WorldWideScience

Sample records for emission tomography clinical

  1. Positron emission tomography clinical practice

    CERN Document Server

    Valk, Peter E; Bailey, Dale L; Townsend, David W; Maisey, Michael N

    2006-01-01

    This book provides a contemporary reference to the science, technology and clinical applications of PET and PET/CT. The opening chapters summarize the scientific aspects of PET and PET/CT including physics, instrumentation, radiation dosimetry and radiation protection. A chapter on normal variants in FDG PET imaging serves as an introduction to the clinical chapters, which cover oncology applications and have been updated to include the impact of FDG PET/CT imaging in oncology. The book concludes with chapters on the use of PET and PET/CT in cardiology and neurology and PET imaging of infectio

  2. Kinetic modeling in pre-clinical positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Kuntner, Claudia [AIT Austrian Institute of Technology GmbH, Seibersdorf (Austria). Biomedical Systems, Health and Environment Dept.

    2014-07-01

    Pre-clinical positron emission tomography (PET) has evolved in the last few years from pure visualization of radiotracer uptake and distribution towards quantification of the physiological parameters. For reliable and reproducible quantification the kinetic modeling methods used to obtain relevant parameters of radiotracer tissue interaction are important. Here we present different kinetic modeling techniques with a focus on compartmental models including plasma input models and reference tissue input models. The experimental challenges of deriving the plasma input function in rodents and the effect of anesthesia are discussed. Finally, in vivo application of kinetic modeling in various areas of pre-clinical research is presented and compared to human data.

  3. Clinical cardiac positron emission tomography: State of the art

    International Nuclear Information System (INIS)

    Gould, K.L.

    1991-01-01

    Cardiac positron emission tomography (PET) has evolved rapidly from a relatively esoteric research tool into clinical applications providing unique, quantitative information on myocardial perfusion, metabolism, and cell membrane function and having a potentially significant impact on cardiovascular medicine. Although there are many different positron radionuclides for imaging diverse myocardial behavior, three radionuclides have reached accepted clinical utility. Cardiac PET using nitrogen-13-ammonia, rubidium-82, and fluoro-18-deoxyglucose has proved accurate and definitive in multiple university and private-practice sites for diagnosing and assessing severity and location of coronary artery disease in symptomatic or asymptomatic patients, for identifying injured but viable myocardium potentially salvageable by revascularization, and for ruling out clinically significant coronary artery stenosis with a high specificity in patients who might otherwise undergo coronary arteriography to document the absence of significant disease. 89 references

  4. Positron Emission Tomography (PET) and breast cancer in clinical practice

    International Nuclear Information System (INIS)

    Lavayssiere, Robert; Cabee, Anne-Elizabeth; Filmont, Jean-Emmanuel

    2009-01-01

    The landscape of oncologic practice has changed deeply during the past few years and there is now a need, through a multidisciplinary approach, for imaging to provide accurate evaluation of morphology and function and to guide treatment (Image Guided Therapy). Increasing emphasis has been put on Position Emission Tomography (PET) role in various cancers among clinicians and patients despite a general context of healthcare expenditure limitation. Positron Emission Tomography has currently a limited role in breast cancer, but also general radiologists and specialists should be aware of these indications, especially when staging aggressive cancers and looking for recurrence. Currently, the hybrid systems associating PET and Computed Tomography (CT) and in the same device [Rohren EM, Turkington TG, Coleman RE. Clinical applications of PET in oncology. Radiology 2004;231:305-32; Blodgett TM, Meltzer CM, Townsend DW. PET/CT: form and function. Radiology 2007;242:360-85; von Schulthess GK, Steinert HC, Hany TF. Integrated PET/CT: current applications and futures directions. Radiology 2006;238(2):405-22], or PET-CT, are more commonly used and the two techniques are adding their potentialities. Other techniques, MRI in particular, may also compete with PET in some instance and as far as ionizing radiations dose limitation is considered, some breast cancers becoming some form of a chronic disease. Breast cancer is a very complex, non-uniform, disease and molecular imaging at large may contribute to a better knowledge and to new drugs development. Ongoing research, Positron Emission Mammography (PEM) and new tracers, are likely to bring improvements in patient care [Kelloff GJ, Hoffman JM, Johnson B, et al. Progress and promise of FDG-PET Imaging for cancer patient management and oncologic drug development. Clin Cancer Res 2005;1(April (8)): 2005

  5. Positron Emission Tomography (PET) and breast cancer in clinical practice

    Energy Technology Data Exchange (ETDEWEB)

    Lavayssiere, Robert [Centre d' Imagerie Paris-Nord, 1, avenue Charles Peguy, 95200 Sarcelles (France); Institut du Sein Henri Hartmann (ISHH), 1, rue des Dames Augustines, 92200 Neuilly sur Seine (France)], E-mail: cab.lav@wanadoo.fr; Cabee, Anne-Elizabeth [Centre d' Imagerie Paris-Nord, 1, avenue Charles Peguy, 95200 Sarcelles (France); Institut du Sein Henri Hartmann (ISHH), 1, rue des Dames Augustines, 92200 Neuilly sur Seine (France); Centre RMX, 80, avenue Felix Faure, 75105 Paris (France); Filmont, Jean-Emmanuel [Institut du Sein Henri Hartmann (ISHH), 1, rue des Dames Augustines, 92200 Neuilly sur Seine (France); American Hospital of Paris, Nuclear Medicine, 63, boulevard Victor Hugo - BP 109, 92202 Neuilly sur Seine Cedex (France)

    2009-01-15

    The landscape of oncologic practice has changed deeply during the past few years and there is now a need, through a multidisciplinary approach, for imaging to provide accurate evaluation of morphology and function and to guide treatment (Image Guided Therapy). Increasing emphasis has been put on Position Emission Tomography (PET) role in various cancers among clinicians and patients despite a general context of healthcare expenditure limitation. Positron Emission Tomography has currently a limited role in breast cancer, but also general radiologists and specialists should be aware of these indications, especially when staging aggressive cancers and looking for recurrence. Currently, the hybrid systems associating PET and Computed Tomography (CT) and in the same device [Rohren EM, Turkington TG, Coleman RE. Clinical applications of PET in oncology. Radiology 2004;231:305-32; Blodgett TM, Meltzer CM, Townsend DW. PET/CT: form and function. Radiology 2007;242:360-85; von Schulthess GK, Steinert HC, Hany TF. Integrated PET/CT: current applications and futures directions. Radiology 2006;238(2):405-22], or PET-CT, are more commonly used and the two techniques are adding their potentialities. Other techniques, MRI in particular, may also compete with PET in some instance and as far as ionizing radiations dose limitation is considered, some breast cancers becoming some form of a chronic disease. Breast cancer is a very complex, non-uniform, disease and molecular imaging at large may contribute to a better knowledge and to new drugs development. Ongoing research, Positron Emission Mammography (PEM) and new tracers, are likely to bring improvements in patient care [Kelloff GJ, Hoffman JM, Johnson B, et al. Progress and promise of FDG-PET Imaging for cancer patient management and oncologic drug development. Clin Cancer Res 2005;1(April (8)): 2005].

  6. Positron emission tomography

    International Nuclear Information System (INIS)

    Reivich, M.; Alavi, A.

    1985-01-01

    This book contains 24 selections. Some of the titles are: Positron Emission Tomography Instrumentation, Generator Systems for Positron Emitters, Reconstruction Algorithms, Cerebral Glucose Consumption: Methodology and Validation, Cerebral Blood Flow Tomography Using Xenon-133 Inhalation: Methods and Clinical Applications, PET Studies of Stroke, Cardiac Positron Emission Tomography, and Use of PET in Oncology

  7. Proceedings of clinical SPECT [single photon emission computed tomography] symposium

    International Nuclear Information System (INIS)

    1986-09-01

    It has been five years since the last in-depth American College of Nuclear Physicians/Society of Nuclear Medicine Symposium on the subject of single photon emission computed tomography (SPECT) was held. Because this subject was nominated as the single most desired topic we have selected SPECT imaging as the basis for this year's program. The objectives of this symposium are to survey the progress of SPECT clinical applications that have taken place over the last five years and to provide practical and timely guidelines to users of SPECT so that this exciting imaging modality can be fully integrated into the evaluation of pathologic processes. The first half was devoted to a consideration of technical factors important in SPECT acquisition and the second half was devoted to those organ systems about which sufficient clinical SPECT imaging data are available. With respect to the technical aspect of the program we have selected the key areas which demand awareness and attention in order to make SPECT operational in clinical practice. These include selection of equipment, details of uniformity correction, utilization of phantoms for equipment acceptance and quality assurance, the major aspect of algorithms, an understanding of filtered back projection and appropriate choice of filters and an awareness of the most commonly generated artifacts and how to recognize them. With respect to the acquisition and interpretation of organ images, the faculty will present information on the major aspects of hepatic, brain, cardiac, skeletal, and immunologic imaging techniques. Individual papers are processed separately for the data base

  8. Clinical application of positron emission tomography imaging in urologic tumors

    International Nuclear Information System (INIS)

    Tang Ganghua; Wu Guangyuan

    2007-01-01

    Positron emission tomography (PET) is an advanced noninvasive molecular imaging modality that is being investigated for use in the differentiation, diagnosis, and guiding therapy ora variety of cancer types. FDG PET has the unique clinical value in the differentiation, diagnosis, and monitoring therapy of prostate, such as bladder, renal, and testicle cancer. However, high false-positive and false-negative findings are observed in the detection of these tumors with FDG PET. 11 C-Choline (CH) and 11 C-acetate (AC) can overcome the pitfall of FDG, and appear to be more successful than FGD in imaging prostate cancer and bladder cancer. The short half-life of 11 C prevents the widespread use of CH and AC and 18 F-fluorocholine (FCH) and 18 F-fluoroacetate (FAC) seem to be potential tracers. Potential clinical value of the new PET tracers, such as 3'-deoxy-3'- 18 F-fluorothymidine (FLT), 18 F-fluorodihydrotestosterone (FDHT), and 9-(4- 18 F-3-hydroxymethylbutyl)-guanine( 18 F-FHBG) in the detection of urologic tumors, can deserve further study. (authors)

  9. Proceedings of clinical SPECT (single photon emission computed tomography) symposium

    Energy Technology Data Exchange (ETDEWEB)

    1986-09-01

    It has been five years since the last in-depth American College of Nuclear Physicians/Society of Nuclear Medicine Symposium on the subject of single photon emission computed tomography (SPECT) was held. Because this subject was nominated as the single most desired topic we have selected SPECT imaging as the basis for this year's program. The objectives of this symposium are to survey the progress of SPECT clinical applications that have taken place over the last five years and to provide practical and timely guidelines to users of SPECT so that this exciting imaging modality can be fully integrated into the evaluation of pathologic processes. The first half was devoted to a consideration of technical factors important in SPECT acquisition and the second half was devoted to those organ systems about which sufficient clinical SPECT imaging data are available. With respect to the technical aspect of the program we have selected the key areas which demand awareness and attention in order to make SPECT operational in clinical practice. These include selection of equipment, details of uniformity correction, utilization of phantoms for equipment acceptance and quality assurance, the major aspect of algorithms, an understanding of filtered back projection and appropriate choice of filters and an awareness of the most commonly generated artifacts and how to recognize them. With respect to the acquisition and interpretation of organ images, the faculty will present information on the major aspects of hepatic, brain, cardiac, skeletal, and immunologic imaging techniques. Individual papers are processed separately for the data base. (TEM)

  10. Positron emission tomography-computed tomography has a clinical impact for patients with cervical cancer

    DEFF Research Database (Denmark)

    Sandvik, Rikke Mulvad; Jensen, Pernille Tine; Hendel, Helle W

    2011-01-01

    Many studies have found that positron emission tomography-computed tomography (PET-CT) has a high sensitivity and specificity in the identification of metastasis in cervical cancer. Herlev Hospital, Denmark, has been performing PET-CTs in stage I-IV cervical cancer since 1 May 2006. The present...

  11. Clinical applications of positron emission tomography at Montreal Neurological Institute

    International Nuclear Information System (INIS)

    Morgan, P.P.

    1983-01-01

    The Montreal Neurological Institute occupies a leading position in positron emission tomography (PET) of the brain with the help of the following three techological gains: they have acquired a 'Therascan' positron emission tomograph manufactured by Atomic Energy of Canada Ltd.; also, a 'Baby Cyclotron' manufactured by Japan Steel Works Ltd.; and they have written a computer program to display the results in colour. Four short-lived isotopes are used; 11 C, 15 O, 18 F, 13 N. Studies of the oxygen uptake of tumours, their glucose metabolism (as monitored by 18 F labelled 2-fluoro-2-deoxyglucose), and their uptake of therapeutic agents, provide valuable research and diagnostic information. PET is also being used to study epilepsy and cerebrovascular disease

  12. Clinical applications of positron emission tomography in breast cancer patients

    International Nuclear Information System (INIS)

    Roemer, W.; Avril, N.; Schwaiger, M.

    1997-01-01

    Increased glucose metabolism by malignant tissue can be visualized with positron emission tomography (PET), using the radiolabeled glucose analogue F-18 fluorodeoxyglucose (FDG). Depending on the criteria of image interpretation FDG-PET allows detection of breast cancer with a sensitivity of 68% to 94 % and a specificity of 84 % to 97 %. However, sensitivity to visualize small tumors (< 1 cm) is limited. Positron emission tomography demonstrates tumor involvement of regional lymph nodes with high accuracy, predominantly in patients with advanced breast cancer. The sensitivity for the detection of axillary lymph node metastases was 79% with a corresponding specificity of 96 %. Lymph node metastases could not be identified in four of six patients with small primary breast cancer (stage pT1), resulting in a sensitivity of only 33% in these patients. By visualizing primary tumors and metastases in one imaging procedure, PET imaging may allow the effective staging of breast cancer patients. Further studies are needed to define the role of scintigraphic techniques for the diagnostic work-up in patients. (author)

  13. Positron Emission Tomography (PET) in the oncologic clinical practice

    International Nuclear Information System (INIS)

    Serna M, J.A.; Luviano, C.; Martinez V, D.; Maldonado S, A.

    2005-01-01

    We intended to determine the frequency with that the computer axial tomography (TAC), it was able to visualize the lesions extra neoplasia detected by the PET tomography in patients with fully identified primary malignant neoplasia. (Author)

  14. Positron emission tomography

    International Nuclear Information System (INIS)

    Wienhard, K.; Heiss, W.D.

    1984-01-01

    The principles and selected clinical applications of positron emission tomography are described. In this technique a chemical compound is labeled with a positron emitting isotope and its biochemical pathway is traced by coincidence detection of the two annihilation photons. The application of the techniques of computed tomography allows to reconstruct the spatial distribution of the radioactivity within a subject. The 18 F-deoxyglucose method for quantitative measurement of local glucose metabolism is discussed in order to illustrate the possibilities of positron emission tomography to record physiological processes in vivo. (orig.) [de

  15. The contribution of single photon emission computed tomography in the clinical assessment of Alzheimer type dementia

    International Nuclear Information System (INIS)

    Boudousq, V.; Collombier, L.; Kotzki, P.O.

    1999-01-01

    Interest of brain single-photon emission computed tomography to support clinical diagnosis of Alzheimer-type dementia is now established. Numerous studies have reported a decreased perfusion in the association cortex of the parietal lobe and the posterior temporal regions. In patients with mild cognitive complaints, the presence of focal hypoperfusion may increase substantially the probability of the disease. In addition, emission tomography emerges as a helpful tool in situation in which there is diagnostic doubt. In this case, the presence of temporo-parietal perfusion deficit associated with hippocampal atrophy on MRI or X-ray computed tomography contributes to diagnostic accuracy. However, some studies suggest that emission tomography may be useful for preclinical prediction of Alzheimer's disease and to predict cognitive decline. (author)

  16. Emission computed tomography

    International Nuclear Information System (INIS)

    Ott, R.J.

    1986-01-01

    Emission Computed Tomography is a technique used for producing single or multiple cross-sectional images of the distribution of radionuclide labelled agents in vivo. The techniques of Single Photon Emission Computed Tomography (SPECT) and Positron Emission Tomography (PET) are described with particular regard to the function of the detectors used to produce images and the computer techniques used to build up images. (UK)

  17. Positron Emission Tomography: Current Challenges and Opportunities for Technological Advances in Clinical and Preclinical Imaging Systems

    Science.gov (United States)

    Vaquero, Juan José; Kinahan, Paul

    2017-01-01

    Positron emission tomography (PET) imaging is based on detecting two time-coincident high-energy photons from the emission of a positron-emitting radioisotope. The physics of the emission, and the detection of the coincident photons, give PET imaging unique capabilities for both very high sensitivity and accurate estimation of the in vivo concentration of the radiotracer. PET imaging has been widely adopted as an important clinical modality for oncological, cardiovascular, and neurological applications. PET imaging has also become an important tool in preclinical studies, particularly for investigating murine models of disease and other small-animal models. However, there are several challenges to using PET imaging systems. These include the fundamental trade-offs between resolution and noise, the quantitative accuracy of the measurements, and integration with X-ray computed tomography and magnetic resonance imaging. In this article, we review how researchers and industry are addressing these challenges. PMID:26643024

  18. Positron Emission Tomography: Current Challenges and Opportunities for Technological Advances in Clinical and Preclinical Imaging Systems.

    Science.gov (United States)

    Vaquero, Juan José; Kinahan, Paul

    2015-01-01

    Positron emission tomography (PET) imaging is based on detecting two time-coincident high-energy photons from the emission of a positron-emitting radioisotope. The physics of the emission, and the detection of the coincident photons, give PET imaging unique capabilities for both very high sensitivity and accurate estimation of the in vivo concentration of the radiotracer. PET imaging has been widely adopted as an important clinical modality for oncological, cardiovascular, and neurological applications. PET imaging has also become an important tool in preclinical studies, particularly for investigating murine models of disease and other small-animal models. However, there are several challenges to using PET imaging systems. These include the fundamental trade-offs between resolution and noise, the quantitative accuracy of the measurements, and integration with X-ray computed tomography and magnetic resonance imaging. In this article, we review how researchers and industry are addressing these challenges.

  19. Clinical application of positron emission tomography for diagnosis of dementia

    Energy Technology Data Exchange (ETDEWEB)

    Ishii, Kazunari [Hyogo Brain and Heart Center, Himeji (Japan)

    2002-12-01

    Clinical applications of PET studies for dementia are reviewed in this paper. At the mild and moderate stages of Alzheimer's disease (AD), glucose metabolism is reduced not only in the parietotemporal region but also in the posterior cingulate and precuneus. At the advanced stage of AD, there is also a metabolic reduction in the frontal region. In AD patients, glucose metabolism is relatively preserved in the pons, sensorimotor cortices, primary visual cortices, basal ganglia, thalamus and cerebellum. In patients with dementia with Lewy bodies, glucose metabolism in the primary visual cortices is reduced, and this reduction appears to be associated with the reduction pattern in AD patients. In patients with frontotemporal dementia, reduced metabolism in the frontotemporal region is the main feature of this disease, but reduced metabolism in the basal ganglia, and/or parietal metabolic reduction can be associated with the frontotemporal reduction. When corticobasal degeneration is associated with dementia, the reduction pattern of dementia is similar to the reduction pattern in AD and the hallmarks of diagnosing corticobasal degeneration associated with dementia are a reduced metabolism in the primary sensorimotor region and/or basal ganglia and an asymmetric reduction in the two hemispheres. FDG-PET is a very useful tool for the diagnosis of early AD and for the differential diagnosis of dementia. I also describe clinical applications of PET for the diagnosis of dementia in Japan. (author)

  20. Clinical application of positron emission tomography for diagnosis of dementia

    International Nuclear Information System (INIS)

    Ishii, Kazunari

    2002-01-01

    Clinical applications of PET studies for dementia are reviewed in this paper. At the mild and moderate stages of Alzheimer's disease (AD), glucose metabolism is reduced not only in the parietotemporal region but also in the posterior cingulate and precuneus. At the advanced stage of AD, there is also a metabolic reduction in the frontal region. In AD patients, glucose metabolism is relatively preserved in the pons, sensorimotor cortices, primary visual cortices, basal ganglia, thalamus and cerebellum. In patients with dementia with Lewy bodies, glucose metabolism in the primary visual cortices is reduced, and this reduction appears to be associated with the reduction pattern in AD patients. In patients with frontotemporal dementia, reduced metabolism in the frontotemporal region is the main feature of this disease, but reduced metabolism in the basal ganglia, and/or parietal metabolic reduction can be associated with the frontotemporal reduction. When corticobasal degeneration is associated with dementia, the reduction pattern of dementia is similar to the reduction pattern in AD and the hallmarks of diagnosing corticobasal degeneration associated with dementia are a reduced metabolism in the primary sensorimotor region and/or basal ganglia and an asymmetric reduction in the two hemispheres. FDG-PET is a very useful tool for the diagnosis of early AD and for the differential diagnosis of dementia. I also describe clinical applications of PET for the diagnosis of dementia in Japan. (author)

  1. Recommendations for measurement of tumour vascularity with positron emission tomography in early phase clinical trials

    International Nuclear Information System (INIS)

    Aboagye, Eric O.; Kenny, Laura M.; Myers, Melvyn; Gilbert, Fiona J.; Fleming, Ian N.; Beer, Ambros J.; Cunningham, Vincent J.; Marsden, Paul K.; Visvikis, Dimitris; Gee, Antony D.; Groves, Ashley M.; Cook, Gary J.; Kinahan, Paul E.; Clarke, Larry

    2012-01-01

    The evaluation of drug pharmacodynamics and early tumour response are integral to current clinical trials of novel cancer therapeutics to explain or predict long term clinical benefit or to confirm dose selection. Tumour vascularity assessment by positron emission tomography could be viewed as a generic pharmacodynamic endpoint or tool for monitoring response to treatment. This review discusses methods for semi-quantitative and quantitative assessment of tumour vascularity. The radioligands and radiotracers range from direct physiological functional tracers like [ 15 O]-water to macromolecular probes targeting integrin receptors expressed on neovasculature. Finally we make recommendations on ways to incorporate such measurements of tumour vascularity into early clinical trials of novel therapeutics. (orig.)

  2. Clinical value of whole body fluorine-18 fluorodeoxyglucose positron emission tomography/computed tomography in the detection of metastatic bladder cancer.

    Science.gov (United States)

    Yang, Zhongyi; Pan, Lingling; Cheng, Jingyi; Hu, Silong; Xu, Junyan; Ye, Dingwei; Zhang, Yingjian

    2012-07-01

    To investigate the value of whole-body fluorine-18 2-fluoro-2-deoxy-D-glucose positron emission tomography/computed tomography for the detection of metastatic bladder cancer. From December 2006 to August 2010, 60 bladder cancer patients (median age 60.5 years old, range 32-96) underwent whole body positron emission tomography/computed tomography positron emission tomography/computed tomography. The diagnostic accuracy was assessed by performing both organ-based and patient-based analyses. Identified lesions were further studied by biopsy or clinically followed for at least 6 months. One hundred and thirty-four suspicious lesions were identified. Among them, 4 primary cancers (2 pancreatic cancers, 1 colonic and 1 nasopharyngeal cancer) were incidentally detected, and the patients could be treated on time. For the remaining 130 lesions, positron emission tomography/computed tomography detected 118 true positive lesions (sensitivity = 95.9%). On the patient-based analysis, the overall sensitivity and specificity resulted to be 87.1% and 89.7%, respectively. There was no difference of sensitivity and specificity in patients with or without adjuvant treatment in terms of detection of metastatic sites by positron emission tomography/computed tomography. Compared with conventional imaging modality, positron emission tomography/computed tomography correctly changed the management in 15 patients (25.0%). Positron emission tomography/computed tomography has excellent sensitivity and specificity in the detection of metastatic bladder cancer and it provides additional diagnostic information compared to standard imaging techniques. © 2012 The Japanese Urological Association.

  3. Clinical value of whole body fluorine-18 fluorodeoxyglucose positron emission tomography/computed tomography in the detection of metastatic bladder cancer

    International Nuclear Information System (INIS)

    Yang Zhongyi; Pan Lingling; Cheng Jingyi; Hu Silong; Xu Junyan; Zhang Yingjian; Ye Dingwei

    2012-01-01

    The objective of this study was to investigate the value of whole-body fluorine-18 2-fluoro-2-deoxy-D-glucose positron emission tomography/computed tomography for the detection of metastatic bladder cancer. From December 2006 to August 2010, 60 bladder cancer patients (median age 60.5 years old, range 32-96) underwent whole body positron emission tomography/computed tomography positron emission tomography/computed tomography. The diagnostic accuracy was assessed by performing both organ-based and patient-based analyses. Identified lesions were further studied by biopsy or clinically followed for at least 6 months. One hundred and thirty-four suspicious lesions were identified. Among them, 4 primary cancers (2 pancreatic cancers, 1 colonic and 1 nasopharyngeal cancer) were incidentally detected, and the patients could be treated on time. For the remaining 130 lesions, positron emission tomography/computed tomography detected 118 true positive lesions (sensitivity=95.9%). On the patient-based analysis, the overall sensitivity and specificity resulted to be 87.1% and 89.7%, respectively. There was no difference of sensitivity and specificity in patients with or without adjuvant treatment in terms of detection of metastatic sites by positron emission tomography/computed tomography. Compared with conventional imaging modality, positron emission tomography/computed tomography correctly changed the management in 15 patients (25.0%). Positron emission tomography/computed tomography has excellent sensitivity and specificity in the detection of metastatic bladder cancer and it provides additional diagnostic information compared to standard imaging techniques. (author)

  4. Positron emission tomography

    International Nuclear Information System (INIS)

    Paans, A.M.J.

    1981-01-01

    Positron emitting radiopharmaceuticals have special applications in in-vivo studies of biochemical processes. The combination of a cyclotron for the production of radionuclides and a positron emission tomograph for the registration of the distribution of radioactivity in the body enables the measurement of local radioactivity concentration in tissues, and opens up new possibilities in the diagnosis and examination of abnormalities in the metabolism. The principles and procedures of positron emission tomography are described and the necessary apparatus considered, with emphasis on the positron camera. The first clinical applications using 55 Co bloemycine for tumor detection are presented. (C.F.)

  5. Positron emission tomography-computed tomography standardized uptake values in clinical practice and assessing response to therapy.

    Science.gov (United States)

    Kinahan, Paul E; Fletcher, James W

    2010-12-01

    The use of standardized uptake values (SUVs) is now common place in clinical 2-deoxy-2-[(18)F] fluoro-D-glucose (FDG) position emission tomography-computed tomography oncology imaging and has a specific role in assessing patient response to cancer therapy. Ideally, the use of SUVs removes variability introduced by differences in patient size and the amount of injected FDG. However, in practice there are several sources of bias and variance that are introduced in the measurement of FDG uptake in tumors and also in the conversion of the image count data to SUVs. In this article the overall imaging process is reviewed and estimates of the magnitude of errors, where known, are given. Recommendations are provided for best practices in improving SUV accuracy. Copyright © 2010 Elsevier Inc. All rights reserved.

  6. Single-photon emission computed tomography in the clinical evaluation of dementia

    International Nuclear Information System (INIS)

    Jagust, W.J.; Reed, B.R.; Budinger, T.F.; Colina, M.

    1987-01-01

    Physiological imaging using positron emission tomography (PET) has been a useful tool in the investigation of dementia. In particular, patterns of cerebral glucose utilization appear to differentiate various types of dementia, with Alzheimer's disease (AD) demonstrating a propensity for hypometabolism to involve the temporoparietal cortex. Single-photon emission computed tomography (SPECT) using new tracers for the measurement of regional cerebral blood flow is a technique with potentially broader clinical availability than PET and thus may provide a practical method of routinely evaluating patients. The authors studied eight patients with AD, four healthy elderly controls, and one patient with multi-infarct dementia (MID) using the tracer 123 I-N-isopropyl-p-iodoamphetamine with SPECT

  7. Positron emission tomography

    International Nuclear Information System (INIS)

    Yamamoto, Y.L.; Thompson, C.J.; Diksic, M.; Meyer, E.; Feindel, W.H.

    1984-01-01

    One of the most exciting new technologies introduced in the last 10 yr is positron emission tomography (PET). PET provides quantitative, three-dimensional images for the study of specific biochemical and physiological processes in the human body. This approach is analogous to quantitative in-vivo autoradiography but has the added advantage of permitting non-invasive in vivo studies. PET scanning requires a small cyclotron to produce short-lived positron emitting isotopes such as oxygen-15, carbon-11, nitrogen-13 and fluorine-18. Proper radiochemical facilities and advanced computer equipment are also needed. Most important, PET requires a multidisciplinary scientific team of physicists, radiochemists, mathematicians, biochemists and physicians. The most recent trends are reviewed in the imaging technology, radiochemistry, methodology and clinical applications of positron emission tomography. (author)

  8. Single photon emission tomography

    International Nuclear Information System (INIS)

    Buvat, Irene

    2011-09-01

    The objective of this lecture is to present the single photon emission computed tomography (SPECT) imaging technique. Content: 1 - Introduction: anatomic, functional and molecular imaging; Principle and role of functional or molecular imaging; 2 - Radiotracers: chemical and physical constraints, main emitters, radioisotopes production, emitters type and imaging techniques; 3 - Single photon emission computed tomography: gamma cameras and their components, gamma camera specifications, planar single photon imaging characteristics, gamma camera and tomography; 4 - Quantification in single photon emission tomography: attenuation, scattering, un-stationary spatial resolution, partial volume effect, movements, others; 5 - Synthesis and conclusion

  9. Clinical impact of 18F-fluorodeoxyglucose positron emission tomography in the diagnosis of neurological diseases

    International Nuclear Information System (INIS)

    Buck, A.; Kamel, E.

    2002-01-01

    In this review it will be discussed in which neurological disorders positron emission tomography can yield important diagnostic information. Because positron emission tomography is an expensive method indications have to be cleary defined. One important question concerns the differentiation of tumor recurrence and scar due to radiation therapy or an operation. The grading of brain tumors is another application. In HIV patients fluorodeoxyglucose positron emission tomography can separate lymphoma and toxoplasmosis. In the evaluation of dementia positron emission tomography can help to clarify the differential diagnosis. Another important area is the presurgical evaluation of epilepsy patients and patients with cerebrovascular disease in whom a surgical revascularization procedure is planned. In extrapyramidal disorders, positron emission tomography can often help to establish the final diagnosis. (author)

  10. Clinical correlates of decreased anteroposterior metabolic gradients in positron emission tomography (PET) of schizophrenic patients

    International Nuclear Information System (INIS)

    DeLisi, L.E.; Buchsbaum, M.S.; Holcomb, H.H.

    1985-01-01

    The finding in schizophrenic patients of a reversal of the normal frontal to posterior pattern of brain metabolic activity with positron emission tomography (PET) is of interest, but its relevance to psychopathology is unknown. Using PET, the authors studied 21 patients with chronic schizophrenia and 21 age- and sex-matched control subjects. Although eight of the 21 patients and only one of the control subjects showed a relatively lower anteroposterior metabolic gradient, no clinical correlates of this finding were noted. In addition, cerebral atrophy, as determined by CAT scan, was not associated with this aberrant metabolic pattern

  11. New Cyclotron Targetry to Enhance F-18 clinical Position Emission Tomography

    International Nuclear Information System (INIS)

    Doster, J. Michael

    2008-01-01

    This project proposes to develop cyclotron targets that produce F-18 for clinical Positron Emission Tomography (PET) at significantly higher rates than that available from current targetry. This production rate of 18F is directly proportional to the beam current. Higher beam currents would result in increased 18F production but would be accompanied by higher heat loads to the target. The beam power available in most commercial cyclotrons exceeds the heat removal capacity of current target technology by a factor of two to four, significantly limiting the production rate of Fluorine-18

  12. Positron Emission Tomography (PET)

    International Nuclear Information System (INIS)

    Welch, M.J.

    1990-01-01

    Positron emission tomography (PET) assesses biochemical processes in the living subject, producing images of function rather than form. Using PET, physicians are able to obtain not the anatomical information provided by other medical imaging techniques, but pictures of physiological activity. In metaphoric terms, traditional imaging methods supply a map of the body's roadways, its, anatomy; PET shows the traffic along those paths, its biochemistry. This document discusses the principles of PET, the radiopharmaceuticals in PET, PET research, clinical applications of PET, the cost of PET, training of individuals for PET, the role of the United States Department of Energy in PET, and the futures of PET. 22 figs

  13. Positron Emission Tomography (PET)

    Energy Technology Data Exchange (ETDEWEB)

    Welch, M.J.

    1990-01-01

    Positron emission tomography (PET) assesses biochemical processes in the living subject, producing images of function rather than form. Using PET, physicians are able to obtain not the anatomical information provided by other medical imaging techniques, but pictures of physiological activity. In metaphoric terms, traditional imaging methods supply a map of the body's roadways, its, anatomy; PET shows the traffic along those paths, its biochemistry. This document discusses the principles of PET, the radiopharmaceuticals in PET, PET research, clinical applications of PET, the cost of PET, training of individuals for PET, the role of the United States Department of Energy in PET, and the futures of PET. 22 figs.

  14. Positron Emission Tomography (PET)

    Science.gov (United States)

    Welch, M. J.

    1990-01-01

    Positron emission tomography (PET) assesses biochemical processes in the living subject, producing images of function rather than form. Using PET, physicians are able to obtain not the anatomical information provided by other medical imaging techniques, but pictures of physiological activity. In metaphoric terms, traditional imaging methods supply a map of the body's roadways, its, anatomy; PET shows the traffic along those paths, its biochemistry. This document discusses the principles of PET, the radiopharmaceuticals in PET, PET research, clinical applications of PET, the cost of PET, training of individuals for PET, the role of the United States Department of Energy in PET, and the futures of PET.

  15. Recommendations for measurement of tumour vascularity with positron emission tomography in early phase clinical trials

    Energy Technology Data Exchange (ETDEWEB)

    Aboagye, Eric O.; Kenny, Laura M.; Myers, Melvyn [Imperial College London, Department of Surgery and Cancer, Faculty of Medicine, London (United Kingdom); Gilbert, Fiona J. [University of Cambridge, Radiology Department, Cambridge (United Kingdom); Fleming, Ian N. [University of Aberdeen, NCRI PET Research Network, Aberdeen Bioimaging Centre, Aberdeen (United Kingdom); Beer, Ambros J. [Technische Universitaet Munchen, Klinikum rechts der Isar, Department of Nuclear Medicine, Munich (Germany); Cunningham, Vincent J. [University of Aberdeen, Institute of Medical Sciences, Aberdeen (United Kingdom); Marsden, Paul K. [St. Thomas' Hospital, Division of Imaging Sciences, PET Imaging Centre, London (United Kingdom); Visvikis, Dimitris [INSERM National Institute of Health and Clinical Sciences LaTIM, CHU Morvan, Brest (France); Gee, Antony D. [St. Thomas' Hospital, Division of Imaging Sciences, The Rayne Institute, London (United Kingdom); Groves, Ashley M. [University College London, University College Hospital, Institute of Nuclear Medicine, London (United Kingdom); Cook, Gary J. [St. Thomas' Hospital, KCL Division of Imaging, Sciences and Biomedical Engineering, PET Imaging Centre, London (United Kingdom); Kinahan, Paul E. [University of Washington, 222 Old Fisheries Center (FIS), Box 357987, Seattle, WA (United States); Clarke, Larry [Cancer Imaging Program, Imaging Technology Development Branch, Rockville, MD (United States)

    2012-07-15

    The evaluation of drug pharmacodynamics and early tumour response are integral to current clinical trials of novel cancer therapeutics to explain or predict long term clinical benefit or to confirm dose selection. Tumour vascularity assessment by positron emission tomography could be viewed as a generic pharmacodynamic endpoint or tool for monitoring response to treatment. This review discusses methods for semi-quantitative and quantitative assessment of tumour vascularity. The radioligands and radiotracers range from direct physiological functional tracers like [{sup 15}O]-water to macromolecular probes targeting integrin receptors expressed on neovasculature. Finally we make recommendations on ways to incorporate such measurements of tumour vascularity into early clinical trials of novel therapeutics. (orig.)

  16. Positron emission tomography. Positronemisionstomografi

    Energy Technology Data Exchange (ETDEWEB)

    Bolwig, T G; Haunsoe, S; Dahlgaard Hove, J; Hesse, B; Hoejgard, L; Jensen, M; Paulson, O B; Hastrup Svendsen, J; Soelvsten Soerensen, S

    1994-10-01

    Positron emission tomography (PET) is a method for quantitative imaging of regional physiological and biochemical parameters. Positron emitting radioactive isotopes can be produced by a cyclotron, eg. the biologically important carbon ([sup 11]C), oxygen ([sup 15]O), and nitrogen ([sup 13]N) elements. With the tomographic principles of the PET scanner the quantitative distribution of the administered isotopes can be determined and images can be provided as well as dynamic information on blood flow, metabolism and receptor function. In neurology PET has been used for investigations on numerous physiological processes in the brain: circulation, metabolism and receptor studies. In Parkinson's disease PET studies have been able to localize the pathology specifically, and in early stroke PET technique can outline focal areas with living but non-functioning cells, and this could make it possible to intervene in this early state. With positron emission tomography a quantitative evaluation of myocardial blood flow, glucose and fatty acid metabolism can be made as well as combined assessments of blood flow and metabolism. Combined studies of blood flow and metabolism can determine whether myocardial segments with abnormal motility consist of necrotic or viable tissue, thereby delineating effects of revascularisation. In the future it will probably be possible to characterize the myocardial receptor status in different cardiac diseases. The PET technique is used in oncology for clinical as well as more basic research on tumor perfusion and metabolism. Further, tumor uptake of positron labelled cytotoxic drugs might predict the clinical benefit of treatment. (au) (19 refs.).

  17. Positron emission tomography

    International Nuclear Information System (INIS)

    Bolwig, T.G.; Haunsoe, S.; Dahlgaard Hove, J.; Hesse, B.; Hoejgard, L.; Jensen, M.; Paulson, O.B.; Hastrup Svendsen, J.; Soelvsten Soerensen, S.

    1994-01-01

    Positron emission tomography (PET) is a method for quantitative imaging of regional physiological and biochemical parameters. Positron emitting radioactive isotopes can be produced by a cyclotron, eg. the biologically important carbon ( 11 C), oxygen ( 15 O), and nitrogen ( 13 N) elements. With the tomographic principles of the PET scanner the quantitative distribution of the administered isotopes can be determined and images can be provided as well as dynamic information on blood flow, metabolism and receptor function. In neurology PET has been used for investigations on numerous physiological processes in the brain: circulation, metabolism and receptor studies. In Parkinson's disease PET studies have been able to localize the pathology specifically, and in early stroke PET technique can outline focal areas with living but non-functioning cells, and this could make it possible to intervene in this early state. With positron emission tomography a quantitative evaluation of myocardial blood flow, glucose and fatty acid metabolism can be made as well as combined assessments of blood flow and metabolism. Combined studies of blood flow and metabolism can determine whether myocardial segments with abnormal motility consist of necrotic or viable tissue, thereby delineating effects of revascularisation. In the future it will probably be possible to characterize the myocardial receptor status in different cardiac diseases. The PET technique is used in oncology for clinical as well as more basic research on tumor perfusion and metabolism. Further, tumor uptake of positron labelled cytotoxic drugs might predict the clinical benefit of treatment. (au) (19 refs.)

  18. Positron Emission Tomography in clinical research and clinical diagnosis: tracer modelling and radioreceptors

    International Nuclear Information System (INIS)

    Beckers, C.; Goffinet, A.; Bol, A.

    1989-01-01

    Positron emission tomography (PET) allows noninvasive studies of different metabolic pathways in man in a unique way. Human biochemistry can now be studied using physiological tracers like glucose or oxygen; promising investigations are now underway with various neurotransmitters. The aim of this workshop, sponsored by the European Community, has been to convene a group of experts to discuss more deeply the problems related to the study of receptors and energy metabolism, and this particularly in relationship with the compartmental analysis and the modelling of the data. Up to now, these have mostly been accumulated for the brain and heart. Oncology is now a growing field of interest and more applications are certain to arise in the near future. The papers included in this volume summarize the main points discussed during the workshop. (author). refs.; figs.; tabs

  19. Quantification in emission tomography

    International Nuclear Information System (INIS)

    Buvat, Irene

    2011-11-01

    The objective of this lecture is to understand the possibilities and limitations of the quantitative analysis of single photon emission computed tomography (SPECT) and positron emission tomography (PET) images. It is also to identify the conditions to be fulfilled to obtain reliable quantitative measurements from images. Content: 1 - Introduction: Quantification in emission tomography - definition and challenges; quantification biasing phenomena 2 - Main problems impacting quantification in PET and SPECT: problems, consequences, correction methods, results (Attenuation, scattering, partial volume effect, movement, un-stationary spatial resolution in SPECT, fortuitous coincidences in PET, standardisation in PET); 3 - Synthesis: accessible efficiency, know-how, Precautions, beyond the activity measurement

  20. Brain perfusion single photon emission computed tomography in major psychiatric disorders: From basics to clinical practice

    International Nuclear Information System (INIS)

    Santra, Amburanjan; Kumar, Rakesh

    2014-01-01

    Brain single photon emission computed tomography (SPECT) is a well-established and reliable method to assess brain function through measurement of regional cerebral blood flow (rCBF). It can be used to define a patient's pathophysiological status when neurological or psychiatric symptoms cannot be explained by anatomical neuroimaging findings. Though there is ample evidence validating brain SPECT as a technique to track human behavior and correlating psychiatric disorders with dysfunction of specific brain regions, only few psychiatrists have adopted brain SPECT in routine clinical practice. It can be utilized to evaluate the involvement of brain regions in a particular patient, to individualize treatment on basis of SPECT findings, to monitor the treatment response and modify treatment, if necessary. In this article, we have reviewed the available studies in this regard from existing literature and tried to present the evidence for establishing the clinical role of brain SPECT in major psychiatric illnesses

  1. Clinical applications of 18F-fluorodeoxyglucose positron emission tomography/computed tomography in carcinoma of unknown primary

    Institute of Scientific and Technical Information of China (English)

    HU Man; YU Jin-ming; ZHAO Wei; ZHANG Pin-liang; JU Gui-fang; FU Zheng; ZHANG Guo-li; KONG Li; YANG Yan-qin; MA Yi-dong

    2011-01-01

    Background Carcinoma of unknown primary (CUP) encompasses a heterogeneous group of tumors with varying clinical features. The management of patients of CUP remains a clinical challenge. The purpose of this study was to evaluate the clinical applications of integrated 18F-fluorodeoxyglucose positron emission tomography/computed tomography (FDG PET/CT) information in patients with CUP,including detecting the occult primary tumor and effecting on disease therapy.Methods One hundred and forty-nine patients with histologically-proven metastases of CUP were included. For all patients,the conventional diagnostic work-up was unsuccessful in localizing the primary site. Whole-body PET/CT images were obtained approximately 60 minutes after intravenous injection of 350-425 MBq of 18F-FDG.Results In 24.8% of patients,FDG PET/CT detected primary tumors that were not apparent after conventional workup.In this group of patients,the overall sensitivity,specificity,and accuracy rates of FDG PET/CT in detecting unknown primary tumors were 86.0%,87.7%,and 87.2%,respectively. FDG PET/CT imaging also led to the detection of previously unrecognized metastases in 29.5% of patients. Forty-seven (31.5%,47 of 149) patients underwent a change in therapeutic management.Conclusions FDG PET/CT is a valuable tool in patients with CUP,because it assisted in detecting unknown primary tumors and previously unrecognized distant metastases,and optimized the mangement of these patients.

  2. Cardiac positron emission tomography

    International Nuclear Information System (INIS)

    Eftekhari, M.; Ejmalian, G.

    2003-01-01

    Positron emission tomography is an intrinsically tool that provide a unique and unparalleled approach for clinicians and researchers to interrogate the heart noninvasively. The ability to label substances of physiological interest with positron-emitting radioisotopes has permitted insight into normal blood flow and metabolism and the alterations that occur with disease states. Positron emission tomography of the heart has evolved as a unique, noninvasive approach for the assessment of myocardial perfusion, metabolism, and function. Because of the intrinsic quantitative nature of positron emission tomography measurements as well as the diverse compounds that can be labeled with positron- emitting radioisotopes, studies with positron emission tomography have provided rich insight into the physiology of the heart under diverse conditions

  3. Positron emission tomography

    International Nuclear Information System (INIS)

    Iio, Masahiro

    1982-01-01

    Utilization of positron emission tomography was reviewed in relation to construction and planned construction of small-size medical cyclotrons, planned construction of positron cameras and utilization of short-lived radionuclides. (Chiba, N.)

  4. Emission computed tomography

    International Nuclear Information System (INIS)

    Budinger, T.F.; Gullberg, G.T.; Huesman, R.H.

    1979-01-01

    This chapter is devoted to the methods of computer assisted tomography for determination of the three-dimensional distribution of gamma-emitting radionuclides in the human body. The major applications of emission computed tomography are in biological research and medical diagnostic procedures. The objectives of these procedures are to make quantitative measurements of in vivo biochemical and hemodynamic functions

  5. Positron emission tomography

    International Nuclear Information System (INIS)

    Dvorak, O.

    1989-01-01

    The principle is briefly described of positron emission tomography, and its benefits and constraints are listed. It is emphasized that positron emission tomography (PET) provides valuable information on metabolic changes in the organism that are otherwise only very difficult to obtain, such as brain diagnosis including relationships between mental disorders and the physiology and pathophysiology of the brain. A PET machine is to be installed in Czechoslovakia in the near future. (L.O.)

  6. In vivo neurochemistry with emission tomography and magnetic resonance spectroscopy: clinical applications

    International Nuclear Information System (INIS)

    Sole, Angelo Del; Gambini, Anna; Falini, Andrea; Lecchi, Michela; Lucignani, Giovanni

    2002-01-01

    The assessment of neurochemical processes in vivo has received much attention in the past decade as techniques such as positron or single photon emission tomography (PET and SPET), and magnetic resonance spectroscopy (MRS) have become more available. With PET and SPET, basic processes, such as blood flow and oxygen or glucose metabolism, can be regionally assessed, along with more specific functions such as the production, release, and reuptake of neurotransmitters and their occupancy of specific receptors. At the same time, MRS can reveal changes in concentration of several hydrogenate compounds in the brain. All these methods have been extensively applied for research in neurology, and some applications have reached the clinical level, namely for the study of degenerative diseases, motor-neuron diseases, movement disorders, cerebrovascular diseases, and epilepsy. This article focuses on the most relevant information that can be obtained with these complementary techniques to help clinicians in the assessment of neurological diseases. (orig.)

  7. In vivo neurochemistry with emission tomography and magnetic resonance spectroscopy: clinical applications

    Energy Technology Data Exchange (ETDEWEB)

    Sole, Angelo Del [Azienda Ospedaliera San Paolo e Universita di Milano, 20142 Milan (Italy); Gambini, Anna; Falini, Andrea [IRCCS H San Raffaele e Universita Vita e Salute, 20132 Milan (Italy); Lecchi, Michela [Azienda Ospedaliera L. Sacco e Universita di Milano, 20157 Milan (Italy); Lucignani, Giovanni [Azienda Ospedaliera L. Sacco e Universita di Milano, 20157 Milan (Italy); Universita di Milano, Istituto di Scienze Radiologiche, Cattedra di Medicina Nucleare c/o Ospedale L. Sacco, Via G.B. Grassi, 74, 20157 Milan (Italy)

    2002-10-01

    The assessment of neurochemical processes in vivo has received much attention in the past decade as techniques such as positron or single photon emission tomography (PET and SPET), and magnetic resonance spectroscopy (MRS) have become more available. With PET and SPET, basic processes, such as blood flow and oxygen or glucose metabolism, can be regionally assessed, along with more specific functions such as the production, release, and reuptake of neurotransmitters and their occupancy of specific receptors. At the same time, MRS can reveal changes in concentration of several hydrogenate compounds in the brain. All these methods have been extensively applied for research in neurology, and some applications have reached the clinical level, namely for the study of degenerative diseases, motor-neuron diseases, movement disorders, cerebrovascular diseases, and epilepsy. This article focuses on the most relevant information that can be obtained with these complementary techniques to help clinicians in the assessment of neurological diseases. (orig.)

  8. Positron emission computed tomography

    International Nuclear Information System (INIS)

    Grover, M.; Schelbert, H.R.

    1985-01-01

    Regional mycardial blood flow and substrate metabolism can be non-invasively evaluated and quantified with positron emission computed tomography (Positron-CT). Tracers of exogenous glucose utilization and fatty acid metabolism are available and have been extensively tested. Specific tracer kinetic models have been developed or are being tested so that glucose and fatty acid metabolism can be measured quantitatively by Positron-CT. Tracers of amino acid and oxygen metabolism are utilized in Positron-CT studies of the brain and development of such tracers for cardiac studies are in progress. Methods to quantify regional myocardial blood flow are also being developed. Previous studies have demonstrated the ability of Positron-/CT to document myocardial infarction. Experimental and clinical studies have begun to identify metabolic markers of reversibly ischemic myocardium. The potential of Positron-CT to reliably detect potentially salvageable myocardium and, hence, to identify appropriate therapeutic interventions is one of the most exciting applications of the technique

  9. Fluorine-18 Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography Imaging in Patients With Carcinoma of the Nasopharynx: Diagnostic Accuracy and Impact on Clinical Management

    International Nuclear Information System (INIS)

    Gordin, Arie; Golz, Avishay; Daitzchman, Marcello; Keidar, Zohar; Bar-Shalom, Rachel; Kuten, Abraham; Israel, Ora

    2007-01-01

    Purpose: To assess the value of 18 F-fluorodeoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT) in patients with nasopharyngeal carcinoma as compared with PET and conventional imaging (CI) alone, and to assess the impact of PET/CT on further clinical management. Methods and Materials: Thirty-three patients with nasopharyngeal carcinoma had 45 PET/CT examinations. The study was a retrospective analysis. Changes in patient care resulting from the PET/CT studies were recorded. Results: Positron emission tomography/computed tomography had sensitivity, specificity, positive predictive value, negative predictive value, and accuracy of 92%, 90%, 90%, 90%, and 91%, respectively, as compared with 92%, 65%, 76%, 86%, and 80% for PET and 92%, 15%, 60%, 60%, and 60% for CI. Imaging with PET/CT altered further management of 19 patients (57%). Imaging with PET/CT eliminated the need for previously planned diagnostic procedures in 11 patients, induced a change in the planned therapeutic approach in 5 patients, and guided biopsy to a specific metabolically active area inside an edematous region in 3 patients, thus decreasing the chances for tissue sampling errors and avoiding damage to nonmalignant tissue. Conclusions: In cancer of the nasopharynx, the diagnostic performance of PET/CT is better than that of stand-alone PET or CI. Positron emission tomography/computed tomography had a major impact on further clinical management in 57% of patients

  10. Positron emission tomography in oncology

    International Nuclear Information System (INIS)

    Anon.

    1988-01-01

    This report describes the current and potential uses of positron emission tomography in clinical medicine and research related to oncology. Assessment will be possible of metabolism and physiology of tumors and their effects on adjacent tissues. Specific probes are likely to be developed for target sites on tumors, including monoclonal antibodies and specific growth factors that recognize tumors. To date, most oncological applications of positron emission tomography tracers have been qualitative; in the future, quantitative metabolic measurements should aid in the evaluation of tumor biology and response to treatment

  11. Anti-3-[(18)F]FACBC positron emission tomography-computerized tomography and (111)In-capromab pendetide single photon emission computerized tomography-computerized tomography for recurrent prostate carcinoma: results of a prospective clinical trial.

    Science.gov (United States)

    Schuster, David M; Nieh, Peter T; Jani, Ashesh B; Amzat, Rianot; Bowman, F Dubois; Halkar, Raghuveer K; Master, Viraj A; Nye, Jonathon A; Odewole, Oluwaseun A; Osunkoya, Adeboye O; Savir-Baruch, Bital; Alaei-Taleghani, Pooneh; Goodman, Mark M

    2014-05-01

    We prospectively evaluated the amino acid analogue positron emission tomography radiotracer anti-3-[(18)F]FACBC compared to ProstaScint® ((111)In-capromab pendetide) single photon emission computerized tomography-computerized tomography to detect recurrent prostate carcinoma. A total of 93 patients met study inclusion criteria who underwent anti-3-[(18)F]FACBC positron emission tomography-computerized tomography plus (111)In-capromab pendetide single photon emission computerized tomography-computerized tomography for suspected recurrent prostate carcinoma within 90 days. Reference standards were applied by a multidisciplinary board. We calculated diagnostic performance for detecting disease. In the 91 of 93 patients with sufficient data for a consensus on the presence or absence of prostate/bed disease anti-3-[(18)F]FACBC had 90.2% sensitivity, 40.0% specificity, 73.6% accuracy, 75.3% positive predictive value and 66.7% negative predictive value compared to (111)In-capromab pendetide with 67.2%, 56.7%, 63.7%, 75.9% and 45.9%, respectively. In the 70 of 93 patients with a consensus on the presence or absence of extraprostatic disease anti-3-[(18)F]FACBC had 55.0% sensitivity, 96.7% specificity, 72.9% accuracy, 95.7% positive predictive value and 61.7% negative predictive value compared to (111)In-capromab pendetide with 10.0%, 86.7%, 42.9%, 50.0% and 41.9%, respectively. Of 77 index lesions used to prove positivity histological proof was obtained in 74 (96.1%). Anti-3-[(18)F]FACBC identified 14 more positive prostate bed recurrences (55 vs 41) and 18 more patients with extraprostatic involvement (22 vs 4). Anti-3-[(18)F]FACBC positron emission tomography-computerized tomography correctly up-staged 18 of 70 cases (25.7%) in which there was a consensus on the presence or absence of extraprostatic involvement. Better diagnostic performance was noted for anti-3-[(18)F]FACBC positron emission tomography-computerized tomography than for (111)In-capromab pendetide single

  12. Positron emission tomography

    International Nuclear Information System (INIS)

    Chandrasekhar, Preethi; Himabindu, Pucha

    2000-01-01

    Positron Emission Tomography (PET) is a non-invasive nuclear imaging technique used to study different molecular pathways and anatomical structures. PET has found extensive applications in various fields of medicine viz. cardiology, oncology, psychiatry/psychology, neuro science and pulmonology. This study paper basically deals with the physics, chemistry and biology behind the PET technique. It discusses the methodology for generation of the radiotracers responsible for emission of positrons and the annihilation and detection techniques. (author)

  13. Economic analysis of clinical positron emission tomography of the heart with rubidium-82

    International Nuclear Information System (INIS)

    Gould, K.L.; Goldstein, R.A.; Mullani, N.A.

    1989-01-01

    This report describes a cost analysis for clinical positron emission tomography (PET) of the heart using generator produced rubidium-82 ( 82 Rb). Considered sequentially are the clinical problem, current noninvasive radionuclide methods, positron emission tomograph, and the cost of PET per study. Also analyzed are the costs of PET versus thallium imaging in the management of chest pain, for screening asymptomatic men at high risk for coronary artery disease and for evaluating myocardial viability after myocardial infarction or thrombolytic therapy. Noninvasive assessment of coronary artery stenosis and myocardial ischemia/viability in symptomatic or asymptomatic subjects remains a major medical problem because the sensitivity and specificity of thallium imaging are only 70-85% and 50-70%, respectively, in recent studies. Cardiac positron imaging has an accuracy for noninvasive diagnosis of coronary artery disease in symptomatic or asymptomatic patients with a sensitivity and specificity of 95-98%. It can also be used for assessing physiologic stenosis severity, for imaging myocardial infarction and viability, for assessing effects of interventions such as thrombolysis, percutaneous transluminal coronary angioplasty (PTCA) or bypass surgery on myocardial perfusion, metabolism or coronary flow reserve, for assessing collateral function noninvasively in man, and for diagnosing cardiomyopathy not due to coronary artery disease. Although the cost for cardiac PET with 82 Rb may be modestly higher than for 201 Tl, the greater diagnostic yield of PET results in comparable or lower overall medical management costs than no diagnostic tests/interventions and lower overall costs compared to thallium imaging for evaluating patients with chest pain, asymptomatic high risk males, and patients after acute myocardial infarction/thrombolysis for myocardial viability

  14. Positron emission tomography

    International Nuclear Information System (INIS)

    Pavuk, M.

    2003-12-01

    The aim of this project is to provide a simple summary of new trends in positron emission tomography and its basic physical principles. It provides thereby compendious introduction of the trends of the present development in diagnostics using PET systems. A review of available literature was performed. (author)

  15. Positron emission tomography

    NARCIS (Netherlands)

    Paans, AMJ

    Positron Emission Tomography (PET) is a method for determining biochemical and physiological processes in vivo in a quantitative way by using radiopharmaceuticals labelled with positron emitting radionuclides as C-11, N-13, O-15 and F-18 and by measuring the annihilation radiation using a

  16. Professional practice assessment. Pertinence of positron emission tomography clinical indications in oncology

    International Nuclear Information System (INIS)

    Le Stanc, E.; Tainturier, C.; Swaenepoel, J.

    2009-01-01

    Introduction As part of the health care quality and safety policy in France, Professional Practice Assessment (P.P.A.) are mandatory in the health services 'certification' process. We present our study regarding the pertinence of Positron Emission Tomography (PET) indications in oncology. Materials and methods A multidisciplinary task group used the Quick Audit method with two rounds of 100 request forms each. The assessment list of criteria comprised four items of decreasing relevance grading the PET scans clinical indications, which were derived from the three French published guidelines (S.O.R. [F.N.C.L.C.C]., 'Guide du bon usage des examens d'imagerie medicale' [S.F.R.-S.F.M.N.], 'Guide pour la redaction de protocoles pour la TEP au F.D.G. en cancerologie' [S.F.M.N.]) and five additional items: clinical information, patient's body weight, previous treatments dates, diabetes, claustrophobia. Results The first round showed that 68% of the requested scans corresponded to the two most relevant groups of indications (S.O.R. Standards and Options). The request forms were correctly filled in regarding the clinical information, but this was not the case for the other items we tested. Several actions were conducted: dedicated PET request form, availability of the S.O.R. on the hospital intranet, boost of the referring physicians awareness during the multidisciplinary oncology meetings (Reunions de Concertation Pluridisciplinaires RCP). The second round showed a better pertinence of the PET scans indications (75% versus 68%); the patient's body weight was more frequently mentioned on the request form. Discussion This study is an example of P.P.A. in our discipline. It led to an improvement of the oncologic PET scans clinical indications in our hospital. This work is pursued in everyday discussion with the referring clinicians, especially during the RCP. (authors)

  17. Positron Emission Tomography (PET) and its application in clinical diagnosis and functional brain organization studies

    International Nuclear Information System (INIS)

    Grabowska, A.; Krolicki, L.

    1997-01-01

    Recent advances in positron emission tomography (PET) and other brain-imaging techniques have made it possible to visualize the working brain while the human subject is thinking, speaking or planning an action. PET provides researches with an opportunity to infer the neuroanatomy of a given function. Subjects either inhale or are injected with a radioactive material that binds to a physiologically active compound in the body. This serves as a tracer of blood flow and metabolic processes that reflect the activation of a given structure by emitting gamma rays which may be detected through a tomograph. PET research has produced findings that extend our knowledge on several important issues such as cerebral representation of language, perception, attention or memory. It has also proven to be an important source of information for clinical diagnosis of various neurological and psychiatric diseases. The present article provides a short review of main achievements in those fields. However, functional brain imaging is not exempt from methodological and theoretical difficulties. The main limitations of the method have been outlined. (author)

  18. An introduction to emission computed tomography

    International Nuclear Information System (INIS)

    Williams, E.D.

    1985-01-01

    This report includes salient features of the theory and an examination of practical considerations for someone who is using or introducing tomography, selecting equipment for it or wishing to develop a clinical application. Emphasis is on gamma camera tomography. The subject is dealt with under the following headings: emission computed and gamma camera tomography and the relationship to other medical imaging techniques, the tomographic reconstruction technique theory, rotating gamma camera tomography, attenuation correction and quantitative reconstruction, other single photon tomographic techniques, positron tomography, image display, clinical application of single photon and positron tomography, and commercial systems for SPECT. Substantial bibliography. (U.K.)

  19. Clinical usefulness of positron emission tomography with fluorine-18-fluorodeoxyglucose in the diagnosis of liver tumors

    Energy Technology Data Exchange (ETDEWEB)

    Iwata, Yoshinori; Shiomi, Susumu; Sasaki, Nobumitsu; Jomura, Hisato; Nishiguchi, Shuhei; Seki, Shuichi; Kawabe, Joji; Ochi, Hironobu [Osaka City Univ. (Japan). Medical School

    2000-04-01

    We studied various liver tumors by positron emission tomography with fluorine-18 fluorodeoxyglucose (FDG-PET) to examine the diagnostic usefulness of this technique. We also examined the relation between findings on FDG-PET and the characteristics of hepatocellular carcinoma. FDG-PET was performed in 78 patients with liver tumors, including 53 with primary liver cancer [48 hepatocellular carcinomas (HCC) and 5 cholangiocellular carcinomas (CCC)], 20 with metastatic liver cancer, 2 with liver hemangioma, and 3 with focal nodular hyperplasia. For quantitative evaluation, a region of interest (ROI) was placed over the entire tumor region, at the level of the maximum diameter of the tumor. A background ROI was then placed over the non-tumor region of the liver. The average activity within each ROI was subsequently corrected for radioactive decay, and the standardized uptake value (SUV) was calculated by dividing the tissue activity by the injected dose of radioactivity per unit body weight. SUV ratio was expressed as the tumor-to-non-tumor ratio of the SUV. The median SUV was significantly lower in HCC than in metastatic live cancer or CCC, and the median SUV ratio was significantly lower in HCC than in metastatic liver cancer or CCC. The median SUV was not higher in multiple HCC than in single HCC, but the median SUV ratio was significantly higher in multiple HCC than in single HCC. The median SUV and the median SUV ratio were significantly higher in the presence of portal vein thrombosis than in the absence of such thrombosis. The Cancer of the Liver Italian Program score and the {alpha}-fetoprotein value correlated significantly with both the SUV and SUV ratio. These results suggest that FDG-PET is clinically useful not only for the differential diagnosis of liver tumors but also for evaluation of the clinical characteristics of HCC. (author)

  20. Professional practice assessment. Pertinence of positron emission tomography clinical indications in oncology; Evaluation des pratiques professionnelles. Pertinence des indications de la tomographie a emission de positons en cancerologie

    Energy Technology Data Exchange (ETDEWEB)

    Le Stanc, E.; Tainturier, C. [Hopital Foch, Service de Medecine Nucleaire, 92 - Suresnes (France); Swaenepoel, J. [Hopital Foch, Cellule Qualite, 92 - Suresnes (France)

    2009-09-15

    Introduction As part of the health care quality and safety policy in France, Professional Practice Assessment (P.P.A.) are mandatory in the health services 'certification' process. We present our study regarding the pertinence of Positron Emission Tomography (PET) indications in oncology. Materials and methods A multidisciplinary task group used the Quick Audit method with two rounds of 100 request forms each. The assessment list of criteria comprised four items of decreasing relevance grading the PET scans clinical indications, which were derived from the three French published guidelines (S.O.R. [F.N.C.L.C.C]., 'Guide du bon usage des examens d'imagerie medicale' [S.F.R.-S.F.M.N.], 'Guide pour la redaction de protocoles pour la TEP au F.D.G. en cancerologie' [S.F.M.N.]) and five additional items: clinical information, patient's body weight, previous treatments dates, diabetes, claustrophobia. Results The first round showed that 68% of the requested scans corresponded to the two most relevant groups of indications (S.O.R. Standards and Options). The request forms were correctly filled in regarding the clinical information, but this was not the case for the other items we tested. Several actions were conducted: dedicated PET request form, availability of the S.O.R. on the hospital intranet, boost of the referring physicians awareness during the multidisciplinary oncology meetings (Reunions de Concertation Pluridisciplinaires RCP). The second round showed a better pertinence of the PET scans indications (75% versus 68%); the patient's body weight was more frequently mentioned on the request form. Discussion This study is an example of P.P.A. in our discipline. It led to an improvement of the oncologic PET scans clinical indications in our hospital. This work is pursued in everyday discussion with the referring clinicians, especially during the RCP. (authors)

  1. Positron emission tomography

    International Nuclear Information System (INIS)

    Marchenkov, N.S.

    2000-01-01

    The foundations of the positron emission tomography (PET), widely used for the medical diagnostics, are considered. The brief description of the cyclotron for production of radionuclides, applied in the PET, the target devices for manufacturing the position emitters, the moduli for the radiopharmaceuticals synthesis (RPS) for the PET is presented. The necessity and concept of complete automation of the RPS for the PET are discussed [ru

  2. Integration of Quantitative Positron Emission Tomography Absolute Myocardial Blood Flow Measurements in the Clinical Management of Coronary Artery Disease.

    Science.gov (United States)

    Gewirtz, Henry; Dilsizian, Vasken

    2016-05-31

    In the >40 years since planar myocardial imaging with(43)K-potassium was introduced into clinical research and management of patients with coronary artery disease (CAD), diagnosis and treatment have undergone profound scientific and technological changes. One such innovation is the current state-of-the-art hardware and software for positron emission tomography myocardial perfusion imaging, which has advanced it from a strictly research-oriented modality to a clinically valuable tool. This review traces the evolving role of quantitative positron emission tomography measurements of myocardial blood flow in the evaluation and management of patients with CAD. It presents methodology, currently or soon to be available, that offers a paradigm shift in CAD management. Heretofore, radionuclide myocardial perfusion imaging has been primarily qualitative or at best semiquantitative in nature, assessing regional perfusion in relative terms. Thus, unlike so many facets of modern cardiovascular practice and CAD management, which depend, for example, on absolute values of key parameters such as arterial and left ventricular pressures, serum lipoprotein, and other biomarker levels, the absolute levels of rest and maximal myocardial blood flow have yet to be incorporated into routine clinical practice even in most positron emission tomography centers where the potential to do so exists. Accordingly, this review focuses on potential value added for improving clinical CAD practice by measuring the absolute level of rest and maximal myocardial blood flow. Physiological principles and imaging fundamentals necessary to understand how positron emission tomography makes robust, quantitative measurements of myocardial blood flow possible are highlighted. © 2016 American Heart Association, Inc.

  3. Positron emission tomography. Basic principles

    International Nuclear Information System (INIS)

    Rodriguez, Jose Luis; Massardo, Teresa; Gonzalez, Patricio

    2001-01-01

    The basic principles of positron emission tomography (PET) technique are reviewed. lt allows to obtain functional images from gamma rays produced by annihilation of a positron, a positive beta particle. This paper analyzes positron emitters production in a cyclotron, its general mechanisms, and the various detection systems. The most important clinical applications are also mentioned, related to oncological uses of fluor-l8-deoxyglucose

  4. Clinical applications of single photon emission tomography in neuromedicine. Part 1. Neuro-oncology, epilepsy, movement disorders, cerebrovascular disease

    International Nuclear Information System (INIS)

    Bartenstein, P.; Gruenwald, F.; Kuwert, T.; Tatsch, K.; Sabri, O.; Benkert, O.; Fahlbusch, R.; Gruender, G.; Herzholz, K.; Weiller, C.

    2000-01-01

    Single photon emission tomography is, because of its availability and the relatively low costs, the functional imaging modality currently most widely used for clinical applications in the brain. Beside the application of radiopharmaceuticals for the assessment of regional cerebral blood flow there is an increasing clinical use of more selective SPECT-radiopharmaceuticals, like amino acid analogs or receptor ligands. This article gives in its first part a critical review of the clinical applications of SPECT in neuro-oncology, epilepsy, basal ganglia disorders and cerebrovascular disease. (orig.) [de

  5. Tomography by positrons emission

    International Nuclear Information System (INIS)

    Mosconi, Sergio L.

    1999-01-01

    The tomography by positrons emission is a technology that allows to measure the concentration of positrons emission in a tri dimensional body through external measurements. Among the isotope emissions have carbon isotopes are ( 11 C), of the oxygen ( 15 O), of the nitrogen ( 13 N) that are three the element that constitute the base of the organic chemistry. Theses have on of the PET's most important advantages, since many biological interesting organic molecules can be tracer with these isotopes for the metabolism studies 'in vivo' through PET, without using organic tracers that modify the metabolism. The mentioned isotopes, also possess the characteristic of having short lifetime, that constitute on of PET's advantages from the dosimetric point of view. Among 11 C, 15 O, and 13 N, other isotopes that can be obtained of a generator as the 68 Ga and 82 Rb

  6. Positron emission tomography

    CERN Document Server

    Paans, A M J

    2006-01-01

    Positron Emission Tomography (PET) is a method for measuring biochemical and physiological processes in vivo in a quantitative way by using radiopharmaceuticals labelled with positron emitting radionuclides such as 11C, 13N, 15O and 18F and by measuring the annihilation radiation using a coincidence technique. This includes also the measurement of the pharmacokinetics of labelled drugs and the measurement of the effects of drugs on metabolism. Also deviations of normal metabolism can be measured and insight into biological processes responsible for diseases can be obtained. At present the combined PET/CT scanner is the most frequently used scanner for whole-body scanning in the field of oncology.

  7. Positron emission tomography with [11C]-acetate for evaluation of myocardial oxidative metabolism. Clinical use

    International Nuclear Information System (INIS)

    Litvinova, I.S.; Litvinov, M.M.; Rozhkova, G.G.; Leont'eva, I.V.; Sebeleva, I.A.; Tumanyan, M.R.; Koledinskij, D.G.; Sukhorukov, V.S.

    2001-01-01

    The diagnostic potentials of positron emission tomography (PET) with [ 11 C]-acetate as applied to mitochondrial disorders in children with cardiomyopathies (CMP) are evaluated. PET examinations are performed in 17 patients of the mean age of 7.5 ± 3.1 years with CMP. A dynamic study with [ 11 C]-acetate is conducted to evaluate the Krebs cycle activity. The experiments have indicated to a fewer accumulation of [ 11 C]-acetate and to its slower clearance in the ischemic zone as compared with the normal myocardium. The Krebs cycle activity has been reduced. By means of PET with [ 11 C]-acetate the oxidation rate constant of the Krebs cycle and the [ 11 C]-acetate-activity clearance half-time can be quantified. This makes possible to assess the extent of oxidative metabolism malfunction, including the case of perfusion reduction [ru

  8. Clinical impact of Positron Emission Tomography (PET) on oncological patients and their potentially application context

    International Nuclear Information System (INIS)

    Alonso, O.

