WorldWideScience

Sample records for emission spectroscopy study

  1. Characterizing Exoplanet Habitability with Emission Spectroscopy

    Science.gov (United States)

    Robinson, Tyler

    2018-01-01

    Results from NASA’s Kepler mission and other recent exoplanet surveys have demonstrated that potentially habitable exoplanets are relatively common, especially in the case of low-mass stellar hosts. The next key question that must be addressed for such planets is whether or not these worlds are actually habitable, implying they could sustain surface liquid water. Only through investigations of the potential habitability of exoplanets and through searches for biosignatures from these planets will we be able to understand if the emergence of life is a common phenomenon in our galaxy. Emission spectroscopy for transiting exoplanets (sometimes called secondary eclipse spectroscopy) is a powerful technique that future missions will use to study the atmospheres and surfaces of worlds orbiting in the habitable zones of nearby, low-mass stars. Emission observations that span the mid-infrared wavelength range for potentially habitable exoplanets provide opportunities to detect key habitability and life signatures, and also allow observers to probe atmospheric and surface temperatures. This presentation will outline the case for using emission spectroscopy to understand if an exoplanet can sustain surface liquid water, which is believed to be a critical precursor to the origin of life.

  2. A comparative study of the enhancement of molecular emission in a spatially confined plume through optical emission spectroscopy and probe beam deflection measurements

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Dayu; Liang, Peipei; Wu, Jiada; Xu, Ning; Ying, Zhifeng; Sun, Jian, E-mail: jsun@fudan.edu.cn

    2013-01-01

    The spatial confinement effects of shock wave on the expansion of a carbon plume induced by pulsed laser ablation of graphite in air and the enhancement of the plume emission were studied by optical emission spectroscopy and probe beam deflection measurements. A metal disk was set in the way of the ablation-generated shock wave to block and reflect the supersonically propagating shock wave. The reflected shock wave propagated backwards and confined the expanding plume. The optical emission of CN molecules was enhanced in contrast to the case without the block disk and the emission enhancement was dependent on the position of the disk. Based on the results of time-integrated and -resolved optical emission spectroscopy, and the time- and space-resolved probe beam deflection measurements, the processes occurring in the plume were discussed and the mechanisms responsible for the enhancement of molecular emission in the spatially confined plume were investigated. - Highlights: ► Spatial confinement and optical emission enhancement of carbon plume were studied. ► Ablation-generated shockwave propagating in air was reflected by a block disk. ► The effects of reflected shockwave on the emission enhancement were confirmed. ► The reflect shockwave confined the carbon plume and enhanced the plume emission.

  3. A comparative study of the enhancement of molecular emission in a spatially confined plume through optical emission spectroscopy and probe beam deflection measurements

    International Nuclear Information System (INIS)

    Ding, Dayu; Liang, Peipei; Wu, Jiada; Xu, Ning; Ying, Zhifeng; Sun, Jian

    2013-01-01

    The spatial confinement effects of shock wave on the expansion of a carbon plume induced by pulsed laser ablation of graphite in air and the enhancement of the plume emission were studied by optical emission spectroscopy and probe beam deflection measurements. A metal disk was set in the way of the ablation-generated shock wave to block and reflect the supersonically propagating shock wave. The reflected shock wave propagated backwards and confined the expanding plume. The optical emission of CN molecules was enhanced in contrast to the case without the block disk and the emission enhancement was dependent on the position of the disk. Based on the results of time-integrated and -resolved optical emission spectroscopy, and the time- and space-resolved probe beam deflection measurements, the processes occurring in the plume were discussed and the mechanisms responsible for the enhancement of molecular emission in the spatially confined plume were investigated. - Highlights: ► Spatial confinement and optical emission enhancement of carbon plume were studied. ► Ablation-generated shockwave propagating in air was reflected by a block disk. ► The effects of reflected shockwave on the emission enhancement were confirmed. ► The reflect shockwave confined the carbon plume and enhanced the plume emission

  4. Hole emission from Ge/Si quantum dots studied by time-resolved capacitance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kapteyn, C.M.A.; Lion, M.; Heitz, R.; Bimberg, D. [Technische Univ. Berlin (Germany). Inst. fuer Festkoerperphysik; Miesner, C.; Asperger, T.; Brunner, K.; Abstreiter, G. [Technische Univ. Muenchen, Garching (Germany). Walter-Schottky-Inst. fuer Physikalische Grundlagen der Halbleiterelektronik

    2001-03-01

    Emission of holes from self-organized Ge quantum dots (QDs) embedded in Si Schottky diodes is studied by time-resolved capacitance spectroscopy (DLTS). The DLTS signal is rather broad and depends strongly on the filling and detection bias conditions. The observed dependence is interpreted in terms of carrier emission from many-hole states of the QDs. The activation energies obtained from the DLTS measurements are a function of the amount of stored charge and the position of the Fermi level in the QDs. (orig.)

  5. Liquid-Arc/Spark-Excitation Atomic-Emission Spectroscopy

    Science.gov (United States)

    Schlagen, Kenneth J.

    1992-01-01

    Constituents of solutions identified in situ. Liquid-arc/spark-excitation atomic-emission spectroscopy (LAES) is experimental variant of atomic-emission spectroscopy in which electric arc or spark established in liquid and spectrum of light from arc or spark analyzed to identify chemical elements in liquid. Observations encourage development of LAES equipment for online monitoring of process streams in such industries as metal plating, electronics, and steel, and for online monitoring of streams affecting environment.

  6. Comparison endpoint study of process plasma and secondary electron beam exciter optical emission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Stephan Thamban, P. L.; Yun, Stuart; Padron-Wells, Gabriel; Hosch, Jimmy W.; Goeckner, Matthew J. [Department of Mechanical Engineering, University of Texas at Dallas, 800W Campbell Road, Richardson, Texas 75080 (United States); Department of Electrical Engineering, University of Texas at Dallas, 800W Campbell Road, Richardson, Texas 75080 (United States); Verity Instruments, Inc., 2901 Eisenhower Street, Carrollton, Texas 75007 (United States); Department of Mathematical Sciences, University of Texas at Dallas, 800 W Campbell Road, Richardson, Texas 75080 (United States)

    2012-11-15

    Traditionally process plasmas are often studied and monitored by optical emission spectroscopy. Here, the authors compare experimental measurements from a secondary electron beam excitation and direct process plasma excitation to discuss and illustrate its distinctiveness in the study of process plasmas. They present results that show excitations of etch process effluents in a SF{sub 6} discharge and endpoint detection capabilities in dark plasma process conditions. In SF{sub 6} discharges, a band around 300 nm, not visible in process emission, is observed and it can serve as a good indicator of etch product emission during polysilicon etches. Based on prior work reported in literature the authors believe this band is due to SiF{sub 4} gas phase species.

  7. Transient Infrared Emission Spectroscopy

    Science.gov (United States)

    Jones, Roger W.; McClelland, John F.

    1989-12-01

    Transient Infrared Emission Spectroscopy (TIRES) is a new technique that reduces the occurrence of self-absorption in optically thick solid samples so that analytically useful emission spectra may be observed. Conventional emission spectroscopy, in which the sample is held at an elevated, uniform temperature, is practical only for optically thin samples. In thick samples the emission from deep layers of the material is partially absorbed by overlying layers.1 This self-absorption results in emission spectra from most optically thick samples that closely resemble black-body spectra. The characteristic discrete emission bands are severely truncated and altered in shape. TIRES bypasses this difficulty by using a laser to heat only an optically thin surface layer. The increased temperature of the layer is transient since the layer will rapidly cool and thicken by thermal diffusion; hence the emission collection must be correlated with the laser heating. TIRES may be done with both pulsed and cw lasers.2,3 When a pulsed laser is used, the spectrometer sampling must be synchronized with the laser pulsing so that only emission during and immediately after each laser pulse is observed.3 If a cw laser is used, the sample must move rapidly through the beam. The hot, transient layer is then in the beam track on the sample at and immediately behind the beam position, so the spectrometer field of view must be limited to this region near the beam position.2 How much self-absorption the observed emission suffers depends on how thick the heated layer has grown by thermal diffusion when the spectrometer samples the emission. Use of a pulsed laser synchronized with the spectrometer sampling readily permits reduction of the time available for heat diffusion to about 100 acs .3 When a cw laser is used, the heat-diffusion time is controlled by how small the spectrometer field of view is and by how rapidly the sample moves past within this field. Both a very small field of view and a

  8. Study of atmospheric air AC glow discharge using optical emission spectroscopy and near infrared diode laser cavity ringdown spectroscopy

    Science.gov (United States)

    Srivastava, Nimisha; Wang, Chuji; Dibble, Theodore S.

    2008-11-01

    AC glow discharges were generated in atmospheric pressure by applying high voltage AC in the range of 3500-15000 V to a pair of stainless steel electrodes separated by an air gap. The discharges were characterized by optical emission spectroscopy (OES) and continuous wave cavity ringdown spectroscopy (cw-CRDS). The electronic (Tex), vibrational (Tv), and rotational (Tr) temperatures were measured. Spectral stimulations of the emission spectra of several vibronic bands of the 2^nd positive system of N2, the 1^st negative system of N2^+, the (0,1,2,3-0) bands of NO (A-X), and the (0-0) band of OH (A-X), which were obtained under various plasma operating conditions, show that Tr, Tv, and Tex are in the ranges of 2000 - 3800, 3500 - 5000, and 6000 - 10500^ K, respectively. Emission spectra show that OH concentration increases while NO concentration decreases with an increase of electrode spacing. The absorption spectra of H2O and OH overtone in the near infrared (NIR) were measured by the cw-CRDS with a telecommunications diode laser at wavelength near 1515 nm.

  9. Study of atomic and molecular emission spectra of Sr by laser induced breakdown spectroscopy (LIBS).

    Science.gov (United States)

    Bhatt, Chet R; Alfarraj, Bader; Ayyalasomayajula, Krishna K; Ghany, Charles; Yueh, Fang Y; Singh, Jagdish P

    2015-12-01

    Laser Induced Breakdown Spectroscopy (LIBS) is an ideal analytical technique for in situ analysis of elemental composition. We have performed a comparative study of the quantitative and qualitative analysis of atomic and molecular emission from LIBS spectra. In our experiments, a mixture of SrCl2 and Al2O3 in powder form was used as a sample. The atomic emission from Sr and molecular emission from SrCl and SrO observed in LIBS spectra were analyzed. The optimum laser energies, gate delays, and gate widths for selected atomic lines and molecular bands were determined from spectra recorded at various experimental parameters. These optimum experimental conditions were used to collect calibration data, and the calibration curves were used to predict the Sr concentration. Limits of detection (LODs) for selected atomic and molecular emission spectra were determined.

  10. The Application of Moessbauer Emission Spectroscopy to Industrial Cobalt Based Fischer-Tropsch Catalysts

    International Nuclear Information System (INIS)

    Loosdrecht, J. van de; Berge, P. J. van; Craje, M. W. J.; Kraan, A. M. van der

    2002-01-01

    The application of Moessbauer emission spectroscopy to study cobalt based Fischer-Tropsch catalysts for the gas-to-liquids process was investigated. It was shown that Moessbauer emission spectroscopy could be used to study the oxidation of cobalt as a deactivation mechanism of high loading cobalt based Fischer-Tropsch catalysts. Oxidation was observed under conditions that are in contradiction with the bulk cobalt phase thermodynamics. This can be explained by oxidation of small cobalt crystallites or by surface oxidation. The formation of re-reducible Co 3+ species was observed as well as the formation of irreducible Co 3+ and Co 2+ species that interact strongly with the alumina support. The formation of the different cobalt species depends on the oxidation conditions. Iron was used as a probe nuclide to investigate the cobalt catalyst preparation procedure. A high-pressure Moessbauer emission spectroscopy cell was designed and constructed, which creates the opportunity to study cobalt based Fischer-Tropsch catalysts under realistic synthesis conditions.

  11. Thermally emissive sensing materials for chemical spectroscopy analysis

    Science.gov (United States)

    Poole, Zsolt; Ohodnicki, Paul R.

    2018-05-08

    A sensor using thermally emissive materials for chemical spectroscopy analysis includes an emissive material, wherein the emissive material includes the thermally emissive materials which emit electromagnetic radiation, wherein the electromagnetic radiation is modified due to chemical composition in an environment; and a detector adapted to detect the electromagnetic radiation, wherein the electromagnetic radiation is indicative of the chemical interaction changes and hence chemical composition and/or chemical composition changes of the environment. The emissive material can be utilized with an optical fiber sensor, with the optical fiber sensor operating without the emissive material probed with a light source external to the material.

  12. Determination of Serum Lithium by Flame Emission Spectroscopy

    Directory of Open Access Journals (Sweden)

    R. Nafissy

    1976-07-01

    Full Text Available Lithum can be de termined both by atomic absorption spectroscopy andflame emission spectroscopy. We have used the later method with a Zeiss Model pMQlI spectro photometer fitt ed with ante-chamber atomizer and a potensiome rric line recorder. Accurate ana lysis for the clement was acco mplished due to a sophisracared measuring instrument.

  13. Single photon infrared emission spectroscopy: a study of IR emission from UV laser excited PAHs between 3 and 15 micrometers

    Science.gov (United States)

    Cook, D. J.; Schlemmer, S.; Balucani, N.; Wagner, D. R.; Harrison, J. A.; Steiner, B.; Saykally, R. J.

    1998-01-01

    Single-photon infrared emission spectroscopy (SPIRES) has been used to measure emission spectra from polycyclic aromatic hydrocarbons (PAHs). A supersonic free-jet expansion has been used to provide emission spectra of rotationally cold and vibrationally excited naphthalene and benzene. Under these conditions, the observed width of the 3.3-micrometers (C-H stretch) band resembles the bandwidths observed in experiments in which emission is observed from naphthalene with higher rotational energy. To obtain complete coverage of IR wavelengths relevant to the unidentified infrared bands (UIRs), UV laser-induced desorption was used to generate gas-phase highly excited PAHs. Lorentzian band shapes were convoluted with the monochromator-slit function in order to determine the widths of PAH emission bands under astrophysically relevant conditions. Bandwidths were also extracted from bands consisting of multiple normal modes blended together. These parameters are grouped according to the functional groups mostly involved in the vibration, and mean bandwidths are obtained. These bandwidths are larger than the widths of the corresponding UIR bands. However, when the comparison is limited to the largest PAHs studied, the bandwidths are slightly smaller than the corresponding UIR bands. These parameters can be used to model emission spectra from PAH cations and cations of larger PAHs, which are better candidate carriers of the UIRs.

  14. 15N-urea tracing emission spectroscopy for detecting the infection of Helicobacter pylori

    International Nuclear Information System (INIS)

    Zhu Yayi

    2002-01-01

    Objective: To study a noninvasive and nonradioactive method, 15 N-urea tracing emission spectroscopy, for detecting the Helicobacter pylori (Hp) infection. Methods: A group of 26 patients was tested with a method of 15 N-urea tracing emission spectroscopy for detecting the Hp infection. Results: Taking the bacterial culture or (and) Gram stain as a standard, the specificity, sensitivity and positive predicting rate of the test were 81%, 89% and 84%, respectively. Conclusion: The method could be considered useful for clinical practice

  15. Steelmaking process control using remote ultraviolet atomic emission spectroscopy

    Science.gov (United States)

    Arnold, Samuel

    Steelmaking in North America is a multi-billion dollar industry that has faced tremendous economic and environmental pressure over the past few decades. Fierce competition has driven steel manufacturers to improve process efficiency through the development of real-time sensors to reduce operating costs. In particular, much attention has been focused on end point detection through furnace off gas analysis. Typically, off-gas analysis is done with extractive sampling and gas analyzers such as Non-dispersive Infrared Sensors (NDIR). Passive emission spectroscopy offers a more attractive approach to end point detection as the equipment can be setup remotely. Using high resolution UV spectroscopy and applying sophisticated emission line detection software, a correlation was observed between metal emissions and the process end point during field trials. This correlation indicates a relationship between the metal emissions and the status of a steelmaking melt which can be used to improve overall process efficiency.

  16. Electron emission relevant to inner-shell photoionization of condensed water studied by multi-electron coincidence spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Hikosaka, Y., E-mail: hikosaka@las.u-toyama.ac.jp [Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194 (Japan); Mashiko, R.; Konosu, Y.; Soejima, K. [Department of Environmental Science, Niigata University, Niigata 950-2181 (Japan); Shigemasa, E. [UVSOR Facility, Institute for Molecular Science, Okazaki 444-8585 (Japan); SOKENDAI, Okazaki 444-8585 (Japan)

    2016-11-15

    Highlights: • Multi-electron coincidence spectroscopy is applied to the study of electron emissions from condensed H2O molecules. • Coincidence Auger spectra are obtained for different photoelectron energies. • The energy distribution of the slow electrons ejected in the Auger decay is deduced from three-fold coincidences. - Abstract: Multi-electron coincidence spectroscopy using a magnetic-bottle electron spectrometer has been applied to the study of the Auger decay following O1s photoionization of condensed H{sub 2}O molecules. Coincidence Auger spectra are obtained for three different photoelectron energy ranges. In addition, the energy distribution of the slow electrons ejected in the Auger decay of the O1s core hole is deduced from three-fold coincidences.

  17. Study of optical emission spectroscopy with inductively coupled plasma torch

    International Nuclear Information System (INIS)

    Bauer, M.

    1982-01-01

    Inductively coupled plasma optical emission spectroscopy is an excellent tool for quantitative multielement trace analysis. This paper describes the performance of a computer-controlled sequential measurement system. Chemical and ionization interferences are shown to be negligible due to the characteristics of the inductively coupled plasma, spectral interferences are eliminated by using a high-resolution monochromator and computer data handling. Good accuracy is achieved for most of the interesting elements, as is shown from both an interlaboratory test and from comparison of the results of water samples from the rivers Elbe and Weser with those achieved with neutron activation and X-ray fluorescence analysis. (orig.) [de

  18. High-Resolution X-ray Emission and X-ray Absorption Spectroscopy

    NARCIS (Netherlands)

    Groot, F.M.F. de

    2000-01-01

    In this review, high-resolution X-ray emission and X-ray absorption spectroscopy will be discussed. The focus is on the 3d transition-metal systems. To understand high-resolution X-ray emission and reso-nant X-ray emission, it is first necessary to spend some time discussing the X-ray absorption

  19. Auger electron spectroscopy, ionization loss spectroscopy, appearance potential spectroscopy

    International Nuclear Information System (INIS)

    Riwan, R.

    1973-01-01

    The spectroscopy of surfaces using an incident electron beam is studied. The fundamental mechanisms are discussed together with the parameters involved in Auger emission: excitation of the atom, de-excitation by electron emission, and the migration of electrons towards the surface and their ejection. Some examples of applications are given (surface structures, metallurgy, chemical information). Two new techniques for analyzing surfaces are studied: ionization spectroscopy, and appearance potential spectroscopy [fr

  20. Process control with optical emission spectroscopy in triode ion plating

    International Nuclear Information System (INIS)

    Salmenoja, K.; Korhonen, A.S.; Sulonen, M.S.

    1985-01-01

    Physical vapor deposition (PVD) techniques used to prepare, e.g., hard TiN, HfN, or ZrN coatings include a great variety of processes ranging from reactive evaporation to sputtering and ion plating. In ion plating one effective way to enhance ionization is to use a negatively biased hot filament. The use of an electron emitting filament brings an extra variable to be taken into account in developing the process control. In addition, proper control of the evaporation source is critical in ensuring reproducible results. With optical emission spectroscopy (OES) it should be possible to control the coating process more accurately. The stoichiometry and the composition of the growing coating may then be ensured effectively in subsequent runs. In this work the application of optical emission spectroscopy for process control in triode ion plating is discussed. The composition of the growing coating is determined experimentally using the relative intensities of specific emission lines. Changes in the evaporation rate and the gas flow can be seen directly from emission line intensities. Even the so-called poisoning of the evaporation source with reactive gas can be detected. Several experimental runs were carried out and afterwards the concentration profiles of the deposited coatings were checked with the nuclear resonance broadening (NRB) method. The results show the usefulness of emission spectroscopy in discharge control

  1. New methods and applications in emission spectroscopy (1960); Methodes et applications nouvelles en spectroscopie d'emission (1960)

    Energy Technology Data Exchange (ETDEWEB)

    Baudin, G [Commissariat a l' Energie Atomique, Grenoble (France).Centre d' Etudes Nucleaires

    1960-07-01

    Emission spectroscopy, are already well-established instrumental analytical technique, has in recent years known important developments. Two mains factors are responsible; firstly the demands of metallurgy for purer and purer materials or alloys which are increasingly complex and difficult to analyse by chemical means; secondly, progress in optics, especially in the production of gratings, and in electronics in the field of photomultiplier tubes. We will not here catalogue all the new applications and methods, but we will consider a few amongst the most representative outside the conventional field. (author) [French] La spectroscopie d'emission, technique analytique instrumentale deja ancienne, a pris, depuis quelques annees, une extension notable. Deux facteurs principaux ont contribue a ce succes: d'une part, l'exigence de la metallurgie en materiaux de plus en plus pur ou en alliages de plus en plus complexes, difficiles a analyser chimiquement, d'autre part, les progres realises en optique, principalement dans la fabrication des reseaux, et en electronique dans le domaine des tubes photomultiplicateurs. Nous ne ferons pas ici le recensement de toutes les applications ou methodes nouvelles, mais nous en choisirons quelques unes des plus representatives hors du domaine classique. (auteur)

  2. Extracting chemical information from high-resolution Kβ X-ray emission spectroscopy

    Science.gov (United States)

    Limandri, S.; Robledo, J.; Tirao, G.

    2018-06-01

    High-resolution X-ray emission spectroscopy allows studying the chemical environment of a wide variety of materials. Chemical information can be obtained by fitting the X-ray spectra and observing the behavior of some spectral features. Spectral changes can also be quantified by means of statistical parameters calculated by considering the spectrum as a probability distribution. Another possibility is to perform statistical multivariate analysis, such as principal component analysis. In this work the performance of these procedures for extracting chemical information in X-ray emission spectroscopy spectra for mixtures of Mn2+ and Mn4+ oxides are studied. A detail analysis of the parameters obtained, as well as the associated uncertainties is shown. The methodologies are also applied for Mn oxidation state characterization of double perovskite oxides Ba1+xLa1-xMnSbO6 (with 0 ≤ x ≤ 0.7). The results show that statistical parameters and multivariate analysis are the most suitable for the analysis of this kind of spectra.

  3. Long-wave, infrared laser-induced breakdown (LIBS) spectroscopy emissions from energetic materials.

    Science.gov (United States)

    Yang, Clayton S-C; Brown, Ei E; Hommerich, Uwe; Jin, Feng; Trivedi, Sudhir B; Samuels, Alan C; Snyder, A Peter

    2012-12-01

    Laser-induced breakdown spectroscopy (LIBS) has shown great promise for applications in chemical, biological, and explosives sensing and has significant potential for real-time standoff detection and analysis. In this study, LIBS emissions were obtained in the mid-infrared (MIR) and long-wave infrared (LWIR) spectral regions for potential applications in explosive material sensing. The IR spectroscopy region revealed vibrational and rotational signatures of functional groups in molecules and fragments thereof. The silicon-based detector for conventional ultraviolet-visible LIBS operations was replaced with a mercury-cadmium-telluride detector for MIR-LWIR spectral detection. The IR spectral signature region between 4 and 12 μm was mined for the appearance of MIR and LWIR-LIBS emissions directly indicative of oxygenated breakdown products as well as dissociated, and/or recombined sample molecular fragments. Distinct LWIR-LIBS emission signatures from dissociated-recombination sample molecular fragments between 4 and 12 μm are observed for the first time.

  4. Emission spectroscopy analysis during Nopal cladodes dethorning by laser ablation

    Science.gov (United States)

    Peña-Díaz, M.; Ponce, L.; Arronte, M.; Flores, T.

    2007-04-01

    Optical emission spectroscopy of the pulsed laser ablation of spines and glochids from Opuntia (Nopal) cladodes was performed. Nopal cladodes were irradiated with Nd:YAG free-running laser pulses on their body, glochids and spines. Emission spectroscopy analyses in the 350-1000 nm region of the laser induced plasma were made. Plasma plume evolution characterization, theoretical calculations of plasma plume temperature and experiments varying the processing atmosphere showed that the process is dominated by a thermally activated combustion reaction which increases the dethorning process efficiency. Therefore, appropriate laser pulse energy for minimal damage of cladodes body and in the area beneath glochids and spines can be obtained.

  5. Emission spectroscopy analysis during Nopal cladodes dethorning by laser ablation

    Energy Technology Data Exchange (ETDEWEB)

    Pena-Diaz, M; Ponce, L; Arronte, M; Flores, T [Laboratorio TecnologIa Laser, CICATA-IPN, Unidad Altamira, Carretera Tampico-Puerto Ind. Altamira, 89600, TAMPS (Mexico)

    2007-04-15

    Optical emission spectroscopy of the pulsed laser ablation of spines and glochids from Opuntia (Nopal) cladodes was performed. Nopal cladodes were irradiated with Nd:YAG free-running laser pulses on their body, glochids and spines. Emission spectroscopy analyses in the 350-1000 nm region of the laser induced plasma were made. Plasma plume evolution characterization, theoretical calculations of plasma plume temperature and experiments varying the processing atmosphere showed that the process is dominated by a thermally activated combustion reaction which increases the dethorning process efficiency. Therefore, appropriate laser pulse energy for minimal damage of cladodes body and in the area beneath glochids and spines can be obtained.

  6. Emission spectroscopy analysis during Nopal cladodes dethorning by laser ablation

    International Nuclear Information System (INIS)

    Pena-Diaz, M; Ponce, L; Arronte, M; Flores, T

    2007-01-01

    Optical emission spectroscopy of the pulsed laser ablation of spines and glochids from Opuntia (Nopal) cladodes was performed. Nopal cladodes were irradiated with Nd:YAG free-running laser pulses on their body, glochids and spines. Emission spectroscopy analyses in the 350-1000 nm region of the laser induced plasma were made. Plasma plume evolution characterization, theoretical calculations of plasma plume temperature and experiments varying the processing atmosphere showed that the process is dominated by a thermally activated combustion reaction which increases the dethorning process efficiency. Therefore, appropriate laser pulse energy for minimal damage of cladodes body and in the area beneath glochids and spines can be obtained

  7. [Study on Ammonia Emission Rules in a Dairy Feedlot Based on Laser Spectroscopy Detection Method].

    Science.gov (United States)

    He, Ying; Zhang, Yu-jun; You, Kun; Wang, Li-ming; Gao, Yan-wei; Xu, Jin-feng; Gao, Zhi-ling; Ma, Wen-qi

    2016-03-01

    It needs on-line monitoring of ammonia concentration on dairy feedlot to disclose ammonia emissions characteristics accurately for reducing ammonia emissions and improving the ecological environment. The on-line monitoring system for ammonia concentration has been designed based on Tunable Diode Laser Absorption Spectroscopy (TDLAS) technology combining with long open-path technology, then the study has been carried out with inverse dispersion technique and the system. The ammonia concentration in-situ has been detected and ammonia emission rules have been analyzed on a dairy feedlot in Baoding in autumn and winter of 2013. The monitoring indicated that the peak of ammonia concentration was 6.11 x 10(-6) in autumn, and that was 6.56 x 10(-6) in winter. The concentration results show that the variation of ammonia concentration had an obvious diurnal periodicity, and the general characteristic of diurnal variation was that the concentration was low in the daytime and was high at night. The ammonia emissions characteristic was obtained with inverse dispersion model that the peak of ammonia emissions velocity appeared at noon. The emission velocity was from 1.48 kg/head/hr to 130.6 kg/head/hr in autumn, and it was from 0.004 5 kg/head/hr to 43.32 kg/head/hr in winter which was lower than that in autumn. The results demonstrated ammonia emissions had certain seasonal differences in dairy feedlot scale. In conclusion, the ammonia concentration was detected with optical technology, and the ammonia emissions results were acquired by inverse dispersion model analysis with large range, high sensitivity, quick response without gas sampling. Thus, it's an effective method for ammonia emissions monitoring in dairy feedlot that provides technical support for scientific breeding.

  8. Erratum: Back reaction, emission spectrum and entropy spectroscopy

    Science.gov (United States)

    Jiang, Qing-Quan; Cai, Xu

    2012-06-01

    In our paper [Qing-Quan Jiang and Xu Cai, Back reaction, emission spectrum and entropy spectroscopy, JHEP 11 (2010) 066], there was an error in using the first law of black hole thermodynamic and the Bohr-Sommerfeld quantization rule. In this erratum, we attempt to rectify them.

  9. SU-F-J-46: Feasibility of Cerenkov Emission for Absorption Spectroscopy

    International Nuclear Information System (INIS)

    Oraiqat, I; Rehemtulla, A; Lam, K; Ten Haken, R; El Naqa, I; Clarke, R

    2016-01-01

    Purpose: Cerenkov emission (CE) is a promising tool for online tumor microenvironment interrogation and targeting during radiotherapy. In this work, we utilize CE generated during radiotherapy as a broadband excitation source for real-time absorption spectroscopy. We demonstrate the feasibility of CE spectroscopy using a controlled experiment of materials with known emission/absorption properties. Methods: A water tank is irradiated with 20 MeV electron beam to induce Cerenkov emission. Food coloring dyes (Yellow #5, Red #40, and Blue #1), which have known emission/absorption properties were added to the water tank with increasing concentration (1 drop (0.05 mL), 2 drops, and 4 drops from a dispenser bottle). The signal is collected using a condensing lens which is coupled into a 20m optical fiber that is fed into a spectrometer that measures the emitted spectra. The resulting spectra from water/food coloring dye solutions were normalized by the reference spectrum, which is the Cerenkov spectrum of pure water, correcting for both the nonlinearity of the broadband Cerenkov emission spectrum as well as the non-uniform spectral response of the spectrometer. The emitted spectra were then converted into absorbance and their characteristics were analyzed. Results: The food coloring dye had a drastic change on the Cerenkov emission, shifting its wavelength according to its visible color. The collected spectra showed various absorbance peaks which agrees with tabulated peak positions of the dyes added within 0.3% for yellow, 1.7% for red, and 0.16% for blue. The CE peak heights proportionally increased as the dye concentration is increased. Conclusion: This work shows the potential for real-time functional spectroscopy using Cerenkov emission during radiotherapy. It was demonstrated that molecule identification as well as relative concentration can be extracted from the Cerenkov emission color shift.

  10. SU-F-J-46: Feasibility of Cerenkov Emission for Absorption Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Oraiqat, I; Rehemtulla, A; Lam, K; Ten Haken, R; El Naqa, I [University of Michigan, Radiation Oncology, Ann Arbor, MI (United States); Clarke, R [University of Michigan, Physics Department, Ann Arbor, MI (United States)

    2016-06-15

    Purpose: Cerenkov emission (CE) is a promising tool for online tumor microenvironment interrogation and targeting during radiotherapy. In this work, we utilize CE generated during radiotherapy as a broadband excitation source for real-time absorption spectroscopy. We demonstrate the feasibility of CE spectroscopy using a controlled experiment of materials with known emission/absorption properties. Methods: A water tank is irradiated with 20 MeV electron beam to induce Cerenkov emission. Food coloring dyes (Yellow #5, Red #40, and Blue #1), which have known emission/absorption properties were added to the water tank with increasing concentration (1 drop (0.05 mL), 2 drops, and 4 drops from a dispenser bottle). The signal is collected using a condensing lens which is coupled into a 20m optical fiber that is fed into a spectrometer that measures the emitted spectra. The resulting spectra from water/food coloring dye solutions were normalized by the reference spectrum, which is the Cerenkov spectrum of pure water, correcting for both the nonlinearity of the broadband Cerenkov emission spectrum as well as the non-uniform spectral response of the spectrometer. The emitted spectra were then converted into absorbance and their characteristics were analyzed. Results: The food coloring dye had a drastic change on the Cerenkov emission, shifting its wavelength according to its visible color. The collected spectra showed various absorbance peaks which agrees with tabulated peak positions of the dyes added within 0.3% for yellow, 1.7% for red, and 0.16% for blue. The CE peak heights proportionally increased as the dye concentration is increased. Conclusion: This work shows the potential for real-time functional spectroscopy using Cerenkov emission during radiotherapy. It was demonstrated that molecule identification as well as relative concentration can be extracted from the Cerenkov emission color shift.

  11. Study of the trace tritium content in deuterium plasmas of the JET tokamak based on neutron emission spectroscopy measurements

    Energy Technology Data Exchange (ETDEWEB)

    Ringmar, David

    2001-02-01

    This thesis describes a study of the evolution of the trace tritium content in the JET tokamak. The study is based on measurements of the neutron emission, which were performed with the magnetic proton recoil (MPR) spectrometer. Data analysis procedures used to extract the results are described in some detail. The thesis also describes a simplified theoretical model to calculate the absolute tritium concentration with a comparison to the experimental results. The present study covers the time period 1996-2000 and the evolution of neutron emission spectroscopy (NES) results are compared with information from related diagnostic sources, and used to discuss the important issue of how tritium is retained in the JET tokamak.

  12. Study of the trace tritium content in deuterium plasmas of the JET tokamak based on neutron emission spectroscopy measurements

    International Nuclear Information System (INIS)

    Ringmar, David

    2001-02-01

    This thesis describes a study of the evolution of the trace tritium content in the JET tokamak. The study is based on measurements of the neutron emission, which were performed with the magnetic proton recoil (MPR) spectrometer. Data analysis procedures used to extract the results are described in some detail. The thesis also describes a simplified theoretical model to calculate the absolute tritium concentration with a comparison to the experimental results. The present study covers the time period 1996-2000 and the evolution of neutron emission spectroscopy (NES) results are compared with information from related diagnostic sources, and used to discuss the important issue of how tritium is retained in the JET tokamak

  13. Stimulated X-Ray Emission Spectroscopy in Transition Metal Complexes

    Science.gov (United States)

    Kroll, Thomas; Weninger, Clemens; Alonso-Mori, Roberto; Sokaras, Dimosthenis; Zhu, Diling; Mercadier, Laurent; Majety, Vinay P.; Marinelli, Agostino; Lutman, Alberto; Guetg, Marc W.; Decker, Franz-Josef; Boutet, Sébastien; Aquila, Andy; Koglin, Jason; Koralek, Jake; DePonte, Daniel P.; Kern, Jan; Fuller, Franklin D.; Pastor, Ernest; Fransson, Thomas; Zhang, Yu; Yano, Junko; Yachandra, Vittal K.; Rohringer, Nina; Bergmann, Uwe

    2018-03-01

    We report the observation and analysis of the gain curve of amplified K α x-ray emission from solutions of Mn(II) and Mn(VII) complexes using an x-ray free electron laser to create the 1 s core-hole population inversion. We find spectra at amplification levels extending over 4 orders of magnitude until saturation. We observe bandwidths below the Mn 1 s core-hole lifetime broadening in the onset of the stimulated emission. In the exponential amplification regime the resolution corrected spectral width of ˜1.7 eV FWHM is constant over 3 orders of magnitude, pointing to the buildup of transform limited pulses of ˜1 fs duration. Driving the amplification into saturation leads to broadening and a shift of the line. Importantly, the chemical sensitivity of the stimulated x-ray emission to the Mn oxidation state is preserved at power densities of ˜1020 W /cm2 for the incoming x-ray pulses. Differences in signal sensitivity and spectral information compared to conventional (spontaneous) x-ray emission spectroscopy are discussed. Our findings build a baseline for nonlinear x-ray spectroscopy for a wide range of transition metal complexes in inorganic chemistry, catalysis, and materials science.

  14. Fluorescence excitation-emission matrix spectroscopy for degradation monitoring of machinery lubricants

    Science.gov (United States)

    Sosnovski, Oleg; Suresh, Pooja; Dudelzak, Alexander E.; Green, Benjamin

    2018-02-01

    Lubrication oil is a vital component of heavy rotating machinery defining the machine's health, operational safety and effectiveness. Recently, the focus has been on developing sensors that provide real-time/online monitoring of oil condition/lubricity. Industrial practices and standards for assessing oil condition involve various analytical methods. Most these techniques are unsuitable for online applications. The paper presents the results of studying degradation of antioxidant additives in machinery lubricants using Fluorescence Excitation-Emission Matrix (EEM) Spectroscopy and Machine Learning techniques. EEM Spectroscopy is capable of rapid and even standoff sensing; it is potentially applicable to real-time online monitoring.

  15. Study of the effective inverse photon efficiency using optical emission spectroscopy combined with cavity ring-down spectroscopy approach

    Science.gov (United States)

    Wu, Xingwei; Li, Cong; Wang, Yong; Wang, Zhiwei; Feng, Chunlei; Ding, Hongbin

    2015-09-01

    The hydrocarbon impurities formation is inevitable due to wall erosion in a long pulse high performance scenario with carbon-based plasma facing materials in fusion devices. The standard procedure to determine the chemical erosion yield in situ is by means of inverse photon efficiency D/XB. In this work, the conversion factor between CH4 flux and photon flux of CH A → X transition (effective inverse photon efficiency PE-1) was measured directly using a cascaded arc plasma simulator with argon/methane. This study shows that the measured PE-1 is different from the calculated D/XB. We compared the photon flux measured by optical emission spectroscopy (OES) and calculated by electron impact excitation of CH(X) which was diagnosed by cavity ring-down spectroscopy (CRDS). It seems that charge exchange and dissociative recombination processes are the main channels of CH(A) production and removal which lead to the inconsistency of PE -1 and D/XB at lower temperature. Meanwhile, the fraction of excited CH(A) produced by dissociative recombination processes was investigated, and we found it increased with Te in the range from 4% to 13% at Te definition instead of D/XB since the electron impact excitation is not the only channel of CH(A) production. These results have an effect on evaluating the yield of chemical erosion in divertor of fusion device.

  16. Emission Line Imaging and Spectroscopy of Distant Galaxies

    DEFF Research Database (Denmark)

    Zabl, Johannes Florian

    for the gas surrounding a galaxy. Around some objects the extended Ly αemission is so strong that it can be detected for individual objects. In this thesis extremely deep VLT/XSHOOTER rest-frame far-UV spectroscopy is presented for Himiko, a gigantic Ly α emitter at redshift z = 6.6 or a time when...

  17. Photon emission spectroscopy of ion-atom collisions

    International Nuclear Information System (INIS)

    Nystroem, B.

    1995-10-01

    Emission cross sections for the 1snp 1 P 1 -levels have been measured by photon emission spectroscopy for the collision systems He + + He at 10 keV and He 2+ + He at 10-35 keV. Photon spectra of Krypton (Kr VIII) and Xenon (Xe V - IX) have also been obtained using 10q keV beams of Kr q+ (q=7-9) and Xe q+ (q=5-9) colliding with Helium and Argon. The Lifetimes of 3p 2 P-levels in Na-like Nb are reported together with lifetime for the 3s3p 3 P 1 -level in Mg-like Ni, Kr, Y, Zr and Nb where this level has an intercombination transition to the ground state. 45 refs, 20 figs

  18. Characterisation of a micro-plasma device sensor using electrical measurements and emission spectroscopy

    International Nuclear Information System (INIS)

    Mariotti, D.

    2002-04-01

    This thesis reports on research undertaken on the characterisation of a micro-plasma device to be used for gas analysis by mean of plasma emission spectroscopy. The work covers aspects related to the micro-plasma electrical and optical emission parameters, and their importance for the utilisation of the micro-plasma device in gas analysis. Experimental results have been used to analyse the fundamental micro-plasma processes and to develop a model, which could provide additional information. This dissertation contains a general literature review of topics related to plasma physics, plasma emission spectroscopy, gas analysis (chemical analysis and artificial olfaction) and other micro-plasma applications. Experimental work focuses on two main areas: electrical measurements and emission measurements. Firstly, electrical measurements are taken and interpretations are given. Where necessary, new theoretical treatments are suggested in order to describe better the physical phenomena. Plasma emission has been considered under different working conditions. This allowed the characterisation of the micro-plasma emission and also a better understanding of the micro-plasma processes. On the basis of the experimental data obtained and other assumptions a model has been developed. A computer simulation based on this model provided additional useful information on the micro- plasma behaviour. The first fundamental implication of this new research is the peculiar behaviour of the micro-plasma. This micro-plasma exhibited deviations from Paschen law and strong dependency on cathode material, which contributed to the formation of a low current stable regime. These results have been followed by physical interpretations and theoretical descriptions. The second implication is the establishment of the boundaries and of the influencing parameters for plasma emission spectroscopy as an analytical tool in this particular micro-plasma. From the applied perspective this study has shown that

  19. Hard X-ray emission spectroscopy with pink beam

    Energy Technology Data Exchange (ETDEWEB)

    Kvashnina, Kristina O.; Rossberg, Andre; Exner, Joerg; Scheinost, Andreas C. [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Molecular Structures

    2017-06-01

    Valence-band X-ray emission spectroscopy (XES) with a ''pink beam'', i.e. a beam with large energy bandwidth produced by a double-multilayer monochromator, is introduced here to overcome the weak count rate of monochromatic beams produced by conventional double-crystal monochromators. Our results demonstrate that - in spite of the large bandwidth in the order of 100 eV - the high spectral resolution of the Johann-type spectrometer is maintained, while the two orders of magnitude higher flux greatly reduces the required counting time. The short working distance Johann-type X-ray emission spectrometer and multilayer monochromator is available at ROBL.

  20. Photon emission spectroscopy of ion-atom collisions

    Energy Technology Data Exchange (ETDEWEB)

    Nystroem, B

    1995-10-01

    Emission cross sections for the 1snp{sup 1}P{sub 1}-levels have been measured by photon emission spectroscopy for the collision systems He{sup +} + He at 10 keV and He{sup 2+} + He at 10-35 keV. Photon spectra of Krypton (Kr VIII) and Xenon (Xe V - IX) have also been obtained using 10q keV beams of Kr{sup q+} (q=7-9) and Xe{sup q+} (q=5-9) colliding with Helium and Argon. The Lifetimes of 3p{sup 2}P-levels in Na-like Nb are reported together with lifetime for the 3s3p{sup 3}P{sub 1}-level in Mg-like Ni, Kr, Y, Zr and Nb where this level has an intercombination transition to the ground state. 45 refs, 20 figs.

  1. SO2 EMISSION MEASUREMENT BY DOAS (DIFFERENTIAL OPTICAL ABSORPTION SPECTROSCOPY AND COSPEC (CORRELATION SPECTROSCOPY AT MERAPI VOLCANO (INDONESIA

    Directory of Open Access Journals (Sweden)

    Hanik Humaida

    2010-06-01

    Full Text Available The SO2 is one of the volcanic gases that can use as indicator of volcano activity. Commonly, SO2 emission is measured by COSPEC (Correlation Spectroscopy. This equipment has several disadvantages; such as heavy, big in size, difficulty in finding spare part, and expensive. DOAS (Differential Optical Absorption Spectroscopy is a new method for SO2 emission measurement that has advantages compares to the COSPEC. Recently, this method has been developed. The SO2 gas emission measurement of Gunung Merapi by DOAS has been carried out at Kaliadem, and also by COSPEC method as comparation. The differences of the measurement result of both methods are not significant. However, the differences of minimum and maximum result of DOAS method are smaller than that of the COSPEC. It has range between 51 ton/day and 87 ton/day for DOAS and 87 ton/day and 201 ton/day for COSPEC. The measurement of SO2 gas emission evaluated with the seismicity data especially the rockfall showed the presence of the positive correlation. It may cause the gas pressure in the subsurface influencing instability of 2006 eruption lava.   Keywords: SO2 gas, Merapi, DOAS, COSPEC

  2. Experimental study of radiative energy transport in dense plasmas by emission and absorption spectroscopy

    International Nuclear Information System (INIS)

    Dozieres, Maylis

    2016-01-01

    This PhD work is an experimental study, based on emission and absorption spectroscopy of hot and dense nanosecond laser-produced plasmas. Atomic physics in such plasmas is a complex subject and of great interest especially in the fields of astrophysics or inertial confinement fusion. On the atomic physics point of view, this means determining parameters such as the average ionization or opacity in plasmas at given electronic temperature and density. Atomic physics codes then need of experimental data to improve themselves and be validated so that they can be predictive for a wide range of plasmas. With this work we focus on plasmas whose electronic temperature varies from 10 eV to more than a hundred and whose density range goes from 10 -5 ato10 -2 g/cm 3 . In this thesis, there are two types of spectroscopic data presented which are both useful and necessary to the development of atomic physics codes because they are both characteristic of the state of the studied plasma: 1) some absorption spectra from Cu, Ni and Al plasmas close to local thermodynamic equilibrium; 2) some emission spectra from non local thermodynamic equilibrium plasmas of C, Al and Cu. This work highlights the different experimental techniques and various comparisons with atomic physics codes and hydrodynamics codes. (author) [fr

  3. Laser-Induced Breakdown Spectroscopy Infrared Emission From Inorganic and Organic Substances

    National Research Council Canada - National Science Library

    Yang, C.S; Brown, E; Hommerich, U; Trivedi, S. B; Snyder, A. P; Samuels, A. C

    2006-01-01

    Laser-induced breakdown spectroscopy (LIBS) has been established as a powerful method for identifying trace elemental contaminants by analyzing the atomic spectral emission lines that result subsequent to plasmas generated by laser power...

  4. Emission spectroscopy on a supersonically expanding argon/silane plasma

    NARCIS (Netherlands)

    Meeusen, G.J.; Ershov-Pavlov, E.A.; Meulenbroeks, R.F.G.; Sanden, van de M.C.M.; Schram, D.C.

    1992-01-01

    Results from emission spectroscopy measurements on an Ar/SiH/sub 4/ plasma jet which is used for fast deposition of amorphous hydrogenated silicon are presented. The jet is produced by allowing a thermal cascaded arc plasma in argon (I=60 A, V=80 V, Ar flow=60 scc/s and pressure 4*10/sup 4/ Pa) to

  5. Tomography feasibility study on the optical emission spectroscopy diagnostic for the negative ion source of the ELISE test facility

    International Nuclear Information System (INIS)

    Bonomo, F; Agostini, M; Brombin, M; Pasqualotto, R; Fantz, U; Franzen, P; Wünderlich, D

    2014-01-01

    A feasibility study of a spectroscopic tomographic diagnostic for the emissivity reconstruction of the plasma parameters in the large negative ion source of the test facility ELISE is described. Tomographic tools are developed to be applied to the measurements of the ELISE optical emission spectroscopy (OES) diagnostic, in order to reconstruct the emissivity distribution from hydrogen (or deuterium) plasma close to the plasma grid, where negative ions are produced and extracted to be accelerated. Various emissivity phantoms, both symmetric and asymmetric, reproducing different plasma experimental conditions have been simulated to test the tomographic algorithm. The simultaneous algebraic reconstruction technique has been applied, accounting for the OES geometrical layout together with a suitable pixel representation. Even with a limited number of 14 lines of sight (LoSs), the plasma emissivity distribution expected on the ELISE source can be successfully reconstructed. In particular, asymmetries in the emissivity pattern can be detected and reproduced with low errors. A systematic investigation of different geometrical layouts of the LoSs as well as of the pixel arrangements has been carried out, and a final configuration has been identified. Noise on the simulated experimental spectroscopic measurements has been tested, confirming the reliability of the adopted tomographic tools for the plasma emissivity reconstructions of the source plasma in ELISE with the actual OES diagnostic system. (paper)

  6. Supplemental Report: Application of Emission Spectroscopy to Monitoring Technetium

    International Nuclear Information System (INIS)

    Spencer, W.A.

    2000-01-01

    This report provides supplemental information to an earlier report BNF-98-003-0199, ''Evaluation of Emission Spectroscopy for the On-Line Analysis of Technetium''. In this report data is included from real Hanford samples as well as for solutions spiked with technetium. This supplemental work confirms the ability of ICP-ES to monitor technetium as it breaks through an ion exchange process

  7. Time-resolved measurement of emission profiles in pulsed radiofrequency glow discharge optical emission spectroscopy: Investigation of the pre-peak

    International Nuclear Information System (INIS)

    Alberts, D.; Horvath, P.; Nelis, Th.; Pereiro, R.; Bordel, N.; Michler, J.; Sanz-Medel, A.

    2010-01-01

    Radiofrequency glow discharge coupled to optical emission spectroscopy has been used in pulsed mode in order to perform a detailed study of the measured temporal emission profiles for a wide range of copper transitions. Special attention has been paid to the early emission peak (or so-called pre-peak), observed at the beginning of the emission pulse profile. The effects of the important pulse parameters such as frequency, duty cycle, pulse width and power-off time, have been studied upon the Cu pulse emission profiles. The influence of discharge parameters, such as pressure and power, was studied as well. Results have shown that the intensity observed in the pre-peak can be 10 times as large as the plateau value for resonant lines and up to 5 times in case of transitions to the metastable levels. Increasing pressure or power increased the pre-peak intensity while its appearance in time changed. The pre-peak decreased when the discharge off-time was shorter than 100 μs. According to such results, the presence of the pre-peak could be probably due to the lack of self-absorption during the first 50 μs, and not to the ignition of the plasma. Under the selected operation conditions, the use of the pre-peak emission as analytical signals increases the linearity of calibration curves for resonant lines subjected to self-absorption at high concentrations.

  8. Time-resolved measurement of emission profiles in pulsed radiofrequency glow discharge optical emission spectroscopy: Investigation of the pre-peak

    Energy Technology Data Exchange (ETDEWEB)

    Alberts, D. [Department of Physical and Analytical Chemistry, Faculty of Chemistry, University of Oviedo, Julian Claveria 8, 33006 Oviedo (Spain); Horvath, P. [Swiss Federal Laboratories for Materials Testing and Research (EMPA), Feuerwerkerstrasse 39, 3602 Thun (Switzerland); Nelis, Th. [LAPLACE, Universite Paul Sabatier, 118 rte de Narbonne, Bat3R2, 31062 Toulouse Cedex (France); CU Jean Francois Champollion, Place de Verdun 81012 Albi Cedex 9 (France); Pereiro, R. [Department of Physical and Analytical Chemistry, Faculty of Chemistry, University of Oviedo, Julian Claveria 8, 33006 Oviedo (Spain); Bordel, N. [Department of Physics, Faculty of Science, University of Oviedo, Calvo Sotelo, 33007 Oviedo (Spain); Michler, J. [Swiss Federal Laboratories for Materials Testing and Research (EMPA), Feuerwerkerstrasse 39, 3602 Thun (Switzerland); Sanz-Medel, A., E-mail: asm@uniovi.e [Department of Physical and Analytical Chemistry, Faculty of Chemistry, University of Oviedo, Julian Claveria 8, 33006 Oviedo (Spain)

    2010-07-15

    Radiofrequency glow discharge coupled to optical emission spectroscopy has been used in pulsed mode in order to perform a detailed study of the measured temporal emission profiles for a wide range of copper transitions. Special attention has been paid to the early emission peak (or so-called pre-peak), observed at the beginning of the emission pulse profile. The effects of the important pulse parameters such as frequency, duty cycle, pulse width and power-off time, have been studied upon the Cu pulse emission profiles. The influence of discharge parameters, such as pressure and power, was studied as well. Results have shown that the intensity observed in the pre-peak can be 10 times as large as the plateau value for resonant lines and up to 5 times in case of transitions to the metastable levels. Increasing pressure or power increased the pre-peak intensity while its appearance in time changed. The pre-peak decreased when the discharge off-time was shorter than 100 {mu}s. According to such results, the presence of the pre-peak could be probably due to the lack of self-absorption during the first 50 {mu}s, and not to the ignition of the plasma. Under the selected operation conditions, the use of the pre-peak emission as analytical signals increases the linearity of calibration curves for resonant lines subjected to self-absorption at high concentrations.

  9. Lithium-ion battery electrolyte emissions analyzed by coupled thermogravimetric/Fourier-transform infrared spectroscopy

    Science.gov (United States)

    Bertilsson, Simon; Larsson, Fredrik; Furlani, Maurizio; Albinsson, Ingvar; Mellander, Bengt-Erik

    2017-10-01

    In the last few years the use of Li-ion batteries has increased rapidly, powering small as well as large applications, from electronic devices to power storage facilities. The Li-ion battery has, however, several safety issues regarding occasional overheating and subsequent thermal runaway. During such episodes, gas emissions from the electrolyte are of special concern because of their toxicity, flammability and the risk for gas explosion. In this work, the emissions from heated typical electrolyte components as well as from commonly used electrolytes are characterized using FT-IR spectroscopy and FT-IR coupled with thermogravimetric (TG) analysis, when heating up to 650 °C. The study includes the solvents EC, PC, DEC, DMC and EA in various single, binary and ternary mixtures with and without the LiPF6 salt, a commercially available electrolyte, (LP71), containing EC, DEC, DMC and LiPF6 as well as extracted electrolyte from a commercial 6.8 Ah Li-ion cell. Upon thermal heating, emissions of organic compounds and of the toxic decomposition products hydrogen fluoride (HF) and phosphoryl fluoride (POF3) were detected. The electrolyte and its components have also been extensively analyzed by means of infrared spectroscopy for identification purposes.

  10. Optical Emission Spectroscopy of Plasma in Hybrid Pulsed Laser Deposition System

    Czech Academy of Sciences Publication Activity Database

    Novotný, Michal; Jelínek, Miroslav; Bulíř, Jiří; Lančok, Ján; Jastrabík, Lubomír; Zelinger, Zdeněk

    2002-01-01

    Roč. 52, Suppl. D (2002), s. 292-298 ISSN 0011-4626 R&D Projects: GA AV ČR IAA1010110 Keywords : optical emission spectroscopy * pulsed laser deposition * RF discharge Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 0.311, year: 2002

  11. Nuclear spectroscopy with Geant4: Proton and neutron emission & radioactivity

    Science.gov (United States)

    Sarmiento, L. G.; Rudolph, D.

    2016-07-01

    With the aid of a novel combination of existing equipment - JYFLTRAP and the TASISpec decay station - it is possible to perform very clean quantum-state selective, high-resolution particle-γ decay spectroscopy. We intend to study the determination of the branching ratio of the ℓ = 9 proton emission from the Iπ = 19/2-, 3174-keV isomer in the N = Z - 1 nucleus 53Co. The study aims to initiate a series of similar experiments along the proton dripline, thereby providing unique insights into "open quantum systems". The technique has been pioneered in case studies using SHIPTRAP and TASISpec at GSI. Newly available radioactive decay modes in Geant4 simulations are going to corroborate the anticipated experimental results.

  12. Mid-infrared, long wave infrared (4-12 μm) molecular emission signatures from pharmaceuticals using laser-induced breakdown spectroscopy (LIBS).

    Science.gov (United States)

    Yang, Clayton S-C; Brown, Ei E; Kumi-Barimah, Eric; Hommerich, Uwe H; Jin, Feng; Trivedi, Sudhir B; Samuels, Alan C; Snyder, A Peter

    2014-01-01

    In an effort to augment the atomic emission spectra of conventional laser-induced breakdown spectroscopy (LIBS) and to provide an increase in selectivity, mid-wave to long-wave infrared (IR), LIBS studies were performed on several organic pharmaceuticals. Laser-induced breakdown spectroscopy signature molecular emissions of target organic compounds are observed for the first time in the IR fingerprint spectral region between 4-12 μm. The IR emission spectra of select organic pharmaceuticals closely correlate with their respective standard Fourier transform infrared spectra. Intact and/or fragment sample molecular species evidently survive the LIBS event. The combination of atomic emission signatures derived from conventional ultraviolet-visible-near-infrared LIBS with fingerprints of intact molecular entities determined from IR LIBS promises to be a powerful tool for chemical detection.

  13. Ballistic electron emission spectroscopy on Ag/Si devices

    Energy Technology Data Exchange (ETDEWEB)

    Bannani, A; Bobisch, C A; Matena, M; Moeller, R [Department of Physics, Center for Nanointegration Duisburg-Essen, University of Duisburg-Essen, 47048 Duisburg (Germany)], E-mail: amin.bannani@uni-due.de

    2008-09-17

    In this work we report on ballistic electron emission spectroscopy (BEES) studies on epitaxial layers of silver grown on silicon surfaces, with either a Si(111)-(7 x 7) or Si(100)-(2 x 1) surface reconstruction. The experiments were done at low temperature and in ultra-high vacuum (UHV). In addition, BEES measurements on polycrystalline Ag films grown on hydrogen-terminated H:Si(111)-(1 x 1) and H:Si(100)-(2 x 1) surfaces were performed. The Schottky barrier heights were evaluated by BEES. The results are compared to the values for the barrier height reported for macroscopic Schottky diodes. We show that the barrier heights for the epitaxial films substantially differ from the values measured on polycrystalline Ag films, suggesting a strong effect of the interface on the barrier height.

  14. FTIR Emission spectroscopy of surfaces

    Science.gov (United States)

    Van Woerkom, P. C. M.

    A number of vibrational spectroscopic techniques are available For the study of surfaces, such as ATR, IR reflection-absorption, IR emission, etc. Infrared emission is hardly used, although interesting applications are possible now due to the high sensitivity of Fourier transform IR (FTIR) spectrometers. Two examples, where infrared emission measurements are very fruitful, will be given. One is the investigation of the curing behaviour of organic coatings, the other is the in situ study of heterogeneously catalyzed reactions. Undoubtedly, infrared emission measurements offer a number of specific advantages in some cases. Especially the less critical demands on the sample preparation are important.

  15. Atomic emission spectroscopy for the on-line monitoring of incineration processes

    NARCIS (Netherlands)

    Timmermans, E.A.H.; de Groote, F.P.J.; Jonkers, J.; Gamero, A.; Sola, A.; Mullen, van der J.J.A.M.

    2003-01-01

    A diagnostic measurement system based on atomic emission spectroscopy has been developed for the purpose of on-line monitoring of hazardous elements in industrial combustion gases. The aim was to construct a setup with a high durability for rough and variable experimental conditions, e.g. a strongly

  16. Nuclear spectroscopy with Geant4: Proton and neutron emission & radioactivity

    Energy Technology Data Exchange (ETDEWEB)

    Sarmiento, L. G., E-mail: Luis.Sarmiento@nuclear.lu.se; Rudolph, D. [Department of Physics, Lund University, 22100 Lund (Sweden)

    2016-07-07

    With the aid of a novel combination of existing equipment – JYFLTRAP and the TASISpec decay station – it is possible to perform very clean quantum-state selective, high-resolution particle-γ decay spectroscopy. We intend to study the determination of the branching ratio of the ℓ = 9 proton emission from the I{sup π} = 19/2{sup −}, 3174-keV isomer in the N = Z − 1 nucleus {sup 53}Co. The study aims to initiate a series of similar experiments along the proton dripline, thereby providing unique insights into “open quantum systems”. The technique has been pioneered in case studies using SHIPTRAP and TASISpec at GSI. Newly available radioactive decay modes in Geant4 simulations are going to corroborate the anticipated experimental results.

  17. Infrared-emission spectroscopy of CO on Ni

    International Nuclear Information System (INIS)

    Chiang, S.; Tobin, R.G.; Richards, P.L.

    1982-09-01

    We report the first observation of thermally emitted infrared radiation from vibrational modes of molecules adsorbed on clean, single-crystal metal surfaces. The observation of emission from CO adsorbed on Ni demonstrates the surface sensitivity of a novel apparatus for infrared vibrational spectroscopy, with a resolution of 1 to 15 cm -1 over the frequency range from 330 to 3000 cm -1 . A liquid-helium-cooled grating spectrometer measures the thermal radiation from a room-temperature, single-crystal sample, which is mounted in an ultrahigh-vacuum system. Measurements of frequencies and linewidths of CO on a single-crystal Ni sample, as a function of coverage, are discussed

  18. DETECTION OF REST-FRAME OPTICAL LINES FROM X-SHOOTER SPECTROSCOPY OF WEAK EMISSION-LINE QUASARS

    International Nuclear Information System (INIS)

    Plotkin, Richard M.; Gallo, Elena; Shemmer, Ohad; Trakhtenbrot, Benny; Anderson, Scott F.; Brandt, W. N.; Luo, Bin; Schneider, Donald P.; Fan, Xiaohui; Lira, Paulina; Richards, Gordon T.; Strauss, Michael A.; Wu, Jianfeng

    2015-01-01

    Over the past 15 yr, examples of exotic radio-quiet quasars with intrinsically weak or absent broad emission line regions (BELRs) have emerged from large-scale spectroscopic sky surveys. Here, we present spectroscopy of seven such weak emission line quasars (WLQs) at moderate redshifts (z = 1.4–1.7) using the X-shooter spectrograph, which provides simultaneous optical and near-infrared spectroscopy covering the rest-frame ultraviolet (UV) through optical. These new observations effectively double the number of WLQs with spectroscopy in the optical rest-frame, and they allow us to compare the strengths of (weak) high-ionization emission lines (e.g., C iv) to low-ionization lines (e.g., Mg ii, Hβ, Hα) in individual objects. We detect broad Hβ and Hα emission in all objects, and these lines are generally toward the weaker end of the distribution expected for typical quasars (e.g., Hβ has rest-frame equivalent widths ranging from 15–40 Å). However, these low-ionization lines are not exceptionally weak, as is the case for high-ionization lines in WLQs. The X-shooter spectra also display relatively strong optical Fe ii emission, Hβ FWHM ≲ 4000 km s −1 , and significant C iv blueshifts (≈1000–5500 km s −1 ) relative to the systemic redshift; two spectra also show elevated UV Fe ii emission, and an outflowing component to their (weak) Mg ii emission lines. These properties suggest that WLQs are exotic versions of “wind-dominated” quasars. Their BELRs either have unusual high-ionization components, or their BELRs are in an atypical photoionization state because of an unusually soft continuum

  19. New methods and applications in emission spectroscopy (1960)

    International Nuclear Information System (INIS)

    Baudin, G.

    1960-01-01

    Emission spectroscopy, are already well-established instrumental analytical technique, has in recent years known important developments. Two mains factors are responsible; firstly the demands of metallurgy for purer and purer materials or alloys which are increasingly complex and difficult to analyse by chemical means; secondly, progress in optics, especially in the production of gratings, and in electronics in the field of photomultiplier tubes. We will not here catalogue all the new applications and methods, but we will consider a few amongst the most representative outside the conventional field. (author) [fr

  20. High-resolution X-ray emission spectroscopy with transition-edge sensors: present performance and future potential

    Energy Technology Data Exchange (ETDEWEB)

    Uhlig, J.; Doriese, W. B.; Fowler, J. W.; Swetz, D. S.; Jaye, C.; Fischer, D. A.; Reintsema, C. D.; Bennett, D. A.; Vale, L. R.; Mandal, U.; O' Neil, G. C.; Miaja-Avila, L.; Joe, Y. I.; El Nahhas, A.; Fullagar, W.; Parnefjord Gustafsson, F.; Sundström, V.; Kurunthu, D.; Hilton, G. C.; Schmidt, D. R.; Ullom, J. N.

    2015-04-21

    X-ray emission spectroscopy (XES) is a powerful element-selective tool to analyze the oxidation states of atoms in complex compounds, determine their electronic configuration, and identify unknown compounds in challenging environments. Until now the low efficiency of wavelength-dispersive X-ray spectrometer technology has limited the use of XES, especially in combination with weaker laboratory X-ray sources. More efficient energy-dispersive detectors have either insufficient energy resolution because of the statistical limits described by Fano or too low counting rates to be of practical use. This paper updates an approach to high-resolution X-ray emission spectroscopy that uses a microcalorimeter detector array of superconducting transition-edge sensors (TESs). TES arrays are discussed and compared with conventional methods, and shown under which circumstances they are superior. It is also shown that a TES array can be integrated into a table-top time-resolved X-ray source and a soft X-ray synchrotron beamline to perform emission spectroscopy with good chemical sensitivity over a very wide range of energies.

  1. Assessment of high precision, high accuracy Inductively Coupled Plasma-Optical Emission Spectroscopy to obtain concentration uncertainties less than 0.2% with variable matrix concentrations

    International Nuclear Information System (INIS)

    Rabb, Savelas A.; Olesik, John W.

    2008-01-01

    The ability to obtain high precision, high accuracy measurements in samples with complex matrices using High Performance Inductively Coupled Plasma-Optical Emission Spectroscopy (HP-ICP-OES) was investigated. The Common Analyte Internal Standard (CAIS) procedure was incorporated into the High Performance Inductively Coupled Plasma-Optical Emission Spectroscopy method to correct for matrix-induced changes in emission intensity ratios. Matrix matching and standard addition approaches to minimize matrix-induced errors when using High Performance Inductively Coupled Plasma-Optical Emission Spectroscopy were also assessed. The High Performance Inductively Coupled Plasma-Optical Emission Spectroscopy method was tested with synthetic solutions in a variety of matrices, alloy standard reference materials and geological reference materials

  2. Emission Spectroscopy as a Probe into Photoinduced Intramolecular Electron Transfer in Polyazine Bridged Ru(II,Rh(III Supramolecular Complexes

    Directory of Open Access Journals (Sweden)

    Karen J. Brewer

    2010-08-01

    Full Text Available Steady-state and time-resolved emission spectroscopy are valuable tools to probe photochemical processes of metal-ligand, coordination complexes. Ru(II polyazine light absorbers are efficient light harvesters absorbing in the UV and visible with emissive 3MLCT excited states known to undergo excited state energy and electron transfer. Changes in emission intensity, energy or band-shape, as well as excited state lifetime, provide insight into excited state dynamics. Photophysical processes such as intramolecular electron transfer between electron donor and electron acceptor sub-units may be investigated using these methods. This review investigates the use of steady-state and time-resolved emission spectroscopy to measure excited state intramolecular electron transfer in polyazine bridged Ru(II,Rh(III supramolecular complexes. Intramolecular electron transfer in these systems provides for conversion of the emissive 3MLCT (metal-to-ligand charge transfer excited state to a non-emissive, but potentially photoreactive, 3MMCT (metal-to-metal charge transfer excited state. The details of the photophysics of Ru(II,Rh(III and Ru(II,Rh(III,Ru(II systems as probed by steady-state and time-resolved emission spectroscopy will be highlighted.

  3. Emission Spectroscopy of OH Radical in Water-Argon Arc Plasma Jet

    Czech Academy of Sciences Publication Activity Database

    Mašláni, Alan; Sember, Viktor

    2014-01-01

    Roč. 2014, April (2014), "952138"-"952138" ISSN 2314-4920 R&D Projects: GA ČR GAP205/11/2070 Institutional support: RVO:61389021 Keywords : Emission spectroscopy * OH radical * arc plasma jet Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 0.538, year: 2014 http://www.hindawi.com/journals/jspec/2014/952138/abs/

  4. Investigation of metal ions in fusion plasmas using emission spectroscopy

    International Nuclear Information System (INIS)

    Tale, I.

    2005-01-01

    Full text: The Latvian and Portugal Associations are performing development of advanced plasma - facing system using the liquid metal limiter. The objectives of this project require study of the influence of the liquid metal limiter on the main plasma parameters, including concentration of evaporated metal atoms in plasma. The fusion plasmas are related to the dense hot plasmas. The required average ion temperature according to the ITER project (International Thermonuclear Experimental Reactor) is 8,0 keV (9,3 x 10 7 0 K), the average electron temperature - 8,9 keV (1,04 x 10 8 0 K). Plasma temperature operated in the research tokamak ISSTOK, involved in testing of liquid metal limiter concept is considerably less, being of order of 10 50 K. The ionization degree of metal atoms considerably depends on the plasma ion temperature. Density of metal vapours in plasma can be estimated using the following two spectroscopic methods: The fluorescence of the multiple ionised metal ions in steady state concentration; The charge exchange emission during ionisation of evaporated metal ions. In the first step of development of testing system of metal vapours the equipment and instrumentation for charge exchange spectroscopy of Ga and In has been elaborated taking into account the following features of plasma emission. The Ga emission lines occur on the background high temperature plasma black body emission and stray light. Radial distribution of Ga in plasma in the facing plane of Ga flux is desirable

  5. Utilization of synchrotron radiation in analytical chemistry. Soft X-ray emission and absorption spectroscopy

    International Nuclear Information System (INIS)

    Muramatsu, Yasuji

    2015-01-01

    Synchrotron soft X-ray spectroscopy includes three major types of spectroscopy such as X-ray absorption spectroscopy (XAS), X-ray emission spectroscopy (XES), and X-ray photoelectron spectroscopy (XPS). This paper takes up XAS and XES of soft X-rays, and briefly describes the principle. XAS is roughly classified into XANES (X-ray absorption near-edge structure) and EXAFS (extended X-ray absorption fine structure), and XANES is mainly used in the analysis based on XAS of soft X-rays. As the examples of the latest soft X-ray analyses, the following are introduced: (1) bandgap of boron implantation diamond and the local structure of boron, (2) catalytic sites in solid fuel cell carbon electrode, and (3) soft X-ray analysis under atmospheric pressure. (A.O.)

  6. Analysis of two colliding laser-produced plasmas by emission spectroscopy and fast photography

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez-Ake, C., E-mail: citlali.sanchez@ccadet.unam.m [Centro de Ciencias Aplicadas y Desarrollo Tecnologico, Universidad Nacional Autonoma de Mexico, Apartado Postal 70-186, Mexico D.F., C.P. 04510 (Mexico); Mustri-Trejo, D. [Centro de Ciencias Aplicadas y Desarrollo Tecnologico, Universidad Nacional Autonoma de Mexico, Apartado Postal 70-186, Mexico D.F., C.P. 04510 (Mexico); Garcia-Fernandez, T. [Universidad Autonoma de la Ciudad de Mexico, Prolongacion San Isidro 151, Col. San Lorenzo Tezonco, Mexico DF, C.P. 09790 (Mexico); Villagran-Muniz, M. [Centro de Ciencias Aplicadas y Desarrollo Tecnologico, Universidad Nacional Autonoma de Mexico, Apartado Postal 70-186, Mexico D.F., C.P. 04510 (Mexico)

    2010-05-15

    In this work two colliding laser-induced plasmas (LIP) on Cu and C were studied by means of time resolved emission spectroscopy and fast photography. The experiments were performed using two opposing parallel targets of Cu and C in vacuum, ablated with two synchronized ns lasers. The results showed an increased emission intensity from copper ions Cu II (368.65, 490.97, 493.16, 495.37 and 630.10 nm) and Cu III (374.47 and 379.08 nm) due to the ionization that occurs during collisions of Cu and C species. It was found that the optimum delay between pulses, which yields the maximum emission enhancement of Cu ions, depends on the sampling distance. On the other hand, the emission intensity of C lines, C II (426.70 nm), C III (406.99 and 464.74 nm) and C IV (465.83 nm), decreased and the formation of C{sub 2} molecules was observed. A comparison between the temporal evolution of the individual plasmas and their collision performed by combining imaging and the time resolved emission diagnostics, revealed an increase of the electron temperature and electron density and the splitting of the plume into slow and fast components.

  7. Pre-concentration of Cr, Mn, Fe and Co of water sea and analysis by plasma emission spectroscopy - DCP

    International Nuclear Information System (INIS)

    Ferreira, E.M.M.

    1985-01-01

    Studies of separation and pre-concentration methods of chromium, manganese, iron and cobalt from seawater, that allow use control methods of 5 1 Cr, 5 4 Mn, 5 5 , 5 9 Fe, 5 8 , 5 9 Co with a better sensibility and the determination of this elements by atomic absorption spectroscopy or plasma emission spectroscopy are described. This methods of seawater analysis will use near the region of Angra I reactor. (author)

  8. Double pulse laser induced breakdown spectroscopy: Experimental study of lead emission intensity dependence on the wavelengths and sample matrix

    Energy Technology Data Exchange (ETDEWEB)

    Piscitelli S, V; Martinez L, M A; Fernandez C, A J [Laboratorio de Espectroscopia Laser, Escuela de Quimica, Facultad de Ciencias, Universidad Central de Venezuela, Caracas, DC 1020 (Venezuela, Bolivarian Republic of); Gonzalez, J J; Mao, X L [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Russo, R.E. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States)], E-mail: RERusso@lbl.gov

    2009-02-15

    Lead (Pb) emission intensity (atomic line 405.78 nm) dependence on the sample matrix (metal alloy) was studied by means of collinear double pulse (DP)-laser induced breakdown spectroscopy (LIBS). The measurement of the emission intensity produced by three different wavelength combinations (i.e. I:532 nm-II:1064 nm, I:532 nm-II:532 nm, and I:532 nm-II:355 nm) from three series of standard reference materials showed that the lead atomic line 405.78 nm emission intensity was dependent on the sample matrix for all the combination of wavelengths, however reduced dependency was found for the wavelength combination I:532 nm-II:355 nm. Two series of standard reference materials from the National Institute of Standards and Technology (NIST) and one series from the British Chemical Standards (BCS) were used for these experiments. Calibration curves for lead ablated from NIST 626-630 ('Zn{sub 95}Al{sub 4}Cu{sub 1}') provided higher sensitivity (slope) than those calibration curves produced from NIST 1737-1741 ('Zn{sub 99.5}Al{sub 0.5}') and with the series BCS 551-556 ('Cu{sub 87}Sn{sub 11}'). Similar trends between lead emission intensity (calibration curve sensitivities) and reported variations in plasma temperatures caused by the differing ionization potentials of the major and minor elements in these samples were established.

