WorldWideScience

Sample records for emission microscopy peem

  1. Energy-filtered Photoelectron Emission Microscopy (EF-PEEM) for imaging nanoelectronic materials

    International Nuclear Information System (INIS)

    Renault, Olivier; Chabli, Amal

    2007-01-01

    Photoelectron-Emission Microscopy (PEEM) is the most promising approach to photoemission-based (XPS, UPS) imaging techniques with high lateral resolution, typically below 100 nm. It has now reached its maturity with a new generation of instruments with energy-filtering capabilities. Therefore UPS and XPS imaging with energy-filtered PEEM (EF-PEEM) can be applied to technologically-relevant samples. UPS images with contrast in local work function, obtained with laboratory UV sources, are obtained in ultra-high vacuum environment with lateral resolutions better than 50 nm and sensitivies of 20 meV. XPS images with elemental and bonding state contrast can show up lateral resolution better than 200 nm with synchrotron excitation. In this paper, we present the principles and capabilities of EF-PEEM and nanospectroscopy. Then, we focus on an example of application to non-destructive work-function imaging of polycrystalline copper for advanced interconnects, where it is shown that EF-PEEM is an alternative to Kelvin probes

  2. PEEM microscopy and DFT calculations of catalytically active platinum surfaces and interfaces

    International Nuclear Information System (INIS)

    Spiel, C.

    2012-01-01

    The aim of this thesis was to investigate the properties of catalytically active platinum surfaces and interfaces both with experimental and theoretical methods. Using experimental methods, catalytic CO oxidation on individual grains of a polycrystalline platinum foil was studied in situ under high vacuum (HV) conditions. A polycrystalline platinum foil consists of individual µm-sized crystal grains that are mainly [100]-, [110]- and [111]-oriented and differ significantly in their catalytic activity. In order to elucidate the differences existing between the reactivity of the individual grains, a combination of photoemission electron microscopy (PEEM) and quadrupole mass spectrometry (QMS) was used in this work. The working principle of PEEM is based on the photoelectric effect where illumination of the sample with (UV-)light causes emission of photoelectrons. The emitted photoelectrons are used to visualize the sample surface (with typical resolution in the low micrometer range). The PEEM image contrast originates from differences in the local work function that may arise due to different crystallographic orientations and/or changes in the adsorbate coverage. With a combination of PEEM and QMS, it was possible to study the kinetics of catalytic CO oxidation on polycrystalline platinum foil both in a global and a laterally-resolved way simultaneously. If catalytic CO oxidation on surfaces of platinum is followed at constant temperature and oxygen partial pressure under cyclic variation of the CO pressure, a hysteresis in the CO2 production rate is observed in the bistability region with two noticeable kinetic transitions (called tA and tB) taking place at different CO pressures when the catalyst surface switches back-and-forth between two steady states of high and low reactivity while the Pt-surface is, correspondingly, either oxygen- or CO-covered. In the bistability region between τ A and τ B , the system stays (at the same values of the external parameters p

  3. Energy- and time-resolved microscopy using PEEM: recent developments and state-of-the-art

    Energy Technology Data Exchange (ETDEWEB)

    Weber, N B; Escher, M; Merkel, M [FOCUS GmbH, Neukirchner Strasse 2, 65510 Huenstetten (Germany); Oelsner, A [Surface Concept GmbH, Staudingerweg 7, 55099 Mainz (Germany); Schoenhense, G [Johannes Gutenberg Universitaet, Institut fuer Physik, 55099 Mainz (Germany)], E-mail: n.weber@focus-gmbh.com

    2008-03-15

    Two novel methods of spectroscopic surface imaging are discussed, both based on photoemission electron microscopy PEEM. They are characterised by a simple electron-optical set up retaining a linear column. An imaging high-pass energy filter has been developed on the basis of lithographically-fabricated microgrids. Owing to a mesh size of only 7{mu}m, no image distortions occur. The present energy resolution is 70 meV. The second approach employs time-of-flight energy dispersion and time-resolved detection using a Delayline Detector. In this case, the drift energy and the time resolution of the detector determine the energy resolution. The present time resolution is 180 ps, giving rise to an energy resolution in the 100 meV range.

