WorldWideScience

Sample records for emission particle tracking

  1. Positron emission particle tracking in pulsatile flow

    Energy Technology Data Exchange (ETDEWEB)

    Patel, Nitant; Ruggles, Arthur [University of Tennessee-Knoxville, Department of Nuclear Engineering, Knoxville, TN (United States); Wiggins, Cody [University of Tennessee-Knoxville, Department of Physics and Astronomy, Knoxville, TN (United States)

    2017-05-15

    Positron emission particle tracking (PEPT) is increasingly used to understand the flow characteristics in complex systems. This research utilizes PEPT to measure pulsatile flow of frequency 2.1 Hz in an elastic Masterkleer PVC tube of 19 mm inner diameter and 3.2 mm wall thickness. Anion exchange resin beads are labeled with {sup 18}F and delivered to a pump driven flow loop with motorized ball valve used to develop the pulsatile flow. Data are collected in the tube with circular cross section, and measurements are also collected with a section of the tube pinched. Nominal flow velocities are near 1 m/s and Reynolds numbers near 20,000. Many thousand PEPT particle traces are collected and synchronized with the flow pulsation. These Lagrangian data are presented as a series of 20 still frames depicting the 3-D velocity field present during each phase of the flow pulsation. Pressure data are also collected to resolve the pressure wave front moving through the open elastic tube at velocity 15.2 m/s. (orig.)

  2. Positron emission zone plate holography for particle tracking

    Energy Technology Data Exchange (ETDEWEB)

    Gundogdu, O. [University of Birmingham, School of Physics and Astronomy, Birmingham B15 2TT (United Kingdom)]. E-mail: o.gundogdu@surrey.ac.uk

    2006-01-15

    Positron Emission Particle Tracking (PEPT) is a powerful non-invasive technique that has been used extensively for tracking a single particle. In this paper, we present a study of zone plate holography method in order to track multiple particles, mainly two particles. The main aim is to use as small number of events as possible in the order to make it possible to track particles in fast moving industrial systems. A zone plate with 100% focal efficiency is simulated and applied to the Positron Emission Tomography (PET) data for multiple particle tracking. A simple trajectory code was employed to explore the effects of the nature of the experimental trajectories. A computer holographic reconstruction code that simulates optical reconstruction was developed. The different aspects of the particle location, particle activity ratios for enabling tagging of particles and zone plate and hologram locations are investigated. The effect of the shot noise is investigated and the limitations of the zone plate holography are reported.

  3. Positron emission zone plate holography for particle tracking

    International Nuclear Information System (INIS)

    Gundogdu, O.

    2006-01-01

    Positron Emission Particle Tracking (PEPT) is a powerful non-invasive technique that has been used extensively for tracking a single particle. In this paper, we present a study of zone plate holography method in order to track multiple particles, mainly two particles. The main aim is to use as small number of events as possible in the order to make it possible to track particles in fast moving industrial systems. A zone plate with 100% focal efficiency is simulated and applied to the Positron Emission Tomography (PET) data for multiple particle tracking. A simple trajectory code was employed to explore the effects of the nature of the experimental trajectories. A computer holographic reconstruction code that simulates optical reconstruction was developed. The different aspects of the particle location, particle activity ratios for enabling tagging of particles and zone plate and hologram locations are investigated. The effect of the shot noise is investigated and the limitations of the zone plate holography are reported

  4. Positron Emission Tomography Particle tracking using cluster analysis

    International Nuclear Information System (INIS)

    Gundogdu, O.

    2004-01-01

    Positron Emission Particle Tracking was successfully used in a wide range of industrial applications. This technique primarily uses a single positron emitting tracer particle. However, using multiple particles would provide more comparative information about the physical processes taking place in a system such as mixing or fluidised beds. In this paper, a unique method that enables us to track more than one particle is presented. This method is based on the midpoint of the closest distance between two trajectories or coincidence vectors. The technique presented in this paper employs a clustering method

  5. Positron Emission Tomography Particle tracking using cluster analysis

    Energy Technology Data Exchange (ETDEWEB)

    Gundogdu, O. [University of Birmingham, School of Physics and Astronomy, Birmingham, B15 2TT (United Kingdom)]. E-mail: o.gundogdu@surrey.ac.uk

    2004-12-01

    Positron Emission Particle Tracking was successfully used in a wide range of industrial applications. This technique primarily uses a single positron emitting tracer particle. However, using multiple particles would provide more comparative information about the physical processes taking place in a system such as mixing or fluidised beds. In this paper, a unique method that enables us to track more than one particle is presented. This method is based on the midpoint of the closest distance between two trajectories or coincidence vectors. The technique presented in this paper employs a clustering method.

  6. Investigation of granular impact using positron emission particle tracking

    KAUST Repository

    Marston, Jeremy O.

    2015-04-01

    We present results from an experimental study of granular impact using a combination of high-speed video and positron emission particle tracking (PEPT). The PEPT technique exploits the annihilation of photons from positron decay to determine the position of tracer particles either inside a small granular bed or attached to the object which impacts the bed. We use dense spheres as impactors and the granular beds are comprised of glass beads which are fluidised to achieve a range of different initial packing states. For the first time, we have simultaneously investigated both the trajectory of the sphere, the motion of particles in a 3-D granular bed and particles which jump into the resultant jet, which arises from the collapse of the cavity formed by the impacting sphere.

  7. A feature point identification method for positron emission particle tracking with multiple tracers

    Energy Technology Data Exchange (ETDEWEB)

    Wiggins, Cody, E-mail: cwiggin2@vols.utk.edu [University of Tennessee-Knoxville, Department of Physics and Astronomy, 1408 Circle Drive, Knoxville, TN 37996 (United States); Santos, Roque [University of Tennessee-Knoxville, Department of Nuclear Engineering (United States); Escuela Politécnica Nacional, Departamento de Ciencias Nucleares (Ecuador); Ruggles, Arthur [University of Tennessee-Knoxville, Department of Nuclear Engineering (United States)

    2017-01-21

    A novel detection algorithm for Positron Emission Particle Tracking (PEPT) with multiple tracers based on optical feature point identification (FPI) methods is presented. This new method, the FPI method, is compared to a previous multiple PEPT method via analyses of experimental and simulated data. The FPI method outperforms the older method in cases of large particle numbers and fine time resolution. Simulated data show the FPI method to be capable of identifying 100 particles at 0.5 mm average spatial error. Detection error is seen to vary with the inverse square root of the number of lines of response (LORs) used for detection and increases as particle separation decreases. - Highlights: • A new approach to positron emission particle tracking is presented. • Using optical feature point identification analogs, multiple particle tracking is achieved. • Method is compared to previous multiple particle method. • Accuracy and applicability of method is explored.

  8. Particle tracking

    International Nuclear Information System (INIS)

    Mais, H.; Ripken, G.; Wrulich, A.; Schmidt, F.

    1986-02-01

    After a brief description of typical applications of particle tracking in storage rings and after a short discussion of some limitations and problems related with tracking we summarize some concepts and methods developed in the qualitative theory of dynamical systems. We show how these concepts can be applied to the proton ring HERA. (orig.)

  9. Investigation of granular impact using positron emission particle tracking

    KAUST Repository

    Marston, Jeremy O.; Thoroddsen, Sigurdur T

    2015-01-01

    packing states. For the first time, we have simultaneously investigated both the trajectory of the sphere, the motion of particles in a 3-D granular bed and particles which jump into the resultant jet, which arises from the collapse of the cavity formed

  10. Application of Gauss's law space-charge limited emission model in iterative particle tracking method

    Energy Technology Data Exchange (ETDEWEB)

    Altsybeyev, V.V., E-mail: v.altsybeev@spbu.ru; Ponomarev, V.A.

    2016-11-01

    The particle tracking method with a so-called gun iteration for modeling the space charge is discussed in the following paper. We suggest to apply the emission model based on the Gauss's law for the calculation of the space charge limited current density distribution using considered method. Based on the presented emission model we have developed a numerical algorithm for this calculations. This approach allows us to perform accurate and low time consumpting numerical simulations for different vacuum sources with the curved emitting surfaces and also in the presence of additional physical effects such as bipolar flows and backscattered electrons. The results of the simulations of the cylindrical diode and diode with elliptical emitter with the use of axysimmetric coordinates are presented. The high efficiency and accuracy of the suggested approach are confirmed by the obtained results and comparisons with the analytical solutions.

  11. Particle Filter Tracking without Dynamics

    Directory of Open Access Journals (Sweden)

    Jaime Ortegon-Aguilar

    2007-01-01

    Full Text Available People tracking is an interesting topic in computer vision. It has applications in industrial areas such as surveillance or human-machine interaction. Particle Filters is a common algorithm for people tracking; challenging situations occur when the target's motion is poorly modelled or with unexpected motions. In this paper, an alternative to address people tracking is presented. The proposed algorithm is based in particle filters, but instead of using a dynamical model, it uses background subtraction to predict future locations of particles. The algorithm is able to track people in omnidirectional sequences with a low frame rate (one or two frames per second. Our approach can tackle unexpected discontinuities and changes in the direction of the motion. The main goal of the paper is to track people from laboratories, but it has applications in surveillance, mainly in controlled environments.

  12. Particle displacement tracking for PIV

    Science.gov (United States)

    Wernet, Mark P.

    1990-01-01

    A new Particle Imaging Velocimetry (PIV) data acquisition and analysis system, which is an order of magnitude faster than any previously proposed system has been constructed and tested. The new Particle Displacement Tracing (PDT) system is an all electronic technique employing a video camera and a large memory buffer frame-grabber board. Using a simple encoding scheme, a time sequence of single exposure images are time coded into a single image and then processed to track particle displacements and determine velocity vectors. Application of the PDT technique to a counter-rotating vortex flow produced over 1100 velocity vectors in 110 seconds when processed on an 80386 PC.

  13. Improved nano-particle tracking analysis

    International Nuclear Information System (INIS)

    Walker, John G

    2012-01-01

    Nano-particle tracking is a method to estimate a particle size distribution by tracking the movements of individual particles, using multiple images of particles moving under Brownian motion. A novel method to recover a particle size distribution from nano-particle tracking data is described. Unlike a simple histogram-based method, the method described is able to account for the finite number of steps in each particle track and consequently for the measurement uncertainty in the step-length data. Computer simulation and experimental results are presented to demonstrate the performance of the approach compared with the current method. (paper)

  14. The particle tracking package Kassiopeia

    Energy Technology Data Exchange (ETDEWEB)

    Groh, Stefan [Karlsruhe Institute of Technology (Germany); Collaboration: KATRIN-Collaboration

    2016-07-01

    The Kassiopeia particle tracking framework is an object-oriented software package utilizing modern C++ techniques, written originally to meet the needs of the Katrin collaboration. Kassiopeia's target consists of simulating particle trajectories governed by arbitrarily complex differential equations of motion, continuous physics processes that may in part be modeled as terms perturbing that equation of motion, stochastic processes that occur in flight such as bulk scattering and decay, and potentially stochastic surface processes occurring at interfaces, including transmission and reflection effects. This entire set of computations takes place against the backdrop of a fully-featured geometry package which serves a variety of roles, including initialization of electromagnetic field simulations, gas flow simulations, and the support of state-dependent algorithm-swapping and behavioral changes. Kassiopeia has been well validated and widely used within the Katrin collaboration, playing a primary role in many theses and refereed publications.

  15. GPU Computing For Particle Tracking

    International Nuclear Information System (INIS)

    Nishimura, Hiroshi; Song, Kai; Muriki, Krishna; Sun, Changchun; James, Susan; Qin, Yong

    2011-01-01

    This is a feasibility study of using a modern Graphics Processing Unit (GPU) to parallelize the accelerator particle tracking code. To demonstrate the massive parallelization features provided by GPU computing, a simplified TracyGPU program is developed for dynamic aperture calculation. Performances, issues, and challenges from introducing GPU are also discussed. General purpose Computation on Graphics Processing Units (GPGPU) bring massive parallel computing capabilities to numerical calculation. However, the unique architecture of GPU requires a comprehensive understanding of the hardware and programming model to be able to well optimize existing applications. In the field of accelerator physics, the dynamic aperture calculation of a storage ring, which is often the most time consuming part of the accelerator modeling and simulation, can benefit from GPU due to its embarrassingly parallel feature, which fits well with the GPU programming model. In this paper, we use the Tesla C2050 GPU which consists of 14 multi-processois (MP) with 32 cores on each MP, therefore a total of 448 cores, to host thousands ot threads dynamically. Thread is a logical execution unit of the program on GPU. In the GPU programming model, threads are grouped into a collection of blocks Within each block, multiple threads share the same code, and up to 48 KB of shared memory. Multiple thread blocks form a grid, which is executed as a GPU kernel. A simplified code that is a subset of Tracy++ (2) is developed to demonstrate the possibility of using GPU to speed up the dynamic aperture calculation by having each thread track a particle.

  16. Bayesian target tracking based on particle filter

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    For being able to deal with the nonlinear or non-Gaussian problems, particle filters have been studied by many researchers. Based on particle filter, the extended Kalman filter (EKF) proposal function is applied to Bayesian target tracking. Markov chain Monte Carlo (MCMC) method, the resampling step, etc novel techniques are also introduced into Bayesian target tracking. And the simulation results confirm the improved particle filter with these techniques outperforms the basic one.

  17. Better track leads to new particles

    CERN Multimedia

    2006-01-01

    "Dutch researcher Thijs Cornelissen developed an algorithm to reconstruct the particle tracks and that is being used in a European research institute for particle physics. His method provides greater insights into the origine of particles that arise as a result of collisions." (1/2 page)

  18. Particle tracking at the SSC

    International Nuclear Information System (INIS)

    Freeman, J.E.; Williams, H.H.

    1984-01-01

    The intent of this study was to get some idea of how difficult tracking will be at √s = 40 TeV for events involving momentum transfers in the vicinity of several hundred GeV. While some studies have been done to determine the minimum separation between two random tracks as a function of radius, the authors know of no previous study in this energy range which has considered the ''observability'' of a track along its entire path length, including the effects of magnetic field and finite double track resolution. They have not considered the effects of pileup due to multiple events, concentrating instead of the inherent difficulties of single high p/sub T/ events

  19. Dual color single particle tracking via nanobodies

    International Nuclear Information System (INIS)

    Albrecht, David; Winterflood, Christian M; Ewers, Helge

    2015-01-01

    Single particle tracking is a powerful tool to investigate the function of biological molecules by following their motion in space. However, the simultaneous tracking of two different species of molecules is still difficult to realize without compromising the length or density of trajectories, the localization accuracy or the simplicity of the assay. Here, we demonstrate a simple dual color single particle tracking assay using small, bright, high-affinity labeling via nanobodies of accessible targets with widely available instrumentation. We furthermore apply a ratiometric step-size analysis method to visualize differences in apparent membrane viscosity. (paper)

  20. Particle filtering for passive fathometer tracking.

    Science.gov (United States)

    Michalopoulou, Zoi-Heleni; Yardim, Caglar; Gerstoft, Peter

    2012-01-01

    Seabed interface depths and fathometer amplitudes are tracked for an unknown and changing number of sub-bottom reflectors. This is achieved by incorporating conventional and adaptive fathometer processors into sequential Monte Carlo methods for a moving vertical line array. Sediment layering information and time-varying fathometer response amplitudes are tracked by using a multiple model particle filter with an uncertain number of reflectors. Results are compared to a classical particle filter where the number of reflectors is considered to be known. Reflector tracking is demonstrated for both conventional and adaptive processing applied to the drifting array data from the Boundary 2003 experiment. The layering information is successfully tracked by the multiple model particle filter even for noisy fathometer outputs. © 2012 Acoustical Society of America.

  1. Discovery Mondays - 'Particle tracks: Seeing the invisible'

    CERN Multimedia

    2007-01-01

    Simulation of particle tracks in the CMS detector. How can you 'see' something as infinitesimal and fleeting as an elementary particle that defeats even the most powerful microscope? Well, physicists have detectors to snoop on them. Unlike biologists looking at bacteria, physicists don't see the particles themselves. They study their impact on sensitive materials as they pass through them at ultra high speed, a bit like seeing plane vapour trails in a clear sky. At the next Discovery Monday you will be able to find out about the different methods used at CERN to detect particles. There will be demonstrations of the cloud chamber, where particles leave tell-tale evidence of their passage in tracks of droplets. You will also learn about past and current particle track detection techniques and how the tracks are reconstructed into magnificent composite images. Don't miss this opportunity to learn about the various ways of 'seeing' particles. The event will be conducted in French. Come along to the Microcosm ...

  2. Tracking and imaging elementary particles

    International Nuclear Information System (INIS)

    Breuker, H.; Drevermann, H.; Grab, C.; Rademakers, A.A.; Stone, H.

    1991-01-01

    The Large Electron-Positron (LEP) Collider is one of the most powerful particle accelerators ever built. It smashes electrons into their antimatter counterparts, positrons, releasing as much as 100 billion electron volts of energy within each of four enormous detectors. Each burst of energy generates a spray of hundreds of elementary particles that are monitored by hundreds of thousands of sensors. In less than a second, an electronic system must sort through the data from some 50,000 electron-positron encounters, searching for just one or two head-on collisions that might lead to discoveries about the fundamental forces and the elementary particles of nature. When the electronic systems identify such a promising event, a picture of the data must be transmitted to the most ingenious image processor ever created. The device is the human brain. Computers cannot match the brain's capacity to recognize complicated patterns in the data collected by the LEP detectors. The work of understanding subnuclear events begins therefore through the visualization of objects that are trillions of times smaller than the eye can see and that move millions of times faster than the eye can follow. During the past decade, the authors and their colleagues at the European laboratory for particle physics (CERN) have attempted to design the perfect interface between the minds of physicists and the barrage of electronic signals from the LEP detectors. Using sophisticated computers, they translate raw data - 500,000 numbers from each event - into clear, meaningful images. With shapes, curves and colors, they represent the trajectories of particles, their type, their energy and many other properties

  3. Track-structure simulations for charged particles.

    Science.gov (United States)

    Dingfelder, Michael

    2012-11-01

    Monte Carlo track-structure simulations provide a detailed and accurate picture of radiation transport of charged particles through condensed matter of biological interest. Liquid water serves as a surrogate for soft tissue and is used in most Monte Carlo track-structure codes. Basic theories of radiation transport and track-structure simulations are discussed and differences compared to condensed history codes highlighted. Interaction cross sections for electrons, protons, alpha particles, and light and heavy ions are required input data for track-structure simulations. Different calculation methods, including the plane-wave Born approximation, the dielectric theory, and semi-empirical approaches are presented using liquid water as a target. Low-energy electron transport and light ion transport are discussed as areas of special interest.

  4. Fast particle tracking with wake fields

    Energy Technology Data Exchange (ETDEWEB)

    Dohlus, M.; Floettmann, K.; Henning, C.

    2012-01-15

    Tracking calculations of charged particles in electromagnetic fields require in principle the simultaneous solution of the equation of motion and of Maxwell's equations. In many tracking codes a simpler and more efficient approach is used: external fields like that of the accelerating structures are provided as field maps, generated in separate computations and for the calculation of self fields the model of a particle bunch in uniform motion is used. We describe how an externally computed wake function can be approximated by a table of Taylor coefficients and how the wake field kick can be calculated for the particle distribution in a tracking calculation. The integrated kick, representing the effect of a distributed structure, is applied at a discrete time. As an example, we use our approach to calculate the emittance growth of a bunch in an undulator beam pipe due to resistive wall wake field effects. (orig.)

  5. Canonical particle tracking in undulator fields

    International Nuclear Information System (INIS)

    Wuestefeld, G.; Bahrdt, J.

    1991-01-01

    A new algebraic mapping routine for particle tracking across wiggler and undulator fields in presented. It is based on a power series expansion of the generating function to guarantee fully canonical transformations. This method is 10 to 100 times faster than integration routines, applied in tracking codes like BETA or RACETRACK. The tracking method presented is not restricted to wigglers and undulators, it can be applied to other magnetic fields as well such as fringing fields of quadrupoles or dipoles if the suggested expansion converges

  6. Passive target tracking using marginalized particle filter

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A marginalized particle filtering(MPF)approach is proposed for target tracking under the background of passive measurement.Essentially,the MPF is a combination of particle filtering technique and Kalman filter.By making full use of marginalization,the distributions of the tractable linear part of the total state variables are updated analytically using Kalman filter,and only the lower-dimensional nonlinear state variable needs to be dealt with using particle filter.Simulation studies are performed on an illustrative example,and the results show that the MPF method leads to a significant reduction of the tracking errors when compared with the direct particle implementation.Real data test results also validate the effectiveness of the presented method.

  7. Particle track membranes with higher porosity

    International Nuclear Information System (INIS)

    Heinrich, B.; Gemende, B.; Lueck, H.B.

    1992-01-01

    Possibilities of improvement of flux and dirt loading capacity of particle track membranes have been examined. Three different ways were investigated: using a divergent ion beam for the irradiation; enlarging the surface porosity through a conical pore shape; creating an asymmetrical membrane structure with two different porosities. Mathematical models and experimental results have been discussed. 9 figs, 3 tabs

  8. 3D scanning particle tracking velocimetry

    Energy Technology Data Exchange (ETDEWEB)

    Hoyer, Klaus; Holzner, Markus; Guala, Michele; Liberzon, Alexander; Kinzelbach, Wolfgang [Swiss Federal Institut of Technology Zurich, Institut fuer Hydromechanik und Wasserwirtschaft, Zuerich (Switzerland); Luethi, Beat [Risoe National Laboratory, Roskilde (Denmark)

    2005-11-01

    In this article, we present an experimental setup and data processing schemes for 3D scanning particle tracking velocimetry (SPTV), which expands on the classical 3D particle tracking velocimetry (PTV) through changes in the illumination, image acquisition and analysis. 3D PTV is a flexible flow measurement technique based on the processing of stereoscopic images of flow tracer particles. The technique allows obtaining Lagrangian flow information directly from measured 3D trajectories of individual particles. While for a classical PTV the entire region of interest is simultaneously illuminated and recorded, in SPTV the flow field is recorded by sequential tomographic high-speed imaging of the region of interest. The advantage of the presented method is a considerable increase in maximum feasible seeding density. Results are shown for an experiment in homogenous turbulence and compared with PTV. SPTV yielded an average 3,500 tracked particles per time step, which implies a significant enhancement of the spatial resolution for Lagrangian flow measurements. (orig.)

  9. PEPT: An invaluable tool for 3-D particle tracking and CFD simulation verification in hydrocyclone studies

    Directory of Open Access Journals (Sweden)

    Hoffmann Alex C.

    2013-05-01

    Full Text Available Particle tracks in a hydrocyclone generated both experimentally by positron emission particle tracking (PEPT and numerically with Eulerian-Lagranian CFD have been studied and compared. A hydrocyclone with a cylinder-on-cone design was used in this study, the geometries used in the CFD simulations and in the experiments being identical. It is shown that it is possible to track a fast-moving particle in a hydrocyclone using PEPT with high temporal and spatial resolutions. The numerical 3-D particle trajectories were generated using the Large Eddy Simulation (LES turbulence model for the fluid and Lagrangian particle tracking for the particles. The behaviors of the particles were analyzed in detail and were found to be consistent between experiments and CFD simulations. The tracks of the particles are discussed and related to the fluid flow field visualized in the CFD simulations using the cross-sectional static pressure distribution.

  10. Nuclear track radiography of 'hot' aerosol particles

    International Nuclear Information System (INIS)

    Boulyga, S.F.; Kievitskaja, A.I.; Kievets, M.K.; Lomonosova, E.M.; Zhuk, I.V.; Yaroshevich, O.I.; Perelygin, V.P.; Petrova, R.; Brandt, R.; Vater, P.

    1999-01-01

    Nuclear track radiography was applied to identify aerosol 'hot' particles which contain elements of nuclear fuel and fallout after Chernobyl NPP accident. For the determination of the content of transuranium elements in radioactive aerosols the measurement of the α-activity of 'hot' particles by SSNTD was used in this work, as well as radiography of fission fragments formed as a result of the reactions (n,f) and (γ,f) in the irradiation of aerosol filters by thermal neutrons and high energy gamma quanta. The technique allowed the sizes and alpha-activity of 'hot' particles to be determined without extracting them from the filter, as well as the determination of the uranium content and its enrichment by 235 U, 239 Pu and 241 Pu isotopes. Sensitivity of determination of alpha activity by fission method is 5x10 -6 Bq per particle. The software for the system of image analysis was created. It ensured the identification of track clusters on an optical image of the SSNTD surface obtained through a video camera and the determination of size and activity of 'hot' particles

  11. Nuclear track radiography of 'hot' aerosol particles

    CERN Document Server

    Boulyga, S F; Kievets, M K; Lomonosova, E M; Zhuk, I V; Yaroshevich, O I; Perelygin, V P; Petrova, R I; Brandt, R; Vater, P

    1999-01-01

    Nuclear track radiography was applied to identify aerosol 'hot' particles which contain elements of nuclear fuel and fallout after Chernobyl NPP accident. For the determination of the content of transuranium elements in radioactive aerosols the measurement of the alpha-activity of 'hot' particles by SSNTD was used in this work, as well as radiography of fission fragments formed as a result of the reactions (n,f) and (gamma,f) in the irradiation of aerosol filters by thermal neutrons and high energy gamma quanta. The technique allowed the sizes and alpha-activity of 'hot' particles to be determined without extracting them from the filter, as well as the determination of the uranium content and its enrichment by sup 2 sup 3 sup 5 U, sup 2 sup 3 sup 9 Pu and sup 2 sup 4 sup 1 Pu isotopes. Sensitivity of determination of alpha activity by fission method is 5x10 sup - sup 6 Bq per particle. The software for the system of image analysis was created. It ensured the identification of track clusters on an optical imag...

  12. Location-allocation algorithm for multiple particle tracking using Birmingham MWPC positron camera

    International Nuclear Information System (INIS)

    Gundogdu, O.; Tarcan, E.

    2004-01-01

    Positron Emission Particle Tracking is a powerful, non-invasive technique that employs a single radioactive particle. It has been applied to a wide range of industrial systems. This paper presents an original application of a technique, which was mainly developed in economics or resource management. It allows the tracking of multiple particles using small number of trajectories with correct tagging. This technique originally used in economics or resource management provides very encouraging results

  13. Location-allocation algorithm for multiple particle tracking using Birmingham MWPC positron camera

    Energy Technology Data Exchange (ETDEWEB)

    Gundogdu, O. E-mail: o.gundogdu@surrey.ac.uko_gundo@yahoo.co.uko.gundogdu@kingston.ac.uk; Tarcan, E

    2004-05-01

    Positron Emission Particle Tracking is a powerful, non-invasive technique that employs a single radioactive particle. It has been applied to a wide range of industrial systems. This paper presents an original application of a technique, which was mainly developed in economics or resource management. It allows the tracking of multiple particles using small number of trajectories with correct tagging. This technique originally used in economics or resource management provides very encouraging results.

  14. Mechanism of track formation by charged particles in inorganic and organic solid-state track detectors

    International Nuclear Information System (INIS)

    Doerschel, B.; Pretzsch, G.; Streubel, G.

    1979-01-01

    Knowledge of the individual phases of track formation mechanism is necessary in some applications of solid-state track detectors. The generation of latent tracks is described by energy transfer processes of the charged particles along their paths using several different models. Etchability of the latent tracks is discussed on the basis of some distinct criteria taking into account different fractions of energy release by the primary and secondary particles during track generation. If these etchability criteria for latent tracks are fulfilled, visual particle tracks can be produced by a chemical etching process. Etch pit formation depends on the etching conditions. The geometrical parameters of the etching pits are given on the basis of known etching rates. Evaluation of individual particle tracks or determination of track density yields results depending on both the properties of the particles and the etching conditions. Determination of particle energy and particle fluence is discussed as an example. (author)

  15. Symplectic multi-particle tracking on GPUs

    Science.gov (United States)

    Liu, Zhicong; Qiang, Ji

    2018-05-01

    A symplectic multi-particle tracking model is implemented on the Graphic Processing Units (GPUs) using the Compute Unified Device Architecture (CUDA) language. The symplectic tracking model can preserve phase space structure and reduce non-physical effects in long term simulation, which is important for beam property evaluation in particle accelerators. Though this model is computationally expensive, it is very suitable for parallelization and can be accelerated significantly by using GPUs. In this paper, we optimized the implementation of the symplectic tracking model on both single GPU and multiple GPUs. Using a single GPU processor, the code achieves a factor of 2-10 speedup for a range of problem sizes compared with the time on a single state-of-the-art Central Processing Unit (CPU) node with similar power consumption and semiconductor technology. It also shows good scalability on a multi-GPU cluster at Oak Ridge Leadership Computing Facility. In an application to beam dynamics simulation, the GPU implementation helps save more than a factor of two total computing time in comparison to the CPU implementation.

  16. Particle Emissions from Biomass Combustion

    Energy Technology Data Exchange (ETDEWEB)

    Szpila, Aneta; Bohgard, Mats [Lund Inst. of Technology (Sweden). Div. of Ergonomics and Aerosol Technology; Strand, Michael; Lillieblad, Lena; Sanati, Mehri [Vaexjoe Univ. (Sweden). Div. of Bioenergy Technology; Pagels, Joakim; Rissler, Jenny; Swietlicki, Erik; Gharibi, Arash [Lund Univ. (Sweden). Div. of Nuclear Physics

    2003-05-01

    particle number concentration increased slightly with increasing load, at the same time the fine mode particles became smaller. This was probably caused by different degree of particle coagulation as the residence time in the boiler was changed. The mean diameter during combustion of forest residue was around 100 nm compared to 70-80 nm for dry wood and pellets, while the total number was close to constant. This explains the differences in mass concentration found in the impactor measurements. The concentrations of CO and THC was highest for the dry wood fuel, the PAH concentration was highest for pellets combustion in boiler 4, however this boiler was poorly tuned at the time of measurement. The PAH concentration was 5 times higher during combustion of dry wood compared to forest residue. The concentration of CO, THC and PAH varied to a great extend. The high concentrations were measured in boilers running at a low load. The concentration of particle organic carbon was less than 15% of PMI for all fuels. However we used heated primary dilution, which inhibits the condensation of organic components into, the particle phase. A significant fraction of the emitted organic carbon may condense to the particle phase during dilution after the stack or after being oxidized in the atmosphere. We also measured elemental carbon in the particle phase. The contribution to PM1 was as high as 25-30% during pellets combustion at low load and 8% at low load during combustion of dry wood. In all other cases the EC-concentration was less than 3% of PMI. PIXE and lon-chromatography confirmed that alkali-salts were the dominant chemical species. PIXE analysis revealed that emitted amounts of heavy metals such as Zn, Cd and Pb are strongly dependent on the type of the fuel used. Forest residues gave high emissions of Zn, Cd and Pb, while pellets gave very high emissions of Cd and Zn. The fuel with the lowest emissions of heavy metals was dry wood. This again could be related to ash content in

  17. Measurement of fission track of uranium particle by solid state nuclear track detector

    International Nuclear Information System (INIS)

    Son, S. C.; Pyo, H. W.; Ji, K. Y.; Kim, W. H.

    2002-01-01

    In this study, we discussed results of the measurement of fission tracks for the uranium containing particles by solid state nuclear track detector. Uranium containing silica and uranium oxide particles were prepared by uranium sorption onto silica powder in weak acidic medium and laser ablation on uranium pellet, respectively. Fission tracks for the uranium containing silica and uranium oxide particles were detected on Lexan plastic detector. It was found that the fission track size and shapes depend on the particle size uranium content in particles. Correlation of uranium particle diameter with fission track radius was also discussed

  18. Particle Filtering Applied to Musical Tempo Tracking

    Directory of Open Access Journals (Sweden)

    Macleod Malcolm D

    2004-01-01

    Full Text Available This paper explores the use of particle filters for beat tracking in musical audio examples. The aim is to estimate the time-varying tempo process and to find the time locations of beats, as defined by human perception. Two alternative algorithms are presented, one which performs Rao-Blackwellisation to produce an almost deterministic formulation while the second is a formulation which models tempo as a Brownian motion process. The algorithms have been tested on a large and varied database of examples and results are comparable with the current state of the art. The deterministic algorithm gives the better performance of the two algorithms.

  19. Structure modification of particle track membranes

    International Nuclear Information System (INIS)

    Lueck, H.B.; Gemende, B.; Heinrich, B.

    1991-01-01

    Three different structure modifications were studied in order to improve the flux and dirt loading capacity of particle track membranes without affecting their retention characteristic. Divergent irradiation is a very effective tool for decreasing the number of multiple pores and increasing the porosity up to 20 per cent. The technique leads to a remarkable but not efficient enhancement of the surface porosity. Improved surface porosity produced by a double irradiation technique turns out to be very effective with respect to the filtration performance. (author)

  20. Discovery Mondays - The detectors: tracking particles

    CERN Multimedia

    2005-01-01

    View of a module from the LHCb vertex detector, which will be presented at the next Discovery Monday. How do you observe the invisible? In order to deepen still further our knowledge of the infinitely small, physicists accelerate beams of particles and generate collisions between them at extraordinary energies. The collisions give birth to showers of new particles. What are they? In order to find out, physicists slip into the role of detectives thanks to the detectors. At the next Discovery Monday you will find out about the different methods used at CERN to detect particles. A cloud chamber will allow you to see the tracks of cosmic particles live. You will also be given the chance to see real modules for the ATLAS and for the LHCb experiments. Strange materials will be on hand, such as crystals that are heavier than iron and yet as transparent as glass... Come to the Microcosm and become a top detective yourself! This event will take place in French. Join us at the Microcosm (Reception Building 33, M...

  1. Charged Particle Tracking with the Timepix ASIC

    CERN Document Server

    Akiba, Kazuyoshi; Collins, P; Crossley, M; Dumps, R; Gersabeck, M; Gligorov, Vladimir V; Llopart, X; Nicol, M; Poikela, T; Cabruja, Enric; Fleta, C; Lozano, M; Pellegrini, G; Bates, R; Eklund, L; Hynds, D; Ferre Llin, L; Maneuski, D; Parkes, C; Plackett, R; Rodrigues, E; Stewart, G; Akiba, K; van Beuzekom, M; Heijne, V; Heijne, E H M; Gordon, H; John, M; Gandelman, M; Esperante, D; Gallas, A; Vazquez Regueiro, P; Bayer, F; Michel, T; Needham, M; Artuso, M; Badman, R; Borgia, A; Garofoli, J; Wang, J; Xing, Z; Buytaert, Jan; Leflat, Alexander

    2012-01-01

    A prototype particle tracking telescope has been constructed using Timepix and Medipix ASIC hybrid pixel assemblies as the six sensing planes. Each telescope plane consisted of one 1.4 cm2 assembly, providing a 256x256 array of 55 micron square pixels. The telescope achieved a pointing resolution of 2.3 micron at the position of the device under test. During a beam test in 2009 the telescope was used to evaluate in detail the performance of two Timepix hybrid pixel assemblies; a standard planar 300 micron thick sensor, and 285 micron thick double sided 3D sensor. This paper describes a detailed charge calibration study of the pixel devices, which allows the true charge to be extracted, and reports on measurements of the charge collection characteristics and Landau distributions. The planar sensor achieved a best resolution of 4.0 micron for angled tracks, and resolutions of between 4.4 and 11 micron for perpendicular tracks, depending on the applied bias voltage. The double sided 3D sensor, which has signific...

  2. A CVD diamond beam telescope for charged particle tracking

    CERN Document Server

    Adam, W; Bergonzo, P; de Boer, Wim; Bogani, F; Borchi, E; Brambilla, A; Bruzzi, Mara; Colledani, C; Conway, J; D'Angelo, P; Dabrowski, W; Delpierre, P A; Dulinski, W; Doroshenko, J; Doucet, M; van Eijk, B; Fallou, A; Fischer, P; Fizzotti, F; Kania, D R; Gan, K K; Grigoriev, E; Hallewell, G D; Han, S; Hartjes, F G; Hrubec, Josef; Husson, D; Kagan, H; Kaplon, J; Kass, R; Keil, M; Knöpfle, K T; Koeth, T W; Krammer, Manfred; Meuser, S; Lo Giudice, A; MacLynne, L; Manfredotti, C; Meier, D; Menichelli, D; Mishina, M; Moroni, L; Noomen, J; Oh, A; Pan, L S; Pernicka, Manfred; Perera, L P; Riester, J L; Roe, S; Rudge, A; Russ, J; Sala, S; Sampietro, M; Schnetzer, S; Sciortino, S; Stelzer, H; Stone, R; Suter, B; Trischuk, W; Tromson, D; Vittone, E; Weilhammer, Peter; Wermes, N; Wetstein, M; Zeuner, W; Zöller, M

    2002-01-01

    CVD diamond is a radiation hard sensor material which may be used for charged particle tracking near the interaction region in experiments at high luminosity colliders. The goal of the work described here is to investigate the use of several detector planes made of CVD diamond strip sensors for charged particle tracking. Towards this end a tracking telescope composed entirely of CVD diamond planes has been constructed. The telescope was tested in muon beams and its tracking capability has been investigated.

  3. Single-Particle Tracking of Human Lipoproteins.

    Science.gov (United States)

    de Messieres, Michel; Ng, Abby; Duarte, Cornelio J; Remaley, Alan T; Lee, Jennifer C

    2016-01-05

    Lipoproteins, such as high-density lipoprotein (HDL), low-density lipoprotein (LDL), and very-low density lipoprotein (VLDL), play a critical role in heart disease. Lipoproteins vary in size and shape as well as in their apolipoprotein content. Here, we developed a new experimental framework to study freely diffusing lipoproteins from human blood, allowing analysis of even the smallest HDL with a radius of 5 nm. In an easily constructed confinement chamber, individual HDL, LDL, and VLDL particles labeled with three distinct fluorophores were simultaneously tracked by wide-field fluorescence microscopy and their sizes were determined by their motion. This technique enables studies of individual lipoproteins in solution and allows characterization of the heterogeneous properties of lipoproteins which affect their biological function but are difficult to discern in bulk studies.

  4. A software for computer automated radioactive particle tracking

    Energy Technology Data Exchange (ETDEWEB)

    Vieira, Wilson S.; Brandao, Luis E. [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil)]. E-mails: wilson@ien.gov.br; brandao@ien.gov.br; Braz, Delson [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia (COPPE)]. E-mail: delson@smb.lin.ufrj.br

    2008-07-01

    TRACO-1 is the first software developed in Brazil for optimization and diagnosis of multiphase chemical reactors employing the technique known as 'Computer Automated Radioactive Particle Tracking' whose main idea is to follow the movement of a punctual radioactive particle inside a vessel. Considering that this particle has a behavior similar of the phase under investigation, important conclusions can be achieved. As a preliminary TRACO-1 evaluation, a simulation was carried out with the aid of a commercial software called MICROSHIELD, version 5.05, to obtain values of photon counting rates at four detector surfaces. These counting were related to the emission of gamma radiation from a radioactive source because they are the main TRACO-1 input variables. Although the results that has been found are incipient, the analysis of them suggest that the tracking of a radioactive source using TRACO- 1 can be well succeed, but a better evaluation of the capabilities of this software will only be achieved after its application in real experiments. (author)

  5. A software for computer automated radioactive particle tracking

    International Nuclear Information System (INIS)

    Vieira, Wilson S.; Brandao, Luis E.; Braz, Delson

    2008-01-01

    TRACO-1 is the first software developed in Brazil for optimization and diagnosis of multiphase chemical reactors employing the technique known as 'Computer Automated Radioactive Particle Tracking' whose main idea is to follow the movement of a punctual radioactive particle inside a vessel. Considering that this particle has a behavior similar of the phase under investigation, important conclusions can be achieved. As a preliminary TRACO-1 evaluation, a simulation was carried out with the aid of a commercial software called MICROSHIELD, version 5.05, to obtain values of photon counting rates at four detector surfaces. These counting were related to the emission of gamma radiation from a radioactive source because they are the main TRACO-1 input variables. Although the results that has been found are incipient, the analysis of them suggest that the tracking of a radioactive source using TRACO- 1 can be well succeed, but a better evaluation of the capabilities of this software will only be achieved after its application in real experiments. (author)

  6. Continental anthropogenic primary particle number emissions

    Science.gov (United States)

    Paasonen, Pauli; Kupiainen, Kaarle; Klimont, Zbigniew; Visschedijk, Antoon; Denier van der Gon, Hugo A. C.; Amann, Markus

    2016-06-01

    Atmospheric aerosol particle number concentrations impact our climate and health in ways different from those of aerosol mass concentrations. However, the global, current and future anthropogenic particle number emissions and their size distributions are so far poorly known. In this article, we present the implementation of particle number emission factors and the related size distributions in the GAINS (Greenhouse Gas-Air Pollution Interactions and Synergies) model. This implementation allows for global estimates of particle number emissions under different future scenarios, consistent with emissions of other pollutants and greenhouse gases. In addition to determining the general particulate number emissions, we also describe a method to estimate the number size distributions of the emitted black carbon particles. The first results show that the sources dominating the particle number emissions are different to those dominating the mass emissions. The major global number source is road traffic, followed by residential combustion of biofuels and coal (especially in China, India and Africa), coke production (Russia and China), and industrial combustion and processes. The size distributions of emitted particles differ across the world, depending on the main sources: in regions dominated by traffic and industry, the number size distribution of emissions peaks in diameters range from 20 to 50 nm, whereas in regions with intensive biofuel combustion and/or agricultural waste burning, the emissions of particles with diameters around 100 nm are dominant. In the baseline (current legislation) scenario, the particle number emissions in Europe, Northern and Southern Americas, Australia, and China decrease until 2030, whereas especially for India, a strong increase is estimated. The results of this study provide input for modelling of the future changes in aerosol-cloud interactions as well as particle number related adverse health effects, e.g. in response to tightening

  7. Continental anthropogenic primary particle number emissions

    Directory of Open Access Journals (Sweden)

    P. Paasonen

    2016-06-01

    Full Text Available Atmospheric aerosol particle number concentrations impact our climate and health in ways different from those of aerosol mass concentrations. However, the global, current and future anthropogenic particle number emissions and their size distributions are so far poorly known. In this article, we present the implementation of particle number emission factors and the related size distributions in the GAINS (Greenhouse Gas–Air Pollution Interactions and Synergies model. This implementation allows for global estimates of particle number emissions under different future scenarios, consistent with emissions of other pollutants and greenhouse gases. In addition to determining the general particulate number emissions, we also describe a method to estimate the number size distributions of the emitted black carbon particles. The first results show that the sources dominating the particle number emissions are different to those dominating the mass emissions. The major global number source is road traffic, followed by residential combustion of biofuels and coal (especially in China, India and Africa, coke production (Russia and China, and industrial combustion and processes. The size distributions of emitted particles differ across the world, depending on the main sources: in regions dominated by traffic and industry, the number size distribution of emissions peaks in diameters range from 20 to 50 nm, whereas in regions with intensive biofuel combustion and/or agricultural waste burning, the emissions of particles with diameters around 100 nm are dominant. In the baseline (current legislation scenario, the particle number emissions in Europe, Northern and Southern Americas, Australia, and China decrease until 2030, whereas especially for India, a strong increase is estimated. The results of this study provide input for modelling of the future changes in aerosol–cloud interactions as well as particle number related adverse health effects, e.g. in response

  8. Optimizing experimental parameters for tracking of diffusing particles

    DEFF Research Database (Denmark)

    Vestergaard, Christian L.

    2016-01-01

    We describe how a single-particle tracking experiment should be designed in order for its recorded trajectories to contain the most information about a tracked particle's diffusion coefficient. The precision of estimators for the diffusion coefficient is affected by motion blur, limited photon st...

  9. Imaging of the vertical particle tracks without any depth scanning

    International Nuclear Information System (INIS)

    Soroko, L.M.

    2001-01-01

    The principle of a new optical microscope which enables us to get the image of a vertical particle track without any depth scanning is described. This new optical microscope contains a spatial transformer which consists of mirror lamellar elements and which produces a secondary in focus image of the vertical particle track. Properties of such a system are presented. A longitudinal resolution is estimated

  10. Particle Tracking and Deposition from CFD Simulations using a Viscoelastic Particle Model

    NARCIS (Netherlands)

    Losurdo, M.

    2009-01-01

    In the present dissertation the mathematical modelling of particle deposition is studied and the solution algorithms for particle tracking, deposition and deposit growth are developed. Particle deposition is modelled according to mechanical impact and contact mechanics taking into account the

  11. Nuclear Track Detectors. Searches for Exotic Particles

    CERN Document Server

    Giacomelli, Giorgio

    2008-01-01

    We used Nuclear Track Detectors (NTD) CR39 and Makrofol for many purposes: i) Exposures at the SPS and at lower energy accelerator heavy ion beams for calibration purposes and for fragmentation studies. ii) Searches for GUT and Intermediate Mass Magnetic Monopoles (IMM), nuclearites, Q-balls and strangelets in the cosmic radiation. The MACRO experiment in the Gran Sasso underground lab, with ~1000 m^2 of CR39 detectors (plus scintillators and streamer tubes), established an upper limit for superheavy GUT poles at the level of 1.4x10^-16 cm^-2 s^-1 sr^-1 for 4x10^-5 particles. iii) Environmental studies, radiation monitoring, neutron dosimetry.

  12. Algorithms for tracking of charged particles in circular accelerators

    International Nuclear Information System (INIS)

    Iselin, F.Ch.

    1986-01-01

    An important problem in accelerator design is the determination of the largest stable betatron amplitude. This stability limit is also known as the dynamic aperture. The equations describing the particle motion are non-linear, and the Linear Lattice Functions cannot be used to compute the stability limits. The stability limits are therefore usually searched for by particle tracking. One selects a set of particles with different betatron amplitudes and tracks them for many turns around the machine. The particles which survive a sufficient number of turns are termed stable. This paper concentrates on conservative systems. For this case the particle motion can be described by a Hamiltonian, i.e. tracking particles means application of canonical transformations. Canonical transformations are equivalent to symplectic mappings, which implies that there exist invariants. These invariants should not be destroyed in tracking

  13. Particle Tracking in Circular Accelerators Using the Exact Hamiltonian in SixTrack

    CERN Document Server

    Fjellstrom, Mattias; Hansson, Johan

    2013-12-13

    Particle motion in accelerators is in general complex. Tracking codes are developed to simulate beam dynamics in accelerators. SixTrack is a long lived particle tracking code maintained at CERN, the European Organization for Nuclear Research. A particle accelerator consists of a large number of magnets and other electromagnetic devices that guide the particle through the accelerator. Each device defines its own equation of motion, which often cannot be solved exactly. For this purpose, a number of approximations are introduced in order to facilitate the solution and to speed up the computation. In a high-energy accelerator, the particle has small transverse momentum components. This is exploited in the small-angle approximation. In this approximation the equations of motion are expanded to a low order in the transverse momentum components. In low-energy particle accelerators, or in tracking with large momentum deviations, this approximation is invalid. The equations of motion of a particle passing through a f...

  14. Particle orbit tracking on a parallel computer: Hypertrack

    International Nuclear Information System (INIS)

    Cole, B.; Bourianoff, G.; Pilat, F.; Talman, R.

    1991-05-01

    A program has been written which performs particle orbit tracking on the Intel iPSC/860 distributed memory parallel computer. The tracking is performed using a thin element approach. A brief description of the structure and performance of the code is presented, along with applications of the code to the analysis of accelerator lattices for the SSC. The concept of ''ensemble tracking'', i.e. the tracking of ensemble averages of noninteracting particles, such as the emittance, is presented. Preliminary results of such studies will be presented. 2 refs., 6 figs

  15. Particle emissions from compressed natural gas engines

    International Nuclear Information System (INIS)

    Ristovski, Z.D.; Morawska, L.; Hitchins, J.; Thomas, S.; Greenaway, C.; Gilbert, D.

    2000-01-01

    This paper presents the results of measurements conducted to determine particle and gas emissions from two large compressed natural gas (CNG) spark ignition (SI) engines. Particle size distributions in the range from 0.01-30 μm, and gas composition were measured for five power settings of the engines: 35, 50, 65, 80 and 100% of full power. Particle emissions in the size range between 0.5 and 30 μm, measured by the aerodynamic particle sizer (APS), were very low at a level below two particles cm -3 . These concentrations were comparable with average ambient concentration, and were not considered in the succeeding analysis. Both engines produce significant amounts of particles in the size range between 0.015 and 0.7 μm, measured by the scanning mobility particle size (SMPS). Maximum number of concentrations of about 1 x 10 7 particles cm -3 were very similar for both engines. The CMDs were in the range between 0.020 and 0.060 μm. The observed levels of particulate emission are in terms of number of the same order as emissions from heavy duty diesel engines (Morawska et al., Environ. Sci. Tech. 32, 2033-2042). On the other hand, emissions of CO and NO x of 5.53 and 3.33 g k W h -1 , respectively, for one of the tested engines, were considerably lower than set by the standards. According to the specifications for the gas emissions, provided by the US EPA (US EPA, 1997), this engine can be considered as a 'low-emission' engine, although emissions of submicrometer particles are of the same order as heavy-duty vehicles. (Author)

  16. Optical tracking of nanoscale particles in microscale environments

    Science.gov (United States)

    Mathai, P. P.; Liddle, J. A.; Stavis, S. M.

    2016-03-01

    The trajectories of nanoscale particles through microscale environments record useful information about both the particles and the environments. Optical microscopes provide efficient access to this information through measurements of light in the far field from nanoparticles. Such measurements necessarily involve trade-offs in tracking capabilities. This article presents a measurement framework, based on information theory, that facilitates a more systematic understanding of such trade-offs to rationally design tracking systems for diverse applications. This framework includes the degrees of freedom of optical microscopes, which determine the limitations of tracking measurements in theory. In the laboratory, tracking systems are assemblies of sources and sensors, optics and stages, and nanoparticle emitters. The combined characteristics of such systems determine the limitations of tracking measurements in practice. This article reviews this tracking hardware with a focus on the essential functions of nanoparticles as optical emitters and microenvironmental probes. Within these theoretical and practical limitations, experimentalists have implemented a variety of tracking systems with different capabilities. This article reviews a selection of apparatuses and techniques for tracking multiple and single particles by tuning illumination and detection, and by using feedback and confinement to improve the measurements. Prior information is also useful in many tracking systems and measurements, which apply across a broad spectrum of science and technology. In the context of the framework and review of apparatuses and techniques, this article reviews a selection of applications, with particle diffusion serving as a prelude to tracking measurements in biological, fluid, and material systems, fabrication and assembly processes, and engineered devices. In so doing, this review identifies trends and gaps in particle tracking that might influence future research.

  17. Particle Emissions from Domestic Gas Cookers

    DEFF Research Database (Denmark)

    Glarborg, Peter; Livbjerg, Hans; Wagner, Ayten Yilmaz

    2010-01-01

    The authors experimentally studied the formation of submicron particles from a domestic gas cooker in a compartment free from external particle sources. The effects of fuel (methane, natural gas, odorant-free natural gas), primary aeration, flow rate, and fuel sulphur content on particle emissions...... of the emitted particles were found to have a mean value of about 7 nm for partially premixed flames, increasing to ∼10 nm for nonpremixed flames. The quantity of primary air had a strong impact on the particle emissions, showing a minimum at a primary aeration level of 60-65%. Presence of sulphur in small...... quantities may enhance particle formation under some conditions, but results were not conclusive....

  18. Radiation chemistry of heavy-particle tracks. I. General considerations

    International Nuclear Information System (INIS)

    Magee, J.L.; Chatterjee, A.

    1980-01-01

    The radiation chemistry of heavy-particle tracks in dilute aqueous solution is considered in a unified manner. Emphasis is on the physical and chemical phenomena which are involved rather than on the construction of models to be used in actual calculations although the latter problem is discussed. A differential segment of a heavy-particle track is composed of two parts which we call core and penumbra; elementary considerations show that all properties of such a differential track can be uniquely specified in terms of a two-parameter system, and we choose energy per nucleon (E) and atomic numbers (Z) as independent parameters. The nature of heavy-particle-track processes varies with the magnitude of the energy deposit (LET), and we discuss three categories of track problems, for low-, intermediate-, and high-LET cases, respectively. Scavenger reactions normally terminate radical recombination in a track, and for heavy-particle tracks we find a criterion involving the scavenger concentration for a convenient separation of core and penumbra into essentially noninteracting parts which can be treated independently. Problems of the core expansion in the three regions are considered, and it is found that a versatile model can be constructed on concepts previously introduced by Ganguly and Magee. A model for the penumbra, based on the authors' electron-track theory, is presented and discussed

  19. Particle Tracking Model (PTM) with Coastal Modeling System (CMS)

    Science.gov (United States)

    2015-11-04

    Coastal Inlets Research Program Particle Tracking Model (PTM) with Coastal Modeling System ( CMS ) The Particle Tracking Model (PTM) is a Lagrangian...currents and waves. The Coastal Inlets Research Program (CIRP) supports the PTM with the Coastal Modeling System ( CMS ), which provides coupled wave...and current forcing for PTM simulations. CMS -PTM is implemented in the Surface-water Modeling System, a GUI environment for input development

  20. PARTICLE FILTER BASED VEHICLE TRACKING APPROACH WITH IMPROVED RESAMPLING STAGE

    Directory of Open Access Journals (Sweden)

    Wei Leong Khong

    2014-02-01

    Full Text Available Optical sensors based vehicle tracking can be widely implemented in traffic surveillance and flow control. The vast development of video surveillance infrastructure in recent years has drawn the current research focus towards vehicle tracking using high-end and low cost optical sensors. However, tracking vehicles via such sensors could be challenging due to the high probability of changing vehicle appearance and illumination, besides the occlusion and overlapping incidents. Particle filter has been proven as an approach which can overcome nonlinear and non-Gaussian situations caused by cluttered background and occlusion incidents. Unfortunately, conventional particle filter approach encounters particle degeneracy especially during and after the occlusion. Particle filter with sampling important resampling (SIR is an important step to overcome the drawback of particle filter, but SIR faced the problem of sample impoverishment when heavy particles are statistically selected many times. In this work, genetic algorithm has been proposed to be implemented in the particle filter resampling stage, where the estimated position can converge faster to hit the real position of target vehicle under various occlusion incidents. The experimental results show that the improved particle filter with genetic algorithm resampling method manages to increase the tracking accuracy and meanwhile reduce the particle sample size in the resampling stage.

  1. Canonical harmonic tracking of charged particles in circular accelerators

    International Nuclear Information System (INIS)

    Kvardakov, V.; Levichev, E.

    2006-01-01

    Harmonic tracking is a method used to study non-linear particle dynamics in a circular accelerator. The tracking algorithm is based on numerical solution of the Hamilton equations of motion. An essential feature of the method is the approximation of Hamiltonian perturbation terms by a finite number of azimuthal harmonics, which provides an effective tool for optimization of non-linear particle motion. The equations of motion are solved canonically, with the first-order prediction made using the explicit Lie transformation. The major features of harmonic tracking are presented and examples of its application are discussed

  2. Canonical harmonic tracking of charged particles in circular accelerators

    Science.gov (United States)

    Kvardakov, V.; Levichev, E.

    2006-03-01

    Harmonic tracking is a method used to study non-linear particle dynamics in a circular accelerator. The tracking algorithm is based on numerical solution of the Hamilton equations of motion. An essential feature of the method is the approximation of Hamiltonian perturbation terms by a finite number of azimuthal harmonics, which provides an effective tool for optimization of non-linear particle motion. The equations of motion are solved canonically, with the first-order prediction made using the explicit Lie transformation. The major features of harmonic tracking are presented and examples of its application are discussed.

  3. Alpha particle track coloration in CR-39: Improved observability

    CERN Document Server

    Oezguemues, A

    1999-01-01

    A comparative study of the observability of alpha particle tracks in CR-39 was performed with an optical microscope before and after coloration. The implantation of ink helped in observing the damage zones. At first glance through the microscope, the coloration makes the tracks stand out right away. This coloration is helpful, from the start, in the morphological study of the tracks (size, area, orientation, shape, perimeter). This operation is advantageous in distinguishing the alpha particle tracks from stains or scratches. Thus, the routine counting of the tracks is more easily performed. Consequently, this procedure allowed us: to decrease significantly the standard deviation of the approximate total of the parameters given from the image analysis system (Olympus CUE2); to envision the possibility of reasonably decreasing the etching time in order to limit the loss of information caused by the destruction of the CR-39 during chemical etching and to use a weaker enlarging lens in order to cover a larger fi...

  4. Ballistic target tracking algorithm based on improved particle filtering

    Science.gov (United States)

    Ning, Xiao-lei; Chen, Zhan-qi; Li, Xiao-yang

    2015-10-01

    Tracking ballistic re-entry target is a typical nonlinear filtering problem. In order to track the ballistic re-entry target in the nonlinear and non-Gaussian complex environment, a novel chaos map particle filter (CMPF) is used to estimate the target state. CMPF has better performance in application to estimate the state and parameter of nonlinear and non-Gassuian system. The Monte Carlo simulation results show that, this method can effectively solve particle degeneracy and particle impoverishment problem by improving the efficiency of particle sampling to obtain the better particles to part in estimation. Meanwhile CMPF can improve the state estimation precision and convergence velocity compared with EKF, UKF and the ordinary particle filter.

  5. Emissions of soot particles from heat generators

    Science.gov (United States)

    Lyubov, V. K.; Popov, A. N.; Popova, E. I.

    2017-11-01

    «Soot carbon» or «Soot» - incomplete combustion or thermal decomposition particulate carbon product of hydrocarbons consisting of particles of various shapes and sizes. Soot particles are harmful substances Class 2 and like a dust dispersed by wind for thousands of kilometers. Soot have more powerful negative factor than carbon dioxide. Therefore, more strict requirements on ecological and economical performance for energy facilities at Arctic areas have to be developed to protect fragile Arctic ecosystems and global climate change from degradation and destruction. Quantity of soot particles in the flue gases of energy facilities is a criterion of effectiveness for organization of the burning process. Some of heat generators do not provide the required energy and environmental efficiency which results in irrational use of energy resources and acute pollution of environment. The paper summarizes the results of experimental study of solid particles emission from wide range of capacity boilers burning different organic fuels (natural gas, fuel oil, coal and biofuels). Special attention is paid to environmental and energy performance of the biofuels combustion. Emissions of soot particles PM2.5 are listed. Structure, composition and dimensions of entrained particles with the use of electronic scanning microscope Zeiss SIGMA VP were also studied. The results reveal an impact of several factors on soot particles emission.

  6. Discovery Mondays - The detectors: tracking particles

    CERN Multimedia

    2005-01-01

    View of a module from the LHCb vertex detector, which will be presented at the next Discovery Monday. How do you observe the invisible? In order to deepen still further our knowledge of the infinitely small, physicists accelerate beams of particles at close to the speed of light, then generate collisions between them at extraordinary energies, giving birth to showers of new particles. What are these particles? In order to find out, physicists transform themselves into detectives with the help of the detectors. Located around the collision area, these exceptional machines are made up of various layers, each of which detects and measures specific properties of the particles that travel through them. Powerful computers then reconstruct their trajectory and record their charge, mass and energy in order to build up a kind of particle ID card. At the next Discovery Monday you will be able to find out about the different methods used at CERN to detect particles. A cloud chamber will provide live images of the trac...

  7. Workshop: Keeping track of particle beams

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1990-01-15

    How to monitor the beam in a particle accelerator - to measure beam position, intensity, profile, transverse and longitudinal emittance, and losses - was the topic of the first US National Workshop on Accelerator Instrumentation, at Brookhaven in October. Sponsored by the US Department of Energy, the meeting drew more than a hundred physicists and engineers from other national labs and from industry.

  8. Workshop: Keeping track of particle beams

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    How to monitor the beam in a particle accelerator - to measure beam position, intensity, profile, transverse and longitudinal emittance, and losses - was the topic of the first US National Workshop on Accelerator Instrumentation, at Brookhaven in October. Sponsored by the US Department of Energy, the meeting drew more than a hundred physicists and engineers from other national labs and from industry

  9. 3D Rainbow Particle Tracking Velocimetry

    Science.gov (United States)

    Aguirre-Pablo, Andres A.; Xiong, Jinhui; Idoughi, Ramzi; Aljedaani, Abdulrahman B.; Dun, Xiong; Fu, Qiang; Thoroddsen, Sigurdur T.; Heidrich, Wolfgang

    2017-11-01

    A single color camera is used to reconstruct a 3D-3C velocity flow field. The camera is used to record the 2D (X,Y) position and colored scattered light intensity (Z) from white polyethylene tracer particles in a flow. The main advantage of using a color camera is the capability of combining different intensity levels for each color channel to obtain more depth levels. The illumination system consists of an LCD projector placed perpendicularly to the camera. Different intensity colored level gradients are projected onto the particles to encode the depth position (Z) information of each particle, benefiting from the possibility of varying the color profiles and projected frequencies up to 60 Hz. Chromatic aberrations and distortions are estimated and corrected using a 3D laser engraved calibration target. The camera-projector system characterization is presented considering size and depth position of the particles. The use of these components reduces dramatically the cost and complexity of traditional 3D-PTV systems.

  10. Charged particle track reconstruction using artificial neural networks

    International Nuclear Information System (INIS)

    Glover, C.; Fu, P.; Gabriel, T.; Handler, T.

    1992-01-01

    This paper summarizes the current state of our research in developing and applying artificial neural network (ANN) algorithm described here is based on a crude model of the retina. It takes as input the coordinates of each charged particle's interaction point (''hit'') in the tracking chamber. The algorithm's output is a set of vectors pointing to other hits that most likely to form a track

  11. Multi-color single particle tracking with quantum dots.

    Directory of Open Access Journals (Sweden)

    Eva C Arnspang

    Full Text Available Quantum dots (QDs have long promised to revolutionize fluorescence detection to include even applications requiring simultaneous multi-species detection at single molecule sensitivity. Despite the early promise, the unique optical properties of QDs have not yet been fully exploited in e. g. multiplex single molecule sensitivity applications such as single particle tracking (SPT. In order to fully optimize single molecule multiplex application with QDs, we have in this work performed a comprehensive quantitative investigation of the fluorescence intensities, fluorescence intensity fluctuations, and hydrodynamic radii of eight types of commercially available water soluble QDs. In this study, we show that the fluorescence intensity of CdSe core QDs increases as the emission of the QDs shifts towards the red but that hybrid CdSe/CdTe core QDs are less bright than the furthest red-shifted CdSe QDs. We further show that there is only a small size advantage in using blue-shifted QDs in biological applications because of the additional size of the water-stabilizing surface coat. Extending previous work, we finally also show that parallel four color multicolor (MC-SPT with QDs is possible at an image acquisition rate of at least 25 Hz. We demonstrate the technique by measuring the lateral dynamics of a lipid, biotin-cap-DPPE, in the cellular plasma membrane of live cells using four different colors of QDs; QD565, QD605, QD655, and QD705 as labels.

  12. Periodic Poisson Solver for Particle Tracking

    International Nuclear Information System (INIS)

    Dohlus, M.; Henning, C.

    2015-05-01

    A method is described to solve the Poisson problem for a three dimensional source distribution that is periodic into one direction. Perpendicular to the direction of periodicity a free space (or open) boundary is realized. In beam physics, this approach allows to calculate the space charge field of a continualized charged particle distribution with periodic pattern. The method is based on a particle mesh approach with equidistant grid and fast convolution with a Green's function. The periodic approach uses only one period of the source distribution, but a periodic extension of the Green's function. The approach is numerically efficient and allows the investigation of periodic- and pseudo-periodic structures with period lengths that are small compared to the source dimensions, for instance of laser modulated beams or of the evolution of micro bunch structures. Applications for laser modulated beams are given.

  13. Beta delayed particle emission in light nuclei

    International Nuclear Information System (INIS)

    Riisager, K.; Gabelmann, H.

    1991-01-01

    A short discussion of theoretical treatments of beta delayed particle emission is followed by a presentation of data on the newly found beta delayed deuteron decay of 6 He. This decay cannot be described properly with existing theories. (author) 8 refs.; 3 figs

  14. Pre-equilibrium complex particle emission

    International Nuclear Information System (INIS)

    Bĕták, E.

    2002-01-01

    Semi-classical (phenomenological) pre-equilibrium emission of clusters of nucleons (complex particles) such as deuterons, tritons, helions and α particles from reactions induced by light projectiles (nucleons to α’s) is addressed. The main attention is given to the hard components in the emission energetic spectra, which play an increasing role at incident energies above 20 MeV, and are currently attributed to a presence of some kind of pre-equilibrium processes. In addition, the mechanisms of cluster reactions show special features such as the competition between pickup and knockout processes and the contributions of several successive steps in the reaction. The main frame used here to illustrate the processes and interplays of the competing mechanisms of pre-equilibrium cluster formation and emission, namely the coalescence, pick-up and knock-out, is the pre-equilibrium exciton model. It obviously contains the process of clusterization itself as its organic part. The most important case of complex particles with the largest amount of experimental data is that of alpha emission, which therefore naturally attracts most of the attention and where the widest range of possible mechanisms is available on the market. The loosely bound ejectiles, on the other side, are usually not able to demonstrate all features of the whole spectrum of contributing mechanisms, but they are nevertheless an important link between the nucleon emission and the cluster one.

  15. Weighted-delta-tracking for Monte Carlo particle transport

    International Nuclear Information System (INIS)

    Morgan, L.W.G.; Kotlyar, D.

    2015-01-01

    Highlights: • This paper presents an alteration to the Monte Carlo Woodcock tracking technique. • The alteration improves computational efficiency within regions of high absorbers. • The rejection technique is replaced by a statistical weighting mechanism. • The modified Woodcock method is shown to be faster than standard Woodcock tracking. • The modified Woodcock method achieves a lower variance, given a specified accuracy. - Abstract: Monte Carlo particle transport (MCPT) codes are incredibly powerful and versatile tools to simulate particle behavior in a multitude of scenarios, such as core/criticality studies, radiation protection, shielding, medicine and fusion research to name just a small subset applications. However, MCPT codes can be very computationally expensive to run when the model geometry contains large attenuation depths and/or contains many components. This paper proposes a simple modification to the Woodcock tracking method used by some Monte Carlo particle transport codes. The Woodcock method utilizes the rejection method for sampling virtual collisions as a method to remove collision distance sampling at material boundaries. However, it suffers from poor computational efficiency when the sample acceptance rate is low. The proposed method removes rejection sampling from the Woodcock method in favor of a statistical weighting scheme, which improves the computational efficiency of a Monte Carlo particle tracking code. It is shown that the modified Woodcock method is less computationally expensive than standard ray-tracing and rejection-based Woodcock tracking methods and achieves a lower variance, given a specified accuracy

  16. Particle tracking in sophisticated CAD models for simulation purposes

    International Nuclear Information System (INIS)

    Sulkimo, J.; Vuoskoski, J.

    1995-01-01

    The transfer of physics detector models from computer aided design systems to physics simulation packages like GEANT suffers from certain limitations. In addition, GEANT is not able to perform particle tracking in CAD models. We describe an application which is able to perform particle tracking in boundary models constructed in CAD systems. The transfer file format used is the new international standard, STEP. The design and implementation of the application was carried out using object-oriented techniques. It will be integrated in the future object-oriented version of GEANT. (orig.)

  17. Particle tracking in sophisticated CAD models for simulation purposes

    Science.gov (United States)

    Sulkimo, J.; Vuoskoski, J.

    1996-02-01

    The transfer of physics detector models from computer aided design systems to physics simulation packages like GEANT suffers from certain limitations. In addition, GEANT is not able to perform particle tracking in CAD models. We describe an application which is able to perform particle tracking in boundary models constructed in CAD systems. The transfer file format used is the new international standard, STEP. The design and implementation of the application was carried out using object-oriented techniques. It will be integrated in the future object-oriented version of GEANT.

  18. Charged particle tracking in high multiplicity events at RHIC

    International Nuclear Information System (INIS)

    Foley, K.J.; Love, W.A.

