would be prevented in many metropolitan areas in Asia and Africa, and >200,000 in individual urban areas on every inhabited continent except Australia.

  11. Is the Supraspinatus Muscle Atrophy Truly Irreversible after Surgical Repair of Rotator Cuff Tears?

    Science.gov (United States)

    Chung, Seok Won; Kim, Sae Hoon; Tae, Suk-Kee; Yoon, Jong Pil; Choi, Jung-Ah

    2013-01-01

    Background Atrophy of rotator cuff muscles has been considered an irreversible phenomenon. The purpose of this study is to evaluate whether atrophy is truly irreversible after rotator cuff repair. Methods We measured supraspinatus muscle atrophy of 191 patients with full-thickness rotator cuff tears on preoperative magnetic resonance imaging and postoperative multidetector computed tomography images, taken at least 1 year after operation. The occupation ratio was calculated using Photoshop CS3 software. We compared the change between pre- and postoperative occupation ratios after modifying the preoperative occupation ratio. In addition, possible relationship between various clinical factors and the change of atrophy, and between the change of atrophy and cuff integrity after surgical repair were evaluated. Results The mean occupation ratio was significantly increased postoperatively from 0.44 ± 0.17 to 0.52 ± 0.17 (p < 0.001). Among 191 patients, 81 (42.4%) showed improvement of atrophy (more than a 10% increase in occupation ratio) and 33 (17.3%) worsening (more than a 10% decrease). Various clinical factors such as age tear size, or initial degree of atrophy did not affect the change of atrophy. However, the change of atrophy was related to repair integrity: cuff healing failure rate of 48.5% (16 of 33) in worsened atrophy; and 22.2% (18 of 81) in improved atrophy (p = 0.007). Conclusions The supraspinatus muscle atrophy as measured by occupation ratio could be improved postoperatively in case of successful cuff repair. PMID:23467404

  12. The Effect of Acupuncture on the Success of Inferior Alveolar Nerve Block for Teeth with Symptomatic Irreversible Pulpitis: A Triple-blind Randomized Clinical Trial.

    Science.gov (United States)

    Jalali, Shahrzad; Moradi Majd, Nima; Torabi, Samane; Habibi, Mohammad; Homayouni, Hamed; Mohammadi, Navid

    2015-09-01

    An inferior alveolar nerve block (IANB) does not always provide satisfactory anesthesia for patients with irreversible pulpitis. The aim of this study was to assess the effect of preoperative acupuncture on the success rate of IANBs for teeth with symptomatic irreversible pulpitis. In a randomized triple-blinded clinical trial, 40 patients with symptomatic irreversible pulpitis were divided into 2 groups: the acupuncture and control groups. In the acupuncture group, a disposable needle was inserted at LI4 (Hegu) acupoint, and after 15 minutes, for patients who had reported the De qi sensation, an IANB was administered. In the control group, 15 minutes before the administration of an IANB, the practitioner simply imitated the acupuncture procedure but did not actually insert the needle. Endodontic treatments were conducted for the patients who reported lip numbness 15 minutes after the injection of the IANB. If the patients felt intolerable pain (>20 mm on a visual analog scale of 100 mm) during the procedure, a supplementary injection was administered. In those situations, the IANB was considered an unsuccessful injection. Data were evaluated by the chi-square, Wilcoxon, Mann-Whitney, and t tests. The level of significance was set at 0.05. The overall success rates of IANB for the acupuncture and control groups were 60% and 20%, respectively (P < .05). The application of acupuncture before the endodontic treatment increased the effectiveness of IANBs for mandibular molars with symptomatic irreversible pulpitis. Copyright © 2015 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  13. Efficacy of supplementary buccal infiltrations and intraligamentary injections to inferior alveolar nerve blocks in mandibular first molars with asymptomatic irreversible pulpitis: a randomized controlled trial.