  9. Laser induced aluminiun plasma analysis by optical emission spectroscopy in a nitrogen background gas

    International Nuclear Information System (INIS)

    Chamorro, J C; Uzuriaga, J; Riascos, H

    2012-01-01

    We studied an Al plasma generated by a Nd:YAG laser with a laser fluence of 4 J/cm 2 , a wavelength of 1064 nm, energy pulse of 500 mJ and 10 Hz repetition rate. We studied their spectral characteristics at various ambient nitrogen pressures by optical emission spectroscopy (OES). The N 2 gas pressure was varied from 20 mTorr to 150 mTorr. In Al plume, both atomic and ionic spectra were observed. The electron temperature and electron number density of the plume as of the function ambient gas pressure were determined. The electron temperature was calculated by using the Boltzmann-plot method and the number density was calculated considering the stark effect as dominating on the emission lines.

  10. Assisted Interpretation of Laser-Induced Fluorescence Spectra of Egg-Based Binding Media Using Total Emission Fluorescence Spectroscopy

    International Nuclear Information System (INIS)

    Anglos, D.; Nevin, A.

    2006-01-01

    Laser-induced fluorescence (LIF) spectroscopy can provide nondestructive, qualitative analysis of protein-based binding media found in artworks. Fluorescence emissions from proteins in egg yolk and egg white are due to auto fluorescent aromatic amino acids as well as other native and age-related fluorophores, but the potential of fluorescence spectroscopy for the differentiation between binding media is dependent on the choice of a suitable excitation wavelength and limited by problems in interpretation. However, a better understanding of emission spectra associated with LIF can be achieved following comparisons with total emission fluorescence spectra where a series of consecutive emission spectra are recorded over a specific range. Results using nanosecond UV laser sources for LIF of egg-based binding media are presented which are rationalised following comparisons with total emission spectra. Specifically, fluorescence is assigned to tryptophan and oxidation products of amino acids; in the case of egg yolk, fatty-acid polymerisation and age-related degradation products account for the formation of fluorophores.

  11. Field emission study of MWCNT/conducting polymer nanocomposite

    Energy Technology Data Exchange (ETDEWEB)

    Alvi, M.A., E-mail: maalvee@yahoo.co.in [Department of Physics, King Abdulaziz University, Jeddah-21589 (Saudi Arabia); Al-Ghamdi, A.A. [Department of Physics, King Abdulaziz University, Jeddah-21589 (Saudi Arabia); Husain, M. [Department of Physics, Jamia Millia Islamia, New Delhi-110025 (India)

    2014-12-01

    MWCNTs/Polypyrrole nanocomposites were synthesized by solution mixing method. These synthesized nanocomposites were studied carefully by Raman Spectroscopy and Scanning Electron Microscopy measurements. The field emission study of MWCNTs/Polypyrrole nanocomposites were performed in diode arrangement under vacuum of the order of 10{sup −5} Torr. The emission current under exploration depends on applied voltage. The prepared nanocomposites depict low turn-on field at 1.4 V/μm that reaches to a maximum emission current density 0.020 mA/cm{sup 2} at 2.4 V/µm, which is calculated from the graph of current density (J) against the applied electric field (E) and from Fowler–Nordheim (F–N) plot.

  12. Secondary electron emission studied by secondary electron energy loss coincidence spectroscopy (SE2ELCS)

    International Nuclear Information System (INIS)

    Khalid, R.

    2013-01-01

    Emission of secondary electrons is of importance in many branches of fundamental and applied science. It is widely applied in the electron microscope for the investigation of the structure and electronic state of solid surfaces and particle detection in electron multiplier devices, and generally it is related to the energy dissipation of energetic particles moving inside a solid. The process of secondary electron emission is a complex physical phenomenon, difficult to measure experimentally and treat theoretically with satisfactory accuracy. The secondary electron spectrum measured with single electron spectroscopy does not provide detailed information of the energy loss processes responsible for the emission of secondary electrons. This information can be accessed when two correlated electron pairs are measured in coincidence and the pair consists of a backscattered electron after a given energy loss and a resulting emitted secondary electron. To investigate the mechanisms responsible for the emission of secondary electrons, a reflection (e,2e) coincidence spectrometer named Secondary Electron Electron Energy Loss Coincidence Spectrometer (SE2ELCS) has been developed in the framework of this thesis which allows one to uncover the relation between the features in the spectra which are due to energy losses and true secondary electron emission structures. The correlated electron pairs are measured with a hemispherical mirror analyzer (HMA) and a time of flight analyzer (TOF) by employing a continuous electron beam. An effort has been made to increase the coincidence count rate by increasing the effective solid angle of the TOF analyzer and optimizing the experimental parameters to get optimum energy resolution. Double differential coincidence spectra for a number of materials namely, nearly free electron metals (Al, Si), noble metals (Ag, Au, Cu, W) and highly oriented pyrolytic graphite (HOPG) have been measured using this coincidence spectrometer. The

  13. Optical emission and mass spectroscopy of plasma processes in reactive DC pulsed magnetron sputtering of aluminium oxide

    Czech Academy of Sciences Publication Activity Database

    Novotný, Michal; Bulíř, Jiří; Pokorný, Petr; Bočan, Jiří; Fitl, Přemysl; Lančok, Ján; Musil, Jindřich

    2010-01-01

    Roč. 12, č. 3 (2010), 697-700 ISSN 1454-4164 R&D Projects: GA AV ČR IAA100100718; GA AV ČR KAN400100653; GA ČR GP202/09/P324 Institutional research plan: CEZ:AV0Z10100522 Keywords : reactive magnetron sputtering * alumina * plasma spectroscopy * mass spectroscopy * optical emission spectroscopy Subject RIV: BH - Optics, Masers, Lasers Impact factor: 0.412, year: 2010

  14. An optical emission spectroscopy study of the plasma generated in the DC HF CVD nucleation of diamond

    Energy Technology Data Exchange (ETDEWEB)

    Larijani, M.M. [Nuclear Research Centre for Agriculture and Medicine, AEOI, P.O. Box 31485-498, Karaj (Iran, Islamic Republic of)]. E-mail: mmojtahedzadeh@nrcam.org; Le Normand, F. [Groupe Surfaces-Interfaces, IPCMS, UMR 7504 CNRS, BP 20, 67037 Strasbourg Cedex 2 (France); Cregut, O. [Groupe Surfaces-Interfaces, IPCMS, UMR 7504 CNRS, BP 20, 67037 Strasbourg Cedex 2 (France)

    2007-02-15

    Optical emission spectroscopy (OES) was used to study the plasma generated by the activation of the gas phase CH{sub 4} + H{sub 2} both by hot filaments and by a plasma discharge (DC HF CVD) during the nucleation of CVD diamond. The effects of nucleation parameters, such as methane concentration and extraction potential, on the plasma chemistry near the surface were investigated. The density of the diamond nucleation and the quality of the diamond films were studied by scanning electron microscopy (SEM) and Raman scattering, respectively. The OES results showed that the methane concentration influenced strongly the intensity ratio of H{sub {beta}}-H{sub {alpha}} implying an increase of electron mean energy, as well as CH, CH{sup +}, C{sub 2}. A correlation between the relative increase of CH{sup +} and the diamond nucleation density was found, conversely the increase of C{sub 2} contributed to the introduction of defects in the diamond nuclei.

  15. Nanoparticle Enhanced Laser Induced Breakdown Spectroscopy: Effect of nanoparticles deposited on sample surface on laser ablation and plasma emission

    International Nuclear Information System (INIS)

    De Giacomo, A.; Gaudiuso, R.; Koral, C.; Dell'Aglio, M.; De Pascale, O.

    2014-01-01

    In this paper the use of metallic nanoparticles (NPs) for improving Laser Induced Breakdown Spectroscopy (LIBS) is discussed. In the case of conductors an emission signal enhancement up to 1–2 orders of magnitude was obtained depositing NPs on the sample surface by drying a micro-drop of colloidal solution. The basic mechanisms of Nanoparticle Enhanced LIBS (NELIBS) were studied and the main causes of this significantly large enhancement were found to be related to the effect of NPs on the laser ablation process, in terms of a faster and more efficient production of seed electrons with respect to conventional LIBS. The characteristics of NELIBS-produced plasma were investigated by emission spectroscopy and spectrally resolved images. In spite of similar plasma parameters, the NELIBS plasma was found to have larger emission volume and longer persistence than the LIBS one. A method to determine NP concentration and size was also proposed, which involved depositing NPs on non-interacting substrates, and proved the feasibility of LIBS as a fast detection tool for a preliminary characterization of NPs. - Highlights: • Effect of NPs on sample surface enables instantaneous field emission. • More efficient ablation • LIBS emission enhancement up to 1–2 orders of magnitude • Possibility of NP characterization in terms of concentration and size

  16. Remote gas analysis of aircraft exhausts using FTIR-emission-spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Heland, J.; Schaefer, K. [Fraunhofer Inst. for Atmospheric Environmental Research, Garmisch-Partenkirchen (Germany)

    1997-12-31

    FITR emission spectroscopy as a remote sensing multi-component analyzing technique was investigated to determine the composition of aircraft exhausts at ground level. A multi-layer radiative transfer interpretation software based on a line-by-line computer algorithm using the HITRAN data base was developed. Measurements were carried out with different engine types to determine the traceable gas species and their detection limits. Finally validation measurements were made to compare the results of the system to those of conventional equipment. (author) 8 refs.

  17. Remote gas analysis of aircraft exhausts using FTIR-emission-spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Heland, J; Schaefer, K [Fraunhofer Inst. for Atmospheric Environmental Research, Garmisch-Partenkirchen (Germany)

    1998-12-31

    FITR emission spectroscopy as a remote sensing multi-component analyzing technique was investigated to determine the composition of aircraft exhausts at ground level. A multi-layer radiative transfer interpretation software based on a line-by-line computer algorithm using the HITRAN data base was developed. Measurements were carried out with different engine types to determine the traceable gas species and their detection limits. Finally validation measurements were made to compare the results of the system to those of conventional equipment. (author) 8 refs.

  18. Metastable argon atom density in complex argon/acetylene plasmas determined by means of optical absorption and emission spectroscopy

    International Nuclear Information System (INIS)

    Sushkov, Vladimir; Herrendorf, Ann-Pierra; Hippler, Rainer

    2016-01-01

    Optical emission and absorption spectroscopy has been utilized to investigate the instability of acetylene-containing dusty plasmas induced by growing nano-particles. The density of Ar(1s 5 ) metastable atoms was derived by two methods: tunable diode laser absorption spectroscopy and with the help of the branching ratio method of emitted spectral lines. Results of the two techniques agree well with each other. The density of Ar(1s 3 ) metastable atoms was also measured by means of optical emission spectroscopy. The observed growth instability leads to pronounced temporal variations of the metastable and other excited state densities. An analysis of optical line ratios provides evidence for a depletion of free electrons during the growth cycle but no indication for electron temperature variations. (paper)

  19. Isotope analysis by emission spectroscopy; Analyse isotopique par spectroscopie d'emission

    Energy Technology Data Exchange (ETDEWEB)

    Artaud, J; Gerstenkorn, S [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires; Blaise, J [Centre National de la Recherche Scientifique (CNRS), Lab. Aime Cotton, 92 - Meudon-Bellevue (France)

    1959-07-01

    Quantitative analysis of isotope mixtures by emission spectroscopy is resulting from the phenomenon called 'isotope shift', say from the fact that spectral lines produced by a mixture of isotopes of a same element are complex. Every spectral line is, indeed, resulting from several lines respectively corresponding to each isotope. Then isotopic components are near one to others, and their separation is effected by means of Fabry-Perot calibration standard: the apparatus allowing to measure abundances is the Fabry-Perot photo-electric spectrometer, designed in 1948 by MM. JACQUINOT and DUFOUR. This method has been used to make abundance determination in the case of helium, lithium, lead and uranium. In the case of lithium, the utilised analysis line depends on the composition of examined isotopic mixture. For mixtures containing 7 to 93 pour cent of one of isotopes of lithium, this line is the lithium blue line: {lambda} = 4603 angstrom. In other cases the red line {lambda} = 6707 angstrom is preferable, though it allows to do easily nothing but relative determinations. Helium shows no particular difficulty and the analysis line selected was {lambda} = 6678 angstrom. For lead the line {lambda} = 5201 angstrom gives the possibility to determine the isotope abundance for the four isotopes of lead notwithstanding the presence of hyperfine structure of {sup 207}Pb. For uranium, line {lambda} 5027 angstrom is used, and this method allows to determine the composition of isotope mixtures, the content of which in {sup 235}U may shorten to 0,1 per cent. Relative precision is about 2 per cent for contents in {sup 235}U over 1 per cent. For lower contents, this line {lambda} = 5027 angstrom will allow relative measures when using previously dosed mixtures. (author) [French] L'analyse quantitative des melanges isotopiques par spectroscopie d'emission doit son existence au phenomene appele 'deplacement isotopique', c'est-a-dire au fait que les raies spectrales emises par un

  20. Investigations of the cathode region of an argon arc plasma by degenerate four-wave mixing laser spectroscopy and optical emission spectroscopy

    International Nuclear Information System (INIS)

    Dzierzega, K; Pokrzywka, B; Pellerin, S

    2004-01-01

    Degenerate four-wave mixing (DFWM) laser spectroscopy was used in local studies of atmospheric pressure argon plasma generated in a free-burning arc. The results of plasma diagnostics using the DFWM method were compared to the results obtained with optical emission measurements. In the cathode region of the arc the maxima of both the DFWM signal and the emission coefficient for the 696.5 nm Ar I line depend on the distance from the cathode tip. This effect proves the departure of the plasma state from local thermal equilibrium (LTE) as it has been reported by many authors. On the other hand the Stark shifts of the 696.5 nm Ar I line determined by the DFWM method in relation to plasma diagnostic results show no deviations from LTE on the arc axis down to 1.0 mm from the cathode tip

  1. Electrolytic cell-free 57Co deposition for emission Mössbauer spectroscopy

    Science.gov (United States)

    Zyabkin, Dmitry V.; Procházka, Vít; Miglierini, Marcel; Mašláň, Miroslav

    2018-05-01

    We have developed a simple, inexpensive and efficient method for an electrochemical preparation of samples for emission Mössbauer spectroscopy (EMS) and Mössbauer sources. The proposed electrolytic deposition procedure does not require any special setup, not even an electrolytic cell. It utilizes solely an electrode with a droplet of electrolyte on its surface and the second electrode sunk into the droplet. Its performance is demonstrated using two examples, a metallic glass and a Cu stripe. We present a detailed description of the deposition procedure and resulting emission Mössbauer spectra for both samples. In the case of a Cu stripe, we have performed EMS measurements at different stages of heat-treatment, which are required for the production of Mössbauer sources with the copper matrix.

  2. Emission spectroscopy of highly ionized high-temperature plasma jets

    Energy Technology Data Exchange (ETDEWEB)

    Belevtsev, A A; Chinnov, V F; Isakaev, E Kh [Associated Institute for High Temperatures, Russian Academy of Sciences Izhorskaya 13/19, Moscow, 125412 (Russian Federation)

    2006-08-01

    This paper deals with advanced studies on the optical emission spectroscopy of atmospheric pressure highly ionized high-temperature argon and nitrogen plasma jets generated by a powerful arc plasmatron. The emission spectra are taken in the 200-1000 nm range with a spectral resolution of {approx}0.01-0.02 nm. The exposure times are 6 x 10{sup -6}-2 x 10{sup -2} s, the spatial resolution is 0.02-0.03 mm. The recorded jet spectra are abundant in spectral lines originating from different ionization stages. In nitrogen plasmas, tens of vibronic bands are also observed. To interpret and process these spectra such that plasma characteristics can be derived, a purpose-developed automated processing system is applied. The use of a CCD camera at the spectrograph output allows a simultaneous recording of the spectral and chord intensity distributions of spectral lines, which can yet belong to the overlapped spectra of the first and second orders of interference. The modern optical diagnostic means and methods used permit the determination of spatial distributions of electron number densities and temperatures and evaluation of rotational temperatures. The radial profiles of the irradiating plasma components can also be obtained. Special attention is given to the method of deriving rotational temperatures using vibronic bands with an incompletely identified rotational structure.

  3. Infrared and infrared emission spectroscopic study of typical Chinese kaolinite and halloysite.

    Science.gov (United States)

    Cheng, Hongfei; Frost, Ray L; Yang, Jing; Liu, Qinfu; He, Junkai

    2010-12-01

    The structure and thermal stability between typical Chinese kaolinite and halloysite were analysed by X-ray diffraction (XRD), infrared spectroscopy, infrared emission spectroscopy (IES) and Raman spectroscopy. Infrared emission spectroscopy over the temperature range of 300-700°C has been used to characterise the thermal decomposition of both kaolinite and halloysite. Halloysite is characterised by two bands in the water bending region at 1629 and 1648 cm(-1), attributed to structural water and coordinated water in the interlayer. Well defined hydroxyl stretching bands at around 3695, 3679, 3652 and 3625 cm(-1) are observed for both kaolinite and halloysite. The 550°C infrared emission spectrum of halloysite is similar to that of kaolinite in 650-1350 cm(-1) spectral region. The infrared emission spectra of halloysite were found to be considerably different to that of kaolinite at lower temperatures. These differences are attributed to the fundamental difference in the structure of the two minerals. Copyright © 2010 Elsevier B.V. All rights reserved.

  4. Biological mineralization of iron: Studies using Moesbauer spectroscopy and complementary techniques

    International Nuclear Information System (INIS)

    Webb, J.; Kim, K.S.; Tran, K.C.; Pierre, T.G.S.

    1988-01-01

    Biological deposition of solid Fe-containing phases can be studied using 57 Fe Moessbauer spectroscopy. Other techniques are needed in order to understand this complex process. These include proton-induced X-ray and γ-ray emission (PIXE/PIGME), electron microscopy, electron and X-ray diffraction, infrared spectroscopy and chemical characterization of organic components. This paper reviews and evaluates the application of these techniques to biological mineralization of Fe, particularly that occurring in the radula teeth of the marine molluscs, chitons and limpets. (orig.)

  5. Emission spectroscopy of argon ferrocene mixture jet in a low pressure plasma reactor

    International Nuclear Information System (INIS)

    Tiwari, N.; Tak, A.K.; Chakravarthy, Y.; Shukla, A.; Meher, K.C.; Ghorui, S.; Thiyagarajan, T.K.

    2015-01-01

    Emission spectroscopy is employed to measure the plasma temperature and species identification in a reactor used for studying homogenous nucleation and growth of iron nano particle. Reactor employs segmented non transferred plasma torch mounted on water cooled cylindrical chamber. The plasma jet passes through graphite nozzle and expands in low pressure reactor. Ferrocene is fed into the nozzle where it mixes with Argon plasma jet. A high resolution spectrograph (SHAMROCK 303i, resolution 0.06 nm) has been used to record the spectra over a wide range. Identification of different emission lines has been done using NIST database. Lines from (700 to 860nm) were considered for calculation of temperature. Spectra were recorded for different axial location, pressure and power. Temperature was calculated using Maxwell Boltzman plot method. Variation in temperature with pressure and location is presented and possible reasons for different behaviour are explored. (author)

  6. MEASUREMENT OF AMMONIA EMISSIONS FROM MECHANICALLY VENTILATED POULTRY HOUSES USING MULTIPATH TUNABLE DIODE LASER SPECTROSCOPY

    Science.gov (United States)

    Ammonia emissions from mechanically ventilated poultry operations are an important environmental concern. Open Path Tunable Diode Laser Absorption Spectroscopy has emerged as a robust real-time method for gas phase measurement of ammonia concentrations in agricultural settings. ...

  7. A study of internal oxidation in carburized steels by glow discharge optical emission spectroscopy and scanning electron microscopy

    CERN Document Server

    An, X; Rainforth, W M; Chen, L

    2003-01-01

    The internal oxidation of Cr-Mn carburizing steel was studied. Internal oxidation was induced using a commercial carburizing process. Sputter erosion coupled with glow discharge optical emission spectroscopy (GDOES) was used to determine the depth profile elemental distribution within the internal oxidation layer (<10 mu m). In addition, scanning electron microscopy (SEM) equipped with energy dispersive spectrometer (EDS) studies were carried out on selected sputter eroded surfaces. Oxide type was identified primarily by transmission electron microscopy (TEM). The carburized surface was found to consist of a continuous oxide layer, followed by a complex internal oxidation layer, where Cr and Mn oxides were found to populate grain boundaries in a globular form in the near surface region. At greater depths (5-10 mu m), Si oxides formed as a grain boundary network. The internal oxides (mainly complex oxides) grew quickly during the initial stages of the carburizing process (2 h, 800 deg. C+3 h, 930 deg. C). G...

  8. Low-energy d-d excitations in MnO studied by resonant x-ray fluorescence spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Butorin, S.M.; Guo, J.; Magnuson, M. [Uppsala Univ. (Sweden)] [and others

    1997-04-01

    Resonant soft X-ray emission spectroscopy has been demonstrated to possess interesting abilities for studies of electronic structure in various systems, such as symmetry probing, alignment and polarization dependence, sensitivity to channel interference, etc. In the present abstract the authors focus on the feasibility of resonant soft X-ray emission to probe low energy excitations by means of resonant electronic X-ray Raman scattering. Resonant X-ray emission can be regarded as an inelastic scattering process where a system in the ground state is transferred to a low excited state via a virtual core excitation. The energy closeness to a core excitation of the exciting radiation enhances the (generally) low probability for inelastic scattering at these wavelengths. Therefore soft X-ray emission spectroscopy (in resonant electronic Raman mode) can be used to study low energy d-d excitations in transition metal systems. The involvement of the intermediate core state allows one to use the selection rules of X-ray emission, and the appearance of the elastically scattered line in the spectra provides the reference to the ground state.

  9. Low-energy d-d excitations in MnO studied by resonant x-ray fluorescence spectroscopy

    International Nuclear Information System (INIS)

    Butorin, S.M.; Guo, J.; Magnuson, M.

    1997-01-01

    Resonant soft X-ray emission spectroscopy has been demonstrated to possess interesting abilities for studies of electronic structure in various systems, such as symmetry probing, alignment and polarization dependence, sensitivity to channel interference, etc. In the present abstract the authors focus on the feasibility of resonant soft X-ray emission to probe low energy excitations by means of resonant electronic X-ray Raman scattering. Resonant X-ray emission can be regarded as an inelastic scattering process where a system in the ground state is transferred to a low excited state via a virtual core excitation. The energy closeness to a core excitation of the exciting radiation enhances the (generally) low probability for inelastic scattering at these wavelengths. Therefore soft X-ray emission spectroscopy (in resonant electronic Raman mode) can be used to study low energy d-d excitations in transition metal systems. The involvement of the intermediate core state allows one to use the selection rules of X-ray emission, and the appearance of the elastically scattered line in the spectra provides the reference to the ground state

  10. Mineral distribution in rice: Measurement by Microwave Plasma Atomic Emission Spectroscopy (MP-AES)

    International Nuclear Information System (INIS)

    Ramos, Nerissa C.; Ramos, R.G.A.; Quirit, L.L.; Arcilla, C.A.

    2015-01-01

    Microwave Plasma Atomic Emission Spectroscopy (MP-AES) is a new technology with comparable performance and sensitivity to Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES). Both instrument use plasma as the energy source that produces atomic and ionic emission lines. However, MP-AES uses nitrogen as the plasma gas instead of argon which is an additional expense for ICP-OES. Thus, MP-AES is more economical. This study quantified six essential minerals (Se, Zn, Fe, Cu, Mn and K) in rice using MP-AES. Hot plate digestion was used for sample extraction and the detection limit for each instrument was compared with respect to the requirement for routine analysis in rice. Black, red and non-pigmented rice samples were polished in various intervals to determine the concentration loss of minerals. The polishing time corresponds to the structure of the rice grains such as outer bran layer (0 to 15), inner bran layer (15 to 30), outer endosperm layer (30 to 45), and middle endosperm layer (45 to 60). Results of MP-AES analysis showed that black rice had all essential materials (except K) in high concentration at the outer bran layer. The red and non-pigmented rice samples on the other hand, contained high levels of Se, Zn, Fe, and Mn in the whole bran portion. After 25 seconds, the mineral concentrations remained constant. The concentration of Cu however, gave consistent value in all polishing intervals, hence Cu might be located in the inner endosperm layer. Results also showed that K was uniformly distributed in all samples where 5% loss was consistently observed for every polishing interval. Therefore, the concentration of K was also affected by polishing time. Thus, the new MP-AES technology with comparable performance to ICP-OES is a promising tool for routine analysis in rice. (author)

  11. Mechanical design of the two dimensional beam emission spectroscopy diagnostics on mast

    Energy Technology Data Exchange (ETDEWEB)

    Kiss, Istvan Gabor, E-mail: kiss.istvan.gabor@rmki.kfki.hu [Association EURATOM, KFKI-RMKI, P.O. Box 49, H-1525 Budapest (Hungary); Meszaros, Botond; Dunai, Daniel; Zoletnik, Sandor; Krizsanoczi, Tibor [Association EURATOM, KFKI-RMKI, P.O. Box 49, H-1525 Budapest (Hungary); Field, Anthony R.; Gaffka, Rob [EURATOM/CCFE Fusion Association, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom)

    2011-10-15

    A two dimensional beam emission spectroscopy (BES) system optimized for density turbulence measurements has recently been installed on the MAST tokamak. This system observes the emission of a Deuterium heating beam using a rotatable mirror to view from the plasma centre to the outboard edge (0.7-1.5 m), although the optics is optimized for core region (1.2 m). The beam is imaged onto a 4x8 pixel Avalanche Photodiode (APD) array detector, enabling measurements with 1 MHz bandwidth at photon-flux level of few times 10{sup 11} photons/s. This article will present the mechanical design of MAST BES equipment with special emphasis on its in-vessel components.

  12. Spectroscopy of optically selected BL Lac objects and their γ-ray emission

    Energy Technology Data Exchange (ETDEWEB)

    Sandrinelli, A.; Treves, A.; Farina, E. P.; Landoni, M. [Università degli Studi dell' Insubria, Via Valleggio 11, I-22100 Como (Italy); Falomo, R. [INAF-Osservatorio Astronomico di Padova, Vicolo dell Osservatorio 5, I-35122 Padova (Italy); Foschini, L.; Sbarufatti, B., E-mail: angela.sandrinelli@brera.inaf.it [INAF-Osservatorio Astronomico di Brera, Via Emilio Bianchi 46, I-23807 Merate (Italy)

    2013-12-01

    We present Very Large Telescope optical spectroscopy of nine BL Lac objects of unknown redshift belonging to the list of optically selected radio-loud BL Lac candidates. We explore their spectroscopic properties and possible link with gamma-ray emission. From the new observations we determine the redshifts of four objects from faint emission lines or from absorption features of their host galaxies. In three cases we find narrow intervening absorptions from which a lower limit to the redshift is inferred. For the remaining two featureless sources, lower limits to the redshift are deduced from the absence of spectral lines. A search for γ counterpart emission shows that six out of the nine candidates are Fermi γ-ray emitters and we find two new detections. Our analysis suggests that most of the BL Lac objects still lacking redshift information are most likely located at high redshifts.

  13. Spectroscopy stepping stones

    International Nuclear Information System (INIS)

    Hammer, M.R.; Sturman, B.T.

    2003-01-01

    Determining the elemental composition of samples has long been a basic task of analytical science. Some very powerful and convenient approaches are based on the wavelength-specific absorption or emission of light by gas-phase atoms. Techniques briefly described as examples of analytical atomic spectrometry include atomic emission and absorption spectroscopy, inductively coupled plasma emission and mass spectroscopy and laser induced breakdown spectrometry

  14. End point detection in ion milling processes by sputter-induced optical emission spectroscopy

    International Nuclear Information System (INIS)

    Lu, C.; Dorian, M.; Tabei, M.; Elsea, A.

    1984-01-01

    The characteristic optical emission from the sputtered material during ion milling processes can provide an unambiguous indication of the presence of the specific etched species. By monitoring the intensity of a representative emission line, the etching process can be precisely terminated at an interface. Enhancement of the etching end point is possible by using a dual-channel photodetection system operating in a ratio or difference mode. The installation of the optical detection system to an existing etching chamber has been greatly facilitated by the use of optical fibers. Using a commercial ion milling system, experimental data for a number of etching processes have been obtained. The result demonstrates that sputter-induced optical emission spectroscopy offers many advantages over other techniques in detecting the etching end point of ion milling processes

  15. Observing Solvation Dynamics with Simultaneous Femtosecond X-ray Emission Spectroscopy and X-ray Scattering

    DEFF Research Database (Denmark)

    Haldrup, Kristoffer; Gawelda, Wojciech; Abela, Rafael

    2016-01-01

    and structural changes, and local solvent structural changes are desired. We have studied the intra- and intermolecular dynamics of a model chromophore, aqueous [Fe(bpy)3]2+, with complementary X-ray tools in a single experiment exploiting intense XFEL radiation as a probe. We monitored the ultrafast structural...... rearrangement of the solute with X-ray emission spectroscopy, thus establishing time zero for the ensuing X-ray diffuse scattering analysis. The simultaneously recorded X-ray diffuse scattering atterns reveal slower subpicosecond dynamics triggered by the intramolecular structural dynamics of the photoexcited...

  16. Inductively coupled plasma for atomic emission spectroscopy at the Savannah River Plant

    International Nuclear Information System (INIS)

    Coleman, J.T.

    1986-01-01

    The Savannah River Plant atomic emission spectroscopy laboratory has been in operation for over 30 years. Routine analytical methods and instrumentation are being replaced with current technology. Laboratory renovation will include the installation of contained dual excitation sources (inductively coupled plasma and d-c arc) with a direct reading spectrometer. The instrument will be used to provide impurity analyses of plutonium, uranium, and other nuclear fuel cycle materials

  17. Optical emission spectroscopy of carbon laser plasma ion source

    Science.gov (United States)

    Balki, Oguzhan; Rahman, Md. Mahmudur; Elsayed-Ali, Hani E.

    2018-04-01

    Carbon laser plasma generated by an Nd:YAG laser (wavelength 1064 nm, pulse width 7 ns, fluence 4-52 J cm-2) is studied by optical emission spectroscopy and ion time-of-flight. Up to C4+ ions are detected with the ion flux strongly dependent on the laser fluence. The increase in ion charge with the laser fluence is accompanied by observation of multicharged ion lines in the optical spectra. The time-integrated electron temperature Te is calculated from the Boltzmann plot using the C II lines at 392.0, 426.7, and 588.9 nm. Te is found to increase from ∼0.83 eV for a laser fluence of 22 J cm-2 to ∼0.90 eV for 40 J cm-2. The electron density ne is obtained from the Stark broadened profiles of the C II line at 392 nm and is found to increase from ∼ 2 . 1 × 1017cm-3 for 4 J cm-2 to ∼ 3 . 5 × 1017cm-3 for 40 J cm-2. Applying an external electric field parallel to the expanding plume shows no effect on the line emission intensities. Deconvolution of ion time-of-flight signal with a shifted Maxwell-Boltzmann distribution for each charge state results in an ion temperature Ti ∼4.7 and ∼6.0 eV for 20 and 36 J cm-2, respectively.

  18. Updated Spitzer emission spectroscopy of bright transiting hot Jupiter HD 189733b

    Energy Technology Data Exchange (ETDEWEB)

    Todorov, Kamen O. [Department of Astronomy and Astrophysics, The Pennsylvania State University, University Park, PA 16802 (United States); Deming, Drake [Department of Astronomy, University of Maryland at College Park, College Park, MD 20742 (United States); Burrows, Adam [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States); Grillmair, Carl J., E-mail: todorovk@phys.ethz.ch [Spitzer Science Center, California Institute of Technology, Mail Stop 220-6, Pasadena, CA 91125 (United States)

    2014-12-01

    We analyze all existing secondary eclipse time series spectroscopy of hot Jupiter HD 189733b acquired with the now defunct Spitzer/Infrared Spectrograph (IRS) instrument. We describe the novel approaches we develop to remove the systematic effects and extract accurate secondary eclipse depths as a function of wavelength in order to construct the emission spectrum of the exoplanet. We compare our results with a previous study by Grillmair et al. that did not examine all data sets available to us. We are able to confirm the detection of a water feature near 6 μm claimed by Grillmair et al. We compare the planetary emission spectrum to three model families—based on isothermal atmosphere, gray atmosphere, and two realizations of the complex radiative transfer model by Burrows et al., adopted in Grillmair et al.'s study. While we are able to reject the simple isothermal and gray models based on the data at the 97% level just from the IRS data, these rejections hinge on eclipses measured within a relatively narrow wavelength range, between 5.5 and 7 μm. This underscores the need for observational studies with broad wavelength coverage and high spectral resolution, in order to obtain robust information on exoplanet atmospheres.

  19. Imaging buried organic islands by spatially resolved ballistic electron emission spectroscopy

    International Nuclear Information System (INIS)

    Goh, Kuan Eng J; Bannani, A; Troadec, C

    2008-01-01

    The well-known Au/n-Si(111) Schottky interface is modified by a discontinuous pentacene film (∼1.5 nm thick) and studied using spatially resolved ballistic electron emission spectroscopy (BEES). The pentacene film introduced subtle changes to the interface which cannot be definitively detected by current-voltage measurements or a standard BEES analysis of the barrier height. In contrast, analyzing the BEES results in a dual-parameter (transmission attenuation and barrier height) space allows the effect of the pentacene film on the Au/n-Si(111) interface to be clearly demonstrated. We found that the pentacene film behaves like a tunneling barrier and increases the distribution of local barrier heights with a tendency toward lower values. Our results highlight the potential of the dual-parameter BEES analysis for understanding local interface modification by molecules.

  20. Time resolved optical emission spectroscopy of cross-beam pulsed laser ablation on graphite targets

    International Nuclear Information System (INIS)

    Sangines, R.; Sanchez Ake, C.; Sobral, H.; Villagran-Muniz, M.

    2007-01-01

    Cross-beam pulsed laser ablation with two delayed lasers is performed on two perpendicular graphite targets. The time delay between lasers is varied by up to 5 μs, and physical changes on the second plasma, due to the interaction with the first generated one, are determined by time resolved optical emission spectroscopy

  1. A rapid screening method for heavy metals in biological materials by emission spectroscopy.

    Science.gov (United States)

    Blacklock, E C; Sadler, P A

    1981-06-02

    A semi-quantitative screening method for heavy metals in biological material is described. The metals are complexed with ammonium pyrrolidine dithiocarbamate, sodium diethyl dithiocarbamate and potassium sodium tartrate. The solutions are adjusted to pH 4 and then extracted into chloroform. The chloroform phase is evaporated onto a matrix mixture of lithium fluoride and graphite. The sample is analysed by direct current arc emission spectroscopy using a 3 metre grating spectrograph. The spectra are recorded on a photographic plate. The method is developed on aqueous and spiked samples and then applied to in vivo samples containing toxic levels of heavy metals. Atomic absorption spectroscopy is used to check standard concentrations and to monitor the efficiency of the extraction procedure.

  2. Determination of Metals Present in Textile Dyes Using Laser-Induced Breakdown Spectroscopy and Cross-Validation Using Inductively Coupled Plasma/Atomic Emission Spectroscopy

    Directory of Open Access Journals (Sweden)

    K. Rehan

    2017-01-01

    Full Text Available Laser-induced breakdown spectroscopy (LIBS was used for the quantitative analysis of elements present in textile dyes at ambient pressure via the fundamental mode (1064 nm of a Nd:YAG pulsed laser. Three samples were collected for this purpose. Spectra of textile dyes were acquired using an HR spectrometer (LIBS2000+, Ocean Optics, Inc. having an optical resolution of 0.06 nm in the spectral range of 200 to 720 nm. Toxic metals like Cr, Cu, Fe, Ni, and Zn along with other elements like Al, Mg, Ca, and Na were revealed to exist in the samples. The %-age concentrations of the detected elements were measured by means of standard calibration curve method, intensities of every emission from every species, and calibration-free (CF LIBS approach. Only Sample 3 was found to contain heavy metals like Cr, Cu, and Ni above the prescribed limit. The results using LIBS were found to be in good agreement when compared to outcomes of inductively coupled plasma/atomic emission spectroscopy (ICP/AES.

  3. Nanoscale coupling of photons to vibrational excitation of Ag nanoparticle 2D array studied by scanning tunneling microscope light emission spectroscopy.

    Science.gov (United States)

    Katano, Satoshi; Toma, Koji; Toma, Mana; Tamada, Kaoru; Uehara, Yoichi

    2010-11-28

    Scanning tunneling microscope light emission (STM-LE) spectroscopy has been utilized to elucidate the luminescence phenomena of Ag nanoparticles capped with myristate (myristate-capped AgNP) and 2-methyl-1-propanethiolate (C(4)S-capped AgNP) on the dodecanethiol-precovered Au substrate. The STM imaging revealed that myristate-capped AgNPs form an ordered hexagonal array whereas C(4)S-capped AgNPs show imperfect ordering, indicating that a shorter alkyl chain of C(4)S-capped AgNP is not sufficient to form rigid interdigitation. It should be noted that such a nanoparticle ordering affects the luminescence properties of the Ag nanoparticle. We found that the STM-LE is only detected from the Ag nanoparticles forming the two-dimensional superlattice. This indicates that the STM-LE of the Ag nanoparticle is radiated via the collective excitation of the local surface plasmon resonance (LSPR) spread over the Ag nanoparticles. Note that the STM-LE spectra of the Ag nanoparticles exhibit spike-like peaks superimposed on the broad light emission peak. Using Raman spectroscopy, we concluded that the spike-like structure appearing in the STM-LE spectra is associated with the vibrational excitation of the molecule embedded between Ag nanoparticles.

  4. ZnO Luminescence and scintillation studied via photoexcitation, X-ray excitation, and gamma-induced positron spectroscopy

    Science.gov (United States)

    Ji, J.; Colosimo, A. M.; Anwand, W.; Boatner, L. A.; Wagner, A.; Stepanov, P. S.; Trinh, T. T.; Liedke, M. O.; Krause-Rehberg, R.; Cowan, T. E.; Selim, F. A.

    2016-08-01

    The luminescence and scintillation properties of ZnO single crystals were studied by photoluminescence and X-ray-induced luminescence (XRIL) techniques. XRIL allowed a direct comparison to be made between the near-band emission (NBE) and trap emissions providing insight into the carrier recombination efficiency in the ZnO crystals. It also provided bulk luminescence measurements that were not affected by surface states. The origin of a green emission, the dominant trap emission in ZnO, was then investigated by gamma-induced positron spectroscopy (GIPS) - a unique defect spectroscopy method that enables positron lifetime measurements to be made for a sample without contributions from positron annihilation in the source materials. The measurements showed a single positron decay curve with a 175 ps lifetime component that was attributed to Zn vacancies passivated by hydrogen. Both oxygen vacancies and hydrogen-decorated Zn vacancies were suggested to contribute to the green emission. By combining scintillation measurements with XRIL, the fast scintillation in ZnO crystals was found to be strongly correlated with the ratio between the defect luminescence and NBE. This study reports the first application of GIPS to semiconductors, and it reveals the great benefits of the XRIL technique for the study of emission and scintillation properties of materials.

  5. Determination of heavy metals in solid emission and immission samples using atomic absorption spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Fara, M.; Novak, F. [EGU Prague, PLC, Bichovice, Prague (Czechoslovakia)

    1995-12-01

    Both flame and electrothermal methods of atomic absorption spectroscopy (AAS) have been applied to the determination of Al, As, Be, Ca, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, TI, Se, V and Zn in emission and emission (deposition) samples decomposed in open PTFE test-tubes by individual fuming-off hydrofluoric, perchloroic and nitric acid. An alternative hydride technique was also used for As and Se determination and Hg was determined using a self-contained AAS analyzer. A graphite platform proved good to overcome non-spectral interferences in AAS-ETA. Methods developed were verified by reference materials (inc. NBS 1633a).

  6. Soil humic-like organic compounds in prescribed fire emissions using nuclear magnetic resonance spectroscopy

    International Nuclear Information System (INIS)

    Chalbot, M.-C.; Nikolich, G.; Etyemezian, V.; Dubois, D.W.; King, J.; Shafer, D.; Gamboa da Costa, G.; Hinton, J.F.; Kavouras, I.G.

    2013-01-01

    Here we present the chemical characterization of the water-soluble organic carbon fraction of atmospheric aerosol collected during a prescribed fire burn in relation to soil organic matter and biomass combustion. Using nuclear magnetic resonance spectroscopy, we observed that humic-like substances in fire emissions have been associated with soil organic matter rather than biomass. Using a chemical mass balance model, we estimated that soil organic matter may contribute up to 41% of organic hydrogen and up to 27% of water-soluble organic carbon in fire emissions. Dust particles, when mixed with fresh combustion emissions, substantially enhances the atmospheric oxidative capacity, particle formation and microphysical properties of clouds influencing the climatic responses of atmospheric aeroso. Owing to the large emissions of combustion aerosol during fires, the release of dust particles from soil surfaces that are subjected to intense heating and shear stress has, so far, been lacking. -- Highlights: •We characterized the water-soluble organic carbon (WSOC) of fire emissions by NMR. •Distinct patterns were observed for soil dust and vegetation combustion emissions. •Soil organic matter accounted for most of WSOC in early prescribed burn emissions. -- Humic-like soil organic matter may be an important component of particulate emissions in the early stages of wildfires

  7. Elemental analysis of halogens using molecular emission by laser-induced breakdown spectroscopy in air

    Energy Technology Data Exchange (ETDEWEB)

    Gaft, M.; Nagli, L.; Eliezer, N.; Groisman, Y. [Laser Distance Spectrometry, 9 Mota Gur St., Petah Tikva 49514 (Israel); Forni, O. [Université de Toulouse, UPS-OMP, IRAP, Toulouse (France); CNRS, IRAP, 9 Av. Colonel Roche, BP 44346, F-31028 Toulouse cedex 4 (France)

    2014-08-01

    Fluorine and chlorine do not produce atomic and ionic line spectra of sufficient intensity to permit their detection by laser-induced breakdown spectroscopy. They do, however, combine with alkali-earths and other elements to form molecules whose spectra may be easily identified, enabling detection in ambient conditions with much higher sensitivity than using F I and Cl I atomic lines. - Highlights: • We studied laser induced breakdown spectra of halogens with alkali-earth elements. • Emission and temporal behavior of CaF and CaCl molecules were determined. • Sensitivity of F and Cl detection by molecules and atoms was compared.

  8. X-ray absorption and X-ray emission spectroscopy theory and applications

    CERN Document Server

    Lamberti, Carlo

    2016-01-01

    During the last two decades, remarkable and often spectacular progress has been made in the methodological and instrumental aspects of x–ray absorption and emission spectroscopy. This progress includes considerable technological improvements in the design and production of detectors especially with the development and expansion of large-scale synchrotron reactors All this has resulted in improved analytical performance and new applications, as well as in the perspective of a dramatic enhancement in the potential of x–ray based analysis techniques for the near future. This comprehensive two-volume treatise features articles that explain the phenomena and describe examples of X–ray absorption and emission applications in several fields, including chemistry, biochemistry, catalysis, amorphous and liquid systems, synchrotron radiation, and surface phenomena. Contributors explain the underlying theory, how to set up X–ray absorption experiments, and how to analyze the details of the resulting spectra. X-R...

  9. Vibrational emission analysis of the CN molecules in laser-induced breakdown spectroscopy of organic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Fernández-Bravo, Ángel; Delgado, Tomás; Lucena, Patricia; Laserna, J. Javier, E-mail: laserna@uma.es

    2013-11-01

    Laser-induced breakdown spectroscopy (LIBS) of organic materials is based on the analysis of atomic and ionic emission lines and on a few molecular bands, the most important being the CN violet system and the C{sub 2} Swan system. This paper is focused in molecular emission of LIBS plasmas based on the CN (B{sup 2}Σ–X{sup 2}Σ) band, one of the strongest emissions appearing in all carbon materials when analyzed in air atmosphere. An analysis of this band with sufficient spectral resolution provides a great deal of information on the molecule, which has revealed that valuable information can be obtained from the plume chemistry and dynamics affecting the excitation mechanisms of the molecules. The vibrational emission of this molecular band has been investigated to establish the dependence of this emission on the molecular structure of the materials. The paper shows that excitation/emission phenomena of molecular species observed in the plume depend strongly on the time interval selected and on the irradiance deposited on the sample surface. Precise time resolved LIBS measurements are needed for the observation of distinctive CN emission. For the organic compounds studied, larger differences in the behavior of the vibrational emission occur at early stages after plasma ignition. Since molecular emission is generally more complex than that involving atomic emission, local plasma conditions as well as plume chemistry may induce changes in vibrational emission of molecules. As a consequence, alterations in the distribution of the emissions occur in terms of relative intensities, being sensitive to the molecular structure of every single material. - Highlights: • Vibrational emission of CN species in laser-induced plasmas has been investigated. • Distribution of vibrational emission of CN has been found to be time dependent. • Laser irradiance affects the vibrational distribution of the CN molecules. • Plume chemistry controls the excitation mechanisms of CN

  10. Light emitting diode excitation emission matrix fluorescence spectroscopy.

    Science.gov (United States)

    Hart, Sean J; JiJi, Renée D

    2002-12-01

    An excitation emission matrix (EEM) fluorescence instrument has been developed using a linear array of light emitting diodes (LED). The wavelengths covered extend from the upper UV through the visible spectrum: 370-640 nm. Using an LED array to excite fluorescence emission at multiple excitation wavelengths is a low-cost alternative to an expensive high power lamp and imaging spectrograph. The LED-EEM system is a departure from other EEM spectroscopy systems in that LEDs often have broad excitation ranges which may overlap with neighboring channels. The LED array can be considered a hybrid between a spectroscopic and sensor system, as the broad LED excitation range produces a partially selective optical measurement. The instrument has been tested and characterized using fluorescent dyes: limits of detection (LOD) for 9,10-bis(phenylethynyl)-anthracene and rhodamine B were in the mid parts-per-trillion range; detection limits for the other compounds were in the low parts-per-billion range (LED-EEMs were analyzed using parallel factor analysis (PARAFAC), which allowed the mathematical resolution of the individual contributions of the mono- and dianion fluorescein tautomers a priori. Correct identification and quantitation of six fluorescent dyes in two to six component mixtures (concentrations between 12.5 and 500 ppb) has been achieved with root mean squared errors of prediction (RMSEP) of less than 4.0 ppb for all components.

  11. Determination of rare earth elements in aluminum by inductively coupled plasma-atomic emission spectroscopy

    International Nuclear Information System (INIS)

    Mahanti, H.S.; Barnes, R.M.

    1983-01-01

    Inductively coupled plasma-atomic emission spectroscopy is evaluated for the determination of 14 rare earth elements in aluminum. Spectral line interference, limit of detection, and background equivalent concentration values are evaluated, and quantitative recovery is obtained from aluminum samples spiked with rare earth elements. The procedure is simple and suitable for routine process control analysis. 20 references, 5 tables

  12. Optical emission spectroscopy during fabrication of indium-tin-oxynitride films by RF-sputtering

    International Nuclear Information System (INIS)

    Koufaki, M.; Sifakis, M.; Iliopoulos, E.; Pelekanos, N.; Modreanu, M.; Cimalla, V.; Ecke, G.; Aperathitis, E.

    2006-01-01

    Indium-tin-oxide (ITO) and indium-tin-oxynitride (ITON) films have been deposited on glass by rf-sputtering from an ITO target, using Ar plasma and N 2 plasma, respectively, and different rf-power. Optical emission spectroscopy (OES) was employed to identify the species present in the plasma and to correlate them with the properties of the ITO and ITON thin films. Emission lines of ionic In could only be detected in N 2 plasma, whereas in the Ar plasma additional lines corresponding to atomic In and InO, were detected. The deposition rate of thin films was correlated with the In species, rather than the nitrogen species, emission intensity in the plasma. The higher resistivity and lower carrier concentration of the ITON films, as compared to the respective properties of the ITO films, were attributed to the incorporation of nitrogen, instead of oxygen, in the ITON structure

  13. 'Beam-emission spectroscopy' diagnostics also measure edge fast-ion light

    International Nuclear Information System (INIS)

    Heidbrink, W W; Bortolon, A; McKee, G R; Smith, D R

    2011-01-01

    Beam-emission spectroscopy (BES) diagnostics normally detect fluctuations in the light emitted by an injected neutral beam. Under some circumstances, however, light from fast ions that charge exchange in the high neutral-density region at the edge of the plasma make appreciable contributions to the BES signals. This 'passive' fast-ion D α (FIDA) light appears in BES signals from both the DIII-D tokamak and the National Spherical Torus Experiment (NSTX). One type of passive FIDA light is associated with classical orbits that traverse the edge. Another type is caused by instabilities that expel fast ions from the core; this light can complicate measurement of the instability eigenfunction.

  14. Analysis of bauxite by inductively coupled plasma-atomic emission spectroscopy

    Science.gov (United States)

    Barnes, Ramon M.; Mahanti, Himansu S.

    Methods are described for the analysis of bauxite by inductively coupled plasma (ICP) emission spectroscopy. Bauxite samples were dissolved either in HCl, HNO 3, and HF at 160°C in all-PTFE bomb or fused with NaOH. Spectral lines were selected after examination of experimental wavelength scans at each potential analyte wavelength. Limits of detection, background equivalent concentration, and analytical figures of merit were established. The accuracy of the method was confirmed by determining 17 elements in NBS-SRM bauxite samples. Silicon in HF solutions was analyzed using a modified ICP torch with a graphite injector tube, an inert nebulizer using PTFE capillary tubes, and a PTFE spray chamber.

  15. Diagnosis of the local thermal equilibrium by optical emission spectroscopy in the evolution of electric discharge

    International Nuclear Information System (INIS)

    Valdivia B, R.; Pacheco S, J.; Pacheco P, M.; Ramos F, F.; Cruz A, A.; Velazquez P, S.

    2008-01-01

    In this work applies the technique of optical emission spectroscopy to diagnose the temperature of the species generated in plasma in the transition to glow discharge arc. Whit this diagnosis is possible to determine the local thermal equilibrium conditions of the discharge. (Author)

  16. Influences on the Emissions of Bacterial Plasmas Generated through Nanosecond Laser-Induced Breakdown Spectroscopy

    Science.gov (United States)

    Malenfant, Dylan J.

    In the past decade, laser-induced breakdown spectroscopy has been shown to provide compositional data that can be used for discrimination between bacterial specimens at the strain level. This work demonstrates the viability of this technique in a clinical setting. Studies were conducted to investigate the impact of emissions generated by a nitrocellulose filter paper background on the classification of four species: E. coli, S. epidermidis, M. smegmatis, and P. aeruginosa. Limits of detection were determined as 48+/-12 kCFU per ablation event for new mounting procedures using standard diagnostic laboratory techniques, and a device for centrifuge filtration was designed for sampling from low-titer bacterial suspensions. Plasma emissions from samples grown at biological levels of magnesium, zinc, and glucose were shown not to deviate from controls. A limit of detection for environmental zinc was found to be 11 ppm. Discrimination with heat-killed samples was demonstrated, providing a sterile diagnostic environment.

  17. Bayesian modelling of the emission spectrum of the Joint European Torus Lithium Beam Emission Spectroscopy system.

    Science.gov (United States)

    Kwak, Sehyun; Svensson, J; Brix, M; Ghim, Y-C

    2016-02-01

    A Bayesian model of the emission spectrum of the JET lithium beam has been developed to infer the intensity of the Li I (2p-2s) line radiation and associated uncertainties. The detected spectrum for each channel of the lithium beam emission spectroscopy system is here modelled by a single Li line modified by an instrumental function, Bremsstrahlung background, instrumental offset, and interference filter curve. Both the instrumental function and the interference filter curve are modelled with non-parametric Gaussian processes. All free parameters of the model, the intensities of the Li line, Bremsstrahlung background, and instrumental offset, are inferred using Bayesian probability theory with a Gaussian likelihood for photon statistics and electronic background noise. The prior distributions of the free parameters are chosen as Gaussians. Given these assumptions, the intensity of the Li line and corresponding uncertainties are analytically available using a Bayesian linear inversion technique. The proposed approach makes it possible to extract the intensity of Li line without doing a separate background subtraction through modulation of the Li beam.

  18. Fluorescence excitation-emission matrix spectroscopy of vitiligo skin in vivo (Conference Presentation)

    Science.gov (United States)

    Zhao, Jianhua; Richer, Vincent; Al Jasser, Mohammed; Zandi, Soodabeh; Kollias, Nikiforos; Kalia, Sunil; Zeng, Haishan; Lui, Harvey

    2016-02-01

    Fluorescence signals depend on the intensity of the exciting light, the absorption properties of the constituent molecules, and the efficiency with which the absorbed photons are converted to fluorescence emission. The optical features and appearance of vitiligo have been explained primarily on the basis of reduced epidermal pigmentation, which results in abnormal white patches on the skin. The objective of this study is to explore the fluorescence properties of vitiligo and its adjacent normal skin using fluorescence excitation-emission matrix (EEM) spectroscopy. Thirty five (35) volunteers with vitiligo were acquired using a double-grating spectrofluorometer with excitation and emission wavelengths of 260-450 nm and 300-700 nm respectively. As expected, the most pronounced difference between the spectra obtained from vitiligo lesions compared to normally pigmented skin was that the overall fluorescence was much higher in vitiligo; these differences increased at shorter wavelengths, thus matching the characteristic spectral absorption of epidermal melanin. When comparing the fluorescence spectra from vitiligo to normal skin we detected three distinct spectral bands centered at 280nm, 310nm, and 335nm. The 280nm band may possibly be related to inflammation, whereas the 335 nm band may arise from collagen or keratin cross links. The source of the 310 nm band is uncertain; it is interesting to note its proximity to the 311 nm UV lamps used for vitiligo phototherapy. These differences are accounted for not only by changes in epidermal pigment content, but also by other optically active cutaneous biomolecules.

  19. Programs in Fortran language for reporting the results of the analyses by ICP emission spectroscopy

    International Nuclear Information System (INIS)

    Roca, M.

    1985-01-01

    Three programs, written in FORTRAN IV language, for reporting the results of the analyses by ICP emission spectroscopy from data stored in files on floppy disks have been developed. They are intended, respectively, for the analyses of: 1) waters, 2) granites and slates, and 3) different kinds of geological materials. (Author) 8 refs

  20. Application of spectroscopy and positron annihilation methods in studies of the gel-glasses materials

    International Nuclear Information System (INIS)

    Legendziewicz, J.; Guzik, M.; Glinski, J.; Jerie, K.; Baranowski, A.; Kochel, A.

    2008-01-01

    The results of optical spectroscopy (absorption and emission) and positron annihilation investigations of glasses are presented and discussed. The alcoholic sol-gel method was adapted for the incorporation of Ln(III) into silica gel network and the resulting gels were prepared with chlorides of selected lanthanides (cerium, praseodymium, europium, ytterbium) and with or without some addition of ethylene glycol. During the sol-gel process, a new type of compound with general formula of C 12 H 24 Cl 3 O 12 Pr 2 , 3(Cl) was crystallized. Its crystal structure was determined by X-ray diffraction studies what helps understanding the silica network structure. Measurements of absorption, emission and emission excitation spectra were carried out at 4 and 293 K. The optical properties of gels were compared with the spectroscopic data of C 12 H 24 Cl 3 O 12 Pr 2 , 3(Cl) single crystal. The experimental results of positron annihilation investigations were correlated with those from optical spectroscopy

  1. Admittance spectroscopy or deep level transient spectroscopy: A contrasting juxtaposition

    Science.gov (United States)

    Bollmann, Joachim; Venter, Andre

    2018-04-01

    A comprehensive understanding of defects in semiconductors remains of primary importance. In this paper the effectiveness of two of the most commonly used semiconductor defect spectroscopy techniques, viz. deep level transient spectroscopy (DLTS) and admittance spectroscopy (AS) are reviewed. The analysis of defects present in commercially available SiC diodes shows that admittance spectroscopy allows the identification of deep traps with reduced measurement effort compared to deep Level Transient Spectroscopy (DLTS). Besides the N-donor, well-studied intrinsic defects were detected in these diodes. Determination of their activation energy and defect density, using the two techniques, confirm that the sensitivity of AS is comparable to that of DLTS while, due to its well defined peak shape, the spectroscopic resolution is superior. Additionally, admittance spectroscopy can analyze faster emission processes which make the study of shallow defects more practical and even that of shallow dopant levels, possible. A comparative summary for the relevant spectroscopic features of the two capacitance methods are presented.

  2. Emission study of alumina plasma produced by a KrF laser

    Energy Technology Data Exchange (ETDEWEB)

    Yahiaoui, K., E-mail: kyahiaoui@cdta.dz [Centre de Développement des Technologies Avancées, cité 20 aout 1956, BP 17, Baba Hassen, Alger (Algeria); Abdelli-Messaci, S.; Messaoud-Aberkane, S.; Kerdja, T. [Centre de Développement des Technologies Avancées, cité 20 aout 1956, BP 17, Baba Hassen, Alger (Algeria); Kellou, H. [Université des Sciences et de la Technologie Houari Boumediene, BP 32, El-Allia, 16111 Bab-Ezzouar, Alger (Algeria)

    2014-03-01

    We report on the plasma emission formed from an α-alumina target when irradiated by laser into vacuum and through oxygen gas. Two diagnostic tools have been used: ICCD camera fast imaging and optical emission spectroscopy. The alumina plasma was induced by a KrF laser beam at a wavelength of 248 nm and pulse duration of 25 ns. The laser fluence was set to 8 J/cm{sup 2} and the oxygen pressure was varied from 0.01 to 5 mbar. By using the ICCD camera, two dimensional images of the plasma expansion were taken at different times. Depending on oxygen pressure and time delay, the expansion behavior of the plasma showed free expansion, plume splitting, shock wave formation, hydrodynamic instability and deceleration of the plume. Using optical emission spectroscopy, the plasma emission revealed the presence of neutral Al I, Al II, Al III into vacuum and under oxygen ambiance. The molecular emission of aluminum oxide (AlO) was detected only in oxygen ambiance. It should be noted that no oxygen lines were observed. Finally, the evolution of the electronic temperature along the normal axis from the target surface, into vacuum, was estimated using the Boltzmann plot method. - Highlights: • Ablated mass measurements of α-alumina target irradiated by a laser in nanosecond regime. • Optical emission spectroscopy of alumina plasma. • Fast imaging diagnostic of alumina plume using ICCD camera.

  3. Atom spectroscopy

    International Nuclear Information System (INIS)

    Kodling, K.

    1981-01-01

    Experiments on atom photoabsorption spectroscopy using synchrotron radiation in the 10-1000 eV range are reviewed. Properties of the necessary synchrotron radiation and the experiment on absorption spectroscopy are briefly described. Comparison with other spectroscopy methods is conducted. Some data on measuring photoabsorption, photoelectron emission and atom mass spectra are presented [ru

  4. Evaluation of Optical Depths and Self-Absorption of Strontium and Aluminum Emission Lines in Laser-Induced Breakdown Spectroscopy (LIBS).

    Science.gov (United States)

    Alfarraj, Bader A; Bhatt, Chet R; Yueh, Fang Yu; Singh, Jagdish P

    2017-04-01

    Laser-induced breakdown spectroscopy (LIBS) is a widely used laser spectroscopic technique in various fields, such as material science, forensic science, biological science, and the chemical and pharmaceutical industries. In most LIBS work, the analysis is performed using radiative transitions from atomic emissions. In this study, the plasma temperature and the product [Formula: see text] (the number density N and the absorption path length [Formula: see text]) were determined to evaluate the optical depths and the self-absorption of Sr and Al lines. A binary mixture of strontium nitrate and aluminum oxide was used as a sample, consisting of variety of different concentrations in powder form. Laser-induced breakdown spectroscopy spectra were collected by varying various parameters, such as laser energy, gate delay time, and gate width time to optimize the LIBS signals. Atomic emission from Sr and Al lines, as observed in the LIBS spectra of different sample compositions, was used to characterize the laser induced plasma and evaluate the optical depths and self-absorption of LIBS.

  5. Remote Monitoring of a Multi-Component Liquid-Phase Organic Synthesis by Infrared Emission Spectroscopy: The Recovery of Pure Component Emissivities by Band-Target Entropy Minimization

    Czech Academy of Sciences Publication Activity Database

    Cheng, S.; Tjahjono, M.; Rajarathnam, D.; Chuanzhao, L.; Lyapkalo, Ilya; Chen, D.; Garland, M.

    2007-01-01

    Roč. 61, č. 10 (2007), s. 1057-1062 ISSN 0003-7028 Institutional research plan: CEZ:AV0Z40550506 Keywords : infrared emission spectroscopy * liquid phase reaction * band-target entropy minimization * BTEM * emittance Subject RIV: CC - Organic Chemistry Impact factor: 1.902, year: 2007

  6. A study of internal oxidation in carburized steels by glow discharge optical emission spectroscopy and scanning electron microscopy

    International Nuclear Information System (INIS)

    An, X; Cawley, J.; Rainforth, W.M.; Chen, L.

    2003-01-01

    The internal oxidation of Cr-Mn carburizing steel was studied. Internal oxidation was induced using a commercial carburizing process. Sputter erosion coupled with glow discharge optical emission spectroscopy (GDOES) was used to determine the depth profile elemental distribution within the internal oxidation layer (<10 μm). In addition, scanning electron microscopy (SEM) equipped with energy dispersive spectrometer (EDS) studies were carried out on selected sputter eroded surfaces. Oxide type was identified primarily by transmission electron microscopy (TEM). The carburized surface was found to consist of a continuous oxide layer, followed by a complex internal oxidation layer, where Cr and Mn oxides were found to populate grain boundaries in a globular form in the near surface region. At greater depths (5-10 μm), Si oxides formed as a grain boundary network. The internal oxides (mainly complex oxides) grew quickly during the initial stages of the carburizing process (2 h, 800 deg. C+3 h, 930 deg. C). GDOES proved to be an excellent tool for the quantification of oxidation and element distribution as a function of depth, particularly when combined with SEM and TEM to identify oxide type and morphology

  7. Holographic interferometry as electrochemical emission spectroscopy of carbon steel in seawater with low concentration of RA-41 corrosion inhibitor

    International Nuclear Information System (INIS)

    Habib, K.; Al-Muhana, K.; Habib, A.

    2009-01-01

    In the present investigation, holographic interferometry was utilized for the first time to determine the rate change of the number of the fringe evolutions during the corrosion test of carbon steel in blank seawater and with seawater with different concentrations of a corrosion inhibitor. In other words, the anodic dissolution behaviors (corrosion) of the carbon steel were determined simultaneously by holographic interferometry, an electromagnetic method, and by the electrochemical impedance (EI) spectroscopy, an electronic method. So, the abrupt rate change of the number of the fringe evolutions during corrosion test (EI) spectroscopy, of the carbon steel is called electrochemical emission spectroscopy. The corrosion process of the steel samples was carried out in blank seawater and seawater with different concentrations, 5-20 ppm, of RA-41 corrosion inhibitor using the EI spectroscopy method, at room temperature. The electrochemical emission spectra of the carbon steel in different solutions represent a detailed picture of the rate change of the anodic dissolution of the steel throughout the corrosion processes. Furthermore, the optical interferometry data of the carbon steel were compared to the data, which were obtained from the EI spectroscopy. Consequently, holographic interferometric is found very useful for monitoring the anodic dissolution behaviors of metals, in which the number of the fringe evolutions of the steel samples can be determined in situ. (Author)

  8. The relationship between gasoline composition and vehicle hydrocarbon emissions: a review of current studies and future research needs.

    Science.gov (United States)

    Schuetzle, D; Siegl, W O; Jensen, T E; Dearth, M A; Kaiser, E W; Gorse, R; Kreucher, W; Kulik, E

    1994-10-01

    The purpose of this paper is to review current studies concerning the relationship of fuel composition to vehicle engine-out and tail-pipe emissions and to outline future research needed in this area. A number of recent combustion experiments and vehicle studies demonstrated that reformulated gasoline can reduce vehicle engine-out, tail-pipe, running-loss, and evaporative emissions. Some of these studies were extended to understand the fundamental relationships between fuel composition and emissions. To further establish these relationships, it was necessary to develop advanced analytical methods for the qualitative and quantitative analysis of hydrocarbons in fuels and vehicle emissions. The development of real-time techniques such as Fourier transform infrared spectroscopy, laser diode spectroscopy, and atmospheric pressure ionization mass spectrometry were useful in studying the transient behavior of exhaust emissions under various engine operating conditions. Laboratory studies using specific fuels and fuel blends were carried out using pulse flame combustors, single- and multicylinder engines, and vehicle fleets. Chemometric statistical methods were used to analyze the large volumes of emissions data generated from these studies. Models were developed that were able to accurately predict tail-pipe emissions from fuel chemical and physical compositional data. Some of the primary fuel precursors for benzene, 1,3-butadiene, formaldehyde, acetaldehyde and C2-C4 alkene emissions are described. These studies demonstrated that there is a strong relationship between gasoline composition and tail-pipe emissions.

  9. Studying the Interstellar Medium of H II/BCD Galaxies Using IFU Spectroscopy

    Directory of Open Access Journals (Sweden)

    Patricio Lagos

    2013-01-01

    Full Text Available We review the results from our studies, and previous published work, on the spatially resolved physical properties of a sample of H ii/BCD galaxies, as obtained mainly from integral-field unit spectroscopy with Gemini/GMOS and VLT/VIMOS. We confirm that, within observational uncertainties, our sample galaxies show nearly spatially constant chemical abundances similar to other low-mass starburst galaxies. They also show He ii  λ4686 emission with the properties being suggestive of a mix of excitation sources and with Wolf-Rayet stars being excluded as the primary ones. Finally, in this contribution, we include a list of all H ii/BCD galaxies studied thus far with integral-field unit spectroscopy.

  10. Inductively coupled plasma-atomic emission spectroscopy

    International Nuclear Information System (INIS)

    Winge, R.K.; Fassel, V.A.; Peterson, V.J.; Floyd, M.A.

    1985-01-01

    This atlas of inductively coupled plasma-atomic emission spectroscopy records the spectra of the elements in a way that would reveal the general nature of the spectra, in all their simplicity or complexity; and offers a definitive summary of the most prominent spectral lines of the elements, i.e., those most likely to be useful for the determination of trace and ultratrace concentrations; it provides reliable estimates, based on the recorded experimental spectra, of the powers of detection of the listed prominent lines; and assesses the very important problem of spectral interferences. The atlas is composed of three main sections. Part I is concerned with the historical aspects of compilations of spectral information. Part II is based on 232 wavelength scans of 70 elements. Each of the wavelength scans covers an 80 nm spectral region. These scans allow a rapid comparison of the background and spectral line intensities emitted in the ICP and provide a ready means for identification of the most prominent lines of each element and for estimation of the trace element analytical capabilities of these lines. A listing of 973 prominent lines with associated detection limits is also presented. Part III addresses the problem of spectral interferences. On this topic a detailed collection of coincidence profiles is presented for 281 of the most prominent lines, each with profiles of ten of the most prevalent concomitants superimposed. (Auth.)

  11. Optical emission spectroscopy of metal vapor dominated laser-arc hybrid welding plasma

    International Nuclear Information System (INIS)

    Ribic, B.; DebRoy, T.; Burgardt, P.

    2011-01-01

    During laser-arc hybrid welding, plasma properties affect the welding process and the weld quality. However, hybrid welding plasmas have not been systematically studied. Here we examine electron temperatures, species densities, and electrical conductivity for laser, arc, and laser-arc hybrid welding using optical emission spectroscopy. The effects of arc currents and heat source separation distances were examined because these parameters significantly affect weld quality. Time-average plasma electron temperatures, electron and ion densities, electrical conductivity, and arc stability decrease with increasing heat source separation distance during hybrid welding. Heat source separation distance affects these properties more significantly than the arc current within the range of currents considered. Improved arc stability and higher electrical conductivity of the hybrid welding plasma result from increased heat flux, electron temperatures, electron density, and metal vapor concentrations relative to arc or laser welding.

  12. Application of optical emission spectroscopy to high current proton sources

    International Nuclear Information System (INIS)

    Castro, G; Mazzaglia, M; Nicolosi, D; Mascali, D; Reitano, R; Celona, L; Leonardi, O; Leone, F; Naselli, E; Neri, L; Torrisi, G; Gammino, S; Zaniol, B

    2017-01-01

    Optical Emission Spectroscopy (OES) represents a very reliable technique to carry out non-invasive measurements of plasma density and plasma temperature in the range of tens of eV. With respect to other diagnostics, it also can characterize the different populations of neutrals and ionized particles constituting the plasma. At INFN-LNS, OES techniques have been developed and applied to characterize the plasma generated by the Flexible Plasma Trap, an ion source used as 'testbench' of the proton source built for European Spallation Source. This work presents the characterization of the parameters of a hydrogen plasma in different conditions of neutral pressure, microwave power and magnetic field profile, along with perspectives for further upgrades of the OES diagnostics system. (paper)

  13. LASER ABLATION-INDUCTIVELY COUPLED PLASMA-ATOMIC EMISSION SPECTROSCOPY STUDY AT THE 222-S LABORATORY USING HOT-CELL GLOVE BOX PROTOTYPE SYSTEM

    International Nuclear Information System (INIS)

    Lockrem, L.L.; Owens, J.W.; Seidel, C.M.

    2009-01-01

    This report describes the installation, testing and acceptance of the Waste Treatment and Immobilization Plant procured laser ablation-inductively coupled plasma-atomic emission spectroscopy (LA-ICP-AES) system for remotely analyzing high-level waste samples in a hot cell environment. The 2005-003; ATS MP 1027, Management Plan for Waste Treatment Plant Project Work Performed by Analytical Technical Services. The APD group at the 222-S laboratory demonstrated acceptable turnaround time (TAT) and provide sufficient data to assess sensitivity, accuracy, and precision of the LA-ICP-AES method

  14. Emission Spectroscopy and Radiometric Measurements in the NASA Ames IHF Arc Jet Facility

    Science.gov (United States)

    Winter, Michael W.; Raiche, George A.; Prabhu, Dinesh K.

    2012-01-01

    Plasma diagnostic measurement campaigns in the NASA Ames Interaction Heating Facility (IHF) have been conducted over the last several years with a view towards characterizing the flow in the arc jet facility by providing data necessary for modeling and simulation. Optical emission spectroscopy has been used in the plenum and in the free jet of the nozzle. Radiation incident over a probe surface has also been measured using radiometry. Plenum measurements have shown distinct radial profiles of temperature over a range of operating conditions. For cases where large amounts of cold air are added radially to the main arc-heated stream, the temperature profiles are higher by as much as 1500 K than the profiles assumed in flow simulations. Optical measurements perpendicular to the flow direction in the free jet showed significant contributions to the molecule emission through inverse pre-dissociation, thus allowing determination of atom number densities from molecular emission. This has been preliminarily demonstrated with the N2 1st Positive System. Despite the use of older rate coefficients, the resulting atom densities are reasonable and surprisingly close to flow predictions.