    1985-01-01

    It is generally accepted that the ability to track some fraction of the charged particles produced in heavy ion collisions is very desirable. At a very minimum, one must detect the occurance of multiple interactions in a single crossing. The very tight beam structure at RHIC does not favor time separation, so the location of separate vertices seems the best solution. The limits of tracking large numbers of tracks in a solid angle approaching 4π have been explored. A model detector considered is a 2.5 m radius TPC, a true 3D tracking device. In order to estimate the particle density of a function of production angle, five Hijet Au-Au central events were used to deduce the particle density distribution as a function of polar angle. An important feature of a tracking detector is the effective ''pixel'' size - the area within which two tracks cannot be resolved. In a TPC with multistep avalanche chamber readout this is approximately 3 mm x 3 mm or approx.0.1 cm 2 . Using this pixel size we have calculated the radius at which the number of particles/pixel is 0.01 and 0.1. With the exception of the region very near the beam expect these distributions aren't expected to change very much with the application of a low (approx. 0.5 tesla) magnetic field. While the actual reconstruction efficiency will depend on the fine details of the apparatus and reconstruction program, the 1% fill fraction is safe for efficiencies in the 80 to 90% region. Tracking is found to be feasible at pseudorapidities up to 3

  19. Charged Particle Tracking and Vertex Detection Group summary report

    International Nuclear Information System (INIS)

    Hanson, G.; Meyer, D.

    1984-09-01

    Charged particle tracking is essential in order to investigate the new physics expected at the SSC. The Tracking Group studied radiation damage and rate limitations to tracking devices, vertex detectors, and central tracking. The Group concluded that silicon strips and large wire tracking chambers with small cells can probably survive at the design luminosity of 10 33 cm -2 sec -1 ; however, the presently designed electronics for silicon strip vertex detectors can withstand a luminosity of only 10 31 cm -2 sec -1 . Wire chambers at a radius of less than about 25 cm can withstand a luminosity of less than or equal to 10 32 cm -2 sec -1 only. Actual tracking and pattern recognition in central tracking chambers at a luminosity of 10 33 cm -2 sec -1 will be very difficult because of multiple interactions within the resolving time of the chambers; detailed simulations are needed in order to decide whether tracking is indeed possible at this luminosity. Scintillating glass fibers are an interesting possibility both for vertex detectors and for central trackers, but much research and development is still needed both on the fibers themselves and on the readout

  20. 4-D single particle tracking of synthetic and proteinaceous microspheres reveals preferential movement of nuclear particles along chromatin - poor tracks.

    Science.gov (United States)

    Bacher, Christian P; Reichenzeller, Michaela; Athale, Chaitanya; Herrmann, Harald; Eils, Roland

    2004-11-23

    The dynamics of nuclear organization, nuclear bodies and RNPs in particular has been the focus of many studies. To understand their function, knowledge of their spatial nuclear position and temporal translocation is essential. Typically, such studies generate a wealth of data that require novel methods in image analysis and computational tools to quantitatively track particle movement on the background of moving cells and shape changing nuclei. We developed a novel 4-D image processing platform (TIKAL) for the work with laser scanning and wide field microscopes. TIKAL provides a registration software for correcting global movements and local deformations of cells as well as 2-D and 3-D tracking software. With this new tool, we studied the dynamics of two different types of nuclear particles, namely nuclear bodies made from GFP-NLS-vimentin and microinjected 0.1 mum - wide polystyrene beads, by live cell time-lapse microscopy combined with single particle tracking and mobility analysis. We now provide a tool for the automatic 3-D analysis of particle movement in parallel with the acquisition of chromatin density data. Kinetic analysis revealed 4 modes of movement: confined obstructed, normal diffusion and directed motion. Particle tracking on the background of stained chromatin revealed that particle movement is directly related to local reorganization of chromatin. Further a direct comparison of particle movement in the nucleoplasm and the cytoplasm exhibited an entirely different kinetic behaviour of vimentin particles in both compartments. The kinetics of nuclear particles were slightly affected by depletion of ATP and significantly disturbed by disruption of actin and microtubule networks. Moreover, the hydration state of the nucleus had a strong impact on the mobility of nuclear bodies since both normal diffusion and directed motion were entirely abolished when cells were challenged with 0.6 M sorbitol. This effect correlated with the compaction of chromatin

  1. Evaluation of a digital optical ionizing radiation particle track detector

    International Nuclear Information System (INIS)

    Hunter, S.R.

    1987-06-01

    An ionizing radiation particle track detector is outlined which can, in principle, determine the three-dimensional spatial distribution of all the secondary electrons produced by the passage of ionizing radiation through a low-pressure (0.1 to 10 kPa) gas. The electrons in the particle track are excited by the presence of a high-frequency AC electric field, and two digital cameras image the optical radiation produced in electronic excitation collisions of the surroundings gas by the electrons. The specific requirements of the detector for neutron dosimetry and microdosimetry are outlined (i.e., operating conditions of the digital cameras, high voltage fields, gas mixtures, etc.) along with an estimate of the resolution and sensitivity achievable with this technique. The proposed detector is shown to compare favorable with other methods for obtaining the details of the track structure, particularly in the quality of the information obtainable about the particle track and the comparative simplicity and adaptability of the detector for measuring the secondary electron track structure for many forms of ionizing radiation over a wide range of energies

  2. Advective isotope transport by mixing cell and particle tracking algorithms

    International Nuclear Information System (INIS)

    Tezcan, L.; Meric, T.

    1999-01-01

    The 'mixing cell' algorithm of the environmental isotope data evaluation is integrated with the three dimensional finite difference ground water flow model (MODFLOW) to simulate the advective isotope transport and the approach is compared with the 'particle tracking' algorithm of the MOC3D, that simulates three-dimensional solute transport with the method of characteristics technique

  3. SimTrack: A compact c++ code for particle orbit and spin tracking in accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Yun

    2015-11-21

    SimTrack is a compact c++ code of 6-d symplectic element-by-element particle tracking in accelerators originally designed for head-on beam–beam compensation simulation studies in the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory. It provides a 6-d symplectic orbit tracking with the 4th order symplectic integration for magnet elements and the 6-d symplectic synchro-beam map for beam–beam interaction. Since its inception in 2009, SimTrack has been intensively used for dynamic aperture calculations with beam–beam interaction for RHIC. Recently, proton spin tracking and electron energy loss due to synchrotron radiation were added. In this paper, I will present the code architecture, physics models, and some selected examples of its applications to RHIC and a future electron-ion collider design eRHIC.

  4. SimTrack: A compact c++ library for particle orbit and spin tracking in accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Yun [Brookhaven National Laboratory (BNL), Upton, NY (United States)

    2015-06-24

    SimTrack is a compact c++ library of 6-d symplectic element-by-element particle tracking in accelerators originally designed for head-on beam-beam compensation simulation studies in the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory. It provides a 6-d symplectic orbit tracking with the 4th order symplectic integration for magnet elements and the 6-d symplectic synchro-beam map for beam-beam interaction. Since its inception in 2009, SimTrack has been intensively used for dynamic aperture calculations with beam-beam interaction for RHIC. Recently, proton spin tracking and electron energy loss due to synchrotron radiation were added. In this article, I will present the code architecture, physics models, and some selected examples of its applications to RHIC and a future electron-ion collider design eRHIC.

  5. Bearings-Only Tracking of Manoeuvring Targets Using Particle Filters

    Directory of Open Access Journals (Sweden)

    M. Sanjeev Arulampalam

    2004-11-01

    Full Text Available We investigate the problem of bearings-only tracking of manoeuvring targets using particle filters (PFs. Three different (PFs are proposed for this problem which is formulated as a multiple model tracking problem in a jump Markov system (JMS framework. The proposed filters are (i multiple model PF (MMPF, (ii auxiliary MMPF (AUX-MMPF, and (iii jump Markov system PF (JMS-PF. The performance of these filters is compared with that of standard interacting multiple model (IMM-based trackers such as IMM-EKF and IMM-UKF for three separate cases: (i single-sensor case, (ii multisensor case, and (iii tracking with hard constraints. A conservative CRLB applicable for this problem is also derived and compared with the RMS error performance of the filters. The results confirm the superiority of the PFs for this difficult nonlinear tracking problem.

  6. Particle induced X-ray emission

    International Nuclear Information System (INIS)

    Cohen, D.D.

    1991-08-01

    The accelerator based ion beam technique of Particle Induced X-ray Emission (PIXE) is discussed in some detail. This report pulls together all major reviews and references over the last ten years and reports on PIXE in vacuum and using external beams. The advantages, limitations, costs and types of studies that may be undertaken using an accelerator based ion beam technique such as PIXE, are also discussed. 25 refs., 7 tabs., 40 figs

  7. Particle tracking from image sequences of complex plasma crystals

    International Nuclear Information System (INIS)

    Hadziavdic, Vedad; Melandsoe, Frank; Hanssen, Alfred

    2006-01-01

    In order to gather information about the physics of the complex plasma crystals from the experimental data, particles have to be tracked through a sequence of images. An application of the Kalman filter for that purpose is presented, using a one-dimensional approximation of the particle dynamics as a model for the filter. It is shown that Kalman filter is capable of tracking dust particles even with high levels of measurement noise. An inherent part of the Kalman filter, the innovation process, can be used to estimate values of the physical system parameters from the experimental data. The method is shown to be able to estimate the characteristic oscillation frequency from noisy data

  8. Fish tracking by combining motion based segmentation and particle filtering

    Science.gov (United States)

    Bichot, E.; Mascarilla, L.; Courtellemont, P.

    2006-01-01

    In this paper, we suggest a new importance sampling scheme to improve a particle filtering based tracking process. This scheme relies on exploitation of motion segmentation. More precisely, we propagate hypotheses from particle filtering to blobs of similar motion to target. Hence, search is driven toward regions of interest in the state space and prediction is more accurate. We also propose to exploit segmentation to update target model. Once the moving target has been identified, a representative model is learnt from its spatial support. We refer to this model in the correction step of the tracking process. The importance sampling scheme and the strategy to update target model improve the performance of particle filtering in complex situations of occlusions compared to a simple Bootstrap approach as shown by our experiments on real fish tank sequences.

  9. Collaborative research on fluidization employing computer-aided particle tracking

    International Nuclear Information System (INIS)

    Chen, M.M.

    1990-01-01

    The objective of this work is to obtain unique, fundamental information on fluidization dynamics over a wide range of flow regimes using a Transportable Computer-Aided Particle Tracking Apparatus (TCAPTA). The contractor will design and fabricate a transportable version of the Computer-Aided Particle Tracking Facility (CAPTF) he has previously developed. The contractor will install and operate the (TCAPTA) at the METC fluidization research facilities. Quantitative data on particle motion will be obtained and reduced. The data will be used to provide needed information for modeling of bed dynamics, and prediction of bed performance, including erosion. A radioactive tracer particle, identical in size shape and mass to the bed particles under study, is mixed in the bed. The radiation emitted by the tracer particle, monitored continuously by 16 scintillation detectors, allows its position to be determined as a function of time. Stochastic mixing processes intrinsic to fluidization further cause the particle to travel to all active regions of the bed, thus sampling the motion in these regions. After a long test run to insure that a sufficient sampling have been acquired, time-differentiation and other statistical processing will then yield the mean velocity distribution, the fluctuating velocity distribution, many types of auto- and cross correlations, as well as mean fluxes, including the mean momentum fluxes due to random motion, which represent the kinetic contributions to the mean stress tensor

  10. Comparative assessment of pressure field reconstructions from particle image velocimetry measurements and Lagrangian particle tracking

    NARCIS (Netherlands)

    van Gent, P.L.; Michaelis, D; van Oudheusden, B.W.; Weiss, P.E.; de Kat, R.; Laskari, A.; Jeon, Y.J.; David, L; Schanz, D; Huhn, F.; Gesemann, S; Novara, M.; McPhaden, C.; Neeteson, N. J.; Rival, David E.; Schneiders, J.F.G.; Schrijer, F.F.J.

    2017-01-01

    A test case for pressure field reconstruction from particle image velocimetry (PIV) and Lagrangian particle tracking (LPT) has been developed by constructing a simulated experiment from a zonal detached eddy simulation for an axisymmetric base flow at Mach 0.7. The test case comprises sequences

  11. Heavy particle track structure parameters for biophysical modelling

    International Nuclear Information System (INIS)

    Watt, D.E.

    1994-01-01

    Averaged values of physical track structure parameters are important in radiobiology and radiological protection for the expression of damage mechanisms and for quantifying radiation effects. To provide a ready reference, tables of relevant quantities have been compiled for heavy charged particles in liquid water. The full tables will be published elsewhere but here illustrative examples are given of the trends for the most important quantities. In the tables, data are given for 74 types of heavy charged particle ranging from protons to uranium ions at specific energies between 0.1 keV/u and 1 GeV/u. Aggregate effects in liquid water are taken into account implicitly in the calculations. Results are presented for instantaneous particle energies and for averages over the charged particle equilibrium spectrum. The latter are of special relevance to radiation dosimetry. Quality parameters calculated are: β 2 ; z 2 /β 2 ; linear primary ionisation and the mean free path between ionisations; LET; track and dose-restricted LET with 100 eV cut-off; relative variances; delta-ray energies and ranges; ion energies and ranges and kerma factors. Here, the procedures used in the calculations are indicated. Representative results are shown in graphical form. The role of the physical track properties is discussed with regard to optimisation of the design of experiments intended to elucidate biological damage mechanisms in mammalian cells and their relevance to radiological protection. ((orig.))

  12. Particle filters for object tracking: enhanced algorithm and efficient implementations

    International Nuclear Information System (INIS)

    Abd El-Halym, H.A.

    2010-01-01

    Object tracking and recognition is a hot research topic. In spite of the extensive research efforts expended, the development of a robust and efficient object tracking algorithm remains unsolved due to the inherent difficulty of the tracking problem. Particle filters (PFs) were recently introduced as a powerful, post-Kalman filter, estimation tool that provides a general framework for estimation of nonlinear/ non-Gaussian dynamic systems. Particle filters were advanced for building robust object trackers capable of operation under severe conditions (small image size, noisy background, occlusions, fast object maneuvers ..etc.). The heavy computational load of the particle filter remains a major obstacle towards its wide use.In this thesis, an Excitation Particle Filter (EPF) is introduced for object tracking. A new likelihood model is proposed. It depends on multiple functions: position likelihood; gray level intensity likelihood and similarity likelihood. Also, we modified the PF as a robust estimator to overcome the well-known sample impoverishment problem of the PF. This modification is based on re-exciting the particles if their weights fall below a memorized weight value. The proposed enhanced PF is implemented in software and evaluated. Its results are compared with a single likelihood function PF tracker, Particle Swarm Optimization (PSO) tracker, a correlation tracker, as well as, an edge tracker. The experimental results demonstrated the superior performance of the proposed tracker in terms of accuracy, robustness, and occlusion compared with other methods Efficient novel hardware architectures of the Sample Important Re sample Filter (SIRF) and the EPF are implemented. Three novel hardware architectures of the SIRF for object tracking are introduced. The first architecture is a two-step sequential PF machine, where particle generation, weight calculation and normalization are carried out in parallel during the first step followed by a sequential re

  13. Particle number emissions of gasoline hybrid electric vehicles; Partikelanzahl-Emission bei Hybridfahrzeugen mit Ottomotor

    Energy Technology Data Exchange (ETDEWEB)

    Porter, Scott [Horiba Instruments Inc., Ann Arbor, MI (United States)

    2012-04-15

    Hybrid Electric Vehicles (HEV) are commonly reputed to be environmentally friendly. Different studies show that this assumption raises some questions in terms of particle number emissions. Against the background that upcoming emission standards will not only limit particle matter emissions but also particle number emissions for gasoline engines, the exhaust behaviour of downsized gasoline engines used in HEV should be investigated more extensively. A Horiba study compares the particle number emissions of a gasoline vehicle to those of a gasoline powered HEV. (orig.)

  14. Natural tracer test simulation by stochastic particle tracking method

    International Nuclear Information System (INIS)

    Ackerer, P.; Mose, R.; Semra, K.

    1990-01-01

    Stochastic particle tracking methods are well adapted to 3D transport simulations where discretization requirements of other methods usually cannot be satisfied. They do need a very accurate approximation of the velocity field. The described code is based on the mixed hybrid finite element method (MHFEM) to calculated the piezometric and velocity field. The random-walk method is used to simulate mass transport. The main advantages of the MHFEM over FD or FE are the simultaneous calculation of pressure and velocity, which are considered as unknowns; the possibility of interpolating velocities everywhere; and the continuity of the normal component of the velocity vector from one element to another. For these reasons, the MHFEM is well adapted for particle tracking methods. After a general description of the numerical methods, the model is used to simulate the observations made during the Twin Lake Tracer Test in 1983. A good match is found between observed and simulated heads and concentrations. (Author) (12 refs., 4 figs.)

  15. Nuclear track radiography of 'hot' aerosol particles

    Energy Technology Data Exchange (ETDEWEB)

    Boulyga, S.F.; Kievitskaja, A.I.; Kievets, M.K.; Lomonosova, E.M.; Zhuk, I.V.; Yaroshevich, O.I.; Perelygin, V.P.; Petrova, R.; Brandt, R.; Vater, P

    1999-06-01

    Nuclear track radiography was applied to identify aerosol 'hot' particles which contain elements of nuclear fuel and fallout after Chernobyl NPP accident. For the determination of the content of transuranium elements in radioactive aerosols the measurement of the {alpha}-activity of 'hot' particles by SSNTD was used in this work, as well as radiography of fission fragments formed as a result of the reactions (n,f) and ({gamma},f) in the irradiation of aerosol filters by thermal neutrons and high energy gamma quanta. The technique allowed the sizes and alpha-activity of 'hot' particles to be determined without extracting them from the filter, as well as the determination of the uranium content and its enrichment by {sup 235}U, {sup 239}Pu and {sup 241}Pu isotopes. Sensitivity of determination of alpha activity by fission method is 5x10{sup -6} Bq per particle. The software for the system of image analysis was created. It ensured the identification of track clusters on an optical image of the SSNTD surface obtained through a video camera and the determination of size and activity of 'hot' particles00.

  16. Kassiopeia: a modern, extensible C++ particle tracking package

    International Nuclear Information System (INIS)

    Furse, Daniel; Trost, Nikolaus; Babutzka, Martin; Barrett, John P.

    2017-01-01

    The Kassiopeia particle tracking framework is an object-oriented software package using modern C++ techniques, written originally to meet the needs of the KATRIN collaboration. Kassiopeia features a new algorithmic paradigm for particle tracking simulations which targets experiments containing complex geometries and electromagnetic fields, with high priority put on calculation efficiency, customizability, extensibility, and ease-of-use for novice programmers. To solve Kassiopeia's target physics problem the software is capable of simulating particle trajectories governed by arbitrarily complex differential equations of motion, continuous physics processes that may in part be modeled as terms perturbing that equation of motion, stochastic processes that occur in flight such as bulk scattering and decay, and stochastic surface processes occurring at interfaces, including transmission and reflection effects. This entire set of computations takes place against the backdrop of a rich geometry package which serves a variety of roles, including initialization of electromagnetic field simulations and the support of state-dependent algorithm-swapping and behavioral changes as a particle's state evolves. Thanks to the very general approach taken by Kassiopeia it can be used by other experiments facing similar challenges when calculating particle trajectories in electromagnetic fields. It is publicly available at https://github.com/KATRIN-Experiment/Kassiopeia.

  17. Charged particle spectroscopy with solid state nuclear track detectors

    International Nuclear Information System (INIS)

    Hunyadi, I.; Somogyi, G.

    1984-01-01

    Some of earlier and recent methods for differentiation of charged particles according to their energy, based on the use of polymeric etch-track detectors (CN, CA, PC and CR-39) are outlined. The principle of three track methods suitable for nuclear spectroscopy is discussed. These are based on the analysis of the diameter, surface size and shape of etch-track 'cones' produced by charged particles in polymers, after using shorter or longer chemical etching processes. Examples are presented from the results of the last decade in ATOMKI, Debrecen, Hungary, concerning the application of nuclear track spectroscopy to different low-energy nuclear reaction studies, angular distribution and excitation function measurements. These involve the study of (d,α) reaction on sup(14)N, sup(19)F and sup(27)Al nuclei, (sup(3)He,α) reactions on sup(15)N, (p,α) reaction on sup(27)Al and the process sup(12)C(sup(12)C, sup(8)Be)sup(16)O. (author)

  18. Impact of electron irradiation on particle track etching response in ...

    Indian Academy of Sciences (India)

    In the present work, attempts have been made to investigate the modification in particle track etching response of polyallyl diglycol carbonate (PADC) due to impact of 2 MeV electrons. PADC samples pre-irradiated to 1, 10, 20, 40, 60, 80 and 100 Mrad doses of 2 MeV electrons were further exposed to 140 MeV 28Si beam ...

  19. Particle Tracking and Simulation on the .NET Framework

    International Nuclear Information System (INIS)

    Nishimura, Hiroshi; Scarvie, Tom

    2006-01-01

    Particle tracking and simulation studies are becoming increasingly complex. In addition to the use of more sophisticated graphics, interactive scripting is becoming popular. Compatibility with different control systems requires network and database capabilities. It is not a trivial task to fulfill all the various requirements without sacrificing runtime performance. We evaluated the effectiveness of the .NET framework by converting a C++ simulation code to C. The portability to other platforms is mentioned in terms of Mono

  20. Measuring the 3D motion of particles in microchannel acoustophoresis using astigmatism particle tracking velocimetry

    DEFF Research Database (Denmark)

    Augustsson, P.; Barnkob, Rune; Bruus, Henrik

    2012-01-01

    We introduce full three-dimensional tracking of particles in an acoustophoresis microchannel using Astigmatism Particle Tracking Velocimetry (APTV) [1]. For the first time the interaction between acoustic streaming and the primary acoustic radiation force in microchannel acoustophoresis are exami...... relative to the influence from the acoustic radiation force. The current study opens the route to optimized acoustophoretic system design and operation to enable manipulation of small biological components such as spores, bacteria and viruses.......We introduce full three-dimensional tracking of particles in an acoustophoresis microchannel using Astigmatism Particle Tracking Velocimetry (APTV) [1]. For the first time the interaction between acoustic streaming and the primary acoustic radiation force in microchannel acoustophoresis...... are examined in three dimensions. We have quantified the velocity of particles driven by the primary acoustic radiation force and acoustic streaming, respectively, using 0.5-μm and 5-μm particles. Increased ultrasound frequency and lowered viscosity of the medium reduced the influence of acoustic streaming...

  1. Timescale of particle emission using nuclear interferometry

    International Nuclear Information System (INIS)

    Ardouin, D.; Goujdami, D.; Guilbault, F.; Lebrun, C.; Erazmus, B.; Dabrowski, H.; Durand, D.; Lautridou, P.; Boisgard, R.; Quebert, J.; Carjan, N.

    1989-01-01

    A review of meson and baryon correlations at various energies is presented. An attempt, to focus on possible lifetime effects contained in existing data,is made. Data at 94 and 44 MeV/u, where experimental conditions are chosen, trying to study the lifetime of light particle emission using two particle correlations, are discussed. The temperature of a thermalized system is obtained, using the relative population of cluster excited states. It is shown that either quantum statistical fluctuations or Coulomb interactions play an important role in the trends of the correlation-functions at very low relative momenta. In the case of 1 60 and Ar induced reactions on heavy targets, a lifetime of the order of 10 -21 seconds is estimated. Temperature measurements for Ar + Ag system show that part of the excitation energy is not converted into thermal energy

  2. Solar energetic particles and radio burst emission

    Directory of Open Access Journals (Sweden)

    Miteva Rositsa

    2017-01-01

    Full Text Available We present a statistical study on the observed solar radio burst emission associated with the origin of in situ detected solar energetic particles. Several proton event catalogs in the period 1996–2016 are used. At the time of appearance of the particle origin (flare and coronal mass ejection we identified radio burst signatures of types II, III and IV by inspecting dynamic radio spectral plots. The information from observatory reports is also accounted for during the analysis. The occurrence of solar radio burst signatures is evaluated within selected wavelength ranges during the solar cycle 23 and the ongoing 24. Finally, we present the burst occurrence trends with respect to the intensity of the proton events and the location of their solar origin.

  3. Solar energetic particles and radio burst emission

    Czech Academy of Sciences Publication Activity Database

    Miteva, R.; Samwel, S. W.; Krupař, Vratislav

    2017-01-01

    Roč. 7 (2017), č. článku A37. ISSN 2115-7251 R&D Projects: GA ČR(CZ) GJ17-06818Y Institutional support: RVO:68378289 Keywords : solar energetic particles * solar radio burst emission * solar cycle Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 2.446, year: 2016 https://www.swsc-journal.org/ articles /swsc/abs/2017/01/swsc170028/swsc170028.html

  4. Track benchmarking method for uncertainty quantification of particle tracking velocimetry interpolations

    International Nuclear Information System (INIS)

    Schneiders, Jan F G; Sciacchitano, Andrea

    2017-01-01

    The track benchmarking method (TBM) is proposed for uncertainty quantification of particle tracking velocimetry (PTV) data mapped onto a regular grid. The method provides statistical uncertainty for a velocity time-series and can in addition be used to obtain instantaneous uncertainty at increased computational cost. Interpolation techniques are typically used to map velocity data from scattered PTV (e.g. tomographic PTV and Shake-the-Box) measurements onto a Cartesian grid. Recent examples of these techniques are the FlowFit and VIC+  methods. The TBM approach estimates the random uncertainty in dense velocity fields by performing the velocity interpolation using a subset of typically 95% of the particle tracks and by considering the remaining tracks as an independent benchmarking reference. In addition, also a bias introduced by the interpolation technique is identified. The numerical assessment shows that the approach is accurate when particle trajectories are measured over an extended number of snapshots, typically on the order of 10. When only short particle tracks are available, the TBM estimate overestimates the measurement error. A correction to TBM is proposed and assessed to compensate for this overestimation. The experimental assessment considers the case of a jet flow, processed both by tomographic PIV and by VIC+. The uncertainty obtained by TBM provides a quantitative evaluation of the measurement accuracy and precision and highlights the regions of high error by means of bias and random uncertainty maps. In this way, it is possible to quantify the uncertainty reduction achieved by advanced interpolation algorithms with respect to standard correlation-based tomographic PIV. The use of TBM for uncertainty quantification and comparison of different processing techniques is demonstrated. (paper)

  5. The Timepix Telescope for High Performance Particle Tracking

    CERN Document Server

    Akiba, Kazuyoshi; van Beuzekom, Martin; van Beveren, Vincent; Borghi, Silvia; Boterenbrood, Henk; Buytaert, Jan; Collins, Paula; Dosil Suárez, Alvaro; Dumps, Raphael; Eklund, Lars; Esperante, Daniel; Gallas, Abraham; Gordon, Hamish; van der Heijden, Bas; Hombach, Christoph; Hynds, Daniel; John, Malcolm; Leflat, Alexander; Li, Yi Ming; Longstaff, Ian; Morton, Alexander; Nakatsuka, Noritsugu; Nomerotski, Andre; Parkes, Chris; Perez Trigo, Eliseo; Plackett, Richard; Reid, Matthew M; Rodriguez Perez, Pablo; Schindler, Heinrich; Szumlak, Tomasz; Tsopelas, Panagiotis; Vázquez Sierra, Carlos; Velthuis, Jaap; Wysokinski, Michal

    2013-01-01

    The Timepix particle tracking telescope has been developed as part of the LHCb VELO Upgrade project, supported by the Medipix Collaboration and the AIDA framework. It is a primary piece of infrastructure for the VELO Upgrade project and is being used for the development of new sensors and front end technologies for several upcoming LHC trackers and vertexing systems. The telescope is designed around the dual capability of the Timepix ASICs to provide information about either the deposited charge or the timing information from tracks traversing the 14 x 14mm matrix of 55 x 55 um pixels. The rate of reconstructed tracks available is optimised by taking advantage of the shutter driven readout architecture of the Timepix chip, operated with existing readout systems. Results of tests conducted in the SPS North Area beam facility at CERN show that the telescope typically provides reconstructed track rates during the beam spills of between 3.5 and 7.5 kHz, depending on beam conditions. The tracks are time stamped wi...

  6. Random set particle filter for bearings-only multitarget tracking

    Science.gov (United States)

    Vihola, Matti

    2005-05-01

    The random set approach to multitarget tracking is a theoretically sound framework that covers joint estimation of the number of targets and the state of the targets. This paper describes a particle filter implementation of the random set multitarget filter. The contribution of this paper to the random set tracking framework is the formulation of a measurement model where each sensor report is assumed to contain at most one measurement. The implemented filter was tested in synthetic bearings-only tracking scenarios containing up to two targets in the presence of false alarms and missed measurements. The estimated target state consisted of 2D position and velocity components. The filter was capable to track the targets fairly well despite of the missing measurements and the relatively high false alarm rates. In addition, the filter showed robustness against wrong parameter values of false alarm rates. The results that were obtained during the limited tests of the filter show that the random set framework has potential for challenging tracking situations. On the other hand, the computational burden of the described implementation is quite high and increases approximately linearly with respect to the expected number of targets.

  7. A multi-parametric particle-pairing algorithm for particle tracking in single and multiphase flows

    International Nuclear Information System (INIS)

    Cardwell, Nicholas D; Vlachos, Pavlos P; Thole, Karen A

    2011-01-01

    Multiphase flows (MPFs) offer a rich area of fundamental study with many practical applications. Examples of such flows range from the ingestion of foreign particulates in gas turbines to transport of particles within the human body. Experimental investigation of MPFs, however, is challenging, and requires techniques that simultaneously resolve both the carrier and discrete phases present in the flowfield. This paper presents a new multi-parametric particle-pairing algorithm for particle tracking velocimetry (MP3-PTV) in MPFs. MP3-PTV improves upon previous particle tracking algorithms by employing a novel variable pair-matching algorithm which utilizes displacement preconditioning in combination with estimated particle size and intensity to more effectively and accurately match particle pairs between successive images. To improve the method's efficiency, a new particle identification and segmentation routine was also developed. Validation of the new method was initially performed on two artificial data sets: a traditional single-phase flow published by the Visualization Society of Japan (VSJ) and an in-house generated MPF data set having a bi-modal distribution of particles diameters. Metrics of the measurement yield, reliability and overall tracking efficiency were used for method comparison. On the VSJ data set, the newly presented segmentation routine delivered a twofold improvement in identifying particles when compared to other published methods. For the simulated MPF data set, measurement efficiency of the carrier phases improved from 9% to 41% for MP3-PTV as compared to a traditional hybrid PTV. When employed on experimental data of a gas–solid flow, the MP3-PTV effectively identified the two particle populations and reported a vector efficiency and velocity measurement error comparable to measurements for the single-phase flow images. Simultaneous measurement of the dispersed particle and the carrier flowfield velocities allowed for the calculation of

  8. Transient particle emission measurement with optical techniques

    Science.gov (United States)

    Bermúdez, Vicente; Luján, José M.; Serrano, José R.; Pla, Benjamín

    2008-06-01

    Particulate matter is responsible for some respiratory and cardiovascular diseases. In addition, it is one of the most important pollutants of high-speed direct injection (HSDI) passenger car engines. Current legislation requires particulate dilution tunnels for particulate matter measuring. However for development work, dilution tunnels are expensive and sometimes not useful since they are not able to quantify real-time particulate emissions during transient operation. In this study, the use of a continuous measurement opacimeter and a fast response HFID is proven to be a good alternative to obtain instantaneous particle mass emissions during transient operation (due to particulate matter consisting mainly of soot and SOF). Some methods and correlations available from literature, but developed for steady conditions, are evaluated during transient operation by comparing with mini-tunnel measurements during the entire MVEG-A transient cycle. A new correlation was also derived from this evaluation. Results for soot and SOF (obtained from the new correlation proposed) are compared with soot and SOF captured with particulate filters, which have been separated by means of an SOF extraction method. Finally, as an example of ECU design strategies using these sort of correlations, the EGR valve opening is optimized during transient operation. The optimization is performed while simultaneously taking into account instantaneous fuel consumption, particulate emissions (calculated with the proposed correlation) and other regulated engine pollutants.

  9. Three-dimensional particle tracking velocimetry using dynamic vision sensors

    Science.gov (United States)

    Borer, D.; Delbruck, T.; Rösgen, T.

    2017-12-01

    A fast-flow visualization method is presented based on tracking neutrally buoyant soap bubbles with a set of neuromorphic cameras. The "dynamic vision sensors" register only the changes in brightness with very low latency, capturing fast processes at a low data rate. The data consist of a stream of asynchronous events, each encoding the corresponding pixel position, the time instant of the event and the sign of the change in logarithmic intensity. The work uses three such synchronized cameras to perform 3D particle tracking in a medium sized wind tunnel. The data analysis relies on Kalman filters to associate the asynchronous events with individual tracers and to reconstruct the three-dimensional path and velocity based on calibrated sensor information.

  10. An analysis of particle track effects on solid mammalian tissues

    International Nuclear Information System (INIS)

    Todd, P.

    1992-01-01

    The relative biological effectiveness (RBE) and quality factor (Q) at extreme values of linear energy transfer (LET) have been determined on the basis of experiments with single-cell systems and specific tissue responses. In typical single-cell systems, each heavy particle (Ar or Fe) passes through a single cell or no cell. In experiments on animal tissues, however, each heavy particle passes through several cells, and the LET can exceed 200 keV μm -1 in every cell. In most laboratory animal tissue systems, however, only a small portion of the hit cells are capable of expressing the end-point being measured, such as cell killing, mutation or carcinogenesis. The following question was therefore addressed: do RBEs and Q factors derived from single-cell experiments properly account for the damage at high LET when multiple cells are hit by HZE tracks? A review is offered in which measured radiation effects and known tissue properties are combined to estimate on the one hand, the number of cells at risk, p 3 n, per track, where n is the number of cells per track based on tissue and organ geometry, and p 3 is the probability that a cell in the track is capable of expressing the experimental end-point. On the other hand, the tissue and single-cell responses are compared by determining the ratio RBE in tissue/RBE in corresponding single cells. Experimental data from the literature indicate that tissue RBEs at very high LET (Fe and Ar ions) are higher than corresponding single-cell RBEs, especially in tissues in which p 3 n is high. (author)

  11. Apparatus and method for tracking a molecule or particle in three dimensions

    Science.gov (United States)

    Werner, James H [Los Alamos, NM; Goodwin, Peter M [Los Alamos, NM; Lessard, Guillaume [Santa Fe, NM

    2009-03-03

    An apparatus and method were used to track the movement of fluorescent particles in three dimensions. Control software was used with the apparatus to implement a tracking algorithm for tracking the motion of the individual particles in glycerol/water mixtures. Monte Carlo simulations suggest that the tracking algorithms in combination with the apparatus may be used for tracking the motion of single fluorescent or fluorescently labeled biomolecules in three dimensions.

  12. Particle tracking code of simulating global RF feedback

    International Nuclear Information System (INIS)

    Mestha, L.K.

    1991-09-01

    It is well known in the ''control community'' that a good feedback controller design is deeply rooted in the physics of the system. For example, when accelerating the beam we must keep several parameters under control so that the beam travels within the confined space. Important parameters include the frequency and phase of the rf signal, the dipole field, and the cavity voltage. Because errors in these parameters will progressively mislead the beam from its projected path in the tube, feedback loops are used to correct the behavior. Since the feedback loop feeds energy to the system, it changes the overall behavior of the system and may drive it to instability. Various types of controllers are used to stabilize the feedback loop. Integrating the beam physics with the feedback controllers allows us to carefully analyze the beam behavior. This will not only guarantee optimal performance but will also significantly enhance the ability of the beam control engineer to deal effectively with the interaction of various feedback loops. Motivated by this theme, we developed a simple one-particle tracking code to simulate particle behavior with feedback controllers. In order to achieve our fundamental objective, we can ask some key questions: What are the input and output parameters? How can they be applied to the practical machine? How can one interface the rf system dynamics such as the transfer characteristics of the rf cavities and phasing between the cavities? Answers to these questions can be found by considering a simple case of a single cavity with one particle, tracking it turn-by-turn with appropriate initial conditions, then introducing constraints on crucial parameters. Critical parameters are rf frequency, phase, and amplitude once the dipole field has been given. These are arranged in the tracking code so that we can interface the feedback system controlling them

  13. The fine particle emissions of energy production in Finland

    International Nuclear Information System (INIS)

    Ohlstroem, M.

    1998-01-01

    The main purpose of this master's thesis was to define the fine particle (PM2.5, diameter under 2,5 μm) emissions of the energy production and to compare the calculated emission factors between different energy production concepts. The purpose was also to define what is known about fine particle emissions and what should still be studied/measured. The purpose was also to compare briefly the fine particle emissions of energy production and vehicle traffic, and their correlations to the fine particle concentrations of urban air. In the theory part of this work a literature survey was made about fine particles in energy production, especially how they form and how they are separated from the flue gas. In addition, the health effects caused by fine particles, and different measuring instruments were presented briefly. In the experimental part of this work, the aim was to find out the fine particle emissions of different energy production processes by calculating specific emission factors (mg/MJ fuel ) from powerplants' annual total particulate matter emissions (t/a), which were obtained from VAHTI-database system maintained by the Finnish Environmental Institute, and by evaluating the share of fine particles from total emissions with the help of existing measurement results. Only those energy production processes which produce significantly direct emissions of solid particles have been treated (pulverised combustion and oil burners from burner combustion, fluidized bed combustion processes, grate boilers, recovery boilers and diesel engines). The processes have been classified according to boiler type, size category, main fuel and also according to dust separation devices. To be able to compare different energy production processes, shared specific emission factor have been calculated for the similar subprocesses. The fine particle emissions depend strongest on the boiler size category and dust separation devices used. Spent fuel or combustion technique does not have

  14. Single particle tracking and single molecule energy transfer

    CERN Document Server

    Bräuchle, Christoph; Michaelis, Jens

    2009-01-01

    Closing a gap in the literature, this handbook gathers all the information on single particle tracking and single molecule energy transfer. It covers all aspects of this hot and modern topic, from detecting virus entry to membrane diffusion, and from protein folding using spFRET to coupled dye systems, as well recent achievements in the field. Throughout, the first-class editors and top international authors present content of the highest quality, making this a must-have for physical chemists, spectroscopists, molecular physicists and biochemists.

  15. Particle tracking in a small electron storage ring

    International Nuclear Information System (INIS)

    Tsumaki, K.

    1987-01-01

    A particle tracking method for a ring system in which a sextupole magnetic field is distributed along the beam axis has been developed. This method uses Jacobi's elliptic functions inside the bending magnet and the canonical integration method in the fringes. The calculation time for the new method is the same or faster than that of the canonical integration method, and it is ten times faster than the Runge-Kutta-Gill and thin lens approximation. A special characteristic of our method is that the calculation time is always constant, even if the magnet length is increased

  16. Nuclear particle track-etched anti-bogus mark

    International Nuclear Information System (INIS)

    He Xiangming; Yan Yushun; Zhang Quanrong

    2003-01-01

    Nuclear particle track-etched anti-bogus mark is a new type of forgery-proof product after engraving gravure printing, thermocolour, fluorescence, laser hologram and metal concealed anti-bogus mark. The mark is manufactured by intricate high technology and the state strictly controlled sensitive nuclear facilities to ensure the mark not to be copied. The pattern of the mark is specially characterized by permeability of liquid to be discriminated from forgery. The genuine mark can be distinguished from sham one by transparent liquid (e.g. water), colorful pen and chemical reagent. The mark has passed the official examination of health safety. It is no danger of nuclear irradiation. (author)

  17. Improved Likelihood Function in Particle-based IR Eye Tracking

    DEFF Research Database (Denmark)

    Satria, R.; Sorensen, J.; Hammoud, R.

    2005-01-01

    In this paper we propose a log likelihood-ratio function of foreground and background models used in a particle filter to track the eye region in dark-bright pupil image sequences. This model fuses information from both dark and bright pupil images and their difference image into one model. Our...... enhanced tracker overcomes the issues of prior selection of static thresholds during the detection of feature observations in the bright-dark difference images. The auto-initialization process is performed using cascaded classifier trained using adaboost and adapted to IR eye images. Experiments show good...

  18. Modeling reactive transport with particle tracking and kernel estimators

    Science.gov (United States)

    Rahbaralam, Maryam; Fernandez-Garcia, Daniel; Sanchez-Vila, Xavier

    2015-04-01

    Groundwater reactive transport models are useful to assess and quantify the fate and transport of contaminants in subsurface media and are an essential tool for the analysis of coupled physical, chemical, and biological processes in Earth Systems. Particle Tracking Method (PTM) provides a computationally efficient and adaptable approach to solve the solute transport partial differential equation. On a molecular level, chemical reactions are the result of collisions, combinations, and/or decay of different species. For a well-mixed system, the chem- ical reactions are controlled by the classical thermodynamic rate coefficient. Each of these actions occurs with some probability that is a function of solute concentrations. PTM is based on considering that each particle actually represents a group of molecules. To properly simulate this system, an infinite number of particles is required, which is computationally unfeasible. On the other hand, a finite number of particles lead to a poor-mixed system which is limited by diffusion. Recent works have used this effect to actually model incomplete mix- ing in naturally occurring porous media. In this work, we demonstrate that this effect in most cases should be attributed to a defficient estimation of the concentrations and not to the occurrence of true incomplete mixing processes in porous media. To illustrate this, we show that a Kernel Density Estimation (KDE) of the concentrations can approach the well-mixed solution with a limited number of particles. KDEs provide weighting functions of each particle mass that expands its region of influence, hence providing a wider region for chemical reactions with time. Simulation results show that KDEs are powerful tools to improve state-of-the-art simulations of chemical reactions and indicates that incomplete mixing in diluted systems should be modeled based on alternative conceptual models and not on a limited number of particles.

  19. Tri-track: free software for large-scale particle tracking.

    Science.gov (United States)

    Vallotton, Pascal; Olivier, Sandra

    2013-04-01

    The ability to correctly track objects in time-lapse sequences is important in many applications of microscopy. Individual object motions typically display a level of dynamic regularity reflecting the existence of an underlying physics or biology. Best results are obtained when this local information is exploited. Additionally, if the particle number is known to be approximately constant, a large number of tracking scenarios may be rejected on the basis that they are not compatible with a known maximum particle velocity. This represents information of a global nature, which should ideally be exploited too. Some time ago, we devised an efficient algorithm that exploited both types of information. The tracking task was reduced to a max-flow min-cost problem instance through a novel graph structure that comprised vertices representing objects from three consecutive image frames. The algorithm is explained here for the first time. A user-friendly implementation is provided, and the specific relaxation mechanism responsible for the method's effectiveness is uncovered. The software is particularly competitive for complex dynamics such as dense antiparallel flows, or in situations where object displacements are considerable. As an application, we characterize a remarkable vortex structure formed by bacteria engaged in interstitial motility.

  20. Nuclear fragmentation and the number of particle tracks in tissue

    International Nuclear Information System (INIS)

    Ponomarev, A. L.; Cucinotta, F. A.

    2006-01-01

    For high energy nuclei, the number of particle tracks per cell is modified by local nuclear reactions that occur, with large fluctuations expected for heavy ion tracks. Cells near the interaction site of a reaction will experience a much higher number of tracks than estimated by the average fluence. Two types of reaction products are possible and occur in coincidence; projectile fragments, which generally have smaller charge and similar velocity to that of the projectile, and target fragments, which are produced from the fragmentation of the nuclei of water atoms or other cellular constituents with low velocity. In order to understand the role of fragmentation in biological damage a new model of human tissue irradiated by heavy ions was developed. A box of the tissue is modelled with periodic boundary conditions imposed, which extrapolates the technique to macroscopic volumes of tissue. The cross sections for projectile and target fragmentation products are taken from the quantum multiple scattering fragmentation code previously developed at NASA Johnson Space Center. Statistics of fragmentation pathways occurring in a cell monolayer, as well as in a small volume of 10 x 10 x 10 cells are given. A discussion on approaches to extend the model to describe spatial distributions of inactivated or other cell damage types, as well as highly organised tissues of multiple cell types, is presented. (authors)

  1. Particle Tracking Model and Abstraction of Transport Processes

    International Nuclear Information System (INIS)

    Robinson, B.

    2000-01-01

    The purpose of the transport methodology and component analysis is to provide the numerical methods for simulating radionuclide transport and model setup for transport in the unsaturated zone (UZ) site-scale model. The particle-tracking method of simulating radionuclide transport is incorporated into the FEHM computer code and the resulting changes in the FEHM code are to be submitted to the software configuration management system. This Analysis and Model Report (AMR) outlines the assumptions, design, and testing of a model for calculating radionuclide transport in the unsaturated zone at Yucca Mountain. In addition, methods for determining colloid-facilitated transport parameters are outlined for use in the Total System Performance Assessment (TSPA) analyses. Concurrently, process-level flow model calculations are being carrier out in a PMR for the unsaturated zone. The computer code TOUGH2 is being used to generate three-dimensional, dual-permeability flow fields, that are supplied to the Performance Assessment group for subsequent transport simulations. These flow fields are converted to input files compatible with the FEHM code, which for this application simulates radionuclide transport using the particle-tracking algorithm outlined in this AMR. Therefore, this AMR establishes the numerical method and demonstrates the use of the model, but the specific breakthrough curves presented do not necessarily represent the behavior of the Yucca Mountain unsaturated zone

  2. Theoretical aspects of the formation and evolution of charged particle tracks

    CERN Document Server

    Miterev, A M

    2002-01-01

    Theoretical ideas on the formation and evolution of charged particle tracks in a condensed medium are discussed. The historical development of the field is briefly reviewed. The distribution of charged particle energies on quantum states and the volume of the absorbing medium are considered. and conditions for the formation of various track structures are discussed. The structures of extended heavy-ion tracks are compared for some ion parameters and track characteristics take to be the same. Relaxation processes in the tracks of multicharged ions ate analyzed. Track effects ate considered and possible mechanisms for the formation of chemically active defects in a latent track are described

  3. Stimulated-emission effects in particle creation near black holes

    International Nuclear Information System (INIS)

    Wald, R.M.

    1976-01-01

    It has recently been shown that if a black hole is formed by gravitational collapse, spontaneous particle creation will occur and a thermal spectrum of all species of particles will be emitted to infinity if the quantum matter was initially in the vacuum state. In this paper we investigate the stimulated-emission effects which occur if particles are present initially. We show in general that for a Hermitian scalar field in an external potential or in curved, asymptotically flat spacetime, stimulated-emission effects can occur precisely in those modes for which there is spontaneous particle creation from the vacuum. For the case of a Schwarzschild black hole, this result appears paradoxical, since spontaneous emission occurs at late times but there is no classical analog of stimulated emission at late times. The resolution of this paradox is that in order to induce emission of particles which emerge at late times one must send in particles at early times, so that they reach the black hole very near the instant of its formation. However, enormous energy is required of these incoming particles in order to stimulate emission of particles which emerge at late times. Thus, for a Schwarzschild black hole, even if particles are initially present (with limited energy) they will induce emission only at early times; at late times one will see only the spontaneously emitted blackbody thermal radiation. For the case of a Kerr black hole stimulated emission can be induced by particles sent in at late times with the appropriate frequencies and angular dependence. If the number of incoming particles is large, this quantum stimulated emission just gives the classical superradiant scattering

  4. Determining of the track parameters in solid state nuclear track detectors Cr 39 due to alpha particles

    International Nuclear Information System (INIS)

    Kostic, D.; Nikezic, D.

    1997-01-01

    An equation of the etch pit wall is proposed to be used for simulation of the track growth and calculating the major and the minor axis of etch pit opening. Dependence on the following parameters is set up: distance along a track from the point where the particle entered the detector, ratio of the track etch wall to the bulk etch rate, integration constant determined from particle penetration depth and normal distance from the particle trajectory to the etch pit wall. The corresponding computer program was written. The input parameters of this program are: alpha particles energy, incidence angle and removed layer; the output gives track parameters. The results obtained by this method are compared to another approach given by Somogy and Szalay (1973) and a reasonably good agreement is found. (author)

  5. Liquid nitrogen enhancement of alpha particle tracks in a polycarbonate detector

    International Nuclear Information System (INIS)

    Pilione, L.J.

    1977-01-01

    Makrofol-E polycarbonate detectors were exposed to 1 to 3 MeV alpha particles and subsequently immersed in liquid nitrogen for various periods of time. The influence of the liquid nitrogen on the track recording properties of the detector has been found by measuring the track densities and diameters. Track densities increase with immersion time with a maximum gain of approximately 9% after 1200 min in liquid nitrogen. Track enhancement decreases with waiting time between the end of alpha particle exposure and the beginning of liquid nitrogen immersion. Track diameters decrease with time after passage of the particles and this process is accelerated by immersion in liquid nitrogen. (author)

  6. CR-39 α track detector and its application in observing of the hot particles in environment

    International Nuclear Information System (INIS)

    Zou Benchuan

    1992-01-01

    CR-39 α track detector is a new α remitting radionuclides plastic detector. It is audio-visual, convenient and economic in the detection of α particle track and the distribution of α emitting radionuclides in environmental samples. CR-39 α track detector is used to observe the hot particles in rock and the hot particles coming from the liquid effluents discharged by spent fuel reprocessing plant in UK in marine environment and got good results

  7. Synthesis and characterization of scandium oxide microspheres for their application in radioactive particle tracking experiments

    International Nuclear Information System (INIS)

    Goswami, Sunil; Biswal, Jayashree; Pant, H.J.; Pillai, K.T.; Bamankar, Y.R.

    2012-01-01

    Radioactive particle tracking (RPT) technique, proposed by Lin et al., is a noble technique for understanding mixing mechanisms of fluids and; evaluation and improvement of design of multiphase flow systems. In RPT technique the motion of a single radioactive particle is tracked in a flow system using an array of strategically mounted NaI(Tl) scintillation detectors around the system. The gamma emitting radioactive tracer particle being tracked is designed to be hydrodynamically similar to that of the phase being traced

  8. Quantum dynamics of a particle in a tracking chamber

    International Nuclear Information System (INIS)

    Figari, Rodolfo; INFN, Napoli; Teta, Alessandro

    2014-01-01

    In the original formulation of quantum mechanics the existence of a precise border between a microscopic world, governed by quantum mechanics, and a macroscopic world, described by classical mechanics was assumed. Modern theoretical and experimental physics has moved that border several times, carefully investigating its definition and making available to observation larger and larger quantum systems. The present book examines a paradigmatic case of the transition from quantum to classical behavior: A quantum particle is revealed in a tracking chamber as a trajectory obeying the laws of classical mechanics. The authors provide here a purely quantum-mechanical description of this behavior, thus helping to illuminate the nature of the border between the quantum and the classical.

  9. Beam dynamics calculations and particle tracking using massively parallel processors

    International Nuclear Information System (INIS)

    Ryne, R.D.; Habib, S.

    1995-01-01

    During the past decade massively parallel processors (MPPs) have slowly gained acceptance within the scientific community. At present these machines typically contain a few hundred to one thousand off-the-shelf microprocessors and a total memory of up to 32 GBytes. The potential performance of these machines is illustrated by the fact that a month long job on a high end workstation might require only a few hours on an MPP. The acceptance of MPPs has been slow for a variety of reasons. For example, some algorithms are not easily parallelizable. Also, in the past these machines were difficult to program. But in recent years the development of Fortran-like languages such as CM Fortran and High Performance Fortran have made MPPs much easier to use. In the following we will describe how MPPs can be used for beam dynamics calculations and long term particle tracking

  10. Multi-Color Single Particle Tracking with Quantum Dots

    DEFF Research Database (Denmark)

    Christensen, Eva Arnspang; Brewer, J. R.; Lagerholm, B. C.

    2012-01-01

    . multiplex single molecule sensitivity applications such as single particle tracking (SPT). In order to fully optimize single molecule multiplex application with QDs, we have in this work performed a comprehensive quantitative investigation of the fluorescence intensities, fluorescence intensity fluctuations......Quantum dots (QDs) have long promised to revolutionize fluorescence detection to include even applications requiring simultaneous multi-species detection at single molecule sensitivity. Despite the early promise, the unique optical properties of QDs have not yet been fully exploited in e. g...... further show that there is only a small size advantage in using blue-shifted QDs in biological applications because of the additional size of the water-stabilizing surface coat. Extending previous work, we finally also show that parallel four color multicolor (MC)-SPT with QDs is possible at an image...

  11. Quantum dynamics of a particle in a tracking chamber

    CERN Document Server

    Figari, Rodolfo

    2014-01-01

    In the original formulation of quantum mechanics the existence of a precise border between a microscopic world, governed by quantum mechanics, and a macroscopic world, described by classical mechanics was assumed. Modern theoretical and experimental physics has moved that border several times, carefully investigating its definition and making available to observation larger and larger quantum systems. The present book examines a paradigmatic case of the transition from quantum to classical behavior: A quantum particle is revealed in a tracking chamber as a trajectory obeying the laws of classical mechanics. The authors provide here a purely quantum-mechanical description of this behavior, thus helping to illuminate the nature of the border between the quantum and the classical.

  12. SSCTRK: A particle tracking code for the SSC

    International Nuclear Information System (INIS)

    Ritson, D.

    1990-07-01

    While many indirect methods are available to evaluate dynamic aperture there appears at this time to be no reliable substitute to tracking particles through realistic machine lattices for a number of turns determined by the storage times. Machine lattices are generated by ''Monte Carlo'' techniques from the expected rms fabrication and survey errors. Any given generated machine can potentially be a lucky or unlucky fluctuation from the average. Therefore simulation to serve as a predictor of future performance must be done for an ensemble of generated machines. Further, several amplitudes and momenta are necessary to predict machine performance. Thus to make Monte Carlo type simulations for the SSC requires very considerable computer resources. Hitherto, it has been assumed that this was not feasible, and alternative indirect methods have been proposed or tried to answer the problem. We reexamined the feasibility of using direct computation. Previous codes have represented lattices by a succession of thin elements separated by bend-drifts. With ''kick-drift'' configurations, tracking time is linear in the multipole order included, and the code is symplectic. Modern vector processors simultaneously handle a large number of cases in parallel. Combining the efficiencies of kick drift tracking with vector processing, in fact, makes realistic Monte Carlo simulation entirely feasible. SSCTRK uses the above features. It is structured to have a very friendly interface, a very wide latitude of choice for cases to be run in parallel, and, by using pure FORTRAN 77, to interchangeably run on a wide variety of computers. We describe in this paper the program structure operational checks and results achieved

  13. Robust and Adaptive Block Tracking Method Based on Particle Filter

    Directory of Open Access Journals (Sweden)

    Bin Sun

    2015-10-01

    Full Text Available In the field of video analysis and processing, object tracking is attracting more and more attention especially in traffic management, digital surveillance and so on. However problems such as objects’ abrupt motion, occlusion and complex target structures would bring difficulties to academic study and engineering application. In this paper, a fragmentsbased tracking method using the block relationship coefficient is proposed. In this method, we use particle filter algorithm and object region is divided into blocks initially. The contribution of this method is that object features are not extracted just from a single block, the relationship between current block and its neighbor blocks are extracted to describe the variation of the block. Each block is weighted according to the block relationship coefficient when the block is voted on the most matched region in next frame. This method can make full use of the relationship between blocks. The experimental results demonstrate that our method can provide good performance in condition of occlusion and abrupt posture variation.

  14. Secondary particle tracks generated by ion beam irradiation

    Science.gov (United States)

    García, Gustavo

    2015-05-01

    The Low Energy Particle Track Simulation (LEPTS) procedure is a powerful complementary tool to include the effect of low energy electrons and positrons in medical applications of radiation. In particular, for ion-beam cancer treatments provides a detailed description of the role of the secondary electrons abundantly generated around the Bragg peak as well as the possibility of using transmuted positron emitters (C11, O15) as a complement for ion-beam dosimetry. In this study we present interaction probability data derived from IAM-SCAR corrective factors for liquid environments. Using these data, single electron and positron tracks in liquid water and pyrimidine have been simulated providing information about energy deposition as well as the number and type of interactions taking place in any selected ``nanovolume'' of the irradiated area. In collaboration with Francisco Blanco, Universidad Complutense de Madrid; Antonio Mu noz, Centro de Investigaciones Energéticas Medioambientales y Tecnológicas and Diogo Almeida, Filipe Ferreira da Silva, Paulo Lim ao-Vieira, Universidade Nova de Lisboa. Supported by the Spanish and Portuguese governments.

  15. Geometry and dynamics of particle emission from strongly deformed nuclei

    International Nuclear Information System (INIS)

    Aleshin, V.P.

    1995-01-01

    By using our semiclassical approach to particle evaporation from deformed nuclei, we analyze the heuristic models of particle emission from deformed nuclei which are used in the codes GANES, ALICE, and EVAP. The calculations revealed that the heuristic models are reasonable for particle energy spectra but fail, at large deformations, to describe the angular distributions

  16. Electrochemical development of particle tracks in CR-39 polymer dosimeter

    International Nuclear Information System (INIS)

    Hadlock, D.E.; Parkhurst, M.A.; Yang, C.S.; Groeger, J.; Johnson, J.R.; Huang, S.J.

    1985-09-01

    Electrochemical etching of CR-39 polymeric track etch neutron detectors results in proton-recoil tracks can be distinguished from background tracks much better than tracks developed solely by chemical etching. A newly designed and constructed electrochemical etching apparatus allows large numbers of dosimeters to be processed simultaneously with consistent results. Many processing systems have been developed for chemical and electrochemical etching of the track etch dosimeters. Three systems specifically show great promise and are being studied extensively

  17. Particle capture by turbulent recirculation zones measured using long-time Lagrangian particle tracking

    Energy Technology Data Exchange (ETDEWEB)

    Siu, Y.W. [Hong Kong Securities Institute, Department of Professional Education and Training, Central (China); Taylor, A.M.K.P. [Imperial College London, Department of Mechanical Engineering, London (United Kingdom)

    2011-07-15

    We have measured the trajectories of particles into, and around, the recirculation zone formed in water flowing through a sudden pipe expansion with radius ratio 1:3.7, at Reynolds numbers between 5,960 and 41,700 over a range of particle Stokes number (here defined as St=(T{sub f})/({tau} p), where T{sub f} is an appropriate mean or turbulent timescale of the fluid flow and a particle relaxation time, {tau}{sub p},) between 6.2 and 51 and drift parameter between 0.3 and 2.8. The particles were thus weakly inertial but nevertheless heavy with a diameter about an order of magnitude larger than the Kolmogorov scale. Trajectories of particles, released individually into the flow, were taken in a Lagrangian framework by a three-dimensional particle tracking velocimeter using a single 25 Hz framing rate intensified CCD camera. Trajectories are quantified by the axial distribution of the locations of particle axial velocity component reversal and the probability distributions of trajectory angle and curvature. The effect of increasing the drift parameter was to reduce the tendency for particles to enter the recirculation zone. For centreline release, the proportion of particles entering the recirculation zone and acquiring a negative velocity decreased from about 80% to none and from about 66% to none, respectively, as the drift parameter increased from 0.3 to 2.8. Almost half of the particles experienced a relatively large change of direction corresponding to a radius of curvature of their trajectory comparable to, or smaller than, the radius of the downstream pipe. This was due to the interaction between these particles and eddies of this size in the downstream pipe and provides experimental evidence that particles are swept by large eddies into the recirculation zone over 1.0 < Z{sup *} < 2.5, where Z{sup *} is axial distance from the expansion plane normalized by the downstream pipe diameter, which was well upstream of the reattachment point at the wall (Z

  18. Particle emission in the hydrodynamical description of relativistic nuclear collisions

    International Nuclear Information System (INIS)

    Grassi, F.; Hama, Y.; Kodama, T.

    1994-09-01

    Continuous particle emission during the whole expansion of thermalized matter is studied and a new formula for the observed transverse mass spectrum is derived. In some limit, the usual emission at freeze out scenario (Cooper-Frye formula) may be recovered. In a simplified description of expansion, it is shown that continuous particle emission can lead to a sizable curvature in the pion transverse mass spectrum and parallel slopes for the various particles. These results are compared to experimental data. (author). 26 refs, 3 figs

  19. Multiple photon emission in heavy particle decays

    International Nuclear Information System (INIS)

    Asakimori, K.; Burnett, T.H.; Cherry, M.L.

    1994-03-01

    Cosmic ray interactions, at energies above 1 TeV/nucleon, in emulsion chambers flown on high altitude balloons have yielded two events showing apparent decays of a heavy particle into one charged particle and four photons. The photons converted into electron pairs very close to the decay vertex. Attempts to explain this decay topology with known particle decays are presented. Unless both events represent a b → u transition, which is statistically unlikely, then other known decay modes for charmed or bottom particles do not account satisfactorily for these observations. This could indicate, possibly, a new decay channel. (author). 7 refs, 6 figs, 2 tabs

  20. A study of CR-39 track response to charged particles from NOVA implosions

    International Nuclear Information System (INIS)

    Phillips, T.W.; Cable, M.D.; Hicks, D.G.; Li, C.K.; Petrasso, R.D.; Seguin, F.H.

    1996-01-01

    We have exposed CR-39 track recording material to a number of NOVA implosions. Radiation from the implosion passed through an array of ranging filters, which aided identification of the incident particles and their energies. The etching procedure was calibrated by including a piece of track exposed to DD protons from a small accelerator. For the same shots, we quantitatively compare the DD neutron yield with the DD proton yield determined from the track. In DT implosions, tracks produced by neutron interactions prevent observation of charged-particle tracks that are produced by the processes of knock-on, secondary or tertiary fusion

  1. SUBMICRON PARTICLES EMISSION CONTROL BY ELECTROSTATIC AGGLOMERATION

    Directory of Open Access Journals (Sweden)

    Andrzej Krupa

    2017-04-01

    Full Text Available The aim of the study was to develop a device for more effective treatment of flue gases from submicron particles emitted by power plants burning bituminous coal and by this way the reduction of environment pollution. Electrostatic processes were employed to this goal, as the most effective solution. The solutions hitherto applied in electrostatic precipitation techniques were designed for large particles, typically with sizes> 5 µm, which are easily removed by the action of electrostatic force on the electrically charged particles. In submicron size range (0.1-1 µm the collection efficiency of an ESP is minimal, because of the low value of electric charge on such particles. In order to avoid problems with the removal of submicron particles of fly ash from the flue gases electrostatic agglomeration has been used. In this process, by applying an alternating electric field, larger charged particles (> 1 µm oscillate, and the particles "collect" smaller uncharged particles. In the developed agglomerator with alternating electric field, the charging of particles and the coagulation takes place in one stage that greatly simplified the construction of the device, compared to other solutions. The scope of this study included measurements of fractional collection efficiency of particles in the system comprising of agglomerator and ESP for PM1 and PM2.5 ranges, in device made in pilot scale. The collection efficiency for PM2.5 was greater than 90% and PM1 slightly dropped below 90%. The mass collection efficiency for PM2.5 was greater than 95%. The agglomerator stage increases the collection efficiency for PM1 at a level of 5-10%.

  2. A tracking algorithm for the reconstruction of the daughters of long-lived particles in LHCb

    CERN Document Server

    Dendek, Adam Mateusz

    2018-01-01

    A tracking algorithm for the reconstruction of the daughters of long-lived particles in LHCb 5 Jun 2018, 16:00 1h 30m Library, Centro San Domenico () LHC experiments Posters session Speaker Katharina Mueller (Universitaet Zuerich (CH)) Description The LHCb experiment at CERN operates a high precision and robust tracking system to reach its physics goals, including precise measurements of CP-violation phenomena in the heavy flavour quark sector and searches for New Physics beyond the Standard Model. The track reconstruction procedure is performed by a number of algorithms. One of these, PatLongLivedTracking, is optimised to reconstruct "downstream tracks", which are tracks originating from decays outside the LHCb vertex detector of long-lived particles, such as Ks or Λ0. After an overview of the LHCb tracking system, we provide a detailed description of the LHCb downstream track reconstruction algorithm. Its computational intelligence part is described in details, including the adaptation of the employed...

  3. Random Walk Particle Tracking For Multiphase Heat Transfer

    Science.gov (United States)

    Lattanzi, Aaron; Yin, Xiaolong; Hrenya, Christine

    2017-11-01

    As computing capabilities have advanced, direct numerical simulation (DNS) has become a highly effective tool for quantitatively predicting the heat transfer within multiphase flows. Here we utilize a hybrid DNS framework that couples the lattice Boltzmann method (LBM) to the random walk particle tracking (RWPT) algorithm. The main challenge of such a hybrid is that discontinuous fields pose a significant challenge to the RWPT framework and special attention must be given to the handling of interfaces. We derive a method for addressing discontinuities in the diffusivity field, arising at the interface between two phases. Analytical means are utilized to develop an interfacial tracer balance and modify the RWPT algorithm. By expanding the modulus of the stochastic (diffusive) step and only allowing a subset of the tracers within the high diffusivity medium to undergo a diffusive step, the correct equilibrium state can be restored (globally homogeneous tracer distribution). The new RWPT algorithm is implemented within the SUSP3D code and verified against a variety of systems: effective diffusivity of a static gas-solids mixture, hot sphere in unbounded diffusion, cooling sphere in unbounded diffusion, and uniform flow past a hot sphere.

  4. Monte Carlo parametric importance sampling with particle tracks scaling

    International Nuclear Information System (INIS)

    Ragheb, M.M.H.

    1981-01-01

    A method for Monte Carlo importance sampling with parametric dependence is proposed. It depends upon obtaining over a single stage the overall functional dependence of the variance on the importance function parameter over a broad range of its values. Results corresponding to minimum variance are adopted and others rejected. The proposed method is applied to the finite slab penetration problem. When the exponential transformation is used, our method involves scaling of the generated particle tracks, and is a new application of Morton's method of similar trajectories. The method constitutes a generalization of Spanier's multistage importance sampling method, obtained by proper weighting over a single stage the curves he obtains over several stages, and preserves the statistical correlations between histories. It represents an extension of a theory by Frolov and Chentsov on Monte Carlo calculations of smooth curves to surfaces and to importance sampling calculations. By the proposed method, it seems possible to systematically arrive at minimum variance results and to avoid the infinite variances and effective biases sometimes observed in this type of calculation. (orig.) [de

  5. Statistical fluctuations in heavy-charged-particle tracks

    International Nuclear Information System (INIS)

    Hamm, R.N.; Turner, J.E.; Wright, H.A.

    1985-01-01

    We present the results of the following Monte Carlo track-segment calculations for protons with energies of 1, 2, 5, and 10 MeV in liquid water: (1) radial dose around a long segment of a proton track; (2) energy-loss straggling distributions for protons of different energies in 1 μm of water; (3) the distribution in the average absorbed dose around track segments of various lengths; (4) the relative standard deviations in these distributions as functions of the length of the track segments. Calculations such as those presented here are useful for studying track phenomena on a microdosimetric scale, where statistical fluctuations are substantial

  6. A multi-frame particle tracking algorithm robust against input noise

    International Nuclear Information System (INIS)

    Li, Dongning; Zhang, Yuanhui; Sun, Yigang; Yan, Wei

    2008-01-01

    The performance of a particle tracking algorithm which detects particle trajectories from discretely recorded particle positions could be substantially hindered by the input noise. In this paper, a particle tracking algorithm is developed which is robust against input noise. This algorithm employs the regression method instead of the extrapolation method usually employed by existing algorithms to predict future particle positions. If a trajectory cannot be linked to a particle at a frame, the algorithm can still proceed by trying to find a candidate at the next frame. The connectivity of tracked trajectories is inspected to remove the false ones. The algorithm is validated with synthetic data. The result shows that the algorithm is superior to traditional algorithms in the aspect of tracking long trajectories

  7. Ethanol emission from loose corn silage and exposed silage particles

    Science.gov (United States)

    Hafner, Sasha D.; Montes, Felipe; Rotz, C. Alan; Mitloehner, Frank

    2010-11-01

    Silage on dairy farms has been identified as a major source of volatile organic compound (VOC) emissions. However, rates of VOC emission from silage are not accurately known. In this work, we measured ethanol (a dominant silage VOC) emission from loose corn silage and exposed corn silage particles using wind tunnel systems. Flux of ethanol was highest immediately after exposing loose silage samples to moving air (as high as 220 g m -2 h -1) and declined by as much as 76-fold over 12 h as ethanol was depleted from samples. Emission rate and cumulative 12 h emission increased with temperature, silage permeability, exposed surface area, and air velocity over silage samples. These responses suggest that VOC emission from silage on farms is sensitive to climate and management practices. Ethanol emission rates from loose silage were generally higher than previous estimates of total VOC emission rates from silage and mixed feed. For 15 cm deep loose samples, mean cumulative emission was as high as 170 g m -2 (80% of initial ethanol mass) after 12 h of exposure to an air velocity of 5 m s -1. Emission rates measured with an emission isolation flux chamber were lower than rates measured in a wind tunnel and in an open setting. Results show that the US EPA emission isolation flux chamber method is not appropriate for estimating VOC emission rates from silage in the field.