    2006-01-01

    (PET) Positron Emission Tomography is a technique of nuclear medicine that has ability of detecting cancer through mechanisms based on molecular alterations of neoplastic processes. This review describes the PET Oncology applications and discusses the potential application of this technology in the sanitary and national academic framework . The most widely used in Oncology plotter is an analogue of laglucosa labelled with fluo: 18F-2-fluoro-2-Deoxy-D-glucose (FDG). In this way, the PET detects tumour retention of FDG, due to the highest glycolytic of cancer cells. In addition, the PET allow the study of the entire body at the same exploratory and some teams are coupled to systems of axial tomography (PET-CT). By ET-FDG, it is possible to diagnose, staging and restaged the majority of cancers, with diagnostic accuracy close to 90 per cent higher than the values provided by the conventional imaging techniques such. It is also possible to know early response to cancer treatments and obtain relevant medical prognosis information. (author) [es

  9. Emission computed tomography

    International Nuclear Information System (INIS)

    Phelps, M.E.

    1977-01-01

    Although there are many common aspects to x-ray transmission and radionuclide emission (ECT) computerized tomography, there are added difficulties and a number of particular factors which form the basis of ECT. The relationship between the physical factors, system design, methodologic approach and assumptions of ECT is discussed. The instrumentation design and application strategies in ECT at this time are diverse and in a rapid stage of development. The approaches are divided into two major categories of Single Photon Counting (SPC) employing scanner and camera concepts with radionuclides of 99 /sup m/Tc, 201 Tl, 123 I etc., and Annihilation Coincidence Detection (ACD) of positron-emitting radionuclides. Six systems in the former and ten systems in the latter category, with examples of typical studies, illustrate the different approaches

  10. Positron emission tomography camera

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    A positron emission tomography camera having a plurality of detector planes positioned side-by-side around a patient area to detect radiation. Each plane includes a plurality of photomultiplier tubes and at least two rows of scintillation crystals on each photomultiplier tube extend across to adjacent photomultiplier tubes for detecting radiation from the patient area. Each row of crystals on each photomultiplier tube is offset from the other rows of crystals, and the area of each crystal on each tube in each row is different than the area of the crystals on the tube in other rows for detecting which crystal is actuated and allowing the detector to detect more inter-plane slides. The crystals are offset by an amount equal to the length of the crystal divided by the number of rows. The rows of crystals on opposite sides of the patient may be rotated 90 degrees relative to each other

  11. Positron emission tomography camera

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    A positron emission tomography camera having a plurality of detector rings positioned side-by-side or offset by one-half of the detector cross section around a patient area to detect radiation therefrom. Each ring contains a plurality of scintillation detectors which are positioned around an inner circumference with a septum ring extending inwardly from the inner circumference along each outer edge of each ring. An additional septum ring is positioned in the middle of each ring of detectors and parallel to the other septa rings, whereby the inward extent of all the septa rings may be reduced by one-half and the number of detectors required in each ring is reduced. The additional septa reduces the costs of the positron camera and improves its performance

  12. Positron emission tomography camera

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    A positron emission tomography camera having a plurality of detector rings positioned side-by-side or offset by one-half of the detector cross section around a patient area to detect radiation therefrom. Each detector ring or offset ring includes a plurality of photomultiplier tubes and a plurality of scintillation crystals are positioned relative to the photomultiplier tubes whereby each tube is responsive to more than one crystal. Each alternate crystal in the ring is offset by one-half or less of the thickness of the crystal such that the staggered crystals are seen by more than one photomultiplier tube. This sharing of crystals and photomultiplier tubes allows identification of the staggered crystal and the use of smaller detectors shared by larger photomultiplier tubes thereby requiring less photomultiplier tubes, creating more scanning slices, providing better data sampling, and reducing the cost of the camera. The offset detector ring geometry reduces the costs of the positron camera and improves its performance

  13. Positron emission tomography - a new approach to brain chemistry

    International Nuclear Information System (INIS)

    Jacobson, H.G.

    1988-01-01

    Positron emission tomography permits examination of the chemistry of the brain in living beings. Until recently, positron emission tomography had been considered a research tool, but it is rapidly moving into clinical practice. This report describes the uses and applications of positron emission tomography in examinations of patients with strokes, epilepsy, malignancies, dementias, and schizophrenia and in basic studies of synaptic neurotransmission

  14. Positron emission tomography basic sciences

    CERN Document Server

    Townsend, D W; Valk, P E; Maisey, M N

    2003-01-01

    Essential for students, science and medical graduates who want to understand the basic science of Positron Emission Tomography (PET), this book describes the physics, chemistry, technology and overview of the clinical uses behind the science of PET and the imaging techniques it uses. In recent years, PET has moved from high-end research imaging tool used by the highly specialized to an essential component of clinical evaluation in the clinic, especially in cancer management. Previously being the realm of scientists, this book explains PET instrumentation, radiochemistry, PET data acquisition and image formation, integration of structural and functional images, radiation dosimetry and protection, and applications in dedicated areas such as drug development, oncology, and gene expression imaging. The technologist, the science, engineering or chemistry graduate seeking further detailed information about PET, or the medical advanced trainee wishing to gain insight into the basic science of PET will find this book...

  15. Single photon emission computed tomography (SPECT): Clinical routine diagnosis of cerebral malfunction

    International Nuclear Information System (INIS)

    Neidl, K.F.W.

    1993-01-01

    Positron emission tomography is the gold standard for in vivo research in neurophysiology and pathology. The introduction of SPECT and the development of such tracers as 99m Tc-HMPAYO ( 99m Tc-d,l-hexamethylpropylenaminoxim) and, more recently, 123 I-iomazenil and 123 I-IBZM ( 123 I-3-iodo-6-methoxybenzamide) allowed closer examination of the perfusion of the brain and neuroreceptor density mapping in more than the few institutions that can afford PET and the production of special tracers marked with a positron emitting nucleus. Nuclear medicine's future will be based on neuroreceptor density mapping, as further tracers will become commercially available and no other technique can probably show such low concentrations of the receptors. Probably MR techniques will be used for brain's perfusion measurement in future. For examination of a limited cerebral region xenon-enhanced CT is an alternative to perfusion measurements with HMPAO, or a very interesting supplement. Of the old techniques in nuclear medicine, examination of the liquor dynamics is still feasible and well supplemented by SPECT. (orig./MG) [de

  16. Positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Lindback, Stig [GEMS PET Systems AB, Uppsala (Sweden)

    1995-07-15

    Positron Emission Tomography (PET) is an advanced nuclear medicine technique used for research at major centres. Unique diagnostic information is obtained from tomographic measurements of the biochemistry and physiology of tissues and organs. In theory, diseases are related to biochemical changes and these can be observed with PET long before any anatomical changes are detectable. In PET the radioactive component is a positron-emitting isotope or 'tracer'. The positrons annihilate with electrons in the body to produce two gamma rays 180° apart; coincidence detection of these gammas provides a very efficient method of determining the spatial distribution of the radioisotope tracer. Because physiological measurements are usually required in a single imaging session, very short-lived isotopes are used to label the tracer molecules; isotope production and labelling is usually carried out in situ. The most commonly used radionuclides are carbon- 11 (half-life 20 minutes), nitrogen-13 (10 minutes), oxygen-15 (2 minutes), and fluorine-18 (110 minutes). A PET system has three major components: - a particle accelerator with targets for production of the positron-emitting isotopes; - chemistry modules for synthesis and labelling of the desired tracers; - and a PET camera for in-vivo measurements of the distribution of the tracer in the body.

  17. Positron emission tomography

    International Nuclear Information System (INIS)

    Lindback, Stig

    1995-01-01

    Positron Emission Tomography (PET) is an advanced nuclear medicine technique used for research at major centres. Unique diagnostic information is obtained from tomographic measurements of the biochemistry and physiology of tissues and organs. In theory, diseases are related to biochemical changes and these can be observed with PET long before any anatomical changes are detectable. In PET the radioactive component is a positron-emitting isotope or 'tracer'. The positrons annihilate with electrons in the body to produce two gamma rays 180° apart; coincidence detection of these gammas provides a very efficient method of determining the spatial distribution of the radioisotope tracer. Because physiological measurements are usually required in a single imaging session, very short-lived isotopes are used to label the tracer molecules; isotope production and labelling is usually carried out in situ. The most commonly used radionuclides are carbon- 11 (half-life 20 minutes), nitrogen-13 (10 minutes), oxygen-15 (2 minutes), and fluorine-18 (110 minutes). A PET system has three major components: - a particle accelerator with targets for production of the positron-emitting isotopes; - chemistry modules for synthesis and labelling of the desired tracers; - and a PET camera for in-vivo measurements of the distribution of the tracer in the body

  18. Preclinical and clinical evaluation of O-[11C]methyl-L-tyrosine for tumor imaging by positron emission tomography

    International Nuclear Information System (INIS)

    Ishiwata, Kiichi; Tsukada, Hideo; Kubota, Kazuo; Nariai, Tadashi; Harada, Norihiro; Kawamura, Kazunori; Kimura, Yuichi; Oda, Keiichi; Iwata, Ren; Ishii, Kenji

    2005-01-01

    We performed preclinical and clinical studies of O-[ 11 C]methyl-L-tyrosine, a potential tracer for imaging amino acid transport of tumors by positron emission tomography (PET). Examinations of the radiation-absorbed dose by O-[ 11 C]methyl-L-tyrosine and the acute toxicity and mutagenicity of O-methyl-L-tyrosine showed suitability of the tracer for clinical use. The whole-body imaging of monkeys and healthy humans by PET showed low uptake of O-[ 11 C]methyl-L-tyrosine in all normal organs except for the urinary track and bladder, suggesting that the O-[ 11 C]methyl-L-tyrosine PET has the potential for tumor imaging in the whole-body. Finally, the brain tumor imaging was preliminarily demonstrated

  19. The clinical usefulness of 18F-fluorodeoxyglucose positron emission tomography-computed tomography (PET-CT) in follow-up of curatively resected pancreatic cancer patients.

    Science.gov (United States)

    Jung, Woohyun; Jang, Jin-Young; Kang, Mee Joo; Chang, Ye Rim; Shin, Yong Chan; Chang, Jihoon; Kim, Sun-Whe

    2016-01-01

    Computed tomography and serum tumor markers have limited value in detecting recurrence after curative surgery of pancreatic cancer. This study evaluated the clinical utility of 18F-fluorodeoxyglucose positron emission tomography-computed tomography (PET-CT) in diagnosing recurrence. One hundred ten patients underwent curative resection of pancreatic cancer were enrolled. The diagnostic value of abdominal computed tomography (CT), PET-CT and serum carbohydrate antigen (CA) 19-9 concentration were compared. The prognostic value of SUVmax on PET-CT was evaluated. PET-CT showed relatively higher sensitivity (84.5% vs. 75.0%) and accuracy (84.5% vs. 74.5%) than CT, whereas PET-CT plus CT showed greater sensitivity (97.6%) and accuracy (90.0%) than either alone. In detecting distant recurrences, PET-CT showed higher sensitivity (83.1% vs. 67.7%) than CT. Nineteen patients showed recurrences only on PET-CT, with eleven having invisible or suspected benign lesions on CT, and eight had recurrences in areas not covered by CT. SUVmax over 3.3 was predictive of poor survival after recurrence. PET-CT in combination with CT improves the detection of recurrence. PET-CT was especially advantageous in detecting recurrences in areas not covered by CT. If active post-operative surveillance after curative resection of pancreatic cancer is deemed beneficial, then it should include PET-CT combined with CT. Copyright © 2015 International Hepato-Pancreato-Biliary Association Inc. Published by Elsevier Ltd. All rights reserved.

  20. Potential clinical applications of {sup 18}F-fluorodeoxyglucose position emission tomography/magnetic resonance mammography in breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Ihn Ho; Kong, Eun Jung [Dept. of Nuclear Medicine, Yeugnam University Hospital, Daegu (Korea, Republic of)

    2017-09-15

    The whole-body positron emission tomography (PET)/magnetic resonance (MR) scan is a cutting edge technology providing comprehensive structural information from MR imaging and functional features from PET in a single session. Recent research findings and clinical experience have shown that 18F-fluorodeoxyglucose (FDG) whole-body PET/MR imaging has a diagnostic performance comparable with or superior to that of PET/CT in the field of oncology, including for breast cancer. In particular, FDG PET/MR mammography in the prone position with the breast hanging in a pendant manner can provide more comprehensive information about the metabolism, anatomy, and functional features of a breast lesion than a whole-body PET/MR scan. This article reports on current state-of-the-art PET/MR mammography in patients with breast cancer and the prospects for potential application in the future.

  1. Single photon emission tomography in neurological studies: Instrumentation and clinical applications

    International Nuclear Information System (INIS)

    Nikkinen, P.

    1999-01-01

    One triple head and two single head gamma camera systems were used for single photon emission tomography (SPET) imaging of both patients and brain phantoms. Studies with an anatomical brain phantom were performed for evaluation of reconstruction and correction methods in brain perfusion SPET studies. The use of the triple head gamma camera system resulted in a significant increase in image contrast and resolution. This was mainly due to better imaging geometry and the use of a high resolution collimator. The conventional Chang attenuation correction was found suitable for the brain perfusion studies. In the brain perfusion studies region of interest (ROI) based semiquantitation methods were used. A ROI map based on anatomical areas was used in 70 elderly persons (age range 55-85 years) without neurological diseases and in patients suffering from encephalitis or having had a cardiac arrest. Semiquantitative reference values are presented. For the 14 patients with encephalitis the right-to-left side differences were calculated. Defect volume indexes were calculated for 64 patients with brain infarcts. For the 30 cardiac arrest patients the defect percentages and the anteroposterior ratios were used for semiquantitation. It is concluded that different semiquantitation methods are needed for the various patient groups. Age-related reference values will improve the interpretation of SPET data. For validation of the basal ganglia receptor studies measurements were performed using a cylindrical and an anatomical striatal phantom. In these measurements conventional and transmission imaging based non-uniform attenuation corrections were compared. A calibration curve was calculated for the determination of the specific receptor uptake ratio. In the phantom studies using the triple head camera the uptake ratio obtained from simultaneous transmission-emission protocol (STEP) acquisition and iterative reconstruction was closest to the true activity ratio. Conventional

  2. Single photon emission tomography in neurological studies: Instrumentation and clinical applications

    Science.gov (United States)

    Nikkinen, Paivi Helena

    One triple head and two single head gamma camera systems were used for single photon emission tomography (SPET) imaging of both patients and brain phantoms. Studies with an anatomical brain phantom were performed for evaluation of reconstruction and correction methods in brain perfusion SPET studies. The use of the triple head gamma camera system resulted in a significant increase in image contrast and resolution. This was mainly due to better imaging geometry and the use of a high resolution collimator. The conventional Chang attenuation correction was found suitable for the brain perfusion studies. In the brain perfusion studies region of interest (ROI) based semiquantitation methods were used. A ROI map based on anatomical areas was used in 70 elderly persons (age range 55-85 years) without neurological diseases and in patients suffering from encephalitis or having had a cardiac arrest. Semiquantitative reference values are presented. For the 14 patients with encephalitis the right-to-left side differences were calculated. Defect volume indexes were calculated for 64 patients with brain infarcts. For the 30 cardiac arrest patients the defect percentages and the anteroposterior ratios were used for semiquantitation. It is concluded that different semiquantitation methods are needed for the various patient groups. Age-related reference values will improve the interpretation of SPET data. For validation of the basal ganglia receptor studies measurements were performed using a cylindrical and an anatomical striatal phantom. In these measurements conventional and transmission imaging based non-uniform attenuation corrections were compared. A calibration curve was calculated for the determination of the specific receptor uptake ratio. In the phantom studies using the triple head camera the uptake ratio obtained from simultaneous transmission-emission protocol (STEP) acquisition and iterative reconstruction was closest to the true activity ratio. Conventional

  3. Unusual presentation of metastatic carcinoma cervix with clinically silent primary identified by 18F-flouro deoxy glucose positron emission tomography/computed tomography

    International Nuclear Information System (INIS)

    Senthil, Raja; Mohapatra, Ranjan Kumar; Srinivas, Shripriya; Sampath, Mouleeswaran Koramadai; Sundaraiya, Sumati

    2016-01-01

    Carcinoma cervix is the most common gynecological malignancy among Indian women. The common symptoms at presentation include abnormal vaginal bleeding, unusual discharge from the vagina, or pain during coitus and postmenopausal bleeding. Rarely, few patients may present with distant metastases without local symptoms. We present two patients with an unusual presentation of metastatic disease without any gynecological symptoms, where 18 F-flouro deoxy glucose positron emission tomography/computed tomography helped in identifying the primary malignancy in the uterine cervix

  4. Clinical practice guidelines for the utilization of positron emission tomography/computed tomography imaging in selected oncologic applications: suggestions from a provider group.

    Science.gov (United States)

    Manning, Ken; Tepfer, Beth; Goldklang, Gerald; Loyd, Richard; Garimella, Prasad; Halkar, Raghuveer

    2007-01-01

    Positron emission tomography, combined with computed tomography (PET/CT) has provided clinicians with useful information regarding the diagnosis, initial staging, restaging, and therapy monitoring of malignancies since the beginning of the current century. Our intent here is to identify the critical steps in clinical workups and follow-up, in the true outpatient clinical setting of a freestanding imaging center, for utilization of PET/CT in four different cancer types. The four most common reasons for referrals to our facility were identified by reviewing two years of referral data. They were lung cancer (including solitary pulmonary nodule), lymphomas, breast cancer, and colorectal cancer. A review of published literature from 1996 and later was accepted as evidence of appropriateness for utilizing PET/CT in various clinical scenarios. In addition, a medical advisory board consisting of 15 referring physicians representing various specialties was established to provide practical advice regarding the appropriate use of PET/CT in clinical situations. National Comprehensive Cancer Network (NCCN) guidelines were also referenced to establish a baseline for clinical workups at various stages of disease. Several inconsistencies were identified among the three primary sources of information leading to the establishment of a standardized algorithm for each cancer type. NCCN data did not always agree with published literature, which was also often different from actual clinical practices of referring physicians. The most common inconsistencies included differing opinions from the referrers vs what was published in the NCCN guidelines, especially with regard to the utilization of PET/CT for applications not yet covered by insurance companies. After a reconciliation of the medical advisory board's clinical practices and several published articles, a consensus was established by the medical advisory board for the use of PET/CT imaging for the four cancer types, enabling us to

  5. Systematic screening of imaging biomarkers for the Islets of Langerhans, among clinically available positron emission tomography tracers

    International Nuclear Information System (INIS)

    Karlsson, Filip; Antonodimitrakis, Pantelis Clewemar; Eriksson, Olof

    2015-01-01

    Introduction: Functional imaging could be utilized for visualizing pancreatic islets of Langerhans. Therefore, we present a stepwise algorithm for screening of clinically available positron emission tomography (PET) tracers for their use in imaging of the neuroendocrine pancreas in the context of diabetes. Methods: A stepwise procedure was developed for screening potential islet imaging agents. Suitable PET-tracer candidates were identified by their molecular mechanism of targeting. Clinical abdominal examinations were retrospectively analyzed for pancreatic uptake and retention. The target protein localization in the pancreas was assessed in silico by –omics approaches and the in vitro by binding assays to human pancreatic tissue. Results: Six putative candidates were identified and screened by using the stepwise procedure. Among the tested PET tracers, only [ 11 C]5-Hydroxy-tryptophan passed all steps. The remaining identified candidates were falsified as candidates and discarded following in silico and in vitro screening. Conclusions: Of the six clinically available PET tracers identified, [ 11 C]5-HTP was found to be a promising candidate for beta cell imaging, based on intensity of in vivo pancreatic uptake in humans, and islet specificity as assessed on human pancreatic cell preparations. The flow scheme described herein constitutes a methodology for evaluating putative islet imaging biomarkers among clinically available PET tracers

  6. Positron emission tomography in brain function study

    International Nuclear Information System (INIS)

    Wu Hua

    2006-01-01

    Little has been recognized about the advanced brain function. Recent years several new techniques such as event-related potentials, megnetoencephalography, functional magnetic resonance imaging and positron emission tomography (PET) have been used in the study of brain function. The methodology, application study in normal people and clinical patients of PET in brain function are reviewed. (authors)

  7. Is positron emission tomography useful in stroke?

    NARCIS (Netherlands)

    DeReuck, J; Leys, D; DeKeyser, J

    Positron emission tomography (PET) has been widely used in the study of stroke and related cerebrovascular diseases. It has shown the various stages leading to cerebral infarction and defined the significance of the ischaemic penumbra. PET scan can predict the clinical outcome of patients with acute

  8. Generator-produced rubidium-82 positron emission tomography myocardial perfusion imaging. From basic aspects to clinical applications

    International Nuclear Information System (INIS)

    Yoshinaga, Keiichiro; Klein, R.; Tamaki, Nagara

    2010-01-01

    Cardiovascular disease is the leading cause of death in modern industrialized countries with an aging population. This fact has fueled the need for innovative diagnostic testing intended to improve coronary artery disease (CAD) patient care. Detection of myocardial ischemia using myocardial perfusion imaging (MPI) plays an important role for CAD diagnosis and the prediction of future risk of cardiovascular events. Positron emission tomography (PET) MPI has high diagnostic accuracy and can estimate regional myocardial blood flow (MBF) in patients with CAD. Rubidium-82 ( 82 Rb) is a generator-produced PET myocardial perfusion tracer and has been widely used in North America in clinical practice. 82 Rb PET has recently become available in some cardiovascular centers in Europe and Japan. Clinical trials are expected in both regions. 82 Rb PET has high diagnostic accuracy and recent data have shown its prognostic value. Thus, 82 Rb PET would greatly contribute to CAD patients' care. 82 Rb PET can also be used to quantify MBF. This review describes the current status of 82 Rb MPI from basic principles to clinical implications. This paper also highlights the recent development of MBF quantification using 82 Rb PET. (author)

  9. NMF on positron emission tomography

    DEFF Research Database (Denmark)

    Bödvarsson, Bjarni; Hansen, Lars Kai; Svarer, Claus

    2007-01-01

    In positron emission tomography, kinetic modelling of brain tracer uptake, metabolism or binding requires knowledge of the cerebral input function. Traditionally, this is achieved with arterial blood sampling in the arm or as shown in (Liptrot, M, et al., 2004) by non-invasive K-means clustering....... We propose another method to estimate time-activity curves (TAC) extracted directly from dynamic positron emission tomography (PET) scans by non-negative matrix factorization (NMF). Since the scaling of the basis curves is lost in the NMF the estimated TAC is scaled by a vector alpha which...

  10. Combined positron emission tomography/computed tomography (PET/CT) for clinical oncology: technical aspects and acquisition protocols

    International Nuclear Information System (INIS)

    Beyer, T.

    2004-01-01

    Combined PET/CT imaging is a non-invasive means of reviewing both, the anatomy and the molecular pathways of a patient during a quasi-simultaneous examination. Since the introduction of the prototype PET/CT in 1998 a rapid development of this imaging technology is being witnessed. The incorporation of fast PET detector technology into PET/CT designs and the routine use of the CT transmission images for attenuation correction of the PET allow for anato-metabolic whole-body examinations to be completed in less than 30 min. Thus, PET/CT imaging offers a logistical advantage to both, the patient and the clinicians since the two complementary exams - whenever clinically indicated - can be performed almost at the same time and a single integrated report can be created. Nevertheless, a number of pit-falls, primarily from the use of CT-based attenuation correction, have been identified and are being addressed through optimized acquisition protocols. It is fair to say, that PET/CT has been integrated in the diagnostic imaging arena, and in many cases has led to a close collaboration between different, yet complementary diagnostic and therapeutic medical disciplines. (orig.)

  11. Clinical value of {sup 18}F-fluorodihydroxyphenylalanine positron emission tomography/computed tomography ({sup 18}F-DOPA PET/CT) for detecting pheochromocytoma

    Energy Technology Data Exchange (ETDEWEB)

    Luster, Markus; Zeich, Katrin; Glatting, Gerhard; Buck, Andreas K.; Solbach, Christoph; Reske, Sven N. [University of Ulm, Department of Nuclear Medicine, Ulm (Germany); Karges, Wolfram [RWTH Aachen, Division of Endocrinology and Diabetes, Aachen (Germany); Pauls, Sandra [University of Ulm, Department of Radiology, Ulm (Germany); Verburg, Frederik A. [University of Wuerzburg, Department of Nuclear Medicine, Wuerzburg (Germany); Dralle, Henning [University Halle-Wittenberg, Department of General, Visceral and Vascular Surgery, Halle (Germany); Neumaier, Bernd [University of Ulm, Department of Nuclear Medicine, Ulm (Germany); Max-Planck-Institut fuer Neurologische Forschung, Section for Radiochemistry, Cologne (Germany); Mottaghy, Felix M. [University of Ulm, Department of Nuclear Medicine, Ulm (Germany); RWTH Aachen, Department of Nuclear Medicine, Aachen (Germany)

    2010-03-15

    In detecting pheochromocytoma (PHEO), positron emission tomography (PET) with the radiolabelled amine precursor {sup 18}F-fluorodihydroxyphenylalanine ({sup 18}F-DOPA) offers excellent specificity, while computed tomography (CT) provides high sensitivity and ability to localize lesions; therefore, the combination of these modalities could be advantageous in this setting. The aim of this study was to investigate whether combined {sup 18}F-DOPA PET/CT more accurately detects and localizes PHEO lesions than does each modality alone. {sup 18}F-DOPA PET, CT and {sup 18}F-DOPA PET/CT images of 25 consecutive patients undergoing diagnostic scanning of suspected sporadic or multiple endocrine neoplasia type 2 syndrome-associated PHEO were reviewed retrospectively in randomized sequence. Two blinded observers scored the images regarding the likelihood of PHEO being present and localizable. Results were correlated with subsequent clinical history and, when available, histology. Of the 19 lesions detected by all three modalities, PET identified each as positive for PHEO, but was unable to definitively localize 15 of 19 (79%). CT could definitively localize all 19 lesions, but could not definitively diagnose or exclude PHEO in 18 of 19 (95%) lesions. Furthermore, CT falsely identified as negative for PHEO one lesion which was judged to be positive for this tumor by both PET and PET/CT. Only in PET/CT scans were all 19 lesions accurately characterized and localized. On a per-patient basis, the sensitivity of {sup 18}F-DOPA PET/CT for PHEO was 100% and the specificity 88%, with a 100% positive predictive value and an 88% negative predictive value. {sup 18}F-DOPA PET/CT more accurately diagnoses and localizes adrenal and extra-adrenal masses suspicious for PHEO than do {sup 18}F-DOPA PET or CT alone. (orig.)

  12. Clinical value of 18F-fluorodihydroxyphenylalanine positron emission tomography/computed tomography (18F-DOPA PET/CT) for detecting pheochromocytoma

    International Nuclear Information System (INIS)

    Luster, Markus; Zeich, Katrin; Glatting, Gerhard; Buck, Andreas K.; Solbach, Christoph; Reske, Sven N.; Karges, Wolfram; Pauls, Sandra; Verburg, Frederik A.; Dralle, Henning; Neumaier, Bernd; Mottaghy, Felix M.

    2010-01-01

    In detecting pheochromocytoma (PHEO), positron emission tomography (PET) with the radiolabelled amine precursor 18 F-fluorodihydroxyphenylalanine ( 18 F-DOPA) offers excellent specificity, while computed tomography (CT) provides high sensitivity and ability to localize lesions; therefore, the combination of these modalities could be advantageous in this setting. The aim of this study was to investigate whether combined 18 F-DOPA PET/CT more accurately detects and localizes PHEO lesions than does each modality alone. 18 F-DOPA PET, CT and 18 F-DOPA PET/CT images of 25 consecutive patients undergoing diagnostic scanning of suspected sporadic or multiple endocrine neoplasia type 2 syndrome-associated PHEO were reviewed retrospectively in randomized sequence. Two blinded observers scored the images regarding the likelihood of PHEO being present and localizable. Results were correlated with subsequent clinical history and, when available, histology. Of the 19 lesions detected by all three modalities, PET identified each as positive for PHEO, but was unable to definitively localize 15 of 19 (79%). CT could definitively localize all 19 lesions, but could not definitively diagnose or exclude PHEO in 18 of 19 (95%) lesions. Furthermore, CT falsely identified as negative for PHEO one lesion which was judged to be positive for this tumor by both PET and PET/CT. Only in PET/CT scans were all 19 lesions accurately characterized and localized. On a per-patient basis, the sensitivity of 18 F-DOPA PET/CT for PHEO was 100% and the specificity 88%, with a 100% positive predictive value and an 88% negative predictive value. 18 F-DOPA PET/CT more accurately diagnoses and localizes adrenal and extra-adrenal masses suspicious for PHEO than do 18 F-DOPA PET or CT alone. (orig.)

  13. The clinical meaning of gastric-wall hyperactivity observed on sestamibi cardiac single-photon emission computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Cote, C.; Dumont, M. [Centre Hospitalier Universitaire de Quebec, Dept. of Nuclear Medicine, Quebec, Quebec (Canada)]. E-mail: christian.cote@chuq.qc.ca

    2004-06-01

    To evaluate prospectively the incidence and clinical meaning, if any, of gastric-wall hyperactivity observed on sestamibi cardiac single-photon emission computed tomography (SPECT). This phenomenon is completely different from the well-known intraluminal gastric reflux of sestamibi. A group of 819 patients who underwent sestamibi cardiac SPECT was studied from January 2000 to October 2000. Gastric-wall activity was graded qualitatively. Only patients with gastric-wall activity near or equivalent to their heart activity were considered for subsequent analysis. The medical records of patient candidates were reviewed, and their family physicians were asked to respond to a questionnaire by telephone when further information was needed. We identified 13 patients with significant gastric-wall hyperactivity, which was more intense on rest images. Our review of the clinical data shows that all these patients were suffering from dyspepsia and were taking gastric medication. These 13 cases were assigned to 3 groups: gastroesophageal reflux, chronic functional dyspepsia and nonspecific gastritis. Significant gastric-wall hyperactivity is an infrequent observation on sestamibi cardiac SPECT. Our results indicate that the presence of significant gastric-wall hyperactivity is associated with dyspepsia. It is important to realize that this gastric-wall hyperactivity by its proximity to the inferior myocardial wall could in some circumstances lead to either false-negative or false-positive findings, representing a diagnostic problem. Although infrequent, this situation could be avoided by proper quality control, including a systematic review of the raw cine data before reading the images. (author)

  14. Heterogeneity of Monosymptomatic Resting Tremor in a Prospective Study: Clinical Features, Electrophysiological Test, and Dopamine Transporter Positron Emission Tomography.

    Science.gov (United States)

    Zheng, Hua-Guang; Zhang, Rong; Li, Xin; Li, Fang-Fei; Wang, Ya-Chen; Wang, Xue-Mei; Lu, Ling-Long; Feng, Tao

    2015-07-05

    The relationship between monosymptomatic resting tremor (mRT) and Parkinson's disease (PD) remains controversial. In this study, we aimed to assess the function of presynaptic dopaminergic neurons in patients with mRT by dopamine transporter positron emission tomography (DAT-PET) and to evaluate the utility of clinical features or electrophysiological studies in differential diagnosis. Thirty-three consecutive patients with mRT were enrolled prospectively. The Unified Parkinson's Disease Rating Scale and electromyography were tested before DAT-PET. Striatal asymmetry index (SAI) was calculated, and a normal DAT-PET was defined as a SAI of hygiene score, walking in motor experiences of daily living (Part II) and motor examination (Part III) were significant different between two groups (P postural tremor tend to be higher in the SWEDDs group (P = 0.08 and P = 0.05, respectively). mRT is heterogeneous in presynaptic nigrostriatal dopaminergic degeneration, which can be determined by DAT-PET brain imaging. Clinical and electrophysiological features may provide clues to distinguish PD from SWEDDs.

  15. Imaging β-amyloid using [{sup 18}F]flutemetamol positron emission tomography: from dosimetry to clinical diagnosis

    Energy Technology Data Exchange (ETDEWEB)

    Heurling, Kerstin; Lubberink, Mark [Uppsala University, Section of Nuclear Medicine and PET, Department of Surgical Sciences, Uppsala (Sweden); Leuzy, Antoine [Karolinska Institutet, Department NVS, Centre for Alzheimer Research, Division of Translational Alzheimer Neurobiology, Huddinge (Sweden); Zimmer, Eduardo R. [Pontifical Catholic University of Rio Grande do Sul (PUCRS), Brain Institute of Rio Grande do Sul (BraIns), Porto Alegre (Brazil); Federal University of Rio Grande do Sul (UFRGS), Department of Biochemistry, Porto Alegre (Brazil); Nordberg, Agneta [Karolinska Institutet, Department NVS, Centre for Alzheimer Research, Division of Translational Alzheimer Neurobiology, Huddinge (Sweden); Karolinska University Hospital Huddinge, Department of Geriatric Medicine, Stockholm (Sweden)

    2016-02-15

    In Alzheimer's disease (AD), the deposition of β-amyloid (Aβ) is hypothesized to result in a series of secondary neurodegenerative processes, leading ultimately to synaptic dysfunction and neuronal loss. Since the advent of the first Aβ-specific positron emission tomography (PET) ligand, {sup 11}C-Pittsburgh compound B ([{sup 11}C]PIB), several {sup 18}F ligands have been developed that circumvent the limitations of [{sup 11}C]PIB tied to its short half-life. To date, three such compounds have been approved for clinical use by the US and European regulatory bodies, including [{sup 18}F]AV-45 ([{sup 18}F]florbetapir; Amyvid trademark), [{sup 18}F]-BAY94-9172 ([{sup 18}F]florbetaben; Neuraceq trademark) and [{sup 18}F]3'-F-PIB ([{sup 18}F]flutemetamol; Vizamyl trademark). The present review aims to summarize and discuss the currently available knowledge on [{sup 18}F]flutemetamol PET. As the {sup 18}F analogue of [{sup 11}C]PIB, [{sup 18}F]flutemetamol may be of use in the differentiation of AD from related neurodegenerative disorders and may help with subject selection and measurement of target engagement in the context of clinical trials testing anti-amyloid therapeutics. We will also discuss its potential use in non-AD amyloidopathies. (orig.)

  16. Clinical applications of single photon emission tomography in neuromedicine. Pt. 2. Dementia, psychotic disorders, inflammation, trauma

    International Nuclear Information System (INIS)

    Bartenstein, P.; Gruenwald, F.; Kuwert, T.; Tatsch, K.; Sabri, O.; Benkert, O.; Fahlbusch, R.; Gruender, G.; Herholz, K.; Weiller, C.

    2000-01-01

    This article gives in his second part a critical review of the clinical applications of SPECT with perfusion markers and receptor ligands in dementing disorders and psychosis. In addition this review discusses clinical applications of SPECT investigations with perfusion markers in inflammatory diseases of the central nervous system and in brain trauma. (orig.) [de

  17. Instrumentation for positron emission tomography

    International Nuclear Information System (INIS)

    Budinger, T.F.; Derenzo, S.E.; Huesman, R.H.

    1984-01-01

    Positron emission tomography with a spatial resolution of 2 mm full width at half maximum for quantitation in regions of interest 4 mm in diameter will become possible with the development of detectors that achieve ultrahigh resolution. Improved resolution will be possible using solid-state photodetectors for crystal identification or photomultiplier tubes with many small electron multipliers. Temporal resolution of 2 seconds and gating of cyclic events can be accomplished if statistical requirements are met. The major physical considerations in achieving high-resolution positron emission tomography are the degradation in resolution resulting from positron range, emission angle, parallax error, detector sampling density, the sensitivity of various detector materials and packing schemes, and the tradeoff between temporal resolution and statistical accuracy. The accuracy of data required for physiological models depends primarily on the fidelity of spatial sampling independent of statistical constraints

  18. Translocator Protein-18 kDa (TSPO Positron Emission Tomography (PET Imaging and Its Clinical Impact in Neurodegenerative Diseases

    Directory of Open Access Journals (Sweden)

    Anne-Claire Dupont

    2017-04-01

    Full Text Available In vivo exploration of activated microglia in neurodegenerative diseases is achievable by Positron Emission Tomography (PET imaging, using dedicated radiopharmaceuticals targeting the translocator protein-18 kDa (TSPO. In this review, we emphasized the major advances made over the last 20 years, thanks to TSPO PET imaging, to define the pathophysiological implication of microglia activation and neuroinflammation in neurodegenerative diseases, including Parkinson’s disease, Huntington’s disease, dementia, amyotrophic lateral sclerosis, multiple sclerosis, and also in psychiatric disorders. The extent and upregulation of TSPO as a molecular biomarker of activated microglia in the human brain is now widely documented in these pathologies, but its significance, and especially its protective or deleterious action regarding the disease’s stage, remains under debate. Thus, we exposed new and plausible suggestions to enhance the contribution of TSPO PET imaging for biomedical research by exploring microglia’s role and interactions with other cells in brain parenchyma. Multiplex approaches, associating TSPO PET radiopharmaceuticals with other biomarkers (PET imaging of cellular metabolism, neurotransmission or abnormal protein aggregates, but also other imaging modalities, and peripheral cytokine levels measurement and/or metabolomics analysis was considered. Finally, the actual clinical impact of TSPO PET imaging as a routine biomarker of neuroinflammation was put into perspective regarding the current development of diagnostic and therapeutic strategies for neurodegenerative diseases.

  19. [18F]-FDG positron emission tomography--an established clinical tool opening a new window into exercise physiology.

    Science.gov (United States)

    Rudroff, Thorsten; Kindred, John H; Kalliokoski, Kari K

    2015-05-15

    Positron emission tomography (PET) with [(18)F]-fluorodeoxyglucose (FDG) is an established clinical tool primarily used to diagnose and evaluate disease status in patients with cancer. PET imaging using FDG can be a highly valuable tool to investigate normal human physiology by providing a noninvasive, quantitative measure of glucose uptake into various cell types. Over the past years it has also been increasingly used in exercise physiology studies to identify changes in glucose uptake, metabolism, and muscle activity during different exercise modalities. Metabolically active cells transport FDG, an (18)fluorine-labeled glucose analog tracer, from the blood into the cells where it is then phosphorylated but not further metabolized. This metabolic trapping process forms the basis of this method's use during exercise. The tracer is given to a participant during an exercise task, and the actual PET imaging is performed immediately after the exercise. Provided the uptake period is of sufficient duration, and the imaging is performed shortly after the exercise; the captured image strongly reflects the metabolic activity of the cells used during the task. When combined with repeated blood sampling to determine tracer blood concentration over time, also known as the input function, glucose uptake rate of the tissues can be quantitatively calculated. This synthesis provides an accounting of studies using FDG-PET to measure acute exercise-induced skeletal muscle activity, describes the advantages and limitations of this imaging technique, and discusses its applications to the field of exercise physiology. Copyright © 2015 the American Physiological Society.

  20. RELIABILITY OF POSITRON EMISSION TOMOGRAPHY-COMPUTED TOMOGRAPHY IN EVALUATION OF TESTICULAR CARCINOMA PATIENTS.

    Science.gov (United States)

    Nikoletić, Katarina; Mihailović, Jasna; Matovina, Emil; Žeravica, Radmila; Srbovan, Dolores

    2015-01-01

    The study was aimed at assessing the reliability of 18F-fluorodeoxyglucose positron emission tomography-computed tomography scan in evaluation of testicular carcinoma patients. The study sample consisted of 26 scans performed in 23 patients with testicular carcinoma. According to the pathohistological finding, 14 patients had seminomas, 7 had nonseminomas and 2 patients had a mixed histological type. In 17 patients, the initial treatment was orchiectomy+chemotherapy, 2 patients had orchiectomy+chemotherapy+retroperitoneal lymph node dissection, 3 patients had orchiectomy only and one patient was treated with chemotherapy only. Abnormal computed tomography was the main cause for the oncologist to refer the patient to positron emission tomography-computed tomography scan (in 19 scans), magnetic resonance imaging abnormalities in 1 scan, high level oftumor markers in 3 and 3 scans were perforned for follow-up. Positron emission tomography-computed tomography imaging results were compared with histological results, other imaging modalities or the clinical follow-up of the patients. Positron emission tomography-computed tomography scans were positive in 6 and negative in 20 patients. In two patients, positron emission tomography-computed tomography was false positive. There were 20 negative positron emission omography-computed tomography scans perforned in 18 patients, one patient was lost for data analysis. Clinically stable disease was confirmed in 18 follow-up scans performed in 16 patients. The values of sensitivty, specificity, accuracy, and positive- and negative predictive value were 60%, 95%, 75%, 88% and 90.5%, respectively. A hgh negative predictive value obtained in our study (90.5%) suggests that there is a small possibility for a patient to have future relapse after normal positron emission tomography-computed tomography study. However, since the sensitivity and positive predictive value of the study ire rather low, there are limitations of positive

  1. Single-photon emission tomography and cerebral blood flow

    International Nuclear Information System (INIS)

    Celsis, P.; Chan, M.; Marc-Vergnes, J.P.; Sveinsdottir, E.; Goldman, T.G.; Henriksen, L.; Paulson, O.B.; Stokely, E.M.; Lassen, N.A.

    1982-01-01

    This paper illustrates the capabilities of single-photon emission tomography in imaging local cerebral blood flows in man. The results purport the conclusion that a fairly good improvement has been achieved when compared to stationary detectors and that single-photon emission tomography is a well-suited tool for studying cerebral hemodynamics, especially within the framework of clinical studies [fr

  2. Clinical role of 18F-fluorodeoxyglucose positron emission tomography/computed tomography in post-operative follow up of gastric cancer: Initial results

    Institute of Scientific and Technical Information of China (English)

    Long Sun; Xin-Hui Su; Yong-Song Guan; Wei-Ming Pan; Zuo-Ming Luo; Ji-Hong Wei; Hua Wu

    2008-01-01

    AIM: To evaluate the clinical role of 18F-fluorodeo-xyglucose positron emission and computed tomography(18F-FDG PET/CT) in detection of gastric cancer recur rence after initial surgical resection.METHODS: In the period from January 2007 to May 2008, 23 patients who had previous surgical resection of histopathologically diagnosed gastric cancer underwent a total of 25 18F-FDG PET/CT scans as follow-up visits in our center. The standard of reference for tumor recurrence consisted of histopathologic confirmation or clinical follow-up information for at least 5 mo after PET/CT examinations.RESULTS: PET/Cr was positive in 14 patients (61%)and negative in 9 (39%). When correlated with final diagnosis, which was confirmed by histopathologic evidence of tumor recurrence in 8 of the 23 patients(35%) and by clinical follow-up in 15 (65%), PET/CT was true positive in 12 patients, false positive in 2,true negative in 8 and false negative in 2. Overall,the accuracy of PET/CT was 82.6%, the negative predictive value (NPV) was 77.7%, and the positive predictive value (PPV) was 85.7%. The 2 false positive PET/CT findings were actually chronic inflammatory tissue lesions. For the two patients with false negative PET/CT, the final diagnosis was recurrence of mucinous adenocarcinoma in the anastomosis in one patient and abdominal wall metastasis in the other. Importantly,PET/CT revealed true-positive findings in 11 (47.8%)patients who had negative or no definite findings by CT. PET/CT revealed extra-abdominal metastases in 7 patients and additional esophageal carcinoma in onepatient. Clinical treatment decisions were changed in 7 (30.4%) patients after introducing PET/CT into theirconventional post-operative follow-up program.CONCLUSION: Whole body 18F-FDG PET/CT was highly effective in discriminating true recurrence in post-operative patients with gastric cancer and had important impacts on clinical decisions in a considerable portion of patients.

  3. Emission tomography system

    International Nuclear Information System (INIS)

    Phelps, M.E.; Hoffman, E.J.; Williams, C.W.; Burgiss, S.G.

    1983-01-01

    In the present invention a positron emission tomographic system is provided in which the random photon coincidence background is determined for the lines of sight along which the positron annihiliations are located. The circuitry is arranged so that this background may be subtracted almost simultaneously from the total photon coincidence measurement, or may be stored in a temporary memory for latter subtraction. In this system, an appropriate coincidence resolution time is selected and coincidences of photons detected at 180 degree opposed detectors within the time resolution are recorded as the overall coincidence count. This total count includes a source(true events) count plus a background(random coincidences) count. The background count is determined by measuring photons detected at these same sets of photon detectors and employing the same coincidence resolution period, where the signals from one set of detectors are passed through a delay longer in time than this resolution period

  4. Clinical value of positron emission tomography (PET) in oncology: Results of an interdisciplinary consensus conference

    International Nuclear Information System (INIS)

    Reske, S.N.; Bares, R.; Buell, U.; Guhlmann, A.; Moser, E.; Wannenmacher, M.F.

    1996-01-01

    Clinical value of PET in oncology was evaluated by a panel of recognized experts in the framework of an interdisciplinary consensus conference. On the basis of PET studies, well documented in the international literature, the value of PET for solving clinical questions was classified according to the following categories 'appropriate' (1a), 'mostly acceptable' (1b), 'helpful' (2a), 'value as yet unknown' (2b), 'useless' (3). 2-fluorodeoxyglucose (FDG) acts as the radiopharmaceutical of choice for PET in clinical oncology. PET is indicated (1a) for diagnosing relapse in high grade glioma (FDG) or low grade glioma (C-11 methionine or F-18 fluorotyrosine), differential diagnosis of solitary peripheral pulponary nodules in high risk patients and for diagnosis of pancreatic carcinoma. PET may be clinically used (1b): In 'low-grade' glioma, search for unknown primary in head and neck tumors, suspicion of relapse in nonsmall cell bronchial carcinoma (NSCBC) and colorectal carcinoma, lymphnode staging in NSCBC, pancreatic carcinoma, muscle invasive bladder carcinoma and testicular cancer. Staging of Hodgkin's disease (HD, stage I/II vs III), early therapy control in patients with a residual mass or suspicion of relapse in HD and in high grade NHL, lymph node staging and search for distant metastases in malignant melanoma (Breslow>1,5 mm), search for lymph node or distant metastases in differentiated thyroid cancer with elevated hTG and a negative radioiodide whole body scan. Many further indications are emerging, but are not yet sufficiently well documented in the literature. For most indications beside scientific studies, an individual cost benefit utility evaluation by the responsible physician is recommended. (orig./MG) [de

  5. Heterogeneity of Monosymptomatic Resting Tremor in a Prospective Study: Clinical Features, Electrophysiological Test, and Dopamine Transporter Positron Emission Tomography

    Institute of Scientific and Technical Information of China (English)

    Hua-Guang Zheng; Rong Zhang; Xin Li; Fang-Fei Li; Ya-Chen Wang; Xue-Mei Wang; Ling-Long Lu

    2015-01-01

    Background:The relationship between monosymptomatic resting tremor (mRT) and Parkinson's disease (PD) remains controversial.In this study,we aimed to assess the function ofpresynaptic dopaminergic neurons in patients with mRT by dopamine transporter positron emission tomography (DAT-PET) and to evaluate the utility of clinical features or electrophysiological studies in differential diagnosis.Methods:Thirty-three consecutive patients with mRT were enrolled prospectively.The Unified Parkinson's Disease Rating Scale and electromyography were tested before DAT-PET.Striatal asymmetry index (SAI) was calculated,and a normal DAT-PET was defined as a SAI of <15%.Scans without evidence of dopaminergic deficits (SWEDDs) were diagnosed in patients with a subsequent normal DAT-PET and structural magnetic resonance imaging.Results:Twenty-eight mRT patients with a significant reduction in uptake of DAT binding in the striatum were diagnosed with PD,while the remained 5 with a normal DAT-PET scan were SWEDDs.As for UPRDS,the dressing and hygiene score,walking in motor experiences of daily living (Part Ⅱ) and motor examination (Part Ⅲ) were significant different between two groups (P < 0.05 andP< 0.01,respectively).Bilateral tremor was more frequent in the SWEDDs group (P < 0.05).The frequency of resting tremor and the amplitude of postural tremor tend to be higher in the SWEDDs group (P =0.08 and P =0.05,respectively).Conclusions:mRT is heterogeneous in presynaptic nigrostriatal dopaminergic degeneration,which can be determined by DAT-PET brain imaging.Clinical and electrophysiological features may provide clues to distinguish PD from SWEDDs.

  6. Positron emission tomography in the Rett syndrome; Clinical, biochemical and pathologicl correlates

    Energy Technology Data Exchange (ETDEWEB)

    Naidu, S [Kennedy Institute, Baltimore, MD (United States); Wong, D F; Kitt, C; Wenk, G; Moser, H W

    1992-05-01

    A consistent constellation of clinical signs and symptoms define the Rett syndrome, the most prominent of which are disorders of movement and tone. Preliminary pathologic and neurochemical data indicate predominant involvement of the nigrostriatal dopaminergic pathways and the cholinergic system of the basal forebrain region. The age of onset differentiates the Rett syndrome from Alzheimer and Parkinson disease with similar lesions. PET scanning makes it possible to relate the chemistry of the brain to function by measuring the number and affinity of neuroreceptors, metabolism in specific brain regions, and provide important determinants of the underlying mechanisms in disease states. (author).

  7. Clinical Relevance of 18F-Sodium Fluoride Positron-Emission Tomography in Noninvasive Identification of High-Risk Plaque in Patients With Coronary Artery Disease.

    Science.gov (United States)

    Lee, Joo Myung; Bang, Ji-In; Koo, Bon-Kwon; Hwang, Doyeon; Park, Jonghanne; Zhang, Jinlong; Yaliang, Tong; Suh, Minseok; Paeng, Jin Chul; Shiono, Yasutsugu; Kubo, Takashi; Akasaka, Takashi

    2017-11-01

    18 F-sodium fluoride ( 18 F-NaF) positron-emission tomography has been introduced as a potential noninvasive imaging tool to identify plaques with high-risk characteristics in patients with coronary artery disease. We sought to evaluate the clinical relevance of 18 F-NaF uptake using optical coherence tomography (OCT), intravascular ultrasound (IVUS), and coronary computed tomography angiography in patients with coronary artery disease. The target population consisted of 51 prospectively enrolled patients (93 stenoses) who underwent 18 F-NaF positron-emission tomography before invasive coronary angiography. 18 F-NaF uptake was compared with IVUS- and OCT-derived plaque characteristics. In the coronary computed tomography angiography subgroup (46 lesions), qualitative lesion characteristics were compared between 18 F-NaF-positive and 18 F-NaF-negative plaques using adverse plaque characteristics. The plaques with 18 F-NaF uptake showed significantly higher plaque burden, more frequent posterior attenuation and positive remodeling in IVUS, and significantly higher maximum lipid arc and more frequent microvessels in OCT (all P characteristics. The 18 F-NaF tissue-to-background ratio in plaques with high-risk characteristics was significantly higher than in those without (1.09 [95% confidence interval, 0.85-1.34] versus 0.62 [95% confidence interval, 0.42-0.82], P characteristics between 18 F-NaF-positive and 18 F-NaF-negative plaques in the coronary computed tomography angiography subgroup (85.2% versus 78.9%; P =0.583). This study's results suggest that 18 F-NaF positron-emission tomography can be a useful noninvasive diagnostic tool to identify and localize plaque with high-risk characteristics. URL: http://www.clinicaltrials.gov. Unique identifier: NCT02388412. © 2017 American Heart Association, Inc.

  8. A clinical positron emission tomography facility. 2-{sup 18}FDG studies: Development and results

    Energy Technology Data Exchange (ETDEWEB)

    Ohlsson, Tomas

    1996-10-01

    Two different types of accelerators have been used for production of ({sup 18}F)fluoride, and the isotope produced has been used for radiolabelling of 2-fluoro-2-deoxy-D-glucose (2-{sup 18}FDG). A rotating PET scanner, based on two scintillation camera heads, has been developed and used for human 2-{sup 18}FDG studies. The suitability of an energy window in the Compton region for imaging 511 keV photons in scintillation camera systems has been evaluated. A new simplified method for normalizing clinical 2-{sup 18}FDG results has been developed and validated, using erythrocytes as a reference tissue, requiring only one blood sample in the middle of the PET scan to calculate the integrated 2-{sup 18}FDG input function with an accuracy better than 8 percent. An investigation using 2-{sup 18}FDG PET to monitor the effect of therapy in advanced head and neck cancer patients has been performed. We found that low initial metabolic rate of glucose (MRG) predicted a complete local response. The second PET examination gave no further information for this group. In the group of primary tumours and lymph node metastases representing a combination of high initial MRG and small decrease in MRG at he second PET examination, the outcome was unfavourable. An accurate normalization of 2-{sup 18}FDG uptake was essential to evaluate the results of this study. 239 refs, 10 tabs.

  9. A clinical positron emission tomography facility. 2-18FDG studies: Development and results

    International Nuclear Information System (INIS)

    Ohlsson, Tomas.

    1996-10-01

    Two different types of accelerators have been used for production of ( 18 F)fluoride, and the isotope produced has been used for radiolabelling of 2-fluoro-2-deoxy-D-glucose (2- 18 FDG). A rotating PET scanner, based on two scintillation camera heads, has been developed and used for human 2- 18 FDG studies. The suitability of an energy window in the Compton region for imaging 511 keV photons in scintillation camera systems has been evaluated. A new simplified method for normalizing clinical 2- 18 FDG results has been developed and validated, using erythrocytes as a reference tissue, requiring only one blood sample in the middle of the PET scan to calculate the integrated 2- 18 FDG input function with an accuracy better than 8 percent. An investigation using 2- 18 FDG PET to monitor the effect of therapy in advanced head and neck cancer patients has been performed. We found that low initial metabolic rate of glucose (MRG) predicted a complete local response. The second PET examination gave no further information for this group. In the group of primary tumours and lymph node metastases representing a combination of high initial MRG and small decrease in MRG at he second PET examination, the outcome was unfavourable. An accurate normalization of 2- 18 FDG uptake was essential to evaluate the results of this study. 239 refs, 10 tabs

  10. Clinical blood flow measurements with O-15 water and Positron Emission Tomography (PET)

    International Nuclear Information System (INIS)

    Hichwa, R.D.; Watkins, G.L.; Boles Ponto, L.L.

    1993-01-01

    Traditionally PET chemists have been primarily involved in development and synthesis of radiopharmaceuticals for imaging. If greater clinical utility and research productivity are to be achieved in the PET field, then this role must be expanded to include not just the synthesis of the end product, but also the efficient and timely delivery of the radiopharmaceutical. Hence, the chemist must also consider (1) more automation of synthesis and QC procedures, (2) reduced radiopharmaceutical preparation time with emphasis towards on-line syntheses whenever feasible, (3) integrated cyclotron/chemistry operations, (4) dose delivery schemes to minimize staff exposure while maintaining purity, sterility and apyrogenicity, and (5) technologist/technician operability of all procedures. At the University of Iowa, techniques have been employed to stream-line the production synthesis, delivery, and imaging of O-15 labelled water for determination of tissue blood flow. Automated cyclotron and PET tomograph operation, as well as steady-state production of O-15 water permit a single PET technologist to conduct qualitative blood flow studies on demand for routine or emergency procedures

  11. Positron emission tomography

    International Nuclear Information System (INIS)

    Nagel, F.; Pfaff, M.; Pfannenstiel, P.

    1989-01-01

    Within the framework of the government program 'Research and Development Serving Public Health', the Federal Ministry of Research and Technology (BMFT) of the Federal Republic of Germany is supporting research projects in the field of health care, covering the areas of prevention, diagnosis, therapy and rehabilitation. The Federal Ministry of Research and Technology initiated a careful evaluation of the potential and the objectives of a priority research venture in the field of PET in the light of the above program. According to the research support policy outlined this priority research venture would be aimed at determining the clinical and health-care relevant potential and perspectives of PET. The present report defines the starting point of PET technology and deals with problems concerning health-economic aspects. The data and analysis provided may serve as a first and, with respect to specific details, preliminary assessment of this new technique. Further investigations will strive to substantiate these preliminary findings. (orig./MG)

  12. Longitudinal emission tomography of thyroid and heart

    International Nuclear Information System (INIS)

    Giessen, J.W. van.

    1986-01-01

    In this thesis three devices are discussed for longitudinal emission tomography, one of which has been developed for myocardial imaging and the other two for thyroid imaging. Longitudinal emission tomography is a technique which enables three-dimensional reconstruction of the radioactivity distribution within an organ from two-dimensional distributions on a detector surface. In Ch. 1 a general survey is given of the clinical environment in which the devices will be used. Ch. 2 discusses a well-known technique for myocardial imaging: seven-pinhole tomography. In Ch. 3 this technique is applied to imaging of the thyroid. Three different reconstruction methods have been applied to the data collected with the system (from phantoms as well as from patients) and the results have been evaluated. Ch. 4 discusses simulation studies which were carried out in order to investigate the potentialities of a time-coded aperture (TCA) system designed for thyroid tomography. In Ch. 5 a prototype is tested of the time coded aperture in a clinical environment. The last chapter presents a comparison between the (thyroid) 7P collimator and the TCA device. (Auth.)

  13. Alternative positron emission tomography with non-conventional positron emitters: effects of their physical properties on image quality and potential clinical applications

    International Nuclear Information System (INIS)

    Pagani, M.; Stone-Elander, S.; Larsson, S.A.

    1997-01-01

    The increasing amount of clinically relevant information obtained by positron emission tomography (PET), primarily with fluorine-18 labelled 2-deoxy-2-fluoro-d-glucose, has generated a demand for new routes for the widespread and cost-efficient use of positron-emitting radiopharmaceuticals. New dual-head single-photon emission tomography (SPET) cameras are being developed which offer coincidence detection with camera heads lacking a collimator or SPET imaging with specially designed collimators and additional photon shielding. Thus, not only satellite PET imaging units but also nuclear medicine units investing in these new SPET/PET systems need to examine all available alternatives for rational radionuclide supplies from host cyclotrons. This article examines 25 ''alternative'' positron-emitting radionuclides, discusses the impact of their decay properties on image quality and reviews methods for their production as well as for their application in imaging techniques. (orig.)

  14. Single photon emission computerized tomography

    International Nuclear Information System (INIS)

    Hooge, P. de.

    1983-01-01

    In this thesis two single-photon emission tomographic techniques are presented: (a) longitudinal tomography with a rotating slanting-hole collimator, and (b) transversal tomography with a rotating gamma camera. These methods overcome the disadvantages of conventional scintigraphy. Both detection systems and the image construction methods are explained and comparisons with conventional scintigraphy are drawn. One chapter is dedicated to the determination of system parameters like spatial resolution, contrast, detector uniformity, and size of the object, by phantom studies. In separate chapters the results are presented of detection of tumors and metastases in the liver and the liver hilus; skeletal diseases; various pathological aberrations of the brain; and myocardial perfusion. The possible use of these two ect's for other organs and body areas is discussed in the last chapter. (Auth.)

  15. The value of quantitative gallium-67 single-photon emission tomography in the clinical management of malignant external otitis

    International Nuclear Information System (INIS)

    Stokkel, M.P.M.; Eck-Smit, B.L.F. van; Takes, R.P.; Baatenburg de Jong, R.J.

    1997-01-01

    The objective of this study was to establish whether quantitative gallium-67 single-photon emission tomography (SPET) represents an accurate method for the assessment of infection and, moreover, for the monitoring of therapeutic effect. Eight patients (five males, three females) with the clinical diagnosis of MEO were studied. In three patients antibiotic treatment was prolonged for several weeks because visual analysis of gallium scintigraphy still showed slightly increased uptake in the affected area on the first follow-up scan. In one patient, it was decided to stop antibiotic treatment despite a slight increase in uptake on the second follow-up scan. Lesion to non-lesion (L/NL) ratios obtained from 67 Ga SPET images at initial diagnosis and during follow-up were assessed in correlation with clinical and biochemical data and with the results of CT scans. In addition to a raised erythrocyte sedimentation rate (ESR), all patients showed increased uptake on the affected side, with L/NL ratios ranging from 1.4 to 3.6 at the time of diagnosis. CT scans failed to demonstrate abnormalities in four patients. Including four scans demonstrating slightly increased uptake in the affected area, L/NL ratios after 6-8 weeks of antibiotic treatment were 1.0±0.1. Despite a persistently elevated ESR in the majority of patients, none of them demonstrated local recurrence or complications during follow-up. In all patients, leucocyte count was within the normal range throughout the course. No relation was found between the slightly increased uptake on the follow-up scans and surgical treatment. It is concluded that in addition to the visual analysis of 67 Ga SPET imaging, L/NL ratios should be calculated for a more accurate assessment of disease activity in MEO. Despite visually slightly increased uptake, L/NL ratios of 1.0±0.1 during follow-up are highly indicative of complete recovery, regardless of ESR values or leucocytosis. CT scans are of little value for diagnosis or for

  16. The value of quantitative gallium-67 single-photon emission tomography in the clinical management of malignant external otitis

    Energy Technology Data Exchange (ETDEWEB)

    Stokkel, M.P.M.; Eck-Smit, B.L.F. van [Department of Nuclear Medicine and Diagnostic Radiology, Leiden University Hospital (Netherlands); Takes, R.P.; Baatenburg de Jong, R.J. [Department of Otorhinolaryngology and Head and Neck Surgery, Leiden University Hospital (Netherlands)

    1997-11-01

    The objective of this study was to establish whether quantitative gallium-67 single-photon emission tomography (SPET) represents an accurate method for the assessment of infection and, moreover, for the monitoring of therapeutic effect. Eight patients (five males, three females) with the clinical diagnosis of MEO were studied. In three patients antibiotic treatment was prolonged for several weeks because visual analysis of gallium scintigraphy still showed slightly increased uptake in the affected area on the first follow-up scan. In one patient, it was decided to stop antibiotic treatment despite a slight increase in uptake on the second follow-up scan. Lesion to non-lesion (L/NL) ratios obtained from {sup 67}Ga SPET images at initial diagnosis and during follow-up were assessed in correlation with clinical and biochemical data and with the results of CT scans. In addition to a raised erythrocyte sedimentation rate (ESR), all patients showed increased uptake on the affected side, with L/NL ratios ranging from 1.4 to 3.6 at the time of diagnosis. CT scans failed to demonstrate abnormalities in four patients. Including four scans demonstrating slightly increased uptake in the affected area, L/NL ratios after 6-8 weeks of antibiotic treatment were 1.0{+-}0.1. Despite a persistently elevated ESR in the majority of patients, none of them demonstrated local recurrence or complications during follow-up. In all patients, leucocyte count was within the normal range throughout the course. No relation was found between the slightly increased uptake on the follow-up scans and surgical treatment. It is concluded that in addition to the visual analysis of {sup 67}Ga SPET imaging, L/NL ratios should be calculated for a more accurate assessment of disease activity in MEO. Despite visually slightly increased uptake, L/NL ratios of 1.0{+-}0.1 during follow-up are highly indicative of complete recovery, regardless of ESR values or leucocytosis. CT scans are of little value for

  17. Clinical evaluation of reducing acquisition time on single-photon emission computed tomography image quality using proprietary resolution recovery software.

    Science.gov (United States)

    Aldridge, Matthew D; Waddington, Wendy W; Dickson, John C; Prakash, Vineet; Ell, Peter J; Bomanji, Jamshed B

    2013-11-01

    A three-dimensional model-based resolution recovery (RR) reconstruction algorithm that compensates for collimator-detector response, resulting in an improvement in reconstructed spatial resolution and signal-to-noise ratio of single-photon emission computed tomography (SPECT) images, was tested. The software is said to retain image quality even with reduced acquisition time. Clinically, any improvement in patient throughput without loss of quality is to be welcomed. Furthermore, future restrictions in radiotracer supplies may add value to this type of data analysis. The aims of this study were to assess improvement in image quality using the software and to evaluate the potential of performing reduced time acquisitions for bone and parathyroid SPECT applications. Data acquisition was performed using the local standard SPECT/CT protocols for 99mTc-hydroxymethylene diphosphonate bone and 99mTc-methoxyisobutylisonitrile parathyroid SPECT imaging. The principal modification applied was the acquisition of an eight-frame gated data set acquired using an ECG simulator with a fixed signal as the trigger. This had the effect of partitioning the data such that the effect of reduced time acquisitions could be assessed without conferring additional scanning time on the patient. The set of summed data sets was then independently reconstructed using the RR software to permit a blinded assessment of the effect of acquired counts upon reconstructed image quality as adjudged by three experienced observers. Data sets reconstructed with the RR software were compared with the local standard processing protocols; filtered back-projection and ordered-subset expectation-maximization. Thirty SPECT studies were assessed (20 bone and 10 parathyroid). The images reconstructed with the RR algorithm showed improved image quality for both full-time and half-time acquisitions over local current processing protocols (Pimproved image quality compared with local processing protocols and has been

  18. Positron emission tomography takes lead

    International Nuclear Information System (INIS)

    Simms, R.

    1989-01-01

    Positron emission tomography (PET)'s ability to detect functional abnormalities before they manifest anatomically is examined and some of its most common applications are outlined. It is emphasised that when PET facility and Australian Nuclear Science and Technology Organization's national cyclotron are established at the Royal Prince Alfred Hospital, the availability of short-lived tracers such as oxygen 15, nitrogen 13 and fluorine 18 would improve the specificity of tests(e.g. for brain tumors or cardiac viability) further. Construction of the cyclotron will start shortly and is due to be completed and operating by the end of 1991

  19. Fundamentals of positron emission tomography

    International Nuclear Information System (INIS)

    Ostertag, H.

    1989-01-01

    Positron emission tomography is a modern radionuclide method of measuring physiological quantities or metabolic parameters in vivo. The methods is based on: (1) Radioactive labelling with positron emitters; (2) the coincidence technique for the measurement of the annihilation radiation following positron decay; (3) analysis of the data measured using biological models. The basic aspects and problems of the method are discussed. The main fields of future research are the synthesis of new labelled compounds and the development of mathematical models of the biological processes to be investigated. (orig.) [de

  20. Emission tomography for adrenal imaging

    International Nuclear Information System (INIS)

    Britton, K.E.; Shapiro, B.; Hawkins, L.A.

    1980-01-01

    Single photon emission tomography (SPET) of the adrenals was compared to convential gamma camera images. Depths of 19 adrenals were assessed by both the lateral skin-upper kidney pole method and by SPET. Eleven patients with adrenal disorders were also studied. An advantage of using SPET was that the analogue transverse section image showed improvement over the conventional posterior view because the liver activity was well separated from the adrenal. Furthermore, non-adrenal tissue background was virtually eliminated and adrenal depth determination facilitated. (U.K.)

  1. Single-photon emission computed tomography

    International Nuclear Information System (INIS)

    Budinger, T.F.

    1986-01-01

    Single photon tomography dates from the early 1960's when the idea of emission transverse section tomography was presented by Kuhl and Edwards. They used a rectilinear scanner and analogue back-projection methods to detect emissions from a series of sequential positions transverse to the cephaldcaudad axis of the body. This chapter presents an explanation of emission tomography by describing longitudinal and transverse section tomography. In principle all modes of tomography can be considered under the general topic of coded apertures wherein the code ranges from translation of a pinhole collimator to rotation of a parallel hole or focused collimator array

  2. Positron Emission Tomography: Its 65 years

    International Nuclear Information System (INIS)

    Del Guerra, A.; Belcari, N.; Bisogni, M.

    2016-01-01

    Positron Emission Tomography (PET) is a well-established imaging technique for in vivo molecular imaging. In this review after a brief history of PET there are presented its physical principles and the technology that has been developed for bringing PET from a bench experiment to a clinical indispensable instrument. The limitations and performance of the PET tomographs are discussed, both as for the hardware and software aspects. The status of art of clinical, preclinical and hybrid scanners (i.e., PET/CT and PET/MR) is reported. Finally the actual trend and the recent and future technological developments are fully illustrated.

  3. Single photon emission computerized tomography (SPECT)

    International Nuclear Information System (INIS)

    Ganatra, R.D.

    1992-01-01

    Tomography in nuclear medicine did not originate after the introduction of X-ray computerized tomography (CT). Even in the days of rectilinear scanner, tomography was attempted with multiple detector heads rotating around the patient, but the counts at each plane were never very high to obtain a satisfactory image. A high resolution focusing collimator can look at different depths but taking several slices in one projection was a time consuming process. Rectilinear scanners lose lot of counts in the collimator to look at one point, at on time, in one plane. It is true that attempts to do tomography with gamma camera really got a boost after the success of CT. By that time, algorithms for doing reconstruction of images also were highly refined and for advanced. Clinical application of SPECT has become widespread now, because of the development of suitable radiopharmaceuticals and improvement in instrumentation. The SPECT provides a direct measure of regional organ function and is performed with nuclides such as 123 I and 99 Tc m that emit a mono-image photon during their decay. SPECT is far less expensive than positron emission tomography

  4. Single photon emission computerized tomography (SPECT)

    Energy Technology Data Exchange (ETDEWEB)

    Ganatra, R D

    1993-12-31

    Tomography in nuclear medicine did not originate after the introduction of X-ray computerized tomography (CT). Even in the days of rectilinear scanner, tomography was attempted with multiple detector heads rotating around the patient, but the counts at each plane were never very high to obtain a satisfactory image. A high resolution focusing collimator can look at different depths but taking several slices in one projection was a time consuming process. Rectilinear scanners lose lot of counts in the collimator to look at one point, at on time, in one plane. It is true that attempts to do tomography with gamma camera really got a boost after the success of CT. By that time, algorithms for doing reconstruction of images also were highly refined and for advanced. Clinical application of SPECT has become widespread now, because of the development of suitable radiopharmaceuticals and improvement in instrumentation. The SPECT provides a direct measure of regional organ function and is performed with nuclides such as {sup 123}I and {sup 99}Tc{sup m} that emit a mono-image photon during their decay. SPECT is far less expensive than positron emission tomography

  5. Positron emission tomography for the assessment of myocardial viability

    International Nuclear Information System (INIS)

    Schelbert, H.R.

    1991-01-01

    The detection of viable myocardium or ischemically injured myocardium with a reversible impairment of contractile function remains clinically important but challenging. Detection of reversible dysfunction and distinction from irreversible tissue injury by positron emission tomography is based on identification of preserved or even enhanced glucose metabolism with F-18 2-fluoro 2-deoxyglucose. Regional patterns of myocardial glucose utilization and blood flow, defined as perfusion-metabolism mismatches or matches, on positron emission tomography in patients with chronic or even acute ischemic heart disease are highly accurate in predicting the functional outcome after interventional revascularization. Compared with thallium-201 redistribution scintigraphy, positron emission tomography appears to be diagnostically more accurate, especially in patients with severely impaired left ventricular function. While larger clinical trials are needed for further confirmation, positron emission tomography has already proved clinically useful for stratifying patients with poor left ventricular function to the most appropriate therapeutic approach

  6. Therapy response evaluation with positron emission tomography-computed tomography.

    Science.gov (United States)

    Segall, George M

    2010-12-01

    Positron emission tomography-computed tomography with F-18-fluorodeoxyglucose is widely used for evaluation of therapy response in patients with solid tumors but has not been as readily adopted in clinical trials because of the variability of acquisition and processing protocols and the absence of universal response criteria. Criteria proposed for clinical trials are difficult to apply in clinical practice, and gestalt impression is probably accurate in individual patients, especially with respect to the presence of progressive disease and complete response. Semiquantitative methods of determining tissue glucose metabolism, such as standard uptake value, can be a useful descriptor for levels of tissue glucose metabolism and changes in response to therapy if technical quality control measures are carefully maintained. The terms partial response, complete response, and progressive disease are best used in clinical trials in which the terms have specific meanings and precise definitions. In clinical practice, it may be better to use descriptive terminology agreed upon by imaging physicians and clinicians in their own practice. Copyright © 2010. Published by Elsevier Inc.