  4. Photo electron emission microscopy of polarity-patterned materials

    International Nuclear Information System (INIS)

    Yang, W-C; Rodriguez, B J; Gruverman, A; Nemanich, R J

    2005-01-01

    This study presents variable photon energy photo electron emission microscopy (PEEM) of polarity-patterned epitaxial GaN films, and ferroelectric LiNbO 3 (LNO) single crystals and PbZrTiO 3 (PZT) thin films. The photo electrons were excited with spontaneous emission from the tunable UV free electron laser (FEL) at Duke University. We report PEEM observation of polarity contrast and measurement of the photothreshold of each polar region of the materials. For a cleaned GaN film with laterally patterned Ga- and N-face polarities, we found a higher photoelectric yield from the N-face regions compared with the Ga-face regions. Through the photon energy dependent contrast in the PEEM images of the surfaces, we can deduce that the threshold of the N-face region is less than ∼4.9 eV while that of the Ga-face regions is greater than 6.3 eV. In both LNO and PZT, bright emission was detected from the negatively poled domains, indicating that the emission threshold of the negative domain is lower than that of the positive domain. For LNO, the measured photothreshold was ∼4.6 eV at the negative domain and ∼6.2 eV at the positive domain, while for PZT, the threshold of the negative domain was less than 4.3 eV. Moreover, PEEM observation of the PZT surface at elevated temperatures displayed that the domain contrast disappeared near the Curie temperature of ∼300 deg. C. The PEEM polarity contrast of the polar materials is discussed in terms of internal screening from free carriers and defects and the external screening due to adsorbed ions

  5. Photo electron emission microscopy of polarity-patterned materials

    Science.gov (United States)

    Yang, W.-C.; Rodriguez, B. J.; Gruverman, A.; Nemanich, R. J.

    2005-04-01

    This study presents variable photon energy photo electron emission microscopy (PEEM) of polarity-patterned epitaxial GaN films, and ferroelectric LiNbO3 (LNO) single crystals and PbZrTiO3 (PZT) thin films. The photo electrons were excited with spontaneous emission from the tunable UV free electron laser (FEL) at Duke University. We report PEEM observation of polarity contrast and measurement of the photothreshold of each polar region of the materials. For a cleaned GaN film with laterally patterned Ga- and N-face polarities, we found a higher photoelectric yield from the N-face regions compared with the Ga-face regions. Through the photon energy dependent contrast in the PEEM images of the surfaces, we can deduce that the threshold of the N-face region is less than ~4.9 eV while that of the Ga-face regions is greater than 6.3 eV. In both LNO and PZT, bright emission was detected from the negatively poled domains, indicating that the emission threshold of the negative domain is lower than that of the positive domain. For LNO, the measured photothreshold was ~4.6 eV at the negative domain and ~6.2 eV at the positive domain, while for PZT, the threshold of the negative domain was less than 4.3 eV. Moreover, PEEM observation of the PZT surface at elevated temperatures displayed that the domain contrast disappeared near the Curie temperature of ~300 °C. The PEEM polarity contrast of the polar materials is discussed in terms of internal screening from free carriers and defects and the external screening due to adsorbed ions.

  6. Chemical-state-selective mapping at nanometer scale using synchrotron radiation and photoelectron emission microscopy

    International Nuclear Information System (INIS)

    Hirao, Norie; Baba, Yuji; Sekiguchi, Tetsuhiro; Shimoyama, Iwao; Honda, Mitsunori

    2010-01-01

    For surface analyses of semiconductor devices and various functional materials, it has become indispensable to analyze valence states at nanometer scale due to the rapid developments of nanotechnology. Since a method for microscopic mapping dependent on the chemical bond states has not been established so far, we have developed a photoelectron emission microscopy (PEEM) system combined with synchrotron soft X-ray excitation. The samples investigated were Si/SiO x micro-patterns prepared by O 2 + ion implantation in Si(001) wafer using a mask. PEEM images excited by various photon energies around the Si K-edge were observed. The lateral spatial resolution of the system was about 41 nm. The brightness of each spot in PEEM images changed depending on the photon energy, due to the X-ray absorption intensity of the respective chemical state. Since the surface of this sample was topographically flat, it has been demonstrated that the present method can be applied to observations of the microscopic pattern, depending not on the morphology, but only on the valence states of silicon. We have also in-situ measured the changes of the PEEM images upon annealing, and elucidated the mechanism of the lateral diffusion of oxygen and valence states of silicon at the nanometer scale. (author)