  15. Status of electron temperature and density measurement with beam emission spectroscopy on thermal helium at TEXTOR

    NARCIS (Netherlands)

    Schmitz, O.; Beigman, I. L.; Vainshtein, L. A.; Schweer, B.; Kantor, M.; Pospieszczyk, A.; Xu, Y.; Krychowiak, M.; Lehnen, M.; Samm, U.; Unterberg, B.

    2008-01-01

    Beam emission spectroscopy on thermal helium is used at the TEXTOR tokamak as a reliable method to obtain radial profiles of electron temperature T-e(r, t) and electron density ne(r, t). In this paper the experimental realization of this method at TEXTOR and the status of the atomic physics employed

  16. Thermal Infrared Emission Spectroscopy of Synthetic Allophane and its Potential Formation on Mars

    Science.gov (United States)

    Rampe, E. B.; Kraft, M. D.; Sharp, T. G.; Golden, D. C.; Ming, Douglas W.

    2010-01-01

    Allophane is a poorly-crystalline, hydrous aluminosilicate with variable Si/Al ratios approx.0.5-1 and a metastable precursor of clay minerals. On Earth, it forms rapidly by aqueous alteration of volcanic glass under neutral to slightly acidic conditions [1]. Based on in situ chemical measurements and the identification of alteration phases [2-4], the Martian surface is interpreted to have been chemically weathered on local to regional scales. Chemical models of altered surfaces detected by the Mars Exploration Rover Spirit in Gusev crater suggest the presence of an allophane-like alteration product [3]. Thermal infrared (TIR) spectroscopy and spectral deconvolution models are primary tools for determining the mineralogy of the Martian surface [5]. Spectral models of data from the Thermal Emission Spectrometer (TES) indicate a global compositional dichotomy, where high latitudes tend to be enriched in a high-silica material [6,7], interpreted as high-silica, K-rich volcanic glass [6,8]. However, later interpretations proposed that the high-silica material may be an alteration product (such as amorphous silica, clay minerals, or allophane) and that high latitude surfaces are chemically weathered [9-11]. A TIR spectral library of pure minerals is available for the public [12], but it does not contain allophane spectra. The identification of allophane on the Martian surface would indicate high water activity at the time of its formation and would help constrain the aqueous alteration environment [13,14]. The addition of allophane to the spectral library is necessary to address the global compositional dichotomy. In this study, we characterize a synthetic allophane by IR spectroscopy, X-ray diffraction (XRD), and transmission electron microscopy (TEM) to create an IR emission spectrum of pure allophane for the Mars science community to use in Martian spectral models.

  17. Efficient cold cathode emission in crystalline-amorphous hybrid: Study on carbon nanotube-cadmium selenide system

    Science.gov (United States)

    Sarkar, S.; Banerjee, D.; Das, N. S.; Ghorai, U. K.; Sen, D.; Chattopadhyay, K. K.

    2018-03-01

    Cadmium Selenide (CdSe) quantum dot (QD) decorated amorphous carbon nanotubes (a-CNTs) hybrids have been synthesized by simple chemical process. The samples were characterized by field emission scanning and transmission electron microscopy, Fourier transformed infrared spectroscopy, Raman and UV-Vis spectroscopy. Lattice image obtained from transmission electron microscopic study confirms the successful attachment of CdSe QDs. It is seen that hybrid samples show an enhanced cold emission properties with good stability. The results have been explained in terms of increased roughness, more numbers of emitting sites and favorable band bending induced electron transport. ANSYS software based calculation has also supported the result. Also a first principle based study has been done which shows that due to the formation of hybrid structure there is a profound upward shift in the Fermi level, i.e. a decrease of work function, which is believed to be another key reason for the observed improved field emission performance.

  18. CN emission spectroscopy study of carbon plasma in nitrogen environment

    International Nuclear Information System (INIS)

    Abdelli-Messaci, S.; Kerdja, T.; Bendib, A.; Malek, S.

    2005-01-01

    Spectroscopic emission diagnostics of a carbon plasma created by an excimer KrF laser pulse at three laser fluences (12, 25 and 32 J/cm 2 ) is performed under nitrogen ambient at pressures of 0.5 and 1 mbar. By following the time evolution of the radical CN spectral emission profiles, we notice, at a certain distance from the target surface, the existence of twin peaks for the time of flight distribution. This double structure depends on laser fluence and gas pressure parameters. The first peak moves forward in relation with the plasma expansion whereas the second peak moves backward and it is attributed to CN species undergoing oscillations or reflected shocks

  19. Spectroscopy and reactions of vibrationally excited transient molecules

    Energy Technology Data Exchange (ETDEWEB)

    Dai, H.L. [Univ. of Pennsylvania, Philadelphia (United States)

    1993-12-01

    Spectroscopy, energy transfer and reactions of vibrationally excited transient molecules are studied through a combination of laser-based excitation techniques and efficient detection of emission from the energized molecules with frequency and time resolution. Specifically, a Time-resolved Fourier Transform Emission Spectroscopy technique has been developed for detecting dispersed laser-induced fluorescence in the IR, visible and UV regions. The structure and spectroscopy of the excited vibrational levels in the electronic ground state, as well as energy relaxation and reactions induced by specific vibronic excitations of a transient molecule can be characterized from time-resolved dispersed fluorescence in the visible and UV region. IR emissions from highly vibrational excited levels, on the other hand, reveal the pathways and rates of collision induced vibrational energy transfer.

  20. Determining the phonon energy of highly oriented pyrolytic graphite by scanning tunneling microscope light emission spectroscopy

    Science.gov (United States)

    Uehara, Yoichi; Michimata, Junichi; Watanabe, Shota; Katano, Satoshi; Inaoka, Takeshi

    2018-03-01

    We have investigated the scanning tunneling microscope (STM) light emission spectra of isolated single Ag nanoparticles lying on highly oriented pyrolytic graphite (HOPG). The STM light emission spectra exhibited two types of spectral structures (step-like and periodic). Comparisons of the observed structures and theoretical predictions indicate that the phonon energy of the ZO mode of HOPG [M. Mohr et al., Phys. Rev. B 76, 035439 (2007)] can be determined from the energy difference between the cutoff of STM light emission and the step in the former structure, and from the period of the latter structure. Since the role of the Ag nanoparticles does not depend on the substrate materials, this method will enable the phonon energies of various materials to be measured by STM light emission spectroscopy. The spatial resolution is comparable to the lateral size of the individual Ag nanoparticles (that is, a few nm).

  1. High resolution X-ray emission spectroscopy: An advanced tool for actinide research

    Science.gov (United States)

    Vitova, T.; Brendebach, B.; Dardenne, K.; Denecke, M. A.; Lebid, A.; Löble, M.; Rothe, J.; Batuk, O. N.; Hormes, J.; Liu, D.; Breher, F.; Geckeis, H.

    2010-03-01

    High resolution X-ray emission spectroscopy (HRXES) is becoming increasingly important for our understanding of electronic and coordination structures. The combination of such information with development of quantum theoretical tools will advance our capability for predicting reactivity and physical behavior especially of 5f elements. HRXES can be used to remove lifetime broadening by registering the partial fluorescence yield emitted by the sample (i.e., recording a windowed signal from the energy dispersed fluorescence emission while varying incident photon energy), thereby yielding highly resolved X-ray absorption fine structure (XAFS) spectra. Such spectra often display resonant features not observed in conventional XAFS. The spectrometer set-up can also be used for a wide range of other experiments, for example, resonant inelastic X-ray scattering (RIXS), where bulk electron configuration information in solids, liquids and gases is obtained. Valence-selective XAFS studies, where the local structure of a selected element's valence state present in a mixture of valence states can be obtained, as well as site-selective XAFS studies, where the coordination structure of a metal bound to selected elements can be differentiated from that of all the other ligating atoms. A HRXES spectrometer has been constructed and is presently being commissioned for use at the INE-Beamline for actinide research at the synchrotron source ANKA at FZK. We present the spectrometer's compact, modular design, optimized for attaining a wide range of energies, and first test measurement results. Examples from HRXES studies of lanthanides, actinides counter parts, are also shown.

  2. Femtosecond infrared spectroscopy: study, development and applications

    International Nuclear Information System (INIS)

    Bonvalet, Adeline

    1997-01-01

    This work has been devoted to the development and the applications of a new technique of infrared (5-20 μm) spectroscopy allowing a temporal resolution of 100 fs. This technique relies on a source of ultrashort infrared pulses obtained by frequency mixing in a nonlinear material. In particular, the optical rectification of 12-fs visible pulses in gallium arsenide has allowed us to obtain 40-fs infrared pulses with a spectrum extending from 5 pm up to 15 μm. Spectral resolution has been achieved by Fourier transform spectroscopy, using a novel device we have called Diffracting FTIR. These developments allow to study inter-subband transitions in quantum-well structures. The inter-subband relaxation time has been measured by a pump-probe experiment, in which the sample was excited with a visible pulse, and the variations of inter-subband absorption probed with an infrared pulse. Besides, we have developed a method of coherent emission spectroscopy allowing to monitor the electric field emitted by coherent charge oscillations in quantum wells. The decay of the oscillations due to the loss of coherence between excited levels yields a direct measurement of the dephasing time between these levels. Other applications include biological macromolecules like reaction centers of photosynthetic bacteria. We have shown that we were able to monitor variations of infrared absorption of about 10 -4 optical densities with a temporal resolution of 100 fs. This would constitute a relevant tool to study the role of molecular vibrations during the primary steps of biological processes. (author) [fr

  3. Process control of high rate microcrystalline silicon based solar cell deposition by optical emission spectroscopy

    International Nuclear Information System (INIS)

    Kilper, T.; Donker, M.N. van den; Carius, R.; Rech, B.; Braeuer, G.; Repmann, T.

    2008-01-01

    Silicon thin-film solar cells based on microcrystalline silicon (μc-Si:H) were prepared in a 30 x 30 cm 2 plasma-enhanced chemical vapor deposition reactor using 13.56 or 40.68 MHz plasma excitation frequency. Plasma emission was recorded by optical emission spectroscopy during μc-Si:H absorber layer deposition at deposition rates between 0.5 and 2.5 nm/s. The time course of SiH * and H β emission indicated strong drifts in the process conditions particularly at low total gas flows. By actively controlling the SiH 4 gas flow, the observed process drifts were successfully suppressed resulting in a more homogeneous i-layer crystallinity along the growth direction. In a deposition regime with efficient usage of the process gas, the μc-Si:H solar cell efficiency was enhanced from 7.9 % up to 8.8 % by applying process control

  4. Development of a Reference Database for Particle Induced Gamma Ray Emission (PIGE) Spectroscopy

    International Nuclear Information System (INIS)

    2017-09-01

    Ion beam analysis techniques are non-destructive analytical techniques used to identify the composition and structure of surface layers of materials. The applications of these techniques span environmental control, cultural heritage and conservation, materials and fusion technologies. The particle-induced gamma-ray emission (PIGE) spectroscopy technique in particular, is a powerful tool for detecting light elements in certain depths of surface layers. This publication describes the coordinated effort to measure and compile cross section data relevant to PIGE analysis and make these data available to the community of practice through a comprehensive online database.

  5. Plasma emission spectroscopy of solids irradiated by intense XUV pulses from a free electron laser

    Czech Academy of Sciences Publication Activity Database

    Dzelzainis, T.W.J.; Chalupský, Jaromír; Fajardo, M.; Fäustlin, R.; Heimann, P.A.; Hájková, Věra; Juha, Libor; Jurek, Karel; Khattak, F.Y.; Kozlová, Michaela; Krzywinski, J.; Lee, R. W.; Nagler, B.; Nelson, A.J.; Rosmej, F.B.; Soberierski, R.; Toleikis, S.; Tschentscher, T.; Vinko, S.M.; Wark, J. S.; Whitcher, T.; Riley, D.

    2010-01-01

    Roč. 6, č. 1 (2010), 109-112 ISSN 1574-1818 R&D Projects: GA MŠk LC510; GA MŠk(CZ) LC528; GA MŠk LA08024; GA AV ČR IAAX00100903 Institutional research plan: CEZ:AV0Z10100523; CEZ:AV0Z10100521 Keywords : XUV emission spectroscopy * free-electron laser * warm dense matter Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.206, year: 2010

  6. Dual-array valence emission spectrometer (DAVES): A new approach for hard x-ray photon-in photon-out spectroscopies

    Energy Technology Data Exchange (ETDEWEB)

    Finkelstein, K. D., E-mail: kdf1@cornell.edu; Lyndaker, A.; Krawcyk, T.; Conrad, J. [CHESS Wilson Lab, Cornell University, Ithaca, NY 14853 (United States); Pollock, C. J. [Dept. of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802 (United States)

    2016-07-27

    CHESS has developed and successfully deployed a novel Dual Array Valence Emission Spectrometer (DAVES) for high energy resolution, hard x-ray spectroscopy. DAVES employs the simplest method for scanning multiple spherical crystals along a Rowland Circle. The new design achieves unique 2-color collection capability and is built to take special advantage of pixel array detectors. Our initial results show why these detectors greatly improve data quality. The presentation emphasizes flexibility of experimental design offered by DAVES. Prospects and benefits of 2-color spectroscopy are illustrated and discussed.

  7. Hole distribution in (Sr, Ca, Y, La)14Cu24O41 compounds studies by x-ray absorption and emission spectroscopy

    International Nuclear Information System (INIS)

    Kabasawa, Eiki; Nakamura, Jin; Yamada, Nobuyoshi; Kuroki, Kazuhiko; Yamazaki, Hisashi; Watanabe, Masamitsu; Denlinger, Jonathan D.; Shin, Shik; Perera, Rupert C.C.

    2008-01-01

    The polarization dependence of soft x-ray absorption spectroscopy (XAS) and x-ray emission spectroscopy (XES) near the O 1s absorption edge was measured on two-leg ladder single-crystalline samples of (Sr, Ca, Y, La) 14 Cu 24 O 41 (14-24-41). The hole distributions in 14-24-41 compounds are determined by polarization analysis. For samples with less than or equal to 5 holes/chemical formula (c.f.), all holes reside on the edge-shared chain layer. In the case of Sr 14-x Ca x Cu 24 O 41 (6 holes/c.f.), there is approximately one hole on the two-leg ladder layer, with about five holes remaining on the edge-shared chain layer. By Ca substitution for Sr in the Sr 14-x Ca x Cu 24 O 41 samples, 0.3 holes transfer from the edge-shared chain to the two-leg ladder layer. It is possible that some of the holes on the two-leg ladder layer move from the rung sites to the leg sites upon Ca substitution. (author)

  8. A new Kaempferol-based Ru(II) coordination complex, Ru(kaem)Cl(DMSO)3: Structure and absorption-emission spectroscopy study

    International Nuclear Information System (INIS)

    Shao, Ming Wei; Gang, Jong Back; Kim, Sang Ho; Yoon, Min Young

    2016-01-01

    Recent interest in developing a new anticancer drug with low side effects has led to the study of the combination of two new anticancer drugs. Although both kaempferol (kaem) and Ru-based metal complexes have not been proven as effective drugs, their unique anticancer activities with reduced side effects have drawn our attention to the need for further studies on their potential in anticancer application. Herein, we report the synthesis, characterization, structure, and spectroscopic properties of a kaem-based Ru (II) complex, RuCl(kaem)(DMSO) 3 (1). Because of the presence of a catechol-like functional group in its dihydropyran ring, kaem can strongly bind to the Ru(II) metal center in a basic medium. The molecular structure of the complex was characterized by spectroscopic studies and X-ray crystal structure analysis. In addition, the complex forms a molecular dimer as a result of the cooperative effect of H-bonding and π–π stacking interactions. Moreover, the molecular dimer forms a ladder-like one-dimensional network structure by water mediated H-bonding that further extended into a three-dimensional packing structure. UV–Vis spectroscopy studies of the complex demonstrated the appearance of a strong metal to ligand charge transfer (MLCT) band in the visible region with strong fluorescence emission derived from the MLCT. Further studies are now in progress to demonstrate synergetic anticancer activity

  9. [Desmoid fibromatosis in absorption infrared spectroscopy, emission spectral analysis and roentgen diffraction recording].

    Science.gov (United States)

    Zejkan, A; Bejcek, Z; Horejs, J; Vrbová, H; Bakosová, M; Macholda, F; Rykl, D

    1989-10-01

    The authors present results of serial quality and quantity microanalyses of bone patterns and dental tissue patterns in patient with desmoid fibromatosis. Methods of absorption spectroscopy, emission spectral analysis and X-ray diffraction analysis with follow-up to x-ray examination are tested. The above mentioned methods function in a on-line system by means of specially adjusted monitor unit which is controlled centrally by the computer processor system. The whole process of measurement is fully automated and the data obtained are recorded processed in the unit data structure classified into index sequence blocks of data. Serial microanalyses offer exact data for the study of structural changes of dental and bone tissues which manifest themselves in order of crystal grid shifts. They prove the fact that microanalyses give new possibilities in detection and interpretation of chemical and structural changes of apatite cell.

  10. In vivo neurochemistry with emission tomography and magnetic resonance spectroscopy: clinical applications

    International Nuclear Information System (INIS)

    Sole, Angelo Del; Gambini, Anna; Falini, Andrea; Lecchi, Michela; Lucignani, Giovanni

    2002-01-01

    The assessment of neurochemical processes in vivo has received much attention in the past decade as techniques such as positron or single photon emission tomography (PET and SPET), and magnetic resonance spectroscopy (MRS) have become more available. With PET and SPET, basic processes, such as blood flow and oxygen or glucose metabolism, can be regionally assessed, along with more specific functions such as the production, release, and reuptake of neurotransmitters and their occupancy of specific receptors. At the same time, MRS can reveal changes in concentration of several hydrogenate compounds in the brain. All these methods have been extensively applied for research in neurology, and some applications have reached the clinical level, namely for the study of degenerative diseases, motor-neuron diseases, movement disorders, cerebrovascular diseases, and epilepsy. This article focuses on the most relevant information that can be obtained with these complementary techniques to help clinicians in the assessment of neurological diseases. (orig.)

  11. In vivo neurochemistry with emission tomography and magnetic resonance spectroscopy: clinical applications

    Energy Technology Data Exchange (ETDEWEB)

    Sole, Angelo Del [Azienda Ospedaliera San Paolo e Universita di Milano, 20142 Milan (Italy); Gambini, Anna; Falini, Andrea [IRCCS H San Raffaele e Universita Vita e Salute, 20132 Milan (Italy); Lecchi, Michela [Azienda Ospedaliera L. Sacco e Universita di Milano, 20157 Milan (Italy); Lucignani, Giovanni [Azienda Ospedaliera L. Sacco e Universita di Milano, 20157 Milan (Italy); Universita di Milano, Istituto di Scienze Radiologiche, Cattedra di Medicina Nucleare c/o Ospedale L. Sacco, Via G.B. Grassi, 74, 20157 Milan (Italy)

    2002-10-01

    The assessment of neurochemical processes in vivo has received much attention in the past decade as techniques such as positron or single photon emission tomography (PET and SPET), and magnetic resonance spectroscopy (MRS) have become more available. With PET and SPET, basic processes, such as blood flow and oxygen or glucose metabolism, can be regionally assessed, along with more specific functions such as the production, release, and reuptake of neurotransmitters and their occupancy of specific receptors. At the same time, MRS can reveal changes in concentration of several hydrogenate compounds in the brain. All these methods have been extensively applied for research in neurology, and some applications have reached the clinical level, namely for the study of degenerative diseases, motor-neuron diseases, movement disorders, cerebrovascular diseases, and epilepsy. This article focuses on the most relevant information that can be obtained with these complementary techniques to help clinicians in the assessment of neurological diseases. (orig.)

  12. Simulating Valence-to-Core X-ray Emission Spectroscopy of Transition Metal Complexes with Time-Dependent Density Functional Theory.

    Science.gov (United States)

    Zhang, Yu; Mukamel, Shaul; Khalil, Munira; Govind, Niranjan

    2015-12-08

    Valence-to-core (VtC) X-ray emission spectroscopy (XES) has emerged as a powerful technique for the structural characterization of complex organometallic compounds in realistic environments. Since the spectrum represents electronic transitions from the ligand molecular orbitals to the core holes of the metal centers, the approach is more chemically sensitive to the metal-ligand bonding character compared with conventional X-ray absorption techniques. In this paper we study how linear-response time-dependent density functional theory (LR-TDDFT) can be harnessed to simulate K-edge VtC X-ray emission spectra reliably. LR-TDDFT allows one to go beyond the single-particle picture that has been extensively used to simulate VtC-XES. We consider seven low- and high-spin model complexes involving chromium, manganese, and iron transition metal centers. Our results are in good agreement with experiment.

  13. Optical Emission Spectroscopy of an Atmospheric Pressure Plasma Jet During Tooth Bleaching Gel Treatment.

    Science.gov (United States)

    Šantak, Vedran; Zaplotnik, Rok; Tarle, Zrinka; Milošević, Slobodan

    2015-11-01

    Optical emission spectroscopy was performed during atmospheric pressure plasma needle helium jet treatment of various tooth-bleaching gels. When the gel sample was inserted under the plasma plume, the intensity of all the spectral features increased approximately two times near the plasma needle tip and up to two orders of magnitude near the sample surface. The color change of the hydroxylapatite pastille treated with bleaching gels in conjunction with the atmospheric pressure plasma jet was found to be in correlation with the intensity of OH emission band (309 nm). Using argon as an additive to helium flow (2 L/min), a linear increase (up to four times) of OH intensity and, consequently, whitening (up to 10%) of the pastilles was achieved. An atmospheric pressure plasma jet activates bleaching gel, accelerates OH production, and accelerates tooth bleaching (up to six times faster).

  14. The nature of extreme emission line galaxies at z = 1-2: kinematics and metallicities from near-infrared spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Maseda, Michael V.; Van der Wel, Arjen; Rix, Hans-Walter; Da Cunha, Elisabete; Meidt, Sharon E. [Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg (Germany); Pacifici, Camilla [Yonsei University Observatory, Yonsei University, Seoul 120-749 (Korea, Republic of); Momcheva, Ivelina; Van Dokkum, Pieter; Nelson, Erica J. [Department of Astronomy, Yale University, New Haven, CT 06520 (United States); Brammer, Gabriel B.; Ferguson, Henry C.; Koekemoer, Anton M. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Franx, Marijn; Fumagalli, Mattia [Leiden Observatory, Leiden University, Leiden (Netherlands); Bell, Eric F. [Department of Astronomy, University of Michigan, 500 Church Street, Ann Arbor, MI 48109 (United States); Förster-Schreiber, Natascha M. [Max-Planck-Institut für extraterrestrische Physik, Giessenbachstrasse 1, D-85748 Garching (Germany); Koo, David C. [UCO/Lick Observatory and Department of Astronomy and Astrophysics, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA 95064 (United States); Lundgren, Britt F. [Department of Astronomy, University of Wisconsin, 475 North Charter Street, Madison, WI 53706 (United States); Marchesini, Danilo [Physics and Astronomy Department, Tufts University, Robinson Hall, Room 257, Medford, MA 02155 (United States); Patel, Shannon G., E-mail: maseda@mpia.de [Carnegie Observatories, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); and others

    2014-08-10

    We present near-infrared spectroscopy of a sample of 22 Extreme Emission Line Galaxies at redshifts 1.3 < z < 2.3, confirming that these are low-mass (M{sub *} = 10{sup 8}-10{sup 9} M{sub ☉}) galaxies undergoing intense starburst episodes (M{sub *}/SFR ∼ 10-100 Myr). The sample is selected by [O III] or Hα emission line flux and equivalent width using near-infrared grism spectroscopy from the 3D-HST survey. High-resolution NIR spectroscopy is obtained with LBT/LUCI and VLT/X-SHOOTER. The [O III]/Hβ line ratio is high (≳ 5) and [N II]/Hα is always significantly below unity, which suggests a low gas-phase metallicity. We are able to determine gas-phase metallicities for seven of our objects using various strong-line methods, with values in the range 0.05-0.30 Z{sub ☉} and with a median of 0.15 Z{sub ☉}; for three of these objects we detect [O III] λ4363, which allows for a direct constraint on the metallicity. The velocity dispersion, as measured from the nebular emission lines, is typically ∼50 km s{sup –1}. Combined with the observed star-forming activity, the Jeans and Toomre stability criteria imply that the gas fraction must be large (f{sub gas} ≳ 2/3), consistent with the difference between our dynamical and stellar mass estimates. The implied gas depletion timescale (several hundred Myr) is substantially longer than the inferred mass-weighted ages (∼50 Myr), which further supports the emerging picture that most stars in low-mass galaxies form in short, intense bursts of star formation.

  15. LASER ABLATION-INDUCTIVELY COUPLED PLASMA-ATOMIC EMISSION SPECTROSCOPY STUDY AT THE 222-S LABORATORY USING HOT-CELL GLOVE BOX PROTOTYPE SYSTEM

    International Nuclear Information System (INIS)

    Seidel, C.M.; Jain, J.; Owens, J.W.

    2009-01-01

    This report describes the installation, testing, and acceptance of the Waste Treatment and Immobilization Plant (WTP) procured laser ablation-inductively coupled plasma-atomic emission spectroscopy (LA-ICP-AES) system for remotely analyzing high-level waste (HLW) samples in a hot cell environment. The work was completed by the Analytical Process Development (APD) group in accordance with Task Order 2005-003; ATS MP 1027, Management Plan for Waste Treatment Plant Project Work Performed by Analytical Technical Services. The APD group at the 222-S Laboratory demonstrated acceptable turnaround time (TAT) and provide sufficient data to assess sensitivity, accuracy, and precision of the LA-ICP-AES method

  16. Emission and absorption spectroscopy study of Ar excited states in 13.56 MHz argon plasma operating at sub-atmospheric to atmospheric pressure

    Energy Technology Data Exchange (ETDEWEB)

    Li, L. [Department of Applied Physics, Research Unit Plasma Technology, Ghent University, Jozef Plateaustraat 22, Ghent B-9000 (Belgium); Nikiforov, A., E-mail: anton.nikiforov@ugent.be [Department of Applied Physics, Research Unit Plasma Technology, Ghent University, Jozef Plateaustraat 22, Ghent B-9000 (Belgium); Institute of Solution Chemistry of the Russian Academy of Science, Academicheskaya St., 1, Ivanovo, 153045 (Russian Federation); Britun, N. [Chimie des Interactions Plasma-Surface (ChIPS), CIRMAP, Universite de Mons, 23 Place du Parc, B-7000 Mons (Belgium); Snyders, R. [Chimie des Interactions Plasma-Surface (ChIPS), CIRMAP, Universite de Mons, 23 Place du Parc, B-7000 Mons (Belgium); Materia Nova Research Centre, Parc Initialis, B-7000 Mons (Belgium); Leys, C. [Department of Applied Physics, Research Unit Plasma Technology, Ghent University, Jozef Plateaustraat 22, Ghent B-9000 (Belgium)

    2015-05-01

    The densities of metastable and resonant states of Ar atoms are measured in high pressure Ar radio frequency discharge. Resonant absorption spectroscopy for the case of a low pressure spectral lamp and high-pressure plasma absorption lines is implemented for this purpose. The necessary generalizations for the high-pressure resonant absorption method are given. Absolute density of Ar 1s levels obtained at different RF input power and operating pressures are of the order of 10{sup 11} cm{sup −3}, which is in a good agreement with those reported in the literature. The population distribution on the Ar 2p (excited) levels, obtained from the optical emission spectroscopy, reveals strong deviation from thermal equilibrium for these levels in the high-pressure case. The generation of the Ar excited states in the studied discharges is compared to the previously reported results. - Highlights: • Strong non-equilibrium distribution of Ar 2p levels is observed. • The absolute number density of non-radiative Ar 1s states is determined by the easier and low cost spectral-lamp absorption method. • The modified absorption theory of Mitchell and Zemanski was used to obtain the absolute number density of Ar 1s states at high pressure. • The developed RF source with 5 cm long gap can be a possible alternative to micro-plasma working in Ar at atmospheric pressure.

  17. Integral Field Spectroscopy of the Extended Emission-Line Region of 4C 37.43

    Science.gov (United States)

    Fu, Hai; Stockton, Alan

    2007-09-01

    We present Gemini integral field spectroscopy and Keck II long-slit spectroscopy of the extended emission-line region (EELR) around the quasar 4C 37.43. The velocity structure of the ionized gas is complex and cannot be explained globally by a simple dynamical model. The spectra from the clouds are inconsistent with shock or ``shock + precursor'' ionization models, but they are consistent with photoionization by the quasar nucleus. The best-fit photoionization model requires a low-metallicity [12+log(O/H)Canada), CONICYT (Chile), the Australian Research Council (Australia), CNPq (Brazil), and CONICET (Argentina). Some of the data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the financial support of the W. M. Keck Foundation.

  18. Soft X-ray emission spectroscopy used for the characterization of a-C and CN{sub x} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Nepijko, S.A., E-mail: nepijko@uni-mainz.de [Institute of Physics, University of Mainz, Staudingerweg 7, 55128 Mainz (Germany); Chernenkaya, A. [Institute of Physics, University of Mainz, Staudingerweg 7, 55128 Mainz (Germany); Graduate School Materials Science in Mainz, Staudingerweg 9, 55128 Mainz (Germany); Medjanik, K.; Chernov, S.V. [Institute of Physics, University of Mainz, Staudingerweg 7, 55128 Mainz (Germany); Klimenkov, M. [Institute for Applied Materials, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Vlasenko, O.V. [Sumy State University, Rimsky-Korsakov str. 2, 40007 Sumy (Ukraine); Petrovskaya, S.S. [Frantsevich Institute for Problems of Materials Science, National Academy of Sciences of Ukraine, Krzhizhanovsky str. 3, 03142 Kiev (Ukraine); Odnodvorets, L.V. [Sumy State University, Rimsky-Korsakov str. 2, 40007 Sumy (Ukraine); Zaulichnyy, Ya.V. [National Technical University of Ukraine (KPI), Pobedy Av. 37, 03056 Kiev (Ukraine); Schönhense, G. [Institute of Physics, University of Mainz, Staudingerweg 7, 55128 Mainz (Germany)

    2015-02-27

    We present the results of a soft X-ray emission spectroscopy study of a-C and CN{sub x} films on a Si(100) substrate. Also for the characterization of the homogeneity in depth of these films electron energy loss spectroscopy measurements with localization better than 4 nm were carried out. In case of CN{sub x} films the highest diamond-like modification occurs in the region close to the Si(100) substrate. The film density decreases with increasing distance from the substrate and becomes almost constant in range of thicknesses more than ~ 2 nm. - Highlights: • CN{sub x} and a-C film densities decrease with the increase of thickness. • Density increases with the decrease of Si(100) substrate temperature at preparation. • Highest concentration of the diamond-like structure is in the substrate vicinity. • It reduces further from the substrate and stabilizes at thickness ≥ 2 nm.

  19. Nanoscale Terahertz Emission Spectroscopy

    DEFF Research Database (Denmark)

    Pedersen, Pernille Klarskov; Kim, Hyewon; Colvin, Vicki L.

    By utilizing plasmonic coupling to an AFM probe, we demonstrate Laser Terahertz Emission Nanoscopy (LTEN) with sub-20 nm resolution. We demonstrate the resolution by imaging a single gold nanorod on an InAs substrate....

  20. Characterization by acoustic emission and electrochemical impedance spectroscopy of the cathodic disbonding of Zn coating

    International Nuclear Information System (INIS)

    Amami, Souhail; Lemaitre, Christian; Laksimi, Abdelouahed; Benmedakhene, Salim

    2010-01-01

    Galvanized steel has been tested in a synthetic sea water solution under different cathodic overprotection conditions. The generated hydrogen flux caused the damage of the metal-zinc interface and led to a progressive coating detachment. Scanning electron microscopy, electrochemical impedance spectroscopy and acoustic emission technique were used to characterize the damage chronology under different cathodic potentials. A damage mechanism was proposed and the acoustic signature related to the coating degradation was statistically identified using clustering techniques.

  1. Characterization by acoustic emission and electrochemical impedance spectroscopy of the cathodic disbonding of Zn coating

    Energy Technology Data Exchange (ETDEWEB)

    Amami, Souhail [Universite de Technologie de Compiegne, Departement de Genie Mecanique, Laboratoire Roberval, UMR 6066 du CNRS, B.P. 20529, 60206 Compiegne Cedex (France)], E-mail: souhail.amami@utc.fr; Lemaitre, Christian; Laksimi, Abdelouahed; Benmedakhene, Salim [Universite de Technologie de Compiegne, Departement de Genie Mecanique, Laboratoire Roberval, UMR 6066 du CNRS, B.P. 20529, 60206 Compiegne Cedex (France)

    2010-05-15

    Galvanized steel has been tested in a synthetic sea water solution under different cathodic overprotection conditions. The generated hydrogen flux caused the damage of the metal-zinc interface and led to a progressive coating detachment. Scanning electron microscopy, electrochemical impedance spectroscopy and acoustic emission technique were used to characterize the damage chronology under different cathodic potentials. A damage mechanism was proposed and the acoustic signature related to the coating degradation was statistically identified using clustering techniques.

  2. X-ray spectroscopy studies of nonradiative energy transfer processes in luminescent lanthanide materials

    Science.gov (United States)

    Pacold, Joseph I.

    Luminescent materials play important roles in energy sciences, through solid state lighting and possible applications in solar energy utilization, and in biomedical research and applications, such as in immunoassays and fluorescence microscopy. The initial excitation of a luminescent material leads to a sequence of transitions between excited states, ideally ending with the emission of one or more optical-wavelength photons. It is essential to understand the microscopic physics of this excited state cascade in order to rationally design materials with high quantum efficiencies or with other fine-tuning of materials response. While optical-wavelength spectroscopies have unraveled many details of the energy transfer pathways in luminescent materials, significant questions remain open for many lanthanide-based luminescent materials. For organometallic dyes in particular, quantum yields remain limited in comparison with inorganic phosphors. This dissertation reports on a research program of synchrotron x-ray studies of the excited state electronic structure and energy-relaxation cascade in trivalent lanthanide phosphors and dyes. To this end, one of the primary results presented here is the first time-resolved x-ray absorption near edge spectroscopy studies of the transient 4f excited states in lanthanide-activated luminescent dyes and phosphors. This is a new application of time-resolved x-ray absorption spectroscopy that makes it possible to directly observe and, to some extent, quantify intramolecular nonradiative energy transfer processes. We find a transient increase in 4f spectral weight associated with an excited state confined to the 4f shell of trivalent Eu. This result implies that it is necessary to revise the current theoretical understanding of 4f excitation in trivalent lanthanide activators: either transient 4f-5d mixing effects are much stronger than previously considered, or else the lanthanide 4f excited state has an unexpectedly large contribution

  3. Analytical applications of atomic spectroscopy, with particular reference to inductively coupled plasma emission analysis of coal and fly ash

    International Nuclear Information System (INIS)

    Pougnet, M.A.B.

    1983-08-01

    This thesis outlines the analytical applications of atomic emission and absorption spectroscopy to a variety of materials. Special attention was directed to the analysis of coal and coal ashes. A simple slurry sampling technique was developed and used to determine V, Ni, Co, Mo and Mn in the National Bureau of Standards Standard Reference Materials (NBS-SRM) coals 1632a and 1635 by furnace atomic absorption spectroscopy (FAAS). Coal and fly ash were analysed by inductively coupled plasma atomic emission spectroscopy (ICP-AES). The determination of B, Be, Li, C, K and other trace elements by ICP-AES was investigated. Analytical methods were developed for the analysis of coal, fly ash and water samples. Fusion with sodium carbonate and a digestion bomb dissolution method were compared for the determination of boron in a South African boron-rich mineral (Kornerupine). Eight elements were determined in 10 industrial water samples from a power plant. Ca, Mg, Si and B were determined by ICP-AES and V, Ni, Co and Mo by FAAS. Various problems encountered during the course of the work and interferences in ICP-AES analysis are discussed. Some recommendations concerning method development and routine analysis by this technique are suggested

  4. In-situ virtual metrology for the silicon-dioxide etch rate by using optical emission spectroscopy data

    International Nuclear Information System (INIS)

    Kim, Boomsoo; Hong, Sangjeen

    2014-01-01

    As a useful tool for process control in a high volume semiconductor manufacturing environment, virtual metrology for the etch rate in a plasma etch process is investigated using optical emission spectroscopy (OES) data. Virtual metrology is a surrogate measurement taken from the process instead of from direct measurement, and it can provide in-situ metrology of a wafer's geometry from a predictive model. A statistical regression model that correlates the selected wavelengths of the optical emission spectra to the etch rate is established using the OES data collected over 20 experimental runs. In addition, an argon actinometry study is employed to quantify the OES data, and it provides valuable insight into the analysis of the OES data. The established virtual metrology model is further verified with an additional 20 runs of data. As a result, the virtual metrology model with both process recipe tool data and in-situ data shows higher prediction accuracy by as much as 56% compared with either the process recipe tool data or the in-situ data alone.

  5. BATMAN beam properties characterization by the beam emission spectroscopy diagnostic

    Science.gov (United States)

    Bonomo, F.; Ruf, B.; Barbisan, M.; Cristofaro, S.; Schiesko, L.; Fantz, U.; Franzen, P.; Pasqualotto, R.; Riedl, R.; Serianni, G.; Wünderlich, D.

    2015-04-01

    The ITER neutral beam heating systems are based on the production and acceleration of negative ions (H/D) up to 1 MV. The requirements for the beam properties are strict: a low core beam divergence (BATMAN (BAvarian Test MAchine for Negative ions) allows for deepening the knowledge of the determination of the beam properties. One of the diagnostics routinely used to this purpose is the Beam Emission Spectroscopy (BES): the Hα light emitted in the beam is detected and the corresponding spectra are evaluated to estimate the beam divergence and the stripping losses. The BES number of lines of sight in BATMAN has been recently increased: five horizontal lines of sight providing a vertical profile of the beam permit to characterize the negative ion beam properties in relation to the source parameters. Different methods of Hα spectra analysis are here taken into account and compared for the estimation of the beam divergence and the amount of stripping. In particular, to thoroughly study the effect of the space charge compensation on the beam divergence, an additional hydrogen injection line has been added in the tank, which allows for setting different background pressure values (one order of magnitude, from about 0.04 Pa up to the source pressure) in the beam drift region.

  6. Plasma control using neural network and optical emission spectroscopy

    International Nuclear Information System (INIS)

    Kim, Byungwhan; Bae, Jung Ki; Hong, Wan-Shick

    2005-01-01

    Due to high sensitivity to process parameters, plasma processes should be tightly controlled. For plasma control, a predictive model was constructed using a neural network and optical emission spectroscopy (OES). Principal component analysis (PCA) was used to reduce OES dimensionality. This approach was applied to an oxide plasma etching conducted in a CHF 3 /CF 4 magnetically enhanced reactive ion plasma. The etch process was systematically characterized by means of a statistical experimental design. Three etch outputs (etch rate, profile angle, and etch rate nonuniformity) were modeled using three different approaches, including conventional, OES, and PCA-OES models. For all etch outputs, OES models demonstrated improved predictions over the conventional or PCA-OES models. Compared to conventional models, OES models yielded an improvement of more than 25% in modeling profile angle and etch rate nonuniformtiy. More than 40% improvement over PCA-OES model was achieved in modeling etch rate and profile angle. These results demonstrate that nonreduced in situ data are more beneficial than reduced one in constructing plasma control model

  7. A new Kaempferol-based Ru(II) coordination complex, Ru(kaem)Cl(DMSO){sub 3}: Structure and absorption-emission spectroscopy study

    Energy Technology Data Exchange (ETDEWEB)

    Shao, Ming Wei; Gang, Jong Back; Kim, Sang Ho; Yoon, Min Young [Gachon University, Sungnam (Korea, Republic of)

    2016-10-15

    Recent interest in developing a new anticancer drug with low side effects has led to the study of the combination of two new anticancer drugs. Although both kaempferol (kaem) and Ru-based metal complexes have not been proven as effective drugs, their unique anticancer activities with reduced side effects have drawn our attention to the need for further studies on their potential in anticancer application. Herein, we report the synthesis, characterization, structure, and spectroscopic properties of a kaem-based Ru (II) complex, RuCl(kaem)(DMSO){sub 3} (1). Because of the presence of a catechol-like functional group in its dihydropyran ring, kaem can strongly bind to the Ru(II) metal center in a basic medium. The molecular structure of the complex was characterized by spectroscopic studies and X-ray crystal structure analysis. In addition, the complex forms a molecular dimer as a result of the cooperative effect of H-bonding and π–π stacking interactions. Moreover, the molecular dimer forms a ladder-like one-dimensional network structure by water mediated H-bonding that further extended into a three-dimensional packing structure. UV–Vis spectroscopy studies of the complex demonstrated the appearance of a strong metal to ligand charge transfer (MLCT) band in the visible region with strong fluorescence emission derived from the MLCT. Further studies are now in progress to demonstrate synergetic anticancer activity.

  8. X-ray Emission Line Spectroscopy of Nearby Galaxies

    Science.gov (United States)

    Wang, Daniel

    What are the origins of the diffuse soft X-ray emission from non-AGN galaxies? Preliminary analysis of XMM-Newton RGS spectra shows that a substantial fraction of the emission cannot arise from optically-thin thermal plasma, as commonly assumed, and may originate in charge exchange at the interface with neutral gas. We request the support for a comprehensive observing, data analysis, and modeling program to spectroscopically determine the origins of the emission. First, we will use our scheduled XMM-Newton AO-10 368 ks observations of the nearest compact elliptical galaxy M32 to obtain the first spectroscopic calibration of the cumulative soft X-ray emission from the old stellar population and will develop a spectral model for the charge exchange, as well as analysis tools to measure the spatial and kinematic properties of the X-ray line- emitting plasma. Second, we will characterize the truly diffuse emission from the hot plasma and/or its interplay with the neutral gas in a sample of galactic spheroids and active star forming/starburst regions in nearby galaxies observed by XMM-Newton. In particular, we will map out the spatial distributions of key emission lines and measure (or tightly constrain) the kinematics of hot plasma outflows for a few X-ray-emitting regions with high-quality RGS data. For galaxies with insufficient counting statistics in individual emission lines, we will conduct a spectral stacking analysis to constrain the average properties of the X-ray-emitting plasma. We will use the results of these X-ray spectroscopic analyses, together with complementary X-ray CCD imaging/spectral data and observations in other wavelength bands, to test the models of the emission. In addition to the charge exchange, alternative scenarios such as resonance scattering and relic AGN photo-ionization will also be examined for suitable regions. These studies are important to the understanding of the relationship between the diffuse soft X-ray emission and various

  9. Emission spectrochemical analysis

    International Nuclear Information System (INIS)

    Rives, R.D.; Bruks, R.R.

    1983-01-01

    The emission spectrochemical method of analysis based on the fact that atoms of elements can be excited in the electric arc or in the laser beam and will emit radiation with characteristic wave lengths is considered. The review contains the data on spectrochemical analysis, of liquids geological materials, scheme of laser microprobe. The main characteristics of emission spectroscopy, atomic absorption spectroscopy and X-ray fluorescent analysis, are aeneralized

  10. Revisiting the electrochemical impedance spectroscopy of magnesium with online inductively coupled plasma atomic emission spectroscopy.

    Science.gov (United States)

    Shkirskiy, Viacheslav; King, Andrew D; Gharbi, Oumaïma; Volovitch, Polina; Scully, John R; Ogle, Kevin; Birbilis, Nick

    2015-02-23

    The electrochemical impedance of reactive metals such as magnesium is often complicated by an obvious inductive loop with decreasing frequency of the AC polarising signal. The characterisation and ensuing explanation of this phenomenon has been lacking in the literature to date, being either ignored or speculated. Herein, we couple electrochemical impedance spectroscopy (EIS) with online atomic emission spectroelectrochemistry (AESEC) to simultaneously measure Mg-ion concentration and electrochemical impedance spectra during Mg corrosion, in real time. It is revealed that Mg dissolution occurs via Mg(2+) , and that corrosion is activated, as measured by AC frequencies less than approximately 1 Hz approaching DC conditions. The result of this is a higher rate of Mg(2+) dissolution, as the voltage excitation becomes slow enough to enable all Mg(2+) -enabling processes to adjust in real time. The manifestation of this in EIS data is an inductive loop. The rationalisation of such EIS behaviour, as it relates to Mg, is revealed for the first time by using concurrent AESEC. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Characterization of dissolved organic matter in fogwater by excitation-emission matrix fluorescence spectroscopy

    Science.gov (United States)

    Birdwell, J.E.; Valsaraj, K.T.

    2010-01-01

    Dissolved organic matter (DOM) present in fogwater samples collected in southeastern Louisiana and central-eastern China has been characterized using excitation-emission matrix fluorescence spectroscopy. The goal of the study was to illustrate the utility of fluorescence for obtaining information on the large fraction of organic carbon in fogwaters (typically >40% by weight) that defies characterization in terms of specific chemical compounds without the difficulty inherent in obtaining sufficient fogwater volume to isolate DOM for assessment using other spectroscopic and chemical analyses. Based on the findings of previous studies using other characterization methods, it was anticipated that the unidentified organic carbon fraction would have characteristic peaks associated with humic substances and fluorescent amino acids. Both humic- and protein-like fluorophores were observed in the fogwater spectra and fluorescence-derived indices for the fogwater had similar values to those of soil and sediment porewater. Greater biological character was observed in samples with higher organic carbon concentrations. Fogwaters are shown to contain a mixture of terrestrially- and microbially-derived fluorescent organic material, which is expected to be derived from an array of different sources, such as suspended soil and dust particles, biogenic emissions and organic substances generated by atmospheric processes. The fluorescence results indicate that much of the unidentified organic carbon present in fogwater can be represented by humic-like and biologically-derived substances similar to those present in other aquatic systems, though it should be noted that fluorescent signatures representative of DOM produced by atmospheric processing of organic aerosols may be contributing to or masked by humic-like fluorophores. ?? 2010.

  12. A portable optical emission spectroscopy-cavity ringdown spectroscopy dual-mode plasma spectrometer for measurements of environmentally important trace heavy metals: Initial test with elemental Hg

    Science.gov (United States)

    Sahay, Peeyush; Scherrer, Susan T.; Wang, Chuji

    2012-09-01

    A portable optical emission spectroscopy-cavity ringdown spectroscopy (OES-CRDS) dual-mode plasma spectrometer is described. A compact, low-power, atmospheric argon microwave plasma torch (MPT) is utilized as the emission source when the spectrometer is operating in the OES mode. The same MPT serves as the atomization source for ringdown measurements in the CRDS mode. Initial demonstration of the instrument is carried out by observing OES of multiple elements including mercury (Hg) in the OES mode and by measuring absolute concentrations of Hg in the metastable state 6s6p 3P0 in the CRDS mode, in which a palm-size diode laser operating at a single wavelength 405 nm is incorporated in the spectrometer as the light source. In the OES mode, the detection limit for Hg is determined to be 44 parts per 109 (ppb). A strong radiation trapping effect on emission measurements of Hg at 254 nm is observed when the Hg solution concentration is higher than 50 parts per 106 (ppm). The radiation trapping effect suggests that two different transition lines of Hg at 253.65 nm and 365.01 nm be selected for emission measurements in lower (50 ppm), respectively. In the CRDS mode, the detection limit of Hg in the metastable state 6s6p 3P0 is achieved to be 2.24 parts per 1012 (ppt) when the plasma is operating at 150 W with sample gas flow rate of 480 mL min-1; the detection limit corresponds to 50 ppm in Hg sample solution. Advantage of this novel spectrometer has two-fold, it has a large measurement dynamic range, from a few ppt to hundreds ppm and the CRDS mode can serve as calibration for the OES mode as well as high sensitivity measurements. Measurements of seven other elements, As, Cd, Mn, Ni, P, Pb, and Sr, using the OES mode are also carried out with detection limits of 1100, 33, 30, 144, 576, 94, and 2 ppb, respectively. Matrix effect in the presence of other elements on Hg measurements has been found to increase the detection limit to 131 ppb. These elements in lower

  13. Turbulence imaging and applications using beam emission spectroscopy on DIII-D (invited)

    Science.gov (United States)

    McKee, G. R.; Fenzi, C.; Fonck, R. J.; Jakubowski, M.

    2003-03-01

    Two-dimensional measurements of density fluctuations are obtained in the radial and poloidal plane of the DIII-D tokamak with the Beam Emission Spectroscopy (BES) diagnostic system. The goals are to visualize the spatial structure and time evolution of turbulent eddies, as well as to obtain the 2D statistical properties of turbulence. The measurements are obtained with an array of localized BES spatial channels configured to image a midplane region of the plasma. 32 channels have been deployed, each with a spatial resolution of about 1 cm in the radial and poloidal directions, thus providing measurements of turbulence in the wave number range 0movies have broad application to a wide variety of fundamental turbulence studies: imaging of the highly complex, nonlinear turbulent eddy interactions, measurement of the 2D correlation function, and S(kr,kθ) wave number spectra, and direct measurement of the equilibrium and time-dependent turbulence flow field. The time-dependent, two-dimensional turbulence velocity flow-field is obtained with time-delay-estimation techniques.

  14. Molecular studies by electron spectroscopy

    International Nuclear Information System (INIS)

    Hansteen, J.M.

    1977-01-01

    Experience gained in experimental nuclear physics has played a large role in the development of electron spectroscopy as a powerful tool for studying chemical systems. The use of ESCA (Electron Spectroscopy for Chemical Analysis) for the mapping of molecular properties connected with inner as well as outer electron shells is reviewed, mainly from a phenomological point of view. Molecular Auger electron spectroscopy is described as a means of gaining information on details in molecular structure, simultaneously being extensively applied for surface studies. Future highly promising research areas for molecular electron spectroscopy are suggested to be (e,2e) processes as well as continued exploitation of synchrotron radiation from high energy nuclear devices. (Auth.)

  15. Complex Molecules in the Laboratory - a Comparison of Chriped Pulse and Emission Spectroscopy

    Science.gov (United States)

    Hermanns, Marius; Wehres, Nadine; Maßen, Jakob; Schlemmer, Stephan

    2017-06-01

    Detecting molecules of astrophysical interest in the interstellar medium strongly relies on precise spectroscopic data from the laboratory. In recent years, the advancement of the chirped-pulse technique has added many more options available to choose from. The Cologne emission spectrometer is an additional path to molecular spectroscopy. It allows to record instantaneously broad band spectra with calibrated intensities. Here we present a comparison of both methods: The Cologne chirped-pulse spectrometer as well as the Cologne emission spectrometer both cover the frequency range of 75-110 GHz, consistent with the ALMA Band 3 receivers. High sensitive heterodyne receivers with very low noise temperature amplifiers are used with a typical bandwidth of 2.5 GHz in a single sideband. Additionally the chirped-pulse spectrometer contains a high power amplifier of 200 mW for the excitation of molecules. Room temperature spectra of methyl cyanide and comparison of key features, such as measurement time, sensitivity, limitations and commonalities are shown in respect to identification of complex molecules of astrophysical importance. In addition, future developments for both setups will be discussed.

  16. Electronic structure of multiferroic BiFeO3 by resonant soft-x-ray emission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Higuchi, Tohru; Higuchi, T.; Liu, Y.-S.; Yao, P.; Glans, P.-A.; Guo, Jinghua; Chang, C.; Wu, Z.; Sakamoto, W.; Itoh, N.; Shimura, T.; Yogo, T.; Hattori, T.

    2008-07-11

    The electronic structure of multiferroic BiFeO{sub 3} has been studied using soft-X-ray emission spectroscopy. The fluorescence spectra exhibit that the valence band is mainly composed of O 2p state hybridized with Fe 3d state. The band gap corresponding to the energy separation between the top of the O 2p valence band and the bottom of the Fe 3d conduction band is 1.3 eV. The soft-X-ray Raman scattering reflects the features due to charge transfer transition from O 2p valence band to Fe 3d conduction band. These findings are similar to the result of electronic structure calculation by density functional theory within the local spin-density approximation that included the effect of Coulomb repulsion between localized d states.

  17. Scrape-off layer-induced beam density fluctuations and their effect on beam emission spectroscopy

    Science.gov (United States)

    Moulton, D.; Marandet, Y.; Tamain, P.; Dif-Pradalier, G.

    2015-07-01

    A statistical model is presented to calculate the magnitude of beam density fluctuations generated by a turbulent scrape-off layer (SOL). It is shown that the SOL can induce neutral beam density fluctuations of a similar magnitude to the plasma density fluctuations in the core, potentially corrupting beam emission spectroscopy measurements. The degree of corruption is quantified by combining simulations of beam and plasma density fluctuations inside a simulated measurement window. A change in pitch angle from the separatrix to the measurement window is found to reduce the effect of beam fluctuations, whose largest effect is to significantly reduce the measured correlation time.

  18. Charge exchange emission from solar wind helium ions

    NARCIS (Netherlands)

    Bodewits, D; Hoekstra, R; Seredyuk, B; McCullough, RW; Jones, GH; Tielens, AGGM

    2006-01-01

    Charge exchange X-ray and far-ultraviolet (FUV) aurorae can provide detailed insight into the interaction between solar system plasmas. Using the two complementary experimental techniques of photon emission spectroscopy and translation energy spectroscopy, we have studied state-selective charge

  19. Real-time qualitative study of forsterite crystal - Melt lithium distribution by laser-induced breakdown spectroscopy

    Science.gov (United States)

    Lebedev, V. F.; Makarchuk, P. S.; Stepanov, D. N.

    2017-11-01

    A factor of lithium distribution between single-crystal forsterite (Cr,Li:Mg2SiO4) and its melt are studied by laser-induced breakdown spectroscopy. Lithium content in the crystalline phase is found to achieve a saturation at relatively low Li concentration in the melt (about 0.02%wt.). An algorithm and software are developed for real-time analysis of the studied spectra of lithium trace amounts at wide variation of the plasma radiation intensity. The analyzed plasma spectra processing method is based on the calculation of lithium emission part in the total emission of the target plasma for each recorded spectrum followed by the error estimation for the series of measurements in the normal distribution approximation.

  20. The Metal-Halide Lamp Under Varying Gravity Conditions Measured by Emission and Laser Absorption Spectroscopy

    Science.gov (United States)

    Flikweert, A. J.; Nimalasuriya, T.; Kroesen, G. M. W.; Haverlag, M.; Stoffels, W. W.

    2009-11-01

    Diffusive and convective processes in the metal-halide lamp cause an unwanted axial colour segregation. Convection is induced by gravity. To understand the flow phenomena in the arc discharge lamp it has been investigated under normal laboratory conditions, micro-gravity (ISS and parabolic flights) and hyper-gravity (parabolic flights 2 g, centrifuge 1 g-10 g). The measurement techniques are webcam imaging, and emission and laser absorption spectroscopy. This paper aims to give an overview of the effect of different artificial gravity conditions on the lamp and compares the results from the three measurement techniques.

  1. Three-dimensional modeling of beam emission spectroscopy measurements in fusion plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Guszejnov, D.; Pokol, G. I. [Department of Nuclear Techniques, Budapest University of Technology and Economics, Association EURATOM, H-1111 Budapest (Hungary); Pusztai, I. [Nuclear Engineering, Applied Physics, Chalmers University of Technology, SE-412 96 Goeteborg (Sweden); Refy, D.; Zoletnik, S. [MTA Wigner FK RMI, Association EURATOM, Pf. 49, H-1525 Budapest (Hungary); Lampert, M. [Department of Nuclear Techniques, Budapest University of Technology and Economics, Association EURATOM, H-1111 Budapest (Hungary); MTA Wigner FK RMI, Association EURATOM, Pf. 49, H-1525 Budapest (Hungary); Nam, Y. U. [National Fusion Research Institute, Gwahangno 113, Daejeon 305-333 (Korea, Republic of)

    2012-11-15

    One of the main diagnostic tools for measuring electron density profiles and the characteristics of long wavelength turbulent wave structures in fusion plasmas is beam emission spectroscopy (BES). The increasing number of BES systems necessitated an accurate and comprehensive simulation of BES diagnostics, which in turn motivated the development of the Rate Equations for Neutral Alkali-beam TEchnique (RENATE) simulation code that is the topic of this paper. RENATE is a modular, fully three-dimensional code incorporating all key features of BES systems from the atomic physics to the observation, including an advanced modeling of the optics. Thus RENATE can be used both in the interpretation of measured signals and the development of new BES systems. The most important components of the code have been successfully benchmarked against other simulation codes. The primary results have been validated against experimental data from the KSTAR tokamak.

  2. Emission spectroscopy diagnostics of rare gases in the PNX-U facility

    International Nuclear Information System (INIS)

    Vetrov, S. I.; Spitsyn, A. V.; Shuvaev, D. A.; Yanchenkov, S. V.

    2006-01-01

    Results are presented from measurements of the electron temperature and neutral atom density in a low-temperature microwave plasma by the method of emission spectroscopy. The measurements were conducted in the PNX-U facility-a magnetic confinement system with a 'magnetic wall.' Multichord measurements of plasma radiation at a wavelength of 750.37 nm were performed with the help of an absolutely calibrated monochromator. The neutral atom density was calculated using the collisional-radiative model. The degree of plasma ionization near the axis of the facility was found to be close to unity. The electron temperature of the argon plasma was measured from the relative intensities of the spectral lines of neutral helium injected in small amounts into the plasma (the so-called helium thermometer method). At a low microwave heating power, the results of these measurements agree well with the results of probe measurements

  3. In situ optical emission study on the role of C2 in the synthesis of singlewalled carbon nanotubes

    CSIR Research Space (South Africa)

    Motaung, DE

    2010-01-01

    Full Text Available applications. In this study, the authors have applied in situ optical emission spectroscopy (OES) to study the plasma in the laser-furnace method to synthesize SWCNTs. In particular, the authors have investigated the temporal and spatial behavior of C2 as well...

  4. Transition probabilities for lines of Cr II, Na II and Sb I by laser produced plasma atomic emission spectroscopy

    International Nuclear Information System (INIS)

    Gonzalez, A. M.; Ortiz, M.; Campos, J.

    1995-01-01

    Absolute transition probabilities for lines of CR II, Na II and Sb I were determined by emission spectroscopy of laser induced plasmas. the plasma was produced focusing the emission of a pulsed Nd-Yag laser on solid samples containing the atom in study. the light arising from the plasma region was collected by and spectrometer. the detector used was a time-resolved optical multichannel analyzer (OMA III EG and G). The wavelengths of the measured transitions range from 2000 sto 4100 A. The spectral resolution of the system was 0. 2 A. The method can be used in insulators materials as Cl Na crystals and in metallic samples as Al-Cr and Sn-Sn alloys. to avoid self-absorption effects the alloys were made with low Sb or Cr content. Relative transition probabilities have been determined from measurements of emission-line intensities and were placed on an absolute scale by using, where possible, accurate experimental lifetime values form the literature or theoretical data. From these measurements, values for plasma temperature (8000-24000 K), electron densities (∼∼ 10''16 cm ''-3) and self-absorption coefficients have been obtained. (Author) 56 refs

  5. Transition probabilities for lines of Cr II, Na II and Sb I by laser produced plasma atomic emission spectroscopy

    International Nuclear Information System (INIS)

    Gonzalez, A.M.; Ortiz, M.; Campos, J.

    1995-09-01

    Absolute transition probabilities for lines of Cr II, Na II and Sb I were determined by emission spectroscopy of laser induced plasmas. The plasma was produced focusing the emission of a pulsed Nd-Yag laser on solid samples containing the atom in study. The light arising from the plasma region was collected by and spectrometer. the detector used was a time-resolved optical multichannel analyzer (OMA III EG and G). The wavelengths of the measured transitions range from 2000 to 4100 A. The spectral resolution of the system was 0.2 A. The method can be used in insulators materials as Cl Na crystals and in metallic samples as Al-Cr and Sn-Sb alloys. To avoid self-absorption effects the alloys were made with low Sb or Cr content. Relative transition probabilities have been determined from measurements of emission-line intensities and were placed on an absolute scale by using, where possible, accurate experimental lifetime values form the literature or theoretical data. From these measurements, values for plasma temperature (8000-24000K), electron densities (approx 10 ''16 cm''-3) and self-absorption coefficients have been obtained

  6. Uranium(VI) speciation by spectroscopy

    International Nuclear Information System (INIS)

    Meinrath, G.

    1997-01-01

    The application of UV-Vis and time-resolved laser-induced fluorescence (TRLF) spectroscopies to direct of uranium(VI) in environmental samples offers various prospects that have, however, serious limitations. While UV-Vis spectroscopy is probably not sensitive enough to detect uranium(VI) species in the majority of environmental samples, TRLFS is principially able to speciate uranium(VI) at very low concentration levels in the nanomol range. Speciation by TRLFS can be based on three parameters: excitation spectrum, emission spectrum and lifetime of the fluorescence emission process. Due to quenching effects, the lifetime may not be expected to be as characteristics as, e.g., the emission spectrum. Quenching of U(VI) fluorescence by reaction with organic substances, inorganic ions and formation of carbonate radicals is one important limiting factor in the application of U(VI) fluorescence spectroscopy. Fundamental photophysical criteria are illustrated using UV-Vis and fluorescence spectra of U(VI) hydrolysis and carbonato species as examples. (author)

  7. Background radiation in inelastic X-ray scattering and X-ray emission spectroscopy. A study for Johann-type spectrometers

    Science.gov (United States)

    Paredes Mellone, O. A.; Bianco, L. M.; Ceppi, S. A.; Goncalves Honnicke, M.; Stutz, G. E.

    2018-06-01

    A study of the background radiation in inelastic X-ray scattering (IXS) and X-ray emission spectroscopy (XES) based on an analytical model is presented. The calculation model considers spurious radiation originated from elastic and inelastic scattering processes along the beam paths of a Johann-type spectrometer. The dependence of the background radiation intensity on the medium of the beam paths (air and helium), analysed energy and radius of the Rowland circle was studied. The present study shows that both for IXS and XES experiments the background radiation is dominated by spurious radiation owing to scattering processes along the sample-analyser beam path. For IXS experiments the spectral distribution of the main component of the background radiation shows a weak linear dependence on the energy for the most cases. In the case of XES, a strong non-linear behaviour of the background radiation intensity was predicted for energy analysis very close to the backdiffraction condition, with a rapid increase in intensity as the analyser Bragg angle approaches π / 2. The contribution of the analyser-detector beam path is significantly weaker and resembles the spectral distribution of the measured spectra. Present results show that for usual experimental conditions no appreciable structures are introduced by the background radiation into the measured spectra, both in IXS and XES experiments. The usefulness of properly calculating the background profile is demonstrated in a background subtraction procedure for a real experimental situation. The calculation model was able to simulate with high accuracy the energy dependence of the background radiation intensity measured in a particular XES experiment with air beam paths.

  8. Advanced techniques for actinide spectroscopy (ATAS 2012). Abstract book

    Energy Technology Data Exchange (ETDEWEB)

    Foerstendorf, Harald; Mueller, Katharina; Steudtner, Robin [eds.

    2012-07-01

    The abstract book of the International workshop on advanced techniques for actinide spectroscopy (ATAS 2012) include contributions concerning the following issues: environmental applications, NMR spectroscopy, vibrational spectroscopy, X-ray spectroscopy and theory, technical application: separation processes, emission spectroscopy.

  9. Advanced techniques for actinide spectroscopy (ATAS 2012). Abstract book

    International Nuclear Information System (INIS)

    Foerstendorf, Harald; Mueller, Katharina; Steudtner, Robin

    2012-01-01

    The abstract book of the International workshop on advanced techniques for actinide spectroscopy (ATAS 2012) include contributions concerning the following issues: environmental applications, NMR spectroscopy, vibrational spectroscopy, X-ray spectroscopy and theory, technical application: separation processes, emission spectroscopy.

  10. Plasma polarization spectroscopy. Time resolved spectroscopy in soft x-ray region on recombining plasma

    International Nuclear Information System (INIS)

    Iwamae, Atsushi; Hasuo, Masahiro; Atake, Makoto; Hasegawa, Noboru; Kawachi, Tetsuya

    2007-01-01

    We present an experimental study of polarization of emission radiations from recombining plasmas generated by the interaction of 60 fs ultra-short laser pulses with a gas jet. Time-resolved spectroscopy with a temporal resolution of 5 ps with repetitive accumulation is used to follow the recombination time histories. (author)

  11. Probing Transient Valence Orbital Changes with Picosecond Valence-to-Core X-ray Emission Spectroscopy

    DEFF Research Database (Denmark)

    March, Anne Marie; Assefa, Tadesse A.; Boemer, Christina

    2017-01-01

    We probe the dynamics of valence electrons in photoexcited [Fe(terpy)2]2+ in solution to gain deeper insight into the Fe ligand bond changes. We use hard X-ray emission spectroscopy (XES), which combines element specificity and high penetration with sensitivity to orbital structure, making...... valence orbitals to the nascent core-hole. Vtc-XES offers particular insight into the molecular orbitals directly involved in the light-driven dynamics; a change in the metal ligand orbital overlap results in an intensity reduction and a blue energy shift in agreement with our theoretical calculations...... and more subtle features at the highest energies reflect changes in the frontier orbital populations....

  12. 2D scrape-off layer turbulence measurement using Deuterium beam emission spectroscopy on KSTAR

    Science.gov (United States)

    Lampert, M.; Zoletnik, S.; Bak, J. G.; Nam, Y. U.; Kstar Team

    2018-04-01

    Intermittent events in the scrape-off layer (SOL) of magnetically confined plasmas, often called blobs and holes, contribute significantly to the particle and heat loss across the magnetic field lines. In this article, the results of the scrape-off layer and edge turbulence measurements are presented with the two-dimensional Deuterium Beam Emission Spectroscopy system (DBES) at KSTAR (Korea Superconducting Tokamak Advanced Research). The properties of blobs and holes are determined in an L-mode and an H-mode shot with statistical tools and conditional averaging. These results show the capabilities and limitations of the SOL turbulence measurement of a 2D BES system. The results from the BES study were compared with the analysis of probe measurements. It was found that while probes offer a better signal-to-noise ratio and can measure blobs down to 3 mm size, BES can monitor the two-dimensional dynamics of larger events continuously during full discharges, and the measurement is not limited to the SOL on KSTAR.

  13. Space-resolved characterization of high frequency atmospheric-pressure plasma in nitrogen, applying optical emission spectroscopy and numerical simulation

    International Nuclear Information System (INIS)

    Rajasekaran, Priyadarshini; Ruhrmann, Cornelia; Bibinov, Nikita; Awakowicz, Peter

    2011-01-01

    Averaged plasma parameters such as electron distribution function and electron density are determined by characterization of high frequency (2.4 GHz) nitrogen plasma using both experimental methods, namely optical emission spectroscopy (OES) and microphotography, and numerical simulation. Both direct and step-wise electron-impact excitation of nitrogen emissions are considered. The determination of space-resolved electron distribution function, electron density, rate constant for electron-impact dissociation of nitrogen molecule and the production of nitrogen atoms, applying the same methods, is discussed. Spatial distribution of intensities of neutral nitrogen molecule and nitrogen molecular ion from the microplasma is imaged by a CCD camera. The CCD images are calibrated using the corresponding emissions measured by absolutely calibrated OES, and are then subjected to inverse Abel transformation to determine space-resolved intensities and other parameters. The space-resolved parameters are compared, respectively, with the averaged parameters, and an agreement between them is established. (paper)

  14. Soft X-ray emission spectroscopy of liquids and lithium battery materials

    International Nuclear Information System (INIS)

    Augustsson, Andreas

    2004-01-01

    Lithium ion insertion into electrode materials is commonly used in rechargeable battery technology. The insertion implies changes in both the crystal structure and the electronic structure of the electrode material. Side-reactions may occur on the surface of the electrode which is exposed to the electrolyte and form a solid electrolyte interface (SEI). The understanding of these processes is of great importance for improving battery performance. The chemical and physical properties of water and alcohols are complicated by the presence of strong hydrogen bonding. Various experimental techniques have been used to study geometrical structures and different models have been proposed to view the details of how these liquids are geometrically organized by hydrogen bonding. However, very little is known about the electronic structure of these liquids, mainly due to the lack of suitable experimental tools. In this thesis examples of studies of lithium battery electrodes and liquid systems using soft x-ray emission spectroscopy will be presented. Monochromatized synchrotron radiation has been used to accomplish selective excitation, in terms of energy and polarization. The electronic structure of graphite electrodes has been studied, before and after lithium intercalation. Changes in the electronic structure upon lithiation due to transfer of electrons into the graphite π-bands have been observed. Transfer of electrons in to the 3d states of transition metal oxides upon lithiation have been studied, through low energy excitations as dd- and charge transfer-excitations. A SEI was detected on cycled graphite electrodes. By the use of selective excitation different carbon sites were probed in the SEI. The local electronic structure of water, methanol and mixtures of the two have been examined using a special liquid cell, to separate the liquid from the vacuum in the experimental chamber. Results from the study of liquid water showed a strong influence on the 3a1 molecular

  15. Handbook of Applied Solid State Spectroscopy

    CERN Document Server

    Vij, D. R

    2006-01-01

    Solid-State spectroscopy is a burgeoning field with applications in many branches of science, including physics, chemistry, biosciences, surface science, and materials science. Handbook of Applied Solid-State Spectroscopy brings together in one volume information about various spectroscopic techniques that is currently scattered in the literature of these disciplines. This concise yet comprehensive volume covers theory and applications of a broad range of spectroscopies, including NMR, NQR, EPR/ESR, ENDOR, scanning tunneling, acoustic resonance, FTIR, auger electron emission, x-ray photoelectron emission, luminescence, and optical polarization, and more. Emphasis is placed on fundamentals and current methods and procedures, together with the latest applications and developments in the field.

  16. Localization of the antimony impurity atoms in the PbTe lattice determined by the Moessbauer emission spectroscopy

    International Nuclear Information System (INIS)

    Masterov, V.F.; Nasredinov, F.S.; Nemov, S.A.; Seregin, P.P.; Troitskaya, N.N.; Bondarevskij, S.I.

    1997-01-01

    The 119 Sb ( 119m Sn) emission Moessbauer spectroscopy has shown that a localization of the antimony impurity atoms in the PbTe lattice is affected by the conductivity type of the host material, the antimony atoms occupied mainly anion and cation sites in n-type and p-type samples, respectively. The 119 Sn impurity in the anion sublattice of PbTe formed an decay. Its charge state was shown to be independent of the Fermi level position

  17. Long-Wave Infrared (LWIR) Molecular Laser-Induced Breakdown Spectroscopy (LIBS) Emissions of Thin Solid Explosive Powder Films Deposited on Aluminum Substrates.

    Science.gov (United States)

    Yang, Clayton S-C; Jin, Feng; Trivedi, Sudhir B; Brown, Ei E; Hommerich, Uwe; Tripathi, Ashish; Samuels, Alan C

    2017-04-01

    Thin solid films made of high nitro (NO 2 )/nitrate (NO 3 ) content explosives were deposited on sand-blasted aluminum substrates and then studied using a mercury-cadmium-telluride (MCT) linear array detection system that is capable of rapidly capturing a broad spectrum of atomic and molecular laser-induced breakdown spectroscopy (LIBS) emissions in the long-wave infrared region (LWIR; ∼5.6-10 µm). Despite the similarities of their chemical compositions and structures, thin films of three commonly used explosives (RDX, HMX, and PETN) studied in this work can be rapidly identified in the ambient air by their molecular LIBS emission signatures in the LWIR region. A preliminary assessment of the detection limit for a thin film of RDX on aluminum appears to be much lower than 60 µg/cm 2 . This LWIR LIBS setup is capable of rapidly probing and charactering samples without the need for elaborate sample preparation and also offers the possibility of a simultaneous ultraviolet visible and LWIR LIBS measurement.

  18. Evaluation of self-absorption coefficients of aluminum emission lines in laser-induced breakdown spectroscopy measurements

    International Nuclear Information System (INIS)

    El Sherbini, A.M.; El Sherbini, Th.M.; Hegazy, H.; Cristoforetti, G.; Legnaioli, S.; Palleschi, V.; Pardini, L.; Salvetti, A.; Tognoni, E.