  8. Particle Tracking Model and Abstraction of Transport Processes

    Energy Technology Data Exchange (ETDEWEB)

    B. Robinson

    2004-10-21

    The purpose of this report is to document the abstraction model being used in total system performance assessment (TSPA) model calculations for radionuclide transport in the unsaturated zone (UZ). The UZ transport abstraction model uses the particle-tracking method that is incorporated into the finite element heat and mass model (FEHM) computer code (Zyvoloski et al. 1997 [DIRS 100615]) to simulate radionuclide transport in the UZ. This report outlines the assumptions, design, and testing of a model for calculating radionuclide transport in the UZ at Yucca Mountain. In addition, methods for determining and inputting transport parameters are outlined for use in the TSPA for license application (LA) analyses. Process-level transport model calculations are documented in another report for the UZ (BSC 2004 [DIRS 164500]). Three-dimensional, dual-permeability flow fields generated to characterize UZ flow (documented by BSC 2004 [DIRS 169861]; DTN: LB03023DSSCP9I.001 [DIRS 163044]) are converted to make them compatible with the FEHM code for use in this abstraction model. This report establishes the numerical method and demonstrates the use of the model that is intended to represent UZ transport in the TSPA-LA. Capability of the UZ barrier for retarding the transport is demonstrated in this report, and by the underlying process model (BSC 2004 [DIRS 164500]). The technical scope, content, and management of this report are described in the planning document ''Technical Work Plan for: Unsaturated Zone Transport Model Report Integration'' (BSC 2004 [DIRS 171282]). Deviations from the technical work plan (TWP) are noted within the text of this report, as appropriate. The latest version of this document is being prepared principally to correct parameter values found to be in error due to transcription errors, changes in source data that were not captured in the report, calculation errors, and errors in interpretation of source data.

  9. Particle Tracking Model and Abstraction of Transport Processes

    International Nuclear Information System (INIS)

    Robinson, B.

    2004-01-01

    The purpose of this report is to document the abstraction model being used in total system performance assessment (TSPA) model calculations for radionuclide transport in the unsaturated zone (UZ). The UZ transport abstraction model uses the particle-tracking method that is incorporated into the finite element heat and mass model (FEHM) computer code (Zyvoloski et al. 1997 [DIRS 100615]) to simulate radionuclide transport in the UZ. This report outlines the assumptions, design, and testing of a model for calculating radionuclide transport in the UZ at Yucca Mountain. In addition, methods for determining and inputting transport parameters are outlined for use in the TSPA for license application (LA) analyses. Process-level transport model calculations are documented in another report for the UZ (BSC 2004 [DIRS 164500]). Three-dimensional, dual-permeability flow fields generated to characterize UZ flow (documented by BSC 2004 [DIRS 169861]; DTN: LB03023DSSCP9I.001 [DIRS 163044]) are converted to make them compatible with the FEHM code for use in this abstraction model. This report establishes the numerical method and demonstrates the use of the model that is intended to represent UZ transport in the TSPA-LA. Capability of the UZ barrier for retarding the transport is demonstrated in this report, and by the underlying process model (BSC 2004 [DIRS 164500]). The technical scope, content, and management of this report are described in the planning document ''Technical Work Plan for: Unsaturated Zone Transport Model Report Integration'' (BSC 2004 [DIRS 171282]). Deviations from the technical work plan (TWP) are noted within the text of this report, as appropriate. The latest version of this document is being prepared principally to correct parameter values found to be in error due to transcription errors, changes in source data that were not captured in the report, calculation errors, and errors in interpretation of source data

  10. Studies of isothermal annealing of fission fragment and alpha particle tracks in Cr-39 polymer detectors

    International Nuclear Information System (INIS)

    Zaky, M.F.; Youssef, A.A.

    2002-01-01

    Two groups of CR-39 detectors samples are exposed to two types of charged particle radiation. The first group are severe damaged with fission fragment tracks from 2 52C f source. The second accepted alpha particles resulting from the interaction of highly energetic 1 9F -ions and a copper disk with thickness 1 cm, which are of less damage tracks than fission fragments. , The isothermal annealing of tracks in the temperature range from 175 to 300 degree C in step 25 degree C for annealing time of 10,15,20,25 and 30 minutes has been investigated. The changes introduced in the track density and track diameter for two types of irradiation in the detector have been observed and compared between them. The results indicate that the track density and the size of the tracks are considerably changed due to annealing

  11. A new paradigm for particle tracking velocimetry, based on graph-theory and pulsed neural network

    International Nuclear Information System (INIS)

    Derou, D.; Herault, L.

    1994-01-01

    The Particle Tracking Velocimetry (PTV) technique works by recording, at different instances in time, positions of small tracers particles following a flow and illuminated by a sheet, or pseudo sheet, of light. It aims to recognize each particle trajectory, constituted of n different spots and determine thus each particle velocity vector. In this paper, we devise a new method, taking into account a global consistency of the trajectories to be extracted, in terms of visual perception and physical properties. It is based on a graph-theoretic formulation of the particle tracking problem and the use of an original neural network, called pulsed neural network. (authors). 4 figs

  12. Tracking industrial energy efficiency and CO2 emissions

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-06-25

    Industry accounts for about one-third of global energy demand. Most of that energy is used to produce raw materials: chemicals, iron and steel, non-metallic minerals, pulp and paper and non-ferrous metals. Just how efficiently is this energy put to work? This question was on the minds of the G8 leaders at their summit in Gleneagles in 2005, when they set a 'Plan of Action for Climate Change, Clean Energy and Sustainable Development'. They called upon the International Energy Agency to provide information and advice in a number of areas including special attention to the industrial sector. Tracking Industrial Energy Efficiency and CO2 Emissions responds to the G8 request. This major new analysis shows how industrial energy efficiency has improved dramatically over the last 25 years. Yet important opportunities for additional gains remain, which is evident when the efficiencies of different countries are compared. This analysis identifies the leaders and the laggards. It explains clearly a complex issue for non-experts. With new statistics, groundbreaking methodologies, thorough analysis and advice, and substantial industry consultation, this publication equips decision makers in the public and private sectors with the essential information that is needed to reshape energy use in manufacturing in a more sustainable manner.

  13. Tracking industrial energy efficiency and CO2 emissions

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-06-25

    Industry accounts for about one-third of global energy demand. Most of that energy is used to produce raw materials: chemicals, iron and steel, non-metallic minerals, pulp and paper and non-ferrous metals. Just how efficiently is this energy put to work? This question was on the minds of the G8 leaders at their summit in Gleneagles in 2005, when they set a 'Plan of Action for Climate Change, Clean Energy and Sustainable Development'. They called upon the International Energy Agency to provide information and advice in a number of areas including special attention to the industrial sector. Tracking Industrial Energy Efficiency and CO2 Emissions responds to the G8 request. This major new analysis shows how industrial energy efficiency has improved dramatically over the last 25 years. Yet important opportunities for additional gains remain, which is evident when the efficiencies of different countries are compared. This analysis identifies the leaders and the laggards. It explains clearly a complex issue for non-experts. With new statistics, groundbreaking methodologies, thorough analysis and advice, and substantial industry consultation, this publication equips decision makers in the public and private sectors with the essential information that is needed to reshape energy use in manufacturing in a more sustainable manner.

  14. Developing Particle Emission Inventories Using Remote Sensing (PEIRS)

    Science.gov (United States)

    Tang, Chia-Hsi; Coull, Brent A.; Schwartz, Joel; Lyapustin, Alexei I.; Di, Qian; Koutrakis, Petros

    2016-01-01

    Information regarding the magnitude and distribution of PM(sub 2.5) emissions is crucial in establishing effective PM regulations and assessing the associated risk to human health and the ecosystem. At present, emission data is obtained from measured or estimated emission factors of various source types. Collecting such information for every known source is costly and time consuming. For this reason, emission inventories are reported periodically and unknown or smaller sources are often omitted or aggregated at large spatial scale. To address these limitations, we have developed and evaluated a novel method that uses remote sensing data to construct spatially-resolved emission inventories for PM(sub 2.5). This approach enables us to account for all sources within a fixed area, which renders source classification unnecessary. We applied this method to predict emissions in the northeast United States during the period of 2002-2013 using high- resolution 1 km x 1 km Aerosol Optical Depth (AOD). Emission estimates moderately agreed with the EPA National Emission Inventory (R(sup2) = 0.66 approx. 0.71, CV = 17.7 approx. 20%). Predicted emissions are found to correlate with land use parameters suggesting that our method can capture emissions from land use-related sources. In addition, we distinguished small-scale intra-urban variation in emissions reflecting distribution of metropolitan sources. In essence, this study demonstrates the great potential of remote sensing data to predict particle source emissions cost-effectively.

  15. The Particle Number Emission Characteristics of the Diesel Engine with a Catalytic Diesel Particle Filter

    Directory of Open Access Journals (Sweden)

    Li Jia Qiang

    2016-01-01

    Full Text Available Due to their adverse health effects and their abundance in urban areas, diesel exhaust ultrafine particles caused by the aftertreatment devices have been of great concern in the past years. An experiment of particles number emissions was carried out on a high-pressure, common rail diesel engine with catalytic diesel particle filter (CDPF to investigate the impact of CDPF on the number emission characteristics of particles. The results indicated that the conversion rates of CDPF is over 97%. The size distributions of particles are bimodal lognormal distributions downstream CDPF at 1400 r/min and 2300 r/min. CDPF has a lower conversion rates on the nucleation mode particles. The geometric number mean diameters of particles downstream CDPF is smaller than that upstream CDPF.

  16. 4-D single particle tracking of synthetic and proteinaceous microspheres reveals preferential movement of nuclear particles along chromatin – poor tracks

    Directory of Open Access Journals (Sweden)

    Athale Chaitanya

    2004-11-01

    Full Text Available Abstract Background The dynamics of nuclear organization, nuclear bodies and RNPs in particular has been the focus of many studies. To understand their function, knowledge of their spatial nuclear position and temporal translocation is essential. Typically, such studies generate a wealth of data that require novel methods in image analysis and computational tools to quantitatively track particle movement on the background of moving cells and shape changing nuclei. Results We developed a novel 4-D image processing platform (TIKAL for the work with laser scanning and wide field microscopes. TIKAL provides a registration software for correcting global movements and local deformations of cells as well as 2-D and 3-D tracking software. With this new tool, we studied the dynamics of two different types of nuclear particles, namely nuclear bodies made from GFP-NLS-vimentin and microinjected 0.1 μm – wide polystyrene beads, by live cell time-lapse microscopy combined with single particle tracking and mobility analysis. We now provide a tool for the automatic 3-D analysis of particle movement in parallel with the acquisition of chromatin density data. Conclusions Kinetic analysis revealed 4 modes of movement: confined obstructed, normal diffusion and directed motion. Particle tracking on the background of stained chromatin revealed that particle movement is directly related to local reorganization of chromatin. Further a direct comparison of particle movement in the nucleoplasm and the cytoplasm exhibited an entirely different kinetic behaviour of vimentin particles in both compartments. The kinetics of nuclear particles were slightly affected by depletion of ATP and significantly disturbed by disruption of actin and microtubule networks. Moreover, the hydration state of the nucleus had a strong impact on the mobility of nuclear bodies since both normal diffusion and directed motion were entirely abolished when cells were challenged with 0.6 M

  17. 4-D single particle tracking of synthetic and proteinaceous microspheres reveals preferential movement of nuclear particles along chromatin – poor tracks

    Science.gov (United States)

    Bacher, Christian P; Reichenzeller, Michaela; Athale, Chaitanya; Herrmann, Harald; Eils, Roland

    2004-01-01

    Background The dynamics of nuclear organization, nuclear bodies and RNPs in particular has been the focus of many studies. To understand their function, knowledge of their spatial nuclear position and temporal translocation is essential. Typically, such studies generate a wealth of data that require novel methods in image analysis and computational tools to quantitatively track particle movement on the background of moving cells and shape changing nuclei. Results We developed a novel 4-D image processing platform (TIKAL) for the work with laser scanning and wide field microscopes. TIKAL provides a registration software for correcting global movements and local deformations of cells as well as 2-D and 3-D tracking software. With this new tool, we studied the dynamics of two different types of nuclear particles, namely nuclear bodies made from GFP-NLS-vimentin and microinjected 0.1 μm – wide polystyrene beads, by live cell time-lapse microscopy combined with single particle tracking and mobility analysis. We now provide a tool for the automatic 3-D analysis of particle movement in parallel with the acquisition of chromatin density data. Conclusions Kinetic analysis revealed 4 modes of movement: confined obstructed, normal diffusion and directed motion. Particle tracking on the background of stained chromatin revealed that particle movement is directly related to local reorganization of chromatin. Further a direct comparison of particle movement in the nucleoplasm and the cytoplasm exhibited an entirely different kinetic behaviour of vimentin particles in both compartments. The kinetics of nuclear particles were slightly affected by depletion of ATP and significantly disturbed by disruption of actin and microtubule networks. Moreover, the hydration state of the nucleus had a strong impact on the mobility of nuclear bodies since both normal diffusion and directed motion were entirely abolished when cells were challenged with 0.6 M sorbitol. This effect correlated

  18. Streamflow Observations From Cameras: Large-Scale Particle Image Velocimetry or Particle Tracking Velocimetry?

    Science.gov (United States)

    Tauro, F.; Piscopia, R.; Grimaldi, S.

    2017-12-01

    Image-based methodologies, such as large scale particle image velocimetry (LSPIV) and particle tracking velocimetry (PTV), have increased our ability to noninvasively conduct streamflow measurements by affording spatially distributed observations at high temporal resolution. However, progress in optical methodologies has not been paralleled by the implementation of image-based approaches in environmental monitoring practice. We attribute this fact to the sensitivity of LSPIV, by far the most frequently adopted algorithm, to visibility conditions and to the occurrence of visible surface features. In this work, we test both LSPIV and PTV on a data set of 12 videos captured in a natural stream wherein artificial floaters are homogeneously and continuously deployed. Further, we apply both algorithms to a video of a high flow event on the Tiber River, Rome, Italy. In our application, we propose a modified PTV approach that only takes into account realistic trajectories. Based on our findings, LSPIV largely underestimates surface velocities with respect to PTV in both favorable (12 videos in a natural stream) and adverse (high flow event in the Tiber River) conditions. On the other hand, PTV is in closer agreement than LSPIV with benchmark velocities in both experimental settings. In addition, the accuracy of PTV estimations can be directly related to the transit of physical objects in the field of view, thus providing tangible data for uncertainty evaluation.

  19. The Feasibility of Performing Particle Tracking Based Flow Measurements with Acoustic Cameras

    Science.gov (United States)

    2017-08-01

    particles . The motion of the light- reflecting tracer particles is observed, generally with a CCD or complementary metal-oxide semiconductor (CMOS) digital...ER D C/ CH L SR -1 7- 1 Dredging Operations and Environmental Research Program The Feasibility of Performing Particle - Tracking-Based...acwc.sdp.sirsi.net/client/default. Dredging Operations and Environmental Research Program ERDC/CHL SR-17-1 August 2017 The Feasibility of Performing Particle

  20. Data needs for the track structure of alpha particles and electrons in water

    International Nuclear Information System (INIS)

    Pagnamenta, A.

    1983-01-01

    We have made calculations of the ionization spectra for alpha particle and electron tracks in water. We have also computed the number of ions created per micrometre of track length, the energy distribution of the secondaries, and the energy expended per ion pair created. Our aim is less toward theoretical derivations than to obtain a numerically accurate description of the track structure at all energies in a form suitable for biomedical applications. 13 references

  1. Various light particles emissions accompaning light heavy ion collisions

    International Nuclear Information System (INIS)

    Billerey, R.

    1981-01-01

    In this work we have investigated light particles emission accompanying heavy-ion induced reactions. The experiments were performed at the isochronous cyclotron of the I.S.N. de Grenoble and we got in and out of plane correlations between solid state and gazeous detectors. In 14 N (100 MeV) + 27 Al we have chosen, light particles emitted in coincidence with deep inelastic fragments or evaporation residues have been measured. Likewise we observed the correlations between fragments and fragments. The particularities we found between protons and alpha emissions are to be assigned to differences in separation energies, but their relative energies and angular momenta have also a significant part [fr

  2. Modeling of Particle Emission During Dry Orthogonal Cutting

    Science.gov (United States)

    Khettabi, Riad; Songmene, Victor; Zaghbani, Imed; Masounave, Jacques

    2010-08-01

    Because of the risks associated with exposure to metallic particles, efforts are being put into controlling and reducing them during the metal working process. Recent studies by the authors involved in this project have presented the effects of cutting speeds, workpiece material, and tool geometry on particle emission during dry machining; the authors have also proposed a new parameter, named the dust unit ( D u), for use in evaluating the quantity of particle emissions relative to the quantity of chips produced during a machining operation. In this study, a model for predicting the particle emission (dust unit) during orthogonal turning is proposed. This model, which is based on the energy approach combined with the microfriction and the plastic deformation of the material, takes into account the tool geometry, the properties of the worked material, the cutting conditions, and the chip segmentation. The model is validated using experimental results obtained during the orthogonal turning of 6061-T6 aluminum alloy, AISI 1018, AISI 4140 steels, and grey cast iron. A good agreement was found with experimental results. This model can help in designing strategies for reducing particle emission during machining processes, at the source.

  3. Regional Atmospheric Transport Code for Hanford Emission Tracking (RATCHET)

    International Nuclear Information System (INIS)

    Ramsdell, J.V. Jr.; Simonen, C.A.; Burk, K.W.

    1994-02-01

    The purpose of the Hanford Environmental Dose Reconstruction (HEDR) Project is to estimate radiation doses that individuals may have received from operations at the Hanford Site since 1944. This report deals specifically with the atmospheric transport model, Regional Atmospheric Transport Code for Hanford Emission Tracking (RATCHET). RATCHET is a major rework of the MESOILT2 model used in the first phase of the HEDR Project; only the bookkeeping framework escaped major changes. Changes to the code include (1) significant changes in the representation of atmospheric processes and (2) incorporation of Monte Carlo methods for representing uncertainty in input data, model parameters, and coefficients. To a large extent, the revisions to the model are based on recommendations of a peer working group that met in March 1991. Technical bases for other portions of the atmospheric transport model are addressed in two other documents. This report has three major sections: a description of the model, a user's guide, and a programmer's guide. These sections discuss RATCHET from three different perspectives. The first provides a technical description of the code with emphasis on details such as the representation of the model domain, the data required by the model, and the equations used to make the model calculations. The technical description is followed by a user's guide to the model with emphasis on running the code. The user's guide contains information about the model input and output. The third section is a programmer's guide to the code. It discusses the hardware and software required to run the code. The programmer's guide also discusses program structure and each of the program elements

  4. Quantitative comparison of two particle tracking methods in fluorescence microscopy images

    CSIR Research Space (South Africa)

    Mabaso, M

    2013-09-01

    Full Text Available that cannot be analysed efficiently by means of manual analysis. In this study we compare the performance of two computer-based tracking methods for tracking of bright particles in fluorescence microscopy image sequences. The methods under comparison are...

  5. A parallel algorithm for 3D particle tracking and Lagrangian trajectory reconstruction

    International Nuclear Information System (INIS)

    Barker, Douglas; Zhang, Yuanhui; Lifflander, Jonathan; Arya, Anshu

    2012-01-01

    Particle-tracking methods are widely used in fluid mechanics and multi-target tracking research because of their unique ability to reconstruct long trajectories with high spatial and temporal resolution. Researchers have recently demonstrated 3D tracking of several objects in real time, but as the number of objects is increased, real-time tracking becomes impossible due to data transfer and processing bottlenecks. This problem may be solved by using parallel processing. In this paper, a parallel-processing framework has been developed based on frame decomposition and is programmed using the asynchronous object-oriented Charm++ paradigm. This framework can be a key step in achieving a scalable Lagrangian measurement system for particle-tracking velocimetry and may lead to real-time measurement capabilities. The parallel tracking algorithm was evaluated with three data sets including the particle image velocimetry standard 3D images data set #352, a uniform data set for optimal parallel performance and a computational-fluid-dynamics-generated non-uniform data set to test trajectory reconstruction accuracy, consistency with the sequential version and scalability to more than 500 processors. The algorithm showed strong scaling up to 512 processors and no inherent limits of scalability were seen. Ultimately, up to a 200-fold speedup is observed compared to the serial algorithm when 256 processors were used. The parallel algorithm is adaptable and could be easily modified to use any sequential tracking algorithm, which inputs frames of 3D particle location data and outputs particle trajectories

  6. A ''quick DYECET'' method for ECE particle tracks in polymer detectors

    International Nuclear Information System (INIS)

    Sohrabi, M.; Mahdi, S.

    1993-01-01

    The new dyed electrochemically etched track (DEYCET) method recently developed at the National Radiation Protection Department (NRPD) of the Atomic Energy Organization of Iran (AEOI) using sensitization and dyeing steps is a useful and powerful method for dyeing charged particle and neutron-induced-recoil tracks in polymer detectors. This original DYECET method is effective but time consuming due to the steps for sensitization and dyeing which usually takes several hours. A ''Quick DYECET'' method, also recently developed in our laboratory, is introduced in this paper which dyes ECE tracks effectively in different colours within a few minutes. This new method can dye ECE tracks, cracks, fractures and fractals with different water and/or alcohol soluble dyes using cold or hot dyebaths. The method provides a high contrast and a high resolution of ECE tracks for visual track counting especially at high track densities. Some preliminary results are reported and discussed. (author)

  7. Video tracking and post-mortem analysis of dust particles from all tungsten ASDEX Upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Endstrasser, N., E-mail: Nikolaus.Endstrasser@ipp.mpg.de [Max-Planck-Insitut fuer Plasmaphysik, EURATOM Association, Boltzmannstrasse 2, D-85748 Garching (Germany); Brochard, F. [Institut Jean Lamour, Nancy-Universite, Bvd. des Aiguillettes, F-54506 Vandoeuvre (France); Rohde, V., E-mail: Volker.Rohde@ipp.mpg.de [Max-Planck-Insitut fuer Plasmaphysik, EURATOM Association, Boltzmannstrasse 2, D-85748 Garching (Germany); Balden, M. [Max-Planck-Insitut fuer Plasmaphysik, EURATOM Association, Boltzmannstrasse 2, D-85748 Garching (Germany); Lunt, T.; Bardin, S.; Briancon, J.-L. [Institut Jean Lamour, Nancy-Universite, Bvd. des Aiguillettes, F-54506 Vandoeuvre (France); Neu, R. [Max-Planck-Insitut fuer Plasmaphysik, EURATOM Association, Boltzmannstrasse 2, D-85748 Garching (Germany)

    2011-08-01

    2D dust particle trajectories are extracted from fast framing camera videos of ASDEX Upgrade (AUG) by a new time- and resource-efficient code and classified into stationary hot spots, single-frame events and real dust particle fly-bys. Using hybrid global and local intensity thresholding and linear trajectory extrapolation individual particles could be tracked up to 80 ms. Even under challenging conditions such as high particle density and strong vacuum vessel illumination all particles detected for more than 50 frames are tracked correctly. During campaign 2009 dust has been trapped on five silicon wafer dust collectors strategically positioned within the vacuum vessel of the full tungsten AUG. Characterisation of the outer morphology and determination of the elemental composition of 5 x 10{sup 4} particles were performed via automated SEM-EDX analysis. A dust classification scheme based on these parameters was defined with the goal to link the particles to their most probable production sites.

  8. Using Gaussian Process Annealing Particle Filter for 3D Human Tracking

    Directory of Open Access Journals (Sweden)

    Michael Rudzsky

    2008-01-01

    Full Text Available We present an approach for human body parts tracking in 3D with prelearned motion models using multiple cameras. Gaussian process annealing particle filter is proposed for tracking in order to reduce the dimensionality of the problem and to increase the tracker's stability and robustness. Comparing with a regular annealed particle filter-based tracker, we show that our algorithm can track better for low frame rate videos. We also show that our algorithm is capable of recovering after a temporal target loss.

  9. Acoustic emission during the compaction of brittle UO2 particles

    International Nuclear Information System (INIS)

    Hegron, Lise

    2014-01-01

    One of the options considered for recycling minor actinides is to incorporate about 10% to UO 2 matrix. The presence of open pores interconnected within this fuel should allow the evacuation of helium and fission gases to prevent swelling of the pellet and ultimately its interaction with the fuel clad surrounding it. Implementation of minor actinides requires working in shielded cell, reducing their retention and outlawing additions of organic products. The use of fragmentable particles of several hundred micrometers seems a good solution to control the microstructure of the green compacts and thus control the open porosity after sintering. The goal of this study is to monitor the compaction of brittle UO 2 particles by acoustic emission and to link the particle characteristics to the open porosity obtained after the compact sintering. The signals acquired during tensile strength tests on individual granules and compacts show that the acoustic emission allows the detection of the mechanism of fragmentation and enables identification of a characteristic waveform of this fragmentation. The influences of compaction stress, of the initial particle size distribution and of the internal cohesion of the granules, on the mechanical strength of the compact and on the microstructure and open porosity of the sintered pellets, are analyzed. By its ability to identify the range of fragmentation of the granules during compaction, acoustic emission appears as a promising technique for monitoring the compaction of brittle particles in the manufacture of a controlled porosity fuel. (author) [fr

  10. Learning based particle filtering object tracking for visible-light systems.

    Science.gov (United States)

    Sun, Wei

    2015-10-01

    We propose a novel object tracking framework based on online learning scheme that can work robustly in challenging scenarios. Firstly, a learning-based particle filter is proposed with color and edge-based features. We train a. support vector machine (SVM) classifier with object and background information and map the outputs into probabilities, then the weight of particles in a particle filter can be calculated by the probabilistic outputs to estimate the state of the object. Secondly, the tracking loop starts with Lucas-Kanade (LK) affine template matching and follows by learning-based particle filter tracking. Lucas-Kanade method estimates errors and updates object template in the positive samples dataset, and learning-based particle filter tracker will start if the LK tracker loses the object. Finally, SVM classifier evaluates every tracked appearance to update the training set or restart the tracking loop if necessary. Experimental results show that our method is robust to challenging light, scale and pose changing, and test on eButton image sequence also achieves satisfactory tracking performance.

  11. Fluorescent detection of single tracks of alpha particles using lithium fluoride crystals

    International Nuclear Information System (INIS)

    Bilski, P.; Marczewska, B.

    2017-01-01

    Lithium fluoride single crystals were successfully used for fluorescent imaging of single tracks of alpha particles. This was realized with a standard wide-field fluorescent microscope equipped with a 100× objective. Alpha particles create F_2 and F_3"+ color centers in LiF crystals. The subsequent illumination with the blue light (wavelength around 445 nm), excites these centers and produces fluorescence with a broad band peaked at 670 nm. The observed tracks of alpha particles have diameter of about 500 nm. Focusing of the microscope at different depths in a LiF crystal, enables imaging changes of shape and position of tracks, allowing for visualization of their paths. These encouraging results are the first step towards practical application of LiF as fluorescent nuclear track detectors.

  12. Nuclear track detectors for charged particles and neutrons

    International Nuclear Information System (INIS)

    Tommasino, L.

    2006-01-01

    It was with great emotion that I accepted to be a guest speaker to this memorial section dedicated to my old-time friend, Prof. Radomir Ilic. In addition to being one of the most outstanding scientists in the field of nuclear tracks, Prof. Radomir Ilic has been always highly acclaimed by the scientific community for his enthusiasm, his warm friendship, and his great vitality. Through his successful editorial activities, Prof. Ilic has proved to be very able to address the field of nuclear tracks to very wide audiences with special regards to young students. It was here in Portoroz, that Prof. Radomir Ilic was our host as the organiser of the 21st International Conference on Nuclear Tracks in Solids. All the participants have great memories of this very successful international conference. For all these reasons, the 2006 edition of the International Conference on Nuclear Energy for new Europe, with its wide audience and its venue at Portoroz, can be considered as one of the most appropriate forum for the memorial lecture of Prof. Radomir Ilic. The present paper will be dealing with the solid state nuclear track detectors-SSNTDs and their successful applications for the measurements of cosmic-ray-neutrons and terrestrial radioactivity, namely radon. (author)

  13. Visible light photon counters (VLPCs) for high rate tracking medical imaging and particle astrophysics

    International Nuclear Information System (INIS)

    Atac, M.

    1998-02-01

    This paper is on the operation principles of the Visible Light Photon Counters (VLPCs), application to high luminosity-high multiplicity tracking for High Energy Charged Particle Physics, and application to Medical Imaging and Particle Astrophysics. The VLPCs as Solid State Photomultipliers (SSPMS) with high quantum efficiency can detect down to single photons very efficiently with excellent time resolution and high avalanche gains

  14. Measurement and three dimensional reconstruction of particle tracks in emulsion chambers

    International Nuclear Information System (INIS)

    Persson, S.

    1989-01-01

    A software package for making fast and accurate measurements of particle tracks in emulsion chambers is described. In a chamber, which is designed for high particle multiplicities, the emulsion layers are interspersed with air and placed perpendicular to the beam direction during exposure. (orig.)

  15. Induced fission track distribution from highly radioactive particles in fallout materials

    International Nuclear Information System (INIS)

    Hashimoto, Tetsuo; Okada, Tatemichi

    1987-01-01

    Some highly radioactive fallout particles (GPs) from the 19th Chinese nuclear detonation were followed to the neutron irradiation in a reactor after sandwiched with mica detectors. The interesting star-like fission track patterns were revealed on the etched surface of the mica detectors. The simple chemical separation procedure for the GPs was applied for the separation of U and Pu as fissile elements and the both resultant fractions were examined with the similar high sensitive fission tracking detection. Subsequently, a representative track pattern from a black spherical particle was subjected to the determination of fissile nuclide content; comparing the total fission events evaluated on the basis of the numerical calculation of track densities with the total thermal neutron fluence. The results implied that the uranium is responsible for the main fissile nuclide remaining within a particle as unfissioned fractions and should be certainly enriched with respect to U-235 within such small fallout particles. This sophisticated method was also applied to determine the dead GPs, which have been highly radioactive particles just after the detonations, in the rain and snow-residual materials. Many induced star-like fission tracks verified certainly that there remains a lot of dead particles in the atmosheric environment till nowadays. (author)

  16. Impact of electron irradiation on particle track etching response in ...

    Indian Academy of Sciences (India)

    energy by an ionizing particle traversing a material medium. When the ... Their amorphous nature and radiation sensitivity further ... The samples were washed thoroughly in lukewarm soap solution to avoid non-uniformity in etching due to ...

  17. Particle Track Visualization using the MCNP Visual Editor

    International Nuclear Information System (INIS)

    Schwarz, Randolph A.; Carter, Lee; Brown, Wendi A.

    2001-01-01

    The Monte Carlo N-Particle (MCNP) visual editor1,2,3 is used throughout the world for displaying and creating complex MCNP geometries. The visual editor combines the Los Alamos MCNP Fortran code with a C front end to provide a visual interface. A big advantage of this approach is that the particle transport routines for MCNP are available to the visual front end. The latest release of the visual editor by Pacific Northwest National Laboratory enables the user to plot transport data points on top of a two-dimensional geometry plot. The user can plot source points, collisions points, surface crossings, and tally contributions. This capability can be used to show where particle collisions are occurring, verify the effectiveness of the particle biasing, or show which collisions contribute to a tally. For a KCODE (criticality source) calculation, the visual editor can be used to plot the source points for specific cycles

  18. Tracking and Particle Identification at LHCb and Strange Hadron Production in Events with Z Boson

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00392146; Serra, N.; Mueller, K; Steinkamp, O

    The Lhcb experiment, located at the Large Hadron Collider at CERN, is a high energy particle physics experiment dedicated to precision measurements of events containing beauty and charm quarks. The detector is built as a single-arm forward spectrometer. It uses tracking stations upstream and downstream of its dipole magnet to measure the trajectories and momenta of charged particles. This thesis describes the improvements to the track reconstruction algorithm, which were implemented for the second run of the LHC that started in spring 2015. Furthermore, the method to confirm the performance numbers on data is presented. In addition to the tracking system, the detector uses two Ring Imaging Cherenkov detectors, upstream and downstream of the dipole magnet, together with the calorimeter and muon system, for particle identification. The detector response for the particle identification is known to be poorly modelled, since the dependence on environmental variables like temperature and pressure inside the gas mo...

  19. A hand tracking algorithm with particle filter and improved GVF snake model

    Science.gov (United States)

    Sun, Yi-qi; Wu, Ai-guo; Dong, Na; Shao, Yi-zhe

    2017-07-01

    To solve the problem that the accurate information of hand cannot be obtained by particle filter, a hand tracking algorithm based on particle filter combined with skin-color adaptive gradient vector flow (GVF) snake model is proposed. Adaptive GVF and skin color adaptive external guidance force are introduced to the traditional GVF snake model, guiding the curve to quickly converge to the deep concave region of hand contour and obtaining the complex hand contour accurately. This algorithm realizes a real-time correction of the particle filter parameters, avoiding the particle drift phenomenon. Experimental results show that the proposed algorithm can reduce the root mean square error of the hand tracking by 53%, and improve the accuracy of hand tracking in the case of complex and moving background, even with a large range of occlusion.

  20. Lagrangian Particle Tracking Simulation for Warm-Rain Processes in Quasi-One-Dimensional Domain

    Science.gov (United States)

    Kunishima, Y.; Onishi, R.

    2017-12-01

    Conventional cloud simulations are based on the Euler method and compute each microphysics process in a stochastic way assuming infinite numbers of particles within each numerical grid. They therefore cannot provide the Lagrangian statistics of individual particles in cloud microphysics (i.e., aerosol particles, cloud particles, and rain drops) nor discuss the statistical fluctuations due to finite number of particles. We here simulate the entire precipitation process of warm-rain, with tracking individual particles. We use the Lagrangian Cloud Simulator (LCS), which is based on the Euler-Lagrangian framework. In that framework, flow motion and scalar transportation are computed with the Euler method, and particle motion with the Lagrangian one. The LCS tracks particle motions and collision events individually with considering the hydrodynamic interaction between approaching particles with a superposition method, that is, it can directly represent the collisional growth of cloud particles. It is essential for trustworthy collision detection to take account of the hydrodynamic interaction. In this study, we newly developed a stochastic model based on the Twomey cloud condensation nuclei (CCN) activation for the Lagrangian tracking simulation and integrated it into the LCS. Coupling with the Euler computation for water vapour and temperature fields, the initiation and condensational growth of water droplets were computed in the Lagrangian way. We applied the integrated LCS for a kinematic simulation of warm-rain processes in a vertically-elongated domain of, at largest, 0.03×0.03×3000 (m3) with horizontal periodicity. Aerosol particles with a realistic number density, 5×107 (m3), were evenly distributed over the domain at the initial state. Prescribed updraft at the early stage initiated development of a precipitating cloud. We have confirmed that the obtained bulk statistics fairly agree with those from a conventional spectral-bin scheme for a vertical column

  1. Dirac Particles Emission from An Elliptical Black Hole

    Directory of Open Access Journals (Sweden)

    Yuant Tiandho

    2017-03-01

    Full Text Available According to the general theory of relativiy, a black hole is defined as a region of spacetime with super-strong gravitational effects and there is nothing can escape from it. So in the classical theory of relativity, it is safe to say that black hole is a "dead" thermodynamical object. However, by using quantum mechanics theory, Hawking has shown that a black hole may emit particles. In this paper, calculation of temperature of an elliptical black hole when emitting the Dirac particles was presented. By using the complexpath method, radiation can be described as emission process in the tunneling pictures. According to relationship between probability of outgoing particle with the spectrum of black body radiation for fermion particles, temperature of the elliptical black hole can be obtained and it depend on the azimuthal angle. This result also showed that condition on the surface of elliptical black hole is not in thermal equilibrium.

  2. Particle Morphology From Wood-Burning Cook Stoves Emissions

    Science.gov (United States)

    Peralta, O.; Carabali, G.; Castro, T.; Torres, R.; Ruiz, L. G.; Molina, L. T.; Saavedra, I.

    2013-12-01

    Emissions from three wood-burning cook stoves were sampled to collect particles. Transmission electron microscope (TEM) copper grids were placed on the last two stages of an 8-stage MOUDI cascade impactor (d50= 0.32, and 0.18 μm). Samples were obtained on two heating stages of cooking, the first is a quick heating process to boil 1 liter of water, and the second is to keep the water at 90 C. Absorption coefficient, scattering coefficients, and particles concentration (0.01 - 2.5 μm aerodynamic diameter) were measured simultaneously using an absorption photometer (operated at 550 nm), a portable integrating nephelometer (at 530 nm), and a condensation particle counter connected to a chamber to dilute the wood stoves emissions. Transmission electron micrographic images of soot particles were acquired at different magnifications using a High Resolution Transmission Electron Microscope (HRTEM) JEOL HRTEM 4000EX operating at 200 kV, equipped with a GATAN digital micrograph system for image acquisition. The morphology of soot particles was analyzed calculating the border-based fractal dimension (Df). Particles sampled on the first heating stage exhibit complex shapes with high values of Df, which are present as aggregates formed by carbon ceno-spheres. The presence of high numbers of carbon ceno-spheres can be attributed to pyrolysis, thermal degradation, and others processes prior to combustion. Energy dispersive X-ray spectroscopy (EDS) was used to determine the elemental composition of particles. EDS analysis in particles with d50= 0.18 μm showed a higher content of carbonaceous material and relevant amounts of Si, S and K.

  3. Iron solubility related to particle sulfur content in source emission and ambient fine particles.

    Science.gov (United States)

    Oakes, M; Ingall, E D; Lai, B; Shafer, M M; Hays, M D; Liu, Z G; Russell, A G; Weber, R J

    2012-06-19

    The chemical factors influencing iron solubility (soluble iron/total iron) were investigated in source emission (e.g., biomass burning, coal fly ash, mineral dust, and mobile exhaust) and ambient (Atlanta, GA) fine particles (PM2.5). Chemical properties (speciation and mixing state) of iron-containing particles were characterized using X-ray absorption near edge structure (XANES) spectroscopy and micro-X-ray fluorescence measurements. Bulk iron solubility (soluble iron/total iron) of the samples was quantified by leaching experiments. Major differences were observed in iron solubility in source emission samples, ranging from low solubility (iron solubility did not correspond to silicon content or Fe(II) content. However, source emission and ambient samples with high iron solubility corresponded to the sulfur content observed in single particles. A similar correspondence between bulk iron solubility and bulk sulfate content in a series of Atlanta PM2.5 fine particle samples (N = 358) further supported this trend. In addition, results of linear combination fitting experiments show the presence of iron sulfates in several high iron solubility source emission and ambient PM2.5 samples. These results suggest that the sulfate content (related to the presence of iron sulfates and/or acid-processing mechanisms by H(2)SO(4)) of iron-containing particles is an important proxy for iron solubility.

  4. Autonomous sensor particle for parameter tracking in large vessels

    International Nuclear Information System (INIS)

    Thiele, Sebastian; Da Silva, Marco Jose; Hampel, Uwe

    2010-01-01

    A self-powered and neutrally buoyant sensor particle has been developed for the long-term measurement of spatially distributed process parameters in the chemically harsh environments of large vessels. One intended application is the measurement of flow parameters in stirred fermentation biogas reactors. The prototype sensor particle is a robust and neutrally buoyant capsule, which allows free movement with the flow. It contains measurement devices that log the temperature, absolute pressure (immersion depth) and 3D-acceleration data. A careful calibration including an uncertainty analysis has been performed. Furthermore, autonomous operation of the developed prototype was successfully proven in a flow experiment in a stirred reactor model. It showed that the sensor particle is feasible for future application in fermentation reactors and other industrial processes

  5. Orbital single particle tracking on a commercial confocal microscope using piezoelectric stage feedback

    International Nuclear Information System (INIS)

    Lanzanò, L; Gratton, E

    2014-01-01

    Single Particle Tracking (SPT) is a technique used to locate fluorescent particles with nanometer precision. In the orbital tracking method the position of a particle is obtained analyzing the distribution of intensity along a circular orbit scanned around the particle. In combination with an active feedback this method allows tracking of particles in 2D and 3D with millisecond temporal resolution. Here we describe a SPT setup based on a feedback approach implemented with minimal modification of a commercially available confocal laser scanning microscope, the Zeiss LSM 510, in combination with an external piezoelectric stage scanner. The commercial microscope offers the advantage of a user-friendly software interface and pre-calibrated hardware components. The use of an external piezo-scanner allows the addition of feedback into the system but also represents a limitation in terms of its mechanical response. We describe in detail this implementation of the orbital tracking method and discuss advantages and limitations. As an example of application to live cell experiments we perform the 3D tracking of acidic vesicles in live polarized epithelial cells. (paper)

  6. Local characterization of hindered Brownian motion by using digital video microscopy and 3D particle tracking

    Energy Technology Data Exchange (ETDEWEB)

    Dettmer, Simon L.; Keyser, Ulrich F.; Pagliara, Stefano [Cavendish Laboratory, University of Cambridge, 19 J J Thomson Avenue, Cambridge CB3 0HE (United Kingdom)

    2014-02-15

    In this article we present methods for measuring hindered Brownian motion in the confinement of complex 3D geometries using digital video microscopy. Here we discuss essential features of automated 3D particle tracking as well as diffusion data analysis. By introducing local mean squared displacement-vs-time curves, we are able to simultaneously measure the spatial dependence of diffusion coefficients, tracking accuracies and drift velocities. Such local measurements allow a more detailed and appropriate description of strongly heterogeneous systems as opposed to global measurements. Finite size effects of the tracking region on measuring mean squared displacements are also discussed. The use of these methods was crucial for the measurement of the diffusive behavior of spherical polystyrene particles (505 nm diameter) in a microfluidic chip. The particles explored an array of parallel channels with different cross sections as well as the bulk reservoirs. For this experiment we present the measurement of local tracking accuracies in all three axial directions as well as the diffusivity parallel to the channel axis while we observed no significant flow but purely Brownian motion. Finally, the presented algorithm is suitable also for tracking of fluorescently labeled particles and particles driven by an external force, e.g., electrokinetic or dielectrophoretic forces.

  7. Size-resolved particle emission factors for individual ships

    Science.gov (United States)

    Jonsson, Åsa M.; Westerlund, Jonathan; Hallquist, Mattias

    2011-07-01

    In these experiments size-resolved emission factors for particle number (EFPN) and mass (EFPM) have been determined for 734 individual ship passages for real-world dilution. The method used is an extractive sampling method of the passing ship plumes where particle number/mass and CO2 were measured with high time resolution (1 Hz). The measurements were conducted on a small island located in the entrance to the port of Gothenburg (N57.6849, E11.838), the largest harbor in Scandinavia. This is an emission control area (ECA) and in close vicinity to populated areas. The average EFPN and EFPM were 2.55 ± 0.11 × 1016 (kg fuel)-1 and 2050 ± 110 mg (kg fuel)-1, respectively. The determined EF for ships with multiple passages showed a great reproducibility. Size-resolved EFPN were peaking at small particle sizes ˜35 nm. Smaller particle sizes and hence less mass were observed by a gas turbine equipped ship compared to diesel engine equipped ships. On average 36 to 46% of the emitted particles by number were non-volatile and 24% by mass (EFPN 1.16 ± 0.19 × 1016 [kg fuel]-1 and EFPM 488 ± 73 mg [kg fuel]-1, respectively). This study shows a great potential to gain large data-sets regarding ship emission determining parameters that can improve current dispersion modeling for health assessments on local and regional scales. The global contributions of total and non-volatile particle mass from shipping using this extensive data-set from an ECA were estimated to be at least 0.80 Tgy-1 and 0.19 Tgy-1.

  8. The pick-up mechanism in composite particle emission processes

    International Nuclear Information System (INIS)

    Zhang Jingshang; Yan Shiwei; Wang Cuilan

    1992-01-01

    The pick-up mechanism has been included in the exciton model for the light composite particle emissions. Based on the cluster phase space integration method the formation probabilities of α,d,t, 3 He are obtained. The calculation results of (n,t) cross sections indicate that this theoretical method can reproduce the experimental data nicely. For triton emissions in pre-equilibrium reaction processes, the semi-direct reactions are the dominant terms which are just omitted in the previous model calculation

  9. Particle tracking during Ostwald ripening using time-resolved laboratory X-ray microtomography

    Energy Technology Data Exchange (ETDEWEB)

    Werz, T., E-mail: thomas.werz@uni-ulm.de [Ulm University, Institute of Micro and Nanomaterials, Albert-Einstein-Allee 47, 89081 (Germany); Baumann, M. [Ulm University, Institute of Micro and Nanomaterials, Albert-Einstein-Allee 47, 89081 (Germany); Wolfram, U. [Ulm University, Institute of Orthopaedic Research and Biomechanics, Helmholtzstrasse 14, 89081 (Germany); Krill, C.E. [Ulm University, Institute of Micro and Nanomaterials, Albert-Einstein-Allee 47, 89081 (Germany)

    2014-04-01

    Laboratory X-ray microtomography is investigated as a method for obtaining time-resolved images of microstructural coarsening of the semisolid state of Al–5 wt.% Cu samples during Ostwald ripening. Owing to the 3D imaging capability of tomography, this technique uniquely provides access to the growth rates of individual particles, thereby not only allowing a statistical characterization of coarsening—as has long been possible by conventional metallography—but also enabling quantification of the influence of local environment on particle boundary migration. The latter information is crucial to understanding growth kinetics during Ostwald ripening at high volume fractions of the coarsening phase. Automated image processing and segmentation routines were developed to close gaps in the network of particle boundaries and to track individual particles from one annealing step to the next. The particle tracking success rate places an upper bound of only a few percent on the likelihood of segmentation errors for any given particle. The accuracy of particle size trajectories extracted from the time-resolved tomographic reconstructions is correspondingly high. Statistically averaged coarsening data and individual particle growth rates are in excellent agreement with the results of prior experimental studies and with computer simulations of Ostwald ripening. - Highlights: • Ostwald ripening in Al–5 wt.% Cu measured by laboratory X-ray microtomography • Time-resolved measurement of individual particle growth • Automated segmentation routines developed to close gaps in particle boundary network • Particle growth/shrinkage rates deviate from LSW model prediction.

  10. Improvement in the independence of relaxation method-based particle tracking velocimetry

    International Nuclear Information System (INIS)

    Jia, P; Wang, Y; Zhang, Y

    2013-01-01

    New techniques are developed to improve the independence of relaxation method-based particle tracking velocimetry (RM-PTV). Firstly, Delaunay tessellation (DT) is employed to form clusters of neighboring particles with similar motion in the same frame; and then a bidirectional calculation concept is adopted to improve the way of particle pairing. These new techniques are tested with both self-defined particle images and the particle image velocimetry standard synthetic particle images. The results indicate that the DT method performs well and efficiently in determining the particle clusters, and the particle pairing process is well optimized by the bidirectional calculation concept. With these methods, three computation parameters are eliminated, which makes RM-PTV more autonomous in applications. (paper)

  11. Description of light charged particle emission in ternary fission

    International Nuclear Information System (INIS)

    Andreev, A. V.; Adamian, G. G.; Antonenko, N. V.; Kuklin, S. N.; Scheid, W.

    2010-01-01

    We consider the motion of three fragments starting from the scission point of ternary system. In the alpha-accompanied ternary fission the initial conditions are not the free parameters and determined by minimization of potential energy at scission point. In the trajectory calculations the angular distribution and mean value of the kinetic energy of the alpha-particles are well described in the spontaneous ternary fission of 252 Cf. In the Be- and C-accompanied ternary fission we found that the emission of the third particle occurs from one of the heavy fragments after their separation. (authors)

  12. Alpha particle radiography and the track plastic detector CR-39

    International Nuclear Information System (INIS)

    Souza, Bismarck Amilar de.

    1991-05-01

    This work develops the radiographic technique using charged particle beams. This technique complements the X-ray conventional radiography, and presents some advantages in certain cases. The material used as nuclear plastic detector was CR-39, manufactured by Pershre Mould. England, of 250 and 1000 μm nominal thicknesses. The irradiations were made with 7 MeV/Nucleon alpha particles beams, accelerated in the CV-28 Cyclotron of Instituto de Engenharia Nuclear/CNEN - Rio de Janeiro. The etch conditions used were a Na OH 6,25 N solution at 70 0 C, varying the etch time, so that the best etch time was found to be six hours. The calibration curve is presented, which permits images interpretation, showed in terms of light transmittance (obtained using a micro densitometer), and in terms of energy losses suffered by alpha particles in several aluminum degradating thicknesses. This curve was checked by the use of other degradating materials: Mylar, Makrofol, and CR-39 itself. The influence of alpha particle beam FWHM widening on images quality, when it crosses several degradating materials, is also presented. Radiographs of some specimen are presented, including some images obtained varying some irradiation and etch parameters. (author). 62 refs., 22 figs., 19 tabs

  13. Uranium trace and alpha activity characterization of coal and fly ash using particle track etch technique

    International Nuclear Information System (INIS)

    Chakravarti, S.K.

    1991-01-01

    Uranium is extensively found in carbonaceous components of sedimentary rocks and is considered to be accumulated in coals during the coalification process through the geological times. Burning of coal is mainly responsible for a manifold increase in the concentration of radioactive nuclides in atmosphere precipitates. Fly ash being an incombustible residue and formed from 90% of the inorganic material in coal, escapes into the atmosphere and constitutes a potential hazard. Also its use as one of the pozzolanic materials in the products of concrete, bricks etc and filling of ground cavities is even more hazardous because of the wall radioactivity, besides emission and diffusion of radon. This paper reports a simple method called Particle Track Etch (PTE) technique, for trace determination of uranium content in coal and fly ash samples by making use of low cost and versatile plastic detectors known as Solid State Nuclear Track Detectors (SSNTDs). Total alpha activity has also been estimated using these SSNTDs. The values of uranium concentration in coal samples are found to range from 1.1 to 3.6 ppm (uniform component) and 33 to 46 ppm (non-uniform part) whereas in fly ash, it varies from 8 to 11 ppm (uniform) and 55 to 71 ppm in non-uniform range. It is also observed that the alpha activity is a function of uranium concentration for most of the natural samples of coal studied except for mixtures of fly ash samples where relationship is found to be on higher side. (author). 13 refs., 2 tabs., 1 fig

  14. Past, present and future of materials, methodology and instrumentation in particle tracks in solids

    International Nuclear Information System (INIS)

    Espinosa, G.

    1991-01-01

    In this presentation I would like to give a brief review of the development of materials, methods and instrumentation in Solid State Nuclear Track Detection, nowadays referred to by the more general term of Particle Tracks in Solids (PTS). We all are convinced of the advantages, good characteristics and qualities of this method which has served to establish a number of procedures in several areas such as Environmental and Personal Dosimetry, Radon Research, Geology, Nuclear Physics, etc. Nevertheless, we have to be conscious of its disadvantages and limitations and above all, the future developments, taking into account all aspects, ranging from track formation models to etching and reading procedures. Above all, I want to emphasize the importance of doing research in new materials with improved properties. The other important challenge refers to instrumentation development, mainly that concerned with reading systems, which is necessary if standard procedures for the measurement and evaluation of particle tracks in solids are to be established. (author)

  15. Particle and gaseous emissions from individual diesel and CNG buses

    Directory of Open Access Journals (Sweden)

    Å. M. Hallquist

    2013-05-01

    Full Text Available In this study size-resolved particle and gaseous emissions from 28 individual diesel-fuelled and 7 compressed natural gas (CNG-fuelled buses, selected from an in-use bus fleet, were characterised for real-world dilution scenarios. The method used was based on using CO2 as a tracer of exhaust gas dilution. The particles were sampled by using an extractive sampling method and analysed with high time resolution instrumentation EEPS (10 Hz and CO2 with a non-dispersive infrared gas analyser (LI-840, LI-COR Inc. 1 Hz. The gaseous constituents (CO, HC and NO were measured by using a remote sensing device (AccuScan RSD 3000, Environmental System Products Inc.. Nitrogen oxides, NOx, were estimated from NO by using default NO2/NOx ratios from the road vehicle emission model HBEFA3.1. The buses studied were diesel-fuelled Euro III–V and CNG-fuelled Enhanced Environmentally Friendly Vehicles (EEVs with different after-treatment, including selective catalytic reduction (SCR, exhaust gas recirculation (EGR and with and without diesel particulate filter (DPF. The primary driving mode applied in this study was accelerating mode. However, regarding the particle emissions also a constant speed mode was analysed. The investigated CNG buses emitted on average a higher number of particles but less mass compared to the diesel-fuelled buses. Emission factors for number of particles (EFPN were EFPN, DPF = 4.4 ± 3.5 × 1014, EFPN, no DPF = 2.1 ± 1.0 × 1015 and EFPN, CNG = 7.8 ± 5.7 ×1015 kg fuel−1. In the accelerating mode, size-resolved emission factors (EFs showed unimodal number size distributions with peak diameters of 70–90 nm and 10 nm for diesel and CNG buses, respectively. For the constant speed mode, bimodal average number size distributions were obtained for the diesel buses with peak modes of ~10 nm and ~60 nm. Emission factors for NOx expressed as NO2 equivalents for the diesel buses were on average 27 ± 7 g (kg fuel−1 and for the CNG buses 41

  16. Monte Carlo Library Least Square (MCLLS) Method for Multiple Radioactive Particle Tracking in BPR

    Science.gov (United States)

    Wang, Zhijian; Lee, Kyoung; Gardner, Robin

    2010-03-01

    In This work, a new method of radioactive particles tracking is proposed. An accurate Detector Response Functions (DRF's) was developed from MCNP5 to generate library for NaI detectors with a significant speed-up factor of 200. This just make possible for the idea of MCLLS method which is used for locating and tracking the radioactive particle in a modular Pebble Bed Reactor (PBR) by searching minimum Chi-square values. The method was tested to work pretty good in our lab condition with a six 2" X 2" NaI detectors array only. This method was introduced in both forward and inverse ways. A single radioactive particle tracking system with three collimated 2" X 2" NaI detectors is used for benchmark purpose.

  17. Emission of complex particles from highly excited nuclei

    International Nuclear Information System (INIS)

    Gadioli, E.

    1984-01-01

    A great deal of work has been made to investigated experimentally and predict theoretically the continuous spectra of composite particles produced in reactions induced by nucleons with energy ranging from a few to several ten MeV. Some recent results in the field are summarized. In particular the exciton coalescence-pickup model and the exciton knock-on model, in the case of alpha emission, are reviewed and discussed

  18. Solar Flare Track Exposure Ages in Regolith Particles: A Calibration for Transmission Electron Microscope Measurements

    Science.gov (United States)

    Berger, Eve L.; Keller, Lindsay P.

    2015-01-01

    Mineral grains in lunar and asteroidal regolith samples provide a unique record of their interaction with the space environment. Space weathering effects result from multiple processes including: exposure to the solar wind, which results in ion damage and implantation effects that are preserved in the rims of grains (typically the outermost 100 nm); cosmic ray and solar flare activity, which result in track formation; and impact processes that result in the accumulation of vapor-deposited elements, impact melts and adhering grains on particle surfaces. Determining the rate at which these effects accumulate in the grains during their space exposure is critical to studies of the surface evolution of airless bodies. Solar flare energetic particles (mainly Fe-group nuclei) have a penetration depth of a few millimeters and leave a trail of ionization damage in insulating materials that is readily observable by transmission electron microscope (TEM) imaging. The density of solar flare particle tracks is used to infer the length of time an object was at or near the regolith surface (i.e., its exposure age). Track measurements by TEM methods are routine, yet track production rate calibrations have only been determined using chemical etching techniques [e.g., 1, and references therein]. We used focused ion beam-scanning electron microscope (FIB-SEM) sample preparation techniques combined with TEM imaging to determine the track density/exposure age relations for lunar rock 64455. The 64455 sample was used earlier by [2] to determine a track production rate by chemical etching of tracks in anorthite. Here, we show that combined FIB/TEM techniques provide a more accurate determination of a track production rate and also allow us to extend the calibration to solar flare tracks in olivine.

  19. Spin resonance strength calculation through single particle tracking for RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Y. [Brookhaven National Lab. (BNL), Upton, NY (United States); Dutheil, Y. [Brookhaven National Lab. (BNL), Upton, NY (United States); Huang, H. [Brookhaven National Lab. (BNL), Upton, NY (United States); Meot, F. [Brookhaven National Lab. (BNL), Upton, NY (United States); Ranjbar, V. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-05-03

    The strengths of spin resonances for the polarized-proton operation in the Relativistic Heavy Ion Collider are currently calculated with the code DEPOL, which numerically integrates through the ring based on an analytical approximate formula. In this article, we test a new way to calculate the spin resonance strengths by performing Fourier transformation to the actual transverse magnetic fields seen by a single particle traveling through the ring. Comparison of calculated spin resonance strengths is made between this method and DEPOL.

  20. Single-particle tracking: applications to membrane dynamics.

    Science.gov (United States)

    Saxton, M J; Jacobson, K

    1997-01-01

    Measurements of trajectories of individual proteins or lipids in the plasma membrane of cells show a variety of types of motion. Brownian motion is observed, but many of the particles undergo non-Brownian motion, including directed motion, confined motion, and anomalous diffusion. The variety of motion leads to significant effects on the kinetics of reactions among membrane-bound species and requires a revision of existing views of membrane structure and dynamics.

  1. Markerless human motion tracking using hierarchical multi-swarm cooperative particle swarm optimization.

    Science.gov (United States)

    Saini, Sanjay; Zakaria, Nordin; Rambli, Dayang Rohaya Awang; Sulaiman, Suziah

    2015-01-01

    The high-dimensional search space involved in markerless full-body articulated human motion tracking from multiple-views video sequences has led to a number of solutions based on metaheuristics, the most recent form of which is Particle Swarm Optimization (PSO). However, the classical PSO suffers from premature convergence and it is trapped easily into local optima, significantly affecting the tracking accuracy. To overcome these drawbacks, we have developed a method for the problem based on Hierarchical Multi-Swarm Cooperative Particle Swarm Optimization (H-MCPSO). The tracking problem is formulated as a non-linear 34-dimensional function optimization problem where the fitness function quantifies the difference between the observed image and a projection of the model configuration. Both the silhouette and edge likelihoods are used in the fitness function. Experiments using Brown and HumanEva-II dataset demonstrated that H-MCPSO performance is better than two leading alternative approaches-Annealed Particle Filter (APF) and Hierarchical Particle Swarm Optimization (HPSO). Further, the proposed tracking method is capable of automatic initialization and self-recovery from temporary tracking failures. Comprehensive experimental results are presented to support the claims.

  2. [Size distribution of particle and polycyclic aromatic hydrocarbons in particle emissions from simulated emission sources].

    Science.gov (United States)

    Fu, Hai-Huan; Tian, Na; Shang, Hui-Bin; Zhang, Bin; Ye, Su-Fen; Chen, Xiao-Qiu; Wu, Shui-Ping

    2014-01-01

    Particles from cooking lampblack, biomass and plastics burning smoke, gasoline vehicular exhausts and gasoline generator exhausts were prepared in a resuspension test chamber and collected using a cascade MOUDI impactor. A total of 18 polycyclic aromatic hydrocarbons (PAHs) associated with particles were analyzed by GC-MS. The results showed that there were two peaks in the range of 0.44-1.0 microm and 2.5-10 microm for cooking lampblack, and only one peak in the range of 0.44-1.0 microm for straw and wood burning smoke. But there were no clear peak for plastics burning smoke. The peak for gasoline vehicular exhausts was found in the range of 2.5-10 microm due to the influence of water vapor associated with particles, while the particles from gasoline generator exhausts were mainly in the range of lampblack and gasoline vehicular exhausts. The peak in the range of 0.44-1.0 microm became more and more apparent with the increase of PAHs molecular weight. The fraction of PAH on particles less than 1.0 microm to that on the total particles increased along with PAH's molecular weight. Phenanthrene was the dominant compound for cooking lampblack and combustion smoke, while gasoline vehicular exhausts and generator exhausts were characterized with significantly high levels of naphthalene and benzo[g, h, i] perylene, respectively. The distribution of source characteristic ratios indicated that PAHs from cooking lampblack and biomass burning were close and they were different from those of vehicular exhausts and generator exhausts.

  3. Photon emission produced by particle-surface collisions

    International Nuclear Information System (INIS)

    White, C.W.; Tolk, N.H.

    1976-02-01

    Visible, ultraviolet, and infrared optical emission results from low-energy (20 eV-10 keV) particle-surface collisions. Several distinct kinds of collision induced optical radiation are discussed which provide fundamental information on particle-solid collision processes. Line radiation arises from excited states of sputtered surface constituents and backscattered beam particles. This radiation uniquely identifies the quantum state of sputtered or reflected particles, provides a method for identifying neutral atoms sputtered from the surface, and serves as the basis for a sensitive surface analysis technique. Broadband radiation from the bulk of the solid is attributed to the transfer of projectile energy to the electrons in the solid. Continuum emission observed well in front of transition metal targets is believed to arise from excited atom clusters (diatomic, triatomic, etc.) ejected from the solid in the sputtering process. Application of sputtered atom optical radiation for surface and depth profile analysis is demonstrated for the case of submonolayer quantities of chromium on silicon and aluminum implanted in SiO 2

  4. A compact solid-state detector for small angle particle tracking

    Energy Technology Data Exchange (ETDEWEB)

    Altieri, S.; Barnaba, O.; Braghieri, A. E-mail: alessandro.braghieri@pv.infn.it; Cambiaghi, M.; Lanza, A.; Locatelli, T.; Panzeri, A.; Pedroni, P.; Pinelli, T.; Jennewein, P.; Lang, M.; Preobrazhensky, I.; Annand, J.R.M.; Sadiq, F

    2000-09-21

    MIcrostrip Detector Array System (MIDAS) is a compact silicon-tracking telescope for charged particles emitted at small angles in intermediate energy photonuclear reactions. It was realized to increase the angular acceptance of the DAPHNE detector and used in an experimental program to check the Gerasimov-Drell-Hearn sum rule at the Mainz electron microtron (MAMI). MIDAS provides a trigger for charged hadrons, p/{pi}{sup {+-}} identification and particle tracking in the region 7 deg. <{theta}<16 deg.. In this paper we present the main characteristics of MIDAS and its measured performances.

  5. A compact solid-state detector for small angle particle tracking

    International Nuclear Information System (INIS)

    Altieri, S.; Barnaba, O.; Braghieri, A.; Cambiaghi, M.; Lanza, A.; Locatelli, T.; Panzeri, A.; Pedroni, P.; Pinelli, T.; Jennewein, P.; Lang, M.; Preobrazhensky, I.; Annand, J.R.M.; Sadiq, F.

    2000-01-01

    MIcrostrip Detector Array System (MIDAS) is a compact silicon-tracking telescope for charged particles emitted at small angles in intermediate energy photonuclear reactions. It was realized to increase the angular acceptance of the DAPHNE detector and used in an experimental program to check the Gerasimov-Drell-Hearn sum rule at the Mainz electron microtron (MAMI). MIDAS provides a trigger for charged hadrons, p/π ± identification and particle tracking in the region 7 deg. <θ<16 deg.. In this paper we present the main characteristics of MIDAS and its measured performances

  6. Cluster analysis of HZE particle tracks as applied to space radiobiology problems

    International Nuclear Information System (INIS)

    Batmunkh, M.; Bayarchimeg, L.; Lkhagva, O.; Belov, O.

    2013-01-01

    A cluster analysis is performed of ionizations in tracks produced by the most abundant nuclei in the charge and energy spectra of the galactic cosmic rays. The frequency distribution of clusters is estimated for cluster sizes comparable to the DNA molecule at different packaging levels. For this purpose, an improved K-mean-based algorithm is suggested. This technique allows processing particle tracks containing a large number of ionization events without setting the number of clusters as an input parameter. Using this method, the ionization distribution pattern is analyzed depending on the cluster size and particle's linear energy transfer

  7. Caustic meso-optical confocal microscope for vertical particle tracks. Proposal

    International Nuclear Information System (INIS)

    Soroko, L.M.

    1995-01-01

    The principal of the proposed caustic meso-optical microscope for vertical particle tracks in the nuclear photoemulsion is explained. The results of the experiments performed to illustrate the main features of this new meso-optical microscope are given. The proposed caustic meso-optical microscope for vertical particle tracks in the nuclear photoemulsion can be effectively used in the experimental investigation of such rare processes as ν μ - ν τ oscillations and of the Pb-Pb interactions. 2 refs., 7 figs

  8. Dark-field scanning confocal microscope for vertical particle tracks in nuclear emulsion

    International Nuclear Information System (INIS)

    Astakhov, A.Ya.; Batusov, Yu.A.; Soroko, L.M.; Tereshchenko, S.V.; Tereshchenko, V.V.

    1999-01-01

    The principle of the DArk-FIeld Scanning CONfocal (DAFISCON) microscope for selective observation of the vertical particle tracks in nuclear emulsion is described. The construction of the DAFISCON microscope, built on the basis of the 2D measurement microscope, is described. The results of the experimental testing of the DAFISCON microscope, accomplished at high density of the vertical particle tracks, are presented. The 2D plot and the 1D plot of the CCD dark-field image are given. The spatial resolution of our microscope can be increased by using the objective with higher aperture

  9. A model for particle emission from a fissioning system

    International Nuclear Information System (INIS)

    Milek, B.; Reif, R.; Revai, J.

    1987-04-01

    The differential emission probability for a neutron emitted in a binary fission process due to non-adiabatic effects in the coupling of the single particle degrees of freedom to the accelerated relative motion of the fragments is investigated wihtin a model, which represents each nucleus by a non-deformed one-term separable potential. The derivation of measurable quantities from the asymptotic solution of the time-dependent Schroedinger equation for the single particle wave function is examined. Numerical calculations were performed for parameter values, which correspond to 252 Cf(sf). The calculated energy spectra and angular distributions of the emitted particles are presented in dependence on the mass asymmetry. (author)

  10. Electrochemical etching amplification of low-let recoil particle tracks in polymers for fast neutron dosimetry

    International Nuclear Information System (INIS)

    Sohrabi, M.; Morgan, K.Z.

    1975-11-01

    An electrochemical etching method for the amplification of fast-neutron-induced recoil particle tracks in polymers was investigated. The technique gave superior results over those obtained by conventional etching methods especially when polycarbonate foils were used for recoil particle track amplification. Electrochemical etching systems capable of multi-foil processing were designed and constructed to demonstrate the feasibility of the techniques for large-scale neutron dosimetry. Electrochemical etching parameters were studied including the nature or type of the polymer foil used, foil thickness and its effect on etching time, the applied voltage and its frequency, the chemical composition, concentration, and temperature of the etchant, distance and angle between the electrodes, and the type of particles such as recoil particles including protons. Recoil particle track density, mean track diameter, and optical density as functions of the mentioned parameters were determined. Each parameter was found to have a distinct effect on the etching results in terms of the measured responses. Several new characteristics of this fast neutron dosimetry method were studied especially for personnel dosimetry using various radiation sources such as nuclear reactors, medical cyclotrons, and isotopic neutron sources. The dose range, neutron energy dependence, directional response, fading characteristics, neutron threshold energy, etc. were investigated

  11. Single-particle colloid tracking in four dimensions.

    Science.gov (United States)

    Anthony, Stephen M; Hong, Liang; Kim, Minsu; Granick, Steve

    2006-11-21

    Coating a close-packed fluorescent colloid monolayer with a nanometer-thick metal film followed by sonication in liquid produces modulated optical nanoprobes. The metal coating modulates the fluorescence as these structures rotate in suspension, enabling the use of these particles as probes to monitor both rotational and center-of-mass (translational) dynamics in complex environments. Here, we demonstrate methods to simultaneously measure two translational and two rotational degrees of freedom, with excellent agreement to theory. The capability to determine two angles of rotation opens several new avenues of future research.