    Science.gov (United States)

    Parirokh, M; Sadr, S; Nakhaee, N; Abbott, P V; Askarifard, S

    2014-10-01

    This randomized double-blinded controlled trial was performed to compare the efficacy of inferior alveolar nerve block (IANB) injection for mandibular first molar teeth with irreversible pulpitis with or without supplementary buccal infiltration and intraligamentary injection. Eighty-two patients with asymptomatic irreversible pulpitis received either a combination of intraligamentary injection + buccal infiltration+ IANB or with traditional IANB injection in mandibular first molar teeth with irreversible pulpitis. Each patient recorded their pain score on a Heft-Parker visual analogue scale before commencing treatment, in response to a cold test 15 min after the designated anaesthetic injection, during access cavity preparation and during root canal instrumentation. No or mild pain at any stage was considered a success. Data were analysed by chi-square test. At the final stage of treatment, 69 of the 82 patients were eligible to be included in the study. No significant difference was found between age (P = 0.569) and gender (P = 0.570) amongst the patients in the two groups. The success rate of anaesthesia in the IANB and the combination groups were 22% and 58%, respectively. The success rate of anaesthesia in the combination group was significantly higher than the traditional IANB injection (P = 0.003). A combination of anaesthetic techniques can improve the success rate of anaesthesia for mandibular first molar teeth with irreversible pulpitis. © 2013 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  14. X-tip intraosseous injection system as a primary anesthesia for irreversible pulpitis of posterior mandibular teeth: A randomized clinical trail

    Directory of Open Access Journals (Sweden)

    Hamid Razavian

    2013-01-01

    Full Text Available Background: Successful anesthesia during root canal therapy may be difficult to obtain. Intraosseous injection significantly improves anesthesia′s success as a supplemental pulpal anesthesia, particularly in cases of irreversible pulpitis. The aim of this study was to compare the efficacy of X-tip intraosseous injection and inferior alveolar nerve (IAN block in primary anesthesia for mandibular posterior teeth with irreversible pulpitis. Materials and Methods: Forty emergency patients with an irreversible pulpitis of mandibular posterior teeth were randomly assigned to receive either intraosseous injection using the X-tip intraosseous injection system or IAN block as the primary injection method for pulpal anesthesia. Pulpal anesthesia was evaluated using an electric pulp tester and endo ice at 5-min intervals for 15 min. Anesthesia′s success or failure rates were recorded and analyzed using SPSS version 12 statistical software. Success or failure rates were compared using a Fisher′s exact test, and the time duration for the onset of anesthesia was compared using Mann-Whitney U test. P < 0.05 was considered significant. Results: Intraosseous injection system resulted in successful anesthesia in 17 out of 20 patients (85%. Successful anesthesia was achieved with the IAN block in 14 out of 20 patients (70%. However, the difference (15% was not statistically significant ( P = 0.2. Conclusion: Considering the relatively expensive armamentarium, probability of penetrator separation, temporary tachycardia, and possibility of damage to root during drilling, the authors do not suggest intraosseous injection as a suitable primary technique.

  15. Five-year results of vital pulp therapy in permanent molars with irreversible pulpitis: a non-inferiority multicenter randomized clinical trial.

    Science.gov (United States)

    Asgary, Saeed; Eghbal, Mohammad Jafar; Fazlyab, Mahta; Baghban, Alireza Akbarzadeh; Ghoddusi, Jamileh