    2005-01-01

    In quantitative Laser Induced Breakdown Spectroscopy (LIBS) measurements it is essential to account for the effect of self-absorption on the emission lines intensity. In order to quantify this effect, in this paper we propose a simple method for evaluating the ratio between the actual measured line intensity and the intensity expected in absence of self-absorption and, if necessary, correcting the effect of self-absorption on line intensity. The method, based on a homogeneous plasma model, is applicable when the plasma electron density is known and in particular to lines whose Stark broadening parameter is available

  19. Sample preparation techniques in trace element analysis by X-ray emission spectroscopy

    International Nuclear Information System (INIS)

    Valkovic, V.

    1983-11-01

    The report, written under a research contract with the IAEA, contains a detailed presentation of the most difficult problem encountered in the trace element analysis by methods of the X-ray emission spectroscopy, namely the sample preparation techniques. The following items are covered. Sampling - with specific consideration of aerosols, water, soil, biological materials, petroleum and its products, storage of samples and their handling. Pretreatment of samples - preconcentration, ashing, solvent extraction, ion exchange and electrodeposition. Sample preparations for PIXE - analysis - backings, target uniformity and homogeneity, effects of irradiation, internal standards and specific examples of preparation (aqueous, biological, blood serum and solid samples). Sample preparations for radioactive sources or tube excitation - with specific examples (water, liquid and solid samples, soil, geological, plants and tissue samples). Finally, the problem of standards and reference materials, as well as that of interlaboratory comparisons, is discussed

  20. Application of ultraviolet fluorometry and excitation-emission matrix spectroscopy (EEMS) to fingerprint oil and chemically dispersed oil in seawater.

    Science.gov (United States)

    Bugden, J B C; Yeung, C W; Kepkay, P E; Lee, K

    2008-04-01

    Excitation-emission matrix spectroscopy (EEMS) was used to characterize the ultra violet fluorescence fingerprints of eight crude oils (with a 14,470-fold range of dynamic viscosity) in seawater. When the chemical dispersant Corexit 9500 was mixed with the oils prior to their dispersion in seawater, the fingerprints of each oil changed primarily as an increase in fluorescence over an emission band centered on 445 nm. In order to simplify the wealth of information available in the excitation-emission matrix spectra (EEMs), two ratios were calculated. A 66-90% decrease in the slope ratio was observed with the addition of Corexit. When the slope ratios were reduced in complexity to intensity ratios, similar trends were apparent. As a result either of the ratios could be used as a simple and rapid means of identifying and monitoring chemically dispersed oil in the open ocean.

  1. Xanthines Studied via Femtosecond Fluorescence Spectroscopy

    Directory of Open Access Journals (Sweden)

    Pascale Changenet-Barret

    2016-12-01

    Full Text Available Xanthines represent a wide class of compounds closely related to the DNA bases adenine and guanine. Ubiquitous in the human body, they are capable of replacing natural bases in double helices and give rise to four-stranded structures. Although the use of their fluorescence for analytical purposes was proposed, their fluorescence properties have not been properly characterized so far. The present paper reports the first fluorescence study of xanthine solutions relying on femtosecond spectroscopy. Initially, we focus on 3-methylxanthine, showing that this compound exhibits non-exponential fluorescence decays with no significant dependence on the emission wavelength. The fluorescence quantum yield (3 × 10−4 and average decay time (0.9 ps are slightly larger than those found for the DNA bases. Subsequently, we compare the dynamical fluorescence properties of seven mono-, di- and tri-methylated derivatives. Both the fluorescence decays and fluorescence anisotropies vary only weakly with the site and the degree of methylation. These findings are in line with theoretical predictions suggesting the involvement of several conical intersections in the relaxation of the lowest singlet excited state.

  2. Flash Spectroscopy: Emission Lines From the Ionized Circumstellar Material Around 10-Day-Old Type II Supernovae

    Science.gov (United States)

    Khazov, D.; Yaron, O.; Gal-Yam, A.; Manulis, I.; Rubin, A.; Kulkarni, S. R.; Arcavi, I.; Kasliwal, M. M.; Ofek, E. O.; Cao, Y.; hide

    2016-01-01

    Supernovae (SNe) embedded in dense circumstellar material (CSM) may show prominent emission lines in their early-time spectra (spectroscopy"), we can measure various physical properties of the CSM, as well as the mass-loss rate of the progenitor during the year prior to its explosion. Searching through the Palomar Transient Factory (PTF and iPTF) SN spectroscopy databases from 2009 through 2014, we found 12 SNe II showing flash-ionized (FI) signatures in their first spectra. All are younger than 10 days. These events constitute 14% of all 84 SNe in our sample having a spectrum within 10 days from explosion, and 18% of SNe II observed at ages <5 days, thereby setting lower limits on the fraction of FI events. We classified as "blue/featureless" (BF) those events having a first spectrum that is similar to that of a blackbody, without any emission or absorption signatures. It is possible that some BF events had FI signatures at an earlier phase than observed, or that they lack dense CSM around the progenitor. Within 2 days after explosion, 8 out of 11 SNe in our sample are either BF events or show FI signatures. Interestingly, we found that 19 out of 21 SNe brighter than an absolute magnitude M(sub R) = -18.2 belong to the FI or BF groups, and that all FI events peaked above M(sub R) = -17.6 mag, significantly brighter than average SNe II.

  3. Study of aluminum emission spectra in astrophysical plasmas

    International Nuclear Information System (INIS)

    Jin Zhan; Zhang Jie

    2001-01-01

    High temperature, high density and strong magnetic fields in plasmas produced by ultra-high intensity and ultrashort laser pulses are similar to the main characteristics of astrophysical plasmas. This makes it possible to simulate come astrophysical processes at laboratories. The author presents the theoretic simulation of aluminum emission spectra in astrophysical plasmas. It can be concluded that using laser produced plasmas, the authors can obtain rich information on astrophysical spectroscopy, which is unobservable for astronomer

  4. Spatially Resolved HST Grism Spectroscopy of a Lensed Emission Line Galaxy at z ~ 1

    Science.gov (United States)

    Frye, Brenda L.; Hurley, Mairead; Bowen, David V.; Meurer, Gerhardt; Sharon, Keren; Straughn, Amber; Coe, Dan; Broadhurst, Tom; Guhathakurta, Puragra

    2012-07-01

    We take advantage of gravitational lensing amplification by A1689 (z = 0.187) to undertake the first space-based census of emission line galaxies (ELGs) in the field of a massive lensing cluster. Forty-three ELGs are identified to a flux of i 775 = 27.3 via slitless grism spectroscopy. One ELG (at z = 0.7895) is very bright owing to lensing magnification by a factor of ≈4.5. Several Balmer emission lines (ELs) detected from ground-based follow-up spectroscopy signal the onset of a major starburst for this low-mass galaxy (M * ≈ 2 × 109 M ⊙) with a high specific star formation rate (≈20 Gyr-1). From the blue ELs we measure a gas-phase oxygen abundance consistent with solar (12+log(O/H) = 8.8 ± 0.2). We break the continuous line-emitting region of this giant arc into seven ~1 kpc bins (intrinsic size) and measure a variety of metallicity-dependent line ratios. A weak trend of increasing metal fraction is seen toward the dynamical center of the galaxy. Interestingly, the metal line ratios in a region offset from the center by ~1 kpc have a placement on the blue H II region excitation diagram with f ([O III])/f (Hβ) and f ([Ne III])/f (Hβ) that can be fitted by an active galactic nucleus (AGN). This asymmetrical AGN-like behavior is interpreted as a product of shocks in the direction of the galaxy's extended tail, possibly instigated by a recent galaxy interaction. Based, in part, on data obtained with the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and NASA, and was made possible by the generous financial support of the W. M. Keck Foundation.

  5. Characterization of direct current He-N{sub 2} mixture plasma using optical emission spectroscopy and mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Flores, O.; Castillo, F.; Martinez, H. [Laboratorio de Espectroscopia, Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Apartado Postal 48-3, 62251, Cuernavaca, Morelos (Mexico); Villa, M.; Reyes, P. G. [Facultad de Ciencias, Universidad Autónoma del Estado de México, Estado de México (Mexico); Villalobos, S. [Laboratorio de Espectroscopia, Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Apartado Postal 48-3, 62251, Cuernavaca, Morelos (Mexico); Facultad de Ingeniería, Universidad Nacional Autónoma de México, México D.F. (Mexico)

    2014-05-15

    This study analyses the glow discharge of He and N{sub 2} mixture at the pressure of 2.0 Torr, power of 10 W, and flow rate of 16.5 l/min, by using optical emission spectroscopy and mass spectrometry. The emission bands were measured in the wavelength range of 200–1100 nm. The principal species observed were N{sub 2}{sup +} (B{sup 2}Σ{sup +}{sub u}→X{sup 2}Σ{sup +}{sub g}), N{sub 2} (C{sup 3}Π{sub u}→B{sup 3}Π{sub g}), and He, which are in good agreement with the results of mass spectrometry. Besides, the electron temperature and ion density were determined by using a double Langmuir probe. Results indicate that the electron temperature is in the range of 1.55–2.93 eV, and the electron concentration is of the order of 10{sup 10} cm{sup −3}. The experimental results of electron temperature and ion density for pure N{sub 2} and pure He are in good agreement with the values reported in the literature.

  6. To the application of the emission Mössbauer and positron annihilation spectroscopies for detection of carcinogens

    Science.gov (United States)

    Bokov, A. V.; Byakov, V. M.; Kulikov, L. A.; Perfiliev, Yu. D.; Stepanov, S. V.

    2017-11-01

    Being the main cause of cancer, almost all chemical carcinogens are strong electrophiles, that is, they have a high affinity for the electron. We have shown that positron annihilation lifetime spectroscopy (PALS) is able to detect chemical carcinogens by their inhibition of positronium (Ps) formation in liquid media. Electrophilic carcinogens intercept thermalized track electrons, which are precursors of Ps, and as a result, when they are present Ps atom does not practically form. Available biophysical data seemingly indicate that frozen solutions model better an intracellular medium than the liquid ones. So it is reasonable to use emission Mössbauer spectroscopy (EMS) to detect chemical carcinogens, measuring the yield of 57Fe2+ions formed in reactions of Auger electrons and other secondary electrons they produced with 57Fe3+. These reactions are similar to the Ps formation process in the terminal part the positron track: e++ e- =>Ps. So EMS and PALS are complementary methods for detection of carcinogenic compounds.

  7. Theory of attosecond absorption spectroscopy in krypton

    DEFF Research Database (Denmark)

    Baggesen, Jan Conrad; Lindroth, Eva; Madsen, Lars Bojer

    2012-01-01

    A theory for time-domain attosecond pump–attosecond probe photoabsorption spectroscopy is formulated and related to the atomic response. The theory is illustrated through a study of attosecond absorption spectroscopy in krypton. The atomic parameters entering the formulation such as energies...... of the hole in this manner. In a second example, a hole is created in an inner shell by the first pulse, and the second probe pulse couples an even more tightly bound state to that hole. The hole decays in this example by Auger electron emission, and the absorption spectroscopy follows the decay of the hole...

  8. Determination of Cr(VI) and Cr(III) in urine and dextrose by inductively coupled plasma emission spectroscopy

    Science.gov (United States)

    Mianzhi, Zhuang; Barnes, Ramon M.

    The determination of Cr(VI) and Cr(III) in human urine and in commercial dextrose solution is performed by induclively coupled plasma-atomic emission spectroscopy after selective preconcentration of the chromium species at different pH values by poly(dithiocarbamate) and poly(acrylamidoxime) chelating resins. The chelating properties of these resins with chromium, including the kinetics of uptake and removal of Cr(III), and the influence of matrix concentrations were evaluated. Chromium in human urine was found to exist exclusively as Cr(III).

  9. Direct determination of energy level alignment and charge transport at metal-Alq3 interfaces via ballistic-electron-emission spectroscopy.

    Science.gov (United States)

    Jiang, J S; Pearson, J E; Bader, S D

    2011-04-15

    Using ballistic-electron-emission spectroscopy (BEES), we directly determined the energy barrier for electron injection at clean interfaces of Alq(3) with Al and Fe to be 2.1 and 2.2 eV, respectively. We quantitatively modeled the sub-barrier BEES spectra with an accumulated space charge layer, and found that the transport of nonballistic electrons is consistent with random hopping over the injection barrier.

  10. Plasma emission spectroscopy (DCP) for rare earths determination in waters from Morro do Ferro (MG) Brazil, after chromatographic preconcentration

    International Nuclear Information System (INIS)

    Figueiredo, A.M.R. de.

    1987-01-01

    Rare earth determinations in surface and well waters from Morro do Ferro was studied using chemical preconcentration methods of the group and plasma emission spectroscopy excited by direct current are - DCP. A method that combines retention in alumina is HF medium with ion exchange for the preconcentration of the group was developed in semi micro scale. DCP determination, in the sequencial mode by using mixed standards containing, Y, La, Ce, Nd, Pr, Sm, Eu, Ga, Tb, Dy, Er, Yb and Al, principal concentrate componentes was studied by analysis of the profile of each spectral line. Principal cations, anions, ph and Eh were determined. Semi-micro techniques were developed for anions preconcentration and for determination of sulphate, phosphate and carbonate. (M.J.C.) [pt

  11. Electronic Structure of the Organic Semiconductor Alq3 (aluminum tris-8-hydroxyquinoline) from Soft X-ray Spectroscopies and Density Functional Theory Calculations

    Energy Technology Data Exchange (ETDEWEB)

    DeMasi, A.; Piper, L; Zhang, Y; Reid, I; Wang, S; Smith, K; Downes, J; Pelkekis, N; McGuinness, C; Matsuura, A

    2008-01-01

    The element-specific electronic structure of the organic semiconductor aluminum tris-8-hydroxyquinoline (Alq3) has been studied using a combination of resonant x-ray emission spectroscopy, x-ray photoelectron spectroscopy, x-ray absorption spectroscopy, and density functional theory (DFT) calculations. Resonant and nonresonant x-ray emission spectroscopy were used to measure directly the carbon, nitrogen and oxygen 2p partial densities of states in Alq3, and good agreement was found with the results of DFT calculations. Furthermore, resonant x-ray emission at the carbon K-edge is shown to be able to measure the partial density of states associated with individual C sites. Finally, comparison of previous x-ray emission studies and the present data reveal the presence of clear photon-induced damage in the former.

  12. Electronic structure of the organic semiconductor Alq3 (aluminum tris-8-hydroxyquinoline) from soft x-ray spectroscopies and density functional theory calculations.

    Science.gov (United States)

    DeMasi, A; Piper, L F J; Zhang, Y; Reid, I; Wang, S; Smith, K E; Downes, J E; Peltekis, N; McGuinness, C; Matsuura, A

    2008-12-14

    The element-specific electronic structure of the organic semiconductor aluminum tris-8-hydroxyquinoline (Alq(3)) has been studied using a combination of resonant x-ray emission spectroscopy, x-ray photoelectron spectroscopy, x-ray absorption spectroscopy, and density functional theory (DFT) calculations. Resonant and nonresonant x-ray emission spectroscopy were used to measure directly the carbon, nitrogen and oxygen 2p partial densities of states in Alq(3), and good agreement was found with the results of DFT calculations. Furthermore, resonant x-ray emission at the carbon K-edge is shown to be able to measure the partial density of states associated with individual C sites. Finally, comparison of previous x-ray emission studies and the present data reveal the presence of clear photon-induced damage in the former.

  13. X-ray emission spectroscopy applied to glycine adsorbed on Cu(110): An atom and symmetry projected view

    Energy Technology Data Exchange (ETDEWEB)

    Hasselstroem, J.; Karis, O.; Weinelt, M. [Uppsala Univ. (Sweden)] [and others

    1997-04-01

    When a molecule is adsorbed on a metal surface by chemical bonding new electronic states are formed. For noble and transition metals these adsorption-induced states overlap with the much more intense metal d-valence band, making them difficult to probe by for instance direct photoemission. However, it has recently been shown that X-ray emission spectroscopy (XES) can be applied to adsorbate systems. Since the intermediate state involves a core hole, this technique has the power to project out the partial density of states around each atomic site. Both the excitation and deexcitation processes are in general governed by the dipole selection rules. For oriented system, it is hence possible to obtain a complete separation into 2p{sub x}, 2p{sub y} and 2p{sub z} contributions using angular resolved measurements. The authors have applied XES together with other core level spectroscopies to glycine adsorption on Cu(110). Glycine (NH{sub 2}CH{sub 2}COOH) is the smallest amino acid and very suitable to study by core level spectroscopy since it has several functional groups, all well separated in energy by chemical shifts. Its properties are futhermore of biological interest. In summary, the authors have shown that it is possible to apply XES to more complicated molecular adsorbates. The assignment of different electronic states is however not as straight forward as for simple diatomic molecules. For a complete understanding of the redistribution and formation of new electronic states associated with the surface chemical bond, experimental data must be compared to theoretical calculations.

  14. Volcanic SO2 and SiF4 visualization using 2-D thermal emission spectroscopy – Part 1: Slant-columns and their ratios

    Directory of Open Access Journals (Sweden)

    M. Grutter

    2012-02-01

    Full Text Available The composition and emission rates of volcanic gas plumes provide insight of the geologic internal activity, atmospheric chemistry, aerosol formation and radiative processes around it. Observations are necessary for public security and the aviation industry. Ground-based thermal emission infrared spectroscopy, which uses the radiation of the volcanic gas itself, allows for continuously monitoring during day and night from a safe distance. We present measurements on Popocatépetl volcano based on thermal emission spectroscopy during different campaigns between 2006–2009 using a Scanning Infrared Gas Imaging System (SIGIS. The experimental set-up, measurement geometries and analytical algorithms are described. The equipment was operated from a safe distance of 12 km from the volcano at two different spectral resolutions: 0.5 and 4 cm−1. The 2-dimensional scanning capability of the instrument allows for an on-line visualization of the volcanic SO2 plume and its animation. SiF4 was also identified in the infrared spectra recorded at both resolutions. The SiF4/SO2 molecular ratio can be calculated from each image and used as a highly useful parameter to follow changes in volcanic activity. A small Vulcanian eruption was monitored during the night of 16 to 17 November 2008 and strong ash emission together with a pronounced SO2 cloud was registered around 01:00 a.m. LST (Local Standard Time. Enhanced SiF4/SO2 ratios were observed before and after the eruption. A validation of the results from thermal emission measurements with those from absorption spectra of the moon taken at the same time, as well as an error analysis, are presented. The inferred propagation speed from sequential images is used in a subsequent paper (Part 2 to calculate the emission rates at different distances from the crater.

  15. Optical emission spectroscopy at the large RF driven negative ion test facility ELISE: Instrumental setup and first results

    International Nuclear Information System (INIS)

    Wünderlich, D.; Fantz, U.; Franzen, P.; Riedl, R.; Bonomo, F.

    2013-01-01

    One of the main topics to be investigated at the recently launched large (A source = 1.0 × 0.9 m 2 ) ITER relevant RF driven negative ion test facility ELISE (Extraction from a Large Ion Source Experiment) is the connection between the homogeneity of the plasma parameters close to the extraction system and the homogeneity of the extracted negative hydrogen ion beam. While several diagnostics techniques are available for measuring the beam homogeneity, the plasma parameters are determined by optical emission spectroscopy (OES) solely. First OES measurements close to the extraction system show that without magnetic filter field the vertical profile of the plasma emission is more or less symmetric, with maxima of the emission representing the projection of the plasma generation volumes, and a distinct minimum in between. The profile changes with the strength of the magnetic filter field but under all circumstances the plasma emission in ELISE is much more homogeneous compared to the smaller IPP prototype sources. Planned after this successful demonstration of the ELISE OES system is to combine OES with tomography in order to determine locally resolved values for the plasma parameters

  16. Development of wave length-dispersive soft x-ray emission spectrometers for transmission electron microscopes - an introduction of valence electron spectroscopy for transmission electron microscopy

    International Nuclear Information System (INIS)

    Terauchi, Masami; Koike, Masato; Fukushima, Kurio; Kimura, Atsushi

    2010-01-01

    Two types of wavelength-dispersive soft X-ray spectrometers, a high-dispersion type and a conventional one, for transmission electron microscopes were constructed. Those spectrometers were used to study the electronic states of valence electrons (bonding electrons). Both spectrometers extended the acceptable energy regions to higher than 2000 eV. The best energy resolution of 0.08 eV was obtained for an Al L-emission spectrum by using the high-dispersion type spectrometer. By using the spectrometer, C K-emission of carbon allotropes, Cu L-emission of Cu 1-x Zn x alloys and Pt M-emission spectra were presented. The FWHM value of 12 eV was obtained for the Pt Mα-emission peak. The performance of the conventional one was also presented for ZnS and a section specimen of a multilayer device. W-M and Si-K emissions were clearly resolved. Soft X-ray emission spectroscopy based on transmission electron microscopy (TEM) has an advantage for obtaining spectra from a single crystalline specimen with a defined crystal setting. As an example of anisotropic soft X-ray emission, C K-emission spectra of single crystalline graphite with different crystal settings were presented. From the spectra, density of states of π- and σ-bondings were separately derived. These results demonstrated a method to analyse the electronic states of valence electrons of materials in the nanometre scale based on TEM. (author)

  17. Electron-probe microanalysis: x-ray spectroscopy

    International Nuclear Information System (INIS)

    1987-01-01

    The main principles on X-ray, energy and wave length dispersive spectroscopy are reviewed. In order to allow the choice of the best operating conditions, the importance of the regulation and control systems is underlined. Emission theory, X-rays nature and its interaction with matter and electrons in the matter is shown. The structure, operating procedures and necessary electronics (single channel - analysis chain) automatic-control system for the threshold-energies discrimination and the energy distribution visualization) associated to the wavelength dispersive spectroscopy are described. The focusing control, resolution, influence of chemical bonds and multilayer-structure monochromators relaled to wavelength dispersive spectroscopy are studied. Concerning the energy-dispersive spectroscopy, the detector, preamplifier, amplifier, analog-digital converter, as well as the utilization and control of the spectrometer are described. Problems and instrumental progress on energy-dispersive spectroscopy related to the electronic-noise control, charge collection and light-elements detection are discussed [fr

  18. Broad-band tunable visible emission of sol-gel derived SiBOC ceramic thin films

    International Nuclear Information System (INIS)

    Karakuscu, Aylin; Guider, Romain; Pavesi, Lorenzo; Soraru, Gian Domenico

    2011-01-01

    Strong broad band tunable visible emission of SiBOC ceramic films is reported and the results are compared with one of boron free SiOC ceramic films. The insertion of boron into the SiOC network is verified by Fourier-Transform Infrared Spectroscopy. Optical properties are studied by photoluminescence and ultraviolet-visible spectroscopy measurements. Boron addition causes a decrease in the emission intensity attributed to defect states and shifts the emission to the visible range at lower temperatures (800-900 o C) leading to a very broad tunable emission with high external quantum efficiency.

  19. Photoacoustic and photothermal spectroscopies

    International Nuclear Information System (INIS)

    Sawada, Tsuguo; Kitamori, Takehiko; Nakamura, Masato

    1995-01-01

    Photoacoustic and photothermal spectroscopy methods can be effectively applied to the analysis of microparticles in condensed matter. A more violent photothermal conversion phenomenon of a particle, laser breakdown and accompanying plasma and acoustic emission, was applied to individual detection and analysis of ultrafine particles in ultrapure water. Laser-like nonlinear emission from the plasma was observed. (author)

  20. Spectroscopic study of emission coal mineral plasma produced by laser ablation

    International Nuclear Information System (INIS)

    Vera, L P; Pérez, J A; Riascos, H

    2014-01-01

    Spectroscopic analysis of plasma produced by laser ablation of coal samples using 1064 nm radiation pulses from a Q-switched Nd:YAG on different target under air ambient, was performed. The emission of molecular band systems such as C 2 Swan System (d 3 Π g →a 3 Π u ), the First Negative System N 2 (Band head at 501,53 nm) and emission lines of the C I, C II, were investigated using the optical emission spectroscopy technique. The C 2 molecular spectra (Swan band) were analyzed to determine vibrational temperature (0,62 eV); the density and electron temperature of the plasma have been evaluated using Stark broadening and the intensity of the nitrogen emission lines N II, the found values of 1,2 eV and 2,2 x10 18 cm −3 respectively.

  1. Spectroscopy Division: progress report for January 1989-December 1989

    International Nuclear Information System (INIS)

    Sharma, A.; Marathe, S.M.

    1990-01-01

    Research and development activities of the Spectroscopy Division during the calendar year 1989 are reported in the form of individual summaries which are grouped under the headings entitled: (i)analysis by optical emission spectroscopy, inductively coupled plasma atomic emission spectrometry and x-ray fluroescence techniques, (ii)atomic, molecular, solid state and laser-spectroscopy, (iii)optics and thin films, (iv)electronics, (v)fabrication, (vi)publications, and (vii)other academic activities. A divisional staff chart is given at the end. (author). figs., tabs

  2. Spectroscopy with trapped highly charged ions

    International Nuclear Information System (INIS)

    Beiersdorfer, Peter

    2009-01-01

    We give an overview of atomic spectroscopy performed on electron beam ion traps at various locations throughout the world. Spectroscopy at these facilities contributes to various areas of science and engineering, including but not limited to basic atomic physics, astrophysics, extreme ultraviolet lithography, and the development of density and temperature diagnostics of fusion plasmas. These contributions are accomplished by generating, for example, spectral surveys, making precise radiative lifetime measurements, accounting for radiative power emitted in a given wavelength band, illucidating isotopic effects, and testing collisional-radiative models. While spectroscopy with electron beam ion traps had originally focused on the x-ray emission from highly charged ions interacting with the electron beam, the operating modes of such devices have expanded to study radiation in almost all wavelength bands from the visible to the hard x-ray region; and at several facilities the ions can be studied even in the absence of an electron beam. Photon emission after charge exchange or laser excitation has been observed; and the work is no longer restricted to highly charged ions. Much of the experimental capabilities are unique to electron beam ion traps, and the work performed with these devices cannot be undertaken elsewhere. However, in other areas the work on electron beam ion traps rivals the spectroscopy performed with conventional ion traps or heavy-ion storage rings. The examples we present highlight many of the capabilities of the existing electron beam ion traps and their contributions to physics.

  3. Extended wavelength anisotropy resolved multidimensional emission spectroscopy (ARMES) measurements: better filters, validation standards, and Rayleigh scatter removal methods

    Science.gov (United States)

    Casamayou-Boucau, Yannick; Ryder, Alan G.

    2017-09-01

    Anisotropy resolved multidimensional emission spectroscopy (ARMES) provides valuable insights into multi-fluorophore proteins (Groza et al 2015 Anal. Chim. Acta 886 133-42). Fluorescence anisotropy adds to the multidimensional fluorescence dataset information about the physical size of the fluorophores and/or the rigidity of the surrounding micro-environment. The first ARMES studies used standard thin film polarizers (TFP) that had negligible transmission between 250 and 290 nm, preventing accurate measurement of intrinsic protein fluorescence from tyrosine and tryptophan. Replacing TFP with pairs of broadband wire grid polarizers enabled standard fluorescence spectrometers to accurately measure anisotropies between 250 and 300 nm, which was validated with solutions of perylene in the UV and Erythrosin B and Phloxine B in the visible. In all cases, anisotropies were accurate to better than ±1% when compared to literature measurements made with Glan Thompson or TFP polarizers. Better dual wire grid polarizer UV transmittance and the use of excitation-emission matrix measurements for ARMES required complete Rayleigh scatter elimination. This was achieved by chemometric modelling rather than classical interpolation, which enabled the acquisition of pure anisotropy patterns over wider spectral ranges. In combination, these three improvements permit the accurate implementation of ARMES for studying intrinsic protein fluorescence.

  4. Qualitative tissue differentiation by analysing the intensity ratios of atomic emission lines using laser induced breakdown spectroscopy (LIBS): prospects for a feedback mechanism for surgical laser systems.

    Science.gov (United States)

    Kanawade, Rajesh; Mahari, Fanuel; Klämpfl, Florian; Rohde, Maximilian; Knipfer, Christian; Tangermann-Gerk, Katja; Adler, Werner; Schmidt, Michael; Stelzle, Florian

    2015-01-01

    The research work presented in this paper focuses on qualitative tissue differentiation by monitoring the intensity ratios of atomic emissions using 'Laser Induced Breakdown Spectroscopy' (LIBS) on the plasma plume created during laser tissue ablation. The background of this study is to establish a real time feedback control mechanism for clinical laser surgery systems during the laser ablation process. Ex-vivo domestic pig tissue samples (muscle, fat, nerve and skin) were used in this experiment. Atomic emission intensity ratios were analyzed to find a characteristic spectral line for each tissue. The results showed characteristic elemental emission intensity ratios for the respective tissues. The spectral lines and intensity ratios of these specific elements varied among the different tissue types. The main goal of this study is to qualitatively and precisely identify different tissue types for tissue specific laser surgery. © 2015 The Authors. Journal of Biophotonics published by WILEY-VCH Verlag.

  5. Time-dependent Autler-Townes spectroscopy

    International Nuclear Information System (INIS)

    Qamar, Sajid; Zhu, S.-Y.; Zubairy, M Suhail

    2003-01-01

    Autler-Townes spontaneous emission spectroscopy is revisited for a time-dependent case. We report the results of spontaneous emission spectra for nonstationary scattered light signals using the definition of the time-dependent physical spectrum. This is a rare example of problems where time-dependent spectra can be calculated exactly

  6. Time-dependent Autler-Townes spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Qamar, Sajid [Institute for Quantum Studies, Department of Physics, Texas A and M University, College Station, TX 77843-4242 (United States); Zhu, S.-Y. [Institute for Quantum Studies, Department of Physics, Texas A and M University, College Station, TX 77843-4242 (United States); Zubairy, M Suhail [Institute for Quantum Studies, Department of Physics, Texas A and M University, College Station, TX 77843-4242 (United States)

    2003-04-01

    Autler-Townes spontaneous emission spectroscopy is revisited for a time-dependent case. We report the results of spontaneous emission spectra for nonstationary scattered light signals using the definition of the time-dependent physical spectrum. This is a rare example of problems where time-dependent spectra can be calculated exactly.

  7. Least squares autoregressive (maximum entropy) spectral estimation for Fourier spectroscopy and its application to the electron cyclotron emission from plasma

    International Nuclear Information System (INIS)

    Iwama, N.; Inoue, A.; Tsukishima, T.; Sato, M.; Kawahata, K.

    1981-07-01

    A new procedure for the maximum entropy spectral estimation is studied for the purpose of data processing in Fourier transform spectroscopy. The autoregressive model fitting is examined under a least squares criterion based on the Yule-Walker equations. An AIC-like criterion is suggested for selecting the model order. The principal advantage of the new procedure lies in the enhanced frequency resolution particularly for small values of the maximum optical path-difference of the interferogram. The usefulness of the procedure is ascertained by some numerical simulations and further by experiments with respect to a highly coherent submillimeter wave and the electron cyclotron emission from a stellarator plasma. (author)

  8. Soft x-ray spectroscopy studies of novel electronic materials using synchrotron radiation

    Science.gov (United States)

    Newby, David, Jr.

    Soft x-ray spectroscopy can provide a wealth of information on the electronic structure of solids. In this work, a suite of soft x-ray spectroscopies is applied to organic and inorganic materials with potential applications in electronic and energy generation devices. Using the techniques of x-ray absorption (XAS), x-ray emission spectroscopy (XES), and x-ray photoemission spectroscopy (XPS), the fundamental properties of these different materials are explored. Cycloparaphenylenes (CPPs) are a recently synthesized family of cyclic hydrocarbons with very interesting properties and many potential applications. Unusual UV/Visible fluorescence trends have spurred a number of theoretical investigations into the electronic properties of the CPP family, but thus far no comprehensive electronic structure measurements have been conducted. XPS, XAS, and XES data for two varieties, [8]- and [10]-CPP, are presented here, and compared with the results of relevant DFT calculations. Turning towards more application-centered investigations, similar measurements are applied to two materials commonly used in solid oxide fuel cell (SOFC) cathodes: La1-xSrxMnO 3 (LSMO) and La1-xSr1- xCo1-yFe yO3 (LSCF). Both materials are structurally perovskites, but they exhibit strikingly different electronic properties. SOFC systems very efficiently produce electricity by catalyzing reactions between oxygen and petroleum-based hydrocarbons at high temperatures (> 800 C). Such systems are already utilized to great effect in many industries, but more widespread adoption could be had if the cells could operate at lower temperatures. Understanding the electronic structure and operational evolution of the cathode materials is essential for the development of better low-temperature fuel cells. LSCF is a mixed ion-electron conductor which holds promise for low-temperature SOFC applications. XPS spectra of LSCF thin films are collected as the films are heated and gas-dosed in a controlled environment. The

  9. Quantifying the relative contribution of natural gas fugitive emissions to total methane emissions in Colorado, Utah, and Texas using mobile isotopic methane analysis based on Cavity Ringdown Spectroscopy

    Science.gov (United States)

    Rella, Chris; Winkler, Renato; Sweeney, Colm; Karion, Anna; Petron, Gabrielle; Crosson, Eric

    2014-05-01

    Fugitive emissions of methane into the atmosphere are a major concern facing the natural gas production industry. Because methane is more energy-rich than coal per kg of carbon dioxide emitted into the atmosphere, it represents an attractive alternative to coal for electricity generation, provided that the fugitive emissions of methane are kept under control. A key step in assessing these emissions in a given region is partitioning the observed methane emissions between natural gas fugitive emissions and other sources of methane, such as from landfills or agricultural activities. One effective method for assessing the contribution of these different sources is stable isotope analysis, using the isotopic carbon signature to distinguish between natural gas and landfills or ruminants. We present measurements of methane using a mobile spectroscopic stable isotope analyzer based on cavity ringdown spectroscopy, in three intense natural gas producing regions of the United States: the Denver-Julesburg basin in Colorado, the Uintah basin in Utah, and the Barnett Shale in Texas. Performance of the CRDS isotope analyzer is presented, including precision, calibration, stability, and the potential for measurement bias due to other atmospheric constituents. Mobile isotope measurements of individual sources and in the nocturnal boundary layer have been combined to establish the fraction of the observed methane emissions that can be attributed to natural gas activities. The fraction of total methane emissions in the Denver-Julesburg basin attributed to natural gas emissions is 78 +/- 13%. In the Uinta basin, which has no other significant sources of methane, the fraction is 96% +/- 15%. In addition, results from the Barnett shale are presented, which includes a major urban center (Dallas / Ft. Worth). Methane emissions in this region are spatially highly heterogeneous. Spatially-resolved isotope and concentration measurements are interpreted using a simple emissions model to

  10. Development of a high current 60 keV neutral lithium beam injector for beam emission spectroscopy measurements on fusion experiments

    Science.gov (United States)

    Anda, G.; Dunai, D.; Lampert, M.; Krizsanóczi, T.; Németh, J.; Bató, S.; Nam, Y. U.; Hu, G. H.; Zoletnik, S.

    2018-01-01

    A 60 keV neutral lithium beam system was designed and built up for beam emission spectroscopy measurement of edge plasma on the KSTAR and EAST tokamaks. The electron density profile and its fluctuation can be measured using the accelerated lithium beam-based emission spectroscopy system. A thermionic ion source was developed with a SiC heater to emit around 4-5 mA ion current from a 14 mm diameter surface. The ion optic is following the 2 step design used on other devices with small modifications to reach about 2-3 cm beam diameter in the plasma at about 4 m from the ion source. A newly developed recirculating sodium vapour neutralizer neutralizes the accelerated ion beam at around 260-280 °C even during long (manipulation techniques are applied to allow optimization, aiming, cleaning, and beam modulation. The maximum 60 keV beam energy with 4 mA ion current was successfully reached at KSTAR and at EAST. Combined with an efficient observation system, the Li-beam diagnostic enables the measurement of the density profile and fluctuations on the plasma turbulence time scale.

  11. BATMAN beam properties characterization by the beam emission spectroscopy diagnostic

    International Nuclear Information System (INIS)

    Bonomo, F.; Ruf, B.; Schiesko, L.; Fantz, U.; Franzen, P.; Riedl, R.; Wünderlich, D.; Barbisan, M.; Pasqualotto, R.; Serianni, G.; Cristofaro, S.

    2015-01-01

    The ITER neutral beam heating systems are based on the production and acceleration of negative ions (H/D) up to 1 MV. The requirements for the beam properties are strict: a low core beam divergence (< 0.4 °) together with a low source pressure (≤ 0.3 Pa) would permit to reduce the ion losses along the beamline, keeping the stripping particle losses below 30%. However, the attainment of such beam properties is not straightforward. At IPP, the negative ion source testbed BATMAN (BAvarian Test MAchine for Negative ions) allows for deepening the knowledge of the determination of the beam properties. One of the diagnostics routinely used to this purpose is the Beam Emission Spectroscopy (BES): the H α light emitted in the beam is detected and the corresponding spectra are evaluated to estimate the beam divergence and the stripping losses. The BES number of lines of sight in BATMAN has been recently increased: five horizontal lines of sight providing a vertical profile of the beam permit to characterize the negative ion beam properties in relation to the source parameters. Different methods of H α spectra analysis are here taken into account and compared for the estimation of the beam divergence and the amount of stripping. In particular, to thoroughly study the effect of the space charge compensation on the beam divergence, an additional hydrogen injection line has been added in the tank, which allows for setting different background pressure values (one order of magnitude, from about 0.04 Pa up to the source pressure) in the beam drift region

  12. High-resolution PET [Positron Emission Tomography] for Medical Science Studies

    Science.gov (United States)

    Budinger, T. F.; Derenzo, S. E.; Huesman, R. H.; Jagust, W. J.; Valk, P. E.

    1989-09-01

    One of the unexpected fruits of basic physics research and the computer revolution is the noninvasive imaging power available to today's physician. Technologies that were strictly the province of research scientists only a decade or two ago now serve as the foundations for such standard diagnostic tools as x-ray computer tomography (CT), magnetic resonance imaging (MRI), magnetic resonance spectroscopy (MRS), ultrasound, single photon emission computed tomography (SPECT), and positron emission tomography (PET). Furthermore, prompted by the needs of both the practicing physician and the clinical researcher, efforts to improve these technologies continue. This booklet endeavors to describe the advantages of achieving high resolution in PET imaging.

  13. Atomic emission spectroscopy for the on-line monitoring of incineration processes

    International Nuclear Information System (INIS)

    Timmermans, E.A.H.; Groote, F.P.J. de; Jonkers, J.; Gamero, A.; Sola, A.; Mullen, J.J.A.M. van der

    2003-01-01

    A diagnostic measurement system based on atomic emission spectroscopy has been developed for the purpose of on-line monitoring of hazardous elements in industrial combustion gases. The aim was to construct a setup with a high durability for rough and variable experimental conditions, e.g. a strongly fluctuating gas composition, a high gas temperature and the presence of fly ash and corrosive effluents. Since the setup is primarily intended for the analysis of combustion gases with extremely high concentrations of pollutants, not much effort has been made to achieve low detection limits. It was found that an inductively coupled argon plasma was too sensitive to molecular gas introduction. Therefore, a microwave induced plasma torch, compromising both the demands of a high durability and an effective evaporation and excitation of the analyte was used as excitation source. The analysis system has been installed at an industrial hazardous waste incinerator and successfully tested on combustion gases present above the incineration process. Abundant elements as zinc, lead and sodium could be easily monitored

  14. Ballistic Electron Emission Microscopy/Spectroscopy on Au/Titanylphthalocyanine/GaAs Heterostructures

    International Nuclear Information System (INIS)

    Oezcan, S; Roch, T; Strasser, G; Smoliner, J; Franke, R; Fritz, T

    2007-01-01

    In this article Au/titanylphthalocyanine/GaAs diodes incorporating ultra smooth thin films of the archetypal organic semiconductor titanylphthalocyanine (TiOPc) were investigated by Ballistic Electron Emission Microscopy/Spectroscopy (BEEM/S). Analyzing the BEEM spectra, we find that the TiOPc increases the BEEM threshold voltage compared to reference Au/GaAs diodes. From BEEM images taken we conclude that our molecular beam epitaxial (MBE) grown samples show very homogeneous transmission, compare to wet chemically manufactured organic films. The barrier height measured on the Au- TiOPc-GaAs is V b ∼ 1.2eV, which is in good agreement with the data found in [T. Nishi, K. Tanai, Y. Cuchi, M. R. Willis, and K. Seki Chem. Phys. Lett., vol. 414, pp. 479-482, 2005.]. The results indicate that TiOPc functions as a p-type semiconductor, which is plausible since the measurements were carried out in air [K. Walzer, T. Toccoli, A. Pallaori, R. Verucchi, T. Fritz, K. Leo, A. Boschetti, and S. Iannotte Surf. Scie., vol. 573, pp. 346-358, 2004

  15. Sub-microanalysis of solid samples with near-field enhanced atomic emission spectroscopy

    Science.gov (United States)

    Wang, Xiaohua; Liang, Zhisen; Meng, Yifan; Wang, Tongtong; Hang, Wei; Huang, Benli

    2018-03-01

    A novel approach, which we have chosen to name it as near-field enhanced atomic emission spectroscopy (NFE-AES), was proposed by introducing a scanning tunnelling microscope (STM) system into a laser-induced breakdown spectrometry (LIBS). The near-field enhancement of a laser-illuminated tip was utilized to improve the lateral resolution tremendously. Using the hybrid arrangement, pure metal tablets were analyzed to verify the performance of NFE-AES both in atmosphere and in vacuum. Due to localized surface plasmon resonance (LSPR), the incident electromagnetic field is enhanced and confined at the apex of tip, resulting in sub-micron scale ablation and elemental emission signal. We discovered that the signal-to-noise ratio (SNR) and the spectral resolution obtained in vacuum condition are better than those acquired in atmospheric condition. The quantitative capability of NFE-AES was demonstrated by analyzing Al and Pb in Cu matrix, respectively. Submicron-sized ablation craters were achieved by performing NFE-AES on a Si wafer with an Al film, and the spectroscopic information from a crater of 650 nm diameter was successfully obtained. Due to its advantage of high lateral resolution, NFE-AES imaging of micro-patterned Al lines on an integrated circuit of a SIM card was demonstrated with a sub-micron lateral resolution. These results reveal the potential of the NFE-AES technique in sub-microanalysis of solids, opening an opportunity to map chemical composition at sub-micron scale.

  16. Preparation, characterization and infrared emissivity study of helical polyurethane-SiO2 core-shell composite

    International Nuclear Information System (INIS)

    Wang Zhiqiang; Zhou Yuming; Yao Qingzhao; Sun Yanqing

    2009-01-01

    Helical polyurethane-SiO 2 (HPU-SiO 2 ) core-shell composite was prepared after surface modification of SiO 2 nanoparticles. HPU-SiO 2 was characterized by Fourier-transform infrared (FT-IR) spectroscopy, X-ray photoelectron spectroscopy (XPS), ultraviolet (UV) spectroscopy, X-ray diffraction (XRD) and transmission electron microscopy (TEM). The results indicate that the helical polyurethane has been successfully grafted onto the surfaces of the modified SiO 2 . HPU-SiO 2 composite exhibits clearly core-shell structure. The ultraviolet absorption and crystallizability of HPU-SiO 2 are changed due to the shell of helical polyurethane, which possesses regular single-handed conformation and inter-chain hydrogen bonds. The infrared emissivity of HPU-SiO 2 was also investigated. The result indicates that the interfacial interactions between organic shell and inorganic core induce the infrared emissivity value being reduced from 0.781 for SiO 2 to 0.503 for HPU-SiO 2 .

  17. Double pulse laser ablation and plasma: Laser induced breakdown spectroscopy signal enhancement

    International Nuclear Information System (INIS)

    Babushok, V.I.; DeLucia, F.C.; Gottfried, J.L.; Munson, C.A.; Miziolek, A.W.

    2006-01-01

    A review of recent results of the studies of double laser pulse plasma and ablation for laser induced breakdown spectroscopy applications is presented. The double pulse laser induced breakdown spectroscopy configuration was suggested with the aim of overcoming the sensitivity shortcomings of the conventional single pulse laser induced breakdown spectroscopy technique. Several configurations have been suggested for the realization of the double pulse laser induced breakdown spectroscopy technique: collinear, orthogonal pre-spark, orthogonal pre-heating and dual pulse crossed beam modes. In addition, combinations of laser pulses with different wavelengths, different energies and durations were studied, thus providing flexibility in the choice of wavelength, pulse width, energy and pulse sequence. The double pulse laser induced breakdown spectroscopy approach provides a significant enhancement in the intensity of laser induced breakdown spectroscopy emission lines up to two orders of magnitude greater than a conventional single pulse laser induced breakdown spectroscopy. The double pulse technique leads to a better coupling of the laser beam with the plasma plume and target material, thus providing a more temporally effective energy delivery to the plasma and target. The experimental results demonstrate that the maximum effect is obtained at some optimum separation delay time between pulses. The optimum value of the interpulse delay depends on several factors, such as the target material, the energy level of excited states responsible for the emission, and the type of enhancement process considered. Depending on the specified parameter, the enhancement effects were observed on different time scales ranging from the picosecond time level (e.g., ion yield, ablation mass) up to the hundred microsecond level (e.g., increased emission intensity for laser induced breakdown spectroscopy of submerged metal target in water). Several suggestions have been proposed to explain

  18. Emission spectroscopy for coal-fired cyclone furnace diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Wehrmeyer, J.A.; Boll, D.E.; Smith, R. [Vanderbilt University, Nashville, TN (United States). Dept. of Mechanical Engineering

    2003-08-01

    Using a spectrograph and charge-coupled device (CCD) camera, ultraviolet and visible light emission spectra were obtained from a coal-burning electric utility's cyclone furnaces operating at either fuel-rich or fuel-lean conditions. The aim of this effort is to identify light emission signals that can be related to a cyclone furnace's operating condition in order to adjust its air/fuel ratio to minimize pollutant production. Emission spectra at the burner and outlet ends of cyclone furnaces were obtained. Spectra from all cyclone burners show emission lines for the trace elements Li, Na, K, and Rb, as well as the molecular species OH and CaOH. The Ca emission line is detected at the burner end of both the fuel-rich and fuellean cyclone furnaces but is not detected at the outlet ends of either furnace type. Along with the disappearance of Ca is a concomitant increase in the CaOH signal at the outlet end of both types of furnaces. The OH signal strength is in general stronger when viewing at the burner end rather than the exhaust end of both the fuel-rich and fuel-lean cyclone furnaces, probably due to high, non-equilibrium amounts of OH present inside the furnace. Only one molecular species was detected that could be used as a measure of air/fuel ratio: MgOH. It was detected at the burner end of fuel-rich cyclone furnaces but not detected in fuel-lean cyclone furnaces. More direct markers of air/fuel ratio, such as CO and 02 emission, were not detected, probably due to the generally weak nature of molecular emission relative to ambient blackbody emission present in the cyclone furnaces, even at ultraviolet wavelengths.

  19. Spectroscopic analysis of high protein nigella seeds (Kalonji) using laser-induced breakdown spectroscopy and inductively coupled plasma/optical emission spectroscopy

    Science.gov (United States)

    Rehan, Imran; Khan, M. Zubair; Ali, Irfan; Rehan, Kamran; Sultana, Sabiha; Shah, Sher

    2018-03-01

    The spectroscopic analysis of high protein nigella seeds (also called Kalonji) was performed using pulsed nanosecond laser-induced breakdown spectroscopy (LIBS) at 532 nm. The emission spectrum of Kalonji recorded with an LIBS spectrometer exposed the presence of various elements like Al, B, Ba, Ca, Cr, K, P, Mg, Mn, Na, Ni, S, Si, Cu, Fe, Ti, Sn, Sr, and Zn. The plasma parameters (electron temperature and electron density) were estimated using Ca-I spectral lines and their behavior were studied against laser irradiance. The electron temperature and electron density was observed to show an increasing trend in the range of 5802-7849 K, and (1.2-3.9) × 1017 cm- 3, respectively, in the studied irradiance range of (1.2-12.6) × 109 W/cm2. Furthermore, the effect of varying laser energy on the integrated signal intensities was also studied. The quantitative analysis of the detected elements was performed via the calibration curves drawn for all the observed elements through typical samples made in the known concentration in the Kalonji matrix, and by setting the concentration of P as the calibration. The validity of our LIBS findings was verified via comparison of the results with the concentration of every element find in Kalonji using the standard analytical tool like ICP/OES. The results acquired using LIBS and ICP/OES were found in fine harmony. Moreover, limit of detection was measured for toxic metals only.

  20. N-15 analysis by emission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1983-12-31

    The stable isotope of nitrogen, N-15, has become widely used as tracer in agriculture, medicine and biology research. The film gives an overview of the sample preparation and analytical procedures followed in the analysis of the nitrogen isotopic composition (14N/15N ratio) by optical emission spectrometry at the Seibersdorf Laboratory. The subsampling of plant material and the several steps of chemical pretreatment such as Kjeldahl digestion, distillation, titration and adjustment of the proper N concentration in the extract are demonstrated. The preparation of the discharge tubes is shown in detail. Final measurement of the 14N/15N ratio is carried out with the NOI-5 and JASCO emission spectrometers

  1. THE EVOLUTION OF ATOMIC SPECTROSCOPY IN MEASURING TOXIC CONTAMINANTS

    Science.gov (United States)

    Three decades of study of environmental conditions necessary for the protection of freshwateraquatic life have been limited by the development and application of analytical methodology utilizing atomic adsorption, atomic fluorescence, and atomic emission spectroscopy.The...

  2. Investigation of local thermodynamic equilibrium of laser induced Al2O3–TiC plasma in argon by spatially resolved optical emission spectroscopy

    Directory of Open Access Journals (Sweden)

    K. Alnama

    2016-06-01

    Full Text Available Plasma plume of Al2O3–TiC is generated by third harmonic Q-switched Nd:YAG nanosecond laser. It is characterized using Optical Emission Spectroscopy (OES at different argon background gas pressures 10, 102, 103, 104 and 105 Pa. Spatial evolution of excitation and ionic temperatures is deduced from spectral data analysis. Temporal evolution of Ti I emission originated from different energy states is probed. The correlation between the temporal behavior and the spatial temperature evolution are investigated under LTE condition for the possibility to use the temporal profile of Ti I emission as an indicator for LTE validity in the plasma.

  3. Fluorescence excitation-emission matrix (EEM) spectroscopy and cavity ring-down (CRD) absorption spectroscopy of oil-contaminated jet fuel using fiber-optic probes.

    Science.gov (United States)

    Omrani, Hengameh; Barnes, Jack A; Dudelzak, Alexander E; Loock, Hans-Peter; Waechter, Helen

    2012-06-21

    Excitation emission matrix (EEM) and cavity ring-down (CRD) spectral signatures have been used to detect and quantitatively assess contamination of jet fuels with aero-turbine lubricating oil. The EEM spectrometer has been fiber-coupled to permit in situ measurements of jet turbine oil contamination of jet fuel. Parallel Factor (PARAFAC) analysis as well as Principal Component Analysis and Regression (PCA/PCR) were used to quantify oil contamination in a range from the limit of detection (10 ppm) to 1000 ppm. Fiber-loop cavity ring-down spectroscopy using a pulsed 355 nm laser was used to quantify the oil contamination in the range of 400 ppm to 100,000 ppm. Both methods in combination therefore permit the detection of oil contamination with a linear dynamic range of about 10,000.

  4. Flame emission, atomic absorption and fluorescence spectrometry

    International Nuclear Information System (INIS)

    Horlick, G.

    1980-01-01

    Six hundred and thirty references are cited in this review. The information in the review is divided into 12 major areas: books, reviews, and bibliographies; fundamental studies in flames; developments in instrumentation; measurement techniques and procedure; flame emission spectrometry; flame atomic absorption spectrometry; flame molecular absorption spectrometry; electrothermal atomization atomic absorption spectroscopy; hydride generation techniques; graphite furnace atomic emission spectrometry; atomic fluorescence spectrometry; and analytical comparisons

  5. Resonant soft X-ray emission spectroscopy of liquids

    International Nuclear Information System (INIS)

    Guo, J.-H.; Augustsson, A.; Englund, C.-J.; Nordgren, J.

    2004-01-01

    We present now a possible way to carry out soft-x-ray fluorescence spectroscopy of liquids. The liquid cell has a window to attain compatibility with UHV conditions of the spectrometer and beamline. The synchrotron radiation enters the liquid cell through a 100nm-thick silicon nitride window and the emitted x-rays exit through the same window. This allows in particular liquid solid interfaces to be studied. Such a liquid cell has been used to study the electronic structure of a variety of systems ranging from water solutions of inorganic salts and inertial drugs to nano materials and actinide compounds in their wet conditions

  6. Modeling of neutron emission spectroscopy in JET discharges with fast tritons from (T)D ion cyclotron heating

    International Nuclear Information System (INIS)

    Tardocchi, M.; Gorini, G.; Andersson Sunden, E.; Conroy, S.; Ericsson, G.; Gatu Johnson, M.; Giacomelli, L.; Hellesen, C.; Hjalmarsson, A.; Kaellne, J.; Ronchi, E.; Sjoestrand, H.; Weiszflog, M.; Johnson, T.; Lamalle, P. U.

    2006-01-01

    The measurement of fast ion populations is one of the diagnostic capabilities provided by neutron emission spectroscopy (NES). NES measurements were carried out during JET trace tritium campaign with the magnetic proton recoil neutron spectrometer. A favorable plasma scenario is (T)D where the resulting 14 MeV neutron yield is dominated by suprathermal emission from energetic tritons accelerated by radio frequency at their fundamental cyclotron frequency. Information on the triton distribution function has been derived from NES data with a simple model based on two components referred to as bulk (B) and high energy (HE). The HE component is based on strongly anisotropic tritium distribution that can be used for routine best-fit analysis to provide tail temperature values (T HE ). This article addresses to what extent the T HE values are model dependent by comparing the model above with a two-temperature (bi-) Maxwellian model featuring parallel and perpendicular temperatures. The bi-Maxwellian model is strongly anisotropic and frequently used for radio frequency theory

  7. Reflections on hard X-ray photon-in/photon-out spectroscopy for electronic structure studies

    Energy Technology Data Exchange (ETDEWEB)

    Glatzel, Pieter, E-mail: glatzel@esrf.fr [European Synchrotron Radiation Facility, 6 Rue Jules Horowitz, 38043 Grenoble (France); Weng, Tsu-Chien; Kvashnina, Kristina; Swarbrick, Janine; Sikora, Marcin [European Synchrotron Radiation Facility, 6 Rue Jules Horowitz, 38043 Grenoble (France); Gallo, Erik [European Synchrotron Radiation Facility, 6 Rue Jules Horowitz, 38043 Grenoble (France); Department of Inorganic, Physical and Materials Chemistry, INSTM Reference Center and NIS Centre of Excellence, Università di Torino, Via P. Giuria 7, I-10125 Torino (Italy); Smolentsev, Nikolay [European Synchrotron Radiation Facility, 6 Rue Jules Horowitz, 38043 Grenoble (France); Research Center for Nanoscale Structure of Matter, Southern Federal University, str. Zorge 5, 344090 Rostov-on-Don (Russian Federation); Mori, Roberto Alonso [European Synchrotron Radiation Facility, 6 Rue Jules Horowitz, 38043 Grenoble (France)

    2013-06-15

    Highlights: ► Overview of some recent developments in hard X-ray RXES/RIXS. ► Evaluation of spectral line broadening in RXES/RIXS. ► Modelling of RXES/RIXS by ground state DFT calculations. ► Discussion on when HERFD provides a good approximation to XAS. -- Abstract: An increasing community of researchers in various fields of natural sciences is combining X-ray absorption with X-ray emission spectroscopy (XAS–XES) to study electronic structure. With the applications becoming more diverse, the objectives and the requirements in photon-in/photon-out spectroscopy are becoming broader. It is desirable to find simple experimental protocols, robust data reduction and theoretical tools that help the experimentalist to understand their data and learn about the electronic structure. This article presents a collection of considerations on non-resonant and resonant XES with the aim to guide the experimentalist to make good use of this technique.

  8. New insight in the template decomposition process of large zeolite ZSM-5 crystals: an in situ UV-Vis/fluorescence micro-spectroscopy study

    NARCIS (Netherlands)

    Karwacki, L.|info:eu-repo/dai/nl/304824283; Weckhuysen, B.M.|info:eu-repo/dai/nl/285484397

    2011-01-01

    A combination of in situ UV-Vis and confocal fluorescence micro-spectroscopy was used to study the template decomposition process in large zeolite ZSM-5 crystals. Correlation of polarized light dependent UV-Vis absorption spectra with confocal fluorescence emission spectra in the 400–750 nm region

  9. Clustering of germanium atoms in silica glass responsible for the 3.1 eV emission band studied by optical absorption and X-ray absorption fine structure analysis

    International Nuclear Information System (INIS)

    Yoshida, Tomoko; Muto, Shunsuke; Yuliati, Leny; Yoshida, Hisao; Inada, Yasuhiro

    2009-01-01

    Correlation between the 3.1 eV emission band and local atomic configuration was systematically examined for Ge + implanted silica glass by UV-vis optical absorption spectroscopy and X-ray absorption fine structure (XAFS) analysis. The 2.7 eV emission band, commonly observed in defective silica, was replaced by the sharp and intense 3.1 eV emission band for the Ge + fluence > 2 x 10 16 cm -2 , in which UV-vis absorption spectra suggested clustering of Ge atoms with the size ∼1 nm. XAFS spectroscopy indicated that the Ge atoms were under coordinated with oxygen atoms nearly at a neutral valence state on average. The present results are consistent with the previous ESR study but imply that the small Ge clusters rather than the O=Ge: complexes (point defects) are responsible for the 3.1 eV emission band.

  10. A separation method to overcome the interference of aluminium on zinc determination by inductively coupled plasma atomic emission spectroscopy

    OpenAIRE

    Jesus, Djane S. de; Korn, Maria das Graças Andrade; Ferreira, Sergio Luis Costa; Carvalho, Marcelo Souza de

    2000-01-01

    Texto completo: acesso restrito. p.389–394 The use of polyurethane foam (PUF) to separate zinc from large amounts of aluminium and its determination by inductively coupled plasma atomic emission spectroscopy technique (ICP-AES) in aluminium matrices is described. The proposed method is based on the solid-phase extraction of the zinc(II) cation as a thiocyanate complex. Parameters such as effect of pH on zinc sorption, zinc desorption from the foam and analytical features of the procedure w...

  11. Ultrafast Laser-Based Spectroscopy and Sensing: Applications in LIBS, CARS, and THz Spectroscopy

    Science.gov (United States)

    Leahy-Hoppa, Megan R.; Miragliotta, Joseph; Osiander, Robert; Burnett, Jennifer; Dikmelik, Yamac; McEnnis, Caroline; Spicer, James B.

    2010-01-01

    Ultrafast pulsed lasers find application in a range of spectroscopy and sensing techniques including laser induced breakdown spectroscopy (LIBS), coherent Raman spectroscopy, and terahertz (THz) spectroscopy. Whether based on absorption or emission processes, the characteristics of these techniques are heavily influenced by the use of ultrafast pulses in the signal generation process. Depending on the energy of the pulses used, the essential laser interaction process can primarily involve lattice vibrations, molecular rotations, or a combination of excited states produced by laser heating. While some of these techniques are currently confined to sensing at close ranges, others can be implemented for remote spectroscopic sensing owing principally to the laser pulse duration. We present a review of ultrafast laser-based spectroscopy techniques and discuss the use of these techniques to current and potential chemical and environmental sensing applications. PMID:22399883

  12. Ultrafast Laser-Based Spectroscopy and Sensing: Applications in LIBS, CARS, and THz Spectroscopy

    Directory of Open Access Journals (Sweden)

    Megan R. Leahy-Hoppa

    2010-04-01

    Full Text Available Ultrafast pulsed lasers find application in a range of spectroscopy and sensing techniques including laser induced breakdown spectroscopy (LIBS, coherent Raman spectroscopy, and terahertz (THz spectroscopy. Whether based on absorption or emission processes, the characteristics of these techniques are heavily influenced by the use of ultrafast pulses in the signal generation process. Depending on the energy of the pulses used, the essential laser interaction process can primarily involve lattice vibrations, molecular rotations, or a combination of excited states produced by laser heating. While some of these techniques are currently confined to sensing at close ranges, others can be implemented for remote spectroscopic sensing owing principally to the laser pulse duration. We present a review of ultrafast laser-based spectroscopy techniques and discuss the use of these techniques to current and potential chemical and environmental sensing applications.

  13. The impact of molecular emission in compositional depth profiling using Glow Discharge-Optical Emission Spectroscopy

    International Nuclear Information System (INIS)

    Bengtson, Arne

    2008-01-01

    The scope of this paper is to investigate and discuss how molecular emission can affect elemental analysis in glow discharge optical emission (GD-OES), particularly in compositional depth profiling (CDP) applications. Older work on molecular emission in glow discharges is briefly reviewed, and the nature of molecular emission spectra described. Work on the influence of hydrogen in the plasma, in particular elevated background due to a continuum spectrum, is discussed. More recent work from sputtering of polymers and other materials with a large content of light elements in a Grimm type source is reviewed, where substantial emission has been observed from several light diatomic molecules (CO, CH, OH, NH, C 2 ). It is discussed how the elevated backgrounds from such molecular emission can lead to significant analytical errors in the form of 'false' depth profile signals of several atomic analytical lines. Results from a recent investigation of molecular emission spectra from mixed gases in a Grimm type glow discharge are presented. An important observation is that dissociation and subsequent recombination processes occur, leading to formation of molecular species not present in the original plasma gas. Experimental work on depth profiling of a polymer coating and a thin silicate film, using a spectrometer equipped with channels for molecular emission lines, is presented. The results confirm that molecular emission gives rise to apparent depth profiles of elements not present in the sample. The possibilities to make adequate corrections for such molecular emission in CDP of organic coatings and very thin films are discussed

  14. The impact of molecular emission in compositional depth profiling using Glow Discharge-Optical Emission Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Bengtson, Arne [Corrosion and Metals Research Institute, Dr. Kristinas vaeg 48, Stockholm (Sweden)], E-mail: arne.bengtson@kimab.com

    2008-09-15

    The scope of this paper is to investigate and discuss how molecular emission can affect elemental analysis in glow discharge optical emission (GD-OES), particularly in compositional depth profiling (CDP) applications. Older work on molecular emission in glow discharges is briefly reviewed, and the nature of molecular emission spectra described. Work on the influence of hydrogen in the plasma, in particular elevated background due to a continuum spectrum, is discussed. More recent work from sputtering of polymers and other materials with a large content of light elements in a Grimm type source is reviewed, where substantial emission has been observed from several light diatomic molecules (CO, CH, OH, NH, C{sub 2}). It is discussed how the elevated backgrounds from such molecular emission can lead to significant analytical errors in the form of 'false' depth profile signals of several atomic analytical lines. Results from a recent investigation of molecular emission spectra from mixed gases in a Grimm type glow discharge are presented. An important observation is that dissociation and subsequent recombination processes occur, leading to formation of molecular species not present in the original plasma gas. Experimental work on depth profiling of a polymer coating and a thin silicate film, using a spectrometer equipped with channels for molecular emission lines, is presented. The results confirm that molecular emission gives rise to apparent depth profiles of elements not present in the sample. The possibilities to make adequate corrections for such molecular emission in CDP of organic coatings and very thin films are discussed.

  15. Time-resolved FTIR emission spectroscopy of Cu in the 1800-3800 cm(-1) region: transitions involving f and g states and oscillator strengths

    Czech Academy of Sciences Publication Activity Database

    Civiš, Svatopluk; Matulková, Irena; Cihelka, Jaroslav; Kubelík, Petr; Kawaguchi, K.; Chernov, V. E.

    2011-01-01

    Roč. 44, č. 2 (2011), 025002 ISSN 0953-4075 R&D Projects: GA AV ČR IAA400400705; GA AV ČR KAN100500652 Institutional research plan: CEZ:AV0Z40400503 Keywords : metal poor stars * atomic data * FTIR emission spectroscopy Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.875, year: 2011

  16. Infrared (1-12 μm) atomic and molecular emission signatures from energetic materials using laser-induced breakdown spectroscopy

    Science.gov (United States)

    Kumi Barimah, E.; Hömmerich, U.; Brown, E.; Yang, C. S.-C.; Trivedi, S. B.; Jin, F.; Wijewarnasuriya, P. S.; Samuels, A. C.; Snyder, A. P.

    2013-05-01

    Laser-induced breakdown spectroscopy (LIBS) is a powerful analytical technique to detect the elemental composition of solids, liquids, and gases in real time. For example, recent advances in UV-VIS LIBS have shown great promise for applications in chemical, biological, and explosive sensing. The extension of conventional UVVIS LIBS to the near-IR (NIR), mid-IR (MIR) and long wave infrared (LWIR) regions (~1-12 μm) offers the potential to provide additional information due to IR atomic and molecular signatures. In this work, a Q-switched Nd: YAG laser operating at 1064 nm was employed as the excitation source and focused onto several chlorate and nitrate compounds including KClO3, NaClO3, KNO3, and NaNO3 to produce intense plasma at the target surface. IR LIBS studies on background air, KCl , and NaCl were also included for comparison. All potassium and sodium containing samples revealed narrow-band, atomic-like emissions assigned to transitions of neutral alkali-metal atoms in accordance with the NIST atomic spectra database. In addition, first evidence of broad-band molecular LIBS signatures from chlorate and nitrate compounds were observed at ~10 μm and ~7.3 μm, respectively. The observed molecular emissions showed strong correlation with FTIR absorption spectra of the investigated materials.

  17. Inductively coupled plasma emission spectroscopy. Part II: applications and fundamentals. Volume 2

    International Nuclear Information System (INIS)

    Boumans, P.W.J.M.

    1987-01-01

    This is the second part of the two-volume treatise by this well-known and respected author. This volume reviews applications of inductively coupled plasma atomic emission spectroscopy (ICP-AES), summarizes fundamental studies, and compares ICP-AES methods with other methods of analysis. The first six chapters are devoted to specific fields of application, including the following: metals and other industrial materials, geology, the environment, agriculture and food, biology and clinical analysis, and organic materials. The chapter on the analysis of organic materials also covers the special instrumental considerations required when organic solvents are introduced into an inductively coupled plasma. A chapter on the direct analysis of solids completes the first part of this volume. Each of the applications chapters begins with a summary of the types of samples that are encountered in that field, and the kinds of problems that an elemental analysis can help to solve. This is followed by a tutorial approach covering applicability, advantages, and limitations of the methods. The coverage is thorough, including sample handling, storage, and preparation, acid, and fusion dissolution, avoiding contamination, methods of preconcentration, the types of interferences that can be expected and ways to reduce them, and the types of ICP plasmas that are used. The second half of the volume covers fundamental studies of ICP-AES: basic processes of aerosol generation, plasma modeling and computer simulation, spectroscopic diagnostics, excitation mechanisms, and discharge characteristics. This section introduces the experimental and modeling methods that have been used to obtain fundamental information about ICPs

  18. Experimental detection of iron overload in liver through neutron stimulated emission spectroscopy

    International Nuclear Information System (INIS)

    Kapadia, A J; Tourassi, G D; Sharma, A C; Crowell, A S; Kiser, M R; Howell, C R

    2008-01-01

    Iron overload disorders have been the focus of several quantification studies involving non-invasive imaging modalities. Neutron spectroscopic techniques have demonstrated great potential in detecting iron concentrations within biological tissue. We are developing a neutron spectroscopic technique called neutron stimulated emission computed tomography (NSECT), which has the potential to diagnose iron overload in the liver at clinically acceptable patient dose levels through a non-invasive scan. The technique uses inelastic scatter interactions between atomic nuclei in the sample and incoming fast neutrons to non-invasively determine the concentration of elements in the sample. This paper discusses a non-tomographic application of NSECT investigating the feasibility of detecting elevated iron concentrations in the liver. A model of iron overload in the human body was created using bovine liver tissue housed inside a human torso phantom and was scanned with a 5 MeV pulsed beam using single-position spectroscopy. Spectra were reconstructed and analyzed with algorithms designed specifically for NSECT. Results from spectroscopic quantification indicate that NSECT can currently detect liver iron concentrations of 6 mg g -1 or higher and has the potential to detect lower concentrations by optimizing the acquisition geometry to scan a larger volume of tissue. The experiment described in this paper has two important outcomes: (i) it demonstrates that NSECT has the potential to detect clinically relevant concentrations of iron in the human body through a non-invasive scan and (ii) it provides a comparative standard to guide the design of iron overload phantoms for future NSECT liver iron quantification studies

  19. A Simple LIBS (Laser-Induced Breakdown Spectroscopy) Laboratory Experiment to Introduce Undergraduates to Calibration Functions and Atomic Spectroscopy

    Science.gov (United States)

    Chinni, Rosemarie C.

    2012-01-01

    This laboratory experiment introduces students to a different type of atomic spectroscopy: laser-induced breakdown spectroscopy (LIBS). LIBS uses a laser-generated spark to excite the sample; once excited, the elemental emission is spectrally resolved and detected. The students use LIBS to analyze a series of standard synthetic silicate samples…

  20. Method validation in plasma source optical emission spectroscopy (ICP-OES) - From samples to results

    International Nuclear Information System (INIS)

    Pilon, Fabien; Vielle, Karine; Birolleau, Jean-Claude; Vigneau, Olivier; Labet, Alexandre; Arnal, Nadege; Adam, Christelle; Camilleri, Virginie; Amiel, Jeanine; Granier, Guy; Faure, Joel; Arnaud, Regine; Beres, Andre; Blanchard, Jean-Marc; Boyer-Deslys, Valerie; Broudic, Veronique; Marques, Caroline; Augeray, Celine; Bellefleur, Alexandre; Bienvenu, Philippe; Delteil, Nicole; Boulet, Beatrice; Bourgarit, David; Brennetot, Rene; Fichet, Pascal; Celier, Magali; Chevillotte, Rene; Klelifa, Aline; Fuchs, Gilbert; Le Coq, Gilles; Mermet, Jean-Michel

    2017-01-01

    Even though ICP-OES (Inductively Coupled Plasma - Optical Emission Spectroscopy) is now a routine analysis technique, requirements for measuring processes impose a complete control and mastering of the operating process and of the associated quality management system. The aim of this (collective) book is to guide the analyst during all the measurement validation procedure and to help him to guarantee the mastering of its different steps: administrative and physical management of samples in the laboratory, preparation and treatment of the samples before measuring, qualification and monitoring of the apparatus, instrument setting and calibration strategy, exploitation of results in terms of accuracy, reliability, data covariance (with the practical determination of the accuracy profile). The most recent terminology is used in the book, and numerous examples and illustrations are given in order to a better understanding and to help the elaboration of method validation documents

  1. [Real time diagnostics of instantaneous temperature of combustion and explosion process by modern spectroscopy].

    Science.gov (United States)

    Zhou, Xue-tie; Wang, Jun-de; Li, Yan; Liu, Da-bing

    2003-04-01

    The combustion temperature is one of the important parameters to express flame combustion and explosion characteristics. It will effectively guide the design and manufacture of new model explosives, industrial explosive materials, and weapons. The recent developments and applications of real time diagnostics of instantaneous temperature of combustion and explosion processes by modern spectroscopic methods, such as atomic absorption-emission method, atomic emission two-line spectroscopy, atomic emission multiline spectroscopy, molecular rotation-vibration spectroscopy, coherent anti-stokes Raman scattering (CARS) and plane laser-induced fluorescence (PLIF), were reviewed in this paper. The maximum time resolution of atomic absorption-emission method is 25 microseconds. The time resolution of atomic emission two-line spectroscopy can reach 0.1 microsecond. These two methods can completely suit the need of real time and instantaneous temperature diagnostics of violent explosion and flame combustion. Other methods will also provide new effective research methods for the processes and characteristics of combustion, flame and explosion.