  12. Radiative forcing from particle emissions by future supersonic aircraft

    Directory of Open Access Journals (Sweden)

    G. Pitari

    2008-07-01

    Full Text Available In this work we focus on the direct radiative forcing (RF of black carbon (BC and sulphuric acid particles emitted by future supersonic aircraft, as well as on the ozone RF due to changes produced by emissions of both gas species (NOx, H2O and aerosol particles capable of affecting stratospheric ozone chemistry. Heterogeneous chemical reactions on the surface of sulphuric acid stratospheric particles (SSA-SAD are the main link between ozone chemistry and supersonic aircraft emissions of sulphur precursors (SO2 and particles (H2O–H2SO4. Photochemical O3 changes are compared from four independent 3-D atmosphere-chemistry models (ACMs, using as input the perturbation of SSA-SAD calculated in the University of L'Aquila model, which includes on-line a microphysics code for aerosol formation and growth. The ACMs in this study use aircraft emission scenarios for the year 2050 developed by AIRBUS as a part of the EU project SCENIC, assessing options for fleet size, engine technology (NOx emission index, Mach number, range and cruising altitude. From our baseline modeling simulation, the impact of supersonic aircraft on sulphuric acid aerosol and BC mass burdens is 53 and 1.5 μg/m2, respectively, with a direct RF of −11.4 and 4.6 mW/m2 (net RF=−6.8 mW/m2. This paper discusses the similarities and differences amongst the participating models in terms of changes to O3 precursors due to aircraft emissions (NOx, HOx,Clx,Brx and the stratospheric ozone sensitivity to them. In the baseline case, the calculated global ozone change is −0.4 ±0.3 DU, with a net radiative forcing (IR+UV of −2.5± 2 mW/m2. The fraction of this O3-RF attributable to SSA-SAD changes is, however, highly variable among the models, depending on the NOx removal

  13. Emissions from Ethanol-Gasoline Blends: A Single Particle Perspective

    Directory of Open Access Journals (Sweden)

    Peter H. McMurry

    2011-06-01

    Full Text Available Due to its agricultural origin and function as a fuel oxygenate, ethanol is being promoted as an alternative biomass-based fuel for use in spark ignition engines, with mandates for its use at state and regional levels. While it has been established that the addition of ethanol to a fuel reduces the particulate mass concentration in the exhaust, little attention has been paid to changes in the physicochemical properties of the emitted particles. In this work, a dynamometer-mounted GM Quad-4 spark ignition engine run without aftertreatment at 1,500 RPM and 100% load was used with four different fuel blends, containing 0, 20, 40 and 85 percent ethanol in gasoline. This allowed the effects of the fuel composition to be isolated from other effects. Instrumentation employed included two Aerosol Time-of-Flight Mass Spectrometers covering different size ranges for analysis of single particle composition, an Aethalometer for black carbon, a Scanning Mobility Particle Sizer for particle size distributions, a Photoelectric Aerosol Sensor for particle-bound polycyclic aromatic hydrocarbon (PAH species and gravimetric filter measurements for particulate mass concentrations. It was found that, under the conditions investigated here, additional ethanol content in the fuel changes the particle size distribution, especially in the accumulation mode, and decreases the black carbon and total particulate mass concentrations. The molecular weight distribution of the PAHs was found to decrease with added ethanol. However, PAHs produced from higher ethanol-content fuels are associated with NO2− (m/z—46 in the single-particle mass spectra, indicating the presence of nitro-PAHs. Compounds associated with the gasoline (e.g., sulfur-containing species are diminished due to dilution as ethanol is added to the fuel relative to those associated with the lubricating oil (e.g., calcium, zinc, phosphate in the single particle spectra. These changes have potential

  14. Proposed hardware architectures of particle filter for object tracking

    Science.gov (United States)

    Abd El-Halym, Howida A.; Mahmoud, Imbaby Ismail; Habib, SED

    2012-12-01

    In this article, efficient hardware architectures for particle filter (PF) are presented. We propose three different architectures for Sequential Importance Resampling Filter (SIRF) implementation. The first architecture is a two-step sequential PF machine, where particle sampling, weight, and output calculations are carried out in parallel during the first step followed by sequential resampling in the second step. For the weight computation step, a piecewise linear function is used instead of the classical exponential function. This decreases the complexity of the architecture without degrading the results. The second architecture speeds up the resampling step via a parallel, rather than a serial, architecture. This second architecture targets a balance between hardware resources and the speed of operation. The third architecture implements the SIRF as a distributed PF composed of several processing elements and central unit. All the proposed architectures are captured using VHDL synthesized using Xilinx environment, and verified using the ModelSim simulator. Synthesis results confirmed the resource reduction and speed up advantages of our architectures.

  15. A transition radiation detector for RHIC featuring accurate tracking and dE/dx particle identification

    Energy Technology Data Exchange (ETDEWEB)

    O`Brien, E.; Lissauer, D.; McCorkle, S.; Polychronakos, V.; Takai, H. [Brookhaven National Lab., Upton, NY (United States); Chi, C.Y.; Nagamiya, S.; Sippach, W.; Toy, M.; Wang, D.; Wang, Y.F.; Wiggins, C.; Willis, W. [Columbia Univ., New York, NY (United States); Cherniatin, V.; Dolgoshein, B. [Moscow Institute of Physics and Engineering, (Russian Federation); Bennett, M.; Chikanian, A.; Kumar, S.; Mitchell, J.T.; Pope, K. [Yale Univ., New Haven, CT (United States)

    1991-12-31

    We describe the results of a test ran involving a Transition Radiation Detector that can both distinguish electrons from pions which momenta greater titan 0.7 GeV/c and simultaneously track particles passing through the detector. The particle identification is accomplished through a combination of the detection of Transition Radiation from the electron and the differences in electron and pion energy loss (dE/dx) in the detector. The dE/dx particle separation is most, efficient below 2 GeV/c while particle ID utilizing Transition Radiation effective above 1.5 GeV/c. Combined, the electron-pion separation is-better than 5 {times} 10{sup 2}. The single-wire, track-position resolution for the TRD is {approximately}230 {mu}m.

  16. A transition radiation detector which features accurate tracking and dE/dx particle identification

    International Nuclear Information System (INIS)

    O'Brien, E.; Lissauer, D.; McCorkle, S.; Polychronakos, V.; Takai, H.; Chi, C.Y.; Nagamiya, S.; Sippach, W.; Toy, M.; Wang, D.; Wang, Y.F.; Wiggins, C.; Willis, W.; Cherniatin, V.; Dolgoshein, B.; Bennett, M.; Chikanian, A.; Kumar, S.; Mitchell, J.T.; Pope, K.

    1991-01-01

    We describe the results of a test run involving a Transition Radiation Detector that can both distinguish electrons from pions with momenta greater than 0.7 GeV/c and simultaneously track particles passing through the detector. The particle identification is accomplished through a combination of the detection of Transition Radiation from the electron and the differences in electron and pion energy loss (dE/dx) in the detector. The dE/dx particle separation is most efficient below 2 GeV/c while particle ID utilizing Transition Radiation is effective above 1.5 GeV/c. Combined, the electron-pion separation is better than 5 x l0 2 . The single-wire, track-position resolution for the TRD is ∼230μm

  17. Magnetic particle tracking for nonspherical particles in a cylindrical fluidized bed

    NARCIS (Netherlands)

    Buist, K.A.; Jayaprakash, P.; Kuipers, J.A.M.; Deen, N.G.; Padding, J.T.

    2017-01-01

    In granular flow operations, often particles are nonspherical. This has inspired a vast amount of research in understanding the behavior of these particles. Various models are being developed to study the hydrodynamics involving nonspherical particles. Experiments however are often limited to obtain

  18. Explosive-emission cathode fabricated using track method

    International Nuclear Information System (INIS)

    Akap'ev, G.N.; Korenev, S.A.

    1989-01-01

    Fabrication technique for large area multipoint cathodes is described. The technique is based on channels filling with metal in the ion-irradiated dielectric film producted after channel etching. It is shown, that cathode may be used under explosive emission conditions. Characteristics of diode with the mentioned type cathodes are measured

  19. 3D head pose estimation and tracking using particle filtering and ICP algorithm

    KAUST Repository

    Ben Ghorbel, Mahdi; Baklouti, Malek; Couvet, Serge

    2010-01-01

    This paper addresses the issue of 3D head pose estimation and tracking. Existing approaches generally need huge database, training procedure, manual initialization or use face feature extraction manually extracted. We propose a framework for estimating the 3D head pose in its fine level and tracking it continuously across multiple Degrees of Freedom (DOF) based on ICP and particle filtering. We propose to approach the problem, using 3D computational techniques, by aligning a face model to the 3D dense estimation computed by a stereo vision method, and propose a particle filter algorithm to refine and track the posteriori estimate of the position of the face. This work comes with two contributions: the first concerns the alignment part where we propose an extended ICP algorithm using an anisotropic scale transformation. The second contribution concerns the tracking part. We propose the use of the particle filtering algorithm and propose to constrain the search space using ICP algorithm in the propagation step. The results show that the system is able to fit and track the head properly, and keeps accurate the results on new individuals without a manual adaptation or training. © Springer-Verlag Berlin Heidelberg 2010.

  20. [Analysis on oil fume particles in catering industry cooking emission].

    Science.gov (United States)

    Tan, De-Sheng; Kuang, Yuan-Cheng; Liu, Xin; Dai, Fei-Hong

    2012-06-01

    By measuring the particulate matter of oil fume which is over 10 microm or below 10 microm separately and using microradiography and Electrical Low Pressure Impactor (ELPI), it is found out the distributing characteristic of oil fume particles in catering industry cooking emission. The result shows that the diameter of the oil fume particles which was sedimentated in the kitchen is between 10-400 microm, the concentration peak value is between 10-100 microm. The diameter of oil fume aerosol is mostly smaller than 1 microm, while the concentration peak value is between 0.063-0.109 microm. In addition, the mass concentration peak value is between 6.560-9.990 microm. Through the analysis to the physical characteristics of oil fume from catering industry cooking emissions, the eigenvalue of the oil fume has been found and the feature matter for monitoring the oil fume has been discovered to provide a reasonable standard for controlling and monitoring the catering industry cooking emission.

  1. High throughput on-chip analysis of high-energy charged particle tracks using lensfree imaging

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Wei; Shabbir, Faizan; Gong, Chao; Gulec, Cagatay; Pigeon, Jeremy; Shaw, Jessica; Greenbaum, Alon; Tochitsky, Sergei; Joshi, Chandrashekhar [Electrical Engineering Department, University of California, Los Angeles, California 90095 (United States); Ozcan, Aydogan, E-mail: ozcan@ucla.edu [Electrical Engineering Department, University of California, Los Angeles, California 90095 (United States); Bioengineering Department, University of California, Los Angeles, California 90095 (United States); California NanoSystems Institute (CNSI), University of California, Los Angeles, California 90095 (United States)

    2015-04-13

    We demonstrate a high-throughput charged particle analysis platform, which is based on lensfree on-chip microscopy for rapid ion track analysis using allyl diglycol carbonate, i.e., CR-39 plastic polymer as the sensing medium. By adopting a wide-area opto-electronic image sensor together with a source-shifting based pixel super-resolution technique, a large CR-39 sample volume (i.e., 4 cm × 4 cm × 0.1 cm) can be imaged in less than 1 min using a compact lensfree on-chip microscope, which detects partially coherent in-line holograms of the ion tracks recorded within the CR-39 detector. After the image capture, using highly parallelized reconstruction and ion track analysis algorithms running on graphics processing units, we reconstruct and analyze the entire volume of a CR-39 detector within ∼1.5 min. This significant reduction in the entire imaging and ion track analysis time not only increases our throughput but also allows us to perform time-resolved analysis of the etching process to monitor and optimize the growth of ion tracks during etching. This computational lensfree imaging platform can provide a much higher throughput and more cost-effective alternative to traditional lens-based scanning optical microscopes for ion track analysis using CR-39 and other passive high energy particle detectors.

  2. Calibrations of CR39 and Makrofol nuclear track detectors and search for exotic particles

    CERN Document Server

    Ambrosio, M; Auriemma, G; Bakari, D; Baldini, A; Barbarino, G C; Barish, B C; Battistoni, G; Becherini, Y; Bellotti, R; Bemporad, C; Bernardini, P; Bilokon, H; Bloise, C; Bower, C; Brigida, M; Bussino, S; Cafagna, F; Calicchio, M; Campana, D; Carboni, M; Caruso, R; Cecchini, S; Cei, F; Chiarella, V; Chiarusi, T; Choudhary, B C; Coutu, S; Cozzi, M; De Cataldo, G; De Marzo, C; De Mitri, I; De Vincenzi, M; Dekhissi, H; Derkaoui, J; Di Credico, A; Erriquez, O; Favuzzi, C; Forti, C; Fusco, P; Giacomelli, G; Giannini, G; Giglietto, N; Giorgini, M; Grassi, M; Grillo, A; Guarino, F; Gustavino, C; Habig, A; Hanson, K; Heinz, R; Iarocci, E; Katsavounidis, E; Katsavounidis, I; Kearns, E; Kim, H; Kumar, A; Kyriazopoulou, S; Lamanna, E; Lane, C; Levin, D S; Lipari, P; Longley, N P; Longo, M J; Loparco, F; Maaroufi, F; Mancarella, G; Mandrioli, G; Manzoor, S; Margiotta, A; Marini, A; Martello, D; Marzari-Chiesa, A; Matteuzzi, D; Mazziotta, M N; Michael, D G; Monacelli, P; Montaruli, T; Monteno, M; Mufson, S; Musser, J; Nicolò, D; Nolty, R; Orth, C; Osteria, G; Palamara, O; Patera, V; Patrizii, L; Pazzi, R; Peck, C W; Perrone, L; Petrera, S; Pistilli, P; Popa, V; Rainó, A; Reynoldson, J; Ronga, F; Rrhioua, A; Satriano, C; Scapparone, E; Scholberg, K; Sciubba, A; Serra, P; Sioli, M; Sirri, G; Sitta, M; Spinelli, P; Spinetti, M; Spurio, M; Steinberg, R; Stone, J L; Sulak, L R; Surdo, A; Tarle, G; Togo, V; Vakili, M; Walter, C W; Webb, R; 10.1016/S0920-5632(03)02249-7

    2003-01-01

    We present the final results of the search for exotic massive particles in the cosmic radiation performed with the MACRO underground experiment. Magnetic monopoles and nuclearites flux upper limits obtained with the CR39 nuclear track subdetector, the scintillation and streamer tube subdetectors are given. Searches at high altitude with the SLIM experiment are in progress.

  3. Multiple Maneuvering Target Tracking by Improved Particle Filter Based on Multiscan JPDA

    Directory of Open Access Journals (Sweden)

    Jing Liu

    2012-01-01

    Full Text Available The multiple maneuvering target tracking algorithm based on a particle filter is addressed. The equivalent-noise approach is adopted, which uses a simple dynamic model consisting of target state and equivalent noise which accounts for the combined effects of the process noise and maneuvers. The equivalent-noise approach converts the problem of maneuvering target tracking to that of state estimation in the presence of nonstationary process noise with unknown statistics. A novel method for identifying the nonstationary process noise is proposed in the particle filter framework. Furthermore, a particle filter based multiscan Joint Probability Data Association (JPDA filter is proposed to deal with the data association problem in a multiple maneuvering target tracking. In the proposed multiscan JPDA algorithm, the distributions of interest are the marginal filtering distributions for each of the targets, and these distributions are approximated with particles. The multiscan JPDA algorithm examines the joint association events in a multiscan sliding window and calculates the marginal posterior probability based on the multiscan joint association events. The proposed algorithm is illustrated via an example involving the tracking of two highly maneuvering, at times closely spaced and crossed, targets, based on resolved measurements.

  4. Developing a particle tracking surrogate model to improve inversion of ground water - Surface water models

    Science.gov (United States)

    Cousquer, Yohann; Pryet, Alexandre; Atteia, Olivier; Ferré, Ty P. A.; Delbart, Célestine; Valois, Rémi; Dupuy, Alain

    2018-03-01

    The inverse problem of groundwater models is often ill-posed and model parameters are likely to be poorly constrained. Identifiability is improved if diverse data types are used for parameter estimation. However, some models, including detailed solute transport models, are further limited by prohibitive computation times. This often precludes the use of concentration data for parameter estimation, even if those data are available. In the case of surface water-groundwater (SW-GW) models, concentration data can provide SW-GW mixing ratios, which efficiently constrain the estimate of exchange flow, but are rarely used. We propose to reduce computational limits by simulating SW-GW exchange at a sink (well or drain) based on particle tracking under steady state flow conditions. Particle tracking is used to simulate advective transport. A comparison between the particle tracking surrogate model and an advective-dispersive model shows that dispersion can often be neglected when the mixing ratio is computed for a sink, allowing for use of the particle tracking surrogate model. The surrogate model was implemented to solve the inverse problem for a real SW-GW transport problem with heads and concentrations combined in a weighted hybrid objective function. The resulting inversion showed markedly reduced uncertainty in the transmissivity field compared to calibration on head data alone.

  5. 3D particle tracking velocimetry using dynamic discrete tomography for plasma physics applications

    DEFF Research Database (Denmark)

    Moseev, Dmitry; Alpers, Andreas; Gritzmann, Peter

    2013-01-01

    tomography algorithm is efficient for data from two projection directions and exact. The non-uniqueness can be detected and tracked individually. The algorithm performance is proportional to N3 on average where N is the number of particles in the reconstruction. There is a room for further improvement...

  6. Influence of the particle discriminator for producing the microporous nuclear track etched membrane

    International Nuclear Information System (INIS)

    Thongphud, Apaporn; Ratanatongchai, Wichian; Supaphol, Pitt; Visal-athaphand, Pinpan

    2005-10-01

    The particle discriminator was used to focus the fission fragments from nuclear fission reaction between thermal neutron from the Thai Research Reactor and U-235 in uranium screen to strike almost normally to the polycarbonate (PC) film. The latent tracks in the thin 15 mm PC film were revealed after etching in 6N NaOH solution at 70 o C for 60 min. It was found that the tracks were porous. The porosity was more discrete and the pore shape was more circular as well. The track diameter was measured 3.73 +- 0.32 mm. It was also found that using particle discriminators with increasing thickness during exposure gives fewer pores in the PC film, after chemical etching under the same condition as above

  7. Charged particle tracking through electrostatic wire meshes using the finite element method

    Energy Technology Data Exchange (ETDEWEB)

    Devlin, L. J.; Karamyshev, O.; Welsch, C. P., E-mail: carsten.welsch@cockcroft.ac.uk [The Cockcroft Institute, Daresbury Laboratory, Warrington (United Kingdom); Department of Physics, University of Liverpool, Liverpool (United Kingdom)

    2016-06-15

    Wire meshes are used across many disciplines to accelerate and focus charged particles, however, analytical solutions are non-exact and few codes exist which simulate the exact fields around a mesh with physical sizes. A tracking code based in Matlab-Simulink using field maps generated using finite element software has been developed which tracks electrons or ions through electrostatic wire meshes. The fields around such a geometry are presented as an analytical expression using several basic assumptions, however, it is apparent that computational calculations are required to obtain realistic values of electric potential and fields, particularly when multiple wire meshes are deployed. The tracking code is flexible in that any quantitatively describable particle distribution can be used for both electrons and ions as well as other benefits such as ease of export to other programs for analysis. The code is made freely available and physical examples are highlighted where this code could be beneficial for different applications.

  8. A simple method for particle tracking with coherent synchrotron radiation

    International Nuclear Information System (INIS)

    Borland, M.

    2001-01-01

    Coherent synchrotron radiation (CSR) is of great interest to those designing accelerators as drivers for free-electron lasers (FELs). Although experimental evidence is incomplete, CSR is predicted to have potentially severe effects on the emittance of high-brightness electron beams. The performance of an FEL depends critically on the emittance, current, and energy spread of the beam. Attempts to increase the current through magnetic bunch compression can lead to increased emittance and energy spread due to CSR in the dipoles of such a compressor. The code elegant [1] was used for design and simulation of the bunch compressor [2] for the Low-Energy Undulator Test Line (LEUTL) FEL [3] at the Advanced Photon Source (APS). In order to facilitate this design, a fast algorithm was developed based on the 1-D formalism of Saldin and coworkers [4]. In addition, a plausible method of including CSR effects in drift spaces following the chicane magnets was developed and implemented. The algorithm is fast enough to permit running hundreds of tolerance simulations including CSR for 50 thousand particles. This article describes the details of the implementation and shows results for the APS bunch compressor

  9. A parallel implementation of particle tracking with space charge effects on an INTEL iPSC/860

    International Nuclear Information System (INIS)

    Chang, L.; Bourianoff, G.; Cole, B.; Machida, S.

    1993-05-01

    Particle-tracking simulation is one of the scientific applications that is well-suited to parallel computations. At the Superconducting Super Collider, it has been theoretically and empirically demonstrated that particle tracking on a designed lattice can achieve very high parallel efficiency on a MIMD Intel iPSC/860 machine. The key to such success is the realization that the particles can be tracked independently without considering their interaction. The perfectly parallel nature of particle tracking is broken if the interaction effects between particles are included. The space charge introduces an electromagnetic force that will affect the motion of tracked particles in 3-D space. For accurate modeling of the beam dynamics with space charge effects, one needs to solve three-dimensional Maxwell field equations, usually by a particle-in-cell (PIC) algorithm. This will require each particle to communicate with its neighbor grids to compute the momentum changes at each time step. It is expected that the 3-D PIC method will degrade parallel efficiency of particle-tracking implementation on any parallel computer. In this paper, we describe an efficient scheme for implementing particle tracking with space charge effects on an INTEL iPSC/860 machine. Experimental results show that a parallel efficiency of 75% can be obtained

  10. Guitarist Fingertip Tracking by Integrating a Bayesian Classifier into Particle Filters

    Directory of Open Access Journals (Sweden)

    Chutisant Kerdvibulvech

    2008-01-01

    Full Text Available We propose a vision-based method for tracking guitar fingerings made by guitar players. We present it as a new framework for tracking colored finger markers by integrating a Bayesian classifier into particle filters. This adds the useful abilities of automatic track initialization and recovery from tracking failures in a dynamic background. Furthermore, by using the online adaptation of color probabilities, this method is able to cope with illumination changes. Augmented Reality Tag (ARTag is then utilized to calculate the projection matrix as an online process which allows the guitar to be moved while being played. Representative experimental results are also included. The method presented can be used to develop the application of human-computer interaction (HCI to guitar playing by recognizing the chord being played by a guitarist in virtual spaces. The aforementioned application would assist guitar learners by allowing them to automatically identify if they are using the correct chords required by the musical piece.

  11. [Emission characteristics of fine particles from grate firing boilers].

    Science.gov (United States)

    Wang, Shu-Xiao; Zhao, Xiu-Juan; Li, Xing-Hua; Wei, Wei; Hao, Ji-Ming

    2009-04-15

    Grate firing boilers are the main type of Chinese industrial boilers, which accounts for 85% of the industrial boilers and is one of the most important emission sources of primary air pollutants in China. In this study, five boilers in three cities were selected and tested to measure the emission characteristics of PM2.5, and gaseous pollutants were applied by a compact dilution sampling system, which was developed for this field study. Results showed that particles mass size distributions for the five industrial boilers presented single peak or double peak, former peaks near 0.14 microm and the later peaks after 1.0 microm; the cyclone dust remover and wet scrubber dust remover had effective removal efficiencies not only to PM2.5, but also to PM1.0; and under the condition of same control techniques, grate firing boiler with high capacity has less PM2.5 emission than the boiler with low capacity. In the PM2.5 collected from flue gases, SO4(2-) was the most abundant ion, accounted for 20%-40% of the PM2.5; and C was the most abundant element (7.5%-31.8%), followed by S (8.4%-18.7%). Carbon balance method was applied to calculate the emission factors of these pollutants. The emission factors of PM2.5, NO, and SO2 were in the range of 0.046-0.486 g x kg(-1), 1.63-2.47 g x kg(-1), 1.35-9.95 g x kg(-1) respectively. The results are useful for the emission inventory development of industrial boilers and the source analysis of PM2.5 in atmospheric environment.

  12. Development of a new approach to simulate a particle track under electrochemical etching in polymeric detectors

    International Nuclear Information System (INIS)

    Mostofizadeh, Ali; Huang, Yudong; Kardan, M. Reza; Babakhani, Asad; Sun Xiudong

    2012-01-01

    A numerical approach based on image processing was developed to simulate a particle track in a typical polymeric detector, e.g., polycarbonate, under electrochemical etching. The physical parameters such as applied voltage, detector thickness, track length, the radii of curvature at the tip of track, and the incidence angle of the particle were considered, and then the boundary condition of the problem was defined. A numerical method was developed to solve Laplace equation, and then the distribution of the applied voltage was obtained through the polymer volume. Subsequently, the electric field strengths in the detector elements were computed. In each step of the computation, an image processing technique was applied to convert the computed values to grayscale images. The results showed that a numerical solution to Laplace equation is dedicatedly an attractive approach to provide us the accurate values of electric field strength through the polymeric detector volume as well as the track area. According to the results, for a particular condition of the detector thickness equal to 445 μm, track length of 21 μm, the radii of 2.5 μm at track tip, the incidence angle of 90°, and the applied voltage of 2080 V, after computing Laplace equation for an extremely high population of 4000 × 4000 elements of detector, the average field strength at the tip of track was computed equal to 0.31 MV cm −1 which is in the range of dielectric strength for polymers. The results by our computation confirm Smythe’s model for estimating the ECE-tracks.

  13. Color Feature-Based Object Tracking through Particle Swarm Optimization with Improved Inertia Weight.

    Science.gov (United States)

    Guo, Siqiu; Zhang, Tao; Song, Yulong; Qian, Feng

    2018-04-23

    This paper presents a particle swarm tracking algorithm with improved inertia weight based on color features. The weighted color histogram is used as the target feature to reduce the contribution of target edge pixels in the target feature, which makes the algorithm insensitive to the target non-rigid deformation, scale variation, and rotation. Meanwhile, the influence of partial obstruction on the description of target features is reduced. The particle swarm optimization algorithm can complete the multi-peak search, which can cope well with the object occlusion tracking problem. This means that the target is located precisely where the similarity function appears multi-peak. When the particle swarm optimization algorithm is applied to the object tracking, the inertia weight adjustment mechanism has some limitations. This paper presents an improved method. The concept of particle maturity is introduced to improve the inertia weight adjustment mechanism, which could adjust the inertia weight in time according to the different states of each particle in each generation. Experimental results show that our algorithm achieves state-of-the-art performance in a wide range of scenarios.

  14. Greenhouse gas emission trends and projections in Europe 2011. Tracking progress towards Kyoto and 2020 targets

    Energy Technology Data Exchange (ETDEWEB)

    Busche, J.; Scheffler, M.; Graichen, V. (Umweltbundesamt, Vienna (Austria)) (and others)

    2011-10-15

    At the end of 2010, the EU-15 was on track to achieve its Kyoto target but three EU-15 Member States (Austria, Italy and Luxembourg) were not on track to meet their burden-sharing targets. These countries must therefore seriously consider further action to ensure compliance, in particular revising their plans on using flexible mechanisms. Among the EEA member countries outside the EU, Liechtenstein and Switzerland were not on track to achieve their Kyoto target at the end of 2009. All other European countries are on track to meet their targets, either based on domestic emissions only or with the assistance of Kyoto mechanisms. The economic recession had a significant impact on the EU's total greenhouse gas (GHG) emission trends but a more limited effect on progress towards Kyoto targets. This is because emissions in the sectors covered by the EU Emissions Trading Scheme (ETS), which were most affected by the crisis, do not affect Kyoto compliance once ETS caps have been set. With existing national measures, Member States do not project enough emission reductions for the EU to meet its unilateral 20 % reduction commitment in 2020. Additional measures currently planned by Member States will help further reduce emissions but will be insufficient to achieve the important emission cuts needed in the longer term. By 2020 Member States must enhance their efforts to reduce emissions in non-EU ETS sectors, such as the residential, transport or agriculture sectors, where legally binding national targets have been set under the EU's 2009 climate and energy package. (Author)

  15. Particle Acceleration, Magnetic Field Generation and Emission from Relativistic Jets

    Science.gov (United States)

    Nishikawa, K.-I.; Hardee, P.; Hededal, C.; Mizuno, Yosuke; Fishman, G. Jerry; Hartmann, D. H.

    2006-01-01

    Nonthermal radiation observed from astrophysical systems containing relativistic jets and shocks, e.g., active galactic nuclei (AGNs), gamma-ray bursts (GRBs), supernova remnants, and Galactic microquasar systems usually have power-law emission spectra. Fermi acceleration is the mechanism usually assumed for the acceleration of particles in astrophysical environments. Recent PIC simulations using injected relativistic electron-ion (electro-positron) jets show that particle acceleration occurs within the downstream jet, rather than by the scattering of particles back and forth across the shock as in Fermi acceleration. Shock acceleration' is a ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., the Buneman instability, other two-streaming instability, and the Weibel instability) created in the shocks are responsible for particle (electron, positron, and ion) acceleration. The simulation results show that the Weibel instability is responsible for generating and amplifying highly nonuniform, small-scale magnetic fields. These magnetic fields contribute to the electron's transverse deflection behind the jet head. The "jitter" radiation from deflected electrons has different spectral properties than synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation may be important to understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants. We will review recent PIC simulations of relativistic jets and try to make a connection with observations.

  16. Particle Filter-Based Target Tracking Algorithm for Magnetic Resonance-Guided Respiratory Compensation : Robustness and Accuracy Assessment

    NARCIS (Netherlands)

    Bourque, Alexandra E; Bedwani, Stéphane; Carrier, Jean-François; Ménard, Cynthia; Borman, Pim; Bos, Clemens; Raaymakers, Bas W; Mickevicius, Nikolai; Paulson, Eric; Tijssen, Rob H N

    PURPOSE: To assess overall robustness and accuracy of a modified particle filter-based tracking algorithm for magnetic resonance (MR)-guided radiation therapy treatments. METHODS AND MATERIALS: An improved particle filter-based tracking algorithm was implemented, which used a normalized

  17. A computational tool to characterize particle tracking measurements in optical tweezers

    International Nuclear Information System (INIS)

    Taylor, Michael A; Bowen, Warwick P

    2013-01-01

    Here, we present a computational tool for optical tweezers which calculates the particle tracking signal measured with a quadrant detector and the shot-noise limit to position resolution. The tool is a piece of Matlab code which functions within the freely available Optical Tweezers Toolbox. It allows the measurements performed in most optical tweezer experiments to be theoretically characterized in a fast and easy manner. The code supports particles with arbitrary size, any optical fields and any combination of objective and condenser, and performs a full vector calculation of the relevant fields. Example calculations are presented which show the tracking signals for different particles, and the shot-noise limit to position sensitivity as a function of the effective condenser NA. (paper)

  18. Efficient Evaluation of Arbitrary Static Fields For Symplectic Particle Tracking

    CERN Document Server

    Bojtar, Lajos

    2018-01-01

    This article describes a method devised for efficient evaluation of arbitrary static magnetic and electric fields in a source free region needed for long time tracking of charged particles. Field values given on the boundary of the region of interest are reproduced inside by an arrangement of hypothetical magnetic or electric monopoles surrounding the boundary surface. The vector and scalar potentials are obtained by summing the contributions of each monopole. The second step of the method improves the evaluation speed of the potentials and their derivatives by orders of magnitude. This comprises covering the region of interest by overlapping spheres, then calculating the spherical harmonic expansion of the potentials on each sphere. During tracking, field values are evaluated by calculating the solid harmonics and their derivatives inside a sphere containing the particle. Software has been developed to test and demonstrate the method on a small particle accelerator. To our knowledge, there is no other meth...

  19. An application of 222Rn alpha particle's tracks to uranium exploration

    International Nuclear Information System (INIS)

    Aguilar H, F.

    1981-01-01

    The uranium exploration method is based on the register of 222 Rn alpha particles; 222 Rn gas is generated in the chain 238 U desintegration. The detection of alpha particles was performed with cellulose nitrate films (NTC), located in a grid at the region in study. The alpha particles produce latent tracks in the NTC films; these tracks may be enlarged by chemical etching and are observed with an ordinary optic microscope, ninety seven NTC films were used, these were distributed in an area of approximately seventeen square kilometers, located in the municipalities of Granados and Huasabas in Sonora Mexico, the detectors remain in the ground for a thirty days mean period. The results obtained show an area with high 222 Rn concentration, this can be related with an underground uranium ore deposit. The more important conclusion is that the results obtained in this work can be used as preliminary results for other prospection methods in this particular area. (author)

  20. Elastic collisions of classical point particles on a finite frictionless linear track with perfectly reflecting endpoints

    Science.gov (United States)

    DeLuca, R.

    2006-03-01

    Repeated elastic collisions of point particles on a finite frictionless linear track with perfectly reflecting endpoints are considered. The problem is analysed by means of an elementary linear algebra approach. It is found that, starting with a state consisting of a projectile particle in motion at constant velocity and a target particle at rest in a fixed known position, the points at which collisions occur on track, when plotted versus progressive numerals, corresponding to the collisions themselves, show periodic patterns for a rather large choice of values of the initial position x(0) and on the mass ratio r. For certain values of these parameters, however, only regular behaviour over a large number of collisions is detected.

  1. Development of two-dimensional velocity field measurement using particle tracking velocimetry on neutron radiography

    International Nuclear Information System (INIS)

    Saito, Y.; Mishima, K.; Suzuki, T.; Matsubayashi, M.

    2003-01-01

    The structures of liquid metal two-phase flow are investigated for analyzing the core meltdown accident of fast reactor. The experiments of high-density ratio two-phase flow for lead-bismuth molten metal and nitrogen gases are conducted to understand in detail. The liquid phase velocity distributions of lead-bismuth molten metal are measured by neutron radiography using Au-Cd tracer particles. The liquid phase velocity distributions are obtained usually by using particle image velocimetry (PIV) on the neutron radiography. The PIV, however is difficult to get the velocity vector distribution quantitatively. An image of neutron radiography is divided into two images of the bubbles and the tracer particles each in particle tracking velocimetry (PTV), which distinguishes tracer contents in the bubble from them in the liquid phase. The locations of tracer particles in the liquid phase are possible to determine by particle mask correlation method, in which the bubble images are separated from the tracer images by Σ-scaling method. The particle tracking velocimetry give a full detail of the velocity vector distributions of the liquid phase in two-phase flow, in comparison with the PIV method. (M. Suetake)

  2. Seasonal characteristics of water exchange in Beibu Gulf based on a particle tracking model

    Science.gov (United States)

    Wang, L.; Pan, W.; Yan, X.

    2016-12-01

    A lagrangian particle tracking model coupled with a three-dimensional Marine Environmental Committee Ocean Model (MEC) is used to study the transport and seasonal characteristics of water exchange in Beibu Gulf. The hydrodynamic model (MEC), which is forced with the daily surface and lateral boundary fluxes, as well as tidal harmonics and monthly climatological river discharges, is applied to simulate the flow field in the gulf during 2014. Using these results, particle tracking method which includes tidal advection and random walk in the horizontal is used to determine the residence times of sub regions within the gulf in response of winter and summer wind forcing. The result shows water exchange processes in the gulf have a similar tendency with seasonal circulation structure. During the sourthwestly prevailing wind in summer, water particles are traped within the gulf that considerably increases the residence time of each sub region. On the contrary, the presence of strong northeastly prevailing wind in winter drives particles to move cyclonicly leading to shorter residence times and rather active water exchanges among sub regions. Similarly, particle tracking is applied to investigate the water transport in Beibu Gulf. As Qiongzhou Strait and the wide opening in the south of the gulf are two significant channels connecting with the open ocean, continuous particle releases are simulated to quantify the influence range and the pathways of these sources water flowing into Beibu Gulf. The results show that water particles originated from Qiongzhou Strait are moving westward due to the year-round strong westward flow transportation. Influencing range in the north of the Beibu Gulf is enlarged by winter northeastly wind, however, it is blocked to the Leizhou Peninsula coastal region by summer westly wind. In the south opening, water particles are transported northward into the gulf along Hainan Island and flushed from Vietnam coastal region to the ocean rapidly by

  3. Parallelized Kalman-Filter-Based Reconstruction of Particle Tracks on Many-Core Processors and GPUs

    Science.gov (United States)

    Cerati, Giuseppe; Elmer, Peter; Krutelyov, Slava; Lantz, Steven; Lefebvre, Matthieu; Masciovecchio, Mario; McDermott, Kevin; Riley, Daniel; Tadel, Matevž; Wittich, Peter; Würthwein, Frank; Yagil, Avi

    2017-08-01

    For over a decade now, physical and energy constraints have limited clock speed improvements in commodity microprocessors. Instead, chipmakers have been pushed into producing lower-power, multi-core processors such as Graphical Processing Units (GPU), ARM CPUs, and Intel MICs. Broad-based efforts from manufacturers and developers have been devoted to making these processors user-friendly enough to perform general computations. However, extracting performance from a larger number of cores, as well as specialized vector or SIMD units, requires special care in algorithm design and code optimization. One of the most computationally challenging problems in high-energy particle experiments is finding and fitting the charged-particle tracks during event reconstruction. This is expected to become by far the dominant problem at the High-Luminosity Large Hadron Collider (HL-LHC), for example. Today the most common track finding methods are those based on the Kalman filter. Experience with Kalman techniques on real tracking detector systems has shown that they are robust and provide high physics performance. This is why they are currently in use at the LHC, both in the trigger and offine. Previously we reported on the significant parallel speedups that resulted from our investigations to adapt Kalman filters to track fitting and track building on Intel Xeon and Xeon Phi. Here, we discuss our progresses toward the understanding of these processors and the new developments to port the Kalman filter to NVIDIA GPUs.

  4. Parallelized Kalman-Filter-Based Reconstruction of Particle Tracks on Many-Core Processors and GPUs

    Directory of Open Access Journals (Sweden)

    Cerati Giuseppe

    2017-01-01

    Full Text Available For over a decade now, physical and energy constraints have limited clock speed improvements in commodity microprocessors. Instead, chipmakers have been pushed into producing lower-power, multi-core processors such as Graphical Processing Units (GPU, ARM CPUs, and Intel MICs. Broad-based efforts from manufacturers and developers have been devoted to making these processors user-friendly enough to perform general computations. However, extracting performance from a larger number of cores, as well as specialized vector or SIMD units, requires special care in algorithm design and code optimization. One of the most computationally challenging problems in high-energy particle experiments is finding and fitting the charged-particle tracks during event reconstruction. This is expected to become by far the dominant problem at the High-Luminosity Large Hadron Collider (HL-LHC, for example. Today the most common track finding methods are those based on the Kalman filter. Experience with Kalman techniques on real tracking detector systems has shown that they are robust and provide high physics performance. This is why they are currently in use at the LHC, both in the trigger and offine. Previously we reported on the significant parallel speedups that resulted from our investigations to adapt Kalman filters to track fitting and track building on Intel Xeon and Xeon Phi. Here, we discuss our progresses toward the understanding of these processors and the new developments to port the Kalman filter to NVIDIA GPUs.

  5. Parallelized Kalman-Filter-Based Reconstruction of Particle Tracks on Many-Core Processors and GPUs

    Energy Technology Data Exchange (ETDEWEB)

    Cerati, Giuseppe [Fermilab; Elmer, Peter [Princeton U.; Krutelyov, Slava [UC, San Diego; Lantz, Steven [Cornell U.; Lefebvre, Matthieu [Princeton U.; Masciovecchio, Mario [UC, San Diego; McDermott, Kevin [Cornell U.; Riley, Daniel [Cornell U., LNS; Tadel, Matevž [UC, San Diego; Wittich, Peter [Cornell U.; Würthwein, Frank [UC, San Diego; Yagil, Avi [UC, San Diego

    2017-01-01

    For over a decade now, physical and energy constraints have limited clock speed improvements in commodity microprocessors. Instead, chipmakers have been pushed into producing lower-power, multi-core processors such as Graphical Processing Units (GPU), ARM CPUs, and Intel MICs. Broad-based efforts from manufacturers and developers have been devoted to making these processors user-friendly enough to perform general computations. However, extracting performance from a larger number of cores, as well as specialized vector or SIMD units, requires special care in algorithm design and code optimization. One of the most computationally challenging problems in high-energy particle experiments is finding and fitting the charged-particle tracks during event reconstruction. This is expected to become by far the dominant problem at the High-Luminosity Large Hadron Collider (HL-LHC), for example. Today the most common track finding methods are those based on the Kalman filter. Experience with Kalman techniques on real tracking detector systems has shown that they are robust and provide high physics performance. This is why they are currently in use at the LHC, both in the trigger and offine. Previously we reported on the significant parallel speedups that resulted from our investigations to adapt Kalman filters to track fitting and track building on Intel Xeon and Xeon Phi. Here, we discuss our progresses toward the understanding of these processors and the new developments to port the Kalman filter to NVIDIA GPUs.

  6. Power and Signal Integrity and Electromagnetic Emission; the balancing act of decoupling, planes and tracks

    NARCIS (Netherlands)

    Leferink, Frank Bernardus Johannes

    2007-01-01

    The noise voltage in the reference or ground of a printed circuit board is often the cause of unwanted radiated emission. Power supply planes attribute to the noise voltage. By replacing the power supply planes by tracks, the noise voltage in the reference or ground can be considerably reduced,

  7. A better understanding of biomass co-firing by developing an advanced non-spherical particle tracking model

    DEFF Research Database (Denmark)

    Yin, Chungen; Rosendahl, Lasse Aistrup; Kær, Søren Knudsen

    2004-01-01

    -area-to-volume ratio and thus experiences a totally different motion and reaction as a non-spherical particle. Therefore, an advanced non-spherical particle-tracking model is developed to calculate the motion and reaction of nonspherical biomass particles. The biomass particles are assumed as solid or hollow cylinders......-gradient force. Since the drag and lift forces are both shape factor- and orientation-dependent, coupled particle rotation equations are resolved to update particle orientation. In the reaction of biomass particles, the actual particle surface area available and the average oxygen mass flux at particle surface...

  8. Parallel computing of a digital hologram and particle searching for microdigital-holographic particle-tracking velocimetry

    International Nuclear Information System (INIS)

    Satake, Shin-ichi; Kanamori, Hiroyuki; Kunugi, Tomoaki; Sato, Kazuho; Ito, Tomoyoshi; Yamamoto, Keisuke

    2007-01-01

    We have developed a parallel algorithm for microdigital-holographic particle-tracking velocimetry. The algorithm is used in (1) numerical reconstruction of a particle image computer using a digital hologram, and (2) searching for particles. The numerical reconstruction from the digital hologram makes use of the Fresnel diffraction equation and the FFT (fast Fourier transform),whereas the particle search algorithm looks for local maximum graduation in a reconstruction field represented by a 3D matrix. To achieve high performance computing for both calculations (reconstruction and particle search), two memory partitions are allocated to the 3D matrix. In this matrix, the reconstruction part consists of horizontally placed 2D memory partitions on the x-y plane for the FFT, whereas, the particle search part consists of vertically placed 2D memory partitions set along the z axes.Consequently, the scalability can be obtained for the proportion of processor elements,where the benchmarks are carried out for parallel computation by a SGI Altix machine

  9. Surrogate-driven deformable motion model for organ motion tracking in particle radiation therapy

    Science.gov (United States)

    Fassi, Aurora; Seregni, Matteo; Riboldi, Marco; Cerveri, Pietro; Sarrut, David; Battista Ivaldi, Giovanni; Tabarelli de Fatis, Paola; Liotta, Marco; Baroni, Guido

    2015-02-01

    The aim of this study is the development and experimental testing of a tumor tracking method for particle radiation therapy, providing the daily respiratory dynamics of the patient’s thoraco-abdominal anatomy as a function of an external surface surrogate combined with an a priori motion model. The proposed tracking approach is based on a patient-specific breathing motion model, estimated from the four-dimensional (4D) planning computed tomography (CT) through deformable image registration. The model is adapted to the interfraction baseline variations in the patient’s anatomical configuration. The driving amplitude and phase parameters are obtained intrafractionally from a respiratory surrogate signal derived from the external surface displacement. The developed technique was assessed on a dataset of seven lung cancer patients, who underwent two repeated 4D CT scans. The first 4D CT was used to build the respiratory motion model, which was tested on the second scan. The geometric accuracy in localizing lung lesions, mediated over all breathing phases, ranged between 0.6 and 1.7 mm across all patients. Errors in tracking the surrounding organs at risk, such as lungs, trachea and esophagus, were lower than 1.3 mm on average. The median absolute variation in water equivalent path length (WEL) within the target volume did not exceed 1.9 mm-WEL for simulated particle beams. A significant improvement was achieved compared with error compensation based on standard rigid alignment. The present work can be regarded as a feasibility study for the potential extension of tumor tracking techniques in particle treatments. Differently from current tracking methods applied in conventional radiotherapy, the proposed approach allows for the dynamic localization of all anatomical structures scanned in the planning CT, thus providing complete information on density and WEL variations required for particle beam range adaptation.

  10. The ir emission features: Emission from PAH (Polycyclic Aromatic Hydrocarbons) molecules and amorphous carbon particles

    Energy Technology Data Exchange (ETDEWEB)

    Allamandola, L.J.; Tielens, A.G.G.M.; Barker, J.R.

    1986-01-01

    PAHs can have several forms in the interstellar medium. To assess the importance of each requires the availability of a collection of high quality, complete mid-ir interstellar emission spectra, a collection of laboratory spectra of PAH samples prepared under realistic conditions and a firm understanding of the microscopic emission mechanism. Given what we currently know about PAHs, the spectroscopic data suggests that there are at least two components which contribute to the interstellar emission spectrum: free molecule sized PAHs producing the narrow features and amorphous carbon particles (which are primarily made up of an irregular ''lattice'' of PAHs) contributing to the broad underlying components. An exact treatment of the ir fluorescence from highly vibrationally excited large molecules shows that species containing between 20 and 30 carbon atoms are responsible for the narrow features, although the spectra match more closely with the spectra of amorphous carbon particles. Since little is known about the spectroscopic properties of free PAHs and PAH clusters, much laboratory work is called for in conjunction with an observational program which focuses on the spatial characteristics of the spectra. In this way the distribution and evolution of carbon from molecule to particle can be traced. 38 refs., 9 figs.

  11. The ir emission features: Emission from PAH [Polycyclic Aromatic Hydrocarbons] molecules and amorphous carbon particles

    International Nuclear Information System (INIS)

    Allamandola, L.J.; Tielens, A.G.G.M.; Barker, J.R.

    1986-01-01

    PAHs can have several forms in the interstellar medium. To assess the importance of each requires the availability of a collection of high quality, complete mid-ir interstellar emission spectra, a collection of laboratory spectra of PAH samples prepared under realistic conditions and a firm understanding of the microscopic emission mechanism. Given what we currently know about PAHs, the spectroscopic data suggests that there are at least two components which contribute to the interstellar emission spectrum: free molecule sized PAHs producing the narrow features and amorphous carbon particles (which are primarily made up of an irregular ''lattice'' of PAHs) contributing to the broad underlying components. An exact treatment of the ir fluorescence from highly vibrationally excited large molecules shows that species containing between 20 and 30 carbon atoms are responsible for the narrow features, although the spectra match more closely with the spectra of amorphous carbon particles. Since little is known about the spectroscopic properties of free PAHs and PAH clusters, much laboratory work is called for in conjunction with an observational program which focuses on the spatial characteristics of the spectra. In this way the distribution and evolution of carbon from molecule to particle can be traced. 38 refs., 9 figs

  12. Magnetic poly(lactide-co-glycolide) (PLGA) and cellulose particles for MRI-based cell tracking

    Science.gov (United States)

    Nkansah, Michael K.; Thakral, Durga; Shapiro, Erik M.

    2010-01-01

    Biodegradable, superparamagnetic micro- and nanoparticles of poly(lactide-co-glycolide) (PLGA) and cellulose were designed, fabricated and characterized for magnetic cell labeling. Monodisperse nanocrystals of magnetite were incorporated into micro- and nanoparticles of PLGA and cellulose with high efficiency using an oil-in-water single emulsion technique. Superparamagnetic cores had high magnetization (72.1 emu/g). The resulting polymeric particles had smooth surface morphology and high magnetite content (43.3 wt% for PLGA and 69.6 wt% for cellulose). While PLGA and cellulose nanoparticles displayed highest r2* values per millimole of iron (399 s-1mM-1 for cellulose and 505 s-1mM-1 for PLGA), micron-sized PLGA particles had a much higher r2* per particle than either. After incubation for a month in citrate buffer (pH 5.5), magnetic PLGA particles lost close to 50% of their initial r2* molar relaxivity, while magnetic cellulose particles remained intact, preserving over 85% of their initial r2* molar relaxivity. Lastly, mesenchymal stem cells and human breast adenocarcinoma cells were magnetically labeled using these particles with no detectable cytotoxicity. These particles are ideally suited for non-invasive cell tracking in vivo via MRI and due to their vastly different degradation properties, offer unique potential for dedicated use for either short (PLGA-based particles) or long term (cellulose-based particles) experiments. PMID:21404328

  13. Accumulative difference image protocol for particle tracking in fluorescence microscopy tested in mouse lymphonodes.

    Science.gov (United States)

    Villa, Carlo E; Caccia, Michele; Sironi, Laura; D'Alfonso, Laura; Collini, Maddalena; Rivolta, Ilaria; Miserocchi, Giuseppe; Gorletta, Tatiana; Zanoni, Ivan; Granucci, Francesca; Chirico, Giuseppe

    2010-08-17

    The basic research in cell biology and in medical sciences makes large use of imaging tools mainly based on confocal fluorescence and, more recently, on non-linear excitation microscopy. Substantially the aim is the recognition of selected targets in the image and their tracking in time. We have developed a particle tracking algorithm optimized for low signal/noise images with a minimum set of requirements on the target size and with no a priori knowledge of the type of motion. The image segmentation, based on a combination of size sensitive filters, does not rely on edge detection and is tailored for targets acquired at low resolution as in most of the in-vivo studies. The particle tracking is performed by building, from a stack of Accumulative Difference Images, a single 2D image in which the motion of the whole set of the particles is coded in time by a color level. This algorithm, tested here on solid-lipid nanoparticles diffusing within cells and on lymphocytes diffusing in lymphonodes, appears to be particularly useful for the cellular and the in-vivo microscopy image processing in which few a priori assumption on the type, the extent and the variability of particle motions, can be done.

  14. Accumulative difference image protocol for particle tracking in fluorescence microscopy tested in mouse lymphonodes.

    Directory of Open Access Journals (Sweden)

    Carlo E Villa

    Full Text Available The basic research in cell biology and in medical sciences makes large use of imaging tools mainly based on confocal fluorescence and, more recently, on non-linear excitation microscopy. Substantially the aim is the recognition of selected targets in the image and their tracking in time. We have developed a particle tracking algorithm optimized for low signal/noise images with a minimum set of requirements on the target size and with no a priori knowledge of the type of motion. The image segmentation, based on a combination of size sensitive filters, does not rely on edge detection and is tailored for targets acquired at low resolution as in most of the in-vivo studies. The particle tracking is performed by building, from a stack of Accumulative Difference Images, a single 2D image in which the motion of the whole set of the particles is coded in time by a color level. This algorithm, tested here on solid-lipid nanoparticles diffusing within cells and on lymphocytes diffusing in lymphonodes, appears to be particularly useful for the cellular and the in-vivo microscopy image processing in which few a priori assumption on the type, the extent and the variability of particle motions, can be done.

  15. CONTRIBUTION OF DIFFERENT PARTICLES MEASURED WITH TRACK ETCHED DETECTORS ONBOARD ISS.

    Science.gov (United States)

    Ambrožová, I; Davídková, M; Brabcová, K Pachnerová; Tolochek, R V; Shurshakov, V A

    2017-09-29

    Cosmic radiation consists of primary high-energy galactic and solar particles. When passing through spacecraft walls and astronauts' bodies, the spectrum becomes even more complex due to generating of secondary particles through fragmentation and nuclear interactions. Total radiation exposure is contributed by both these components. With an advantage, space research uses track etched detectors from the group of passive detectors visualizing the tracks of particles, in this case by etching. The detectors can discriminate between various components of cosmic radiation. A method is introduced for the separation of the different types of particles according to their range using track etched detectors. The method is demonstrated using detectors placed in Russian segment of the International Space Station in 2009. It is shown that the primary high-energy heavy ions with long range contribute up to 56% of the absorbed dose and up to 50% to the dose equivalent. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. Results of solid state nuclear track detector technique application in radon detection, by alpha particles tracks, for uranium prospecting in Caetite (BA-Brazil)

    International Nuclear Information System (INIS)

    Moraes, M.A.P.V. de; Khouri, M.T.F.C.

    1988-11-01

    The solid state nuclear track detector technique has been used in radon detection, by alpha particles tracks for uranium prospecting on the ground in Caetite city (Bahia-Brazil). The sensitive film to alpha particles used were CA 8015 exposed during 15 days and the results of three anomalies of this region are showed in a form of maps, made with the density of tracks obtained, and were compared with scintillation counter measurements. The technique showed to be simple and an effective auxiliary for the prospection of uranium ore bodies. The initial uranium exploration costs can be reduced by using this technique. (author) [pt

  17. Greenhouse gas emission trends and projections in Europe 2012. Tracking progress towards Kyoto and 2020 targets

    Energy Technology Data Exchange (ETDEWEB)

    Gores, S.; Scheffler, M.; Graichen, V. [Oeko-Institut (Oeko), Freiburg (Germany)] [and others

    2012-10-15

    At the end of 2011, almost all European countries were on track towards their Kyoto targets for 2008-2012. The EU-15 also remained on track to achieve its Kyoto target. Italy, however, was not on track. Spain plans to acquire a large quantity of Kyoto units through the KP's flexible mechanisms to achieve its target. With emission caps already set for the economic sectors under the EU Emissions Trading Scheme (EU ETS), emissions reductions during 2012 in the sectors outside the EU ETS together with reductions by carbon sinks will set the frame for how many Kyoto units Member States need to acquire to reach their individual targets. Hence, both the development and delivery of adequate plans to acquire enough Kyoto credits is becoming increasingly important. ETS emissions from 2008 to 2011 were on average 5 % below these caps, which results in an oversupply of allowances. The EU ETS is undergoing important changes in view of the third trading phase from 2013 to 2020. Most EU Member States project that in 2020, their emissions outside the EU ETS will be lower than their national targets set under the Climate and Energy Package. However, further efforts will be necessary to achieve longer term reductions. (Author)

  18. Adaptation of multidimensional group particle tracking and particle wall-boundary condition model to the FDNS code

    Science.gov (United States)

    Chen, Y. S.; Farmer, R. C.

    1992-01-01

    A particulate two-phase flow CFD model was developed based on the FDNS code which is a pressure based predictor plus multi-corrector Navier-Stokes flow solver. Turbulence models with compressibility correction and the wall function models were employed as submodels. A finite-rate chemistry model was used for reacting flow simulation. For particulate two-phase flow simulations, a Eulerian-Lagrangian solution method using an efficient implicit particle trajectory integration scheme was developed in this study. Effects of particle-gas reaction and particle size change to agglomeration or fragmentation were not considered in this investigation. At the onset of the present study, a two-dimensional version of FDNS which had been modified to treat Lagrangian tracking of particles (FDNS-2DEL) had already been written and was operational. The FDNS-2DEL code was too slow for practical use, mainly because it had not been written in a form amenable to vectorization on the Cray, nor was the full three-dimensional form of FDNS utilized. The specific objective of this study was to reorder to calculations into long single arrays for automatic vectorization on the Cray and to implement the full three-dimensional version of FDNS to produce the FDNS-3DEL code. Since the FDNS-2DEL code was slow, a very limited number of test cases had been run with it. This study was also intended to increase the number of cases simulated to verify and improve, as necessary, the particle tracking methodology coded in FDNS.

  19. NIR-emitting molecular-based nanoparticles as new two-photon absorbing nanotools for single particle tracking

    Science.gov (United States)

    Daniel, J.; Godin, A. G.; Clermont, G.; Lounis, B.; Cognet, L.; Blanchard-Desce, M.

    2015-07-01

    In order to provide a green alternative to QDs for bioimaging purposes and aiming at designing bright nanoparticles combining both large one- and two-photon brightness, a bottom-up route based on the molecular engineering of dedicated red to NIR emitting dyes that spontaneously form fluorescent organic nanoparticles (FONs) has been implemented. These fully organic nanoparticles built from original quadrupolar dyes are prepared using a simple, expeditious and green protocol that yield very small molecular-based nanoparticles (radius ~ 7 nm) suspension in water showing a nice NIR emission (λem=710 nm). These FONs typically have absorption coefficient more than two orders larger than popular NIR-emitting dyes (such as Alexa Fluor 700, Cy5.5 ….) and much larger Stokes shift values (i.e. up to over 5500 cm-1). They also show very large two-photon absorption response in the 800-1050 nm region (up to about 106 GM) of major promise for two-photon excited fluorescence microscopy. Thanks to their brightness and enhanced photostability, these FONs could be imaged as isolated nanoparticles and tracked using wide-field imaging. As such, thanks to their size and composition (absence of heavy metals), they represent highly promising alternatives to NIR-emitting QDs for use in bioimaging and single particle tracking applications. Moreover, efficient FONs coating was achieved by using a polymeric additive built from a long hydrophobic (PPO) and a short hydrophilic (PEO) segment and having a cationic head group able to interact with the highly negative surface of FONs. This electrostatically-driven interaction promotes both photoluminescence and two-photon absorption enhancement leading to an increase of two-photon brightness of about one order of magnitude. This opens the way to wide-field single particle tracking under two-photon excitation

  20. Beam test of a 12-layer scintillating-fiber charged-particle tracking system

    Energy Technology Data Exchange (ETDEWEB)

    Abbott, B.; Howell, B.L.; Koltick, D.; McIlwain, R.L.; Schmitz, C.J.; Shibata, E.I.; Zhou, Z.; Baumbaugh, B.; Ivancic, M.; Jaques, J.; Kehoe, R.; Kelley, M.; Mahoney, M.; Marchant, J.; Ruchti, R.; Wayne, M.; Atac, M.; Baumbaugh, A.; Elias, J.E.; Romero, A.; Chrisman, D.; Park, J.; Adams, M.R.; Chung, M.; Goldberg, H.; Margulies, S.; Solomon, J.; Chaney, R.; Orgeron, J.; Armstrong, T.; Lewis, R.A.; Mitchell, G.S.; Moore, R.S.; Passaneau, J.; Smith, G.A.; Corcoran, M.; Adams, D.; Bird, F.; Fenker, H.; Regan, T.; Thomas, J. (Dept. of Physics, Purdue Univ., West Lafayette, IN (United States) Dept. of Physics, Univ. of Notre Dame, IN (United States) Fermilab, Batavia, IL (United States) Dept. of Physics, Univ. of California, Los Angeles, CA (United States) Dept. of Physics, Univ. of Illinois, Chicago, IL (United States) Dept. of Physics, Univ. of Texas, Richardson, TX (United States) Dept. of Physics, Pennsylvania State Univ., University Park, PA (United States) Dept. of Physics, Rice Univ

    1994-02-01

    A 96-channel, 3-superlayer, scintillating-fiber tracking system has been tested in a 5 GeV/c [pi][sup -] beam. The scintillating fibers were 830 [mu]m in diameter, spaced 850 [mu]m apart, and 4.3 m in length. They were coupled to 6 m long, clear fiber waveguides and finally to visible light photon counters. A spatial resolution of [approx]150 [mu]m for a double-layered ribbon was achieved with this tracking system. This first prototype of a charged-particle tracking system configured for the Solenoidal Detector Collaboration at the Superconducting Super Collider is a benchmark in verifying the expected number of photoelectrons from the fibers. (orig.)

  1. A many particle-tracking detector with drift planes and segmented cathode readout

    International Nuclear Information System (INIS)

    Fischer, J.; Lissauer, D.; Ludlam, T.; Makowiecki, D.; O'Brien, E.; Radeka, V.; Rescia, S.; Rogers, L.; Smith, G.C.; Stephani, D.; Yu, B.; Greene, S.V.; Hemmick, T.K.; Mitchell, J.T.; Shivakumar, B.

    1990-01-01

    We describe the design and performance of a detector system for tracking charged particles in an environment of high track density and rates up to 1 MHz. The system operates in the forward spectrometer of the BNL Heavy Ion experiment E814 and uses principles of general interest in high rate, high multiplicity applications such as at RHIC or SSC. We require our system to perform over a large dynamic range, detecting singly charged particles as well as fully ionized relativistic 28 Si. Results on gas gain saturation, δ-ray suppression, and overall detector performance in the presence of a 14.6 GeV/nucleon 28 Si beam and a 14 GeV proton beam are presented. 6 refs., 9 figs

  2. Passive Target Tracking in Non-cooperative Radar System Based on Particle Filtering

    Institute of Scientific and Technical Information of China (English)

    LI Shuo; TAO Ran

    2006-01-01

    We propose a target tracking method based on particle filtering(PF) to solve the nonlinear non-Gaussian target-tracking problem in the bistatic radar systems using external radiation sources. Traditional nonlinear state estimation method is extended Kalman filtering (EKF), which is to do the first level Taylor series extension. It will cause an inaccuracy or even a scatter estimation result on condition that there is either a highly nonlinear target or a large noise square-error. Besides, Kalman filtering is the optimal resolution under a Gaussian noise assumption, and is not suitable to the non-Gaussian condition. PF is a sort of statistic filtering based on Monte Carlo simulation that is using some random samples (particles) to simulate the posterior probability density of system random variables. This method can be used in any nonlinear random system. It can be concluded through simulation that PF can achieve higher accuracy than the traditional EKF.

  3. Innovative molecular-based fluorescent nanoparticles for multicolor single particle tracking in cells

    International Nuclear Information System (INIS)

    Daniel, Jonathan; Blanchard-Desce, Mireille; Godin, Antoine G; Palayret, Matthieu; Lounis, Brahim; Cognet, Laurent

    2016-01-01

    Based on an original molecular-based design, we present bright and photostable fluorescent organic nanoparticles (FONs) showing excellent colloidal stability in various aqueous environments. Complementary near-infrared emitting and green emitting FONs were prepared using a simple, fast and robust protocol. Both types of FONs could be simultaneously imaged at the single-particle level in solution as well as in biological environments using a monochromatic excitation and a dual-color fluorescence microscope. No evidence of acute cytotoxicity was found upon incubation of live cells with mixed solutions of FONs, and both types of nanoparticles were found internalized in the cells where their motion could be simultaneously tracked at video-rate up to minutes. These fluorescent organic nanoparticles open a novel non-toxic alternative to existing nanoparticles for imaging biological structures, compatible with live-cell experiments and specially fitted for multicolor single particle tracking. (paper)

  4. Particle Data Management Software for 3DParticle Tracking Velocimetry and Related Applications – The Flowtracks Package

    Directory of Open Access Journals (Sweden)

    Yosef Meller

    2016-06-01

    Full Text Available The Particle Tracking Velocimetry (PTV community employs several formats of particle information such as position and velocity as function of time, i.e. trajectory data, as a result of diverging needs unmet by existing formats, and a number of different, mostly home-grown, codes for handling the data. Flowtracks is a Python package that provides a single code base for accessing different formats as a database, i.e. storing data and programmatically manipulating them using format-agnostic data structures. Furthermore, it offers an HDF5-based format that is fast and extensible, obviating the need for other formats. The package may be obtained from https://github.com/OpenPTV/postptv and used as-is by many fluid-dynamics labs, or with minor extensions adhering to a common interface, by researchers from other fields, such as biology and population tracking.

  5. Registration of alpha particles in Makrofol-E nuclear track detectors

    Energy Technology Data Exchange (ETDEWEB)

    Rammah, Y.S. [Physics Department, Faculty of Science, Menoufia University, Shebin El-Koom (Egypt); Abdalla, Ayman M., E-mail: aymanabdalla62@hotmail.com [Physics Department, Faculty of Sciences and Arts, Najran University, P. O. Box. 11001, Najran (Saudi Arabia); Promising Centre for Sensors and Electronic Devices, Faculty of Arts and Sciences, Najran University (Saudi Arabia); Ashraf, O., E-mail: osama.ashraf@edu.asu.edu.eg [Physics Department, Faculty of Education, Ain Shams University, Cairo 11575 (Egypt); Ashry, A.H. [Physics Department, Faculty of Education, Ain Shams University, Cairo 11575 (Egypt)

    2016-06-15

    Highlights: • Makrofol-E detectors have been irradiated with alpha particles and fission fragments. • Fast detection of alpha particles in Makrofol-E detectors. • Bulk etching rate was calculated from fission track diameters. - Abstract: Fast detection of alpha particles in the range from 1 to 5 MeV in Makrofol-E polycarbonate nuclear track detectors (PCTDs) using a new chemical etchant was investigated. {sup 252}Cf and {sup 241}Am-thin open sources were used for irradiating Makrofol-E detectors with fission fragments and alpha particles in air at normal pressure and temperature (NPT). A chain of experimental work has been carried out using new etchants to register alpha particle in short time in Makrofol-E polycarbonate detectors. The etching efficiency were exhibited a clear dependence on the amount of methanol in the etching solution and etching time. The optimized chemical condition obtained at this stage of development for 200 μm Makrofol-E detectors are (8 ml of 10 N NaOH + 2 ml CH{sub 3}OH) etching solutions at 60 °C for 3 h. In this study; it is possible to observe energy detection windows for Makrofol-E detectors according to applied etching duration. Makrofol-E introduced the characteristic Bragg peak, which indicates the advantages of this detector as alpha spectrometer. Consequently, the suggested new etchant can be developed for heavy ions detection and monitoring radon levels and its daughters.

  6. Performance analysis of a new positron camera geometry for high speed, fine particle tracking

    Science.gov (United States)

    Sovechles, J. M.; Boucher, D.; Pax, R.; Leadbeater, T.; Sasmito, A. P.; Waters, K. E.

    2017-09-01

    A new positron camera arrangement was assembled using 16 ECAT951 modular detector blocks. A closely packed, cross pattern arrangement was selected to produce a highly sensitive cylindrical region for tracking particles with low activities and high speeds. To determine the capabilities of this system a comprehensive analysis of the tracking performance was conducted to determine the 3D location error and location frequency as a function of tracer activity and speed. The 3D error was found to range from 0.54 mm for a stationary particle, consistent for all tracer activities, up to 4.33 mm for a tracer with an activity of 3 MBq and a speed of 4 m · s-1. For lower activity tracers (mineral particles inside a two-inch hydrocyclone and a 142 mm diameter flotation cell. A detailed trajectory, inside the hydrocyclone, of a  -212  +  106 µm (10-1 MBq) quartz particle displayed the expected spiralling motion towards the apex. This was the first time a mineral particle of this size had been successfully traced within a hydrocyclone, however more work is required to develop detailed velocity fields.

  7. Monte Carlo charged-particle tracking and energy deposition on a Lagrangian mesh.

    Science.gov (United States)

    Yuan, J; Moses, G A; McKenty, P W

    2005-10-01

    A Monte Carlo algorithm for alpha particle tracking and energy deposition on a cylindrical computational mesh in a Lagrangian hydrodynamics code used for inertial confinement fusion (ICF) simulations is presented. The straight line approximation is used to follow propagation of "Monte Carlo particles" which represent collections of alpha particles generated from thermonuclear deuterium-tritium (DT) reactions. Energy deposition in the plasma is modeled by the continuous slowing down approximation. The scheme addresses various aspects arising in the coupling of Monte Carlo tracking with Lagrangian hydrodynamics; such as non-orthogonal severely distorted mesh cells, particle relocation on the moving mesh and particle relocation after rezoning. A comparison with the flux-limited multi-group diffusion transport method is presented for a polar direct drive target design for the National Ignition Facility. Simulations show the Monte Carlo transport method predicts about earlier ignition than predicted by the diffusion method, and generates higher hot spot temperature. Nearly linear speed-up is achieved for multi-processor parallel simulations.

  8. Use of Particle Tracking to Determine Optimal Release Dates and Locations for Rehabilitated Neonate Sea Turtles

    Directory of Open Access Journals (Sweden)

    Natalie A. Robson

    2017-06-01

    Full Text Available Sea turtles found stranded on beaches are often rehabilitated before being released back into the wild. The location and date of release is largely selected on an informal basis, which may not maximize the chance of survival. As oceanic conditions have a large influence on the movements of neonate sea turtles, this study aimed to identify the best locations and months to release rehabilitated sea turtles that would assist in their transport by ocean currents to the habitat and thermal conditions required for their survival. A particle tracking model, forced by ocean surface velocity fields, was used to simulate the dispersal pathways of millions of passively drifting particles released from different locations in Western Australia. The particles represented rehabilitated, neonate turtles requiring oceanic habitats [green (Chelonia mydas, hawksbill (Eretmochelys imbricata and loggerheads (Caretta caretta] and flatback turtles (Natator depressus which require neritic habitats. The results clearly identified regions and months where ocean currents were more favorable for transport to suitable habitats. Tantabiddi, near Exmouth on the north-west coast, was consistently the best location for release for the oceanic species, with dominant offshore-directed currents and a very narrow continental shelf reducing the time taken for particles to be transported into deep water. In contrast, release locations with more enclosed geography, wide continental shelves, and/or proximity to cooler ocean temperatures were less successful. Our results produced a decision support system for the release of neonate marine turtles in Western Australia and our particle tracking approach has global transferability.