    2015-03-01

    Previous reported results of up to 12 months as well as 24-month follow-ups revealed superior and equivalent treatment outcomes for vital pulp therapy (VPT) using calcium-enriched mixture cement (CEM) in comparison with root canal therapy (RCT) for mature molars with established irreversible pulpitis, respectively. Present non-inferiority multicenter randomized clinical trial assesses the final long-term (5-year) results as well as the effects of patients' age/gender and the presence of preoperative periapical lesion on the treatment outcomes. A total number of 407 patients were blindly allocated into two treatment groups [group 1 (VPT/CEM, n = 205) and group 2 (RCT, n = 202)] treated in 23 health-care centers by calibrated dentists. The treatment outcomes were assessed after 60 months. The 5-year results revealed no significant differences in the successes of both study arms (P = 0.29); a total number of 271 patients were available (~33 % were lost to follow-up). The patients' age/gender did not affect the outcomes; the presence of preoperative periapical lesion also did not implement a significant effect in both groups (P > 0.05). As an alternative for RCT, VPT/CEM can be considered as a valid treatment for vital mature permanent molars clinically diagnosed with irreversible pulpitis. Considering the favorable outcomes of 6- to 60-month follow-ups, as an evidence-based/simple/affordable/effective/biologic approach in cases of irreversible pulpitis, VPT/CEM is highly recommended for universal clinical practice.

  16. Performance analysis for minimally nonlinear irreversible refrigerators at finite cooling power

    Science.gov (United States)

    Long, Rui; Liu, Zhichun; Liu, Wei

    2018-04-01

    The coefficient of performance (COP) for general refrigerators at finite cooling power have been systematically researched through the minimally nonlinear irreversible model, and its lower and upper bounds in different operating regions have been proposed. Under the tight coupling conditions, we have calculated the universal COP bounds under the χ figure of merit in different operating regions. When the refrigerator operates in the region with lower external flux, we obtained the general bounds (0 present large values, compared to a relative small loss from the maximum cooling power. If the cooling power is the main objective, it is desirable to operate the refrigerator at a slightly lower cooling power than at the maximum one, where a small loss in the cooling power induces a much larger COP enhancement.

  17. Anesthetic Efficacy of Articaine and Ketamine for Inferior Alveolar Nerve Block in Symptomatic Irreversible Pulpitis: A Prospective Randomized Double-Blind Study.

    Science.gov (United States)

    Sakhaeimanesh, Vahid; Khazaei, Saber; Kaviani, Naser; Saatchi, Masoud; Shafiei, Maryam; Khademi, Abbasali

    2017-01-01

    The aim of this prospective, randomized, double-blind study was to investigate the effect of articaine combined with ketamine on the success rate of inferior alveolar nerve block (IANB) in posterior mandible teeth with symptomatic irreversible pulpitis. Forty two adult patients with diagnosis of symptomatic irreversible pulpitis of a mandibular posterior tooth were selected. The patients received two cartridges of either containing 3.2 mL 4% articaine with epinephrine 1:200000 and 0.4 mL 50 mg/mL ketamine hydrochloride (A-ketamine group) or 3.2 mL 4% articaine with epinephrine 1:200000 and 0.4 mL normal saline (A-saline group) using conventional IANB injections. Access cavity preparation started 15 min after injection. Lip numbness was required for all the patients. Success was considered as no or mild pain on the basis of Heft-Parker visual analog scale recordings upon access cavity preparation or initial instrumentation. Data were analyzed by independent student t , Mann-Whitney and Chi -square tests. The success rates were 55% and 42.9% for A-ketamine and A-saline group, respectively, with no significant differences between the two groups ( P =0.437) . Adding 0.4 mL 50 mg/mL ketamine hydrochloride to the articaine local anesthetic did not increase the efficacy of IANB for posterior mandibular teeth with symptomatic irreversible pulpitis.