  2. Study of clusters using negative ion photodetachment spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Yuexing [Univ. of California, Berkeley, CA (United States)

    1995-12-01

    The weak van der Waals interaction between an open-shell halogen atom and a closed-shell atom or molecule has been investigated using zero electron kinetic energy (ZEKE) spectroscopy. This technique is also applied to study the low-lying electronic states in GaAs and GaAs-. In addition, the spectroscopy and electron detachment dynamics of several small carbon cluster anions are studied using resonant multiphoton detachment spectroscopy.

  3. Study of clusters using negative ion photodetachment spectroscopy

    International Nuclear Information System (INIS)

    Zhao, Yuexing.

    1995-12-01

    The weak van der Waals interaction between an open-shell halogen atom and a closed-shell atom or molecule has been investigated using zero electron kinetic energy (ZEKE) spectroscopy. This technique is also applied to study the low-lying electronic states in GaAs and GaAs - . In addition, the spectroscopy and electron detachment dynamics of several small carbon cluster anions are studied using resonant multiphoton detachment spectroscopy

  4. Application of X-ray spectroscopy in nondestructive photon activation analysis

    International Nuclear Information System (INIS)

    Weise, H.-P.; Segebade, Chr.

    1977-01-01

    The use of X-ray spectroscopy for the qualitative and quantitative analysis of samples activated by 30 MeV bremsstrahlung from an electron linear accelerator. Detection limits are calculated from the measured X-ray spectra and compared with those for γ-ray spectroscopy. In general, the detection limits for γ-ray and X-ray spectroscopy are comparable. Higher sensitivities for X-ray spectroscopy are observed when only low intensity γ-rays are emitted by the activation products. X-ray spectroscopy should be applied in three cases: (a) low γ-ray emission probability, (b) extremely complicated γ-ray spectrum, (c) overlapping of γ-ray lines from different elements. γ-ray spectroscopy should be preferred for the analysis of light elements for two reasons: very strong absorption of low energy X-rays (low Z) within the sample, low X-ray emission probability for the activation products of light elements. Therefore no attempt was made to use X-ray spectroscopy for the analysis of elements below Ti. Some practical applications of X-ray spectroscopy in nondestructive multielement analysis are quoted. (T.G.)

  5. Goldtraces on wedge-shaped artefacts from late neolithic of south Scandinavia analysed by proton induced x-ray emission spectroscopy

    International Nuclear Information System (INIS)

    Ahlberg, M.; Akselsson, R.; Forkman, B.; Rausing, G.

    1975-01-01

    Visible coloured traces on the surface of two selected wedge-shaped artefacts (pendants) of slate from the late Neolithic of South Scandinavia was analysed by means of proton-induced x-ray emission spectroscopy (PIXE). PIXE is shown to be a feasible tool in investigating surface layers of archeological significance. Three different gold-silver alloys was found on the two pendants. The results indicate that we shall have to reconsider the general accepted theories on the economic basis of the early Bronze Age in the area. (author)

  6. Generation of biogas from coffee-pulp and cow-dung co-digestion: Infrared studies of postcombustion emissions

    International Nuclear Information System (INIS)

    Corro, Grisel; Paniagua, Laura; Pal, Umapada; Bañuelos, Fortino; Rosas, Minerva

    2013-01-01

    Graphical abstract: Batch digester with coffee pulp/cow dung produced high amounts of methane for 8 months. The FTIR gas spectroscopy analysis revealed the presence of over 70 chemical compounds in biogas generated after 4 months of coffee pulp and cow dung mixture co-digestion, several being hazardous to environment and human and animal health (e.g. isocyanic acid, bromomethane). Biogas produced was burned in a laboratory combustor. The FTIR gas spectroscopy analysis showed that combustion emissions contained: CH 4 , C 3 H 8 , CO, SO 2 , HI, and probably Br 2 which are strongly harmful to human and animal health. - Highlights: • Batch digester with coffee pulp/cow dung produced high amounts of methane for 8 months. • Biogas from coffee pulp/cow dung codigestion contained 60% methane and 20% propane. • Biogas FTIR analysis revealed the presence of isocyanic acid and bromomethane. • Biogas FTIR analysis showed also the presence of HI. • Biogas combustion emissions contained CH 4 , HI, SO 2 and probably Br 2 . - Abstract: Biogas could be produced by the co-digestion of coffee-pulp and cow-dung mixture under solar radiation. Gas chromatography and FTIR spectroscopy were used to analyze the chemical compositions of the generated biogas and its postcombustion emissions. From the first month of co-digestion at mesophylic conditions, methane content in the biogas attains 50% of the yield. This content increased up to 60% and remained almost constant for at least 8 months of further digestion. The FTIR gas spectroscopy analysis revealed the presence of over 70 chemical compounds in the biogas generated after 4 months of co-digestion along with several compounds hazardous to environment and animal health like isocyanic acid, and bromomethane. Combustion emission of the biogas contained several components like CH 4 , C 3 H 8 , CO, SO 2 , HI, and probably Br 2 which are strongly harmful to human and animal health. Results presented in this work indicate that if the

  7. [Fluorescence excitation-emission matrix spectroscopy of CDOM from Yundang Lagoon and its indication for organic pollution].

    Science.gov (United States)

    Zhuo, Jian-Fu; Guo, Wei-Dong; Deng, Xun; Zhang, Zhi-Ying; Xu, Jing; Huang, Ling-Feng

    2010-06-01

    Fluorescence excitation-emission matrix spectroscopy (EEMs) combined with absorption spectroscopy were applied to study the optical properties of CDOM samples from highly-polluted Yundang Lagoon in Xiamen in order to demonstrate the feasibility of using these spectral properties as a tracer of the degree of organic pollution in similar polluted coastal waters. Surface water samples were collected from 13 stations 4 times during April and May, 2008. Parallel factor analysis (PARAFAC) model was used to resolve the EEMs of CDOM. Five separate fluorescent components were identified, including two humic-like components (C1: 240, 325/422 nm; C5: 260, 380/474 nm), two protein-like components (C2: 225, 275/350 nm; C4: 240, 300/354 nm) and one xenobiotic-like component (C3: 225/342 nm), which could be used as a good tracer for the input of the anthropogenic organic, pollutants. The concentrations of component C3 and dissolved organic carbon (DOC) are much higher near the inlet of sewage discharge, demonstrating that the discharge of surrounding sewage is a major source of organic pollutants in Yundang Lagoon. CDOM absorption coefficient alpha (280) and the score of humic-like component C1 showed significant linear relationships with COD(Mn), and a strong positive correlation was also found between the score of protein-like component C2 and BOD5. This suggested that the optical properties of CDOM may provide a fast in-situ way to monitor the variation of the water quality in Yundang Lagoon and that of similar polluted coastal waters.

  8. A comparative study of the laser induce breakdown spectroscopy in single- and double-pulse laser geometry

    International Nuclear Information System (INIS)

    Sun Duixiong; Su Maogen; Dong Chenzhong; Wen Guanhong; Cao Xiangnian

    2013-01-01

    A time resolved laser induced breakdown spectroscopy technique (LIBS) was used for the investigation of emission signal enhancement on double-pulse LIBS. Two Q-switched Nd:YAG lasers at 1064 nm wavelength have been employed to generate laser-induced plasma on aluminium-based alloys. The plasma emission signals were recorded by spectrometer with ICCD detector. Spectral response calibration was performed by using deuterium and tungsten halogen lamps. Time evolution of the plasma temperature and electron density was investigated in SP and DP experiments. Based on the investigation of plasma parameters, the enhancements of emission line intensities were investigated, and the mechanisms of it were discussed. (author)

  9. Combined hydrogen and lithium beam emission spectroscopy observation system for Korea Superconducting Tokamak Advanced Research

    Energy Technology Data Exchange (ETDEWEB)

    Lampert, M. [Wigner RCP, Euratom Association-HAS, Budapest (Hungary); BME NTI, Budapest (Hungary); Anda, G.; Réfy, D.; Zoletnik, S. [Wigner RCP, Euratom Association-HAS, Budapest (Hungary); Czopf, A.; Erdei, G. [Department of Atomic Physics, BME IOP, Budapest (Hungary); Guszejnov, D.; Kovácsik, Á.; Pokol, G. I. [BME NTI, Budapest (Hungary); Nam, Y. U. [National Fusion Research Institute, Daejeon (Korea, Republic of)

    2015-07-15

    A novel beam emission spectroscopy observation system was designed, built, and installed onto the Korea Superconducting Tokamak Advanced Research tokamak. The system is designed in a way to be capable of measuring beam emission either from a heating deuterium or from a diagnostic lithium beam. The two beams have somewhat complementary capabilities: edge density profile and turbulence measurement with the lithium beam and two dimensional turbulence measurement with the heating beam. Two detectors can be used in parallel: a CMOS camera provides overview of the scene and lithium beam light intensity distribution at maximum few hundred Hz frame rate, while a 4 × 16 pixel avalanche photo-diode (APD) camera gives 500 kHz bandwidth data from a 4 cm × 16 cm region. The optics use direct imaging through lenses and mirrors from the observation window to the detectors, thus avoid the use of costly and inflexible fiber guides. Remotely controlled mechanisms allow adjustment of the APD camera’s measurement location on a shot-to-shot basis, while temperature stabilized filter holders provide selection of either the Doppler shifted deuterium alpha or lithium resonance line. The capabilities of the system are illustrated by measurements of basic plasma turbulence properties.

  10. Zero emission city. Preliminary study; Null-Emissions-Stadt. Sondierungsstudie

    Energy Technology Data Exchange (ETDEWEB)

    Diefenbach, N; Enseling, A; Werner, P; Flade, A; Greiff, R; Hennings, D; Muehlich, E; Wullkopf, U; Sturm, P; Kieslich, W; Born, R; Grossklos, M; Hatteh, R; Mueller, K; Ratschow, A; Valouch-Fornoff, C

    2002-10-01

    The idea of a 'zero emission city' is investigated by the Institut Wohnen und Umwelt on behalf of the Federal Minister of Education and Research. After describing the current situation and defining the key parameters of a 'zero emission city', settlement structures, power supply, production processes and transportation are analyzed and linked with the communal action level to obtain a framework for research, activities and actions. The study ends with recommendations for a research programme 'zero emission city'. (orig.) [German] Die von den Staedten der Industrielaender ausgehenden Emissionen stellen im Hinblick auf die globalen Belastungen wie z.B. Treibhauseffekt, Ozonabbau und Versauerung das Hauptproblem dar. Aus diesem Grunde bietet es sich an, den Gedanken der 'Null-Emissions-Stadt', der Vision einer moeglichst emissionsfreien Stadt, aufzugreifen und auf seine Tragfaehigkeit fuer innovative Handlungsmodelle forschungsstrategisch zu ueberpruefen. Das Bundesministerium fuer Bildung und Forschung hat das Institut Wohnen und Umwelt beauftragt, in einer Sondierungsstudie dieser Fragestellung nachzugehen. Nach der Festlegung der Ausgangsbedingungen und Eckpunkte der Vision 'Null-Emissions-Stadt' und der Analyse der vier Handlungsfelder Siedlungsstrukturen, Energieversorgung, Produktionsprozesse (Kreislaufwirtschaft) und Verkehr werden diese aufgegriffen und mit der kommunalen Handlungsebene verknuepft und zu einem Forschungs-, Handlungs- und moeglichen Aktionsrahmen zusammengefuegt. Die Studie schliesst mit Hinweisen fuer die Gestaltung eines Forschungsprogramms 'Null-Emissions-Stadt'. (orig.)

  11. A laboratory-based hard x-ray monochromator for high-resolution x-ray emission spectroscopy and x-ray absorption near edge structure measurements

    Energy Technology Data Exchange (ETDEWEB)

    Seidler, G. T., E-mail: seidler@uw.edu; Mortensen, D. R.; Remesnik, A. J.; Pacold, J. I.; Ball, N. A.; Barry, N.; Styczinski, M.; Hoidn, O. R. [Physics Department, University of Washington, Seattle, Washington 98195-1560 (United States)

    2014-11-15

    We report the development of a laboratory-based Rowland-circle monochromator that incorporates a low power x-ray (bremsstrahlung) tube source, a spherically bent crystal analyzer, and an energy-resolving solid-state detector. This relatively inexpensive, introductory level instrument achieves 1-eV energy resolution for photon energies of ∼5 keV to ∼10 keV while also demonstrating a net efficiency previously seen only in laboratory monochromators having much coarser energy resolution. Despite the use of only a compact, air-cooled 10 W x-ray tube, we find count rates for nonresonant x-ray emission spectroscopy comparable to those achieved at monochromatized spectroscopy beamlines at synchrotron light sources. For x-ray absorption near edge structure, the monochromatized flux is small (due to the use of a low-powered x-ray generator) but still useful for routine transmission-mode studies of concentrated samples. These results indicate that upgrading to a standard commercial high-power line-focused x-ray tube or rotating anode x-ray generator would result in monochromatized fluxes of order 10{sup 6}–10{sup 7} photons/s with no loss in energy resolution. This work establishes core technical capabilities for a rejuvenation of laboratory-based hard x-ray spectroscopies that could have special relevance for contemporary research on catalytic or electrical energy storage systems using transition-metal, lanthanide, or noble-metal active species.

  12. Degradation of Bilayer Organic Light-Emitting Diodes Studied by Impedance Spectroscopy.

    Science.gov (United States)

    Sato, Shuri; Takata, Masashi; Takada, Makoto; Naito, Hiroyoshi

    2016-04-01

    The degradation of bilayer organic light-emitting diodes (OLEDs) with a device structure of N,N'-di(1-naphthyl)-N,N'-diphenylbenzidine (α-NPD) (hole transport layer) and tris-(8-hydroxyquinolate)aluminum (Alq3) (emissive layer and electron transport layer) has been studied by impedance spectroscopy and device simulation. Two modulus peaks are found in the modulus spectra of the OLEDs below the electroluminescence threshold. After aging of the OLEDs, the intensity of electroluminescence is degraded and the modulus peak due to the Alq3 layer is shifted to lower frequency, indicating that the resistance of the Alq3 layer is increased. Device simulation reveals that the increase in the resistance of the Alq3 layer is due to the decrease in the electron mobility in the Alq3 layer.

  13. Hard X-ray photoemission spectroscopy

    International Nuclear Information System (INIS)

    Kobayashi, Keisuke

    2009-01-01

    Except in the very early stage of the development of X-ray photoemission spectroscopy (XPS) by Kai Siegbahn and his coworkers, the excitation sources for XPS studies have predominantly been the Al Kα and Mg Kα emission lines. The advent of synchrotron radiation sources opened up the possibility of tuning the excitation photon energy with much higher throughputs for photoemission spectroscopy, however the excitation energy range was limited to the vacuum ultra violet and soft X-ray regions. Over the past 5-6 years, bulk-sensitive hard X-ray photoemission spectroscopy using high-brilliance high-flux X-rays from third generation synchrotron radiation facilities has been developed. This article reviews the history of HXPES covering the period from Kai Siegbahn and his coworkers' pioneering works to the present, and describes the fundamental aspects, instrumentation, applications to solid state physics, applied physics, materials science, and industrial applications of HXPES. Finally, several challenging new developments which have been conducted at SPring-8 by collaborations among several groups are introduced.

  14. Zinc, lead and copper in human teeth measured by induced coupled argon plasma atomic emission spectroscopy (ICP-AES)

    Energy Technology Data Exchange (ETDEWEB)

    Chew, L.T.; Bradley, D.A. E-mail: D.A.Bradley@exeter.ac.uk; Mohd, Y.; Jamil, M

    2000-11-15

    Inductively Coupled Argon Plasma Atomic Emission Spectroscopy (ICP-AES) has been used to determine Pb, Zn and Cu levels in 47 exfoliated human teeth (all of which required extraction for orthodontic reasons). Lead concentrations for the group were 1.7 {mu}g (g tooth mass){sup -1} to 40.5 {mu}g (g tooth mass){sup -1}, with a median of 9.8 {mu}g (g tooth mass){sup -1}. A median lead level in excess of the group value was found for the teeth of six lorry drivers who were included in the study. A more significant enhancement was found for the seven subjects whose age was in excess of 60 years. The median values for Zn and Cu were 123.0 and 0.6 {mu}g (g tooth mass){sup -1} respectively. Present values for tooth-Zn are lower than published data for other ethnic groups.

  15. Exploration of CdTe quantum dots as mesoscale pressure sensors via time-resolved shock-compression photoluminescent emission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Zhitao [Georgia Tech Research Institute, Georgia Institute of Technology, Atlanta, Georgia 30332-0826 (United States); School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245 (United States); Banishev, Alexandr A.; Christensen, James; Dlott, Dana D. [School of Chemical Sciences and Fredrick Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States); Lee, Gyuhyon; Scripka, David A.; Breidenich, Jennifer; Summers, Christopher J.; Thadhani, Naresh N., E-mail: naresh.thadhani@mse.gatech.edu [School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245 (United States); Xiao, Pan [LNM, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190 (China); George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0405 (United States); Zhou, Min [George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0405 (United States)

    2016-07-28

    The nanometer size of CdTe quantum dots (QDs) and their unique optical properties, including size-tunable narrow photoluminescent emission, broad absorption, fast photoluminescence decay, and negligible light scattering, are ideal features for spectrally tagging the shock response of localized regions in highly heterogeneous materials such as particulate media. In this work, the time-resolved laser-excited photoluminescence response of QDs to shock-compression was investigated to explore their utilization as mesoscale sensors for pressure measurements and in situ diagnostics during shock loading experiments. Laser-driven shock-compression experiments with steady-state shock pressures ranging from 2.0 to 13 GPa were performed on nanocomposite films of CdTe QDs dispersed in a soft polyvinyl alcohol polymer matrix and in a hard inorganic sodium silicate glass matrix. Time-resolved photoluminescent emission spectroscopy was used to correlate photoluminescence changes with the history of shock pressure and the dynamics of the matrix material surrounding the QDs. The results revealed pressure-induced blueshifts in emitted wavelength, decreases in photoluminescent emission intensity, reductions in peak width, and matrix-dependent response times. Data obtained for these QD response characteristics serve as indicators for their use as possible time-resolved diagnostics of the dynamic shock-compression response of matrix materials in which such QDs are embedded as in situ sensors.

  16. Exploration of CdTe quantum dots as mesoscale pressure sensors via time-resolved shock-compression photoluminescent emission spectroscopy

    International Nuclear Information System (INIS)

    Kang, Zhitao; Banishev, Alexandr A.; Christensen, James; Dlott, Dana D.; Lee, Gyuhyon; Scripka, David A.; Breidenich, Jennifer; Summers, Christopher J.; Thadhani, Naresh N.; Xiao, Pan; Zhou, Min

    2016-01-01

    The nanometer size of CdTe quantum dots (QDs) and their unique optical properties, including size-tunable narrow photoluminescent emission, broad absorption, fast photoluminescence decay, and negligible light scattering, are ideal features for spectrally tagging the shock response of localized regions in highly heterogeneous materials such as particulate media. In this work, the time-resolved laser-excited photoluminescence response of QDs to shock-compression was investigated to explore their utilization as mesoscale sensors for pressure measurements and in situ diagnostics during shock loading experiments. Laser-driven shock-compression experiments with steady-state shock pressures ranging from 2.0 to 13 GPa were performed on nanocomposite films of CdTe QDs dispersed in a soft polyvinyl alcohol polymer matrix and in a hard inorganic sodium silicate glass matrix. Time-resolved photoluminescent emission spectroscopy was used to correlate photoluminescence changes with the history of shock pressure and the dynamics of the matrix material surrounding the QDs. The results revealed pressure-induced blueshifts in emitted wavelength, decreases in photoluminescent emission intensity, reductions in peak width, and matrix-dependent response times. Data obtained for these QD response characteristics serve as indicators for their use as possible time-resolved diagnostics of the dynamic shock-compression response of matrix materials in which such QDs are embedded as in situ sensors.

  17. Effect of Molecular Guest Binding on the d-d Transitions of Ni2+ of CPO-27-Ni: A Combined UV-Vis, Resonant-Valence-to-Core X-ray Emission Spectroscopy, and Theoretical Study.

    Science.gov (United States)

    Gallo, Erik; Gorelov, Evgeny; Guda, Alexander A; Bugaev, Aram L; Bonino, Francesca; Borfecchia, Elisa; Ricchiardi, Gabriele; Gianolio, Diego; Chavan, Sachin; Lamberti, Carlo

    2017-12-04

    We used Ni K-edge resonant-valence-to-core X-ray emission spectroscopy (RVtC-XES, also referred to as direct RIXS), an element-selective bulk-sensitive synchrotron-based technique, to investigate the electronic structure of the CPO-27-Ni metal-organic framework (MOF) upon molecular adsorption of significant molecular probes: H 2 O, CO, H 2 S, and NO. We compare RVtC-XES with UV-vis spectroscopy, and we show that the element selectivity of RVtC-XES is of strategic significance to observe the full set of d-d excitations in Ni 2+ , which are partially overshadowed by the low-energy π-π* transitions of the Ni ligands in standard diffuse-reflectance UV-vis experiments. Our combined RVtC-XES/UV-vis approach provides access to the whole set of d-d excitations, allowing us a complete discussion of the changes undergone by the electronic configuration of the Ni 2+ sites hosted within the MOF upon molecular adsorption. The experimental data have been interpreted by multiplet ligand-field theory calculations based on Wannier orbitals. This study represents a step further in understanding the ability of the CPO-27-Ni MOFs in molecular sorption and separation applications.

  18. Study of nanometric thin pyrolytic carbon films for explosive electron emission cathode in high-voltage planar diode

    Energy Technology Data Exchange (ETDEWEB)

    Baryshevsky, Vladimir; Belous, Nikolai; Gurinovich, Alexandra; Gurnevich, Evgeny [Research Institute for Nuclear Problems, Belarusian State University, Bobruiskaya Str. 11, Minsk 220030 (Belarus); Kuzhir, Polina, E-mail: polina.kuzhir@gmail.com [Research Institute for Nuclear Problems, Belarusian State University, Bobruiskaya Str. 11, Minsk 220030 (Belarus); National Research Tomsk State University, 36 Lenin Prospekt, Tomsk 634050 (Russian Federation); Maksimenko, Sergey [Research Institute for Nuclear Problems, Belarusian State University, Bobruiskaya Str. 11, Minsk 220030 (Belarus); National Research Tomsk State University, 36 Lenin Prospekt, Tomsk 634050 (Russian Federation); Molchanov, Pavel; Shuba, Mikhail [Research Institute for Nuclear Problems, Belarusian State University, Bobruiskaya Str. 11, Minsk 220030 (Belarus); Roddatis, Vladimir [CIC energiGUNE, Albert Einstein 48, 01510 Minano, Alava (Spain); Institut für Materialphysik of Universität Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen (Germany); Kaplas, Tommi; Svirko, Yuri [Institute of Photonics, University of Eastern Finland, P.O. Box 111, Joensuu FI-80101 (Finland)

    2015-04-30

    We report on an experimental study of explosive electron emission properties of cathode made by nanometric thin pyrolytic carbon (PyC) films (2–150 nm) deposited on Cu substrate via methane-based chemical vapor deposition. High current density at level of 300 A/cm{sup 2} in 5 · 10{sup −5} Pa vacuum has been observed together with very stable explosive emission from the planar cathode. The Raman spectroscopy investigation proves that the PyC films remain the same after seven shots. According to the optical image analysis of the cathode before and after one and seven shots, we conclude that the most unusual and interesting feature of using the PyC films/Cu cathode for explosive emission is that the PyC layer on the top of the copper target prevents its evaporation and oxidation, which leads to higher emission stability compared to conventional graphitic/Cu cathodes, and therefore results in longer working life. - Highlights: • Explosive electron emission from pyrolytic carbon (PyC) cathode is reported. • We observe high current density, 300 A/cm{sup 2}, and stable emission parameters. • PyC integrity ensures a high application potential for high current electronics.

  19. Correlation of CVD Diamond Electron Emission with Film Properties

    Science.gov (United States)

    Bozeman, S. P.; Baumann, P. K.; Ward, B. L.; Nemanich, R. J.; Dreifus, D. L.

    1996-03-01

    Electron field emission from metals is affected by surface morphology and the properties of any dielectric coating. Recent results have demonstrated low field electron emission from p-type diamond, and photoemission measurements have identified surface treatments that result in a negative electron affinity (NEA). In this study, the field emission from diamond is correlated with surface treatment, surface roughness, and film properties (doping and defects). Electron emission measurements are reported on diamond films synthesized by plasma CVD. Ultraviolet photoemission spectroscopy indicates that the CVD films exhibit a NEA after exposure to hydrogen plasma. Field emission current-voltage measurements indicate "threshold voltages" ranging from approximately 20 to 100 V/micron.

  20. Potential radionuclide emissions from stacks on the Hanford site, Part 2: Dose assessment methodology using portable low-resolution gamma spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Barnett, J.M. [Westinghouse Hanford Company, Richland, WA (United States)

    1995-02-01

    In September 1992, the Westinghouse Hanford Company began developing an in situ measurement method to assess gamma radiation emanating from high-efficiency particulate air filters using portable low-resolution gamma spectroscopy. The purpose of the new method was to assess radioactive exhaust stack air emissions from empirical data rather than from theoretical models and to determine the potential unabated dose to an offsite theoretical maximally exposed individual. In accordance with Title 40, Code of Federal Regulations, Part 61, Subpart H, {open_quotes}National Emission Standards for Hazardous Air Pollutants{close_quotes}, stacks that have the potential to emit {ge} 1 {mu}Sv y{sup {minus}1} (0.1 mrem y{sup {minus}1}) to the maximally exposed individual are considered {open_quotes}major{close_quotes} and must meet the continuous monitoring requirements. After the method was tested and verified, the U.S. Environmental Protection Agency, Region 10, approved its use in June 1993. Of the 125 stacks operated by the Westinghouse Hanford Company, 22 were targeted for evaluation by this method, and 15 were assessed. (The method could not be applied at seven stacks because of excessive background radiation or because no gamma emitting particles appear in the emission stream.) The most significant result from this study was the redesignation of the T Plant main stack. The stack was assessed as being {open_quotes}minor{close_quotes}, and it now only requires periodic confirmatory measurements and meets federally imposed sampling requirements.

  1. Standard test method for determining elements in waste streams by inductively coupled plasma-atomic emission spectroscopy

    International Nuclear Information System (INIS)

    Anon.

    1989-01-01

    This test method covers the determination of trace, minor, and major elements in waste streams by inductively coupled plasma-atomic emission spectroscopy (ICP-AES) following an acid digestion of the specimen. Waste streams from manufacturing processes of nuclear and nonnuclear materials can be analyzed. This test method is applicable to the determination of total metals. Results from this test method can be used to characterize waste received by treatment facilities and to formulate appropriate treatment recipes. The results are also usable to process control within waste treatment facilities. This test method is applicable only to waste streams that contain radioactivity levels which do not require special personnel or environmental protection. A list of the elements determined in waste streams and the corresponding lower reporting limit is included

  2. Zero emission city. Preliminary study; Null-Emissions-Stadt. Sondierungsstudie

    Energy Technology Data Exchange (ETDEWEB)

    Diefenbach, N.; Enseling, A.; Werner, P.; Flade, A.; Greiff, R.; Hennings, D.; Muehlich, E.; Wullkopf, U.; Sturm, P.; Kieslich, W.; Born, R.; Grossklos, M.; Hatteh, R.; Mueller, K.; Ratschow, A.; Valouch-Fornoff, C.

    2002-10-01

    The idea of a 'zero emission city' is investigated by the Institut Wohnen und Umwelt on behalf of the Federal Minister of Education and Research. After describing the current situation and defining the key parameters of a 'zero emission city', settlement structures, power supply, production processes and transportation are analyzed and linked with the communal action level to obtain a framework for research, activities and actions. The study ends with recommendations for a research programme 'zero emission city'. (orig.) [German] Die von den Staedten der Industrielaender ausgehenden Emissionen stellen im Hinblick auf die globalen Belastungen wie z.B. Treibhauseffekt, Ozonabbau und Versauerung das Hauptproblem dar. Aus diesem Grunde bietet es sich an, den Gedanken der 'Null-Emissions-Stadt', der Vision einer moeglichst emissionsfreien Stadt, aufzugreifen und auf seine Tragfaehigkeit fuer innovative Handlungsmodelle forschungsstrategisch zu ueberpruefen. Das Bundesministerium fuer Bildung und Forschung hat das Institut Wohnen und Umwelt beauftragt, in einer Sondierungsstudie dieser Fragestellung nachzugehen. Nach der Festlegung der Ausgangsbedingungen und Eckpunkte der Vision 'Null-Emissions-Stadt' und der Analyse der vier Handlungsfelder Siedlungsstrukturen, Energieversorgung, Produktionsprozesse (Kreislaufwirtschaft) und Verkehr werden diese aufgegriffen und mit der kommunalen Handlungsebene verknuepft und zu einem Forschungs-, Handlungs- und moeglichen Aktionsrahmen zusammengefuegt. Die Studie schliesst mit Hinweisen fuer die Gestaltung eines Forschungsprogramms 'Null-Emissions-Stadt'. (orig.)

  3. Development of a Reference Database for Particle-Induced Gamma-ray Emission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Dimitriou, P., E-mail: P.Dimitriou@iaea.org [International Atomic Energy Agency, Wagramerstrasse 5, A-1400 Vienna (Austria); Becker, H.-W. [Ruhr Universität Bochum, Gebäude NT05/130, Postfach 102148, Bochum 44721 (Germany); Bogdanović-Radović, I. [Department of Experimental Physics, Institute Rudjer Boskovic, Bijenicka Cesta 54, 10000 Zagreb (Croatia); Chiari, M. [Istituto Nazionale di Fisica Nucleare, Via Sansone 1, Sesto Fiorentino, 50019 Firenze (Italy); Goncharov, A. [Kharkov Institute of Physics and Technology, National Science Center, Akademicheskaya Str.1, Kharkov 61108 (Ukraine); Jesus, A.P. [Departamento de Física, Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa (Portugal); Kakuee, O. [Nuclear Science and Technology Research Institute, End of North Karegar Ave., PO Box 14395-836, Tehran (Iran, Islamic Republic of); Kiss, A.Z. [Institute of Nuclear Research (ATOMKI), Bem ter 18/c, PO Box 51, 4001 Debrecen (Hungary); Lagoyannis, A. [National Center of Scientific Research “Demokritos”, Agia Paraskevi, P.O. Box 60228, 15310 Athens (Greece); Räisänen, J. [Division of Materials Physics, Department of Physics, University of Helsinki, PO Box 43, 00014 University of Helsinki (Finland); Strivay, D. [Institut de Physique Nucleaire, Atomique et de Spectroscopie, Universite de Liège, Sart Tilman, B15 4000 Liège (Belgium); Zucchiatti, A. [Centro de Micro Análisis de Materiales, Universidad Autónoma de Madrid, Faraday 3, Madrid 28049 (Spain)

    2016-03-15

    Particle-Induced Gamma-ray Emission (PIGE) is a powerful analytical technique that exploits the interactions of rapid charged particles with nuclei located near a sample surface to determine the composition and structure of the surface regions of solids by measurement of characteristic prompt γ rays. The potential for depth profiling of this technique has long been recognized, however, the implementation has been limited owing to insufficient knowledge of the physical data and lack of suitable user-friendly computer codes for the applications. Although a considerable body of published data exists in the nuclear physics literature for nuclear reaction cross sections with γ rays in the exit channel, there is no up-to-date, comprehensive compilation specifically dedicated to IBA applications. A number of PIGE cross-section data had already been uploaded to the Ion Beam Analysis Nuclear Data Library (IBANDL) ( (http://www-nds.iaea.org/ibandl)) by members of the IBA community by 2011, however a preliminary survey of this body of unevaluated experimental data has revealed numerous discrepancies beyond the uncertainty limits reported by the authors. Using the resources and coordination provided by the IAEA, a concerted effort to improve the situation was made within the Coordinated Research Project on the Development of a Reference Database for PIGE spectroscopy, from 2011 to 2015. The aim of the CRP was to create a data library for Ion Beam Analysis that contains reliable and usable data on charged particle γ-ray emission cross sections that would be made freely available to the user community. As the CRP has reached its completion, we shall present its main achievements, including the results of nuclear cross-section evaluations and the development of a computer code that will become available to the public allowing for the implementation of a standardless PIGE technique.

  4. Surface properties and field emission characteristics of chemical vapor deposition diamond grown on Fe/Si substrates

    International Nuclear Information System (INIS)

    Hirakuri, Kenji; Yokoyama, Takahiro; Enomoto, Hirofumi; Mutsukura, Nobuki; Friedbacher, Gernot

    2001-01-01

    Electron field emission characteristics of diamond grains fabricated on iron dot-patterned silicon (Fe/Si) substrates at different methane concentrations have been investigated. The characteristics of the samples could be improved by control of the methane concentration during diamond fabrication. Etching treatment of the as-grown diamond has enhanced the emission properties both with respect to current and threshold voltage. In order to study the influence of etching effects on the field emission characteristics, the respective surfaces were studied by Raman spectroscopy, Auger electron spectroscopy, and electron spectroscopy for chemical analysis (ESCA). ESCA revealed intensive graphite and FeO x peaks on the sample surface grown at high methane concentration. For the etched samples, the peaks of diamond and silicon carbide were observed, and the peaks of nondiamond carbon disappeared. The experimental results show that the etching process removes graphitic and nondiamond carbon components. [copyright] 2001 American Institute of Physics

  5. Diagnostics of helium plasma by collisional-radiative modeling and optical emission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Wonwook; Kwon, Duck-Hee [KAERI, Daejeon (Korea, Republic of)

    2015-05-15

    Optical diagnostics for the electron temperature (T{sub e}) and the electron density (n{sub e}) of fusion plasma is important for understanding and controlling the edge and the divertor plasmas in tokamak. Since the line intensity ratio method using the collisional-radiative modeling and OES (optical emission spectroscopy) is simple and does not disturb the plasma, many fusion devices with TEXTOR, JET, JT-60U, LHD, and so on, have employed the line intensity ratio method as a basic diagnostic tool for neutral helium (He I). The accuracy of the line intensity ratio method depends on the reliability of the cross sections and rate coefficients. We performed state-of-the-art R-matrix calculations including couplings up to n=7 states and the distorted wave (DW) calculations for the electron-impact excitation (EIE) cross sections of He I using the flexible atomic code (FAC). The collisional-radiative model for He I was constructed using the calculated the cross sections. The helium collisional-radiative model for He I was constructed to diagnose the electron temperature and the electron density of the plasma. The electron temperature and density were determined by using the line intensity ratio method.

  6. The goals of gamma-ray spectroscopy in high energy astrophysics

    Science.gov (United States)

    Lingenfelter, Richard E.; Higdon, James C.; Leventhal, Marvin; Ramaty, Reuven; Woosley, Stanford E.

    1990-01-01

    The use of high resolution gamma-ray spectroscopy in astrophysics is discussed with specific attention given to the application of the Nuclear Astrophysics Explorer (NAE). The gamma-ray lines from nuclear transitions in radionucleic decay and positron annihilation permits the study of current sites, rates and models of nucleosynthesis, and galactic structure. Diffuse galactic emission is discussed, and the high-resolution observations of gamma-ray lines from discrete sites are also described. Interstellar mixing and elemental abundances can also be inferred from high-resolution gamma-ray spectroscopy of nucleosynthetic products. Compact objects can also be examined by means of gamma-ray emissions, allowing better understanding of neutron stars and the accreting black hole near the galactic center. Solar physics can also be investigated by examining such features as solar-flare particle acceleration and atmospheric abundances.

  7. Remote measurement of high preeruptive water vapor emissions at Sabancaya volcano by passive differential optical absorption spectroscopy

    Science.gov (United States)

    Kern, Christoph; Masias, Pablo; Apaza, Fredy; Reath, Kevin; Platt, Ulrich

    2017-01-01

    Water (H2O) is by far the most abundant volcanic volatile species and plays a predominant role in driving volcanic eruptions. However, numerous difficulties associated with making accurate measurements of water vapor in volcanic plumes have limited their use as a diagnostic tool. Here we present the first detection of water vapor in a volcanic plume using passive visible-light differential optical absorption spectroscopy (DOAS). Ultraviolet and visible-light DOAS measurements were made on 21 May 2016 at Sabancaya Volcano, Peru. We find that Sabancaya's plume contained an exceptionally high relative water vapor abundance 6 months prior to its November 2016 eruption. Our measurements yielded average sulfur dioxide (SO2) emission rates of 800–900 t/d, H2O emission rates of around 250,000 t/d, and an H2O/SO2 molecular ratio of 1000 which is about an order of magnitude larger than typically found in high-temperature volcanic gases. We attribute the high water vapor emissions to a boiling-off of Sabancaya's hydrothermal system caused by intrusion of magma to shallow depths. This hypothesis is supported by a significant increase in the thermal output of the volcanic edifice detected in infrared satellite imagery leading up to and after our measurements. Though the measurement conditions encountered at Sabancaya were very favorable for our experiment, we show that visible-light DOAS systems could be used to measure water vapor emissions at numerous other high-elevation volcanoes. Such measurements would provide observatories with additional information particularly useful for forecasting eruptions at volcanoes harboring significant hydrothermal systems.

  8. XXII Conference on spectroscopy. Summaries of reports

    International Nuclear Information System (INIS)

    2001-01-01

    XXII Conference on spectroscopy took place 8-12 October 2001 in Zvenigorod, Moscow region. The recent advantages in the field of atomic and molecular spectroscopy were discussed. The current methods for elemental spectra analysis were considered. They are based on both traditional atomic emission, adsorption and Raman spectroscopic techniques and on introduction of the mass spectroscopy with the high-temperature plasma atomizer. The particular attention was given the application of spectroscopic methods for plasma diagnostics and air pollution control [ru

  9. Optical spectroscopy of laser-produced plasmas for standoff isotopic analysis

    Science.gov (United States)

    Harilal, S. S.; Brumfield, B. E.; LaHaye, N. L.; Hartig, K. C.; Phillips, M. C.

    2018-06-01

    Rapid, in-field, and non-contact isotopic analysis of solid materials is extremely important to a large number of applications, such as nuclear nonproliferation monitoring and forensics, geochemistry, archaeology, and biochemistry. Presently, isotopic measurements for these and many other fields are performed in laboratory settings. Rapid, in-field, and non-contact isotopic analysis of solid material is possible with optical spectroscopy tools when combined with laser ablation. Laser ablation generates a transient vapor of any solid material when a powerful laser interacts with a sample of interest. Analysis of atoms, ions, and molecules in a laser-produced plasma using optical spectroscopy tools can provide isotopic information with the advantages of real-time analysis, standoff capability, and no sample preparation requirement. Both emission and absorption spectroscopy methods can be used for isotopic analysis of solid materials. However, applying optical spectroscopy to the measurement of isotope ratios from solid materials presents numerous challenges. Isotope shifts arise primarily due to variation in nuclear charge distribution caused by different numbers of neutrons, but the small proportional nuclear mass differences between nuclei of various isotopes lead to correspondingly small differences in optical transition wavelengths. Along with this, various line broadening mechanisms in laser-produced plasmas and instrumental broadening generated by the detection system are technical challenges frequently encountered with emission-based optical diagnostics. These challenges can be overcome by measuring the isotope shifts associated with the vibronic emission bands from molecules or by using the techniques of laser-based absorption/fluorescence spectroscopy to marginalize the effect of instrumental broadening. Absorption and fluorescence spectroscopy probe the ground state atoms existing in the plasma when it is cooler, which inherently provides narrower

  10. Prominent blue emission through Tb3+ doped La2O3 nano-phosphors for white LEDs

    Science.gov (United States)

    Jain, Neha; Singh, Rajan Kr; Srivastava, Amit; Mishra, S. K.; Singh, Jai

    2018-06-01

    In this article, we report the tunable luminescence emission of Tb3+ doped La2O3 nanophosphors synthesized by a facile and effective Polyol method. The structural and surface morphological studies have been carried out by employing X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. The XRD studies elucidate the proper phase formation and the results emanate from Raman spectroscopy of the as synthesized nanophosphor affirms it. The optical properties of the as fabricated nanoparticles have been investigated by Raman and photoluminescence (PL) spectroscopy. The PL spectroscopy shows the occurrence of excitation peaks at 305, 350 and 375 nm for 543 nm emissions, correspond to transition 5D4 →7F5. Emission spectra with 305 nm excitation exhibits characteristic emission peaks of Tb3+ion at 472, 487, 543 and 580 nm. The intensity of emission increases with Tb3+ concentration and is most prominent for 7 at% Tb3+ ion. The characteristic emissions of Tb3+ ion owes to the transition in which intensities of blue and green emission are prominent. The dominant intensity has been found for 472 nm (for blue emission). Commission international d 'Eclairage (CIE) co-ordinates have found in the light blue to green region. The research work provides a new interesting insight dealing with tunable properties with Tb3+ doping in La2O3 nanophosphors, to be useful for display devices, solar cells, LEDs and optoelectronic devices.

  11. Determination of radioactive emission origins based on analyses of isotopic composition

    International Nuclear Information System (INIS)

    Devell, L.

    1987-01-01

    The nature of radioactivity emissions can be determined through gamma spectroscopy of air samples with good precision, which means that the type of source of the emission may be found, e.g. nuclear weapons test, of nuclear power plant accident. Combined with information on wind trajectories it is normally possible to recognize time and area for the emission. In this preliminary study, the knowledge of and preparedness for such measurements are described. (L.E.)

  12. Excitation dynamics of dye doped tris(8-hydroxy quinoline) aluminum films studied using time-resolved photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Read, K.; Karlsson, H. S.; Murnane, M. M.; Kapteyn, H. C.; Haight, R.

    2001-01-01

    In this work, we use excite-probe photoelectron spectroscopy to study the decay of electronic excitation in tris(8-hydroxy quinoline) aluminum (Alq) doped with the organic dye 4-dicyanomethylene-2-methyl-6-(p-dimethylaminostyryl)-4H-pyran (DCM). Ultrashort laser pulses are used to photoexcite electrons into unoccupied molecular orbitals, and the ensuing decay rate is directly observed using photoelectron spectroscopy. Decay of the electronic excitation is studied as a function of DCM doping percentage and excitation intensity. The decay rate is seen to increase with both doping percentage and excitation intensity. These data are explained using a model including Foerster transfer, stimulated emission, concentration quenching, and bimolecular singlet - singlet exciton annihilation. In this model, we find that it is necessary to include a very fast (faster than predicted in standard Foerster transfer theory) excitation transfer of a fraction of the excitation from the Alq to the DCM, where that fraction corresponds to the approximate nearest-neighbor population. [copyright] 2001 American Institute of Physics

  13. Photoacoustic Spectroscopy Analysis of Traditional Chinese Medicine

    Science.gov (United States)

    Chen, Lu; Zhao, Bin-xing; Xiao, Hong-tao; Tong, Rong-sheng; Gao, Chun-ming

    2013-09-01

    Chinese medicine is a historic cultural legacy of China. It has made a significant contribution to medicine and healthcare for generations. The development of Chinese herbal medicine analysis is emphasized by the Chinese pharmaceutical industry. This study has carried out the experimental analysis of ten kinds of Chinese herbal powder including Fritillaria powder, etc., based on the photoacoustic spectroscopy (PAS) method. First, a photoacoustic spectroscopy system was designed and constructed, especially a highly sensitive solid photoacoustic cell was established. Second, the experimental setup was verified through the characteristic emission spectrum of the light source, obtained by using carbon as a sample in the photoacoustic cell. Finally, as the photoacoustic spectroscopy analysis of Fritillaria, etc., was completed, the specificity of the Chinese herb medicine analysis was verified. This study shows that the PAS can provide a valid, highly sensitive analytical method for the specificity of Chinese herb medicine without preparing and damaging samples.

  14. Basic Principles of Spectroscopy

    Science.gov (United States)

    Penner, Michael H.

    Spectroscopy deals with the production, measurement, and interpretation of spectra arising from the interaction of electromagnetic radiation with matter. There are many different spectroscopic methods available for solving a wide range of analytical problems. The methods differ with respect to the species to be analyzed (such as molecular or atomic spectroscopy), the type of radiation-matter interaction to be monitored (such as absorption, emission, or diffraction), and the region of the electromagnetic spectrum used in the analysis. Spectroscopic methods are very informative and widely used for both quantitative and qualitative analyses. Spectroscopic methods based on the absorption or emission of radiation in the ultraviolet (UV), visible (Vis), infrared (IR), and radio (nuclear magnetic resonance, NMR) frequency ranges are most commonly encountered in traditional food analysis laboratories. Each of these methods is distinct in that it monitors different types of molecular or atomic transitions. The basis of these transitions is explained in the following sections.

  15. Searching for WR stars in I Zw 18 -- The origin of HeII emission

    OpenAIRE

    de Mello, Duilia; Schaerer, Daniel; Heldmann, Jennifer; Leitherer, Claus

    1998-01-01

    I Zw 18 is the most metal poor star-forming galaxy known and is an ideal laboratory to probe stellar evolution theory at low metallicities. Using archival HST WFPC2 imaging and FOS spectroscopy we were able to improve previous studies. We constructed a continuum free HeII map, which was used to identify Wolf-Rayet (WR) stars recently found by ground-based spectroscopy and to locate diffuse nebular emission. Most of the HeII emission is associated with the NW stellar cluster, clearly displaced...

  16. Compensation and trapping in CdZnTe radiation detectors studied by thermoelectric emission spectroscopy, thermally stimulated conductivity, and current-voltage measurements

    International Nuclear Information System (INIS)

    James, Ralph B.

    2000-01-01

    In today's commercially available counter-select-grade CdZnTe crystals for radiation detector applications, the thermal ionization energies of the traps and their types, whether electron or hole traps, were measured. The measurements were successfully done using thermoelectric emission spectroscopy (TEES) and thermally stimulated conductivity (TSC). For reliability, the electrical contacts to the sample were found to be very important and, instead of Au Schottky contacts, In Ohmic contacts had to be used. For the filling of the traps, photoexcitation was done at zero bias, at 20K and at wavelengths which gave the maximum bulk photoexcitation for the sample. Between the temperature range from 20 to 400 K, the TSC current was found to be on the order of ∼ 10,000 times or even larger than the TEES current, in agreement with theory, but only TEES could resolve the trap type and was sensitive to the deep traps. Large concentration of hole traps at 0.1 and 0.6 eV were observed and smaller contraction of electron traps at 0.4 eV was seen. These deep traps cause compensation in the material and also cause trapping that degrades the radiation detection measurement

  17. Optical emission spectroscopy diagnostics of an atmospheric pressure direct current microplasma jet

    Energy Technology Data Exchange (ETDEWEB)

    Sismanoglu, B.N., E-mail: bogos@ita.b [Departamento de Fisica, Instituto Tecnologico de Aeronautica, Comando-Geral de Tecnologia Aeroespacial, Pca Marechal Eduardo Gomes 50, 12 228-900, Sao Jose dos Campos, SP (Brazil); Amorim, J., E-mail: jayr.amorim@bioetanol.org.b [Centro de Ciencia e Tecnologia do Bioetanol - CTBE, Caixa Postal 6170, 13083-970 Campinas, Sao Paulo (Brazil); Souza-Correa, J.A., E-mail: jorge.correa@bioetanol.org.b [Centro de Ciencia e Tecnologia do Bioetanol - CTBE, Caixa Postal 6170, 13083-970 Campinas, Sao Paulo (Brazil); Oliveira, C., E-mail: carlosf@ita.b [Departamento de Fisica, Instituto Tecnologico de Aeronautica, Comando-Geral de Tecnologia Aeroespacial, Pca Marechal Eduardo Gomes 50, 12 228-900, Sao Jose dos Campos, SP (Brazil); Gomes, M.P., E-mail: gomesmp@ita.b [Departamento de Fisica, Instituto Tecnologico de Aeronautica, Comando-Geral de Tecnologia Aeroespacial, Pca Marechal Eduardo Gomes 50, 12 228-900, Sao Jose dos Campos, SP (Brazil)

    2009-11-15

    This paper is about the use of optical emission spectroscopy as a diagnostic tool to determine the gas discharge parameters of a direct current (98% Ar-2% H{sub 2}) non-thermal microplasma jet, operated at atmospheric pressure. The electrical and optical behaviors were studied to characterize this glow discharge. The microplasma jet was investigated in the normal and abnormal glow regimes, for current ranging from 10 to 130 mA, at approx 220 V of applied voltage for copper cathode. OH (A {sup 2}SIGMA{sup +}, nu = 0 -> X {sup 2}PI, nu' = 0) rotational bands at 306.357 nm and also the 603.213 nm Ar I line, which is sensitive to van der Waals broadening, were used to determine the gas temperature, which ranges from 550 to 800 K. The electron number densities, ranging from 6.0 x 10{sup 14} to 1.4 x 10{sup 15} cm{sup -3}, were determined through a careful analysis of the main broadening mechanisms of the H{sub beta} line. From both 603.213 nm and 565.070 nm Ar I line broadenings, it was possible to obtain simultaneously electron number density and temperature (approx 8000 K). Excitation temperatures were also measured from two methods: from two Cu I lines and from Boltzmann-plot of 4p-4s and 5p-4s Ar I transitions. By employing H{sub alpha} line, the hydrogen atoms' H temperature was estimated (approx 18,000 K) and found to be surprisingly hotter than the excitation temperature.

  18. Optical and structural properties of plasma-treated Cordyceps bassiana spores as studied by circular dichroism, absorption, and fluorescence spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Geon Joon, E-mail: gjlee@kw.ac.kr; Sim, Geon Bo; Choi, Eun Ha [Plasma Bioscience Research Center/Department of Electrical and Biological Physics, Kwangwoon University, Seoul 139-701 (Korea, Republic of); Kwon, Young-Wan [KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 136-701 (Korea, Republic of); Kim, Jun Young; Jang, Siun; Kim, Seong Hwan, E-mail: piceae@naver.com [Department of Microbiology and Institute of Basic Sciences, Dankook University, Cheonan 330-714 (Korea, Republic of)

    2015-01-14

    To understand the killing mechanism of fungal spores by plasma treatment, the optical, structural, and biological properties of the insect pathogenic fungus Cordyceps bassiana spores were studied. A nonthermal atmospheric-pressure plasma jet (APPJ) was used to treat the spores in aqueous solution. Optical emission spectra of the APPJ acquired in air indicated emission peaks corresponding to hydroxyl radicals and atomic oxygen. When the APPJ entered the aqueous solution, additional reactive species were derived from the interaction of plasma radicals with the aqueous solution. Fluorescence and absorption spectroscopy confirmed the generation of hydroxyl radicals and hydrogen peroxide in the plasma-activated water (PAW). Spore counting showed that plasma treatment significantly reduced spore viability. Absorption spectroscopy, circular dichroism (CD) spectroscopy, and agarose gel electrophoresis of the DNA extracted from plasma-treated spores showed a reduction in spore DNA content. The magnitude of the dip in the CD spectrum was lower in the plasma-treated spores than in the control, indicating that plasma treatment causes structural modifications and/or damage to cellular components. Tryptophan fluorescence intensity was lower in the plasma-treated spores than in the control, suggesting that plasma treatment modified cell wall proteins. Changes in spore viability and DNA content were attributed to structural modification of the cell wall by reactive species coming from the APPJ and the PAW. Our results provided evidence that the plasma radicals and the derived reactive species play critical roles in fungal spore inactivation.

  19. Self-assembled InAs quantum dots. Properties, modification and emission processes

    International Nuclear Information System (INIS)

    Schramm, A.

    2007-01-01

    In this thesis, structural, optical as well as electronic properties of self-assembled InAs quantum dots (QD) were studied by means of atomic force microscopy (AFM), photoluminescence (PL), capacitance spectroscopy (CV) and capacitance transient spectroscopy (DLTS). The quantum dots were grown with molecular beam epitaxy (MBE) and embedded in Schottky diodes for electrical characterization. In this work growth aspects as well as the electronic structures of QD were discussed. By varying the QD growth parameters it is possible to control the structural, and thus the optical and electronic properties of QD. Two methods are presented. Adjusting the QD growth temperature leads either to small QD with a high areal density or to high QDs with a low density. The structural changes of the QD are reflected in the changes of the optical and electronic properties. The second method is to introduce a growth interruption after capping the QD with thin cap layers. It was shown that capping with AlAs leads to a well-developed alternative to control the QD height and thus the ground-state energies of the QD. A post-growth method modifying the QD properties ist rapid thermal annealing (RTA). Raising the RTA temperature causes a lifting of the QD energy states with respect to the GaAs band edge energy due to In/Ga intermixing processes. A further main part of this work covers the emission processes of charge carriers in QD. Thermal emission, thermally assisted tunneling, and pure tunneling emission are studied by capacitance transient spectroscopy techniques. In DLTS experiments a strong impact of the electric field on the activation energies of electrons was found interfering the correct determination of the QD level energies. This behaviour can be explained by a thermally assisted tunneling model. A modified model taking the Coulomb interaction of occupied QD into account describes the emission rates of the electrons. In order to avoid several emission pathes in the experiments

  20. Laser techniques for spectroscopy of core-excited atomic levels

    Science.gov (United States)

    Harris, S. E.; Young, J. F.; Falcone, R. W.; Rothenberg, J. E.; Willison, J. R.

    1982-01-01

    We discuss three techniques which allow the use of tunable lasers for high resolution and picosecond time scale spectroscopy of core-excited atomic levels. These are: anti-Stokes absorption spectroscopy, laser induced emission from metastable levels, and laser designation of selected core-excited levels.

  1. Two-colour dip spectroscopy of jet-cooled molecules

    Science.gov (United States)

    Ito, Mitsuo

    In optical-optical double resonance spectroscopy, the resonance transition from an intermediate state to a final state can be detected by a dip of the signal (fluorescence or ion) associated with the intermediate state. This method probing the signal of the intermediate state may be called `two-colour dip spectroscopy'. Various kinds of two-colour dip spectroscopy such as two-colour fluorescence/ion dip spectroscopy, two-colour ionization dip spectroscopy employing stimulated emission, population labelling spectroscopy and mass-selected ion dip spectroscopy with dissociation were briefly described, paying special attention to their characteristics in excitation, detection and application. They were extensively and successfully applied to jet-cooled large molecules and provided us with new useful information on the energy and dynamics of excited molecules.

  2. Resonant inelastic X-ray spectroscopy of atoms and simple molecules: Satellite features and dependence on energy detuning and photon polarization

    Energy Technology Data Exchange (ETDEWEB)

    Žitnik, M., E-mail: matjaz.zitnik@ijs.si [Jožef Stefan Institute, P.O. Box 3000, SI-1001 Ljubljana (Slovenia); University of Ljubljana, Faculty of Mathematics and Physics, Jadranska 21, SI-1000 Ljubljana (Slovenia); Kavčič, M.; Bohinc, R.; Bučar, K.; Mihelič, A. [Jožef Stefan Institute, P.O. Box 3000, SI-1001 Ljubljana (Slovenia); Cao, W. [Research Centre for Molecular Materials, University of Oulu, P.O. Box 3000, FIN-90014 Oulu (Finland); Guillemin, R.; Journel, L.; Marchenko, T.; Carniato, S.; Kawerk, E. [Sorbonne Universités, UPMC Univ Paris 06, UMR 7614, Laboratoire de Chimie Physique Matière et Rayonnement, F-75005 Paris (France); CNRS, UMR 7614, Laboratoire de Chimie Physique Matière et Rayonnement, F-75005 Paris (France); Piancastelli, M.N. [Sorbonne Universités, UPMC Univ Paris 06, UMR 7614, Laboratoire de Chimie Physique Matière et Rayonnement, F-75005 Paris (France); CNRS, UMR 7614, Laboratoire de Chimie Physique Matière et Rayonnement, F-75005 Paris (France); Department of Physics and Astronomy, Uppsala University, P.O. Box 516, 75120 Uppsala (Sweden); Simon, M. [Sorbonne Universités, UPMC Univ Paris 06, UMR 7614, Laboratoire de Chimie Physique Matière et Rayonnement, F-75005 Paris (France); CNRS, UMR 7614, Laboratoire de Chimie Physique Matière et Rayonnement, F-75005 Paris (France)

    2015-10-15

    We summarize recent results dealing with high resolution (resonant) X-ray spectroscopy of atomic and molecular targets in the tender X-ray energy region. We comment on advantages, new possibilities and problems related to RIXS spectroscopy with respect to the standard photoabsorption technique, where scanning the probe energy is the only option. In particular, three research areas are covered: X-ray emission mediated by energy dependent photoabsorption to multi-electron excited states, the Cl K core-hole clock studies exemplified by systematic study of chloro(fluoro)-hydrocarbon targets and the polarization dependent X-ray emission studies. Due to its spectral selectivity and simultaneous detection capability, high resolution wavelength dispersive X-ray spectroscopy has the capability to resolve structural and dynamical properties of matter within new instrumentation frontiers.

  3. Resonant inelastic X-ray spectroscopy of atoms and simple molecules: Satellite features and dependence on energy detuning and photon polarization

    International Nuclear Information System (INIS)

    Žitnik, M.; Kavčič, M.; Bohinc, R.; Bučar, K.; Mihelič, A.; Cao, W.; Guillemin, R.; Journel, L.; Marchenko, T.; Carniato, S.; Kawerk, E.; Piancastelli, M.N.; Simon, M.

    2015-01-01

    We summarize recent results dealing with high resolution (resonant) X-ray spectroscopy of atomic and molecular targets in the tender X-ray energy region. We comment on advantages, new possibilities and problems related to RIXS spectroscopy with respect to the standard photoabsorption technique, where scanning the probe energy is the only option. In particular, three research areas are covered: X-ray emission mediated by energy dependent photoabsorption to multi-electron excited states, the Cl K core-hole clock studies exemplified by systematic study of chloro(fluoro)-hydrocarbon targets and the polarization dependent X-ray emission studies. Due to its spectral selectivity and simultaneous detection capability, high resolution wavelength dispersive X-ray spectroscopy has the capability to resolve structural and dynamical properties of matter within new instrumentation frontiers.

  4. Late-time particle emission from laser-produced graphite plasma

    Energy Technology Data Exchange (ETDEWEB)

    Harilal, S. S.; Hassanein, A.; Polek, M. [School of Nuclear Engineering, Center for Materials Under Extreme Environment, Purdue University, West Lafayette, Indiana 47907 (United States)

    2011-09-01

    We report a late-time ''fireworks-like'' particle emission from laser-produced graphite plasma during its evolution. Plasmas were produced using graphite targets excited with 1064 nm Nd: yttrium aluminum garnet (YAG) laser in vacuum. The time evolution of graphite plasma was investigated using fast gated imaging and visible emission spectroscopy. The emission dynamics of plasma is rapidly changing with time and the delayed firework-like emission from the graphite target followed a black-body curve. Our studies indicated that such firework-like emission is strongly depended on target material properties and explained due to material spallation caused by overheating the trapped gases through thermal diffusion along the layer structures of graphite.

  5. Late-time particle emission from laser-produced graphite plasma

    International Nuclear Information System (INIS)

    Harilal, S. S.; Hassanein, A.; Polek, M.

    2011-01-01

    We report a late-time ''fireworks-like'' particle emission from laser-produced graphite plasma during its evolution. Plasmas were produced using graphite targets excited with 1064 nm Nd: yttrium aluminum garnet (YAG) laser in vacuum. The time evolution of graphite plasma was investigated using fast gated imaging and visible emission spectroscopy. The emission dynamics of plasma is rapidly changing with time and the delayed firework-like emission from the graphite target followed a black-body curve. Our studies indicated that such firework-like emission is strongly depended on target material properties and explained due to material spallation caused by overheating the trapped gases through thermal diffusion along the layer structures of graphite.

  6. E-beam irradiation effect on CdSe/ZnSe QD formation by MBE: deep level transient spectroscopy and cathodoluminescence studies

    International Nuclear Information System (INIS)

    Kozlovsky, V I; Litvinov, V G; Sadofyev, Yu G

    2004-01-01

    CdSe/ZnSe structures containing 1 or 15 thin (3-5 monolayers) CdSe layers were studied by cathodoluminescence (CL) and deep level transient spectroscopy (DLTS). The DLTS spectra consisted of peaks from deep levels (DLs) and an additional intense peak due to electron emission from the ground quantized level in the CdSe layers. Activation energy of this additional peak correlated with an energy of the CdSe-layer emission line in the CL spectra. Electron-beam irradiation of the structure during the growth process was found to influence the DLTS and CL spectra of the CdSe layers, shifting the CdSe-layer emission line to the long-wave side. The obtained results are explained using the assumption that e-beam irradiation stimulates the formation of quantum dots of various sizes in the CdSe layers

  7. Theory of X-ray absorption and emission spectra

    International Nuclear Information System (INIS)

    Mukoyama, Takeshi

    2004-01-01

    Theoretical studies on X-ray absorption and emission spectroscopy are discussed. Simple expressions for X-ray emission rate and X-ray absorption cross section are presented in the dipole approximation. Various atomic models to obtain realistic wave functions and theoretical calculations for X-ray absorption cross sections and X-ray emission rates are described. In the case of molecules and solids, molecular orbital methods for electronic structures and molecular wave functions are discussed. The emphasis is on the procedures to obtain the excited-state and continuum wave functions for molecules and to calculate the multi-center dipole matrix elements. The examples of the calculated X-ray absorption and emission spectra are shown and compared with the experimental results

  8. Analysis of quantum semiconductor heterostructures by ballistic electron emission spectroscopy

    Science.gov (United States)

    Guthrie, Daniel K.

    1998-09-01

    The microelectronics industry is diligently working to achieve the goal of gigascale integration (GSI) by early in the 21st century. For the past twenty-five years, progress toward this goal has been made by continually scaling down device technology. Unfortunately, this trend cannot continue to the point of producing arbitrarily small device sizes. One possible solution to this problem that is currently under intensive study is the relatively new area of quantum devices. Quantum devices represent a new class of microelectronic devices that operate by utilizing the wave-like nature (reflection, refraction, and confinement) of electrons together with the laws of quantum mechanics to construct useful devices. One difficulty associated with these structures is the absence of measurement techniques that can fully characterize carrier transport in such devices. This thesis addresses this need by focusing on the study of carrier transport in quantum semiconductor heterostructures using a relatively new and versatile measurement technique known as ballistic electron emission spectroscopy (BEES). To achieve this goal, a systematic approach that encompasses a set of progressively more complex structures is utilized. First, the simplest BEES structure possible, the metal/semiconductor interface, is thoroughly investigated in order to provide a foundation for measurements on more the complex structures. By modifying the semiclassical model commonly used to describe the experimental BEES spectrum, a very complete and accurate description of the basic structure has been achieved. Next, a very simple semiconductor heterostructure, a Ga1-xAlxAs single-barrier structure, was measured and analyzed. Low-temperature measurements on this structure were used to investigate the band structure and electron-wave interference effects in the Ga1-xAlxAs single barrier structure. These measurements are extended to a simple quantum device by designing, measuring, and analyzing a set of

  9. Atom-specific look at the surface chemical bond using x-ray emission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Nilsson, A.; Wassdahl, N.; Weinelt, M. [Uppsala Univ. (Sweden)] [and others

    1997-04-01

    CO and N{sub 2} adsorbed on the late transition metals have become prototype systems regarding the general understanding of molecular adsorption. It is in general assumed that the bonding of molecules to transition metals can be explained in terms of the interaction of the frontier HOMO and LUMO molecular orbitals with the d-orbitals. In such a picture the other molecular orbitals should remain essentially the same as in the free molecule. For the adsorption of the isoelectronic molecules CO and N{sub 2} this has led to the so called Blyholder model i.e., a synergetic {sigma} (HOMO) donor and {pi} (LUMO) backdonation bond. The authors results at the ALS show that such a picture is oversimplified. The direct observation and identification of the states related to the surface chemical bond is an experimental challenge. For noble and transition metal surfaces, the adsorption induced states overlap with the metal d valence band. Their signature is therefore often obscured by bulk substrate states. This complication has made it difficult for techniques such as photoemission and inverse photoemission to provide reliable information on the energy of chemisorption induced states and has left questions unanswered regarding the validity of the frontier orbitals concept. Here the authors show how x-ray emission spectroscopy (XES), in spite of its inherent bulk sensitivity, can be used to investigate adsorbed molecules. Due to the localization of the core-excited intermediate state, XE spectroscopy allows an atomic specific separation of the valence electronic states. Thus the molecular contributions to the surface measurements make it possible to determine the symmetry of the molecular states, i.e., the separation of {pi} and {sigma} type states. In all the authors can obtain an atomic view of the electronic states involved in the formation of the chemical bond to the surface.

  10. Optically Detected Magnetic Resonance and Thermal Activation Spectroscopy Study of Organic Semiconductors

    International Nuclear Information System (INIS)

    Chang-Hwan Kim

    2003-01-01

    Organic electronic materials are a new class of emerging materials. Organic light emitting devices (OLEDs) are the most promising candidates for future flat panel display technologies. The photophysical characterization is the basic research step one must follow to understand this new class of materials and devices. The light emission properties are closely related to the transport properties of these materials. The objective of this dissertation is to probe the relation between transport and photophysical properties of organic semiconductors. The transport characteristics were evaluated by using thermally stimulated current and thermally stimulated luminescence techniques. The photoluminescence detected magnetic resonance and photoluminescence quantum yield studies provide valuable photophysical information on this class of materials. OLEDs are already in the market. However, detailed studies on the degradation mechanisms are still lacking. Since both optically detected magnetic resonance and thermal activation spectroscopy probe long-lived defect-related states in organic semiconductors, the combined study generates new insight on the OLED operation and degradation mechanisms

  11. Optically Detected Magnetic Resonance and Thermal Activation Spectroscopy Study of Organic Semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chang-Hwan [Iowa State Univ., Ames, IA (United States)

    2003-01-01

    Organic electronic materials are a new class of emerging materials. Organic light emitting devices (OLEDs) are the most promising candidates for future flat panel display technologies. The photophysical characterization is the basic research step one must follow to understand this new class of materials and devices. The light emission properties are closely related to the transport properties of these materials. The objective of this dissertation is to probe the relation between transport and photophysical properties of organic semiconductors. The transport characteristics were evaluated by using thermally stimulated current and thermally stimulated luminescence techniques. The photoluminescence detected magnetic resonance and photoluminescence quantum yield studies provide valuable photophysical information on this class of materials. OLEDs are already in the market. However, detailed studies on the degradation mechanisms are still lacking. Since both optically detected magnetic resonance and thermal activation spectroscopy probe long-lived defect-related states in organic semiconductors, the combined study generates new insight on the OLED operation and degradation mechanisms.

  12. Laser-induced breakdown spectroscopy at a water/gas interface: A study of bath gas-dependent molecular species

    International Nuclear Information System (INIS)

    Adamson, M.; Padmanabhan, A.; Godfrey, G.J.; Rehse, S.J.

    2007-01-01

    Single-pulse laser-induced breakdown spectroscopy has been performed on the surface of a bulk water sample in an air, argon, and nitrogen gas environment to investigate emissions from hydrogen-containing molecules. A microplasma was formed at the gas/liquid interface by focusing a Nd:YAG laser beam operating at 1064 nm onto the surface of an ultra-pure water sample. A broadband Echelle spectrometer with a time-gated intensified charge-coupled device was used to analyze the plasma at various delay times (1.0-40.0 μs) and for incident laser pulse energies ranging from 20-200 mJ. In this configuration, the dominant atomic spectral features at short delay times are the hydrogen H-alpha and H-beta emission lines at 656 and 486 nm, respectively, as well as emissions from atomic oxygen liberated from the water and air and nitrogen emission lines from the air bath gas. For delay times exceeding approximately 8 μs the emission from molecular species (particularly OH and NH) created after the ablation process dominates the spectrum. Molecular emissions are found to be much less sensitive to variations in pulse energy and exhibit a temporal decay an order of magnitude slower than the atomic emission. The dependence of both atomic hydrogen and OH emission on the bath gas above the surface of the water was studied by performing the experiment at standard pressure in an atmospheric purge box. Electron densities calculated from the Stark broadening of the H-beta and H-gamma lines and plasma excitation temperatures calculated from the ratio of H-beta to H-gamma emission were measured for ablation in the three bath gases

  13. Detection of oxygen-related defects in GaAs by exo-electron emission spectroscopy

    International Nuclear Information System (INIS)

    Hulluvarad, Shiva S.; Naddaf, M.; Bhoraskar, S.V.

    2001-01-01

    The influence of intentional introduction of oxygen, at the surface of GaAs, on its native surface states was studied. Oxygen was made to interact with the surface of GaAs by three different means: (1) by growing native oxides, (2) exposing to oxygen plasma in an electron cyclotron resonance (ECR) plasma reactor and by (3) high energy oxygen ion irradiation. Thermally stimulated exo-electron emission (TSEE) spectroscopy was used to estimate the relative densities and energies of the surface states induced by the three different modes of introducing oxygen. Out of the two native defect levels found in GaAs by TSEE; at 325 K (0.7 eV below E c ) and at 415 K (0.9 below E c ); the former is seen to get broadened or split into multiple peaks in each of the methods. Multiple peaks in TSEE signify the presence of a closely spaced band of defect levels. Therefore the results exclusively point out that oxygen-related complexes contribute to the formation of a band of defects centered at 325 K in TSEE which is correlated to an energy level 0.7 eV below E c known as the EL2 defect level. The results reported in this paper thus confirm that the TSEE peak at 0.7 eV below E c is related to oxygen induced defects whereas the peak at 0.9 eV is not affected by the presence of oxygen-related species

  14. Detection of oxygen-related defects in GaAs by exo-electron emission spectroscopy

    Science.gov (United States)

    Hulluvarad, Shiva S.; Naddaf, M.; Bhoraskar, S. V.

    2001-10-01

    The influence of intentional introduction of oxygen, at the surface of GaAs, on its native surface states was studied. Oxygen was made to interact with the surface of GaAs by three different means: (1) by growing native oxides, (2) exposing to oxygen plasma in an electron cyclotron resonance (ECR) plasma reactor and by (3) high energy oxygen ion irradiation. Thermally stimulated exo-electron emission (TSEE) spectroscopy was used to estimate the relative densities and energies of the surface states induced by the three different modes of introducing oxygen. Out of the two native defect levels found in GaAs by TSEE; at 325 K (0.7 eV below Ec) and at 415 K (0.9 below Ec); the former is seen to get broadened or split into multiple peaks in each of the methods. Multiple peaks in TSEE signify the presence of a closely spaced band of defect levels. Therefore the results exclusively point out that oxygen-related complexes contribute to the formation of a band of defects centered at 325 K in TSEE which is correlated to an energy level 0.7 eV below Ec known as the EL2 defect level. The results reported in this paper thus confirm that the TSEE peak at 0.7 eV below Ec is related to oxygen induced defects whereas the peak at 0.9 eV is not affected by the presence of oxygen-related species.

  15. Detection of oxygen-related defects in GaAs by exo-electron emission spectroscopy

    International Nuclear Information System (INIS)

    Hulluvarad, Shiva S.; Naddaf, M.; Bhoraskar, S.V.

    2004-01-01

    The influence of intentional introduction of oxygen, at the surface of GaAs, on its native surface states was studied. Oxygen was made to interact with the surface of GaAs by three different means: (1) by growing native oxides, (2) exposing to oxygen plasma in an electron cyclotron resonance (ECR) plasma reactor and by (3) high energy oxygen ion irradiation. Thermally stimulated exo-electron emission (TSEE) spectroscopy was used to estimate the relative densities and energies of the surface states induced by the three different modes of introducing oxygen. Out of the two native defect levels found in GaAs by TSEE; at 325 K (0.7 eV below E c ) and at 415 K (0.9 below E c ); the former is seen to get broadened or split into multiple peaks in each of the methods. Multiple peaks in TSEE signify the presence of a closely spaced band of defect levels. Therefore the results exclusively point out that oxygen-related complexes contribute to the formation of a band of defects centered at 325 K in TSEE which is correlated to an energy level 0.7 eV below E c known as the EL2 defect level. The results reported in this paper thus confirm that the TSEE peak at 0.7 eV below E c is related to oxygen induced defects whereas the peak at 0.9 eV is not affected by the presence of oxygen-related species. (author)

  16. Spectroscopic studies of different brands of cigarettes using laser-induced breakdown spectroscopy

    International Nuclear Information System (INIS)

    Sayyad, M. H.; Saleem, M.; Shah, M.; Baig, M. A.; Shaikh, N. M.