  9. Radioactive Particle Tracking (RPT): The Powerful Industrial Radiotracer Techniques for Hydrodynamics and Flow Visualization Studies

    International Nuclear Information System (INIS)

    Mohd Amirul Syafiq Mohd Yunos

    2016-01-01

    Full text: Radioactive particle tracking (RPT) techniques have been widely applied in the field of chemical engineering, especially in hydrodynamics in multiphase reactors. This technique is widely used to monitor the motion of the flow inside a reactor by using a single radioactive particle tracer that is neutrally buoyant with respect to the phase is used as a tracker. The particle moves inside the volume of interest and its positions are determined by an array of scintillation detectors counting in coming photons. Particle position reconstruction algorithms have been traditionally used to map measured counts rate into the coordinates by solving a minimization problem between measured events and calibration data. RPT have been used to validate respective-scale CFD models to partial success. This presentation described an introduction to radioactive particle tracking and summarizing a history of such developments and the current state of this method in Malaysian Nuclear Agency, with a perspective towards the future and how these investigations may help scale-up developments. (author)

  10. Laboratory observations of sediment transport using combined particle image and tracking velocimetry (Conference Presentation)

    Science.gov (United States)

    Frank, Donya; Calantoni, Joseph

    2017-05-01

    Improved understanding of coastal hydrodynamics and morphology will lead to more effective mitigation measures that reduce fatalities and property damage caused by natural disasters such as hurricanes. We investigated sediment transport under oscillatory flow over flat and rippled beds with phase-separated stereoscopic Particle Image Velocimetry (PIV). Standard PIV techniques severely limit measurements at the fluid-sediment interface and do not allow for the observation of separate phases in multi-phase flow (e.g. sand grains in water). We have implemented phase-separated Particle Image Velocimetry by adding fluorescent tracer particles to the fluid in order to observe fluid flow and sediment transport simultaneously. While sand grains scatter 532 nm wavelength laser light, the fluorescent particles absorb 532 nm laser light and re-emit light at a wavelength of 584 nm. Optical long-pass filters with a cut-on wavelength of 550 nm were installed on two cameras configured to perform stereoscopic PIV to capture only the light emitted by the fluorescent tracer particles. A third high-speed camera was used to capture the light scattered by the sand grains allowing for sediment particle tracking via particle tracking velocimetry (PTV). Together, these overlapping, simultaneously recorded images provided sediment particle and fluid velocities at high temporal and spatial resolution (100 Hz sampling with 0.8 mm vector spacing for the 2D-3C fluid velocity field). Measurements were made under a wide range of oscillatory flows over flat and rippled sand beds. The set of observations allow for the investigation of the relative importance of pressure gradients and shear stresses on sediment transport.

  11. Human tracking in thermal images using adaptive particle filters with online random forest learning

    Science.gov (United States)

    Ko, Byoung Chul; Kwak, Joon-Young; Nam, Jae-Yeal

    2013-11-01

    This paper presents a fast and robust human tracking method to use in a moving long-wave infrared thermal camera under poor illumination with the existence of shadows and cluttered backgrounds. To improve the human tracking performance while minimizing the computation time, this study proposes an online learning of classifiers based on particle filters and combination of a local intensity distribution (LID) with oriented center-symmetric local binary patterns (OCS-LBP). Specifically, we design a real-time random forest (RF), which is the ensemble of decision trees for confidence estimation, and confidences of the RF are converted into a likelihood function of the target state. First, the target model is selected by the user and particles are sampled. Then, RFs are generated using the positive and negative examples with LID and OCS-LBP features by online learning. The learned RF classifiers are used to detect the most likely target position in the subsequent frame in the next stage. Then, the RFs are learned again by means of fast retraining with the tracked object and background appearance in the new frame. The proposed algorithm is successfully applied to various thermal videos as tests and its tracking performance is better than those of other methods.

  12. Back-tracking of primary particle trajectories for muons detected at the Earth surface

    Science.gov (United States)

    Shutenko, V. V.

    2017-01-01

    Investigations of cosmic rays on the surface of the Earth allow to derive information of applied character on the conditions of the interplanetary magnetic field and of the geomagnetic field. For this purpose, it is necessary to collate trajectories of particles detected in the ground-based detector to trajectories of primary cosmic rays in the heliosphere. This problem is solved by means of various back-tracking methods. In this work, one of such methods is presented.

  13. Back-tracking of primary particle trajectories for muons detected at the Earth surface

    International Nuclear Information System (INIS)

    Shutenko, V V

    2017-01-01

    Investigations of cosmic rays on the surface of the Earth allow to derive information of applied character on the conditions of the interplanetary magnetic field and of the geomagnetic field. For this purpose, it is necessary to collate trajectories of particles detected in the ground-based detector to trajectories of primary cosmic rays in the heliosphere. This problem is solved by means of various back-tracking methods. In this work, one of such methods is presented. (paper)

  14. Conceptual basis for the radiometric dye film dose meter as a test of particle track theory

    International Nuclear Information System (INIS)

    Hansen, J.W.

    1980-05-01

    This report is a summary of a lecture held at the Danish-Polish Symposium on Radiation Chemistry in Warsaw, October 1979, describing an initiated work connected to the particle track theory worked out by R. Katz and coworkers. A short description is given of the theory and the applicability of the theory in the use of the radiometric dye cyanide film dose meter as a detector in radiation of different qualities. A few experimental results are given. (author)

  15. On the unification of aircraft ultrafine particle emission data

    Energy Technology Data Exchange (ETDEWEB)

    Kaercher, B.; Busen, R. [DLR Deutsches Zentrum fuer Luft- und Raumfahrt e.V., Wessling (Germany). Inst. fuer Physik der Atmosphaere; Turco, R.P.; Yu Fangqun [California Univ., Los Angeles, CA (United States). Dept. of Atmospheric Sciences; Danilin, M.Y.; Weisenstein, D.K. [Atmospheric and Environmental Research, Inc., Cambridge, MA (United States); Miake-Lye, R.C. [Aerodyne Research, Inc., Billerica, MA (United States)

    2000-03-01

    To predict the environmental impacts of future commercial aviation, intensive studies have been launched to measure the properties and effects of aircraft emissions. These observations have revealed an extremely wide variance with respect to the number and sizes of the particles produced in the exhaust plumes. Aircraft aerosol ultimately contributes to the population of cloud-forming nuclei, and may lead to significant global radiative and chemical perturbations. In this paper, recent discoveries are coordinated and unified in the form of a physically consistent plume aerosol model that explains most of the observational variance. Using this new approach, it is now practical to carry out reliable global atmospheric simulations of aircraft effects, as demonstrated by a novel assessment of the perturbation of the stratospheric aerosol layer by a supersonic aircraft fleet. (orig.)

  16. Real-time particle tracking at 10,000 fps using optical fiber illumination.

    Science.gov (United States)

    Otto, Oliver; Czerwinski, Fabian; Gornall, Joanne L; Stober, Gunter; Oddershede, Lene B; Seidel, Ralf; Keyser, Ulrich F

    2010-10-25

    We introduce optical fiber illumination for real-time tracking of optically trapped micrometer-sized particles with microsecond time resolution. Our light source is a high-radiance mercury arc lamp and a 600 μm optical fiber for short-distance illumination of the sample cell. Particle tracking is carried out with a software implemented cross-correlation algorithm following image acquisition from a CMOS camera. Our image data reveals that fiber illumination results in a signal-to-noise ratio usually one order of magnitude higher compared to standard Köhler illumination. We demonstrate position determination of a single optically trapped colloid with up to 10,000 frames per second over hours. We calibrate our optical tweezers and compare the results with quadrant photo diode measurements. Finally, we determine the positional accuracy of our setup to 2 nm by calculating the Allan variance. Our results show that neither illumination nor software algorithms limit the speed of real-time particle tracking with CMOS technology.

  17. The radiochromic dye film dose meter as a possible test of particle track theory

    International Nuclear Information System (INIS)

    Hansen, J.W.; Jensen, M.; Katz, R.

    1980-09-01

    The response characteristic of the thin-film radiometric dye cyanide plastic dose meter to ionizing radiation of electrons and heavy charged particles is investigated as a possible test of the particle track theory worked out by Robert Katz and coworkers. Dose response curves for low-LET radiation have been investigated and are used for a quality estimation of the response for protons and oxygen ions at 16 and 4 MeV/amu, respectively. A bleaching effect on the colouration at high doses intimates that the target cannot be interpreted lieerally, but it might still be possinle to transfer the function of the macroscopic dose response to a theoretical dose response curve in a microscopic scale for a single ion. From this relation the macroscopic dose response curve can be determined qhen the film is irradiated with heavy ions. It will be shown theoretically that for protons there is no saturation in the track core, whereas calculations for oxygen ions show a heavy saturation in the track core, which means that a part of the ions loose their energy ineffectively. We can conclude that itis possible qualitatively to predict the dose response curve for high-LET particles by means of the dose response curve for low-LET radiation. (author)

  18. A new dyed ECE track identification method for nuclear particle detection

    International Nuclear Information System (INIS)

    Sohrabi, M.; Bojd, S.S.

    1990-01-01

    A new procedure for obtaining highly contrasted red-dyed electrochemically etched recoil tracks in polymers such as polycarbonate (PC) and CR-39 has been successfully developed for spectrophotometry as applied to neutron dosimetry. The principal rationale in this method has been the provision of highly contrasted, photon-absorbing, large, dyed recoil tracks in an unaffected bulk material. The method consists of: (a) exposing the polymer to charged particles or neutrons; (b) electrochemical etching of the tracks; (c) acid sensitization; (d) dyeing with an appropriate dye. By investigation of the type, concentration, duration and temperature of the acid and the dye, optimized values of 20% by weight acrylic acid at 75 0 C for 3.5 h for sensitization, and 3% by weight eosin bluish dye at 95 0 C for 4 h for dyeing, provided a nearly 100% dyed-track efficiency. Spectrophotometry by UV and infrared radiation track counting, and optical densitometry were applied to the dyed samples. The results have shown some promise for UV absorbance measurements in routine large-scale applications. In this paper, the results of optimization studies and preliminary application of the technique to neutron dosimetry are presented and discussed. (author)

  19. Particle Filter with Integrated Voice Activity Detection for Acoustic Source Tracking

    Directory of Open Access Journals (Sweden)

    Anders M. Johansson

    2007-01-01

    Full Text Available In noisy and reverberant environments, the problem of acoustic source localisation and tracking (ASLT using an array of microphones presents a number of challenging difficulties. One of the main issues when considering real-world situations involving human speakers is the temporally discontinuous nature of speech signals: the presence of silence gaps in the speech can easily misguide the tracking algorithm, even in practical environments with low to moderate noise and reverberation levels. A natural extension of currently available sound source tracking algorithms is the integration of a voice activity detection (VAD scheme. We describe a new ASLT algorithm based on a particle filtering (PF approach, where VAD measurements are fused within the statistical framework of the PF implementation. Tracking accuracy results for the proposed method is presented on the basis of synthetic audio samples generated with the image method, whereas performance results obtained with a real-time implementation of the algorithm, and using real audio data recorded in a reverberant room, are published elsewhere. Compared to a previously proposed PF algorithm, the experimental results demonstrate the improved robustness of the method described in this work when tracking sources emitting real-world speech signals, which typically involve significant silence gaps between utterances.

  20. New approach of modeling charged particles track development in CR-39 detectors

    International Nuclear Information System (INIS)

    Azooz, A.A.; Hermsdorf, D.; Al-Jubbori, M.A.

    2013-01-01

    In this work, previous modeling of protons and alpha particles track length development in CR-39 solid state nuclear track detectors SSNTD is modified and further extended. The extension involved the accommodation of heavier ions into the model. These ions include deuteron, lithium, boron, carbon, nitrogen and oxygen ions. The new modeling does not contain any case sensitive free fitting parameters. Model calculation results are found to be in good agreement with both experimental data and SRIM software range energy dependence predictions. The access to a single unified and differentiable track length development equation results in the ability to obtain direct results for track etching rates. - Highlights: • New modeling of ions track length evolution measured by different authors. • Ions considered are p, d, α, Li, B, C, N, O. • Equations obtained to describe L(t) and etch rate for all ions at wide energy range. • Equations obtained do not involve any free fitting parameters. • Ions range values obtained compare well with results of SRIM software

  1. Particle filtering based structural assessment with acoustic emission sensing

    Science.gov (United States)

    Yan, Wuzhao; Abdelrahman, Marwa; Zhang, Bin; Ziehl, Paul

    2017-02-01

    Nuclear structures are designed to withstand severe loading events under various stresses. Over time, aging of structural systems constructed with concrete and steel will occur. This deterioration may reduce service life of nuclear facilities and/or lead to unnecessary or untimely repairs. Therefore, online monitoring of structures in nuclear power plants and waste storage has drawn significant attention in recent years. Of many existing non-destructive evaluation and structural monitoring approaches, acoustic emission is promising for assessment of structural damage because it is non-intrusive and is sensitive to corrosion and crack growth in reinforced concrete elements. To provide a rapid, actionable, and graphical means for interpretation Intensity Analysis plots have been developed. This approach provides a means for classification of damage. Since the acoustic emission measurement is only an indirect indicator of structural damage, potentially corrupted by non-genuine data, it is more suitable to estimate the states of corrosion and cracking in a Bayesian estimation framework. In this paper, we will utilize the accelerated corrosion data from a specimen at the University of South Carolina to develop a particle filtering-based diagnosis and prognosis algorithm. Promising features of the proposed algorithm are described in terms of corrosion state estimation and prediction of degradation over time to a predefined threshold.

  2. Nonlinear Vibration Signal Tracking of Large Offshore Bridge Stayed Cable Based on Particle Filter

    Directory of Open Access Journals (Sweden)

    Ye Qingwei

    2015-12-01

    Full Text Available The stayed cables are key stress components of large offshore bridge. The fault detection of stayed cable is very important for safe of large offshore bridge. A particle filter model and algorithm of nonlinear vibration signal are used in this paper. Firstly, the particle filter model of stayed cable of large offshore bridge is created. Nonlinear dynamic model of the stayed-cable and beam coupling system is dispersed in temporal dimension by using the finite difference method. The discrete nonlinear vibration equations of any cable element are worked out. Secondly, a state equation of particle filter is fitted by least square algorithm from the discrete nonlinear vibration equations. So the particle filter algorithm can use the accurate state equations. Finally, the particle filter algorithm is used to filter the vibration signal of bridge stayed cable. According to the particle filter, the de-noised vibration signal can be tracked and be predicted for a short time accurately. Many experiments are done at some actual bridges. The simulation experiments and the actual experiments on the bridge stayed cables are all indicating that the particle filter algorithm in this paper has good performance and works stably.

  3. Applications of particle induced X-ray emission

    International Nuclear Information System (INIS)

    Akselsson, K. R.

    1978-01-01

    In Particle Induced X-ray Emission (PIXE) analysis samples are bombarded by protons or α-particles of a few MeV/u. The induced characteristic x-rays are detected with a x-ray detector e.g. a Si(Li)-detector. The energies of the x-ray peaks are characteristic for the elements in the samples and the intensities of the x-ray transitions are proportional to the abundances of the elements. The research area which first attracted those of us working with PIXE was the study of sources, transport and deposition of airborne particulates. Sources, transport, wet deposition, other applications where PIXE is already known to be competitive are trace elemental analysis of water below the ppb-level and analyses requiring a space resolution of 1-10μ. However, there is still much to do for physicists in developing the full potential of low-energy accelerators as analytical tools in multidisciplinary teams. (JIW)

  4. Clinically viable magnetic poly(lactide-co-glycolide) (PLGA) particles for MRI-based cell tracking

    Science.gov (United States)

    Granot, Dorit; Nkansah, Michael K.; Bennewitz, Margaret F.; Tang, Kevin S.; Markakis, Eleni A.; Shapiro, Erik M.

    2013-01-01

    Purpose To design, fabricate, characterize and in vivo assay clinically viable magnetic particles for MRI-based cell tracking. Methods PLGA encapsulated magnetic nano- and microparticles were fabricated. Multiple biologically relevant experiments were performed to assess cell viability, cellular performance and stem cell differentiation. In vivo MRI experiments were performed to separately test cell transplantation and cell migration paradigms, as well as in vivo biodegradation. Results Highly magnetic nano- (~100 nm) and microparticles (~1–2 μm) were fabricated. Magnetic cell labeling in culture occurred rapidly achieving 3–50 pg Fe/cell at 3 hrs for different particles types, and >100 pg Fe/cell after 10 hours, without the requirement of a transfection agent, and with no effect on cell viability. The capability of magnetically labeled mesenchymal or neural stem cells to differentiate down multiple lineages, or for magnetically labeled immune cells to release cytokines following stimulation, was uncompromised. An in vivo biodegradation study revealed that NPs degraded ~80% over the course of 12 weeks. MRI detected as few as 10 magnetically labeled cells, transplanted into the brains of rats. Also, these particles enabled the in vivo monitoring of endogenous neural progenitor cell migration in rat brains over 2 weeks. Conclusion The robust MRI properties and benign safety profile of these particles make them promising candidates for clinical translation for MRI-based cell tracking. PMID:23568825

  5. Hardware processor for tracking particles in an alternating-gradient synchrotron

    International Nuclear Information System (INIS)

    Johnson, M.; Avilez, C.

    1987-01-01

    We discuss the design and performance of special-purpose processors for tracking particles through an alternating-gradient synchrotron. We present block diagram designs for two hardware processors. Both processors use algorithms based on the 'kick' approximation, i.e., transport matrices are used for dipoles and quadrupoles, and the thin-lens approximation is used for all higher multipoles. The faster processor makes extensive use of memory look-up tables for evaluating functions. For the case of magnets with multipoles up to pole 30 and using one kick per magnet, this processor can track 19 particles through an accelerator at a rate that is only 220 times slower than the time it takes real particles to travel around the machine. For a model consisting of only thin lenses, it is only 150 times slower than real particles. An additional factor of 2 can be obtained with chips now becoming available. The number of magnets in the accelerator is limited only by the amount of memory available for storing magnet parameters. (author) 20 refs., 7 figs., 2 tabs

  6. A variational multiscale method for particle-cloud tracking in turbomachinery flows

    Science.gov (United States)

    Corsini, A.; Rispoli, F.; Sheard, A. G.; Takizawa, K.; Tezduyar, T. E.; Venturini, P.

    2014-11-01

    We present a computational method for simulation of particle-laden flows in turbomachinery. The method is based on a stabilized finite element fluid mechanics formulation and a finite element particle-cloud tracking method. We focus on induced-draft fans used in process industries to extract exhaust gases in the form of a two-phase fluid with a dispersed solid phase. The particle-laden flow causes material wear on the fan blades, degrading their aerodynamic performance, and therefore accurate simulation of the flow would be essential in reliable computational turbomachinery analysis and design. The turbulent-flow nature of the problem is dealt with a Reynolds-Averaged Navier-Stokes model and Streamline-Upwind/Petrov-Galerkin/Pressure-Stabilizing/Petrov-Galerkin stabilization, the particle-cloud trajectories are calculated based on the flow field and closure models for the turbulence-particle interaction, and one-way dependence is assumed between the flow field and particle dynamics. We propose a closure model utilizing the scale separation feature of the variational multiscale method, and compare that to the closure utilizing the eddy viscosity model. We present computations for axial- and centrifugal-fan configurations, and compare the computed data to those obtained from experiments, analytical approaches, and other computational methods.

  7. Analysis of Base-Case Particle Tracking Results of the Base-Case Flow Fields (ID:U0160)

    International Nuclear Information System (INIS)

    C.K. Ho

    2000-01-01

    The purpose of this analysis is to provide insight into the unsaturated-zone (UZ) subsystem performance through particle tracking analyses of the base-case flow fields. The particle tracking analyses will not be used directly in total-system performance-assessment (TSPA) calculations per se. The objective of this activity is to evaluate the transport of radionuclides through the unsaturated zone and to determine how different system parameters such as matrix diffusion, sorption, water-table rise, and perched water influence the transport to the water table. Plots will be generated to determine normalized cumulative breakthrough curves for selected radionuclides. The scope of this work is limited to the particle tracking analyses of ''base-case'' flow fields that are to be used by the code FEHM (Finite Element Heat and Mass; Zyvoloski 1997) for particle tracking simulations in ''Total System Performance Assessment-Site Recommendation Report'' (TSPA-SR)

  8. Comparisons of Particle Tracking Techniques and Galerkin Finite Element Methods in Flow Simulations on Watershed Scales

    Science.gov (United States)

    Shih, D.; Yeh, G.

    2009-12-01

    This paper applies two numerical approximations, the particle tracking technique and Galerkin finite element method, to solve the diffusive wave equation in both one-dimensional and two-dimensional flow simulations. The finite element method is one of most commonly approaches in numerical problems. It can obtain accurate solutions, but calculation times may be rather extensive. The particle tracking technique, using either single-velocity or average-velocity tracks to efficiently perform advective transport, could use larger time-step sizes than the finite element method to significantly save computational time. Comparisons of the alternative approximations are examined in this poster. We adapt the model WASH123D to examine the work. WASH123D is an integrated multimedia, multi-processes, physics-based computational model suitable for various spatial-temporal scales, was first developed by Yeh et al., at 1998. The model has evolved in design capability and flexibility, and has been used for model calibrations and validations over the course of many years. In order to deliver a locally hydrological model in Taiwan, the Taiwan Typhoon and Flood Research Institute (TTFRI) is working with Prof. Yeh to develop next version of WASH123D. So, the work of our preliminary cooperationx is also sketched in this poster.

  9. Three-dimensional single-particle tracking in live cells: news from the third dimension

    International Nuclear Information System (INIS)

    Dupont, A; Wehnekamp, F; Katayama, Y; Lamb, D C; Gorelashvili, M; Schüller, V; Arcizet, D; Heinrich, D

    2013-01-01

    Single-particle tracking (SPT) is of growing importance in the biophysical community. It is used to investigate processes such as drug and gene delivery, viral uptake, intracellular trafficking or membrane-bound protein mobility. Traditionally, SPT is performed in two dimensions (2D) because of its technical simplicity. However, life occurs in three dimensions (3D) and many methods have been recently developed to track particles in 3D. Now, is the third dimension worth the effort? Here we investigate the differences between the 2D and 3D analyses of intracellular transport with the 3D development of a time-resolved mean square displacement (MSD) analysis introduced previously. The 3D trajectories, and the 2D projections, of fluorescent nanoparticles were obtained with an orbital tracking microscope in two different cell types: in Dictyostelium discoideum ameba and in adherent, more flattened HuH-7 human cells. As expected from the different 3D organization of both cells’ cytoskeletons, a third of the active transport was lost upon projection in the ameba whereas the identification of the active phases was barely affected in the HuH-7 cells. In both cell types, we found intracellular diffusion to be anisotropic and the diffusion coefficient values derived from the 2D analysis were therefore biased. (paper)

  10. Challenges and Approaches for Developing Ultrafine Particle Emission Inventories for Motor Vehicle and Bus Fleets

    Directory of Open Access Journals (Sweden)

    Diane U. Keogh

    2011-03-01

    Full Text Available Motor vehicles in urban areas are the main source of ultrafine particles (diameters < 0.1 µm. Ultrafine particles are generally measured in terms of particle number because they have little mass and are prolific in terms of their numbers. These sized particles are of particular interest because of their ability to enter deep into the human respiratory system and contribute to negative health effects. Currently ultrafine particles are neither regularly monitored nor regulated by ambient air quality standards. Motor vehicle and bus fleet inventories, epidemiological studies and studies of the chemical composition of ultrafine particles are urgently needed to inform scientific debate and guide development of air quality standards and regulation to control this important pollution source. This article discusses some of the many challenges associated with modelling and quantifying ultrafine particle concentrations and emission rates for developing inventories and microscale modelling of motor vehicles and buses, including the challenge of understanding and quantifying secondary particle formation. Recommendations are made concerning the application of particle emission factors in developing ultrafine particle inventories for motor vehicle fleets. The article presents a précis of the first published inventory of ultrafine particles (particle number developed for the urban South-East Queensland motor vehicle and bus fleet in Australia, and comments on the applicability of the comprehensive set of average particle emission factors used in this inventory, for developing ultrafine particle (particle number and particle mass inventories in other developed countries.

  11. Creation and evolution of excited states in α particle tracks in anthracene crystals

    International Nuclear Information System (INIS)

    Klein, G.

    1977-01-01

    The kinematics of excited states in anthracene crystals bombarded by 5MeV α particles is studied. The elementary processes which account for the transitions from the primary excited states to the lowest singlet S 1 and triplet T 1 excited states is described. The equation governing the evolution of the S 1 and T 1 excitons in the α particle track are then solved, and the scintillation decay curve is calculated. This calculated result is in good agreement with all available experimental results. The experimental part of this work are scintillation decay curves measurements. The scintillation decay was measured between 0.5nsec and 40μsec. The influence of the initial very fast singlet excitons quenching by triplet excitons can be seen in the beginning of scintillation. The delayed component is described by the triplet excitons kinematics. The magnetic field effect on the scintillation was investigated. This effect is attributed to an effect on the T 1 -T 1 annihilation and an effect on the triplet excitons quenching by radicals which are formed in the α particle track

  12. PTRACK: A particle tracking program for evaluation travel path/travel time uncertainties

    International Nuclear Information System (INIS)

    Thompson, B.M.; Campbell, J.E.; Longsine, D.E.

    1987-12-01

    PTRACK is a model which tracks the path of a radionuclide particle released from a nuclear waste repository into a ground-water flow system in a two-dimensional representation of stratified geologic medium. The code calculates the time required for the particle to travel from the release point (the edge of the disturbed zone) to the specified horizontal or vertical boundary (the accessible environment). The physical properties of the geologic setting and the ground-water flow system can be treated as fixed values or as random variables sampled from their respective probability distributions. In the latter case, PTRACK assigns a sampled value for each parameter and tracks a particle for this trial (realization) of the system. Repeated realizations allow the effects of parameter uncertainty on travel paths/travel times to be quantified. The code can also calculate partial correlation coefficients between dependent variables and independent variables, which are useful in identifying important independent variables. This documentation describes the mathematical basis for the model, the algorithms and solution techniques used, and the computer code design. It also contains a detailed user's manual. The implementation of PTRACK is verified with several systems for which solutions have been calculated by hand. The integration of PTRACK with a Latin hypercube sampling (LHS) code is also discussed, although other sampling methods can be employed in place of LHS. 11 refs., 14 figs., 22 tabs

  13. 3D monolithically stacked CMOS active pixel sensor detectors for particle tracking applications

    International Nuclear Information System (INIS)

    Passeri, D; Placidi, P; Servoli, L; Meroli, S; Magalotti, D; Marras, A

    2012-01-01

    In this work we propose an innovative approach to particle tracking based on CMOS Active Pixel Sensors layers, monolithically integrated in an all-in-one chip featuring multiple, stacked, fully functional detector layers capable to provide momentum measurement (particle impact point and direction) within a single detector. This will results in a very low material detector, thus dramatically reducing multiple scattering issues. To this purpose, we rely on the capabilities of the CMOS vertical scale integration (3D IC) technology. A first chip prototype has been fabricated within a multi-project run using a 130 nm CMOS Chartered/Tezzaron technology, featuring two layers bonded face-to-face. Tests have been carried out on full 3D structures, providing the functionalities of both tiers. To this purpose, laser scans have been carried out using highly focussed spot size obtaining coincidence responses of the two layers. Tests have been made as well with X-ray sources in order to calibrate the response of the sensor. Encouraging results have been found, fostering the suitability of both the adopted 3D-IC vertical scale fabrication technology and the proposed approach for particle tracking applications.

  14. Localisation and identification of radioactive particles in solid samples by means of a nuclear track technique

    International Nuclear Information System (INIS)

    Boehnke, Antje; Treutler, Hanns-Christian; Freyer, Klaus; Schubert, Michael; Holger Weiss

    2005-01-01

    This study is aimed to develop a generally applicable methodology of investigation that can be used for the localisation of single alpha-active particles in solid samples, such as industrial dust or natural soils, sediments and rocks by autoradiography using solid-state nuclear track detectors. The developed technique allows the detection of local enrichments of alpha-emitters in any solid material. The results of such an investigation are of interest from technical, biological and environmental points of view. The idea behind the methodology is to locate the position of alpha-active spots in a sample by attaching the track detector to the sample in a defined manner, thoroughly described in the paper. The located alpha-active particles are subsequently analysed by an electron microscope and an electron microprobe. An example of the application of this methodology is also given. An ultra-fine -grained ore-processing residue, which causes serious environmental pollution in the respective mining district and thus limits possible land use and affects quality of life in the area, was examined using the described technique. The investigation revealed considerable amounts of alpha-active particles in this material

  15. Compact 3D Camera for Shake-the-Box Particle Tracking

    Science.gov (United States)

    Hesseling, Christina; Michaelis, Dirk; Schneiders, Jan

    2017-11-01

    Time-resolved 3D-particle tracking usually requires the time-consuming optical setup and calibration of 3 to 4 cameras. Here, a compact four-camera housing has been developed. The performance of the system using Shake-the-Box processing (Schanz et al. 2016) is characterized. It is shown that the stereo-base is large enough for sensible 3D velocity measurements. Results from successful experiments in water flows using LED illumination are presented. For large-scale wind tunnel measurements, an even more compact version of the system is mounted on a robotic arm. Once calibrated for a specific measurement volume, the necessity for recalibration is eliminated even when the system moves around. Co-axial illumination is provided through an optical fiber in the middle of the housing, illuminating the full measurement volume from one viewing direction. Helium-filled soap bubbles are used to ensure sufficient particle image intensity. This way, the measurement probe can be moved around complex 3D-objects. By automatic scanning and stitching of recorded particle tracks, the detailed time-averaged flow field of a full volume of cubic meters in size is recorded and processed. Results from an experiment at TU-Delft of the flow field around a cyclist are shown.

  16. Rotational Kinematics Model Based Adaptive Particle Filter for Robust Human Tracking in Thermal Omnidirectional Vision

    Directory of Open Access Journals (Sweden)

    Yazhe Tang

    2015-01-01

    Full Text Available This paper presents a novel surveillance system named thermal omnidirectional vision (TOV system which can work in total darkness with a wild field of view. Different to the conventional thermal vision sensor, the proposed vision system exhibits serious nonlinear distortion due to the effect of the quadratic mirror. To effectively model the inherent distortion of omnidirectional vision, an equivalent sphere projection is employed to adaptively calculate parameterized distorted neighborhood of an object in the image plane. With the equivalent projection based adaptive neighborhood calculation, a distortion-invariant gradient coding feature is proposed for thermal catadioptric vision. For robust tracking purpose, a rotational kinematic modeled adaptive particle filter is proposed based on the characteristic of omnidirectional vision, which can handle multiple movements effectively, including the rapid motions. Finally, the experiments are given to verify the performance of the proposed algorithm for human tracking in TOV system.

  17. Dual-Channel Particle Filter Based Track-Before-Detect for Monopulse Radar

    Directory of Open Access Journals (Sweden)

    Fei Cai

    2014-01-01

    Full Text Available A particle filter based track-before-detect (PF-TBD algorithm is proposed for the monopulse high pulse repetition frequency (PRF pulse Doppler radar. The actual measurement model is adopted, in which the range is highly ambiguous and the sum and difference channels exist in parallel. A quantization method is used to approximate the point spread function to reduce the computation load. The detection decisions of the PF-TBD are fed to a binary integrator to further improve the detection performance. Simulation results show that the proposed algorithm can detect and track the low SNR target efficiently. The detection performance is improved significantly for both the single frame and the multiframe detection compared with the classical detector. A performance comparison with the PF-TBD using sum channel only is also supplied.

  18. Strategy for fitting source strength and reconstruction procedure in radioactive particle tracking

    International Nuclear Information System (INIS)

    Mosorov, Volodymyr

    2015-01-01

    The Radioactive Particle Tracking (RPT) technique is widely applied to study the dynamic properties of flows inside a reactor. Usually, a single radioactive particle that is neutrally buoyant with respect to the phase is used as a tracker. The particle moves inside a 3D volume of interest, and its positions are determined by an array of scintillation detectors, which count the incoming photons. The particle position coordinates are calculated by using a reconstruction procedure that solves a minimization problem between the measured counts and calibration data. Although previous studies have described the influence of specified factors on the RPT resolution and sensitivities, the question of how to choose an appropriate source strength and reconstruction procedure for the given RPT setup remains an unsolved problem. This work describes and applies the original strategy for fitting both the source strength and the sampling time interval to a specified RPT setup to guarantee a required accuracy of measurements. Additionally, the measurement accuracy of an RPT setup can be significantly increased by changing the reconstruction procedure. The results of the simulations, based on the Monte Carlo approach, have demonstrated that the proposed strategy allows for the successful implementation of the As Low As Reasonably Achievable (ALARA) principle when designing the RPT setup. The limitations and drawbacks of the proposed procedure are also presented. - Highlights: • We develop an original strategy for fitting source strength and measurement time interval in radioactive particle tracking (RPT) technique. • The proposed strategy allows successfully to implement the ALAPA (As Low As Reasonably Achievable) principle in designing of a RPT setup. • Measurement accuracy of a RPT setup can be significantly increased by improvement of the reconstruction procedure. • The algorithm can be applied to monitor the motion of the radioactive tracer in a reactor

  19. Time-resolved large-scale volumetric pressure fields of an impinging jet from dense Lagrangian particle tracking

    Science.gov (United States)

    Huhn, F.; Schanz, D.; Manovski, P.; Gesemann, S.; Schröder, A.

    2018-05-01

    Time-resolved volumetric pressure fields are reconstructed from Lagrangian particle tracking with high seeding concentration using the Shake-The-Box algorithm in a perpendicular impinging jet flow with exit velocity U=4 m/s (Re˜ 36,000) and nozzle-plate spacing H/D=5. Helium-filled soap bubbles are used as tracer particles which are illuminated with pulsed LED arrays. A large measurement volume has been covered (cloud of tracked particles in a volume of 54 L, ˜ 180,000 particles). The reconstructed pressure field has been validated against microphone recordings at the wall with high correlation coefficients up to 0.88. In a reduced measurement volume (13 L), dense Lagrangian particle tracking is shown to be feasable up to the maximal possible jet velocity of U=16 m/s.

  20. Rapid, topology-based particle tracking for high-resolution measurements of large complex 3D motion fields.

    Science.gov (United States)

    Patel, Mohak; Leggett, Susan E; Landauer, Alexander K; Wong, Ian Y; Franck, Christian

    2018-04-03

    Spatiotemporal tracking of tracer particles or objects of interest can reveal localized behaviors in biological and physical systems. However, existing tracking algorithms are most effective for relatively low numbers of particles that undergo displacements smaller than their typical interparticle separation distance. Here, we demonstrate a single particle tracking algorithm to reconstruct large complex motion fields with large particle numbers, orders of magnitude larger than previously tractably resolvable, thus opening the door for attaining very high Nyquist spatial frequency motion recovery in the images. Our key innovations are feature vectors that encode nearest neighbor positions, a rigorous outlier removal scheme, and an iterative deformation warping scheme. We test this technique for its accuracy and computational efficacy using synthetically and experimentally generated 3D particle images, including non-affine deformation fields in soft materials, complex fluid flows, and cell-generated deformations. We augment this algorithm with additional particle information (e.g., color, size, or shape) to further enhance tracking accuracy for high gradient and large displacement fields. These applications demonstrate that this versatile technique can rapidly track unprecedented numbers of particles to resolve large and complex motion fields in 2D and 3D images, particularly when spatial correlations exist.

  1. Impact of the track structure of heavy charged particles on cytogenetic damage in human blood lymphocytes

    Science.gov (United States)

    Lee, Ryonfa; Nasonova, Elena; Sommer, Sylwetster; Hartel, Carola; Durante, Marco; Ritter, Sylvia

    In space, astronauts are unavoidably exposed to charged particles from protons to irons. For a better estimate of the health risks of astronauts, further knowledge on the biological effects of charged particles, in particular the induction of cytogenetic damage is required. One im-portant factor that determines the biological response is the track structure of particles, i.e. their microscopic dose deposition in cells. The aim of the present study was to assess the influence of track structure of heavy ions on the yield and the quality of cytogenetic damage in human peripheral blood lymphocytes representing normal tissue. Cells were irradiated with 9.5 MeV/u C-ions or 990 MeV/u Fe-ions which have a comparable LET (175 keV/µm and 155 keV/µm, respectively) but a different track radius (2.3 and 6200 µm, respectively). When aberrations were analyzed in first cycle metaphases collected at different post-irradiation times (48-84 h) following fluorescence plus Giemsa staining, an increase in the aberration yield with sampling time was observed for both radiation qualities reflecting a damage dependent cell cycle progression delay to mitosis. The pronounced differences in the aberration frequency per cell are attributable to the stochastic distribution of particle traversals per cell nucleus (radius: 2.8 µm). Following C-ion exposure we found a high fraction of non-aberrant cells in samples collected at 48 h which represent cells not directly hit by a particle and slightly damaged cells that successfully repaired the induced lesions. In addition, at higher C-ion fluences the aberra-tion yield saturated, suggesting that a fraction of lymphocytes receiving multiple particle hits is not able to reach mitosis. On the other hand, at 48 h after Fe-ion exposure the proportion of non-aberrant cells is lower than after C-ion irradiation clearly reflecting the track structure of high energy particles (i.e. more homogeneous dose deposition compared to low energy C

  2. Investigating Particle Transport and Fate in the Sacramento–San Joaquin Delta Using a Particle-Tracking Model

    Directory of Open Access Journals (Sweden)

    Wim J. Kimmerer

    2008-02-01

    Full Text Available Movements of pelagic organisms in the tidal freshwater regions of estuaries are sensitive to the movements of water. In the Sacramento-San Joaquin Delta—the tidal freshwater reach of the San Francisco Estuary—such movements are key to losses of fish and other organisms to entrainment in large water-export facilities. We used the Delta Simulation Model-2 hydrodynamic model and its particle tracking model to examine the principal determinants of entrainment losses to the export facilities and how movement of fish through the Delta may be influenced by flow. We modeled 936 scenarios for 74 different conditions of flow, diversions, tides, and removable barriers to address seven questions regarding hydrodynamics and entrainment risk in the Delta. Tide had relatively small effects on fate and residence time of particles. Release location and hydrology interacted to control particle fate and residence time. The ratio of flow into the export facilities to freshwater flow into the Delta (export:inflow or EI ratio was a useful predictor of entrainment probability if the model were allowed to run long enough to resolve particles’ ultimate fate. Agricultural diversions within the Delta increased total entrainment losses and altered local movement patterns. Removable barriers in channels of the southern Delta and gates in the Delta Cross Channel in the northern Delta had minor effects on particles released in the rivers above these channels. A simulation of losses of larval delta smelt showed substantial cumulative losses depending on both inflow and export flow. A simulation mimicking mark–recapture experiments on Chinook salmon smolts suggested that both inflow and export flow may be important factors determining survival of salmon in the upper estuary. To the extent that fish behave passively, this model is probably suitable for describing Delta-wide movement, but it is less suitable for smaller scales or alternative configurations of the Delta.

  3. Proceedings of the 3. conference: Particle track membranes and their applications

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    The materials of the 3rd conference on Particle Track Membranes and Theirs Applications present actual state of art in the topic. The leading world institutions have presented their works on the technology of PTM production by interaction of ion beams with polymeric foils. The broad spectrum of PTM membranes have been shown, their properties have been described and their applicability discussed. A number of possible applications of PTM and also already realized in industry, medicine, biology and physical investigations have been presented. 29 lectures have been made in the course of conference.

  4. A novel CMOS sensor with in-pixel auto-zeroed discrimination for charged particle tracking

    International Nuclear Information System (INIS)

    Degerli, Y; Guilloux, F; Orsini, F

    2014-01-01

    With the aim of developing fast and granular Monolithic Active Pixels Sensors (MAPS) as new charged particle tracking detectors for high energy physics experiments, a new rolling shutter binary pixel architecture concept (RSBPix) with in-pixel correlated double sampling, amplification and discrimination is presented. The discriminator features auto-zeroing in order to compensate process-related transistor mismatches. In order to validate the pixel, a first monolithic CMOS sensor prototype, including a pixel array of 96 × 64 pixels, has been designed and fabricated in the Tower-Jazz 0.18 μm CMOS Image Sensor (CIS) process. Results of laboratory tests are presented

  5. Proceedings of the 3. conference: Particle track membranes and their applications

    International Nuclear Information System (INIS)

    1994-01-01

    The materials of the 3rd conference on Particle Track Membranes and Theirs Applications present actual state of art in the topic. The leading world institutions have presented their works on the technology of PTM production by interaction of ion beams with polymeric foils. The broad spectrum of PTM membranes have been shown, their properties have been described and their applicability discussed. A number of possible applications of PTM and also already realized in industry, medicine, biology and physical investigations have been presented. 29 lectures have been made in the course of conference

  6. Development and applications of single particle orientation and rotational tracking in dynamic systems

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Kuangcai [Iowa State Univ., Ames, IA (United States)

    2016-02-19

    The goal of this study is to help with future data analysis and experiment designs in rotational dynamics research using DIC-based SPORT technique. Most of the current studies using DIC-based SPORT techniques are technical demonstrations. Understanding the mechanisms behind the observed rotational behaviors of the imaging probes should be the focus of the future SPORT studies. More efforts are still needed in the development of new imaging probes, particle tracking methods, instrumentations, and advanced data analysis methods to further extend the potential of DIC-based SPORT technique.

  7. Real-time tumor tracking using implanted positron emission markers: Concept and simulation study

    International Nuclear Information System (INIS)

    Xu Tong; Wong, Jerry T.; Shikhaliev, Polad M.; Ducote, Justin L.; Al-Ghazi, Muthana S.; Molloi, Sabee

    2006-01-01

    The delivery accuracy of radiation therapy for pulmonary and abdominal tumors suffers from tumor motion due to respiration. Respiratory gating should be applied to avoid the use of a large target volume margin that results in a substantial dose to the surrounding normal tissue. Precise respiratory gating requires the exact spatial position of the tumor to be determined in real time during treatment. Usually, fiducial markers are implanted inside or next to the tumor to provide both accurate patient setup and real-time tumor tracking. However, current tumor tracking systems require either substantial x-ray exposure to the patient or large fiducial markers that limit the value of their application for pulmonary tumors. We propose a real-time tumor tracking system using implanted positron emission markers (PeTrack). Each marker will be labeled with low activity positron emitting isotopes, such as 124 I, 74 As, or 84 Rb. These isotopes have half-lives comparable to the duration of radiation therapy (from a few days to a few weeks). The size of the proposed PeTrack marker will be 0.5-0.8 mm, which is approximately one-half the size of markers currently employed in other techniques. By detecting annihilation gammas using position-sensitive detectors, multiple positron emission markers can be tracked in real time. A multimarker localization algorithm was developed using an Expectation-Maximization clustering technique. A Monte Carlo simulation model was developed for the PeTrack system. Patient dose, detector sensitivity, and scatter fraction were evaluated. Depending on the isotope, the lifetime dose from a 3.7 MBq PeTrack marker was determined to be 0.7-5.0 Gy at 10 mm from the marker. At the center of the field of view (FOV), the sensitivity of the PeTrack system was 240-320 counts/s per 1 MBq marker activity within a 30 cm thick patient. The sensitivity was reduced by 45% when the marker was near the edge of the FOV. The scatter fraction ranged from 12% ( 124 I, 74 As

  8. Test Method for High β Particle Emission Rate of 63Ni Source Plate

    OpenAIRE

    ZHANG Li-feng

    2015-01-01

    For the problem of measurement difficulties of β particle emission rate of Ni-63 source plate used for Ni-63 betavoltaic battery, a relative test method of scintillation current method was erected according to the measurement principle of scintillation detector.β particle emission rate of homemade Ni-63 source plate was tested by the method, and the test results were analysed and evaluated, it was initially thought that scintillation current method was a feasible way of testing β particle emi...

  9. Guidelines for the fitting of anomalous diffusion mean square displacement graphs from single particle tracking experiments.

    Directory of Open Access Journals (Sweden)

    Eldad Kepten

    Full Text Available Single particle tracking is an essential tool in the study of complex systems and biophysics and it is commonly analyzed by the time-averaged mean square displacement (MSD of the diffusive trajectories. However, past work has shown that MSDs are susceptible to significant errors and biases, preventing the comparison and assessment of experimental studies. Here, we attempt to extract practical guidelines for the estimation of anomalous time averaged MSDs through the simulation of multiple scenarios with fractional Brownian motion as a representative of a large class of fractional ergodic processes. We extract the precision and accuracy of the fitted MSD for various anomalous exponents and measurement errors with respect to measurement length and maximum time lags. Based on the calculated precision maps, we present guidelines to improve accuracy in single particle studies. Importantly, we find that in some experimental conditions, the time averaged MSD should not be used as an estimator.

  10. PARTRACK - A particle tracking algorithm for transport and dispersion of solutes in a sparsely fractured rock

    International Nuclear Information System (INIS)

    Svensson, Urban

    2001-04-01

    A particle tracking algorithm, PARTRACK, that simulates transport and dispersion in a sparsely fractured rock is described. The main novel feature of the algorithm is the introduction of multiple particle states. It is demonstrated that the introduction of this feature allows for the simultaneous simulation of Taylor dispersion, sorption and matrix diffusion. A number of test cases are used to verify and demonstrate the features of PARTRACK. It is shown that PARTRACK can simulate the following processes, believed to be important for the problem addressed: the split up of a tracer cloud at a fracture intersection, channeling in a fracture plane, Taylor dispersion and matrix diffusion and sorption. From the results of the test cases, it is concluded that PARTRACK is an adequate framework for simulation of transport and dispersion of a solute in a sparsely fractured rock

  11. Particle tracking for unsaturated-zone groundwater travel time analysis at Yucca Mountain

    International Nuclear Information System (INIS)

    Arnold, B.W.; Skinner, L.H.; Zieman, N.B.

    1995-01-01

    A particle tracking code developed to link numerical modeling of groundwater flow in the unsaturated zone to the analysis of groundwater travel times was used to produce preliminary estimates of the distribution of groundwater-travel time from a potential repository at Yucca Mountain, Nevada to the water table. Compliance with 10CFR960 requires the demonstration that pre-waste-emplacement groundwater travel time from the disturbed zone to the accessible environment is expected to exceed 1,000 years along any path of likely and significant radionuclide travel. The use of multiple particles and multiple realizations of the geology and parameter distributions in the unsaturated zone allows a probabilistic analysis of groundwater travel times that may be applied for evaluating compliance

  12. Stardust: An overview of the tracks in the aerogel (calibration, classification and particle size distribution)

    Science.gov (United States)

    Burchell, M. J.; Fairey, S. J.; Hörz, F.; Wozniakiewicz, P. J.; Kearsley, A. T.; Brownlee, D. E.; See, T. H.; Westphal, A.; Green, S. F.; Trigo-Rodríguez, J. M.

    2007-08-01

    The NASA Stardust mission (1) to comet P/Wild-2 returned to Earth in January 2006 carrying a cargo of dust captured in aerogel and residue rich craters in aluminium foils (2). Aerogel is a low density, highly porous material (3, 4). The aerogel that was carried by Stardust in the cometary dust collector trays was a SiO2 aerogel, arranged in blocks 4 cm x 2 cm (front face) and 3 cm deep, with density which varied smoothly from 5 mg/cc at the front surface to 50 mg/cc at the rear surface (5). A first look at the whole cometary dust tray at NASA showed that there were many impact features in the aerogel. During the Preliminary Examination period about 15% of the aerogel blocks were removed and studied in detail. The tracks observed in these blocks were classified into three groups: Type A were long relatively narrow tracks of "carrot shape", Type B tracks were again fairly long but had a large bulbous region at the top and appear like the bowl and stem of a flute champagne glass, Type C were purely bulbous tracks with no stem emerging beneath them. Data on the sizes and relative populations of these tracks will be given (also see (6)) along with a discussion of their implications for impactor composition. Laboratory calibrations of the impacts in aerogel have been carried out using glass beads and these permit an estimate of the size of the impactor based on the measured track properties (6). When applied to the tracks measured in the Stardust aerogel, a cumulative particle size distribution was obtained (7) which will be discussed. References (1) Brownlee D.E. et al., J. Geophys. Res. 108, E10, 8111, 2003. (2) Brownlee D.E. et al., Science 314, 1711 - 1716. 2006. (3) Kistler S.S., Nature 127, 741, 1931. (4) Burchell M.J. et al., Ann. Rev. Earth. Planet. Sci. 34, 385 - 418, 2006. (5) Tsou P. et al., J. Geophys. Res. 108(E10), 8113, 2003. (6) Burchell et al., submitted to MAPS, 2006. (7) Hörz F. et al., Science 314, 1716 - 1719, 2006.

  13. Detection alpha particles and Cf-252 fission fragments with track solid detectors and with surface barrier detectors: efficiency determination

    International Nuclear Information System (INIS)

    Khouri, M.T.F.C.; Koskinas, M.F.; Andrade, C. de; Vilela, E.C.; Hinostroza, H.; Kaschiny, J.R.A.; Costa, M.S. da; Rizzo, P.; Santos, W.M.S.

    1990-01-01

    The technique of particle detection by solid track detectors, types of developing and analysis of results are presented. Efficiency measurements of alpha particle detection with Makrofol e and surface barrier detector are made. Detection of Cf-252 fission fragments is shown. (L.C.)

  14. Detection of alpha particles and Cf-252 fission fragments with solid track detectors and surface barrier detector. Efficiency calculation

    International Nuclear Information System (INIS)

    Khouri, M.T.F.C.; Koskinas, M.F.; Andrade, C. de; Vilela, E.C.; Hinostroza, H.; Kaschiny, J.E.A.; Costa, M.S. da; Rizzo, P.; Santos, W.M.S.

    1990-01-01

    A technique for particle detection by using track solid detector and also types of revealing and result analysis are presented concerned to Cf-252 fission fragments detection. Measurements of alpha particles detection efficiency using Makrofol E and surface barrier detector are performed. (L.C.J.A.)

  15. An Efficient and Robust Method for Lagrangian Magnetic Particle Tracking in Fluid Flow Simulations on Unstructured Grids

    NARCIS (Netherlands)

    Cohen Stuart, D.C.; Kleijn, C.R.; Kenjeres, S.

    2010-01-01

    In this paper we report on a newly developed particle tracking scheme for fluid flow simulations on 3D unstructured grids, aiming to provide detailed insights in the particle behaviour in complex geometries. A possible field of applications is the Magnetic Drug Targeting (MDT) technique, on which

  16. Light charged particle emission in heavy-ion reactions – What have ...

    Indian Academy of Sciences (India)

    coincidence with gamma rays, fission products, evaporation residues have yielded interesting results which bring out the influence of nuclear structure, nuclear mean field and dynamics on the emission of these particles. Keywords. Light charged particles; heavy-ion induced reactions; particle spectra and angular distri-.

  17. Modifications of the optical properties for DAM-ADC nuclear track detector exposed to alpha particles

    Science.gov (United States)

    Rammah, Y. S.; Awad, E. M.

    2018-05-01

    Modifications of the optical properties of diallyl maleate-allyl diglycol carbonate (DAM-ADC) nuclear detector induced by alpha particles are described. DAM-ADC samples were irradiated perpendicularly by thin 241Am disk source that emits alpha particles with 5.48 MeV. The optical absorption has been measured using the ultraviolet-visible (UV-1100) spectroscopy. It was found that DAM-ADC polymer shows substantial modifications in its optical characteristics upon irradiated with alpha particles with different energies. The optical energy band gap (Egap) for the detector was calculated for the direct and the indirect allowed transitions in K-space using two approaches (Tauc's model and absorption spectrum fitting (ASF) method). Urbach's energy (Ea), number of carbon atoms per conjugated length (N), number of carbon atoms per cluster (M), and refractive index (n) for the present samples were determined. Results reveal that the values of energy gap in direct transition are greater than those of indirect, before and after irradiation. (Egap), (Ea), (N), (M), and (n) of the present samples are changed significantly with irradiation time and value of alpha energy. Results reflect the possibility of using DAM-ADC polymer track detectors to estimate alpha particle energies using the variation of the absorbance.

  18. High-precision tracking of brownian boomerang colloidal particles confined in quasi two dimensions.

    Science.gov (United States)

    Chakrabarty, Ayan; Wang, Feng; Fan, Chun-Zhen; Sun, Kai; Wei, Qi-Huo

    2013-11-26

    In this article, we present a high-precision image-processing algorithm for tracking the translational and rotational Brownian motion of boomerang-shaped colloidal particles confined in quasi-two-dimensional geometry. By measuring mean square displacements of an immobilized particle, we demonstrate that the positional and angular precision of our imaging and image-processing system can achieve 13 nm and 0.004 rad, respectively. By analyzing computer-simulated images, we demonstrate that the positional and angular accuracies of our image-processing algorithm can achieve 32 nm and 0.006 rad. Because of zero correlations between the displacements in neighboring time intervals, trajectories of different videos of the same particle can be merged into a very long time trajectory, allowing for long-time averaging of different physical variables. We apply this image-processing algorithm to measure the diffusion coefficients of boomerang particles of three different apex angles and discuss the angle dependence of these diffusion coefficients.

  19. A multi-time-step noise reduction method for measuring velocity statistics from particle tracking velocimetry

    Science.gov (United States)

    Machicoane, Nathanaël; López-Caballero, Miguel; Bourgoin, Mickael; Aliseda, Alberto; Volk, Romain

    2017-10-01

    We present a method to improve the accuracy of velocity measurements for fluid flow or particles immersed in it, based on a multi-time-step approach that allows for cancellation of noise in the velocity measurements. Improved velocity statistics, a critical element in turbulent flow measurements, can be computed from the combination of the velocity moments computed using standard particle tracking velocimetry (PTV) or particle image velocimetry (PIV) techniques for data sets that have been collected over different values of time intervals between images. This method produces Eulerian velocity fields and Lagrangian velocity statistics with much lower noise levels compared to standard PIV or PTV measurements, without the need of filtering and/or windowing. Particle displacement between two frames is computed for multiple different time-step values between frames in a canonical experiment of homogeneous isotropic turbulence. The second order velocity structure function of the flow is computed with the new method and compared to results from traditional measurement techniques in the literature. Increased accuracy is also demonstrated by comparing the dissipation rate of turbulent kinetic energy measured from this function against previously validated measurements.

  20. Parallelized Kalman-Filter-Based Reconstruction of Particle Tracks on Many-Core Architectures

    Energy Technology Data Exchange (ETDEWEB)

    Cerati, Giuseppe [Fermilab; Elmer, Peter [Princeton U.; Krutelyov, Slava [UC, San Diego; Lantz, Steven [Cornell U., Phys. Dept.; Lefebvre, Matthieu [Princeton U.; Masciovecchio, Mario [UC, San Diego; McDermott, Kevin [Cornell U., Phys. Dept.; Riley, Daniel [Cornell U., Phys. Dept.; Tadel, Matevž [UC, San Diego; Wittich, Peter [Cornell U., Phys. Dept.; Würthwein, Frank [UC, San Diego; Yagil, Avi [UC, San Diego

    2017-11-16

    Faced with physical and energy density limitations on clock speed, contemporary microprocessor designers have increasingly turned to on-chip parallelism for performance gains. Examples include the Intel Xeon Phi, GPGPUs, and similar technologies. Algorithms should accordingly be designed with ample amounts of fine-grained parallelism if they are to realize the full performance of the hardware. This requirement can be challenging for algorithms that are naturally expressed as a sequence of small-matrix operations, such as the Kalman filter methods widely in use in high-energy physics experiments. In the High-Luminosity Large Hadron Collider (HL-LHC), for example, one of the dominant computational problems is expected to be finding and fitting charged-particle tracks during event reconstruction; today, the most common track-finding methods are those based on the Kalman filter. Experience at the LHC, both in the trigger and offline, has shown that these methods are robust and provide high physics performance. Previously we reported the significant parallel speedups that resulted from our efforts to adapt Kalman-filter-based tracking to many-core architectures such as Intel Xeon Phi. Here we report on how effectively those techniques can be applied to more realistic detector configurations and event complexity.

  1. Single particle tracking reveals spatial and dynamic organization of the Escherichia coli biofilm matrix

    International Nuclear Information System (INIS)

    Birjiniuk, Alona; Doyle, Patrick S; Billings, Nicole; Ribbeck, Katharina; Nance, Elizabeth; Hanes, Justin

    2014-01-01

    Biofilms are communities of surface-adherent bacteria surrounded by secreted polymers known as the extracellular polymeric substance. Biofilms are harmful in many industries, and thus it is of great interest to understand their mechanical properties and structure to determine ways to destabilize them. By performing single particle tracking with beads of varying surface functionalization it was found that charge interactions play a key role in mediating mobility within biofilms. With a combination of single particle tracking and microrheological concepts, it was found that Escherichia coli biofilms display height dependent charge density that evolves over time. Statistical analyses of bead trajectories and confocal microscopy showed inter-connecting micron scale channels that penetrate throughout the biofilm, which may be important for nutrient transfer through the system. This methodology provides significant insight into a particular biofilm system and can be applied to many others to provide comparisons of biofilm structure. The elucidation of structure provides evidence for the permeability of biofilms to microscale objects, and the ability of a biofilm to mature and change properties over time. (paper)

  2. 3D dual-virtual-pinhole assisted single particle tracking microscopy

    International Nuclear Information System (INIS)

    Ma, Ye; Wang, Yifan; Zhou, Xin; Kuang, Cuifang; Liu, Xu

    2014-01-01

    We propose a novel approach for high-speed, three-dimensional single particle tracking (SPT), which we refer to as dual-virtual-pinhole assisted single particle tracking microscopy (DVPaSPTM). DVPaSPTM system can obtain axial information of the sample without optical or mechanical depth scanning, so as to offer numbers of advantages including faster imaging, improved efficiency and a great reduction of photobleaching and phototoxicity. In addition, by the use of the dual-virtual-pinhole, the effect that the quantum yield exerts to the fluorescent signal can be eliminated, which makes the measurement independent of the surroundings and increases the accuracy of the result. DVPaSPTM system measures the intensity within different virtual pinholes of which the radii are given by the host computer. Axial information of fluorophores can be measured by the axial response curve through the ratio of intensity signals. We demonstrated the feasibility of the proposed method by a series of experiments. Results showed that the standard deviation of the axial measurement was 19.2 nm over a 2.5 μm range with 30 ms temporal resolution. (papers)

  3. Dynamic tracking of a nano-particle in fluids under Brownian motions

    International Nuclear Information System (INIS)

    Wu, X C; Zhang, W J; Sammynaiken, R

    2008-01-01

    Most previous studies on H 2 S were devoted to its toxic effects. However, recently there have been increasing evidences which show that endogenously generated H 2 S in specific mammalian tissues has certain significant positive physiological effects such as a neuromodulator and vasorelaxant in a membrane receptor-independent manner. In order to know the functions of endogenous H 2 S, low concentration and high accuracy measurement of H 2 S is a must. Furthermore, this measurement is desired to be real-time and non-invasive. It is reported that low concentration and nano quantity of H 2 S can be detected in water solutions and sera using carbon nanotubes with the fluorescence by confocal laser scanning microscopy. However, because of the Brownian motion of the small particle (carbon nanotube), a control system must be developed to track the movement of the particle in fluids. In this paper, we present a study to track a carbon nanotube which absorbs H 2 S in water or serum using a Raman microscope or confocal laser scanning microscope. In particular, we developed a novel control system for this task. Simulation has shown that our system works very well.

  4. A novel robust and efficient algorithm for charge particle tracking in high background flux

    International Nuclear Information System (INIS)

    Fanelli, C; Cisbani, E; Dotto, A Del

    2015-01-01

    The high luminosity that will be reached in the new generation of High Energy Particle and Nuclear physics experiments implies large high background rate and large tracker occupancy, representing therefore a new challenge for particle tracking algorithms. For instance, at Jefferson Laboratory (JLab) (VA,USA), one of the most demanding experiment in this respect, performed with a 12 GeV electron beam, is characterized by a luminosity up to 10 39 cm -2 s -1 . To this scope, Gaseous Electron Multiplier (GEM) based trackers are under development for a new spectrometer that will operate at these high rates in the Hall A of JLab. Within this context, we developed a new tracking algorithm, based on a multistep approach: (i) all hardware - time and charge - information are exploited to minimize the number of hits to associate; (ii) a dedicated Neural Network (NN) has been designed for a fast and efficient association of the hits measured by the GEM detector; (iii) the measurements of the associated hits are further improved in resolution through the application of Kalman filter and Rauch- Tung-Striebel smoother. The algorithm is shortly presented along with a discussion of the promising first results. (paper)

  5. Principles and biophysical applications of single particle super-localization and rotational tracking

    Science.gov (United States)

    Gu, Yan

    While conventional Single Particle Tracking (SPT) techniques acquire 2D or 3D trajectories of particle probes, we have developed Single Particle Orientation and Rotational Tracking (SPORT) techniques to extract orientation and rotational information. Combined with DIC microscopy, the SPORT technique has been applied in biophysical studies, including membrane diffusion and intracellular transport. The rotational dynamics of nanoparticle vectors on live cell membranes was recorded and its influence on the fate of these nanoparticle vectors was elucidated. The rotational motions of gold nanorods with various surface modifiers were tracked continuously at a temporal resolution of 5 ms under a DIC microscope. We found that the rotational behaviors of gold nanorod vectors are strongly related to their surface charge, specific surface functional groups, and the availability of receptors on cell membranes. The study of rotational Brownian motion of nanoparticles on cell membranes will lead to a better understanding of the mechanisms of drug delivery and provide guidance in designing surface modification strategies for drug delivery vectors under various circumstances. To characterize the rotation mode of surface functionalized gold nanorods on cell membranes, the SPORT technique is combined with the correlation analysis of the bright and dark DIC intensities. The unique capabilities of visualizing and understanding rotational motions of functionalized nanoparticles on live cell membranes allow us to correlate rotational and translational dynamics in unprecedented detail and provide new insights for complex membrane processes, including electrostatic interactions, ligand-receptor binding, and lateral (confined and hopping) diffusion of membrane receptors. Surface-functionalized nanoparticles interact with the membrane in fundamentally different ways and exhibit distinct rotational modes. The early events of particle-membrane approach and attachment are directly visualized

  6. Principles and biophysical applications of single particle super-localization and rotational tracking

    Energy Technology Data Exchange (ETDEWEB)

    Gu, Yan [Iowa State Univ., Ames, IA (United States)

    2013-01-01

    While conventional Single Particle Tracking (SPT) techniques acquire 2D or 3D trajectories of particle probes, we have developed Single Particle Orientation and Rotational Tracking (SPORT) techniques to extract orientation and rotational information. Combined with DIC microscopy, the SPORT technique has been applied in biophysical studies, including membrane diffusion and intracellular transport. The rotational dynamics of nanoparticle vectors on live cell membranes was recorded and its influence on the fate of these nanoparticle vectors was elucidated. The rotational motions of gold nanorods with various surface modifiers were tracked continuously at a temporal resolution of 5 ms under a DIC microscope. We found that the rotational behaviors of gold nanorod vectors are strongly related to their surface charge, specific surface functional groups, and the availability of receptors on cell membranes. The study of rotational Brownian motion of nanoparticles on cell membranes will lead to a better understanding of the mechanisms of drug delivery and provide guidance in designing surface modification strategies for drug delivery vectors under various circumstances. To characterize the rotation mode of surface functionalized gold nanorods on cell membranes, the SPORT technique is combined with the correlation analysis of the bright and dark DIC intensities. The unique capabilities of visualizing and understanding rotational motions of functionalized nanoparticles on live cell membranes allow us to correlate rotational and translational dynamics in unprecedented detail and provide new insights for complex membrane processes, including electrostatic interactions, ligand-receptor binding, and lateral (confined and hopping) diffusion of membrane receptors. Surface-functionalized nanoparticles interact with the membrane in fundamentally different ways and exhibit distinct rotational modes. The early events of particle-membrane approach and attachment are directly visualized

  7. Validation of a particle tracking analysis method for the size determination of nano- and microparticles

    Science.gov (United States)

    Kestens, Vikram; Bozatzidis, Vassili; De Temmerman, Pieter-Jan; Ramaye, Yannic; Roebben, Gert

    2017-08-01

    Particle tracking analysis (PTA) is an emerging technique suitable for size analysis of particles with external dimensions in the nano- and sub-micrometre scale range. Only limited attempts have so far been made to investigate and quantify the performance of the PTA method for particle size analysis. This article presents the results of a validation study during which selected colloidal silica and polystyrene latex reference materials with particle sizes in the range of 20 nm to 200 nm were analysed with NS500 and LM10-HSBF NanoSight instruments and video analysis software NTA 2.3 and NTA 3.0. Key performance characteristics such as working range, linearity, limit of detection, limit of quantification, sensitivity, robustness, precision and trueness were examined according to recommendations proposed by EURACHEM. A model for measurement uncertainty estimation following the principles described in ISO/IEC Guide 98-3 was used for quantifying random and systematic variations. For nominal 50 nm and 100 nm polystyrene and a nominal 80 nm silica reference materials, the relative expanded measurement uncertainties for the three measurands of interest, being the mode, median and arithmetic mean of the number-weighted particle size distribution, varied from about 10% to 12%. For the nominal 50 nm polystyrene material, the relative expanded uncertainty of the arithmetic mean of the particle size distributions increased up to 18% which was due to the presence of agglomerates. Data analysis was performed with software NTA 2.3 and NTA 3.0. The latter showed to be superior in terms of sensitivity and resolution.

  8. Determining size-specific emission factors for environmental tobacco smoke particles

    Energy Technology Data Exchange (ETDEWEB)

    Klepeis, Neil E.; Apte, Michael G.; Gundel, Lara A.; Sextro, Richard G.; Nazaroff, William W.

    2002-07-07

    Because size is a major controlling factor for indoor airborne particle behavior, human particle exposure assessments will benefit from improved knowledge of size-specific particle emissions. We report a method of inferring size-specific mass emission factors for indoor sources that makes use of an indoor aerosol dynamics model, measured particle concentration time series data, and an optimization routine. This approach provides--in addition to estimates of the emissions size distribution and integrated emission factors--estimates of deposition rate, an enhanced understanding of particle dynamics, and information about model performance. We applied the method to size-specific environmental tobacco smoke (ETS) particle concentrations measured every minute with an 8-channel optical particle counter (PMS-LASAIR; 0.1-2+ micrometer diameters) and every 10 or 30 min with a 34-channel differential mobility particle sizer (TSI-DMPS; 0.01-1+ micrometer diameters) after a single cigarette or cigar was machine-smoked inside a low air-exchange-rate 20 m{sup 3} chamber. The aerosol dynamics model provided good fits to observed concentrations when using optimized values of mass emission rate and deposition rate for each particle size range as input. Small discrepancies observed in the first 1-2 hours after smoking are likely due to the effect of particle evaporation, a process neglected by the model. Size-specific ETS particle emission factors were fit with log-normal distributions, yielding an average mass median diameter of 0.2 micrometers and an average geometric standard deviation of 2.3 with no systematic differences between cigars and cigarettes. The equivalent total particle emission rate, obtained integrating each size distribution, was 0.2-0.7 mg/min for cigars and 0.7-0.9 mg/min for cigarettes.

  9. Visualisation of γH2AX Foci Caused by Heavy Ion Particle Traversal; Distinction between Core Track versus Non-Track Damage

    Science.gov (United States)

    Nakajima, Nakako Izumi; Brunton, Holly; Watanabe, Ritsuko; Shrikhande, Amruta; Hirayama, Ryoichi; Matsufuji, Naruhiro; Fujimori, Akira; Murakami, Takeshi; Okayasu, Ryuichi; Jeggo, Penny; Shibata, Atsushi

    2013-01-01

    Heavy particle irradiation produces complex DNA double strand breaks (DSBs) which can arise from primary ionisation events within the particle trajectory. Additionally, secondary electrons, termed delta-electrons, which have a range of distributions can create low linear energy transfer (LET) damage within but also distant from the track. DNA damage by delta-electrons distant from the track has not previously been carefully characterised. Using imaging with deconvolution, we show that at 8 hours after exposure to Fe (∼200 keV/µm) ions, γH2AX foci forming at DSBs within the particle track are large and encompass multiple smaller and closely localised foci, which we designate as clustered γH2AX foci. These foci are repaired with slow kinetics by DNA non-homologous end-joining (NHEJ) in G1 phase with the magnitude of complexity diminishing with time. These clustered foci (containing 10 or more individual foci) represent a signature of DSBs caused by high LET heavy particle radiation. We also identified simple γH2AX foci distant from the track, which resemble those arising after X-ray exposure, which we attribute to low LET delta-electron induced DSBs. They are rapidly repaired by NHEJ. Clustered γH2AX foci induced by heavy particle radiation cause prolonged checkpoint arrest compared to simple γH2AX foci following X-irradiation. However, mitotic entry was observed when ∼10 clustered foci remain. Thus, cells can progress into mitosis with multiple clusters of DSBs following the traversal of a heavy particle. PMID:23967070

  10. Particle Tracking Model for Suspended Sediment Transport and Streambed Clogging Under Losing and Gaining Conditions

    Science.gov (United States)

    Preziosi-Ribero, A.; Fox, A.; Packman, A. I.; Escobar-Vargas, J.; Donado-Garzon, L. D.; Li, A.; Arnon, S.