  7. Positron emission tomography of the heart

    International Nuclear Information System (INIS)

    Budinger, T.F.; Yano, Y.; Mathis, C.A.; Moyer, B.R.; Huesman, R.H.; Derenzo, S.E.

    1983-01-01

    Positron emission tomography (PET) offers the opportunity to noninvasively measure heart muscle blood perfusion, oxygen utilization, metabolism of fatty acids, sugars and amino acids. This paper reviews physiological principles which are basic to PET instrumentation for imaging the heart and gives examples of the application of positron emission tomography for measuring myocardial flow and metabolism. 33 references, 11 figures, 1 table

  8. Improved positron emission tomography camera

    International Nuclear Information System (INIS)

    Mullani, N.A.

    1986-01-01

    A positron emission tomography camera having a plurality of rings of detectors positioned side-by-side or offset by one-half of the detector cross section around a patient area to detect radiation therefrom, and a plurality of scintillation crystals positioned relative to the photomultiplier tubes whereby each tube is responsive to more than one crystal. Each alternate crystal in the ring may be offset by one-half or less of the thickness of the crystal such that the staggered crystals are seen by more than one photomultiplier tube. This sharing of crystals and photomultiplier tubes allows identification of the staggered crystal and the use of smaller detectors shared by larger photomultiplier tubes thereby requiring less photomultiplier tubes, creating more scanning slices, providing better data sampling, and reducing the cost of the camera. (author)

  9. Positron emission tomography and migraine

    International Nuclear Information System (INIS)

    Chabriat, H.

    1992-01-01

    Positron emission tomography (PET) is a brain imaging technique that allows in vivo studies of numerous physiological parameters. There have been few PET studies in migraine patients. Cerebral blood flow changes with no variations in brain oxygen consumption have been reported in patients with prolonged neurologic manifestations during migraine attacks. Parenteral administration of reserpine during migraine headache has been followed by a fall in the overall cerebral uptake of glucose. The small sample sizes and a number of methodologic problems complicate the interpretation of these results. Recent technical advances and the development of new PET tracers can be expected to provide further insight into the pathophysiology of migraine. Today cerebral cortex 5 HT 2 serotonin receptors can be studied in migraine patients with PET

  10. Features and applications of positron emission tomography

    International Nuclear Information System (INIS)

    Fan Mingwu

    1997-01-01

    Positron emission tomography, the so-called world's smartest camera, is based on a NaI or BGO detector and imaging of positron-emitting radioisotopes which are introduced as a tracer into the regional tissue or organ of interest. With the aid of a computer visual images of a series of these distributions can be built into a picture of the functional status of the tissue or organ being imaged. This highly accurate imaging technique is already widely used for clinical diagnostics heart disease, brain disorder, tumors and so on

  11. Joint project of the international network of agencies for health technology assessment--Part 1: Survey results on diffusion, assessment, and clinical use of positron emission tomography.

    Science.gov (United States)

    Hastings, John; Adams, Elizabeth J

    2006-01-01

    The International Network of Agencies for Health Technology Assessment (INAHTA) has been tracking activities associated with the clinical use of positron emission tomography (PET) in its members' healthcare systems since 1997 and published its first Joint Project report on PET in 1999. Part 1 of this Joint Project report presents survey results on diffusion, assessment activities, and policy for clinical use related to PET among INAHTA members since 1999. INAHTA members were surveyed in 2003-2004. Twenty-seven INAHTA agencies (69 percent response rate) from nineteen countries responded to the survey. Dedicated PET systems are the most universally installed systems to date. Mobile scanners and modified gamma cameras are used occasionally as lower cost alternatives, and interest in PET-computed tomography hybrid models is rising despite limited assessment of impact on service planning. PET was used and assessed most commonly for managing patients with cancer. All respondents reported having some form of public funding for clinical PET frequently linked to data collection for the purpose of gathering evidence to refine clinical use and guide resource allocation toward indications that maximize clinical and cost-effectiveness. The use of HTA within a continuous quality improvement framework can help optimize scarce resources for evaluation and use of high cost diagnostic technologies such as PET, particularly where potential clinical or cost-effectiveness is considerable but conclusive evidence is lacking.

  12. Positron emission tomography with Positome, 2

    International Nuclear Information System (INIS)

    Nukui, Hideaki; Yamamoto, Y.L.; Thompson, C.J.; Feindel, W.

    1979-01-01

    Positron emission tomography with Positome II using 68 Ga-EDTA was performed in cases with brain tumor and cerebral arteriovenous malformation. A significant focal uptake in static study and hemodynamic changes in dynamic study were noted in all cases except one case with intracranial lipoma. Comparing this method with sup(99m) Tc-pertechnetate cerebral image study and computerized axial tomography, the diagnostic rate for detecting brain tumor was almost equal in all of these three methods. However, detecting and localizing was easier and clearer in static positron emission tomography with 68 Ga-EDTA than in sup(99m) Tc-pertechnetate cerebral image and computerized axial tomography without infusion of contrast medium. Furthermore, static positron emission tomography with 68 Ga-EDTA was superior to computerized axial tomography without infusion of contrast medium for detecting cerebral arteriovenous malformation. Concerning dynamic positron emission tomography with 68 Ga-EDTA, semiquantitative values obtained by this method correlated well with findings of computerized axial tomography and was thought to be more precise and in detail than the findings of sup(99m) Tc-pertechnetate cerebral image study. Summation of the previous studies about dynamic positron emission tomography with 77 Kr in occlusive cerebrovascular disease is also reported. In conclusion, static positron emission tomography with 68 Ga-EDTA is a very useful diagnostic method for detecting and localizing brain tumor and cerebral arteriovenous malformation without any attendant complications. Furthermore, a good combination of static and dynamic positron emission tomography and computerized axial tomography appear to be outstandingly effective for not only detecting the lesion but also understanding the pathophysiological aspect in cases with various intracranial lesions. (author)

  13. Positron emission tomography in oncology

    International Nuclear Information System (INIS)

    Lecomte, R.; Bentourkia, M.; Benard, F.

    2002-01-01

    Positron Emission Tomography is a sophisticated molecular imaging technique, using a special scanner, that displays the functional status of tissues in the body at the cellular level (their metabolism). It is a diagnostic scan that provides the physician with information not available with traditional anatomic studies such as CT or MRI. PET can detect changes in cell function (disease) long before they are evident as physical (anatomic) changes seen on CT or MRI. In this way PET can add important information about many diseases allowing the physician to make a diagnosis often much earlier than with anatomic imaging techniques such as CT or MRI alone. In addition, in cases where an abnormality is noted on CT or MRI, PET can help differentiate benign changes from changes due to disease. PET scanning also typically images the entire body, unlike CT/MRI which is usually broken up into specific limited body section scans. All cells use glucose as an energy source but cancer cells use much more since they are growing much faster and out of control. This is the basis of imaging with F-18 FDG glucose, the radiotracer agent use in a PET oncology study. The abnormal, accelerated glucose used by cancer cells is detected by the PET scanner that processes the emissions from the F-18 FDG glucose by abnormally high levels of metabolism (tumor)

  14. Positron Emission Tomography (PET) in the oncologic clinical practice; Tomografia por Emision de Positrones (PET) en la practica clinica oncologica

    Energy Technology Data Exchange (ETDEWEB)

    Serna M, J A; Luviano, C; Martinez V, D [Hospital Angeles del Pedregal Mexico DF (Mexico); Maldonado S, A [Centro PET Complutense, Madrid (Spain)

    2005-07-01

    We intended to determine the frequency with that the computer axial tomography (TAC), it was able to visualize the lesions extra neoplasia detected by the PET tomography in patients with fully identified primary malignant neoplasia. (Author)

  15. Clinical characteristics in patients showing ischemic electrocardiographic changes during adenosine triphosphate loading single-photon emission computed tomography

    International Nuclear Information System (INIS)

    Ohtaki, Yuka; Chikamori, Taishiro; Hida, Satoshi; Tanaka, Hirokazu; Igarashi, Yuko; Hatano, Tsuguhisa; Usui, Yasuhiro; Miyagi, Manabu; Yamashina, Akira

    2010-01-01

    Although ischemic electrocardiographic (ECG) changes during dipyridamole or adenosine infusion have been reported as a marker for severe coronary artery disease (CAD), few studies have focused on ST-segment changes with adenosine triphosphate (ATP)-loading myocardial single-photon emission computed tomography (SPECT). Between January 2003 and August 2008, 4650 consecutive patients underwent ATP-loading SPECT. After 1412 patients with left bundle branch block, pacemaker rhythm, or previous coronary revascularization were excluded, 16 out of 3238 patients (0.5%) showed ischemic ST-segment depression during ATP-loading myocardial SPECT. They were aged 67±11 years; 10 were men and 6 women. Of these patients, 8 demonstrated perfusion abnormalities, whereas the remaining 8 showed normal myocardial perfusion imaging. In 6 of the 8 patients with abnormal SPECT, coronary angiography was performed, revealing left main trunk disease in 1 patient, 3-vessel disease in 4, 1-vessel disease with proximal left ascending artery occlusion in 1, and an insignificant lesion in 1. By contrast, no major cardiac event was observed in the 8 patients with normal SPECT during follow-up for an average of 2 years. The prevalence of ischemic ST-segment changes during ATP loading is very rare. However, this finding should be taken into account since almost half of the patients, particularly those with perfusion abnormalities, may have severe CAD which requires coronary revascularization. (author)

  16. Positron emission tomography in neuropsychology.

    Science.gov (United States)

    Heiss, W D; Herholz, K; Pawlik, G; Wagner, R; Wienhard, K

    1986-01-01

    By positron emission tomography (PET) of 18F-2-fluoro-2-deoxy-D-glucose (FDG) local cerebral metabolic rate for glucose (LCMRGl) can be measured in man. Normal values in cerebral cortex and basal ganglia range from 35 to 50 mumol/100 g/min, the values in gray matter structures of the posterior fossa were 25-30 mumol/100 g/min, the lowest LCMRGl was found in the white matter (15-20 mumol/100 g/min). During sensory stimulation by various modalities functional activation increases LCMRGl in the respective special areas, while sleep decreases metabolic rate in all cortical and basal gray matter structures. In many neurological disorders CMRGl is altered in a disease-specific pattern. In dementia of the Alzheimer type CMRGl is impaired even in early stages with accentuation in the parieto-temporal cortex, while in multi-infarct dementia glucose uptake is mainly reduced in the multifocal small infarcts. In Huntington's chorea the most conspicuous changes are found in the caudate nucleus and putamen. In cases of focal lesions (e.g. ischemic infarcts) metabolic disturbances extend far beyond the site of the primary lesion and inactivation of metabolism is found in intact brain structures far away from the anatomical lesion. Additional applications of PET include determination of the metabolism of various substrates, of protein synthesis, of function and distribution of receptors, of tumor growth and of the distribution of drugs as well as the measurement of oxygen consumption, blood flow and blood volume.

  17. Positron emission tomography in epilepsy

    International Nuclear Information System (INIS)

    Hosokawa, Shinichi; Kato, Motohiro; Otsuka, Makoto; Kuwabara, Yasuo; Ichiya, Yuichi; Goto, Ikuo

    1989-01-01

    Positron emission tomography (PET) was performed with the 18 F-fluoro-deoxy-glucose method on 29 patients with epilepsy (generalized epilepsy, 4; partial epilepsy, 24; undetermined type, 1). The subjects were restricted to patients with epilepsy without focal abnormality on X-CT. All the patients with generalized epilepsy showed a normal pattern on PET. Fourteen out of the 24 patients with partial epilepsy and the 1 with epilepsy of undermined type showed focal hypometabolism on PET. The hypometabolic zone was localized in areas including the temporal cortex in 11 patients, frontal in 2 and thalamus in 1. The location of hypometabolic zone and that of interictal paroxysmal activity on EEG were well correlated in most patients. The patients with poorly-controlled seizure showed a higher incidence of PET abnormality (12 out of 13) than those with well-controlled seizures (2 out of 11). The incidence of abnormality on PET and MRI and the location of both abnormality were not necessarily coincident. These results indicated that the PET examination in epilepsy provides valuable information about the location of epileptic focus, and that the findings on PET in patients with partial epilepsy may be one of the good indicators about the intractability of partial epilepsy, and that PET and MRI provide complementary information in the diagnosis of epilepsy. (author)

  18. Preclinical and clinical evaluation of O-[{sup 11}C]methyl-L-tyrosine for tumor imaging by positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Ishiwata, Kiichi [Positron Medical Center, Tokyo Metropolitan Institute of Gerontology, Itabashi-ku, Tokyo 173-0022 (Japan)]. E-mail: ishiwata@pet.tmig.or.jp; Tsukada, Hideo [Central Research Laboratory, Hamamatsu Photonics K.K., Hamakita 434-8601 (Japan); Kubota, Kazuo [Department of Radiology, Division of Nuclear Medicine, International Medical Center of Japan, Shinjuku-ku, Tokyo 162-8655 (Japan); Nariai, Tadashi [Department of Neurosurgery, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8519 (Japan); Harada, Norihiro [Department of Radiology, Division of Nuclear Medicine, International Medical Center of Japan, Shinjuku-ku, Tokyo 162-8655 (Japan); Kawamura, Kazunori [Positron Medical Center, Tokyo Metropolitan Institute of Gerontology, Itabashi-ku, Tokyo 173-0022 (Japan); SHI Accelerator Service Ltd., Shinagawa-ku, Tokyo 141-8686 (Japan); Kimura, Yuichi [Positron Medical Center, Tokyo Metropolitan Institute of Gerontology, Itabashi-ku, Tokyo 173-0022 (Japan); Oda, Keiichi [Positron Medical Center, Tokyo Metropolitan Institute of Gerontology, Itabashi-ku, Tokyo 173-0022 (Japan); Iwata, Ren [CYRIC, Tohoku University, Aoba-ku, Sendai 980-8578 (Japan); Ishii, Kenji [Positron Medical Center, Tokyo Metropolitan Institute of Gerontology, Itabashi-ku, Tokyo 173-0022 (Japan)

    2005-04-01

    We performed preclinical and clinical studies of O-[{sup 11}C]methyl-L-tyrosine, a potential tracer for imaging amino acid transport of tumors by positron emission tomography (PET). Examinations of the radiation-absorbed dose by O-[{sup 11}C]methyl-L-tyrosine and the acute toxicity and mutagenicity of O-methyl-L-tyrosine showed suitability of the tracer for clinical use. The whole-body imaging of monkeys and healthy humans by PET showed low uptake of O-[{sup 11}C]methyl-L-tyrosine in all normal organs except for the urinary track and bladder, suggesting that the O-[{sup 11}C]methyl-L-tyrosine PET has the potential for tumor imaging in the whole-body. Finally, the brain tumor imaging was preliminarily demonstrated.

  19. A case of temporal lobe epilepsy with improvement of clinical symptoms and single photon emission computed tomography findings after treatment with clonazepam.

    Science.gov (United States)

    Ide, M; Mizukami, K; Suzuki, T; Shiraishi, H

    2000-10-01

    A 26-year-old female presented psychomotor seizures, deja vu and amnestic syndrome after meningitis at the age of 14 years. Repeated electroencephalograms (EEG) demonstrated occasional spikes localized in the right temporal region in addition to a considerable amount of theta waves mainly in the right fronto-temporal region. Single photon emission computed tomography (SPECT) showed a marked hypoperfusion corresponding to the region in which the EEG showed abnormal findings, although magnetic resonance imaging (MRI) demonstrated no abnormal findings associated with the clinical features. Treatment with clonazepam in addition to sodium valproate resulted in a remarkable improvement of clinical symptoms (i.e. psychomotor seizures and deja vu), as well as of the EEG and SPECT findings. The present study suggests that SPECT is a useful method not only to determine the localization of regions associated with temporal lobe epilepsy but also to evaluate the effect of treatment in temporal lobe epilepsy.

  20. 99mTc-Hexamethyl Propyleneamine Oxime Brain Perfusion Single Photon Emission Computed Tomography in Characterization of Dementia: An Initial Experience in Indian Clinical Practice

    International Nuclear Information System (INIS)

    Santra, Amburanjan; Sinha, Gaurav Kumar; Neogi, Rajarshi; Thukral, Ramesh Kumar

    2014-01-01

    There is a growing health burden in developing countries due to recent trends of increasing incidence of neurodegenerative diseases. To reduce the healthcare cost and effective management of dementia illness, early diagnosis, accurate differentiation and their progression assessment is becoming crucially important. We are utilizing 99m Tc-d, l-hexamethyl propyleneamine oxime (HMPAO) brain perfusion single photon emission computed tomography (SPECT) to characterize dementia on the basis of perfusion patterns and observed significant improvement in their management. Eleven patients (median age of 60 years range of 53-83 years) with clinical suspicion of dementia underwent 99m Tc-HMPAO brain perfusion SPECT. SPECT-computed tomography acquisition done, data are reconstructed, reviewed in three view and further processed in “neurogam” to get voxel based analysis and the comparison with age based normal database and surface mapping. Final diagnosis was done with clinical correlation. Four patients are diagnosed as Alzheimer's disease, two as frontotemporal dementia, one as dementia of Lewy bodies, two as vascular dementia and two as pseudodementia. All imaging findings are well-correlated with clinical background. Brain perfusion SPECT with HMPAO was very helpful to us in characterizing the patients of dementia by its perfusion pattern

  1. Radiopharmaceutical chemistry for positron emission tomography

    NARCIS (Netherlands)

    Elsinga, PH

    Radiopharmaceutical chemistry includes the selection, preparation, and preclinical evaluation of radiolabeled compounds. This paper describes selection criteria for candidates for positron emission tomography (PET) investigations. Practical aspects of nucleophilic and electrophilic

  2. Development of emission computed tomography in Japan

    International Nuclear Information System (INIS)

    Tanaka, E.

    1984-01-01

    Two positron emission computed tomography (PCT) devices developed in Japan are described. One is for head and the other for wholebody. The devices show fairly quantitative images with slight modifications of the existing algorithms because they were developed based on filtered back-projection. The PCT device seems to be better than the single photon emission computed tomography (SPECT) since it provides adequade compensation for photon attenuation in patients. (M.A.C.) [pt

  3. Dynamic emission tomography of regional cerebral blood flow

    International Nuclear Information System (INIS)

    Lassen, N.A.

    1984-01-01

    The author reviews three tomographic methods for measuring the regional cerebral blood flow: single photon transmission tomography; dual photon emission tomography; and single photon emission tomography. The latter technique is discussed in detail. (Auth.)

  4. [18F]-Fluorodeoxyglucose Positron Emission Tomography in the Diagnosis, Treatment Stratification, and Monitoring of Patients with Retroperitoneal Fibrosis: A Prospective Clinical Study.

    Science.gov (United States)

    Fernando, Archie; Pattison, James; Horsfield, Catherine; D'Cruz, David; Cook, Gary; O'Brien, Tim

    2017-06-01

    The ability to distinguish malignant from benign retroperitoneal fibrosis (RPF) and to select patients who are likely to respond to steroid treatment using a noninvasive test would be a major step forward in the management of patients with RPF. To prospectively evaluate the potential of [ 18 F]-fluorodeoxyglucose positron emission tomography (FDG-PET) to improve clinical decision-making and management of RPF. A total of 122 RPF patients were assessed and managed by a multidisciplinary RPF service between January 2012 and December 2015. Of these, 78 patients underwent 101 FDG-PET scans, as well as computed tomography and blood tests. Management was based on the findings from these investigations. Median follow-up was 16 mo. Of the 24 patients with negative [ 18 F]-FDG-PET, none (0%) had malignancy on biopsy (negative predictive value 100%). [ 18 F]-FDG-PET identified malignancy in 4/4 patients (100%) before biopsy. All four patients had highly avid PET (maximum standardised uptake value ≥4) with atypical avidity distribution. [ 18 F]-FDG-PET revealed avidity in 19/38 patients (50%) with normal inflammatory markers and no avidity in 10/63 patients (16%) with raised marker levels. Patients with highly avid PET were significantly more likely to respond to steroids compared to those with low avidity (9/11 [82%] vs 3/24 [12%]; ppositron emission tomography scans could reduce the need for biopsy in patients with retroperitoneal fibrosis (RPF). This technique can distinguish cancer from noncancerous RPF, and may be better than blood tests in assessing and monitoring RPF. It also appears to predict a patient's response to steroids, which should allow more individualised treatment. Copyright © 2017 European Association of Urology. All rights reserved.

  5. Clinical investigations on the use of positron emission tomography (PET) for target volume definition in radiation therapy planning; Klinische Untersuchungen zum Einsatz der Positronen-Emissions-Tomographie (PET) in der Zielvolumendefinition bei der Bestrahlungsplanung

    Energy Technology Data Exchange (ETDEWEB)

    Steffen, Ingo G.

    2014-12-05

    The aim of the present study was to evaluate the clinical value of positron emission tomography (PET) for target volume definition in different tumor entities using different tracers and taking pretreatment of patients into account. The study collective comprised 109 patients with 112 target volumes. In 48 patients with skull base meningiomas (SBM) and 42 patients with meningiomas of other localizations (SOM) undergoing fractionated stereotactic radiation therapy the gross tumor volumes (SBM, n=48; SOM, n=39) based on magnetic resonance imaging/computed tomography (MRI/CT) and {sup 68}Ga-DOTATOC-PET were compared retrospectively. Additionally, in 19 patients with liver metastasis from colorectal cancer (LM-CRC) treated in 25 CT guided brachytherapy sessions the clinical target volumes (CTV) either based on MRI/CT or {sup 18}F-FDG-PET were compared retrospectively. The spatial agreement of the target volumes was analyzed using the Dice similarity coefficient (DSC). The association of DSC, tumor entity and pretreatment was analyzed using the general linear model (GLM). Metric parameters are given as median (25th/75th-quartile). In the complete patient sample the PET based target volume was 24.1 (10.8/51.2) ml and, thus, significantly (p<0.001) increased by 18.9% (-3.6%/62.7%) compared to the MRI/CT based target volume of 20.8 (8.6/45.0) ml. In the subgroup of LM-CRC, the PET based target volume was significantly increased by 24.4% (0%/ 71.4%; p=0.021), and in patients with SBM it was increased by 23.9%(-1.7%/65.7%; p=0.003) whereas in SOM the difference of 8.0% (-3.6%/51.7%; p=0.199) was not significant. The DSC for PET and MRI/CT based target volumes was 0.66 (0.46/0.76) in the whole study group and varied between 0.65 (0.46/0.71) in patients with SBM and 0.70 (0.40/0.79) in patients with SOM. In pre-treated patients with LM-CRC a significant lower DSC of 0.62 (0.41/0.66) was observed in comparison to 0.84 (0.70/0.96) in untreated patients (significant interaction

  6. Scintillators for positron emission tomography

    International Nuclear Information System (INIS)

    Moses, W.W.; Derenzo, S.E.

    1995-09-01

    Like most applications that utilize scintillators for gamma detection, Positron Emission Tomography (PET) desires materials with high light output, short decay time, and excellent stopping power that are also inexpensive, mechanically rugged, and chemically inert. Realizing that this ''ultimate'' scintillator may not exist, this paper evaluates the relative importance of these qualities and describes their impact on the imaging performance of PET. The most important PET scintillator quality is the ability to absorb 511 keV photons in a small volume, which affects the spatial resolution of the camera. The dominant factor is a short attenuation length (≤ 1.5 cm is required), although a high photoelectric fraction is also important (> 30% is desired). The next most important quality is a short decay time, which affects both the dead time and the coincidence timing resolution. Detection rates for single 511 keV photons can be extremely high, so decay times ≤ 500 ns are essential to avoid dead time losses. In addition, positron annihilations are identified by time coincidence so ≤5 ns fwhm coincidence pair timing resolution is required to identify events with narrow coincidence windows, reducing contamination due to accidental coincidences. Current trends in PET cameras are toward septaless, ''fully-3D'' cameras, which have significantly higher count rates than conventional 2-D cameras and so place higher demands on scintillator decay time. Light output affects energy resolution, and thus the ability of the camera to identify and reject events where the initial 511 keV photon has undergone Compton scatter in the patient. The scatter to true event fraction is much higher in fully-3D cameras than in 2-D cameras, so future PET cameras would benefit from scintillators with a 511 keV energy resolution < 10--12% fwhm

  7. Fluorodeoxyglucose Positron Emission Tomography-Computed Tomography in Disseminated Cryptococcosis.

    Science.gov (United States)

    Tripathy, Sarthak; Parida, Girish Kumar; Roy, Shambo Guha; Singhal, Abhinav; Mallick, Saumya Ranjan; Tripathi, Madhavi; Shamim, Shamim Ahmed

    2017-01-01

    Disseminated cryptococcosis without pulmonary involvement is a very rare phenomenon. Patterns of organ involvement in cryptococcosis resemble various other infective conditions as well as malignant conditions on fluorodeoxyglucose positron emission tomography-computed tomography. We present a case of a 43-year-old male patient who had disseminated cryptococcosis. The rarity of the case being noninvolvement of lungs and meninges and resembling more like lymphoma due to the diffuse involvement of the lymph nodes on both sides of the diaphragm.

  8. Perirolandic hypoperfusion on single-photon emission computed tomography in term infants with perinatal asphyxia: comparison with MRI and clinical findings

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, C.S.; Kim, D.I.; Lee, S.; Yoon, P.H.; Jeon, T.J.; Lee, J.D. [Department of Diagnostic Radiology, Yonsei University College of Medicine, Seoul (Korea); Ryu, Y.H. [Department of Diagnostic Radiology, Yonsei University College of Medicine, Seoul (Korea); Department of Nuclear Medicine, Ghil Medical Center, Gachon Medical School, Inchon (Korea); Park, C.I. [Department of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul (Korea)

    2000-12-01

    We describe the findings on single-photon emission computed tomography (SPECT) in patients with perinatal asphyxia at term, with perirolandic cortico-subcortical changes on MRI, and to correlate them with clinical features. SPECT of 7 patients was obtained after injection of 185-370 MBq of Tc-99m-ECD (ethyl cysteinate dimer). The patients had spastic quadriplegia (7/7) with perinatal asphyxia (6/7) at term (7/7). The results were correlated with the MRI findings. Hypoperfusion of the perirolandic cortex was clearly seen on SPECT in all patients, even in two with subtle changes on MRI. SPECT demonstrated a more extensive area of involvement than MRI, notably in the cerebellum (in 4), the thalamus (in 7) and basal ganglia (in 5), where MRI failed to show any abnormalities. (orig.)

  9. Perirolandic hypoperfusion on single-photon emission computed tomography in term infants with perinatal asphyxia: comparison with MRI and clinical findings

    International Nuclear Information System (INIS)

    Yoon, C.S.; Kim, D.I.; Lee, S.; Yoon, P.H.; Jeon, T.J.; Lee, J.D.; Ryu, Y.H.; Park, C.I.

    2000-01-01

    We describe the findings on single-photon emission computed tomography (SPECT) in patients with perinatal asphyxia at term, with perirolandic cortico-subcortical changes on MRI, and to correlate them with clinical features. SPECT of 7 patients was obtained after injection of 185-370 MBq of Tc-99m-ECD (ethyl cysteinate dimer). The patients had spastic quadriplegia (7/7) with perinatal asphyxia (6/7) at term (7/7). The results were correlated with the MRI findings. Hypoperfusion of the perirolandic cortex was clearly seen on SPECT in all patients, even in two with subtle changes on MRI. SPECT demonstrated a more extensive area of involvement than MRI, notably in the cerebellum (in 4), the thalamus (in 7) and basal ganglia (in 5), where MRI failed to show any abnormalities. (orig.)

  10. Clinical evaluation of iterative reconstruction (ordered-subset expectation maximization) in dynamic positron emission tomography: quantitative effects on kinetic modeling with N-13 ammonia in healthy subjects

    DEFF Research Database (Denmark)

    Hove, Jens Dahlgaard; Rasmussen, R.; Freiberg, J.

    2008-01-01

    emission tomography (PET) studies from 20 normal volunteers at rest and during dipyridamole stimulation were analyzed. Image data were reconstructed with either FBP or OSEM. FBP- and OSEM-derived input functions and tissue curves were compared together with the myocardial blood flow and spillover values...... and OSEM flow values were observed with a flow underestimation of 45% (rest/dipyridamole) in the septum and of 5% (rest) and 15% (dipyridamole) in the lateral myocardial wall. CONCLUSIONS: OSEM reconstruction of myocardial perfusion images with N-13 ammonia and PET produces high-quality images for visual...... interpretation. However, compared with FBP, OSEM is associated with substantial underestimation of perfusion on quantitative imaging. Our findings indicate that OSEM should be used with precaution in clinical PET studies Udgivelsesdato: 2008/7...

  11. Attenuation Correction Strategies for Positron Emission Tomography/Computed Tomography and 4-Dimensional Positron Emission Tomography/Computed Tomography

    OpenAIRE

    Pan, Tinsu; Zaidi, Habib

    2013-01-01

    This article discusses attenuation correction strategies in positron emission tomography/computed tomography (PET/CT) and 4 dimensional PET/CT imaging. Average CT scan derived from averaging the high temporal resolution CT images is effective in improving the registration of the CT and the PET images and quantification of the PET data. It underscores list mode data acquisition in 4 dimensional PET and introduces 4 dimensional CT popular in thoracic treatment planning to 4 dimensional PET/CT. ...

  12. Positron emission tomography in drug development

    International Nuclear Information System (INIS)

    Rubin, R. H.; Fischman, A. J.

    1997-01-01

    There are four kinds of measurements that can be carried out with positron emission tomography (PET) that can contribute significantly to the process of drug development: pharmacodynamic measurement of tissue metabolism influenced by a given drug; precise measurements of tissue blood flow; tissue pharmacokinetics of a given drug following administration of a particular dose; and the temporal course of ligand-receptor interaction. One or more of these measurements can greatly improve the decision making involved in determining the appropriate dose of a drug, the clinical situations in which a drug might be useful, and the linkage of pharmacokinetics with pharmacodynamics, which is at the heart of effective drug development. The greater the potential of a particular compound as a therapeutic agent, the greater the potential for PET to contribute to the drug development process

  13. Motion correction in thoracic positron emission tomography

    CERN Document Server

    Gigengack, Fabian; Dawood, Mohammad; Schäfers, Klaus P

    2015-01-01

    Respiratory and cardiac motion leads to image degradation in Positron Emission Tomography (PET), which impairs quantification. In this book, the authors present approaches to motion estimation and motion correction in thoracic PET. The approaches for motion estimation are based on dual gating and mass-preserving image registration (VAMPIRE) and mass-preserving optical flow (MPOF). With mass-preservation, image intensity modulations caused by highly non-rigid cardiac motion are accounted for. Within the image registration framework different data terms, different variants of regularization and parametric and non-parametric motion models are examined. Within the optical flow framework, different data terms and further non-quadratic penalization are also discussed. The approaches for motion correction particularly focus on pipelines in dual gated PET. A quantitative evaluation of the proposed approaches is performed on software phantom data with accompanied ground-truth motion information. Further, clinical appl...

  14. Data analysis in emission tomography using emission-count posteriors

    International Nuclear Information System (INIS)

    Sitek, Arkadiusz

    2012-01-01

    A novel approach to the analysis of emission tomography data using the posterior probability of the number of emissions per voxel (emission count) conditioned on acquired tomographic data is explored. The posterior is derived from the prior and the Poisson likelihood of the emission-count data by marginalizing voxel activities. Based on emission-count posteriors, examples of Bayesian analysis including estimation and classification tasks in emission tomography are provided. The application of the method to computer simulations of 2D tomography is demonstrated. In particular, the minimum-mean-square-error point estimator of the emission count is demonstrated. The process of finding this estimator can be considered as a tomographic image reconstruction technique since the estimates of the number of emissions per voxel divided by voxel sensitivities and acquisition time are the estimates of the voxel activities. As an example of a classification task, a hypothesis stating that some region of interest (ROI) emitted at least or at most r-times the number of events in some other ROI is tested. The ROIs are specified by the user. The analysis described in this work provides new quantitative statistical measures that can be used in decision making in diagnostic imaging using emission tomography. (paper)

  15. Data analysis in emission tomography using emission-count posteriors

    Science.gov (United States)

    Sitek, Arkadiusz

    2012-11-01

    A novel approach to the analysis of emission tomography data using the posterior probability of the number of emissions per voxel (emission count) conditioned on acquired tomographic data is explored. The posterior is derived from the prior and the Poisson likelihood of the emission-count data by marginalizing voxel activities. Based on emission-count posteriors, examples of Bayesian analysis including estimation and classification tasks in emission tomography are provided. The application of the method to computer simulations of 2D tomography is demonstrated. In particular, the minimum-mean-square-error point estimator of the emission count is demonstrated. The process of finding this estimator can be considered as a tomographic image reconstruction technique since the estimates of the number of emissions per voxel divided by voxel sensitivities and acquisition time are the estimates of the voxel activities. As an example of a classification task, a hypothesis stating that some region of interest (ROI) emitted at least or at most r-times the number of events in some other ROI is tested. The ROIs are specified by the user. The analysis described in this work provides new quantitative statistical measures that can be used in decision making in diagnostic imaging using emission tomography.

  16. Positron emission tomography/computed tomography scanning for ...

    African Journals Online (AJOL)

    Background: Although the site of nosocomial sepsis in the critically ill ventilated patient is usually identifiable, it may remain occult, despite numerous investigations. The rapid results and precise anatomical location of the septic source using positron emission tomography (PET) scanning, in combination with computed ...

  17. Single photon emission computed tomography and oth selected computer topics

    International Nuclear Information System (INIS)

    Frey, G.D.

    1981-01-01

    This book, the proceedings of a meeting in January 1980, contains 21 papers. Thirteen are devoted to aspects of emission tomography, four to nuclear cardiology, and five to other topics. The initial set of papers consists of reviews of the single photon emission tomography process. These include transverse axial tomography using scintillation cameras and other devices, longitudinal section tomography, and pin-hole and slant-hole systems. These reviews are generally well done, but as might be expected, lack any coherence from paper to paper. The papers on nuclear cardiology include several of Fourier analysis in nuclear cardiology and one on shunt quantification. Other clinical papers are on quantifying Tc-99m glucoheptonate uptake in the brain and on iron-59 retention studies. A general criticism of the book is the poor quality of photographic reproductions

  18. Simultaneous emission and transmission scanning in positron emission tomography

    International Nuclear Information System (INIS)

    Satoh, Tomohiko; Tanaka, Kazumi; Kitamura, Keishi; Amano, Masaharu; Miura, Shuichi

    2001-01-01

    Examination by PET (positron emission tomography) scanning, following the dosage of 2-deoxy- 18 F fluoro-D-glucose (FDG), is positively utilized for the diagnosis of cancers, rather than for the purpose of studies. This is because the examination by FDG-PET (PET scanning following the dosage of FDG) ensures higher efficiency in discrimination of cancers, than conventional CT and PET. The method of whole body scanning by PET scanning following the dosage of FDG is effectively utilized not only for discrimination cancers, but also for determining the degree of malignancy of tumors and evaluating the methods of treatment of cancers. In conventional methods for examining the degree of malignancy of tumors and evaluating the methods of cancer treatment, it is necessary to correct for the gamma-ray attenuation, which requires a longer time for examination, increasing the physical and psychological pains of the patients. We have installed the simultaneous emission and transmission scanning capability into the HEADTOME-V of the Shimadzu SET-2000W Series positron emission tomographic scanning instruments, to establish an instrument that permits FDG-PET whole body scanning in actual clinical fields, with minimized physical and psychological pains of patients concerned, yet ensuring an outstandingly high examination efficiency. This report also presents some data obtained by this newly developed instrument and those obtained in practical applications. (author)

  19. Clinical utility of (18)F-FDG positron emission tomography/computed tomography scan vs. (99m)Tc-HMPAO white blood cell single-photon emission computed tomography in extra-cardiac work-up of infective endocarditis

    DEFF Research Database (Denmark)

    Lauridsen, Trine K; Iversen, Kasper K; Ihlemann, Nikolaj

    2017-01-01

    The extra-cardiac work-up in infective endocarditis (IE) comprises a search for primary and secondary infective foci. Whether18FDG-PET/CT or WBC-SPECT/CT is superior in detection of clinically relevant extra-cardiac manifestations in IE is unexplored. The objectives of this study were to identify...

  20. Positron emission tomography in oncology. Council on Scientific Affairs

    International Nuclear Information System (INIS)

    Anon.

    1988-01-01

    This report describes the current and potential uses of positron emission tomography in clinical medicine and research related to oncology. Assessment will be possible of metabolism and physiology of tumors and their effects on adjacent tissues. Specific probes are likely to be developed for target sites on tumors, including monoclonal antibodies and specific growth factors that recognize tumors. To date, most oncological applications of positron emission tomography tracers have been qualitative; in the future, quantitative metabolic measurements should aid in the evaluation of tumor biology and response to treatment. 41 references

  1. Measurement of absolute bone blood flow by positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Nahmias, C.; Cockshott, W.P.; Garnett, E.S.; Belbeck, L.W.

    1986-03-01

    A method of measuring bone blood flow has been developed using /sup 18/F sodium fluoride and positron emission tomography. The blood flow levels are in line with those obtained experimentally from microsphere embolisation. This investigative method could be applied to elucidate a number of clinical questions involving bone perfusion.

  2. Amyloid-β positron emission tomography imaging probes

    DEFF Research Database (Denmark)

    Kepe, Vladimir; Moghbel, Mateen C; Långström, Bengt

    2013-01-01

    , a number of factors appear to preclude these probes from clinical utilization. As the available "amyloid specific" positron emission tomography imaging probes have failed to demonstrate diagnostic value and have shown limited utility for monitoring therapeutic interventions in humans, a debate...

  3. Diagnosis of dementia with single photon emission computed tomography

    International Nuclear Information System (INIS)

    Jagust, W.J.; Budinger, T.F.; Reed, B.R.

    1987-01-01

    Single photon emission computed tomography is a practical modality for the study of physiologic cerebral activity in vivo. We utilized single photon emission computed tomography and N-isopropyl-p-iodoamphetamine iodine 123 to evaluate regional cerebral blood flow in nine patients with Alzheimer's disease (AD), five healthy elderly control subjects, and two patients with multi-infarct dementia. We found that all subjects with AD demonstrated flow deficits in temporoparietal cortex bilaterally, and that the ratio of activity in bilateral temporoparietal cortex to activity in the whole slice allowed the differentiation of all patients with AD from both the controls and from the patients with multi-infarct dementia. Furthermore, this ratio showed a strong correlation with disease severity in the AD group. Single photon emission computed tomography appears to be useful in the differential diagnosis of dementia and reflects clinical features of the disease

  4. Measuring techniques in emission computed tomography

    International Nuclear Information System (INIS)

    Jordan, K.; Knoop, B.

    1988-01-01

    The chapter reviews the historical development of the emission computed tomography and its basic principles, proceeds to SPECT and PET, special techniques of emission tomography, and concludes with a comprehensive discussion of the mathematical fundamentals of the reconstruction and the quantitative activity determination in vivo, dealing with radon transformation and the projection slice theorem, methods of image reconstruction such as analytical and algebraic methods, limiting conditions in real systems such as limited number of measured data, noise enhancement, absorption, stray radiation, and random coincidence. (orig./HP) With 111 figs., 6 tabs [de

  5. Positron emission tomography studies of brain receptors

    International Nuclear Information System (INIS)

    Maziere, B.; Maziere, M.

    1991-01-01

    Probing the regional distribution and affinity of receptors in the brain, in vivo, in human and non human primates has become possible with the use of selective ligands labelled with positron emitting radionuclides and positron emission tomography (PET). After describing the techniques used in positron emission tomography to characterize a ligand receptor binding and discussing the choice of the label and the limitations and complexities of the in vivo approach, the results obtained in the PET studies of various neurotransmission systems: dopaminergic, opiate, benzodiazepine, serotonin and cholinergic systems are reviewed

  6. Positron emission tomography imaging of gene expression

    International Nuclear Information System (INIS)

    Tang Ganghua

    2001-01-01

    The merging of molecular biology and nuclear medicine is developed into molecular nuclear medicine. Positron emission tomography (PET) of gene expression in molecular nuclear medicine has become an attractive area. Positron emission tomography imaging gene expression includes the antisense PET imaging and the reporter gene PET imaging. It is likely that the antisense PET imaging will lag behind the reporter gene PET imaging because of the numerous issues that have not yet to be resolved with this approach. The reporter gene PET imaging has wide application into animal experimental research and human applications of this approach will likely be reported soon

  7. Partial Volume Effects correction in emission tomography

    International Nuclear Information System (INIS)

    Le Pogam, Adrien

    2010-01-01

    Partial Volume Effects (PVE) designates the blur commonly found in nuclear medicine images and this PhD work is dedicated to their correction with the objectives of qualitative and quantitative improvement of such images. PVE arise from the limited spatial resolution of functional imaging with either Positron Emission Tomography (PET) or Single Photon Emission Computed Tomography (SPECT). They can be defined as a signal loss in tissues of size similar to the Full Width at Half Maximum (FWHM) of the PSF of the imaging device. In addition, PVE induce activity cross contamination between adjacent structures with different tracer uptakes. This can lead to under or over estimation of the real activity of such analyzed regions. Various methodologies currently exist to compensate or even correct for PVE and they may be classified depending on their place in the processing chain: either before, during or after the image reconstruction process, as well as their dependency on co-registered anatomical images with higher spatial resolution, for instance Computed Tomography (CT) or Magnetic Resonance Imaging (MRI). The voxel-based and post-reconstruction approach was chosen for this work to avoid regions of interest definition and dependency on proprietary reconstruction developed by each manufacturer, in order to improve the PVE correction. Two different contributions were carried out in this work: the first one is based on a multi-resolution methodology in the wavelet domain using the higher resolution details of a co-registered anatomical image associated to the functional dataset to correct. The second one is the improvement of iterative deconvolution based methodologies by using tools such as directional wavelets and curvelets extensions. These various developed approaches were applied and validated using synthetic, simulated and clinical images, for instance with neurology and oncology applications in mind. Finally, as currently available PET/CT scanners incorporate more

  8. Cerebral blood flow measurement in patients with impaired consciousness: usefulness of {sup 99m}Tc-HMPAO single-photon emission tomography in clinical practice

    Energy Technology Data Exchange (ETDEWEB)

    Chang Chia-Cheng; Kuwana, Nobumasa; Noji, Masato; Tanabe, Yutaka; Koike, Y. [Department of Neurosurgery, Yokohama Minami Kyosai Hospital, Yokohama (Japan); Ikegami, Tadashi [Department of Radiology, Yokohama Minami Kyosai Hospital, Yokohama (Japan)

    1998-09-01

    The relationship between impairment of consciousness and quantitative cerebral blood flow (CBF) was investigated. The mean CBF of the whole brain was measured by the Patlak-plot method using technetium-99m hexamethylpropylene amine oxime single-photon emission tomography ({sup 99m}Tc-HMPAO SPET) in patients with the following diseases: cerebral infarction, intraparenchymal haemorrhage, subarachnoid haemorrhage, brain tumour and cerebral contusion. The clinical symptoms were evaluated according to the severity of impaired consciousness, aphasia and dementia. Four hundred and eighty-five CBF measurements were performed. Patients with alert consciousness showed an age-related decline in mean CBF. Patients with aphasia showed a significant reduction in mean CBF compared with those without aphasia. Impaired consciousness was proportional to reduction in mean CBF regardless of types of pathology, and the size of lesion did not influence the mean CBF. Patients with dementia showed a significant reduction in mean CBF proportional to the severity of dementia. The quantitative measurement of CBF using {sup 99m}Tc-HMPAO SPET is reliable in clinical evaluations. (orig.) With 3 tabs., 10 refs.

  9. Cerebral blood flow measurement in patients with impaired consciousness: usefulness of 99mTc-HMPAO single-photon emission tomography in clinical practice

    International Nuclear Information System (INIS)

    Chang Chia-Cheng; Kuwana, Nobumasa; Noji, Masato; Tanabe, Yutaka; Koike, Y.; Ikegami, Tadashi

    1998-01-01

    The relationship between impairment of consciousness and quantitative cerebral blood flow (CBF) was investigated. The mean CBF of the whole brain was measured by the Patlak-plot method using technetium-99m hexamethylpropylene amine oxime single-photon emission tomography ( 99m Tc-HMPAO SPET) in patients with the following diseases: cerebral infarction, intraparenchymal haemorrhage, subarachnoid haemorrhage, brain tumour and cerebral contusion. The clinical symptoms were evaluated according to the severity of impaired consciousness, aphasia and dementia. Four hundred and eighty-five CBF measurements were performed. Patients with alert consciousness showed an age-related decline in mean CBF. Patients with aphasia showed a significant reduction in mean CBF compared with those without aphasia. Impaired consciousness was proportional to reduction in mean CBF regardless of types of pathology, and the size of lesion did not influence the mean CBF. Patients with dementia showed a significant reduction in mean CBF proportional to the severity of dementia. The quantitative measurement of CBF using 99m Tc-HMPAO SPET is reliable in clinical evaluations. (orig.)

  10. Initial clinical experiences with dopamine D2 receptor imaging by means of 2'-iodospiperone and single-photon emission computed tomography

    International Nuclear Information System (INIS)

    Yonekura, Yoshiharu; Saji, Hideo; Iwasaki, Yasushi

    1995-01-01

    Dopamine D 2 receptor imaging was performed with 123 I labeled 2'-iodospiperone (2'-ISP) and single-photon emission computed tomography (SPECT) in 9 patients: 4 with idiopathic Parkinson's disease, 2 with parkinsonism, 1 with Wilson's disease and 2 with pituitary tumor, and the results were compared with the data for 9 normal subjects. Following an intravenous injection of 123 I-2'-ISP, early (within 30 min) and late (between 2 and 4 hr) SPECT images were obtained by means of a multi-detector SPECT scanner or a rotating gamma camera. In normal subjects, early SPECT images demonstrated uniform distribution of radioactivity in the cerebral gray matter and cerebellum reflecting regional cerebral blood flow, whereas late SPECT images showed high radioactivity only in the basal ganglia. All the patients with Parkinson's disease also demonstrated symmetrical basal ganglia uptake in the late SPECT images, but it was diminished in parkinsonism and Wilson's disease. One patient with a growth hormone-producing pituitary tumor had a positive uptake in the tumor. These preliminary clinical data demonstrated that 2'-ISP can be used for SPECT imaging of D 2 dopamine receptors and may be of clinical value for the diagnosis and planning of the treatment of neurological diseases. (author)

  11. Initial clinical experiences with dopamine D{sub 2} receptor imaging by means of 2`-iodospiperone and single-photon emission computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Yonekura, Yoshiharu [Fukui Medical Schoool, Matsuoka (Japan). Biomedical Imaging Research Center; Saji, Hideo; Iwasaki, Yasushi [and others

    1995-08-01

    Dopamine D{sub 2} receptor imaging was performed with {sup 123}I labeled 2`-iodospiperone (2`-ISP) and single-photon emission computed tomography (SPECT) in 9 patients: 4 with idiopathic Parkinson`s disease, 2 with parkinsonism, 1 with Wilson`s disease and 2 with pituitary tumor, and the results were compared with the data for 9 normal subjects. Following an intravenous injection of {sup 123}I-2`-ISP, early (within 30 min) and late (between 2 and 4 hr) SPECT images were obtained by means of a multi-detector SPECT scanner or a rotating gamma camera. In normal subjects, early SPECT images demonstrated uniform distribution of radioactivity in the cerebral gray matter and cerebellum reflecting regional cerebral blood flow, whereas late SPECT images showed high radioactivity only in the basal ganglia. All the patients with Parkinson`s disease also demonstrated symmetrical basal ganglia uptake in the late SPECT images, but it was diminished in parkinsonism and Wilson`s disease. One patient with a growth hormone-producing pituitary tumor had a positive uptake in the tumor. These preliminary clinical data demonstrated that 2`-ISP can be used for SPECT imaging of D{sub 2} dopamine receptors and may be of clinical value for the diagnosis and planning of the treatment of neurological diseases. (author).

  12. Positron emission tomography/computed tomography surveillance in patients with Hodgkin lymphoma in first remission has a low positive predictive value and high costs.

    Science.gov (United States)

    El-Galaly, Tarec Christoffer; Mylam, Karen Juul; Brown, Peter; Specht, Lena; Christiansen, Ilse; Munksgaard, Lars; Johnsen, Hans Erik; Loft, Annika; Bukh, Anne; Iyer, Victor; Nielsen, Anne Lerberg; Hutchings, Martin

    2012-06-01

    The value of performing post-therapy routine surveillance imaging in patients with Hodgkin lymphoma is controversial. This study evaluates the utility of positron emission tomography/computed tomography using 2-[18F]fluoro-2-deoxyglucose for this purpose and in situations with suspected lymphoma relapse. We conducted a multicenter retrospective study. Patients with newly diagnosed Hodgkin lymphoma achieving at least a partial remission on first-line therapy were eligible if they received positron emission tomography/computed tomography surveillance during follow-up. Two types of imaging surveillance were analyzed: "routine" when patients showed no signs of relapse at referral to positron emission tomography/computed tomography, and "clinically indicated" when recurrence was suspected. A total of 211 routine and 88 clinically indicated positron emission tomography/computed tomography studies were performed in 161 patients. In ten of 22 patients with recurrence of Hodgkin lymphoma, routine imaging surveillance was the primary tool for the diagnosis of the relapse. Extranodal disease, interim positron emission tomography-positive lesions and positron emission tomography activity at response evaluation were all associated with a positron emission tomography/computed tomography-diagnosed preclinical relapse. The true positive rates of routine and clinically indicated imaging were 5% and 13%, respectively (P = 0.02). The overall positive predictive value and negative predictive value of positron emission tomography/computed tomography were 28% and 100%, respectively. The estimated cost per routine imaging diagnosed relapse was US$ 50,778. Negative positron emission tomography/computed tomography reliably rules out a relapse. The high false positive rate is, however, an important limitation and a confirmatory biopsy is mandatory for the diagnosis of a relapse. With no proven survival benefit for patients with a pre-clinically diagnosed relapse, the high costs and low

  13. Clinical multiphoton FLIM tomography

    Science.gov (United States)

    König, Karsten

    2012-03-01

    This paper gives an overview on current clinical high resolution multiphoton fluorescence lifetime imaging in volunteers and patients. Fluorescence lifetime imaging (FLIM) in Life Sciences was introduced in Jena/Germany in 1988/89 based on a ZEISS confocal picosecond dye laser scanning microscope equipped with a single photon counting unit. The porphyrin distribution in living cells and living tumor-bearing mice was studied with high spatial, temporal, and spectral resolution. Ten years later, time-gated cameras were employed to detect dental caries in volunteers based on one-photon excitation of autofluorescent bacteria with long fluorescence lifetimes. Nowadays, one-photon FLIM based on picosecond VIS laser diodes are used to study ocular diseases in humans. Already one decade ago, first clinical twophoton FLIM images in humans were taken with the certified clinical multiphoton femtosecond laser tomograph DermaInspectTM. Multiphoton tomographs with FLIM modules are now operating in hospitals at Brisbane, Tokyo, Berlin, Paris, London, Modena and other European cities. Multiple FLIM detectors allow spectral FLIM with a temporal resolution down to 20 ps (MCP) / 250 ps (PMT) and a spectral resolution of 10 nm. Major FLIM applications include the detection of intradermal sunscreen and tattoo nanoparticles, the detection of different melanin types, the early diagnosis of dermatitis and malignant melanoma, as well as the measurement of therapeutic effects in pateints suffering from dermatitis. So far, more than 1,000 patients and volunteers have been investigated with the clinical multiphoton FLIM tomographs DermaInspectTM and MPTflexTM.

  14. Functional cardiac imaging: positron emission tomography

    International Nuclear Information System (INIS)

    Mullani, N.A.; Gould, K.L.

    1984-01-01

    Dynamic cardiovascular imaging plays a vital role in the diagnosis and treatment of cardiac disease by providing information about the function of the heart. During the past 30 years, cardiovascular imaging has evolved from the simple chest x-ray and fluoroscopy to such sophisticated techniques as invasive cardiac angiography and cinearteriography and, more recently, to noninvasive cardiac CT scanning, nuclear magnetic resonance, and positron emission tomography, which reflect more complex physiologic functions. As research tools, CT, NMR, and PET provide quantitative information on global as well as regional ventricular function, coronary artery stenosis, myocardial perfusion, glucose and fatty acid metabolism, or oxygen utilization, with little discomfort or risk to the patient. As imaging modalities become more sophisticated and more oriented toward clinical application, the prospect of routinely obtaining such functional information about the heart is becoming realistic. However, these advances are double-edged in that the interpretation of functional data is more complex than that of the anatomic imaging familiar to most physicians. They will require an enhanced understanding of the physiologic and biochemical processes, as well as of the instrumentation and techniques for analyzing the data. Of the new imaging modalities that provide functional information about the heart, PET is the most useful because it quantitates the regional distribution of radionuclides in vivo. Clinical applications, interpretation of data, and the impact of PET on our understanding of cardiac pathophysiology are discussed. 5 figures

  15. Positron emission tomography of the heart

    International Nuclear Information System (INIS)

    Budinger, T.F.; Yano, Y.; Moyer, B.R.; Mathis, C.A.; Ganz, E.; Huesman, R.H.; Derenzo, S.E.

    1982-01-01

    Positron emission tomography (PET) of the heart can measure blood perfusion, metabolism of fatty acids, metabolism of sugars, uptake of amino acids and can quantitate infarction volume. The principles which are basic to PET instrumentation and procedures for quantitative studies of the heart muscle with examples of measurements of myocardial flow and metabolism, are reviewed

  16. Positron emission tomography of the heart

    International Nuclear Information System (INIS)

    Budinger, T.F.; Yano, Y.; Huesman, R.H.; Derenzo, S.E.; Moyer, B.R.; Mathis, C.A.; Ganz, E.; Knittel, B.

    1983-01-01

    Positron emission tomography (PET) of the heart can measure blood perfusion, metabolism of fatty acids, metabolism of sugars, uptake of amino acids and can quantitate infarction volume. The principles are reviewed which are basic to PET instrumentation and procedures for quantitative studies of human physiology with examples of measurements of myocardial flow and metabolism

  17. Positron emission tomography in malignant haematological disease

    NARCIS (Netherlands)

    Schot, Bartholomeus Wilhelmus

    2007-01-01

    Positron emission tomography (PET) is a diagnostic technique with a promising role especially in the haemato-oncology. Although its use in the management ; of malignant lymphoma seems to be established already, much about the true potential and drawbacks of FDG-PET in this disease are still unknown.

  18. Positron emission tomography applied to fluidization engineering

    NARCIS (Netherlands)

    Dechsiri, C; Ghione, A; van de Wiel, F; Dehling, HG; Paans, AMJ; Hoffmann, AC

    The movement of particles in a laboratory fluidized bed has been studied using Positron Emission Tomography (PET). With this non-invasive technique both pulses of various shapes and single tracer particles were followed in 3-D. The equipment and materials used made it possible to label actual bed

  19. Advanced Instrumentation for Positron Emission Tomography [PET

    Science.gov (United States)

    Derenzo, S. E.; Budinger, T. F.

    1985-04-01

    This paper summarizes the physical processes and medical science goals that underlay modern instrumentation design for Positron Emission Tomography. The paper discusses design factors such as detector material, crystalphototube coupling, shielding geometry, sampling motion, electronics design, time-of-flight, and the interrelationships with quantitative accuracy, spatial resolution, temporal resolution, maximum data rates, and cost.

  20. single photon emission tomography and positron emission tomography - Part 1 (October 2012), Part 2 (October 2010)

    International Nuclear Information System (INIS)

    Buvat, Irene

    2010-10-01

    The objective of this lecture is to present the single photon emission computed tomography (SPECT) and the positron emission tomography (PET) imaging techniques. Part 1 Content: 1 - Introduction: anatomic, functional and molecular imaging; 2 - Radiotracers: chemical and physical constraints, gamma photon emitters, positon emitters, radioisotopes production, emitters type and imaging techniques; 3 - Gamma cameras; 4 - Quantification in emission tomography: attenuation, scattering, un-stationary spatial resolution; 5 - Synthesis and conclusion. Part 2 content: 1 - Positon emitters; 2 - Positons detection: Coincidence detection (electronic collimation, PET detectors with gamma cameras, dedicated PET detectors, spectrometry); PET detectors type; time-of-flight PET; 2D PET; 3D PET; 3 - Quantification in emission tomography: detected events, attenuation, scattering, fortuitous coincidences, standardisation; 4 - Common SPECT and PET problems: partial volume effect, movement, tomographic reconstruction, calibration, dead time; 5 - Synthesis and conclusion

  1. Application of positron emission tomography in the heart

    International Nuclear Information System (INIS)

    Anon.

    1988-01-01

    This report discusses experimental and clinical applications of positron emission tomography to the heart, including measurements of blood flow to the myocardium and studies of metabolism and experimental injury. Most initial clinical studies have concentrated on ischemic heart disease, but the technique also has potential for investigation of cardiomyopathies, studying the neural control of the heart, and evaluating the effects of drugs on cardiac tissues

  2. Cardiac blood pool emission tomography

    International Nuclear Information System (INIS)

    Itti, R.; Philippe, L.; Lorgeron, J.M.; Charbonnier, B.; Raynaud, P.; Brochier, M.

    1983-01-01

    After blood pool labeling using technetium-99m, a series of cardiac pictures is acquired during the rotation of a gamma-camera about the patient. Computer processing leads to reconstruction of various tomographic slices from the original planar projection. Electrocardiographic gating selects the different phases of the cardiac cycle. Individual slices through the left ventricular region are added in order to provide ''thick'' slices on which global and regional parameters of the left ventricular function can be determined. Due to the proportionality existing between count rates and labeled blood volumes, any geometrical model can be avoided. The delineation of regions of interest for count integration is made easier due to the absence of superimposition of structures; no correction for background is necessary. Tomography thus appears to be more consistent and more accurate than the classical methods using planar projections. In addition, right ventricular morphological and kinetic studies can be performed in the same conditions as for the left ventricle [fr

  3. The efficacy of preoperative positron emission tomography-computed tomography (PET-CT) for detection of lymph node metastasis in cervical and endometrial cancer: clinical and pathological factors influencing it.

    Science.gov (United States)

    Nogami, Yuya; Banno, Kouji; Irie, Haruko; Iida, Miho; Kisu, Iori; Masugi, Yohei; Tanaka, Kyoko; Tominaga, Eiichiro; Okuda, Shigeo; Murakami, Koji; Aoki, Daisuke

    2015-01-01

    We studied the diagnostic performance of (18)F-fluoro-2-deoxy-d-glucose-positron emission tomography/computed tomography in cervical and endometrial cancers with particular focus on lymph node metastases. Seventy patients with cervical cancer and 53 with endometrial cancer were imaged with (18)F-fluoro-2-deoxy-D-glucose-positron emission tomography/computed tomography before lymphadenectomy. We evaluated the diagnostic performance of (18)F-fluoro-2-deoxy-D-glucose-positron emission tomography/computed tomography using the final pathological diagnoses as the golden standard. We calculated the sensitivity, specificity, positive predictive value and negative predictive value of (18)F-fluoro-2-deoxy-D-glucose-positron emission tomography/computed tomography. In cervical cancer, the results evaluated by cases were 33.3, 92.7, 55.6 and 83.6%, respectively. When evaluated by the area of lymph nodes, the results were 30.6, 98.9, 55.0 and 97.0%, respectively. As for endometrial cancer, the results evaluated by cases were 50.0, 93.9, 40.0 and 95.8%, and by area of lymph nodes, 45.0, 99.4, 64.3 and 98.5%, respectively. The limitation of the efficacy was found out by analyzing it by the region of the lymph node, the size of metastatic node, the historical type of tumor in cervical cancer and the prevalence of lymph node metastasis. The efficacy of positron emission tomography/computed tomography regarding the detection of lymph node metastasis in cervical and endometrial cancer is not established and has limitations associated with the region of the lymph node, the size of metastasis lesion in lymph node and the pathological type of primary tumor. The indication for the imaging and the interpretation of the results requires consideration for each case by the pretest probability based on the information obtained preoperatively. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. 21 CFR 892.1200 - Emission computed tomography system.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Emission computed tomography system. 892.1200... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1200 Emission computed tomography system. (a) Identification. An emission computed tomography system is a device intended to detect the...

  5. Fluorodeoxyglucose-positron emission tomography/computed tomography imaging features of colloid adenocarcinoma of the lung: a case report.

    Science.gov (United States)

    Wang, ZhenGuang; Yu, MingMing; Chen, YueHua; Kong, Yan

    2017-07-27

    Colloid adenocarcinoma of the lung is a rare subtype of variants of invasive adenocarcinomas. We report the appearance of this unusual entity on 18 F-fluorodeoxyglucose positron emission tomography/computed tomography. A 60-year-old man of Chinese Han nationality coughed with a little white sputum for 1 month. Chest computed tomography showed multiple bilateral subpleural nodules and plaques accompanied by air bronchograms, which were most concentrated in the lower lobe of his right lung. Positron emission tomography indicated increased radioactivity uptake with a maximum standardized uptake value of 3.5. Positron emission tomography/computed tomography showed a soft tissue density lesion in his left adrenal gland with a maximum standardized uptake value of 4.1. The positron emission tomography/computed tomography appearance suggested a primary colloid adenocarcinoma in the lower lobe of his right lung accompanied by intrapulmonary and left adrenal gland metastases. The diagnostic rate of colloid adenocarcinoma can be increased by combining the anatomic and metabolic information of lesions. The advantage of positron emission tomography/computed tomography in the diagnosis of colloid adenocarcinoma, as with other cancers, is the ability to locate extrapulmonary disease, facilitating clinical staging.

  6. Clinical Value of Coincidence Detection Emission Tomography Using Fluoine-18-2-Fluoro-2-Deoxy-D-Glucose in the Diagnosis of Solitary Pulmonary Nodules: Correlation with Computed Tomography Findings

    International Nuclear Information System (INIS)

    Najjar, F.; Moretti, J.

    2007-01-01

    Solitary Pulmonary Nodules (size 40 mm) is the most frequent indication of coincidence detection emission tomography (CDET) with fluorine-18 fluoro-2-deoxy-D-glucose (18FDG). The aim of the present study was to establish the efficacy of this system with and without attenuation correction (AC) in correlation with computed tomography (CT) findings for the distinction between benign and malignant pulmonary nodules. Material and methods: Sixty-eight patients were included in this study. All patients presented with suspected pulmonary nodules on thoracic CT. In addition, they had CDET scan using a dual-head coincidence gamma-camera with and without measured attenuation using caesium- 137 source. Corrected images were independently interpreted from non-attenuation corrected images in a blinded manner of any clinical data. 18FDG-CDET findings were evaluated by histology when it was available. Otherwise, the final clinical outcome has been considered in data analysis. Results: A total of 71 suspected nodules were observed by CT. Malignant pulmonary disease was found in 38 of these nodules whereas 33 pulmonary nodules were proved to be benign. In addition, one malignant nodule was confirmed with negative CT findings. 18FDG-CDET imaging without AC demonstrated 48 suspected pulmonary lesions included 4 nodules with negative CT findings (sensitivity, 92%; specificity, 68.4%) Versus 43 lesions identified with AC (sensitivity, 92%; specificity, 81.5%). All of the malignant nodules >20 mm in diameter by 18FDG-CDET. In 5 patients (8% of cases), uncorrected images were spotting benign nodules which were considered as negative on corrected images. So lower specificity rate was obtained by non AC mode in comparison with AC mode (68.4% versus 81.5% respectively). Both modalities techniques failed to detect malignancy in 3 patients. In general, the diagnostic accuracy of 18FDG-CDET without AC was relatively comparable to that found with AC (82.6% to 87%, respectively).

  7. Metabolic and clinical assessment of efficacy of cryoablation therapy on skeletal masses by 18F-FDG positron emission tomography/computed tomography (PET/CT) and visual analogue scale (VAS): initial experience

    International Nuclear Information System (INIS)

    Masala, Salvatore; Bartolucci, Alberto D.; Mammucari, Matteo; Simonetti, Giovanni; Schillaci, Orazio; Calabria, Ferdinando

    2011-01-01

    Various therapy modalities have been proposed as standard treatments in management of bone metastases. Radiation therapy remains the standard of care for patients with localized bone pain, but up to 30% of them do not experience notable pain relief. Percutaneous cryoablation is a minimally invasive technique that induces necrosis by alternately freezing and thawing a target tissue. This technique is successfully used to treat a variety of malignant and benign diseases in different sites. 18 F-FDG positron emission tomography/computed tomography ( 18 F-FDG PET/CT) is a single technique of imaging that provides in a ''single step'' both morphological and metabolic features of neoplastic lesions of the bone. The aim of this study was to evaluate the efficacy of the cryosurgical technique on secondary musculoskeletal masses according to semi-quantitative PET analysis and clinical-test evaluation with the visual analogue scale (VAS). We enrolled 20 patients with painful bone lesions (score pain that exceeded 4 on the VAS) that were non-responsive to treatment; one lesion per patient was treated. All patients underwent a PET-CT evaluation before and 8 weeks after cryotherapy; maximum standardized uptake value (SUV max ) was measured before and after treatment for metabolic assessment of response to therapy. After treatment, 18 patients (90%) showed considerable reduction in SUV max value (>50%) suggestive of response to treatment; only 2 patients did not show meaningful reduction in metabolic activity. Our preliminary study demonstrates that quantitative analysis provided by PET correlates with response to cryoablation therapy as assessed by CT data and clinical VAS evaluation. (orig.)

  8. Metabolic and clinical assessment of efficacy of cryoablation therapy on skeletal masses by {sup 18}F-FDG positron emission tomography/computed tomography (PET/CT) and visual analogue scale (VAS): initial experience

    Energy Technology Data Exchange (ETDEWEB)

    Masala, Salvatore; Bartolucci, Alberto D.; Mammucari, Matteo; Simonetti, Giovanni [University Hospital Tor Vergata, Department of Diagnostic and Molecular Imaging, Interventional Radiology and Radiotherapy, Rome (Italy); Schillaci, Orazio; Calabria, Ferdinando [University Hospital Tor Vergata, Department of Diagnostic and Molecular Imaging, Interventional Radiology and Radiotherapy, Rome (Italy); I.R.C.C.S. Neuromed, Department of Nuclear Medicine and Neuroradiology, Pozzilli (Italy); Policlinico Tor Vegata, Department of Diagnostic and Molecular Imaging, Interventional Radiology and Radiotherapy, Rome (Italy)

    2011-02-15

    Various therapy modalities have been proposed as standard treatments in management of bone metastases. Radiation therapy remains the standard of care for patients with localized bone pain, but up to 30% of them do not experience notable pain relief. Percutaneous cryoablation is a minimally invasive technique that induces necrosis by alternately freezing and thawing a target tissue. This technique is successfully used to treat a variety of malignant and benign diseases in different sites. {sup 18}F-FDG positron emission tomography/computed tomography ({sup 18}F-FDG PET/CT) is a single technique of imaging that provides in a ''single step'' both morphological and metabolic features of neoplastic lesions of the bone. The aim of this study was to evaluate the efficacy of the cryosurgical technique on secondary musculoskeletal masses according to semi-quantitative PET analysis and clinical-test evaluation with the visual analogue scale (VAS). We enrolled 20 patients with painful bone lesions (score pain that exceeded 4 on the VAS) that were non-responsive to treatment; one lesion per patient was treated. All patients underwent a PET-CT evaluation before and 8 weeks after cryotherapy; maximum standardized uptake value (SUV{sub max}) was measured before and after treatment for metabolic assessment of response to therapy. After treatment, 18 patients (90%) showed considerable reduction in SUV{sub max} value (>50%) suggestive of response to treatment; only 2 patients did not show meaningful reduction in metabolic activity. Our preliminary study demonstrates that quantitative analysis provided by PET correlates with response to cryoablation therapy as assessed by CT data and clinical VAS evaluation. (orig.)

  9. Positron emission tomography of malignant tumours at head and neck. Evaluation of the diagnostic value of positron emission tomography by comparison with computed tomography

    International Nuclear Information System (INIS)

    Kettler, Nele

    2011-01-01

    Imaging methods for early, accurate diagnosis and aftercare of malignant growths is currently one of the most important research topics. The objective of this thesis is to evaluate the diagnostic value of FDG-positron emission tomography by comparison with computed tomography for patients with squamous cell carcinoma, malignant melanoma or sarcoma at head and neck. Measurement criteria are sensitivity and specificity. A retrospective evaluation of 100 examinations on 85 patients of University clinic Aachen was performed. The examination reports were supported by reports from histology, positron emission tomography and computed tomography. In each case, the histological results were assumed to provide a reliable benchmark. Sensitivity and specificity for the primary tumour site, metastatic lymphatic nodes and defined anatomic structures were compared across all patients. Comparisons were also performed on sub groups separated by gender, cancer type and the time and frequency at which tumours arose. The statistic analysis was done with MedCalc. Results: The results for sensitivity and specificity of the primary tumour site were 86.42% and 42.86%, and 64.71% and 66.07%, for positron emission tomography and computed tomography respectively. The results for the lymphatic nodes were 51.52% and 92.86% and 64.71% and 66.07%. When the constituent anatomic structures were evaluated separately, the specificity was significantly higher. The separation by gender showed no difference. Because the classification by tumor type resulted in samples that were of varying size, a comparison was difficult. For the diagnosis of primary tumours, the examination with positron emission tomography was superior, whereas computed tomography proved more effective for the diagnosis of recurrent tumours. For the diagnosis of the main tumour site, both methods were shown to be equally suitable. For the assessment of lymphatic nodes, positron emission tomography was superior to computed tomography

  10. Heterogeneity of Monosymptomatic Resting Tremor in a Prospective Study: Clinical Features, Electrophysiological Test, and Dopamine Transporter Positron Emission Tomography

    Directory of Open Access Journals (Sweden)

    Hua-Guang Zheng

    2015-01-01

    Conclusions: mRT is heterogeneous in presynaptic nigrostriatal dopaminergic degeneration, which can be determined by DAT-PET brain imaging. Clinical and electrophysiological features may provide clues to distinguish PD from SWEDDs.