  18. Anesthetic Efficacy of Articaine and Ketamine for Inferior Alveolar Nerve Block in Symptomatic Irreversible Pulpitis: A Prospective Randomized Double-Blind Study

    Science.gov (United States)

    Sakhaeimanesh, Vahid; Khazaei, Saber; Kaviani, Naser; Saatchi, Masoud; Shafiei, Maryam; Khademi, Abbasali

    2017-01-01

    Introduction: The aim of this prospective, randomized, double-blind study was to investigate the effect of articaine combined with ketamine on the success rate of inferior alveolar nerve block (IANB) in posterior mandible teeth with symptomatic irreversible pulpitis. Methods and Materials: Forty two adult patients with diagnosis of symptomatic irreversible pulpitis of a mandibular posterior tooth were selected. The patients received two cartridges of either containing 3.2 mL 4% articaine with epinephrine 1:200000 and 0.4 mL 50 mg/mL ketamine hydrochloride (A-ketamine group) or 3.2 mL 4% articaine with epinephrine 1:200000 and 0.4 mL normal saline (A-saline group) using conventional IANB injections. Access cavity preparation started 15 min after injection. Lip numbness was required for all the patients. Success was considered as no or mild pain on the basis of Heft-Parker visual analog scale recordings upon access cavity preparation or initial instrumentation. Data were analyzed by independent student t, Mann-Whitney and Chi-square tests. Results: The success rates were 55% and 42.9% for A-ketamine and A-saline group, respectively, with no significant differences between the two groups (P=0.437). Conclusion: Adding 0.4 mL 50 mg/mL ketamine hydrochloride to the articaine local anesthetic did not increase the efficacy of IANB for posterior mandibular teeth with symptomatic irreversible pulpitis. PMID:29225640

  19. Increasing beef production could lower greenhouse gas emissions in Brazil if decoupled from deforestation

    Science.gov (United States)

    de Oliveira Silva, R.; Barioni, L. G.; Hall, J. A. J.; Folegatti Matsuura, M.; Zanett Albertini, T.; Fernandes, F. A.; Moran, D.

    2016-05-01

    Recent debate about agricultural greenhouse gas emissions mitigation highlights trade-offs inherent in the way we produce and consume food, with increasing scrutiny on emissions-intensive livestock products. Although most research has focused on mitigation through improved productivity, systemic interactions resulting from reduced beef production at the regional level are still unexplored. A detailed optimization model of beef production encompassing pasture degradation and recovery processes, animal and deforestation emissions, soil organic carbon (SOC) dynamics and upstream life-cycle inventory was developed and parameterized for the Brazilian Cerrado. Economic return was maximized considering two alternative scenarios: decoupled livestock-deforestation (DLD), assuming baseline deforestation rates controlled by effective policy; and coupled livestock-deforestation (CLD), where shifting beef demand alters deforestation rates. In DLD, reduced consumption actually leads to less productive beef systems, associated with higher emissions intensities and total emissions, whereas increased production leads to more efficient systems with boosted SOC stocks, reducing both per kilogram and total emissions. Under CLD, increased production leads to 60% higher emissions than in DLD. The results indicate the extent to which deforestation control contributes to sustainable intensification in Cerrado beef systems, and how alternative life-cycle analytical approaches result in significantly different emission estimates.

  20. Scaling Law for Irreversible Entropy Production in Critical Systems.

    Science.gov (United States)

    Hoang, Danh-Tai; Prasanna Venkatesh, B; Han, Seungju; Jo, Junghyo; Watanabe, Gentaro; Choi, Mahn-Soo

    2016-06-09

    We examine the Jarzynski equality for a quenching process across the critical point of second-order phase transitions, where absolute irreversibility and the effect of finite-sampling of the initial equilibrium distribution arise in a single setup with equal significance. We consider the Ising model as a prototypical example for spontaneous symmetry breaking and take into account the finite sampling issue by introducing a tolerance parameter. The initially ordered spins become disordered by quenching the ferromagnetic coupling constant. For a sudden quench, the deviation from the Jarzynski equality evaluated from the ideal ensemble average could, in principle, depend on the reduced coupling constant ε0 of the initial state and the system size L. We find that, instead of depending on ε0 and L separately, this deviation exhibits a scaling behavior through a universal combination of ε0 and L for a given tolerance parameter, inherited from the critical scaling laws of second-order phase transitions. A similar scaling law can be obtained for the finite-speed quench as well within the Kibble-Zurek mechanism.