  7. Chemical-state-selective mapping at nanometer scale using synchrotron radiation and photoelectron emission microscopy

    International Nuclear Information System (INIS)

    Hirao, Norie; Baba, Yuji; Sekiguchi, Tetsuhiro; Shimoyama, Iwao; Honda, Mitsunori

    2008-01-01

    For surface analyses of semiconductor devices and various functional materials, it has become indispensable to analyze the valence states at the nanometer scale due to the rapid developments of nanotechnology. Since a method for microscopic mapping dependent on the chemical bond states has not been established so far, we have developed a photoelectron emission microscopy (PEEM) system combined with synchrotron soft X-ray excitation. The samples investigated were Si/SiO x micro-patterns prepared by O 2 + ion implantation in a Si(001) wafer using a mask. PEEM images excited by various photon energies around the Si K-edge were observed. The lateral spatial resolution of the system was about 41 nm. The brightness of each spot in PEEM images changed depending on the photon energy, due to the X-ray absorption intensity of the respective chemical state. Since the surface of this sample is topographically flat, it has been demonstrated that the present method can be applied to observations of the microscopic pattern, depending not on the morphology, but only on the valence states of silicon. We have also in-situ measured the changes of PEEM images upon annealing, and elucidated the mechanism of the lateral diffusion of oxygen and valence states of silicon at the nanometer scale. (author)

  8. Operando x-ray photoelectron emission microscopy for studying forward and reverse biased silicon p-n junctions

    Energy Technology Data Exchange (ETDEWEB)

    Barrett, N., E-mail: nick.barrett@cea.fr; Gottlob, D. M.; Mathieu, C.; Lubin, C. [SPEC, CEA, CNRS, Université Paris-Saclay, CEA Saclay, 91191 Gif-sur-Yvette Cedex (France); Passicousset, J. [SPEC, CEA, CNRS, Université Paris-Saclay, CEA Saclay, 91191 Gif-sur-Yvette Cedex (France); IFP Energies nouvelles, Rond-point de l’échangeur de Solaize, BP 3, 69360 Solaize (France); Renault, O.; Martinez, E. [University Grenoble-Alpes, 38000 Grenoble, France and CEA, LETI, MINATEC Campus, 38054 Grenoble (France)

    2016-05-15

    Significant progress in the understanding of surfaces and interfaces of materials for new technologies requires operando studies, i.e., measurement of chemical, electronic, and magnetic properties under external stimulus (such as mechanical strain, optical illumination, or electric fields) applied in situ in order to approach real operating conditions. Electron microscopy attracts much interest, thanks to its ability to determine semiconductor doping at various scales in devices. Spectroscopic photoelectron emission microscopy (PEEM) is particularly powerful since it combines high spatial and energy resolution, allowing a comprehensive analysis of local work function, chemistry, and electronic structure using secondary, core level, and valence band electrons, respectively. Here we present the first operando spectroscopic PEEM study of a planar Si p-n junction under forward and reverse bias. The method can be used to characterize a vast range of materials at near device scales such as resistive oxides, conducting bridge memories and domain wall arrays in ferroelectrics photovoltaic devices.

  9. Nanoscale Laser Terahertz Emission Microscopy

    DEFF Research Database (Denmark)

    Klarskov, Pernille; Kim, Hyewon; Colvin, Vicki L.

    2017-01-01

    Laser terahertz emission microscopy (LTEM) has become a powerful tool for studying ultrafast dynamics and local fields in many different types of materials. This technique, which relies on acceleration of charge carriers in a material upon femtosecond excitation, can provide insight into the phys......Laser terahertz emission microscopy (LTEM) has become a powerful tool for studying ultrafast dynamics and local fields in many different types of materials. This technique, which relies on acceleration of charge carriers in a material upon femtosecond excitation, can provide insight...

  10. Selected-area diffraction and spectroscopy in LEEM and PEEM

    International Nuclear Information System (INIS)

    Tromp, R.M.