    2017-12-01

    Exchange of mass, momentum and energy between surface water and groundwater is a driving factor for the biology, ecology and chemistry of rivers and water bodies in general. Nonetheless, this exchange is dominated by different factors like topography, bed morphology, and large-scale hydraulic gradient. In the particular case of fine sediments like clay, conservative tracer modeling is impossible because they are trapped in river beds for long periods, thus the normal advection dispersion approach leads to errors and results do not agree with reality. This study proposes a numerical particle tracking model that represents the behavior of kaolinite in a sand flume, and how its deposition varies according to different flow conditions, namely losing and gaining flow. Since fine particles do not behave like solutes, kaolinite dynamics are represented using settling velocity and a filtration coefficient allowing the particles to be trapped in the bed. This approach allows us to use measurable parameters directly related with the fine particle features as size and shape, and hydraulic parameters. Results are then compared with experimental results from lab experiments obtained in a recirculating flume, in order to assess the impact of losing and gaining conditions on sediment transport and deposition. Furthermore, our model is able to identify the zones where kaolinite deposition concentrates over the flume due to the bed geometry, and later relate these results with clogging of the bed and hence changes in the bed's hydraulic conductivity. Our results suggest that kaolinite deposition is higher under losing conditions since the vertical velocity of the flow is added to the deposition velocity of the particles modeled. Moreover, the zones where kaolinite concentrates varies under different flow conditions due to the difference in pressure and velocity in the river bed.

  11. An Unscented Kalman-Particle Hybrid Filter for Space Object Tracking

    Science.gov (United States)

    Raihan A. V, Dilshad; Chakravorty, Suman

    2018-03-01

    Optimal and consistent estimation of the state of space objects is pivotal to surveillance and tracking applications. However, probabilistic estimation of space objects is made difficult by the non-Gaussianity and nonlinearity associated with orbital mechanics. In this paper, we present an unscented Kalman-particle hybrid filtering framework for recursive Bayesian estimation of space objects. The hybrid filtering scheme is designed to provide accurate and consistent estimates when measurements are sparse without incurring a large computational cost. It employs an unscented Kalman filter (UKF) for estimation when measurements are available. When the target is outside the field of view (FOV) of the sensor, it updates the state probability density function (PDF) via a sequential Monte Carlo method. The hybrid filter addresses the problem of particle depletion through a suitably designed filter transition scheme. To assess the performance of the hybrid filtering approach, we consider two test cases of space objects that are assumed to undergo full three dimensional orbital motion under the effects of J 2 and atmospheric drag perturbations. It is demonstrated that the hybrid filters can furnish fast, accurate and consistent estimates outperforming standard UKF and particle filter (PF) implementations.

  12. Physical characterization of the fine particle emissions from commercial aircraft engines during the Aircraft Particle Emissions eXperiment (APEX) 1-3

    Science.gov (United States)

    Kinsey, John S.; Dong, Yuanji; Williams, D. Craig; Logan, Russell

    2010-06-01

    The fine particulate matter (PM) emissions from nine commercial aircraft engine models were determined by plume sampling during the three field campaigns of the Aircraft Particle Emissions Experiment (APEX). Ground-based measurements were made primarily at 30 m behind the engine for PM mass and number concentration, particle size distribution, and total volatile matter using both time-integrated and continuous sampling techniques. The experimental results showed a PM mass emission index (EI) ranging from 10 to 550 mg kg -1 fuel depending on engine type and test parameters as well as a characteristic U-shaped curve of the mass EI with increasing fuel flow for the turbofan engines tested. Also, the Teflon filter sampling indicated that ˜40-80% of the total PM mass on a test-average basis was comprised of volatile matter (sulfur and organics) for most engines sampled. The number EIs, on the other hand, varied from ˜10 15 to 10 17 particles kg -1 fuel with the turbofan engines exhibiting a logarithmic decay with increasing fuel flow. Finally, the particle size distributions of the emissions exhibited a single primary mode that were lognormally distributed with a minor accumulation mode also observed at higher powers for all engines tested. The geometric (number) mean particle diameter ranged from 9.4 to 37 nm and the geometric standard deviation ranged from 1.3 to 2.3 depending on engine type, fuel flow, and test conditions.

  13. WE-D-BRF-01: FEATURED PRESENTATION - Investigating Particle Track Structures Using Fluorescent Nuclear Track Detectors and Monte Carlo Simulations

    International Nuclear Information System (INIS)

    Dowdell, S; Paganetti, H; Schuemann, J; Greilich, S; Zimmerman, F; Evans, C

    2014-01-01

    Purpose: To report on the efforts funded by the AAPM seed funding grant to develop the basis for fluorescent nuclear track detector (FNTD) based radiobiological experiments in combination with dedicated Monte Carlo simulations (MCS) on the nanometer scale. Methods: Two confocal microscopes were utilized in this study. Two FNTD samples were used to find the optimal microscope settings, one FNTD irradiated with 11.1 MeV/u Gold ions and one irradiated with 428.77 MeV/u Carbon ions. The first sample provided a brightly luminescent central track while the latter is used to test the capabilities to observe secondary electrons. MCS were performed using TOPAS beta9 version, layered on top of Geant4.9.6p02. Two sets of simulations were performed, one with the Geant4-DNA physics list and approximating the FNTDs by water, a second set using the Penelope physics list in a water-approximated FNTD and a aluminum-oxide FNTD. Results: Within the first half of the funding period, we have successfully established readout capabilities of FNTDs at our institute. Due to technical limitations, our microscope setup is significantly different from the approach implemented at the DKFZ, Germany. However, we can clearly reconstruct Carbon tracks in 3D with electron track resolution of 200 nm. A second microscope with superior readout capabilities will be tested in the second half of the funding period, we expect an improvement in signal to background ratio with the same the resolution.We have successfully simulated tracks in FNTDs. The more accurate Geant4-DNA track simulations can be used to reconstruct the track energy from the size and brightness of the observed tracks. Conclusion: We have achieved the goals set in the seed funding proposal: the setup of FNTD readout and simulation capabilities. We will work on improving the readout resolution to validate our MCS track structures down to the nanometer scales

  14. Refraction-compensated motion tracking of unrestrained small animals in positron emission tomography.

    Science.gov (United States)

    Kyme, Andre; Meikle, Steven; Baldock, Clive; Fulton, Roger

    2012-08-01

    Motion-compensated radiotracer imaging of fully conscious rodents represents an important paradigm shift for preclinical investigations. In such studies, if motion tracking is performed through a transparent enclosure containing the awake animal, light refraction at the interface will introduce errors in stereo pose estimation. We have performed a thorough investigation of how this impacts the accuracy of pose estimates and the resulting motion correction, and developed an efficient method to predict and correct for refraction-based error. The refraction model underlying this study was validated using a state-of-the-art motion tracking system. Refraction-based error was shown to be dependent on tracking marker size, working distance, and interface thickness and tilt. Correcting for refraction error improved the spatial resolution and quantitative accuracy of motion-corrected positron emission tomography images. Since the methods are general, they may also be useful in other contexts where data are corrupted by refraction effects. Crown Copyright © 2012. Published by Elsevier B.V. All rights reserved.

  15. Nondestructive Online Detection of Welding Defects in Track Crane Boom Using Acoustic Emission Technique

    Directory of Open Access Journals (Sweden)

    Yong Tao

    2014-04-01

    Full Text Available Nondestructive detection of structural component of track crane is a difficult and costly problem. In the present study, acoustic emission (AE was used to detect two kinds of typical welding defects, that is, welding porosity and incomplete penetration, in the truck crane boom. Firstly, a subsidiary test specimen with special preset welding defect was designed and added on the boom surface with the aid of steel plates to get the synchronous deformation of the main boom. Then, the AE feature information of the welding defect could be got without influencing normal operation of equipment. As a result, the rudimentary location analysis can be attained using the linear location method and the two kinds of welding defects can be distinguished clearly using AE characteristic parameters such as amplitude and centroid frequency. Also, through the comparison of two loading processes, we concluded that the signal produced during the first loading process was mainly caused by plastic deformation damage and during the second loading process the stress release and structure friction between sections in welding area are the main acoustic emission sources. Thus, the AE is an available tool for nondestructive online detection of latent welding defects of structural component of track crane.

  16. Time-resolved analysis of particle emissions from residential biomass combustion - Emissions of refractory black carbon, PAHs and organic tracers

    Science.gov (United States)

    Nielsen, Ingeborg E.; Eriksson, Axel C.; Lindgren, Robert; Martinsson, Johan; Nyström, Robin; Nordin, Erik Z.; Sadiktsis, Ioannis; Boman, Christoffer; Nøjgaard, Jacob K.; Pagels, Joakim

    2017-09-01

    Time-resolved particle emissions from a conventional wood stove were investigated with aerosol mass spectrometry to provide links between combustion conditions, emission factors, mixing state of refractory black carbon and implications for organic tracer methods. The addition of a new batch of fuel results in low temperature pyrolysis as the fuel heats up, resulting in strong, short-lived, variable emission peaks of organic aerosol-containing markers of anhydrous sugars, such as levoglucosan (fragment at m/z 60). Flaming combustion results in emissions dominated by refractory black carbon co-emitted with minor fractions of organic aerosol and markers of anhydrous sugars. Full cycle emissions are an external mixture of larger organic aerosol-dominated and smaller thinly coated refractory black carbon particles. A very high burn rate results in increased full cycle mass emission factors of 66, 2.7, 2.8 and 1.3 for particulate polycyclic aromatic hydrocarbons, refractory black carbon, total organic aerosol and m/z 60, respectively, compared to nominal burn rate. Polycyclic aromatic hydrocarbons are primarily associated with refractory black carbon-containing particles. We hypothesize that at very high burn rates, the central parts of the combustion zone become air starved, leading to a locally reduced combustion temperature that reduces the conversion rates from polycyclic aromatic hydrocarbons to refractory black carbon. This facilitates a strong increase of polycyclic aromatic hydrocarbons emissions. At nominal burn rates, full cycle emissions based on m/z 60 correlate well with organic aerosol, refractory black carbon and particulate matter. However, at higher burn rates, m/z 60 does not correlate with increased emissions of polycyclic aromatic hydrocarbons, refractory black carbon and organic aerosol in the flaming phase. The new knowledge can be used to advance source apportionment studies, reduce emissions of genotoxic compounds and model the climate impacts of

  17. Monte Carlo calculation of secondary electron emission from carbon-surface by obliquely incident particles

    International Nuclear Information System (INIS)

    Ohya, Kaoru; Kawata, Jun; Mori, Ichiro

    1990-01-01

    Incidence angle dependences of secondary electron emission from a carbon surface by low energy electron and hydrogen atom are calculated using Monte Carlo simulations on the kinetic emission model. The calculation shows very small increase or rather decrease of the secondary electron yield with oblique incidence. It is explained in terms of not only multiple elastic collisions of incident particles with the carbon atoms but also small penetration depth of the particles comparable with the escape depth of secondary electrons. In addition, the two types of secondary electron emission are distinguished by using the secondary electron yield statistics; one is the emission due to trapped particles in the carbon, and the other is that due to backscattered particles. The high-yield component of the statistics on oblique incidence is more suppressed than those on normal incidence. (author)

  18. Characterization of nuclear physics targets using Rutherford backscattering and particle induced X-ray emission

    International Nuclear Information System (INIS)

    Rubehn, T.; Wozniak, G.J.; Phair, L.; Moretto, L.G.; Yu, K.M.

    1997-01-01

    Rutherford backscattering and particle induced X-ray emission have been utilized to precisely characterize targets used in nuclear fission experiments. The method allows for a fast and non-destructive determination of target thickness, homogeneity and element composition. (orig.)

  19. Comprehensive decay law for emission of charged particles and ...

    Indian Academy of Sciences (India)

    2014-04-07

    life; general decay law. ... data of ground-state transition of nuclei emitting particles with zero angular momentum. (l), experimental data of half-lives of outgoing particles including proton and α with l-dependent Q-values have ...

  20. Fluorescent nuclear track images of Ag-activated phosphate glass irradiated with photons and heavy charged particles

    Energy Technology Data Exchange (ETDEWEB)

    Kurobori, Toshio, E-mail: kurobori@staff.kanazawa-u.ac.jp [Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa 920-1192 (Japan); Yanagida, Yuka [Oarai Research Center, Chiyoda Technol Corporation, Oarai-machi, Ibaraki 311-1313 (Japan); Kodaira, Satoshi [National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Shirao, Taichi [Nikon Instech Co., Ltd., Tanakanishi, Sakyo-ku, Kyoto 606-8221 (Japan)

    2017-05-21

    In this paper we report about the demonstration of the nuclear track imaging capabilities of Ag-activated phosphate glass. A 375 nm laser and confocal laser scanning microscopy (CLSM) were respectively used for track excitation and detection. Specifically, the blue and orange radiophotoluminescent (RPL) tracks and dose distributions observed after irradiation with soft X-rays, gamma rays and heavy charged particles (HCPs) are examined. In addition, the origins of the reductions in RPL efficiency for high-dose X-ray irradiation and for irradiation with HCPs with high linear energy transfer (LET) values are investigated via a CLSM and a conventional fluorescent reader and discussed. - Highlights: • 3D track images are demonstrated using a confocal laser microscopy. • Fluorescent track detectors are based on RPL Ag-doped phosphate glass. • The dose distributions are examined for X-ray, gamma ray and HCP irradiations. • The origins of the reduction in RPL efficiency are investigated and discussed.

  1. Fluorescent nuclear track images of Ag-activated phosphate glass irradiated with photons and heavy charged particles

    International Nuclear Information System (INIS)

    Kurobori, Toshio; Yanagida, Yuka; Kodaira, Satoshi; Shirao, Taichi

    2017-01-01

    In this paper we report about the demonstration of the nuclear track imaging capabilities of Ag-activated phosphate glass. A 375 nm laser and confocal laser scanning microscopy (CLSM) were respectively used for track excitation and detection. Specifically, the blue and orange radiophotoluminescent (RPL) tracks and dose distributions observed after irradiation with soft X-rays, gamma rays and heavy charged particles (HCPs) are examined. In addition, the origins of the reductions in RPL efficiency for high-dose X-ray irradiation and for irradiation with HCPs with high linear energy transfer (LET) values are investigated via a CLSM and a conventional fluorescent reader and discussed. - Highlights: • 3D track images are demonstrated using a confocal laser microscopy. • Fluorescent track detectors are based on RPL Ag-doped phosphate glass. • The dose distributions are examined for X-ray, gamma ray and HCP irradiations. • The origins of the reduction in RPL efficiency are investigated and discussed.

  2. Development of Labview based data acquisition and multichannel analyzer software for radioactive particle tracking system

    Energy Technology Data Exchange (ETDEWEB)

    Rahman, Nur Aira Abd, E-mail: nur-aira@nuclearmalaysia.gov.my; Yussup, Nolida; Ibrahim, Maslina Bt. Mohd; Abdullah, Nor Arymaswati; Mokhtar, Mukhlis B. [Technical Support Division, Malaysian Nuclear Agency, 43000, Kajang, Selangor (Malaysia); Abdullah, Jaafar B.; Hassan, Hearie B. [Industrial Technology Division, Malaysian Nuclear Agency, 43000, Kajang, Selangor (Malaysia)

    2015-04-29

    A DAQ (data acquisition) software called RPTv2.0 has been developed for Radioactive Particle Tracking System in Malaysian Nuclear Agency. RPTv2.0 that features scanning control GUI, data acquisition from 12-channel counter via RS-232 interface, and multichannel analyzer (MCA). This software is fully developed on National Instruments Labview 8.6 platform. Ludlum Model 4612 Counter is used to count the signals from the scintillation detectors while a host computer is used to send control parameters, acquire and display data, and compute results. Each detector channel consists of independent high voltage control, threshold or sensitivity value and window settings. The counter is configured with a host board and twelve slave boards. The host board collects the counts from each slave board and communicates with the computer via RS-232 data interface.

  3. Probing the type of anomalous diffusion with single-particle tracking.

    Science.gov (United States)

    Ernst, Dominique; Köhler, Jürgen; Weiss, Matthias

    2014-05-07

    Many reactions in complex fluids, e.g. signaling cascades in the cytoplasm of living cells, are governed by a diffusion-driven encounter of reactants. Yet, diffusion in complex fluids often exhibits an anomalous characteristic ('subdiffusion'). Since different types of subdiffusion have distinct effects on timing and equilibria of chemical reactions, a thorough determination of the reactants' type of random walk is key to a quantitative understanding of reactions in complex fluids. Here we introduce a straightforward and simple approach for determining the type of subdiffusion from single-particle tracking data. Unlike previous approaches, our method also is sensitive to transient subdiffusion phenomena, e.g. obstructed diffusion below the percolation threshold. We validate our strategy with data from experiment and simulation.

  4. SPACE CHARGE SIMULATION METHODS INCORPORATED IN SOME MULTI - PARTICLE TRACKING CODES AND THEIR RESULTS COMPARISON

    International Nuclear Information System (INIS)

    BEEBE - WANG, J.; LUCCIO, A.U.; D IMPERIO, N.; MACHIDA, S.

    2002-01-01

    Space charge in high intensity beams is an important issue in accelerator physics. Due to the complicity of the problems, the most effective way of investigating its effect is by computer simulations. In the resent years, many space charge simulation methods have been developed and incorporated in various 2D or 3D multi-particle-tracking codes. It has becoming necessary to benchmark these methods against each other, and against experimental results. As a part of global effort, we present our initial comparison of the space charge methods incorporated in simulation codes ORBIT++, ORBIT and SIMPSONS. In this paper, the methods included in these codes are overviewed. The simulation results are presented and compared. Finally, from this study, the advantages and disadvantages of each method are discussed

  5. Track detectors in particle accelerator environment: an overview on existing and new methods

    International Nuclear Information System (INIS)

    Tripathy, S.P.; Sarkar, P.K.

    2011-01-01

    The advent of high energy, high intensity particle accelerators, with increasing applications in various fields has lead to the involvement of more users and operators. The complex (secondary) radiation field in an accelerator environment, generated by the primary beam hitting a target, is highly directional, dynamic, pulsed and mixed in nature, which poses a unique challenge for the radiological safety aspects, specially the neutrons contributing to a significant dose even beyond the shields. Solid polymeric track detectors (SPTDs), due to their insensitivity to low LET radiations and integrating nature of signal registration, are found to be effective and convenient for neutron measurements. This paper reviews some of the existing and frequently used methods of neutron spectrometry and dosimetry using SPTDs and explores new approaches as well. The paper elaborates on the extended energy response and rapid etching techniques of SPTDs along with some new results. An overview on the recently introduced microwave-induced chemical etching (MICE) technique is also presented. (author)

  6. Mechanical engineering and design of silicon-based particle tracking devices

    International Nuclear Information System (INIS)

    Miller, W.O.; Thompson, T.C.; Gamble, M.T.; Reid, R.S.; Woloshun, K.A.; Dransfield, G.D.; Ziock, H.J.

    1990-01-01

    The Mechanical Engineering and Electronics Division of the Los Alamos National Laboratory has been investigating silicon-based particle tracking device technology as part of the Superconducting Super Collider-sponsored silicon subsystem collaboration. Structural, thermal, and materials issues have been addressed. This paper discussed detector structural integrity and stability, including detailed finite element models of the silicon chip support and predictive methods used in designing with advanced composite materials. Electronic thermal loading and efficient dissipation of such energy using heat pipe technology has been investigated. The use of materials whose coefficients of thermal expansion are engineered to match silicon or to be near zero, as appropriate, have been explored. Material analysis and test results from radiation, chemical, and static loading are compared with analytical predictions and discussed. 1 ref., 2 figs., 1 tab

  7. SPACE CHARGE SIMULATION METHODS INCORPORATED IN SOME MULTI - PARTICLE TRACKING CODES AND THEIR RESULTS COMPARISON.

    Energy Technology Data Exchange (ETDEWEB)

    BEEBE - WANG,J.; LUCCIO,A.U.; D IMPERIO,N.; MACHIDA,S.

    2002-06-03

    Space charge in high intensity beams is an important issue in accelerator physics. Due to the complicity of the problems, the most effective way of investigating its effect is by computer simulations. In the resent years, many space charge simulation methods have been developed and incorporated in various 2D or 3D multi-particle-tracking codes. It has becoming necessary to benchmark these methods against each other, and against experimental results. As a part of global effort, we present our initial comparison of the space charge methods incorporated in simulation codes ORBIT++, ORBIT and SIMPSONS. In this paper, the methods included in these codes are overviewed. The simulation results are presented and compared. Finally, from this study, the advantages and disadvantages of each method are discussed.

  8. Using particle tracking to measure flow instabilities in an undergraduate laboratory experiment

    Science.gov (United States)

    Kelley, Douglas H.; Ouellette, Nicholas T.

    2011-03-01

    Much of the drama and complexity of fluid flow occurs because its governing equations lack unique solutions. The observed behavior depends on the stability of the multitude of solutions, which can change with the experimental parameters. Instabilities cause sudden global shifts in behavior. We have developed a low-cost experiment to study a classical fluid instability. By using an electromagnetic technique, students drive Kolmogorov flow in a thin fluid layer and measure it quantitatively with a webcam. They extract positions and velocities from movies of the flow using Lagrangian particle tracking and compare their measurements to several theoretical predictions, including the effect of the drive current, the spatial structure of the flow, and the parameters at which instability occurs. The experiment can be tailored to undergraduates at any level or to graduate students by appropriate emphasis on the physical phenomena and the sophisticated mathematics that govern them.

  9. Advanced cell therapies: targeting, tracking and actuation of cells with magnetic particles.

    Science.gov (United States)

    Connell, John J; Patrick, P Stephen; Yu, Yichao; Lythgoe, Mark F; Kalber, Tammy L

    2015-01-01

    Regenerative medicine would greatly benefit from a new platform technology that enabled measurable, controllable and targeting of stem cells to a site of disease or injury in the body. Superparamagnetic iron-oxide nanoparticles offer attractive possibilities in biomedicine and can be incorporated into cells, affording a safe and reliable means of tagging. This review describes three current and emerging methods to enhance regenerative medicine using magnetic particles to guide therapeutic cells to a target organ; track the cells using MRI and assess their spatial localization with high precision and influence the behavior of the cell using magnetic actuation. This approach is complementary to the systemic injection of cell therapies, thus expanding the horizon of stem cell therapeutics.

  10. In-Situ Characteristics of Particle Emissions from Biomass Combustion

    International Nuclear Information System (INIS)

    Pagels, Joakum; Wierzbicka, Aneta; Bohgard, Mats; Strand, Michael; Lillieblad, Lena; Sanati, Mehri; Swietlicki, Erik

    2005-01-01

    In this work we used a Scanning Mobility Particle Sizer and an Electrical Low-pressure Impactor to: a) Derive information of the particle morphology through air-borne analysis and b) Identify time and size variations of particle phase components from incomplete combustion and ash-components. The results presented here covers measurements in two moving grate boilers (12 MW operating on moist forest residue and 1.5 MW operating on wood pellets). We have previously shown that PM1 estimated from Electrical Low-Pressure Impactor (ELPI)-measurements consisted of a rather constant background with peaks correlating with CO and OGC peaks. In the 1.5 MW boiler EC contributed to 34% of PM1, while in the 12 MW boiler EC was below 0.5%. Figure 2 shows time variations in the 1.5 MW boiler as the current in three stages of the ELPI-impactor. Note that time-variations increase strongly with particle size. The fraction of the gravimetric mass detected as water-soluble ions (IC) decreased from ∼ 70% for dae= 78 and 133 nm to ∼ 25% for 322 and 510 nm particles and increased to around 50% for particles larger than 1 μm. In the 12 MW boiler time variations were as low as for 128 nm particles and IC recovery was high for all studied particle sizes. Based on these data we conclude that PM consisting of ash-components are formed with small time variations mainly in mobility-sizes below 250 nm, while Elemental Carbon is emitted at high concentrations during peaks on the time-scale 10-30 s, mainly in particle sizes larger than 150 nm. However, the detailed mixing status of these two particle types/materials is still not known

  11. Robust model-based analysis of single-particle tracking experiments with Spot-On

    Science.gov (United States)

    Grimm, Jonathan B; Lavis, Luke D

    2018-01-01

    Single-particle tracking (SPT) has become an important method to bridge biochemistry and cell biology since it allows direct observation of protein binding and diffusion dynamics in live cells. However, accurately inferring information from SPT studies is challenging due to biases in both data analysis and experimental design. To address analysis bias, we introduce ‘Spot-On’, an intuitive web-interface. Spot-On implements a kinetic modeling framework that accounts for known biases, including molecules moving out-of-focus, and robustly infers diffusion constants and subpopulations from pooled single-molecule trajectories. To minimize inherent experimental biases, we implement and validate stroboscopic photo-activation SPT (spaSPT), which minimizes motion-blur bias and tracking errors. We validate Spot-On using experimentally realistic simulations and show that Spot-On outperforms other methods. We then apply Spot-On to spaSPT data from live mammalian cells spanning a wide range of nuclear dynamics and demonstrate that Spot-On consistently and robustly infers subpopulation fractions and diffusion constants. PMID:29300163

  12. High-speed particle tracking in microscopy using SPAD image sensors

    Science.gov (United States)

    Gyongy, Istvan; Davies, Amy; Miguelez Crespo, Allende; Green, Andrew; Dutton, Neale A. W.; Duncan, Rory R.; Rickman, Colin; Henderson, Robert K.; Dalgarno, Paul A.

    2018-02-01

    Single photon avalanche diodes (SPADs) are used in a wide range of applications, from fluorescence lifetime imaging microscopy (FLIM) to time-of-flight (ToF) 3D imaging. SPAD arrays are becoming increasingly established, combining the unique properties of SPADs with widefield camera configurations. Traditionally, the photosensitive area (fill factor) of SPAD arrays has been limited by the in-pixel digital electronics. However, recent designs have demonstrated that by replacing the complex digital pixel logic with simple binary pixels and external frame summation, the fill factor can be increased considerably. A significant advantage of such binary SPAD arrays is the high frame rates offered by the sensors (>100kFPS), which opens up new possibilities for capturing ultra-fast temporal dynamics in, for example, life science cellular imaging. In this work we consider the use of novel binary SPAD arrays in high-speed particle tracking in microscopy. We demonstrate the tracking of fluorescent microspheres undergoing Brownian motion, and in intra-cellular vesicle dynamics, at high frame rates. We thereby show how binary SPAD arrays can offer an important advance in live cell imaging in such fields as intercellular communication, cell trafficking and cell signaling.

  13. Dual-modality single particle orientation and rotational tracking of intracellular transport of nanocargos.

    Science.gov (United States)

    Sun, Wei; Gu, Yan; Wang, Gufeng; Fang, Ning

    2012-01-17

    The single particle orientation and rotational tracking (SPORT) technique was introduced recently to follow the rotational motion of plasmonic gold nanorod under a differential interference contrast (DIC) microscope. In biological studies, however, cellular activities usually involve a multiplicity of molecules; thus, tracking the motion of a single molecule/object is insufficient. Fluorescence-based techniques have long been used to follow the spatial and temporal distributions of biomolecules of interest thanks to the availability of multiplexing fluorescent probes. To know the type and number of molecules and the timing of their involvement in a biological process under investigation by SPORT, we constructed a dual-modality DIC/fluorescence microscope to simultaneously image fluorescently tagged biomolecules and plasmonic nanoprobes in living cells. With the dual-modality SPORT technique, the microtubule-based intracellular transport can be unambiguously identified while the dynamic orientation of nanometer-sized cargos can be monitored at video rate. Furthermore, the active transport on the microtubule can be easily separated from the diffusion before the nanocargo docks on the microtubule or after it undocks from the microtubule. The potential of dual-modality SPORT is demonstrated for shedding new light on unresolved questions in intracellular transport.

  14. High-LET dose-response characteristics by track structure theory of heavy charged particles

    International Nuclear Information System (INIS)

    Hansen, J.W.; Olsen, K.J.

    1981-09-01

    The track structure theory developed by Katz and co-workers ascribes the effect of high-LET radiation to the highly inhomogeneous dose distribution due to low energy Δ-rays ejected from the particle track. The theory predicts the effectiveness of high-LET radiation by using the ion parameters zsub(eff') effective charge of the ion, and β = v/c, the relative ion velocity, together with the characteristic dose D 37 derived from low-LET dose-response characteristic of the detector and the approximate size asub(0) of the sensitive element of the detector. 60 Co gamma-irradiation is used as a reference low-LET radiation, while high-LET radiation ranging from 16 MeV protons to 4 MeV/amu 16 0-ions covering an initial LET range of 30-5500 MeVcm 2 /g is obtained from a tandem Van de Graaff accelerator. A thin film (5mg/cm 2 ) radiochromic dye cyanide plastic dosemeter was used as detector with the characteristic dose of 16.8 Mrad and a sensitive element size of 10 -7 cm. Theoretical and experimental effectiveness, RBE, agreed within 10 to 25% depending on LET. (author)

  15. Characterization of hydrogel microstructure using laser tweezers particle tracking and confocal reflection imaging

    International Nuclear Information System (INIS)

    Kotlarchyk, M A; Botvinick, E L; Putnam, A J

    2010-01-01

    Hydrogels are commonly used as extracellular matrix mimetics for applications in tissue engineering and increasingly as cell culture platforms with which to study the influence of biophysical and biochemical cues on cell function in 3D. In recent years, a significant number of studies have focused on linking substrate mechanical properties to cell function using standard methodologies to characterize the bulk mechanical properties of the hydrogel substrates. However, current understanding of the correlations between the microstructural mechanical properties of hydrogels and cell function in 3D is poor, in part because of a lack of appropriate techniques. Here we have utilized a laser tracking system, based on passive optical microrheology instrumentation, to characterize the microstructure of viscoelastic fibrin clots. Trajectories and mean square displacements were observed as bioinert PEGylated (PEG: polyethylene glycol) microspheres (1, 2 or 4.7 μm in diameter) diffused within confined pores created by the protein phase of fibrin hydrogels. Complementary confocal reflection imaging revealed microstructures comprised of a highly heterogeneous fibrin network with a wide range of pore sizes. As the protein concentration of fibrin gels was increased, our quantitative laser tracking measurements showed a corresponding decrease in particle mean square displacements with greater resolution and sensitivity than conventional imaging techniques. This platform-independent method will enable a more complete understanding of how changes in substrate mechanical properties simultaneously influence other microenvironmental parameters in 3D cultures.

  16. Particle Reduction Strategies - PAREST. Agricultural emissions. Sub-report

    International Nuclear Information System (INIS)

    Daemmgen, Ulrich; Haenel, Hans-Dieter; Roesemann, Claus; Hahne, Jochen; Eurich-Menden, Brigitte; Grimm, Ewald; Doehler, Helmut

    2013-01-01

    The German agricultural emission inventory is designed as an instrument of policy advice. The essential aim is to describe the emitting processes so that options for reducing emissions can be quantified. The German agricultural emission model GAS-EM uses in the field of NH 3 emissions from soils and plants in the EMEP / CORINAIR Guidebook (EMEP / CORINAIR, 2002) proposed methods. These differ in emission factors between several types of fertilizers and their application to acre or grassland in function of the average spring temperature. In the field of emissions from animal husbandry GAS-EM follows a material flow approach, where initially the energy and nutrient requirements for a given power (here are weight, weight gain, milk yield, number of piglets, etc. involved) the excretion of metabolizable carbon compounds and the N excretion can be calculated with feces and urine. Subsequently, for all animal species emissions of nitrogen species NH 3 , NO, N 2 O and N 2 from the grazing, indoor housing, storage and distribution of farm fertilizers calculated. [de

  17. [Air Dielectric Barrier Discharge Emission Spectrum Measurement and Particle Analysis of Discharge Process].

    Science.gov (United States)

    Shen, Shuang-yan; Jin, Xing; Zhang, Peng

    2016-02-01

    The emission spectrum detection and diagnosis is one of the most common methods of application to the plasma. It provides wealth of information of the chemical and physical process of the plasma. The analysis of discharge plasma dynamic behavior plays an important role in the study of gas discharge mechanism and application. An air dielectric discharge spectrum measuring device was designed and the emission spectrum data was measured under the experimental condition. The plasma particles evolution was analyzed from the emission spectrum. The numerical calculation model was established and the density equation, energy transfer equation and the Boltzmann equation was coupled to analyze the change of the particle density to explain the emission spectrum characteristics. The results are that the particle density is growing with the increasing of reduced electric field. The particle density is one or two orders of magnitude difference for the same particle at the same moment for the reduced electric field of 40, 60 or 80 Td. A lot of N₂ (A³), N₂ (A³) and N₂ (C³) particles are generated by the electric field excitation. However, it transforms quickly due to the higher energy level. The transformation returns to the balance after the discharge of 10⁻⁶ s. The emission spectrometer measured in the experiments is mostly generated by the transition of excited nitrogen. The peak concentration of O₂ (A¹), O₂ (B¹) and O₂ (A³ ∑⁺u) is not low compared to the excited nitrogen molecules. These particles energy is relatively low and the transition spectral is longer. The spectrometer does not capture the oxygen emission spectrum. And the peak concentration of O particles is small, so the transition emission spectrum is weak. The calculation results of the stabled model can well explain the emission spectrum data.

  18. Influence of complex particle emission on properties of giant dipole resonance of hot nuclei

    International Nuclear Information System (INIS)

    Wen Wanxin; Jin Genming

    2003-01-01

    The possible reasons for the discrepancy between calculation results based on the statistical evaporation model and experimental data of giant dipole resonance of very hot nuclei are discussed. Both of simulations with the standard CASCADE code and the code coupling complex particle emission are carried out. It is shown that the complex particle emission affects the properties of giant dipole resonance of very hot nuclei

  19. Ion-induced emission of charged particles from solid hydrogen and deuterium

    International Nuclear Information System (INIS)

    Borgesen, P.; Schou, J.; Sorensen, H.

    1980-01-01

    Measurements have been made of the emission of both positive and negative particles from solid hydrogen and deuterium for normal incidence of H + , H + 2 , H + 3 , D 2 H + , D + 3 and He + ions up to 10 keV. For positive particles the emission coefficient increased with increasing energy of incidence to reach a value of 0.08 per atom for 10 keV H + onto hydrogen. Apparently the positive particles are sputtered ones. The negative particles emitted are predominantly electrons. The emission coefficient per incident atom as a function of the velocity of the incident particle agress fairly well with results published earlier for incidence of hydrogen and deuterium ions. However, systematic differences of up to 10% are now observed between the coefficients for the different types of ions. (orig.)

  20. Variation that can be expected when using particle tracking models in connectivity studies

    Science.gov (United States)

    Hufnagl, Marc; Payne, Mark; Lacroix, Geneviève; Bolle, Loes J.; Daewel, Ute; Dickey-Collas, Mark; Gerkema, Theo; Huret, Martin; Janssen, Frank; Kreus, Markus; Pätsch, Johannes; Pohlmann, Thomas; Ruardij, Piet; Schrum, Corinna; Skogen, Morten D.; Tiessen, Meinard C. H.; Petitgas, Pierre; van Beek, Jan K. L.; van der Veer, Henk W.; Callies, Ulrich

    2017-09-01

    Hydrodynamic Ocean Circulation Models and Lagrangian particle tracking models are valuable tools e.g. in coastal ecology to identify the connectivity between offshore spawning and coastal nursery areas of commercially important fish, for risk assessment and more for defining or evaluating marine protected areas. Most studies are based on only one model and do not provide levels of uncertainty. Here this uncertainty was addressed by applying a suite of 11 North Sea models to test what variability can be expected concerning connectivity. Different notional test cases were calculated related to three important and well-studied North Sea fish species: herring (Clupea harengus), and the flatfishes sole (Solea solea) and plaice (Pleuronectes platessa). For sole and plaice we determined which fraction of particles released in the respective spawning areas would reach a coastal marine protected area. For herring we determined the fraction located in a wind park after a predefined time span. As temperature is more and more a focus especially in biological and global change studies, furthermore inter-model variability in temperatures experienced by the virtual particles was determined. The main focus was on the transport variability originating from the physical models and thus biological behavior was not included. Depending on the scenario, median experienced temperatures differed by 3 °C between years. The range between the different models in one year was comparable to this temperature range observed between modelled years. Connectivity between flatfish spawning areas and the coastal protected area was highly dependent on the release location and spawning time. No particles released in the English Channel in the sole scenario reached the protected area while up to 20% of the particles released in the plaice scenario did. Interannual trends in transport directions and connectivity rates were comparable between models but absolute values displayed high variations. Most

  1. Gaseous and particle emissions from an ethanol fumigated compression ignition engine

    International Nuclear Information System (INIS)

    Surawski, Nicholas C.; Ristovski, Zoran D.; Brown, Richard J.; Situ, Rong

    2012-01-01

    Highlights: ► Ethanol fumigation system fitted on a direct injection compression ignition engine. ► Ethanol substitutions up to 40% (by energy) were achieved. ► Gaseous and particle emissions were measured at intermediate speed. ► PM and NO emissions significantly reduced, whilst CO and HC increased. ► The number of particles emitted generally higher with ethanol fumigation. - Abstract: A 4-cylinder Ford 2701C test engine was used in this study to explore the impact of ethanol fumigation on gaseous and particle emission concentrations. The fumigation technique delivered vaporised ethanol into the intake manifold of the engine, using an injector, a pump and pressure regulator, a heat exchanger for vaporising ethanol and a separate fuel tank and lines. Gaseous (Nitric oxide (NO), Carbon monoxide (CO) and hydrocarbons (HC)) and particulate emissions (particle mass (PM 2.5 ) and particle number) testing was conducted at intermediate speed (1700 rpm) using 4 load settings with ethanol substitution percentages ranging from 10% to 40% (by energy). With ethanol fumigation, NO and PM 2.5 emissions were reduced, whereas CO and HC emissions increased considerably and particle number emissions increased at most test settings. It was found that ethanol fumigation reduced the excess air factor for the engine and this led to increased emissions of CO and HC, but decreased emissions of NO. PM 2.5 emissions were reduced with ethanol fumigation, as ethanol has a very low “sooting” tendency. This is due to the higher hydrogen-to-carbon ratio of this fuel, and also because ethanol does not contain aromatics, both of which are known soot precursors. The use of a diesel oxidation catalyst (as an after-treatment device) is recommended to achieve a reduction in the four pollutants that are currently regulated for compression ignition engines. The increase in particle number emissions with ethanol fumigation was due to the formation of volatile (organic) particles

  2. Space-Charge-Limited Emission Models for Particle Simulation

    Science.gov (United States)

    Verboncoeur, J. P.; Cartwright, K. L.; Murphy, T.

    2004-11-01

    Space-charge-limited (SCL) emission of electrons from various materials is a common method of generating the high current beams required to drive high power microwave (HPM) sources. In the SCL emission process, sufficient space charge is extracted from a surface, often of complicated geometry, to drive the electric field normal to the surface close to zero. The emitted current is highly dominated by space charge effects as well as ambient fields near the surface. In this work, we consider computational models for the macroscopic SCL emission process including application of Gauss's law and the Child-Langmuir law for space-charge-limited emission. Models are described for ideal conductors, lossy conductors, and dielectrics. Also considered is the discretization of these models, and the implications for the emission physics. Previous work on primary and dual-cell emission models [Watrous et al., Phys. Plasmas 8, 289-296 (2001)] is reexamined, and aspects of the performance, including fidelity and noise properties, are improved. Models for one-dimensional diodes are considered, as well as multidimensional emitting surfaces, which include corners and transverse fields.

  3. WOOD STOVE EMISSIONS: PARTICLE SIZE AND CHEMICAL COMPOSITION

    Science.gov (United States)

    The report summarizes wood stove particle size and chemical composition data gathered to date. [NOTE: In 1995, EPA estimated that residential wood combustion (RWC), including fireplaces, accounted for a significant fraction of national particulate matter with aerodynamic diameter...

  4. Kinetics and mechanism of the formation and etching of particle tracks in polyethylene-terephthalate

    International Nuclear Information System (INIS)

    Lueck, H.B.

    1982-05-01

    The physical and chemical processes initiated by a particle passing through a polymer are reviewed. Particular attention is devoted to the processes in PETP. The influence of the material parameters and environmental effects on the subsequent reactions in PETP is discussed. Models of the mechanism and kinetics of the alkaline degradation on the surface and in the etch channel are presented. The character and the effect of the relevant species has been taken into consideration. The mechanism of the photo-oxidative sensitivity enhancement is discussed. The models mentioned above are taken as a basis to interpret the empirical response function. It is shown, that the response function can be applied to bulk-irradiated polymers as well. Treeing in electrically stressed particle tracks assisted by an etchant can be attributed to the electrostatic pressure. However, the differences in the behaviour of the structures give evidence, that the formation of craze structures and bubbles in the presence of a nonetching electrolyte is the result of the electroosmotic pressure. (author)

  5. Vertically integrated monolithic pixel sensors for charged particle tracking and biomedical imaging

    International Nuclear Information System (INIS)

    Ratti, L.; Gaioni, L.; Manghisoni, M.; Re, V.; Traversi, G.

    2011-01-01

    Three-dimensional monolithic pixel sensors have been designed following the same approach that was exploited for the development of the so-called deep N-well (DNW) MAPS in planar CMOS process. The new 3D design relies upon stacking two homogeneous layers fabricated in a 130 nm CMOS technology. One of the two tiers, which are face-to-face bonded, has to be thinned down to about 12μm to expose the through silicon vias connecting the circuits to the back-metal bond pads. As a consequence of the way the two parts of each single chip are designed and fabricated, the prototypes of the 3D monolithic detector will include both samples with a thick substrate underneath the collecting DNW electrode, suitable for charged particle tracking, and samples with a very thin (about 6μm) sensitive volume, which may be used to detect low energy particles in biomedical imaging applications. Device physics simulations have been performed to evaluate the collection properties and detection efficiency of the proposed vertically integrated structures.

  6. Vertically integrated monolithic pixel sensors for charged particle tracking and biomedical imaging

    Energy Technology Data Exchange (ETDEWEB)

    Ratti, L., E-mail: lodovico.ratti@unipv.it [Universita di Pavia, Dipartimento di Elettronica, Via Ferrata 1, I-27100 Pavia (Italy); INFN, Sezione di Pavia, Via Bassi 6, I-27100 Pavia (Italy); Gaioni, L. [INFN, Sezione di Pavia, Via Bassi 6, I-27100 Pavia (Italy); Manghisoni, M.; Re, V.; Traversi, G. [Universita di Bergamo, Dipartimento di Ingegneria Industriale, Via Marconi 5, I-24044 Dalmine (Italy); INFN, Sezione di Pavia, Via Bassi 6, I-27100 Pavia (Italy)

    2011-10-01

    Three-dimensional monolithic pixel sensors have been designed following the same approach that was exploited for the development of the so-called deep N-well (DNW) MAPS in planar CMOS process. The new 3D design relies upon stacking two homogeneous layers fabricated in a 130 nm CMOS technology. One of the two tiers, which are face-to-face bonded, has to be thinned down to about 12{mu}m to expose the through silicon vias connecting the circuits to the back-metal bond pads. As a consequence of the way the two parts of each single chip are designed and fabricated, the prototypes of the 3D monolithic detector will include both samples with a thick substrate underneath the collecting DNW electrode, suitable for charged particle tracking, and samples with a very thin (about 6{mu}m) sensitive volume, which may be used to detect low energy particles in biomedical imaging applications. Device physics simulations have been performed to evaluate the collection properties and detection efficiency of the proposed vertically integrated structures.

  7. A highly scalable particle tracking algorithm using partitioned global address space (PGAS) programming for extreme-scale turbulence simulations

    Science.gov (United States)

    Buaria, D.; Yeung, P. K.

    2017-12-01

    A new parallel algorithm utilizing a partitioned global address space (PGAS) programming model to achieve high scalability is reported for particle tracking in direct numerical simulations of turbulent fluid flow. The work is motivated by the desire to obtain Lagrangian information necessary for the study of turbulent dispersion at the largest problem sizes feasible on current and next-generation multi-petaflop supercomputers. A large population of fluid particles is distributed among parallel processes dynamically, based on instantaneous particle positions such that all of the interpolation information needed for each particle is available either locally on its host process or neighboring processes holding adjacent sub-domains of the velocity field. With cubic splines as the preferred interpolation method, the new algorithm is designed to minimize the need for communication, by transferring between adjacent processes only those spline coefficients determined to be necessary for specific particles. This transfer is implemented very efficiently as a one-sided communication, using Co-Array Fortran (CAF) features which facilitate small data movements between different local partitions of a large global array. The cost of monitoring transfer of particle properties between adjacent processes for particles migrating across sub-domain boundaries is found to be small. Detailed benchmarks are obtained on the Cray petascale supercomputer Blue Waters at the University of Illinois, Urbana-Champaign. For operations on the particles in a 81923 simulation (0.55 trillion grid points) on 262,144 Cray XE6 cores, the new algorithm is found to be orders of magnitude faster relative to a prior algorithm in which each particle is tracked by the same parallel process at all times. This large speedup reduces the additional cost of tracking of order 300 million particles to just over 50% of the cost of computing the Eulerian velocity field at this scale. Improving support of PGAS models on

  8. High rate particle tracking and ultra-fast timing with a thin hybrid silicon pixel detector

    Science.gov (United States)

    Fiorini, M.; Aglieri Rinella, G.; Carassiti, V.; Ceccucci, A.; Cortina Gil, E.; Cotta Ramusino, A.; Dellacasa, G.; Garbolino, S.; Jarron, P.; Kaplon, J.; Kluge, A.; Marchetto, F.; Mapelli, A.; Martin, E.; Mazza, G.; Morel, M.; Noy, M.; Nuessle, G.; Perktold, L.; Petagna, P.; Petrucci, F.; Poltorak, K.; Riedler, P.; Rivetti, A.; Statera, M.; Velghe, B.

    2013-08-01

    The Gigatracker (GTK) is a hybrid silicon pixel detector designed for the NA62 experiment at CERN. The beam spectrometer, made of three GTK stations, has to sustain high and non-uniform particle rate (∼ 1 GHz in total) and measure momentum and angles of each beam track with a combined time resolution of 150 ps. In order to reduce multiple scattering and hadronic interactions of beam particles, the material budget of a single GTK station has been fixed to 0.5% X0. The expected fluence for 100 days of running is 2 ×1014 1 MeV neq /cm2, comparable to the one foreseen in the inner trackers of LHC detectors during 10 years of operation. To comply with these requirements, an efficient and very low-mass (< 0.15 %X0) cooling system is being constructed, using a novel microchannel cooling silicon plate. Two complementary read-out architectures have been produced as small-scale prototypes: one is based on a Time-over-Threshold circuit followed by a TDC shared by a group of pixels, while the other makes use of a constant-fraction discriminator followed by an on-pixel TDC. The read-out ASICs are produced in 130 nm IBM CMOS technology and will be thinned down to 100 μm or less. An overview of the Gigatracker detector system will be presented. Experimental results from laboratory and beam tests of prototype bump-bonded assemblies will be described as well. These results show a time resolution of about 170 ps for single hits from minimum ionizing particles, using 200 μm thick silicon sensors.

  9. A flame particle tracking analysis of turbulence–chemistry interaction in hydrogen–air premixed flames

    KAUST Repository

    Uranakara, Harshavardhana A.; Chaudhuri, Swetaprovo; Dave, Himanshu L.; Arias, Paul G.; Im, Hong G.

    2015-01-01

    Interactions of turbulence, molecular transport, and energy transport, coupled with chemistry play a crucial role in the evolution of flame surface geometry, propagation, annihilation, and local extinction/re-ignition characteristics of intensely turbulent premixed flames. This study seeks to understand how these interactions affect flame surface annihilation of lean hydrogen–air premixed turbulent flames. Direct numerical simulations (DNSs) are conducted at different parametric conditions with a detailed reaction mechanism and transport properties for hydrogen–air flames. Flame particle tracking (FPT) technique is used to follow specific flame surface segments. An analytical expression for the local displacement flame speed (Sd) of a temperature isosurface is considered, and the contributions of transport, chemistry, and kinematics on the displacement flame speed at different turbulence-flame interaction conditions are identified. In general, the displacement flame speed for the flame particles is found to increase with time for all conditions considered. This is because, eventually all flame surfaces and their resident flame particles approach annihilation by reactant island formation at the end of stretching and folding processes induced by turbulence. Statistics of principal curvature evolving in time, obtained using FPT, suggest that these islands are ellipsoidal on average enclosing fresh reactants. Further examinations show that the increase in Sd is caused by the increased negative curvature of the flame surface and eventual homogenization of temperature gradients as these reactant islands shrink due to flame propagation and turbulent mixing. Finally, the evolution of the normalized, averaged, displacement flame speed vs. stretch Karlovitz number are found to collapse on a narrow band, suggesting that a unified description of flame speed dependence on stretch rate may be possible in the Lagrangian description.

  10. A flame particle tracking analysis of turbulence–chemistry interaction in hydrogen–air premixed flames

    KAUST Repository

    Uranakara, Harshavardhana A.

    2015-11-21

    Interactions of turbulence, molecular transport, and energy transport, coupled with chemistry play a crucial role in the evolution of flame surface geometry, propagation, annihilation, and local extinction/re-ignition characteristics of intensely turbulent premixed flames. This study seeks to understand how these interactions affect flame surface annihilation of lean hydrogen–air premixed turbulent flames. Direct numerical simulations (DNSs) are conducted at different parametric conditions with a detailed reaction mechanism and transport properties for hydrogen–air flames. Flame particle tracking (FPT) technique is used to follow specific flame surface segments. An analytical expression for the local displacement flame speed (Sd) of a temperature isosurface is considered, and the contributions of transport, chemistry, and kinematics on the displacement flame speed at different turbulence-flame interaction conditions are identified. In general, the displacement flame speed for the flame particles is found to increase with time for all conditions considered. This is because, eventually all flame surfaces and their resident flame particles approach annihilation by reactant island formation at the end of stretching and folding processes induced by turbulence. Statistics of principal curvature evolving in time, obtained using FPT, suggest that these islands are ellipsoidal on average enclosing fresh reactants. Further examinations show that the increase in Sd is caused by the increased negative curvature of the flame surface and eventual homogenization of temperature gradients as these reactant islands shrink due to flame propagation and turbulent mixing. Finally, the evolution of the normalized, averaged, displacement flame speed vs. stretch Karlovitz number are found to collapse on a narrow band, suggesting that a unified description of flame speed dependence on stretch rate may be possible in the Lagrangian description.

  11. A memory particle model in study of pre-equilibrium emission

    International Nuclear Information System (INIS)

    Miao rongzhi

    1989-01-01

    Exciton of a composite system at high energy is divided into two subsystems which consist of memory particle m and non-memory particle r. After introducing α n , the collision factor of m-particle in state n, the coupled master equitions of the occupation probability of state-angle of m-particle and r-particle are established. The expression of state density, taking into account the distinqushability between m-particle and r-particle, and the formulas of the rate of β-particle emission of m-system and r-system in state n are also given. The calculation results show that the fit with experimental data is improved conspicuously and is much better than that obtained from the generalized exciton model

  12. Comparison Between Weisskopf and Thomas-Fermi Model for Particle Emission Widths from Hot Deformed Nuclei

    International Nuclear Information System (INIS)

    Surowiec, Aa.; Pomorski, K.; Schmitt, Ch.; Bartel, J.

    2002-01-01

    The emission widths Γ n and Γ p for emission of neutrons and protons are calculated within the Thomas-Fermi model, which we have recently developed, and are compared with those obtained in the usual Weisskopf approach for the case of zero angular momentum. Both methods yield quite similar results at small deformations, but rather important differences are observed for very deformed shapes, in particular for charged particles. A possible generalization of the model for emission of α-particles is also discussed. (author)

  13. Dependence of alpha particle track diameter on the free volume holes size using positron annihilation lifetime technique

    Energy Technology Data Exchange (ETDEWEB)

    El-Gamal, S. [Physics Department, Faculty of Education, Ain Shams University, Roxy, 11711 Cairo (Egypt); Abdalla, Ayman M., E-mail: aymanabdalla62@hotmail.com [Physics Department, Faculty of Arts and Sciences, Najran University, Najran (Saudi Arabia); Centre for Advanced Materials and Nano-Engineering, Najran University, Najran 11001 (Saudi Arabia); Abdel-Hady, E.E. [Physics Department, Faculty of Science, Minia University, BO 61519, Minia (Egypt)

    2015-09-15

    The alpha particle track diameter dependence of the free volume holes size (V{sub f}) in DAM–ADC and CR-39 nuclear track detectors was investigated using positron annihilation lifetime technique. The effect of temperature on the alpha particle track diameter and free volume were also investigated in the T-range (RT-130 °C). The obtained results revealed that the values of ortho-positronium lifetime τ{sub 3} and V{sub f} increases while I{sub 3} slightly increases as T increases for the two detectors. The values of τ{sub 3}, V{sub f} and I{sub 3} are higher in CR-39 than DAM–ADC. The interpretation of obtained results is based on the fact that increasing T leads to significant enhancement of thermal expansion of the polymer matrix and consequently V{sub f} increases. The track diameter increases as T increases. This can be explained by the fact that the increase in T increases the crystal size and V{sub f} in the polymer. A relationship between V{sub f} and the alpha particle track diameter was obtained. Moreover results of detector irradiation, along with free volume evaluation are addressed and thoroughly discussed.

  14. Emission of high-energy, light particles from intermediate-energy heavy-ion reactions

    International Nuclear Information System (INIS)

    Ball, J.B.; Auble, R.L.

    1982-01-01

    One of the early surprises in examining reaction products from heavy ion reactions at 10 MeV/nucleon and above was the large yield of light particles emitted and the high energies to which the spectra of these particles extended. The interpretation of the origin of the high energy light ions has evolved from a picture of projectile excitation and subsequent evaporation to one of pre-equilibrium (or nonequilibrium) emission. The time scale for particle emission has thus moved from one that occurs following the initial collision to one that occurs at the very early stages of the collision. Research at ORNL on this phenomenon is reviewed

  15. Airborne emission measurements of SO2 , NOx and particles from individual ships using a sniffer technique

    Science.gov (United States)

    Beecken, J.; Mellqvist, J.; Salo, K.; Ekholm, J.; Jalkanen, J.-P.

    2014-07-01

    A dedicated system for airborne ship emission measurements of SO2, NOx and particles has been developed and used from several small aircraft. The system has been adapted for fast response measurements at 1 Hz, and the use of several of the instruments is unique. The uncertainty of the given data is about 20% for SO2 and 24% for NOx emission factors. The mean values with one standard deviation for multiple measurements of 158 ships measured from the air on the Baltic and North Sea during 2011 and 2012 show emission factors of 18.8 ± 6.5 g kg-1 fuel , 66.6 ± 23.4 g kg-1 fuel and 1.8 ± 1.3 1016 particles kg-1 fuel for SO2, NOx and particle number, respectively. The particle size distributions were measured for particle diameters between 15 and 560 nm. The mean sizes of the particles are between 45 and 54 nm dependent on the distance to the source, and the number size distribution is monomodal. Concerning the sulfur fuel content, around 85% of the monitored ships comply with the International Maritime Organization (IMO) limits. The reduction of the sulfur emission control area (SECA) limit from 1.5 to 1% in 2010 appears to have contributed to reduction of sulfur emissions that were measured in earlier studies from 2007 to 2009. The presented method can be implemented for regular ship compliance monitoring.

  16. Regional Atmospheric Transport Code for Hanford Emission Tracking, Version 2 (RATCHET2)

    International Nuclear Information System (INIS)

    Ramsdell, James V.; Rishel, Jeremy P.

    2006-01-01

    This manual describes the atmospheric model and computer code for the Atmospheric Transport Module within SAC. The Atmospheric Transport Module, called RATCHET2, calculates the time-integrated air concentration and surface deposition of airborne contaminants to the soil. The RATCHET2 code is an adaptation of the Regional Atmospheric Transport Code for Hanford Emissions Tracking (RATCHET). The original RATCHET code was developed to perform the atmospheric transport for the Hanford Environmental Dose Reconstruction Project. Fundamentally, the two sets of codes are identical; no capabilities have been deleted from the original version of RATCHET. Most modifications are generally limited to revision of the run-specification file to streamline the simulation process for SAC.

  17. Regional Atmospheric Transport Code for Hanford Emission Tracking, Version 2(RATCHET2)

    Energy Technology Data Exchange (ETDEWEB)

    Ramsdell, James V.; Rishel, Jeremy P.

    2006-07-01

    This manual describes the atmospheric model and computer code for the Atmospheric Transport Module within SAC. The Atmospheric Transport Module, called RATCHET2, calculates the time-integrated air concentration and surface deposition of airborne contaminants to the soil. The RATCHET2 code is an adaptation of the Regional Atmospheric Transport Code for Hanford Emissions Tracking (RATCHET). The original RATCHET code was developed to perform the atmospheric transport for the Hanford Environmental Dose Reconstruction Project. Fundamentally, the two sets of codes are identical; no capabilities have been deleted from the original version of RATCHET. Most modifications are generally limited to revision of the run-specification file to streamline the simulation process for SAC.

  18. Correction of head movements in positron emission tomography using point source tracking system: a simulation study.

    Science.gov (United States)

    Nazarparvar, Babak; Shamsaei, Mojtaba; Rajabi, Hossein

    2012-01-01

    The motion of the head during brain positron emission tomography (PET) acquisitions has been identified as a source of artifact in the reconstructed image. In this study, a method is described to develop an image-based motion correction technique for correcting the post-acquisition data without using external optical motion-tracking system such as POLARIS. In this technique, GATE has been used to simulate PET brain scan using point sources mounted around the head to accurately monitor the position of the head during the time frames. The measurement of head motion in each frame showed a transformation in the image frame matrix, resulting in a fully corrected data set. Using different kinds of phantoms and motions, the accuracy of the correction method is tested and its applicability to experimental studies is demonstrated as well.

  19. A method for measuring particle number emissions from vehicles driving on the road.

    Science.gov (United States)

    Shi, J P; Harrison, R M; Evans, D E; Alam, A; Barnes, C; Carter, G

    2002-01-01

    Earlier research has demonstrated that the conditions of dilution of engine exhaust gases profoundly influence the size distribution and total number of particles emitted. Since real world dilution conditions are variable and therefore difficult to simulate, this research has sought to develop and validate a method for measuring particle number emissions from vehicles driving past on a road. This has been achieved successfully using carbon dioxide as a tracer of exhaust gas dilution. By subsequent adjustment of data to a constant dilution factor, it is possible to compare emissions from different vehicles using different technologies and fuels based upon real world emission data. Whilst further optimisation of the technique, especially in terms of matching the instrument response times is desirable, the measurements offer useful insights into emissions from gasoline and diesel vehicles, and the substantial proportion of particles emitted in the 3-7 nanometre size range.

  20. The influence of design and fuel parameters on the particle emissions from wood pellets combustion. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Wiinikka, Henrik; Gebart, Rikard [Energy Technology Centre, Piteaa (Sweden)

    2005-02-01

    Combustion of solid biomass under fixed bed conditions is a common technique to generate heat and power in both small and large scale grate furnaces (domestic boilers, stoves, district heating plants). Unfortunately, combustion of biomass will generate particle emissions containing both large fly ash particles and fine particles that consist of fly ash and soot. The large fly ash particles have been produced from fusion of non-volatile ash-forming species in burning char particle. The inorganic fine particles have been produced from nucleation of volatilised ash elements (K, Na, S, Cl and Zn). If the combustion is incomplete, soot particles are also produced from secondary reaction of tar. The particles in the fine fraction grows by coagulation and coalescence to a particle diameter around 0.1 pm. Since the smallest particles are very hard to collect in ordinary cleaning devices they contribute to the ambient air pollution. Furthermore, fine airborne particles have been correlated to adverse effects on the human health. It is therefore essential to minimize particle formation from the combustion process and thereby reduce the emissions of particulates to the ambient air. The aim with this project is to study particle emissions from small scale combustion of wood pellets and to investigate the impact of different operating, construction and fuel parameters on the amount and characteristic of the combustion generated particles. To address these issues, experiments were carried out in a 10 kW updraft fired wood pellets reactor that has been custom designed for systematic investigations of particle emissions. In the flue gas stack, particle emissions were sampled on a filter. The particle mass and number size distributions were analysed by a low pressure cascade impactor and a SMPS (Scanning Electron Mobility Particle Sizer). The results showed that the temperature and the flow pattern in the combustion zone affect the particle emissions. Increasing combustion

  1. Control of spontaneous emission rate in luminescent resonant diamond particles

    Science.gov (United States)

    Savelev, R.; Zalogina, A.; Kudryashov, S.; Ivanova, A.; Levchenko, A.; Makarov, S.; Zuev, D.; Shadrivov, I.

    2018-01-01

    We study the properties of luminescent diamond particles of different sizes (up to ~1.5 μm) containing multiple NV-centers. We theoretically predict that the average liftetime in such particles is decreased by several times as compared to optically small subwavelength nanodiamonds. In our experiments, samples were obtained by milling the plasma-enhanced chemical vapor deposited diamond film, and characterized by Raman spectroscopy and dark- field spectroscopy methods. Time-resolved luminescence measurements of the excited state of NV-centers showed that their average lifetime varies from 10 to 17 ns in different samples. By comparing this data to the values of the lifetime of the NV-centers in optically small nanodiamonds, known from literature, we confirm a severalfold decrease of the lifetime in resonant particles.

  2. First test model of the optical microscope which images the whole vertical particle tracks without any depth scanning

    International Nuclear Information System (INIS)

    Soroko, L.M.

    2001-01-01

    The first test model of the optical microscope which produces the in focus image of the whole vertical particle track without depth scanning is described. The in focus image of the object consisting of the linear array of the point-like elements was obtained. A comparison with primary out of focus image of such an object has been made

  3. Convergence of lateral dynamic measurements in the plasma membrane of live cells from single particle tracking and STED-FCS

    DEFF Research Database (Denmark)

    Lagerholm, B. Christoffer; Andrade, Débora M.; Clausen, Mathias P.

    2017-01-01

    Fluorescence correlation spectroscopy (FCS) in combination with the super-resolution imaging method STED (STED-FCS), and single-particle tracking (SPT) are able to directly probe the lateral dynamics of lipids and proteins in the plasma membrane of live cells at spatial scales much below the diff...

  4. Particle Acceleration, Magnetic Field Generation, and Emission in Relativistic Shocks

    Science.gov (United States)

    Nishikawa, Ken-IchiI.; Hededal, C.; Hardee, P.; Richardson, G.; Preece, R.; Sol, H.; Fishman, G.

    2004-01-01

    Shock acceleration is an ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., the Buneman instability, two-streaming instability, and the Weibel instability) created in the shocks are responsible for particle (electron, positron, and ion) acceleration. Using a 3-D relativistic electromagnetic particle (m) code, we have investigated particle acceleration associated with a relativistic jet front propagating through an ambient plasma with and without initial magnetic fields. We find only small differences in the results between no ambient and weak ambient parallel magnetic fields. Simulations show that the Weibel instability created in the collisionless shock front accelerates particles perpendicular and parallel to the jet propagation direction. New simulations with an ambient perpendicular magnetic field show the strong interaction between the relativistic jet and the magnetic fields. The magnetic fields are piled up by the jet and the jet electrons are bent, which creates currents and displacement currents. At the nonlinear stage, the magnetic fields are reversed by the current and the reconnection may take place. Due to these dynamics the jet and ambient electron are strongly accelerated in both parallel and perpendicular directions.

  5. Analysis of etchants behavior on the electrochemical etching amplification of fast-neutron-induced recoil particle tracks in polycarbonate

    International Nuclear Information System (INIS)

    Masnadi Shirazi Nezhad, K.

    1979-08-01

    The composition, concentration, and temperature of etchant are important parameters controlling electrochemical etching (ECE) amplification of charged particle tracks in polymers. These parameters were further studied for sohralir polycarbonate neutron dosimeter (Sohrabi 1974), using potassium hydroxide (KOH) and sodium hydroxide (NaOH) solutions, and a mixture of potassium hydroxide, ethanol, and water (PEW solution), at different concentrations applying a field strength of 32KV/cm at 2KHz frequency using 250 μ thick polycarbonate exposed to fast neutrons. The recoal track density per rad of neutrons, in general, was found to increase by increasing the etchant concentration reaching a semi-platean after which it increases again. This increase is up to a concentration at which a track removing process occurs and no tracks have been amplified anymore. This track removing process occurred at about 11 normality in both KOH (50% by weight) and NaOH (30% by weight) solution at 25degC. The mean track diameter, in general, passed through a cyclic variation having a maximun and a minimum. For NaOH solution, the track removing process occurred at the minimum point. In the three regions of the track diameter curve the tracks appear in different shapes especially in KOH solution. The PEW solution at its optimum conditions was more effective in terms of both sensitivity, track diameter and a shorter period of etching. The chemical mechanism of etching process may be explained to be a ''saponification'' process. These studies further support the adequacy of Sohrabi dosimeter for routing health physics and radiation research applications. The above parameters are further discussed and the results as well as the advantages and disadvantages of the above etchants are given. (author)

  6. Immobilization of pseudorabies virus in porcine tracheal respiratory mucus revealed by single particle tracking.

    Directory of Open Access Journals (Sweden)

    Xiaoyun Yang

    Full Text Available Pseudorabies virus (PRV initially replicates in the porcine upper respiratory tract. It easily invades the mucosae and submucosae for subsequent spread throughout the body via blood vessels and nervous system. In this context, PRV developed ingenious processes to overcome different barriers such as epithelial cells and the basement membrane. Another important but often overlooked barrier is the substantial mucus layer which coats the mucosae. However, little is known about how PRV particles interact with porcine respiratory mucus. We therefore measured the barrier properties of porcine tracheal respiratory mucus, and investigated the mobility of nanoparticles including PRV in this mucus. We developed an in vitro model utilizing single particle tracking microscopy. Firstly, the mucus pore size was evaluated with polyethylene glycol coupled (PEGylated nanoparticles and atomic force microscope. Secondly, the mobility of PRV in porcine tracheal respiratory mucus was examined and compared with that of negative, positive and PEGylated nanoparticles. The pore size of porcine tracheal respiratory mucus ranged from 80 to 1500 nm, with an average diameter of 455±240 nm. PRV (zeta potential: -31.8±1.5 mV experienced a severe obstruction in porcine tracheal respiratory mucus, diffusing 59-fold more slowly than in water. Similarly, the highly negatively (-49.8±0.6 mV and positively (36.7±1.1 mV charged nanoparticles were significantly trapped. In contrast, the nearly neutral, hydrophilic PEGylated nanoparticles (-9.6±0.8 mV diffused rapidly, with the majority of particles moving 50-fold faster than PRV. The mobility of the particles measured was found to be related but not correlated to their surface charge. Furthermore, PEGylated PRV (-13.8±0.9 mV was observed to diffuse 13-fold faster than native PRV. These findings clearly show that the mobility of PRV was significantly hindered in porcine tracheal respiratory mucus, and that the obstruction of PRV

  7. Volume-weighted particle-tracking method for solute-transport modeling; Implementation in MODFLOW–GWT

    Science.gov (United States)

    Winston, Richard B.; Konikow, Leonard F.; Hornberger, George Z.