  11. Assessment of the scatter correction procedures in single photon emission computed tomography imaging using simulation and clinical study

    Directory of Open Access Journals (Sweden)

    Mehravar Rafati

    2017-01-01

    Conclusion: The simulation and the clinical studies showed that the new approach could be better performance than DEW, TEW methods, according to values of the contrast, and the SNR for scatter correction.

  12. The Positron Emission Tomography. A diagnostic technique

    International Nuclear Information System (INIS)

    Salvadori, P.

    2001-01-01

    Positron Emission Tomography (PET) is a new imaging modality, which is able to assess non-invasively the biochemical mechanisms, underlying physiological and pathophysiological processes in vivo in humans. The technique relies on the administration of radioactive tracers labeled with short-lived positron emitters, which need to be produced on site via a particle accelerator (cyclotron). Radionuclides are produced upon request and formulated into biologically active organic molecules having precise pharmacokinetics and specificity. The radiotracer can be detected by the PET scanner and represented as tomographic sections (images of body sections) showing its regional distribution and concentration. This makes it possible to address clinical questions concerning occurrence and evolution of many diseases as well as their response to therapy. The ability to image (measure) biological processes and not only anatomy enables PET to explore diseases in the very early stage, including those diseases which are not related to modifications of organ structure (e.g. psychiatric diseases, metabolic disorders, biochemical disfunction). PET plays a major role, in conjunction with the other imaging modalities, to improve diagnosis capabilities and disease mechanism understanding [it

  13. Positron emission tomography (PET) in psychiatry

    International Nuclear Information System (INIS)

    Buchsbaum, M.S.

    1984-01-01

    In the past the approach to the brain has been necessarily indirect, employing peripheral fluids to assess central and regional neurochemical processes. Blood, urine, skin and muscle biopsy, and cerebrospinal fluid are valuable reflectors of the neurochemical and neuropharmacological activity of the brain, but are removed in time and place from disordered thought processes and diluted by the products of both functional and dysfunctional brain systems. Biopsy studies have helped in studying the functional disorders of organs like the liver, but they are destructive to the brain and less useful because unlike these organs, the brain has a regional variation in its chemistry. The experimental insights from animal studies focusing on the pharmacology of individual cell groups - in striatum or locus coeruleus, for example - cannot easily or unambigiously be applied to clinical populations. Positron emission tomography (PET) is a versatile approach utilizing the mathematics of x-ray transmission scanning (CT scanning) to produce slice images of radioisotope distribution. PET makes possible a wide range of metabolic studies. Positron emitters such as carbon-11 or fluorine-18 can be used to label glucose, amino acids, drugs, neurotransmitter precursors, and many other molecules and examine their distribution and fate in discrete cell groups

  14. 11C-acetate for positron emission tomography imaging of clinical stage IA lung adenocarcinoma. Comparison with 18F-fluorodeoxyglucose for imaging and evaluation of tumor aggressiveness

    International Nuclear Information System (INIS)

    Shibata, Hidekatsu; Nomori, Hiroaki; Uno, Kimiichi

    2009-01-01

    To determine the usefulness of positron emission tomography (PET) with 11 C-acetate (AC) for imaging lung adenocarcinoma and evaluating its tumor aggressiveness, AC- and 18 F-fluorodeoxyglucose (FDG)-PET were compared. One hundred and sixty-nine adenocarcinomas with clinical stage IA and 53 benign nodules were examined by both AC- and FDG-PET before surgery. The sensitivity and specificity for discriminating benign/adenocarcinoma were compared between AC- and FDG-PET. The AC and FDG uptakes were examined to determine the relationship with tumor aggressiveness, id est (i.e.), pathological tumor stage, lymphatic, vascular, or pleural involvement, and proliferative activity determined by Ki-67 staining score. While the sensitivity of AC-PET was significantly higher than FDG-PET for bronchioloalveolar carcinoma (BAC) and well-differentiated (W/D) adenocarcinoma (p<0.001 and 0.006, respectively), there was no significant difference for moderately or poorly differentiated adenocarcinoma. The specificity was not different between them. While FDG uptakes were significantly higher in tumors with pathological advanced stages or those with lymphatic, vascular and/or pleural involvements than in tumors with pathological stage IA or those without these tumor involvements (p=0.04 to p<0.001), AC uptake did not show significant differences between the respective sub-groups except according to the tumor stage. While both AC and FDG uptakes showed a significant correlation with Ki-67 staining scores (p=0.03 and p<0.001, respectively), the correlation coefficient of former was lower than that of latter (p=0.07). While AC-PET can image BAC and W/D adenocarcinoma with a higher sensitivity than FDG-PET, it cannot evaluate tumor aggressiveness of clinical stage IA lung adenocarcinoma as well as FDG-PET. (author)

  15. Emission computed tomography: methodology and applications

    International Nuclear Information System (INIS)

    Reivich, M.; Alavi, A.; Greenberg, J.; Fowler, J.; Christman, D.; Rosenquist, A.; Rintelmann, W.; Hand, P.; MacGregor, R.; Wolf, A.

    1980-01-01

    A technique for the determination of local cerebral glucose metabolism using positron emission computed tomography is described as an example of the development of use of this methodology for the study of these parameters in man. The method for the determination of local cerebral glucose metabolism utilizes 18 F-2-fluoro-2-deoxyglucose ([ 18 F]-FDG). In this method [ 18 F]-FDG is used as a tracer for the exchange of glucose between plasma and brain and its phosphorylation by hexokinase in the tissue. The labelled product of metabolism, [ 18 F]-FDG phosphate, is essentially trapped in the tissue over the time course of the measurement. The studies demonstrate the potential usefulness of emission computed tomography for the measurement of various biochemical and physiological parameters in man. (Auth.)

  16. Positron emission tomography tracers for imaging angiogenesis

    International Nuclear Information System (INIS)

    Haubner, Roland; Beer, Ambros J.; Wang, Hui; Chen, Xiaoyuan

    2010-01-01

    Position emission tomography imaging of angiogenesis may provide non-invasive insights into the corresponding molecular processes and may be applied for individualized treatment planning of antiangiogenic therapies. At the moment, most strategies are focusing on the development of radiolabelled proteins and antibody formats targeting VEGF and its receptor or the ED-B domain of a fibronectin isoform as well as radiolabelled matrix metalloproteinase inhibitors or α v β 3 integrin antagonists. Great efforts are being made to develop suitable tracers for different target structures. All of the major strategies focusing on the development of radiolabelled compounds for use with positron emission tomography are summarized in this review. However, because the most intensive work is concentrated on the development of radiolabelled RGD peptides for imaging α v β 3 expression, which has successfully made its way from bench to bedside, these developments are especially emphasized. (orig.)

  17. A wavelet phase filter for emission tomography

    International Nuclear Information System (INIS)

    Olsen, E.T.; Lin, B.

    1995-01-01

    The presence of a high level of noise is a characteristic in some tomographic imaging techniques such as positron emission tomography (PET). Wavelet methods can smooth out noise while preserving significant features of images. Mallat et al. proposed a wavelet based denoising scheme exploiting wavelet modulus maxima, but the scheme is sensitive to noise. In this study, the authors explore the properties of wavelet phase, with a focus on reconstruction of emission tomography images. Specifically, they show that the wavelet phase of regular Poisson noise under a Haar-type wavelet transform converges in distribution to a random variable uniformly distributed on [0, 2π). They then propose three wavelet-phase-based denoising schemes which exploit this property: edge tracking, local phase variance thresholding, and scale phase variation thresholding. Some numerical results are also presented. The numerical experiments indicate that wavelet phase techniques show promise for wavelet based denoising methods

  18. Positron emission tomography in movement disorders

    International Nuclear Information System (INIS)

    Martin, W.R.W.

    1985-01-01

    Positron emission tomography provides a method for the quantitation of regional function within the living human brain. Studies of cerebral metabolism and blood flow in patients with Huntington's disease, Parkinson's disease and focal dystonia have revealed functional abnormalities within substructures of the basal ganglia. Recent developments permit assessment of both pre-synaptic and post-synaptic function ion dopaminergic pathways. These techniques are now being applied to studies of movement disorders in human subjects

  19. Positron emission tomography in movement disorders

    Energy Technology Data Exchange (ETDEWEB)

    Martin, W R.W.

    1985-02-01

    Positron emission tomography provides a method for the quantitation of regional function within the living human brain. Studies of cerebral metabolism and blood flow in patients with Huntington's disease, Parkinson's disease and focal dystonia have revealed functional abnormalities within substructures of the basal ganglia. Recent developments permit assessment of both pre-synaptic and post-synaptic function in dopaminergic pathways. These techniques are now being applied to studies of movement disorders in human subjects.

  20. Positron emission tomography imaging--technical considerations

    International Nuclear Information System (INIS)

    Muehllehner, G.; Karp, J.S.

    1986-01-01

    Positron imaging instrumentation has improved rapidly in the last few years. Scanners currently under development are beginning to approach fundamental limits set by positron range and noncolinearity effects. This report reviews the latest developments in positron emission tomography (PET) instrumentation, emphasizing the development of coding schemes that reduce the complexity and cost of high-resolution scanners. The relative benefits of using time-of-flight (TOF) information is discussed as well. 68 references

  1. Positron emission tomography for neurologists.

    Science.gov (United States)

    Miletich, Robert S

    2009-02-01

    This short review focuses on practical, present day, clinical application of FDG PET, a technology available to practicing neurologists for managing their patients. Indications in the disease states of dementia, neuro-oncology, epilepsy, parkinsonism, and other less common settings are reviewed. Many third-party payers currently make reimbursements based on these indications. By measuring an aspect of brain function, PET provides information that often is unobtainable from other sources, thus facilitating more rationale and cost-effective management, which can only benefit the patient, the referring physician, and the health care system as a whole.

  2. Physics and instrumentation of emission computed tomography

    International Nuclear Information System (INIS)

    Links, J.M.

    1986-01-01

    Transverse emission computed tomography can be divided into two distinct classes: single photon emission computed tomography (SPECT) and positron emission tomography (PET). SPECT is usually accomplished with specially-adapted scintillation cameras, although dedicated SPECT scanners are available. The special SPECT cameras are standard cameras which are mounted on gantries that allow 360 degree rotation around the long axis of the head or body. The camera stops at a number of angles around the body (usually 64-128), acquiring a ''projection'' image at each stop. The data from these projections are used to reconstruct transverse images with a standard ''filtered back-projection'' algorithm, identical to that used in transmission CT. Because the scintillation camera acquires two-dimensional images, a simple 360 degree rotation around the patient results in the acquisition of data for a number of contiguous transverse slices. These slices, once reconstructed, can be ''stacked'' in computer memory, and orthogonal coronal and sagittal slices produced. Additionally, reorienting algorithms allow the generation of slices that are oblique to the long axis of the body

  3. Positron Emission Tomography: Principles, Technology, and Recent Developments

    Science.gov (United States)

    Ziegler, Sibylle I.

    2005-04-01

    Positron emission tomography (PET) is a nuclear medical imaging technique for quantitative measurement of physiologic parameters in vivo (an overview of principles and applications can be found in [P.E. Valk, et al., eds. Positron Emission Tomography. Basic Science and Clinical Practice. 2003, Springer: Heidelberg]), based on the detection of small amounts of posi-tron-emitter-labelled biologic molecules. Various radiotracers are available for neuro-logical, cardiological, and oncological applications in the clinic and in research proto-cols. This overview describes the basic principles, technology, and recent develop-ments in PET, followed by a section on the development of a tomograph with ava-lanche photodiodes dedicated for small animal imaging as an example of efforts in the domain of high resolution tomographs.

  4. 18F-Fluorodeoxyglucose Positron Emission Tomography for Primary Thyroid Cancer: Correlation with the Clinical, Pathologic and Sonographic Findings

    International Nuclear Information System (INIS)

    Kim, Kyung Eun; Kim, Eun Kyung; Moon, Hee Jung; Kwak, Jin Young

    2011-01-01

    We wanted to investigate the incidence and the clinicopathologic and sonographic characteristics of thyroid cancers that exhibit positive PET scans. From January 2007 to February 2008, 156 patients with thyroid cancer underwent both sonography and FDG-PET for the purpose of staging the cancer. We conducted a retrospective review of their clinical, radiologic and pathologic records and we evaluated the incidence of PET-positive thyroid cancer, as well as the associated clinicopathologic aggressiveness and the sonographic features. The incidence of PET-positive thyroid carcinoma was 78.2% (122/156). On univariate analysis, PET-positive thyroid cancer was significantly associated with tumor size, extracapsular invasion and central lymph node metastasis, but there was no association between the sonographic features of the thyroid cancer or the sonographic features of the 2 groups of tumor (1. probably benign and 2. suspicious for malignancy) and the FDG uptake. Multivariate logistic regression analysis showed a significant association between PET positivity and both extrathyroidal extension and a higher cancer stage (III/IV) (p < 0.05). The incidence of PET positive thyroid carcinoma is high (78.2%) and PET positivity is significantly associated with tumor size, extracapsular extension and a higher stage. However, there is no significant association between PET positivity and the sonographic features of thyroid carcinoma

  5. ROC [Receiver Operating Characteristics] study of maximum likelihood estimator human brain image reconstructions in PET [Positron Emission Tomography] clinical practice

    International Nuclear Information System (INIS)

    Llacer, J.; Veklerov, E.; Nolan, D.; Grafton, S.T.; Mazziotta, J.C.; Hawkins, R.A.; Hoh, C.K.; Hoffman, E.J.

    1990-10-01

    This paper will report on the progress to date in carrying out Receiver Operating Characteristics (ROC) studies comparing Maximum Likelihood Estimator (MLE) and Filtered Backprojection (FBP) reconstructions of normal and abnormal human brain PET data in a clinical setting. A previous statistical study of reconstructions of the Hoffman brain phantom with real data indicated that the pixel-to-pixel standard deviation in feasible MLE images is approximately proportional to the square root of the number of counts in a region, as opposed to a standard deviation which is high and largely independent of the number of counts in FBP. A preliminary ROC study carried out with 10 non-medical observers performing a relatively simple detectability task indicates that, for the majority of observers, lower standard deviation translates itself into a statistically significant detectability advantage in MLE reconstructions. The initial results of ongoing tests with four experienced neurologists/nuclear medicine physicians are presented. Normal cases of 18 F -- fluorodeoxyglucose (FDG) cerebral metabolism studies and abnormal cases in which a variety of lesions have been introduced into normal data sets have been evaluated. We report on the results of reading the reconstructions of 90 data sets, each corresponding to a single brain slice. It has become apparent that the design of the study based on reading single brain slices is too insensitive and we propose a variation based on reading three consecutive slices at a time, rating only the center slice. 9 refs., 2 figs., 1 tab

  6. Clinical impact of (11)C-Pittsburgh compound-B positron emission tomography carried out in addition to magnetic resonance imaging and single-photon emission computed tomography on the diagnosis of Alzheimer's disease in patients with dementia and mild cognitive impairment.

    Science.gov (United States)

    Omachi, Yoshie; Ito, Kimiteru; Arima, Kunimasa; Matsuda, Hiroshi; Nakata, Yasuhiro; Sakata, Masuhiro; Sato, Noriko; Nakagome, Kazuyuki; Motohashi, Nobutaka

    2015-12-01

    The purpose of this study was to evaluate the clinical impact of addition of [(11)C]Pittsburgh compound-B positron emission tomography ((11)C-PiB PET) on routine clinical diagnosis of Alzheimer's disease (AD) dementia and mild cognitive impairment (MCI), and to assess diagnostic agreement between clinical criteria and research criteria of the National Institute on Aging-Alzheimer's Association. The diagnosis in 85 patients was made according to clinical criteria. Imaging examinations, including both magnetic resonance imaging and single-photon emission computed tomography/computed tomography to identify neuronal injury (NI), and (11)C-PiB PET to identify amyloid were performed, and all subjects were re-categorized according to the research criteria. Among 40 patients with probable AD dementia (ProAD), 37 were NI-positive, 29 were (11)C-PiB-positive, and 27 who were both NI- and (11C-PiB-positive were categorized as having 'ProAD dementia with a high level of evidence of the AD pathophysiological process'. Among 20 patients with possible AD dementia (PosAD), 17 were NI-positive, and six who were both NI- and (11)C-PiB-positive were categorized as having 'PosAD with evidence of the AD pathophysiological process'. Among 25 patients with MCI, 18 were NI-positive, 13 were (11)C-PiB-positive, and 10 who were both NI- and (11)C-PiB-positive were categorized as having 'MCI due to AD-high likelihood'. Diagnostic concordance between clinical criteria and research criteria may not be high in this study. (11)C-PiB PET may be of value in making the diagnosis of dementia and MCI in cases with high diagnostic uncertainty. © 2015 The Authors. Psychiatry and Clinical Neurosciences © 2015 Japanese Society of Psychiatry and Neurology.

  7. Clinical implications of determination of safe surgical margins by using a combination of CT and 18FDG-positron emission tomography in soft tissue sarcoma

    Directory of Open Access Journals (Sweden)

    Yoshioka Takako

    2011-07-01

    Full Text Available Abstract Background To determine safe surgical margins for soft tissue sarcoma, it is essential to perform a general evaluation of the extent of tumor, responses to auxiliary therapy, and other factors preoperatively using multiple types of diagnostic imaging. 18F-fluorodeoxyglucose positron emission tomography/computed tomography (FDG-PET/CT is a tool for diagnostic imaging that has recently spread rapidly in clinical use. At present, the roles played by FDG-PET/CT in determination of margins for surgical resection of sarcoma are unclear. The present study was undertaken to explore the roles of FDG-PET/CT in determination of surgical margins for soft tissue sarcoma and to examine whether PET can serve as a standard means for setting the margins of surgical resection during reduced surgery. Methods The study involved 7 patients with sarcoma who underwent surgery in our department and in whom evaluation with FDG-PET/CT was possible. Sarcoma was histologically rated as MFH in 6 cases and leiomyosarcoma in 1 case. In all cases, sarcoma was superficial (T1a or T2a. The tumor border was defined by contrast-enhanced MRI, and SUVs were measured at intervals of 1 cm over a 5-cm long area from the tumor border. Mapping of viable tumor cells was carried out on whole-mount sections of resected tissue, and SUVs were compared with histopathological findings. Results Preoperative maximum SUVs (SUV-max of the tumor averaged 11.7 (range: 3.8-22.1. Mean SUV-max was 2.2 (range: 0.3-3.8 at 1 cm from the tumor border, 1.1 (0.85-1.47 at 2 cm, 0.83 (0.65-1.15 at 3 cm, 0.7 (0.42-0.95 at 4 cm, and 0.64 (0.45-0.82 at 5 cm. When resected tissue was mapped, tumor cells were absent in the areas where SUV-max was below 1.0. Conclusions Our findings suggest that a safe surgical margin free of viable tumor cells can be ensured if the SUV cut-off level is set at 1.0. FDG-PET/CT is promising as a diagnostic imaging technique for setting of safe minimal margins for surgical

  8. Quantification of myocardial blood flow with {sup 82}Rb positron emission tomography: clinical validation with {sup 15}O-water

    Energy Technology Data Exchange (ETDEWEB)

    Prior, John O.; Allenbach, Gilles; Bischof Delaloye, Angelika [Centre Hospitalier Universitaire Vaudois and University of Lausanne, Nuclear Medicine Department, Lausanne (Switzerland); Valenta, Ines; Burger, Cyrill [Cardiac Imaging, Department of Radiology, Zurich (Switzerland); Kosinski, Marek [Centre Hospitalier Universitaire Vaudois and University of Lausanne, Nuclear Medicine Department, Lausanne (Switzerland); Centre Hospitalier Universitaire Vaudois and University of Lausanne, University Institute for Radiation Physics, Lausanne (Switzerland); Verdun, Francis R. [Centre Hospitalier Universitaire Vaudois and University of Lausanne, University Institute for Radiation Physics, Lausanne (Switzerland); Kaufmann, Philipp A. [Cardiac Imaging, Department of Radiology, Zurich (Switzerland); University of Zurich, Zurich Centre for Integrative Human Physiology (ZIHP), Zurich (Switzerland)

    2012-06-15

    coronary artery territories (p > 0.31). Quantification of MBF with {sup 82}Rb with a newly derived correction for the nonlinear extraction function was validated against MBF measured using {sup 15}O-water in control subjects and patients with mild CAD, where it was found to be accurate at high flow rates. {sup 82}Rb-derived MBF estimates seem robust for clinical research, advancing a step further towards its implementation in clinical routine. (orig.)

  9. 18F-Fluorodeoxyglucose positron emission tomography pulmonary imaging in idiopathic pulmonary fibrosis is reproducible: implications for future clinical trials

    International Nuclear Information System (INIS)

    Win, Thida; Lambrou, Tryphon; Hutton, Brian F.; Kayani, Irfan; Endozo, Raymondo; Shortman, Robert I.; Groves, Ashley M.; Screaton, Nicholas J.; Porter, Joanna C.; Maher, Toby M.; Lukey, Pauline

    2012-01-01

    Noninvasive markers of disease activity in patients with idiopathic pulmonary fibrosis (IPF) are lacking. We performed this study to investigate the reproducibility of pulmonary 18 F-FDG PET/CT in patients with IPF. The study group comprised 13 patients (11 men, 2 women; mean age 71.1 ± 9.9 years) with IPF recruited for two thoracic 18 F-FDG PET/CT studies performed within 2 weeks of each other. All patients were diagnosed with IPF in consensus at multidisciplinary meetings as a result of typical clinical, high-resolution CT and pulmonary function test features. Three methods for evaluating pulmonary 18 F-FDG uptake were used. The maximal 18 F-FDG pulmonary uptake (SUVmax) in the lungs was determined using manual region-of-interest placement. An 18 F-FDG uptake intensity histogram was automatically constructed from segmented lungs to evaluate the distribution of SUVs. Finally, mean SUV was determined for volumes-of-interest in pulmonary regions with interstitial lung changes identified on CT scans. Processing included correction for tissue fraction effects. Bland-Altman analysis was performed and interclass correlation coefficients (ICC) were determined to assess the reproducibility between the first and second PET scans, as well as the level of intraobserver and interobserver agreement. The mean time between the two scans was 6.3 ± 4.3 days. The interscan ICCs for pulmonary SUVmax analysis and mean SUV corrected for tissue fraction effects were 0.90 and 0.91, respectively. Intensity histograms were different in only 1 of the 13 paired studies. Intraobserver agreement was also excellent (0.80 and 0.85, respectively). Some bias was observed between observers, suggesting that serial studies would benefit from analysis by the same observer. This study demonstrated that there is excellent short-term reproducibility in pulmonary 18 F-FDG uptake in patients with IPF. (orig.)

  10. Diagnosis of pancreatic cancer using fluorine-18 fluorodeoxyglucose positron emission tomography (FDG PET). Usefulness and limitations in clinical reality''

    International Nuclear Information System (INIS)

    Higashi, Tatsuya; Saga, Tsuneo; Ishimori, Takayoshi; Fujimoto, Koji; Doi, Ryuichiro; Imamura, Masayuki; Konishi, Junji

    2003-01-01

    The present review will provide an overview of the literature concerning the FDG PET diagnosis of pancreatic cancer and a summary from our experience of 231 cases of pancreatic lesions. FDG PET can effectively differentiate pancreatic cancer from benign lesion with high accuracy. Newly-developed PET scanners can detect small pancreatic cancers, up to 7 mm in diameter, by their high resolution, which could make a great contribution to the early detection of resectable and potentially curable pancreatic cancers. FDG PET is useful and cost-beneficial in the pre-operative staging of pancreatic cancer because an unexpected distant metastasis can be detected by whole-body PET in about 40% of the cases, which results in avoidance of unnecessary surgical procedures. FDG PET is also useful in evaluation of the treatment effect, monitoring after the operation and detection of recurrent pancreatic cancers. However, there are some drawbacks in PET diagnosis. A relatively wide overlap has been reported between semiquantitative uptake values obtained in cancers and those in inflammatory lesions. As for false-positive cases, active and chronic pancreatitis and autoimmune pancreatitis sometimes show high FDG accumulation and mimic pancreatic cancer with a shape of focal uptake. There were 8 false negative cases in the detection of pancreatic cancer by FDG PET, up to 33 mm in diameter, mainly because of their poor cellularity in cancer tissues. In addition, there are 19% of cancer cases with a decline in FDG uptake from 1 hr to 2 hr scan. FDG PET was recently applied to and was shown to be feasible in the differential diagnosis of cystic pancreatic lesions, such as intraductal papillary mucinous tumor of the pancreas. Further investigations are required to clarify the clinical value of FDG PET in predicting prognosis of the pancreatic patients. (author) 124 refs

  11. Clinical usefulness of scatter and attenuation correction for brain single photon emission computed tomography (SPECT) in pediatrics

    International Nuclear Information System (INIS)

    Adachi, Itaru; Doi, Kenji; Komori, Tsuyoshi; Hou, Nobuyoshi; Tabuchi, Koujirou; Matsui, Ritsuo; Sueyoshi, Kouzou; Utsunomiya, Keita; Narabayashi, Isamu

    1998-01-01

    This investigation was undertaken to study clinical usefulness of scatter and attenuation correction (SAC) of brain SPECT in infants to compare the standard reconstruction (STD). The brain SPECT was performed in 31 patients with 19 epilepsy, 5 cerebro-vascular disease, 2 brain tumor, 3 meningitis, 1 hydrocephalus and psychosis (mean age 5.0±4.9 years old). Many patients was necessary to be injected sedatives for restraining body motion after Technetium-99m hexamethylpropylene amine oxime ( 99m Tc-HMPAO) was injected at the convulsion or rest. Brain SPECT data were acquired with triple detector gamma camera (GCA-9300 Toshiba Japan). These data were reconstructed by filtered backprojection after the raw data were corrected by triple energy windows method of scatter correction and Chang filtered method of attenuation correction. The same data was reconstructed by filtered backprojection without these corrections. Both SAC and STD SPECT images were analyzed by the visual interpretation. The uptake ratio of cerebral basal nuclei was calculated by the counts of the thalamus or lenticular nuclei divided by the cortex. All images of SAC method were excellent than that of STD method. The thalamic uptake ratio in SAC method was higher than that of STD method (1.22±0.09>0.87±0.22 p 1.02±0.16 p<0.01). Transmission scan is the most suitable method of absorption correction. But the transmission scan is not adequate for examination of children, because this scan needs a lot of time and the infants are exposed by the line source radioisotope. It was concluded that these scatter and absorption corrections were most suitable method for brain SPECT in pediatrics. (author)

  12. Clinical usefulness of scatter and attenuation correction for brain single photon emission computed tomography (SPECT) in pediatrics

    Energy Technology Data Exchange (ETDEWEB)

    Adachi, Itaru; Doi, Kenji; Komori, Tsuyoshi; Hou, Nobuyoshi; Tabuchi, Koujirou; Matsui, Ritsuo; Sueyoshi, Kouzou; Utsunomiya, Keita; Narabayashi, Isamu [Osaka Medical Coll., Takatsuki (Japan)

    1998-01-01

    This investigation was undertaken to study clinical usefulness of scatter and attenuation correction (SAC) of brain SPECT in infants to compare the standard reconstruction (STD). The brain SPECT was performed in 31 patients with 19 epilepsy, 5 cerebro-vascular disease, 2 brain tumor, 3 meningitis, 1 hydrocephalus and psychosis (mean age 5.0{+-}4.9 years old). Many patients was necessary to be injected sedatives for restraining body motion after Technetium-99m hexamethylpropylene amine oxime ({sup 99m}Tc-HMPAO) was injected at the convulsion or rest. Brain SPECT data were acquired with triple detector gamma camera (GCA-9300 Toshiba Japan). These data were reconstructed by filtered backprojection after the raw data were corrected by triple energy windows method of scatter correction and Chang filtered method of attenuation correction. The same data was reconstructed by filtered backprojection without these corrections. Both SAC and STD SPECT images were analyzed by the visual interpretation. The uptake ratio of cerebral basal nuclei was calculated by the counts of the thalamus or lenticular nuclei divided by the cortex. All images of SAC method were excellent than that of STD method. The thalamic uptake ratio in SAC method was higher than that of STD method (1.22{+-}0.09>0.87{+-}0.22 p<0.01). The lenticular nuclear uptake ratio in SAC method was higher than that of STD method (1.26{+-}0.15>1.02{+-}0.16 p<0.01). Transmission scan is the most suitable method of absorption correction. But the transmission scan is not adequate for examination of children, because this scan needs a lot of time and the infants are exposed by the line source radioisotope. It was concluded that these scatter and absorption corrections were most suitable method for brain SPECT in pediatrics. (author)

  13. Contribution of positron emission tomography in pleural disease.

    OpenAIRE

    Duysinx, Bernard; Corhay, Jean-Louis; Larock, Marie-Paule; Withofs, Nadia; Bury, Thierry; Hustinx, Roland; Louis, Renaud

    2010-01-01

    INTRODUCTION: Positron emission tomography (PET) now plays a clear role in oncology, especially in chest tumours. We discuss the value of metabolic imaging in characterising pleural pathology in the light of our own experience and review the literature. BACKGROUND: PET is particularly useful in characterising malignant pleural pathologies and is a factor of prognosis in mesothelioma. Metabolic imaging also provides clinical information for staging lung cancer, in researching the primary tumou...

  14. Measurement of liver volume by emission computed tomography

    International Nuclear Information System (INIS)

    Kan, M.K.; Hopkins, G.B.

    1979-01-01

    In 22 volunteers without clinical or laboratory evidence of liver disease, liver volume was determined using single-photon emission computed tomography (ECT). This technique provided excellent object contrast between the liver and its surroundings and permitted calculation of liver volume without geometric assumptions about the liver's configuration. Reproducibility of results was satisfactory, with a root-mean-square error of less than 6% between duplicate measurements in 15 individuals. The volume measurements were validated by the use of phantoms

  15. Prognostic value of 18F-fluorodeoxyglucose positron emission tomography/computed tomography in patients with Barcelona Clinic Liver Cancer stages 0 and A hepatocellular carcinomas: a multicenter retrospective cohort study

    International Nuclear Information System (INIS)

    Hyun, Seung Hyup; Choi, Joon Young; Lee, Kyung-Han; Eo, Jae Seon; Lee, Jeong Won; Na, Sae Jung; Hong, Il Ki; Oh, Jin Kyoung; Chung, Yong An; Song, Bong-Il; Kim, Tae-Sung; Kim, Kyung Sik; Moon, Dae Hyuk; Yun, Mijin

    2016-01-01

    We evaluated the prognostic value of pretreatment 18 F-fluorodeoxyglucose positron emission tomography with computed tomography (FDG PET/CT) in patients with Barcelona Clinic Liver Cancer (BCLC) stage 0 or A hepatocellular carcinoma (HCC) who had received curative treatment or transarterial chemoembolization (TACE). Between 2009 and 2010, 317 patients diagnosed with HCC at seven hospitals were enrolled. Among these, 195 patients underwent curative treatments including resection, liver transplantation, and radiofrequency ablation. TACE was performed in 122 patients. The tumor-to-normal liver standardized uptake value ratio (TLR) of the primary tumor was measured using pretreatment FDG PET/CT. The prognostic significance of TLR and other clinical variables was assessed using Cox regression models. Differences in the overall survival (OS) associated with TLR or other significant clinical factors were examined using the Kaplan-Meier method. Over a median follow-up period of 46 months, 77 patients died from cancer. In the curative cohort, higher TLR (≥2) was significantly associated with death (hazard ratio [HR] = 2.68; 95 % CI, 1.16-6.15; P = 0.020) in multivariable analysis. Patients with a higher TLR had significantly worse OS than patients with a lower TLR (5-year overall survival, 61 % vs. 79.4 %; P = 0.006). In the TACE cohort, the Model for End-Stage Liver Disease (MELD) score (≥8) was a significant independent prognostic factor for OS (HR = 3.34; 95 % CI, 1.49-7.48; P = 0.003), whereas TLR was not associated with OS. The Kaplan-Meier curves showed significantly poorer OS in patients with higher MELD scores (≥8) than in those with lower MELD scores (5-year survival rate, 33.1 % vs. 79.6 %; P < 0.001). Pretreatment TLR measured using FDG PET/CT was an independent prognostic factor for OS in patients with BCLC stage 0 or A HCC undergoing curative treatment. In contrast, underlying liver function appeared to be important in predicting the prognosis of patients

  16. Fluorodeoxyglucose positron emission tomography-computed tomography findings in a case of xanthogranulomatous pyelonephritis

    Science.gov (United States)

    Joshi, Prathamesh; Lele, Vikram; Shah, Hardik

    2013-01-01

    Xanthogranulomatous pyelonephritis (XGNP) is an uncommon condition characterized by chronic suppurative renal inflammation that leads to progressive parenchymal destruction. This condition can clinically present as recurrent urinary tract infections, flank pain, hematuria, and occasionally sepsis, and weight loss. This condition is usually associated with obstructing renal calculus. We present 18-fluorodeoxyglucose positron emission tomography-computed tomography (18-FDG PET/CT) findings in an elderly male suffering from pyrexia and weight loss and suspected urinary tract infection. PET/CT findings in this case lead to diagnosis of XGNP. This diagnosis should be kept in mind while evaluating similar symptoms and PET/CT scan findings. PMID:24019680

  17. Brain single-photon emission tomography with {sup 99m}Tc-HMPAO in neuropsychiatric systemic lupus erythematosus: relations with EEG and MRI findings and clinical manifestations

    Energy Technology Data Exchange (ETDEWEB)

    Colamussi, P. [Dept. of Nuclear Medicine, Univ. of Ferrara (Italy); Giganti, M. [Dept. of Nuclear Medicine, Univ. of Ferrara (Italy); Cittanti, C. [Dept. of Nuclear Medicine, Univ. of Ferrara (Italy); Dovigo, L. [Inst. of Neurology, Univ. of Ferrara (Italy); Trotta, F. [Inst. of Neurology, Univ. of Ferrara (Italy); Tola, M.R. [Div. of Rheumatology, S. Anna Hospital, Ferrara (Italy); Tamarozzi, R. [Radiology Dept., S. Anna Hospital, Ferrara (Italy); Lucignani, G. [INB-CNR Dept. of Nuclear Medicine, H.S. Raffaele, Milan (Italy); Piffanelli, A. [Dept. of Nuclear Medicine, Univ. of Ferrara (Italy)

    1995-01-01

    In the reported study the role of single-photon emission tomography (SPET) with technetium-99m hexamethylpropylene amine oxime (HMPAO) in the evaluation of CNS involvement in SLE was assessed and the relations between SPET perfusion defects, EEG examination, magnetic resonance imaging (MRI) findings and clinical presentation were examined. Twenty SLE patients with different NP manifestations were studied. Multiple areas of hypoperfusion, especially in the territory of the middle cerebral artery, were demonstrated by SPET analysis in all 20 patients. The number of hypoperfused areas and the degree of hypoperfusion, expressed by an asymmetry index (AI), were more marked in patients with multiple NP manifestations. MRI and EEG evaluations were positive for 14 of 18 and for 12 of 20 patients, respectively. In the patients with positive SPET and MRI, 87 MRI focal lesions and 63 hypoperfused areas were found, and for 51 of these 63 at least one MRI lesion was found in the same anatomical region. SPET examination of patients with a normal EEG showed fewer hypoperfused areas and a lower degree of asymmetry compared to patients with an abnormal EEG. SPET of patients with focal EEG abnormalities showed more hypoperfused areas (difference not statistically significant) and a higher AI than did SPET of the patients with diffuse EEG abnormalities. Seven of 11 anatomical regions with focal EEG abnormalities. Seven of 11 anatomical regions with focal EEG abnormalities had co-localized hypoperfused areas and in two of these seven no detectable MRI lesions were found. The analysis of SPET and NP manifestations showed that 12 of 20 patients had at least one positive correlation, always involving the areas with the highest AI. In total, 51/88 (58%) hypoperfused areas correlated with the MRI findings and 31/88 (35%) with NP manifestations; for seven of the latter no concurrent MRI lesions were detected in the same anatomical region. (orig.)

  18. Brain single-photon emission tomography with 99mTc-HMPAO in neuropsychiatric systemic lupus erythematosus: relations with EEG and MRI findings and clinical manifestations

    International Nuclear Information System (INIS)

    Colamussi, P.; Giganti, M.; Cittanti, C.; Dovigo, L.; Trotta, F.; Tola, M.R.; Tamarozzi, R.; Lucignani, G.; Piffanelli, A.

    1995-01-01

    In the reported study the role of single-photon emission tomography (SPET) with technetium-99m hexamethylpropylene amine oxime (HMPAO) in the evaluation of CNS involvement in SLE was assessed and the relations between SPET perfusion defects, EEG examination, magnetic resonance imaging (MRI) findings and clinical presentation were examined. Twenty SLE patients with different NP manifestations were studied. Multiple areas of hypoperfusion, especially in the territory of the middle cerebral artery, were demonstrated by SPET analysis in all 20 patients. The number of hypoperfused areas and the degree of hypoperfusion, expressed by an asymmetry index (AI), were more marked in patients with multiple NP manifestations. MRI and EEG evaluations were positive for 14 of 18 and for 12 of 20 patients, respectively. In the patients with positive SPET and MRI, 87 MRI focal lesions and 63 hypoperfused areas were found, and for 51 of these 63 at least one MRI lesion was found in the same anatomical region. SPET examination of patients with a normal EEG showed fewer hypoperfused areas and a lower degree of asymmetry compared to patients with an abnormal EEG. SPET of patients with focal EEG abnormalities showed more hypoperfused areas (difference not statistically significant) and a higher AI than did SPET of the patients with diffuse EEG abnormalities. Seven of 11 anatomical regions with focal EEG abnormalities. Seven of 11 anatomical regions with focal EEG abnormalities had co-localized hypoperfused areas and in two of these seven no detectable MRI lesions were found. The analysis of SPET and NP manifestations showed that 12 of 20 patients had at least one positive correlation, always involving the areas with the highest AI. In total, 51/88 (58%) hypoperfused areas correlated with the MRI findings and 31/88 (35%) with NP manifestations; for seven of the latter no concurrent MRI lesions were detected in the same anatomical region. (orig.)

  19. Validation of In Vitro Cell-Based Human Blood-Brain Barrier Model Using Clinical Positron Emission Tomography Radioligands To Predict In Vivo Human Brain Penetration

    International Nuclear Information System (INIS)

    Mabondzo, A.; Guyot, A.C.; Bottlaender, M.; Deverre, J.R.; Tsaouin, K.; Balimane, P.V.

    2010-01-01

    We have evaluated a novel in vitro cell-based human blood-brain barrier (BBB) model that could predict in vivo human brain penetration for compounds with different BBB permeabilities using the clinical positron emission tomography (PET) data. Comparison studies were also performed to demonstrate that the in vitro cell-based human BBB model resulted in better predictivity over the traditional permeability model in discovery organizations, Caco-2 cells. We evaluated the in vivo BBB permeability of [ 18 F] and [ 11 C]-compounds in humans by PET imaging. The in vivo plasma-brain exchange parameters used for comparison were determined in humans by PET using a kinetic analysis of the radiotracer binding. For each radiotracer, the parameters were determined by fitting the brain kinetics of the radiotracer using a two-tissue compartment model of the ligand-receptor interaction. Bidirectional transport studies with the same compounds as in in vivo studies were carried out using the in vitro cell-based human BBB model as well as Caco-2 cells. The in vitro cell-based human BBB model has important features of the BBB in vivo and is suitable for discriminating between CNS and non-CNS marketed drugs. A very good correlation (r 2 =0.90; P≤0.001) was demonstrated between in vitro BBB permeability and in vivo permeability coefficient. In contrast, a poor correlation (r 2 = 0.17) was obtained between Caco-2 data and in vivo human brain penetration. This study highlights the potential of this in vitro cell-based human BBB model in drug discovery and shows that it can be an extremely effective screening tool for CNS programs. (authors)

  20. Clinical and cost implications of amyloid beta detection with amyloid beta positron emission tomography imaging in early Alzheimer's disease - the case of florbetapir.

    Science.gov (United States)

    Hornberger, John; Bae, Jay; Watson, Ian; Johnston, Joe; Happich, Michael

    2017-04-01

    Amyloid beta (Aβ) positron emission tomography (PET) imaging helps estimate Aβ neuritic plaque density in patients with cognitive impairment who are under evaluation for Alzheimer's disease (AD). This study aims to evaluate the cost-effectiveness of the Aβ-PET scan as an adjunct to standard diagnostic assessment for diagnosis of AD in France, using florbetapir as an example. A state-transition probability analysis was developed adopting the French Health Technology Assessment (HTA) perspective per guidance. Parameters included test characteristics, rate of cognitive decline, treatment effect, costs, and quality of life. Additional scenarios assessed the validity of the analytical framework, including: (1) earlier evaluation/treatment; (2) cerebrospinal fluid (CSF) as a comparator; and (3) use of other diagnostic procedures. Outputs included differences in quality-adjusted life years (QALYs), costs, and incremental cost-effectiveness ratios (ICERs). All benefits and costs were discounted for time preferences. Sensitivity analyses were performed to assess the robustness of findings and key influencers of outcomes. Aβ-PET used as an adjunct to standard diagnostic assessment increased QALYs by 0.021 years and 10 year costs by €470 per patient. The ICER was €21,888 per QALY gained compared to standard diagnostic assessment alone. When compared with CSF, Aβ-PET costs €24,084 per QALY gained. In other scenarios, Aβ-PET was consistently cost-effective relative to the commonly used affordability threshold (€40,000 per QALY). Over 95% of simulations in the sensitivity analysis were cost-effective. Aβ-PET is projected to affordably increase QALYs from the French HTA perspective per guidance over a range of clinical scenarios, comparators, and input parameters.

  1. Shielding design for positron emission tomography facility

    International Nuclear Information System (INIS)

    Abdallah, I.I.

    2007-01-01

    With the recent advent of readily available tracer isotopes, there has been marked increase in the number of hospital-based and free-standing positron emission tomography (PET) clinics. PET facilities employ relatively large activities of high-energy photon emitting isotopes, which can be dangerous to the health of humans and animals. This coupled with the current dose limits for radiation worker and members of the public can result in shielding requirements. This research contributes to the calculation of the appropriate shielding to keep the level of radiation within an acceptable recommended limit. Two different methods were used including measurements made at selected points of an operating PET facility and computer simulations by using Monte Carlo Transport Code. The measurements mainly concerned the radiation exposure at different points around facility using the survey meter detectors and Thermoluminescent Dosimeters (TLD). Then the set of manual calculation procedures were used to estimate the shielding requirements for a newly built PEF facility. The results from the measurement and the computer simulation were compared to the results obtained from the set manual calculation procedure. In general, the estimated weekly dose at the points of interest is lower than the regulatory limits for the little company of Mary Hospital. Furthermore, the density and the HVL for normal strength concrete and clay bricks are almost similar. In conclusion, PET facilities present somewhat different design requirements and are more likely to require additional radiation shielding. Therefore, existing shields at the little Company of Mary Hospital are in general found to be adequate and satisfactory and additional shielding was found necessary at the new PET facility in the department of Nuclear Medicine of the Dr. George Mukhari Hospital. By use of appropriate design, by implying specific shielding requirements and by maintaining good operating practices, radiation doses to

  2. Correlation of Tc-99 m ethyl cysteinate dimer single-photon emission computed tomography and clinical presentations in patients with low cobalamin status.

    Science.gov (United States)

    Tu, Min-Chien; Lo, Chung-Ping; Chen, Ching-Yuan; Huang, Ching-Feng

    2015-12-03

    Cobalamin (Cbl) deficiency has been associated with various neuropsychiatric symptoms of different severities. While some studies dedicated in structural neuroimaging credibly address negative impact of low Cbl status, functional imaging reports are limited. We herein retrospectively review the correlation of Tc-99 m ethyl cysteinate dimer single-photon emission computed tomography (Tc-99 m-ECD SPECT) and clinical presentations among patients with low serum cobalamin (Cbl) status (Tc-99 m-ECD SPECT, and neuropsychological tests were reviewed. Dysexecutive syndrome (67 %), forgetfulness (50 %), attention deficits (42 %), and sleep disorders (33 %) constituted the major clinical presentations. All patients (100 %) had temporal hypoperfusion on the Tc-99 m-ECD SPECT. Five patients (42 %) had hypoperfusion restricted within temporal regions and deep nuclei; seven patients (58 %) had additional frontal hypoperfusion. In patients with hypoperfusion restricted within temporal regions and deep nuclei, psychiatric symptoms with spared cognition were their main presentations. Among patients with additional frontal hypoperfusion, six of seven patients (86 %) showed impaired cognitive performances (two of them were diagnosed as having dementia). Among ten patients who finished neuropsychological tests, abstract thinking (70 %) was the most commonly affected, followed by verbal fluency (60 %), short-term memory (50 %), and attention (50 %). Anxiety and sleep problems were the major clinically remarkable psychiatric features (33 % both). Four Tc-99 m-ECD SPECT follow-up studies were available; the degree and extent of signal reversal correlated with cognitive changes after Cbl replacement therapy. Our TC-99 m-ECD SPECT observations provide pivotal information of neurobiological changes within basal ganglia and fronto-temporal regions in conjunction with disease severity among patients with Cbl deficiency. Hypoperfusion within thalamus/basal ganglia and temporal regions may be

  3. Preclinical and the first clinical studies on [11C]ITMM for mapping metabotropic glutamate receptor subtype 1 by positron emission tomography

    International Nuclear Information System (INIS)

    Toyohara, Jun; Sakata, Muneyuki; Fujinaga, Masayuki; Yamasaki, Tomoteru; Oda, Keiichi; Ishii, Kenji; Zhang, Ming Rong; Moriguchi Jeckel, Cristina Maria; Ishiwata, Kiichi

    2013-01-01

    Introduction: Preclinical studies and first positron emission tomography (PET) imaging studies were performed using N-[4-[6-(isopropylamino)pyrimidin-4-yl]-1,3-thiazol-2-yl]-4-[ 11 C] methoxy-N-methylbenzamide ([ 11 C]ITMM) to map metabotropic glutamate receptor type 1 (mGluR1) in the human brain. Methods: [ 11 C]ITMM was synthesized by O-methylation of the desmethyl precursor with [ 11 C]methyl triflate in the presence of NaOH at room temperature. In vitro selectivity and brain distributions of [ 11 C]ITMM in mice were characterized. Radiation absorbed-dose by [ 11 C]ITMM in humans was calculated from mouse distribution data. Acute toxicity of ITMM at 4.72 mg/kg body weight (> 74,000-fold clinical equivalent dose of [ 11 C]ITMM) was evaluated. Mutagenicity of ITMM was studied by the Ames test. Clinical PET imaging of mGluR1 with [ 11 C] ITMM was performed in a healthy volunteer. Results: ITMM had low activity for a 28-standard receptor binding profile. Regional brain uptake of [ 11 C]ITMM in mice was heterogeneous and consistent with known mGluR1 distributions. The radiation absorbed-dose by [ 11 C]ITMM in humans was sufficiently low for clinical use, and no acute toxicity or mutagenicity of ITMM occurred. A 90-min dynamic PET scan with [ 11 C]ITMM in a healthy volunteer showed a gradual increase of radioactivity in the cerebellum. Total distribution volume of [ 11 C]ITMM was highest in the cerebellum, followed by thalamus, cerebral cortex, and striatum; regional differences in brain radioactivity corresponded to the mGluR1 distribution in the brain. Peripherally, [ 11 C]ITMM was stable in humans: 60% of the plasma radioactivity remained in the unchanged form for 60 min. Conclusions: [ 11 C] ITMM is a suitable radioligand for imaging mGluR1 in the human brain providing acceptable dosimetry and pharmacological safety at the dose required for PET

  4. The value of positron emission tomography/computed tomography for evaluating metastatic disease in patients with pancreatic cancer.

    Science.gov (United States)

    Kim, Mi-Jin; Lee, Kwang Hyuck; Lee, Kyu Taek; Lee, Jong Kyun; Ku, Bon-Ho; Oh, Cho-Rong; Heo, Jin Seok; Choi, Seong-Ho; Choi, Dong Wook

    2012-08-01

    Routine application of positron emission tomography/computed tomography (PET/CT) for pancreatic cancer staging remains a controversial approach. The purpose of this study was to reassess the clinical impact of PET/CT for the detection of distant metastasis of pancreatic cancer. From January 2006 to June 2009, 125 patients with histologically proven pancreatic cancer that had undergone PET/CT at our hospital were retrospectively reviewed. To evaluate the clinical efficacy of PET/CT on the management plan, the post-PET/CT management plans were compared with the pre-PET/CT management plans. After the conventional staging workup, we determined that 76 patients (60.8%) had resectable lesions, whereas 48 patients had unresectable lesions. One patient underwent explorative laparotomy due to equivocal resectability. Positron emission tomography/computed tomography diagnosed distant metastasis in only 2 (2.6%) of the 76 patients with resectable lesions, and these patients did not undergo unnecessary surgical treatment. Complete resection was not performed in 8 of the 74 operative patients because they had distant metastasis detected during the operative procedure. Positron emission tomography/computed tomography diagnosed distant metastasis in 32 of the 44 patients with metastatic lesions that were histologically shown to have sensitivity of 72.7%. Positron emission tomography/computed tomography has a limited role in the evaluation of metastatic disease from pancreatic cancer.

  5. Development of novel emission tomography system

    Science.gov (United States)

    Fu, Geng

    In recent years, small animals, such as mice and rats, have been widely used as subjects of study in biomedical research while molecular biology and imaging techniques open new opportunities to investigate disease model. With the help of medical imaging techniques, researchers can investigate underlying mechanisms inside the small animal, which are useful for both early diagnosis and treatment monitoring. Based on tracer principle single photon emission computed tomography (SPECT) has increased popularity in small animal imaging due to its higher spatial resolution and variety of single-photon emitting radionuclides. Since the image quality strongly depends on the detector properties, both scintillation and semiconductor detectors are under active investigation for high resolution X-ray and gamma ray photon detection. The desired detector properties include high intrinsic spatial resolution, high energy resolution, and high detection efficiency. In this thesis study, we have made extensive efforts to develop novel emission tomography system, and evaluate the use of both semiconductor and ultra-high resolution scintillation detectors for small animal imaging. This thesis work includes the following three areas. Firstly, we have developed a novel energy-resolved photon counting (ERPC) detector. With the benefits of high energy resolution, high spatial resolution, flexible detection area, and a wide dynamic range of 27--200keV, ERPC detector is well-suited for small animal SPECT applications. For prototype ERPC detector excellent imaging (˜350microm) and spectroscopic performance (4keV Co-57 122keV) has been demonstrated in preliminary study. Secondly, to further improve spatial resolution to hundred-micron level, an ultra-high resolution Intensified EMCCD (I-EMCCD) detector has been designed and evaluated. This detector consists of the newly developed electron multiplying CCD (EMCCD) sensor, columnar CsI(Tl) scintillator, and an electrostatic de-magnifier (DM) tube

  6. Positron emission tomography in the management of cervix cancer patients

    International Nuclear Information System (INIS)

    Bonardel, G.; Gontier, E.; Soret, M.; Dechaud, C.; Fayolle, M.; Foehrenbach, H.; Chargari, C.; Bauduceau, O.

    2009-01-01

    Since its introduction in clinical practice in the 1990 s, positron emission tomography (PET), usually with 18 F-fluoro-2-deoxy-D-glucose ( 18 F-F.D.G.), has become an important imaging modality in patients with cancer. For cervix carcinoma, F.D.G.-PET is significantly more accurate than computed tomography (CT) and is recommended for loco-regional lymph node and extra pelvic staging. The metabolic dimension of the technique provides additional prognostic information. Ongoing studies now concentrate on more advanced clinical applications, such as the planning of radiotherapy, the response evaluation after the induction of therapy, the early detection of recurrence. Technical innovations, such as PET cameras with better spatial resolution and hybrid positron emission tomography/computed tomography (PET-CT), available now on the whole territory, provide both anatomic and metabolic information in the same procedure. From the point of view of biological metabolism, new radiopharmaceutical probes are being developed. Those hold promise for future refinements in this field. This article reviews the current applications of F.D.G.-PET in patients with cervix cancer. (authors)

  7. Emission tomography: quantitative aspects in metabolic and physiopathologic studies

    International Nuclear Information System (INIS)

    Yerouchalmi-Soussaline, F.

    1984-11-01

    This thesis presents instrumental and data processing studies developped in emission tomography in man, using gamma and positron emitting tracers. High contrast visualisation of volume distribution of tracers in the organs, kinetic studies and measurements of radioactive concentration or of other clinical parameters necessitate a detailed analysis of all physical factors limiting the accuracy of the measure; therefore, development of adapted imaging devices and data processing techniques, together with models describing correctly the phenomena under study are to be carried out. Thus, in single photon (gamma) emission tomography an image reconstruction strategy is elaborated, based on an analytical model for the ill-posed problem including the attenuation effect. In positron emission tomography, the time-of-flight information combined with the reconstruction technique is used in the design of a first prototype imaging device which performance is presented and evaluated in a clinical environment. Moreover, a priori or a posteriori techniques correcting for Compton diffusion events, limited statistics and limited resolutions, are proposed and discussed for the improvement of regional measurement accuracy, in metabolic and physiopathologic studies [fr

  8. Diagnostic utility of fluorodeoxyglucose positron emission tomography/computed tomography in pyrexia of unknown origin

    International Nuclear Information System (INIS)

    Singh, Nidhi; Kumar, Rakesh; Malhotra, Arun; Bhalla, Ashu Seith; Kumar, Uma; Sood, Rita

    2005-01-01

    The present study was undertaken to evaluate the diagnostic utility of fluorine-18 fluorodeoxyglucose positron emission tomography/computed tomography (F-18 FDG PET/CT) in patients presenting as pyrexia of unknown origin (PUO). Forty-seven patients (31 males and 16 females; mean age of 42.7 ± 19.96 years) presenting as PUO to the Department of Medicine at the All India Institute of Medical Sciences, New Delhi over a period of 2 years underwent F-18 FDG PET/CT. PET ⁄ CT was considered supportive when its results correlated with the final definitive diagnosis. Final diagnosis was made on the basis of combined evaluation of history, clinical findings, investigations, and response to treatment. Thirty-five PET/CT studies (74.5%) were positive. However, only 18 (38.3%) were supportive of the final diagnosis. In three patients (6.4%), PET/CT was considered diagnostic as none of the other investigations including contrast-enhanced computed tomography of chest and abdomen, and directed tissue sampling could lead to the final diagnosis. All these three patients were diagnosed as aortoarteritis. Fluorine-18 fluorodeoxyglucose positron emission tomography/computed tomography is an important emerging modality in the workup of PUO. It supported the final diagnosis in 38% of our patients and was diagnostic in 6.4% of patients. Thus, PET/CT should only be considered as second-line investigation for the diagnostic evaluation of PUO; especially in suspected noninfectious inflammatory disorders

  9. Applications of X-ray Computed Tomography and Emission Computed Tomography

    International Nuclear Information System (INIS)

    Seletchi, Emilia Dana; Sutac, Victor

    2005-01-01

    Computed Tomography is a non-destructive imaging method that allows visualization of internal features within non-transparent objects such as sedimentary rocks. Filtering techniques have been applied to circumvent the artifacts and achieve high-quality images for quantitative analysis. High-resolution X-ray computed tomography (HRXCT) can be used to identify the position of the growth axis in speleothems by detecting subtle changes in calcite density between growth bands. HRXCT imagery reveals the three-dimensional variability of coral banding providing information on coral growth and climate over the past several centuries. The Nuclear Medicine imaging technique uses a radioactive tracer, several radiation detectors, and sophisticated computer technologies to understand the biochemical basis of normal and abnormal functions within the brain. The goal of Emission Computed Tomography (ECT) is to accurately determine the three-dimensional radioactivity distribution resulting from the radiopharmaceutical uptake inside the patient instead of the attenuation coefficient distribution from different tissues as obtained from X-ray Computer Tomography. ECT is a very useful tool for investigating the cognitive functions. Because of the low radiation doses associated with Positron Emission Tomography (PET), this technique has been applied in clinical research, allowing the direct study of human neurological diseases. (authors)

  10. Preliminary clinical study in patients with hemispatial neglect after stroke by neglect test battery and 99mTc-ECD single-photon emission computed tomography

    International Nuclear Information System (INIS)

    Yin Yafu; Li Xuena; Li Yaming; Gu Hui; Han Chunqi; Liu Hao

    2009-01-01

    Objective: To explore the presence, clinical characteristics, anatomical foci in image and mechanism of hemispatial neglect (HSN), neglect test battery and single-photon emission computed tomography (SPECT) regional cerebral blood flow (rCBF) imaging were performed on patients with stroke. Methods: Thirty dextromanual patients who were diagnosed as having unilateral stroke clinically were recruited. A neglect test battery including line bisection test, star cancellation test and drawing test was performed on the subjects. The severity of neglect was measured on neglect tests. The lowest rCBF, the range with decreased rCBF, number of the foci with decreased rCBF, the flow deficit size and the total number of pixels in the foci were measured on SPECT rCBF imaging. Results: Twenty-five patients were diagnosed as having HSN by the neglect test battery. Contralateral neglect (CN) and ipsilateral neglect (IN) were observed in both right and left hemisphere strokes. On SPECT imaging, the patients with neglect had decreased rCBF in the frontal cortex most often; followed by the parietal, occipital and temporal cortices; and basal ganglia and thalamus in some cases. The patients who had two or more regions damaged showed neglect more often and severity. The correlation coefficients between rCBF in the foci, the decreased percentage of rCBF of the foci and the severity of neglect were -0.119 (P>.05) and 0.221 (P>.05). The correlation coefficients between the range, number of foci, the flow deficit size, the total number of pixels of the foci and the severity of neglect were 0.537 (P<.05), 0.493 (P<.05), 0.561 (P<.05), 0.466 (P<.05), respectively. No difference between CN and IN on SPECT images reached statistical significance. Conclusions: The severity of neglect did not correlate with rCBF and the decreased percentage of rCBF in the foci, while it was significantly correlated with the range, number of foci, the flow deficit size and the total numbers of pixels of the foci

  11. Clinical evaluation of 99mTc-CPI myocardial perfusion single photon emission computerized tomography in the diagnosis of coronary heart disease

    International Nuclear Information System (INIS)

    Peng Changping

    1991-01-01

    Two normal subjects, 5 patients with old myocardial infarction (OMI) and 4 patients with angina pectoris were examined by rest single photon emission computerized tomography revealed that the right ventricular was not imaged, the left ventricular was well exposed in the normal subjects. All the 9 patients had defects in the left ventricle. comparison of SPECT with 99m Tc-CPI with selective coronary arteriography (SCA), echocardiography (UCG), dynamic electrocardiography (DCG) and electrocardiographic (ECG)-exercise test in the diagnosis of myocardial ischemia or necrosis has demonstrated the former to be more significantly sensitive than the latter four. Good agreement between SPECT and SCA has been confirmed

  12. Methods and instrumentation for positron emission tomography

    International Nuclear Information System (INIS)

    Mandelkern, M.A.; Phelps, M.E.

    1988-01-01

    This paper reports on positron emission tomography (PET), a technique for the noninvasive measurement of local tissue concentrations of injected radioactive tracers. Tracer kinetics techniques can be applied to this information to quantify physiologic function in human tissue. In the tracer method, a pharmaceutical is labeled by a radioactive atom. When introduced into the subject that molecule follows a physiologic pathway. The space- and time-dependent distribution of the radionuclide is obtained via an imaging technique. If the radiopharmaceutical is sufficiently analogous to a natural substrate or other substance of interest, a quantitative image can be translated into a physiologic measurement

  13. Contribution of positron emission tomography in neurology

    International Nuclear Information System (INIS)

    Salmon, E.; Franck, G.

    1992-01-01

    Positron Emission Tomography (PET) is a scanner technique using tracers labelled with shortlived radioisotopes which allows to study and quantify human metabolic processes or drug pharmacology in vivo. The technique is first applied in physiological studies. Sleep, normal brain metabolism or cerebral activations have been studied. The pharmacological approach concerns both drug distribution in the human brain and blood flow or metabolic variations under treatment. Main neurological applications in pathology are cerebrovascular disorders, diseases leading to dementia, epilepsy, movement disorders, and brain tumors. In each field of application, PET gives unique and frequently early informations. It nicely combines both dynamic informations and measurement precision. (author)

  14. Electrocardiographic gating in positron emission computed tomography

    International Nuclear Information System (INIS)

    Hoffman, E.J.; Phelps, M.E.; Wisenberg, G.; Schelbert, H.R.; Kuhl, D.E.

    1979-01-01

    Electrocardiographic (ECG) synchronized multiple gated data acquisition was employed with positron emission computed tomography (ECT) to obtain images of myocardial blood pool and myocardium. The feasibility and requirements of multiple gated data acquisition in positron ECT were investigated for 13NH3, ( 18 F)-2-fluoro-2-D-deoxyglucose, and ( 11 C)-carboxyhemoglobin. Examples are shown in which image detail is enhanced and image interpretation is facilitated when ECG gating is employed in the data collection. Analysis of count rate data from a series of volunteers indicates that multiple, statistically adequate images can be obtained under a multiple gated data collection format without an increase in administered dose

  15. Positron emission tomography/computed tomography imaging and rheumatoid arthritis.

    Science.gov (United States)

    Wang, Shi-Cun; Xie, Qiang; Lv, Wei-Fu

    2014-03-01

    Rheumatoid arthritis (RA) is a phenotypically heterogeneous, chronic, destructive inflammatory disease of the synovial joints. A number of imaging tools are currently available for evaluation of inflammatory conditions. By targeting the upgraded glucose uptake of infiltrating granulocytes and tissue macrophages, positron emission tomography/computed tomography with fluorine-18 fluorodeoxyglucose ((18) F-FDG PET/CT) is available to delineate inflammation with high sensitivity. Recently, several studies have indicated that FDG uptake in affected joints reflects the disease activity of RA. In addition, usage of FDG PET for the sensitive detection and monitoring of the response to treatment has been reported. Combined FDG PET/CT enables the detailed assessment of disease in large joints throughout the whole body. These unique capabilities of FDG PET/CT imaging are also able to detect RA-complicated diseases. Therefore, PET/CT has become an excellent ancillary tool to assess disease activity and prognosis in RA. © 2014 Asia Pacific League of Associations for Rheumatology and Wiley Publishing Asia Pty Ltd.

  16. Incidental head and neck findings on 18F-fluoro-deoxy-glucose positron emission tomography computed tomography.

    Science.gov (United States)

    Williams, S P; Kinshuck, A J; Williams, C; Dwivedi, R; Wieshmann, H; Jones, T M

    2015-09-01

    The overlapping risk factors for lung and head and neck cancer present a definite risk of synchronous malignant pathology. This is the first study to specifically review incidental positron emission tomography computed tomography findings in the head and neck region in lung carcinoma patients. A retrospective review was performed of all lung cancer patients who underwent positron emission tomography computed tomography imaging over a five-year period (January 2008 - December 2012), identified from the Liverpool thoracic multidisciplinary team database. Six hundred and nine patients underwent positron emission tomography computed tomography imaging over this period. In 76 (12.5 per cent) scans, incidental regions of avid 18F-fluoro-deoxy-glucose uptake were reported in the head and neck region. In the 28 patients who were fully investigated, there were 4 incidental findings of malignancy. In lung cancer patients undergoing investigative positron emission tomography computed tomography scanning, a significant number will also present with areas of clinically significant 18F-fluoro-deoxy-glucose uptake in the head and neck region. Of these, at least 5 per cent may have an undiagnosed malignancy.

  17. Cardiological applications of positron emission tomography

    International Nuclear Information System (INIS)

    Schelbert, H.; Czernin, J.

    1994-01-01

    Positron emission tomography (PET) expands the diagnostic possibilities of nuclear medicine techniques for the diagnosis of coronary artery disease and, especially, for the identification of myocardial viability. The presence of coronary artery disease can be detected by evaluation of myocardial blood flow at rest and during pharmacologically induced hyperemia with a sensitivity of 84 to 98% and a specificity of 78 to 100% according to recent studies. Comparative investigations in the same patients have demonstrated a significant gain in the diagnostic accuracy of PET as compared with single photon emission computed tomography (SPECT). PET has influenced even more profoundly the identification of myocardial viability. Measured against the functional outcome of regional contractile function after successful revascularization, an increase of glucose utilization relative to regional myocardial blood flow is 77 to 85% accurate in identifying reversibly injured myocardium. Conversely, PET is 78 to 92% accurate in identifying myocardium as irreversibly injured when pre-operative glucose uptake was reduced or absent. Recent studies have indicated that it is possible to predict to some extent post-revascularization improvement in left ventricular function as well as in congestive heart failure related symptoms in patients with ischemic cardiomyopathy. Furthermore, PET can identify patients with an increased risk of mortality and morbidity as a result of ischemic heart disease and, thus, stratify patients to the most appropriate and cost-effective therapeutic approach. (authors)

  18. Positron emission tomography of the lung

    International Nuclear Information System (INIS)

    Wollmer, P.

    1984-01-01

    Positron emission tomography enables the distribution of positron emitting isotopes to be imaged in a transverse plane through the body and the regional concentration of the isotope to be measured quantitatively. This thesis reports some applications of positron emission tomography to studies of pulmonary pathophysiology. Measurements in lung phantoms showed that regional lung density could be measured from a transmission tomogram obtained with an external source of positron emitting isotope. The regional, fractional blood volume was measured after labelling the blood with carbon-11-monoxide. Regional extravascular lung density (lung tissue and interstitial water per unit thoracic volume) was obtained by subtracting fractional blood volume from lung density. Measurements in normal subjects revealed large regional variations in lung density and fractional blood volume in the supine posture. Extravascular lung density showed a more uniform distribution. The technique has been used to study patients with chronic interstitial pulmonary oedema, pulmonary sarcoidosis and fibrosis, pulmonary arterial hypertension and patients with intracardiac, left-to-right shunt. Tomographic measurements of pulmonary tissue concentration of radionuclides are difficult, since corrections for the blood content and the inflation of the lung must be applied. A simultaneous measurement of lung density and fractional blood volume allows such corrections to be made and the extravascular tracer concentration to be calculated. This has been applied to measurements of the tissue penetration of carbon-11-labelled erythromycin in patients with lobar pneumonia. (author)

  19. Positron emission tomography with gamma camera in coincidence mode

    International Nuclear Information System (INIS)

    Hertel, A.; Hoer, G.

    1999-01-01

    Positron emission tomography using F-18 FDG has been estbalished in clinical diagnostics with first indications especially in oncology. To install a conventional PET tomography (dedicated PET) is financially costly and restricted to PET examinations only. Increasing demand for PET diagnostics on one hand and restricted financial resources in the health system on the other hand led industry to develop SPECT cameras to be operated in coincidence mode (camera PET) in order to offer nuclear medicine physicians cost-effective devices for PET diagnostic. At the same time camera PET is inferior to conventional PET regarding sensitivity and detection-efficiency for 511 keV photons. Does camera-PET offer a reliable alternative to conventional PET? The first larger comparative studies are now available, so a first apraisal about the technical clinical performance of camera-PET can be done. (orig.) [de

  20. Positron emission tomography (PET) for oncologic applications in oral region

    International Nuclear Information System (INIS)

    Shozushima, Masanori; Terasaki, Kazunori

    2004-01-01

    A rapidly emerging clinical application of positron emission tomography (PET) is the detection of cancer with radionuclide tracer, because it provides information unavailable by ultrasound, computed tomography or magnetic resonance imaging. The most commonly used radiotracer for PET oncologic imaging is fluorine-18-labeled fluorodeoxyglucose ( 18 F-FDG). Early studies show PET has potential value in viewing the region of the tumor, detecting, staging, grading, monitoring response to anticancer therapy, and differentiating recurrent or residual disease from post treatment changes. However, limitations of FDG-PET in the head and neck region, namely, physiological FDG uptake in the salivary glands and palatine tonsils, have been reported, increasing the false-positive rates in image interpretation. This review was designed to address these distinctions of oral cancer PET imaging: specialization of PET equipment, cancer cell metabolism, proliferation and tracers, clinical diagnosis of oral cancer with PET, pitfalls in oncologic diagnosis with FDG-PET imaging. (author)

  1. F-18-fluorodeoxyglucose-positron emission tomography in colorectal cancer

    International Nuclear Information System (INIS)

    Joerg, L.; Langsteger, W.

    2002-01-01

    Whole-body positron emission tomography (PET) with the radiolabeled glucose analog F-18-fluorodeoxyglucose (F-18-FDG) is a sensitive diagnostic tool that images tumors based on increased uptake of glucose. Several recent publications have shown that F-18-fluorodeoxyglucose-positron emission tomography is more sensitive than computed-tomography (CT) in detecting colorectal cancer. In patients with increasing CEA (carcinoembryonic antigen) and no evidence of recurrent disease on CT F-18-fluorodeoxyglucose-positron emission tomography often detects recurrent cancer. In all, patient management seems to be changed in about 25 % of patients who undergo F-18-fluorodeoxyglucose-positron emission tomography in addition to standard staging procedure. Limited reports to date on both chemotherapy and radiotherapy support the role of F-18-fluorodeoxyglucose-positron emission tomography in assessing treatment response. Also regarding preoperative staging of primary colorectal cancer the literature is very limited. (author)

  2. Function's evaluation, perfusion and metabolism by positron emission tomography associated with multislice tomography (PET/CT) in patient with previous diagnosis to myocardial necrosis

    International Nuclear Information System (INIS)

    Campisi, Roxana; Aramayo, Natalia; Osorio, Amilcar

    2010-01-01

    A 64-years-old male patient with previous diagnosis of myocardial necrosis as assessed by myocardial perfusion gated single photon emission computed tomography (gSPECT) with 3-vessel-disease, left ventricular dysfunction and symptomatic by epigastric pain. The patient was referred for myocardial viability assessment by positron emission tomography (PET) to define clinical management decision. (authors) [es

  3. Evaluation of brain tumours by positron emission tomography

    International Nuclear Information System (INIS)

    Schober, O.; Meyer, G.J.