    2012-01-01

    This paper addresses the effects of spherical and chromatic aberration of the objective lens, as well as chromatic dispersion of magnetic prism arrays, on the ability to perform selected area Low Energy Electron Diffraction, as well as (Angle Resolved) Photo Electron Spectroscopy experiments in today's advanced cathode lens microscopy instruments. -- Highlights: ► Aberrations of the cathode lens affect SA diffraction and spectroscopy experiments in LEEM/PEEM. ► In LEEM the problem can be overcome by inserting the SA aperture in the illuminating path. ► In PEEM for selected areas smaller than 2–4 μm aberration correction becomes a necessity. ► Chromatic dispersion in the magnetic prism array commonly can be neglected in most cases.

  11. Secondary electron images obtained with a standard PEEM set up

    International Nuclear Information System (INIS)

    Benka, O.; Zeppenfeld, P.

    2004-01-01

    Secondary electron images excited by 3 to 4.3 keV electrons are obtained with a standard photoelectron electron emission microscope (PEEM) set up equipped with an imaging energy filter (IEF). The electron gun was mounted on a standard PEEM entrance flange at an angle of 25 o with respect to the sample surface. A low extraction voltage of 500 V was used to minimize the deflection of the electron beam by the PEEM extraction electrode. The secondary electron images are compared to photoelectron images excited by a standard 4.9 eV UV lamp. In the case of a Cu pattern on a Si substrate it is found that the lateral resolution without the IEF is about the same for electron and photon excitation but that the relative electron emission intensities are very different. The use of the IEF-reduces the lateral resolution. Images for secondary electron energies between eV 1 and eV 2 were obtained by setting the IEF to -V 1 and -V 2 ∼ -(V 1 + 5V) potentials and taking the difference of both images. Images up to 100 eV electron energies were recorded. The lateral resolution is in the range of μm. The material contrast obtained in these difference images are discussed in terms of a secondary electron and photoelectron emission model and secondary electron energy spectra measured with a LEED-Auger spectrometer. (author)

  12. Immunohistochemistry for the MEPHISTO X-PEEM

    International Nuclear Information System (INIS)

    Gilbert, B.; Margaritondo, G.; Neumann, M.; Steen, S.; Gabel, D.; Andres, R.; Perfetti, P.; De Stasio, Gelsomina

    2000-01-01

    Over almost 50 years of its development, the science of immunology has become an indispensable tool for the understanding of the histology of tissues. Antibodies are highly specific probes, so that tissue structure can be interpreted not just by morphological considerations but by association with a wide variety of physiological molecular antigens. The simple concept of an antibody linked to a microscopically dense marker remains constant in each application of the technique, such as the use of fluorescent markers or the incorporation of electron-dense gold colloids for electron microscopy. We describe a new application of immunocytochemistry to x-ray spectromicroscopy: the antibody labeling of tissue structures with nickel precipitates. Regions of positive staining can be seen by the acquisition of nickel distribution maps in the MEPHISTO X-PEEM from the intense Ni L-edge absorption features around 850 eV. The aim of this work is to know the background tissue structures on which the distribution of other relevant elements (such as boron for BNCT) can be mapped. Results are presented showing positive staining by two antibodies in human glioblastoma tissue, anti-Ki-67, a protein found in the nuclei of proliferating cells, and anti-van Willebrandt factor, located in blood vessel endothelia. We show that the criteria for successful staining for optical microscopy are different than for spectroscopic imaging, but useful results can be obtained with careful image treatment

  13. Immunohistochemistry for the MEPHISTO X-PEEM

    Science.gov (United States)

    Gilbert, B.; Neumann, M.; Steen, S.; Gabel, D.; Andres, R.; Perfetti, P.; Margaritondo, G.; De Stasio, Gelsomina

    2000-05-01

    Over almost 50 years of its development, the science of immunology has become an indispensable tool for the understanding of the histology of tissues. Antibodies are highly specific probes, so that tissue structure can be interpreted not just by morphological considerations but by association with a wide variety of physiological molecular antigens. The simple concept of an antibody linked to a microscopically dense marker remains constant in each application of the technique, such as the use of fluorescent markers or the incorporation of electron-dense gold colloids for electron microscopy. We describe a new application of immunocytochemistry to x-ray spectromicroscopy: the antibody labeling of tissue structures with nickel precipitates. Regions of positive staining can be seen by the acquisition of nickel distribution maps in the MEPHISTO X-PEEM from the intense Ni L-edge absorption features around 850 eV. The aim of this work is to know the background tissue structures on which the distribution of other relevant elements (such as boron for BNCT) can be mapped. Results are presented showing positive staining by two antibodies in human glioblastoma tissue, anti-Ki-67, a protein found in the nuclei of proliferating cells, and anti-van Willebrandt factor, located in blood vessel endothelia. We show that the criteria for successful staining for optical microscopy are different than for spectroscopic imaging, but useful results can be obtained with careful image treatment.