    2008-01-01

    In this work the technique of laser-induced breakdown spectroscopy (LIBS) has been used for the elemental analysis of cigarettes. For this purpose emission spectra have been measured of eleven different kinds of cigarette brands sold and/or produced in Pakistan. Analysis of the spectral peaks observed shows that Na, Mg, Al, K, Ca, Cr, Fe, Sr and Ba are contained in all brands. Exhibiting the LIBS results, the powerful potential of this method for the identification of the elemental content of cigarettes is demonstrated

  17. Applications of core level spectroscopy to adsorbates

    International Nuclear Information System (INIS)

    Nilsson, Anders

    2002-01-01

    In the following review different applications of core-level spectroscopy to atomic and molecular adsorbates will be shown. Core-holes are created through core-level ionization and X-ray absorption processes and the core-hole decays by radiant and non-radiant processes. This forms the basis for X-ray photoelectron spectroscopy, X-ray absorption spectroscopy, Auger electron spectroscopy and X-ray emission spectroscopy. We will demonstrate how we can use the different methods to obtain information about the chemical state, local geometric structure, nature of chemical bonding and dynamics in electron transfer processes. The adsorption of N 2 and CO on Ni(100) will be used as prototype systems for chemisorption while N 2 on graphite and Ar on Pt for physisorption

  18. Irradiation effects detected by Moessbauer spectroscopy in iron complexes

    International Nuclear Information System (INIS)

    Ladriere, J.

    1998-01-01

    The nature and the extent of the 60 Co gamma radiolysis of several iron coordination compounds have been analysed by Moessbauer absorption spectroscopy. The comparison of the radiolytic yields with the after effects observed by Moessbauer emission spectroscopy in similar 57 Co-doped compounds, supports the self-radiolysis model

  19. Advanced Collaborative Emissions Study (ACES)

    Energy Technology Data Exchange (ETDEWEB)

    Greenbaum, Daniel; Costantini, Maria; Van Erp, Annemoon; Shaikh, Rashid; Bailey, Brent; Tennant, Chris; Khalek, Imad; Mauderly, Joe; McDonald, Jacob; Zielinska, Barbara; Bemis, Jeffrey; Storey, John; Hallberg, Lance; Clark, Nigel

    2013-12-31

    The objective of the Advanced Collaborative Emissions Study (ACES) was to determine before widespread commercial deployment whether or not the new, energy-efficient, heavy duty diesel engines (2007 and 2010 EPA Emissions Standards Compliant) may generate anticipated toxic emissions that could adversely affect the environment and human health. ACES was planned to take place in three phases. In Phase 1, extensive emissions characterization of four production-intent prototype engine and control systems designed to meet 2007 standards for nitrogen oxides (NOx) and particulate matter (PM) was conducted at an existing emissions characterization facility: Southwest Research Institute (SwRI). One of the tested engines was selected (at random, after careful comparison of results) for health testing in Phase 3. In Phase 2, extensive emission characterization of three production-intent prototype engine and control systems meeting the 2010 standards (including more advanced NOx controls to meet the more stringent 2010 NOx standards) was conducted at the same test facility. In Phase 3, one engine/aftertreatment system selected from Phase 1 was further characterized during health effects studies (at an existing inhalation toxicology laboratory: Lovelace Respiratory Research Institute, [LRRI]) to form the basis of the ACES safety assessment. The Department of Energy (DOE) award provided funding for emissions characterization in Phases 1 and 2 as well as exposure characterization in Phase 3. The main health analyses in Phase 3 were funded separately and are not reported here.

  20. Electron emission from MOS electron emitters with clean and cesium covered gold surface

    DEFF Research Database (Denmark)

    Nielsen, Gunver; Thomsen, Lasse Bjørchmar; Johansson, Martin

    2009-01-01

    MOS (metal-oxide-semiconductor) electron emitters consisting of a Si substrate, a SiO2 tunnel barrier and a Ti (1 nm)/Au(7 nm) top-electrode, with an active area of 1 cm(2) have been produced and studied with surface science techniques under UHV (ultra high vacuum) conditions and their emission...... characteristics have been investigated. It is known, that deposition of an alkali metal on the emitting surface lowers the work function and increases the emission efficiency. For increasing Cs coverages the surface has been characterized by X-ray Photoelectron Spectroscopy (XPS), Ion Scattering Spectroscopy (ISS...

  1. Fusion spectroscopy

    International Nuclear Information System (INIS)

    Peacock, N.J.

    1995-09-01

    This article traces developments in the spectroscopy of high temperature laboratory plasma used in controlled fusion research from the early 1960's until the present. These three and a half decades have witnessed many orders of magnitude increase in accessible plasma parameters such as density and temperature as well as particle and energy confinement timescales. Driven by the need to interpret the radiation in terms of the local plasma parameters, the thrust of fusion spectroscopy has been to develop our understanding of (i) the atomic structure of highly ionised atoms, usually of impurities in the hydrogen isotope fuel; (ii) the atomic collision rates and their incorporation into ionization structure and emissivity models that take into account plasma phenomena like plasma-wall interactions, particle transport and radiation patterns; (iii) the diagnostic applications of spectroscopy aided by increasingly sophisticated characterisation of the electron fluid. These topics are discussed in relation to toroidal magnetically confined plasmas, particularly the Tokamak which appears to be the most promising approach to controlled fusion to date. (author)

  2. Emission properties of biomimetic composites for dentistry

    Directory of Open Access Journals (Sweden)

    P.V. Seredin

    Full Text Available Biocomposites based on carbonate-substituted hydroxyapatite synthesized from the biological source of calcium (Goloshchapov et al., 2013 and organic primer on the basis of amino acids found in the enamel tubules of teeth, namely, arginine, histidine, lysine and hyaluronic acid were obtained and studied in this work. Incorporation of organic primer into biocomposite formulation allowed us to obtain the emission characteristics (luminescence that were identical to those inherent to the native tissues of the human tooth (enamel and dentine. Keywords: Biocomposites, IR-spectroscopy, Optical and emission properties, Hydroxyapatite, Human tooth tissues

  3. Study of NaCl:Mn2+ nanostructures in the Suzuki phase by optical spectroscopy and atomic force microscopy

    International Nuclear Information System (INIS)

    Mejía-Uriarte, E.V.; Kolokoltsev, O.; Navarrete Montesinos, M.; Camarillo, E.; Hernández A, J.; Murrieta S, H.

    2015-01-01

    NaCl:Mn 2+ nanostructures in the Suzuki phase have been studied by fluorescence (emission and excitation) spectroscopy and atomic force microscopy (AFM) as a function of temperature. The “as-grown” samples give rise to two broad emission bands that peak at 508 (green emission) and 610 nm (red emission). The excitation spectrum shows peaks at 227 nm and 232 nm for emission wavelengths at 508 nm and 610 nm, respectively. When the samples are heated continuously from room temperature up to 220 °C, the green emission (associated to the excitation peak at 227 nm) disappears at a temperature close to 120 °C, whilst only the red emission remains, which is characteristic of manganese ions. AFM images on the (0 0 1) surface (freshly cleaved) show several conformations of nanostructures, such as disks of 20–50 nm in diameter. Particularly, the images also reveal nanostructures with rectangular shape of ~280×160 nm 2 and ~6 nm height; these are present only in samples with green emission associated to the Suzuki phase. Then, the evidence suggests that this topographic configuration might be related to the interaction with the first neighbors and the next neighbors, according to the configuration that has been suggested for the Suzuki phase. - Highlights: • NaCl:Mn 2+ single crystals in the Suzuki phase contain rectangular nanostructures. • Double emission of manganese ions: green (508 nm) and red (610 nm) bands. • The excitation peak at 227 nm is attributed to rectangular nanostructures. • The green emission band associated to Suzuki phase is extinguished at 120 °C

  4. Ionic classification of Xe laser lines: A new approach through time resolved spectroscopy

    International Nuclear Information System (INIS)

    Schinca, D.; Duchowicz, R.; Gallardo, M.

    1992-01-01

    Visible and UV laser emission from a highly ionized pulsed Xe plasma was studied in relation to the ionic assignment of the laser lines. Time-resolved spectroscopy was used to determine the ionic origin of the studied lines. The results are in agreement with an intensity versus pressure analysis performed over the same wavelength range. From the temporal behaviour of the spontaneous emission, a probable classification can be obtained. (author). 7 refs, 7 figs, 1 tab

  5. Methane emission estimates using chamber and tracer release experiments for a municipal waste water treatment plant

    Science.gov (United States)

    Yver Kwok, C. E.; Müller, D.; Caldow, C.; Lebègue, B.; Mønster, J. G.; Rella, C. W.; Scheutz, C.; Schmidt, M.; Ramonet, M.; Warneke, T.; Broquet, G.; Ciais, P.

    2015-07-01

    This study presents two methods for estimating methane emissions from a waste water treatment plant (WWTP) along with results from a measurement campaign at a WWTP in Valence, France. These methods, chamber measurements and tracer release, rely on Fourier transform infrared spectroscopy and cavity ring-down spectroscopy instruments. We show that the tracer release method is suitable for quantifying facility- and some process-scale emissions, while the chamber measurements provide insight into individual process emissions. Uncertainties for the two methods are described and discussed. Applying the methods to CH4 emissions of the WWTP, we confirm that the open basins are not a major source of CH4 on the WWTP (about 10 % of the total emissions), but that the pretreatment and sludge treatment are the main emitters. Overall, the waste water treatment plant is representative of an average French WWTP.

  6. Optical emission from a small scale model electric arc furnace in 250-600 nm region.

    Science.gov (United States)

    Mäkinen, A; Niskanen, J; Tikkala, H; Aksela, H

    2013-04-01

    Optical emission spectroscopy has been for long proposed for monitoring and studying industrial steel making processes. Whereas the radiative decay of thermal excitations is always taking place in high temperatures needed in steel production, one of the most promising environment for such studies are electric arc furnaces, creating plasma in excited electronic states that relax with intense characteristic emission in the optical regime. Unfortunately, large industrial scale electric arc furnaces also present a challenging environment for optical emission studies and application of the method is not straightforward. To study the usability of optical emission spectroscopy in real electric arc furnaces, we have developed a laboratory scale DC electric arc furnace presented in this paper. With the setup, optical emission spectra of Fe, Cr, Cr2O3, Ni, SiO2, Al2O3, CaO, and MgO were recorded in the wavelength range 250-600 nm and the results were analyzed with the help of reference data. The work demonstrates that using characteristic optical emission, obtaining in situ chemical information from oscillating plasma of electric arc furnaces is indeed possible. In spite of complications, the method could possibly be applied to industrial scale steel making process in order to improve its efficiency.

  7. Study of luminous emissions associated to electron emissions in radiofrequency cavities

    International Nuclear Information System (INIS)

    Maissa, S.

    1996-01-01

    This study investigates luminous emissions simultaneously to electron emissions and examines their features in order to better understand the field electron emission phenomenon. A RF cavity, operating at room temperature and in pulsed mode, joined to a sophisticated experimental apparatus has been especially developed. The electron and luminous emissions are investigated on cleaned or with metallic, graphitic and dielectric particles contaminated RF surfaces in order to study their influence on these phenomena. During the surface processing, unstable luminous spots glowing during one RF pulse are detected. Their apparition is promoted in the vicinity of the metallic particles or scratches. Two hypotheses could explain their origin: the presence of micro-plasmas associated to electronic explosive emission during processing or the thermal radiation of the melted metal during this emission. Stable luminous spots glowing during several RF pulses are also detected and appear to increase on RF surfaces contaminated with dielectric particles, leading to strong and explosive luminous emissions. Two interpretations are considered: the initiation of surface breakdowns on the dielectric particles or the heating by the RF field at temperatures sufficiently intense to provoke their thermal radiation then their explosion. Finally a superconducting cavity has been adapted to observe luminous spots, which differ from the former ones bu their star shape and could be associated to micro-plasmas, revealed by the starbursts observed on superconducting cavity walls. (author)

  8. Characterization of type I, II, III, IV, and V collagens by time-resolved laser-induced fluorescence spectroscopy

    Science.gov (United States)

    Marcu, Laura; Cohen, David; Maarek, Jean-Michel I.; Grundfest, Warren S.

    2000-04-01

    The relative proportions of genetically distinct collagen types in connective tissues vary with tissue type and change during disease progression, development, wound healing, aging. This study aims to 1) characterize the spectro- temporal fluorescence emission of fiber different types of collagen and 2) assess the ability of time-resolved laser- induced fluorescence spectroscopy to distinguish between collagen types. Fluorescence emission of commercially available purified samples was induced with nitrogen laser excitation pulses and detected with a MCP-PMT connected to a digital storage oscilloscope. The recorded time-resolved emission spectra displayed distinct fluorescence emission characteristics for each collagen type. The time domain information complemented the spectral domain intensity data for improved discrimination between different collagen types. Our results reveal that analysis of the fluorescence emission can be used to characterize different species of collagen. Also, the results suggest that time-resolved spectroscopy can be used for monitoring of connective tissue matrix composition changes due to various pathological and non-pathological conditions.

  9. Plasma Wind Tunnel Investigation of European Ablators in Nitrogen/Methane Using Emission Spectroscopy

    Directory of Open Access Journals (Sweden)

    Ricarda Wernitz

    2013-01-01

    Full Text Available For atmospheric reentries at high enthalpies ablative heat shield materials are used, such as those for probes entering the atmosphere of Saturn’s moon Titan, such as Cassini-Huygens in December, 2004. The characterization of such materials in a nitrogen/methane atmosphere is of interest. A European ablative material, AQ60, has been investigated in plasma wind tunnel tests at the IRS plasma wind tunnel PWK1 using the magnetoplasma dynamic generator RD5 as plasma source in a nitrogen/methane atmosphere. The dimensions of the samples are 45 mm in length with a diameter of 39 mm. The actual ablator has a thickness of 40 mm. The ablator is mounted on an aluminium substructure. The experiments were conducted at two different heat flux regimes, 1.4 MW/m2 and 0.3 MW/m2. In this paper, results of emission spectroscopy at these plasma conditions in terms of plasma species’ temperatures will be presented, including the investigation of the free-stream species, N2 and N2+, and the major erosion product C2, at a wavelength range around 500 nm–600 nm.

  10. Determination of quenching coefficients by time resolved emission spectroscopy

    International Nuclear Information System (INIS)

    Gans, T.; Schulz-von der Gathen, V.; Doebele, H.F.

    2001-01-01

    Capacitively coupled RF discharges (CCRF discharges) at 13.56 MHz in hydrogen exhibit a field reversal phase of about 10 ns during which an intense electron current provides collisional excitation, within the sheath region. After this strongly dominant short pulsed electron impact excitation, it is possible to determine quenching coefficients from the lifetime of the fluorescence at various pressures by time resolved OES even for high energy levels and without any restrictions of optical selection rules. This novel technique allows the measurement of quenching coefficients for atomic and molecular emission lines of hydrogen itself, as well as for emission lines of small admixtures (e.g. noble gases) to the hydrogen discharge, since with a fast gate-able ICCD camera operating at 13.56 MHz it is possible to measure even faint emission lines temporally resolved

  11. Determination of quenching coefficients by time resolved emission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Gans, T.; Schulz-von der Gathen, V.; Doebele, H.F. [Essen Univ. (Gesamthochschule) (Germany). Inst. fuer Laser- und Plasmaphysik

    2001-07-01

    Capacitively coupled RF discharges (CCRF discharges) at 13.56 MHz in hydrogen exhibit a field reversal phase of about 10 ns during which an intense electron current provides collisional excitation, within the sheath region. After this strongly dominant short pulsed electron impact excitation, it is possible to determine quenching coefficients from the lifetime of the fluorescence at various pressures by time resolved OES even for high energy levels and without any restrictions of optical selection rules. This novel technique allows the measurement of quenching coefficients for atomic and molecular emission lines of hydrogen itself, as well as for emission lines of small admixtures (e.g. noble gases) to the hydrogen discharge, since with a fast gate-able ICCD camera operating at 13.56 MHz it is possible to measure even faint emission lines temporally resolved.

  12. Estimation of vehicular emissions using dynamic emission factors: A case study of Delhi, India

    Science.gov (United States)

    Mishra, Dhirendra; Goyal, P.

    2014-12-01

    The estimation of vehicular emissions depends mainly on the values of emission factors, which are used for the development of a comprehensive emission inventory of vehicles. In this study the variations of emission factors as well as the emission rates have been studied in Delhi. The implementation of compressed natural gas (CNG), in the diesel and petrol, public vehicles in the year 2001 has changed the complete air quality scenario of Delhi. The dynamic emission factors of criteria pollutants viz. carbon monoxide (CO), nitrogen oxide (NOx) and particulate matter (PM10) for all types of vehicles have been developed after, which are based on the several factors such as regulated emission limits, number of vehicle deterioration, vehicle increment, vehicle age etc. These emission factors are found to be decreased continuously throughout the study years 2003-2012. The International Vehicle Emissions (IVE) model is used to estimate the emissions of criteria pollutants by utilizing a dataset available from field observations at different traffic intersections in Delhi. Thus the vehicular emissions, based on dynamic emission factors have been estimated for the years 2003-2012, which are found to be comparable with the monitored concentrations at different locations in Delhi. It is noticed that the total emissions of CO, NOx, and PM10 are increased by 45.63%, 68.88% and 17.92%, respectively up to the year 2012 and the emissions of NOx and PM10 are grown continuously with an annual average growth rate of 5.4% and 1.7% respectively.

  13. Environmental samples analysis by Atomic Absorption Spectrophotometry and Inductively Coupled Plasma-Optical Emission Spectroscopy

    International Nuclear Information System (INIS)

    Popescu, I.V.; Iordan, M.; Stihi, C.; Bancuta, A.; Busuioc, G.; Dima, G.; Ciupina, V.; Belc, M.; Vlaicu, Gh.; Marian, R.

    2002-01-01

    Biological samples are interesting from many aspects of environmental monitoring. By analyzing tree leaves conclusions can be drown regarding the metal loading in the growth medium. So that, starting from assumption that the pollution factors from environmental medium can modify the normal concentration of elements, we decided to control the presence of toxic elements and the deviation from normal state of elements in leaves of different trees from areas situated at different distances of pollution source. The aim of this work is to determine the elemental composition of tree leaves using Atomic Absorption Spectrophotometry (AAS) method and Inductively Coupled Plasma-Optical Emission Spectroscopy (ICP-OES) method. Using AAS spectrophotometer SHIMADZU we identified and determined the concentration of: Cd, Co, Cu, Zn, Mn, Cr, Fe, Se, Pb with an instrumental error less than 1% for most of the elements analyzed. The same samples were analyzed by ICP-OES spectrometer, BAIRD ICP2070-Sequential Plasma spectrometer. We identified and determined in leaves of different trees the concentration of Mg, Ca, and Sr with a precision less than 6%. (authors)

  14. Trace cobalt speciation in bacteria and at enzymic active sites using emission Moessbauer spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kamnev, A.A.; Antonyuk, L.P.; Smirnova, V.E.; Serebrennikova, O.B. [Laboratory of Biochemistry, Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, Saratov (Russian Federation); Kulikov, L.A.; Perfiliev, Yu.D. [Laboratory of Nuclear Chemistry Techniques, Department of Radiochemistry, Faculty of Chemistry, Moscow State University (Russian Federation)

    2002-02-01

    {sup 57}Co emission Moessbauer spectroscopy (EMS) allows the chemical state of cobalt, as influenced by its coordination environment, to be monitored in biological samples at its physiological (trace) concentrations. To draw attention to EMS as a valuable tool for speciation of cobalt in biocomplexes, the process of cobalt(II) metabolism in cells of the plant growth-promoting rhizobacterium Azospirillum brasilense Sp245 was investigated using EMS of {sup 57}Co{sup II}-doped bacterial cells. EMS measurements also showed {sup 57}Co{sup II}-activated glutamine synthetase (GS, a key enzyme of nitrogen metabolism, isolated from this bacterium) to have two different cobalt(II) forms at its active sites, in agreement with data available on other bacterial GSs. Chemical after-effects following electron capture by the nucleus of the parent {sup 57}Co{sup II} during the {sup 57}Co{yields}{sup 57}Fe transition, which contribute to the formation of a stabilised daughter {sup 57}Fe{sup III} component along with the nucleogenic {sup 57}Fe{sup II} forms, are also briefly considered. (orig.)

  15. Cerebral metabolism, magnetic resonance spectroscopy and cognitive dysfunction in early multiple sclerosis: an exploratory study

    DEFF Research Database (Denmark)

    Blinkenberg, Morten; Mathiesen, Henrik K; Tscherning, Thomas

    2012-01-01

    and neurological disability. METHODS: We studied 20 recently diagnosed, clinically definite, relapsing-remitting MS patients. Global and cortical CMRglc was estimated using PET with 18-F-deoxyglucose and NAA/Cr ratio was measured using multislice echo-planar spectroscopic imaging. All subjects were neuro-psychologically......OBJECTIVES: Positron emission tomography (PET) studies have shown that cortical cerebral metabolic rate of glucose (CMRglc) is reduced in multiple sclerosis (MS). Quantitative magnetic resonance spectroscopy (MRS) measures of N-acetyl-aspartate (NAA) normalized to creatine (NAA/Cr) assess neuronal...... deterioration, and several studies have shown reductions in MS. Furthermore, both PET and MRS reductions correlate with cognitive dysfunction in MS. Our aim was to determine if changes in cortical CMRglc in early MS correlate with NAA/Cr measurements of neuronal deterioration, as well as cognitive dysfunction...

  16. Coherent manipulation of spontaneous emission spectra in coupled semiconductor quantum well structures.

    Science.gov (United States)

    Chen, Aixi

    2014-11-03

    In triple coupled semiconductor quantum well structures (SQWs) interacting with a coherent driving filed, a coherent coupling field and a weak probe field, spontaneous emission spectra are investigated. Our studies show emission spectra can easily be manipulated through changing the intensity of the driving and coupling field, detuning of the driving field. Some interesting physical phenomena such as spectral-line enhancement/suppression, spectral-line narrowing and spontaneous emission quenching may be obtained in our system. The theoretical studies of spontaneous emission spectra in SQWS have potential application in high-precision spectroscopy. Our studies are based on the real physical system [Appl. Phys. Lett.86(20), 201112 (2005)], and this scheme might be realizable with presently available techniques.

  17. X-ray emission spectroscopy. X-ray fluorescence

    International Nuclear Information System (INIS)

    Despujols, J.

    1992-01-01

    Principles of X-ray emission spectrometry are first recalled, then wave-length dispersive and energy dispersive X-ray fluorescence spectrometer are described. They are essentially designed for qualitative and quantitative analysis of elements (Z>10). Sample preparation, calibration, corrections, interferences, accuracy are reviewed. Examples of use in different industries are given. (71 refs.)

  18. Single Molecule Spectroscopy on Photosynthetic Pigment-Protein Complexes

    CERN Document Server

    Jelezko, F; Schuler, S; Thews, E; Tietz, C; Wechsler, A; Wrachtrup, J

    2001-01-01

    Single molecule spectroscopy was applied to unravel the energy transfer pathway in photosynthetic pigment-protein complexes. Detailed analysis of excitation and fluorescence emission spectra has been made for peripheral plant antenna LHC II and Photosystem I from cyanobacterium Synechococcus elongatus. Optical transitions of individual pigments were resolved under nonselective excitation of antenna chlorophylls. High-resolution fluorescence spectroscopy of individual plant antenna LHC II indicates that at low temperatures, the excitation energy is localized on the red-most Chl a pool absorbing at 680 nm. More than one pigment molecule is responsible for the fluorescence emission of the LHC II trimer. The spectral lines of single Chl a molecules absorbing at 675 nm are broadened because of the Foerster energy transfer towards the red-most pigments. Low-temperature spectroscopy on single PS I trimers indicates that two subgroups of pigments, which are present in the red antenna pool, differ by the strength of t...

  19. Study on the Emission Property of YBO{sub 3} with Co-doping of Ce and Gd Ions

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Soyeong; Lim, Junhwi; Lee, Y. S. [Soongsil University, Seoul (Korea, Republic of)

    2017-08-15

    We investigated the co-doping effect of Ce{sup 3+} and Gd{sup 3+} ions on the visible emission in vaterite-type orthoborate YBO{sub 3}. By using photoluminescence and photoluminescence excitation spectroscopy, we found that the co-doping of the Gd{sup 3+} ions increased the violet-blue emission of the Ce ions significantly. In basis of the optical spectroscopic data, we discussed our results in terms of the energy transfer between Ce{sup 3+} and Gd{sup 3+} ions.

  20. Detection of oxygen-related defects in GaAs by exo-electron emission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Hulluvarad, Shiva S.; Naddaf, M.; Bhoraskar, S.V. E-mail: svb@physics.unipune.ernet.in

    2001-10-01

    The influence of intentional introduction of oxygen, at the surface of GaAs, on its native surface states was studied. Oxygen was made to interact with the surface of GaAs by three different means: (1) by growing native oxides, (2) exposing to oxygen plasma in an electron cyclotron resonance (ECR) plasma reactor and by (3) high energy oxygen ion irradiation. Thermally stimulated exo-electron emission (TSEE) spectroscopy was used to estimate the relative densities and energies of the surface states induced by the three different modes of introducing oxygen. Out of the two native defect levels found in GaAs by TSEE; at 325 K (0.7 eV below E{sub c}) and at 415 K (0.9 below E{sub c}); the former is seen to get broadened or split into multiple peaks in each of the methods. Multiple peaks in TSEE signify the presence of a closely spaced band of defect levels. Therefore the results exclusively point out that oxygen-related complexes contribute to the formation of a band of defects centered at 325 K in TSEE which is correlated to an energy level 0.7 eV below E{sub c} known as the EL2 defect level. The results reported in this paper thus confirm that the TSEE peak at 0.7 eV below E{sub c} is related to oxygen induced defects whereas the peak at 0.9 eV is not affected by the presence of oxygen-related species.

  1. Preliminary studies on a variable energy positron annihilation lifetime spectroscopy system

    International Nuclear Information System (INIS)

    Kwan, P.Y.; Cheung, C.K.; Beling, C.D.; Fung, S.

    2006-01-01

    There are many advantages in being able to perform positron annihilation lifetime spectroscopy (PALS) using a variable energy positron beam, the most obvious being the easy identification of different defect types at different depths. The difficulty in conducting variable energy (VE) PALS studies lies in the fact that a 'start' signal is required to signal the entry of the positron into the target. Two methods have been used to overcome this problem, namely the bunching technique, which employs radio frequency (RF) cavities and choppers, and secondly the use of secondary electrons emitted from the target. The latter technique is in terms of experimental complexity much simpler, but has in the past suffered from poor time resolution (typically ∼500 ps). In this work, we present a series of computer simulations of a design based on the secondary electron emission from thin C-foils in transmission mode which shows that significant improvements in time resolution can be made with resolutions ∼200 ps being in principle possible

  2. Penning ionization processes studied by electron spectroscopy

    International Nuclear Information System (INIS)

    Yencha, A.J.

    1978-01-01

    The technique of measuring the kinetic energy of electrons ejected from atomic or molecular species as a result of collisional energy transfer between a metastable excited rare gas atom and an atom or molecule is known as Penning ionization spectroscopy. Like the analogous photoionization process of photoelectron spectroscopy, a considerable amount of information has been gained about the ionization potentials of numerous molecular systems. It is, in fact, through the combined analyses of photoelectron and Penning electron spectra that affords a probe of the particle-particle interactions that occur in the Penning process. In this paper a short survey of the phenomenon of Penning ionization, as studied by electron spectroscopy, will be presented as it pertains to the ionization processes of simple molecules by metastable excited atoms. (author)

  3. Rotational spectroscopy and dynamics of carbonyl sulphide studied by terahertz free induction decays signals

    Science.gov (United States)

    Bigourd, D.; Mouret, G.; Cuisset, A.; Hindle, F.; Fertein, E.; Bocquet, R.

    2008-06-01

    A terahertz time domain spectroscopy experiment is used to study the coherent re-emission after exciting more than 60 energy rotational states of OCS molecules in gas phase. Due to the regular structure of the absorption spectrum of such linear molecules, a set of subsequent pulses separated by 82.6 ps is re-radiated from the vapour and recorded up to 450 ps. A model based on a linear response of the gas and by use of "Maxwell-Bloch" equations has permitted the re-emitted free induced decay to be investigated. Spectroscopic parameters, such as rotational constant, centrifugal distortion coefficient and relaxation times are responsible for the temporal shape and so can be evaluated. The influence of the optical thickness to access the relaxation times is discussed.

  4. Particle-Induced Gamma-ray Emission Spectroscopy Over a Broad Range of Elements

    Science.gov (United States)

    Olds, Hannah; Wilkinson, John; Tighe, Meghanne; McLallen, Walter; McGuire, Patrick

    2017-09-01

    Ion beam analysis is a common application of nuclear physics that allows elemental and isotopic information about materials to be determined from accelerated light ion beams One of the best know ion beam analysis techniques is Particle-Induced Gamma-ray Emission (PIGE) spectroscopy, which can be used ex vacuo to identify the elements of interest in almost any solid target. The energies of the gamma-rays emitted by excited nuclei will be unique to each element and depend on its nuclear structure. For the most sensitivity, the accelerated ions should exceed the Coulomb barrier of the target, but many isotopes are known to be accessible to PIGE even below the Coulomb barrier. To explore the sensitivity of PIGE across the periodic table, PIGE measurements were made on elements with Z = 5, 9, 11-15, 17, 19-35, 37, 42, 44-48, 53, 56, 60, 62, 73, and 74 using 3.4 MeV protons. These measurements will be compared with literature values and be used as a basis for comparison with higher-energy proton beams available at the University of Notre Dame's St. Andre accelerator when it comes online this Fall. The beam normalization technique of using atmospheric argon and its 1459 keV gamma-ray to better estimate the integrated beam on target will also be discussed. Funded by the NSF REU program and the University of Notre Dame.

  5. Studies of photonuclear neutron emission during the start-up phase of the Alcator C tokamak

    International Nuclear Information System (INIS)

    Pappas, D.S.; Furnstahl, R.; Kochanski, G.P.

    1981-05-01

    Alcator C operations commenced with discharge cleaning and tokamak operation using hydrogen filling gas. Prior to and during these experiments no deuterium gas was allowed into the device. The earliest operation resulted in dosimeter readings of a few Roentgen per shot in the vicinity of the limiter and a localized source of neutron emission of up to 10 9 neutrons/shot. A strong correlation of the neutron emissions with hard x-ray emissions from the limiter and nonthermal features on the synchrotron emissions was observed during these discharges. Gamma energy spectroscopy of the activated limiter after removal from Alcator allowed identification of 16 radioisotopes which were consistent with photonuclear processes (γ,n , γ,p , γ,α reactions) arising in the limiter. After seven months of hydrogen operation conditions were achieved that resulted in substantially less non-thermal activity. Typical neutron emission rates of equal to or less than 10 6 n/sec were observed, i.e., about four orders of magnitude less than the expected D-D thermonuclear neutron emission rates for the same type of discharge if D 2 was used as the filling gas

  6. Physical properties of emission-line galaxies at z ∼ 2 from near-infrared spectroscopy with Magellan fire

    Energy Technology Data Exchange (ETDEWEB)

    Masters, Daniel; Siana, Brian; Mobasher, Bahram; Domínguez, Alberto [Department of Physics and Astronomy, University of California, Riverside, CA 92521 (United States); McCarthy, Patrick; Blanc, Guillermo; Dressler, Alan [Carnegie Observatories, Pasadena, CA 91101 (United States); Malkan, Mathew; Ross, Nathaniel R. [Department of Physics and Astronomy, UCLA, Los Angeles, CA 90095 (United States); Atek, Hakim [Laboratoire d' Astrophysique Ecole Polytechnique Fédérale, CH-1290 Sauverny (Switzerland); Henry, Alaina [Astrophysics Science Division, Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Martin, Crystal L. [Department of Physics, Universitey of California, Santa Barbara, CA 93106 (United States); Rafelski, Marc; Colbert, James [Spitzer Science Center, California Institute of Technology, Pasadena, CA 91125 (United States); Hathi, Nimish P. [Aix Marseille Université, CNRS, LAM (Laboratoire d' Astrophysique de Marseille) UMR 7326, F-13388 Marseille (France); Scarlata, Claudia [Minnesota Institute for Astrophysics, University of Minnesota, Minneapolis, MN 55455 (United States); Bunker, Andrew J. [Department of Physics, University of Oxford (United Kingdom); Bedregal, Alejandro G. [Department of Physics and Astronomy, Tufts University, Medford, MA 02155 (United States); Teplitz, Harry [Infrared Processing and Analysis Center, Caltech, Pasadena, CA 91125 (United States)

    2014-04-20

    We present results from near-infrared spectroscopy of 26 emission-line galaxies at z ∼ 2.2 and z ∼ 1.5 obtained with the Folded-port InfraRed Echellette (FIRE) spectrometer on the 6.5 m Magellan Baade telescope. The sample was selected from the WFC3 Infrared Spectroscopic Parallels survey, which uses the near-infrared grism of the Hubble Space Telescope Wide Field Camera 3 (WFC3) to detect emission-line galaxies over 0.3 ≲ z ≲ 2.3. Our FIRE follow-up spectroscopy (R ∼ 5000) over 1.0-2.5 μm permits detailed measurements of the physical properties of the z ∼ 2 emission-line galaxies. Dust-corrected star formation rates for the sample range from ∼5-100 M {sub ☉} yr{sup –1} with a mean of 29 M {sub ☉} yr{sup –1}. We derive a median metallicity for the sample of 12 + log(O/H) = 8.34 or ∼0.45 Z {sub ☉}. The estimated stellar masses range from ∼10{sup 8.5}-10{sup 9.5} M {sub ☉}, and a clear positive correlation between metallicity and stellar mass is observed. The average ionization parameter measured for the sample, log U ≈ –2.5, is significantly higher than what is found for most star-forming galaxies in the local universe, but similar to the values found for other star-forming galaxies at high redshift. We derive composite spectra from the FIRE sample, from which we measure typical nebular electron densities of ∼100-400 cm{sup –3}. Based on the location of the galaxies and composite spectra on diagnostic diagrams, we do not find evidence for significant active galactic nucleus activity in the sample. Most of the galaxies, as well as the composites, are offset diagram toward higher [O III]/Hβ at a given [N II]/Hα, in agreement with other observations of z ≳ 1 star-forming galaxies, but composite spectra derived from the sample do not show an appreciable offset from the local star-forming sequence on the [O III]/Hβ versus [S II]/Hα diagram. We infer a high nitrogen-to-oxygen abundance ratio from the composite spectrum, which

  7. Neuroimaging in Parkinsonism: a study with magnetic resonance and spectroscopy as tools in the differential diagnosis

    International Nuclear Information System (INIS)

    Vasconcellos, Luiz Felipe Rocha; Novis, Sergio A. Pereira; Rosso, Ana Lucia Z.; Moreira, Denise Madeira

    2009-01-01

    The differential diagnosis of Parkinsonism based on clinical features, sometimes may be difficult. Diagnostic tests in these cases might be useful, especially magnetic resonance imaging, a noninvasive exam, not as expensive as positron emission tomography, and provides a good basis for anatomical analysis. The magnetic resonance spectroscopy analyzes cerebral metabolism, yielding inconsistent results in parkinsonian disorders. We selected 40 individuals for magnetic resonance imaging and spectroscopy analysis, 12 with Parkinson's disease, 11 with progressive supranuclear palsy, 7 with multiple system atrophy (parkinsonian type), and 10 individuals without any psychiatric or neurological disorders (controls). Clinical scales included Hoenh and Yahr, unified Parkinson's disease rating scale and mini mental status examination. The results showed that patients with Parkinson's disease and controls presented the same aspects on neuroimaging, with few or absence of abnormalities, and supranuclear progressive palsy and multiple system atrophy showed abnormalities, some of which statistically significant. Thus, magnetic resonance imaging and spectroscopy could be useful as a tool in differential diagnosis of Parkinsonism. (author)

  8. [Study on plasma parameters in diffuse discharge with semispherical electrod by optical emission spectrum].

    Science.gov (United States)

    Dong, Li-Fang; Tong, Guo-Liang; Shen, Zhong-Kai; Liu, Liang; Ji, Ya-Fei; Zhao, Huan-Huan

    2012-06-01

    The diffuse discharge plasma in air was observed in a dielectric barrier discharge with two semispherical water electrodes. The variations of vibration temperature, rotation temperature, and average electron energy as the function of the applied voltage were studied by emission spectroscopy. The vibration temperature and the rotation temperature were calculated through the second positive band system (C3Pi(u)-->B3Pi(g)) of N2+ and the first negative band system (B2 Sigma(u+)-->Chi2Sigma(g+)) of N(2+) respectively. The average electron energy was studied by intensity ratio of 391.4 and 337.1 nm. It was found that the rotation temperature increases with the applied voltage increasing, while the vibration temperature and the electron energy decrease.

  9. Bispectral analysis of harmonic oscillations measured using beam emission spectroscopy and magnetic probes in CHS

    International Nuclear Information System (INIS)

    Oishi, Tetsutarou; Yoshinuma, Mikirou; Ida, Katsumi; Akiyama, Tsuyoshi; Minami, Takashi; Nagaoka, Kenichi; Shimizu, Akihiro; Okamura, Shoichi; Kado, Shinichiro

    2008-01-01

    The coherent MHD oscillation, which consists of the fundamental frequency of several kilohertz and its higher harmonics, (harmonic oscillation: HO) has been observed in Compact Helical System. HO consists of two pairs of harmonic series. One is located in the core region near the ι=0.5 rational surface (denoted as 'HO (core)'), the other is located in the edge region near the ι=1.0 rational surface (denoted as 'HO (edge)'). In the present study, bispectral analysis is applied to the fluctuation data, for which HO is measured by beam emission spectroscopy (BES) and using magnetic probes. The analysis has revealed that fundamental mode of HO in both the magnetic and core density fluctuations have phase correlation with the harmonics including fundamental oscillation, while HO in edge density fluctuation does not have such phase correlation. Mode numbers of HOs are identical for harmonic components having different frequencies, i.e., m/n=-2/1 for HO (core) and m/n=-1/1 for HO (edge). It suggests that the generation of harmonics cannot be interpreted simply as mode coupling because the summation rule for the wavenumber is not satisfied, even though the bicoherence value is significant. The bicoherence value and relative amplitude of higher harmonics correlate with each other, which suggests that bicoherence indicates the degree of distortion of the signals. (author)

  10. Electron cyclotron emission spectroscopy on thermonuclear plasmas

    International Nuclear Information System (INIS)

    Tubbing, B.J.D.

    1987-01-01

    Analysis of electron cyclotron emission (ECE) enables one to infer the radial profile of the electron temperature in tokamaks. The Dutch FOM institute for plasma physics has designed, built, installed and operated a grating polychromator for ECE measurements at JET. This thesis deals with a few instrumental aspects of this project and with applications of ECE measurements in tokamak physics studies. Ch. 3 and 4 deal with the wave transport in ECE systems. In Ch. 3 a method is developed to infer the mode conversion, which is a source for transmission losses, in a waveguide component from the antenna pattern of its exit aperture. In Ch. 4 the design and manufacture of the waveguide transition system to the grating polychromator are described. In Ch. 5 a method is reported for calibration of the spectrometers, based on the use of a microwave source which simulates a large area blackbody of very high temperature. The feasibility of the method is tested by applying it to two different ECE systems. In Ch. 6 a study of heat pulse propagation in tokamak plasma's, based on measurement of the electron temperature with the grating polychromator, is presented. 105 refs.; 48 figs.; 8 tabs

  11. A DEEP CHANDRA ACIS STUDY OF NGC 4151. III. THE LINE EMISSION AND SPECTRAL ANALYSIS OF THE IONIZATION CONE

    International Nuclear Information System (INIS)

    Wang, Junfeng; Fabbiano, Giuseppina; Elvis, Martin; Risaliti, Guido; Karovska, Margarita; Zezas, Andreas; Mundell, Carole G.; Dumas, Gaelle; Schinnerer, Eva

    2011-01-01

    This paper is the third in a series in which we present deep Chandra ACIS-S imaging spectroscopy of the Seyfert 1 galaxy NGC 4151, devoted to study its complex circumnuclear X-ray emission. Emission features in the soft X-ray spectrum of the bright extended emission (L 0.3-2 k eV ∼ 10 40 erg s –1 ) at r > 130 pc (2'') are consistent with blended brighter O VII, O VIII, and Ne IX lines seen in the Chandra HETGS and XMM-Newton RGS spectra below 2 keV. We construct emission line images of these features and find good morphological correlations with the narrow-line region clouds mapped in [O III] λ5007. Self-consistent photoionization models provide good descriptions of the spectra of the large-scale emission, as well as resolved structures, supporting the dominant role of nuclear photoionization, although displacement of optical and X-ray features implies a more complex medium. Collisionally ionized emission is estimated to be ∼ ☉ yr –1 at 130 pc and the kinematic power of the ionized outflow is 1.7 × 10 41 erg s –1 , approximately 0.3% of the bolometric luminosity of the active nucleus in NGC 4151.

  12. Bright emissive core-shell spherical microparticles for shock compression spectroscopy

    International Nuclear Information System (INIS)

    Christensen, James M.; Banishev, Alexandr A.; Dlott, Dana D.

    2014-01-01

    Experiments were performed to study the response to shock compression of rhodamine 6G (R6G) dye encapsulated in 1.25 μm diameter silica microspheres. When R6G was encapsulated in microspheres, the emission intensity under steady-state irradiation (the brightness) was 3.4 times greater than the same dye in solution (the free dye). At least part of the brightness improvement was caused by an enhanced radiative rate. When the microspheres were embedded in poly-methylmethacrylate subjected to planar shocks in the 3–8.4 GPa range by laser-driven flyer plates, the dye emission redshifted and lost intensity. The dye emission redshift represents an instantaneous response to changes in the local density. In free dye samples, the shock-induced intensity loss had considerably slower rise times and fall times than the redshift. When dye was encapsulated in microspheres, the time dependence of the intensity loss matched the redshift almost exactly over a range of shock pressures and durations. The faster response to shock of dye in silica microspheres was explained by dye photophysics. The microsphere environment decreased the singlet state lifetime, which decreased the rise time, and it also decreased the triplet state lifetime, which decreased the fall time. Since it is much easier and more convenient to make measurements of intensity rather than spectral shift, these microspheres represent a substantial improvement in optical sensors to monitor shock compression of microstructured materials.

  13. A study of association between fingernail elements and osteoporosis by laser-induced breakdown spectroscopy

    Science.gov (United States)

    Bahreini, Maryam; Hosseinimakarem, Zahra; Hassan Tavassoli, Seyed

    2012-09-01

    Laser induced breakdown spectroscopy (LIBS) is used to investigate the possible effect of osteoporosis on the elemental composition of fingernails. Also, the ability to classify healthy, osteopenic, and osteoporotic subjects based on their fingernail spectra has been examined. 46 atomic and ionic emission lines belonging to 13 elements, which are dominated by calcium and magnesium, have been identified. Measurements are carried out on fingernail clippings of 99 subjects including 27 healthy, 47 osteopenic, and 25 osteoporotic subjects. The Pearson correlations between spectral intensities of different elements of fingernail and age and bone mineral densities (BMDs) in nail samples are calculated. Correlations between line intensities of some elements such as sodium and potassium, calcium and iron, magnesium and silicon and also between some fingernail elements, BMD, and age are observed. Although some of these correlations are weak, some information about mineral metabolism can be deduced from them. Discrimination between nail samples of healthy, osteopenic, and osteoporotic subjects is shown to be somehow possible by a discriminant function analysis using 46 atomic emission lines of the LIBS spectra as input variables. The results of this study provide some evidences for association between osteoporosis and elemental composition of fingernails measured by LIBS.

  14. Site-selective spectroscopy of Er in GaN

    International Nuclear Information System (INIS)

    Dierolf, V.; Sandmann, C.; Zavada, J.; Chow, P.; Hertog, B.

    2004-01-01

    We investigated different Er 3+ defect sites found in Er-doped GaN layers by site-selective combined excitation-emission spectroscopy and studied the role of these sites in different direct and multistep excitation schemes. The layers were grown by molecular beam epitaxy and were 200 nm thick. Two majority sites were found along with several minority sites. The sites strongly differ in excitation and energy transfer efficiencies as well as branching ratios during relaxation. For this reason, relative emission intensities from these sites depend strongly on emission and excitation. The sites were identified for several transitions and a comprehensive list of energy levels has been compiled. One of the minority sites appears strongly under ultraviolet excitation above the GaN band gap suggesting that this site is an excellent trap for excitation energy of electron-hole pairs

  15. Optical emission from Al target irradiated by FLASH

    International Nuclear Information System (INIS)

    Stránský, M; Rohlena, K

    2014-01-01

    The following text touches on some peculiarities in optical emission spectroscopy results from experiments on the free-electron laser FLASH [1, 2]. Aluminum targets were irradiated with 13.5 nm ∼ 25 fs pulses at intensities of 10 13 and 10 16 W/cm 2 (20 and 1 μm foci). Surprisingly, only neutral atom lines for the case with wider focus and traces of ion lines in the tighter focus case were observed with the optical emission spectroscopy (200–600 nm range), [2]. The motivating idea behind this work is the suggestion in [1] by Zastrau that the optical spectrometer sees only emissions from a cold expanding lower-density (< 10 22 cm −3 ) plasma plume. In this contribution the notion of UV range screening is analyzed in detail.

  16. Trace gas emissions from the production and use of domestic biofuels in Zambia measured by open-path Fourier transform infrared spectroscopy

    Science.gov (United States)

    Bertschi, Isaac T.; Yokelson, Robert J.; Ward, Darold E.; Christian, Ted J.; Hao, Wei Min

    2003-07-01

    Domestic biomass fuels (biofuels) were recently estimated to be the second largest source of carbon emissions from global biomass burning. Wood and charcoal provide approximately 90% and 10% of domestic energy in tropical Africa. In September 2000, we used open-path Fourier transform infrared (OP-FTIR) spectroscopy to quantify 18 of the most abundant trace gases emitted by wood and charcoal cooking fires and an earthen charcoal-making kiln in Zambia. These are the first in situ measurements of an extensive suite of trace gases emitted by tropical biofuel burning. We report emission ratios (ER) and emission factors (EF) for (in order of abundance) carbon dioxide (CO2), carbon monoxide (CO), methane (CH4), acetic acid (CH3COOH), methanol (CH3OH), formaldehyde (HCHO), ethene (C2H4), ammonia (NH3), acetylene (C2H2), nitric oxide (NO), ethane (C2H6), phenol (C6H5OH), propene (C3H6), formic acid (HCOOH), nitrogen dioxide (NO2), hydroxyacetaldehyde (HOCH2CHO), and furan (C4H4O). Compared to previous work, our emissions of organic acids and NH3 are 3-6.5 times larger. Another significant finding is that reactive oxygenated organic compounds account for 70-80% of the total nonmethane organic compounds (NMOC). For most compounds, the combined emissions from charcoal production and charcoal burning are larger than the emissions from wood fires by factors of 3-10 per unit mass of fuel burned and ˜2 per unit energy released. We estimate that Zambian savanna fires produce more annual CO2, HCOOH, and NOx than Zambian biofuel use by factors of 2.5, 1.7, and 5, respectively. However, biofuels contribute larger annual emissions of CH4, CH3OH, C2H2, CH3COOH, HCHO, and NH3 by factors of 5.1, 3.9, 2.7, 2.4, 2.2, and 2.0, respectively. Annual CO and C2H4 emissions are approximately equal from both sources. Coupling our data with recent estimates of global biofuel consumption implies that global biomass burning emissions for several compounds are significantly larger than previously

  17. Studies of. gamma. -ray irradiation effects on tris(. beta. -diketonato)iron(III) and cobalt(III) coordination compounds by means of Moessbauer spectroscopy and magnetic susceptibility measurements

    Energy Technology Data Exchange (ETDEWEB)

    Sakai, Y.; Endo, K.; Sano, H. (Tokyo Metropolitan Univ. (Japan). Faculty of Science)

    1981-06-01

    Both absorption Moessbauer spectroscopy and magnetic susceptibility measurements on tris(..beta..-diketonato)iron(III) and cobalt(III) compounds indicate that ligands which have phenyl group as a substituent are more stable to ..gamma..-ray radiolysis, in accordance with previous results of emission Moessbauer spectroscopic studies of /sup 57/Co-labelled tris (..beta..-diketonato)cobalt(III) compounds.

  18. Efficient encapsulation of chloroform with cryptophane-M and the formation of exciplex studied by fluorescence spectroscopy.

    Science.gov (United States)

    Shi, Yanqi; Li, Xueming; Yang, Jianchun; Gao, Fang; Tao, Chuanyi

    2011-03-01

    Efficient encapsulation of small molecules with supermolecules is one of significantly important subjects due to strong application potentials. This article presents the interaction between cryptophane-M and chloroform by fluorescence spectroscopy. The sonicated cryptophane-M solution exhibits light green color in chloroform, and the solid obtained from the evaporation of chloroform also has different color from that of cryptophane-M. In contrast, the sonicated cryptophane-M solutions in other solvents are colorless, and the solid obtained from the evaporation of these solvents has the same color as that of cryptophane-M. Furthermore, the freshly prepared cryptophane-M solution in different solvents is almost colorless, and the solid obtained from the evaporation of these solvents displays the same color as that of cryptophane-M. Although the sonicated cryptophane-M solutions in different solvents have very similar absorption spectra, they exhibit quite different emission spectra in chloroform. In contrast, the freshly-prepared cryptophane-M solutions show similar absorption and emission spectroscopy in various solvents. The variation of the fluorescence spectroscopy in binary solvents with the increasing chloroform ratio suggests that cryptophane-M and chloroform form a 1:1 exciplex, and the binding constant is estimated to be 292.95 M(-1). Although all solvents are able to enter into the cavity of cryptophane-M, only chloroform can stay in the cavity of cryptophane-M for a while, which is mostly due to the strong intermolecular interaction between cryptophane-M and chloroform, and this results in the formation of the exciplex between them. © Springer Science+Business Media, LLC 2010

  19. Neutron spectroscopy for confinement studies

    International Nuclear Information System (INIS)

    Zorn, R.

    2010-01-01

    Neutron spectroscopy is an important method for the study of microscopic dynamics because it captures the spatial as well as the temporal aspects of the atomic or molecular motion. In this article techniques will be presented which are of special importance for the study of confined systems. Many of these are based on the fact that neutron scattering is isotope-dependent. Possible sources of systematic errors in measurements of confined systems will be pointed out. (author)

  20. Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Hellman, Hal

    1968-01-01

    This booklet discusses spectroscopy, the study of absorption of radiation by matter, including X-ray, gamma-ray, microwave, mass spectroscopy, as well as others. Spectroscopy has produced more fundamental information to the study of the detailed structure of matter than any other tools.

  1. Laser based analytical spectroscopy of uranium

    International Nuclear Information System (INIS)

    Argekar, A.A.; Kulkarni, M.J.; Godbole, S.V.; Page, A.G.; Samuel, J.K.; Paranjape, D.B.; Singh Mudher, K.D.

    1992-01-01

    Analytical spectroscopy of uranium has been studied using a XeCl excimer laser, using the fluorescence emission of U(VI) ions doped in a solid solution of sodium fluoride (NaF) and sodium chloride (NaCl) in 3:2 proportion. An electronic circuitry involving time-gating of the photomultiplier tube and facility to integrate the analytical signal over ten laser pulses has been developed to enable laser operation and signal detection with high S/N ratio. The matrix enhanced U(VI) fluorescence emission is free from chemical and spectral interferences due to the concomitant presence of ten metallic elements generally associated with uranium. The digital signal output is highly precise and does not saturate upto 5 ppm uranium concentration. X-ray diffraction patterns obtained for uranium doped compounds at 2.5% and 10% dopant concentrations are broadly similar to that of Na 2 U 2 O 7 . The detailed studies have, however, revealed fine structure for individual peaks, thereby, revealing the formation of sodium fluoro-uranate complex which is responsible for the enhanced intensity of fluorescence emission. (author). 10 refs., 6 figs., 2 tabs

  2. Edge electron density profiles and fluctuations measured by two-dimensional beam emission spectroscopy in the KSTAR

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Y. U., E-mail: yunam@nfri.re.kr; Wi, H. M. [National Fusion Research Institute, Daejeon (Korea, Republic of); Zoletnik, S.; Lampert, M. [Wigner RCP Institute for Particle and Nuclear Physics, Budapest (Hungary); Kovácsik, Ákos [Institute of Nuclear Techniques, Budapest Technical University, Budapest (Hungary)

    2014-11-15

    Beam emission spectroscopy (BES) system in Korea Superconducting Tokamak Advanced Research (KSTAR) has recently been upgraded. The background intensity was reduced from 30% to 2% by suppressing the stray lights. This allows acquisition of the relative electron density profiles on the plasma edge without background subtraction from the beam power modulation signals. The KSTAR BES system has its spatial resolution of 1 cm, the temporal resolution of 2 MHz, and a total 32 channel (8 radial × 4 poloidal) avalanche photo diode array. Most measurements were done on the plasma edge, r/a ∼ 0.9, with 8 cm radial measurement width that covers the pedestal range. High speed density profile measurements reveal temporal behaviors of fast transient events, such as the precursors of edge localized modes and the transitions between confinement modes. Low background level also allows analysis of the edge density fluctuation patterns with reduced background fluctuations. Propagation of the density structures can be investigated by comparing the phase delays between the spatially distributed channels.

  3. Standard test method for determining elements in waste Streams by inductively coupled plasma-atomic emission spectroscopy

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This test method covers the determination of trace, minor, and major elements in waste streams by inductively coupled plasma-atomic emission spectroscopy (ICP-AES) following an acid digestion of the sample. Waste streams from manufacturing processes of nuclear and non-nuclear materials can be analyzed. This test method is applicable to the determination of total metals. Results from this test method can be used to characterize waste received by treatment facilities and to formulate appropriate treatment recipes. The results are also usable in process control within waste treatment facilities. 1.2 This test method is applicable only to waste streams that contain radioactivity levels that do not require special personnel or environmental protection. 1.3 A list of the elements determined in waste streams and the corresponding lower reporting limit is found in Table 1. 1.4 This test method has been used successfully for treatment of a large variety of waste solutions and industrial process liquids. The com...

  4. Determination of total tin in canned food using inductively coupled plasma atomic emission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Perring, Loic; Basic-Dvorzak, Marija [Department of Quality and Safety Assurance, Nestle Research Centre, P.O. Box 44, Vers chez-les-Blanc, 1000, Lausanne (Switzerland)

    2002-09-01

    Tin is considered to be a priority contaminant by the Codex Alimentarius Commission. Tin can enter foods either from natural sources, environmental pollution, packaging material or pesticides. Higher concentrations are found in processed food and canned foods. Dissolution of the tinplate depends on the of food matrix, acidity, presence of oxidising reagents (anthocyanin, nitrate, iron and copper) presence of air (oxygen) in the headspace, time and storage temperature. To reduce corrosion and dissolution of tin, nowadays cans are usually lacquered, which gives a marked reduction of tin migration into the food product. Due to the lack of modern validated published methods for food products, an ICP-AES (Inductively coupled plasma-atomic emission spectroscopy) method has been developed and evaluated. This technique is available in many laboratories in the food industry and is more sensitive than atomic absorption. Conditions of sample preparation and spectroscopic parameters for tin measurement by axial ICP-AES were investigated for their ruggedness. Two methods of preparation involving high-pressure ashing or microwave digestion in volumetric flasks were evaluated. They gave complete recovery of tin with similar accuracy and precision. Recoveries of tin from spiked products with two levels of tin were in the range 99{+-}5%. Robust relative repeatabilities and intermediate reproducibilities were <5% for different food matrices containing >30 mg/kg of tin. Internal standard correction (indium or strontium) did not improve the method performance. Three emission lines for tin were tested (189.927, 283.998 and 235.485 nm) but only 189.927 nm was found to be robust enough with respect to interferences, especially at low tin concentrations. The LOQ (limit of quantification) was around 0.8 mg/kg at 189.927 nm. A survey of tin content in a range of canned foods is given. (orig.)

  5. Spectroscopy and optical diagnostics for gases

    CERN Document Server

    Hanson, Ronald K; Goldenstein, Christopher S

    2016-01-01

    This text provides an introduction to the science that governs the interaction of light and matter (in the gas phase). It provides readers with the basic knowledge to exploit the light-matter interaction to develop quantitative tools for gas analysis (i.e. optical diagnostics) and understand and interpret the results of spectroscopic measurements. The authors pair the basics of gas‐phase spectroscopy with coverage of key optical diagnostic techniques utilized by practicing engineers and scientists to measure fundamental flow‐field properties. The text is organized to cover three sub‐topics of gas‐phase spectroscopy: (1) spectral line positions, (2) spectral line strengths, and (3) spectral lineshapes by way of absorption, emission, and scattering interactions. The latter part of the book describes optical measurement techniques and equipment. Key subspecialties include laser induced fluorescence, tunable laser absorption spectroscopy, and wavelength modulation spectroscopy. It is ideal for students an...

  6. Emission Characteristics of Laser-Induced Plasma Using Collinear Long and Short Dual-Pulse Laser-Induced Breakdown Spectroscopy (LIBS).

    Science.gov (United States)

    Wang, Zhenzhen; Deguchi, Yoshihiro; Liu, Renwei; Ikutomo, Akihiro; Zhang, Zhenzhen; Chong, Daotong; Yan, Junjie; Liu, Jiping; Shiou, Fang-Jung

    2017-09-01

    Collinear long and short dual-pulse laser-induced breakdown spectroscopy (DP-LIBS) was employed to clarify the emission characteristics from laser-induced plasma. The plasma was sustained and became stable by the long pulse-width laser with the pulse width of 60 μs under free running (FR) conditions as an external energy source. Comparing the measurement results of stainless steel in air using single-pulse LIBS (SP-LIBS) and DP-LIBS, the emission intensity was markedly enhanced using DP-LIBS. The temperature of plasma induced by DP-LIBS was maintained at a higher temperature under different gate delay time and short pulse-width laser power conditions compared with those measured using short SP-LIBS. Moreover, the variation rates of plasma temperatures measured using DP-LIBS were also lower. The superior detection ability was verified by the measurement of aluminum sample in water. The spectra were clearly detected using DP-LIBS, whereas it cannot be identified using SP-LIBS of short and long pulse widths. The effects of gate delay time and short pulse-width laser power were also discussed. These results demonstrate the feasibility and enhanced detection ability of the proposed collinear long and short DP-LIBS method.

  7. Scientific prospects for spectroscopy of the gamma-ray burst prompt emission with SVOM

    Science.gov (United States)

    Bernardini, M. G.; Xie, F.; Sizun, P.; Piron, F.; Dong, Y.; Atteia, J.-L.; Antier, S.; Daigne, F.; Godet, O.; Cordier, B.; Wei, J.

    2017-10-01

    SVOM (Space-based multi-band astronomical Variable Objects Monitor) is a Sino-French space mission dedicated to the study of Gamma-Ray Bursts (GRBs) in the next decade, capable to detect and localise the GRB emission, and to follow its evolution in the high-energy and X-ray domains, and in the visible and NIR bands. The satellite carries two wide-field high-energy instruments: a coded-mask gamma-ray imager (ECLAIRs; 4-150 keV), and a gamma-ray spectrometer (GRM; 15-5500 keV) that, together, will characterise the GRB prompt emission spectrum over a wide energy range. In this paper we describe the performances of the ECLAIRs and GRM system with different populations of GRBs from existing catalogues, from the classical ones to those with a possible thermal component superimposed to their non-thermal emission. The combination of ECLAIRs and the GRM will provide new insights also on other GRB properties, as for example the spectral characterisation of the subclass of short GRBs showing an extended emission after the initial spike.

  8. Comparative measurements of mineral elements in milk powders with laser-induced breakdown spectroscopy and inductively coupled plasma atomic emission spectroscopy.

    Science.gov (United States)

    Lei, W Q; El Haddad, J; Motto-Ros, V; Gilon-Delepine, N; Stankova, A; Ma, Q L; Bai, X S; Zheng, L J; Zeng, H P; Yu, J

    2011-07-01

    Mineral elements contained in commercially available milk powders, including seven infant formulae and one adult milk, were analyzed with inductively coupled plasma atomic emission spectrometry (ICP-AES) and laser-induced breakdown spectroscopy (LIBS). The purpose of this work was, through a direct comparison of the analytical results, to provide an assessment of the performance of LIBS, and especially of the procedure of calibration-free LIBS (CF-LIBS), to deal with organic compounds such as milk powders. In our experiments, the matrix effect was clearly observed affecting the analytical results each time laser ablation was employed for sampling. Such effect was in addition directly observed by determining the physical parameters of the plasmas induced on the different samples. The CF-LIBS procedure was implemented to deduce the concentrations of Mg and K with Ca as the internal reference element. Quantitative analytical results with CF-LIBS were validated with ICP-AES measurements and nominal concentrations specified for commercial milks. The obtained good results with the CF-LIBS procedure demonstrate its capacity to take into account the difference in physical parameters of the plasma in the calculation of the concentrations of mineral elements, which allows a significant reduction of the matrix effect related to laser ablation. We finally discuss the way to optimize the implementation of the CF-LIBS procedure for the analysis of mineral elements in organic materials.

  9. Atomic spectroscopy and radiative processes

    CERN Document Server

    Landi Degl'Innocenti, Egidio

    2014-01-01

    This book describes the basic physical principles of atomic spectroscopy and the absorption and emission of radiation in astrophysical and laboratory plasmas. It summarizes the basics of electromagnetism and thermodynamics and then describes in detail the theory of atomic spectra for complex atoms, with emphasis on astrophysical applications. Both equilibrium and non-equilibrium phenomena in plasmas are considered. The interaction between radiation and matter is described, together with various types of radiation (e.g., cyclotron, synchrotron, bremsstrahlung, Compton). The basic theory of polarization is explained, as is the theory of radiative transfer for astrophysical applications. Atomic Spectroscopy and Radiative Processes bridges the gap between basic books on atomic spectroscopy and the very specialized publications for the advanced researcher: it will provide under- and postgraduates with a clear in-depth description of theoretical aspects, supported by practical examples of applications.

  10. Analysis of resonant fast ion distributions during combined ICRF and NBI heating with transients using neutron emission spectroscopy

    Science.gov (United States)

    Hellesen, C.; Mantsinen, M.; Conroy, S.; Ericsson, G.; Eriksson, J.; Kiptily, V. G.; Nabais, F.; Contributors, JET

    2018-05-01

    ICRF heating at the fundamental cyclotron frequency of a hydrogen minority ion species also gives rise to a partial power absorption by deuterium ions at their second harmonic resonance. This paper studies the deuterium distributions resulting from such 2nd harmonic heating at JET using neutron emission spectroscopy data from the time of flight spectrometer TOFOR. The fast deuterium distributions are obtained over the energy range 100 keV to 2 MeV. Specifically, we study how the fast deuterium distributions vary as ICRF heating is used alone as well as in combination with NBI heating. When comparing the different heating scenarios, we observed both a difference in the shapes of the distributions as well as in their absolute level. The differences are most pronounced below 0.5 MeV. Comparisons are made with corresponding distributions calculated with the code PION. We find a good agreement between the measured distributions and those calculated with PION, both in terms of their shapes as well as their amplitudes. However, we also identified a period with signs of an inverted fast ion distribution, which showed large disagreements between the modeled and measured results. Resonant interactions with tornado modes, i.e. core localized toroidal alfven eigenmodes (TAEs), are put forward as a possible explanation for the inverted distribution.

  11. Fourier Transform Infrared Spectroscopy Part III. Applications.

    Science.gov (United States)

    Perkins, W. D.

    1987-01-01

    Discusses the use of the FT-IR spectrometer in analyses that were previously avoided. Examines some of the applications of this spectroscopy with aqueous solutions, circular internal reflection, samples with low transmission, diffuse reflectance, infrared emission, and the infrared microscope. (TW)

  12. Filament-induced remote surface ablation for long range laser-induced breakdown spectroscopy operation

    International Nuclear Information System (INIS)

    Rohwetter, Ph.; Stelmaszczyk, K.; Woeste, L.; Ackermann, R.; Mejean, G.; Salmon, E.; Kasparian, J.; Yu, J.; Wolf, J.-P.

    2005-01-01

    We demonstrate laser induced ablation and plasma line emission from a metallic target at distances up to 180 m from the laser, using filaments (self-guided propagation structures ∼ 100 μm in diameter and ∼ 5 x 10 13 W/cm 2 in intensity) appearing as femtosecond and terawatt laser pulses propagating in air. The remarkable property of filaments to propagate over a long distance independently of the diffraction limit opens the frontier to long range operation of the laser-induced breakdown spectroscopy technique. We call this special configuration of remote laser-induced breakdown spectroscopy 'remote filament-induced breakdown spectroscopy'. Our results show main features of filament-induced ablation on the surface of a metallic sample and associated plasma emission. Our experimental data allow us to estimate requirements for the detection system needed for kilometer-range remote filament-induced breakdown spectroscopy experiment

  13. Proton MR spectroscopy in solitary pulmonary nodules: a preliminary study

    International Nuclear Information System (INIS)

    Yang Chunshan; Xiao Xiangsheng; Li Huimin; Liu Shiyuan; Li Chengzhou; Li Shenjiang

    2005-01-01

    Objective: To study the characteristics and the regularities of the metabolites in solitary pulmonary nodules with proton MR spectroscopy, and to investigate the clinical value of MR spectroscopy in differentiating benign from malignant pulmonary nodules. Methods: Sixty-nine patients with solitary pulmonary nodules underwent routine MRI and single-voxel MR spectroscopy using Siemens Vision 1.5 T MR system. MR spectroscopy characteristics and parameters of the metabolites were observed and recorded. Ten pathologic specimens were examined with single-voxel MR spectroscopy. The MR spectroscopy results of the pathologic specimens were compared with those of the solitary pulmonary nodules in vivo. Results: The Cho peak (2.86 ± 1.89) of the malignant nodules was higher than that of the inflammatory (0.87 ± 0.74), tuberculous nodules (0.97 ± 1.09), and hamartoma (0.42 ± 0.53) (P 0.05). Conclusion: MR spectroscopy is reliable in evaluating pulmonary nodules in vivo. The Cho peak, Cho/Cr, and Lac peak of the malignant nodules were higher than those of inflammatory, tuberculous nodules, and hamartoma. MR spectroscopy is helpful in differentiating benign from malignant pulmonary nodules. (authors)

  14. Analytical spectroscopy. Analytical Chemistry Symposia Series, Volume 19

    International Nuclear Information System (INIS)

    Lyon, W.S.

    1984-01-01

    This book contains papers covering several fields in analytical chemistry including lasers, mass spectrometry, inductively coupled plasma, activation analysis and emission spectroscopy. Separate abstracting and indexing was done for 64 papers in this book

  15. Electronic structure of human hemoglobin: ultrasoft X-ray emission study

    International Nuclear Information System (INIS)

    Soldatov, A.V.; Kravtsova, A.N.; Fedorovich, E.N.; Kurmaev, E.Z.; Moewes, A.

    2004-01-01

    Full text: The iron L 2,3 and carbon, nitrogen and oxygen Kα X-ray emission spectra (XES) of human hemoglobin have been recorded at the soft X-ray spectroscopy endstation on Undulator Beam line 8.0 at Advanced Light Source (ALS) located at the Lawrence Berkeley National Laboratory. The theoretical calculations of Fe L 3 -XES have been performed using ab initio code FEFF8.2. The calculations have been carried out for the structure of hemoglobin presented in PDB (entry 3HHB) as well as for the molecule with symmetrical heme plane. It was found that the Fe L 3 emission spectrum calculated for the ideal molecule agrees slightly better with the experiment as compared with those calculated for the real molecule. Thus, one can use the structure of the ideal molecule for theoretical Fe L 3 -XES simulations. The theoretical analysis has shown that the fist peak of experimental Fe L 3 - emission spectrum is enhanced by the nearest nitrogen atoms lying in heme plane around the central iron atom. The theoretical C K- and N K-XES spectra of hemoglobin have been calculated. A good agreement between theoretical and experimental spectra has been obtained. The distribution of the partial electronic densities of states in the valence and conduction bands of hemoglobin has been determined

  16. Opto-electrochemical spectroscopy of metals in aqueous solutions

    International Nuclear Information System (INIS)

    Habib, K.

    2016-01-01

    In the present investigation, holographic interferometry was utilized for the first time to determine the rate change of the electrical resistance of aluminium samples during the initial stage of anodisation processes in aqueous solution. In fact, because the resistance values in this investigation were obtained by holographic interferometry, electromagnetic method rather than electronic method, the abrupt rate change of the resistance was called electrical resistance–emission spectroscopy. The anodisation process of the aluminium samples was carried out by electrochemical impedance spectroscopy (EIS) in different sulphuric acid concentrations (1.0%–2.5% H 2 SO 4 ) at room temperature. In the meantime, the real time holographic interferometry was used to determine the difference between the electrical resistance of two subsequent values, dR, as a function of the elapsed time of the EIS experiment for the aluminium samples in 1.0%, 1.5%, 2.0%, and 2.5% H 2 SO 4 solutions. The electrical resistance–emission spectra of the present investigation represent a detailed picture of not only the rate change of the electrical resistance throughout the anodisation processes but also the spectra represent the rate change of the growth of the oxide films on the aluminium samples in different solutions. As a result, a new spectrometer was developed based on the combination of the holographic interferometry and electrochemical impedance spectroscopy for studying in situ the electrochemical behavior of metals in aqueous solutions.

  17. Quantitative structural modeling on the wavelength interval (Δλ) in synchronous fluorescence spectroscopy

    Science.gov (United States)

    Samari, Fayezeh; Yousefinejad, Saeed

    2017-11-01

    Emission fluorescence spectroscopy has an extremely restricted scope of application to analyze of complex mixtures since its selectivity is reduced by the extensive spectral overlap. Synchronous fluorescence spectroscopy (SFS) is a technique enables us to analyze complex mixtures with overlapped emission and/or excitation spectra. The difference of excitation and emission wavelength of compounds (interval wavelength or Δλ) is an important characteristic in SFS. Thus a multi-parameter model was constructed to predict Δλ in 63 fluorescent compounds and the regression coefficient in training set, cross validation and test set were 0.88, 0.85 and 0.91 respectively. Furthermore, the applicability and validity of model were evaluated using different statistical methods such as y-scrambling and applicability domain. It was concluded that increasing average valence connectivity, number of Al2-NH functional group and Geary autocorrelation (lag 4) with electronegative weights can lead to increasing Δλ in the fluorescent compounds. The current study obtained an insight into the structural properties of compounds effective on their Δλ as an important parameter in SFS.

  18. Studying sulfur functional groups in Norway spruce year rings using S L-edge total electron yield spectroscopy

    International Nuclear Information System (INIS)

    Struis, Rudolf P.W.J.; Ludwig, Christian; Barrelet, Timothee; Kraehenbuehl, Urs; Rennenberg, Heinz

    2008-01-01

    Profiles of the major sulfur functional groups in mature Norway spruce wood tissue have been established for the first time. The big challenge was the development of a method suitable for sulfur speciation in samples with very low sulfur content (< 100 ppm). This became possible by synchrotron X-ray absorption spectroscopy at the sulfur L-edge in total electron yield (TEY) detection mode with thin gold-coated wood slices. Functional groups were identified using sulfur compound spectra as fingerprints. Latewood of single year rings revealed metabolic plausible sulfur forms, particularly inorganic sulfide, organic disulfide, methylthiol, and highly oxidized sulfur. Form-specific profiles with Norway spruces from three different Swiss forest sites revealed high, but hitherto little-noticed, sulfur intensities attributable to natural heartwood formation and a common, but physiologically unexpected maximum around year ring 1986 with trees from the industrialized Swiss Plateau. It is hypothesized whether it may have resulted from the huge reduction in sulfur emissions after 1980 due to Swiss policy. Comparison with total S content profiles from optical emission spectroscopy underlined the more accurate and temporally better resolved TEY data with single wood year rings and it opened novel insights into the wood cell chemistry

  19. Auger electron spectroscopy of alloy surfaces

    International Nuclear Information System (INIS)

    Overbury, S.H.; Somorjai, G.A.