    1992-01-01

    The clinical application of positron emission tomography (PET) for the evaluation of brain tumours has proved clinically valuable. Amino acid and FDG-glucose PET provide information on the degree of malignancy and the prognosis during the initial evaluation. After therapy, the residual tumour can be visualized and recurrence can be differentiated from necrosis. Amino acids have advantages over FDG for these clinical applications. Blood flow, oxygen extraction and metabolism and blood-brain barrier permeability are of minor relevance in clinical situations. Comparison of PET with MRI and MRS will provide new data. The quantitative information of the unique information yielded by PET will lead to a more important clinical role, as will the extrapolation of this experience to the SPECT technique. (orig.) [de

  4. Evaluation of the system performance and clinical images of the single photon emission computed tomography for head using ring arranged detector

    International Nuclear Information System (INIS)

    Ejiri, Kazutaka; Toyama, Hiroshi; Kato, Yukihiko; Narita, Takae; Takeshita, Gen; Takeuchi, Akira; Koga, Sukehiko

    1988-01-01

    To evaluate the system performance, several preoperational fundamental tests of single photon emission computed tomography (SPECT) were carried out. Spatial resolutions (FWHM) measured with the point-spread functions of a 99m Tc line source were 12.5 mm with a high resolution (HR) collimator and 17.2 mm with a high sensitivity (HS) collimator respectively. Slice thicknesses (FWHM) obtained from the profile curves of slice images were 17.5 mm (HR) and 29.0 mm (HS) at the center of rotation. System sensitivities were 5.4 kcps/slice (HR) and 27.8 kcps/slice (HS). Uniformities calculated from the SPECT images of a pool phantom were 4.7 % (HR) and 2.7 % (HS) at the condition of 3000 kcounts to be acquired. SPECT images of the HEADTOME SET-031 were considered very useful to diagnose the cerebrovascular disease. (author)

  5. Clinical evaluation of iterative reconstruction (ordered-subset expectation maximization) in dynamic positron emission tomography: quantitative effects on kinetic modeling with N-13 ammonia in healthy subjects

    DEFF Research Database (Denmark)

    Hove, Jens D; Rasmussen, Rune; Freiberg, Jacob

    2008-01-01

    BACKGROUND: The purpose of this study was to investigate the quantitative properties of ordered-subset expectation maximization (OSEM) on kinetic modeling with nitrogen 13 ammonia compared with filtered backprojection (FBP) in healthy subjects. METHODS AND RESULTS: Cardiac N-13 ammonia positron...... emission tomography (PET) studies from 20 normal volunteers at rest and during dipyridamole stimulation were analyzed. Image data were reconstructed with either FBP or OSEM. FBP- and OSEM-derived input functions and tissue curves were compared together with the myocardial blood flow and spillover values...... and OSEM flow values were observed with a flow underestimation of 45% (rest/dipyridamole) in the septum and of 5% (rest) and 15% (dipyridamole) in the lateral myocardial wall. CONCLUSIONS: OSEM reconstruction of myocardial perfusion images with N-13 ammonia and PET produces high-quality images for visual...

  6. Retroperitoneal Endometriosis: A Possible Cause of False Positive Finding at 18F-Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography

    International Nuclear Information System (INIS)

    Maffione, Anna Margherita; Panzavolta, Riccardo; Lisato, Laura Camilla; Ballotta, Maria; D'Isanto, Mariangela Zanforlini; Rubello, Domenico

    2015-01-01

    Endometriosis is a frequent and clinically relevant problem in young women. Laparoscopy is still the gold standard for the diagnosis of endometriosis, but frequently both morphologic and functional imaging techniques are involved in the diagnostic course before achieving a conclusive diagnosis. We present a case of a patient affected by infiltrating retroperitoneal endometriosis falsely interpreted as a malignant mass by contrast-enhanced magnetic resonance imaging and 18 F-fluorodeoxyglucose positron emission tomography/computed tomography

  7. Positron emission tomography of the heart

    Energy Technology Data Exchange (ETDEWEB)

    Schelbert, H.R.; Phelps, M.E.; Kuhl, D.E.

    1979-01-01

    Positron emission computed tomography (PCT) represents an important new tool for the noninvasive evaluation and, more importantly, quantification of myocardial performance. Most currently available techniques permit assessment of only one aspect of cardiac function, i.e., myocardial perfusion by gamma scintillation camera imaging with Thallium-201 or left ventricular function by echocardiography or radionuclide angiocardiography. With PCT it may become possible to study all three major segments of myocardial performance, i.e., regional blood flow, mechanical function and, most importantly, myocardial metabolism. Each of these segments can either be evaluated separately or in combination. This report briefly describes the principles and technological advantages of the imaging device, reviews currently available radioactive tracers and how they can be employed for the assessment of flow, function and metabolism; and, lastly, discusses possible applications of PCT for the study of cardiac physiology or its potential role in the diagnosis of cardiac disease.

  8. Neutron stimulated emission computed tomography: Background corrections

    International Nuclear Information System (INIS)

    Floyd, Carey E.; Sharma, Amy C.; Bender, Janelle E.; Kapadia, Anuj J.; Xia, Jessie Q.; Harrawood, Brian P.; Tourassi, Georgia D.; Lo, Joseph Y.; Kiser, Matthew R.; Crowell, Alexander S.; Pedroni, Ronald S.; Macri, Robert A.; Tajima, Shigeyuki; Howell, Calvin R.

    2007-01-01

    Neutron stimulated emission computed tomography (NSECT) is an imaging technique that provides an in-vivo tomographic spectroscopic image of the distribution of elements in a body. To achieve this, a neutron beam illuminates the body. Nuclei in the body along the path of the beam are stimulated by inelastic scattering of the neutrons in the beam and emit characteristic gamma photons whose unique energy identifies the element. The emitted gammas are collected in a spectrometer and form a projection intensity for each spectral line at the projection orientation of the neutron beam. Rotating and translating either the body or the beam will allow a tomographic projection set to be acquired. Images are reconstructed to represent the spatial distribution of elements in the body. Critical to this process is the appropriate removal of background gamma events from the spectrum. Here we demonstrate the equivalence of two background correction techniques and discuss the appropriate application of each

  9. Positron emission tomography of the heart

    International Nuclear Information System (INIS)

    Schelbert, H.R.; Phelps, M.E.; Kuhl, D.E.

    1979-01-01

    Positron emission computed tomography (PCT) represents an important new tool for the noninvasive evaluation and, more importantly, quantification of myocardial performance. Most currently available techniques permit assessment of only one aspect of cardiac function, i.e., myocardial perfusion by gamma scintillation camera imaging with Thallium-201 or left ventricular function by echocardiography or radionuclide angiocardiography. With PCT it may become possible to study all three major segments of myocardial performance, i.e., regional blood flow, mechanical function and, most importantly, myocardial metabolism. Each of these segments can either be evaluated separately or in combination. This report briefly describes the principles and technological advantages of the imaging device, reviews currently available radioactive tracers and how they can be employed for the assessment of flow, function and metabolism; and, lastly, discusses possible applications of PCT for the study of cardiac physiology or its potential role in the diagnosis of cardiac disease

  10. Applications of positron emission tomography to psychiatry

    International Nuclear Information System (INIS)

    Volkow, N.D.; Brodie, J.D.; Gomez-mont, F.

    1985-01-01

    The brain's inaccessibility has hampered investigation of the metabolic changes underlying the behavioral and psychological symptoms of psychiatric patients. Using positron emission transaxial tomography (PET) to study the functioning human brain opens the possibility of directly investigating the patterns of activity associated with mental illness. A major focus of present-day research in psychiatry has been to identify etiological agents that fit a medical model of psychiatric illness. Experiments seeking pathophysiological indices that would permit objective classification of psychiatric illnesses have failed to reveal consistent abnormalities. The lack of consistency is explained in part by research designs that deal with the brain as if it were a homogeneous organ. PET offers a unique technique for monitoring the regional biochemical activity that is associated with the different ''brain states'' and ''brain traits'' of normal subjects and psychiatric patients

  11. Positron emission tomography and basal ganglia functions

    Energy Technology Data Exchange (ETDEWEB)

    Kato, Motohiro; Otsuka, Makoto; Taniwaki, Koukyo; Hosokawa, Shinichi; Kuwabara, Yasuo; Ichiya, Yuichi [Kyushu Univ., Fukuoka (Japan). Faculty of Medicine

    1990-05-01

    With the advent of positron emission tomography (PET), studies on the human brain function and pathophysiology of brain damage have been extremely progressed. It is well-known that the basal ganglia plays an important role as one of the central nervous system involved in exercise regulation. More recently, the potential involvement of the basal ganglia in psychological processes, such as cognitive function, has been pointed out, receiving much attention. In spite of such a lot of studies, however, basal ganglia function remains unclear. This paper describes the relationships between PET findings and basal ganglia function. PET findings are discussed in relation to brain energy metabolism and striatal dopamine function. Pathophysiology of the basal ganglia are described in terms of the following diseases: Parkinson's disease, Parkinson's syndrome, progressive supranuclear palsy, Huntington's disease, and dystonia. Physiological backgrounds of the basal ganglia for PET images are also referred to. (N.K.) 75 refs.

  12. Positron emission tomography and basal ganglia functions

    International Nuclear Information System (INIS)

    Kato, Motohiro; Otsuka, Makoto; Taniwaki, Koukyo; Hosokawa, Shinichi; Kuwabara, Yasuo; Ichiya, Yuichi

    1990-01-01

    With the advent of positron emission tomography (PET), studies on the human brain function and pathophysiology of brain damage have been extremely progressed. It is well-known that the basal ganglia plays an important role as one of the central nervous system involved in exercise regulation. More recently, the potential involvement of the basal ganglia in psychological processes, such as cognitive function, has been pointed out, receiving much attention. In spite of such a lot of studies, however, basal ganglia function remains unclear. This paper describes the relationships between PET findings and basal ganglia function. PET findings are discussed in relation to brain energy metabolism and striatal dopamine function. Pathophysiology of the basal ganglia are described in terms of the following diseases: Parkinson's disease, Parkinson's syndrome, progressive supranuclear palsy, Huntington's disease, and dystonia. Physiological backgrounds of the basal ganglia for PET images are also referred to. (N.K.) 75 refs

  13. Contribution of positron emission tomography in pleural disease.

    Science.gov (United States)

    Duysinx, B; Corhay, J-L; Larock, M-P; Withofs, N; Bury, T; Hustinx, R; Louis, R

    2010-10-01

    Positron emission tomography (PET) now plays a clear role in oncology, especially in chest tumours. We discuss the value of metabolic imaging in characterising pleural pathology in the light of our own experience and review the literature. PET is particularly useful in characterising malignant pleural pathologies and is a factor of prognosis in mesothelioma. Metabolic imaging also provides clinical information for staging lung cancer, in researching the primary tumour in metastatic pleurisy and in monitoring chronic or recurrent pleural pathologies. PET should therefore be considered as a useful tool in the diagnosis of liquid or solid pleural pathologies. Copyright © 2010 SPLF. Published by Elsevier Masson SAS. All rights reserved.

  14. Clinical results with beta-methyl-p-(123I)iodophenylpentadecanoic acid, single-photon emission computed tomography in cardiac disease.

    Science.gov (United States)

    Nishimura, T; Uehara, T; Shimonagata, T; Nagata, S; Haze, K

    1994-01-01

    This study was undertaken to evaluate the relationships, between myocardial perfusion and metabolism. Simultaneous beta-methyl-p(123I)iodophenylpentadecanoic acid (123I-BMIPP) and thallium 201 myocardial single-photon emission computed tomography (SPECT) were performed in 25 patients with myocardial infarction (group A) and 16 patients with hypertrophic cardiomyopathy (group B). The severity scores of 123I-BMIPP and 201Tl myocardial SPECT images were evaluated semiquantitatively by segmental analysis. In Group A, dissociations between thallium- and 123I-BMIPP-imaged defects were frequently observed in patients with successful reperfusion compared with those with no reperfusion and those with reinfarction. In four patients with successful reperfusion, repeated 123I-BMIPP and 201Tl myocardial SPECT showed gradual improvement of the 123I-BMIPP severity score compared with the thallium severity score. In group B, dissociations between thallium- and 123I-BMIPP-imaged defects were also demonstrated in hypertrophic myocardium. In addition, nonhypertrophic myocardium also had decreased 123I-BMIPP uptake. In groups A and B, 123I-BMIPP severity scores correlated well with left ventricular function compared with thallium severity scores. These findings indicate that 123I-BMIPP is a suitable agent for the assessment of functional integrity, because left ventricular wall motion is energy dependent and 123I-BMIPP may reflect an aspect of myocardial energy production. This agent may be useful for the early detection and patient management of various heart diseases as an alternative to positron emission tomographic study.

  15. Use of Computed Tomography and Positron Emission Tomography/Computed Tomography for Staging of Local Extent in Patients With Malignant Pleural Mesothelioma

    OpenAIRE

    Frauenfelder, Thomas; Kestenholz, Peter; Hunziker, Roger; Nguyen, Thi Dan Linh; Fries, Martina; Veit-Haibach, Patrick; Husmann, Lars; Stahel, Rolf; Weder, Walter; Opitz, Isabelle

    2015-01-01

    PURPOSE The objective of this study was to determine the diagnostic value of computed tomography (CT) and positron emission tomography (PET)/CT for staging of malignant pleural mesothelioma (MPM) in patients undergoing induction chemotherapy. METHODS Sixty-two patients (median age, 61 years; female: n = 9) with proven MPM underwent CT after induction chemotherapy. Of these, 28 underwent additional PET/CT. Extrapleural pneumonectomy was performed for pathological TNM staging. Clinical TNM s...

  16. Acute Calculous Cholecystitis Missed on Computed Tomography and Ultrasound but Diagnosed with Fluorodeoxyglucose-Positron Emission Tomography/Computed Tomography

    Directory of Open Access Journals (Sweden)

    Carina Mari Aparici

    2016-01-01

    Full Text Available We present a case of a 69-year-old patient who underwent ascending aortic aneurysm repair with aortic valve replacement. On postsurgical day 12, he developed leukocytosis and low-grade fevers. The chest computed tomography (CT showed a periaortic hematoma which represents a postsurgical change from aortic aneurysm repair, and a small pericardial effusion. The abdominal ultrasound showed cholelithiasis without any sign of cholecystitis. Finally, a fluorodeoxyglucose (FDG-positron emission tomography (PET/CT examination was ordered to find the cause of fever of unknown origin, and it showed increased FDG uptake in the gallbladder wall, with no uptake in the lumen. FDG-PET/CT can diagnose acute cholecystitis in patients with nonspecific clinical symptoms and laboratory results.

  17. Fasciola Hepatica Mimicking Malignancy on 18F-Fluorodeoxyglucose-Positron Emission Tomography/Computed Tomography

    Science.gov (United States)

    Sürücü, Erdem; Demir, Yusuf; Dülger, Ahmet C.; Batur, Abdüssamed; Ölmez, Şehmus; Kitapçı, Mehmet T.

    2016-01-01

    A 48-year-old female with complaints of gastrointestinal symptoms such as abdominal pain, fatigue, vomiting, nausea, and weight loss was diagnosed with neuroendocrine tumor after removal of a 2 mm lesion from the stomach with endoscopic biopsy. Her magnetic resonance imaging that was performed due to on-going symptoms showed multiple linear hypointense lesions in the liver. Positron emission tomography/computed tomography (PET/CT) scan was performed for differential diagnosis, which showed high fluorodeoxyglucose (FDG) uptake in these lesions. Clinical and laboratory findings revealed the final diagnosis as Fasciola hepatica. The imaging features of this case is presented to aid in differentiating this infectious disease from malignancy and avoid misdiagnosis on FDG-PET/CT. PMID:27751978

  18. Fasciola Hepatica Mimicking Malignancy on 18F-Fluorodeoxyglucose-Positron Emission Tomography/Computed Tomography

    Directory of Open Access Journals (Sweden)

    Erdem Sürücü

    2016-10-01

    Full Text Available A 48-year-old female with complaints of gastrointestinal symptoms such as abdominal pain, fatigue, vomiting, nausea, and weight loss was diagnosed with neuroendocrine tumor after removal of a 2 mm lesion from the stomach with endoscopic biopsy. Her magnetic resonance imaging that was performed due to on-going symptoms showed multiple linear hypointense lesions in the liver. Positron emission tomography/computed tomography (PET/CT scan was performed for differential diagnosis, which showed high fluorodeoxyglucose (FDG uptake in these lesions. Clinical and laboratory findings revealed the final diagnosis as Fasciola hepatica. The imaging features of this case is presented to aid in differentiating this infectious disease from malignancy and avoid misdiagnosis on FDG-PET/CT.

  19. Efficacy of 3D-positron emission tomography/computed tomography for upper abdomen.

    Science.gov (United States)

    Murakami, Koji; Nakahara, Tadaki

    2014-04-01

    Recent advancement in computed tomography (CT) enables us to obtain high spatial resolution image and made it possible to construct extensive high-definition three-dimensional (3D) images. But a lack of contrast resolution in CT alone is still remained problem. Meanwhile, as fluorodeoxyglucose-positron emission tomography (PET) can visualize tumors in high contrast, we can create 3D images fusing the accumulation in tumors on PET/CT images. Such images can play the role of a "map of body" which makes it easy to understand the anatomical information before surgery. We also try to evaluate segmental liver function by using PET/CT fusion images. By using (11) C-methionine PET/contrast-enhanced CT, superior image quality compared to single photon emission computed tomography/CT can be obtained. CT, especially with contrast enhancement for obtaining anatomical imaging information plus PET for obtaining functional imaging information is a highly compatible combination, and adding these two types information will further increase clinical usefulness. © 2014 Japanese Society of Hepato-Biliary-Pancreatic Surgery.

  20. Cone beam tomography of the heart using single-photon emission-computed tomography

    International Nuclear Information System (INIS)

    Gullberg, G.T.; Christian, P.E.; Zeng, G.L.; Datz, F.L.; Morgan, H.T.

    1991-01-01

    The authors evaluated cone beam single-photon emission-computed tomography (SPECT) of the heart. A new cone beam reconstruction algorithm was used to reconstruct data collected from short scan acquisitions (of slightly more than 180 degrees) of a detector anteriorally traversing a noncircular orbit. The less than 360 degrees acquisition was used to minimize the attenuation artifacts that result from reconstructing posterior projections of 201T1 emissions from the heart. The algorithm includes a new method for reconstructing truncated projections of background tissue activity that eliminates reconstruction ring artifacts. Phantom and patient results are presented which compare a high-resolution cone beam collimator (50-cm focal length; 6.0-mm full width at half maximum [FWHM] at 10 cm) to a low-energy general purpose (LEGP) parallel hole collimator (8.2-mm FWHM at 10 cm) which is 1.33 times more sensitive. The cone beam tomographic results are free of reconstruction artifacts and show improved spatial and contrast resolution over that obtained with the LEGP parallel hole collimator. The limited angular sampling restrictions and truncation problems associated with cone beam tomography do not deter from obtaining diagnostic information. However, even though these preliminary results are encouraging, a thorough clinical study is still needed to investigate the specificity and sensitivity of cone beam tomography

  1. Positron emission tomography: Physics, instrumentation, and image analysis

    International Nuclear Information System (INIS)

    Porenta, G.

    1994-01-01

    Positron emission tomography (PET) is a noninvasive diagnostic technique that permits reconstruction of cross-sectional images of the human body which depict the biodistribution of PET tracer substances. A large variety of physiological PET tracers, mostly based on isotopes of carbon, nitrogen, oxygen, and fluorine is available and allows the in vivo investigation of organ perfusion, metabolic pathways and biomolecular processes in normal and diseased states. PET cameras utilize the physical characteristics of positron decay to derive quantitative measurements of tracer concentrations, a capability that has so far been elusive for conventional SPECT (single photon emission computed tomography) imaging techniques. Due to the short half lives of most PET isotopes, an on-site cyclotron and a radiochemistry unit are necessary to provide an adequate supply of PET tracers. While operating a PET center in the past was a complex procedure restricted to few academic centers with ample resources. PET technology has rapidly advanced in recent years and has entered the commercial nuclear medicine market. To date, the availability of compact cyclotrons with remote computer control, automated synthesis units for PET radiochemistry, high-performance PET cameras, and userfriendly analysis workstations permits installation of a clinical PET center within most nuclear medicine facilities. This review provides simple descriptions of important aspects concerning physics, instrumentation, and image analysis in PET imaging which should be understood by medical personnel involved in the clinical operation of a PET imaging center. (author)

  2. Impact of point spread function correction in standardized uptake value quantitation for positron emission tomography images. A study based on phantom experiments and clinical images

    International Nuclear Information System (INIS)

    Nakamura, Akihiro; Tanizaki, Yasuo; Takeuchi, Miho

    2014-01-01

    While point spread function (PSF)-based positron emission tomography (PET) reconstruction effectively improves the spatial resolution and image quality of PET, it may damage its quantitative properties by producing edge artifacts, or Gibbs artifacts, which appear to cause overestimation of regional radioactivity concentration. In this report, we investigated how edge artifacts produce negative effects on the quantitative properties of PET. Experiments with a National Electrical Manufacturers Association (NEMA) phantom, containing radioactive spheres of a variety of sizes and background filled with cold air or water, or radioactive solutions, showed that profiles modified by edge artifacts were reproducible regardless of background μ values, and the effects of edge artifacts increased with increasing sphere-to-background radioactivity concentration ratio (S/B ratio). Profiles were also affected by edge artifacts in complex fashion in response to variable combinations of sphere sizes and S/B ratios; and central single-peak overestimation up to 50% was occasionally noted in relatively small spheres with high S/B ratios. Effects of edge artifacts were obscured in spheres with low S/B ratios. In patient images with a variety of focal lesions, areas of higher radioactivity accumulation were generally more enhanced by edge artifacts, but the effects were variable depending on the size of and accumulation in the lesion. PET images generated using PSF-based reconstruction are therefore not appropriate for the evaluation of SUV. (author)

  3. [F-18]-fluorodeoxyglucose positron emission tomography for targeting radiation dose escalation for patients with glioblastoma multiforme: Clinical outcomes and patterns of failure

    International Nuclear Information System (INIS)

    Douglas, James G.; Stelzer, Keith J.; Mankoff, David A.; Tralins, Kevin S.; Krohn, Kenneth A.; Muzi, Mark; Silbergeld, Daniel L.; Rostomily, Robert C.; Scharnhorst, Jeffrey B.S.; Spence, Alexander M.

    2006-01-01

    Purpose: [F-18]-fluorodeoxyglucose positron emission tomography (FDG-PET) imaging for brain tumors has been shown to identify areas of active disease. Radiation dose escalation in the treatment of glioblastoma multiforme may lead to improved disease control. Based on these premises, we initiated a prospective study of FDG-PET for the treatment planning of radiation dose escalation for the treatment of glioblastoma multiforme. Methods and Materials: Forty patients were enrolled. Patients were treated with standard conformal fractionated radiotherapy with volumes defined by MRI imaging. When patients reached a dose of 45-50.4 Gy, they underwent FDG-PET imaging for boost target delineation, for an additional 20 Gy (2 Gy per fraction) to a total dose of 79.4 Gy (n = 30). Results: The estimated 1-year and 2-year overall survival (OS) for the entire group was 70% and 17%, respectively, with a median overall survival of 70 weeks. The estimated 1-year and 2-year progression-free survival (PFS) was 18% and 3%, respectively, with a median of 24 weeks. No significant improvements in OS or PFS were observed for the study group in comparison to institutional historical controls. Conclusions: Radiation dose escalation to 79.4 Gy based on FDG-PET imaging demonstrated no improvement in OS or PFS. This study establishes the feasibility of integrating PET metabolic imaging into radiotherapy treatment planning

  4. [Impact of point spread function correction in standardized uptake value quantitation for positron emission tomography images: a study based on phantom experiments and clinical images].

    Science.gov (United States)

    Nakamura, Akihiro; Tanizaki, Yasuo; Takeuchi, Miho; Ito, Shigeru; Sano, Yoshitaka; Sato, Mayumi; Kanno, Toshihiko; Okada, Hiroyuki; Torizuka, Tatsuo; Nishizawa, Sadahiko

    2014-06-01

    While point spread function (PSF)-based positron emission tomography (PET) reconstruction effectively improves the spatial resolution and image quality of PET, it may damage its quantitative properties by producing edge artifacts, or Gibbs artifacts, which appear to cause overestimation of regional radioactivity concentration. In this report, we investigated how edge artifacts produce negative effects on the quantitative properties of PET. Experiments with a National Electrical Manufacturers Association (NEMA) phantom, containing radioactive spheres of a variety of sizes and background filled with cold air or water, or radioactive solutions, showed that profiles modified by edge artifacts were reproducible regardless of background μ values, and the effects of edge artifacts increased with increasing sphere-to-background radioactivity concentration ratio (S/B ratio). Profiles were also affected by edge artifacts in complex fashion in response to variable combinations of sphere sizes and S/B ratios; and central single-peak overestimation up to 50% was occasionally noted in relatively small spheres with high S/B ratios. Effects of edge artifacts were obscured in spheres with low S/B ratios. In patient images with a variety of focal lesions, areas of higher radioactivity accumulation were generally more enhanced by edge artifacts, but the effects were variable depending on the size of and accumulation in the lesion. PET images generated using PSF-based reconstruction are therefore not appropriate for the evaluation of SUV.

  5. Clinical value of iodine-123 beta-methyliodophenyl pentadecanoic acid (BMIPP) myocardial single photon emission computed tomography for predicting cardiac death among patients with chronic heart failure

    International Nuclear Information System (INIS)

    Sasaki, Ryu; Usui, Takashi; Mitani, Isao

    2003-01-01

    In the present study, the effectiveness of 123 I-β-methyliodophenyl pentadecanoic acid (BMIPP) single photon emission computed tomography (SPECT) for predicting cardiac death of patients with chronic heart failure was evaluated. Abnormalities of fatty acid metabolism are found in patients with chronic heart failure and BMIPP was developed as a tracer for scintigraphic assessment of myocardial fatty acid utilization. The study group comprised 74 patients with chronic heart failure with a left ventricular ejection fraction (LVEF) 201 Tl SPECT and BMIPP SPECT. The uptake of tracer was scored semiquantitatively from 0 (normal) to 4 (defect) in 20 segments and a total defect score (TDS) for all 20 segments was calculated. On planar images the mediastinum to heart count ratio (H/M) was calculated for the BMIPP and Tl studies, and the H/M BMIPP :H/M Tl (H/M BMIPP divided by H/M Tl ) was also calculated. The mean follow-up period was 660 days and there were 17 cases of cardiac death. Multivariate analysis identified H/M BMIPP :H/M Tl (p BMIPP :H/M Tl was situated to the left relative to LVEF. Analysis of the myocardial metabolism by BMIPP SPECT can predict the high-risk patients with chronic heart failure. (author)

  6. High-resolution PET [Positron Emission Tomography] for Medical Science Studies

    Science.gov (United States)

    Budinger, T. F.; Derenzo, S. E.; Huesman, R. H.; Jagust, W. J.; Valk, P. E.

    1989-09-01

    One of the unexpected fruits of basic physics research and the computer revolution is the noninvasive imaging power available to today's physician. Technologies that were strictly the province of research scientists only a decade or two ago now serve as the foundations for such standard diagnostic tools as x-ray computer tomography (CT), magnetic resonance imaging (MRI), magnetic resonance spectroscopy (MRS), ultrasound, single photon emission computed tomography (SPECT), and positron emission tomography (PET). Furthermore, prompted by the needs of both the practicing physician and the clinical researcher, efforts to improve these technologies continue. This booklet endeavors to describe the advantages of achieving high resolution in PET imaging.

  7. Quality assurance and radiation safety in positron emission tomography

    International Nuclear Information System (INIS)

    Kmetyuk, Ya.V.; Radosh, H.V.; Bezshyyko, O.A.; Golinka-Bezshyyko, L.O.; Kadenko, I.M.; Kazinova, O.A.; Nagai, A.O.

    2012-01-01

    Scientific studies, clinical experience and economic analysis have shown that the positron emission tomography (PET) is clinically and cost effective cancer diagnostics method. Combined PET and computed tomography (PET/CT) has proven clinical utility, particularly in the diagnosis, staging or restaging malignant disease and metastases, surgical planning, radiation therapy planning and evaluation of treatment response. The use of PET/CT has grown substantially in the past few years, with an increasing number of hospitals and installations of PET/CT imaging centers each year. In the same time combination of 2 procedures, each of which impart a radiation dose and, as a result, increases the deleterious influence for health, creates additional radiation safety issues. In these conditions the role of quality assurance (QA) and quality control (QC) programs is getting more and more important. We considered main QA and radiation safety requirements for whole PET technology chain from radio-pharmacy facilities to PET/CT scanning and patient release criteria. All these issues were considered and assessed having the example of PET facilities and technology chain of All-Ukrainian Center for Radiosurgery of the Clinical Hospital 'Feofania'

  8. A continuation method for emission tomography

    International Nuclear Information System (INIS)

    Lee, M.; Zubal, I.G.

    1993-01-01

    One approach to improved reconstructions in emission tomography has been the incorporation of additional source information via Gibbs priors that assume a source f that is piecewise smooth. A natural Gibbs prior for expressing such constraints is an energy function E(f,l) defined on binary valued line processes l as well as f. MAP estimation leads to the difficult problem of minimizing a mixed (continuous and binary) variable objective function. Previous approaches have used Gibbs 'potential' functions, φ(f v ) and φ(f h ), defined solely on spatial derivatives, f v and f h , of the source. These φ functions implicitly incorporate line processes, but only in an approximate manner. The correct φ function, φ * , consistent with the use of line processes, leads to difficult minimization problems. In this work, the authors present a method wherein the correct φ * function is approached through a sequence of smooth φ functions. This is the essence of a continuation method in which the minimum of the energy function corresponding to one member of the φ function sequence is used as an initial condition for the minimization of the next, less approximate, stage. The continuation method is implemented using a GEM-ICM procedure. Simulation results show improvement using the continuation method relative to using φ * alone, and to conventional EM reconstructions

  9. Amorphous silicon detectors in positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Conti, M. (Istituto Nazionale di Fisica Nucleare, Pisa (Italy) Lawrence Berkeley Lab., CA (USA)); Perez-Mendez, V. (Lawrence Berkeley Lab., CA (USA))

    1989-12-01

    The physics of the detection process is studied and the performances of different Positron Emission Tomography (PET) system are evaluated by theoretical calculation and/or Monte Carlo Simulation (using the EGS code) in this paper, whose table of contents can be summarized as follows: a brief introduction to amorphous silicon detectors and some useful equation is presented; a Tantalum/Amorphous Silicon PET project is studied and the efficiency of the systems is studied by Monte Carlo Simulation; two similar CsI/Amorphous Silicon PET projects are presented and their efficiency and spatial resolution are studied by Monte Carlo Simulation, light yield and time characteristics of the scintillation light are discussed for different scintillators; some experimental result on light yield measurements are presented; a Xenon/Amorphous Silicon PET is presented, the physical mechanism of scintillation in Xenon is explained, a theoretical estimation of total light yield in Xenon and the resulting efficiency is discussed altogether with some consideration of the time resolution of the system; the amorphous silicon integrated electronics is presented, total noise and time resolution are evaluated in each of our applications; the merit parameters {epsilon}{sup 2}{tau}'s are evaluated and compared with other PET systems and conclusions are drawn; and a complete reference list for Xenon scintillation light physics and its applications is presented altogether with the listing of the developed simulation programs.

  10. Amorphous silicon detectors in positron emission tomography

    International Nuclear Information System (INIS)

    Conti, M.; Perez-Mendez, V.

    1989-12-01

    The physics of the detection process is studied and the performances of different Positron Emission Tomography (PET) system are evaluated by theoretical calculation and/or Monte Carlo Simulation (using the EGS code) in this paper, whose table of contents can be summarized as follows: a brief introduction to amorphous silicon detectors and some useful equation is presented; a Tantalum/Amorphous Silicon PET project is studied and the efficiency of the systems is studied by Monte Carlo Simulation; two similar CsI/Amorphous Silicon PET projects are presented and their efficiency and spatial resolution are studied by Monte Carlo Simulation, light yield and time characteristics of the scintillation light are discussed for different scintillators; some experimental result on light yield measurements are presented; a Xenon/Amorphous Silicon PET is presented, the physical mechanism of scintillation in Xenon is explained, a theoretical estimation of total light yield in Xenon and the resulting efficiency is discussed altogether with some consideration of the time resolution of the system; the amorphous silicon integrated electronics is presented, total noise and time resolution are evaluated in each of our applications; the merit parameters ε 2 τ's are evaluated and compared with other PET systems and conclusions are drawn; and a complete reference list for Xenon scintillation light physics and its applications is presented altogether with the listing of the developed simulation programs

  11. A case of skeletal tuberculosis and psoas abscess: disease activity evaluated using (18) F-fluorodeoxyglucose positron emission tomography-computed tomography.

    Science.gov (United States)

    Kimizuka, Yoshifumi; Ishii, Makoto; Murakami, Koji; Ishioka, Kota; Yagi, Kazuma; Ishii, Ken; Watanabe, Kota; Soejima, Kenzo; Betsuyaku, Tomoko; Hasegawa, Naoki

    2013-11-14

    Psoas abscess complicating tuberculous spondylitis is a rare morbidity in extrapulmonary tuberculosis. There are no established guidelines for evaluating the clinical response of psoas abscess. Although several studies have shown that positron emission tomography-computed tomography with 18 F-fluorodeoxyglucose can play a potential role in diagnosing multifocal tuberculosis and monitoring the clinical response of pulmonary tuberculosis, to our knowledge, this is the first report demonstrating that positron emission tomography-computed tomography is useful for evaluating local inflammation and disease activity of a tuberculous psoas abscess. We report a case of multifocal bone and lymph node tuberculosis with concomitant lumbar psoas abscess in a 77-year-old man, along with a literature review. An initial positron emission tomography-computed tomography scan showed intense 18 F-fluorodeoxyglucose accumulation in the sternum, ribs, vertebrae, and lymph nodes. The patient was successfully treated with antitubercular agents and computed tomography-guided drainage therapy. A follow-up positron emission tomography-computed tomography after abscess drainage and 9 months of antitubercular drug treatment revealed that the majority of lesions improved; however, protracted inflammation surrounding the psoas abscess was still observed. These results indicate that disease activity of psoas abscess can remain, even after successful drainage and antitubercular medication regime of appropriate duration. We have successfully followed up the extent of skeletal tuberculosis complicated with psoas abscess by positron emission tomography-computed tomography. In this patient, positron emission tomography-computed tomography is useful for evaluating the disease activity of tuberculous psoas abscess and for assessing the appropriate duration of antitubercular drug therapy in psoas abscess.

  12. A case of skeletal tuberculosis and psoas abscess: disease activity evaluated using 18 F-fluorodeoxyglucose positron emission tomography-computed tomography

    International Nuclear Information System (INIS)

    Kimizuka, Yoshifumi; Hasegawa, Naoki; Ishii, Makoto; Murakami, Koji; Ishioka, Kota; Yagi, Kazuma; Ishii, Ken; Watanabe, Kota; Soejima, Kenzo; Betsuyaku, Tomoko

    2013-01-01

    Psoas abscess complicating tuberculous spondylitis is a rare morbidity in extrapulmonary tuberculosis. There are no established guidelines for evaluating the clinical response of psoas abscess. Although several studies have shown that positron emission tomography-computed tomography with 18 F-fluorodeoxyglucose can play a potential role in diagnosing multifocal tuberculosis and monitoring the clinical response of pulmonary tuberculosis, to our knowledge, this is the first report demonstrating that positron emission tomography-computed tomography is useful for evaluating local inflammation and disease activity of a tuberculous psoas abscess. We report a case of multifocal bone and lymph node tuberculosis with concomitant lumbar psoas abscess in a 77-year-old man, along with a literature review. An initial positron emission tomography-computed tomography scan showed intense 18 F-fluorodeoxyglucose accumulation in the sternum, ribs, vertebrae, and lymph nodes. The patient was successfully treated with antitubercular agents and computed tomography-guided drainage therapy. A follow-up positron emission tomography-computed tomography after abscess drainage and 9 months of antitubercular drug treatment revealed that the majority of lesions improved; however, protracted inflammation surrounding the psoas abscess was still observed. These results indicate that disease activity of psoas abscess can remain, even after successful drainage and antitubercular medication regime of appropriate duration. We have successfully followed up the extent of skeletal tuberculosis complicated with psoas abscess by positron emission tomography-computed tomography. In this patient, positron emission tomography-computed tomography is useful for evaluating the disease activity of tuberculous psoas abscess and for assessing the appropriate duration of antitubercular drug therapy in psoas abscess

  13. Axial positrons emission tomography: from mouse to human brain imaging

    International Nuclear Information System (INIS)

    Brard, Emmanuel

    2013-01-01

    Positrons emission tomography is a nuclear imaging technics using nuclear decays. It is used both in clinical and preclinical studies. The later requires the use of small animals such as the mouse. The objective is to obtain the best signal with the best spatial resolution. Yet, a weight ratio between humans and mice indicates the need of a sub-millimeter resolution. A conventional scanner is based on detection modules surrounding the object to image and arranged perpendicularly. This implies a strong relationship between efficiency and spatial resolution. This work focuses on the axial geometry in which detection modules are arranged parallel to the object. This limits the relationship between the figures of merit, leading to both high spatial resolution and efficiency. The simulations of prototypes showed great perspectives in term of sub-millimeter resolution with efficiencies of 15 or 40% according to the scanner's axial extension. These results indicate great perspectives for both clinical and preclinical imaging. (author)

  14. A Case of Corticobasal Degeneration Studied with Positron Emission Tomography

    Directory of Open Access Journals (Sweden)

    H. Nagasawa

    1993-01-01

    Full Text Available We measured cerebral blood flow, oxygen metabolism, glucose utilization, and dopamine metabolism in the brain of a patient with corticobasal degeneration using positron emission tomography (PET. The clinical picture is distinctive, comprising features referable to both cortical and basal ganglionic dysfunction. Brain imagings of glucose and dopamine metabolism can demonstrate greater abnormalities in the cerebral cortex and in the striatum contralateral to the more affected side than those of blood flow and oxygen metabolism. This unique combination study measuring both cerebral glucose utilization and dopamine metabolism in the nigrostriatal system can provide efficient information about the dysfunctions which are correlated with individual clinical symptoms, and this study is essential to diagnosis of corticobasal degeneration.

  15. Positron emission tomography for staging of oesophageal and gastroesophageal malignancy

    NARCIS (Netherlands)

    Kole, AC; Plukker, JT; Nieweg, OE; Vaalburg, W

    Positron emission tomography (PET) with [F-18]-fluoro-2-deoxy-D-glucose (FDG) was prospectively investigated as a means of detecting metastatic disease in patients with oesophageal tumours and compared with computerized tomography (CT), with the surgical findings as a gold standard. Twenty-six

  16. Positron emission tomography of incidentally detected small pulmonary nodules

    DEFF Research Database (Denmark)

    Fischer, B M; Mortensen, J; Dirksen, A

    2004-01-01

    The aim of this study was to assess the value of fluorodeoxyglucose positron emission tomography (FDG PET) imaging of small pulmonary nodules incidentally detected by spiral computed tomography (CT) in a high-risk population. Ten patients (five females, five males, aged 54-72 years) were recruited...

  17. Biological imaging in radiation therapy: role of positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Nestle, Ursula; Hentschel, Michael; Grosu, Anca-Ligia [Departments of Radiation Oncology, University of Freiburg, Robert Koch Str. 3, 79106 Freiburg (Germany); Weber, Wolfgang [Nuclear Medicine, University of Freiburg, Robert Koch Str. 3, 79106 Freiburg (Germany)], E-mail: ursula.nestle@uniklinik-freiburg.de

    2009-01-07

    In radiation therapy (RT), staging, treatment planning, monitoring and evaluation of response are traditionally based on computed tomography (CT) and magnetic resonance imaging (MRI). These radiological investigations have the significant advantage to show the anatomy with a high resolution, being also called anatomical imaging. In recent years, so called biological imaging methods which visualize metabolic pathways have been developed. These methods offer complementary imaging of various aspects of tumour biology. To date, the most prominent biological imaging system in use is positron emission tomography (PET), whose diagnostic properties have clinically been evaluated for years. The aim of this review is to discuss the valences and implications of PET in RT. We will focus our evaluation on the following topics: the role of biological imaging for tumour tissue detection/delineation of the gross tumour volume (GTV) and for the visualization of heterogeneous tumour biology. We will discuss the role of fluorodeoxyglucose-PET in lung and head and neck cancer and the impact of amino acids (AA)-PET in target volume delineation of brain gliomas. Furthermore, we summarize the data of the literature about tumour hypoxia and proliferation visualized by PET. We conclude that, regarding treatment planning in radiotherapy, PET offers advantages in terms of tumour delineation and the description of biological processes. However, to define the real impact of biological imaging on clinical outcome after radiotherapy, further experimental, clinical and cost/benefit analyses are required. (topical review)

  18. Biological imaging in radiation therapy: role of positron emission tomography.

    Science.gov (United States)

    Nestle, Ursula; Weber, Wolfgang; Hentschel, Michael; Grosu, Anca-Ligia

    2009-01-07

    In radiation therapy (RT), staging, treatment planning, monitoring and evaluation of response are traditionally based on computed tomography (CT) and magnetic resonance imaging (MRI). These radiological investigations have the significant advantage to show the anatomy with a high resolution, being also called anatomical imaging. In recent years, so called biological imaging methods which visualize metabolic pathways have been developed. These methods offer complementary imaging of various aspects of tumour biology. To date, the most prominent biological imaging system in use is positron emission tomography (PET), whose diagnostic properties have clinically been evaluated for years. The aim of this review is to discuss the valences and implications of PET in RT. We will focus our evaluation on the following topics: the role of biological imaging for tumour tissue detection/delineation of the gross tumour volume (GTV) and for the visualization of heterogeneous tumour biology. We will discuss the role of fluorodeoxyglucose-PET in lung and head and neck cancer and the impact of amino acids (AA)-PET in target volume delineation of brain gliomas. Furthermore, we summarize the data of the literature about tumour hypoxia and proliferation visualized by PET. We conclude that, regarding treatment planning in radiotherapy, PET offers advantages in terms of tumour delineation and the description of biological processes. However, to define the real impact of biological imaging on clinical outcome after radiotherapy, further experimental, clinical and cost/benefit analyses are required.

  19. Recurrent proliferating trichilemmal tumor with malignant change on the f-18 fluorodeoxyglucose position emission tomography/computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Eun Ha; Kim, Eun Ha; Kim, Young Jun; Yoo, Seol Bong; Nam, Kyung Hwa [Presbyterian Medical Center, Seonam University College of Medicine, Jeonju (Korea, Republic of)

    2016-06-15

    F-18 fluorodeoxyglucose (FDG) positron emission tomography/computed tomography scan has been used for the diagnosis, assessment of treatment response, and follow-up of various neoplasms. Proliferating trichilemmal cyst or tumor (PTT) is a rare neoplasm, originated from the outer root sheath of a hair follicle. Because this tumor has unpredictable biological and clinical behavior, the long-term clinical follow-up is necessary to detect metastasis or recurrence. We reported a case of recurrent malignant PTT on scalp that showed increased FDG uptake.

  20. X-ray-based attenuation correction for positron emission tomography/computed tomography scanners.

    Science.gov (United States)

    Kinahan, Paul E; Hasegawa, Bruce H; Beyer, Thomas

    2003-07-01

    A synergy of positron emission tomography (PET)/computed tomography (CT) scanners is the use of the CT data for x-ray-based attenuation correction of the PET emission data. Current methods of measuring transmission use positron sources, gamma-ray sources, or x-ray sources. Each of the types of transmission scans involves different trade-offs of noise versus bias, with positron transmission scans having the highest noise but lowest bias, whereas x-ray scans have negligible noise but the potential for increased quantitative errors. The use of x-ray-based attenuation correction, however, has other advantages, including a lack of bias introduced from post-injection transmission scanning, which is an important practical consideration for clinical scanners, as well as reduced scan times. The sensitivity of x-ray-based attenuation correction to artifacts and quantitative errors depends on the method of translating the CT image from the effective x-ray energy of approximately 70 keV to attenuation coefficients at the PET energy of 511 keV. These translation methods are usually based on segmentation and/or scaling techniques. Errors in the PET emission image arise from positional mismatches caused by patient motion or respiration differences between the PET and CT scans; incorrect calculation of attenuation coefficients for CT contrast agents or metallic implants; or keeping the patient's arms in the field of view, which leads to truncation and/or beam-hardening (or x-ray scatter) artifacts. Proper interpretation of PET emission images corrected for attenuation by using the CT image relies on an understanding of the potential artifacts. In cases where an artifact or bias is suspected, careful inspection of all three available images (CT and PET emission with and without attenuation correction) is recommended. Copyright 2003 Elsevier Inc. All rights reserved.

  1. Positron emission tomography now and in the future

    International Nuclear Information System (INIS)

    Vaalburg, W.

    1987-01-01

    A survey is given of positron emission tomography used in nuclear medicine. The production of positron emitting radionuclides is discussed. The development of positron detectors is described. The application of positron emission tomography in cardiology, oncology and neurology is treated. The authors conclude that PET is a unique method to examine metabolic processes, although the method is still in its infancy. 7 refs.; 1 table

  2. Myocardial blood flow quantification for evaluation of coronary artery disease by positron emission tomography, cardiac magnetic resonance imaging, and computed tomography.

    Science.gov (United States)

    Waller, Alfonso H; Blankstein, Ron; Kwong, Raymond Y; Di Carli, Marcelo F

    2014-05-01

    The noninvasive detection of the presence and functional significance of coronary artery stenosis is important in the diagnosis, risk assessment, and management of patients with known or suspected coronary artery disease. Quantitative assessment of myocardial perfusion can provide an objective and reproducible estimate of myocardial ischemia and risk prediction. Positron emission tomography, cardiac magnetic resonance, and cardiac computed tomography perfusion are modalities capable of measuring myocardial blood flow and coronary flow reserve. In this review, we will discuss the technical aspects of quantitative myocardial perfusion imaging with positron emission tomography, cardiac magnetic resonance imaging, and computed tomography, and its emerging clinical applications.

  3. Positron emission tomography with selected mediastinoscopy compared to routine mediastinoscopy offers cost and clinical outcome benefits for pre-operative staging of non-small cell lung cancer

    International Nuclear Information System (INIS)

    Yap, Kelvin K.; Yap, Kenneth S.K.; Byrne, Amanda J.; Berlangieri, Salvatore U.; Poon, Aurora; Harris, Anthony; Tauro, Andrew; Mitchell, Paul; Knight, Simon R.; Clarke, Peter C.; Rowe, Christopher C.; Scott, Andrew M.

    2005-01-01

    18 F-fluorodeoxyglucose positron emission tomography (FDG-PET) imaging is an important staging procedure in patients with non-small cell lung cancer (NSCLC). We aimed to demonstrate, through a decision tree model and the incorporation of real costs of each component, that routine FDG-PET imaging as a prelude to curative surgery will reduce requirements for routine mediastinoscopy and overall hospital costs. A decision tree model comparing routine whole-body FDG-PET imaging to routine staging mediastinoscopy was used, with baseline variables of sensitivity, specificity and prevalence of non-operable and metastatic disease obtained from institutional data and a literature review. Costings for hospital admissions for mediastinoscopy and thoracotomy of actual patients with NSCLC were determined. The overall and average cost of managing patients was then calculated over a range of FDG-PET costs to derive projected cost savings to the community. The prevalence of histologically proven mediastinal involvement in patients with NSCLC presenting for surgical assessment at our institution is 20%, and the prevalence of distant metastatic disease is 6%. Based on literature review, the pooled sensitivity and specificity of FDG-PET for detection of mediastinal spread are 84% and 89% respectively, and for mediastinoscopy, 81% and 100%. The average cost of mediastinoscopy for NSCLC in our institution is AUD$4,160, while that of thoracotomy is AUD$15,642. The cost of an FDG-PET scan is estimated to be AUD$1,500. Using these figures and the decision tree model, the average cost saving is AUD$2,128 per patient. Routine FDG-PET scanning with selective mediastinoscopy will save AUD$2,128 per patient and will potentially reduce inappropriate surgery. These cost savings remain robust over a wide range of disease prevalence and FDG-PET costs. (orig.)

  4. Positron emission tomography and cerebral metabolism

    International Nuclear Information System (INIS)

    Comar, D.; Maziere, M.; Zarifian, E.; Naquet, R.

    1979-01-01

    The association of new methods of labelling with short lived radioisotopes and of visualisation 'in vivo' of these labelled molecules by emission tomography, provide the possibility of studying brain metabolism at different levels. Two examples will illustrate the possibilities of this methodology. Cerebral metabolism of methionine- 11 C in phenylketonutic patients: The cerebral uptake of methionine was measured in 24 PKU children aged 1 to 40 months on a low protein diet. Ten of them were examined twice at intervals of several months. Stopping the diet for one week leads to an increase in blood phenylalanine and to a significant important decrease in brain uptake of labelled methionine. Futhermore, for children under treatment having a low phenylalanine blood concentration, brain uptake of methionine decreases with age between 1 and 40 months. These results suggest that the treatment of this disease should be started as soon as possible after birth. Cerebral metabolism of psychoactive drugs: The study of the brain distribution and kinetics of psychoactive drugs may help in understanding their mode of action. Chlorpromazine- 11 C was administered i.v. to schyzophrenic patients not previously treated with neuroleptics. In all patients the brain uptake of the drug was high and rapid, and was localized mainly in the grey matter, probably in proportion to the blood flow. Non-specific binding of this drug to brain proteins prevented visualization of specific binding to dopaminergic or αnor-adrenergic receptors. Specific receptor binding of benzodiazepines was however visualized in the brain of baboons after injection of 11 C-flunitrazepam (specific activity = 600 Ci/μmole) and subsequent displacement of this radioactive ligand by a pharmacological dose of Lorazepam

  5. Recurrent ovarian endodermal sinus tumor: demonstration by computed tomography, magnetic resonance imaging, and positron emission tomography

    International Nuclear Information System (INIS)

    Romero, J.A.; Kim, E.E.; Tresukosol, D.; Kudelka, A.P.; Edwards, C.L.; Kavanagh, J.J.

    1995-01-01

    We report a case of recurrent endodermal sinus tumor of the ovary that was identified and/or clearly depicted by computed tomography, magnetic resonance imaging, and positron emission tomography. The potential roles of various imaging modalities in the detection of recurrent endodermal sinus tumor are discussed. (orig.)

  6. Fluorine-18 fluorodeoxyglucose positron emission tomography-computed tomography in evaluation of residual intramuscular myxoma

    International Nuclear Information System (INIS)

    Zade, Anand; Ahire, Archana; Shetty, Shishir; Rai, Sujith; Bokka, Rajashekharrao; Velumani, Arokiaswamy; Kabnurkar, Rasika

    2015-01-01

    Intramuscular myxoma (IM) is a rare benign neoplasm. In a patient diagnosed with IM of left thigh, we report the utility of a postoperative fluorine-18 fluorodeoxyglucose positron emission tomography-computed tomography scan in assessing the efficacy of surgical excision

  7. Diffuse nesidioblastosis diagnosed on a Ga-68 DOTATATE positron emission tomography/computerized tomography

    International Nuclear Information System (INIS)

    Arun, Sasikumar; Mittal, Bhagwant Rai; Shukla, Jaya; Bhattacharya, Anish; Kumar, Praveen

    2013-01-01

    The authors describe a 50 days old pre-term infant with persistent hyperinsulinemic hypoglycemia of infancy in whom 68 Ga DOTATATE positron emission tomography/computerized tomography scan showed diffusely increased tracer uptake in the entire pancreas with no abnormal tracer uptake anywhere else in the body, suggestive of a diffuse variant of nesidioblastosis. (author)

  8. Positron Emission Tomography with Three-Dimensional Reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Erlandsson, K.

    1996-10-01

    The development of two different low-cost scanners for positron emission tomography (PET) based on 3D acquisition are presented. The first scanner consists of two rotating scintillation cameras, and produces quantitative images, which have shown to be clinically useful. The second one is a system with two opposed sets of detectors, based on the limited angle tomography principle, dedicated for mammographic studies. The development of low-cost PET scanners can increase the clinical impact of PET, which is an expensive modality, only available at a few centres world-wide and mainly used as a research tool. A 3D reconstruction method was developed that utilizes all the available data. The size of the data-sets is considerably reduced, using the single-slice rebinning approximation. The 3D reconstruction is divided into 1D axial deconvolution and 2D transaxial reconstruction, which makes it relatively fast. This method was developed for the rotating scanner, but was also implemented for multi-ring scanners with and without inter plane septa. An iterative 3D reconstruction method was developed for the limited angle scanner, based on the new concept of `mobile pixels`, which reduces the finite pixel errors and leads to an improved signal to noise ratio. 100 refs.

  9. Positron Emission Tomography with Three-Dimensional Reconstruction

    International Nuclear Information System (INIS)

    Erlandsson, K.

    1996-10-01

    The development of two different low-cost scanners for positron emission tomography (PET) based on 3D acquisition are presented. The first scanner consists of two rotating scintillation cameras, and produces quantitative images, which have shown to be clinically useful. The second one is a system with two opposed sets of detectors, based on the limited angle tomography principle, dedicated for mammographic studies. The development of low-cost PET scanners can increase the clinical impact of PET, which is an expensive modality, only available at a few centres world-wide and mainly used as a research tool. A 3D reconstruction method was developed that utilizes all the available data. The size of the data-sets is considerably reduced, using the single-slice rebinning approximation. The 3D reconstruction is divided into 1D axial deconvolution and 2D transaxial reconstruction, which makes it relatively fast. This method was developed for the rotating scanner, but was also implemented for multi-ring scanners with and without inter plane septa. An iterative 3D reconstruction method was developed for the limited angle scanner, based on the new concept of 'mobile pixels', which reduces the finite pixel errors and leads to an improved signal to noise ratio. 100 refs

  10. Fluorodeoxyglucose positron emission tomography/computed tomography findings in a patient with cerebellar mutism after operation in posterior fossa

    Directory of Open Access Journals (Sweden)

    Gonca Kara Gedik

    2017-03-01

    Full Text Available Cerebellar mutism is a transient period of speechlessness that evolves after posterior fossa surgery in children. Although direct cerebellar and brain stem injury and supratentorial dysfunction have been implicated in the mediation of mutism, the pathophysiological mechanisms involved in the evolution of this kind of mutism remain unclear. Magnetic resonance imaging revealed dentatothalamocortical tract injuries and single photon emission computed tomography showed cerebellar and cerebral hypoperfusion in patients with cerebellar mutism. However, findings with 18F-fluorodeoxyglucose positron emission tomography/computed tomography (FDG PET/CT in this group of patients have not been documented previously. In this clinical case, we report a patient who experienced cerebellar mutism after undergoing a posterior fossa surgery. Right cerebellar and left frontal lobe hypometabolism was shown using FDG PET/CT. The FDG metabolism of both the cerebellum and the frontal lobe returned to normal levels after the resolution of the mutism symptoms.

  11. Differential diagnosis of depression: relevance of positron emission tomography

    International Nuclear Information System (INIS)

    Schwartz, J.M.; Baxter, L.R. Jr.; Mazziotta, J.C.; Gerner, R.H.; Phelps, M.E.

    1987-01-01

    The proper differential diagnosis of depression is important. A large body of research supports the division of depressive illness into bipolar and unipolar subtypes with respect to demographics, genetics, treatment response, and neurochemical mechanisms. Optimal treatment is different for unipolar and bipolar depressions. Treating a patient with bipolar depression as one would a unipolar patient may precipitate a serious manic episode or possibly even permanent rapid cycling disorder. The clinical distinction between these disorders, while sometimes difficult, can often be achieved through an increased diagnostic suspicion concerning a personal or family history of mania. Positron emission tomography and the FDG method, which allow in vivo study of the glucose metabolic rates for discrete cerebral structures, provide new evidence that bipolar and unipolar depression are two different disorders

  12. Determination of the attenuation map in emission tomography

    CERN Document Server

    Zaidi, H

    2002-01-01

    Reliable attenuation correction methods for quantitative emission computed tomography (ECT) require accurate delineation of the body contour and often necessitate knowledge of internal anatomical structure. Two broad classes of methods have been used to calculate the attenuation map referred to as "transmissionless" and transmission-based attenuation correction techniques. While calculated attenuation correction belonging to the first class of methods is appropriate for brain studies, more adequate methods must be performed in clinical applications where the attenuation coefficient distribution is not known a priori, and for areas of inhomogeneous attenuation such as the chest. Measured attenuation correction overcomes this problem and utilizes different approaches to determine this map including transmission scanning, segmented magnetic resonance images or appropriately scaled X-ray CT scans acquired either independently on separate or simultaneously on multimodality imaging systems. Combination of data acqu...

  13. Attenuation correction in emission tomography using the emission data—A review

    Energy Technology Data Exchange (ETDEWEB)

    Berker, Yannick, E-mail: berker@mail.med.upenn.edu; Li, Yusheng [Department of Radiology, University of Pennsylvania, 3620 Hamilton Walk, Philadelphia, Pennsylvania 19104 (United States)

    2016-02-15

    The problem of attenuation correction (AC) for quantitative positron emission tomography (PET) had been considered solved to a large extent after the commercial availability of devices combining PET with computed tomography (CT) in 2001; single photon emission computed tomography (SPECT) has seen a similar development. However, stimulated in particular by technical advances toward clinical systems combining PET and magnetic resonance imaging (MRI), research interest in alternative approaches for PET AC has grown substantially in the last years. In this comprehensive literature review, the authors first present theoretical results with relevance to simultaneous reconstruction of attenuation and activity. The authors then look back at the early history of this research area especially in PET; since this history is closely interwoven with that of similar approaches in SPECT, these will also be covered. We then review algorithmic advances in PET, including analytic and iterative algorithms. The analytic approaches are either based on the Helgason–Ludwig data consistency conditions of the Radon transform, or generalizations of John’s partial differential equation; with respect to iterative methods, we discuss maximum likelihood reconstruction of attenuation and activity (MLAA), the maximum likelihood attenuation correction factors (MLACF) algorithm, and their offspring. The description of methods is followed by a structured account of applications for simultaneous reconstruction techniques: this discussion covers organ-specific applications, applications specific to PET/MRI, applications using supplemental transmission information, and motion-aware applications. After briefly summarizing SPECT applications, we consider recent developments using emission data other than unscattered photons. In summary, developments using time-of-flight (TOF) PET emission data for AC have shown promising advances and open a wide range of applications. These techniques may both remedy

  14. Variation in radiotherapy target volume definition, dose to organs at risk and clinical target volumes using anatomic (computed tomography) versus combined anatomic and molecular imaging (positron emission tomography/computed tomography): intensity-modulated radiotherapy delivered using a tomotherapy Hi Art machine: final results of the VortigERN study.

    Science.gov (United States)

    Chatterjee, S; Frew, J; Mott, J; McCallum, H; Stevenson, P; Maxwell, R; Wilsdon, J; Kelly, C G

    2012-12-01

    Contrast-enhanced computed tomography (CECT) is the current standard for delineating tumours of the head and neck for radiotherapy. Although metabolic imaging with positron emission tomography (PET) has been used in recent years, the studies were non-confirmatory in establishing its routine role in radiotherapy planning in the modern era. This study explored the difference in gross tumour volume and clinical target volume definitions for the primary and nodal volumes when FDG PET/CT was used as compared with CECT in oropharyngeal cancer cases. Twenty patients with oropharyngeal cancers had a PET/CT scan in the treatment position after consent. Target volumes were defined on CECT scans by a consultant clinical oncologist who was blind to the PET scans. After obtaining inputs from a radiologist, another set of target volumes were outlined on the PET/CT data set. The gross and clinical target volumes as defined on the two data sets were then analysed. The hypothesis of more accurate target delineation, preventing geographical miss and comparative overlap volumes between CECT and PET/CT, was explored. The study also analysed the volumes of intersection and analysed whether there was any TNM stage migration when PET/CT was used as compared with CECT for planning. In 17 of 20 patients, the TNM stage was not altered when adding FDG PET information to CT. PET information prevented geographical miss in two patients and identified distant metastases in one case. PET/CT gross tumour volumes were smaller than CECT volumes (mean ± standard deviation: 25.16 cm(3) ± 35.8 versus 36.56 cm(3) ± 44.14; P standard deviation: CECT versus PET/CT 32.48 cm(3) ± 36.63 versus 32.21 cm(3) ± 37.09; P > 0.86) were not statistically different. Similarity and discordance coefficients were calculated and are reported. PET/CT as compared with CECT could provide more clinically relevant information and prevent geographical miss when used for radiotherapy planning for advanced oropharyngeal

  15. Positron Computed Tomography: Current State, Clinical Results and Future Trends

    Science.gov (United States)

    Schelbert, H. R.; Phelps, M. E.; Kuhl, D. E.

    1980-09-01

    An overview is presented of positron computed tomography: its advantages over single photon emission tomography, its use in metabolic studies of the heart and chemical investigation of the brain, and future trends. (ACR)

  16. Positron computed tomography: current state, clinical results and future trends

    Energy Technology Data Exchange (ETDEWEB)

    Schelbert, H.R.; Phelps, M.E.; Kuhl, D.E.

    1980-09-01

    An overview is presented of positron computed tomography: its advantages over single photon emission tomography, its use in metabolic studies of the heart and chemical investigation of the brain, and future trends. (ACR)

  17. Positron computed tomography: current state, clinical results and future trends

    International Nuclear Information System (INIS)

    Schelbert, H.R.; Phelps, M.E.; Kuhl, D.E.

    1980-01-01

    An overview is presented of positron computed tomography: its advantages over single photon emission tomography, its use in metabolic studies of the heart and chemical investigation of the brain, and future trends

  18. Hybrid Single Photon Emission Computed Tomography/Computed Tomography Sulphur Colloid Scintigraphy in Focal Nodular Hyperplasia

    International Nuclear Information System (INIS)

    Bhoil, Amit; Gayana, Shankramurthy; Sood, Ashwani; Bhattacharya, Anish; Mittal, Bhagwant Rai

    2013-01-01

    It is important to differentiate focal nodular hyperplasia (FNH), a benign condition of liver most commonly affecting women, from other neoplasm such as hepatic adenoma and metastasis. The functional reticuloendothelial features of FNH can be demonstrated by scintigraphy. We present a case of breast cancer in whom fluorodeoxyglucose positron emission tomography/computerized tomography (CT) showed a homogenous hyperdense lesion in liver, which on Tc99m sulfur colloid single-photon emission computed tomography/CT was found to have increased focal tracer uptake suggestive of FNH

  19. Positron emission tomography and migraine. Tomographie par emission de positons et migraine

    Energy Technology Data Exchange (ETDEWEB)

    Chabriat, H. (CEA, 91 - Orsay (France). Service Hospitalier Frederic Joliot)

    1992-04-01

    Positron emission tomography (PET) is a brain imaging technique that allows in vivo studies of numerous physiological parameters. There have been few PET studies in migraine patients. Cerebral blood flow changes with no variations in brain oxygen consumption have been reported in patients with prolonged neurologic manifestations during migraine attacks. Parenteral administration of reserpine during migraine headache has been followed by a fall in the overall cerebral uptake of glucose. The small sample sizes and a number of methodologic problems complicate the interpretation of these results. Recent technical advances and the development of new PET tracers can be expected to provide further insight into the pathophysiology of migraine. Today cerebral cortex 5 HT{sub 2} serotonin receptors can be studied in migraine patients with PET.

  20. Imaging Cellular Proliferation in Prostate Cancer with Positron Emission Tomography

    Directory of Open Access Journals (Sweden)

    Hossein Jadvar

    2015-07-01

    Full Text Available Prostate cancer remains a major public health problem worldwide. Imaging plays an important role in the assessment of disease at all its clinical phases, including staging, restaging after definitive therapy, evaluation of therapy response, and prognostication. Positron emission tomography with a number of biologically targeted radiotracers has been demonstrated to have potential diagnostic and prognostic utility in the various clinical phases of this prevalent disease. Given the remarkable biological heterogeneity of prostate cancer, one major unmet clinical need that remains is the non-invasive imaging-based characterization of prostate tumors. Accurate tumor characterization allows for image-targeted biopsy and focal therapy as well as facilitates objective assessment of therapy effect. PET in conjunction with radiotracers that track the thymidine salvage pathway of DNA synthesis may be helpful to fulfill this necessity. We review briefly the preclinical and pilot clinical experience with the two major cellular proliferation radiotracers, [18F]-3’-deoxy-3’-fluorothymidine and [18F]-2’-fluoro-5-methyl-1-beta-D-arabinofuranosyluracil in prostate cancer.

  1. The added value of 18F-fluorodeoxyglucose positron emission tomography computed tomography in patients with neck lymph node metastases from an unknown primary malignancy.

    Science.gov (United States)

    Prowse, S J B; Shaw, R; Ganeshan, D; Prowse, P M; Hanlon, R; Lewis-Jones, H; Wieshmann, H

    2013-08-01

    The search for a primary malignancy in patients with a metastatic cervical lymph node is challenging yet ultimately of utmost clinical importance. This study evaluated the efficacy of positron emission tomography computed tomography in detecting the occult primary, within the context of a tertiary referral centre head and neck cancer multidisciplinary team tumour board meeting. Thirty-two patients (23 men and 9 women; mean and median age, 61 years) with a metastatic cervical lymph node of unknown primary origin, after clinical examination and magnetic resonance imaging, underwent positron emission tomography computed tomography. The primary tumour detection rate was 50 per cent (16/32). Positron emission tomography computed tomography had a sensitivity of 94 per cent (16/17) and a specificity of 67 per cent (10/15). Combining these results with those of 10 earlier studies of similar patients gave an overall detection rate of 37 per cent. Positron emission tomography computed tomography has become an important imaging modality. To date, it has the highest primary tumour detection rate, for head and neck cancer patients presenting with cervical lymph node metastases from an unknown primary.

  2. Diagnostic value of sectional images obtained by emission tomography

    International Nuclear Information System (INIS)

    Roucayrol, J.C.

    1981-01-01

    It is now possible to obtain clear images of the various planes in and around a structure with ultra-sounds (echotomography), X-rays (computerized tomography) and recently, gamma-rays from radioactive substances (emission tomography). Axial transverse tomography, which is described here, is to conventional scintigraphy what CT scan is to radiography. It provides images of any structure capable of concentrating sufficiently a radioactive substance administered intravenously. These images are perpendicular to the longitudinal axis of the body. As shown by examples in the liver, lungs and myocardium, lesions which had passed unnoticed with other exploratory techniques can now be demonstrated, and the location, shape and extension of known lesions can be more accurately assessed. Emission tomography already has its place in modern diagnostic procedures side by side with echotomography and CT scan [fr

  3. Detectors for high resolution dynamic positron emission tomography

    International Nuclear Information System (INIS)

    Derenzo, S.E.; Budinger, T.F.; Huesman, R.H.

    1985-01-01

    Tomography is the technique of producing a photographic image of an opaque specimen by transmitting a beam of x-rays or gamma rays through the specimen onto an adjacent photographic film. The image results from variations in thickness, density, and chemical composition, of the specimen. This technique is used to study the metabolism of the human brain. This article examines the design of equipment used for high resolution dynamic positron emission tomography. 27 references, 5 figures, 3 tables

  4. Single-photon emission computed tomography/computed tomography in lung cancer and malignant lymphoma.

    Science.gov (United States)

    Schillaci, Orazio

    2006-10-01

    In nuclear oncology, despite the fast-growing diffusion of (18)F-fluorodeoxyglucose positron emission tomography (FDG-PET), single-photon emission computed tomography (SPECT) studies can still play an useful clinical role in several applications. The main limitation of SPECT imaging with tumor-seeking agents is the lack of the structural delineation of the pathologic processes they detect; this drawback sometimes renders SPECT interpretation difficult and can diminish its diagnostic accuracy. Fusion with morphological studies can overcome this limitation by giving an anatomical map to scintigraphic data. In the past, software-based fusion of independently performed SPECT and CT images proved to be time-consuming and impractical for routine use. The recent development of dual-modality integrated imaging systems that provide functional (SPECT) and anatomical (CT) images in the same scanning session, with the acquired images coregistered by means of the hardware, has opened a new era in this field. The first reports indicate that SPECT/CT is very useful in cancer imaging because it is able to provide further information of clinical value in several cases. In SPECT, studies of lung cancer and malignant lymphomas using different radiopharmaceutical, hybrid images are of value in providing the correct localization of tumor sites, with a precise detection of the involved organs, and the definition of their functional status, and in allowing the exclusion of disease in sites of physiologic tracer uptake. Therefore, in lung cancer and lymphomas, hybrid SPECT/CT can play a role in the diagnosis of the primary tumor, in the staging of the disease, in the follow-up, in the monitoring of therapy, in the detection of recurrence, and in dosimetric estimations for target radionuclide therapy.

  5. Single-Photon Emission Computerized Tomography (SPECT in Neuropsychiatry: A Review

    Directory of Open Access Journals (Sweden)

    B. K. Puri

    1992-01-01

    Full Text Available Cranial single-photon emission computerized tomography (SPECT or SPET can now give regional cerebral blood flow images with a resolution approaching that of positron emission tomography (PET. In this paper, the use of high resolution SPECT neuroimaging in neuropsychiatric disorders, including Alzheimer's disease, multi-infarct dementia, Pick's disease, progressive supranuclear palsy, Korsakoff's psychosis, Creutzfeld-Jakob disease, Parkinson's disease, Huntington's disease, schizophrenia, mood disorders, obsessive–compulsive disorder, HIV infection and AIDS is reviewed. Finally, further potential research and clinical uses, based on ligand studies, are outlined.

  6. Characteristics of a single photon emission tomography system with a wide field gamma camera

    International Nuclear Information System (INIS)

    Mathonnat, F.; Soussaline, F.; Todd-Pokropek, A.E.; Kellershohn, C.

    1979-01-01

    This text summarizes a work study describing the imagery possibilities of a single photon emission tomography system composed of a conventional wide field gamma camera, connected to a computer. The encouraging results achieved on the various phantoms studied suggest a significant development of this technique in clinical work in Nuclear Medicine Departments [fr

  7. Quantification in single photon emission computed tomography (SPECT)

    International Nuclear Information System (INIS)

    Buvat, Irene

    2005-01-01

    The objective of this lecture is to understand the possibilities and limitations of the quantitative analysis of single photon emission computed tomography (SPECT) images. It is also to identify the conditions to be fulfilled to obtain reliable quantitative measurements from images. Content: 1 - Introduction: Quantification in emission tomography - definition and challenges; quantification biasing phenomena; 2 - quantification in SPECT, problems and correction methods: Attenuation, scattering, un-stationary spatial resolution, partial volume effect, movement, tomographic reconstruction, calibration; 3 - Synthesis: actual quantification accuracy; 4 - Beyond the activity concentration measurement

  8. New detector developments for high resolution positron emission tomography

    International Nuclear Information System (INIS)

    Ziegler, S.I.; Pichler, B.; Lorenz, E.