  14. Exploring the microscopic origin of exchange bias with photoelectron emission microscopy (invited)

    International Nuclear Information System (INIS)

    Scholl, A.; Nolting, F.; Stohr, J.; Regan, T.; Luning, J.; Seo, J. W.; Locquet, J.-P.; Fompeyrine, J.; Anders, S.; Ohldag, H.

    2001-01-01

    It is well known that magnetic exchange coupling across the ferromagnet - antiferromagnet interface results in an unidirectional magnetic anisotropy of the ferromagnetic layer, called exchange bias. Despite large experimental and theoretical efforts, the origin of exchange bias is still controversial, mainly because detection of the interfacial magnetic structure is difficult. We have applied photoelectron emission microscopy (PEEM) on several ferromagnet - antiferromagnet thin-film structures and microscopically imaged the ferromagnetic and the antiferromagnetic structure with high spatial resolution. Taking advantage of the surface sensitivity and elemental specificity of PEEM, the magnetic configuration and critical properties such as the Neel temperature were determined on LaFeO 3 and NiO thin films and single crystals. On samples coated with a ferromagnetic layer, we microscopically observe exchange coupling across the interface, causing a clear correspondence of the domain structures in the adjacent ferromagnet and antiferromagnet. Field dependent measurements reveal a strong uniaxial anisotropy in individual ferromagnetic domains. A local exchange bias was observed even in not explicitly field-annealed samples, caused by interfacial uncompensated magnetic spins. These experiments provide highly desired information on the relative orientation of electron spins at the interface between ferromagnets and antiferromagnets. [copyright] 2001 American Institute of Physics

  15. Spin dynamics in micron-sized magnetic elements using time-resolved XMCD-PEEM

    International Nuclear Information System (INIS)

    Fukumoto, K.; Kinoshita, T.

    2011-01-01

    Ultrafast dynamics of magnetic spin structures in ultrasmall ferromagnets is now a prominent topic concerning the next generation of memory devices. In particular, the unique dynamics of vortex spin structures in disk-shaped magnets has attracted much attention. To understand the mechanism and to explore even more unique features, we constructed a time-resolved X-ray magnetic circular dichroism (XMCD) with a photoelectron emission microscopy (PEEM) system onto the soft X-ray beamline BL25SU in SPring-8. We observed oscillatory motions of vortex cores after magnetic field pulses as reported in other articles. The time evolution of spin structures the fast magnetic field pulse was also successfully observed. We found that for disks with a larger radius, displacement of the vortex core was not linear with the field amplitude, and there was a delay of the core motion. At the same time, deformation of the vortex structures was observed. (author)

  16. Medipix 2 detector applied to low energy electron microscopy

    International Nuclear Information System (INIS)

    Gastel, R. van; Sikharulidze, I.; Schramm, S.; Abrahams, J.P.; Poelsema, B.; Tromp, R.M.; Molen, S.J. van der

    2009-01-01

    Low energy electron microscopy (LEEM) and photo-emission electron microscopy (PEEM) traditionally use microchannel plates (MCPs), a phosphor screen and a CCD-camera to record images and diffraction patterns. In recent years, however, MCPs have become a limiting factor for these types of microscopy. Here, we report on a successful test series using a solid state hybrid pixel detector, Medipix 2, in LEEM and PEEM. Medipix 2 is a background-free detector with an infinite dynamic range, making it very promising for both real-space imaging and spectroscopy. We demonstrate a significant enhancement of both image contrast and resolution, as compared to MCPs. Since aging of the Medipix 2 detector is negligible for the electron energies used in LEEM/PEEM, we expect Medipix to become the detector of choice for a new generation of systems.