    1975-03-01

    Regular solution models are used to predict surface segregation of the constituent of lowest surface free energy in homogeneous multicomponent systems. Analysis of the Auger electron emission intensities from alloys yield the surface composition and the depth distribution of the composition near the surface. Auger Electron Spectroscopy (AES) studies of the surface composition of the Ag--Au and Pb--In systems have been carried out as a function of bulk composition and temperature. Although these alloys have very different regular solution parameters their surface compositions are predictable by the regular solution models. (U.S.)

  20. Positron Annihilation Ratio Spectroscopy (PsARS) Applied to Positronium Formation Studies

    Science.gov (United States)

    2010-03-01

    Positron Annihilation Ratio Spectroscopy (PsARS). These experimental techniques have been used for a variety of military and civilian applications ... POSITRON ANNIHILATION RATIO SPECTROSCOPY (PsARS) APPLIED TO POSITRONIUM FORMATION STUDIES THESIS...of Defense, or the United States Government. AFIT/GNE/ENP/10-M07 POSITRON ANNIHILATION RATIO SPECTROSCOPY

  1. SHI induced enhancement in green emission from nanocrystalline CdS thin films for photonic applications

    International Nuclear Information System (INIS)

    Kumar, Pragati; Saxena, Nupur; Chandra, Ramesh; Gao, Kun; Zhou, Shengqiang; Agarwal, Avinash; Singh, Fouran; Gupta, Vinay; Kanjilal, D.

    2014-01-01

    Intense green emission is reported from nanocrystalline CdS thin films grown by pulsed laser deposition. The effect of ion beam induced dense electronic excitation on luminescence property of CdS films is explored under irradiation using 70 MeV 58 Ni 6+ ions. It is found that swift heavy ion beam irradiation enhances the emission intensity by an order of 1 and broadens the emission range. This feature is extremely useful to enhance the performance of different photonic devices like light emitting diodes and lasers, as well as luminescence based sensors. To examine the role of energy relaxation process of swift heavy ions in creation/annihilation of different defect levels, multi-peaks are fitted in photoluminescence spectra using a Gaussian function. The variation of contribution of different emissions in green emission with ion fluence is studied. Origin of enhancement in green emission is supported by various characterization techniques like UV–visible absorption spectroscopy, glancing angle X-ray diffraction, micro-Raman spectroscopy and transmission electron microscopy. A possible mechanism of enhanced GE due to ion beam irradiation is proposed on the basis of existing models. -- Highlights: • Room temperature green luminescence nanocrystalline CdS thin films grown by pulsed laser deposition. • Enhanced green emission by means of swift heavy ion irradiation. • Multipeak fitting of photoluminescence spectra using a Gaussian function. • Variation of area contributed by different emissions in green emission is studied with respect to ion fluence. • Mechanism of enhanced green emission is discussed based on creation/annihilation of defects due to ion beam irradiation

  2. SHI induced enhancement in green emission from nanocrystalline CdS thin films for photonic applications

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Pragati, E-mail: pkumar.phy@gmail.com [Department of Physics, Bareilly College, Shahmat Ganj Road, Bareilly 243005, Uttar Pradesh (India); Saxena, Nupur [Inter University Accelerator Centre, Aruna Asaf Ali Marg, P.O. Box 10502, New Delhi 110067 (India); Chandra, Ramesh [Institute Instrumentation Centre, Indian Institute of Technology, Roorkee 247667 (India); Gao, Kun; Zhou, Shengqiang [Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), P.O. Box 510119, 01314 Dresden (Germany); Agarwal, Avinash [Department of Physics, Bareilly College, Shahmat Ganj Road, Bareilly 243005, Uttar Pradesh (India); Singh, Fouran [Inter University Accelerator Centre, Aruna Asaf Ali Marg, P.O. Box 10502, New Delhi 110067 (India); Gupta, Vinay [Department of Physics and Astrophysics, Delhi University, Delhi 110007 (India); Kanjilal, D. [Inter University Accelerator Centre, Aruna Asaf Ali Marg, P.O. Box 10502, New Delhi 110067 (India)

    2014-03-15

    Intense green emission is reported from nanocrystalline CdS thin films grown by pulsed laser deposition. The effect of ion beam induced dense electronic excitation on luminescence property of CdS films is explored under irradiation using 70 MeV {sup 58}Ni{sup 6+} ions. It is found that swift heavy ion beam irradiation enhances the emission intensity by an order of 1 and broadens the emission range. This feature is extremely useful to enhance the performance of different photonic devices like light emitting diodes and lasers, as well as luminescence based sensors. To examine the role of energy relaxation process of swift heavy ions in creation/annihilation of different defect levels, multi-peaks are fitted in photoluminescence spectra using a Gaussian function. The variation of contribution of different emissions in green emission with ion fluence is studied. Origin of enhancement in green emission is supported by various characterization techniques like UV–visible absorption spectroscopy, glancing angle X-ray diffraction, micro-Raman spectroscopy and transmission electron microscopy. A possible mechanism of enhanced GE due to ion beam irradiation is proposed on the basis of existing models. -- Highlights: • Room temperature green luminescence nanocrystalline CdS thin films grown by pulsed laser deposition. • Enhanced green emission by means of swift heavy ion irradiation. • Multipeak fitting of photoluminescence spectra using a Gaussian function. • Variation of area contributed by different emissions in green emission is studied with respect to ion fluence. • Mechanism of enhanced green emission is discussed based on creation/annihilation of defects due to ion beam irradiation.

  3. Moessbauer Spectroscopy study of Quimsachata Volcano materials

    International Nuclear Information System (INIS)

    Dominguez, A.G.B.

    1988-01-01

    It has been studied volcanic lava from Quimsachata Volcano in Pem. Moessbauer Spectroscopy, X-ray diffraction, electronic and optical microscopy allowed the identification of different mineralogical phases. (A.C.AS.) [pt

  4. Near-infrared spectroscopy for cocrystal screening. A comparative study with Raman spectroscopy.

    Science.gov (United States)

    Allesø, Morten; Velaga, Sitaram; Alhalaweh, Amjad; Cornett, Claus; Rasmussen, Morten A; van den Berg, Frans; de Diego, Heidi Lopez; Rantanen, Jukka

    2008-10-15

    Near-infrared (NIR) spectroscopy is a well-established technique for solid-state analysis, providing fast, noninvasive measurements. The use of NIR spectroscopy for polymorph screening and the associated advantages have recently been demonstrated. The objective of this work was to evaluate the analytical potential of NIR spectroscopy for cocrystal screening using Raman spectroscopy as a comparative method. Indomethacin was used as the parent molecule, while saccharin and l-aspartic acid were chosen as guest molecules. Molar ratios of 1:1 for each system were subjected to two types of preparative methods. In the case of saccharin, liquid-assisted cogrinding as well as cocrystallization from solution resulted in a stable 1:1 cocrystalline phase termed IND-SAC cocrystal. For l-aspartic acid, the solution-based method resulted in a polymorphic transition of indomethacin into the metastable alpha form retained in a physical mixture with the guest molecule, while liquid-assisted cogrinding did not induce any changes in the crystal lattice. The good chemical peak selectivity of Raman spectroscopy allowed a straightforward interpretation of sample data by analyzing peak positions and comparing to those of pure references. In addition, Raman spectroscopy provided additional information on the crystal structure of the IND-SAC cocrystal. The broad spectral line shapes of NIR spectra make visual interpretation of the spectra difficult, and consequently, multivariate modeling by principal component analysis (PCA) was applied. Successful use of NIR/PCA was possible only through the inclusion of a set of reference mixtures of parent and guest molecules representing possible solid-state outcomes from the cocrystal screening. The practical hurdle related to the need for reference mixtures seems to restrict the applicability of NIR spectroscopy in cocrystal screening.

  5. Optically active polyurethane@indium tin oxide nanocomposite: Preparation, characterization and study of infrared emissivity

    International Nuclear Information System (INIS)

    Yang, Yong; Zhou, Yuming; Ge, Jianhua; Yang, Xiaoming

    2012-01-01

    Highlights: ► Silane coupling agent of KH550 was used to connect the ITO and polyurethanes. ► Infrared emissivity values of the hybrids were compared and analyzed. ► Interfacial synergistic action and orderly secondary structure were the key factors. -- Abstract: Optically active polyurethane@indium tin oxide and racemic polyurethane@indium tin oxide nanocomposites (LPU@ITO and RPU@ITO) were prepared by grafting the organics onto the surfaces of modified ITO nanoparticles. LPU@ITO and RPU@ITO composites based on the chiral and racemic tyrosine were characterized by FT-IR, UV–vis spectroscopy, X-ray diffraction (XRD), SEM, TEM, and thermogravimetric analysis (TGA), and the infrared emissivity values (8–14 μm) were investigated in addition. The results indicated that the polyurethanes had been successfully grafted onto the surfaces of ITO without destroying the crystalline structure. Both composites possessed the lower infrared emissivity values than the bare ITO nanoparticles, which indicated that the interfacial interaction had great effect on the infrared emissivity. Furthermore, LPU@ITO based on the optically active polyurethane had the virtue of regular secondary structure and more interfacial synergistic actions between organics and inorganics, thus it exhibited lower infrared emissivity value than RPU@ITO based on the racemic polyurethane.

  6. Field emission studies at Saclay and Orsay

    International Nuclear Information System (INIS)

    Tan, J.

    1996-01-01

    During the last five years, DC and RF equipment for field emission studies have been developed at Saclay and Orsay laboratories. Combining these devices, straight comparison has been carried out between DC and RF field emission from artificial emission sites on the same sample. Other topics are also reviewed: high field cleaning, plausible origins of thermal effects that occurred on emission sites in RF, behaviour of alumina particles under RF field, and optical observations and measurements. (author)

  7. Summary report of the first research coordination meeting on development of a reference database for particle-induced gamma ray emission (PIGE) spectroscopy

    International Nuclear Information System (INIS)

    Abriola, D.; Pedro de Jesus, A.

    2011-07-01

    The First Research Coordination Meeting (RCM) of the IAEA Coordinated Research Project (CRP) on 'Development of a Reference Database for Particle-Induced Gamma-ray Emission (PIGE) Spectroscopy' was held at the IAEA, Vienna, from 16-20 May 2011. A summary of the participants' presentations is given as well as background information, objectives and recommendations concerning approach and methodology. The extension of the IBANDL database format to include PIGE data was discussed. The different tasks to achieve the CRP objectives were assigned to participants. A list of priority measurements was produced and the individual sets of measurements assigned to participants. (author)

  8. Radially resolved emission spectroscopy on ZT-40M

    International Nuclear Information System (INIS)

    Watt, R.G.

    1982-05-01

    Measurements of line integrated emission profiles of D/sub β/, OIII, OV, OVI, and CV line radiation have been performed in the ZT-40M device at Los Alamos National Laboratory. The behavior of these emission profiles will be presented for several operating currents, fill pressures, and current risetimes. The basic oxygen radial structures are seen to resemble an onion skin at any particular time, with OIII farthest out in radius and OVI nearest the axis, as one would expect in the absence of any anomalous heating mechanisms (such as thermal instabilities). The rate at which the various lines occur during several different current level discharges appears to be consistent with increased losses for increased I/sub phi/ during the early phases of heating (up to OVI), while the later stages are consistent with a much lower energy loss and a heating rate proportional to I 2 . Evidence of enhanced wall interaction in the latter stages of the discharge is presented

  9. Resonant X-ray emission spectroscopy in Dy compounds

    International Nuclear Information System (INIS)

    Tanaka, Satoshi; Okada, Kozo; Kotani, Akio.

    1994-01-01

    The excitation spectrum of the L 3 -M 5 X-ray emission of Dy compounds in the pre-edge region of Dy L 3 X-ray absorption near edge structure (L 3 -XANES) is theoretically investigated based upon the coherent second order optical formula with multiplet coupling effects. The spectral broadening of the excitation spectrum is determined by the M 5 core hole lifetime, being free from the L 3 core hole lifetime. The fine pre-edge structure of the L 3 edge due to the 2p→4f quadrupole transition can be seen in the excitation spectrum, while this structure is invisible in the conventional XANES, in agreement with the recent experimental results. We clarify the conditions for the excitation spectrum to be regarded as the absorption spectrum with a smaller width. The resonant X-ray emission spectra for various incident photon energies around the L 3 edge are also calculated. (author)

  10. [Study on optical characteristics of chromophoric dissolved organic matter (CDOM) in rainwater by fluorescence excitation-emission matrix and absorbance spectroscopy].

    Science.gov (United States)

    Cheng, Yuan-yue; Guo, Wei-dong; Long, Ai-min; Chen, Shao-yong

    2010-09-01

    The optical characteristics of chromophoric dissolved organic matter (CDOM) were determined in rain samples collected in Xiamen Island, during a rainy season in 2007, using fluorescence excitation-emission matrix spectroscopy associated with UV-Vis absorbance spectra. Results showed that the absorbance spectra of CDOM in rain samples decreased exponentially with wavelength. The absorbance coefficient at 300 nm [a(300)] ranged from 0.27 to 3.45 m(-1), which would be used as an index of CDOM abundance, and the mean value was 1.08 m(-1). The content of earlier stage of precipitation events was higher than that of later stage of precipitation events, which implied that anthropogenic sources or atmospheric pollution or air mass types were important contributors to CDOM levels in precipitation. EEMs spectra showed 4 types of fluorescence signals (2 humic-like fluorescence peaks and 2 protein-like fluorescence peaks) in rainwater samples, and there were significant positive correlations of peak A with C and peak B with S, showing their same sources or some relationship of the two humic-like substance and the two protein-like substance. The strong positive correlations of the two humic-like fluorescence peaks with a(300), suggested that the chromophores responsible for absorbance might be the same as fluorophores responsible for fluorescence. Results showed that the presence of highly absorbing and fluorescing CDOM in rainwater is of significant importance in atmospheric chemistry and might play a previously unrecognized role in the wavelength dependent spectral attenuation of solar radiation by atmospheric waters.

  11. Laser-produced lithium plasma as a narrow-band extended ultraviolet radiation source for photoelectron spectroscopy.

    Science.gov (United States)

    Schriever, G; Mager, S; Naweed, A; Engel, A; Bergmann, K; Lebert, R

    1998-03-01

    Extended ultraviolet (EUV) emission characteristics of a laser-produced lithium plasma are determined with regard to the requirements of x-ray photoelectron spectroscopy. The main features of interest are spectral distribution, photon flux, bandwidth, source size, and emission duration. Laser-produced lithium plasmas are characterized as emitters of intense narrow-band EUV radiation. It can be estimated that the lithium Lyman-alpha line emission in combination with an ellipsoidal silicon/molybdenum multilayer mirror is a suitable EUV source for an x-ray photoelectron spectroscopy microscope with a 50-meV energy resolution and a 10-mum lateral resolution.

  12. Resolved spectroscopy of adolescent and infant galaxies (1 < z < 10)

    Science.gov (United States)

    Wright, Shelley; IRIS Science Team

    2014-07-01

    The combination of integral field spectroscopy (IFS) and adaptive optics (AO) on TMT will be revolutionary in studying the distant universe. The high angular resolution exploited by an AO system with this large aperture will be essential for studying high-redshift (1 < z < 5) galaxies' kinematics and chemical abundance histories. At even greater distances, TMT will be essential for conducting follow-up spectroscopy of Ly-alpha emission from first lights galaxies (6 < z < 10) and determining their kinematics and morphologies. I will present simulations and sensitivity calculations for high-z and first light galaxies using the diffraction-limited instrument IRIS coupled with NFIRAOS. I will put these simulations in context with current IFS+AO high-z observations and future capabilities with JWST.

  13. The first X-ray imaging spectroscopy of quiescent solar active regions with NuSTAR

    DEFF Research Database (Denmark)

    Hannah, Iain G.; Grefenstette, Brian W.; Smith, David M.

    2016-01-01

    We present the first observations of quiescent active regions (ARs) using the Nuclear Spectroscopic Telescope Array (NuSTAR), a focusing hard X-ray telescope capable of studying faint solar emission from high-temperature and non-thermal sources. We analyze the first directly imaged and spectrally...... resolved X-rays above 2 keV from non-flaring ARs, observed near the west limb on 2014 November 1. The NuSTAR X-ray images match bright features seen in extreme ultraviolet and soft X-rays. The NuSTAR imaging spectroscopy is consistent with isothermal emission of temperatures 3.1-4.4 MK and emission...

  14. Determination of metal impurities in MOX powder by direct current arc atomic emission spectroscopy. Application of standard addition method for direct analysis of powder sample

    International Nuclear Information System (INIS)

    Furuse, Takahiro; Taguchi, Shigeo; Kuno, Takehiko; Surugaya, Naoki

    2016-12-01

    Metal impurities in MOX powder obtained from uranium and plutonium recovered from reprocessing process of spent nuclear fuel have to be determined for its characterization. Direct current arc atomic emission spectroscopy (DCA-AES) is one of the useful methods for direct analysis of powder sample without dissolving the analyte into aqueous solution. However, the selection of standard material, which can overcome concerns such as matrix matching, is quite important to create adequate calibration curves for DCA-AES. In this study, we apply standard addition method using the certified U_3O_8 containing known amounts of metal impurities to avoid the matrix problems. The proposed method provides good results for determination of Fe, Cr and Ni contained in MOX samples at a significant quantity level. (author)

  15. Applications of photon-in, photon-out spectroscopy with third-generation, synchrotron-radiation sources

    International Nuclear Information System (INIS)

    Lindle, D.W.; Perera, R.C.C.

    1991-01-01

    This report discusses the following topics: Mother nature's finest test probe; soft x-ray emission spectroscopy with high-brightness synchrotron radiation sources; anisotropy and polarization of x-ray emission from atoms and molecules; valence-hole fluorescence from molecular photoions as a probe of shape-resonance ionization: progress and prospects; structural biophysics on third-generation synchrotron sources; ultra-soft x-ray fluorescence-yield XAFS: an in situ photon-in, photon-out spectroscopy; and x-ray microprobe: an analytical tool for imaging elemental composition and microstructure

  16. Development of Exact Matrix-Matching Inductively Coupled Plasma-Optical Emission Spectroscopy for the Analysis of Cu and K in Infant Formula

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ye-Ji; Yim, Yong-Hyeon [University of Science and Technology, Daejeon (Korea, Republic of); Heo, Sung Woo; Han, Myung-Sub; Lim, Youngran [Korea Research Institute of Standards and Science, Daejeon (Korea, Republic of)

    2016-08-15

    In the present study, we have developed an exact matrix-matching inductively coupled plasma-optical emission spectroscopy (ICP-OES) as a low-cost alternative to the isotope dilution inductively coupled plasma mass spectrometry (ICP-MS) method for accurate and precise measurements of nutrient elements K and Cu in infant formula. In spite of its high precision and accuracy, ICP-OES analysis of complex samples was not reliable due to biases originating from various matrix effects. The elaborated exact matrix-matching approach tested here demonstrated its potential to minimize biases due to matrix mismatch. The exact matrix-matching ICP-OES method was successfully validated by comparing the results with those from an isotope dilution ICP-M S method. Because the model provides reliable results without significant loss of precision, it will be an excellent choice for major element analysis in a complex sample, especially when isotope dilution is not applicable due to the l ck of alternative isotopes or the high cost of enriched isotopes.

  17. Mössbauer emission study on 57Co doped carbon-supported Ni and Ni-Mo sulfide hydrotreating catalysts : the influence of phosphorus on the structure

    NARCIS (Netherlands)

    Crajé, M.W.J.; Beer, de V.H.J.; Kraan, van der A.M.

    1991-01-01

    In the present study it is demonstrated that Mössbauer emission spectroscopy (MES) can generate information on the various Ni phases present in sulfided Ni containing catalysts when a small amount of 57Co is used as a probe for Ni.Application of MES to 57Co:Ni(4.5)Mo(8.0)/C and 57Co:Ni(5.6)/C

  18. Chemical bath deposited and dip coating deposited CuS thin films - Structure, Raman spectroscopy and surface study

    Science.gov (United States)

    Tailor, Jiten P.; Khimani, Ankurkumar J.; Chaki, Sunil H.

    2018-05-01

    The crystal structure, Raman spectroscopy and surface microtopography study on as-deposited CuS thin films were carried out. Thin films deposited by two techniques of solution growth were studied. The thin films used in the present study were deposited by chemical bath deposition (CBD) and dip coating deposition techniques. The X-ray diffraction (XRD) analysis of both the as-deposited thin films showed that both the films possess covellite phase of CuS and hexagonal unit cell structure. The determined lattice parameters of both the films are in agreement with the standard JCPDS as well as reported data. The crystallite size determined by Scherrer's equation and Hall-Williamsons relation using XRD data for both the as-deposited thin films showed that the respective values were in agreement with each other. The ambient Raman spectroscopy of both the as-deposited thin films showed major emission peaks at 474 cm-1 and a minor emmision peaks at 265 cm-1. The observed Raman peaks matched with the covellite phase of CuS. The atomic force microscopy of both the as-deposited thin films surfaces showed dip coating thin film to be less rough compared to CBD deposited thin film. All the obtained results are presented and deliberated in details.

  19. Neuroimaging in Parkinsonism: a study with magnetic resonance and spectroscopy as tools in the differential diagnosis

    Energy Technology Data Exchange (ETDEWEB)

    Vasconcellos, Luiz Felipe Rocha [1Hospital dos Servidores do Estado, Rio de Janeiro RJ (Brazil)], e-mail: luizneurol@terra.com.br; Novis, Sergio A. Pereira; Rosso, Ana Lucia Z. [Hospital Universitario Clementino Fraga Filho (HUCFF), Rio de Janeiro, RJ (Brazil); Moreira, Denise Madeira [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Inst. de Neurologia Deolindo Couto; Leite, Ana Claudia C.B. [Fundacao Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, RJ (Brazil)

    2009-03-15

    The differential diagnosis of Parkinsonism based on clinical features, sometimes may be difficult. Diagnostic tests in these cases might be useful, especially magnetic resonance imaging, a noninvasive exam, not as expensive as positron emission tomography, and provides a good basis for anatomical analysis. The magnetic resonance spectroscopy analyzes cerebral metabolism, yielding inconsistent results in parkinsonian disorders. We selected 40 individuals for magnetic resonance imaging and spectroscopy analysis, 12 with Parkinson's disease, 11 with progressive supranuclear palsy, 7 with multiple system atrophy (parkinsonian type), and 10 individuals without any psychiatric or neurological disorders (controls). Clinical scales included Hoenh and Yahr, unified Parkinson's disease rating scale and mini mental status examination. The results showed that patients with Parkinson's disease and controls presented the same aspects on neuroimaging, with few or absence of abnormalities, and supranuclear progressive palsy and multiple system atrophy showed abnormalities, some of which statistically significant. Thus, magnetic resonance imaging and spectroscopy could be useful as a tool in differential diagnosis of Parkinsonism. (author)

  20. Laser-induced blurring of molecular structure information in high harmonic spectroscopy

    DEFF Research Database (Denmark)

    Risoud, Francois; Leveque, Camille; Labeye, Marie

    2017-01-01

    High harmonic spectroscopy gives access to molecular structure with Angstrom resolution. Such information is encoded in the destructive interferences occurring between the harmonic emissions from the different parts of the molecule. By solving the time-dependent Schrodinger equation, either....... These findings have important consequences for molecular imaging and orbital tomography using high harmonic spectroscopy....

  1. Temperature dependent emission characteristics of monoclinic YBO{sub 3}: Eu{sup 3+}/Tb{sup 3+} phosphor

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Suchinder K., E-mail: suchindersharma@gmail.com [AMO-Physics Division, Physical Research Laboratory, Navrangpura, Ahmedabad 380009 (India); Malik, M. Manzar [Department of Physics, Maulana Azad National Institute of Technology (MANIT), Bhopal (India)

    2016-05-15

    YBO{sub 3}:Eu{sup 3+}/Tb{sup 3+} phosphor samples synthesized by modified combustion method are studied in the present work using powder X-ray diffraction, UV–visible absorption spectroscopy, X-ray excited luminescence spectroscopy and optical parametric oscillator (OPO) based laser excited emission spectroscopy. The temperature dependence of luminescence emission is also studied. The structural analysis suggests that the samples possess monoclinic structure with C2/c space group. The emission maximum was excitation wavelength dependent and prominent emission was observed at 593 nm (241 nm excitation) and 613 nm (300 nm excitation) for YBO{sub 3}:Eu{sup 3+} samples. The prominent magnetic/ electric (593/613 nm) dipole-moment allowed transitions are attributed to the presence of Eu{sup 3+} at different sites. For YBO{sub 3}:Tb{sup 3+} phosphor, 543 nm emission was prominent and had no impact of the cite symmetry. The increase in PL intensity in Eu{sup 3+} doped samples above 225 K is associated with the carrier mobility. An energy level scheme showing the positions of the 4f and 5d energy levels of all divalent and trivalent lanthanide ions relative to the valence and conduction band of the YBO{sub 3} has been constructed opening the possibility of using YBO{sub 3} for other interesting applications. - Highlights: • Synthesis of YBO{sub 3} by modified combustion method using glycine as fuel. • Crystallization in monoclinic phase (rarely investigated). • Eu and Tb doping and investigation of temperature dependent PL. • VRBE diagram generated in YBO{sub 3} to develop new optical materials.

  2. Diagnosis of the local thermal equilibrium by optical emission spectroscopy in the evolution of electric discharge; Diagnostico del equilibrio termico local por espectroscopia optica de emision en la evolucion de una descarga electrica

    Energy Technology Data Exchange (ETDEWEB)

    Valdivia B, R.; Pacheco S, J.; Pacheco P, M.; Ramos F, F.; Cruz A, A. [ININ, Carretera Mexico-Toluca s/n, Ocoyoacac 52750, Estado de Mexico (Mexico); Velazquez P, S. [Instituto Tecnologico de Toluca, Av. Instituto Tecnologico s/n, Ex-Rancho la Virgen, Metepec 52140, Estado de Mexico (Mexico)

    2008-07-01

    In this work applies the technique of optical emission spectroscopy to diagnose the temperature of the species generated in plasma in the transition to glow discharge arc. Whit this diagnosis is possible to determine the local thermal equilibrium conditions of the discharge. (Author)

  3. Investigation of electron emission properties of Ba-activated tungsten cathodes

    International Nuclear Information System (INIS)

    Beck, I; Josepovits, V K; Sneider, J; Toth, Z

    2005-01-01

    In this work we investigated the electron emission properties of high-pressure discharge lamp cathode tips. The work function (Φ) of the cathode tip was measured by using the Kelvin probe method and by work function spectroscopy (WFS). The Kelvin probe method was used to measure the average work function of tips under atmospheric pressure in air. By WFS we could measure the local work function value of tips in the selected spots under ultra high vacuum conditions. The chemical composition analysis was carried out in the same chamber by Auger electron spectroscopy. The focus of this study is to investigate the influence of sintering temperature of cathodes (1500-1700 deg. C) and lamp operation time (0-12 000 h) on the work function. The comparison of the work function of both cathodes as a function of operation time originating from the two different ends of the ceramic tube is also considered. In order to understand the structure of the layers on the cathode tips we also give results obtained on a flat tungsten foil covered with Ba-containing emission material. The flat samples were measured using x-ray photoelectron spectroscopy and WFS

  4. Use of fluorescence spectroscopy to measure molecular autofluorescence in diabetic subjects

    International Nuclear Information System (INIS)

    Gomes, Cinthia Zanini

    2011-01-01

    Diabetes Mellitus (DM) comprises a complex metabolic syndrome, caused by reduced or absent secretion of insulin by pancreatic beta cells, leading to hyperglycemia. Hyperglycemia promotes glycation of proteins and, consequently, the appearance of advanced glycation end products (AGEs). Currently, diabetic patients are monitored by determining levels of glucose and glycated hemoglobin (HbA1c). The complications caused by hyperglycemia may be divided into micro and macrovascular complications, represented by retinopathy, nephropathy, neuropathy and cardiovascular disease. Albumin (HSA) is the most abundant serum protein in the human body and is subject to glycation. The Protoporphyrin IX (PpIX) is the precursor molecule of heme synthesis, structural component of hemoglobin. The in vitro and animals studies have indicated that hyperglycemia promotes a decrease in its concentration in erythrocytes. The fluorescence spectroscopy is a technique widely used in biomedical field. The autofluorescence corresponds to the intrinsic fluorescence present in some molecules, this being associated with the same structure. The aim of this study was to use fluorescence spectroscopy to measure levels of erythrocyte PpIX autofluorescence and AGE-HSA in diabetic and healthy subjects and compare them with levels of blood glucose and HbA1c. This study was conducted with 151 subjects (58 controls and 93 diabetics). Epidemiological data of patients and controls were obtained from medical records. For control subjects, blood glucose levels were obtained from medical records and levels of Hb1Ac obtained by using commercial kits. The determination of the PpIX autofluorescence was performed with excitation at 405 nm and emission at 632 nm. Determination of AGE-HSA was performed with excitation at 370 nm and emission at 455 nm. Approximately 50% of diabetic had micro and macrovascular lesions resulting from hyperglycemia. There were no significant differences in the PpIX emission intensity values

  5. Encapsulation of a [Dy(OH2)8](3+) cation: magneto-optical and theoretical studies of a caged, emissive SMM.

    Science.gov (United States)

    Al Hareri, M; Gavey, E L; Regier, J; Ras Ali, Z; Carlos, L D; Ferreira, R A S; Pilkington, M

    2016-10-15

    The first supramolecular cage formed by three benzo-15-crown-5 macrocycles encapsulating a [Dy(OH2)8](3+) guest cation is reported, with the Dy(iii) centre exhibiting local pseudo square antiprismatic D4d symmetry. The anisotropy barrier extracted from ac susceptibility studies, emission spectroscopy and ab initio calculations reveals that the second excited state Kramers doublet plays a key role in the magnetization dynamics due to the Ising character and near coparallel nature of the ground and first excited Kramers doublets.

  6. Avalanche dynamics of structural phase transitions in shape memory alloys by acoustic emission spectroscopy

    International Nuclear Information System (INIS)

    Ludwig, Benno

    2009-01-01

    In this work the avalanche dynamics of five shape memory samples has been analyzed by acoustic emission spectroscopy. The acoustic emission spectroscopy is particularly suitable for this analysis as it couples with high sensitivity to small structural changes caused by nucleation processes, interface movements, or variant rearrangements [91]. Owing to its high time resolution it provides a statistical approach to describe the jerky and intermittent character of the avalanche dynamics [20]. Rate-dependent cooling and heating runs have been conducted in order to study time-dependent aspects of the transition dynamics of the single crystals Ni 63 Al 37 , Au 50.5 Cd 49.5 , and Fe 68.8 Pd single 31.2 , and the polycrystalline sample Fe 68.8 Pd poly 31.2 . Moreover, a ferromagnetic Ni 52 Mn 23 Ga 25 single crystal has been studied by temperature cycles under an applied magnetic field and additionally by magnetic-field cycles at a constant temperature in the martensitic phase. All samples analyzed in this work show power law behavior in the acoustic emission features amplitude, energy, and duration, which indicates scale-free behavior. The access to these power law spectra allows an investigation of energy barriers separating the metastable states, which give rise to avalanche transition dynamics. By performing rate-dependent experiments the importance of thermal fluctuations and the impact of martensite respectively twin stabilization processes have been examined. In the case of the Ni 52 Mn 23 Ga 25 sample, the magnetic-field-induced variant rearrangement at slow field cycles leads to stronger signals than the rearrangement at quick cycles. This behavior can be explained by twin stabilization processes, which are accompanied by a reduction of the twin boundary mobility. For Ni 63 Al 37 , the combination of relevant thermal fluctuations, different involved time scales, and a high degree of intrinsic disorder leads to a lower acoustic activity and weaker signals under

  7. Avalanche dynamics of structural phase transitions in shape memory alloys by acoustic emission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ludwig, Benno

    2009-09-24

    In this work the avalanche dynamics of five shape memory samples has been analyzed by acoustic emission spectroscopy. The acoustic emission spectroscopy is particularly suitable for this analysis as it couples with high sensitivity to small structural changes caused by nucleation processes, interface movements, or variant rearrangements [91]. Owing to its high time resolution it provides a statistical approach to describe the jerky and intermittent character of the avalanche dynamics [20]. Rate-dependent cooling and heating runs have been conducted in order to study time-dependent aspects of the transition dynamics of the single crystals Ni{sub 63}Al{sub 37}, Au{sub 50.5}Cd{sub 49.5}, and Fe{sub 68.8}Pd{sup single}{sub 31.2}, and the polycrystalline sample Fe{sub 68.8}Pd{sup poly}{sub 31.2}. Moreover, a ferromagnetic Ni{sub 52}Mn{sub 23}Ga{sub 25} single crystal has been studied by temperature cycles under an applied magnetic field and additionally by magnetic-field cycles at a constant temperature in the martensitic phase. All samples analyzed in this work show power law behavior in the acoustic emission features amplitude, energy, and duration, which indicates scale-free behavior. The access to these power law spectra allows an investigation of energy barriers separating the metastable states, which give rise to avalanche transition dynamics. By performing rate-dependent experiments the importance of thermal fluctuations and the impact of martensite respectively twin stabilization processes have been examined. In the case of the Ni{sub 52}Mn{sub 23}Ga{sub 25} sample, the magnetic-field-induced variant rearrangement at slow field cycles leads to stronger signals than the rearrangement at quick cycles. This behavior can be explained by twin stabilization processes, which are accompanied by a reduction of the twin boundary mobility. For Ni{sub 63}Al{sub 37}, the combination of relevant thermal fluctuations, different involved time scales, and a high degree of

  8. $\\beta$-decay studies using total-absorption spectroscopy

    CERN Document Server

    Algora, A; García-Borge, M J; Cano-Ott, D; Collatz, R; Courtin, S; Dessagne, P; Fraile-Prieto, L M; Gadea, A; Gelletly, W; Hellström, M; Janas, Z; Jungclaus, A; Kirchner, R; Karny, M; Le Scornet, G; Miehé, C; Maréchal, F; Moroz, F; Nacher, E; Poirier, E; Roeckl, E; Rubio, B; Rykaczewski, K; Taín, J L; Tengblad, O; Wittmann, V

    2004-01-01

    $\\beta$-decay experiments are a primary source of information for nuclear-structure studies and at the same time complementary to in- beam investigations of nuclei far from stability. Although both types of experiment are mainly based on $\\gamma$-ray spectroscopy, they face different experimental problems. The so-called " Pandemonium effect " is a critical problem in $\\beta$-decay if we are to test theoretically calculated transition probabilities. In this contribution we will present a solution to this problem using total absorption spectroscopy methods. We will also present some examples of experiments carried out with the Total Absorption Spectrometer (TAS) at GSI and describe a new device LUCRECIA recently installed at CERN.

  9. Electrospun dye-doped fiber networks: lasing emission from randomly distributed cavities

    DEFF Research Database (Denmark)

    Krammer, Sarah; Vannahme, Christoph; Smith, Cameron

    2015-01-01

    Dye-doped polymer fiber networks fabricated with electrospinning exhibit comb-like laser emission. We identify randomly distributed ring resonators being responsible for lasing emission by making use of spatially resolved spectroscopy. Numerical simulations confirm this result quantitatively....

  10. Diesel bus emissions measured in a tunnel study.

    Science.gov (United States)

    Jamriska, Milan; Morawska, Lidia; Thomas, Steven; He, Congrong

    2004-12-15

    The emission factors of a bus fleet consisting of approximately 300 diesel-powered buses were measured in a tunnel study under well-controlled conditions during a 2-d monitoring campaign in Brisbane. Particle number and mass concentration levels of submicrometer particles and PM2.5 were monitored by SMPS and DustTrak instruments at the tunnel's entrance and exit, respectively. Correlation between DustTrak and TEOM response to diesel emissions was assessed, and the DustTrak results were recalculated into TEOM equivalent data. The mean value of the number and mass emission factors was (3.11+/-2.41) x 10(14) particles km(-1) for submicrometer particles and 583+/-451 mg km(-1) for PM2.5 (DustTrak), respectively. TEOM PM2.5 equivalent emission factor was 267+/-207 mg km(-1). The results are in good agreement with the emission factors determined from steady-state dynamometer testing of 12 buses from the same Brisbane City bus fleet. The results indicate that when carefully designed, both approaches, the dynamometer and on-road studies, can provide comparable results, applicable for the assessment of the effect of traffic emissions on airborne particle pollution. A brief overview of emission factors determined from other on-road and dynamometer studies reported in the literature as well as with the regulatory values used for the vehicle emission inventory assessment is presented and compared with the results obtained in this study.

  11. Study of luminous emissions associated to electron emissions in radiofrequency cavities; Etude des emissions lumineuses associees aux emissions electroniques dans les cavites hyperfrequences

    Energy Technology Data Exchange (ETDEWEB)

    Maissa, S

    1996-11-26

    This study investigates luminous emissions simultaneously to electron emissions and examines their features in order to better understand the field electron emission phenomenon. A RF cavity, operating at room temperature and in pulsed mode, joined to a sophisticated experimental apparatus has been especially developed. The electron and luminous emissions are investigated on cleaned or with metallic, graphitic and dielectric particles contaminated RF surfaces in order to study their influence on these phenomena. During the surface processing, unstable luminous spots glowing during one RF pulse are detected. Their apparition is promoted in the vicinity of the metallic particles or scratches. Two hypotheses could explain their origin: the presence of micro-plasmas associated to electronic explosive emission during processing or the thermal radiation of the melted metal during this emission. Stable luminous spots glowing during several RF pulses are also detected and appear to increase on RF surfaces contaminated with dielectric particles, leading to strong and explosive luminous emissions. Two interpretations are considered: the initiation of surface breakdowns on the dielectric particles or the heating by the RF field at temperatures sufficiently intense to provoke their thermal radiation then their explosion. Finally a superconducting cavity has been adapted to observe luminous spots, which differ from the former ones bu their star shape and could be associated to micro-plasmas, revealed by the starbursts observed on superconducting cavity walls. (author) 102 refs.

  12. Characteristics of the fluorescent substances in the Yodo River system by three-dimensional excitation emission matrix spectroscopy; Sanjigen reiki/keiko kodoho ni yoru yodogawa suikeichu no keiko busshitsu no tokucho

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Y.; Nakaguchi, Y.; Hiraki, K.; Kudo, M.; Kimura, M.; Nagao, S. [Japan Atomic Energy Research Inst., Tokyo (Japan)

    1998-08-01

    Organic substances in the river water in Yodo River system were analyzed by three-dimensional excitation emission matrix spectroscopy. Fluorescent substances were taken as an index of organic substances. The amount of fluorescent substances varied widely depending on the environment of river basin. It is suggested that the fluorescent substances are composed of organic substances which is not directly originated from biological activity. It is suggested that the fluorescent substances were produced by leaching of river bottom sediment. The fluorescent substances in Yodo River system consists of fulvic acid-like substances and protein. The analysis of fluorescent substances in river water by three-dimensional excitation emission matrix spectroscopy can be useful means for estimation of variation and origin of fluorescent substances. For better understanding of features of fluorescent substances in the surface water into which various kinds of substances enter, it is necessary to determine the exact sampling points based on the consideration of different sources and to make a database of peak positions for identification of fluorescent substances from fluorescence intensity peak. 29 refs., 3 figs., 2 tabs.

  13. Photoemission spectroscopy using synchrotron radiation

    International Nuclear Information System (INIS)

    Kobayashi, K.L.I.

    1980-01-01

    It is an epoch making event for photoemission spectroscopy that the light sources of continuous wavelength from vacuum ultra-violet to X-ray region have become available by the advent of synchrotron radiation. Specifically the progress after stable intense light has become obtainable from storage rings is very significant. One of the features of these synchrotron radiation is its extreme polarization of radiating pattern. Though the elementary processes of photoemission out of solids are the basic themes, phenomenalistic 3-stage model is usually applied to the analysis of experiments. In this model, the process of photoemission is considered by dividing into three stages, namely the generation of photoelectrons due to optical transition between electron status -- the transportation of photoelectrons to solid surfaces -- breaking away from the surfaces. The spectrometers, the energy analyzers of photoelectrons, and sample-preparing room used for photoemission spectroscopy are described. Next, energy distribution curves are explained. At the end, photoelectron yield spectroscopy, CFS (constant final energy spectroscopy) and CIS (constant initial energy spectroscopy), Auger yield and interatomic Auger yield, the determination of surface structure by normal emission CIS, and surface EXAFS (extended X-ray absorption fine structure) are described. As seen above, the application specifically to surface physics is promising in the future. (Wakatsuki, Y.)

  14. Laser-Induced Breakdown Spectroscopy (LIBS) for Monitoring the Formation of Hydroxyapatite Porous Layers

    OpenAIRE

    Sola, Daniel; Paulés, Daniel; Grima, Lorena; Anzano, Jesús

    2017-01-01

    Laser-induced breakdown spectroscopy (LIBS) is applied to characterize the formation of porous hydroxyapatite layers on the surface of 0.8CaSiO3-0.2Ca3(PO4)2 biocompatible eutectic glass immersed in simulated body fluid (SBF). Compositional and structural characterization analyses were also conducted by field emission scanning electron microscopy (FESEM), energy dispersive X-ray spectroscopy (EDX), and micro-Raman spectroscopy.

  15. Laser spectroscopy of a halocarbocation in the gas phase: CH2I+.

    Science.gov (United States)

    Tao, Chong; Mukarakate, Calvin; Reid, Scott A

    2006-07-26

    We report the first gas-phase observation of the electronic spectrum of a simple halocarbocation, CH2I+. The ion was generated rotationally cold (Trot approximately 20 K) using pulsed discharge methods and was detected via laser spectroscopy. The identity of the spectral carrier was confirmed by modeling the rotational contour observed in the excitation spectra and by comparison of ground state vibrational frequencies determined by single vibronic level emission spectroscopy with Density Functional Theory (DFT) predictions. The transition was assigned as 3A1 gas phase should open new avenues for study of the structure and reactivity of these important ions.

  16. Remote in-situ laser-induced breakdown spectroscopy using optical fibers

    Science.gov (United States)

    Marquardt, Brian James

    The following dissertation describes the development of methods for performing remote Laser-Induced Breakdown Spectroscopy (LIBS) using optical fibers. Studies were performed to determine the optimal excitation and collection parameters for remote LIBS measurements of glasses, soils and paint. A number of fiber-optic LIBS probes were developed and used to characterize various samples by plasma emission spectroscopy. A novel method for launching high-power laser pulses into optical fibers without causing catastrophic failure is introduced. A systematic study of a number of commercially available optical fibers was performed to determine which optical fibers were best suited for delivering high-power laser pulses. The general design of an all fiber-optic LIBS probe is described and applied to the determination of Pb in soil. A fiber-optic probe was developed for the microanalysis of solid samples remotely by LIBS, Raman spectroscopy and Raman imaging. The design of the probe allows for real-time sample imaging in-situ using coherent imaging fibers. This allows for precise atomic emission and Raman measurements to be performed remotely on samples in hostile or inaccessible environments. A novel technique was developed for collecting spectral plasma images using an acousto-optic tunable filter (AOTF). The spatial and temporal characteristics of the plasma were studied as a function of delay time. From the plasma images the distribution of Pb emission could be determined and fiber-optic designs could be optimized for signal collection. The performance of a two fiber LIBS probe is demonstrated for the determination of the amount of lead in samples of dry paint. It is shown that dry paint samples can be analyzed for their Pb content in-situ using a fiber-optic LIBS probe with detection limits well below the levels currently regulated by the Consumer Products Safety Commission. It is also shown that these measurements can be performed on both latex and enamel paints, and

  17. Sub-millisecond electron density profile measurement at the JET tokamak with the fast lithium beam emission spectroscopy system

    Science.gov (United States)

    Réfy, D. I.; Brix, M.; Gomes, R.; Tál, B.; Zoletnik, S.; Dunai, D.; Kocsis, G.; Kálvin, S.; Szabolics, T.; JET Contributors

    2018-04-01

    Diagnostic alkali atom (e.g., lithium) beams are routinely used to diagnose magnetically confined plasmas, namely, to measure the plasma electron density profile in the edge and the scrape off layer region. A light splitting optics system was installed into the observation system of the lithium beam emission spectroscopy diagnostic at the Joint European Torus (JET) tokamak, which allows simultaneous measurement of the beam light emission with a spectrometer and a fast avalanche photodiode (APD) camera. The spectrometer measurement allows density profile reconstruction with ˜10 ms time resolution, absolute position calculation from the Doppler shift, spectral background subtraction as well as relative intensity calibration of the channels for each discharge. The APD system is capable of measuring light intensities on the microsecond time scale. However ˜100 μs integration is needed to have an acceptable signal to noise ratio due to moderate light levels. Fast modulation of the beam up to 30 kHz is implemented which allows background subtraction on the 100 μs time scale. The measurement covers the 0.9 background subtraction, the relative calibration, and the comprehensive error calculation, runs a Bayesian density reconstruction code, and loads results to the JET database. The paper demonstrates the capability of the APD system by analyzing fast phenomena like pellet injection and edge localized modes.

  18. The effect of basis set and exchange-correlation functional on time-dependent density functional theory calculations within the Tamm-Dancoff approximation of the x-ray emission spectroscopy of transition metal complexes.

    Science.gov (United States)

    Roper, Ian P E; Besley, Nicholas A

    2016-03-21

    The simulation of X-ray emission spectra of transition metal complexes with time-dependent density functional theory (TDDFT) is investigated. X-ray emission spectra can be computed within TDDFT in conjunction with the Tamm-Dancoff approximation by using a reference determinant with a vacancy in the relevant core orbital, and these calculations can be performed using the frozen orbital approximation or with the relaxation of the orbitals of the intermediate core-ionised state included. Both standard exchange-correlation functionals and functionals specifically designed for X-ray emission spectroscopy are studied, and it is shown that the computed spectral band profiles are sensitive to the exchange-correlation functional used. The computed intensities of the spectral bands can be rationalised by considering the metal p orbital character of the valence molecular orbitals. To compute X-ray emission spectra with the correct energy scale allowing a direct comparison with experiment requires the relaxation of the core-ionised state to be included and the use of specifically designed functionals with increased amounts of Hartree-Fock exchange in conjunction with high quality basis sets. A range-corrected functional with increased Hartree-Fock exchange in the short range provides transition energies close to experiment and spectral band profiles that have a similar accuracy to those from standard functionals.

  19. Field determination of biomass burning emission ratios and factors via open-path FTIR spectroscopy and fire radiative power assessment: headfire, backfire and residual smouldering combustion in African savannahs

    Directory of Open Access Journals (Sweden)

    M. J. Wooster

    2011-11-01

    Full Text Available Biomass burning emissions factors are vital to quantifying trace gas release from vegetation fires. Here we evaluate emissions factors for a series of savannah fires in Kruger National Park (KNP, South Africa using ground-based open path Fourier transform infrared (FTIR spectroscopy and an IR source separated by 150–250 m distance. Molecular abundances along the extended open path are retrieved using a spectral forward model coupled to a non-linear least squares fitting approach. We demonstrate derivation of trace gas column amounts for horizontal paths transecting the width of the advected plume, and find for example that CO mixing ratio changes of ~0.01 μmol mol−1 [10 ppbv] can be detected across the relatively long optical paths used here. Though FTIR spectroscopy can detect dozens of different chemical species present in vegetation fire smoke, we focus our analysis on five key combustion products released preferentially during the pyrolysis (CH2O, flaming (CO2 and smoldering (CO, CH4, NH3 processes. We demonstrate that well constrained emissions ratios for these gases to both CO2 and CO can be derived for the backfire, headfire and residual smouldering combustion (RSC stages of these savannah fires, from which stage-specific emission factors can then be calculated. Headfires and backfires often show similar emission ratios and emission factors, but those of the RSC stage can differ substantially. The timing of each fire stage was identified via airborne optical and thermal IR imagery and ground-observer reports, with the airborne IR imagery also used to derive estimates of fire radiative energy (FRE, allowing the relative amount of fuel burned in each stage to be calculated and "fire averaged" emission ratios and emission factors to be determined. These "fire averaged" metrics are dominated by the headfire contribution, since the FRE data indicate that the vast majority

  20. Modélisation et Spectroscopie des Vitrocéramiques Fluorées dopés par des Ions de Terres Rares pour Applications en Amplification dans l'Infrarouge

    OpenAIRE

    El Jouad , Mohamed

    2010-01-01

    This thesis concerns the characterization of rare earth doped fluoride glasses and glass ceramics. The interest of such materials and systems to achieve ultra-transparent with low losses and also with low phonon frequency avoiding the normal processes that limit the performance of laser emission. The study is based on two aspects: modeling and experimental spectroscopy. The emission spectroscopy measurements with site selection have the potential to probe the environment around the luminescen...

  1. Valence state of Mn in Ca-doped LaMnO3 studied by high-resolution Mn K ß emission spectroscopy

    NARCIS (Netherlands)

    Tyson, T.A.; Qian, Q.; Kao, C.-C.; Rueff, J.-P.; Groot, F.M.F. de; Croft, M.; Cheong, S.-W.; Greenblatt, M.; Subramanian, M.A.

    1999-01-01

    Mn K ß x-ray emission spectra provide a direct method to probe the effective spin state and charge density on the Mn atom and is used in an experimental study of a class of Mn oxides. Specifically, the Mn K ß line positions and detailed spectral shapes depend on the oxidation and the spin state of

  2. Key electronic states in lithium battery materials probed by soft X-ray spectroscopy

    International Nuclear Information System (INIS)

    Yang, Wanli; Liu, Xiaosong; Qiao, Ruimin; Olalde-Velasco, Paul; Spear, Jonathan D.; Roseguo, Louis; Pepper, John X.; Chuang, Yi-de; Denlinger, Jonathan D.; Hussain, Zahid

    2013-01-01

    Highlights: •Key electronic states in battery materials revealed by soft X-ray spectroscopy. •Soft X-ray absorption consistently probes Mn oxidation states in different systems. •Soft X-ray absorption and emission fingerprint battery operations in LiFePO 4 . •Spectroscopic guidelines for selecting/optimizing polymer materials for batteries. •Distinct SEI formation on same electrode material with different crystal orientations. -- Abstract: The formidable challenges for developing a safe, low-cost, high-capacity, and high-power battery necessitate employing advanced tools that are capable of directly probing the key electronic states relevant to battery performance. Synchrotron based soft X-ray spectroscopy directly measures both the occupied and unoccupied states in the vicinity of the Fermi level, including transition-metal-3d and anion-p states. This article presents the basic concepts on how fundamental physics in electronic structure could provide valuable information for lithium-ion battery applications. We then discuss some of our recent studies on transition-metal oxide based cathodes, silicon based anode, and solid-electrolyte-interphase through soft X-ray absorption and emission spectroscopy. We argue that spectroscopic results reveal the evolution of electronic states for fingerprinting, understanding, and optimizing lithium-ion battery operations

  3. Enhanced field emission from carbon nanotubes by hydrogen plasma treatment

    International Nuclear Information System (INIS)

    Zhi, C.Y.; Bai, X.D.; Wang, E.G.

    2002-01-01

    The field emission capability of the carbon nanotubes (CNTs) has been improved by hydrogen plasma treatment, and the enhanced emission mechanism has been studied systematically using Fourier-transform infrared spectroscopy, Raman, and transmission electron microscopy. The hydrogen concentration in the samples increases with increasing plasma treatment duration. A C δ- -H δ+ dipole layer may form on CNTs' surface and a high density of defects results from the plasma treatment, which is likely to make the external surface of CNTs more active to emit electrons after treatment. In addition, the sharp edge of CNTs' top, after removal of the catalyst particles, may increase the local electronic field more effectively. The present study suggests that hydrogen plasma treatment is a useful method for improving the field electron emission property of CNTs

  4. In-situ optical emission spectroscopy for a better control of hybrid sputtering/evaporation process for the deposition of Cu(In,Ga)Se{sub 2} layers

    Energy Technology Data Exchange (ETDEWEB)

    Posada, Jorge; Jubault, Marie [Institute of Research and Development on Photovoltaic Energy (IRDEP), EDF-CNRS-Chimie ParisTech, UMR 7174, 6 Quai Watier, 78401 Chatou (France); Bousquet, Angélique; Tomasella, Eric [Clermont Université, Université Blaise Pascal, Institute of Chemistry of Clermont-Ferrand (ICCF), CNRS-UMR 6296, 24 Avenue des Landais, 63171 Aubière (France); Lincot, Daniel [Institute of Research and Development on Photovoltaic Energy (IRDEP), EDF-CNRS-Chimie ParisTech, UMR 7174, 6 Quai Watier, 78401 Chatou (France)

    2015-05-01

    In this work, we have developed a hybrid one-step co-sputtering/evaporation Cu(In,Ga)Se{sub 2} (CIGS) process, where Cu, In and Ga are sputtered simultaneously with the thermal evaporation of selenium, thus avoiding the H{sub 2}Se use. An appropriate control of the selenium flux is very important to prevent the target poisoning and hence some material flux variations. Indeed, the control of the CIGS composition must be rigorous to ensure reproducible solar cell properties. In this regard, a study of the correlations between plasma species and thin film composition, structure and morphology has been performed by varying power values and Se evaporation temperature in the 170 to 230 °C range. We started by studying the plasma with a powerful technique: optical emission spectroscopy, following light emissions from different plasma species: sputtered Cu, Ga, In but also evaporated Se. Hence, we determined the Se flow threshold avoiding target poisoning and the main parameter controlling the CIGS composition. Obviously, we also focused our interest on the material. We measured film composition and thickness of the samples with X-ray fluorescence and by energy dispersive X-ray. Different phases formed during the process were identified by Raman spectroscopy and X-ray diffraction. The optoelectronic cell properties showed promising efficiency of 10.3% for an absorber with composition ratios of [Cu]/([In] + [Ga]) = 1.02 and [Ga]/([In] + [Ga]) = 0.44. Finally, this work shows that we are able to control this hybrid process and thus the structure and composition of CIGS thin film for industrial transfer in the photovoltaic field. - Highlights: • We have developed a hybrid one-step co-sputtering/evaporation Cu(In,Ga)Se{sub 2} process. • Correlations between plasma species and thin film composition have been performed. • We determined the Se flow threshold avoiding target poisoning. • Efficient small-area CIGS cells with 10.3% efficiency were fabricated.

  5. Study of turbulent and shock heated IGM gas with emission line spectroscopy in the Taffy galaxies

    Science.gov (United States)

    Joshi, Bhavin; Appleton, Phil; Blanc, Guillermo; Guillard, Pierre; Freeland, Emily; Peterson, Bradley; Alatalo, Katherine

    2018-01-01

    We present our results from optical IFU observations of the Taffy system (UGC 12914/15); named so because of the radio emission that stretches between the two galaxies. The Taffy galaxies are a major merger pair of galaxies where two gas-rich spiral galaxies have collided face on and passed through each other. The pair presents an unusually low IR luminosity (L_FIR ~ 4.5 x 10^{10} L_solar) and SFR (~ 0.23 M_solar / yr) for a typical post merger system. It was also found from Spitzer and Chandra observations that the Taffy "bridge" between the galaxies contains large amounts of warm molecular Hydrogen, >4.5 x 10^8 M_solar at 150-175K, and also shows soft X-ray emission. These results hinted at shock heating as a likely mechanism for heating the large amounts of gas in the Taffy bridge and keeping it at these temperatures, after other sources of heating are ruled out. The data we present in this paper are from the VIRUS-P instrument (now called GCMS) on the Harlan J. Smith 2.7m telescope at McDonald Observatory. We detect ionized gas all throughout the Taffy galaxies and in the bridge between them. Interestingly, the ionized gas shows emission line profiles with two velocity components almost all throughout the system. We also show evidence, through line diagnostic (BPT) diagrams, that the velocity component with lower velocity is likely excited by star formation whereas the velocity component with higher velocity is likely excited by shocks. We also find evidence for post-starburst populations in parts of the Taffy system.

  6. PAH Spectroscopy: Past, Present and Future

    Science.gov (United States)

    Mattioda, Andrew

    2016-01-01

    Since their discovery in the 1970's, astronomers, astrophysicists and astrochemists have been intrigued by the nearly ubiquitous unidentified infrared emission (UIR) bands. In the 1980's, investigators determined the most probably source of these emissions was a family of molecules known as Polycyclic Aromatic Hydrocarbons or simply PAHs. In order to better understand these interstellar IR features and utilize them as chemical probes of the cosmos, laboratory spectroscopists have spent the last three decades investigating the spectroscopy of PAHs under astrophysically relevant conditions. This presentation will discuss the similarities and differences in the spectroscopic properties of PAHs as one goes from the Far to Mid to Near infrared wavelength regions and probe the changes observed in PAH spectra as they go from neutral to ionized molecules suspended in an inert gas matrix, to PAHs in a water ice matrix and as a thin film. In selected instances, the experimental results will be compared to theoretical values. The presentation will conclude with a discussion on the future directions of PAH spectroscopy.

  7. PROBING THE FLARE ATMOSPHERES OF M DWARFS USING INFRARED EMISSION LINES

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, Sarah J.; Kowalski, Adam F.; Hawley, Suzanne L.; Hilton, Eric J.; Wisniewski, John P.; Tofflemire, Benjamin M., E-mail: sjschmidt@astro.washington.edu [Dominion Astrophysical Observatory, Herzberg Institute of Astrophysics, National Research Council of Canada (Canada)

    2012-01-20

    We present the results of a campaign to monitor active M dwarfs using infrared spectroscopy, supplemented with optical photometry and spectroscopy. We detected 16 flares during nearly 50 hr of observations on EV Lac, AD Leo, YZ CMi, and VB 8. The three most energetic flares also showed infrared emission, including the first reported detections of P{beta}, P{gamma}, He I {lambda}10830, and Br{gamma} during an M dwarf flare. The strongest flare ({Delta}u = 4.02 on EV Lac) showed emission from H{gamma}, H{delta}, He I {lambda}4471, and Ca II K in the UV/blue and P{beta}, P{gamma}, P{delta}, Br{gamma}, and He I {lambda}10830 in the infrared. The weaker flares ({Delta}u = 1.68 on EV Lac and {Delta}U = 1.38 on YZ CMi) were only observed with photometry and infrared spectroscopy; both showed emission from P{beta}, P{gamma}, and He I {lambda}10830. The strongest infrared emission line, P{beta}, occurred in the active mid-M dwarfs with a duty cycle of {approx}3%-4%. To examine the most energetic flare, we used the static NLTE radiative transfer code RH to produce model spectra based on a suite of one-dimensional model atmospheres. Using a hotter chromosphere than previous one-dimensional atmospheric models, we obtain line ratios that match most of the observed emission lines.

  8. Matrix effect on emission/current correlated analysis in laser-induced breakdown spectroscopy of liquid droplets

    International Nuclear Information System (INIS)

    Huang, J.-S.; Ke, C.-B.; Lin, K.-C.

    2004-01-01

    We have investigated influence of matrix salts on the liquid droplets by laser-induced breakdown spectroscopy (LIBS). An electrospray ionization technique coupled with LIBS is employed to generate the microdroplets of the Na sample solution with various matrix salts added. A sequence of single-shot time-resolved LIB emission signals is detected. The LIB signal intensity integrated within a gate linearly correlates with the plasma-induced current response obtained simultaneously on a single-shot basis. The slopes thus obtained increase with the sample concentration, but appear to be irrespective of different matrix salts, added up to a 2000 mg/l concentration. The matrix salts involved have the same K + cation but different anions. Given a laser radiation emitting at 355 nm with the energy fixed at 23±1 mJ, a limit of detection (LOD) of 1.0 mg/l may be achieved for the Na analysis. The current normalization might have probably taken into account the ablated amount of the sample and the plasma temperature. Accordingly, the LIB/current correlated analysis becomes efficient to suppress the signal fluctuation, improve the LOD determination, and concurrently correct the matrix effect

  9. Positron emission tomography-guided magnetic resonance spectroscopy in Alzheimer disease.

    Science.gov (United States)

    Sheikh-Bahaei, Nasim; Sajjadi, S Ahmad; Manavaki, Roido; McLean, Mary; O'Brien, John T; Gillard, Jonathan H

    2018-04-01

    To determine whether the level of metabolites in magnetic resonance spectroscopy (MRS) is a representative marker of underlying pathological changes identified in positron emission tomographic (PET) images in Alzheimer disease (AD). We performed PET-guided MRS in cases of probable AD, mild cognitive impairment (MCI), and healthy controls (HC). All participants were imaged by 11 C-Pittsburgh compound B ( 11 C-PiB) and 18 F-fluorodeoxyglucose ( 18 F-FDG) PET followed by 3T MRS. PET images were assessed both visually and using standardized uptake value ratios (SUVRs). MRS voxels were placed in regions with maximum abnormality on amyloid (Aβ+) and FDG (hypometabolic) areas on PET scans. Corresponding normal areas were selected in controls. The ratios of total N-acetyl (tNA) group, myoinositol (mI), choline, and glutamate + glutamine over creatine (Cr) were compared between these regions. Aβ + regions had significantly higher (p = 0.02) mI/Cr and lower tNA/Cr (p = 0.02), whereas in hypometabolic areas only tNA/Cr was reduced (p = 0.003). Multiple regression analysis adjusting for sex, age, and education showed mI/Cr was only associated with 11 C-PiB SUVR (p < 0.0001). tNA/Cr, however, was associated with both PiB (p = 0.0003) and 18 F-FDG SUVR (p = 0.006). The level of mI/Cr was not significantly different between MCI and AD (p = 0.28), but tNA/Cr showed significant decline from HC to MCI to AD (p = 0.001, p = 0.04). mI/Cr has significant temporal and spatial associations with Aβ and could potentially be considered as a disease state biomarker. tNA is an indicator of early neurodegenerative changes and might have a role as disease stage biomarker and also as a valuable surrogate marker for treatment response. Ann Neurol 2018;83:771-778. © 2018 American Neurological Association.

  10. Photon emission statistics and photon tracking in single-molecule spectroscopy of molecular aggregates : Dimers and trimers

    NARCIS (Netherlands)

    Bloemsma, E. A.; Knoester, J.

    2012-01-01

    Based on the generating function formalism, we investigate broadband photon statistics of emission for single dimers and trimers driven by a continuous monochromatic laser field. In particular, we study the first and second moments of the emission statistics, which are the fluorescence excitation

  11. Comparison of beam emission spectroscopy and gas puff imaging edge fluctuation measurements in National Spherical Torus Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Sechrest, Y.; Munsat, T. [Department of Physics, University of Colorado, Boulder, Colorado 80309 (United States); Smith, D. [Department of Engineering Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States); Stotler, D. P.; Zweben, S. J. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08540 (United States)

    2015-05-15

    In this study, the close physical proximity of the Gas Puff Imaging (GPI) and Beam Emission Spectroscopy (BES) diagnostics on the National Spherical torus Experiment (NSTX) is leveraged to directly compare fluctuation measurements, and to study the local effects of the GPI neutral deuterium puff during H-mode plasmas without large Edge Localized Modes. The GPI and BES views on NSTX provide partially overlapping coverage of the edge and scrape-off layer (SOL) regions above the outboard midplane. The separation in the toroidal direction is 16°, and field lines passing through diagnostic views are separated by ∼20 cm in the direction perpendicular to the magnetic field. Strong cross-correlation is observed, and strong cross-coherence is seen for frequencies between 5 and 15 kHz. Also, probability distribution functions of fluctuations measured ∼3 cm inside the separatrix exhibit only minor deviations from a normal distribution for both diagnostics, and good agreement between correlation length estimates, decorrelation times, and structure velocities is found at the ±40% level. While the two instruments agree closely in many respects, some discrepancies are observed. Most notably, GPI normalized fluctuation levels exceed BES fluctuations by a factor of ∼9. BES mean intensity is found to be sensitive to the GPI neutral gas puff, and BES normalized fluctuation levels for frequencies between 1 and 10 kHz are observed to increase during the GPI puff.

  12. Comparison of beam emission spectroscopy and gas puff imaging edge fluctuation measurements in National Spherical Torus Experiment

    International Nuclear Information System (INIS)

    Sechrest, Y.; Munsat, T.; Smith, D.; Stotler, D. P.; Zweben, S. J.

    2015-01-01

    In this study, the close physical proximity of the Gas Puff Imaging (GPI) and Beam Emission Spectroscopy (BES) diagnostics on the National Spherical torus Experiment (NSTX) is leveraged to directly compare fluctuation measurements, and to study the local effects of the GPI neutral deuterium puff during H-mode plasmas without large Edge Localized Modes. The GPI and BES views on NSTX provide partially overlapping coverage of the edge and scrape-off layer (SOL) regions above the outboard midplane. The separation in the toroidal direction is 16°, and field lines passing through diagnostic views are separated by ∼20 cm in the direction perpendicular to the magnetic field. Strong cross-correlation is observed, and strong cross-coherence is seen for frequencies between 5 and 15 kHz. Also, probability distribution functions of fluctuations measured ∼3 cm inside the separatrix exhibit only minor deviations from a normal distribution for both diagnostics, and good agreement between correlation length estimates, decorrelation times, and structure velocities is found at the ±40% level. While the two instruments agree closely in many respects, some discrepancies are observed. Most notably, GPI normalized fluctuation levels exceed BES fluctuations by a factor of ∼9. BES mean intensity is found to be sensitive to the GPI neutral gas puff, and BES normalized fluctuation levels for frequencies between 1 and 10 kHz are observed to increase during the GPI puff

  13. Proton magnetic resonance spectroscopy and single photon emission CT in patients with olivopontocerebellar atrophy

    International Nuclear Information System (INIS)

    Ikuta, Naomi

    1998-01-01

    Using proton magnetic resonance spectroscopy ( 1 H-MRS) and single photon emission CT (SPECT), the cerebellum of patients with olivopontocerebellar atrophy (OPCA) and of age-matched control subjects was studied. A spectrum was collected from a 27 cm 3 (3 x 3 x 3 cm) voxel in the cerebellum containing white and gray matters in order to measure the distribution and relative signal intensities of N-acetylaspartate (NAA), creatine (Cre) and choline (Cho). In the cerebellum of the patients with OPCA, mean NAA/Cre ratios for OPCA patients were significantly decreased compared with normal control subjects (OPCA, 1.01±0.247; controls, 1.526±0.144: p<0.001). Mean NAA/Cho ratios for OPCA patients were slightly decreased (OPCA, 1.285±0.228; controls 1.702±0.469: p<0.06). Cho/Cre ratios valued in the cerebellum of OPCA patients were not significantly different from those in normal controls (OPCA, 0.793±0.186; controls, 0.946±0.219). The ratio of RI count in the cerebellum to that in the occipital lobe was significantly decreased in OPCA patients (OPCA, 0.947±0.096; controls, 1.06±0.063: p<0.01). Cerebellar signs were assessed including gait ataxia, limb ataxia, dysarthria, saccadic pursuit, and nystagmus separately or in combination. In patients with more severe ataxic gait and dysarthria, MRS revealed slightly lowered NAA/Cre ratio. There was no significant correlation between NAA/Cre ratio and severity of other clinical signs. The MRS and SPECT findings give a confirmative evidence of hypofunction in cerebellum of patients with OPCA. (author)

  14. Study of the deuteron emission in the $\\beta$-decay of $^{6}$He

    CERN Multimedia

    Karny, M; Tengblad, O; Riisager, K; Perkowski, J; Garcia borge, M J; Raabe, R; Kowalska, M; Fynbo, H O U; Perea martinez, A; Ter-akopian, G; Huyse, M L

    The main goal of the present proposal is to measure the continuous spectrum of deuterons emitted in the $\\beta$-decay of $^{6}$He. In particular, we want to focus on the low energy part of the spectrum, below 400 keV, which could not be accessed by all previous experiments. For the decay spectroscopy the Warsaw Optical Time Projection Chamber (OTPC) will be used. The bunches of $^{6}$He ions produced by REX-ISOLDE facility will be implanted into the active volume of the OTPC, where the rare events of deuteron emission will be recorded, practically background free.

  15. Photoemission spectroscopy study on interfacial energy level alignments in tandem organic light-emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Ou, Qing-Dong; Li, Chi; Li, Yan-Qing, E-mail: yqli@suda.edu.cn; Tang, Jian-Xin, E-mail: jxtang@suda.edu.cn

    2015-10-01

    Highlights: • The interface energetics of tandem OLEDs is overviewed. • Energy level alignment in CGLs is addressed via photoemission spectroscopy. • The n-type doping effect with cesium compounds is discussed. • Hole injection barrier is dependent on oxygen vacancies in transition metal oxides. • Device lifetime of tandem OLEDs is sensitive to interfacial stability of CGLs. - Abstract: Organic light-emitting diodes (OLEDs) using a tandem structure offer a highly attractive option for the applications of next-generation flat panel displays and solid-state lighting due to the extremely high brightness and efficiency along with the long operational lifetime. In general, reliable information about interface energetics of the charge generation layers (CGLs), which plays the central role in charge generation and carrier injection into the stacked emission units, is highly desirable and advantageous for interface engineering and the performance optimization of tandem OLEDs. In this review, our recent studies on tandem OLEDs are overviewed, especially from interface energetics perspective via photoemission spectroscopy. The electronic structures of various transition metal oxide (TMO)-based CGLs and their role in charge generation process are reviewed, addressing the n-type doping impact of organic layers in CGLs, thermal annealing-induced oxygen vacancy in TMOs, and the interfacial stability of CGLs on the device operational lifetime. The resulting energy level alignments are summarized in correspondence with tandem OLED performance.

  16. Some aspects of emission and volatization of trace elements on coal combustion

    International Nuclear Information System (INIS)

    Sanchez, J.C.D.; Formoso, M.L.L.; Bristoti, A.

    1987-01-01

    The present research work was carried out an industrial plant which uses a mixture of coals from Leao and Recreio mines for steam generation in a bioler with a capacity of 160t/h of steam. Coal samples from Leao, Recreio and the correspondent mixture were taken, as well as samples from the products of combustion. The present study fundamentally aims at assessing the emission of trace elements and major components of mineral matter, present in coal, in order to bring subsidies for a more efficient control over atmospheric, terrestrial and water pollution. Emissions of trace elements: As, B, Be, Cd, Cl, Co, Cr, Cu, F, Ga, Hg, Mn, Mo, Ni, Pb, S, Sn, V, Zn, Zr, and major elements: Si, Al, Ca, Mg, Ti, Fe, K and P, were calculated. Moreover, the average emission of particulate matter to the atmosphere was evaluated. In the present work, analytical procedures as X-ray spectroscopy and absorption spectroscopy and techniques used for the determination of F and Cl in Brazilian coals are cited. (author) [pt

  17. Laser-Induced Breakdown Spectroscopy (LIBS for Monitoring the Formation of Hydroxyapatite Porous Layers

    Directory of Open Access Journals (Sweden)

    Daniel Sola

    2017-12-01

    Full Text Available Laser-induced breakdown spectroscopy (LIBS is applied to characterize the formation of porous hydroxyapatite layers on the surface of 0.8CaSiO3-0.2Ca3(PO42 biocompatible eutectic glass immersed in simulated body fluid (SBF. Compositional and structural characterization analyses were also conducted by field emission scanning electron microscopy (FESEM, energy dispersive X-ray spectroscopy (EDX, and micro-Raman spectroscopy.