    1998-01-01

    The strength of quantitative, functional imaging using positron emission tomography, specially in small animals, is limited due to the spatial resolution. Therefore, various tomograph designs employing new scintillators, light sensors, or coincidence electronic are investigated to improve resolution without losses in sensitivity. Luminous scintillators with short light decay time in combination with novel readout schemes using photomultipliers or semiconductor detectors are currently tested by several groups and are implemented in tomographs for small animals. This review summarises the state of development in high resolution positron emission tomography with a detailed description of a system incorporating avalanche photodiode arrays and small scintillation crystals. (orig.) [de

  9. Positron emission tomography in the evaluation of subdural hematomas

    International Nuclear Information System (INIS)

    Ericson, K.; Bergstroem, M.; Eriksson, L.

    1980-01-01

    Fifteen patients with 21 subdural effusions were investigated both with transmission computer assisted tomography (CAT) and positron emission tomography (PET). The tracer in the emission studies was 68 Ga-EDTA. Twelve lesions were visualized both with CAT and PET. Five lesions that were negative or doubtful on CAT were visualized with PET, whereas four lesions negative or doubtful on PET were demonstrated by CAT. The two methods complement each other due to the fact that they are based on different mechanisms: CAT mainly on attenuation of the fluid collection. PET on isotope accumulation, particularly in the hematoma membranes

  10. Relevance of positron emission tomography (PET) in oncology

    International Nuclear Information System (INIS)

    Weber, W.A.; Avril, N.; Schwaiger, M.

    1999-01-01

    Background: The clinical use of positron emission tomography (PET) for detection and staging of malignant tumors is rapidly increasing. Furthermore, encouraging results for monitoring the effects of radio- and chemotherapy have been reported. Methods: This review describes the technical principles of PET and the biological characteristics of tracers used in oncological research and patient studies. The results of clinical studies published in peer reviewed journals during the last 5 years are summarized and clinical indications for PET scans in various tumor types are discussed. Results and Conclusions: Numerous studies have documented the high diagnostic accuracy of PET studies using the glucose analogue F-18-fluordeoxyglucose (FDG-PET) for detection and staging of malignant tumors. In this field, FDG-PET has been particularly successful in lung cancer, colorectal cancer, malignant lymphoma and melanoma. Furthermore, FDG-PET has often proven to be superior to morphological imaging techniques for differentation of tumor recurrence from scar tissue. Due to the high glucose utilization of normal gray matter radiolabeled amino-acids like C-11-methionine are superior to FDG for detection and delineation of brain tumors by PET. In the future, more specific markers of tumor cell proliferation and gene expression may allow the application of PET not only for dianostic imaging also but for non-invasive biological characterization of malignant tumors and early monitoring of therapeutic interventions. (orig.) [de

  11. Brain single photon emission computed tomography in neonates

    International Nuclear Information System (INIS)

    Denays, R.; Van Pachterbeke, T.; Tondeur, M.

    1989-01-01

    This study was designed to rate the clinical value of [ 123 I]iodoamphetamine (IMP) or [ 99m Tc] hexamethyl propylene amine oxyme (HM-PAO) brain single photon emission computed tomography (SPECT) in neonates, especially in those likely to develop cerebral palsy. The results showed that SPECT abnormalities were congruent in most cases with structural lesions demonstrated by ultrasonography. However, mild bilateral ventricular dilatation and bilateral subependymal porencephalic cysts diagnosed by ultrasound were not associated with an abnormal SPECT finding. In contrast, some cortical periventricular and sylvian lesions and all the parasagittal lesions well visualized in SPECT studies were not diagnosed by ultrasound scans. In neonates with subependymal and/or intraventricular hemorrhage the existence of a parenchymal abnormality was only diagnosed by SPECT. These results indicate that [ 123 I]IMP or [ 99m Tc]HM-PAO brain SPECT shows a potential clinical value as the neurodevelopmental outcome is clearly related to the site, the extent, and the number of cerebral lesions. Long-term clinical follow-up is, however, mandatory in order to define which SPECT abnormality is associated with neurologic deficit

  12. Detecting Metastatic Bladder Cancer Using (18)F-Fluorodeoxyglucose Positron-Emission Tomography/Computed Tomography.

    Science.gov (United States)

    Öztürk, Hakan

    2015-10-01

    The purpose of this study was to retrospectively investigate the contribution of (18)F-fluorodeoxyglucose-positron emission tomography/computed tomography ((18)F-FDG-PET/CT) to detection of metastatic bladder cancer. The present study included 79 patients (69 men and 10 women) undergoing (18)F-FDG-PET/CT upon suspicion of metastatic bladder cancer between July 2007 and April 2013. The mean age was 66.1 years with a standard deviation of 10.7 years (range, 21 to 85 years). Patients were required to fast for 6 hours prior to scanning, and whole-body PET scanning from the skull base to the upper thighs was performed approximately 1 hour after intravenous injection of 555 MBq of (18)F-FDG. Whole body CT scanning was performed in the cranio-caudal direction. FDG-PET images were reconstructed using CT data for attenuation correction. Suspicious recurrent or metastatic lesions were confirmed by histopathology or clinical follow-up. The sensitivity, specificity, positive predictive value, negative predictive value, and accuracy of (18)F-FDG-PET/CT were 89%, 78%, 90%, 75%, and 86%, respectively. (18)F-FDG-PET/CT can detect metastases with high sensitivity and positive predictive values in patients with metastatic bladder carcinoma.

  13. Brain Positron Emission Tomography-Computed Tomography Gender Differences in Tinnitus Patients.

    Science.gov (United States)

    Shlamkovich, Nathan; Gavriel, Haim; Eviatar, Ephraim; Lorberboym, Mordechay; Aviram, Eliad

    2016-10-01

    Increased metabolism in the left auditory cortex has been reported in tinnitus patients. However, gender difference has not been addressed. To assess the differences in Positron emission tomography-computed tomography (PET-CT) results between the genders in tinnitus patients. Retrospective cohort. Included were patients referred to our clinic between January 2011 and August 2013 who complained of tinnitus and underwent fluorodeoxyglucose (FDG)-PET to assess brain metabolism. Univariate and multivariate nominal logistic regressions were used to evaluate the association between upper temporal gyrus (UTG; right and left) and gender. Included were 140 patients (87 males) with an average age of 52.5 yr (median = 53.1). Bilateral tinnitus was found in 85 patients (60.7%), left sided in 30 (21.4%), and right sided in 21(15%). Increased uptake in the UTG was found in 60% of the patients on either side. Males had a statistically significant increased uptake in the UTG in those with unilateral tinnitus and in the entire population. We present the largest study reported so far on tinnitus patients who have undergone FDG-PET-CT. We found a statistically significant difference between the genders in FDG uptake by the UTG. Further investigations should be undertaken to reveal the etiologies for these differences and to assess different therapeutic protocols according to gender. American Academy of Audiology

  14. Technical aspects of positron emission tomography/computed tomography in radiotherapy treatment planning.

    Science.gov (United States)

    Scripes, Paola G; Yaparpalvi, Ravindra

    2012-09-01

    The usage of functional data in radiation therapy (RT) treatment planning (RTP) process is currently the focus of significant technical, scientific, and clinical development. Positron emission tomography (PET) using ((18)F) fluorodeoxyglucose is being increasingly used in RT planning in recent years. Fluorodeoxyglucose is the most commonly used radiotracer for diagnosis, staging, recurrent disease detection, and monitoring of tumor response to therapy (Lung Cancer 2012;76:344-349; Lung Cancer 2009;64:301-307; J Nucl Med 2008;49:532-540; J Nucl Med 2007;48:58S-67S). All the efforts to improve both PET and computed tomography (CT) image quality and, consequently, lesion detectability have a common objective to increase the accuracy in functional imaging and thus of coregistration into RT planning systems. In radiotherapy, improvement in target localization permits reduction of tumor margins, consequently reducing volume of normal tissue irradiated. Furthermore, smaller treated target volumes create the possibility of dose escalation, leading to increased chances of tumor cure and control. This article focuses on the technical aspects of PET/CT image acquisition, fusion, usage, and impact on the physics of RTP. The authors review the basic elements of RTP, modern radiation delivery, and the technical parameters of coregistration of PET/CT into RT computerized planning systems. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. 18F-fluorodeoxyglucose positron emission tomography in uterine carcinosarcoma

    International Nuclear Information System (INIS)

    Ho, Kung-Chu; Yen, Tzu-Chen; Lai, Chyong-Huey; Wu, Tzu-I; Chang, Ting-Chang; Huang, Huei-Jean; Ng, Koon-Kwan; Lin, Gigin; Wang, Chun-Chieh; Hsueh, Swei

    2008-01-01

    Uterine carcinosarcomas clinically confined to the uterus usually harbor occult metastases. We conducted a pilot study to evaluate the value of 18 F-fluorodeoxyglucose (FDG) positron emission tomography (PET) in uterine carcinosarcoma. Patients with histologically confirmed uterine carcinosarcoma were enrolled. Abdominal and pelvic magnetic resonance imaging (MRI)/whole-body computed tomography (CT) scan, and whole-body 18 F-FDG PET or PET/CT were undertaken for primary staging, evaluating response, and restaging/post-therapy surveillance. The clinical impact of 18 F-FDG PET was determined on a scan basis. A total of 19 patients were recruited and 31 18 F-FDG PET scans (including 8 scans performed on a PET/CT scanner) were performed. Positive impacts of scans were found in 36.8% (7/19) for primary staging, 66.7% (2/3) for monitoring response, and 11.1% (1/9) for restaging/post-therapy surveillance. PET excluded falsely inoperable disease defined by MRI in two patients. Aggressive treatment applying to three patients with PET-defined resectable stage IVB disease seemed futile. Two patients died of disease shortly after salvage therapy restaged by PET. With PET monitoring, one stage IVB patient treated by targeted therapy only was alive with good performance. Using PET did not lead to improvement of overall survival of this series compared with the historical control (n = 35) (P 0.779). The preliminary results suggest that 18 F-FDG PET is beneficial in excluding falsely inoperable disease for curative therapy and in making a decision on palliation for better quality of life instead of aggressive treatment under the guidance of PET. PET seems to have limited value in post-therapy surveillance or restaging after failure. (orig.)

  16. Effectiveness of lead aprons in positron emission tomography

    International Nuclear Information System (INIS)

    Bezerra Fonseca, R.; Amaral, A.

    2008-01-01

    Full text: In the last two decades, Positron Emission Tomography (PET) has emerged as clinical diagnostic technique, becoming one of the fastest growing imaging tools in modern nuclear medicine. Because 511 keV annihilation photon energy is much higher than the photon with mean energy of 140 keV emitted in Single Photon Computed Tomography (SPECT), medical staff working in PET studies receive a higher dose than those working only with SPECT tracers do. As a result, special attention must be paid to keep radiation exposure as low as reasonably achievable (ALARA principle). Lead equivalent apron is the principal personal protective equipment for technologists occupationally exposed to ionizing radiation in medical procedures and may be an important component in the ALARA program. However, in practices involving PET, 0.5 mm lead equivalent aprons have been used regardless of photon's energy. In this context, this work was designed for evaluating radioprotective effectiveness of such aprons in PET procedures. For this, the operational quantities personal dose equivalent H p (0.07) and H p (10) have been assessed by using MCNP4C code in a model of individual exposure to small source of 511 keV photons, representing the situation of injection of the radiopharmaceutical, in two situations: technologists wearing and not wearing 0.5 mm lead aprons. To represent the technologist a mathematical anthropomorphic phantom was employed, and the simulated source to subject distances varied between 40 to 100 cm, in steps of 10 cm. The results showed no significant differences between the values obtained for H p (10) in the two situations, pointing out that that there is no radioprotective influence of wearing such aprons on PET practices. Compared to simulations without such device, H p (0.07) increased up about 26% when technologist is wearing radioprotective aprons, depending on the source to subject distance. On the basis of this work, 0.5 mm lead equivalent aprons should not be

  17. DIAGNOSTIC ROLE OF FLUORINE-18 (18F) FLUORODEOXYGLUCOSE POSITRON EMISSION TOMOGRAPHY COMPUTED TOMOGRAPHY IN DETECTING RECURRENT DISEASE IN PATIENTS WITH COLORECTAL CANCER AND ELEVATED CARCINOEMBRYONIC ANTIGEN.

    Science.gov (United States)

    Matovina, Emil; Mihailović, Jasna; Nikoletić, Katarina; Srbovan, Dolores

    2015-01-01

    Early detection of recurrence is an important factor for long term survival of patients with colorectal cancer. Measurement of serum levels of carcinoembryonic antigen has been commonly used in the postoperative surveillance of colorectal cancer. The purpose of this study was to evaluate the ability of positron emission tomography-computed tomography to detect pathological substrate of elevated serum carcinoembryonic antigen in patients with colorectal cancer. The patients with colorectal cancer who underwent curative surgical resection and/ or chemotherapy, who were found in our database, were analyzed retrospectively. Forty-eight 18F-fluorodeoxyglucose positron emission tomography-computed tomography studies including 45 patients (14 women, 31 men; mean age: 62.93 years) with elevated serum, carcinoembryonic antigen levels, which had been performed between January 2011 and January 2014, were evaluated. Serum levels of carcinoembryonic antigen were measured within 3 months after positron emission tomography-computed tomography examination. Final diagnosis of recurrence was made by histopathological findings, radiology studies or clinical follow-up. Recurrences were diagnosed in 37 patients, the prevalence being 77.1%. Liver metastases were found in 18 patients, abdominal, pelvic and/or mediastinal lymph nodes were positive in 19 patients, 11 patients had loco regional recurrences and 4 patients had pulmonary metastasis, and bone metastases were found in one patient. One patient was diagnosed with metastasis in scar tissue. The overall sensitivity and specificity of positron emission tomography-computed tomography was 90.24% and 71.42%, respectively. The positive and negative predictive values were 94.87% and 55.56%, respectively. 18F-fluorodeoxyglucose positron emission tomography-computed tomography is a powerful tool that could be used in determining colorectal cancer recurrence in patients with elevated carcinoembryonic antigen levels and could have an

  18. 18F-Fluorodeoxyglucose-Positron Emission Tomography/Computed Tomography in Tuberculosis: Spectrum of Manifestations.

    Science.gov (United States)

    Agarwal, Krishan Kant; Behera, Abhishek; Kumar, Rakesh; Bal, Chandrasekhar

    2017-01-01

    The objective of this article is to provide an illustrative tutorial highlighting the utility of 18 F-fluorodeoxyglucose-positron emission tomography/computed tomography ( 18 F-FDG-PET/CT) imaging to detect spectrum of manifestations in patients with tuberculosis (TB). FDG-PET/CT is a powerful tool for early diagnosis, measuring the extent of disease (staging), and consequently for evaluation of response to therapy in patients with TB.

  19. Use of computed tomography and positron emission tomography/computed tomography for staging of local extent in patients with malignant pleural mesothelioma.

    Science.gov (United States)

    Frauenfelder, Thomas; Kestenholz, Peter; Hunziker, Roger; Nguyen, Thi Dan Linh; Fries, Martina; Veit-Haibach, Patrick; Husmann, Lars; Stahel, Rolf; Weder, Walter; Opitz, Isabelle

    2015-01-01

    The objective of this study was to determine the diagnostic value of computed tomography (CT) and positron emission tomography (PET)/CT for staging of malignant pleural mesothelioma (MPM) in patients undergoing induction chemotherapy. Sixty-two patients (median age, 61 years; female: n = 9) with proven MPM underwent CT after induction chemotherapy. Of these, 28 underwent additional PET/CT. Extrapleural pneumonectomy was performed for pathological TNM staging. Clinical TNM stage was assessed by 3 independent readers. Relative and absolute underestimation and overestimation were compared with pathological tumor stage. Sensitivity, specificity, and accuracy for differentiation between stages T2 and T3 were assessed. Interobserver agreement between the readers was analyzed (κ). Positron emission tomography/CT and CT underestimated T stage in up to 30% of the cases. Positron emission tomography/CT had a higher accuracy for tumor extent compared with CT (PET/CT: 0.92; CT: 0.84). The accuracy for nodal staging was higher for CT than for PET/CT (PET/CT: 0.78; CT: 0.87). Concerning International Mesothelioma Interest Group classification, PET/CT improved the accuracy of preoperative staging compared with CT (PET/CT: 0.91; CT: 0.82). Interobserver agreement was moderate for CT (0.48-0.62) and good for PET/CT (0.64-0.83) for T staging. For nodal staging, interobserver agreement was fair to moderate for CT and good for PET/CT (CT: 0.37-0.51; PET/CT: 0.73-0.76). Positron emission tomography/CT is more accurate and has a lower interobserver variability for clinical intrathoracic staging of MPM compared with CT. Nevertheless PET/CT underestimated tumor stage in a substantial number of cases, showing the need for a more accurate imaging technology or approach.

  20. Positron emission tomography/computer tomography in gastrointestinal malignancies

    DEFF Research Database (Denmark)

    Tind, Sofie; Vestergaard, Sys; Farahani, Ziba A

    2017-01-01

    The use of FDG-PET/CT in GI-malignancies may not be as straightforward as in many other cancers, but the potential is clearly there in select clinical settings. The challenges include the relative non-specificity of FDG, the variable degrees of physiologic FDG-uptake, and the heterogeneous FDG-up...

  1. Utilisation of spatial and temporal correlations in positron emission tomography

    International Nuclear Information System (INIS)

    Sureau, F.

    2008-06-01

    In this thesis we propose, implement, and evaluate algorithms improving spatial resolution in reconstructed images and reducing data noise in positron emission tomography imaging. These algorithms have been developed for a high resolution tomograph (HRRT) and applied to brain imaging, but can be used for other tomographs or studies. We first developed an iterative reconstruction algorithm including a stationary and isotropic model of resolution in image space, experimentally measured. We evaluated the impact of such a model of resolution in Monte-Carlo simulations, physical phantom experiments and in two clinical studies by comparing our algorithm with a reference reconstruction algorithm. This study suggests that biases due to partial volume effects are reduced, in particular in the clinical studies. Better spatial and temporal correlations are also found at the voxel level. However, other methods should be developed to further reduce data noise. We then proposed a maximum a posteriori de-noising algorithm that can be used for dynamic data to de-noise temporally raw data (sino-grams) or reconstructed images. The a priori modeled the coefficients in a wavelet basis of all the signals without noise (in an image or sinogram). We compared this technique with a reference de-noising method on replicated simulations. This illustrates the potential benefits of our approach of sinogram de-noising. (author)

  2. Iterative concurrent reconstruction algorithms for emission computed tomography

    International Nuclear Information System (INIS)

    Brown, J.K.; Hasegawa, B.H.; Lang, T.F.

    1994-01-01

    Direct reconstruction techniques, such as those based on filtered backprojection, are typically used for emission computed tomography (ECT), even though it has been argued that iterative reconstruction methods may produce better clinical images. The major disadvantage of iterative reconstruction algorithms, and a significant reason for their lack of clinical acceptance, is their computational burden. We outline a new class of ''concurrent'' iterative reconstruction techniques for ECT in which the reconstruction process is reorganized such that a significant fraction of the computational processing occurs concurrently with the acquisition of ECT projection data. These new algorithms use the 10-30 min required for acquisition of a typical SPECT scan to iteratively process the available projection data, significantly reducing the requirements for post-acquisition processing. These algorithms are tested on SPECT projection data from a Hoffman brain phantom acquired with a 2 x 10 5 counts in 64 views each having 64 projections. The SPECT images are reconstructed as 64 x 64 tomograms, starting with six angular views. Other angular views are added to the reconstruction process sequentially, in a manner that reflects their availability for a typical acquisition protocol. The results suggest that if T s of concurrent processing are used, the reconstruction processing time required after completion of the data acquisition can be reduced by at least 1/3 T s. (Author)

  3. Positron emission tomography: a new paradigm in cancer management

    International Nuclear Information System (INIS)

    Paez Gutierrez, Diana Isabel; De los Reyes, Amelia; Llamas Olier, Augusto

    2007-01-01

    The National Cancer Institute (NCI) is currently building a positron emission tomography facility that will house a cyclotron and a PET fusion scanner. lt should be operational as of december 2007, being a cancer dedicated national referral center, the NCI should provide both positron-emitting radiopharmaceuticals and medical services to institutions and patients nationwide. PET technology provides metabolic information that has been documented to be useful in patient care. The properties of positron decay allow accurate imaging of the in vivo distribution of positron-emitting radiopharmaceuticals. a wide array of positron-emitting radiopharmaceuticals has been used to characterize multiple physiologic and pathologic states. The major clinical PET applications are in cancer patients using fluorine-18 fluorodeoxyglucose (FDG). FDG, an analogue of glucose, accumulates in most tumors in a greater amount than it does in normal tissue. PET is being used in diagnosis and follow-up of several malignancies, and the list of articles supporting its use continues to grow. in this article, the instrumentation aspects of PET are described and most of the clinical applications in oncology are described

  4. Gallium tomoscintigraphic imaging of esophageal cancer using emission computed tomography

    International Nuclear Information System (INIS)

    Hattori, Takao; Nakagawa, Tsuyoshi; Takeda, Kan; Maeda, Hisato; Taguchi, Mitsuo

    1983-01-01

    Emission computed tomography (ECT) was clinically evaluated in 67 Ga imaging of esophageal cancer. ECT system used in this study is equipped with opposed dual large-field-of-view cameras (GCA 70A-S, Toshiba Co.). Data were acquired by rotating the two cameras 180 0 about the longitudinal axis of the patient. Total acquisition time was about 12 minutes. Multiple slices of transaxial, sagittal and coronal sections were reconstructed in a 64 x 64 matrix form using convolution algorithms. In three out of six cases studied the tumor uptake was not detected on conventional images, because the lesion was small, concentration of activity was poor or the lesion activity was overlapped with the neighbouring activities distributed to normal organs such as sternum, vertebra, liver and hilus. On ECT images, by contrast, abnormal uptake of the tumors was definitively detected in all the six cases. ECT imaging was also useful in estimating the effect of treatment by the decrease in 67 Ga concentration. We have devised a special technique to repeat ECT scan with a thin tube filled with 67 Ga solution inserted through the esophagus. By this technique, comparing paired images with and without the tube activity, exact location of the uptake against the esophagus and extraesophageal extension of the disease could be accurately evaluated in a three-dimensional field of view. ECT in gallium scanning is expected to be of great clinical value to elevate the confidence level of diagnosis in detecting, localizing and following up the diseases. (author)

  5. The natural history of misery perfusion in positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Nagata, Shinji; Fujii, Kiyotaka; Matsushima, Toshio; Fukui, Masashi; Sadoshima, Shouzou; Kuwabara, Yasuo (Kyushu Univ., Fukuoka (Japan). Faculty of Medicine)

    1992-03-01

    This report reviews the natural courses of misery perfusion in 5 patients with atherosclerotic cerebrovascular occlusion diseases. Cases 1 showed partial improvement and Case 2 showed deterioration of misery perfusion on positron emission tomography (PET). These 2 patients did not show any clinical changes during the follow-up periods. Case 3 showed remarkable improvement of misery perfusion during the 2-year follow-ups, but his neurological condition worsened. The EC-IC bypass improved both in PET and clinical symptoms. Case 4 had a stroke at the region of misery perfusion in PET. Case 5 had a lacunar infarction 2 years after the EC-IC bypass on the opposite side. PET taken one month before the stroke did not show any signs of hypoperfusion in the area of the lacunar infarction. Misery perfusion seems not to be a static but a dynamic condition that can develop into cerebral infarction by some hemodynamic stresses. Cerebral cortical or lobar infarction may occur in the region of severe misery perfusion. EC-IC bypass may prevent impending infarction of the cerebral cortex by improving the regional cerebral blood flow. However, EC-CI bypass will not prevent the lacunar infarction of the basal ganglia or internal capsule. (author).

  6. Variation in positron emission tomography use after colon cancer resection.

    Science.gov (United States)

    Bailey, Christina E; Hu, Chung-Yuan; You, Y Nancy; Kaur, Harmeet; Ernst, Randy D; Chang, George J

    2015-05-01

    Colon cancer surveillance guidelines do not routinely include positron emission tomography (PET) imaging; however, its use after surgical resection has been increasing. We evaluated the secular patterns of PET use after surgical resection of colon cancer among elderly patients and identified factors associated with its increasing use. We used the SEER-linked Medicare database (July 2001 through December 2009) to establish a retrospective cohort of patients age ≥ 66 years who had undergone surgical resection for colon cancer. Postoperative PET use was assessed with the test for trends. Patient, tumor, and treatment characteristics were analyzed using univariable and multivariable logistic regression analyses. Of the 39,221 patients with colon cancer, 6,326 (16.1%) had undergone a PET scan within 2 years after surgery. The use rate steadily increased over time. The majority of PET scans had been performed within 2 months after surgery. Among patients who had undergone a PET scan, 3,644 (57.6%) had also undergone preoperative imaging, and 1,977 (54.3%) of these patients had undergone reimaging with PET within 2 months after surgery. Marriage, year of diagnosis, tumor stage, preoperative imaging, postoperative visit to a medical oncologist, and adjuvant chemotherapy were significantly associated with increased PET use. PET use after colon cancer resection is steadily increasing, and further study is needed to understand the clinical value and effectiveness of PET scans and the reasons for this departure from guideline-concordant care. Copyright © 2015 by American Society of Clinical Oncology.

  7. 3D fast reconstruction in positron emission tomography

    International Nuclear Information System (INIS)

    Egger, M.L.; Scheurer, A. Hermann; Joseph, C.; Morel, C.

    1996-01-01

    The issue of long reconstruction times in positron emission tomography (PET) has been addressed from several points of view, resulting in an affordable dedicated system capable of handling routine 3D reconstructions in a few minutes per frame : on the hardware side using fast processors and a parallel architecture, and on the software side, using efficient implementation of computationally less intensive algorithms

  8. Time-of-flight positron emission tomography and associated detectors

    International Nuclear Information System (INIS)

    Vacher, J.; Allemand, R.; Campagnolo, R.

    1983-04-01

    An analysis of the timing capabilities of the detectors (scintillators and photomultipliers) in time-of-flight positron emission tomography is presented. The advantages of BaF 2 compared with CsF for the futur tomographs are evaluated [fr

  9. Cobalt-55 positron emission tomography in recurrent ischaemic stroke

    NARCIS (Netherlands)

    De Reuck, J; Santens, P; Keppens, J; De Bleecker, J; Strijckmans, K; Goethals, P; Lemahieu, [No Value; Korf, J

    The present study investigates if Cobalt-55 (Co-55) positron emission tomography (PET) allows us to distinguish and detect recent, recurrent strokes in patients who had already suffered a previous infarct in the same vascular territory. Fourteen patients with recurrent strokes underwent a Co-55 PET

  10. Positron emission tomography in drug development and drug evaluation

    NARCIS (Netherlands)

    Paans, AMJ; Vaalburg, W

    2000-01-01

    Positron Emission Tomography (PET) is an imaging modality which can determine biochemical and physiological processes in vivo in a quantitative way by using radiopharmaceuticals labeled with positron emitting radionuclides as C-11, N-13, O-15 and F-18 and by measuring the annihilation radiation

  11. MR imaging and positron emission tomography of cortical heterotopia

    Energy Technology Data Exchange (ETDEWEB)

    Bairamian, D.; Di Chiro, G.; Theodore, W.H.; Holmes, M.D.; Dorwart, R.H.; Larson, S.M.

    1985-11-01

    Heterotopia of the gray matter is a developmental malformation in which ectopic cortex is found in the white matter of the brain. A case of a 33-year-old man with cortical heterotopia who had a lifelong history of seizures and psychomotor retardation is reported, including the results of cerebral CT, magnetic resonance imaging, and positron emission tomography using YF-2-deoxyglucose.

  12. MR imaging and positron emission tomography of cortical heterotopia

    International Nuclear Information System (INIS)

    Bairamian, D.; Di Chiro, G.; Theodore, W.H.; Holmes, M.D.; Dorwart, R.H.; Larson, S.M.

    1985-01-01

    Heterotopia of the gray matter is a developmental malformation in which ectopic cortex is found in the white matter of the brain. A case of a 33-year-old man with cortical heterotopia who had a lifelong history of seizures and psychomotor retardation is reported, including the results of cerebral CT, magnetic resonance imaging, and positron emission tomography using 18 F-2-deoxyglucose

  13. Positron Emission Tomography : background, possibilities and perspectives in neuroscience

    NARCIS (Netherlands)

    Paans, AMJ

    Positron Emission Tomography (PET) is a method for determining biochemical and physiological processes in vivo in a quantitative way. This includes the measurement of the pharmacokinetics of labeled drugs and the measurement of the effects of drugs and/or therapy on metabolism. Also deviations of

  14. Physiopathology of ischemic strokes: the input of positron emission tomography

    International Nuclear Information System (INIS)

    Steinling, M.; Samson, Y.

    1999-01-01

    The tomography by positrons emissions has brought essential physiological and pathological knowledge relative to cerebral vascular accidents in the acute phase, because it is possible to measure the cerebral blood flow, the oxygen extraction rate and the local oxygen consumption. (N.C.)

  15. High resolution and high speed positron emission tomography data acquisition

    International Nuclear Information System (INIS)

    Burgiss, S.G.; Byars, L.G.; Jones, W.F.; Casey, M.E.

    1986-01-01

    High resolution positron emission tomography (PET) requires many detectors. Thus, data collection systems for PET must have high data rates, wide data paths, and large memories to histogram the events. This design uses the VMEbus to cost effectively provide these features. It provides for several modes of operation including real time sorting, list mode data storage, and replay of stored list mode data

  16. Positron emission tomography in presurgical diagnosis of partial epilepsies

    International Nuclear Information System (INIS)

    Hajek, M.; Leenders, K.L.; Wieser, H.G.

    1992-01-01

    We present results of studies in which positron emission tomography was applied to the presurgical evaluation of epileptics. Emphasis is placed on results of PET studies with various tracers in partial epilepsies and on the use of PET in age-related epileptic syndromes in children. (orig.) [de

  17. Serotonin synthesis studied with positron emission tomography, (PET)

    DEFF Research Database (Denmark)

    Honoré, Per Gustaf Hartvig; Lundquist, Pinelopi

    Positron emission tomography (PET) has the potential to study the biosynthesis and release of serotonin (5HT) at brain serotonergic neurons. PET requires probe compounds with specific attributes to enable imaging and quantification of biological processes. This section focuses on probes to measure...

  18. Recent developments in positron emission tomography (PET) instrumentation

    Energy Technology Data Exchange (ETDEWEB)

    Derenzo, S.E.; Budinger, T.F.

    1986-04-01

    This paper presents recent detector developments and perspectives for positron emission tomography (PET) instrumentation used for medical research, as well as the physical processes in positron annihilation, photon scattering and detection, tomograph design considerations, and the potentials for new advances in detectors. 117 refs., 4 figs., 4 tabs.

  19. Recent developments in positron emission tomography (PET) instrumentation

    International Nuclear Information System (INIS)

    Derenzo, S.E.; Budinger, T.F.

    1986-04-01

    This paper presents recent detector developments and perspectives for positron emission tomography (PET) instrumentation used for medical research, as well as the physical processes in positron annihilation, photon scattering and detection, tomograph design considerations, and the potentials for new advances in detectors. 117 refs., 4 figs., 4 tabs

  20. Quantification in dynamic and small-animal positron emission tomography

    NARCIS (Netherlands)

    Disselhorst, Johannes Antonius

    2011-01-01

    This thesis covers two aspects of positron emission tomography (PET) quantification. The first section addresses the characterization and optimization of a small-animal PET/CT scanner. The sensitivity and resolution as well as various parameters affecting image quality (reconstruction settings, type

  1. New Possibilities of Positron-Emission Tomography

    Science.gov (United States)

    Volobuev, A. N.

    2018-01-01

    The reasons for the emergence of the angular distribution of photons generated as a result of annihilation of an electron and a positron in a positron-emission tomograph are investigated. It is shown that the angular distribution of the radiation intensity (i.e., the probability of photon emission at different angles) is a consequence of the Doppler effect in the center-of-mass reference system of the electron and the positron. In the reference frame attached to the electron, the angular distribution of the number of emitted photons does not exists but is replaced by the Doppler shift of the frequency of photons. The results obtained in this study make it possible to extend the potentialities of the positron-emission tomograph in the diagnostics of diseases and to obtain additional mechanical characteristics of human tissues, such as density and viscosity.

  2. Attenuation correction using simultaneous emission - transmission tomography

    International Nuclear Information System (INIS)

    Ljubenov, V.; Marinkovic, P.

    1998-01-01

    In order to reduce degrading influence of attenuation on SPECT image quality, possibility for correction, based on simultaneous emission / transmission measurements, is discussed. Numerical photon transport simulations through the phantom and acquisition of of tomographic projections are performed by using Monte Carlo code MCNP-4A. Amount of contamination in transmission data due to photon Compton scattering for emission energy window is specially analyzed and appropriate spatial depending 'noise / signal' factors for three different external sources, applied with Tc-99m, are determined (author)

  3. The role of (18)fluoro-deoxyglucose positron emission tomography/computed tomography in resectable pancreatic cancer.

    Science.gov (United States)

    Crippa, Stefano; Salgarello, Matteo; Laiti, Silvia; Partelli, Stefano; Castelli, Paola; Spinelli, Antonello E; Tamburrino, Domenico; Zamboni, Giuseppe; Falconi, Massimo

    2014-08-01

    The role of (18)fluoro-deoxyglucose positron emission tomography/computed tomography in pancreatic ductal adenocarcinoma is debated. We retrospectively assessed the value of (18)fluoro-deoxyglucose positron emission tomography/computed tomography in addition to conventional imaging as a staging modality in pancreatic cancer. (18)Fluoro-deoxyglucose positron emission tomography/computed tomography was performed in 72 patients with resectable pancreatic carcinoma after multi-detector computed tomography positron emission tomography was considered positive for a maximum standardized uptake value >3. Overall, 21% of patients had a maximum standardized uptake value ≤ 3, and 60% of those had undergone neoadjuvant treatment (P=0.0001). Furthermore, 11% of patients were spared unwarranted surgery since positron emission tomography/computed tomography detected metastatic disease. All liver metastases were subsequently identified with contrast-enhanced ultrasound. Sensitivity and specificity of positron emission tomography/computed tomography for distant metastases were 78% and 100%. The median CA19.9 concentration was 48.8 U/mL for the entire cohort and 292 U/mL for metastatic patients (P=0.112). The widespread application of (18)fluoro-deoxyglucose positron emission tomography/computed tomography in patients with resectable pancreatic carcinoma seems not justified. It should be considered in selected patients at higher risk of metastatic disease (i.e. CA19.9>200 U/mL) after undergoing other imaging tests. Neoadjuvant treatment is significantly associated with low metabolic activity, limiting the value of positron emission tomography in this setting. Copyright © 2014 Editrice Gastroenterologica Italiana S.r.l. Published by Elsevier Ltd. All rights reserved.

  4. Hybrid Gama Emission Tomography (HGET): FY16 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Erin A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Smith, Leon E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Wittman, Richard S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Campbell, Luke W. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Deshmukh, Nikhil S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Zalavadia, Mital A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Batie, Margo A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Mozin, Vladimir V. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-02-01

    Current International Atomic Energy Agency (IAEA) methodologies for the verification of fresh low-enriched uranium (LEU) and mixed oxide (MOX) fuel assemblies are volume-averaging methods that lack sensitivity to individual pins. Further, as fresh fuel assemblies become more and more complex (e.g., heavy gadolinium loading, high degrees of axial and radial variation in fissile concentration), the accuracy of current IAEA instruments degrades and measurement time increases. Particularly in light of the fact that no special tooling is required to remove individual pins from modern fuel assemblies, the IAEA needs new capabilities for the verification of unirradiated (i.e., fresh LEU and MOX) assemblies to ensure that fissile material has not been diverted. Passive gamma emission tomography has demonstrated potential to provide pin-level verification of spent fuel, but gamma-ray emission rates from unirradiated fuel emissions are significantly lower, precluding purely passive tomography methods. The work presented here introduces the concept of Hybrid Gamma Emission Tomography (HGET) for verification of unirradiated fuels, in which a neutron source is used to actively interrogate the fuel assembly and the resulting gamma-ray emissions are imaged using tomographic methods to provide pin-level verification of fissile material concentration.

  5. Lung Cancer in Patients With Tuberculous Fibrothorax and Empyema: Computed Tomography and 18F-Fluorodeoxyglucose Positron Emission Tomography Findings.

    Science.gov (United States)

    Xu, Hai; Koo, Hyun Jung; Lee, Han Na; Lim, Soyeoun; Lee, Jae Wook; Choi, Chang-Min; Kim, Mi Young

    The aim of this study was to describe the characteristics of lung cancers in patients with tuberculous fibrothorax or empyema. We retrospectively evaluated 138 consecutive patients with a diagnosis of lung cancer combined with fibrothorax (n = 127) or empyema (n = 11) from January 2005 to May 2015. All patients underwent computed tomography, and 105 underwent F-fluorodeoxyglucose positron emission tomography. Clinical, pathologic, and computed tomography characteristics and maximum standardized uptake values on positron emission tomography of 76 cancers ipsilateral to the fibrothorax or empyema (group 1) were compared with those of 62 contralateral cancers (group 2). The median age at diagnosis of patients was 70 years, with a male-to-female ratio of 8.9:1. The most common type was squamous cell carcinoma (41.3%) followed by adenocarcinoma (39.1%). Most were in the peripheral lung (70.3%), and half abutted the pleura. The median maximum standardized uptake value was 8.9. Tumors in group 1 were larger (median, 48.5 vs 42.8 mm, P = 0.036) and more advanced (T3 or T4) (P = 0.014) than those in group 2. Lung cancers ipsilateral to tuberculous fibrothorax or empyema presented larger and advanced T stages, and the diagnosis could be delayed. The most common type cancer was squamous cell carcinoma.

  6. 77 FR 21783 - Guidance on Media Fills for Validation of Aseptic Preparations for Positron Emission Tomography...

    Science.gov (United States)

    2012-04-11

    ...] Guidance on Media Fills for Validation of Aseptic Preparations for Positron Emission Tomography Drugs... Aseptic Preparations for Positron Emission Tomography (PET) Drugs.'' This guidance is intended to help... Preparations for Positron Emission Tomography (PET) Drugs.'' Most PET drugs are designed for parenteral...

  7. Use of positron emission tomography in colorectal cancer

    International Nuclear Information System (INIS)

    Gonzalez E, Patricio; Jofre E, Josefina; Massardo V, Teresa; Humeres, Pamela; Canessa G, Jose; Sierralta C, Paulina

    2002-01-01

    The value of PET (Positron Emission Tomography) in colorectal cancer is presented. PET is a novel technique that uses F-18-FDG (fluorodeoxiglucose) to assess glucose metabolism by whole body imaging. It has been demonstrated that malignant cells have both increase of glucose uptake and utilization. In colorectal cancer, PET is indicated for staging, assess recurrence, liver metastasis and treatment follow-up. PET is more sensitive and specific than CT (Computed Tomography) and is cost effective. In 30% of cases PET may change patient management, avoiding unnecessary procedures (au)

  8. Single photon emission computed tomography in children with idiopathic seizures

    International Nuclear Information System (INIS)

    Hara, Masafumi; Takahashi, Mutsumasa; Kojima, Akihiro; Shimomura, Osamu; Kinoshita, Rumi; Tomiguchi, Seiji; Taku, Keiichi; Miike, Teruhisa

    1991-01-01

    Single photon emission computed tomography (SPECT) with N-isoprophyl-p [ 123 I]-iodoamphetamine (IMP), X-ray computed tomography (X-CT), and magnetic resonance imaging (MRI) were performed in 20 children with idiopathic seizures. In children with idiopathic seizures, SPECT could detect the abnormal sites at the highest rate (45%) compared with CT (10%) and MRI (12%), but the abnormal sites on SPECT correlated poorly with the foci on electroencephalograph (EEG). Idiopathic epilepsy with hypoperfusion on SPECT was refractory to treatment and was frequently associated with mental and/or developmental retardation. Perfusion defects on SPECT scans probably affect the development and maturation of the brain in children. (author)

  9. Fluorodeoxyglucose positron emission tomography?computed tomography in evaluation of pelvic and para-aortic nodal involvement in early stage and operable cervical cancer: Comparison with surgicopathological findings

    OpenAIRE

    Bansal, Vandana; Damania, Kaizad; Sharma, Anshu Rajnish

    2011-01-01

    Introduction: Nodal metastases in cervical cancer have prognostic implications. Imaging is used as an adjunct to clinical staging for evaluation of nodal metastases. Fluorodeoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT) has an advantage of superior resolution of its CT component and detecting nodal disease based on increased glycolytic activity rather than node size. But there are limited studies describing its limitations in early stage cervical cancers. Objectiv...

  10. Positron emission tomography of FDG in schizophrenia

    International Nuclear Information System (INIS)

    Sargent, T. III; Kusubov, N.

    1986-01-01

    The use of the Donner dynamic positron emission tomograph to study fluorodeoxyglucose labelled 18 F uptake in the brain of six patients with schizophrenia is reported. The glucose metabolic rate and the local cerebral metabolic rate were calculated. The dynamic brain uptake data and the blood input function were used to calculate rate constants by an iterative least squares fitting program for all regions of interest chosen in the brain. Although the number of patients was small, differences in k3 were statistically significant in several brain regions compared with normal controls

  11. Positron emission tomography scans on kanji and kana

    International Nuclear Information System (INIS)

    Sakurai, Yasuhisa

    2002-01-01

    We reanalyzed our positron emission tomography (PET) study on reading of Japanese kanji (morphogram) words, kana (phonogram) words and kana nonwords, using Statistical Parametric Mapping (SPM). The basal occipital and occipito-temporal areas were activated in common, among which activity was most pronounced in the fusiform/inferior temporal gyri with kanji and in the inferior occipital gyrus with kana. The results were consistent with the clinical observations that damage to the posterior inferior temporal cortex including the fusiform/inferior temporal gyri causes alexia with agraphia for kanji, whereas damage to the posterior occipital area including the inferior occipital gyrus causes pure alexia for kana. Bases on the present results and the lesion studies, a dual-route hypothesis that modifies Iwata's model of reading about the Japanese language was proposed. That is, the middle occipital gyrus, deep perisylvian temporoparietal cortex and posterior temporal gyrus constitute a dorsal route for reading and process phonology for words, whereas the inferior occipital, fusiform and posterior inferior temporal gyri constitute a ventral route for reading and process orthography and lexico-semantics for words. The ventral route may gain dominance in reading, according as a word is repeatedly presented. (author)

  12. Simultaneous in vivo positron emission tomography and magnetic resonance imaging.

    Science.gov (United States)

    Catana, Ciprian; Procissi, Daniel; Wu, Yibao; Judenhofer, Martin S; Qi, Jinyi; Pichler, Bernd J; Jacobs, Russell E; Cherry, Simon R

    2008-03-11

    Positron emission tomography (PET) and magnetic resonance imaging (MRI) are widely used in vivo imaging technologies with both clinical and biomedical research applications. The strengths of MRI include high-resolution, high-contrast morphologic imaging of soft tissues; the ability to image physiologic parameters such as diffusion and changes in oxygenation level resulting from neuronal stimulation; and the measurement of metabolites using chemical shift imaging. PET images the distribution of biologically targeted radiotracers with high sensitivity, but images generally lack anatomic context and are of lower spatial resolution. Integration of these technologies permits the acquisition of temporally correlated data showing the distribution of PET radiotracers and MRI contrast agents or MR-detectable metabolites, with registration to the underlying anatomy. An MRI-compatible PET scanner has been built for biomedical research applications that allows data from both modalities to be acquired simultaneously. Experiments demonstrate no effect of the MRI system on the spatial resolution of the PET system and <10% reduction in the fraction of radioactive decay events detected by the PET scanner inside the MRI. The signal-to-noise ratio and uniformity of the MR images, with the exception of one particular pulse sequence, were little affected by the presence of the PET scanner. In vivo simultaneous PET and MRI studies were performed in mice. Proof-of-principle in vivo MR spectroscopy and functional MRI experiments were also demonstrated with the combined scanner.

  13. Respiratory synchronization for lung tumors exploration by positon emission tomography

    International Nuclear Information System (INIS)

    Grotus, Nicolas

    2009-01-01

    Positron Emission Tomography (PET) is a medical imaging technique that requires several minutes of acquisition to get an image. PET images are thus severely affected by the respiratory motion of the patient, which introduces a blur in the images. Techniques consisting in gating the PET acquisition as a function of the patient respiration exist and reduce the respiratory blur in the PET images. However, these techniques increase the noise in the reconstructed images. The aim of this work was to propose a method for respiratory motion compensation that would not enhance the noise in the PET images, without increasing the acquisition duration nor estimating the deformation field associated with the respiratory motion. We proposed 2 original spatio-temporal (4D) reconstruction algorithms of gated PET images. These 2 methods take advantage of the temporal correlation between the images corresponding to the different breathing phases. The performances of these techniques were evaluated and compared to classic approaches using phantom data and simulated data. The results showed that the 4D reconstructions increase the signal-to-noise ratio compared to the classic reconstructions while maintaining the reduction of the respiratory blur. For a fixed acquisition duration, the 4D reconstructions can thus yield gated images that are almost free of respiratory blur and of the same quality in terms of noise level as the ones obtained without respiratory gating. The clinical feasibility of the proposed techniques was also demonstrated. (author) [fr

  14. 67Ga-emission computed tomography in bronchogenic carcinoma

    International Nuclear Information System (INIS)

    Ichiya, Yuichi; Oshiumi, Yoshihiko; Kuwabara, Yasuo; Wada, Makoto; Ayabe, Zenji; Matsuura, Keiichi

    1982-01-01

    Both conventional 67 Ga scintigraphy and 67 Ga emission computed tomography (ECT) were performed in 36 patients with bronchogenic carcinoma to evaluate clinical significance of 67 Ga-ECT as an adjunctive method. Each patient received 111 -- 185 MBq (3 -- 5 mCi) of 67 Ga-citrate intravenously. A rotation #betta# camera (Shimadzu LFOV-E) was used for ECT study, and a #betta# camera (Searle LFOV) was used for conventional scintigraphy. The detectability of 67 Ga scintigraphy with ECT in primary tumors and regional lymph node metastases was compared retrospectively with that of conventional 67 Ga scintigraphy alone. There was little improvement in detection of primary and metastatic lesions by adding 67 Ga-ECT. Only 3 primary tumors were demonstrated more distinctly by 67 Ga-ECT. However, there was no lesion which was detected only by 67 Ga-ECT. Our data indicate that inclusion of 67 Ga-ECT in the routine examination is unnecessary in cases with bronchogenic carcinoma. (author)

  15. Single-Photon Emission Computed Tomography (SPECT) in childhood epilepsy

    International Nuclear Information System (INIS)

    Gulati, Sheffali; Kalra, Veena; Bal, C.S.

    2000-01-01

    The success of epilepsy surgery is determined strongly by the precise location of the epileptogenic focus. The information from clinical electrophysiological data needs to be strengthened by functional neuroimaging techniques. Single photon emission computed tomography (SPECT) available locally has proved useful as a localising investigation. It evaluates the regional cerebral blood flow and the comparison between ictal and interictal blood flow on SPECT has proved to be a sensitive nuclear marker for the site of seizure onset. Many studies justify the utility of SPECT in localising lesions to possess greater precision than interictal scalp EEG or anatomic neuroimaging. SPECT is of definitive value in temporal lobe epilepsy. Its role in extratemporal lobe epilepsy is less clearly defined. It is useful in various other generalized and partial seizure disorders including epileptic syndromes and helps in differentiating pseudoseizures from true seizures. The need for newer radiopharmaceutical agents with specific neurochemical properties and longer shelf life are under investigation. Subtraction ictal SPECT co-registered to MRI is a promising new modality. (author)

  16. Oxygen-15 labelled water production for positron emission tomography

    International Nuclear Information System (INIS)

    Janus, A.; Sachinidis, J.I.; Chan, J.G.; Tochon-Danguy, H.J.

    1998-01-01

    Full text: Functional imaging using positron emission tomography (PET) and 15 O-labelled compounds is both scientifically and clinically challenging. The short half-life of oxygen-15 (t 1/2 = 2 min) allows for multiple administration to a patient without exceeding acceptable levels of absorbed radiation dose and without excessive delay between administrations. The clinical usefulness of [ 15 O]-labelled water for cerebral blood flow measurements has been well established. Here we report the development and construction of a [ 15 O]water generator based on an earlier design from Hammersmith Hospital, London. The cyclotron produces a continuous flow of [ 15 O]O 2 gas by the irradiation of a natural nitrogen target (1% O 2 in N 2 ) with a 5 MeV deuteron beam, via the nuclear reaction ( 14 N(d,n) 15 O). The radioactive gas is then mixed with 5% hydrogen in nitrogen and piped to the water generator located in the scanner room. The O 2 /N 2 gas mixture is reacted over a palladium catalyst at 1500 deg C to produce [ 15 O]H 2 O vapour. The vapour passes through an exchanger where it diffuses across a semi-permeable membrane (cellulose acetate) into saline solution. At the optimum gas flow- rate of 500 mL/min, more than 95% of the radioactive oxygen is converted to radioactive water. Waste radioactive gas is piped back to the cyclotron vault to decay before release into the atmosphere. The saline solution (0.9% NaCl) is pumped continuously through the system at 6 mL/min with an infusion pump (3M AVI470). The present system has been in operation for more than a year and has been used for clinical evaluation of stroke patients and for brain activation research studies

  17. Fluorinated tracers for imaging cancer with positron emission tomography

    International Nuclear Information System (INIS)

    Couturier, Olivier; Chatal, Jean-Francois; Luxen, Andre; Vuillez, Jean-Philippe; Rigo, Pierre; Hustinx, Roland

    2004-01-01

    2-[ 18 F]fluoro-2-deoxy-d-glucose (FDG) is currently the only fluorinated tracer used in routine clinical positron emission tomography (PET). Fluorine-18 is considered the ideal radioisotope for PET imaging owing to the low positron energy (0.64 MeV), which not only limits the dose rate to the patient but also results in a relatively short range of emission in tissue, thereby providing high-resolution images. Further, the 110-min physical half-life allows for high-yield radiosynthesis, transport from the production site to the imaging site and imaging protocols that may span hours, which permits dynamic studies and assessment of potentially fairly slow metabolic processes. The synthesis of fluorinated tracers as an alternative to FDG was initially tested using nucleophilic fluorination of the molecule, as performed when radiolabelling with iodine-124 or bromide-76. However, in addition to being long, with multiple steps, this procedure is not recommended for bioactive molecules containing reactive groups such as amine or thiol groups. Radiochemical yields are also often low. More recently, radiosynthesis from prosthetic group precursors, which allows easier radiolabelling of biomolecules, has led to the development of numerous fluorinated tracers. Given the wide availability of 18 F, such tracers may well develop into important routine tracers. This article is a review of the literature concerning fluorinated radiotracers recently developed and under investigation for possible PET imaging in cancer patients. Two groups can be distinguished. The first includes ''generalist'' tracers, i.e. tracers amenable to use in a wide variety of tumours and indications, very similar in this respect to FDG. These are tracers for non-specific cell metabolism, such as protein synthesis, amino acid transport, nucleic acid synthesis or membrane component synthesis. The second group consists of ''specific'' tracers for receptor expression (i.e. oestrogens or somatostatin), cell

  18. Impact of fluorodeoxyglucose-positron emission tomography (FDG-PET) in the management of patients with cancer and other serious disorders: a clinical case based approach

    International Nuclear Information System (INIS)

    Basu, Sandip

    2010-01-01

    In this pictorial review, the impact of FDG-PET is illustrated with specific clinical case examples that would demonstrate the power and promise of this molecular imaging technique in managing a wide variety of disorders. The case vignettes depicted in this communication represent the ones where this modality can be utilized in the routine clinical scenario and can prove substantially beneficial to the patients of cancer and other serious disorders. Related discussions are drawn along with individual cases to enable the readers understand the further prospects of PET that are being explored at the present. (author)

  19. Detection of non-aggressive stage IA lung cancer using chest computed tomography and positron emission tomography/computed tomography.

    Science.gov (United States)

    Shiono, Satoshi; Yanagawa, Naoki; Abiko, Masami; Sato, Toru

    2014-10-01

    In contrast to lung cancer with ground-glass opacity, the radiological investigation of solid lung cancer has not been well examined. The aim of this study was to explore chest computed tomography (CT) and positron emission tomography (PET)/CT findings with regard to outcomes after lung cancer surgery in order to radiologically classify clinical stage IA lung cancers by tumour aggressiveness. Three hundred and fifteen clinical stage IA patients were analysed. Four groups were defined by tumour solidity on CT and by the standardized uptake value (SUV) index on PET-CT (tumour maximum SUV/mean right liver lobe SUV). We analysed the association between radiological findings and both pathological invasiveness and postoperative outcome. Group A (n = 84) had an SUV index <1.0 and non-solid tumours, Group B (n = 24) had an SUV index <1.0 and solid tumours, Group C (n = 54) had an SUV index ≥1.0 and non-solid tumours, while Group D (n = 153) had an SUV index ≥1.0 and solid tumours. Invasive lung cancer was found in 2/84 (2.4%) patients in Group A, 1/24 (4.2%) in Group B, 13/54 (24.1%) in Group C and 58/153 (37.9%) in Group D (P < 0.01). The 5-year recurrence-free rate was 100% in Groups A and B, 90.3% in C and 65.7% in D (P < 0.01). The cancer-specific survival rate was 100% in A and B, 94.6% in C and 81.7% in D (P < 0.01). The present results suggest that preoperative PET/CT and thin-section CT findings provide important information for a selection of surgical procedures for clinical stage IA lung cancers. In clinical stage IA lung cancers displaying solid or non-solid density in thin-section findings, an SUV index <1.0 may be a better criterion for detecting non-aggressive lung cancer even in solid lung cancers. © The Author 2014. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.

  20. Regional cerebral blood flow studies with single photon emission computed tomography (SPECT); Clinical experiences, possibilities. Regionalis agyi veratfolyas vizsgalata egyfotonos emissios computer tomographiaval (SPECT); Klinikai tapasztalatok, lehetoesegek

    Energy Technology Data Exchange (ETDEWEB)

    Pavics, Laszlo; Csernay, Laszlo; Doczi, Tamas; Lang, Jenoe; Blaho, Gabor; Janka, Zoltan; Bodosi, Mihaly [Szegedi Orvostudomanyi Egyetem, Szeged (Hungary)

    1990-01-07

    Clinical experiences based on regional cerebral blood flow investigations with {sup 99m}Tc hexamethylpropyleneamin-oxime (HMPAO) SPECT in 164 patients are reported. The pharmacokinetics of the {sup 99m}Tc HMPAO are summarized, and the important indications of the investigations are interpreted in case reports (stroke, surgical solution of intracavernous aneurysm, Alzheimer and multiinfarct types of dementia). The literature data suggest that the diagnostic possibilities with this method are advantageous, even in other diseases. (author) 36 refs.; 7 figs.

  1. Positron Emission Tomography in inflammatory cardiovascular diseases

    Energy Technology Data Exchange (ETDEWEB)

    Felix, Renata Christian Martins; Gouvea, Clecio Maria, E-mail: renatafelix@cardiol.br, E-mail: renata.felix@inc.saude.gov.br [Instituto Nacional de Cardiologia, Rio de Janeiro, RJ (Brazil); Carneiro, Michel Pontes [Instituto Nacional de Cancer (INCA), Rio de Janeiro, RJ (Brazil); Mesquita, Claudio Tinoco [Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil)

    2014-10-15

    Many articles have demonstrated the role of PET-CT in the evaluation of inflammatory and infectious diseases of the cardiovascular system. The purpose of this article is to provide a review of the literature on this topic to identify clinical situations in which there is evidence of the usefulness of PET-CT in diagnostic and therapeutic evaluation.

  2. Fluorine-18-fluorodeoxyglucose Positron Emission Tomography in Diffuse Large B-cell Lymphoma

    DEFF Research Database (Denmark)

    Mylam, Karen Juul; Nielsen, Anne Lerberg; Pedersen, Lars Møller

    2014-01-01

    Diffuse large B-cell lymphoma (DLBCL) is an aggressive and potentially curable type of lymphoma. Fluorine-18-fluorodeoxyglucose positron emission tomography (FDG-PET) is part of clinical routine for DLBCL in most hospitals and also recommended for staging and end-of-therapy evaluation. FDG......-PET/computed tomography (CT) is able to identify nodal and extranodal sites with greater accuracy than CT alone. Little evidence supports the use of surveillance FDG-PET imaging in the follow-up setting because of high rates of false-positive scans and because most studies are retrospective. This article discusses FDG...

  3. Positron emission tomography: Which indications, which benefits?; Tomographie par emission de positons (TEP): quelles indications, quels benefices?

    Energy Technology Data Exchange (ETDEWEB)

    Chassoux, F. [Ctr Hosp St Anne, Serv Neurochirurg, F-75014 Paris (France); Chassoux, F.; Chiron, C. [CEA, I2BM, Serv Hosp Frederic Joliot, F-91 Orsay (France); Chiron, C. [Hop Necker Enfants Malad, INSERM, U663, F-75015 Paris (France); Chassoux, F.; Chiron, C. [Univ Paris 06, F-75005 Paris (France)

    2008-07-01

    Positron emission tomography (PET) is currently used in the pre-surgical workup for drug-resistant partial epilepsies in addition to MRI. Inter-ictal metabolism is studied in clinical practice using {sup 18}fluoro-desoxy-glucose ({sup 18}FDG). In medial temporal lobe epilepsy (MTLE) associated with hippocampal sclerosis, hypo-metabolism ipsilateral to the epileptogenic focus is found in 70-90% of cases. However, hypo-metabolism is larger than the structural lesion observed on MRI and includes the epileptogenic zone and ictal discharge spread areas. Hypo-metabolism is related to surgical outcome and cognitive disturbances in MTLE. Although the usefulness of PET appears less well-established in extra-temporal lobe epilepsy and in children, its sensitivity may be improved by co-registration and superimposition of PET on MRI at any age. Focal hypo-metabolism can be easily detected by visual analysis, allowing detection of minor gyral abnormalities that may correspond to focal cortical dysplasias. Moreover, in cases of negative MRI, focal hypo-metabolism findings may help invasive monitoring planning and deep electrode placement for SEEG, and finally improve surgical outcome. (authors)

  4. Positron emission tomography in cerebrovascular disease

    International Nuclear Information System (INIS)

    Powers, W.J.

    1988-01-01

    This paper reviews and discusses those aspects of PET that are relevant to its current and future role in the clinical care of individual patients with ischemic cerebrovascular disease. In making a judgement about the value of any diagnostic test in the management of patients with a specific disease, one must decide what criteria to apply. It is tempting to conclude that any test that provides accurate data related to the pathophysiology of the disease under consideration must be clinically useful. This is not necessarily the case, however, if the data do not lead to better patient care by reducing either morbidity and mortality or expense. Such is currently the case for PET in human cerebrovascular disease. The data that PET can provide on CBF, CBV, OEF, and CMRO 2 are accurate and are directly related to the pathophysiology of cerebral ischemia. As yet, however, there is no evidence that the application of these data leads to improvements in patient care

  5. Position emission tomography with or without computed tomography in the primary staging of Hodgkin's lymphoma

    DEFF Research Database (Denmark)

    Hutchings, Martin; Loft, Annika; Hansen, Mads

    2006-01-01

    BACKGROUND AND OBJECTIVES: In order to receive the most appropriate therapy, patients with Hodgkin's lymphoma (HL) must be accurately stratified into different prognostic staging groups. Computed tomography (CT) plays a pivotal role in the conventional staging. The aim of the present study...... was to investigate the value of positron emission tomography using 2-[18F]fluoro-2-deoxy-D-glucose (FDG-PET) and combined FDG-PET/CT for the staging of HL patients, and the impact on the choice of treatment. DESIGN AND METHODS: Ninety-nine consecutive, prospectively included patients had FDG-PET and CT...

  6. Simulated annealing image reconstruction for positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Sundermann, E; Lemahieu, I; Desmedt, P [Department of Electronics and Information Systems, University of Ghent, St. Pietersnieuwstraat 41, B-9000 Ghent, Belgium (Belgium)

    1994-12-31

    In Positron Emission Tomography (PET) images have to be reconstructed from moisy projection data. The noise on the PET data can be modeled by a Poison distribution. In this paper, we present the results of using the simulated annealing technique to reconstruct PET images. Various parameter settings of the simulated annealing algorithm are discussed and optimized. The reconstructed images are of good quality and high contrast, in comparison to other reconstruction techniques. (authors). 11 refs., 2 figs.

  7. Fluorodeoxyglucose Positron Emission Tomography–Computed Tomography in Disseminated Cryptococcosis

    Science.gov (United States)

    Tripathy, Sarthak; Parida, Girish Kumar; Roy, Shambo Guha; Singhal, Abhinav; Mallick, Saumya Ranjan; Tripathi, Madhavi; Shamim, Shamim Ahmed

    2017-01-01

    Disseminated cryptococcosis without pulmonary involvement is a very rare phenomenon. Patterns of organ involvement in cryptococcosis resemble various other infective conditions as well as malignant conditions on fluorodeoxyglucose positron emission tomography–computed tomography. We present a case of a 43-year-old male patient who had disseminated cryptococcosis. The rarity of the case being noninvolvement of lungs and meninges and resembling more like lymphoma due to the diffuse involvement of the lymph nodes on both sides of the diaphragm. PMID:29142368

  8. A new liquid xenon scintillation detector for positron emission tomography

    International Nuclear Information System (INIS)

    Chepel, V.Yu.

    1993-01-01

    A new positron-sensitive detector of annihilation photons filled with liquid xenon is proposed for positron emission tomography. Simultaneous detection of both liquid xenon scintillation and ionization current produces a time resolution of < 1 ns and a position resolution in the tangential direction of the tomograph ring is ∼ 1 mm and in the radial direction is ∼ 5 mm. The advantages of a tomograph with new detectors are discussed. New algorithms of Compton scattering can be used. (author)

  9. Measurement of brain pH with positron emission tomography

    International Nuclear Information System (INIS)

    Buxton, R.B.; Alpert, N.M.; Ackerman, R.H.; Wechsler, L.R.; Elmaleh, D.R.; Correia, J.A.

    1985-01-01

    With positron emission tomography (PET) it is now possible to measure local brain pH noninvasively in humans. The application of PET to the determination of pH is relatively new, so only a handful of papers on the subject have appeared in print. This chapter reviews the current strategies for measuring brain pH with PET, discuss methodological problems, and present initial results

  10. Simulated annealing image reconstruction for positron emission tomography

    International Nuclear Information System (INIS)

    Sundermann, E.; Lemahieu, I.; Desmedt, P.

    1994-01-01

    In Positron Emission Tomography (PET) images have to be reconstructed from moisy projection data. The noise on the PET data can be modeled by a Poison distribution. In this paper, we present the results of using the simulated annealing technique to reconstruct PET images. Various parameter settings of the simulated annealing algorithm are discussed and optimized. The reconstructed images are of good quality and high contrast, in comparison to other reconstruction techniques. (authors)

  11. Method of multiplanar emission tomography and apparatus therefor

    International Nuclear Information System (INIS)

    Gottschalk, S.C.; Smith, K.A.; Wake, R.H.

    1981-01-01

    A method of emission tomography using a gamma camera and a rotating collimator having an array of a large number of slanted, small diameter holes. A planar projection corresponding to each angular orientation assumed by the collimator is recorded. From these series of planar projections, a three-dimensional simulation model is reconstructed by an iterative algorithm which approximates the emitting object. The simulated model comprises multiple separable planes

  12. Positron emission tomography in the Rett syndrome

    International Nuclear Information System (INIS)

    Naidu, S.; Wong, D.F.; Kitt, C.; Wenk, G.; Moser, H.W.

    1992-01-01

    A consistent constellation of clinical signs and symptoms define the Rett syndrome, the most prominent of which are disorders of movement and tone. Preliminary pathologic and neurochemical data indicate predominant involvement of the nigrostriatal dopaminergic pathways and the cholinergic system of the basal forebrain region. The age of onset differentiates the Rett syndrome from Alzheimer and Parkinson disease with similar lesions. PET scanning makes it possible to relate the chemistry of the brain to function by measuring the number and affinity of neuroreceptors, metabolism in specific brain regions, and provide important determinants of the underlying mechanisms in disease states. (author)

  13. Positron emission tomography (PET) in psychiatry

    International Nuclear Information System (INIS)

    Herholz, K.

    1993-01-01

    Currently, clinical PET is mainly useful in psychiatry and related areas for differential diagnosis of dementia. In dementia of Alzheimer type reductions of glucose metabolism are found mainly in the temporoparietal assocaiton cortex, in Pick's disease mainly in the frontal cortex, and in Huntington's disease in the striatum. Other demential diseases usually show less toposelective metabolic impairment. In the future, new diagnostic possibilities may arise from analysis of functional stimulation of specific brain areas and from the use of ligands for specific neurotransmitter systems. (orig.) [de

  14. The imaging science of positron emission tomography

    International Nuclear Information System (INIS)

    Jones, T.

    1996-01-01

    To meet the goals of converging molecular imaging with molecular biology and molecular medicine, there is a need to define the strategy and structure for perfecting the accuracy of functional images derived using PET. This also relates directly to how clinical research, diagnostic questions and challenges from the pharmaceutical industry are addressed. In order to exploit the sensitivity and specificity of PET, an integrated, multidisciplinary approach is imperative. The structure to provide this needs to been seen in the context of an institutional approach, collaborations within the academic and industrial sectors and the funding needed to meet the challenges of addressing difficult questions. (orig.)

  15. A Prototype for Passive Gamma Emission Tomography

    International Nuclear Information System (INIS)

    Honkamaa, T.; Levai, F.; Berndt, R.; Schwalbach, P.; Vaccaro, S.; ); Turunen, A.

    2015-01-01

    Combined efforts of multiple stakeholders of the IAEA Support Programme task JNT 1510: ''Prototype of passive gamma emission tomograph (PGET)'', resulted in the design, manufacturing and extensive testing of an advanced verification tool for partial defect testing on light water reactor spent fuel. The PGET has now reached a proven capability of detecting a single missing or substituted pin inside a BWR and VVER-440 fuel assemblies. The task started in 2004 and it is planned to be finished this year. The PGET head consists of two banks of 104 CdTe detectors each with integrated data acquisition electronics. The CdTe detectors are embedded in tungsten collimators which can be rotated around the fuel element using an integrated stepping motor mounted on a rotating table. All components are packed inside a toroid watertight enclosure. Control, data acquisition and image reconstruction analysis is fully computerized and automated. The design of the system is transportable and suitable for safeguards verifications in spent fuel ponds anywhere. Four test campaigns have been conducted. In 2009, the first test in Ringhals NPP failed collecting data but demonstrated suitability of the PGET for field deployments. Subsequent tests on fuel with increasing complexity were all successful (Ispra, Italy (2012), Olkiluoto, Finland (2013) and Loviisa, Finland (2014)). The paper will present the PGET design, results obtained from the test campaigns and mention also drawbacks that were experienced in the project. The paper also describes further tests which would allow evaluating the capabilities and limitations of the method and the algorithm used. Currently, the main technical shortcoming is long acquisition time, due to serial control and readout of detectors. With redesigned electronics it can be expected that the system would be able to verify a VVER-440 assembly in five minutes, which meets the IAEA user requirements. (author)

  16. Fast Neutron Emission Tomography of Used Nuclear Fuel Assemblies

    Science.gov (United States)

    Hausladen, Paul; Iyengar, Anagha; Fabris, Lorenzo; Yang, Jinan; Hu, Jianwei; Blackston, Matthew

    2017-09-01

    Oak Ridge National Laboratory is developing a new capability to perform passive fast neutron emission tomography of spent nuclear fuel assemblies for the purpose of verifying their integrity for international safeguards applications. Most of the world's plutonium is contained in spent nuclear fuel, so it is desirable to detect the diversion of irradiated fuel rods from an assembly prior to its transfer to ``difficult to access'' storage, such as a dry cask or permanent repository, where re-verification is practically impossible. Nuclear fuel assemblies typically consist of an array of fuel rods that, depending on exposure in the reactor and consequent ingrowth of 244Cm, are spontaneous sources of as many as 109 neutrons s-1. Neutron emission tomography uses collimation to isolate neutron activity along ``lines of response'' through the assembly and, by combining many collimated views through the object, mathematically extracts the neutron emission from each fuel rod. This technique, by combining the use of fast neutrons -which can penetrate the entire fuel assembly -and computed tomography, is capable of detecting vacancies or substitutions of individual fuel rods. This paper will report on the physics design and component testing of the imaging system. This material is based upon work supported by the U.S. Department of Energy, Office of Defense Nuclear Nonproliferation Research and Development within the National Nuclear Security Administration, under Contract Number DE-AC05-00OR22725.

  17. Positron Emission Tomography of (64)Cu-DOTA-Rituximab in a Transgenic Mouse Model Expressing Human CD20 for Clinical Translation to Image NHL

    DEFF Research Database (Denmark)

    Natarajan, Arutselvan; Gowrishankar, Gayatri; Nielsen, Carsten Haagen

    2012-01-01

    PURPOSE: This study aims to evaluate (64)Cu-DOTA-rituximab (PETRIT) in a preclinical transgenic mouse model expressing human CD20 for potential clinical translation. PROCEDURES: (64)Cu was chelated to DOTA-rituximab. Multiple radiolabeling, quality assurance, and imaging experiments were performed....... The human CD20 antigen was expressed in B cells of transgenic mice (CD20TM). The mice groups studied were: (a) control (nude mice, n¿=¿3) that received 7.4 MBq/dose, (b) with pre-dose (CD20TM, n¿=¿6) received 2 mg/kg pre-dose of cold rituximab prior to PETRIT of 7.4 MBq/dose, and (c) without pre-dose (CD20......TM, n¿=¿6) PETRIT alone received 7.4 MBq/dose. Small animal PET was used to image mice at various time points (0, 1, 2, 4, 24, 48, and 72 h). The OLINDA/EXM software was used to determine the human equivalent dose for individual organs. RESULTS: PETRIT was obtained with a specific activity of 545...