  17. Medipix 2 detector applied to low energy electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Gastel, R. van, E-mail: R.vanGastel@utwente.nl [University of Twente, MESA Institute for Nanotechnology, P.O. Box 217, NL-7500 AE Enschede (Netherlands); Sikharulidze, I. [Leiden University, Leiden Institute of Chemistry, P.O. Box 9502, NL-2300 RA Leiden (Netherlands); Schramm, S. [Leiden University, Kamerlingh Onnes Laboratorium, P.O. Box 9504, NL-2300 RA Leiden (Netherlands); Abrahams, J.P. [Leiden University, Leiden Institute of Chemistry, P.O. Box 9502, NL-2300 RA Leiden (Netherlands); Poelsema, B. [University of Twente, MESA Institute for Nanotechnology, P.O. Box 217, NL-7500 AE Enschede (Netherlands); Tromp, R.M. [Leiden University, Kamerlingh Onnes Laboratorium, P.O. Box 9504, NL-2300 RA Leiden (Netherlands); IBM Research Division, T. J. Watson Research Center, P.O. Box 218, Yorktown Heights, NY 10598 (United States); Molen, S.J. van der [Leiden University, Kamerlingh Onnes Laboratorium, P.O. Box 9504, NL-2300 RA Leiden (Netherlands)

    2009-12-15

    Low energy electron microscopy (LEEM) and photo-emission electron microscopy (PEEM) traditionally use microchannel plates (MCPs), a phosphor screen and a CCD-camera to record images and diffraction patterns. In recent years, however, MCPs have become a limiting factor for these types of microscopy. Here, we report on a successful test series using a solid state hybrid pixel detector, Medipix 2, in LEEM and PEEM. Medipix 2 is a background-free detector with an infinite dynamic range, making it very promising for both real-space imaging and spectroscopy. We demonstrate a significant enhancement of both image contrast and resolution, as compared to MCPs. Since aging of the Medipix 2 detector is negligible for the electron energies used in LEEM/PEEM, we expect Medipix to become the detector of choice for a new generation of systems.

  18. Chemical waves in the O2 + H2 reaction on a Rh(111) surface alloyed with nickel. I. Photoelectron emission microscopy

    Science.gov (United States)

    Smolinsky, Tim; von Boehn, Bernhard; Imbihl, Ronald

    2018-04-01

    Chemical waves that arise in the H2 + O2 reaction on a bimetallic Rh(111)/Ni surface have been studied in the 10-6 and 10-5 mbar range at T = 773 K with photoelectron emission microscopy (PEEM), low-energy electron diffraction (LEED), and Auger electron spectroscopy (AES). Nickel coverages of 0.3, 0.6, and 1.0 monolayers were investigated. Coadsorbed with some oxygen, Ni starts to penetrate the Rh bulk region substantially only beyond 900 K. In the 10-5 mbar range, chemical waves are characterized by three distinct gray levels in PEEM. This number reduces to only two levels in the 10-6 mbar range. In situ LEED showed the periodic appearance of a (n × 1) (n = 8, 10) pattern during chemical waves which was assigned to a 2D-Ni oxide. With in situ AES, one observes that the bright phase in PEEM correlates with a high Ni coverage and the dark phase with a low Ni coverage.

  19. A new approach to nuclear microscopy: The ion-electron emission microscope

    International Nuclear Information System (INIS)

    Doyle, B.L.; Vizkelethy, G.; Walsh, D.S.; Senftinger, B.; Mellon, M.

    1998-01-01

    A new multidimensional high lateral resolution ion beam analysis technique, Ion-Electron Emission Microscopy or IEEM is described. Using MeV energy ions, IEEM is shown to be capable of Ion Beam Induced Charge Collection (IBICC) measurements in semiconductors. IEEM should also be capable of microscopically and multidimensionally mapping the surface and bulk composition of solids. As such, IIEM has nearly identical capabilities as traditional nuclear microprobe analysis, with the advantage that the ion beam does not have to be focused. The technique is based on determining the position where an individual ion enters the surface of the sample by projection secondary electron emission microscopy. The x-y origination point of a secondary electron, and hence the impact coordinates of the corresponding incident ion, is recorded with a position sensitive detector connected to a standard photoemission electron microscope (PEEM). These signals are then used to establish coincidence with IBICC, atomic, or nuclear reaction induced ion beam analysis signals simultaneously caused by the incident ion