  18. Building and analyzing models from data by stirred tank experiments for investigation of matrix effects caused by inorganic matrices and selection of internal standards in Inductively Coupled Plasma-Atomic Emission Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Grotti, Marco [Dipartimento di Chimica e Chimica Industriale, Via Dodecaneso 31, 16146 Genova (Italy)], E-mail: grotti@chimica.unige.it; Paredes, Eduardo; Maestre, Salvador; Todoli, Jose Luis [Departamento de Quimica Analitica, Nutricion y Bromatologia, Universidad de Alicante, 03080, Alicante (Spain)

    2008-05-15

    Interfering effects caused by inorganic matrices (inorganic acids as well as easily ionized elements) in inductively coupled plasma-atomic emission spectroscopy have been modeled by regression analysis of experimental data obtained using the 'stirred tank method'. The main components of the experimental set-up were a magnetically-stirred container and two peristaltic pumps. In this way the matrix composition was gradually and automatically varied, while the analyte concentration remained unchanged throughout the experiment. An inductively coupled plasma spectrometer with multichannel detection based on coupled charge device was used to simultaneously measure the emission signal at several wavelengths when the matrix concentration was modified. Up to 50 different concentrations were evaluated in a period of time of 10 min. Both single interfering species (nitric, hydrochloric and sulphuric acids, sodium and calcium) and different mixtures (aqua regia, sulfonitric mixture, sodium-calcium mixture and sodium-nitric acid mixture) were investigated. The dependence of the emission signal on acid concentration was well-fitted by logarithmic models. Conversely, for the easily ionized elements, 3-order polynomial models were more suitable to describe the trends. Then, the coefficients of these models were used as 'signatures' of the matrix-related signal variations and analyzed by principal component analysis. Similarities and differences among the emission lines were highlighted and discussed, providing a new insight into the interference phenomena, mainly with regards to the combined effect of concomitants. The combination of the huge amount of data obtained by the stirred tank method in a short period of time and the speed of analysis of principal component analysis provided a judicious means for the selection of the optimal internal standard in inductively coupled plasma-atomic emission spectroscopy.

  19. Impurity behaviour in the EXTRAP-T1 pinch experiment studied by VUV spectroscopy

    International Nuclear Information System (INIS)

    Brzozowski, J.H.; Kaellne, E.; Zastrow, K.D. Royal Inst. of Tech., Stockholm

    1989-11-01

    Vacuum ultraviolet observations from a low-q, high-beta pinch plasma (Extrap-T1) are presented and related to other plasma parameters. Qualitative analysis of the line emission from low ionization stages of carbon and oxygen, which dominate this spectrum, gives information on the ionization stages reach a steady state during the equilibrium phase of the discharge, and that line radiation does not dominate the power balance. The energy balance of the plasma discharge is analysed from the vacuum ultraviolet line and continuum spectroscopy data. Furthermore it is found, that the time behaviour of the plasma resistance can be understood using the results from the spectroscopic observations. (authors)

  20. Matrix Isolation Spectroscopy Applied to Positron Moderatioin in Cryogenic Solids

    Science.gov (United States)

    2011-07-01

    Current Positron Applications • 2-γ decay exploited in Positron Emission Tomography (PET) scanners. • Positrons localize & annihilate preferentially at...Air Force  Eglin Air Force Base AFRL-RW-EG-TP-2011-024 Matrix Isolation Spectroscopy Applied to Positron Moderation in Cryogenic Solids Distribution... Spectroscopy Applied to Positron Moderation in Cryogenic Solids 5a. CONTRACT NUMBER 5b. GRANT NUMBER 62602F 5c. PROGRAM ELEMENT NUMBER 6

  1. Positron deep-level transient spectroscopy in semi-insulating-GaAs using the positron velocity transient method

    International Nuclear Information System (INIS)

    Tsia, M.; Fung, S.; Beling, C.D.

    2001-01-01

    Recently a new semiconductor defect spectroscopy, namely positron deep level transient spectroscopy (PDLTS) has been proposed that combines the energy selectivity of deep level transient spectroscopy with the structural sensitivity of positron annihilation spectroscopy. This paper focuses on one variant of PDLTS, namely positron velocity PDLTS, which has no sensitivity towards vacancy defects but nevertheless is useful in studying deep levels in semi-insulators. In the present study the electric field within the depletion region of semi-insulating GaAs is monitored through the measurement of the small Doppler shift in the annihilation radiation that comes from this region as a result of positron drift. The drift is the result of an increasing electric field produced by space charge building up from ionizing deep level defects. Doppler shift transients are measured between 50-300 K. The EL2 level emission transients are clearly seen at temperatures around 300 K that yield E C -0.78±0.08eV for the energy of EL2. The EL2 electron capture rate is found to have an activation energy of 0.61±0.08eV which most probably arises from freeze out of conduction electrons. We find the surprising result that emission and capture transients can be seen at temperatures below 200 K. Possible reasons for these transients are discussed. (orig.)

  2. Solvent induced fluorescence enhancement of graphene oxide studied by ultrafast spectroscopy

    Science.gov (United States)

    Zhao, Litao; Chen, Jinquan; He, Xiaoxiao; Yu, Xiantong; Yan, Shujun; Zhang, Sanjun; Pan, Haifeng; Xu, Jianhua

    2018-05-01

    Femtosecond transient absorption (TA) spectroscopy combined with picosecond time resolved fluorescence (TRF) were used to reveal the fluorescence kinetics of graphene oxide (GO) in water, ethanol and water-ethanol mixtures. Size-independent fluorescence of GO were observed in water, and pH-dependent fluorescence spectra could be fitted well by a triple emission relaxation with peaks around 440 nm, 500 nm, and 590 nm respectively. The results indicate that polycyclic aromatic hydrocarbons (PAHs) linked by oxygen-containing functional groups dominate GO's fluorescence emission. GO's fluorescence quantum yield was measured to be 2.8% in ethanol but 1.2% in water. The three decay components fluorescence decay, as well as the transient absorption dynamics with an offset, confirmed this solvent induced fluorescence enhancement. GO's Raman spectral signals showed that GO in ethanol has a smaller average size of PAHs than that of GO in water. Therefore, besides other enhancement effects reported in literatures, we proposed that solvents could also change the size of PAHs, resulting in a photoluminescence enhancement. Our experimental data demonstrates that GO's quantum yield could be up to 2.8% in water and 8.4% in ethanol and this observation may help ones to improve GO's photoluminescence efficiency as well as its applications in solution.

  3. X-ray spectroscopy of electronic structure of amorphous silicon and silicyne

    International Nuclear Information System (INIS)

    Mashin, A.I.; Khokhlov, A.F.; Mashin, N.I.; Domashevskaya, Eh.P.; Terekhov, V.A.

    2001-01-01

    SiK β and SiL 23 emission spectra of crystalline silicon (c-Si), amorphous hydrogenated silicon (α-Si:H) and silicyne have been studied by X-ray and ultrasoft X-ray spectroscopy. It is observed that SiL 23 emission spectra of silicyne displays not two maximums, as it usually observed for the c-Si and α-Si:H, but three ones. The third one is seen at high energies near 95.7 eV, and has an intensity about 75%. An additional maximum in the short- wave part of SiK β emission spectrum is observed. This difference of shapes of X-ray spectra between α-Si:H and silicyne is explained by the presence in silicyne a strong π-component of chemical bonds of a silicon atoms in silicyne [ru

  4. Measurement of spatially resolved gas-phase plasma temperatures by optical emission and laser-induced fluorescence spectroscopy

    International Nuclear Information System (INIS)

    Davis, G.P.; Gottscho, R.A.

    1983-01-01

    Knowledge of the energy distributions of particles in glow discharges is crucial to the understanding and modeling of plasma reactors used in microelectronic manufacturing. Reaction rates, available product channels, and transport phenomena all depend upon the partitioning of energy in the discharge. Because of the nonequilibrium nature of glow discharges, however, the distribution of energy among different species and among different degrees of freedom cannot be characterized simply by one temperature. The extent to which different temperatures are needed for each degree of freedom and for each species is not known completely. How plasma operating conditions affect these energy distributions is also an unanswered question. We have investigated the temperatures of radicals, ions, and neutrals in CCl 4 , CCl 4 /N 2 (2%), and N 2 discharges. In the CCl 4 systems, we probed the CCl rotational and vibrational energy distributions by laser-induced fluorescence spectroscopy. The rotational distribution always appeared to be thermal but under identical operating conditions was found to be roughly-equal400 K colder than the vibrational distribution. The rotational temperature at any point in the discharge was strongly dependent upon both applied power and surface temperature. Thermal gradients as large as 10 2 K mm -1 were observed near electrode surfaces but the bulk plasmas were isothermal. When 2% N 2 was added to a CCl 4 discharge, N 2 second positive emission was observed and used to estimate the N 2 rotational temperature. The results suggest that emission from molecular actinometers can be used to measure plasma temperatures, providing such measurements are not made in close proximity to surfaces

  5. Simultaneous detection of electronic structure changes from two elements of a bifunctional catalyst using wavelength-dispersive X-ray emission spectroscopy and in situ electrochemistry.

    Science.gov (United States)

    Gul, Sheraz; Ng, Jia Wei Desmond; Alonso-Mori, Roberto; Kern, Jan; Sokaras, Dimosthenis; Anzenberg, Eitan; Lassalle-Kaiser, Benedikt; Gorlin, Yelena; Weng, Tsu-Chien; Zwart, Petrus H; Zhang, Jin Z; Bergmann, Uwe; Yachandra, Vittal K; Jaramillo, Thomas F; Yano, Junko

    2015-04-14

    Multielectron catalytic reactions, such as water oxidation, nitrogen reduction, or hydrogen production in enzymes and inorganic catalysts often involve multimetallic clusters. In these systems, the reaction takes place between metals or metals and ligands to facilitate charge transfer, bond formation/breaking, substrate binding, and release of products. In this study, we present a method to detect X-ray emission signals from multiple elements simultaneously, which allows for the study of charge transfer and the sequential chemistry occurring between elements. Kβ X-ray emission spectroscopy (XES) probes charge and spin states of metals as well as their ligand environment. A wavelength-dispersive spectrometer based on the von Hamos geometry was used to disperse Kβ signals of multiple elements onto a position detector, enabling an XES spectrum to be measured in a single-shot mode. This overcomes the scanning needs of the scanning spectrometers, providing data free from temporal and normalization errors and therefore ideal to follow sequential chemistry at multiple sites. We have applied this method to study MnOx-based bifunctional electrocatalysts for the oxygen evolution reaction (OER) and the oxygen reduction reaction (ORR). In particular, we investigated the effects of adding a secondary element, Ni, to form MnNiOx and its impact on the chemical states and catalytic activity, by tracking the redox characteristics of each element upon sweeping the electrode potential. The detection scheme we describe here is general and can be applied to time-resolved studies of materials consisting of multiple elements, to follow the dynamics of catalytic and electron transfer reactions.

  6. Quantitative frequency-domain fluorescence spectroscopy in tissues and tissue-like media

    Science.gov (United States)

    Cerussi, Albert Edward

    1999-09-01

    In the never-ending quest for improved medical technology at lower cost, modern near-infrared optical spectroscopy offers the possibility of inexpensive technology for quantitative and non-invasive diagnoses. Hemoglobin is the dominant chromophore in the 700-900 nm spectral region and as such it allows for the optical assessment of hemoglobin concentration and tissue oxygenation by absorption spectroscopy. However, there are many other important physiologically relevant compounds or physiological states that cannot be effectively sensed via optical methods because of poor optical contrast. In such cases, contrast enhancements are required. Fluorescence spectroscopy is an attractive component of optical tissue spectroscopy. Exogenous fluorophores, as well as some endogenous ones, may furnish the desperately needed sensitivity and specificity that is lacking in near-infrared optical tissue spectroscopy. The main focus of this thesis was to investigate the generation and propagation of fluorescence photons inside tissues and tissue-like media (i.e., scattering dominated media). The standard concepts of fluorescence spectroscopy have been incorporated into a diffusion-based picture that is sometimes referred to as photon migration. The novelty of this work lies in the successful quantitative recovery of fluorescence lifetimes, absolute fluorescence quantum yields, fluorophore concentrations, emission spectra, and both scattering and absorption coefficients at the emission wavelength from a tissue-like medium. All of these parameters are sensitive to the fluorophore local environment and hence are indicators of the tissue's physiological state. One application demonstrating the capabilities of frequency-domain lifetime spectroscopy in tissue-like media is a study of the binding of ethidium bromide to bovine leukocytes in fresh milk. Ethidium bromide is a fluorescent dye that is commonly used to label DNA, and hence visualize chromosomes in cells. The lifetime of

  7. Spatially Resolved Imaging and Spectroscopy of Candidate Dual Active Galactic Nuclei

    Science.gov (United States)

    McGurk, R. C.; Max, C. E.; Medling, A. M.; Shields, G. A.; Comerford, J. M.

    2015-09-01

    When galaxies merge, both central supermassive black holes are immersed in a dense and chaotic environment. If there is sufficient gas in the nuclear regions, one expects to see close pairs of active galactic nuclei (AGNs), or dual AGNs, in a fraction of galaxy mergers. However, finding them remains a challenge. The presence of double-peaked [O iii] emission lines has been proposed as a technique to select dual AGNs efficiently. We studied a sample of double-peaked narrow [O iii] emitting AGNs from Sloan Digital Sky Survey (SDSS) DR7. By obtaining new and archival high spatial resolution images taken with the Keck II Laser Guide Star Adaptive Optics system and the near-infrared camera NIRC2, we show that 30% of 140 double-peaked [O iii] emission line SDSS AGNs have two spatial components within a 3″ radius. However, spatially resolved spectroscopy or X-ray observations are needed to confirm these galaxy pairs as systems containing two AGNs. We followed up three spatially double candidate dual AGNs with integral field spectroscopy from Keck OSIRIS and 10 candidates with long-slit spectroscopy from the Shane Kast Double Spectrograph at Lick Observatory. We find that the double-peaked emission lines in our sample of 12 candidates are caused by: one dual AGN (SDSS J114642.47+511029.6), one confirmed outflow and four likely outflows, two pairs of star-forming galaxies, one candidate indeterminate due to sky line interference, and three AGNs with spatially coincident double [O iii] peaks, likely due to unresolved complex narrow line kinematics, outflows, binary AGN, or small-scale jets.

  8. SPATIALLY RESOLVED IMAGING AND SPECTROSCOPY OF CANDIDATE DUAL ACTIVE GALACTIC NUCLEI

    Energy Technology Data Exchange (ETDEWEB)

    McGurk, R. C.; Max, C. E. [Astronomy Department and UCO-Lick Observatory, University of California, Santa Cruz, CA 95064 (United States); Medling, A. M. [Research School of Astronomy and Astrophysics, Australian National University, Mount Stromlo Observatory, Cotter Road, Weston Creek, ACT 2611 (Australia); Shields, G. A. [Laguna Falls Institute for Astrophysics, Austin, TX 78746 (United States); Comerford, J. M., E-mail: rosalie.mcgurk@gmail.com, E-mail: max@ucolick.org, E-mail: anne.medling@anu.edu.au, E-mail: shields@lfastro.org, E-mail: julie.comerford@colorado.edu [Department of Astrophysical and Planetary Sciences, University of Colorado, Boulder, CO 80309 (United States)

    2015-09-20

    When galaxies merge, both central supermassive black holes are immersed in a dense and chaotic environment. If there is sufficient gas in the nuclear regions, one expects to see close pairs of active galactic nuclei (AGNs), or dual AGNs, in a fraction of galaxy mergers. However, finding them remains a challenge. The presence of double-peaked [O iii] emission lines has been proposed as a technique to select dual AGNs efficiently. We studied a sample of double-peaked narrow [O iii] emitting AGNs from Sloan Digital Sky Survey (SDSS) DR7. By obtaining new and archival high spatial resolution images taken with the Keck II Laser Guide Star Adaptive Optics system and the near-infrared camera NIRC2, we show that 30% of 140 double-peaked [O iii] emission line SDSS AGNs have two spatial components within a 3″ radius. However, spatially resolved spectroscopy or X-ray observations are needed to confirm these galaxy pairs as systems containing two AGNs. We followed up three spatially double candidate dual AGNs with integral field spectroscopy from Keck OSIRIS and 10 candidates with long-slit spectroscopy from the Shane Kast Double Spectrograph at Lick Observatory. We find that the double-peaked emission lines in our sample of 12 candidates are caused by: one dual AGN (SDSS J114642.47+511029.6), one confirmed outflow and four likely outflows, two pairs of star-forming galaxies, one candidate indeterminate due to sky line interference, and three AGNs with spatially coincident double [O iii] peaks, likely due to unresolved complex narrow line kinematics, outflows, binary AGN, or small-scale jets.

  9. SPATIALLY RESOLVED IMAGING AND SPECTROSCOPY OF CANDIDATE DUAL ACTIVE GALACTIC NUCLEI

    International Nuclear Information System (INIS)

    McGurk, R. C.; Max, C. E.; Medling, A. M.; Shields, G. A.; Comerford, J. M.

    2015-01-01

    When galaxies merge, both central supermassive black holes are immersed in a dense and chaotic environment. If there is sufficient gas in the nuclear regions, one expects to see close pairs of active galactic nuclei (AGNs), or dual AGNs, in a fraction of galaxy mergers. However, finding them remains a challenge. The presence of double-peaked [O iii] emission lines has been proposed as a technique to select dual AGNs efficiently. We studied a sample of double-peaked narrow [O iii] emitting AGNs from Sloan Digital Sky Survey (SDSS) DR7. By obtaining new and archival high spatial resolution images taken with the Keck II Laser Guide Star Adaptive Optics system and the near-infrared camera NIRC2, we show that 30% of 140 double-peaked [O iii] emission line SDSS AGNs have two spatial components within a 3″ radius. However, spatially resolved spectroscopy or X-ray observations are needed to confirm these galaxy pairs as systems containing two AGNs. We followed up three spatially double candidate dual AGNs with integral field spectroscopy from Keck OSIRIS and 10 candidates with long-slit spectroscopy from the Shane Kast Double Spectrograph at Lick Observatory. We find that the double-peaked emission lines in our sample of 12 candidates are caused by: one dual AGN (SDSS J114642.47+511029.6), one confirmed outflow and four likely outflows, two pairs of star-forming galaxies, one candidate indeterminate due to sky line interference, and three AGNs with spatially coincident double [O iii] peaks, likely due to unresolved complex narrow line kinematics, outflows, binary AGN, or small-scale jets

  10. Probing interfacial characteristics of rubrene/pentacene and pentacene/rubrene bilayers with soft X-ray spectroscopy.

    Science.gov (United States)

    Seo, J H; Pedersen, T M; Chang, G S; Moewes, A; Yoo, K-H; Cho, S J; Whang, C N

    2007-08-16

    The electronic structure of rubrene/pentacene and pentacene/rubrene bilayers has been investigated using soft X-ray absorption spectroscopy, resonant X-ray emission spectroscopy, and density-functional theory calculations. X-ray absorption and emission measurements reveal that it has been possible to alter the lowest unoccupied and the highest occupied molecular orbital states of rubrene in rubrene/pentacene bilayer. In the reverse case, one gets p* molecular orbital states originating from the pentacene layer. Resonant X-ray emission spectra suggest a reduction in the hole-transition probabilities for the pentacene/rubrene bilayer in comparison to reference pentacene layer. For the rubrenepentacene structure, the hole-transition probability shows an increase in comparison to the rubrene reference. We also determined the energy level alignment of the pentacene-rubrene interface by using X-ray and ultraviolet photoelectron spectroscopy. From these comparisons, it is found that the electronic structure of the pentacene-rubrene interface has a strong dependence on interface characteristics which depends on the order of the layers used.

  11. Spectral emissivity of surface blackbody calibrators

    DEFF Research Database (Denmark)

    Clausen, Sønnik

    2007-01-01

    The normal spectral emissivity of commercial infrared calibrators is compared with measurements of anodized aluminum samples and grooved aluminum surfaces coated with Pyromark. Measurements performed by FTIR spectroscopy in the wavelength interval from 2 to 20 mu m and at temperatures between 5...

  12. Laser induced breakdown spectroscopy in water | Boudjemai ...

    African Journals Online (AJOL)

    Sparks were generated in water by the focused beam of a Q-switched Nd:YAG laser Na and Cu aqueous solutions exhibited fluorescence signal on the decaying edge of plasma emission at their respective characteristic resonance lines. Potential of the laser plasma spectroscopy for in-situ pollution monitoring in natural ...

  13. Analysis of organic vapors with laser induced breakdown spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Nozari, Hadi; Tavassoli, Seyed Hassan [Laser and Plasma Research Institute, Shahid Beheshti University, G. C, 1983963113 Evin, Tehran (Iran, Islamic Republic of); Rezaei, Fatemeh, E-mail: fatemehrezaei@kntu.ac.ir [Department of Physics, K. N. Toosi University of Technology, 15875-4416 Shariati, Tehran (Iran, Islamic Republic of)

    2015-09-15

    In this paper, laser induced breakdown spectroscopy (LIBS) is utilized in the study of acetone, ethanol, methanol, cyclohexane, and nonane vapors. Carbon, hydrogen, oxygen, and nitrogen atomic emission spectra have been recorded following laser-induced breakdown of the organic vapors that are mixed with air inside a quartz chamber at atmospheric pressure. The plasma is generated with focused, Q-switched Nd:YAG radiation at the wavelength of 1064 nm. The effects of ignition and vapor pressure are discussed in view of the appearance of the emission spectra. The recorded spectra are proportional to the vapor pressure in air. The hydrogen and oxygen contributions diminish gradually with consecutive laser-plasma events without gas flow. The results show that LIBS can be used to characterize organic vapor.

  14. Analysis of organic vapors with laser induced breakdown spectroscopy

    International Nuclear Information System (INIS)

    Nozari, Hadi; Tavassoli, Seyed Hassan; Rezaei, Fatemeh

    2015-01-01

    In this paper, laser induced breakdown spectroscopy (LIBS) is utilized in the study of acetone, ethanol, methanol, cyclohexane, and nonane vapors. Carbon, hydrogen, oxygen, and nitrogen atomic emission spectra have been recorded following laser-induced breakdown of the organic vapors that are mixed with air inside a quartz chamber at atmospheric pressure. The plasma is generated with focused, Q-switched Nd:YAG radiation at the wavelength of 1064 nm. The effects of ignition and vapor pressure are discussed in view of the appearance of the emission spectra. The recorded spectra are proportional to the vapor pressure in air. The hydrogen and oxygen contributions diminish gradually with consecutive laser-plasma events without gas flow. The results show that LIBS can be used to characterize organic vapor

  15. Positron annihilation spectroscopy in materials structure studies

    International Nuclear Information System (INIS)

    Grafutin, Viktor I; Prokop'ev, Evgenii P

    2002-01-01

    A relatively new method of materials structure analysis - positron annihilation spectroscopy (PAS) - is reviewed. Measurements of positron lifetimes, the determination of positron 3γ- and 2γ-annihilation probabilities, and an investigation of the effects of different external factors on the fundamental characteristics of annihilation constitute the basis for this promising method. The ways in which the positron annihilation process operates in ionic crystals, semiconductors, metals and some condensed matter systems are analyzed. The scope of PAS is described and its prospects for the study of the electronic and defect structures are discussed. The applications of positron annihilation spectroscopy in radiation physics and chemistry of various substances as well as in physics and chemistry of solutions are exemplified. (instruments and methods of investigation)

  16. Impurity study of TMX using ultraviolet spectroscopy

    International Nuclear Information System (INIS)

    Allen, S.L.; Strand, O.T.; Moos, H.W.; Fortner, R.J.; Nash, T.J.; Dietrich, D.D.

    1981-01-01

    An extreme ultraviolet (EUV) study of the emissions from intrinsic and injected impurities in TMX is presented. Two survey spectrographs were used to determine that the major impurities present were oxygen, nitrogen, carbon, and titanium. Three absolutely-calibrated monochromators were used to measure the time histories and radial profiles of these impurity emissions in the central cell and each plug. Two of these instruments were capable of obtaining radial profiles as a function of time in a single shot

  17. Advances in X-ray spectroscopy contributions in honour of professor Y. Cauchois

    CERN Document Server

    Bonnelle, C

    1982-01-01

    Advances in X-Ray Spectroscopy covers topics relevant to the advancement of X-ray spectroscopy technology. The book is a collection of papers written by specialists in X-ray spectroscopy and pays tribute to the scientific work of Prof. Yvette Cauchois. The text is organized into four parts. Part I covers the analysis of X-ray transitions between atomic levels and relativistic theories of X-ray emission satellites and electron BremsStrahlung. Part II reviews the means provided by X-ray spectroscopy for the determination of the electronic structure of solids, while Part III discusses methods of

  18. Visible light emission from silicon implanted and annealed SiO2layers

    International Nuclear Information System (INIS)

    Ghislotti, G.; Nielsen, B.; Asoka-Kumar, P.; Lynn, K.G.; Di Mauro, L.F.; Bottani, C.E.; Corni, F.; Tonini, R.; Ottaviani, G.P.

    1997-01-01

    Silicon implanted and annealed SiO 2 layers are studied using photoluminescence (PL) and positron annihilation spectroscopy (PAS). Two PL emission bands are observed. A band centered at 560 nm is present in as-implanted samples and it is still observed after 1,000 C annealing. The emission time is fast. A second band centered at 780 nm is detected after 1,000 C annealing. The intensity of the 780 nm band further increased when hydrogen annealing was performed. The emission time is long (1 micros to 0.2 ms). PAS results show that defects produced by implantation anneal at 600 C. Based on the annealing behavior and on the emission times, the origin of the two bands is discussed

  19. Tunneling-Electron-Induced Light Emission from Single Gold Nanoclusters.

    Science.gov (United States)

    Yu, Arthur; Li, Shaowei; Czap, Gregory; Ho, W

    2016-09-14

    The coupling of tunneling electrons with the tip-nanocluster-substrate junction plasmon was investigated by monitoring light emission in a scanning tunneling microscope (STM). Gold atoms were evaporated onto the ∼5 Å thick Al2O3 thin film grown on the NiAl (110) surface where they formed nanoclusters 3-7 nm wide. Scanning tunneling spectroscopy (STS) of these nanoclusters revealed quantum-confined electronic states. Spatially resolved photon imaging showed localized emission hot spots. Size dependent study and light emission from nanocluster dimers further support the viewpoint that coupling of tunneling electrons to the junction plasmon is the main radiative mechanism. These results showed the potential of the STM to reveal the electronic and optical properties of nanoscale metallic systems in the confined geometry of the tunnel junction.

  20. Study of high density polyethylene under UV irradiation or mechanical stress by fluorescence spectroscopy

    International Nuclear Information System (INIS)

    Douminge, L.

    2010-05-01

    Due to their diversity and their wide range of applications, polymers have emerged in our environment. For technical applications, these materials can be exposed to aggressive environment leading to an alteration of their properties. The effects of this degradation are linked to the concept of life duration, corresponding to the time required for a property to reach a threshold below which the material becomes unusable. Monitoring the ageing of polymer materials constitute a major challenge. Fluorescence spectroscopy is a technique able to provide accurate information concerning this issue. In this study, emphasis was placed on the use of fluorescence spectroscopy to study the phenomena involved in either the UV radiation or mechanical stresses of a polymer. In the case of high density polyethylene, the lack of intrinsic fluorescent signal leads to the use of a dye. This dye gives a fluorescent response depending on its microenvironment. All modifications in the macromolecular chain generate a shift of the fluorescent peak. This work can be dissociated in two major parts, on one hand the influence of UV aging on the fluorescent response and in another hand the influence of mechanical stresses. In the first part, complementary analyses like FTIR or DSC are used to correlate fluorescent results with known photo degradation mechanisms. The results show the great sensibility of the technique to the microstructural rearrangement in the polymer. In the second part, the dependence between the stress and the fluorescence emission gives opportunity to evaluate internal stresses in the material during cyclic solicitations. (author)

  1. Determination of Aluminium Content in Aluminium Hydroxide Formulation by FT-NIR Transmittance Spectroscopy

    DEFF Research Database (Denmark)

    Lai, Xuxin; Zheng, Yiwu; Søndergaard, Ib

    2007-01-01

    A method for determining the aluminium content of an aluminium hydroxide suspension using near infrared (NIR) transmittance spectroscopy has been developed. Inductively coupled plasma-atomic emission spectroscopy (ICP-AES) was used as reference method. The factors influencing the NIR analysis...... aluminium content in aluminium hydroxide suspension. (c) 2007 Elsevier Ltd. All rights reserved....

  2. Absorption and emission spectroscopic characterization of 10-phenyl-isoalloxazine derivatives

    International Nuclear Information System (INIS)

    Shirdel, J.; Penzkofer, A.; Prochazka, R.; Daub, J.; Hochmuth, E.; Deutzmann, R.

    2006-01-01

    The flavoquinone dyes 10-phenyl-isoalloxazine-3-acetic acid ethyl ester (1) and 10-(4-bromo-phenyl)-3-methyl-isoalloxazine (2) in dichloromethane, acetonitrile, and methanol are characterized by absorption and emission spectroscopy. Absorption cross-section spectra, stimulated emission cross-section spectra, fluorescence quantum distributions, quantum yields, lifetimes, and degrees of fluorescence polarization are determined. The blue-light photo-degradation of the dyes is studied. Mass spectroscopic measurements reveal the formation of phenyl-benzo-pteridine (isoalloxazine) derivatives, tetraaza-benzo-aceanthrylene derivatives, dihydro-quinooxaline derivatives, and pyrazino-carbazole derivatives. An enhancement of photo-degradation is observed by the formed photo-fragments

  3. Development of Advanced Electrochemical Emission Spectroscopy for Monitoring Corrosion in Simulated DOE Liquid Waste

    Energy Technology Data Exchange (ETDEWEB)

    Digby Macdonald; Brian Marx; Balaji Soundararajan; Morgan Smith

    2005-07-28

    The different tasks that have been carried out under the current program are as follows: (1) Theoretical and experimental assessment of general corrosion of iron/steel in borate buffer solutions by using electrochemical impedance spectroscopy (EIS), ellipsometry and XPS techniques; (2) Development of a damage function analysis (DFA), which would help in predicting the accumulation of damage due to pitting corrosion in an environment prototypical of DOE liquid waste systems; (3) Experimental measurement of crack growth rate, acoustic emission signals, and coupling currents for fracture in carbon and low alloy steels as functions of mechanical (stress intensity), chemical (conductivity), electrochemical (corrosion potential, ECP), and microstructural (grain size, precipitate size, etc) variables in a systematic manner, with particular attention being focused on the structure of the noise in the current and its correlation with the acoustic emissions; (4) Development of fracture mechanisms for carbon and low alloy steels that are consistent with the crack growth rate, coupling current data and acoustic emissions; (5) Inserting advanced crack growth rate models for SCC into existing deterministic codes for predicting the evolution of corrosion damage in DOE liquid waste storage tanks; (6) Computer simulation of the anodic and cathodic activity on the surface of the steel samples in order to exactly predict the corrosion mechanisms; (7) Wavelet analysis of EC noise data from steel samples undergoing corrosion in an environment similar to that of the high level waste storage containers, to extract data pertaining to general, pitting and stress corrosion processes, from the overall data. The work has yielded a number of important findings, including an unequivocal demonstration of the role of chloride ion in passivity breakdown on nickel in terms of cation vacancy generation within the passive film, the first detection and characterization of individual micro fracture

  4. Picosecond rotationally resolved stimulated emission pumping spectroscopy of nitric oxide

    International Nuclear Information System (INIS)

    Tanjaroon, Chakree; Reeve, Scott W.; Ford, Alan; Murry, W. Dean; Lyon, Kevin; Yount, Bret; Britton, Dan; Burns, William A.; Allen, Susan D.; Bruce Johnson, J.

    2012-01-01

    Highlights: ► Stimulated emission pumping for nitric oxide was studied using picosecond lasers. ► Weak and tightly focused pulses provide sufficient energy for population transfer. ► Selective excitation at the bandhead yields strong fluorescence depletion signals. ► We observe 19% population transfer to v″ = 2 of the X 2 Π 1/2 ground electronic state. - Abstract: Stimulated emission pumping (SEP) experiments were performed on the nitric oxide molecule in a flow cell environment using lasers with pulse widths of 17–25 ps. A lambda excitation scheme, or ‘‘pump–dump” arrangement, was employed with the pump laser tuned to the T 00 vibronic band origin (λ pump =226.35(1)nm) of the A 2 Σ + (v′ = 0, J′) ← X 2 Π 1/2 (v″ = 0, J″) and the dump laser scanned from 246–248 nm within the A 2 Σ + (v′ = 0, J′) → X 2 Π 1/2 (v″ = 2, J″) transition. The rotationally resolved SEP spectra were measured by observing the total fluorescence within the A 2 Σ + (v′ = 0, J′) → X 2 Π 1/2 (v″ = 1, J″) transition between 235 nm and 237.2 nm while scanning the dump laser wavelengths. Multiple rotational states were excited due to the broad laser bandwidth. Measurements showed that the resolved rotational structure depended on the energy and bandwidth of the applied pump and dump laser pulses. Analysis of the observed fluorescence depletion signals yielded an average percent fluorescence depletion of about 19% when λ pump =226.35(1)nm and λ dump =247.91(1)nm. This value reflects the percent transfer of the NO population from the A 2 Σ + (V′ = 0, J′) excited electronic state to the X 2 Π 1/2 (v″ = 2, J″) ground electronic state. The maximum expected depletion is 50% in the limit of dump saturation. Selective excitation of NO at the bandhead provides good spectral discrimination from the background emission and noise and unambiguously confirms the identity of the emitter.

  5. Isoprene emission inventory for the BOREAS southern study area

    International Nuclear Information System (INIS)

    Westberg, H.; Lamb, B.; Kempf, K.; Allwine, G.

    2000-01-01

    The Boreal Ecosystem-Atmosphere Study (BOREAS) was designed to measure trace gas fluxes, nutrient cycling, hydrologic budgets and other ecosystem features in order to establish relationships between ecosystem processes and various global climate change scenarios. During the 1994 BOREAS field study isoprene and terpene emissions have been measured at several sites in the Southern Study Area (SSA). Ambient measurements were also made to help establish the chemical importance of these biogenic species in boreal atmosphere. The data was used to test and improve algorithms for predicting emission rates as a function of species, environmental conditions and biomass dynamics and to provide an expanded database describing the relationship of volatile organic compounds emissions to ecosystem dynamics. The study also sought to provide the foundation for improved understanding of physical exchange processes, and define hydrocarbon reactivity in the boundary layer at high latitudes. Details of the biogenic emission rate measurements made in the SSA are also discussed, including the creation of an isoprene emission inventory for the area. The study has been helpful in eliminating major sources of uncertainty associated with estimates of carbon loss due to isoprene emission on the BOREAS SSA. 28 refs., 4 tabs., 5 figs

  6. Correlated terahertz acoustic and electromagnetic emission in dynamically screened InGaN/GaN quantum wells

    DEFF Research Database (Denmark)

    van Capel, P. J. S.; Turchinovich, Dmitry; Porte, Henrik

    2011-01-01

    signals and THz electromagnetic radiation signals demonstrates that transient strain generation in InGaN/GaN MQWs is correlatedwith electromagnetic THz generation, and both types of emission find their origin in ultrafast dynamical screening of the built-in piezoelectric field in the MQWs. The measured......We investigate acoustic and electromagnetic emission from optically excited strained piezoelectric In0.2Ga0.8N/GaN multiple quantum wells (MQWs), using optical pump-probe spectroscopy, time-resolved Brillouin scattering, and THz emission spectroscopy. A direct comparison of detected acoustic...

  7. A Consortium to Develop the Medical Uses of NMR Imaging, NMR Spectroscopy, and Positron Emission Tomography. Final report, 6/1/92 - 5/31/98

    International Nuclear Information System (INIS)

    Smith, Gary T.

    1998-01-01

    During years one, two and three, this project concentrated on quantifying skeletal muscle blood flow and metabolism for assessment of ischemia. The ultimate goal is to provide a non-invasive method of measuring viability of skeletal muscle following traumatic vascular compromise. The technique involves the use of both dynamic positron emission tomography (PET) coupled with compartmental model analysis of the resulting time activity relationships and nuclear magnetic resonance spectroscopy (NMRS). PET scanning is ideally suited for this project because of the capability to utilize labeled organic compounds. Blood flow was measured with N-13 ammonia. Metabolism was assessed with F-18 deoxyglucose (FDG)

  8. Mid-infrared quantum cascade laser spectroscopy probing of the ...

    Indian Academy of Sciences (India)

    Aparajeo Chattopadhyay

    2018-05-07

    May 7, 2018 ... cm3 molecule. −1 s. −1 ... Quantum cascade laser; time-resolved mid-infrared spectroscopy; transient absorption; peroxy radicals .... peak of the laser emission profile. .... cal with O2 is a termolecular reaction (Eq. 3) and the.

  9. Studies in dosimetry using stimulated exoelectron emission

    International Nuclear Information System (INIS)

    Petel, Maurice.

    1976-06-01

    Some applications of the stimulated exoelectron emission in radiation dosimetry are discussed. The principles which govern the phenomenon are presented. The apparatus, in particular the counter, used to monitor the emission is discussed with reference to both optical and thermal stimulation. The correlation existing between thermoluminescence and thermally stimulated exoelectron emission were studied in both lithium fluoride and aluminium oxide. Furthermore, aluminium oxides from different sources were examined, and one of these, chosen to investigate the dosimetric properties of this material using both methods of stimulation [fr

  10. Laser-induced breakdown spectroscopy analysis of asbestos

    International Nuclear Information System (INIS)

    Caneve, L.; Colao, F.; Fabbri, F.; Fantoni, R.; Spizzichino, V.; Striber, J.

    2005-01-01

    Laser-induced breakdown spectroscopy was applied to test the possibility of detecting and identifying asbestos in different samples in view of the perspective at field operation without sample preparation which is peculiar to this technique. Several like-resin materials were first investigated by laser-induced breakdown spectroscopy, in order to find an asbestos container assuring safe laboratory operation during the material characterization aimed to identify indicators suitable for a quick identification on field. Successively, spectra of asbestos samples of both in serpentine and amphibole forms were measured and the variability in elemental composition was calculated from the emission spectra. Ratios of intensities of characteristic elements were tested as indicators for asbestos recognition. Laser-induced breakdown spectroscopy results were compared with those obtained by analyzing the same asbestos samples with a scanning electron microscopy equipped with an energy dispersive X-ray spectroscopy, a good correlation was found for Mg/Si and Fe/Si, thus showing the capability of laser-induced breakdown spectroscopy as a diagnostic tool for this category of materials. In particular, it was demonstrated that the method based on two indicators derived from laser-induced breakdown spectroscopy intensity ratios allows to discriminate between asbestos and cements in single shot measurements suitable to field operation

  11. Field emission of carbon quantum dots synthesized from a single organic solvent.

    Science.gov (United States)

    Liu, Xiahui; Yang, Bingjun; Yang, Juan; Yu, Shengxue; Chen, Jiangtao

    2016-11-04

    In this paper, a facile synthesis of carbon quantum dots (CQDs) and its field emission performance are reported. The CQDs are prepared from a single N, N-dimethylformamide acting as carbon and nitrogen-doping sources simultaneously. The CQDs are investigated by photoluminescence, transmission electron microscopy and x-ray photoelectron spectroscopy. The CQDs have an average size of 3 nm and are doped with N atoms. CQD dispersion shows strong fluorescence under UV illumination. For the first time, the field emission behavior of CQDs coated on Si substrate is studied. As a candidate of cold cathode, the CQDs display good field emission performance. The CQD emitter reaches the current density of 1.1 mA cm(-2) at 7.0 V μm(-1) and exhibits good long-term emission stability, suggesting promising application in field emission devices.

  12. ROLE OF MAGNETIC RESONANCE SPECTROSCOPY IN INTRACRANIAL LESIONS- A STUDY OF 75 CASES

    Directory of Open Access Journals (Sweden)

    Rajendra N. Solank

    2017-10-01

    Full Text Available BACKGROUND Our study have shown the role of MR spectroscopy in lesions whenever results are equivocal or non-conclusive even on MRI. MR spectroscopy can differentiate the lesions, particularly intracranial lesions on the basis of various metabolites. The aims of this study is to diagnose the intracranial lesions and to show the advantage of MR spectroscopy over the conventional MRI, to differentiate the neoplastic from non-neoplastic lesion, to prove the reliability of MR spectroscopy in identifying the different grades of glioma with histopathological correlation as well as to differentiate recurrent tumour from post-operative changes or radiation necrosis. MATERIALS AND METHODS During the period of August 2009 to July 2011, a prospective study of 75 patients was carried out at Department of Radiodiagnosis, Civil Hospital and BJ Medical College, Ahmedabad, Gujarat. MRI was performed on 1.5 Tesla MR scanner (GE HDXT using dedicated head coil. Conventional MR imaging was performed followed by MR spectroscopy using point resolved spectroscopy. After deciding the region of interest voxel was kept and 2D multivoxel proton spectroscopy (TR- 1000 msec, TE- 144 msec, voxel size 20 x 20 mm or single voxel proton spectroscopy (TR- 1500 msec, TE- 35 msec, voxel size 20 x 20 mm was performed and spectra obtained. RESULTS In the present study of 75 patients, the maximum number of patients were between 31 to 50 years of age. The approximate ratio of male: female was 2: 1. In our study sensitivity, specificity, positive predictive value, negative predictive value of MRI are 89%, 87%, 87% and 89% respectively and of MRI + MRS are 100%, 97%, 97% and 100% respectively in tumours. CONCLUSION MRS (Magnetic Resonance Spectroscopy is a non-invasive imaging technique that studies the chemical activity in the brain and detects the presence of certain chemical substances. Through this imaging technique, images and graphs of the brain can be obtained.

  13. Anharmonic Vibrational Spectroscopy on Metal Transition Complexes

    Science.gov (United States)

    Latouche, Camille; Bloino, Julien; Barone, Vincenzo

    2014-06-01

    Advances in hardware performance and the availability of efficient and reliable computational models have made possible the application of computational spectroscopy to ever larger molecular systems. The systematic interpretation of experimental data and the full characterization of complex molecules can then be facilitated. Focusing on vibrational spectroscopy, several approaches have been proposed to simulate spectra beyond the double harmonic approximation, so that more details become available. However, a routine use of such tools requires the preliminary definition of a valid protocol with the most appropriate combination of electronic structure and nuclear calculation models. Several benchmark of anharmonic calculations frequency have been realized on organic molecules. Nevertheless, benchmarks of organometallics or inorganic metal complexes at this level are strongly lacking despite the interest of these systems due to their strong emission and vibrational properties. Herein we report the benchmark study realized with anharmonic calculations on simple metal complexes, along with some pilot applications on systems of direct technological or biological interest.

  14. X-ray spectroscopy of electronic structure of amorphous silicon and silicyne

    CERN Document Server

    Mashin, A I; Mashin, N I; Domashevskaya, E P; Terekhov, V A

    2001-01-01

    SiK subbeta and SiL sub 2 sub 3 emission spectra of crystalline silicon (c-Si), amorphous hydrogenated silicon (alpha-Si:H) and silicyne have been studied by X-ray and ultrasoft X-ray spectroscopy. It is observed that SiL sub 2 sub 3 emission spectra of silicyne displays not two maximums, as it usually observed for the c-Si and alpha-Si:H, but three ones. The third one is seen at high energies near 95.7 eV, and has an intensity about 75%. An additional maximum in the short- wave part of SiK subbeta emission spectrum is observed. This difference of shapes of X-ray spectra between alpha-Si:H and silicyne is explained by the presence in silicyne a strong pi-component of chemical bonds of a silicon atoms in silicyne

  15. A comparative study of carbon plasma emission in methane and argon atmospheres

    Science.gov (United States)

    Yousfi, H.; Abdelli-Messaci, S.; Ouamerali, O.; Dekhira, A.

    2018-04-01

    The interaction between laser produced plasma (LPP) and an ambient gas is largely investigated by Optical Emission Spectroscopy (OES). The analysis of carbon plasma produced by an excimer KrF laser was performed under controlled atmospheres of methane and argon. For each ambient gas, the features of produced species have been highlighted. Using the time of flight (TOF) analysis, we have observed that the C and C2 exhibit a triple and a double peaks respectively in argon atmosphere in contrast to the methane atmosphere. The evolution of the first peaks of C and C2 follows the plasma expansion, whereas the second peaks move backward, undergoing reflected shocks. It was found that the translational temperature, obtained by Shifted Maxwell Boltzmann distribution function is strongly affected by the nature of ambient gas. The dissociation of CH4 by electronic impact presents the principal approach for explaining the emission of CH radical in reactive plasma. Some chemical reactions have been proposed in order to explain the formation process of molecular species.

  16. Preliminary panoramic study of river calm muscle using neodymium:yttrium-aluminum-garnet (Nd: YAG) laser-induced breakdown spectroscopy (LIBS)

    Science.gov (United States)

    Idris, N.; Lahna, K.; Usmawanda, T. N.; Herman; Ramli, M.; Hedwig, R.; Marpaung, A. M.; Kurniawan, K. H.

    2018-04-01

    A wide coverage spectral investigation on the muscle of river calm sample has been carried out using laser-induced breakdown spectroscopy for examining the overall profile of the emission spectra from the produced plasma. The basic apparatus of LIBS system used is a Nd-YAG laser and wide coverage optical multichannel analyzer (OMA) system. The river clam samples used is collected from Panga River in Aceh Jaya Regency, Aceh, Indonesia up streaming in a mountain of Gunong Ujeun, which is used as a location of the intensive traditional mining activity. Assuming that heavy metal accumulated in the clam muscle, LIBS experiments were carried out on the muscle of the calm. The sample used was fresh muscle sliced and attached to a copper plate. Plasma was generated by focusing the laser beam on the sample surface under air surrounding gas at 1 atmosphere. It is found that there are only major elements of host organic, namely C, H, O, N and the minor element of salts can be detected from fresh the clam sample when using a high pulse laser energy under air surrounding at high pressure of 1 atmosphere. There is no emission lines from any metal can be detected. Several experimental parameters were explored to study the panoramic dynamic of the emission spectra. It is found that the lower energy and the lower pressure is better for obtaining better emission spectra showing the possibility for determination of the analyte.

  17. Chemical analysis of industrial scale deposits by combined use of correlation coefficients with emission line detection of laser induced breakdown spectroscopy spectra

    International Nuclear Information System (INIS)

    Siozos, P.; Philippidis, A.; Hadjistefanou, M.; Gounarakis, C.; Anglos, D.

    2013-01-01

    Laser-induced breakdown spectroscopy (LIBS) was used to determine the mineral composition of various industrial scale samples. The aim of the study has been to investigate the capacity of LIBS to provide a fast, reliable analytical tool for carrying out routine analysis of inorganic scales, potentially on site, as a means to facilitate decision making concerning scale removal procedures. LIBS spectra collected in the range of 200–660 nm conveyed information about the metal content of the minerals. Via a straightforward analysis based on linear correlation of LIBS spectra it was possible to successfully discriminate scale samples into three main groups, Fe-rich, Ca-rich and Ba-rich, on the basis of correlation coefficients. By combining correlation coefficients with spectral data collected in the NIR, 860–960 nm, where sulfur emissions are detected, it became further possible to discriminate sulfates from carbonates as confirmed by independent analysis based on Raman spectroscopy. It is emphasized that the proposed LIBS-based method successfully identifies the major mineral or minerals present in the samples classifying the scales into relevant groups hence enabling process engineers to select appropriate scale dissolution strategies. - Highlights: • LIBS was used to determine the mineral composition of industrial scale samples. • Three groups of inorganic scales were identified: Ca rich, Ba rich and Fe rich. • A method that combines correlation coefficients and line detection is proposed. • The method successfully identifies the main mineral, or minerals, in the samples. • The results were compared with results obtained by use of Raman analysis

  18. Self-assembled InAs quantum dots. Properties, modification and emission processes; Selbstorganisierte InAs-Quantenpunkte. Eigenschaften, Modifizierung und Emissionsprozesse

    Energy Technology Data Exchange (ETDEWEB)

    Schramm, A.

    2007-09-06

    In this thesis, structural, optical as well as electronic properties of self-assembled InAs quantum dots (QD) were studied by means of atomic force microscopy (AFM), photoluminescence (PL), capacitance spectroscopy (CV) and capacitance transient spectroscopy (DLTS). The quantum dots were grown with molecular beam epitaxy (MBE) and embedded in Schottky diodes for electrical characterization. In this work growth aspects as well as the electronic structures of QD were discussed. By varying the QD growth parameters it is possible to control the structural, and thus the optical and electronic properties of QD. Two methods are presented. Adjusting the QD growth temperature leads either to small QD with a high areal density or to high QDs with a low density. The structural changes of the QD are reflected in the changes of the optical and electronic properties. The second method is to introduce a growth interruption after capping the QD with thin cap layers. It was shown that capping with AlAs leads to a well-developed alternative to control the QD height and thus the ground-state energies of the QD. A post-growth method modifying the QD properties ist rapid thermal annealing (RTA). Raising the RTA temperature causes a lifting of the QD energy states with respect to the GaAs band edge energy due to In/Ga intermixing processes. A further main part of this work covers the emission processes of charge carriers in QD. Thermal emission, thermally assisted tunneling, and pure tunneling emission are studied by capacitance transient spectroscopy techniques. In DLTS experiments a strong impact of the electric field on the activation energies of electrons was found interfering the correct determination of the QD level energies. This behaviour can be explained by a thermally assisted tunneling model. A modified model taking the Coulomb interaction of occupied QD into account describes the emission rates of the electrons. In order to avoid several emission pathes in the experiments

  19. Ethanol- and trifluoroethanol-induced changes in phase states of DPPC membranes. Prodan emission-excitation fluorescence spectroscopy supported by PARAFAC analysis

    Science.gov (United States)

    Horochowska, Martyna; Cieślik-Boczula, Katarzyna; Rospenk, Maria

    2018-03-01

    It has been shown that Prodan emission-excitation fluorescence spectroscopy supported by Parallel Factor (PARAFAC) analysis is a fast, simple and sensitive method used in the study of the phase transition from the noninterdigitated gel (Lβ‧) state to the interdigitated gel (LβI) phase, triggered by ethanol and 2,2,2-trifluoroethanol (TFE) molecules in dipalmitoylphosphatidylcholines (DPPC) membranes. The relative contribution of lipid phases with spectral characteristics of each pure phase component has been presented as a function of an increase in alcohol concentration. It has been stated that both alcohol molecules can induce a formation of the LβI phase, but TFE is over six times stronger inducer of the interdigitated phase in DPPC membranes than ethanol molecules. Moreover, in the TFE-mixed DPPC membranes, the transition from the Lβ‧ to LβI phase is accompanied by a formation of the fluid phase, which most probably serves as a boundary phase between the Lβ‧ and LβI regions. Contrary to the three phase-state model of TFE-mixed DPPC membranes, in ethanol-mixed DPPC membranes only the two phase-state model has been detected.

  20. Comparison of digestion procedures used for the determination of boron in biological tissues by ICP-AES [inductively-coupled, plasma-atomic emission spectroscopy

    International Nuclear Information System (INIS)

    Bauer, W.F.; Miller, D.L.; Steele, S.M.

    1988-01-01

    A study was designed to identify the most accurate and reliable procedures for the digestion of biological tissues prior to the determination of boron by inductively-coupled, plasma-atomic emission spectroscopy (ICP-AES). The four procedures used in this study were an acid bomb digestion and digestions performed in test tubes using perchloric acid and hydrogen peroxide, nitric acid and hydrogen peroxide, and nitric acid alone. Digestions using nitric acid and hydrogen peroxide and nitric acid alone were performed in a manner analogous to the perchloric acid/hydrogen peroxide procedure. The tissues used in the study were from dogs that had been administered a boron compound (Na 2 B 12 H 11 SH) and included two brain tissues, a liver and a tongue. These tissues were selected in order to eliminate results that may be due to surface spiking only. None of the test tube procedures were successful in completely dissolving the samples, as was evidenced by residual color and a coagulated precipitate. The amount of precipitate was much larger for the brain tissues in all cases. The acid bomb digestion and the perchloric acid/hydrogen peroxide procedures gave comparable boron concentrations for all of the tissues in this study. 2 refs., 1 tab

  1. Vibrational motions associated with primary processes in bacteriorhodopsin studied by coherent infrared emission spectroscopy.

    Science.gov (United States)

    Groma, Géza I; Colonna, Anne; Martin, Jean-Louis; Vos, Marten H

    2011-03-16

    The primary energetic processes driving the functional proton pump of bacteriorhodopsin take place in the form of complex molecular dynamic events after excitation of the retinal chromophore into the Franck-Condon state. These early events include a strong electronic polarization, skeletal stretching, and all-trans-to-13-cis isomerization upon formation of the J intermediate. The effectiveness of the photoreaction is ensured by a conical intersection between the electronic excited and ground states, providing highly nonadiabatic coupling to nuclear motions. Here, we study real-time vibrational coherences associated with these motions by analyzing light-induced infrared emission from oriented purple membranes in the 750-1400 cm(-)(1) region. The experimental technique applied is based on second-order femtosecond difference frequency generation on macroscopically ordered samples that also yield information on phase and direction of the underlying motions. Concerted use of several analysis methods resulted in the isolation and characterization of seven different vibrational modes, assigned as C-C stretches, out-of-plane methyl rocks, and hydrogen out-of-plane wags, whereas no in-plane H rock was found. Based on their lifetimes and several other criteria, we deduce that the majority of the observed modes take place on the potential energy surface of the excited electronic state. In particular, the direction sensitivity provides experimental evidence for large intermediate distortions of the retinal plane during the excited-state isomerization process. Copyright © 2011 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  2. The optimisation of an intense Z-pinch discharge as a plasma source for absorption spectroscopy investigations

    International Nuclear Information System (INIS)

    Sandolache, Gabriela; Zoita, Vasile; Iova, Iancu; Fleurier, Claude; Hong, Dunpin; Bauchire, Jean Marc

    2002-01-01

    The characterisation of the low voltage circuit breaker arc from the optical and plasma physics points of view represents an element of importance for understanding the operating mechanism and the current interruption process. The development of the broad band optical absorption spectroscopy method seems to be well adapted in order to perform the circuit breaker arc analysis. A pulsed power device based on a Z-pinch type discharge has been developed as a plasma source for absorption spectroscopy investigations. The spatial extension of this radiation source, its brightness, reproducibility are well adapted to characterize the circuit-breaker arc. In addition, a very short emission period compared to the lifetime of the arc discharge provides an excellent time resolution for the absorption spectroscopy method. The first compression phase of the linear pinch produced in argon has been studied from the point of view of its use as a light source. The initial pressure of argon was varied from 0.5 to 2 mbar and the condenser bank energy from 5.1 to 8.7 kJ. The characterization of the emitted radiation, especially the influence of the condenser bank voltage and the argon pressure on the discharge has been studied. Collapse dynamics of the argon compressional pinch and the spectrally resolved continuum emission at the time of maximum compression have been observed. A very satisfactory plasma source optimisation has been achieved that fulfils the conditions required for the absorption spectroscopy method. (authors)

  3. Influence of stray light for divertor spectroscopy in ITER

    International Nuclear Information System (INIS)

    Kajita, Shin; Veshchev, Evgeny; Lisgo, Steve; Barnsley, Robin; Morgan, Philip; Walsh, Michael; Ogawa, Hiroaki; Sugie, Tatsuo; Itami, Kiyoshi

    2015-01-01

    The influence of stray light in the divertor spectroscopy system in ITER is quantitatively investigated using a ray tracing simulation. Simulation results show that the stray light is negligible at positions in the divertor where the plasma emission is strong. However, it is also shown that the stray light can be significantly greater than the real signal if the plasma intensity is low. Deuterium and beryllium emissions are used for the assessment; for beryllium cases in particular, since the emission profile may be non-uniform in the divertor region, the influence of stray light can be non-negligible at some positions, e.g., above the divertor dome

  4. [The study of electroplex emission based on PVK/BCP].

    Science.gov (United States)

    Teng, Feng; Wang, Yuan-Min; Xu, Zheng; Wang, Yong-Sheng

    2005-05-01

    Electroplex emission based on poly(N-vinylcarbazole) (PVK) and 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP) has been studied. A emission peak at 595 nm was observed in EL spectrum but not in PL spectra in the devices. The emission originates from the transition between the excited state of BCP and the ground state of PVK. Because of the increase of emission zone, the device of PVK: BCP blend exhibited stronger electroplex emission. The emission of electronplex was enhanced for both of PVK/BCP double layer device and PVK:BCP blend device, and it is stronger for blend devices. At higher drive voltage, only electroplex emission was observed in the blend device.

  5. Where Water is Oxidized to Dioxygen: Structure of the Photosynthetic Mn4Ca Cluster from X-ray Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Yano, Junko; Yano, Junko; Yachandra, Vittal K.

    2007-10-24

    Light-driven oxidation of water to dioxygen in plants, algae and cyanobacteria iscatalyzed within photosystem II (PS II) by a Mn4Ca cluster. Although the cluster has been studied by many different methods, the structure and the mechanism have remained elusive. X-ray absorption and emission spectroscopy and EXAFS studies have been particularly useful in probing the electronic and geometric structure, and the mechanism of the water oxidation reaction. Recent progress, reviewed here, includes polarized X-ray absorption spectroscopy measurements of PS II single crystals. Analysis of those results has constrained the Mn4Ca cluster geometry to a setof three similar high-resolution structures. The structure of the cluster from the present study is unlike either the 3.0 or 3.5 Angstrom-resolution X-ray structures or other previously proposed models. The differences between the models derived from X-rayspectroscopy and crystallography are predominantly because of damage to the Mn4Ca cluster by X-rays under the conditions used for structure determination by X-ray crystallography. X-ray spectroscopy studies are also used for studying the changes in the structure of the Mn4Ca catalytic center as it cycles through the five intermediate states known as the Si-states (i=0-4). The electronic structure of the Mn4Ca cluster has been studied more recently using resonant inelastic X-ray scattering spectroscopy (RIXS), in addition to the earlier X-ray absorption and emission spectroscopy methods. These studies are revealing that the assignment of formaloxidation states is overly simplistic. A more accurate description should consider the charge density on the Mn atoms that includes the covalency of the bonds and delocalization of the charge over the cluster. The geometric and electronic structure of the Mn4Ca cluster in the S-states derived from X-ray spectroscopy are leading to a detailed understanding of the mechanism of the O-O bond formation during the photosynthetic water

  6. NATO Advanced Study Institute on Low Temperature Molecular Spectroscopy

    CERN Document Server

    1996-01-01

    Molecular spectroscopy has achieved rapid and significant progress in recent years, the low temperature techniques in particular having proved very useful for the study of reactive species, phase transitions, molecular clusters and crystals, superconductors and semiconductors, biochemical systems, astrophysical problems, etc. The widening range of applications has been accompanied by significant improvements in experimental methods, and low temperature molecular spectroscopy has been revealed as the best technique, in many cases, to establish the connection between experiment and theoretical calculations. This, in turn, has led to a rapidly increasing ability to predict molecular spectroscopic properties. The combination of an advanced tutorial standpoint with an emphasis on recent advances and new perspectives in both experimental and theoretical molecular spectroscopy contained in this book offers the reader insight into a wide range of techniques, particular emphasis being given to supersonic jet and matri...

  7. Two-dimensional correlation spectroscopy in polymer study

    Science.gov (United States)

    Park, Yeonju; Noda, Isao; Jung, Young Mee

    2015-01-01

    This review outlines the recent works of two-dimensional correlation spectroscopy (2DCOS) in polymer study. 2DCOS is a powerful technique applicable to the in-depth analysis of various spectral data of polymers obtained under some type of perturbation. The powerful utility of 2DCOS combined with various analytical techniques in polymer studies and noteworthy developments of 2DCOS used in this field are also highlighted. PMID:25815286

  8. Study on Angelica and its different extracts by Fourier transform infrared spectroscopy and two-dimensional correlation IR spectroscopy

    Science.gov (United States)

    Liu, Hong-xia; Sun, Su-qin; Lv, Guang-hua; Chan, Kelvin K. C.

    2006-05-01

    In order to develop a rapid and effective analysis method for studying integrally the main constituents in the medicinal materials and their extracts, discriminating the extracts from different extraction process, comparing the categories of chemical constituents in the different extracts and monitoring the qualities of medicinal materials, we applied Fourier transform infrared spectroscopy (FT-IR) associated with second derivative infrared spectroscopy and two-dimensional correlation infrared spectroscopy (2D-IR) to study the main constituents in traditional Chinese medicine Angelica and its different extracts (extracted by petroleum ether, ethanol and water in turn). The findings indicated that FT-IR spectrum can provide many holistic variation rules of chemical constituents. Use of the macroscopical fingerprint characters of FT-IR and 2D-IR spectrum can not only identify the main chemical constituents in medicinal materials and their different extracts, but also compare the components differences among the similar samples. This analytical method is highly rapid, effective, visual and accurate for pharmaceutical research.

  9. Petos-Basic programs for treating data and reporting results in atomic spectroscopy

    International Nuclear Information System (INIS)

    Roca, M.

    1985-01-01

    A Petos-Basic program was written which provides the off-line treatment of data in optical emission spectroscopy, flame photometry and atomic absorption spectroscopy. Polynomial calibration functions are fitted in overlapped steps by the leastsquares method. The calculated concentrations in unknown samples are stored in sequential files (one per element, up to four), from which they can be read to be reported in a second program. (author)

  10. Remote sensing of methane emissions by combining optical similitude absorption spectroscopy (OSAS) and lidar

    Science.gov (United States)

    Galtier, Sandrine; Anselmo, Christophe; Welschinger, Jean-Yves; Cariou, Jean-Pierre; Sivignon, Jean-François; Miffre, Alain; Rairoux, Patrick

    2018-04-01

    Monitoring the emission of gases is difficult to achieve in industrial sites and in environments presenting poor infrastructures. Hence, robust methodologies should be developed and coupled to Lidar technology to allow remote sensing of gas emission. OSAS is a new methodology to evaluate gas concentration emission from spectrally integrated differential absorption measurements. Proof of concept of OSAS-Lidar for CH4 emission monitoring is here presented.

  11. Spectral and ion emission features of laser-produced Sn and SnO2 plasmas

    Science.gov (United States)

    Hui, Lan; Xin-Bing, Wang; Du-Luo, Zuo

    2016-03-01

    We have made a detailed comparison of the atomic and ionic debris, as well as the emission features of Sn and SnO2 plasmas under identical experimental conditions. Planar slabs of pure metal Sn and ceramic SnO2 are irradiated with 1.06 μm, 8 ns Nd:YAG laser pulses. Fast photography employing an intensified charge coupled device (ICCD), optical emission spectroscopy (OES), and optical time of flight emission spectroscopy are used as diagnostic tools. Our results show that the Sn plasma provides a higher extreme ultraviolet (EUV) conversion efficiency (CE) than the SnO2 plasma. However, the kinetic energies of Sn ions are relatively low compared with those of SnO2. OES studies show that the Sn plasma parameters (electron temperature and density) are lower compared to those of the SnO2 plasma. Furthermore, we also give the effects of the vacuum degree and the laser pulse energy on the plasma parameters. Project supported by the National Natural Science Foundation of China (Grant No. 11304235) and the Director Fund of WNLO, China.

  12. Report of the Study Group on Complete Spectroscopy

    International Nuclear Information System (INIS)

    Garrett, J.D.

    1989-01-01

    This report summarizes the topics considered in four discussions of about two hours each attended by most of the workshop participants. The contents of the lectures of David Radford, Fumihiko Sakata, Ben Mottelson, and Jerry Garret pertaining to Complete Spectroscopy are contained elsewhere in this proceedings. Most detailed nuclear structure information is derived from measurements of the spectroscopic properties (e.g. excitation energies, angular momenta, parities, lifetimes, magnetic moments, population cross sections, methods of decay, etc.) of discrete nuclear eigenstates. The present instrumentation allows in the best cases such measurements to approach the angular momentum limit imposed by fission and to as many as fifteen different excited bands. In anticipation of the new generation of detection equipment, such as the EUROBall and the GAMMASPHERE, the Complete Spectroscopy Study Group attempted to define the limits to such studies imposed by physical considerations and to consider some of the new, interesting physics that can be addressed from more complete discrete spectroscopic studies. 28 refs

  13. X-ray emission spectroscopic determination of iron in a polyurethane encapsulant curing agent

    International Nuclear Information System (INIS)

    Carter, J.M.; Kling, E.N.

    1979-01-01

    Presented is a procedure for determining the iron content in a polyurethane encapsulant curing agent by x-ray emission spectroscopy. Standards were prepared by adding ferric acetyl acetonate to a curing agent of identical composition to that being analyzed, but containing no iron. Results show that x-ray emission spectroscopy is feasible for determination of iron in the 30 to 50 ppM range. This range could probably be extended by the preparation of additional standards. Precision of the method is approximately 1.2 ppM at the 99 percent confidence level

  14. Quantitative multi-color FRET measurements by Fourier lifetime excitation-emission matrix spectroscopy

    Science.gov (United States)

    Zhao, Ming; Huang, Run; Peng, Leilei

    2012-01-01

    Förster resonant energy transfer (FRET) is extensively used to probe macromolecular interactions and conformation changes. The established FRET lifetime analysis method measures the FRET process through its effect on the donor lifetime. In this paper we present a method that directly probes the time-resolved FRET signal with frequency domain Fourier lifetime excitation-emission matrix (FLEEM) measurements. FLEEM separates fluorescent signals by their different phonon energy pathways from excitation to emission. The FRET process generates a unique signal channel that is initiated by donor excitation but ends with acceptor emission. Time-resolved analysis of the FRET EEM channel allows direct measurements on the FRET process, unaffected by free fluorophores that might be present in the sample. Together with time-resolved analysis on non-FRET channels, i.e. donor and acceptor EEM channels, time resolved EEM analysis allows precise quantification of FRET in the presence of free fluorophores. The method is extended to three-color FRET processes, where quantification with traditional methods remains challenging because of the significantly increased complexity in the three-way FRET interactions. We demonstrate the time-resolved EEM analysis method with quantification of three-color FRET in incompletely hybridized triple-labeled DNA oligonucleotides. Quantitative measurements of the three-color FRET process in triple-labeled dsDNA are obtained in the presence of free single-labeled ssDNA and double-labeled dsDNA. The results establish a quantification method for studying multi-color FRET between multiple macromolecules in biochemical equilibrium. PMID:23187535

  15. Study on Senna alata and its different extracts by Fourier transform infrared spectroscopy and two-dimensional correlation infrared spectroscopy

    Science.gov (United States)

    Adiana, M. A.; Mazura, M. P.

    2011-04-01

    Senna alata L. commonly known as candle bush belongs to the family of Fabaceae and the plant has been reported to possess anti-inflammatory, analgesic, laxative and antiplatelet-aggregating activity. In order to develop a rapid and effective analysis method for studying integrally the main constituents in the medicinal materials and their extracts, discriminating the extracts from different extraction process, comparing the categories of chemical constituents in the different extracts and monitoring the qualities of medicinal materials, we applied Fourier transform infrared spectroscopy (FT-IR) associated with second derivative infrared spectroscopy and two-dimensional infrared correlation spectroscopy (2D-IR) to study the main constituents of S. alata and its different extracts (extracted by hexane, dichloromethane, ethyl acetate and methanol in turn). The findings indicated that FT-IR and 2D-IR can provide many holistic variation rules of chemical constituents. Use of the macroscopical fingerprint characters of FT-IR and 2D-IR spectrum can identify the main chemical constituents in medicinal materials and their extracts, but also compare the components differences among similar samples. In a conclusion, FT-IR spectroscopy combined with 2D correlation analysis provides a powerful method for the quality control of traditional medicines.

  16. Delocalization and occupancy effects of 5f orbitals in plutonium intermetallics using L3-edge resonant X-ray emission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Booth, C. H.; Medling, S. A.; Jiang, Yu; Bauer, E. D.; Tobash, P. H.; Mitchell, J. N.; Veirs, D. K.; Wall, M. A.; Allen, P. G.; Kas, J. J.; Sokaras, D.; Nordlund, D.; Weng, T. -C.

    2014-06-24

    Although actinide (An) L3 -edge X-ray absorption near-edge structure (XANES) spectroscopy has been very effective in determining An oxidation states in insulating, ionically bonded materials, such as in certain coordination compounds and mineral systems, the technique fails in systems featuring more delocalized 5f orbitals, especially in metals. Recently, actinide L3-edge resonant X-ray emission spec- troscopy (RXES) has been shown to be an effective alternative. This technique is further demonstrated here using a parameterized partial unoccupied density of states method to quantify both occupancy and delocalization of the 5f orbital in ?-Pu, ?-Pu, PuCoGa5 , PuCoIn5 , and PuSb2. These new results, supported by FEFF calculations, highlight the effects of strong correlations on RXES spectra and the technique?s ability to differentiate between f-orbital occupation and delocalization.

  17. Delta-ray spectroscopy of quasi-atoms

    International Nuclear Information System (INIS)

    Kozhuharov, C.

    1983-01-01

    The spectroscopy of high energy delta-rays, emitted in collisions of very heavy ions, is studied. The ''orange''-type beta-spectrometer and the achromatic electron channel are the experimental setups. Delta ray production probabilities are studied as a function of the distance of closest approach R /SUB min/ or the impact parameter b. Coulomb ionization, ion trajectory, scaling laws, double differential cross sections, and K-X-rays information is extracted from the experiment. The dependence of delta-ray emission on the united charge number Z /SUB u/ is discussed. Asymmetric collision systems with Z x alpha approx. = 1 (delta ray spectrum from Pb→Sn collisions) are studied. Finally, very heavy collisions, such as 208 Pb + 208 Pb collisions at bombarding energy fas below the Coulomb barrier are touched upon

  18. [Study on emission standard system of air pollutants].

    Science.gov (United States)

    Jiang, Mei; Zhang, Guo-Ning; Zhang, Ming-Hui; Zou, Lan; Wei, Yu-Xia; Ren, Chun

    2012-12-01

    Scientific and reasonable emission standard system of air pollutants helps to systematically control air pollution, enhance the protection of the atmospheric environment effect and improve the overall atmospheric environment quality. Based on the study of development, situation and characteristics of national air pollutants emission standard system, the deficiencies of system were pointed out, which were not supportive, harmonious and perfect, and the improvement measures of emission standard system were suggested.

  19. Time-resolved X-ray spectroscopies of chemical systems: New perspectives

    Directory of Open Access Journals (Sweden)

    Majed Chergui

    2016-05-01

    Full Text Available The past 3–5 years have witnessed a dramatic increase in the number of time-resolved X-ray spectroscopic studies, mainly driven by novel technical and methodological developments. The latter include (i the high repetition rate optical pump/X-ray probe studies, which have greatly boosted the signal-to-noise ratio for picosecond (ps X-ray absorption spectroscopy studies, while enabling ps X-ray emission spectroscopy (XES at synchrotrons; (ii the X-ray free electron lasers (XFELs are a game changer and have allowed the first femtosecond (fs XES and resonant inelastic X-ray scattering experiments to be carried out; (iii XFELs are also opening the road to the development of non-linear X-ray methods. In this perspective, I will mainly focus on the most recent technical developments and briefly address some examples of scientific questions that have been addressed thanks to them. I will look at the novel opportunities in the horizon.

  20. Status of electron temperature and density measurement with beam emission spectroscopy on thermal helium at TEXTOR

    International Nuclear Information System (INIS)

    Schmitz, O; Schweer, B; Pospieszczyk, A; Lehnen, M; Samm, U; Unterberg, B; Beigman, I L; Vainshtein, L A; Kantor, M; Xu, Y; Krychowiak, M

    2008-01-01

    Beam emission spectroscopy on thermal helium is used at the TEXTOR tokamak as a reliable method to obtain radial profiles of electron temperature T e (r, t) and electron density n e (r, t). In this paper the experimental realization of this method at TEXTOR and the status of the atomic physics employed as well as the major factors for the measurement's accuracy are evaluated. On the experimental side, the hardware specifications are described and the impact of the beam atoms on the local plasma parameters is shown to be negligible. On the modeling side the collisional-radiative model (CRM) applied to infer n e and T e from the measured He line intensities is evaluated. The role of proton and deuteron collisions and of charge exchange processes is studied with a new CRM and the impact of these so far neglected processes appears to be of minor importance. Direct comparison to Thomson scattering and fast triple probe data showed that for high densities n e > 3.5 x 10 19 m -3 the T e values deduced with the established CRM are too low. However, the new atomic data set implemented in the new CRM leads in general to higher T e values. This allows us to specify the range of reliable application of BES on thermal helium to a range of 2.0 x 10 18 e 19 m -3 and 10 eV e < 250 eV which can be extended by routine application of the new CRM.