  18. A Comparison of Endoscopic Ultrasound Guided Biopsy and Positron Emission Tomography with Integrated Computed Tomography in Lung Cancer Staging

    DEFF Research Database (Denmark)

    Larsen, Stine Schmidt; Vilmann, P; Krasnik, K

    2009-01-01

    BACKGROUND AND STUDY AIMS: Exact staging of patients with non-small-cell lung cancer (NSCLC) is important to improve selection of resectable and curable patients for surgery. Positron emission tomography with integrated computed tomography (PET/CT) and endoscopic ultrasound guided fine needle...... aspiration biopsy (EUS-FNA) are new and promising methods, but indications in lung cancer staging are controversial. Only few studies have compared the 2 methods. The aim of this study was to assess and compare the diagnostic values of PET/CT and EUS-FNA for diagnosing advanced lung cancer in patients, who...... had both procedures performed. PATIENTS AND METHODS: 27 patients considered to be potential candidates for resection of NSCLC underwent PET/CT and EUS-FNA. Diagnoses were confirmed either by open thoracotomy, mediastinoscopy or clinical follow-up. Advanced lung cancer was defined as tumour...

  19. Imaging spectrum and pitfalls of ¹⁸F-fluorodeoxyglucose positron emission tomography/computed tomography in patients with tuberculosis.

    Science.gov (United States)

    Ito, Kimiteru; Morooka, Miyako; Minamimoto, Ryogo; Miyata, Yoko; Okasaki, Momoko; Kubota, Kazuo

    2013-08-01

    Mycobacterium tuberculosis (TB) is one of the most prominant diseases frequently causing false positive lesions in oncologic surveys using (18)F-fluorodeoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT), since TB granulomas are composed of activated macrophages and lymphocytes with high affinity for glucose. These pitfalls of (18)F-FDG PET/CT are important for radiologists. Being familiar with (18)F-FDG images of TB could assist in preventing unfavorable clinical results based on misdiagnoses. In addition, (18)F-FDG PET/CT has the advantage of being able to screen the whole body, and can clearly detect harboring TB lesions as high uptake foci. This article details the spectrum and pitfalls of (18)F-FDG PET/CT imaging in TB.

  20. {sup 18}F-Fluorodeoxyglucose positron emission tomography pulmonary imaging in idiopathic pulmonary fibrosis is reproducible: implications for future clinical trials

    Energy Technology Data Exchange (ETDEWEB)

    Win, Thida [Lister Hospital, Respiratory Medicine, Stevenage (United Kingdom); Lambrou, Tryphon; Hutton, Brian F.; Kayani, Irfan; Endozo, Raymondo; Shortman, Robert I.; Groves, Ashley M. [UCL/UCH, Institute of Nuclear Medicine, London (United Kingdom); Screaton, Nicholas J. [Papworth Hospital, Radiology Department, Cambridge (United Kingdom); Porter, Joanna C. [UCL/UCH, Centre for Respiratory Diseases, London (United Kingdom); Maher, Toby M. [Royal Brompton Hospital, Interstitial Lung Disease Unit, London (United Kingdom); Lukey, Pauline [GSK, Fibrosis DPU, Research and Development, Stevenage (United Kingdom)

    2012-03-15

    Noninvasive markers of disease activity in patients with idiopathic pulmonary fibrosis (IPF) are lacking. We performed this study to investigate the reproducibility of pulmonary {sup 18}F-FDG PET/CT in patients with IPF. The study group comprised 13 patients (11 men, 2 women; mean age 71.1 {+-} 9.9 years) with IPF recruited for two thoracic {sup 18}F-FDG PET/CT studies performed within 2 weeks of each other. All patients were diagnosed with IPF in consensus at multidisciplinary meetings as a result of typical clinical, high-resolution CT and pulmonary function test features. Three methods for evaluating pulmonary {sup 18}F-FDG uptake were used. The maximal {sup 18}F-FDG pulmonary uptake (SUVmax) in the lungs was determined using manual region-of-interest placement. An {sup 18}F-FDG uptake intensity histogram was automatically constructed from segmented lungs to evaluate the distribution of SUVs. Finally, mean SUV was determined for volumes-of-interest in pulmonary regions with interstitial lung changes identified on CT scans. Processing included correction for tissue fraction effects. Bland-Altman analysis was performed and interclass correlation coefficients (ICC) were determined to assess the reproducibility between the first and second PET scans, as well as the level of intraobserver and interobserver agreement. The mean time between the two scans was 6.3 {+-} 4.3 days. The interscan ICCs for pulmonary SUVmax analysis and mean SUV corrected for tissue fraction effects were 0.90 and 0.91, respectively. Intensity histograms were different in only 1 of the 13 paired studies. Intraobserver agreement was also excellent (0.80 and 0.85, respectively). Some bias was observed between observers, suggesting that serial studies would benefit from analysis by the same observer. This study demonstrated that there is excellent short-term reproducibility in pulmonary {sup 18}F-FDG uptake in patients with IPF. (orig.)

  1. Imaging of the dopaminergic neurotransmission system using single-photon emission tomography and positron emission tomography in patients with parkinsonism

    International Nuclear Information System (INIS)

    Booij, J.; Tissingh, G.; Winogrodzka, A.; Royen, E.A. van

    1999-01-01

    Parkinsonism is a feature of a number of neurodegenerative diseases, including Parkinson's disease, multiple system atrophy and progressive supranuclear palsy. The results of post-mortem studies point to dysfunction of the dopaminergic neurotransmitter system in patients with parkinsonism. Nowadays, by using single-photon emission tomography (SPET) and positron emission tomography (PET) it is possible to visualise both the nigrostriatal dopaminergic neurons and the striatal dopamine D 2 receptors in vivo. Consequently, SPET and PET imaging of elements of the dopaminergic system can play an important role in the diagnosis of several parkinsonian syndromes. This review concentrates on findings of SPET and PET studies of the dopaminergic neurotransmitter system in various parkinsonian syndromes. (orig.)

  2. A scanner for single photon emission tomography

    International Nuclear Information System (INIS)

    Smith, D.B.; Cumpstey, D.E.; Evans, N.T.S.; Coleman, J.D.; Ettinger, K.V.; Mallard, J.R.

    1982-01-01

    The technique of single photon ECT has now been available for some eighteen years, but has yet still to be exploited fully. The difficulties of doing this lie in the need for gathering data of sufficiently good statistical accuracy in a reasonable counting time, in the uniformity of detector sensitivity, and in the means for correcting the image satisfactorily for photon attenuation within the body. The relative ease with which a general purpose gamma camera can be adapted to give rotation around the patient makes this an attractive practical approach to the problem. However, the sensitivity of gamma cameras over their field of view is by no means uniform, and their sensitivity is less good than that of purpose-designed scanners when no more than about ten sections through the body are required. There is therefore a need to assess the clinical usefulness of a whole body tomographic scanner of high sensitivity and uniformity. Such a machine is the Aberdeen Section Scanner Mark II described

  3. Alcohol ADME in primates studied with positron emission tomography.

    Directory of Open Access Journals (Sweden)

    Zizhong Li

    Full Text Available The sensitivity to the intoxicating effects of alcohol as well as its adverse medical consequences differ markedly among individuals, which reflects in part differences in alcohol's absorption, distribution, metabolism, and elimination (ADME properties. The ADME of alcohol in the body and its relationship with alcohol's brain bioavailability, however, is not well understood.The ADME of C-11 labeled alcohol, CH(3 (11CH(2OH, 1 and C-11 and deuterium dual labeled alcohol, CH(3 (11CD(2OH, 2 in baboons was compared based on the principle that C-D bond is stronger than C-H bond, thus the reaction is slower if C-D bond breaking occurs in a rate-determining metabolic step. The following ADME parameters in peripheral organs and brain were derived from time activity curve (TAC of positron emission tomography (PET scans: peak uptake (C(max; peak uptake time (T(max, half-life of peak uptake (T(1/2, the area under the curve (AUC(60 min, and the residue uptake (C(60 min.For 1 the highest uptake occurred in the kidney whereas for 2 it occurred in the liver. A deuterium isotope effect was observed in the kidneys in both animals studied and in the liver of one animal but not the other. The highest uptake for 1 and 2 in the brain was in striatum and cerebellum but 2 had higher uptake than 1 in all brain regions most evidently in thalamus and cingulate. Alcohol's brain uptake was significantly higher when given intravenously than when given orally and also when the animal was pretreated with a pharmacological dose of alcohol.The study shows that alcohol metabolism in peripheral organs had a large effect on alcohol's brain bioavailability. This study sets the stage for clinical investigation on how genetics, gender and alcohol abuse affect alcohol's ADME and its relationship to intoxication and medical consequences.

  4. A Clinical Evaluation Of Cone Beam Computed Tomography

    Science.gov (United States)

    2016-06-01

    A CLINICAL EVALUATION OF CONE BEAM COMPUTED TOMOGRAPHY by Bryan James Behm, D.D.S. Lieutenant, Dental Corps United States Navy A thesis... COMPUTED TOMOGRAPHY " is appropriately acknowledged and, beyond brief excerpts, is with the permission of the copyright owner. ~mes Behm Endodontic...printed without the expressed written permission of the author. IV ABSTRACT A CLINICAL EVALUATION OF CONE BEAM COMPUTED TOMOGRAPHY BRYAN JAMES

  5. Imaging prostate cancer: an update on positron emission tomography and magnetic resonance imaging

    DEFF Research Database (Denmark)

    Bouchelouche, Kirsten; Turkbey, Baris; Choyke, Peter

    2010-01-01

    , and molecular imaging information. Developments in imaging technologies, specifically magnetic resonance imaging (MRI) and positron emission tomography (PET)/computed tomography (CT), have improved the detection rate of prostate cancer. MRI has improved lesion detection and local staging. Furthermore, MRI...

  6. Single photon emission computed tomography in AIDS dementia complex

    International Nuclear Information System (INIS)

    Pohl, P.; Vogl, G.; Fill, H.; Roessler, H.Z.; Zangerle, R.; Gerstenbrand, F.

    1988-01-01

    Single photon emission computed tomography (SPECT) studies were performed in AIDS dementia complex using IMP in 12 patients (and HM-PAO in four of these same patients). In all patients, SPECT revealed either multiple or focal uptake defects, the latter corresponding with focal signs or symptoms in all but one case. Computerized tomography showed a diffuse cerebral atrophy in eight of 12 patients, magnetic resonance imaging exhibited changes like atrophy and/or leukoencephalopathy in two of five cases. Our data indicate that both disturbance of cerebral amine metabolism and alteration of local perfusion share in the pathogenesis of AIDS dementia complex. SPECT is an important aid in the diagnosis of AIDS dementia complex and contributes to the understanding of the pathophysiological mechanisms of this disorder

  7. Diagnosis and evaluation of gastric cancer by positron emission tomography

    Science.gov (United States)

    Wu, Chen-Xi; Zhu, Zhao-Hui

    2014-01-01

    Gastric cancer is the second leading cause of cancer mortality worldwide. The diagnosis of gastric cancer has been significantly improved with the broad availability of gastrointestinal endoscopy. Effective technologies for accurate staging and quantitative evaluation are still in demand to merit reasonable treatment and better prognosis for the patients presented with advanced disease. Preoperative staging using conventional imaging tools, such as computed tomography (CT) and endoscopic ultrasonography, is inadequate. Positron emission tomography (PET), using 18F-fluorodeoxyglucose (FDG) as a tracer and integrating CT for anatomic localization, holds a promise to detect unsuspected metastasis and has been extensively used in a variety of malignancies. However, the value of FDG PET/CT in diagnosis and evaluation of gastric cancer is still controversial. This article reviews the current literature in diagnosis, staging, response evaluation, and relapse monitoring of gastric cancer, and discusses the current understanding, improvement, and future prospects in this area. PMID:24782610

  8. Positron emission tomography in a national research centre

    International Nuclear Information System (INIS)

    Weinreich, R.

    1989-01-01

    The example of the Paul Scherrer Institute shows that positron emission tomography can be implanted successfully as spin-off into an appropriate environment. The adaption to the existing irradiation facilities of the technique of production of the short-lived positron emitters is complex. However, the basic necessities of a tomography programme can be covered. Moreover, the relatively high energy of the institute's injector cyclotron allows additional production of rare-used longer-lived positron emitters. The scanner exceeded the guaranteed specifications. With respect to the somewhat lower availability of beam time compared to a usual baby cyclotron, the research programme must not be very patient-intense. A strong participation of the pharmaceutical industry has directed research priorities into the pharmacological area. (orig.) [de

  9. Imaging local brain function with emission computed tomography

    International Nuclear Information System (INIS)

    Kuhl, D.E.

    1984-01-01

    Positron emission tomography (PET) using 18 F-fluorodeoxyglucose (FDG) was used to map local cerebral glucose utilization in the study of local cerebral function. This information differs fundamentally from structural assessment by means of computed tomography (CT). In normal human volunteers, the FDG scan was used to determine the cerebral metabolic response to conrolled sensory stimulation and the effects of aging. Cerebral metabolic patterns are distinctive among depressed and demented elderly patients. The FDG scan appears normal in the depressed patient, studded with multiple metabolic defects in patients with multiple infarct dementia, and in the patients with Alzheimer disease, metabolism is particularly reduced in the parietal cortex, but only slightly reduced in the caudate and thalamus. The interictal FDG scan effectively detects hypometabolic brain zones that are sites of onset for seizures in patients with partial epilepsy, even though these zones usually appear normal on CT scans. The future prospects of PET are discussed

  10. Positron Emission Tomography Computed Tomography: A Guide for the General Radiologist.

    Science.gov (United States)

    Beadsmoore, Clare; Newman, David; MacIver, Duncan; Pawaroo, Davina

    2015-11-01

    Cancer remains a leading cause of death in Canada and worldwide. Whilst advances in anatomical imaging to detect and monitor malignant disease have continued over the last few decades, limitations remain. Functional imaging, such as positron emission tomography (PET), has improved the sensitivity and specificity in detecting malignant disease. In combination with computed tomography (CT), PET is now commonly used in the oncology setting and is an integral part of many cancer patients' pathways. Although initially the CT component of the study was purely for attenuation of the PET imaging and to provide anatomical coregistration, many centers now combine the PET study with a diagnostic quality contrast enhanced CT to provide one stop staging, thus refining the patient's pathway. The commonest tracer used in everyday practice is FDG (F18-fluorodeoxyglucose). There are many more tracers in routine clinical practice and those with emerging roles, such as 11C-choline, useful in the imaging of prostate cancer; 11C-methionine, useful in imaging brain tumours; C11-acetate, used in imaging hepatocellular carcinomas; 18F-FLT, which can be used as a marker of cellular proliferation in various malignancies; and F18-DOPA and various 68Ga-somatostatin analogues, used in patients with neuroendocrine tumours. In this article we concentrate on FDG PETCT as this is the most commonly available and widely utilised tracer now used to routinely stage a number of cancers. PETCT alters the stage in approximately one-third of patients compared to anatomical imaging alone. Increasingly, PETCT is being used to assess early metabolic response to treatment. Metabolic response can be seen much earlier than a change in the size/volume of the disease which is measured by standard CT imaging. This can aid treatment decisions in both in terms of modifying therapy and in addition to providing important prognostic information. Furthermore, it is helpful in patients with distorted anatomy from surgery

  11. Budget impact from the incorporation of positron emission tomography - computed tomography for staging lung cancers.

    Science.gov (United States)

    Biz, Aline Navega; Caetano, Rosângela

    2015-01-01

    To estimate the budget impact from the incorporation of positron emission tomography (PET) in mediastinal and distant staging of non-small cell lung cancer. The estimates were calculated by the epidemiological method for years 2014 to 2018. Nation-wide data were used about the incidence; data on distribution of the disease's prevalence and on the technologies' accuracy were from the literature; data regarding involved costs were taken from a micro-costing study and from Brazilian Unified Health System (SUS) database. Two strategies for using PET were analyzed: the offer to all newly-diagnosed patients, and the restricted offer to the ones who had negative results in previous computed tomography (CT) exams. Univariate and extreme scenarios sensitivity analyses were conducted to evaluate the influence from sources of uncertainties in the parameters used. The incorporation of PET-CT in SUS would imply the need for additional resources of 158.1 BRL (98.2 USD) million for the restricted offer and 202.7 BRL (125.9 USD) million for the inclusive offer in five years, with a difference of 44.6 BRL (27.7 USD) million between the two offer strategies within that period. In absolute terms, the total budget impact from its incorporation in SUS, in five years, would be 555 BRL (345 USD) and 600 BRL (372.8 USD) million, respectively. The costs from the PET-CT procedure were the most influential parameter in the results. In the most optimistic scenario, the additional budget impact would be reduced to 86.9 BRL (54 USD) and 103.8 BRL (64.5 USD) million, considering PET-CT for negative CT and PET-CT for all, respectively. The incorporation of PET in the clinical staging of non-small cell lung cancer seems to be financially feasible considering the high budget of the Brazilian Ministry of Health. The potential reduction in the number of unnecessary surgeries may cause the available resources to be more efficiently allocated.

  12. Budget impact from the incorporation of positron emission tomography – computed tomography for staging lung cancers

    Directory of Open Access Journals (Sweden)

    Aline Navega Biz

    2015-01-01

    Full Text Available OBJECTIVE To estimate the budget impact from the incorporation of positron emission tomography (PET in mediastinal and distant staging of non-small cell lung cancer.METHODS The estimates were calculated by the epidemiological method for years 2014 to 2018. Nation-wide data were used about the incidence; data on distribution of the disease´s prevalence and on the technologies’ accuracy were from the literature; data regarding involved costs were taken from a micro-costing study and from Brazilian Unified Health System (SUS database. Two strategies for using PET were analyzed: the offer to all newly-diagnosed patients, and the restricted offer to the ones who had negative results in previous computed tomography (CT exams. Univariate and extreme scenarios sensitivity analyses were conducted to evaluate the influence from sources of uncertainties in the parameters used.RESULTS The incorporation of PET-CT in SUS would imply the need for additional resources of 158.1 BRL (98.2 USD million for the restricted offer and 202.7 BRL (125.9 USD million for the inclusive offer in five years, with a difference of 44.6 BRL (27.7 USD million between the two offer strategies within that period. In absolute terms, the total budget impact from its incorporation in SUS, in five years, would be 555 BRL (345 USD and 600 BRL (372.8 USD million, respectively. The costs from the PET-CT procedure were the most influential parameter in the results. In the most optimistic scenario, the additional budget impact would be reduced to 86.9 BRL (54 USD and 103.8 BRL (64.5 USD million, considering PET-CT for negative CT and PET-CT for all, respectively.CONCLUSIONS The incorporation of PET in the clinical staging of non-small cell lung cancer seems to be financially feasible considering the high budget of the Brazilian Ministry of Health. The potential reduction in the number of unnecessary surgeries may cause the available resources to be more efficiently allocated.

  13. Does positron emission tomography/computed tomography aid the diagnosis of prosthetic valve infective endocarditis?

    Science.gov (United States)

    Balmforth, Damian; Chacko, Jacob; Uppal, Rakesh

    2016-10-01

    A best evidence topic was constructed according to a structured protocol. The question addressed was whether (18)F-fluorodeoxyglucose positron emission tomography/computed tomography (PET/CT) aids the diagnosis of prosthetic valve endocarditis (PVE)? A total of 107 publications were found using the reported search, of which 6 represented the best evidence to answer the clinical question. The authors, journal, date and country of publication, patient group studied, study type, relevant outcomes and results of these papers are tabulated. The reported outcome of all studies was a final diagnosis of confirmed endocarditis on follow-up. All the six studies were non-randomized, single-centre, observational studies and thus represented level 3 evidence. The diagnostic capability of PET/CT for PVE was compared with that of the modified Duke Criteria and echocardiography, and reported in terms of sensitivity, specificity and positive and negative predictive values. All studies demonstrated an increased sensitivity for the diagnosis of PVE when PET/CT was combined with the modified Duke Criteria on admission. A higher SUVmax on PET was found to be significantly associated with a confirmed diagnosis of endocarditis and an additional diagnostic benefit of PET/CT angiography over conventional PET/non-enhanced CT is reported due to improved anatomical resolution. However, PET/CT was found to be unreliable in the early postoperative period due to its inability to distinguish between infection and residual postoperative inflammatory changes. PET/CT was also found to be poor at diagnosing cases of native valve endocarditis. We conclude that PET/CT aids in the diagnosis of PVE when combined with the modified Duke Criteria on admission by increasing the diagnostic sensitivity. The diagnostic ability of PET/CT can be potentiated by the use of PET/CTA; however, its use may be unreliable in the early postoperative period or in native valve endocarditis. © The Author 2016. Published by

  14. Emission tomography: quantitative aspects in metabolic and physio-pathologic studies

    International Nuclear Information System (INIS)

    Yerouchalmi-Soussaline, F.

    1984-01-01

    This thesis presents instrumental and data processing studies developed in emission tomography in man, using gamma and positron emitting tracers. High contrast visualisation of volume distribution of tracers in the organs, kinetic studies and measurements of radioactive concentration or of other clinical parameters necessitate a detailed analysis of all physical factors limiting the accuracy of the measure; therefore, development of adapted imaging devices and data processing techniques, together with models describing correctly the phenomena under study are to be carried out. Thus, in single photon (gamma) emission tomography an image reconstruction strategy is elaborated, based on an analytical model for the ill-posed problem including the attenuation effect. In positron emission tomography, the time-of-flight information combined with the reconstruction technique is used in the design of a first prototype imaging device which performance is presented and evaluated in a clinical environment. Moreover, a priori or a posteriori techniques correcting for Compton diffusion events, limited statistics and limited resolution, are proposed and discussed for the improvement of regional measurement accuracy, in metabolic and physio-pathologic studies. (author) [fr

  15. Regional myocardial blood flow, metabolism and function assessed noninvasively by positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Schelbert, H.R.; Phelps, M.E.; Hoffman, E.; Huang, S.; Kuhl, D.E.

    1979-01-01

    Positron emission computed tomography is a new technique for the noninvasive measure of myocardial blood flow, mechanical function and, in particular, metabolism. The capability of this new study means is due to the technological innovations of the imaging device and the availability of radioactive tracers that are specific for blood flow and metabolism. The device permits recording of cross-sectional images of the left ventricular myocardium that reflect quantitatively regional tracer tissue concentrations. By employing tracer kinetic models this new technique permits the measurement of regional glucose and fatty acid metabolism of the heart. While already an important new tool for investigative studies into cardiac physiology and pathophysiology, the clinical utility of positron emission tomography remains to be defined.

  16. {sup 11}C-Methionine positron emission tomography may monitor the activity of encephalitis

    Energy Technology Data Exchange (ETDEWEB)

    Hirata, Kenji; Shiga, Tohru; Manabe, Osamu; Tamaki, Nagara [Department of Nuclear Medicine, Graduate School of Medicine, Hokkaido University, Sapporo (Japan)], E-mail: khirata@med.hokudai.ac.jp; Fujima, Noriyuki [Department of Radiology, Graduate School of Medicine, Hokkaido University, Sapporo (Japan); Usui, Reiko [Department of Nuclear Medicine, Graduate School of Medicine, Hokkaido University, Sapporo (Japan); Department of Psychiatry, Graduate School of Medicine, Hokkaido University, Sapporo (Japan); Kuge, Yuji [Central Institute of Isotope Science, Hokkaido University, Sapporo (Japan)

    2012-12-15

    Encephalitis is generally diagnosed by clinical symptoms, cerebrospinal fluid examination, and imaging studies including CT, magnetic resonance imaging (MRI), and perfusion single photon emission tomography (SPECT). However, the role of positron emission tomography (PET) in diagnosis of encephalitis remains unclear. A 49-year-old woman presenting with coma and elevated inflammatory reaction was diagnosed as having encephalitis according to slow activity on electroencephalogram, broad cortical lesion in MR fluid attenuated inversion recovery image, and increased blood flow demonstrated by SPECT. PET revealed increased accumulation of {sup 11}C-methionine (MET) in the affected brain tissues. After the symptom had improved 2 months later, the accumulation of MET as well as the abnormal findings of MR imaging and SPECT was normalized. This case indicated that MET PET may monitor the activity of encephalitis.

  17. Use of antimatter for the in vivo investigation of the brain: positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Syrota, A. [CEA, 75 - Paris (France)

    2002-07-01

    This series of slides presents 3 imaging methods used in medicine: - the single photon emission computed tomography (SPECT), the positron emission tomography (PET), and the functional magnetic resonance imaging (FMRI). The presentation begins with a brief historical description that highlights the narrow link between progress in imaging techniques and the technological development in radiation detection and computer sciences. Another aspect is the parallel and necessary development of isotopic tracers along with imaging techniques. The clinical applications of PET and FMRI concerning either normal brain functions such as calculus or consciousness or diseases affecting the central nervous system such as Parkinson's disease or schizophrenia (trough the study of the pathways of dopamine in the brain) are presented.

  18. Regional myocardial blood flow, metabolism and function assessed noninvasively by positron emission tomography

    International Nuclear Information System (INIS)

    Schelbert, H.R.; Phelps, M.E.; Hoffman, E.; Huang, S.; Kuhl, D.E.

    1979-01-01

    Positron emission computed tomography is a new technique for the noninvasive measure of myocardial blood flow, mechanical function and, in particular, metabolism. The capability of this new study means is due to the technological innovations of the imaging device and the availability of radioactive tracers that are specific for blood flow and metabolism. The device permits recording of cross-sectional images of the left ventricular myocardium that reflect quantitatively regional tracer tissue concentrations. By employing tracer kinetic models this new technique permits the measurement of regional glucose and fatty acid metabolism of the heart. While already an important new tool for investigative studies into cardiac physiology and pathophysiology, the clinical utility of positron emission tomography remains to be defined

  19. Brain receptor single-photon emission computer tomography with 123I Datscan in Parkinson's disease

    International Nuclear Information System (INIS)

    Minchev, D.; Peshev, N.; Kostadinova, I.; Grigorova, O.; Trindev, P.; Shotekov, P.

    2005-01-01

    Clinical aspects of Parkinson's disease are not enough for the early diagnosis of the disease. Positron emission tomography and the receptor single - photon emission tomography can be used for imaging functional integrity of nigrostriatal dopaminergic structures. 24 patient (17 men and 7 women) were investigated. 20 of them are with Parkinson's disease and 4 are with essential tremor. The radiopharmaceutical - 123I-Datscan (ioflupane, bind with 123I) represent a cocaine analogue with selective affinity to dopamine transporters, located in the dopaminergic nigrostriatal terminals in the striatum. Single - photon emission computer tomography was performed with SPECT gamma camera (ADAC, SH Epic detector). The scintigraphic study was made 3 to 6 hours after intravenous injection of the radiopharmaceutical - 123I- Datscan in dose 185 MBq. 120 frames are registered with duration of each one 22 seconds and gamma camera rotation 360. After generation of transversal slices we generated two composites pictures. The first composite picture image the striatum, the second - the occipital region. Two ratios were calculated representing the uptake of the radiopharmaceutical in the left and right striatum. Qualitative and quantitative criteria were elaborated for evaluating the scintigraphic patterns. Decreased, nonhomogeneous and asymmetric uptake of the radiopharmaceutical coupled with low quantitative parameters in range from 1.44 to 2.87 represents the characteristic scintigraphic pattern for Parkinson's disease with clear clinical picture. Homogenous with high intensity and symmetric uptake of the radiopharmaceutical in the striatum coupled with his clear frontier and with quantitative parameters up to 4.40 represent the scintigraphic pattern in two patients with essential tremor. Receptor single - photon emission computer tomography with 123I - Datscan represents an accurate nuclear-medicine method for precise diagnosis of Parkinson's disease and for its differentiation from

  20. Positron Emission Tomography Imaging Using Radiolabeled Inorganic Nanomaterials

    Science.gov (United States)

    Sun, Xiaolian; Cai, Weibo; Chen, Xiaoyuan

    2015-01-01

    CONSPECTUS Positron emission tomography (PET) is a radionuclide imaging technology that plays an important role in preclinical and clinical research. With administration of a small amount of radiotracer, PET imaging can provide a noninvasive, highly sensitive, and quantitative readout of its organ/tissue targeting efficiency and pharmacokinetics. Various radiotracers have been designed to target specific molecular events. Compared with antibodies, proteins, peptides, and other biologically relevant molecules, nanoparticles represent a new frontier in molecular imaging probe design, enabling the attachment of different imaging modalities, targeting ligands, and therapeutic payloads in a single vector. We introduce the radiolabeled nanoparticle platforms that we and others have developed. Due to the fundamental differences in the various nanoparticles and radioisotopes, most radiolabeling methods are designed case-by-case. We focus on some general rules about selecting appropriate isotopes for given types of nanoparticles, as well as adjusting the labeling strategies according to specific applications. We classified these radiolabeling methods into four categories: (1) complexation reaction of radiometal ions with chelators via coordination chemistry; (2) direct bombardment of nanoparticles via hadronic projectiles; (3) synthesis of nanoparticles using a mixture of radioactive and nonradioactive precursors; (4) chelator-free postsynthetic radiolabeling. Method 1 is generally applicable to different nanomaterials as long as the surface chemistry is well-designed. However, the addition of chelators brings concerns of possible changes to the physicochemical properties of nanomaterials and detachment of the radiometal. Methods 2 and 3 have improved radiochemical stability. The applications are, however, limited by the possible damage to the nanocomponent caused by the proton beams (method 2) and harsh synthetic conditions (method 3). Method 4 is still in its infancy

  1. Positron emission tomography. Present status and Romanian perspectives

    International Nuclear Information System (INIS)

    Constantinescu, B.; Lungu, V.

    1995-01-01

    Basic principles of the positron emission tomography (PET) are summarised. The main PET methods using short-lived radioisotopes (i.e. 11 C, 13 N, 15 O, 18 F) are briefly reviewed. Three types of particle accelerators for radioisotopes production and medical uses (including radiotherapy), corresponding to the proton energy (E p p p < 200 MeV) are presented. PET imaging equipment and procedures are discussed. Main radiopharmaceuticals based on beta decay for PET studies and their role in medicine is also described. Finally, perspectives for a PET program in Romania (Cyclotron + Radiochemistry + Tomograph ) are discussed. (author)

  2. Time-of-Flight Positron Emission Tomography with Radiofrequency Phototube

    International Nuclear Information System (INIS)

    Margaryan, A.; Kakoyan, V.; Knyazyan, S.

    2011-01-01

    In this paper γ-detector, based on the radiofrequency (RF) phototube and recently developed fast and ultrafast scintillators, is considered for Time-of-Flight positron emission tomography applications. Timing characteristics of such a device has been investigated by means of a dedicated Monte Carlo code based on the single photon counting concept. Biexponential timing model for scintillators have been used. The calculations have shown that such a timing model is in a good agreement with recently measured data. The timing resolution of -detectors can be significantly improved by using the RF phototube. (authors)

  3. Low-resource synchronous coincidence processor for positron emission tomography

    International Nuclear Information System (INIS)

    Sportelli, Giancarlo; Belcari, Nicola; Guerra, Pedro; Santos, Andres

    2011-01-01

    We developed a new FPGA-based method for coincidence detection in positron emission tomography. The method requires low device resources and no specific peripherals in order to resolve coincident digital pulses within a time window of a few nanoseconds. This method has been validated with a low-end Xilinx Spartan-3E and provided coincidence resolutions lower than 6 ns. This resolution depends directly on the signal propagation properties of the target device and the maximum available clock frequency, therefore it is expected to improve considerably on higher-end FPGAs.

  4. Functional imaging of the brain with positron emission tomography

    International Nuclear Information System (INIS)

    Alavi, A.; Reivich, M.; Jones, S.C.; Greenberg, J.H.; Wolf, A.P.

    1982-01-01

    An extensive review, with 191 references, of the development and diagnostic use of positron emission tomography (PET) of the brain is presented. An historical overview of functional studies of the brain reviews the use of nitrons oxide, 85 Kr and 133 Xe, [ 14 C]2-deoxyglucose, and [ 18 F]FDG. The [ 18 F]FDG technique allows the investigation of the effects of physiologic stimulation on the brain. Several studies using this technique are reported. The effects of stroke, seizure disorders, aging and dementia, and schizophrenia on cerebral metabolism as demosntrated by PET are explored

  5. Images to visualize the brain. PET: Positron Emission Tomography

    International Nuclear Information System (INIS)

    1992-01-01

    Diagnosis instrument and research tool, Positron Emission Tomography permits advanced technological developments on positron camera, on molecule labelling and principally on very complex 3D image processing. Cyceron Centre in Caen-France works on brain diseases and try to understand the mechanism of observed troubles and to assess the treatment efficiency with PET. Service Hospitalier Frederic Joliot of CEA-France establishes a mapping of cognitive functions in PET as vision areas, anxiety regions, brain organization of language, different attention forms, voluntary actions and motor functions

  6. An analysis of true- and false-positive results of vocal fold uptake in positron emission tomography-computed tomography imaging.

    Science.gov (United States)

    Seymour, N; Burkill, G; Harries, M

    2018-03-01

    Positron emission tomography-computed tomography with fluorine-18 fluorodeoxy-D-glucose has a major role in the investigation of head and neck cancers. Fluorine-18 fluorodeoxy-D-glucose is not a tumour-specific tracer and can also accumulate in benign pathology. Therefore, positron emission tomography-computed tomography scan interpretation difficulties are common in the head and neck, which can produce false-positive results. This study aimed to investigate patients detected as having abnormal vocal fold uptake on fluorine-18 fluorodeoxy-D-glucose positron emission tomography-computed tomography. Positron emission tomography-computed tomography scans were identified over a 15-month period where reports contained evidence of unilateral vocal fold uptake or vocal fold pathology. Patients' notes and laryngoscopy results were analysed. Forty-six patients were identified as having abnormal vocal fold uptake on positron emission tomography-computed tomography. Twenty-three patients underwent positron emission tomography-computed tomography and flexible laryngoscopy: 61 per cent of patients had true-positive positron emission tomography-computed tomography scans and 39 per cent had false-positive scan results. Most patients referred to ENT for abnormal findings on positron emission tomography-computed tomography scans had true-positive findings. Asymmetrical fluorine-18 fluorodeoxy-D-glucose uptake should raise suspicion of vocal fold pathology, accepting a false-positive rate of approximately 40 per cent.

  7. Positron emission tomography, physical bases and comparaison with other techniques

    International Nuclear Information System (INIS)

    Guermazi, Fadhel; Hamza, F; Amouri, W.; Charfeddine, S.; Kallel, S.; Jardak, I.

    2013-01-01

    Positron emission tomography (PET) is a medical imaging technique that measures the three-dimensional distribution of molecules marked by a positron-emitting particle. PET has grown significantly in clinical fields, particularly in oncology for diagnosis and therapeutic follow purposes. The technical evolutions of this technique are fast. Among the technical improvements, is the coupling of the PET scan with computed tomography (CT). PET is obtained by intravenous injection of a radioactive tracer. The marker is usually fluorine ( 18 F) embedded in a glucose molecule forming the 18-fluorodeoxyglucose (FDG-18). This tracer, similar to glucose, binds to tissues that consume large quantities of the sugar such cancerous tissue, cardiac muscle or brain. Detection using scintillation crystals (BGO, LSO, LYSO) suitable for high energy (511keV) recognizes the lines of the gamma photons originating from the annihilation of a positron with an electron. The electronics of detection or coincidence circuit is based on two criteria: a time window, of about 6 to 15 ns, and an energy window. This system measures the true coincidences that correspond to the detection of two photons of 511 kV from the same annihilation. Most PET devices are constituted by a series of elementary detectors distributed annularly around the patient. Each detector comprises a scintillation crystal matrix coupled to a finite number (4 or 6) of photomultipliers. The electronic circuit, or the coincidence circuit, determines the projection point of annihilation by means of two elementary detectors. The processing of such information must be extremely fast, considering the count rates encountered in practice. The information measured by the coincidence circuit is then positioned in a matrix or sinogram, which contains a set of elements of a projection section of the object. Images are obtained by tomographic reconstruction by powerful computer stations equipped with a software tools allowing the analysis and

  8. The metabolism of the human brain studied with positron emission tomography

    International Nuclear Information System (INIS)

    Greitz, T.; Ingvar, D.H.; Widen, L.

    1985-01-01

    This volume presents coverage of the use of positron emission tomography (PET) to study the human brain. The contributors assess new developments in high-resolution positron emission tomography, cyclotrons, radiochemistry, and tracer kinetic models, and explore the use of PET in brain energy metabolism, blood flow, and protein synthesis measurements, receptor analysis, and pH determinations, In addition, they discuss the relevance and applications of positron emission tomography from the perspectives of physiology, neurology, and psychiatry

  9. Non-oncological positron emission tomography (PET): brain imaging; La tomographie par emission de positons (TEP) hors oncologie: l'exploration du cerveau

    Energy Technology Data Exchange (ETDEWEB)

    Lomena, F. [Centro de Diagnostico por la imagen (CDIC), Hospital Clinic, Servicio de medicina nuclear, Barcelona (Spain)

    2008-10-15

    Positron emission tomography (PET) allows evaluation of the central nervous system function. Imaging of regional cerebral blood flow and metabolism, and of several neurotransmission systems may be obtained using PET. PET quantification is accurate and has good test-retest reliability. For research purposes, PET has been used to study brain physiology, to explore neurological and psychiatric diseases pathophysiology and for the new drugs research and development. F.D.G. is the only PET radioligand with clinical application. Following criteria of evidence-based medicine, the clinical indications of F.D.G.-PET are: evaluation of treated gliomas, pre surgical study of partial refractory epilepsy and diagnosis of Alzheimer's disease when it is impossible to differentiate clinically from fronto-temporal dementia.

  10. Radiolabeled phosphonium salts as mitocondrial voltage sensors for positron emission tomography myocardial imaging agents

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong Yon; Min, Jung Joon [Dept. of Nuclear Medicine,Chonnam National University Medical School and Hwasun Hospital, Gwangju (Korea, Republic of)

    2016-09-15

    Despite substantial advances in the diagnosis of cardiovascular disease, {sup 18}F-labeled positron emission tomography (PET) radiopharmaceuticals remain necessary to diagnose heart disease because clinical use of current PET tracers is limited by their short half-life. Lipophilic cations such as phosphonium salts penetrate the mitochondrial membranes and accumulate in mitochondria of cardiomyocytes in response to negative inner-transmembrane potentials. Radiolabeled tetraphenyl phosphonium cation derivatives have been developed as myocardial imaging agents for PET. In this review, a general overview of these radiotracers, including their radiosynthesis, in vivo characterization, and evaluation is provided and clinical perspectives are discussed.

  11. First image from a combined positron emission tomography and field-cycled MRI system.

    Science.gov (United States)

    Bindseil, Geron A; Gilbert, Kyle M; Scholl, Timothy J; Handler, William B; Chronik, Blaine A

    2011-07-01

    Combining positron emission tomography and MRI modalities typically requires using either conventional MRI with a MR-compatible positron emission tomography system or a modified MR system with conventional positron emission tomography. A feature of field-cycled MRI is that all magnetic fields can be turned off rapidly, enabling the use of conventional positron emission tomography detectors based on photomultiplier tubes. In this demonstration, two photomultiplier tube-based positron emission tomography detectors were integrated with a field-cycled MRI system (0.3 T/4 MHz) by placing them into a 9-cm axial gap. A positron emission tomography-MRI phantom consisting of a triangular arrangement of positron-emitting point sources embedded in an onion was imaged in a repeating interleaved sequence of ∼1 sec MRI then 1 sec positron emission tomography. The first multimodality images from the combined positron emission tomography and field-cycled MRI system show no additional artifacts due to interaction between the systems and demonstrate the potential of this approach to combining positron emission tomography and MRI. Copyright © 2010 Wiley-Liss, Inc.

  12. Prognostic Evaluation of 18F-Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography in Endometrial Cancer

    DEFF Research Database (Denmark)

    Vilstrup, Mie Holm; Jochumsen, Kirsten M; Hess, Søren

    2017-01-01

    .19-8.49) and 1.93 (0.80-4.68), respectively. Whole-body cTLG of greater than or equal to 176.1 g yielded a hazard ratio of 5.70 (1.94-16.78) for OS in a multivariate analysis. CONCLUSIONS: Preoperative SUVmax and cTLG showed potential as independent prognostic markers of OS in patients with primarily high...... and a preoperative F-fluorodeoxyglucose positron emission tomography/computed tomography before curatively intended treatment were included. The scans were evaluated using standard uptake values [maximum standard uptake value (SUVmax) and partial volume corrected (c) mean standardized uptake value (SUVmean...... proportional regression models were used for prognostic evaluation. RESULTS: Eighty-three patients (median age, 69.9 y; range, 26.8-91.1) with primarily high-risk endometrial cancer or suspected high The International Federation of Gynecology and Obstetrics stage were included. Mean follow-up time was 3...

  13. Positron emission tomography/computed tomography and radioimmunotherapy of prostate cancer

    DEFF Research Database (Denmark)

    Bouchelouche, Kirsten; Capala, Jacek; Oehr, Peter

    2009-01-01

    of a number of diagnostic and therapeutic strategies. J591, a monoclonal antibody, which targets the extracellular domain of prostate-specific membrane antigen, shows promising results. HER2 receptors may also have a potential as target for PET/CT imaging and RIT of advanced prostate cancer. SUMMARY: PET......PURPOSE OF REVIEW: Traditional morphologically based imaging modalities are now being complemented by positron emission tomography (PET)/computed tomography (CT) in prostate cancer. Metastatic prostate cancer is an attractive target for radioimmunotherapy (RIT) as no effective therapies...... are available. This review highlights the most important achievements within the last year in PET/CT and RIT of prostate cancer. RECENT FINDINGS: Conflicting results exist on the use of choline for detection of malignant disease in the prostate gland. The role of PET/CT in N-staging remains to be elucidated...

  14. Fluorine-18 fluorodeoxyglucose positron emission tomography/computed tomography in the detection of primary pulmonary angiosarcomas

    International Nuclear Information System (INIS)

    Krishnamurthy, Arvind; Nayak, Deepika; Ramshankar, Vijayalakshmi; Majhi, Urmila

    2015-01-01

    Angiosarcoma is a malignant vascular tumor that originates from the mesenchymal cells which have undergone angioblastic differentiation. Pulmonary angiosarcomas are invariably (>90%) metastatic tumors form primaries of the skin, bone, liver, breast, or heart. Primary pulmonary angiosarcomas are exceedingly rare, with just about 20 cases being reported in the literature. We report an additional case with a brief review of the literature of a primary pulmonary angiosarcoma in a 26-year-old lady who presented with intractable hemoptysis. In addition, we highlight the potential of fluorine-18 fluorodeoxyglucose positron emission tomography/computed tomography as an important diagnostic tool in the evaluation of this tumor and thus contribute to the existing sparse literature on this fascinating yet devastating disease

  15. F-18-Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography Appearance of Extramedullary Hematopoesis in a Case of Primary Myelofibrosis

    Science.gov (United States)

    Mukherjee, Anirban; Bal, Chandrasekhar; Tripathi, Madhavi; Das, Chandan Jyoti; Shamim, Shamim Ahmed

    2017-01-01

    A 44-year-old female with known primary myelofibrosis presented with shortness of breath. High Resolution Computed Tomography thorax revealed large heterogeneously enhancing extraparenchymal soft tissue density mass involving bilateral lung fields. F-18-fluorodeoxyglucose (FDG) positron emission tomography/computed tomography revealed mildly FDG avid soft tissue density mass with specks of calcification involving bilateral lung fields, liver, and spleen. Subsequent histopathologic evaluation from the right lung mass was suggestive of extramedullary hematopoesis. PMID:28533647

  16. Clinical multiphoton tomography and clinical two-photon microendoscopy

    Science.gov (United States)

    König, Karsten; Bückle, Rainer; Weinigel, Martin; Elsner, Peter; Kaatz, Martin

    2009-02-01

    We report on applications of high-resolution clinical multiphoton tomography based on the femtosecond laser system DermaInspectTM with its flexible mirror arm in Australia, Asia, and Europe. Applications include early detection of melanoma, in situ tracing of pharmacological and cosmetical compounds including ZnO nanoparticles in the epidermis and upper dermis, the determination of the skin aging index SAAID as well as the study of the effects of anti-aging products. In addition, first clinical studies with novel rigid high-NA two-photon 1.6 mm GRIN microendoscopes have been conducted to study the effect of wound healing in chronic wounds (ulcus ulcera) as well as to perform intrabody imaging with subcellular resolution in small animals.

  17. Report of two cases of fluorodeoxyglucose positron emission tomography/computed tomography appearance of hibernoma: A rare benign tumor

    International Nuclear Information System (INIS)

    Agrawal, Archi; Kembhavi, Seema; Purandare, Nilendu; Shah, Sneha; Rangarajan, Venkatesh

    2014-01-01

    False-positive findings are commonly seen in positron emission tomography computed tomography imaging. One of the most common false positive finding is uptake of fluorodeoxyglucose in brown adipose tissue. Herein, we report two cases with incidentally detected hibernomas-a brown fat containing tumor with metabolic activity

  18. Unusual sites of metastatic recurrence of osteosarcoma detected on fluorine-18 fluorodeoxyglucose positron emission tomography/computed tomography

    International Nuclear Information System (INIS)

    Kabnurkar, Rasika; Agrawal, Archi; Rekhi, Bharat; Purandare, Nilendu; Shah, Sneha; Rangarajan, Venkatesh

    2015-01-01

    Osteosarcoma (OS) is the most common nonhematolymphoid primary bone malignancy characterized by osteoid or new bone formation. Lungs and bones are the most common sites of metastases. We report a case where unusual sites of the soft tissue recurrence from OS were detected on restaging fluorine-18 fluorodeoxyglucose positron emission tomography/computed tomography scan done post 6 years of disease free interval

  19. Extensive tumor thrombus of hepatocellular carcinoma in the entire portal venous system detected on fluorodeoxyglucose positron emission tomography computed tomography

    International Nuclear Information System (INIS)

    Agrawal, Archi; Purandare, Nilendu; Shah, Sneha; Puranik, Ameya; Rangarajan, Venkatesh

    2013-01-01

    Detection of thrombus is usually an incidental finding on fluorodeoxyglucose positron emission tomography/computed tomography studies. Nevertheless this is an important finding in terms of disease prognostication and in planning the treatment strategy. We herein report a case of a 50-years-old male, a diagnosed case of hepatocellular carcinoma with extensive hypermetabolic thrombus involving the entire portal venous system. (author)

  20. Diagnosis of sinusoidal obstruction syndrome by positron emission tomography/computed tomography: report of two cases treated by defibrotide.

    Science.gov (United States)

    Gauthé, Mathieu; Bozec, Laurence; Bedossa, Pierre

    2014-11-01

    Sinusoidal obstruction syndrome (SOS) is a potentially fatal liver injury that mainly occurs after myeloablative chemotherapy. We report two cases of SOS investigated by 18F-fluorodeoxyglucose positron emission tomography/computed tomography and treated with defibrotide. © 2014 by the American Association for the Study of Liver Diseases.

  1. Evaluation of blood--brain barrier permeability changes in rhesus monkeys and man using 82Rb and positron emission tomography

    International Nuclear Information System (INIS)

    Yen, C.K.; Budinger, T.F.

    1981-01-01

    Dynamic positron tomography of the brain with 82 Rb, obtained from a portable generator [ 82 Sr (25 days) -- 82 Rb (76 sec)], provides a means of studying blood-brain barrier (BBB) permeability in physiological and clinical investigations. The BBB in rhesus monkeys was opened unilaterally by intracarotid infusion of 3 M urea. This osmotic barrier opening allowed entry into the brain of intravenously administered rubidium chloride. The BBB opening was demonstrated noninvasively using 82 Rb and positron emission tomography and corroborated by the accumulation of 86 Rb in tissue samples. Positron emission tomography studies can be repeated every 5 min and indicate that dynamic tomography or static imaging can be used to study BBB permeability changes induced by a wide variety of noxious stimuli. Brain tumors in human subjects are readily detected because of the usual BBB permeability disruption in and around the tumors

  2. Positron Emission Tomography imaging with the SmartPET system

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, R.J. [Department of Physics, University of Liverpool, Liverpool, Merseyside L69 7ZE (United Kingdom)], E-mail: cooperrj@ornl.gov; Boston, A.J.; Boston, H.C.; Cresswell, J.R.; Grint, A.N.; Harkness, L.J.; Nolan, P.J.; Oxley, D.C.; Scraggs, D.P.; Mather, A.R. [Department of Physics, University of Liverpool, Liverpool, Merseyside L69 7ZE (United Kingdom); Lazarus, I.; Simpson, J. [STFC Daresbury Laboratory, Daresbury, Warrington, Cheshire WA4 4AD (United Kingdom)

    2009-07-21

    The Small Animal Reconstruction Tomograph for Positron Emission Tomography (SmartPET) project is the development of a small animal Positron Emission Tomography (PET) demonstrator based on the use of High-Purity Germanium (HPGe) detectors and state of the art digital electronics. The experimental results presented demonstrate the current performance of this unique system. By performing high precision measurements of one of the SmartPET HPGe detectors with a range of finely collimated gamma-ray beams the response of the detector as a function of gamma-ray interaction position has been quantified, facilitating the development of parametric Pulse Shape Analysis (PSA) techniques and algorithms for the correction of imperfections in detector performance. These algorithms have then been applied to data from PET imaging measurements using two such detectors in conjunction with a specially designed rotating gantry. In this paper we show how the use of parametric PSA approaches allows over 60% of coincident events to be processed and how the nature and complexity of an event has direct implications for the quality of the resulting image.

  3. Extensive Tattoos Mimicking Lymphatic Metastasis on Positron Emission Tomography Scan in a Patient With Cervical Cancer.

    Science.gov (United States)

    Grove, Narine; Zheng, Ma; Bristow, Robert E; Eskander, Ramez N

    2015-07-01

    Positron emission tomography (PET) fused with computed tomography (CT) imaging is common in the clinical assessment of patients with locally advanced cervical cancer. Limitations to the utilization and interpretation of PET-CT scans in patients with cervical cancer have been described, including false-positive findings secondary to tattoo ink. A 32-year-old woman presented with clinical stage 1B1 cervical cancer and extensive tattoos of the lower extremities. Preoperative PET-CT scan identified two ileac lymph nodes with increased fluorine-18-deoxyglucose uptake suspicious for metastatic disease. At the time of surgical resection, bilateral pigmented lymph nodes were identified with histologic examination showing deposition of tattoo ink and no malignant cells. Physicians should be cognizant of the possible effects of tattoos on PET-CT findings while counseling patients and formulating a treatment program.

  4. Clinic-like animal model for causal-pathogenetical investigations of hypoxic-ischemic brain injuries. Combined application of the radioactive labelled microsphere method and Positron Emission Tomography. Kliniknahes Tiermodell fuer kausal-pathogenetische Untersuchungen hypoxisch-ischaemischer Hirnschaedigung. Kombinierter Einsatz von Mikrosphaeren-Methode und Positronen-Emissions-Tomographie

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, R.; Zwiener, U.; Bergmann, R. (Univ. Jena, Inst. fuer Pathologische Physiologie (Germany)); Manfrass, P.; Enghardt, W.; Fromm, W.D. (Zentralinstitut fuer Kernforschung, Bereich Festkoeper- und Kernphysik, Rossendorf (Germany)); Hoyer, D.; Guenther, K. (Leipzig Univ., Radiologische Klinik (Germany)); Schubert, H. (Univ. Jena, Tierexperimentelles Zentrum (Germany)); Beyer, R.; Beyer, G.J.; Steinbach, J.; Kretzschmer, M. (Zentralinstitut fuer Kernforschung, Bereich Radioaktive Isotope, Rossendorf (Germany))

    1990-01-01

    The complex nature of the pathogenesis in hypoxic-ischemic brain injuries equires the combined determination of the dynamics of main factors in these disturbing processes. The application of suitable methods for registration of such pathogenetic processes is shown in an adequate animal model for simulating the early hypoxic-ischemic brain injuries. That the radioactive labelled microsphere technique is suitable to comprehend quantitively the dynamics of the intracerebral redistribution of the circulating blood due to hypoxia/hypercapnia by simultaneous-multiple measuring of the regional cerebral blood flow. Therefore, at the first time an inadequate hypoxic-induced blood flow increase was shown in large parts of the forebrain in intrauterine growth retarded newborn piglets. For estimation of the regional cerebral glucose utilization in newborn piglets, the {sup 18}F-FDG Positron Emission Tomography is introduced. The measurements were carried out on a stationary high-density avalanche chamber (HIDAC) camera and yielded the fundamental application of this camera model for PET investigations also in the newborn brain due to the very good spatial resolution. (orig.).

  5. Positron Emission Tomography in Prostate Cancer: Summary of Systematic Reviews and Meta-Analysis.

    Science.gov (United States)

    Jadvar, Hossein

    2015-09-01

    Prostate cancer is a prevalent public health problem worldwide. Over the past decade, there has been tremendous research activity in the potential use of positron emission tomography with a number of radiotracers targeted to various biological aspects of this complex tumor. Systematic reviews and meta-analysis are important contributions to the relevant literature that summarize the evidence while reducing the effect of various sources of bias in the published data. The accumulation of relevant data in this clinical setting has recently provided the opportunity for systematic reviews. In this brief article, I summarize the published systematic reviews and meta-analysis of positron emission tomography in prostate cancer. Most robust evidence suggests a probable role for first-line use of positron emission tomography with radiolabeled choline in restating patients with biochemical relapse of prostate cancer with the diagnostic performance that appears to be positively associated with the serum prostate specific antigen level and velocity. Future systematic reviews will be needed for other emerging radiotracers such as those based on prostate specific membrane antigen and gastrin-releasing peptide receptor.

  6. [Human positron emission tomography with oral 11C-vinpocetine].

    Science.gov (United States)

    Vas, Adám; Christer, Halldin; Sóvágó, Judit; Johan, Sandell; Cselényi, Zsolt; Kiss, Béla; Kárpáti, Egon; Lars, Farde; Gulyás, Balázs

    2003-11-16

    Positron emission tomography (PET) is a useful tool for the investigation of certain physiological changes and for the evaluation of the distribution, and receptor binding of drugs labelled with positron emitting isotopes. Vinpocetine (ethyl-apovincaminate) is a neuroprotective drug widely used in the prevention and treatment of cerebrovascular diseases. In the clinical practice vinpocetine is usually administered to the patients in intravenous infusion followed by long-term oral treatment. Until presently human data describing vinpocetine's kinetics and brain distribution came from ex vivo (blood, plasma, liquor) and post mortem (brain autoradiography) measurements. The authors wished to investigate the kinetics and distribution of vinpocetine in the brain and body after oral administration with PET in order to prove, that PET is useful in the non-invasive in vivo determination of these parameters. Vinpocetine was labelled with carbon-11 and the radioactivity was measured by PET in the stomach, liver, brain, colon and kidneys in healthy male volunteers. The radioactivity in the blood and urine was also determined. After oral administration, [11C]vinpocetine appeared immediately in the stomach and within minutes in the liver and the blood. In the blood the level of radioactivity continuously increased until the end of the measurement period, whereas the fraction of the unchanged mother compound decreased. Radioactivity uptake and distribution in the brain were demonstrable from the tenth minute after the oral administration of the labelled drug (average maximum uptake: 0.7% of the administered total dose). Brain distribution was heterogeneous (with preferences in the thalamus, basal ganglia and occipital cortex), similar to the distribution previously reported by the authors after intravenous administration. Vinpocetine, administered orally to human volunteers, readily entered the bloodstream from the stomach and the gastrointestinal tract and thereafter passed the

  7. Budget impact from the incorporation of positron emission tomography ? computed tomography for staging lung cancers

    OpenAIRE

    Biz, Aline Navega; Caetano, Ros?ngela

    2015-01-01

    OBJECTIVE To estimate the budget impact from the incorporation of positron emission tomography (PET) in mediastinal and distant staging of non-small cell lung cancer.METHODS The estimates were calculated by the epidemiological method for years 2014 to 2018. Nation-wide data were used about the incidence; data on distribution of the disease´s prevalence and on the technologies’ accuracy were from the literature; data regarding involved costs were taken from a micro-costing study and from Brazi...

  8. Textural features of 18F-fluorodeoxyglucose positron emission tomography scanning in diagnosing aortic prosthetic graft infection

    NARCIS (Netherlands)

    Saleem, Ben R.; Beukinga, Roelof J.; Boellaard, Ronald; Glaudemans, Andor W.J.M.; Reijnen, Michel M.P.J.; Zeebregts, Clark J.; Slart, Riemer H.J.A.

    2017-01-01

    Background: The clinical problem in suspected aortoiliac graft infection (AGI) is to obtain proof of infection. Although 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography scanning (PET) has been suggested to play a pivotal role, an evidence-based interpretation is lacking. The objective

  9. Textural features of (18)F-fluorodeoxyglucose positron emission tomography scanning in diagnosing aortic prosthetic graft infection

    NARCIS (Netherlands)

    Saleem, Ben R; Beukinga, Roelof J.; Boellaard, Ronald; Glaudemans, Andor W J M; Reijnen, Michel M P J; Zeebregts, Clark J; Slart, Riemer H J A

    BACKGROUND: The clinical problem in suspected aortoiliac graft infection (AGI) is to obtain proof of infection. Although (18)F-fluorodeoxyglucose ((18)F-FDG) positron emission tomography scanning (PET) has been suggested to play a pivotal role, an evidence-based interpretation is lacking. The

  10. ¹⁸F-fluorodeoxyglucose positron emission tomography-computed tomography for the evaluation of bone metastasis in patients with gastric cancer.

    Science.gov (United States)

    Ma, Dae Won; Kim, Jie-Hyun; Jeon, Tae Joo; Lee, Yong Chan; Yun, Mijin; Youn, Young Hoon; Park, Hyojin; Lee, Sang In

    2013-09-01

    The roles of positron emission tomography and bone scanning in identifying bone metastasis in gastric cancer are unclear. We compared the usefulness of positron emission tomography-computed tomography and scanning in detecting bone metastasis in gastric cancer. Data from 1485 patients diagnosed with gastric cancer who had undergone positron emission tomography-computed tomography and scanning were reviewed. Of 170 enrolled patients who were suspected of bone metastasis in either positron emission tomography or scanning, 81.2% were confirmed to have bone metastasis. The sensitivity, specificity, and accuracy were 93.5%, 25.0%, and 80.6%, respectively, for positron emission tomography and 93.5%, 37.5%, and 82.9%, respectively, for scanning. 87.7% of patients with bone metastasis showed positive findings on two modalities. 15.0% of solitary bone metastases were positive on positron emission tomography only. Positron emission tomography was superior to scanning for the detection of synchronous bone metastasis, but the two modalities were similar for the detection of metachronous bone metastasis. The concordance rate of response assessment after treatment between two modalities was moderate. Positron emission tomography-computed tomography may be more effective for the diagnosis of bone metastasis in the initial staging workup. Conversely, bone scanning and positron emission tomography-computed tomography may be similarly effective for the detection of metachronous bone metastasis. Copyright © 2013 Editrice Gastroenterologica Italiana S.r.l. Published by Elsevier Ltd. All rights reserved.

  11. Defining a radiotherapy target with positron emission tomography

    International Nuclear Information System (INIS)

    Black, Quinten C.; Grills, Inga S.; Kestin, Larry L.; Wong, Ching-Yee O.; Wong, John W.; Martinez, Alvaro A.; Yan Di

    2004-01-01

    Purpose: F-18 fluorodeoxyglucose positron emission tomography (FDG-PET) imaging is now considered the most accurate clinical staging study for non-small-cell lung cancer (NSCLC) and is also important in the staging of multiple other malignancies. Gross tumor volume (GTV) definition for radiotherapy, however, is typically based entirely on computed tomographic data. We performed a series of phantom studies to determine an accurate and uniformly applicable method for defining a GTV with FDG-PET. Methods and materials: A model-based method was tested by a phantom study to determine a threshold, or unique cutoff of standardized uptake value based on body weight (standardized uptake value [SUV]) for FDG-PET based GTV definition. The degree to which mean target SUV, background FDG concentration, and target volume influenced that GTV definition were evaluated. A phantom was constructed consisting of a 9.0-L cylindrical tank. Glass spheres with volumes ranging from 12.2 to 291.0 cc were suspended within the tank, with a minimum separation of 4 cm between the edges of the spheres. The sphere volumes were selected based on the range of NSCLC patient tumor volumes seen in our clinic. The tank and spheres were filled with a variety of known concentrations of FDG in several experiments and then scanned using a General Electric Advance PET scanner. In the initial experiment, six spheres with identical volumes were filled with varying concentrations of FDG (mean SUV 1.85 ∼ 9.68) and suspended within a background bath of FDG at a similar concentration to that used in clinical practice (0.144 μCi/mL). The second experiment was identical to the first, but was performed at 0.144 and 0.036 μCi/mL background concentrations to determine the effect of background FDG concentration on sphere definition. In the third experiment, six spheres with volumes of 12.2 to 291.0 cc were filled with equal concentrations of FDG and suspended in a standard background FDG concentration of 0.144

  12. Is there any role of positron emission tomography computed tomography for predicting resectability of gallbladder cancer?

    Science.gov (United States)

    Kim, Jaihwan; Ryu, Ji Kon; Kim, Chulhan; Paeng, Jin Chul; Kim, Yong-Tae

    2014-05-01

    The role of integrated (18)F-2-fluoro-2-deoxy-D-glucose positron emission tomography computed tomography (PET-CT) is uncertain in gallbladder cancer. The aim of this study was to show the role of PET-CT in gallbladder cancer patients. Fifty-three patients with gallbladder cancer underwent preoperative computed tomography (CT) and PET-CT scans. Their medical records were retrospectively reviewed. Twenty-six patients underwent resection. Based on the final outcomes, PET-CT was in good agreement (0.61 to 0.80) with resectability whereas CT was in acceptable agreement (0.41 to 0.60) with resectability. When the diagnostic accuracy of the predictions for resectability was calculated with the ROC curve, the accuracy of PET-CT was higher than that of CT in patients who underwent surgical resection (P=0.03), however, there was no difference with all patients (P=0.12). CT and PET-CT had a discrepancy in assessing curative resection in nine patients. These consisted of two false negative and four false positive CT results (11.3%) and three false negative PET-CT results (5.1%). PET-CT was in good agreement with the final outcomes compared to CT. As a complementary role of PEC-CT to CT, PET-CT tended to show better prediction about resectability than CT, especially due to unexpected distant metastasis.

  13. Positron emission tomography response criteria in solid tumours criteria for quantitative analysis of [18F]-fluorodeoxyglucose positron emission tomography with integrated computed tomography for treatment response assessment in metastasised solid tumours: All that glitters is not gold.

    Science.gov (United States)

    Willemsen, Annelieke E C A B; Vlenterie, Myrella; van Herpen, Carla M L; van Erp, Nielka P; van der Graaf, Winette T A; de Geus-Oei, Lioe-Fee; Oyen, Wim J G

    2016-03-01

    For solid tumours, quantitative analysis of [(18)F]-fluorodeoxyglucose positron emission tomography with integrated computed tomography potentially can have significant value in early response assessment and thereby discrimination between responders and non-responders at an early stage of treatment. Standardised strategies for this analysis have been proposed, and the positron emission tomography response criteria in solid tumours (PERCIST) criteria can be regarded as the current standard to perform quantitative analysis in a research setting, yet is not implemented in daily practice. However, several exceptions and limitations limit the feasibility of PERCIST criteria. In this article, we point out dilemmas that arise when applying proposed criteria like PERCIST on an expansive set of patients with metastasised solid tumours. Clinicians and scientists should be aware of these limitations to prevent that methodological issues impede successful introduction of research data into clinical practice. Therefore, to deliver on the high potential of quantitative imaging, consensus should be reached on a standardised, feasible and clinically useful analysis methodology. This methodology should be applicable in the majority of patients, tumour types and treatments. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Malaria masquerading as relapse of Hodgkin's lymphoma on contrast enhanced 18F-fluorodeoxyglucose positron emission tomography/computed tomography: A diagnostic dilemma

    International Nuclear Information System (INIS)

    Jeph, Sunil; Thakur, Kamia; Shamim, Shamim Ahmed; Aggarwal, Ajay

    2014-01-01

    18 Flurodeoxyglucose ( 18 F-FDG) positron emission tomography/computed tomography (PET/CT) is nowadays routinely used in management of lymphoma patients. We here present a case of Hodgkin's lymphoma which showed 18 F-FDG avid splenomegaly on PET/CT done for clinically suspected relapse. Further evaluation by peripheral smear examination revealed malaria. The patient was then started on anti-malarial medications and follow-up PET/CT revealed resolution of hypermetabolic splenomegaly. This report highlights that in endemic regions malaria can cause 18 F-FDG avid splenomegaly and might mimic relapse of lymphoma

  15. Plasma Emission Profile Recreation using Soft X-Ray Tomography

    Science.gov (United States)

    Page, J. W.; Mauel, M. E.; Levesque, J. P.

    2015-11-01

    With sufficient views from multiple diode arrays, soft X-ray tomography is an invaluable plasma diagnostic because it is a non-perturbing method to reconstruct the emission within the interior of the plasma. In preparation for the installation of new SXR arrays in HBT-EP, we compute high-resolution tomographic reconstructions of discharges having kink-like structures that rotate nearly rigidly. By assuming a uniform angular mapping from the kink mode rotation, Δϕ ~ ωΔ t, a temporal sequence from a single 16-diode fan array represents as many as 16 x 100 independent views. We follow the procedure described by Wang and Granetz and use Bessel basis functions to take the inverse Radon transform. This transform is fit to our data using a least-squares method to estimate the internal SXR emissivity as a sum of polar functions. By varying different parameters of the transformation, we optimize the quality of our recreation of the emission profile and quantify how the reconstruction changes with the azimuthal order of the transform. Supported by U.S. DOE Grant DE-FG02-86ER53222.

  16. Basic principles of 18F-fluoro-deoxyglucose positron emission tomography

    International Nuclear Information System (INIS)

    Standke, R.

    2002-01-01

    Positron emission tomography uses photons to receive regional information about dynamic, physiologic, and biochemical processes in the living body. A positron decay is measured indirectly by the simultaneous registration of both gamma rays created by the annihilation. The event is counted, if two directly opposite located detectors register gamma rays in coincidence. Unfortunately the detectors of a positron emission tomography system do not register only true coincident events. There are also scattered and random coincidences. Different types of positron tomographs are presented and scintillation crystals, which are in use for positron emission tomography are discussed. The 2D- and 3D-acquisition methods are described as well as preprocessing methods, such as correction for attenuation, scatter and dead time. For quantification the relative parameter standard uptake value (SUV) is explained. Finally hybrid systems, such as combined positron emission tomography/computed tomography scanners and the use of computed tomography data for attenuation correction are introduced. (author)

  17. Evaluation of dosimetric techniques in positrons emission tomography and computerized tomography (PET/CT)

    International Nuclear Information System (INIS)

    Pinto, Gabriella Montezano

    2014-01-01

    Among diagnostic techniques PET/CT is one of those with the highest dose delivery to the patient as a cause of external exposure to X-rays, and the use of a radiopharmaceutical that results in a high energy gamma emission. The dosimetry of these two components becomes important in order to optimize and justify the technique. Various dosimetric techniques are found in literature without a consensus of the best to use. With the advances in technological and consequent equipment configuration changes, upgrades and variation in methodologies, particularly in computed tomography, a standardization of these techniques is required. Previous studies show that CT is responsible for 70 % of the dose delivered to the patient in PET/CT examinations. Thus, many researchers have been focused on CT dose optimization protocols studies. This work analyzes the doses involved in a PET/CT oncology protocol by using an Alderson female anthropomorphic phantom in a public hospital of Rio de Janeiro city. The dose estimate for PET examination resulting from the use of 18 F - FDG radiopharmaceutical was conducted through dose factors published in ICRP 106; the dose for CT was estimated and compared by calculation of the absorbed doses to patients according to four methods: thermoluminescent dosimetry (TL0100) distributed in critical organs of the Alderson phantom; measurements of CTOI according to AAPM number 96; correction factor for effective diameter SSOE (AAPM Number 204); and simulation by ImPACT program For CT, the results in terms of effective dose presented (TLO, CTOI and ImPACT) ± 5 % maximum variations between methodologies. Considering medium absorbed dose (TLO, SSOE and ImPACT) the results differed in ± 7 % from each other. These findings demonstrate that parameters provided by the manufacturer on the console can be used to have a primary approach of both, absorbed and effective doses to the patient since that a quality assurance program of these parameters are adopted in

  18. 77 FR 71802 - Guidance on Investigational New Drug Applications for Positron Emission Tomography Drugs...

    Science.gov (United States)

    2012-12-04

    ... Positron Emission Tomography (PET) Drugs.'' The guidance is intended to assist manufacturers of PET drugs... one self-addressed adhesive label to assist that office in processing your requests. See the... ``Investigational New Drug Applications for Positron Emission Tomography (PET) Drugs.'' The guidance summarizes the...

  19. Temporoparietal cortex in aphasia. Evidence from positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Metter, E.J.; Hanson, W.R.; Jackson, C.A.; Kempler, D.; van Lancker, D.; Mazziotta, J.C.; Phelps, M.E. (National Institute of Aging, Baltimore, MD (USA))

    1990-11-01

    Forty-four aphasic patients were examined with (F18)-fluorodeoxyglucose positron emission tomography in a resting state to determine whether consistent glucose metabolic abnormalities were present. Ninety-seven percent of subjects showed metabolic abnormalities in the angular gyrus, 89% in the supramarginal gyrus, and 87% in the lateral and transverse superior temporal gyrus. Pearson product moment correlations were calculated between regional metabolic measures and performance on the Western Aphasia Battery. No significant correlations were found between the Western Aphasia Battery scores and right hemisphere metabolic measures. Most left hemisphere regions correlated with more than one score from the Western Aphasia Battery. Temporal but not frontal regions had significant correlations to the comprehension score. The left temporoparietal region was consistently affected in these subjects, suggesting that common features in the aphasias were caused by left temporoparietal dysfunction, while behavioral differences resulted from (1) the extent of temporoparietal changes, and (2) dysfunction elsewhere in the brain, particularly the left frontal and subcortical areas.

  20. Single photon emission computed tomography of the liver

    International Nuclear Information System (INIS)

    Makler, P.T. Jr.

    1988-01-01

    Single photon emission computed tomography (SPECT) of the liver has been introduced in order to improve sensitivity and localization of space-occupying lesions. There have been numerous reports on the usefulness of the technique, as well as extensive analyses of its technical drawbacks. In general, SPECT provides a more accurate estimation of defect size than does conventional planar scintigraphy for cases in which one wishes to evaluate changes in lesion size due to therapy. The presence of a superimposed parenchymal disease, however, remains a major problem, which will only be resolved by a scanning technique that specifically detects the disease process of concern (hot spot imaging) rather than displacement of normal tissue (cold spot imaging)

  1. Temporoparietal cortex in aphasia. Evidence from positron emission tomography

    International Nuclear Information System (INIS)

    Metter, E.J.; Hanson, W.R.; Jackson, C.A.; Kempler, D.; van Lancker, D.; Mazziotta, J.C.; Phelps, M.E.