    2018-02-16

    In the traditional method of characteristics for groundwater solute-transport models, advective transport is represented by moving particles that track concentration. This approach can lead to global mass-balance problems because in models of aquifers having complex boundary conditions and heterogeneous properties, particles can originate in cells having different pore volumes and (or) be introduced (or removed) at cells representing fluid sources (or sinks) of varying strengths. Use of volume-weighted particles means that each particle tracks solute mass. In source or sink cells, the changes in particle weights will match the volume of water added or removed through external fluxes. This enables the new method to conserve mass in source or sink cells as well as globally. This approach also leads to potential efficiencies by allowing the number of particles per cell to vary spatially—using more particles where concentration gradients are high and fewer where gradients are low. The approach also eliminates the need for the model user to have to distinguish between “weak” and “strong” fluid source (or sink) cells. The new model determines whether solute mass added by fluid sources in a cell should be represented by (1) new particles having weights representing appropriate fractions of the volume of water added by the source, or (2) distributing the solute mass added over all particles already in the source cell. The first option is more appropriate for the condition of a strong source; the latter option is more appropriate for a weak source. At sinks, decisions whether or not to remove a particle are replaced by a reduction in particle weight in proportion to the volume of water removed. A number of test cases demonstrate that the new method works well and conserves mass. The method is incorporated into a new version of the U.S. Geological Survey’s MODFLOW–GWT solute-transport model.

  8. The TL fluence response to heavy charged particles using the track interaction model and track structure information

    International Nuclear Information System (INIS)

    Rodriguez-Villafuerte, M.; Avila, O.

    2002-01-01

    The extended track interaction model, ETIM, has recently been proposed to explain the TLD-100 fluence response of peak 5 to heavy ions. This model includes the track structure information through the use of the luminescent-centre occupation probability obtained from radial dose distributions produced by the ions as they travel through the dosemeter. In this work an implementation of ETIM using Monte Carlo techniques is presented. The simulation was applied to calculate the response of peak 5 of both sensitised and normal TLD-100 crystals to 2.6 and 6.8 MeV 4 He ions. The simulation shows that the TL-fluence response has a strong dependence on ion energy, in disagreement with experimental observations. In spite of this, good agreement between the simulated TL-fluence response calculated for the 6.8 MeV 4 He radial distributions and the experimental data for the two energies was achieved. (author)

  9. Evaluation of a Lagrangian Soot Tracking Method for the prediction of primary soot particle size under engine-like conditions

    DEFF Research Database (Denmark)

    Cai Ong, Jiun; Pang, Kar Mun; Walther, Jens Honore

    2018-01-01

    This paper reports the implementation and evaluation of a Lagrangian soot tracking (LST) method for the modeling of soot in diesel engines. The LST model employed here has the tracking capability of a Lagrangian method and the ability to predict primary soot particle sizing. The Moss-Brookes soot...... in predicting temporal soot cloud development, mean soot diameter and primary soot size distribution is evaluated using measurements of n-heptane and n-dodecane spray combustion obtained under diesel engine-like conditions. In addition, sensitivity studies are carried out to investigate the influence of soot....... A higher rate of soot oxidation due to OH causes the soot particles to be fully oxidized downstream of the flame. In general, the LST model performs better than the Eulerian method in terms of predicting soot sizing and accessing information of individual soot particles, both of which are shortcomings...

  10. Use of GSR particle analysis program on an analytical SEM to identify sources of emission of airborne particles

    International Nuclear Information System (INIS)

    Chan, Y.C.; Trumper, J.; Bostrom, T.

    2002-01-01

    Full text: High concentrations of airborne particles, in particular PM 10 (particulate matter 10 , but has been little used in Australia for airborne particulates. Two sets of 15 mm PM 10 samples were collected in March and April 2000 from two sites in Brisbane, one within a suburb and one next to an arterial road. The particles were collected directly onto double-sided carbon tapes with a cascade impactor attached to a high-volume PM 10 sampler. The carbon tapes were analysed in a JEOL 840 SEM equipped with a Be-window energy-dispersive X-ray detector and Moran Scientific microanalysis system. An automated Gun Shot Residue (GSR) program was used together with backscattered electron imaging to characterise and analyse individual particulates. About 6,000 particles in total were analysed for each set of impactor samples. Due to limitations of useful pixel size, only particles larger than about 0.5 μm could be analysed. The size, shape and estimated elemental composition (from Na to Pb) of the particles were subjected to non-hierarchical cluster analysis and the characteristics of the clusters were related to their possible sources of emission. Both samples resulted in similar particle clusters. The particles could be classified into three main categories non-spherical (58% of the total number of analysed particles, shape factor >1 1), spherical (15%) and 'carbonaceous' (27%, ie with unexplained % of elemental mass >75%). Non-spherical particles were mainly sea salt and soil particles, and a small amount of iron, lead and mineral dust. The spherical particles were mainly sea salt particles and flyash, and a small amount of iron, lead and secondary sulphate dust. The carbonaceous particles included carbon material mixed with secondary aerosols, roadside dust, sea salt or industrial dust. The arterial road sample also contained more roadside dust and less secondary aerosols than the suburb sample. Current limitations with this method are the minimum particle size

  11. Instantaneous axial velocity of a radioactive tracer determined with radioactive particle tracking

    Energy Technology Data Exchange (ETDEWEB)

    Fraguio, Maria Sol; Cassanello, Miryan C., E-mail: miryan@di.fcen.uba.a [Universidad de Buenos Aires (Argentina). Facultad de Ciencias Exactas y Naturales. Programa de Investigacion y Desarrollo de Fuentes Alternativas de Materias Primas y Energia (PINMATE); Cardona, Maria Angelica; Hojman, Daniel, E-mail: cardona@tandar.cnea.gov.a [CONICET, Buenos Aires (Argentina); Somacal, Hector [Comision Nacional de Energia Atomica (CNEA), Buenos Aires (Argentina). Centro Atomico Constituyentes. Dept. de Fisica

    2009-07-01

    Radioactive Particle Tracking (RPT) is a technique that has been successfully used to get features of the liquid and/or the solid motion in multiphase contactors. It is one of the rare techniques able to provide experimental data in dense and strongly turbulent multiphase media. Validation of the technique has always been based on comparing the estimated mean velocity to an imposed mean velocity although the extracted features are frequently related to the instantaneous velocities. The present work pursues the analysis, through calibration experiments, of the ability of RPT to get the actual tracer instantaneous velocities. With this purpose, the motion of a radioactive tracer attached to a moving rod driven by a pneumatic system is reconstructed from the combined response of an array of 10 NaI(Tl) scintillation detectors. Simultaneously, the tracer motion is registered through an encoder able to establish the axial tracer coordinate with high precision and high time resolution. The tracer is a gold particle, activated by neutron bombardment. The rod is moved at different velocities and it travels upwards and downwards close to the column centre. A mini-pilot scale bubble column is used as the test facility. The model liquid is tap water in batch mode and the gas is air, flowing at different gas velocities, spanning the homogeneous and the heterogeneous flow regimes. Time series of the entirety response of all the detectors, while the rod is moving at different imposed velocities within the two phase emulsion, are measured with a sampling period of 0.03 s during about 2 minutes. The instantaneous tracer positions and velocities reconstructed from RPT and the one obtained from the encoder response are compared under different operating conditions and for different tracer velocities. (author)

  12. Energy deposition and GDR emission in inelastic alpha particle scattering

    CERN Document Server

    Viesti, G; Fabris, D; Nebbia, G; Cinausero, M; Fioretto, E; Napoli, D R; Prete, G; Hagel, K; Natowitz, J B; Wada, R; Gonthier, P; Majka, Z; Alfarro, R; Zhao, Y; Mdeiwayeh, N; Ho, T

    1999-01-01

    Neutron fold distributions measured for the reaction sup 2 sup 0 sup 9 Bi(alpha,alpha') at 240 MeV have been analyzed with the help of Statistical Model calculations to determine the distribution of excitation energy in the primary target fragments as a function of the projectile energy loss, EL. Results show that the distributions in excitation energy feature a plateau which extends from the kinematical limit E sub x =EL to very small excitations, suggesting a variety of interactions of the beam particles with the target nucleus. Requiring an additional coincidence with a light charged particle leads to selection of a significant higher average excitation energy. This effect is extrapolated to explore results of previous GDR decay measurements in the case of a sup 2 sup 0 sup 8 Pb target. Corrections of derived GDR parameters due to the partial transfer of excitation energy are suggested.

  13. Emission of particles in the 12 C + 12 C fusion

    International Nuclear Information System (INIS)

    Martinez Q, E.; Aguilera, E.F.; Rosales, P.

    2002-01-01

    A fusion process analysis of the 12 C + 12 C reaction is done, using the LILITA program. The analysis consisted mainly in varying the value of the Levels density parameter, determining on this way the value of such parameter which reproduces better the contribution of the different channels of fusion-evaporation of particles for this system at different energies. Moreover a comparison with measures done in the Instituto Nacional de Investigaciones Nucleares is realized. (Author)

  14. Measurement and Modeling of Volatile Particle Emissions from Military Aircraft

    Science.gov (United States)

    2011-10-01

    CMAQ – Community multiscale air quality model CMU – Carnegie Mellon University COA – organic aerosol concentration CPC - condensation particle...the aerosol phase when there is free ammonia (or another cation) available to neutralize it [36]. Therefore, we expect that nitrate aerosol...be a critical parameter, with greater nitrate expected during winter. Even less is known about the fate of the complex mixture of organics in the

  15. Particle and carbon dioxide emissions from passenger vehicles operating on unleaded petrol and LPG fuel

    International Nuclear Information System (INIS)

    Ristovski, Z.D.; Jayaratne, E.R.; Morawska, L.; Ayoko, G.A.; Lim, M.

    2005-01-01

    A comprehensive study of the particle and carbon dioxide emissions from a fleet of six dedicated liquefied petroleum gas (LPG) powered and five unleaded petrol (ULP) powered new Ford Falcon Forte passenger vehicles was carried out on a chassis dynamometer at four different vehicle speeds-0 (idle), 40, 60, 80 and 100 km h -1 . Emission factors and their relative values between the two fuel types together with a statistical significance for any difference were estimated for each parameter. In general, LPG was found to be a 'cleaner' fuel, although in most cases, the differences were not statistically significant owing to the large variations between emissions from different vehicles. The particle number emission factors ranged from 10 11 to 10 13 km -1 and was over 70% less with LPG compared to ULP. Corresponding differences in particle mass emission factor between the two fuels were small and ranged from the order of 10 μg km -1 at 40 to about 1000 μg km -1 at 100 km h -1 . The count median particle diameter (CMD) ranged from 20 to 35 nm and was larger with LPG than with ULP in all modes except the idle mode. Carbon dioxide emission factors ranged from about 300 to 400 g km -1 at 40 km h -1 , falling with increasing speed to about 200 g km -1 at 100 km h -1 . At all speeds, the values were 10% to 18% greater with ULP than with LPG

  16. Improved field emission performance of carbon nanotube by introducing copper metallic particles

    Directory of Open Access Journals (Sweden)

    Chen Yiren

    2011-01-01

    Full Text Available Abstract To improve the field emission performance of carbon nanotubes (CNTs, a simple and low-cost method was adopted in this article. We introduced copper particles for decorating the CNTs so as to form copper particle-CNT composites. The composites were fabricated by electrophoretic deposition technique which produced copper metallic particles localized on the outer wall of CNTs and deposited them onto indium tin oxide (ITO electrode. The results showed that the conductivity increased from 10-5 to 4 × 10-5 S while the turn-on field was reduced from 3.4 to 2.2 V/μm. Moreover, the field emission current tended to be undiminished after continuous emission for 24 h. The reasons were summarized that introducing copper metallic particles to decorate CNTs could increase the surface roughness of the CNTs which was beneficial to field emission, restrain field emission current from saturating when the applied electric field was above the critical field. In addition, it could also improve the electrical contact by increasing the contact area between CNT and ITO electrode that was beneficial to the electron transport and avoided instable electron emission caused by thermal injury of CNTs.

  17. Airborne emission measurements of SO2, NOx and particles from individual ships using sniffer technique

    Science.gov (United States)

    Beecken, J.; Mellqvist, J.; Salo, K.; Ekholm, J.; Jalkanen, J.-P.

    2013-12-01

    A dedicated system for airborne ship emission measurements of SO2, NOx and particles has been developed and used from several small aircrafts. The system has been adapted for fast response measurements at 1 Hz and the use of several of the instruments is unique. The uncertainty of the given data is about 20.3% for SO2 and 23.8% for NOx emission factors. Multiple measurements of 158 ships measured from the air on the Baltic and North Sea during 2011 and 2012 show emission factors of 18.8 ± 6.5 g kgfuel-1, 66.6 ± 23.4 g kgfuel-1, and 1.8 ± 1.3 × 1016 particles kgfuel-1 for SO2, NOx and particle number respectively. The particle size distributions were measured for particle diameters between 15 and 560 nm. The mean sizes of the particles are between 50 and 62 nm dependent on the distance to the source and the number size distribution is mono-modal. Concerning the sulfur fuel content 85% of the ships comply with the IMO limits. The sulfur emission has decreased compared to earlier measurements from 2007 to 2009. The presented method can be implemented for regular ship compliance monitoring.

  18. The potential of positron emission tomography for intratreatment dynamic lung tumor tracking: A phantom study

    International Nuclear Information System (INIS)

    Yang, Jaewon; Yamamoto, Tokihiro; Mazin, Samuel R.; Graves, Edward E.; Keall, Paul J.

    2014-01-01

    Purpose: This study aims to evaluate the potential and feasibility of positron emission tomography for dynamic lung tumor tracking during radiation treatment. The authors propose a center of mass (CoM) tumor tracking algorithm using gated-PET images combined with a respiratory monitor and investigate the geometric accuracy of the proposed algorithm. Methods: The proposed PET dynamic lung tumor tracking algorithm estimated the target position information through the CoM of the segmented target volume on gated PET images reconstructed from accumulated coincidence events. The information was continuously updated throughout a scan based on the assumption that real-time processing was supported (actual processing time at each frame ≈10 s). External respiratory motion and list-mode PET data were acquired from a phantom programmed to move with measured respiratory traces (external respiratory motion and internal target motion) from human subjects, for which the ground truth target position was known as a function of time. The phantom was cylindrical with six hollow sphere targets (10, 13, 17, 22, 28, and 37 mm in diameter). The measured respiratory traces consisted of two sets: (1) 1D-measured motion from ten healthy volunteers and (2) 3D-measured motion from four lung cancer patients. The authors evaluated the geometric accuracy of the proposed algorithm by quantifying estimation errors (Euclidean distance) between the actual motion of targets (1D-motion and 3D-motion traces) and CoM trajectories estimated by the proposed algorithm as a function of time. Results: The time-averaged error of 1D-motion traces over all trajectories of all targets was 1.6 mm. The error trajectories decreased with time as coincidence events were accumulated. The overall error trajectory of 1D-motion traces converged to within 2 mm in approximately 90 s. As expected, more accurate results were obtained for larger targets. For example, for the 37 mm target, the average error over all 1D

  19. Lognormal Distribution of Cellular Uptake of Radioactivity: Statistical Analysis of α-Particle Track Autoradiography

    Science.gov (United States)

    Neti, Prasad V.S.V.; Howell, Roger W.

    2010-01-01

    Recently, the distribution of radioactivity among a population of cells labeled with 210Po was shown to be well described by a log-normal (LN) distribution function (J Nucl Med. 2006;47:1049–1058) with the aid of autoradiography. To ascertain the influence of Poisson statistics on the interpretation of the autoradiographic data, the present work reports on a detailed statistical analysis of these earlier data. Methods The measured distributions of α-particle tracks per cell were subjected to statistical tests with Poisson, LN, and Poisson-lognormal (P-LN) models. Results The LN distribution function best describes the distribution of radioactivity among cell populations exposed to 0.52 and 3.8 kBq/mL of 210Po-citrate. When cells were exposed to 67 kBq/mL, the P-LN distribution function gave a better fit; however, the underlying activity distribution remained log-normal. Conclusion The present analysis generally provides further support for the use of LN distributions to describe the cellular uptake of radioactivity. Care should be exercised when analyzing autoradiographic data on activity distributions to ensure that Poisson processes do not distort the underlying LN distribution. PMID:18483086

  20. On the use of particle filters for electromagnetic tracking in high dose rate brachytherapy

    Science.gov (United States)

    Götz, Th I.; Lahmer, G.; Brandt, T.; Kallis, K.; Strnad, V.; Bert, Ch; Hensel, B.; Tomé, A. M.; Lang, E. W.

    2017-10-01

    Modern radiotherapy of female breast cancers often employs high dose rate brachytherapy, where a radioactive source is moved inside catheters, implanted in the female breast, according to a prescribed treatment plan. Source localization relative to the patient’s anatomy is determined with solenoid sensors whose spatial positions are measured with an electromagnetic tracking system. Precise sensor dwell position determination is of utmost importance to assure irradiation of the cancerous tissue according to the treatment plan. We present a hybrid data analysis system which combines multi-dimensional scaling with particle filters to precisely determine sensor dwell positions in the catheters during subsequent radiation treatment sessions. Both techniques are complemented with empirical mode decomposition for the removal of superimposed breathing artifacts. We show that the hybrid model robustly and reliably determines the spatial positions of all catheters used during the treatment and precisely determines any deviations of actual sensor dwell positions from the treatment plan. The hybrid system only relies on sensor positions measured with an EMT system and relates them to the spatial positions of the implanted catheters as initially determined with a computed x-ray tomography.

  1. Calibrations for charged particle tracking and measurements of w photoproduction with the GlueX detector

    Energy Technology Data Exchange (ETDEWEB)

    Staib, Michael [Carnegie Mellon Univ., Pittsburgh, PA (United States)

    2017-09-21

    The GlueX experiment is a new experimental facility at Jefferson Lab in Newport News, VA. The experiment aims to map out the spectrum of hybrid mesons in the light quark sector. Measurements of the spin-density matrix elements in omega photoproduction are performed with a linear polarized photon beam on an unpolarized proton target, and presented in bins of Mandelstam t for beam energies of 8.4-9.0 GeV. The spin-density matrix elements are exclusively measured through two decays of the omega meson: omega -> pi^+ pi^- pi^0 and omega ->pi^0 gamma. A description of the experimental apparatus is presented. Several methods used in the calibration of the charged particle tracking system are described. These measurements greatly improve the world statistics in this energy range. These are the first results measured through the omega ->pi^0 gamma decay at this energy. Results are generally consistent with a theoretical model based on diffractive production with Pomeron and pseudoscalar exchange in the t-channel.

  2. Uncovering homo-and hetero-interactions on the cell membrane using single particle tracking approaches

    International Nuclear Information System (INIS)

    Torreno-Pina, Juan A; Manzo, Carlo; Garcia-Parajo, Maria F

    2016-01-01

    The plasma membrane of eukaryotic cells is responsible for a myriad of functions that regulate cell physiology and plays a crucial role in a multitude of processes that include adhesion, migration, signaling recognition and cell–cell communication. This is accomplished by specific interactions between different membrane components such as lipids and proteins on the lipid bilayer but also through interactions with the underlying cortical actin cytoskeleton on the intracellular side and the glycocalyx matrix in close proximity to the extracellular side. Advanced biophysical techniques, including single particle tracking (SPT) have revealed that the lateral diffusion of molecular components on the plasma membrane represents a landmark manifestation of such interactions. Indeed, by studying changes in the diffusivity of individual membrane molecules, including sub-diffusion, confined diffusion and/or transient arrest of molecules in membrane compartments, it has been possible to gain insight on the nature of molecular interactions and to infer on its functional role for cell response. In this review, we will revise some exciting results where SPT has been crucial to reveal homo- and hetero-interactions on the cell membrane. (paper)

  3. [Particle emission characteristics of diesel bus fueled with bio-diesel].

    Science.gov (United States)

    Lou, Di-Ming; Chen, Feng; Hu, Zhi-Yuan; Tan, Pi-Qiang; Hu, Wei

    2013-10-01

    With the use of the Engine Exhaust Particle Sizer (EEPS), a study on the characteristics of particle emissions was carried out on a China-IV diesel bus fueled with blends of 5% , 10% , 20% , 50% bio-diesel transformed from restaurant waste oil and China-IV diesel (marked separately by BD5, BD10, BD20, BD50), pure bio-diesel (BD100) and pure diesel (BD0). The results indicated that particulate number (PN) and mass (PM) emissions of bio-diesel blends increased with the increase in bus speed and acceleration; with increasing bio-diesel content, particulate emissions displayed a relevant declining trend. In different speed ranges, the size distribution of particulate number emissions (PNSD) was bimodal; in different acceleration ranges, PNSD showed a gradual transition from bimodal shape to unimodal when bus operation was switched from decelerating to accelerating status. Bio-diesel blends with higher mixture ratios showed significant reduction in PN emissions for accumulated modes, and the particulate number emission peaks moved towards smaller sizes; but little change was obtained in PN emissions for nuclei modes; reduction also occurred in particle geometric diameter (Dg).

  4. Charged particle emission: the Child-Langmuir model

    International Nuclear Information System (INIS)

    Degond, P.; Raviart, P.A.

    1993-01-01

    The recent mathematical results concerning boundary emission modelling are reviewed with a synthetical view. The plane diode case is first studied; the Child-Langmuir model is then characterized as the limit to an absolutely non standard singular perturbation problem and is associated with approximate models (constrained and penalized models) which may be easily generalized in more realistic cases; an iterative solution method for the penalized problem is studied. The derived Child-Langmuir model is extended to the cylindrical diode case and to an arbitrary geometry case: constrained and penalized models related to the stationary Vlasov-Poisson equations are studied and extended to the Vlasov-Maxwell evolution equation general case

  5. Particle Emission and Charging Effects Induced by Fracture

    Science.gov (United States)

    1989-06-15

    molecular nitrogen for both the initial bursts and those that follow in the next 0.1-100 ;is. Thus, the "after-emission" is not due to phosphorescence of...copious emitter of atomic Na and both I atomic and molecular oxygen. The phF, EE, and PIE from the two glasses share a number of properties. This work...appear in J. Vac. Sci. Tech. Electron Emision from Ahrasion of Polymers: In Section XV we examine previously claimed 3 detection of electrons during

  6. The multi-step prompt particle emission from fission fragments

    International Nuclear Information System (INIS)

    Zhivopistsev, A.; Oprea, C.; Oprea, I.

    2003-01-01

    The purpose of this work is the study of non-equilibrium high-energy gamma emission from 252 Cf. In the framework of the formalism of statistical multi-step compound processes in nuclear reactions. A relation was found between the shape of the high-energy part of the gamma spectrum and different mechanisms of excitation of the fission fragments. Agreement with experimental data for different groups of fission fragments was obtained. The analysis of the experimental high-energy part of gamma spectra yields information about the mechanism of excitation of fission fragments. The influence of dissipation of the deformation excess on intrinsic excitation of fission fragments was studied. (authors)

  7. Multi-particle Emission from $^{31}$Ar at ISOLDE

    CERN Document Server

    Marroquin, I; Ciemny, A A; de Witte, H; Fraile, L M; Fynbo, H O U; Garzón-Camacho, A; Howard, A; Johansson, H; Jonson, B; Kirsebom, O S; Koldste, G T; Lica, R; Lund, M V; Madurga, M; Mazzocchi, C; Mihai, C; Munch, M; Nae, S A; Nacher, E; Negret, A; Nilsson, T; Perea, A; Refsgaard, J; Riisager, K; Rapisarda, E; Sotty, C; Stanoiu, M; Tengblad, O; Turturica, A E; Vedia, M V

    2016-01-01

    A multi-particle decay experiment was successfully performed at the ISOLDE Decay Station. In this new permanent station, devoted to\\break $\\beta$-decay studies, the novel MAGISOL Si-Plugin Chamber was installed to study the exotic decay modes of the proton drip-line nucleus ${^{31}}$Ar. The motivation was to search for $\\beta3p$ and $\\beta3p\\gamma$ channels, as well as to provide information on resonances in ${^{30}}$S and ${^{29}}$P relevant for the astrophysical\\break rp-process. Description of the experimental set-up and preliminary results are presented.

  8. Time-Lapse Monitoring of DNA Damage Colocalized With Particle Tracks in Single Living Cells

    Energy Technology Data Exchange (ETDEWEB)

    McFadden, Conor H. [Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Hallacy, Timothy M. [Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Department of Physics and Astronomy, Rice University, Houston, Texas (United States); Flint, David B. [Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Graduate School of Biomedical Sciences, The University of Texas, Houston, Texas (United States); Granville, Dal A. [Department of Medical Physics, The Ottawa Hospital Cancer Centre, Ottawa, Ontario (Canada); Asaithamby, Aroumougame [Division of Molecular Radiation Biology, Department of Radiation Oncology, University of Texas Southwestern Medical Centre, Dallas, Texas (United States); Sahoo, Narayan [Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Akselrod, Mark S. [Crystal Growth Division, Landauer, Inc, Stillwater, Oklahoma (United States); Sawakuchi, Gabriel O., E-mail: gsawakuchi@mdanderson.org [Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Graduate School of Biomedical Sciences, The University of Texas, Houston, Texas (United States)

    2016-09-01

    Purpose: Understanding the DNA damage and repair induced by hadron therapy (HT) beams is crucial for developing novel strategies to maximize the use of HT beams to treat cancer patients. However, spatiotemporal studies of DNA damage and repair for beam energies relevant to HT have been challenging. We report a technique that enables spatiotemporal measurement of radiation-induced damage in live cells and colocalization of this damage with charged particle tracks over a broad range of clinically relevant beam energies. The technique uses novel fluorescence nuclear track detectors with fluorescence confocal laser scanning microscopy in the beam line to visualize particle track traversals within the subcellular compartments of live cells within seconds after injury. Methods and Materials: We designed and built a portable fluorescence confocal laser scanning microscope for use in the beam path, coated fluorescence nuclear track detectors with fluorescent-tagged live cells (HT1080 expressing enhanced green fluorescent protein tagged to XRCC1, a single-strand break repair protein), placed the entire assembly into a proton therapy beam line, and irradiated the cells with a fluence of ∼1 × 10{sup 6} protons/cm{sup 2}. Results: We successfully obtained confocal images of proton tracks and foci of DNA single-strand breaks immediately after irradiation. Conclusions: This technique represents an innovative method for analyzing biological responses in any HT beam line at energies and dose rates relevant to therapy. It allows precise determination of the number of tracks traversing a subcellular compartment and monitoring the cellular damage therein, and has the potential to measure the linear energy transfer of each track from therapeutic beams.

  9. Flagged uniform particle splitting for variance reduction in proton and carbon ion track-structure simulations

    Science.gov (United States)

    Ramos-Méndez, José; Schuemann, Jan; Incerti, Sebastien; Paganetti, Harald; Schulte, Reinhard; Faddegon, Bruce

    2017-08-01

    Flagged uniform particle splitting was implemented with two methods to improve the computational efficiency of Monte Carlo track structure simulations with TOPAS-nBio by enhancing the production of secondary electrons in ionization events. In method 1 the Geant4 kernel was modified. In method 2 Geant4 was not modified. In both methods a unique flag number assigned to each new split electron was inherited by its progeny, permitting reclassification of the split events as if produced by independent histories. Computational efficiency and accuracy were evaluated for simulations of 0.5-20 MeV protons and 1-20 MeV u-1 carbon ions for three endpoints: (1) mean of the ionization cluster size distribution, (2) mean number of DNA single-strand breaks (SSBs) and double-strand breaks (DSBs) classified with DBSCAN, and (3) mean number of SSBs and DSBs classified with a geometry-based algorithm. For endpoint (1), simulation efficiency was 3 times lower when splitting electrons generated by direct ionization events of primary particles than when splitting electrons generated by the first ionization events of secondary electrons. The latter technique was selected for further investigation. The following results are for method 2, with relative efficiencies about 4.5 times lower for method 1. For endpoint (1), relative efficiency at 128 split electrons approached maximum, increasing with energy from 47.2  ±  0.2 to 66.9  ±  0.2 for protons, decreasing with energy from 51.3  ±  0.4 to 41.7  ±  0.2 for carbon. For endpoint (2), relative efficiency increased with energy, from 20.7  ±  0.1 to 50.2  ±  0.3 for protons, 15.6  ±  0.1 to 20.2  ±  0.1 for carbon. For endpoint (3) relative efficiency increased with energy, from 31.0  ±  0.2 to 58.2  ±  0.4 for protons, 23.9  ±  0.1 to 26.2  ±  0.2 for carbon. Simulation results with and without splitting agreed within 1% (2 standard

  10. On particle emission in the time-dependent Hartree-Fock approximation

    International Nuclear Information System (INIS)

    Maedler, P.

    1984-01-01

    Investigations of fast particle emission in the time-dependent Hartree-Fock mean-field approximation (TDHF) have been performed for one-dimensional slab collisions. For a fixed target mass number and incident velocity the total yields of PEP exhibit pronounced srtructures as a function of the pro ectile mass number, which strongly correcate with the binding energy of the last nucleon in the projectnle. This is in explicit disagreement with experiment. The conclusion has been drawn that the Fermi-jet mechanism cannot be responsible for most of the fast particles observed in experiment, even if quantum diffraction is taken into account (as in TDHF). After PEP emission large amplitude density oscillations, which are the only possible modes in the slab geometry, are found to be damped by further particle emission

  11. Practical Considerations for Detection and Characterization of Sub-Micron Particles in Protein Solutions by Nanoparticle Tracking Analysis.

    Science.gov (United States)

    Gruia, Flaviu; Parupudi, Arun; Polozova, Alla

    2015-01-01

    Nanoparticle Tracking Analysis (NTA) is an emerging analytical technique developed for detection, sizing, and counting of sub-micron particles in liquid media. Its feasibility for use in biopharmaceutical development was evaluated with particle standards and recombinant protein solutions. Measurements of aqueous suspensions of NIST-traceable polystyrene particle standards showed accurate particle concentration detection between 2 × 10(7) and 5 × 10(9) particles/mL. Sizing was accurate for particle standards up to 200 nm. Smaller than nominal value sizes were detected by NTA for the 300-900 nm particles. Measurements of protein solutions showed that NTA performance is solution-specific. Reduced sensitivity, especially in opalescent solutions, was observed. Measurements in such solutions may require sample dilution; however, common sample manipulations, such as dilution and filtration, may result in particle formation. Dilution and filtration case studies are presented to further illustrate such behavior. To benchmark general performance, NTA was compared against asymmetric flow field flow fractionation coupled with multi-angle light scattering (aF4-MALS) and dynamic light scattering, which are other techniques for sub-micron particles. Data shows that all three methods have limitations and may not work equally well under certain conditions. Nevertheless, the ability of NTA to directly detect and count sub-micron particles is a feature not matched by aF4-MALS or dynamic light scattering. Thorough characterization of particulate matter present in protein therapeutics is limited by the lack of analytical methods for particles in the sub-micron size range. Emerging techniques are being developed to bridge this analytical gap. In this study, Nanoparticle Tracking Analysis is evaluated as a potential tool for biologics development. Our results indicate that method performance is molecule-specific and may not work as well under all solution conditions, especially when

  12. Effects of nano-SiO{sub 2} particles on surface tracking characteristics of silicone rubber composites

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yong, E-mail: tjuliuyong@tju.edu.cn; Li, Zhonglei; Du, Boxue [Key Laboratory of Smart Grid of Ministry of Education (Tianjin University), School of Electrical Engineering and Automation, Tianjin University, Tianjin 300072 (China)

    2014-09-08

    Compared with neat silicone rubber composites (SiRCs), SiRCs filled with nano-sized SiO{sub 2} particles at weight ratios from 0.1 to 1.0 wt. % exhibit a higher surface flashover voltage and a greater resistance to surface tracking. Scanning electron microscopy images of tracking morphologies indicate that the SiO{sub 2} particles are situated in close proximity to the polymeric chains and act as bridges to stabilize the chains and maintain the structure of the composite. Higher concentrations of nano-sized SiO{sub 2} particles, however, (above 0.3 wt. %) produce defects in the molecular network which lead to reductions in both the surface flashover voltage and the resistance to surface tracking, although these reduced values are still superior to those of neat SiRCs. Therefore, SiRCs filled with nano-sized SiO{sub 2} particles, especially at an optimal weight ratio (0.1 to 0.3 wt. %), may have significant potential applications as outdoor insulators for power systems.

  13. Single-particle tracking of quantum dot-conjugated prion proteins inside yeast cells

    Energy Technology Data Exchange (ETDEWEB)

    Tsuji, Toshikazu; Kawai-Noma, Shigeko [Department of Biomolecular Engineering, Graduate School of Biosciences and Biotechnology, Tokyo Institute of Technology, B56, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501 (Japan); Pack, Chan-Gi [Cellular Informatics Laboratory, RIKEN Advanced Science Institute, Wako-shi, Saitama 351-0198 (Japan); Terajima, Hideki [Department of Biomolecular Engineering, Graduate School of Biosciences and Biotechnology, Tokyo Institute of Technology, B56, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501 (Japan); Yajima, Junichiro; Nishizaka, Takayuki [Department of Physics, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588 (Japan); Kinjo, Masataka [Laboratory of Molecular Cell Dynamics, Graduate School of Life Sciences, Hokkaido University, Sapporo 001-0021 (Japan); Taguchi, Hideki, E-mail: taguchi@bio.titech.ac.jp [Department of Biomolecular Engineering, Graduate School of Biosciences and Biotechnology, Tokyo Institute of Technology, B56, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501 (Japan)

    2011-02-25

    Research highlights: {yields} We develop a method to track a quantum dot-conjugated protein in yeast cells. {yields} We incorporate the conjugated quantum dot proteins into yeast spheroplasts. {yields} We track the motions by conventional or 3D tracking microscopy. -- Abstract: Yeast is a model eukaryote with a variety of biological resources. Here we developed a method to track a quantum dot (QD)-conjugated protein in the budding yeast Saccharomyces cerevisiae. We chemically conjugated QDs with the yeast prion Sup35, incorporated them into yeast spheroplasts, and tracked the motions by conventional two-dimensional or three-dimensional tracking microscopy. The method paves the way toward the individual tracking of proteins of interest inside living yeast cells.

  14. Single-particle tracking of quantum dot-conjugated prion proteins inside yeast cells

    International Nuclear Information System (INIS)

    Tsuji, Toshikazu; Kawai-Noma, Shigeko; Pack, Chan-Gi; Terajima, Hideki; Yajima, Junichiro; Nishizaka, Takayuki; Kinjo, Masataka; Taguchi, Hideki

    2011-01-01

    Research highlights: → We develop a method to track a quantum dot-conjugated protein in yeast cells. → We incorporate the conjugated quantum dot proteins into yeast spheroplasts. → We track the motions by conventional or 3D tracking microscopy. -- Abstract: Yeast is a model eukaryote with a variety of biological resources. Here we developed a method to track a quantum dot (QD)-conjugated protein in the budding yeast Saccharomyces cerevisiae. We chemically conjugated QDs with the yeast prion Sup35, incorporated them into yeast spheroplasts, and tracked the motions by conventional two-dimensional or three-dimensional tracking microscopy. The method paves the way toward the individual tracking of proteins of interest inside living yeast cells.

  15. Evolution of etched nuclear track profiles of alpha particles in CR-39 by atomic force microscopy

    International Nuclear Information System (INIS)

    Félix-Bautista, R.; Hernández-Hernández, C.; Zendejas-Leal, B.E.; Fragoso, R.; Golzarri, J.I.; Vázquez-López, C.; Espinosa, G.

    2013-01-01

    A series of atomic force microscopy (AFM) images of etched nuclear tracks has been obtained and used to calculate the nuclear track registration sensitivity parameter V(x) = Vt(x)/Vb. Due to the AFM limitations the samples were irradiated normally to the surface, and with energies attenuated in order to include the Bragg peak region in the AFM piezo-scanner z movement range. The simulation of the track profile evolution was then obtained. The different stages of etched nuclear track profiles were rendered. - Highlights: ► Using AFM we reach that Bragg peak region of etched tracks in CR-39. ► The etched track sensitivity V was calculated by data obtained by AFM. ► The evolucion of etched nuclear tracks was simulated by data achieved by AFM

  16. Anisotropic and correlated emissions of short range charged particles in anti pAg/Br reactions at 1. 4 GeV/c incident momentum observed in photographic emulsions

    Energy Technology Data Exchange (ETDEWEB)

    Breivik, F.O.; Jacobsen, T.; Soerensen, S.O.

    1984-07-01

    Anti pAg/Br reactions at 1.4 GeV/c incident momentum are studied by means of the emulsion technique. A group of short range charged particles is observed. For the events with one short track, a backward and transversal emission is seen, which probably is due to some very fast process. For the events with two short tracks, a back-to-back emission is seen, indicating some two-body decay, where the target nucleus possibly behaves spectator-like.

  17. Anisotropic and correlated emissions of short range charged particles in anti pAg/Br reactions at 1.4 GeV/c incident momentum observed in photographic emulsions

    International Nuclear Information System (INIS)

    Breivik, F.O.; Jacobsen, T.; Soerensen, S.O.

    1984-01-01

    Anti pAg/Br reactions at 1.4 GeV/c incident momentum are studied by means of the emulsion technique. A group of short range charged particles is observed. For the events with one short track, a backward and transversal emission is seen, which probably is due to some very fast process. For the events with two short tracks, a back-to-back emission is seen, indicating some two-body decay, where the target nucleus possibly behaves spectator-like. (Auth.)

  18. Anisotropic and correlated emissions of short range charged particles in anti pAg/Br reactions of 1.4 GeV/c incident momentum observed in photographic emulsions

    International Nuclear Information System (INIS)

    Breivik, F.O.; Jacobsen, T.; Soerensen, S.O.

    1983-12-01

    Anti pAg/Br reactions at 1.4 GeV/c incident momentum were studied by means of the emulsion technique. A group of short range charged particles was observed. For the events with one short track, a backward and transversal emission was seen, probably due to some very fast process. For the events with two short tracks, a back-to-back emission was seen, indicating some two-body decay where the target nucleus possibly behaves spectator-like. The rates and forward collimations suggest that the same physical process causes the different multiplicities

  19. Ultrafine particle emission characteristics of diesel engine by on-board and test bench measurement.

    Science.gov (United States)

    Huang, Cheng; Lou, Diming; Hu, Zhiyuan; Tan, Piqiang; Yao, Di; Hu, Wei; Li, Peng; Ren, Jin; Chen, Changhong

    2012-01-01

    This study investigated the emission characteristics of ultrafine particles based on test bench and on-board measurements. The bench test results showed the ultrafine particle number concentration of the diesel engine to be in the range of (0.56-8.35) x 10(8) cm(-3). The on-board measurement results illustrated that the ultrafine particles were strongly correlated with changes in real-world driving cycles. The particle number concentration was down to 2.0 x 10(6) cm(-3) and 2.7 x 10(7) cm(-3) under decelerating and idling operations and as high as 5.0 x 10(8) cm(-3) under accelerating operation. It was also indicated that the particle number measured by the two methods increased with the growth of engine load at each engine speed in both cases. The particle number presented a "U" shaped distribution with changing speed at high engine load conditions, which implies that the particle number will reach its lowest level at medium engine speeds. The particle sizes of both measurements showed single mode distributions. The peak of particle size was located at about 50-80 nm in the accumulation mode particle range. Nucleation mode particles will significantly increase at low engine load operations like idling and decelerating caused by the high concentration of unburned organic compounds.

  20. A new global particle swarm optimization for the economic emission dispatch with or without transmission losses

    International Nuclear Information System (INIS)

    Zou, Dexuan; Li, Steven; Li, Zongyan; Kong, Xiangyong

    2017-01-01

    Highlights: • A new global particle swarm optimization (NGPSO) is proposed. • NGPSO has strong convergence and desirable accuracy. • NGPSO is used to handle the economic emission dispatch with or without transmission losses. • The equality constraint can be satisfied by solving a quadratic equation. • The inequality constraints can be satisfied by using penalty function method. - Abstract: A new global particle swarm optimization (NGPSO) algorithm is proposed to solve the economic emission dispatch (EED) problems in this paper. NGPSO is different from the traditional particle swarm optimization (PSO) algorithm in two aspects. First, NGPSO uses a new position updating equation which relies on the global best particle to guide the searching activities of all particles. Second, it uses the randomization based on the uniform distribution to slightly disturb the flight trajectories of particles during the late evolutionary process. The two steps enable NGPSO to effectively execute a number of global searches, and thus they increase the chance of exploring promising solution space, and reduce the probabilities of getting trapped into local optima for all particles. On the other hand, the two objective functions of EED are normalized separately according to all candidate solutions, and then they are incorporated into one single objective function. The transformation steps are very helpful in eliminating the difference caused by the different dimensions of the two functions, and thus they strike a balance between the fuel cost and emission. In addition, a simple and common penalty function method is employed to facilitate the satisfactions of EED’s constraints. Based on these improvements in PSO, objective functions and constraints handling, high-quality solutions can be obtained for EED problems. Five examples are chosen to testify the performance of three improved PSOs on solving EED problems with or without transmission losses. Experimental results show that

  1. A New Method for Tracking Individual Particles During Bed Load Transport in a Gravel-Bed River

    Science.gov (United States)

    Tremblay, M.; Marquis, G. A.; Roy, A. G.; Chaire de Recherche Du Canada En Dynamique Fluviale

    2010-12-01

    Many particle tracers (passive or active) have been developed to study gravel movement in rivers. It remains difficult, however, to document resting and moving periods and to know how particles travel from one deposition site to another. Our new tracking method uses the Hobo Pendant G acceleration Data Logger to quantitatively describe the motion of individual particles from the initiation of movement, through the displacement and to the rest, in a natural gravel river. The Hobo measures the acceleration in three dimensions at a chosen temporal frequency. The Hobo was inserted into 11 artificial rocks. The rocks were seeded in Ruisseau Béard, a small gravel-bed river in the Yamaska drainage basin (Québec) where the hydraulics, particle sizes and bed characteristics are well known. The signals recorded during eight floods (Summer and Fall 2008-2009) allowed us to develop an algorithm which classifies the periods of rest and motion. We can differentiate two types of motion: sliding and rolling. The particles can also vibrate while remaining in the same position. The examination of the movement and vibration periods with respect to the hydraulic conditions (discharge, shear stress, stream power) showed that vibration occurred mostly before the rise of hydrograph and allowed us to establish movement threshold and response times. In all cases, particle movements occurred during floods but not always in direct response to increased bed shear stress and stream power. This method offers great potential to track individual particles and to establish a spatiotemporal sequence of the intermittent transport of the particle during a flood and to test theories concerning the resting periods of particles on a gravel bed.

  2. Influence of firebed temperature on inorganic particle emissions in a residential wood pellet boiler

    Science.gov (United States)

    Gehrig, Matthias; Jaeger, Dirk; Pelz, Stefan K.; Weissinger, Alexander; Groll, Andreas; Thorwarth, Harald; Haslinger, Walter

    2016-07-01

    The temperature-dependent release of inorganic elements is the first step of the main formation pathway of particle emissions in automatically fired biomass burners. To investigate this step, a residential pellet boiler with an underfeed-burner was equipped with a direct firebed cooling. This test setup enabled decreased firebed temperatures without affecting further parameters like air flow rates or oxygen content in the firebed. A reduction of particle emissions in PM1-fraction at activated firebed cooling was found by impactor measurement and by optical particle counter. The affected particles were found in the size range boiler ash showed no statistically significant differences due to the firebed cooling. Therefore, our results indicate that the direct firebed cooling influenced the release of potassium (K) without affecting other chemical reactions.

  3. General decay law for emission of charged particles and exotic cluster radioactivity

    International Nuclear Information System (INIS)

    Sahu, Basudeb; Paira, Ramkrishna; Rath, Biswanath

    2013-01-01

    For the emission of charged particles from metastable nuclei, a general decay formula is developed based on the basic phenomenon of resonances occurring in quantum scattering process under Coulomb-nuclear potential. It relates the half-lives of monopole radioactive decays with the Q-values of the outgoing elements in different angular momentum states as well as the masses and charges of the nuclei involved in the decay. The relation is found to be a generalization of the Geiger–Nuttall law in α radioactivity and it explains well all known emission of charged particles including clusters, alpha and proton carrying angular momenta

  4. Light absorption by primary particle emissions from a lignite burning plant

    International Nuclear Information System (INIS)

    Bond, T.C.; Bussemer, M.; Wehner, B.; Keller, S.; Charlson, R.J.; Heintzenberg, J.

    1999-01-01

    Anthropogenic aerosols from the burning of fossil fuels contribute to climate forcing by both scattering and absorbing solar radiation, and estimates of climate forcing by light-absorbing primary particles have recently been published. While the mass and optical properties of emissions are needed for these studies, the available measurements do not characterize the low-technology burning that is thought to contribute a large fraction of light-absorbing material to the global budget. The authors have measured characteristics of particulate matter (PM) emitted from a small, low-technology lignite-burning plant. The PM emission factor is comparable to those used to calculate emission inventories of light-absorbing particles. However, the fine fraction, the absorbing fraction, and the absorption efficiency of the emissions are substantially below assumptions that have been made in inventories of black carbon emissions and calculations of climate forcing. The measurements suggest that nonblack, light-absorbing particles are emitted from low-technology coal burning. As the burning rate increases, the emitted absorption cross-section decreases, and the wavelength dependence of absorption becomes closer to that of black particles

  5. Possibilities for the emissions reduction of smoke particles in the flue emissions of diesel motors

    International Nuclear Information System (INIS)

    Mikarovska Vesna; Stojanovski, Vasko

    2000-01-01

    Taking into consideration the fact that the traffic needs have been increased, the international committee through its associations make efforts in order to find more effective measures for the environmental protection. In this contest the international regulations are very rigorous towards the quality and quantity of the exhaust gases emission from the engines with internal combustion. In this paper the normative and limitations of the exhaust emission of compression ignition engines are presented. Also, the results from experimental investigations of transport vehicles with different time of exploitation and passed kilometers are given, as well as the factors that influent to the smoke component reduction in exhaust emission. (Authors)

  6. Particle and VOC emission factor measurements for anthropogenic sources in West Africa

    Directory of Open Access Journals (Sweden)

    S. Keita

    2018-06-01

    Full Text Available A number of campaigns have been carried out to establish the emission factors of pollutants from fuel combustion in West Africa, as part of work package 2 (Air Pollution and Health of the DACCIWA (Dynamics-Aerosol-Chemistry-Cloud Interactions in West Africa FP7 program. Emission sources considered here include wood (hevea and iroko and charcoal burning, charcoal making, open trash burning, and vehicle emissions, including trucks, cars, buses and two-wheeled vehicles. Emission factors of total particulate matter (TPM, elemental carbon (EC, primary organic carbon (OC and volatile organic compounds (VOCs have been established. In addition, emission factor measurements were performed in combustion chambers in order to reproduce field burning conditions for a tropical hardwood (hevea, and obtain particulate emission factors by size (PM0.25, PM1, PM2.5 and PM10. Particle samples were collected on quartz fiber filters and analyzed using gravimetric method for TPM and thermal methods for EC and OC. The emission factors of 58 VOC species were determined using offline sampling on a sorbent tube. Emission factor results for two species of tropical hardwood burning of EC, OC and TPM are 0.98 ± 0.46 g kg−1 of fuel burned (g kg−1, 11.05 ± 4.55 and 41.12 ± 24.62 g kg−1, respectively. For traffic sources, the highest emission factors among particulate species are found for the two-wheeled vehicles with two-stroke engines (2.74 g kg−1 fuel for EC, 65.11 g kg−1 fuel for OC and 496 g kg−1 fuel for TPM. The largest VOC emissions are observed for two-stroke two-wheeled vehicles, which are up to 3 times higher than emissions from light-duty and heavy-duty vehicles. Isoprene and monoterpenes, which are usually associated with biogenic emissions, are present in almost all anthropogenic sources investigated during this work and could be as significant as aromatic emissions in wood burning (1 g kg−1 fuel. EC is

  7. Light-particle emission and heavy residues from nucleus-nucleus collisions

    International Nuclear Information System (INIS)

    Caplar, R.; Hoelbling, S.; Gentner, R.; Lassen, L.; Oberstedt, A.

    1991-01-01

    We have investigated the interrelation between light-particle multiplicities and mass resp. charge distributions of heavy residues from complete and incomplete fusion of heavy ions. We have shown that a simple statistical model provides the possibility of quantitatively correlating heavy-residue distributions and corresponding light-particle multiplicities both at the Coulomb barrier and at higher energies where preequilibrium emission occurs. (author). 8 refs, 4 figs, 1 tab

  8. Individual metal-bearing particles in a regional haze caused by firecracker and firework emissions

    Energy Technology Data Exchange (ETDEWEB)

    Li, Weijun [Environment Research Institute, Shandong University, Jinan, Shandong 250100 (China); State Key of Laboratory of Atmospheric Boundary Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029 (China); Shi, Zongbo [School of Geography, Earth and Environmental Sciences, University of Birmingham (United Kingdom); Yan, Chao; Yang, Lingxiao; Dong, Can; Wang, Wenxing [Environment Research Institute, Shandong University, Jinan, Shandong 250100 (China)

    2013-01-15

    Intensive firecracker/firework displays during Chinese New Year (CNY) release fine particles and gaseous pollutants into the atmosphere, which may lead to serious air pollution. We monitored ambient PM{sub 2.5} and black carbon (BC) concentrations at a regional background site in the Yellow River Delta region during the CNY in 2011. Our monitoring data and MOUDI images showed that there was a haze event during the CNY. Daily average PM{sub 2.5} concentration reached 183 μg m{sup −3} during the CNY, which was six times higher than that before and after the CNY. Similarly, the black carbon (BC) concentrations were elevated during the CNY. In order to confirm whether the firecracker/firework related emission is the main source of the haze particles, we further analyzed the morphology and chemical composition of individual airborne particles collected before, during and after the CNY by using transmission electron microscopy coupled with energy-dispersive X-ray spectroscopy (TEM/EDS). We found that sulfate and organic-rich particles were dominant in the atmosphere before and after the CNY. In contrast, K-rich sulfates and other metal (e.g., Ba-rich, Al-rich, Mg-rich, and Fe-rich) particles were much more abundant than ammoniated sulfate particles during the CNY. These data suggest that it was the aerosol particles from the firecracker/firework emissions that induced the regional haze episode during the CNY. In individual organic and K-rich particles, we often found more than two types of nano-metal particles. These metal-bearing particles also contained abundant S but not Cl. In contrast, fresh metal-bearing particles from firecrackers generated in the laboratory contained abundant Cl with minor amounts of S. This indicates that the firecracker/firework emissions during the CNY significantly changed the atmospheric transformation pathway of SO{sub 2} to sulfate. - Highlights: ► TEM was used to observe the aged individual particles from firecrackers

  9. Individual metal-bearing particles in a regional haze caused by firecracker and firework emissions

    International Nuclear Information System (INIS)

    Li, Weijun; Shi, Zongbo; Yan, Chao; Yang, Lingxiao; Dong, Can; Wang, Wenxing

    2013-01-01

    Intensive firecracker/firework displays during Chinese New Year (CNY) release fine particles and gaseous pollutants into the atmosphere, which may lead to serious air pollution. We monitored ambient PM 2.5 and black carbon (BC) concentrations at a regional background site in the Yellow River Delta region during the CNY in 2011. Our monitoring data and MOUDI images showed that there was a haze event during the CNY. Daily average PM 2.5 concentration reached 183 μg m −3 during the CNY, which was six times higher than that before and after the CNY. Similarly, the black carbon (BC) concentrations were elevated during the CNY. In order to confirm whether the firecracker/firework related emission is the main source of the haze particles, we further analyzed the morphology and chemical composition of individual airborne particles collected before, during and after the CNY by using transmission electron microscopy coupled with energy-dispersive X-ray spectroscopy (TEM/EDS). We found that sulfate and organic-rich particles were dominant in the atmosphere before and after the CNY. In contrast, K-rich sulfates and other metal (e.g., Ba-rich, Al-rich, Mg-rich, and Fe-rich) particles were much more abundant than ammoniated sulfate particles during the CNY. These data suggest that it was the aerosol particles from the firecracker/firework emissions that induced the regional haze episode during the CNY. In individual organic and K-rich particles, we often found more than two types of nano-metal particles. These metal-bearing particles also contained abundant S but not Cl. In contrast, fresh metal-bearing particles from firecrackers generated in the laboratory contained abundant Cl with minor amounts of S. This indicates that the firecracker/firework emissions during the CNY significantly changed the atmospheric transformation pathway of SO 2 to sulfate. - Highlights: ► TEM was used to observe the aged individual particles from firecrackers/fireworks during the Chinese New

  10. African Anthropogenic Emissions Inventories for gases and particles from 1990 to 2016

    Science.gov (United States)

    Liousse, Catherine; Keita, Sekou; N'Datchoch Touré, Evelyne 1; Doumbia, Thierno; Yoboué, Véronique; Assamoi, Eric; Haslett, Sophie; Roblou, Laurent; Léon, Jean-François; Galy-Lacaux, Corinne; Akpo, Aristide; Coe, Hugh

    2017-04-01

    Presently, there is one African regional inventory dealing with biofuel and fossil fuel emissions (Liousse et al., 2014) and only global emission inventories including Africa. Developing a regional inventory for gases and particles is not an easy task: the DACCIWA project has allowed to organize a framework suitable for this development through regrouping several investigators. The aim is to set an African database on fuel consumption and new emission factor measurements and to include other sources of pollution than biofuel and fossil fuel such as flaring and waste burning yet not negligible in Africa. The inclusion of these sources in the new inventory and also new emissions factor measurements will reduce the uncertainties on anthropogenic emissions in Africa. This work will present the first version of African fossil fuel (FF), biofuel (BF), gas flaring and waste burning emission inventories for the 1990-2016 period for the major atmospheric compounds (gases and particles) provides up to date emission fields at 0.125° x 0.125° spatial resolution and yearly temporal resolution that can be used to model atmospheric composition and impacts over West Africa. New emission factor measurements on ground and in combustion chambers will be discussed. Temporal variability of emissions from 1990 to 2016 will be scrutinized. In parallel, uncertainties on existing biomass burning emission inventories will be presented. New emission inventories based on MODIS burnt area products and AMMABB methodology have been developed for the period 2000-2012. They will be compared with GFED and GFAS products. Finally, tests on these inventories in Regional Climate Model (RegCM) at African scale will be presented for different years.

  11. An experimental study of electron transfer and emission during particle-surface interactions

    International Nuclear Information System (INIS)

    McGrath, C.T.

    2000-09-01

    A new coincidence technique has been developed and used to study the secondary electron emission that arises during the interaction of ions with surfaces. This coincidence technique allows the secondary electron emission statistics due to the impact of singly, doubly and multiply charged ions on surfaces to be measured in coincidence with reflected particles, in specific charge states and with specific post-collision trajectories. This system has been used to study the impact of 8 keV H + ions on polycrystalline copper and aluminium targets. Under these conditions the potential emission contribution is negligible and the electron emission is almost entirely due to kinetic emission processes. The sub-surface contribution to the observed electron emission has been isolated using two newly developed models. These models provide valuable information about the depth and amount of surface penetration and on the probability for subsequent electron transport to the surface. The impact of 2 - 100 keV Xe q+ (q = 1 - 10) ions on polycrystalline copper has also been studied using this system. From the subsequent data the potential and kinetic contributions to secondary electron emission have been separated using a previously established model for potential emission. The resulting kinetic emission yield increases with increasing ion impact energy, consistent with current concepts on quasimolecular ionisation. For ions impacting at large incident angles evidence for sub-surface emission has also been observed. The degree of penetration increases with ion impact energy, consistent with current concepts on this effect. The formation of H - ions from incident H + ions has also been studied by measuring the secondary electron emission statistics in coincidence with reflected particles in specific final charge states. This preliminary data is consistent with a two-step process of Auger neutralisation followed by resonant electron capture to the affinity level. However this mechanism

  12. Particle Acceleration, Magnetic Field Generation and Emission from Relativistic Jets and Supernova Remnants

    Science.gov (United States)

    Nishikawa, K.-I.; Hartmann, D. H.; Hardee, P.; Hededal, C.; Mizunno, Y.; Fishman, G. J.

    2006-01-01

    We performed numerical simulations of particle acceleration, magnetic field generation, and emission from shocks in order to understand the observed emission from relativistic jets and supernova remnants. The investigation involves the study of collisionless shocks, where the Weibel instability is responsible for particle acceleration as well as magnetic field generation. A 3-D relativistic particle-in-cell (RPIC) code has been used to investigate the shock processes in electron-positron plasmas. The evolution of theWeibe1 instability and its associated magnetic field generation and particle acceleration are studied with two different jet velocities (0 = 2,5 - slow, fast) corresponding to either outflows in supernova remnants or relativistic jets, such as those found in AGNs and microquasars. Slow jets have intrinsically different structures in both the generated magnetic fields and the accelerated particle spectrum. In particular, the jet head has a very weak magnetic field and the ambient electrons are strongly accelerated and dragged by the jet particles. The simulation results exhibit jitter radiation from inhomogeneous magnetic fields, generated by the Weibel instability, which has different spectral properties than standard synchrotron emission in a homogeneous magnetic field.

  13. Climate effects of a hypothetical regional nuclear war: Sensitivity to emission duration and particle composition

    Science.gov (United States)

    Pausata, Francesco S. R.; Lindvall, Jenny; Ekman, Annica M. L.; Svensson, Gunilla

    2016-11-01

    Here, we use a coupled atmospheric-ocean-aerosol model to investigate the plume development and climate effects of the smoke generated by fires following a regional nuclear war between emerging third-world nuclear powers. We simulate a standard scenario where 5 Tg of black carbon (BC) is emitted over 1 day in the upper troposphere-lower stratosphere. However, it is likely that the emissions from the fires ignited by bomb detonations include a substantial amount of particulate organic matter (POM) and that they last more than 1 day. We therefore test the sensitivity of the aerosol plume and climate system to the BC/POM ratio (1:3, 1:9) and to the emission length (1 day, 1 week, 1 month). We find that in general, an emission length of 1 month substantially reduces the cooling compared to the 1-day case, whereas taking into account POM emissions notably increases the cooling and the reduction of precipitation associated with the nuclear war during the first year following the detonation. Accounting for POM emissions increases the particle size in the short-emission-length scenarios (1 day/1 week), reducing the residence time of the injected particle. While the initial cooling is more intense when including POM emission, the long-lasting effects, while still large, may be less extreme compared to the BC-only case. Our study highlights that the emission altitude reached by the plume is sensitive to both the particle type emitted by the fires and the emission duration. Consequently, the climate effects of a nuclear war are strongly dependent on these parameters.

  14. A novel field measurement method for determining fine particle and gas emissions from residential wood combustion

    Science.gov (United States)

    Tissari, Jarkko; Hytönen, Kati; Lyyränen, Jussi; Jokiniemi, Jorma

    Emission data from residential wood combustion are usually obtained on test stands in the laboratory but these measurements do not correspond to the operational conditions in the field because of the technological boundary conditions (e.g. testing protocol, environmental and draught conditions). The field measurements take into account the habitual practice of the operators and provide the more reliable results needed for emission inventories. In this study, a workable and compact method for measuring emissions from residential wood combustion in winter conditions was developed. The emissions for fine particle, gaseous and PAH compounds as well as particle composition in real operational conditions were measured from seven different appliances. The measurement technique worked well and was evidently suitable for winter conditions. It was easy and fast to use, and no construction scaffold was needed. The dilution of the sample with the combination of a porous tube diluter and an ejector diluter was well suited to field measurement. The results indicate that the emissions of total volatile organic carbon (TVOC) (17 g kg -1 (of dry wood burned)), carbon monoxide (CO) (120 g kg -1) and fine particle mass (PM 1) (2.7 g kg -1) from the sauna stove were higher than in the other measured appliances. In the masonry heaters, baking oven and stove, the emissions were 2.9-9 g kg -1 TVOC, 28-68 g kg -1 CO and 0.6-1.6 g kg -1 PM 1. The emission of 12 PAHs (PAH 12) from the sauna stove was 164 mg kg -1 and consisted mainly of PAHs with four benzene rings in their structure. PAH 12 emission from other appliances was, on average, 21 mg kg -1 and was dominated by 2-ring PAHs. These results indicate that despite the non-optimal operational practices in the field, the emissions did not differ markedly from the laboratory measurements.

  15. Developing new optical imaging techniques for single particle and molecule tracking in live cells

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Wei [Iowa State Univ., Ames, IA (United States)

    2010-01-01

    Differential interference contrast (DIC) microscopy is a far-field as well as wide-field optical imaging technique. Since it is non-invasive and requires no sample staining, DIC microscopy is suitable for tracking the motion of target molecules in live cells without interfering their functions. In addition, high numerical aperture objectives and condensers can be used in DIC microscopy. The depth of focus of DIC is shallow, which gives DIC much better optical sectioning ability than those of phase contrast and dark field microscopies. In this work, DIC was utilized to study dynamic biological processes including endocytosis and intracellular transport in live cells. The suitability of DIC microscopy for single particle tracking in live cells was first demonstrated by using DIC to monitor the entire endocytosis process of one mesoporous silica nanoparticle (MSN) into a live mammalian cell. By taking advantage of the optical sectioning ability of DIC, we recorded the depth profile of the MSN during the endocytosis process. The shape change around the nanoparticle due to the formation of a vesicle was also captured. DIC microscopy was further modified that the sample can be illuminated and imaged at two wavelengths simultaneously. By using the new technique, noble metal nanoparticles with different shapes and sizes were selectively imaged. Among all the examined metal nanoparticles, gold nanoparticles in rod shapes were found to be especially useful. Due to their anisotropic optical properties, gold nanorods showed as diffraction-limited spots with disproportionate bright and dark parts that are strongly dependent on their orientation in the 3D space. Gold nanorods were developed as orientation nanoprobes and were successfully used to report the self-rotation of gliding microtubules on kinesin coated substrates. Gold nanorods were further used to study the rotational motions of cargoes during the endocytosis and intracellular transport processes in live mammalian

  16. A Preliminary Comparison of Three Dimensional Particle Tracking and Sizing using Plenoptic Imaging and Digital In-line Holography

    Energy Technology Data Exchange (ETDEWEB)

    Guildenbecher, Daniel Robert; Munz, Elise Dahnke; Farias, Paul Abraham; Thurow, Brian S [Auburn U

    2015-12-01

    Digital in-line holography and plenoptic photography are two techniques for single-shot, volumetric measurement of 3D particle fields. Here we present a preliminary comparison of the two methods by applying plenoptic imaging to experimental configurations that have been previously investigated with digital in-line holography. These experiments include the tracking of secondary droplets from the impact of a water drop on a thin film of water and tracking of pellets from a shotgun. Both plenoptic imaging and digital in-line holography successfully quantify the 3D nature of these particle fields. This includes measurement of the 3D particle position, individual particle sizes, and three-component velocity vectors. For the initial processing methods presented here, both techniques give out-of-plane positional accuracy of approximately 1-2 particle diameters. For a fixed image sensor, digital holography achieves higher effective in-plane spatial resolutions. However, collimated and coherent illumination makes holography susceptible to image distortion through index of refraction gradients, as demonstrated in the shotgun experiments. On the other hand, plenotpic imaging allows for a simpler experimental configuration. Furthermore, due to the use of diffuse, white-light illumination, plenoptic imaging is less susceptible to image distortion in the shotgun experiments. Additional work is needed to better quantify sources of uncertainty, particularly in the plenoptic experiments, as well as develop data processing methodologies optimized for the plenoptic measurement.

  17. The use of CH3OH additive to NaOH for etching alpha particle tracks in a CR-39 plastic nuclear track detector

    International Nuclear Information System (INIS)

    Ashry, A.H.; Abdalla, A.M.; Rammah, Y.S.; Eisa, M.; Ashraf, O.

    2014-01-01

    Fast detection of alpha particles in CR-39 detectors was investigated using a new chemical etchant. 252 Cf and 241 Am sources were used for irradiating samples of CR-39 SSNTDs with fission fragments and alpha particles in air at normal temperature and pressure. A series of experimental chemical etching are carried out using new etching solution (8 ml of 10N NaOH+1 ml CH 3 OH) at 60 °C to detect alpha particle in short time in CR-39 detectors. Suitable analyzing software has been used to analyze experimental data. From fission and alpha track diameters, the value of bulk etching rate is equal to 2.73 μm/h. Both the sensitivity and etching efficiency were found to vary with the amount of methanol in the etching solution. Pure NaOH was used as a control to compare with the result from etching in NaOH with different concentrations of CH 3 OH. The etching efficiency is determined and compared with conventional aqueous solution of 6.25N NaOH at 70 °C for etching time equals 5 h. In this study, the obtained etching efficiency shows a considerable agreement with the previous work. - Highlights: • The value of bulk etching rate is equal to 2.73 μm/h. • Fast detection of alpha particles in CR-39 detectors. • Samples of CR-39 have been irradiated with fission fragments. • Etching efficiency was determined

  18. Detection of coloured tracks of heavy ion particles using photographic colour film

    International Nuclear Information System (INIS)

    Kuge, K.; Yasuda, N.; Kumagai, H.; Nakazawa, K.; Kobayashi, T.; Aoki, N.; Hasegawa, A.

    2001-01-01

    A photographic colour film, which was exposed to heavy ions, reveals a coloured dye image of the ion tracks. Since the colour film consists of several layers and different colours appear on each layer, three-dimensional information on the tracks in the layers can be obtained by the colour image. Previously, we have reported the method for which the tracks in different colours represented differences of track depth and we also discussed the disadvantages of using commercial colour films. Here we present the procedure for a self-made photographic coating and the development formula which can overcome the disadvantages

  19. Use of Image Pro Plus for counting of α particles tracks in CR-39

    International Nuclear Information System (INIS)

    Miranda, Marcia Valeria F.E. Sa; Crispim, Verginia Reis

    2011-01-01

    This paper measured the radon radiations present in NORM samples, through the diffusion chambers which contained a nuclear track detector (CR-39). For automatic counting of those tracks the computer program Image Pro plus was used. This paper reports the application of Image Pro plus for counting the nuclear tracks, coming from the radon radiation present in NORM samples. As the radiation rate of 222 Rn if proportional to the number of these tracks, the methodology allowed to compare the levels of contamination of the analysed samples. Also, tables and graphics are presented with counting results referring to the stage of validation of Image Pro plus

  20. Some characteristics of the CR-39 solid state nuclear - Track Detector for register of protons and low energy alpha particles

    International Nuclear Information System (INIS)

    Fonseca, E.S. da.

    1983-01-01

    Experimental results related to registration properties of the CR-39 Solid State Nuclear Track Detector for charged particles are presented and discussed. The existence of an inverse proportion between the induction time and the temperature as well as normal concentration of solutions, is showed by the study of CR-39 chemical etching characteristics in NaOH and KOH solutions, comprising varied concentration and temperature. The bulk-etch rate and activation energy of the process were obtained. The critical energy and critical energy-loss rate of CR-39 track-detectors for registration of protons were experimentally determined. Samples were exposed to 24 Mev proton beams in the IEN/CNEN Cyclotron (CV-28), using scattering chamber with a tantalum thin target and aluminium absorbers in contact with the samples, in order to provide the required fluctuation in the scattered beam energy. From the mean track-diameter plotted against incident proton energy the critical energy was obtained. From the calculated energy-loss rate vs. energy curve, the critical energy loss rate were evaluated. The CR-39 response for low energy alpha particles (E = 7h) under the conditions of 6.25 N NaOH at 70 0 C. It is shown that successive chemical etchings do not produce the same track geometry as obtained by means of a continous revelation with the same total etching time. (Author) [pt

  1. Study of substrate topographical effects on epithelial cell behavior using etched alpha-particle tracks on PADC films

    International Nuclear Information System (INIS)

    Ng, C.K.M.; Poon, W.L.; Li, W.Y.; Cheung, T.; Cheng, S.H.; Yu, K.N.

    2008-01-01

    Micrometer-size pits on the surface of a polymer (polyallyldiglycol carbonate or PADC) substrate created by alpha-particle irradiation and subsequent chemical etching were used to study the topographical effects alone on cell behavior. Vinculin, the cell adhesion and membrane protrusion protein, was used as an indicator of cytoskeletonal reorganization on the substrate and localization of vinculin was used to demonstrate the presence of focal adhesions. In our experiments, vinculin expressed in epithelial HeLa cells cultured on PADC films with track-etch pits, but not in cells cultured on the raw or chemically etched blank films. In other words, vinculin expression was induced by the topography of track-etch pits, while etching of the substrate alone (without alpha-particle irradiation) did not cause up-regulation of vinculin protein expression. HeLa cells cultured on PADC films with track-etch pits also showed changes in cell proliferation, cell area and cell circularity, and were largely contained by the pits. In other words, the cell membrane edges tended to be in contact with the pits. By comparing the correlation between the positions of HeLa cells and the pits, and that between the positions of cells and computer-simulated pits, the tendency for membrane edges of HeLa cells to be in contact with the pits was recognized. This could be explained by inhibition of membrane protrusion at the pits. In conclusion, substrate track-etch pits were an important determinant of epithelial cell behaviors

  2. Possibility of studying the activity of rocks by the observation of. cap alpha. -particle tracks in a photographic emulsion

    Energy Technology Data Exchange (ETDEWEB)

    Curie, I

    1946-01-01

    A detailed discussion is presented on the possibility of determining the uranium and thorium content of ordinary rocks by observing ..cap alpha..-particle tracks in a photographic film applied to the rocks' surface. Such determinations can be made only where radioactive equilibrium can be assumed. For the examination of normal granite, exposures of several months are needed. The same method can be used to study the distribution of radioactive elements within the rock.