    1990-01-01

    Forty-four aphasic patients were examined with (F18)-fluorodeoxyglucose positron emission tomography in a resting state to determine whether consistent glucose metabolic abnormalities were present. Ninety-seven percent of subjects showed metabolic abnormalities in the angular gyrus, 89% in the supramarginal gyrus, and 87% in the lateral and transverse superior temporal gyrus. Pearson product moment correlations were calculated between regional metabolic measures and performance on the Western Aphasia Battery. No significant correlations were found between the Western Aphasia Battery scores and right hemisphere metabolic measures. Most left hemisphere regions correlated with more than one score from the Western Aphasia Battery. Temporal but not frontal regions had significant correlations to the comprehension score. The left temporoparietal region was consistently affected in these subjects, suggesting that common features in the aphasias were caused by left temporoparietal dysfunction, while behavioral differences resulted from (1) the extent of temporoparietal changes, and (2) dysfunction elsewhere in the brain, particularly the left frontal and subcortical areas

  2. Studies of the brain cannabinoid system using positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Gatley, S.J.; Volkow, N.D.

    1995-10-01

    Studies using radiolabeled psychoactive drugs in conjunction with positron emission tomography (PET) have permitted the imaging of binding sites in the human brain. Similar studies of marijuana have been hampered by the unsuitability of radiolabeled THC for PET studies, and the current unavailability of other in vivo imaging agents for cannabinoid receptors. Recent developments in medicinal chemistry suggest that a PET radiotracer for cannabinoid receptors will soon become available. This chapter briefly reviews these developments, together with the results of PET studies of the effects of marijuana and other abused drugs on brain metabolism. It also reviews PET studies of cocaine binding sites, to demonstrate the kind of investigations that will be possible when a cannabinoid receptor PET radioligand becomes available.

  3. An automated blood sampling system used in positron emission tomography

    International Nuclear Information System (INIS)

    Eriksson, L.; Bohm, C.; Kesselberg, M.

    1988-01-01

    Fast dynamic function studies with positron emission tomography (PET), has the potential to give accurate information of physiological functions of the brain. This capability can be realised if the positron camera system accurately quantitates the tracer uptake in the brain with sufficiently high efficiency and in sufficiently short time intervals. However, in addition, the tracer concentration in blood, as a function of time, must be accurately determined. This paper describes and evaluates an automated blood sampling system. Two different detector units are compared. The use of the automated blood sampling system is demonstrated in studies of cerebral blood flow, in studies of the blood-brain barrier transfer of amino acids and of the cerebral oxygen consumption. 5 refs.; 7 figs

  4. Positron Emission Tomography: state of the art and future developments

    International Nuclear Information System (INIS)

    Pizzichemi, M.

    2016-01-01

    Positron emission tomography (PET) plays a fundamental role in medical imaging, with a wide range of applications covering, among the others, oncology, neurology and cardiology. PET has undergone a steady technological evolution since its introduction in mid 20th century, from the development of 3D PET in the late 1980s, to the invention of PET/CT in the 1990s and more recently with the introduction of PET/MR scanners. The current research topics aiming to develop the next generation of PET scanners are summarized in this paper, focusing on the efforts to increase the sensitivity of the detectors, as long as improving their timing, spatial and energy resolutions, with the final goal of reducing the amount of radioactive dose received by the patients and the duration of the exams while improving at the same time the detectability of lesions.

  5. Studies of the brain cannabinoid system using positron emission tomography

    International Nuclear Information System (INIS)

    Gatley, S.J.; Volkow, N.D.

    1995-01-01

    Studies using radiolabeled psychoactive drugs in conjunction with positron emission tomography (PET) have permitted the imaging of binding sites in the human brain. Similar studies of marijuana have been hampered by the unsuitability of radiolabeled THC for PET studies, and the current unavailability of other in vivo imaging agents for cannabinoid receptors. Recent developments in medicinal chemistry suggest that a PET radiotracer for cannabinoid receptors will soon become available. This chapter briefly reviews these developments, together with the results of PET studies of the effects of marijuana and other abused drugs on brain metabolism. It also reviews PET studies of cocaine binding sites, to demonstrate the kind of investigations that will be possible when a cannabinoid receptor PET radioligand becomes available

  6. Physical and technical basis of positron emission tomography (PET)

    International Nuclear Information System (INIS)

    Bauer, R.

    1994-01-01

    Positron emission tomography utilizes the annihilation of positrons, generating pairs of gamma quanta which are emitted in opposing directions. 'Electronic collimation' is performed by coincident detection of both quanta. Thus, there is no need for mechanical collimators and no limiting connection between sensitivity and spatial resolution. Transversal tomograms are reconstructed from the projection data by means of highly sophisticated data processing. The half life of the most positron emitters used in medical applications is short and of the order of some minutes. Therefore, many positron emitters have to be produced on-side by means of a cyclotron. PET is superior to SPECT with respect to physical and technical aspects, but the high costs of PET limit its wide-spread use up to now. (orig.) [de

  7. Evaluating patients with ischemic cerebrovascular disease using positron emission tomography

    International Nuclear Information System (INIS)

    Raichle, M.E.

    1982-01-01

    Recent advances in nuclear medicine imaging techniques offer an important alternative for the evaluation of therapy for ischemic cerebrovascular disease. In particular, positron emission tomography (PET), with its capacity to provide quantitative measurements of brain blood flow, metabolism and biochemistry on a truly regional basis, now offers the opportunity to evaluate therapy in terms of specific changes in these parameters. By doing this PET permits one to study the problem on an individual patient basis with each subject serving as his own control. The author has been pursuing this approach in patients considered candidates for superficial temporal artery-middle cerebral artery anastomosis to bypass major stenotic or occlusive lesions of the internal carotid or middle cerebral artery. The results indicate that PET is of considerable value in establishing much more exactly the pathophysiology of certain forms of ischemic cerebrovascular disease and evaluating a form of therapy designed to correct the basic underlying defect. (Auth./C.F.)

  8. Knowledge-based automated radiopharmaceutical manufacturing for Positron Emission Tomography

    International Nuclear Information System (INIS)

    Alexoff, D.L.

    1991-01-01

    This article describes the application of basic knowledge engineering principles to the design of automated synthesis equipment for radiopharmaceuticals used in Positron Emission Tomography (PET). Before discussing knowledge programming, an overview of the development of automated radiopharmaceutical synthesis systems for PET will be presented. Since knowledge systems will rely on information obtained from machine transducers, a discussion of the uses of sensory feedback in today's automated systems follows. Next, the operation of these automated systems is contrasted to radiotracer production carried out by chemists, and the rationale for and basic concepts of knowledge-based programming are explained. Finally, a prototype knowledge-based system supporting automated radiopharmaceutical manufacturing of 18FDG at Brookhaven National Laboratory (BNL) is described using 1stClass, a commercially available PC-based expert system shell

  9. Radiopharmaceuticals for positron emission tomography investigations of Alzheimer's disease

    International Nuclear Information System (INIS)

    Naagren, Kjell; Halldin, Christer; Rinne, Juha O.

    2010-01-01

    Alzheimer's disease (AD) is a common degenerative neurological disease that is an increasing medical, economical, and social problem. There is evidence that a long ''asymptomatic'' phase of the disease exists where functional changes in the brain are present, but structural imaging for instance with magnetic resonance imaging remains normal. Positron emission tomography (PET) is one of the tools by which it is possible to explore changes in cerebral blood flow and metabolism and the functioning of different neurotransmitter systems. More recently, investigation of protein aggregations such as amyloid deposits or neurofibrillary tangles containing tau-protein has become possible. The purpose of this paper is to review the current knowledge on various 18 F- and 11 C-labelled PET tracers that could be used to study the pathophysiology of AD, to be used in the early or differential diagnosis or to be used in development of treatment and in monitoring of treatment effects. (orig.)

  10. Brain abnormalities in murderers indicated by positron emission tomography.

    Science.gov (United States)

    Raine, A; Buchsbaum, M; LaCasse, L

    1997-09-15

    Murderers pleading not guilty by reason of insanity (NGRI) are thought to have brain dysfunction, but there have been no previous studies reporting direct measures of both cortical and subcortical brain functioning in this specific group. Positron emission tomography brain imaging using a continuous performance challenge task was conducted on 41 murderers pleading not guilty by reason of insanity and 41 age- and sex-matched controls. Murderers were characterized by reduced glucose metabolism in the prefrontal cortex, superior parietal gyrus, left angular gyrus, and the corpus callosum, while abnormal asymmetries of activity (left hemisphere lower than right) were also found in the amygdala, thalamus, and medial temporal lobe. These preliminary findings provide initial indications of a network of abnormal cortical and subcortical brain processes that may predispose to violence in murderers pleading NGRI.

  11. Investigation of language lateralization mechanism by Positron Emission Tomography

    International Nuclear Information System (INIS)

    Belin, Pascal

    1997-01-01

    As language lateralization in the brain left hemisphere is one of the most well known but less understood characteristics of the human brain, this research thesis reports the use of brain functional imaging to address some specific aspects of this lateralization. In a first part, the author reports the study of mechanisms of recovery from aphasia after a left hemisphere lesion within a population of aphasic right-handers. Based on a contrast between patients with a persistent aphasia despite usual language therapies, and patients with a significant recovery after a melodic and rhythmic therapy (TMR), a PET-based (positron emission tomography) activation study has been developed, based on the opposition between usual language stimuli and stimuli accentuated by TMR. In the second part, the author explored more systematically on sane patients the influence of some physical characteristics of auditory stimulation on the induced functional asymmetry [fr

  12. F-18-fluorodeoxyglucose-positron-emission tomography in neurology

    International Nuclear Information System (INIS)

    Fazekas, F.; Payer, F.

    2002-01-01

    Positron emission tomography using F-18-fluorodeoxyglucose (F-18-FDG-PET) is an ideal tool for imaging regional cerebral metabolism as glucose is the most important source of energy for neurons. Under physiologic conditions the pattern of metabolism reflects the state of cerebral activation which can be modulated by various stimuli to investigate cerebral organization. Pathologic conditions usually cause a drop in metabolism because of neuronal inactivity or loss. They can, however, also be associated with an increased rate of glucose metabolism such as in case of active epileptic foci or malignant tumors. As a consequence F-18-FDG-PET has become a valuable functional imaging modality especially for the diagnostic clarification of non-contributory or negative morphologic imaging results. Dementia, pre-surgical evaluation of epilepsy and neurooncology are currently frequent indications for referral to F-18-FDG-PET in neurology. (author)

  13. Fluorodeoxyglucose positron emission tomography in pancreatic cancer: an unsolved problem

    International Nuclear Information System (INIS)

    Kato, Takashi; Fukatsu, Hiroshi; Ito, Kengo; Tadokoro, Masanori; Ota, Toyohiro; Ikeda, Mitsuru; Isomura, Takayuki; Ito, Shigeki; Nishino, Masanari; Ishigaki, Takeo

    1995-01-01

    The aim of this study was to examine the significance and problems of 2-[fluorine-18]-2-deoxy-d-glucose (FDG) positron emission tomography (PET) in diagnosing pancreatic cancer and mass-forming pancreatitis (MFP). PET, X-ray computed tomography (CT) and magnetic resonance (MR) imaging were performed in 15 patients with pancreatic cancer and nine patients with MFP. The areas of the PET scan were determined according to the markers drawn on the patients at CT or MR imaging. Regions of interests (ROIs) were placed by reference to the CT or MR images corresponding to the PET images. Tissue metabolism was evaluated by the differential absorption ratio (DAR) at 50 min after intravenous injection of FDG [DAR = tissue tracer concentration/(injected dose/body weight). The DAR value differed significantly in pancreatic cancer (mean±SD, 4.64±1.94) and MFP (mean±SD, 2.84±2.22) (P<0.05). In one false-negative case (mucinous adenocarcinoma), the tumour contained a small number of malignant cells. In one false-positive case, lymphocytes accumulated densely in the mass in the pancreatic head. Further studies are necessary to investigate the histopathological characteristics (especially the cellularity) and other factors affecting the FDG DAR on PET images. (orig.)

  14. Denoising multicriterion iterative reconstruction in emission spectral tomography

    Science.gov (United States)

    Wan, Xiong; Yin, Aihan

    2007-03-01

    In the study of optical testing, the computed tomogaphy technique has been widely adopted to reconstruct three-dimensional distributions of physical parameters of various kinds of fluid fields, such as flame, plasma, etc. In most cases, projection data are often stained by noise due to environmental disturbance, instrumental inaccuracy, and other random interruptions. To improve the reconstruction performance in noisy cases, an algorithm that combines a self-adaptive prefiltering denoising approach (SPDA) with a multicriterion iterative reconstruction (MCIR) is proposed and studied. First, the level of noise is approximately estimated with a frequency domain statistical method. Then the cutoff frequency of a Butterworth low-pass filter was established based on the evaluated noise energy. After the SPDA processing, the MCIR algorithm was adopted for limited-view optical computed tomography reconstruction. Simulated reconstruction of two test phantoms and a flame emission spectral tomography experiment were employed to evaluate the performance of SPDA-MCIR in noisy cases. Comparison with some traditional methods and experiment results showed that the SPDA-MCIR combination had obvious improvement in the case of noisy data reconstructions.

  15. Hepatic Pseudolymphoma with Fluorodeoxyglucose Uptake on Positron Emission Tomography

    Directory of Open Access Journals (Sweden)

    Kazuhiro Suzumura

    2017-12-01

    Full Text Available A 69-year-old woman with chronic hepatitis B was admitted to our hospital with a hepatic tumor. The levels of 2 tumor markers, carcinoembryonic antigen and carbohydrate antigen 19-9, were slightly elevated; however, the α-fetoprotein and protein levels induced by vitamin K antagonist II were within the normal limits. Abdominal ultrasonography showed a well-defined peripheral hypoechoic mass that was isoechoic and homogeneous on the inside. Computed tomography showed a poorly enhanced tumor of 13 mm in diameter in the 5th segment of the liver. Fluorodeoxyglucose positron emission tomography showed a slight uptake (maximum standard uptake value 3.4 by the hepatic tumor. These findings suggested cholangiocellular carcinoma, and we performed anterior segmentectomy of the liver. A histopathological examination showed a hepatic pseudolymphoma. The patient’s postoperative course was uneventful, and she remains alive without recurrence 5 months after undergoing surgery. In most cases, hepatic pseudolymphoma is preoperatively diagnosed as a malignant tumor and a definite diagnosis is made after resection. It is therefore necessary to consider hepatic pseudolymphoma as a differential diagnosis in patients with hepatic tumors.

  16. Single-photon emission tomography (SPECT) with 123I-amphetamine in cerebral ischemia

    International Nuclear Information System (INIS)

    Koenig, B.; Donis, J.; Mostbeck, A.; Koehn, H.

    1987-01-01

    The uptake of 123 I-amphetamine (IMP) in brain mainly corresponds to regional perfusion. Distribution of IMP can be visualized in tomographic slices by single-photon emission computed tomography (SPECT). For better evaluation and comparison in follow-up studies, right/left ratios were computed and an asymmetry index calculated. The most sensitive asymmetry index was achieved by 120 average circumferential profiles. In 52 patients with stroke and 16 controls the respective sensitivities of IMP-SPECT, computed tomography (CT), static and dynamic brain scanning and angiography were evaluated. In patients with TIA and PRIND the IMP-SPECT had the highest sensitivity of all non-invasive methods. In patients with completed stroke, the sensitivity of IMP-SPECT was comparable with that of CT (90 vs. 93%). There was a significant correlation between the IMP asymmetry index and the clinical and social score (p [de

  17. Use of fluorine-18 fluorodeoxyglucose positron emission tomography in the detection of silent metastases from malignant melanoma

    DEFF Research Database (Denmark)

    Jakobsen, Annika Loft; Andersson, A P; Dahlstrøm, K

    2000-01-01

    Correct staging is crucial for the management and prognosis of patients with malignant melanoma. The aim of this prospective study was to compare staging by whole-body positron emission tomography using fluorine-18 fluorodeoxyglucose (18F-FDG) with staging by conventional methods. Thirty......-eight patients with malignant melanoma of clinical stage II (local recurrence, in-transit and regional lymph node metastases) or III (metastases to other sites than in stage II) were included in the study. The results of the PET scans were compared with those obtained by clinical examination, computed tomography...

  18. The potential application of silver and positron emission tomography for in vivo dosimetry during radiotherapy

    DEFF Research Database (Denmark)

    Hansen, Anders T; Hansen, Søren B; Petersen, Jørgen B

    2007-01-01

    of absorbed dose per gram of silver. This demonstrates that it is possible to derive absorbed doses from the radioactivity induced in silver by radiation when measured with the PET scanner. Even though the physical basis for this method is found to be sound, its application, for instance to perform quality......The possible use of silver as a material for in vivo dosimetry in radiotherapy was investigated. The investigation was carried out using a positron emission tomography (PET) scanner, two clinical accelerators and a phantom with silver implants. The phantom was irradiated several times to doses...

  19. Distributed Microprocessor Automation Network for Synthesizing Radiotracers Used in Positron Emission Tomography [PET

    Science.gov (United States)

    Russell, J. A. G.; Alexoff, D. L.; Wolf, A. P.

    1984-09-01

    This presentation describes an evolving distributed microprocessor network for automating the routine production synthesis of radiotracers used in Positron Emission Tomography. We first present a brief overview of the PET method for measuring biological function, and then outline the general procedure for producing a radiotracer. The paper identifies several reasons for our automating the syntheses of these compounds. There is a description of the distributed microprocessor network architecture chosen and the rationale for that choice. Finally, we speculate about how this network may be exploited to extend the power of the PET method from the large university or National Laboratory to the biomedical research and clinical community at large. (DT)

  20. New techniques for positron emission tomography in the study of human neurological disorders

    International Nuclear Information System (INIS)

    Kuhl, D.E.

    1991-01-01

    We continue our focus to develop more cost effective and efficient means for producing new functionally specific tracers and more simple, less expensive, means for acquiring and interpreting quantitative data. These improved processes are required for the future growth of positron emission tomography (PET) as a sophisticated research meeting and for the transfer of this technology to clinical use. Our approach concentrates on two separate yet related areas, radiosynthesis and data analysis. The program is divided into four subprojects, the first pair related to radiosynthesis, and the second pair related to data analysis. Progress during the past project year has been excellent in both accomplishment and publication record. 26 refs

  1. The display of multiple images derived from emission computed assisted tomography (ECAT)

    International Nuclear Information System (INIS)

    Jackson, P.C.; Davies, E.R.; Goddard, P.R.; Wilde, R.P.H.

    1983-01-01

    In emission computed assisted tomography, a technique has been developed to display the multiple sections of an organ within a single image, such that three dimensional appreciation of the organ can be obtained, whilst also preserving functional information. The technique when tested on phantoms showed no obvious deterioration in resolution and when used clinically gave satisfactory visual results. Such a method should allow easier appreciation of the extent of a lesion through an organ and thus allow dimensions to be obtained by direct measurement. (U.K.)

  2. New developments in molecular imaging: positron emission tomography time-of-flight (TOF-PET)

    International Nuclear Information System (INIS)

    Aguilar, P.; Couce, B.; Iglesias, A.; Lois, C.

    2011-01-01

    Positron Emission tomography (PET) in increasingly being used in oncology for the diagnosis and staging of disease, as well as in monitoring response to therapy. One of the last advances in PET is the incorporation of Time-of-Flight (TOF) information, which improves the tomographic reconstruction process and subsequently the quality of the final image. In this work, we explain the principles of PET and the fundamentals of TOF-PET. Clinical images are shown in order to illustrate how TOF-PET improves the detectability of small lesions, particularly in patients with high body mass index. (Author) 20 refs

  3. Distributed microprocessor automation network for synthesizing radiotracers used in positron emission tomography

    International Nuclear Information System (INIS)

    Russell, J.A.G.; Alexoff, D.L.; Wolf, A.P.

    1984-01-01

    This presentation describes an evolving distributed microprocessor network for automating the routine production synthesis of radiotracers used in Positron Emission Tomography. We first present a brief overview of the PET method for measuring biological function, and then outline the general procedure for producing a radiotracer. The paper identifies several reasons for our automating the syntheses of these compounds. There is a description of the distributed microprocessor network architecture chosen and the rationale for that choice. Finally, we speculate about how this network may be exploited to extend the power of the PET method from the large university or National Laboratory to the biomedical research and clinical community at large. 20 refs. (DT)

  4. 18 F-Labeling of Sensitive Biomolecules for Positron Emission Tomography.

    Science.gov (United States)

    Krishnan, Hema S; Ma, Longle; Vasdev, Neil; Liang, Steven H

    2017-11-07

    Positron emission tomography (PET) imaging study of fluorine-18 labeled biomolecules is an emerging and rapidly growing area for preclinical and clinical research. The present review focuses on recent advances in radiochemical methods for incorporating fluorine-18 into biomolecules via "direct" or "indirect" bioconjugation. Recently developed prosthetic groups and pre-targeting strategies, as well as representative examples in 18 F-labeling of biomolecules in PET imaging research studies are highlighted. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Bronchobiliary Fistula Localized by Cholescintigraphy with Single-Photon Emission Computed Tomography

    International Nuclear Information System (INIS)

    Artunduaga, Maddy; Patel, Niraj R.; Wendt, Julie A.; Guy, Elizabeth S.; Nachiappan, Arun C.

    2015-01-01

    Biliptysis is an important clinical feature to recognize as it is associated with bronchobiliary fistula, a rare entity. Bronchobiliary fistulas have been diagnosed with planar cholescintigraphy. However, cholescintigraphy with single-photon emission computed tomography (SPECT) can better spatially localize a bronchobiliary fistula as compared to planar cholescintigraphy alone, and is useful for preoperative planning if surgical treatment is required. Here, we present the case of a 23-year-old male who developed a bronchobiliary fistula in the setting of posttraumatic and postsurgical infection, which was diagnosed and localized by cholescintigraphy with SPECT

  6. Measurement of human blood brain barrier integrity using 11C-inulin and positron emission tomography

    International Nuclear Information System (INIS)

    Hara, Toshihiko; Iio, Masaaki; Tsukiyama, Takashi

    1988-01-01

    Positron emission tomography (PET) using 11 C-inulin was demonstrated to be applicable to the clinical measurement of blood brain barrier permeability and cerebral interstitial fluid volume. Kinetic data were analyzed by application of a two compartment model, in which blood plasma and interstitial fluid spaces constitute the compartments. The blood activity contribution was subtracted from the PET count with the aid of the 11 CO inhalation technique. The values we estimated in a human brain were in agreement with the reported values obtained for animal brains by the use of 14 C-inulin. (orig.)

  7. Emission tomography with sup(99m)Tc-pyrophosphate in the diagnosis of acute myocardial infarction

    International Nuclear Information System (INIS)

    Poeyhoenen, L.; Uusitalo, A.; Virjo, A.

    1985-01-01

    Electrocardiograms (ECG) and enzyme criteria are usually used to confirm the diagnosis of acute myocardial infarction in the case of chest pain. However, ECG is not always diagnostic. Elevated enzyme values may be due to causes other than myocardial infarction. In uncertain cases, the ECG and enzyme criteria can be supplemented by emission tomography, performed with technetium pyrophosphate that will accumulate in the site of infarction. Twenty-nine patients with suspected acute myocardial infarction were studied with emission tomography. Of these 12 had acute transmural infarction. Both enzyme tests and ECG were diagnostic in only 7 of these 12 cases, 4 had positive enzyme tests but a nondiagnostic ECG and in one case neither enzymes nor ECG were diagnostic. In 11 patients the infarcted myocardial area was detected with emission tomography. Six patients had acute nontransmural infarction. Only 2 of these had positive emission tomography. The chest pain was not due to infarction in 11 patients. All these patients had negative emission tomography. The sensitivity of emission tomography was 92% and specificity 100% in transmural acute infarction. In nontransmural infarction the specificity was only 33%. Emission tomography is a valuable diagnostic tool. It may be the decisive method when ECG and enzymes are not diagnostic. Emissin tomography also shows the localization and size of the infarcted area in the myocardium. (orig.)

  8. Molecular Imaging of Transporters with Positron Emission Tomography

    Science.gov (United States)

    Antoni, Gunnar; Sörensen, Jens; Hall, Håkan

    Positron emission tomography (PET) visualization of brain components in vivo is a rapidly growing field. Molecular imaging with PET is also increasingly used in drug development, especially for the determination of drug receptor interaction for CNS-active drugs. This gives the opportunity to relate clinical efficacy to per cent receptor occupancy of a drug on a certain targeted receptor and to relate drug pharmacokinetics in plasma to interaction with target protein. In the present review we will focus on the study of transporters, such as the monoamine transporters, the P-glycoprotein (Pgp) transporter, the vesicular monoamine transporter type 2, and the glucose transporter using PET radioligands. Neurotransmitter transporters are presynaptically located and in vivo imaging using PET can therefore be used for the determination of the density of afferent neurons. Several promising PET ligands for the noradrenaline transporter (NET) have been labeled and evaluated in vivo including in man, but a really useful PET ligand for NET still remains to be identified. The most promising tracer to date is (S,S)-[18F]FMeNER-D2. The in vivo visualization of the dopamine transporter (DAT) may give clues in the evaluation of conditions related to dopamine, such as Parkinson's disease and drug abuse. The first PET radioligands based on cocaine were not selective, but more recently several selective tracers such as [11C]PE2I have been characterized and shown to be suitable as PET radioligands. Although there are a large number of serotonin transporter inhibitors used today as SSRIs, it was not until very recently, when [11C]McN5652 was synthesized, that this transporter was studied using PET. New candidates as PET radioligands for the SERT have subsequently been developed and [11C]DASB and [11C]MADAM and their analogues are today the most promising ligands. The existing radioligands for Pgp transporters seem to be suitable tools for the study of both peripheral and central drug

  9. The role of positron emission tomography/computed tomography imaging with radiolabeled choline analogues in prostate cancer.

    Science.gov (United States)

    Navarro-Pelayo Láinez, M M; Rodríguez-Fernández, A; Gómez-Río, M; Vázquez-Alonso, F; Cózar-Olmo, J M; Llamas-Elvira, J M

    2014-11-01

    prostate cancer is the most frequent solid malignant tumor in Western Countries. Positron emission tomography/x-ray computed tomography imaging with radiolabeled choline analogues is a useful tool for restaging prostate cancer in patients with rising prostate-specific antigen after radical treatment (in whom conventional imaging techniques have important limitations) as well as in the initial assessment of a selected group of prostate cancer patients. For this reason a literature review is necessary in order to evaluate the usefulness of this imaging test for the diagnosis and treatment of prostate cancer. a MEDLINE (PubMed way) literature search was performed using the search parameters: «Prostate cancer» and «Choline-PET/CT». Other search terms were «Biochemical failure» and/or «Staging» and/or «PSA kinetics». English and Spanish papers were selected; original articles, reviews, systematic reviews and clinical guidelines were included. according to available data, radiolabeled choline analogues plays an important role in the management of prostate cancer, especially in biochemical relapse because technique accuracy is properly correlated with prostate-specific antigen values and kinetics. Although is an emerging diagnostic technique useful in treatment planning of prostate cancer, final recommendations have not been submitted. Copyright © 2013 AEU. Published by Elsevier Espana. All rights reserved.

  10. The Medical Case for a Positron Emission Tomography and X-ray Computed Tomography Combined Service in Oman.

    Science.gov (United States)

    Al-Bulushi, Naima K; Bailey, Dale; Mariani, Giuliano

    2013-11-01

    The value of a positron emission tomography and X-ray computed tomography (PET/CT) combined service in terms of diagnostic accuracy, cost-effectiveness and impact on clinical decision-making is well-documented in the literature. Its role in the management of patients presenting with cancer is shifting from early staging and restaging to the early assessment of the treatment response. Currently, the application of PET/CT has extended to non-oncological specialties-mainly neurology, cardiology and rheumatology. A further emerging application for PET/CT is the imaging of infection/inflammation. This article illustrates some of the PET/CT applications in both oncological and non-oncological disorders. In view of the absence of this modality in Oman, this article aims to increase the awareness of the importance of these imaging modalities and their significant impact on diagnosis and management in both oncological and non-oncological specialties for patients of all age groups as well as the decision-makers.

  11. An economic evaluation of positron emission tomography (PET) and positron emission tomography/computed tomography (PET/CT) for the diagnosis of breast cancer recurrence.

    Science.gov (United States)

    Auguste, P; Barton, P; Hyde, C; Roberts, T E

    2011-04-01

    To review the published economic studies that have evaluated positron emission tomography/computed tomography (PET/CT) in the treatment of recurrent breast cancer, and to develop and carry out a model-based economic evaluation to investigate the relative cost-effectiveness of PET/CT to detect breast cancer recurrence compared with conventional work-up. A systematic review of economic and diagnostic evidence for PET/CT in diagnosis of breast cancer recurrence. The original databases searched include MEDLINE (Ovid) (1950 to week 5 May 2009), EMBASE (Ovid) (1980 to 2009 week 22) and the NHS Economic Evaluation Database. An updated search was conducted for each database from May 2009 to week 4 April 2010. A decision tree was developed in TREEAGE software (TreeAge Software Inc., Williamstown, MA, USA). The relevant data on accuracy, sensitivity and specificity of each diagnostic test were linked in the model, to costs and the primary outcome measure, cost per quality-adjusted life-year (QALY). The model estimated the mean cost associated with each diagnostic procedure and assumed that patients entering the model were aged 50-75 years. The results of the cost-effectiveness analysis are presented in terms of the incremental cost-effectiveness ratios (ICERs). The ICER for the strategy of PET compared with conventional work-up was estimated at £29,300 per QALY; the ICER for PET/CT compared with PET was £ 31,000 per QALY; and the ICER for PET/CT combined with conventional work-up versus PET/CT was £ 42,100. Clearly, for each additional diagnostic test that is added to PET, the more expensive the package becomes, but also the more effective it becomes in terms of QALYs gained. The probabilistic sensitivity analysis shows that at a willingness-to-pay threshold of £ 20,000 per QALY, conventional work-up is the preferred option. Only data from indirect comparisons are available from the accuracy review, and there is some uncertainty about whether the data defining the

  12. Spectrum of single photon emission computed tomography/computed tomography findings in patients with parathyroid adenomas.

    Science.gov (United States)

    Chakraborty, Dhritiman; Mittal, Bhagwant Rai; Harisankar, Chidambaram Natrajan Balasubramanian; Bhattacharya, Anish; Bhadada, Sanjay

    2011-01-01

    Primary hyperparathyroidism results from excessive parathyroid hormone secretion. Approximately 85% of all cases of primary hyperparathyroidism are caused by a single parathyroid adenoma; 10-15% of the cases are caused by parathyroid hyperplasia. Parathyroid carcinoma accounts for approximately 3-4% of cases of primary disease. Technetium-99m-sestamibi (MIBI), the current scintigraphic procedure of choice for preoperative parathyroid localization, can be performed in various ways. The "single-isotope, double-phase technique" is based on the fact that MIBI washes out more rapidly from the thyroid than from abnormal parathyroid tissue. However, not all parathyroid lesions retain MIBI and not all thyroid tissue washes out quickly, and subtraction imaging is helpful. Single photon emission computed tomography (SPECT) provides information for localizing parathyroid lesions, differentiating thyroid from parathyroid lesions, and detecting and localizing ectopic parathyroid lesions. Addition of CT with SPECT improves the sensitivity. This pictorial assay demonstrates various SPECT/CT patterns observed in parathyroid scintigraphy.

  13. Use of Positron Emission Tomography/Computed Tomography in Radiation Treatment Planning for Lung Cancer

    Directory of Open Access Journals (Sweden)

    Kezban Berberoğlu

    2016-06-01

    Full Text Available Radiotherapy (RT plays an important role in the treatment of lung cancer. Accurate diagnosis and staging are crucial in the delivery of RT with curative intent. Target miss can be prevented by accurate determination of tumor contours during RT planning. Currently, tumor contours are determined manually by computed tomography (CT during RT planning. This method leads to differences in delineation of tumor volume between users. Given the change in RT tools and methods due to rapidly developing technology, it is now more significant to accurately delineate the tumor tissue. F18 fluorodeoxyglucose positron emission tomography/CT (F18 FDG PET/CT has been established as an accurate method in correctly staging and detecting tumor dissemination in lung cancer. Since it provides both anatomic and biologic information, F18 FDG PET decreases interuser variability in tumor delineation. For instance, tumor volumes may be decreased as atelectasis and malignant tissue can be more accurately differentiated, as well as better evaluation of benign and malignant lymph nodes given the difference in FDG uptake. Using F18 FDG PET/CT, the radiation dose can be escalated without serious adverse effects in lung cancer. In this study, we evaluated the contribution of F18 FDG PET/CT for RT planning in lung cancer.

  14. 18F-FDG positron emission tomography/computed tomography in infective endocarditis.

    Science.gov (United States)

    Salomäki, Soile Pauliina; Saraste, Antti; Kemppainen, Jukka; Bax, Jeroen J; Knuuti, Juhani; Nuutila, Pirjo; Seppänen, Marko; Roivainen, Anne; Airaksinen, Juhani; Pirilä, Laura; Oksi, Jarmo; Hohenthal, Ulla

    2017-02-01

    The diagnosis of infective endocarditis (IE), especially the diagnosis of prosthetic valve endocarditis (PVE) is challenging since echocardiographic findings are often scarce in the early phase of the disease. We studied the use of 2-[ 18 F]fluoro-2-deoxy-D-glucose ( 18 F-FDG) positron emission tomography/computed tomography (PET/CT) in IE. Sixteen patients with suspected PVE and 7 patients with NVE underwent visual evaluation of 18 F-FDG-PET/CT. 18 F-FDG uptake was measured also semiquantitatively as maximum standardized uptake value (SUV max ) and target-to-background ratio (TBR). The modified Duke criteria were used as a reference. There was strong, focal 18 F-FDG uptake in the area of the affected valve in all 6 cases of definite PVE, in 3 of 5 possible PVE cases, and in 2 of 5 rejected cases. In all patients with definite PVE, SUV max of the affected valve was higher than 4 and TBR higher than 1.8. In contrast to PVE, only 1 of 7 patients with NVE had uptake of 18 F-FDG by PET/CT in the valve area. Embolic infectious foci were detected in 58% of the patients with definite IE. 18 F-FDG-PET/CT appears to be a sensitive method for the detection of paravalvular infection associated with PVE. Instead, the sensitivity of PET/CT is limited in NVE.

  15. Mycosis fungoides: Positron emission tomography/computed tomography in staging and monitoring the effect of therapy

    International Nuclear Information System (INIS)

    D’Souza, Maria Mathew; D’Souza, Paschal; Sharma, Rajnish; Jaimini, Abhinav; Mondal, Anupam

    2015-01-01

    A 58-year-old woman, diagnosed as a case of mycosis fungoides (MF), underwent [18F]-fluoro-D-glucose positron emission tomography/computed tomography (FDG PET/CT) examination. The study revealed intense FDG uptake in a large ulceroproliferative right thigh lesion, indurated plaques in the chest wall and left thigh, along with multiple sites of cutaneous involvement, axillary and inguinal lymphadenopathy. The patient underwent chemotherapy with CHOP regimen, radiotherapy for the right thigh lesion, along with topical corticosteroids and emollients for the disseminated cutaneous involvement. Repeat [18F]-FDG PET/CT study performed a year later, showed near complete disease regression specifically of the ulceroproliferative lesion and indurated cutaneous plaques, no change in lymphadenopathy, and a subtle diffuse progression of the remaining cutaneous lesions. A multidisciplinary approach to the diagnosis, staging and treatment of MF has long been suggested for optimizing outcomes from management of patients with this disease. This case highlights the potential role of incorporating PET/CT as a single modality imaging technique in the staging and assessment of response to therapy

  16. A novel phantom design for emission tomography enabling scatter- and attenuation-''free'' single-photon emission tomography imaging

    International Nuclear Information System (INIS)

    Larsson, S.A.; Johansson, L.; Jonsson, C.; Pagani, M.; Jacobsson, H.

    2000-01-01

    A newly designed technique for experimental single-photon emission tomography (SPET) and positron emission tomography (PET) data acquisition with minor disturbing effects from scatter and attenuation has been developed. In principle, the method is based on discrete sampling of the radioactivity distribution in 3D objects by means of equidistant 2D planes. The starting point is a set of digitised 2D sections representing the radioactivity distribution of the 3D object. Having a radioactivity-related grey scale, the 2D images are printed on paper sheets using radioactive ink. The radioactive sheets can be shaped to the outline of the object and stacked into a 3D structure with air or some arbitrary dense material in between. For this work, equidistantly spaced transverse images of a uniform cylindrical phantom and of the digitised Hoffman rCBF phantom were selected and printed out on paper sheets. The uniform radioactivity sheets were imaged on the surface of a low-energy ultra-high-resolution collimator (4 mm full-width at half-maximum) of a three-headed SPET camera. The reproducibility was 0.7% and the uniformity was 1.2%. Each rCBF sheet, containing between 8.3 and 80 MBq of 99m TcO 4 - depending on size, was first imaged on the collimator and then stacked into a 3D structure with constant 12 mm air spacing between the slices. SPET was performed with the sheets perpendicular to the central axis of the camera. The total weight of the stacked rCBF phantom in air was 63 g, giving a scatter contribution comparable to that of a point source in air. The overall attenuation losses were <20%. A second SPET study was performed with 12-mm polystyrene plates in between the radioactive sheets. With polystyrene plates, the total phantom weight was 2300 g, giving a scatter and attenuation magnitude similar to that of a patient study. With the proposed technique, it is possible to obtain ''ideal'' experimental images (essentially built up by primary photons) for comparison with

  17. {sup 18}F-fluorodeoxyglucose positron emission tomography-computed tomography in the management of adult multisystem Langerhans cell histiocytosis

    Energy Technology Data Exchange (ETDEWEB)

    Obert, Julie [Universite Paris Diderot, Paris (France); Assistance Publique-Hopitaux de Paris, Centre National de Reference de l' Histiocytose Langerhansienne, Service de Pneumologie, Hopital Saint-Louis, Paris (France); Vercellino, Laetitia [Assistance Publique-Hopitaux de Paris, Service de Medecine Nucleaire, Hopital Saint-Louis, Paris (France); Van der Gucht, Axel [Universite Paris Diderot, Paris (France); Assistance Publique-Hopitaux de Paris, Service de Medecine Nucleaire, Hopital Saint-Louis, Paris (France); De Margerie-Mellon, Constance [Universite Paris Diderot, Paris (France); Assistance Publique-Hopitaux de Paris, Service de Radiologie, Hopital Saint-Louis, Paris (France); Bugnet, Emmanuelle; Lorillon, Gwenael [Assistance Publique-Hopitaux de Paris, Centre National de Reference de l' Histiocytose Langerhansienne, Service de Pneumologie, Hopital Saint-Louis, Paris (France); Chevret, Sylvie [Universite Paris Diderot, Paris (France); Assistance Publique-Hopitaux de Paris, Service de Biostatistique et Information Medicale, Hopital Saint-Louis, Paris (France); Biostatistics and Clinical Epidemiology Research Team, U1153 CRESS, Paris (France); Tazi, Abdellatif [Universite Paris Diderot, Paris (France); Assistance Publique-Hopitaux de Paris, Centre National de Reference de l' Histiocytose Langerhansienne, Service de Pneumologie, Hopital Saint-Louis, Paris (France); Biostatistics and Clinical Epidemiology Research Team, U1153 CRESS, Paris (France)

    2017-04-15

    The standard evaluation of multisystem Langerhans cell histiocytosis (LCH) includes a clinical evaluation, laboratory tests and a skeleton/skull X-ray survey, with chest high-resolution computed tomography (HRCT) in the case of pulmonary involvement. Preliminary reports suggest that {sup 18}F-fluorodeoxyglucose positron emission tomography-computed tomography ({sup 18}F-FDG PET-CT) may be useful for evaluating patients with LCH. Fourteen consecutive adult patients with multisystem LCH were included in this retrospective study, and were evaluated using standard procedures and {sup 18}F-FDG PET-CT. The two sets of findings were compared both at baseline and during follow-up. Serial HRCT and pulmonary function tests were used to evaluate outcome in patients with lung involvement. At the baseline evaluation, PET-CT identified every LCH localization found with the standard evaluation (except a mild cecum infiltration). PET-CT showed additional lesions in seven patients, mostly involving bones, and differentiated inactive from active lesions. Thyroid {sup 18}F-FDG uptake was identified in three cases. No pituitary stalk {sup 18}F-FDG uptake was observed in patients with pituitary LCH. Only 3/12 (25 %) patients with pulmonary LCH displayed moderate pulmonary {sup 18}F-FDG uptake. During follow-up, variations (≥50 % of maximum standardized uptake) in bone {sup 18}F-FDG uptake intensity were correlated with disease state and response to treatment. The absence of lung {sup 18}F-FDG uptake did not preclude lung function improvement after treatment. Except for cases with pulmonary and pituitary involvement, {sup 18}F-FDG PET-CT could replace the standard evaluation for staging of adult patients with multisystem LCH. Serial PET-CT scans are useful for evaluating treatment responses, particularly in cases with bone LCH involvement. (orig.)

  18. Low Accuracy of Computed Tomography and Positron Emission Tomography to Detect Lung and Lymph Node Metastases of Colorectal Cancer.

    Science.gov (United States)

    Guerrera, Francesco; Renaud, Stéphane; Schaeffer, Mickaël; Nigra, Victor; Solidoro, Paolo; Santelmo, Nicola; Filosso, Pier Luigi; Falcoz, Pierre-Emmanuel; Ruffini, Enrico; Oliaro, Alberto; Massard, Gilbert

    2017-10-01

    Minimally invasive surgery, stereotactic radiotherapy, and radiofrequency ablation are commonly proposed in the case of pulmonary colorectal-metastasis as alternatives to conventional open surgery. Preoperative imaging assessment by computed tomography (CT) scan and fluorodeoxyglucose positron emission tomography (FDG-PET) are critical to guide oncologic radical treatment. Our aim was to investigate the accuracy of CT and FDG-PET for the evaluation of the number of pulmonary colorectal metastases and thoracic lymph nodal involvement (LNI). Patients who underwent lung surgical resection for pulmonary colorectal metastases from 2004 to 2014 were analyzed. Concordance between histology, CT scan, and FDG-PET findings were assessed. Data of 521 patients were analyzed. Of those, FDG-PET was performed in 435 (83.5%). A moderate agreement between both CT scan (kappa index: 0.42) and FDG-PET (kappa index: 0.42) findings and the histologically proven number of metastases was observed. The number of histologically proven metastases was correctly discriminated in 61.7% of cases with CT scan and in 61.8% of cases with FDG-PET. Multiple metastases were discovered in 20.9% of clinical single metastasis cases with CT scan, and in 24.4% of those cases with FDG-PET. One hundred fifty patients (29.1%) presented with pathologic LNI. A poor agreement was observed between LNI and CT scan findings (kappa index: 0.02), and a weak agreement was observed concerning LNI and FDG-PET findings (kappa index: 0.39). Computed tomography and FDG-PET have limitations if the objective is to detect all malignant nodules and to discriminate the LNI in cases of pulmonary metastases of colorectal cancer. Copyright © 2017 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  19. DETECTION OF MYOCARDIAL VIABILITY IN ISСHAEMIC DAMAGE USING MAGNETIC RESONANCE AND EMISSION TOMOGRAPHY

    Directory of Open Access Journals (Sweden)

    V. Yu. Ussov

    2013-01-01

    Full Text Available A review of modern methods of magnetic resonance imaging (MRI and emission tomography (singlephoton emission and positron emission computer tomography – SPECT and PET as toos for diagnosis and prognosis of myocardial ischaemic damage, in particular in coronary revascularization. The definition of term “myocardial viability” is discussed. It has been shown that the integrity of blood-tissue barrier between myocardium and microcirculatory vessels is the most sensitive marker of tissue viability and of functional integrity of myocardium. It’s evaluation by means of contrast-enhanced MRI of myocardium is the most available and most precise technique of diagnosis and prognosis both in patients with postinfarction myocardiosclerosis and in patients with coronary disease without myocardial infarction. It is proposed that in the nearest future the combination of MR-coronarography and contrast-enhanced MRI of myocardium will provide a possibility to obtain the full set of data necessary for planning of endovascular and surgical treatment of various forms of coronary heart disease. PET and SPECT techniques currently are of some essential interest for pathophysiologic research of coronary ishaemia in clinical and experimental studies as well as for qualitative visual studies of pharmacokinetics.

  20. Utility of fluorine-18-fluorodeoxyglucose positron emission tomography/computed tomography in a child with chronic granulomatous disease

    International Nuclear Information System (INIS)

    Garg, Gunjan; DaSilva, Raphaella; Bhalakia, Avni; Milstein, David M.

    2016-01-01

    We report the fluorodeoxyglucose positron emission tomography/computed tomography (FDG - PET/CT) findings in an 11-month-old boy with suspected milk protein allergy, presented to the hospital with 2-month history of fever of unknown origin and failure to thrive. It showed FDG avid lymphadenopathy above and below the diaphragm and splenic focus, which could represent diffuse inflammatory process or lymphoma. Subsequent jejunal biopsy showed non-necrotizing granulomas

  1. Head and neck: normal variations and benign findings in FDG positron emission tomography/computed tomography imaging.

    Science.gov (United States)

    Højgaard, Liselotte; Berthelsen, Anne Kiil; Loft, Annika

    2014-04-01

    Positron emission tomography (PET)/computed tomography with FDG of the head and neck region is mainly used for the diagnosis of head and neck cancer, for staging, treatment evaluation, relapse, and planning of surgery and radio therapy. This article is a practical guide of imaging techniques, including a detailed protocol for FDG PET in head and neck imaging, physiologic findings, and pitfalls in selected case stories. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. EEG, transmission computed tomography, and positron emission tomography with fluorodeoxyglucose 18F. Their use in adults with gliomas

    International Nuclear Information System (INIS)

    Newmark, M.E.; Theodore, W.H.; Sato, S.; De La Paz, R.; Patronas, N.; Brooks, R.; Jabbari, B.; Di Chiro, G.

    1983-01-01

    We evaluated the relationship between findings from EEG, transmission computed tomography (CT), and positron emission tomography in 23 adults with gliomas. The cortical metabolic rate was suppressed in patients with and without focal slowing. Focal delta activity was not related to involvement of gray or white matter. Rhythmic delta activity and focal attenuation of background amplitude on EEG, however, were correlated with involvement of the thalamus

  3. Patterns of brown fat uptake of 18F-fluorodeoxyglucose in positron emission tomography/computed tomography scan

    International Nuclear Information System (INIS)

    Chakraborty, Dhritiman; Bhattacharya, Anish; Mittal, Bhagwant Rai

    2015-01-01

    Fluorodeoxyglucose (FDG) positron emission tomography (PET) has become the common imaging modality in oncological practice. FDG uptake is seen in brown adipose tissue in a significant number of patients. Recognizing the uptake patterns is important for optimal FDG PET interpretation. The introduction of PET/computed tomography (PET/CT) revolutionized PET imaging, bringing much-needed anatomical information. Careful review and correlation of FDG PET images with anatomical imaging should be performed to characterize accurately any lesion having high FDG uptake

  4. Promising role of single photon emission computed tomography/computed tomography in Meckel's scan

    International Nuclear Information System (INIS)

    Jain, Anurag; Chauhan, MS; Pandit, AG; Kumar, Rajeev; Sharma, Amit

    2012-01-01

    Meckel's scan is a common procedure performed in nuclear medicine. Single-photon emission computed tomography/computed tomography (SPECT/CT) in a suspected case of heterotopic location of gastric mucosa can increase the accuracy of its anatomic localization. We present two suspected cases of Meckel's diverticulum in, which SPECT/CT co-registration has helped in better localization of the pathology

  5. In Vivo Treatment Sensitivity Testing With Positron Emission Tomography/Computed Tomography After One Cycle of Chemotherapy for Hodgkin Lymphoma

    DEFF Research Database (Denmark)

    Hutchings, Martin; Kostakoglu, Lale; Zaucha, Jan Maciej

    2014-01-01

    PURPOSE: Negative [(18)F]fluorodeoxyglucose (FDG) -positron emission tomography (PET)/computed tomography (CT) after two cycles of chemotherapy indicates a favorable prognosis in Hodgkin lymphoma (HL). We hypothesized that the negative predictive value would be even higher in patients responding....... In the absence of precise pretherapeutic predictive markers, PET1 is the best method for response-adapted strategies designed to select patients for less intensive treatment....

  6. Trails on 18F-Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography Leading to Diagnosis of Testicular Adrenal Rest Tumor.

    Science.gov (United States)

    Kashyap, Raghava

    2018-01-01

    Testicular adrenal rest tumors (TARTs) are secondary to hypertrophy of adrenal rest cells in the rete testis in settings of hypersecretion of androgens. We present a case of congenital adrenal hyperplasia with TART with clues to the diagnosis on 18 F-fluorodeoxyglucose positron emission tomography/computed tomography ( 18 F-FDG PET/CT). To the best of our knowledge, this is the first reported case on the role of 18 F-FDG PET/CT in TART.

  7. Application of positron emission tomography-computed tomography in the diagnosis of pulmonary ground-glass nodules.

    Science.gov (United States)

    Hu, Lili; Pan, Yuanwei; Zhou, Zhigang; Gao, Jianbo

    2017-11-01

    The aim of the present study was to investigate the value of positron emission tomography-computed tomography (PET-CT) using 18 F-fluorodeoxyglucose in the clinical diagnosis of pulmonary ground-glass nodule. In total, 54 patients with pulmonary GGN that were identified by PET-CT examination were selected and confirmed by pathology and clinical diagnosis in hospital between April 2014 and April 2015. The association between PET-CT findings and pathology, and the value of PET-CT were then evaluated. In the 54 patients, solitary pulmonary GGN with a nodule diameter of between 0.6 and 2.0 cm were detected. Amongst them, the PET-CT examination of 42 patients revealed hyper metabolic nodules, and were all mixed GGN type nodules with a diameter >1 cm. The PET-CT examination of the remaining 12 patients demonstrated no evidence of metabolic abnormalities and the nodules in these patients were pure or mixed GGN with a diameter <1 cm (except 2 cases with a diameter ≥1 cm). Furthermore, the diagnoses for all patients were pathologically confirmed by CT-guided needle biopsy or thoracoscopic surgical resection. Amongst them, there were 41 cases of lung adenocarcinoma, 4 cases of fungal infection, 7 cases of inflammation and 2 cases of adenomatoid hyperplasia. Additionally, PET-CT has a lower detection rate for smaller GGN exhibits no clear advantage for pure GGN, but has a higher detection rate for larger GGN. In conclusion, to a certain extent, PET-CT makes up for the shortcomings of traditional imaging and has some clinical value for the diagnosis of GGN.

  8. Detection of thoracic aortic prosthetic graft infection with 18F-fluorodeoxyglucose positron emission tomography/computed tomography.

    Science.gov (United States)

    Tokuda, Yoshiyuki; Oshima, Hideki; Araki, Yoshimori; Narita, Yuji; Mutsuga, Masato; Kato, Katsuhiko; Usui, Akihiko

    2013-06-01

    To investigate the diagnostic value of (18)F-fluorodeoxyglucose positron emission tomography/computed tomography (FDG-PET/CT) in detecting thoracic aortic prosthetic graft infection. Nine patients with clinically suspected thoracic aortic graft infection underwent FDG-PET/CT scanning. In these patients, the diagnoses could not be confirmed using conventional modalities. The patients' clinical courses were retrospectively reviewed. On the basis of surgical, microbiological and clinical follow-up findings, the aortic grafts were considered infected in 4 patients and not infected in 5. All 4 patients with graft infection (root: 2 cases, arch: 1 case and descending: 1 case) eventually underwent in situ re-replacement. Two of the 4 patients also had abdominal grafts; however, only the thoracic grafts were replaced because uptake was low around the abdominal grafts. The maximal standardized uptake value (SUVmax) in the perigraft area was higher in the infected group than in the non-infected group (11.4 ± 4.5 vs 6.9 ± 6.4), although the difference was not statistically significant. According to the receiver operating characteristic analysis, SUVmax >8 appeared to be the cut-off value in distinguishing the two groups (sensitivity: 1.0 and specificity: 0.8). FDG-PET/CT is useful for confirming the presence of graft infection by detecting high uptake around grafts and excluding other causes of inflammation. An SUVmax value greater than 8 around a graft suggests the presence of graft infection. In addition, FDG-PET/CT can be used to clarify the precise extent of infection. This is especially useful if multiple separated prosthetic grafts have been implanted.

  9. Fluorodeoxyglucose positron emission tomography in pulmonary carcinoid tumors

    International Nuclear Information System (INIS)

    Gasparri, R.; Rezende, G. C.; Brambilla, D.; Petrella, F.; Galetta, D.; Spaggiari, L.; Fazio, N.; Maisonneuve, P.; Travaini, L. L.; Paganelli, G.

    2015-01-01

    The role of fluorodeoxyglucose positron emission tomography (FDG-PET) as an additional investigation to computer tomography for pulmonary carcinoid tumors remains controversial. The aim of this study was to assess the role of FDG-PET for the diagnosis and staging of pulmonary carcinoid tumors. It has been performed a retrospective mono-institutional analysis of data from 97 patients with pathologically confirmed pulmonary carcinoid tumor who had been operated on between July 1998 and April 2009 and had had a preoperative FDG-PET scan performed. Sixty-five (67%) of the 97 tumors were typical (TC) and 32 (33%) atypical (AC) carcinoid tumors. Overall FDG-PET sensitivity was 67% being lower for TC (60%) than for AC (81%) (P=0.04). FDG-PET negative tumors were smaller than FDG-PET positive tumors, with a respective median size of 15 and 17 mm (P=0.02). Median SUVmax for FDG-PET-positive tumors was 4.0 (2.8-5.1) with no difference between TC and AC tumors. Median Ki-67 expression was respectively 4.7% and 3.1% for FDG-PET positive and FDG-PET negative tumors (P=0.05). During a median follow-up of 49 months (interquartile range 30-63 months), 9 patients (4TC, 5AC) developed recurrent disease. Neither SUVmax nor Ki-67 expression resulted associated with disease-free survival. With an overall sensitivity of 67%, FDG-PET has shown to be useful in the preoperative work-up of patients with suspect lung carcinoid tumors. In particular it could have a role in larger tumors. These results warrant a prospective evaluation of FDG-PET in the staging of lung carcinoid tumor.

  10. Influence of 18F-fluorodeoxyglucose-positron emission tomography on computed tomography-based radiation treatment planning for oesophageal cancer

    International Nuclear Information System (INIS)

    Everitt, C.; Leong, T.

    2006-01-01

    The addition of positron emission tomography (PET) information to CT-based radiotherapy treatment planning has the potential to improve target volume definition through more accurate localization of the primary tumour and involved regional lymph nodes. This case report describes the first patient enrolled to a prospective study evaluating the effects of coregistered positron emission tomography/CT images on radiotherapy treatment planning for oesophageal cancer. The results show that if combined positron emission tomography/CT is used for radiotherapy treatment planning, there may be alterations to the delineation of tumour volumes when compared to CT alone. For this patient, a geographic miss of tumour would have occurred if CT data alone were used for radiotherapy planning Copyright (2006) Blackwell Publishing Asia Pty Ltd

  11. Positron Emission Tomography/Magnetic Resonance Imaging for Local Tumor Staging in Patients With Primary Breast Cancer: A Comparison With Positron Emission Tomography/Computed Tomography and Magnetic Resonance Imaging.

    Science.gov (United States)

    Grueneisen, Johannes; Nagarajah, James; Buchbender, Christian; Hoffmann, Oliver; Schaarschmidt, Benedikt Michael; Poeppel, Thorsten; Forsting, Michael; Quick, Harald H; Umutlu, Lale; Kinner, Sonja

    2015-08-01

    This study aimed to assess the diagnostic performance of integrated positron emission tomography (PET)/magnetic resonance imaging (MRI) of the breast for lesion detection and local tumor staging of patients with primary breast cancer in comparison to PET/computed tomography (CT) and MRI. The study was approved by the local institutional review board. Forty-nine patients with biopsy-proven invasive breast cancer were prospectively enrolled in our study. All patients underwent a PET/CT, and subsequently, a contrast-enhanced PET/MRI of the breast after written informed consent was obtained before each examination. Two radiologists independently evaluated the corresponding data sets (PET/CT, PET/MRI, and MRI) and were instructed to identify primary tumors lesions as well as multifocal/multicentric and bilateral disease. Furthermore, the occurrence of lymph node metastases was assessed, and the T-stage for each patient was determined. Histopathological verification of the local tumor extent and the axillary lymph node status was available for 30 of 49 and 48 of 49 patients, respectively. For the remaining patients, a consensus characterization was performed for the determination of the T-stage and nodal status, taking into account the results of clinical staging, PET/CT, and PET/MRI examinations. Statistical analysis was performed to test for differences in diagnostic performance between the different imaging procedures. P values less than 0.05 were considered to be statistically significant. Positron emission tomography/MRI and MRI correctly identified 47 (96%) of the 49 patients with primary breast cancer, whereas PET/CT enabled detection of 46 (94%) of 49 breast cancer patients and missed a synchronous carcinoma in the contralateral breast in 1 patient. In a lesion-by-lesion analysis, no significant differences could be obtained between the 3 imaging procedures for the identification of primary breast cancer lesions (P > 0.05). Positron emission tomography/MRI and

  12. Prediction of Central Nervous System Relapse of Diffuse Large B-Cell Lymphoma Using Pretherapeutic [18F]2-Fluoro-2-Deoxyglucose (FDG) Positron Emission Tomography/Computed Tomography.

    Science.gov (United States)

    Song, Yoo Sung; Lee, Won Woo; Lee, Jong Seok; Kim, Sang Eun

    2015-11-01

    Central nervous system (CNS) relapse of diffuse large B-cell lymphoma (DLBCL) is a rare complication, but has a poor prognosis with unknown pathophysiology. Recent trials of CNS prophylaxis have shown to be ineffective, despite patient's selection using several known clinical risk factors. In this study, the authors evaluated the value of pretreatment [F]2-Fluoro-2-deoxyglucose positron emission tomography in predicting CNS relapse in DLBCL patients.The authors analyzed 180 pathologically confirmed DLBCL patients, retrospectively. Patients underwent [F]2-Fluoro-2-deoxyglucose positron emission tomography/computed tomography before first line rituximab to cyclophosphamide, doxorubicin, vincristine, and prednisone therapy. Clinical characteristics were evaluated and total lesion glycolysis (TLG) with a threshold margin of 50% was calculated.Among age, sex, Ann Arbor stage, International Prognostic Index, revised International Prognostic Index, high serum lactate dehydrogenase level, presence of B symptoms, bulky disease (≥10 cm), extranodal lesion involvement, bone marrow involvement, high metabolic tumor volume ( >450 mL), and high TLG50 (>2000), the high TLG50 was the only significant prognostic factor for predicting CNS relapse in a multivariate analysis (P = 0.04). Kaplan-Meir survival analysis between high TLG50 (>2000) and low TLG50 (≤2000) groups revealed significantly different mean progression free survival (PFS) of 1317.2 ± 134.3 days and 1968.6 ± 18.3 days, respectively (P positron emission tomography/computed tomography is the most significant predictor of CNS relapse in un-treated DLBCL patients.

  13. Fluorodeoxyglucose positron emission tomography-computed tomography in evaluation of pelvic and para-aortic nodal involvement in early stage and operable cervical cancer: comparison with surgicopathological findings

    International Nuclear Information System (INIS)

    Bansal, Vandana; Damania, Kaizad; Sharma, Anshu Rajnish

    2011-01-01

    Nodal metastases in cervical cancer have prognostic implications. Imaging is used as an adjunct to clinical staging for evaluation of nodal metastases. Fluorodeoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT) has an advantage of superior resolution of its CT component and detecting nodal disease based on increased glycolytic activity rather than node size. But there are limited studies describing its limitations in early stage cervical cancers. We have done meta-analysis with an objective to evaluate the efficacy of FDG PET/CT and its current clinical role in early stage and operable cervical cancer. Studies in which FDG PET/CT was performed before surgery in patients with early stage cervical cancers were included for analysis. PET findings were confirmed with histopathological diagnosis rather than clinical follow-up. The current data suggest that FDG PET/CT is suboptimal in nodal staging in early stage cervical cancer

  14. Positron emission tomography in amyotrophic lateral sclerosis: Towards targeting of molecular pathological hallmarks

    International Nuclear Information System (INIS)

    Willekens, Stefanie M.A.; Weehaeghe, Donatienne van; Damme, Philip van; Laere, Koen van

    2017-01-01

    During the past decades, extensive efforts have been made to expand the knowledge of amyotrophic lateral sclerosis (ALS). However, clinical translation of this research, in terms of earlier diagnosis and improved therapy, remains challenging. Since more than 30% of motor neurons are lost when symptoms become clinically apparent, techniques allowing non-invasive, in vivo detection of motor neuron degeneration are needed in the early, pre-symptomatic disease stage. Furthermore, it has become apparent that non-motor signs play an important role in the disease and there is an overlap with cognitive disorders, such as frontotemporal dementia (FTD). Radionuclide imaging, such as positron emission tomography (PET) and single-photon emission computed tomography (SPECT), form an attractive approach to quantitatively monitor the ongoing neurodegenerative processes. Although ["1"8F]-FDG has been recently proposed as a potential biomarker for ALS, active targeting of the underlying pathologic molecular processes is likely to unravel further valuable disease information and may help to decipher the pathogenesis of ALS. In this review, we provide an overview of radiotracers that have already been applied in ALS and discuss possible novel targets for in vivo imaging of various pathogenic processes underlying ALS onset and progression. (orig.)

  15. Positron emission tomography in amyotrophic lateral sclerosis: Towards targeting of molecular pathological hallmarks

    Energy Technology Data Exchange (ETDEWEB)

    Willekens, Stefanie M.A.; Weehaeghe, Donatienne van [University Hospitals Leuven and KU Leuven, Division of Nuclear Medicine, Department of Imaging and Pathology, Leuven (Belgium); Damme, Philip van [University Hospitals Leuven, Department of Neurology, Leuven (Belgium); KU Leuven, Department of Neurosciences, Experimental Neurology, Leuven (Belgium); Leuven Research Institute for Neuroscience and Disease (LIND), Leuven (Belgium); VIB, Vesalius Research Center, Laboratory of Neurobiology, Leuven (Belgium); Laere, Koen van [University Hospitals Leuven and KU Leuven, Division of Nuclear Medicine, Department of Imaging and Pathology, Leuven (Belgium); Leuven Research Institute for Neuroscience and Disease (LIND), Leuven (Belgium)

    2017-03-15

    During the past decades, extensive efforts have been made to expand the knowledge of amyotrophic lateral sclerosis (ALS). However, clinical translation of this research, in terms of earlier diagnosis and improved therapy, remains challenging. Since more than 30% of motor neurons are lost when symptoms become clinically apparent, techniques allowing non-invasive, in vivo detection of motor neuron degeneration are needed in the early, pre-symptomatic disease stage. Furthermore, it has become apparent that non-motor signs play an important role in the disease and there is an overlap with cognitive disorders, such as frontotemporal dementia (FTD). Radionuclide imaging, such as positron emission tomography (PET) and single-photon emission computed tomography (SPECT), form an attractive approach to quantitatively monitor the ongoing neurodegenerative processes. Although [{sup 18}F]-FDG has been recently proposed as a potential biomarker for ALS, active targeting of the underlying pathologic molecular processes is likely to unravel further valuable disease information and may help to decipher the pathogenesis of ALS. In this review, we provide an overview of radiotracers that have already been applied in ALS and discuss possible novel targets for in vivo imaging of various pathogenic processes underlying ALS onset and progression. (orig.)

  16. Combined computed tomography and fluorodeoxyglucose positron emission tomography in the diagnosis of prosthetic valve endocarditis: a case series.

    Science.gov (United States)

    Bartoletti, Michele; Tumietto, Fabio; Fasulo, Giovanni; Giannella, Maddalena; Cristini, Francesco; Bonfiglioli, Rachele; Raumer, Luigi; Nanni, Cristina; Sanfilippo, Silvia; Di Eusanio, Marco; Scotton, Pier Giorgio; Graziosi, Maddalena; Rapezzi, Claudio; Fanti, Stefano; Viale, Pierluigi

    2014-01-13

    The diagnosis of prosthetic valve endocarditis is challenging. The gold standard for prosthetic valve endocarditis diagnosis is trans-esophageal echocardiography. However, trans-esophageal echocardiography may result in negative findings or yield images difficult to differentiate from thrombus in patients with prosthetic valve endocarditis. Combined computed tomography and fluorodeoxyglucose positron emission tomography is a potentially promising diagnostic tool for several infectious conditions and it has also been employed in patients with prosthetic valve endocarditis but data are still scant. We reviewed the charts of 6 patients with prosthetic aortic valves evaluated for suspicion of prosthetic valve endocarditis, at two different hospital, over a 3-year period. We found 3 patients with early-onset PVE cases and blood cultures yielding Pseudomonas aeruginosa, Staphylococcus epidermidis and Staphylococcus lugdunensis, respectively; and 3 late-onset cases in the remaining 3 patients with isolation in the blood of Streptococcus bovis, Candida albicans and P. aeruginosa, respectively. Initial trans-esophageal echocardiography was negative in all the patients, while fluorodeoxyglucose positron emission tomography showed images suspicious for prosthetic valve endocarditis. In 4 out of 6 patients valve replacement was done with histology confirming the prosthetic valve endocarditis diagnosis. After an adequate course of antibiotic therapy fluorodeoxyglucose positron emission tomography showed resolution of prosthetic valve endocarditis in all the patients. Our experience confirms the potential role of fluoroseoxyglucose positron emission tomography in the diagnosis and follow-up of prosthetic valve endocarditis.

  17. Late prosthetic graft infection after frozen elephant trunk presenting by haemoptysis and positive ¹⁸F-fluorodeoxyglucose-positron emission tomography/computed tomography.

    Science.gov (United States)

    Morjan, Mohammed; Ali, Khaldoun; Harringer, Wolfgang; El-Essawi, Aschraf

    2014-11-01

    In cardiothoracic surgery, prosthetic graft infection represents a diagnostic and therapeutic challenge. Although clinical assessment, imaging techniques and microbiological investigations are helpful, late graft infection can be difficult to identify using classical diagnostic tools. An aggressive surgical approach involving removal and replacement of all prosthetic materials is technically demanding but remains the best strategy to eradicate infection. Herein, we report a case of a late aortic graft infection, after frozen elephant trunk implantation with atypical presentation, diagnosed with (18)F-fluorodeoxyglucose-positron emission tomography and treated successfully through a radical surgical strategy. This case emphasizes the emerging diagnostic role of positron emission tomography and encourages the adoption of an aggressive surgical approach. © The Author 2014. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.

  18. 18 F-fluorodeoxyglucose positron emission tomography-computed tomography for preoperative lymph node staging in patients undergoing radical cystectomy for bladder cancer: a prospective study.

    Science.gov (United States)

    Hitier-Berthault, Maryam; Ansquer, Catherine; Branchereau, Julien; Renaudin, Karine; Bodere, Françoise; Bouchot, Olivier; Rigaud, Jérôme

    2013-08-01

    The objective of our study was to analyze the diagnostic performance of (18) F-fluorodeoxyglucose positron emission tomography-computed tomography for lymph node staging in patients with bladder cancer before radical cystectomy and to compare it with that of computed tomography. A total of 52 patients operated on between 2005 and 2010 were prospectively included in this prospective, mono-institutional, open, non-randomized pilot study. Patients who had received neoadjuvant chemotherapy or radiotherapy were excluded. (18) F-fluorodeoxyglucose positron emission tomography-computed tomography in addition to computed tomography was carried out for lymph node staging of bladder cancer before radical cystectomy. Lymph node dissection during radical cystectomy was carried out. Findings from (18) F-fluorodeoxyglucose positron emission tomography-computed tomography and computed tomography were compared with the results of definitive histological examination of the lymph node dissection. The diagnostic performance of the two imaging modalities was assessed and compared. The mean number of lymph nodes removed during lymph node dissection was 16.5 ± 10.9. Lymph node metastasis was confirmed on histological examination in 22 cases (42.3%). This had been suspected in five cases (9.6%) on computed tomography and in 12 cases (23.1%) on (18) F-fluorodeoxyglucose positron emission tomography-computed tomography. Sensitivity, specificity, positive predictive value, negative predictive value, relative risk and accuracy were 9.1%, 90%, 40%, 57.4%, 0.91 and 55.7%, respectively, for computed tomography, and 36.4%, 86.7%, 66.7%, 65%, 2.72, 65.4%, respectively, for (18) F-fluorodeoxyglucose positron emission tomography-computed tomography. (18) F-fluorodeoxyglucose positron emission tomography-computed tomography is more reliable than computed tomography for preoperative lymph node staging in patients with invasive bladder carcinoma undergoing radical cystectomy. © 2012 The Japanese

  19. Quantified measurement of brain blood volume: comparative evaluations between the single photon emission computer tomography and the positron computer tomography

    International Nuclear Information System (INIS)

    Bouvard, G.; Fernandez, Y.; Petit-Taboue, M.C.; Derlon, J.M.; Travere, J.M.; Le Poec, C.

    1991-01-01

    The quantified measurement of cerebral blood volume is interesting for the brain blood circulation studies. This measurement is often used in positron computed tomography. It's more difficult in single photon emission computed tomography: there are physical problems with the limited resolution of the detector, the Compton effect and the photon attenuation. The objectif of this study is to compare the results between these two techniques. The quantified measurement of brain blood volume is possible with the single photon emission computer tomogragry. However, there is a loss of contrast [fr

  20. Measurement of regional cerebral blood flow by positron emission tomography

    International Nuclear Information System (INIS)

    Herscovitch, P.; Powers, W.J.

    1987-01-01

    The principal advantage of positron emission tomography over other methods for measuring cerebral blood flow stems from the accurate, quantitative three-dimensional measurements of regional brain radioactivity that are possible with this technique. As a result, accurate quantitative measurements of regional cerebral blood flow can be obtained for both superficial and deep cerebral structures. The value of PET for investigating central nervous system physiology and pathology extends far beyond this, however. Through the use of different radiotracers and appropriate mathematical models, PET can be applied to the measurement of a wide variety of physiologic variables. Measurements of rCBF tell only part of the story. Experience with PET and with a variety of other techniques has taught us that rCBF is at times a poor indicator of the metabolic, functional, and biochemical status of cerebral tissue. It is only by understanding the interaction of all of these factors that our understanding of neurologic disease can advance. It is in the investigation of these complex relationships that the real value of PET resides