  3. Isoprene in poplar emissions: effects on new particle formation and OH concentrations

    Science.gov (United States)

    Kiendler-Scharr, A.; Andres, S.; Bachner, M.; Behnke, K.; Broch, S.; Hofzumahaus, A.; Holland, F.; Kleist, E.; Mentel, T. F.; Rubach, F.; Springer, M.; Steitz, B.; Tillmann, R.; Wahner, A.; Schnitzler, J.-P.; Wildt, J.

    2012-01-01

    Stress-induced volatile organic compound (VOC) emissions from transgenic Grey poplar modified in isoprene emission potential were used for the investigation of photochemical secondary organic aerosol (SOA) formation. In poplar, acute ozone stress induces the emission of a wide array of VOCs dominated by sesquiterpenes and aromatic VOCs. Constitutive light-dependent emission of isoprene ranged between 66 nmol m-2 s-1 in non-transgenic controls (wild type WT) and nearly zero (plants (line RA22), respectively. Nucleation rates of up to 3600 cm-3 s-1 were observed in our experiments. In the presence of isoprene new particle formation was suppressed compared to non-isoprene containing VOC mixtures. Compared to isoprene/monoterpene systems emitted from other plants the suppression of nucleation by isoprene was less effective for the VOC mixture emitted from stressed poplar. This is explained by the observed high efficiency of new particle formation for emissions from stressed poplar. Direct measurements of OH in the reaction chamber revealed that the steady state concentration of OH is lower in the presence of isoprene than in the absence of isoprene, supporting the hypothesis that isoprenes' suppressing effect on nucleation is related to radical chemistry. In order to test whether isoprene contributes to SOA mass formation, fully deuterated isoprene (C5D8) was added to the stress-induced emission profile of an isoprene free poplar mutant. Mass spectral analysis showed that, despite the isoprene-induced suppression of particle formation, fractions of deuterated isoprene were incorporated into the SOA. A fractional mass yield of 2.3% of isoprene was observed. Future emission changes due to land use and climate change may therefore affect both gas phase oxidation capacity and new particle number formation.

  4. Late-time particle emission from laser-produced graphite plasma

    Energy Technology Data Exchange (ETDEWEB)

    Harilal, S. S.; Hassanein, A.; Polek, M. [School of Nuclear Engineering, Center for Materials Under Extreme Environment, Purdue University, West Lafayette, Indiana 47907 (United States)

    2011-09-01

    We report a late-time ''fireworks-like'' particle emission from laser-produced graphite plasma during its evolution. Plasmas were produced using graphite targets excited with 1064 nm Nd: yttrium aluminum garnet (YAG) laser in vacuum. The time evolution of graphite plasma was investigated using fast gated imaging and visible emission spectroscopy. The emission dynamics of plasma is rapidly changing with time and the delayed firework-like emission from the graphite target followed a black-body curve. Our studies indicated that such firework-like emission is strongly depended on target material properties and explained due to material spallation caused by overheating the trapped gases through thermal diffusion along the layer structures of graphite.

  5. Late-time particle emission from laser-produced graphite plasma

    International Nuclear Information System (INIS)

    Harilal, S. S.; Hassanein, A.; Polek, M.

    2011-01-01

    We report a late-time ''fireworks-like'' particle emission from laser-produced graphite plasma during its evolution. Plasmas were produced using graphite targets excited with 1064 nm Nd: yttrium aluminum garnet (YAG) laser in vacuum. The time evolution of graphite plasma was investigated using fast gated imaging and visible emission spectroscopy. The emission dynamics of plasma is rapidly changing with time and the delayed firework-like emission from the graphite target followed a black-body curve. Our studies indicated that such firework-like emission is strongly depended on target material properties and explained due to material spallation caused by overheating the trapped gases through thermal diffusion along the layer structures of graphite.

  6. Study of the radioactive particle tracking technique using gamma-ray attenuation and MCNP-X code to evaluate industrial agitators

    Energy Technology Data Exchange (ETDEWEB)

    Dam, Roos Sophia de F.; Salgado, César M., E-mail: rsophia.dam@gmail.com, E-mail: otero@ien.gov.br [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2017-07-01

    Agitators or mixers are highly used in the chemical, food, pharmaceutical and cosmetic industries. During the fabrication process, the equipment may fail and compromise the appropriate stirring or mixing procedure. Besides that, it is also important to determine the right point of homogeneity of the mixture. Thus, it is very important to have a diagnosis tool for these industrial units to assure the quality of the product and to keep the market competitiveness. The radioactive particle tracking (RPT) technique is widely used in the nuclear field. In this paper, a method based on the principles of the RPT technique is presented. Counts obtained by an array of detectors properly positioned around the unit will be correlated to predict the instantaneous positions occupied by the radioactive particle by means of an appropriate mathematical search location algorithm. Detection geometry developed employs eight NaI(Tl) scintillator detectors and a Cs-137 (662 keV) source with isotropic emission of gamma-rays. The modeling of the detection system is performed using the Monte Carlo Method, by means of the MCNP-X code. In this work a methodology is presented to predict the position of a radioactive particle to evaluate the performance of agitators in industrial units by means of an Artificial Neural Network (ANN). (author)

  7. Assessing the efficacy of nano- and micro-sized magnetic particles as contrast agents for MRI cell tracking.

    Directory of Open Access Journals (Sweden)

    Arthur Taylor

    Full Text Available Iron-oxide based contrast agents play an important role in magnetic resonance imaging (MRI of labelled cells in vivo. Currently, a wide range of such contrast agents is available with sizes varying from several nanometers up to a few micrometers and consisting of single or multiple magnetic cores. Here, we evaluate the effectiveness of these different particles for labelling and imaging stem cells, using a mouse mesenchymal stem cell line to investigate intracellular uptake, retention and processing of nano- and microsized contrast agents. The effect of intracellular confinement on transverse relaxivity was measured by MRI at 7 T and in compliance with the principles of the '3Rs', the suitability of the contrast agents for MR-based cell tracking in vivo was tested using a chick embryo model. We show that for all particles tested, relaxivity was markedly reduced following cellular internalisation, indicating that contrast agent relaxivity in colloidal suspension does not accurately predict performance in MR-based cell tracking studies. Using a bimodal imaging approach comprising fluorescence and MRI, we demonstrate that labelled MSC remain viable following in vivo transplantation and can be tracked effectively using MRI. Importantly, our data suggest that larger particles might confer advantages for longer-term imaging.

  8. Housing and sustainable development: perspectives offered by thermal solar energy. Particle emissions: prospective investigation of primary particle emissions in France by 2030

    International Nuclear Information System (INIS)

    Brignon, J.M.; Cauret, L.; Sambat, S.

    2004-09-01

    This publication proposes two investigation reports. A first study proposes a prospective analysis of the housing 'stock' in France and the evolution of global energy consumptions and CO 2 emissions by the housing sector, a prospective study of space heating and hot water needs by defining reference scenarios as well as a target scenario for heating consumption (based on the factor 4 of reduction of emissions by 2050), and an assessment of the contribution of the thermal solar energy applied to winter comfort under the form of direct solar floors and passive solar contributions, and applied to hot water by 2050. The contribution of the thermal solar energy is studied within its regulatory context. An analysis of urban forms is also performed to assess the potential of integration of renewable energy solutions in the existing housing stock, and thus to assess the morphological limits of an attempt of generalized solarization of roofs. The second study proposes a detailed identification and assessment of the various sources of primary particles (combustion, industrial processes, mineral extraction and processing, road transport, waste processing and elimination, agriculture, natural sources, forest fires), providing more precise results and methodological complements for some sources. It also proposes a prospective assessment of emissions and identifies the main factors of particle concentrations in urban environment

  9. Battery condenser system particulate emission factors for cotton gins: Particle size distribution characteristics

    Science.gov (United States)

    This report is part of a project to characterize cotton gin emissions from the standpoint of total particulate stack sampling and particle size analyses. In 2013, the Environmental Protection Agency (EPA) published a more stringent standard for particulate matter with nominal diameter less than or e...

  10. Light particle and gamma ray emission measurements in heavy-ion reactions. Progress report

    International Nuclear Information System (INIS)

    Petitt, G.A.

    1982-01-01

    The development of a position-sensitive neutron detector and a data acquisition system at HHIRF for studying light particle emission in heavy ion reactions is described. Results are presented and discussed for the reactions 12 C + 158 Gd, 13 C + 157 Gd, and 20 Ne + 150 Nd

  11. Qualitative analysis of a powdered diamond sample by particle induced X-ray emission (PIXE)

    International Nuclear Information System (INIS)

    Mabida, C.; Annegarn, H.J.; Renan, M.J.; Sellschop, J.P.F.

    The main purpose of this analysis was to determine whether nickel is present in diamond powder as a trace element. Particle induced X-ray emission (PIXE) showed unambiguously that nickel was present. Due to the convenience of PIXE in multielemental analysis, the investigations also include a number of other trace elements in the sample

  12. 14th International Conference on Particle Induced X-ray Emission ("PIXE 2015")

    Science.gov (United States)

    Przybyłowicz, Wojciech Józef; Pineda-Vargas, Carlos

    2015-11-01

    This special issue of Nuclear Instruments and Methods in Physics Research B contains the proceedings of the 14th International Conference on Particle Induced X-ray Emission ("PIXE 2015") that was held in Somerset West (South Africa) from 25th February to 3rd March 2015.

  13. Morphology and Optical Properties of Black-Carbon Particles Relevant to Engine Emissions

    Science.gov (United States)

    Michelsen, H. A.; Bambha, R.; Dansson, M. A.; Schrader, P. E.

    2013-12-01

    Black-carbon particles are believed to have a large influence on climate through direct radiative forcing, reduction of surface albedo of snow and ice in the cryosphere, and interaction with clouds. The optical properties and morphology of atmospheric particles containing black carbon are uncertain, and characterization of black carbon resulting from engines emissions is needed. Refractory black-carbon particles found in the atmosphere are often coated with unburned fuel, sulfuric acid, water, ash, and other combustion by-products and atmospheric constituents. Coatings can alter the optical and physical properties of the particles and therefore change their optical properties and cloud interactions. Details of particle morphology and coating state can also have important effects on the interpretation of optical diagnostics. A more complete understanding of how coatings affect extinction, absorption, and incandescence measurements is needed before these techniques can be applied reliably to a wide range of particles. We have investigated the effects of coatings on the optical and physical properties of combustion-generated black-carbon particles using a range of standard particle diagnostics, extinction, and time-resolved laser-induced incandescence (LII) measurements. Particles were generated in a co-flow diffusion flame, extracted, cooled, and coated with oleic acid. The diffusion flame produces highly dendritic soot aggregates with similar properties to those produced in diesel engines, diffusion flames, and most natural combustion processes. A thermodenuder was used to remove the coating. A scanning mobility particle sizer (SMPS) was used to monitor aggregate sizes; a centrifugal particle mass analyzer (CPMA) was used to measure coating mass fractions, and transmission electron microscopy (TEM) was used to characterize particle morphologies. The results demonstrate important differences in optical measurements between coated and uncoated particles.

  14. Multi-agent target tracking using particle filters enhanced with context data

    CSIR Research Space (South Africa)

    Claessens, R

    2015-05-01

    Full Text Available The proposed framework for Multi-Agent Target Tracking supports i) tracking of objects and ii) search and rescue based on the fusion of very heterogeneous data. The system is based on a novel approach to fusing sensory observations, intelligence...

  15. Particle number and particulate mass emissions of heavy duty vehicles in real operating conditions

    Directory of Open Access Journals (Sweden)

    Rymaniak Lukasz

    2017-01-01

    Full Text Available The article investigates the issue of PM emissions from HDV vehicles. The theoretical part discusses the problem of emission of this toxic compound in terms of particle structure taking into account the mass and dimensions of PM. Next, the methodology of the research and the results of the measurements performed under the conditions of actual operation were presented. The test drive routes were chosen in accordance with the operational purpose of the selected test vehicles. Two heavy vehicles were used for the study: a tractor with trailer and an eighteen meter long city bus. The test vehicles complied with the Euro V standard, with the second vehicle additionally complying with the EEV standard and being equipped with a DPF. The analysis of the research results was performed in the aspect of determining the operating time densities of vehicles and their drive systems as well as defining their emission characteristics and ecological indicators. PM and PN emissions were measured in the tests and particle size distribution was determined. It was shown that the exhaust gas after treatment system used in the city bus had a positive influence on the ecological indicators and had contributed to the reduction of PN emissions for heavier particles.

  16. Blind intercomparison of nuclear models for predicting charged particle emission

    International Nuclear Information System (INIS)

    Shibata, K.; Cierjacks, S.

    1994-01-01

    Neutron activation data are important for dosimetry, radiation-damage and production of long-lived activities. For fusion energy applications, it is required to develop 'low-activation materials' from the viewpoints of safety, maintenance and waste disposal. Existing evaluated activation cross-section libraries are to a large extent based on nuclear-model calculations. The former Nuclear Energy Agency Nuclear Data Committee, NEANDC, (presently replaced by the NEA Nuclear Science Committee) organized the working group on activation cross sections. The first meeting of the group was held in 1989, and it was then agreed that a blind intercomparison of nuclear-model calculations should be undertaken in order to test the predictive power of the theoretical calculations. As a first stage the working group selected the reactions 60g Co(n,p) 60 Fe and 60m Co(n,p) 60 Fe, for which no experimental data were available, in the energy range from 1 to 20 MeV. The preliminary results compiled at the NEA Data Bank were sent to each participant and a meeting was held during the International Conference on Nuclear Data for Science and Technology in Julich 1991 to discuss the results. Following the outcome of the discussion in Julich, it was decided to extend this intercomparison. In the second-stage calculation, the same optical-model parameters were employed for neutrons, protons and α-particles, i.e., V = 50 MeV, W = 10 MeV, r = 1.25 fm and a = 0.6 fm with the Woods-Saxon volume-type form factors. No spin-orbit interaction was considered. Concerning the level density, the Fermi gas model with a = A/8 MeV -1 was assumed without pairing corrections. Moreover, gamma-ray competition was neglected to simplify the calculation. This report describes the final results of the blind comparison. Section 2 deals with a survey of the received contributions. The final results are graphically presented in section 3. 67 figs., 1 tab., 12 refs

  17. Alpha-particle emission probabilities of ²³⁶U obtained by alpha spectrometry.

    Science.gov (United States)

    Marouli, M; Pommé, S; Jobbágy, V; Van Ammel, R; Paepen, J; Stroh, H; Benedik, L

    2014-05-01

    High-resolution alpha-particle spectrometry was performed with an ion-implanted silicon detector in vacuum on a homogeneously electrodeposited (236)U source. The source was measured at different solid angles subtended by the detector, varying between 0.8% and 2.4% of 4π sr, to assess the influence of coincidental detection of alpha-particles and conversion electrons on the measured alpha-particle emission probabilities. Additional measurements were performed using a bending magnet to eliminate conversion electrons, the results of which coincide with normal measurements extrapolated to an infinitely small solid angle. The measured alpha emission probabilities for the three main peaks - 74.20 (5)%, 25.68 (5)% and 0.123 (5)%, respectively - are consistent with literature data, but their precision has been improved by at least one order of magnitude in this work. © 2013 Published by Elsevier Ltd.

  18. Investigation of p,π+- charged particle correlations in π-C interactions at 5 GeV/c with emission of a particle in the backward direction

    International Nuclear Information System (INIS)

    Budagov, Yu.A.; Bayaramov, A.A.; Dzhelepov, V.P.; Dvornik, A.M.; Efremov, A.V.; Flyagin, V.B.; Lomakin, Yu.F.; Valkar, S.; Volodko, A.G.

    1976-01-01

    The π-C interactions at 5 GeV/c are studied. Angle correlation between two charged particles when a particle is emitted to the backward hemisphere has been investigated. Noticeable correlation appears if the angle between the two particles is 180 deg (lab.s.). It follows from this behaviour that the backward emission of a particle is due to the hard collision mechanism

  19. Single charged-particle damage to living cells: a new method based on track-etch detectors

    International Nuclear Information System (INIS)

    Durante, M.; Grossi, G.F.; Pugliese, M.; Manti, L.; Nappo, M.; Gialanella, G.

    1994-01-01

    Biological effects of ionizing radiation are usually expressed as a function of the absorbed dose. Low doses of high-LET radiation correspond to one or few particle traversals through the cell. In order to study the biological effectiveness of single charged particles, we have developed a new method based on solid state nuclear track detectors. Cells are seeded on mylar and a LR-115 film is stuck below the mylar base. After irradiation, the LR-115 film is etched and cells observed at a phase contrast microscope connected to a video camera and an image analyzer. In this way, it is possible to measure the number of traversals through the cell nucleus or cytoplasm. Coordinates of each cell on the microscope bench are saved. After incubation for about one week, cells are fixed and stained and the colonies observed at the microscope. The fate of each irradiated cell is therefore correlated to the number of traversals. We have tested this method with two different rodent embryo fibroblast cell lines, C3H 10T1/2 and V79, exposed to 3.2 MeV accelerated α-particles (LET =124 keV/μm). The studied endpoint was cell killing. Preliminary biological results suggest that few α-particle tracks in V79 hamster cells are sufficient to reduce surviving fraction. ((orig.))

  20. Exhaust particle and NOx emission performance of an SCR heavy duty truck operating in real-world conditions

    Science.gov (United States)

    Saari, Sampo; Karjalainen, Panu; Ntziachristos, Leonidas; Pirjola, Liisa; Matilainen, Pekka; Keskinen, Jorma; Rönkkö, Topi

    2016-02-01

    Particle and NOx emissions of an SCR equipped HDD truck were studied in real-world driving conditions using the "Sniffer" mobile laboratory. Real-time CO2 measurement enables emission factor calculation for NOx and particles. In this study, we compared three different emission factor calculation methods and characterised their suitability for real-world chasing experiments. The particle number emission was bimodal and dominated by the nucleation mode particles (diameter below 23 nm) having emission factor up to 1 × 1015 #/kgfuel whereas emission factor for soot (diameter above 23 nm that is consistent with the PMP standard) was typically 1 × 1014 #/kgfuel. The effect of thermodenuder on the exhaust particles indicated that the nucleation particles consisted mainly of volatile compounds, but sometimes there also existed a non-volatile core. The nucleation mode particles are not controlled by current regulations in Europe. However, these particles consistently form under atmospheric dilution in the plume of the truck and constitute a health risk for the human population that is exposed to those. Average NOx emission was 3.55 g/kWh during the test, whereas the Euro IV emission limit over transient testing is 3.5 g NOx/kWh. The on-road emission performance of the vehicle was very close to the expected levels, confirming the successful operation of the SCR system of the tested vehicle. Heavy driving conditions such as uphill driving increased both the NOx and particle number emission factors whereas the emission factor for soot particle number remains rather constant.

  1. Dilution effects on ultrafine particle emissions from Euro 5 and Euro 6 diesel and gasoline vehicles

    Science.gov (United States)

    Louis, Cédric; Liu, Yao; Martinet, Simon; D'Anna, Barbara; Valiente, Alvaro Martinez; Boreave, Antoinette; R'Mili, Badr; Tassel, Patrick; Perret, Pascal; André, Michel

    2017-11-01

    Dilution and temperature used during sampling of vehicle exhaust can modify particle number concentration and size distribution. Two experiments were performed on a chassis dynamometer to assess exhaust dilution and temperature on particle number and particle size distribution for Euro 5 and Euro 6 vehicles. In the first experiment, the effects of dilution (ratio from 8 to 4 000) and temperature (ranging from 50 °C to 150 °C) on particle quantification were investigated directly from tailpipe for a diesel and a gasoline Euro 5 vehicles. In the second experiment, particle emissions from Euro 6 diesel and gasoline vehicles directly sampled from the tailpipe were compared to the constant volume sampling (CVS) measurements under similar sampling conditions. Low primary dilutions (3-5) induced an increase in particle number concentration by a factor of 2 compared to high primary dilutions (12-20). Low dilution temperatures (50 °C) induced 1.4-3 times higher particle number concentration than high dilution temperatures (150 °C). For the Euro 6 gasoline vehicle with direct injection, constant volume sampling (CVS) particle number concentrations were higher than after the tailpipe by a factor of 6, 80 and 22 for Artemis urban, road and motorway, respectively. For the same vehicle, particle size distribution measured after the tailpipe was centred on 10 nm, and particles were smaller than the ones measured after CVS that was centred between 50 nm and 70 nm. The high particle concentration (≈106 #/cm3) and the growth of diameter, measured in the CVS, highlighted aerosol transformations, such as nucleation, condensation and coagulation occurring in the sampling system and this might have biased the particle measurements.

  2. Influence of suspended particles on the emission of organophosphate flame retardant from insulation boards.

    Science.gov (United States)

    Lazarov, Borislav; Swinnen, Rudi; Poelmans, David; Spruyt, Maarten; Goelen, Eddy; Covaci, Adrian; Stranger, Marianne

    2016-09-01

    The influence of the presence of the so-called seed particles on the emission rate of Tris (1-chloroisopropyl) phosphate (TCIPP) from polyisocyanurate (PIR) insulation boards was investigated in this study. Two Field and Laboratory Emission Test cells (FLEC) were placed on the surface of the same PIR board and respectively supplied with clean air (reference FLEC) and air containing laboratory-generated soot particles (test FLEC). The behavior of the area-specific emission rates (SER A ) over a time period of 10 days was studied by measuring the total (gas + particles) concentrations of TCIPP at the exhaust of each FLEC. The estimated SER A of TCIPP from the PIR board at the quasi-static equilibrium were found to be 0.82 μg m(-2) h(-1) in the absence of seed particles, while the addition of soot particles led to SER A of 2.16 μg m(-2) h(-1). This indicates an increase of the SER A of TCIPP from the PIR board with a factor of 3 in the presence of soot particles. The TCIPP partition coefficient to soot particles at the quasi-static equilibrium was 0.022 ± 0.012 m(3) μg(-1). In the next step, the influence of real-life particles on TCIPP emission rates was investigated by supplying the test FLEC with air from a professional kitchen where mainly frying and baking activities took place. Similar to the reference FLEC outcomes, SER A was also found to increase in this real-life experiment over a time period of 20 days by a factor 3 in the presence of particles generated during cooking activities. The median value of estimated particle-gas coefficient for this test was 0.062 ± 0.037 m(3) μg(-1).

  3. Recovering the Elemental Composition of Comet Wild 2 Dust in Five Stardust Impact Tracks and Terminal Particles in Aerogel

    International Nuclear Information System (INIS)

    Ishii, H A; Brennan, S; Bradley, J P; Luening, K; Ignatyev, K; Pianetta, P

    2007-01-01

    The elemental (non-volatile) composition of five Stardust impact tracks and terminal particles left from capture of Comet 81P/Wild 2 dust were mapped in a synchrotron x-ray scanning microprobe with full fluorescence spectra at each pixel. Because aerogel includes background levels of several elements of interest, we employ a novel 'dual threshold' approach to discriminate against background contaminants: an upper threshold, above which a spectrum contains cometary material plus aerogel and a lower threshold below which it contains only aerogel. The difference between normalized cometary-plus-background and background-only spectra is attributable to cometary material. The few spectra in between are discarded since misallocation is detrimental: cometary material incorrectly placed in the background spectrum is later subtracted from the cometary spectrum, doubling the loss of reportable cometary material. This approach improves precision of composition quantification. We present the refined whole impact track and terminal particle elemental abundances for the five impact tracks. One track shows mass increases in Cr and Mn (1.4x), Cu, As and K (2x), Zn (4x) and total mass (13%) by dual thresholds compared to a single threshold. Major elements Fe and Ni are not significantly affected. The additional Cr arises from cometary material containing little Fe. We exclude Au intermixed with cometary material because it is found to be a localized surface contaminant carried by comet dust into an impact track. The dual threshold technique can be used in other situations where elements of interest in a small sample embedded in a matrix are also present in the matrix itself

  4. Particle-pair relative velocity measurement in high-Reynolds-number homogeneous and isotropic turbulence using 4-frame particle tracking velocimetry

    Science.gov (United States)

    Dou, Zhongwang; Ireland, Peter J.; Bragg, Andrew D.; Liang, Zach; Collins, Lance R.; Meng, Hui

    2018-02-01

    The radial relative velocity (RV) between particles suspended in turbulent flow plays a critical role in droplet collision and growth. We present a simple and accurate approach to RV measurement in isotropic turbulence—planar 4-frame particle tracking velocimetry—using routine PIV hardware. It improves particle positioning and pairing accuracy over the 2-frame holographic approach by de Jong et al. (Int J Multiphas Flow 36:324-332; de Jong et al., Int J Multiphas Flow 36:324-332, 2010) without using high-speed cameras and lasers as in Saw et al. (Phys Fluids 26:111702, 2014). Homogeneous and isotropic turbulent flow ({R_λ }=357) in a new, fan-driven, truncated iscosahedron chamber was laden with either low-Stokes (mean St=0.09, standard deviation 0.05) or high-Stokes aerosols (mean St=3.46, standard deviation 0.57). For comparison, DNS was conducted under similar conditions ({R_λ }=398; St=0.10 and 3.00, respectively). Experimental RV probability density functions (PDF) and mean inward RV agree well with DNS. Mean inward RV increases with St at small particle separations, r, and decreases with St at large r, indicating the dominance of "path-history" and "inertial filtering" effects, respectively. However, at small r, the experimental mean inward RV trends higher than DNS, possibly due to the slight polydispersity of particles and finite light sheet thickness in experiments. To confirm this interpretation, we performed numerical experiments and found that particle polydispersity increases mean inward RV at small r, while finite laser thickness also overestimates mean inward RV at small r, This study demonstrates the feasibility of accurately measuring RV using routine hardware, and verifies, for the first time, the path-history and inertial filtering effects on particle-pair RV at large particle separations experimentally.

  5. Flow Mapping in a Gas-Solid Riser via Computer Automated Radioactive Particle Tracking (CARPT)

    Energy Technology Data Exchange (ETDEWEB)

    Muthanna Al-Dahhan; Milorad P. Dudukovic; Satish Bhusarapu; Timothy J. O' hern; Steven Trujillo; Michael R. Prairie

    2005-06-04

    Statement of the Problem: Developing and disseminating a general and experimentally validated model for turbulent multiphase fluid dynamics suitable for engineering design purposes in industrial scale applications of riser reactors and pneumatic conveying, require collecting reliable data on solids trajectories, velocities ? averaged and instantaneous, solids holdup distribution and solids fluxes in the riser as a function of operating conditions. Such data are currently not available on the same system. Multiphase Fluid Dynamics Research Consortium (MFDRC) was established to address these issues on a chosen example of circulating fluidized bed (CFB) reactor, which is widely used in petroleum and chemical industry including coal combustion. This project addresses the problem of lacking reliable data to advance CFB technology. Project Objectives: The objective of this project is to advance the understanding of the solids flow pattern and mixing in a well-developed flow region of a gas-solid riser, operated at different gas flow rates and solids loading using the state-of-the-art non-intrusive measurements. This work creates an insight and reliable database for local solids fluid-dynamic quantities in a pilot-plant scale CFB, which can then be used to validate/develop phenomenological models for the riser. This study also attempts to provide benchmark data for validation of Computational Fluid Dynamic (CFD) codes and their current closures. Technical Approach: Non-Invasive Computer Automated Radioactive Particle Tracking (CARPT) technique provides complete Eulerian solids flow field (time average velocity map and various turbulence parameters such as the Reynolds stresses, turbulent kinetic energy, and eddy diffusivities). It also gives directly the Lagrangian information of solids flow and yields the true solids residence time distribution (RTD). Another radiation based technique, Computed Tomography (CT) yields detailed time averaged local holdup profiles at

  6. Diesel passenger car PM emissions: From Euro 1 to Euro 4 with particle filter

    Science.gov (United States)

    Tzamkiozis, Theodoros; Ntziachristos, Leonidas; Samaras, Zissis

    2010-03-01

    This paper examines the impact of the emission control and fuel technology development on the emissions of gaseous and, in particular, PM pollutants from diesel passenger cars. Three cars in five configurations in total were measured, and covered the range from Euro 1 to Euro 4 standards. The emission control ranged from no aftertreatment in the Euro 1 case, an oxidation catalyst in Euro 2, two oxidation catalysts and exhaust gas recirculation in Euro 3 and Euro 4, while a catalyzed diesel particle filter (DPF) fitted in the Euro 4 car led to a Euro 4 + DPF configuration. Both certification test and real-world driving cycles were employed. The results showed that CO and HC emissions were much lower than the emission standard over the hot-start real-world cycles. However, vehicle technologies from Euro 2 to Euro 4 exceeded the NOx and PM emission levels over at least one real-world cycle. The NOx emission level reached up to 3.6 times the certification level in case of the Euro 4 car. PM were up to 40% and 60% higher than certification level for the Euro 2 and Euro 3 cars, while the Euro 4 car emitted close or slightly below the certification level over the real-world driving cycles. PM mass reductions from Euro 1 to Euro 4 were associated with a relevant decrease in the total particle number, in particular over the certification test. This was not followed by a respective reduction in the solid particle number which remained rather constant between the four technologies at 0.86 × 10 14 km -1 (coefficient of variation 9%). As a result, the ratio of solid vs. total particle number ranged from ˜50% in Euro 1-100% in Euro 4. A significant reduction of more than three orders of magnitude in solid particle number is achieved with the introduction of the DPF. However, the potential for nucleation mode formation at high speed from the DPF car is an issue that needs to be considered in the over all assessment of its environmental benefit. Finally, comparison of the

  7. Size-resolved particle number emission patterns under real-world driving conditions using positive matrix factorization.

    Science.gov (United States)

    Domínguez-Sáez, Aida; Viana, Mar; Barrios, Carmen C; Rubio, Jose R; Amato, Fulvio; Pujadas, Manuel; Querol, Xavier

    2012-10-16

    A novel on-board system was tested to characterize size-resolved particle number emission patterns under real-world driving conditions, running in a EURO4 diesel vehicle and in a typical urban circuit in Madrid (Spain). Emission profiles were determined as a function of driving conditions. Source apportionment by Positive Matrix Factorization (PMF) was carried out to interpret the real-world driving conditions. Three emission patterns were identified: (F1) cruise conditions, with medium-high speeds, contributing in this circuit with 60% of total particle number and a particle size distribution dominated by particles >52 nm and around 60 nm; (F2) transient conditions, stop-and-go conditions at medium-high speed, contributing with 25% of the particle number and mainly emitting particles in the nucleation mode; and (F3) creep-idle conditions, representing traffic congestion and frequent idling periods, contributing with 14% to the total particle number and with particles in the nucleation mode (emissions depending on particle size and driving conditions. Differences between real-world emission patterns and regulatory cycles (NEDC) are also presented, which evidence that detecting particle number emissions real-world driving conditions.

  8. Simple and fast system for analysis of charged particle tracks in multiplane hodoscopes

    Energy Technology Data Exchange (ETDEWEB)

    Reuter, J P [Paris-11 Univ., 91 - Orsay (France). Inst. de Physique Nucleaire

    1977-01-15

    A digital-analog system is described, which performs in less than 400 ns the recognition of a linear relation between three 10-bit-coded digital coordinates, giving a 10/sup -3/ precision on track location.

  9. Study of the characteristics of ionizing particles record of CR-39 track detectors

    International Nuclear Information System (INIS)

    Brandao, Luis Eduardo Barreira

    1983-01-01

    The bulk and track etching proprieties of a new Solid State Nuclear Track Detector CR-39 were investigated under different etching conditions. The discussion is based on results obtained using aqueous solutions of KOH with addition of alcoholic solvent to aqueous solutions. It was found that track registration sensitivity can be dramatically changed by using the proper chemical treatment. A method to enlarge and dye etch tracks to be viewed by simple projection on a screen is discussed. The applications of CR-39 in neutron fluence measurements are shown. Graphs are presented of the densities of the registered traces by the detector as a function of etch time both for samples with and without a polycarbonate radiator. (author)

  10. Assessment of particle-tracking models for dispersed particle-laden flows implemented in OpenFOAM and ANSYS FLUENT

    Directory of Open Access Journals (Sweden)

    Franziska Greifzu

    2016-01-01

    Full Text Available In the present study two benchmark problems for turbulent dispersed particle-laden flow are investigated with computational fluid dynamics (CFD. How the CFD programs OpenFOAM and ANSYS FLUENT model these flows is tested and compared. The numerical results obtained with Lagrangian–Eulerian (LE point-particle (PP models for Reynolds-averaged Navier–Stokes (RANS simulations of the fluid flow in steady state and transient modes are compared with the experimental data available in the literature. The effect of the dispersion model on the particle motion is investigated in particular, as well as the order of coupling between the continuous carrier phase and the dispersed phase. First, a backward-facing step (BFS case is validated. As a second case, the confined bluff body (CBB is used. The simulated fluid flows correspond well with the experimental data for both test cases. The results for the dispersed solid phase reveal a good accordance between the simulation results and the experiments. It seems that particle dispersion is slightly under-predicted when ANSYS FLUENT is used, whereas the applied solver in OpenFOAM overestimates the dispersion somewhat. Only minor differences between the coupling schemes are detected due to the low volume fractions and mass loadings that are investigated. In the BFS test case the importance of the spatial dimension of the numerical model is demonstrated. Even if it is reasonable to assume a two-dimensional fluid flow structure, it is crucial to simulate the turbulent particle-laden flow with a three-dimensional model since the turbulent dispersion of the particles is three-dimensional.

  11. Measurement of particle emission in automobil exhaust - application of continuous radiometric aerosol measurement to the emission of diesel engines

    International Nuclear Information System (INIS)

    Krasenbrink, A.; Georgi, B.

    1989-01-01

    The well-known method of measuring continuously dust by β-absorption is transferred to the problem of particle emission in automobile exhaust. With two similar dust-monitors FH62 having different sampling air flow rates and two low-pressure impactors the reliability of radiometric mass determination was verified. First static experiments with diesel soot showed the necessity of a dilution system, a new mass calibration with regard to the changed β-absorptivity and a quicker calculation of concentration for realtime measurements. (orig.) [de

  12. Colored tracks of heavy ion particles recorded on photographic color film

    International Nuclear Information System (INIS)

    Kuge, K.; Yasuda, N.; Kumagai, H.; Aoki, N.; Hasegawa, A.

    2002-01-01

    A new method to obtain the three-dimensional information on nuclear tracks was developed using color photography. Commercial color films were irradiated with ion beam and color-developed. The ion tracks were represented with color images in which different depths were indicated by different colors, and the three-dimensional information was obtained from color changes. Details of this method are reported, and advantages and limitations are discussed in comparison with a conventional method using a nuclear emulsion

  13. African Anthropogenic Combustion Emissions: Estimate of Regional Mortality Attributable to Fine Particle Concentrations in 2030

    Science.gov (United States)

    Liousse, C.; Roblou, L.; Assamoi, E.; Criqui, P.; Galy-Lacaux, C.; Rosset, R.

    2014-12-01

    Fossil fuel (traffic, industries) and biofuel (domestic fires) emissions of gases and particles in Africa are expected to significantly increase in the near future, particularly due to rapid growth of African cities and megacities. In this study, we will present the most recent developments of African combustion emission inventories, including African specificities. Indeed, a regional fossil fuel and biofuel inventory for gases and particulates described in Liousse et al. (2014) has been developed for Africa at a resolution of 0.25° x 0.25° for the years 2005 and 2030. For 2005, the original database of Junker and Liousse (2008) was used after modification for updated regional fuel consumption and emission factors. Two prospective inventories for 2030 are derived based on Prospective Outlook on Long-term Energy Systems (POLES) model (Criqui, 2001). The first is a reference scenario (2030ref) with no emission controls and the second is for a "clean" scenario (2030ccc*) including Kyoto policy and African specific emission control. This inventory predicts very large increases of pollutant emissions in 2030 (e.g. contributing to 50% of global anthropogenic organic particles), if no emission regulations are implemented. These inventories have been introduced in RegCM4 model. In this paper we will focus on aerosol modelled concentrations in 2005, 2030ref and 2030ccc*. Spatial distribution of aerosol concentrations will be presented with a zoom at a few urban and rural sites. Finally mortality rates (respiratory, cardiovascular) caused by anthropogenic PM2.5 increase from 2005 to 2030, calculated following Lelieveld et al. (2013), will be shown for each scenarios. To conclude, this paper will discuss the effectiveness of scenarios to reduce emissions, aerosol concentrations and mortality rates, underlining the need for further measurements scheduled in the frame of the new DACCIWA (Dynamics-Aerosol-Chemistry-Cloud Interactions) program.

  14. Surgical Space Suits Increase Particle and Microbiological Emission Rates in a Simulated Surgical Environment.

    Science.gov (United States)

    Vijaysegaran, Praveen; Knibbs, Luke D; Morawska, Lidia; Crawford, Ross W

    2018-05-01

    The role of space suits in the prevention of orthopedic prosthetic joint infection remains unclear. Recent evidence suggests that space suits may in fact contribute to increased infection rates, with bioaerosol emissions from space suits identified as a potential cause. This study aimed to compare the particle and microbiological emission rates (PER and MER) of space suits and standard surgical clothing. A comparison of emission rates between space suits and standard surgical clothing was performed in a simulated surgical environment during 5 separate experiments. Particle counts were analyzed with 2 separate particle counters capable of detecting particles between 0.1 and 20 μm. An Andersen impactor was used to sample bacteria, with culture counts performed at 24 and 48 hours. Four experiments consistently showed statistically significant increases in both PER and MER when space suits are used compared with standard surgical clothing. One experiment showed inconsistent results, with a trend toward increases in both PER and MER when space suits are used compared with standard surgical clothing. Space suits cause increased PER and MER compared with standard surgical clothing. This finding provides mechanistic evidence to support the increased prosthetic joint infection rates observed in clinical studies. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Simulating emission and chemical evolution of coarse sea-salt particles in the Community Multiscale Air Quality (CMAQ) model

    OpenAIRE

    J. T. Kelly; P. V. Bhave; C. G. Nolte; U. Shankar; K. M. Foley

    2009-01-01

    Chemical processing of sea-salt particles in coastal environments significantly impacts concentrations of particle components and gas-phase species and has implications for human exposure to particulate matter and nitrogen deposition to sensitive ecosystems. Emission of sea-salt particles from the coastal surf zone is known to be elevated compared to that from the open ocean. Despite the importance of sea-salt emissions and chemical processing, the US EPA's Community Multiscale Air Quality (C...

  16. A PEMS study of the emissions of gaseous pollutants and ultrafine particles from gasoline- and diesel-fueled vehicles

    Science.gov (United States)

    Huang, Cheng; Lou, Diming; Hu, Zhiyuan; Feng, Qian; Chen, Yiran; Chen, Changhong; Tan, Piqiang; Yao, Di

    2013-10-01

    On-road emission measurements of gasoline- and diesel-fueled vehicles were conducted by a portable emission measurement system (PEMS) in Shanghai, China. Horiba OBS 2200 and TSI EEPS 3090 were employed to detect gaseous and ultrafine particle emissions during the tests. The driving-based emission factors of gaseous pollutants and particle mass and number were obtained on various road types. The average NOx emission factors of the diesel bus, diesel car, and gasoline car were 8.86, 0.68, and 0.17 g km-1, all of which were in excess of their emission limits. The particle number emission factors were 7.06 × 1014, 6.08 × 1014, and 1.57 × 1014 km-1, generally higher than the results for similar vehicle types reported in the previous studies. The size distributions of the particles emitted from the diesel vehicles were mainly concentrated in the accumulation mode, while those emitted from the gasoline car were mainly distributed in the nucleation mode. Both gaseous and particle emission rates exhibit significant correlations with the change in vehicle speed and power demand. The lowest emission rates for each vehicle type were produced during idling. The highest emission rates for each vehicle type were generally found in high-VSP bins. The particle number emission rates of the gasoline car show the strongest growth trend with increasing VSP and speed. The particle number emission for the gasoline car increased by 3 orders of magnitude from idling to the highest VSP and driving speed conditions. High engine power caused by aggressive driving or heavy loads is the main contributor to high emissions for these vehicles in real-world situations.

  17. Temperature and burning history affect emissions of greenhouse gases and aerosol particles from tropical peatland fire

    Science.gov (United States)

    Kuwata, Mikinori; Kai, Fuu Ming; Yang, Liudongqing; Itoh, Masayuki; Gunawan, Haris; Harvey, Charles F.

    2017-01-01

    Tropical peatland burning in Asia has been intensifying over the last decades, emitting huge amounts of gas species and aerosol particles. Both laboratory and field studies have been conducted to investigate emission from peat burning, yet a significant variability in data still exists. We conducted a series of experiments to characterize the gas and particulate matter emitted during burning of a peat sample from Sumatra in Indonesia. Heating temperature of peat was found to regulate the ratio of CH4 to CO2 in emissions (ΔCH4/ΔCO2) as well as the chemical composition of particulate matter. The ΔCH4/ΔCO2 ratio was larger for higher temperatures, meaning that CH4 emission is more pronounced at these conditions. Mass spectrometric analysis of organic components indicated that aerosol particles emitted at higher temperatures had more unsaturated bonds and ring structures than that emitted from cooler fires. The result was consistently confirmed by nuclear magnetic resonance analysis. In addition, CH4 emitted by burning charcoal, which is derived from previously burned peat, was lower by at least an order of magnitude than that from fresh peat. These results highlight the importance of both fire history and heating temperature for the composition of tropical peat-fire emissions. They suggest that remote sensing technologies that map fire histories and temperatures could provide improved estimates of emissions.

  18. Particle correlation based measurement of the mean time between the deuteron and proton emissions

    International Nuclear Information System (INIS)

    Ghisalberti, C.; Lebrun, C.; Sezac, L.; Ardouin, D.; Erazmus, B.; Eudes, P.; Ghuilbault, F.; Lautridou, P.; Rahmani, J.A.; Reposeur, T.; Chbihi, A.; Galin, J.; Guerreau, D.; Morjean, M.; Peghaire, A.; Lednicky, R.; Pluta, J.; Quebert, J.; Siemssen, R.

    1997-01-01

    Proton-deuteron correlations at small relative momenta have been measured with the reaction 208 Pb + 93 Nb at 29 MeV per nucleon at GANIL using the ORION neutron calorimeter. By selecting the proton-deuteron pairs according to the angle between their relative velocity and the pair center of mass velocity of the emitting source one can determine the average value of the time delay between the emission of these particles. The results reported in this paper for the first time at GANIL energies agree with the values published before in the literature i.e. 600 and 1500 fm/c for deuteron and proton emission times, respectively, as obtained in the reactions Ar + Ag at E/A = 17 MeV. At higher energies measurements with a B.U.U. calorimeter recording the collisions 14 N + 27 Al at E/A = 75 MeV show that in this case the proton emission begins at 15 fm/c and decreases slowly in time, while the deuterons are emitted at 50 fm/c and present a steep falling. This result agrees with a negative average value of d - t p >. Thus, the method presented in this report for determining the order of emission is of great interest for checking the theoretical description of the particle emission all the way in the collision dynamical process

  19. GAMMA-RAY EMISSION OF ACCELERATED PARTICLES ESCAPING A SUPERNOVA REMNANT IN A MOLECULAR CLOUD

    International Nuclear Information System (INIS)

    Ellison, Donald C.; Bykov, Andrei M.

    2011-01-01

    We present a model of gamma-ray emission from core-collapse supernovae (SNe) originating from the explosions of massive young stars. The fast forward shock of the supernova remnant (SNR) can accelerate particles by diffusive shock acceleration (DSA) in a cavern blown by a strong, pre-SN stellar wind. As a fundamental part of nonlinear DSA, some fraction of the accelerated particles escape the shock and interact with a surrounding massive dense shell producing hard photon emission. To calculate this emission, we have developed a new Monte Carlo technique for propagating the cosmic rays (CRs) produced by the forward shock of the SNR, into the dense, external material. This technique is incorporated in a hydrodynamic model of an evolving SNR which includes the nonlinear feedback of CRs on the SNR evolution, the production of escaping CRs along with those that remain trapped within the remnant, and the broadband emission of radiation from trapped and escaping CRs. While our combined CR-hydro-escape model is quite general and applies to both core collapse and thermonuclear SNe, the parameters we choose for our discussion here are more typical of SNRs from very massive stars whose emission spectra differ somewhat from those produced by lower mass progenitors directly interacting with a molecular cloud.

  20. Evaluation of metrics and baselines for tracking greenhouse gas emissions trends: Recommendations for the California climate action registry

    Energy Technology Data Exchange (ETDEWEB)

    Price, Lynn; Murtishaw, Scott; Worrell, Ernst

    2003-06-01

    Laboratory (Berkeley Lab) was asked to provide technical assistance to the California Energy Commission (Energy Commission) related to the Registry in three areas: (1) assessing the availability and usefulness of industry-specific metrics, (2) evaluating various methods for establishing baselines for calculating GHG emissions reductions related to specific actions taken by Registry participants, and (3) establishing methods for calculating electricity CO2 emission factors. The third area of research was completed in 2002 and is documented in Estimating Carbon Dioxide Emissions Factors for the California Electric Power Sector (Marnay et al., 2002). This report documents our findings related to the first areas of research. For the first area of research, the overall objective was to evaluate the metrics, such as emissions per economic unit or emissions per unit of production that can be used to report GHG emissions trends for potential Registry participants. This research began with an effort to identify methodologies, benchmarking programs, inventories, protocols, and registries that u se industry-specific metrics to track trends in energy use or GHG emissions in order to determine what types of metrics have already been developed. The next step in developing industry-specific metrics was to assess the availability of data needed to determine metric development priorities. Berkeley Lab also determined the relative importance of different potential Registry participant categories in order to asses s the availability of sectoral or industry-specific metrics and then identified industry-specific metrics in use around the world. While a plethora of metrics was identified, no one metric that adequately tracks trends in GHG emissions while maintaining confidentiality of data was identified. As a result of this review, Berkeley Lab recommends the development of a GHG intensity index as a new metric for reporting and tracking GHG emissions trends.Such an index could provide an

  1. Particle emission rates during electrostatic spray deposition of TiO2 nanoparticle-based photoactive coating.

    Science.gov (United States)

    Koivisto, Antti J; Jensen, Alexander C Ø; Kling, Kirsten I; Kling, Jens; Budtz, Hans Christian; Koponen, Ismo K; Tuinman, Ilse; Hussein, Tareq; Jensen, Keld A; Nørgaard, Asger; Levin, Marcus

    2018-01-05

    Here, we studied the particle release rate during Electrostatic spray deposition of anatase-(TiO 2 )-based photoactive coating onto tiles and wallpaper using a commercially available electrostatic spray device. Spraying was performed in a 20.3m 3 test chamber while measuring concentrations of 5.6nm to 31μm-size particles and volatile organic compounds (VOC), as well as particle deposition onto room surfaces and on the spray gun user hand. The particle emission and deposition rates were quantified using aerosol mass balance modelling. The geometric mean particle number emission rate was 1.9×10 10 s -1 and the mean mass emission rate was 381μgs -1 . The respirable mass emission-rate was 65% lower than observed for the entire measured size-range. The mass emission rates were linearly scalable (±ca. 20%) to the process duration. The particle deposition rates were up to 15h -1 for deposited particles consisted of mainly TiO 2 , TiO 2 mixed with Cl and/or Ag, TiO 2 particles coated with carbon, and Ag particles with size ranging from 60nm to ca. 5μm. As expected, no significant VOC emissions were observed as a result of spraying. Finally, we provide recommendations for exposure model parameterization. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  2. Characteristics of SME biodiesel-fueled diesel particle emissions and the kinetics of oxidation.

    Science.gov (United States)

    Jung, Heejung; Kittelson, David B; Zachariah, Michael R

    2006-08-15

    Biodiesel is one of the most promising alternative diesel fuels. As diesel emission regulations have become more stringent, the diesel particulate filter (DPF) has become an essential part of the aftertreatment system. Knowledge of kinetics of exhaust particle oxidation for alternative diesel fuels is useful in estimating the change in regeneration behavior of a DPF with such fuels. This study examines the characteristics of diesel particulate emissions as well as kinetics of particle oxidation using a 1996 John Deere T04045TF250 off-highway engine and 100% soy methyl ester (SME) biodiesel (B100) as fuel. Compared to standard D2 fuel, this B100 reduced particle size, number, and volume in the accumulation mode where most of the particle mass is found. At 75% load, number decreased by 38%, DGN decreased from 80 to 62 nm, and volume decreased by 82%. Part of this decrease is likely associated with the fact that the particles were more easily oxidized. Arrhenius parameters for the biodiesel fuel showed a 2-3times greater frequency factor and approximately 6 times higher oxidation rate compared to regular diesel fuel in the range of 700-825 degrees C. The faster oxidation kinetics should facilitate regeneration when used with a DPF.

  3. A study of complex particle emission in the pre-equilibrium statistical model

    International Nuclear Information System (INIS)

    Miao Rongzhi; Wu Guohua

    1986-01-01

    A concept of the quasi-composite system in the process of the pre-equilibrium emission is presented in this paper. On the basis of the principle of detailed balance, the existence of the factor, [γ β ω(π β , 0, ν β , 0, E-U)g π,ν ], has been proved with an account of the distinguishabllity between protons and neutrons. A formula for the rate of the complex particle emission in the pre-equilibrium process can be obtained. The theoretical calculation results fit the experimental data quite well, especially in the high energy part of the energy spectrum the agreement are much better than ever before

  4. Isoprene in poplar emissions: effects on new particle formation and OH concentrations

    Directory of Open Access Journals (Sweden)

    A. Kiendler-Scharr

    2012-01-01

    Full Text Available Stress-induced volatile organic compound (VOC emissions from transgenic Grey poplar modified in isoprene emission potential were used for the investigation of photochemical secondary organic aerosol (SOA formation. In poplar, acute ozone stress induces the emission of a wide array of VOCs dominated by sesquiterpenes and aromatic VOCs. Constitutive light-dependent emission of isoprene ranged between 66 nmol m−2 s−1 in non-transgenic controls (wild type WT and nearly zero (<0.5 nmol m−2 s−1 in isoprene emission-repressed plants (line RA22, respectively. Nucleation rates of up to 3600 cm−3 s−1 were observed in our experiments. In the presence of isoprene new particle formation was suppressed compared to non-isoprene containing VOC mixtures. Compared to isoprene/monoterpene systems emitted from other plants the suppression of nucleation by isoprene was less effective for the VOC mixture emitted from stressed poplar. This is explained by the observed high efficiency of new particle formation for emissions from stressed poplar. Direct measurements of OH in the reaction chamber revealed that the steady state concentration of OH is lower in the presence of isoprene than in the absence of isoprene, supporting the hypothesis that isoprenes' suppressing effect on nucleation is related to radical chemistry. In order to test whether isoprene contributes to SOA mass formation, fully deuterated isoprene (C5D8 was added to the stress-induced emission profile of an isoprene free poplar mutant. Mass spectral analysis showed that, despite the isoprene-induced suppression of particle formation, fractions of deuterated isoprene were incorporated into the SOA. A fractional mass yield of 2.3% of isoprene was observed. Future emission changes due to land use and climate change may therefore affect both gas phase oxidation capacity and new particle number formation.

  5. Reducing field emission in the superconducting rf cavities for the next generation of particle accelerators

    International Nuclear Information System (INIS)

    Shu, Q.S.; Hartung, W.; Leibovich, A.; Kirchgessner, J.; Moffat, D.; Padamsee, H.; Rubin, D.; Sears, J.

    1991-01-01

    This paper reports on field emission, which is an obstacle to reaching the higher fields called for in future applications of superconducting radio frequency cavities to particle accelerators. The authors used heat treatment up to 1500 degrees C in an ultra-high vacuum furnace, along with processing of cavities and temperature mapping, to suppress field emission and analyze emitter properties. In 27 tests of 1-cell 1500 MHz fired accelerating cavities, on the average the accelerating field E acc increased to 24 MV/m (H pk = 1250 Oe) from 13 MV/m with chemical treatment alone; the highest E acc reached was 30.5 MV/m

  6. Characterization of particle bound organic carbon from diesel vehicles equipped with advanced emission control technologies.

    Science.gov (United States)

    Pakbin, Payam; Ning, Zhi; Schauer, James J; Sioutas, Constantinos

    2009-07-01

    A chassis dynamometer study was carried out by the University of Southern California in collaboration with the Air Resources Board (CARB) to investigate the physical, chemical, and toxicological characteristics of diesel emissions of particulate matter (PM) from heavy-duty vehicles. These heavy-duty diesel vehicles (HDDV) were equipped with advanced emission control technologies, designed to meet CARB retrofit regulations. A HDDV without any emission control devices was used as the baseline vehicle. Three advanced emission control technologies; continuously regenerating technology (CRT), zeolite- and vanadium-based selective catalytic reduction technologies (Z-SCRT and V-SCRT), were tested under transient (UDDS) (1) and cruise (80 kmph) driving cycles to simulate real-world driving conditions. This paper focuses on the characterization of the particle bound organic species from the vehicle exhaust. Physical and chemical properties of PM emissions have been reported by Biswas et al. Atmos. Environ. 2008, 42, 5622-5634) and Hu et al. (Atmos. Environ. 2008, submitted) Significant reductions in the emission factors (microg/mile) of particle bound organic compounds were observed in HDDV equipped with advanced emission control technologies. V-SCRT and Z-SCRT effectively reduced PAHs, hopanes and steranes, n-alkanes and acids by more than 99%, and often to levels below detection limits for both cruise and UDDS cycles. The CRT technology also showed similar reductions with SCRT for medium and high molecular weight PAHs, acids, but with slightly lower removal efficiencies for other organic compounds. Ratios of particle bound organics-to-OC mass (microg/g) from the baseline exhaust were compared with their respective ratios in diesel fuel and lubricating oil, which revealed that hopanes and steranes originate from lubricating oil, whereas PAHs can either form during the combustion process or originate from diesel fuel itself. With the introduction of emission control

  7. Alpha-particle emission probabilities in the decay of 239Pu

    International Nuclear Information System (INIS)

    Garcia-Torano, E.; Acena, M.L.; Bortels, G.; Mouchel, D.

    1993-01-01

    The alpha-particle emission probabilities (P α ) of 239 Pu have been measured using material of highest enrichment and radiochemical purity, thin sources produced by vacuum sublimation, and high-resolution α spectroscopy with ion-implanted Si detectors (PIPS). The results for the major emissions are P α0.07 =0.7077±0.0014, P α13 =0.1711±0.0014 and P α51 =0.1194±0.0007, which for the P α0.07 is about 3.6% lower than the recent evaluated value in the literature. (orig.)

  8. A comparison of single particle tracking and temporal image correlation spectroscopy for quantitative analysis of endosome motility

    DEFF Research Database (Denmark)

    Lund, F. W.; Wustner, D.

    2013-01-01

    Single particle tracking (SPT) is becoming a standard method to extract transport parameters from time-lapse image sequences of fluorescent vesicles in living cells. Another method to obtain these data is temporal image correlation spectroscopy (TICS), but this method is less often used for measu......Single particle tracking (SPT) is becoming a standard method to extract transport parameters from time-lapse image sequences of fluorescent vesicles in living cells. Another method to obtain these data is temporal image correlation spectroscopy (TICS), but this method is less often used...... for measurement of intracellular vesicle transport. Here, we present an extensive comparison of SPT and TICS. First we examine the effect of photobleaching, shading and noise on SPT and TICS analysis using simulated image sequences. To this end, we developed a simple photophysical model, which relates spatially...... varying illumination intensity to the bleaching propensity and fluorescence intensity of the moving particles. We found that neither SPT nor TICS are affected by photobleaching per se, but the transport parameters obtained by both methods are sensitive to the signal-to-noise ratio. In addition, the number...

  9. Alpha-particle dosimetry using solid state nuclear track detectors. Application to 222Rn and its daughters

    International Nuclear Information System (INIS)

    Barillon, R.; Chambaudet, A.

    2000-01-01

    A methodology for the determination of the detection efficiency of a solid state nuclear track detector for radon and its short-lived daughters was presented. First, particular attention is paid to the α-particles having energies and angles of incidence that lead to observable tracks after an adapted chemical etching. The results are then incorporated in a mathematical model to determine the theoretical radon detection efficiency of a polymeric detector placed in a cylindrical cell. When applied to LR115 and CR39 detectors, the model reveals the influence of the position of the radon daughters inside the cell. Radon daughters tend to link up with natural atmospheric aerosols and then settle on the cell's inside wall. This model allows to determine, among other things, the cell size for which the detector response is independent of the fraction daughters plated out. (author)

  10. Dynamical decay of nuclei at high temperature: competition between particle emission and fission decay

    International Nuclear Information System (INIS)

    Delagrange, H.; Gregoire, C.; Scheuter, F.; Abe, Y.

    1985-06-01

    A generalized diffusion equation is propounded to follow the time evolution of an excited nucleus towards fission including along the particle decay. This theoretical model is built in order to try to analyse the anomalous behaviour of particle emission observed in many experimental data for heavy-ion induced reactions. Some calculations for the systems 194 Hg, 170 Yb and 248 Cf are presented. A possible extension of this generalized formalism is suggested to deal more consistently with the experimental data. 52 refs. 10 figs.

  11. Energy spectra and asymmetry of charged particle emission in the muon minus capture by nuclei

    International Nuclear Information System (INIS)

    Balandin, M.P.; Grebenyuk, V.M.; Sinov, V.G.; Konin, A.D.

    1978-01-01

    Energy spectra of separated-by-mass single-charged particles at the capture of 130 MeV negative muons by carbon, oxygen, magnesium and sulphur have been measured. The experimental results are compared with the theoretical calculations at the assumption of preequilibrium decay of collective states described by the hydrodynamical model. The measurement of asymmetry of charged particle emission in sulphur and megnesium was carried out by hte method of muon spin precession in a magnetic field. Theoretical curves describe correctly the exponential spectra character, but the yields obtained are 2-3 times less than the experimental results

  12. Charged-particle track analysis, thermoluminescence and microcratering studies of lunar samples

    International Nuclear Information System (INIS)

    Durrani, S.A.

    1977-01-01

    Studies of lunar samples (from both Apollo and Luna missions) have been carried out, using track analysis and thermoluminescence (t.l.) techniques, with a view to shedding light on the radiation and temperature histories of the Moon. In addition, microcraters in lunar glasses have been studied in order to elucidate the cosmic-dust impact history of the lunar regolith. In tracks studies, the topics discussed include the stabilizing effect of the thermal annealing of fossil tracks due to the lunar temperature cycle; the 'radiation annealing' of fresh heavy-ion tracks by large doses of protons (to simulate the effect of lunar radiation-damage on track registration); and correction factors for the anisotropic etching of crystals which are required in reconstructing the exposure history of lunar grains. An abundance ratio of ca. (1.1 + 0.3) x 10 -3 has been obtained, by the differential annealing technique, for the nuclei beyond the iron group to those within that group in the cosmic rays incident on the Moon. The natural t.l. of lunar samples has been used to estimate their effective storage temperature and mean depth below the surface. The results of the study of natural and artificially produced microcraters have been studied. (author)

  13. Geometrical optimization of a particle tracking system for proton computed tomography

    International Nuclear Information System (INIS)

    Penfold, S.N.; Rosenfeld, A.B.; Schulte, R.W.; Sadrozinksi, H.-F.W.

    2011-01-01

    Proton computed tomography (pCT) is currently being developed as an imaging modality for improving the accuracy of treatment planning in proton therapy. A tracking telescope comprising eight planes of single-sided silicon strip detectors (SSDs) forms an integral part of our present pCT design. Due to the currently maximum available Si wafer size, the sensitive area of 9 cm × 18 cm of the pCT tracker requires each tracking plane to be composed of two individual SSDs, which creates potential reconstruction problems due to overlap or gaps of the sensitive SSD areas. Furthermore, the spacing of the tracking planes creates competing design requirements between compactness and spatial resolution. Two Monte Carlo simulations were performed to study the effect of tracking detector location on pCT image quality. It was found that a “shingled” detector design suppressed reconstruction artefacts and, for the spatial resolution of the current detector hardware, reconstructed spatial resolution was not improved with a tracking separation of greater than 8 cm.

  14. Monitoring of laser-accelerated particle beams for hadron therapy via Compton tracking

    Energy Technology Data Exchange (ETDEWEB)

    Lang, C.; Thirolf, P.G. [LMU, Muenchen (Germany); Habs, D.; Tajima, T. [LMU, Muenchen (Germany); MPQ, Garching (Germany); Zoglauer, A. [SSL, Berkeley (United States); Kanbach, G.; Diehl, R. [MPE, Muenchen (Germany); Schreiber, J. [MPQ, Garching (Germany)

    2011-07-01

    Presently large efforts have been achieved towards the development of hadron cancer therapy based on laser-accelerated ion (p, C) beams, particularly aiming at the treatment of small tumors (few mm size). Thus precise monitoring of the ion track is mandatory. Conventional PET technology suffers from limited signal strength and precision of locating the source position. We envisage to use Compton tracking, i.e. determining energy and momentum of Compton photons and electrons, emitted along the ion track in the irradiated soft tissue. Confining the Compton cone by tracking the scattered electron will allow to significantly improve on the position resolution. Monte Carlo simulations have been performed to characterize the achievable position resolution and efficiency of a Compton camera. We estimate a resolution of 2 mm (1 mm; 5 mm) FWHM at 2 MeV (5 MeV; 0.5 MeV). An efficiency of 1.4*10{sup -3} (4.6*10{sup -6}) at 0.5 MeV (2 MeV) is envisaged. Optimized for an energy range between 0.5 MeV and 5 MeV, we plan for a system of 5 layers of double-sided Si strip detectors (for Compton electron tracking) and an additional LaBr{sub 3}:Ce calorimeter, read out by a segmented photomultiplier tube.

  15. Some characteristics of the CR-39 solid state nuclear-track detector for protons and low energy alpha particles

    International Nuclear Information System (INIS)

    Fonseca, E.S. da.

    1983-01-01

    Experimental results related to certain registration properties of the CR-39 solid state nuclear-track detector for charged particles are presented and discussed. The determination of the CR-39 chemical etching in NaOH and KOH solutions, comprising concentration (2-10N) and temperature effects (50-90 0 C), showed the existence of an inverse proportion between the induction time and the temperature as well as the normal concentration of the solutions. The critical energy and the critical energy-loss rate of CR-39 track detectors for registration of protons were experimentally determined. A number of samples was exposed to 24MeV proton beams in the IEN-CNEN Cyclotron (CV-28), using a scattering chamber with a tantalum thin target and aluminium absorbers in contact with the samples in order to provide the required fluctuation in the scattered beam energy. From the mean track-diameter plotted against incident proton energy for 16h and 24h chemical etching (6.25 NaOH, 70 0 C), and considering 1.5 μm as the minimum observable track-diameter, the values (21.0 + - 1.5) MeV and (22.5 + - 1.5) MeV were deduced, respectively, for the critical energy. From the calculated energy-loss rate versus energy curve, the critical energy-loss rate was evaluated as 24 + - 2 MeV.cm 2 /g. Finally, the CR-39 response for low energy alpha particles (E [pt

  16. Tracking of macroscopic particle motions generated by a turbulent wind via digital image analysis

    Science.gov (United States)

    Ciccone, A. D.; Kawall, J. G.; Keffer, J. F.

    A novel technique utilizing the basic principles of two-dimensional signal analysis and artificial intelligence/computer vision to reconstruct the Lagrangian particle trajectories from flow visualization images of macroparticle motions in a turbulent boundary layer is presented. Since, in most cases, the entire trajectory of a particle could not be viewed in one photographic frame (the particles were moving at a high velocity over a small field of view), a stochastic model was developed to complete the trajectories and obtain statistical data on particle velocities. The associated programs were implemented on a Cray supercomputer to optimize computational costs and time.

  17. Charged particle emission effects on the characteristics of glow discharges with oscillating electrons

    CERN Document Server

    Nikulin, S P

    2001-01-01

    One discusses the effect of selection of charged particles on conditions to maintain and the characteristics of a glow discharge with oscillating electrons. It is shown that there is a pressure dependent optimal level of ion selection when the energy efficiency of ion source reaches its maximum value. It is determined that departure of fast ionizing electrons affects negatively the discharge maintenance wile emission of slow plasma electrons may promote maintenance of a discharge high current shape. It is shown that high efficient electron emission without violation of a discharge stability may take place in a magnetic field due to different nature of spatial distributions of fast and slow particles in discharges with electron oscillation

  18. Particle induced X-ray emission and complementary nuclear methods for trace element determination; Plenary lecture

    Energy Technology Data Exchange (ETDEWEB)

    Johansson, S A.E. [Lund Univ. (Sweden). Dept. of Nuclear Physics

    1992-03-01

    In this review the state-of-the-art of particle induced X-ray emission (PIXE) methods for the determination of trace elements is described. The developmental work has mostly been carried out in nuclear physics laboratories, where accelerators are available, but now the increased interest has led to the establishment of other dedicated PIXE facilities. The reason for this interest is the versatility, high sensitivity and multi-element capability of PIXE analysis. A further very important advantage is that PIXE can be combined with the microbeam technique, which makes elemental mapping with a spatial resolution of about 1 {mu}m possible. As a technique, PIXE can also be combined with other nuclear reactions such as elastic scattering and particle-induced gamma emission, so that light elements can be determined. The usefulness of PIXE is illustrated by a number of typical applications in biology, medicine, geology, air pollution research, archaeology and the arts. (author).

  19. Dynamical aspects of particle emission in binary dissipative collisions -effects on hot-nuclei formation

    International Nuclear Information System (INIS)

    Eudes, Ph.; Basrak, Z.; Sebille, F.

    1997-01-01

    Characteristics of charged-particle emission in heavy-ion reactions have been studied in the framework of the semiclassical Landau-Vlasov approach for the 40 Ar + 27 Al collisions at 65 MeV/u. The reaction mechanism is dominated by binary dissipative collisions. After an abundant prompt emission coming from the overlapping region between the target and the projectile, two excited nuclei, the quasi-target and the quasi-projectile, emerge from the collision. To shed some light on the role played by dynamical effects, light-charged particle observables, which are currently used as an experimental signature a of hot equilibrated nucleus, have been carefully investigated. (K.A.)

  20. Particles and emissions from a diesel engine equipped with a humid air motor system

    Energy Technology Data Exchange (ETDEWEB)

    Nord, Kent; Zurita, Grover; Tingvall, Bror; Haupt, Dan [Luleaa Univ. of Technology (Sweden). Div. of Environmental Technology

    2002-02-01

    A system for reduction of NO{sub x}, humid air motor system (HAM), has been connected to an eleven liters diesel engine. Earlier studies have demonstrated the system's capacity to lower NO{sub x}-emissions from diesel engines. The present study is directed to investigate their influence of the system on the emissions of particles, aldehydes and noise while at the same time monitoring essential engine parameters, water consumption and verifying the NO{sub x} reducing ability. The system has been tested under the various conditions stated in 13-mode cycle ECE R-49. Additional tests have been necessary for sampling and measurements of particles and noise. The results show that HAM caused a large reduction of the NO{sub x} emissions while the engine performance was almost unaffected. Average reduction of NO{sub x} during the different modes of ECE R-49 was 51,1%. The reduction was directly related to the humidity of the inlet air and a further reduction can be anticipated with higher humidity. Samples have also been taken for acetaldehydes and formaldehyde. The results suggest a large reduction of aldehydes, in the range of 78 to 100%, when using HAM. Unfortunately it cannot be excluded that the results obtained are a result of a combination of high air humidity and the sampling technique used. The influence of the system on the emission of hydrocarbons was negligible while a moderate increase in the emission of carbon monoxide was noticed. No confident relationship between air humidity and the observed effects could be detected. Particle number concentrations and size distribution have also been measured. The measurements showed that the particle number concentrations was usually increased when HAM was coupled to the engine. The increase in particle number concentration, observed in five out of six running modes, varied between 46 and 148%. There was no trend indicating a shift in mean particle diameter when using HAM. Noise level and cylinder pressure have also