  20. Microscopic work function anisotropy and surface chemistry of 316L stainless steel using photoelectron emission microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Barrett, N., E-mail: nick.barrett@cea.fr [CEA, IRAMIS, SPEC, LENSIS, F-91191 Gif-sur-Yvette (France); Renault, O. [CEA, LETI, Minatec Campus, F-38054 Grenoble Cedex 09 (France); Lemaître, H. [Université de Cergy-Pontoise, Rue d’Eragny, Neuville sur Oise, 95 031 Cergy-Pontoise (France); Surface Dynamics Laboratory, Institut for Fysik og Astronomi Aarhus Universitet, Ny Munkegade 120, 8000 Aarhus C (Denmark); Bonnaillie, P. [CEA, DEN, DANS, DMN, SRMP, F-91191 Gif-sur-Yvette (France); Barcelo, F. [CEA, DEN, DANS, DMN, SRMA, LA2M, F-91191 Gif-sur-Yvette (France); Miserque, F. [CEA, DEN, DANS, DPC, SCCME, LECA, F-91191 Gif-sur-Yvette (France); Wang, M.; Corbel, C. [Laboratoire des Solides Irradis, Ecole Polytechnique, route de Saclay, F-91128 Palaiseau (France)

    2014-08-15

    Highlights: • PEEM and EBSD study of spatial variations in local work function of 316L steel. • Correlation between work function and crystal grain orientation at the surface of 316L steel. • Spatially resolved chemistry of residual oxide layer. - Abstract: We have studied the variation in the work function of the surface of sputtered cleaned 316L stainless steel with only a very thin residual oxide surface layer as a function of grain orientation using X-ray photoelectron emission microscopy (XPEEM) and Electron Backscattering Diffraction. The grains are mainly oriented [1 1 1] and [1 0 1]. Four distinct work function values spanning a 150 meV energy window are measured. Grains oriented [1 1 1] have a higher work function than those oriented [1 0 1]. From core level XPEEM we deduce that all grain surfaces are Cr enriched and Ni depleted whereas the Cr/Fe ratio is similar for all grains. The [1 1 1] oriented grains show evidence for a Cr{sub 2}O{sub 3} surface oxide and a higher concentration of defective oxygen sites.

  1. Emission sources in scanning electron microscopy

    International Nuclear Information System (INIS)

    Malkusch, W.

    1990-01-01

    Since the beginning of the commercial scanning electron microscopy, there are two kinds of emission sources generally used for generation of the electron beam. The first group covers the cathodes heated directly and indirectly (tungsten hair-needle cathodes and lanthanum hexaboride single crystals, LaB 6 cathode). The other group is the field emission cathodes. The advantages of the thermal sources are their low vacuum requirement and their high beam current which is necessary for the application of microanalysis units. Disadvantages are the short life and the low resolution. Advantages of the field emission cathode unambiguously are the possibilities of the very high resolution, especially in the case of low acceleration voltages. Disadvantages are the necessary ultra-high vacuum and the low beam current. An alternative source is the thermally induced ZrO/W field emission cathode which works stably as compared to the cold field emission and does not need periodic flashing for emitter tip cleaning. (orig.) [de

  2. Theoretical estimates of spherical and chromatic aberration in photoemission electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Fitzgerald, J.P.S., E-mail: fit@pdx.edu; Word, R.C.; Könenkamp, R.

    2016-01-15

    We present theoretical estimates of the mean coefficients of spherical and chromatic aberration for low energy photoemission electron microscopy (PEEM). Using simple analytic models, we find that the aberration coefficients depend primarily on the difference between the photon energy and the photoemission threshold, as expected. However, the shape of the photoelectron spectral distribution impacts the coefficients by up to 30%. These estimates should allow more precise correction of aberration in PEEM in experimental situations where the aberration coefficients and precise electron energy distribution cannot be readily measured. - Highlights: • Spherical and chromatic aberration coefficients of the accelerating field in PEEM. • Compact, analytic expressions for coefficients depending on two emission parameters. • Effect of an aperture stop on the distribution is also considered.

  3. Transmission XMCD-PEEM imaging of an engineered vertical FEBID cobalt nanowire with a domain wall

    Science.gov (United States)

    Wartelle, A.; Pablo-Navarro, J.; Staňo, M.; Bochmann, S.; Pairis, S.; Rioult, M.; Thirion, C.; Belkhou, R.; de Teresa, J. M.; Magén, C.; Fruchart, O.

    2018-01-01

    Using focused electron-beam-induced deposition, we fabricate a vertical, platinum-coated cobalt nanowire with a controlled three-dimensional structure. The latter is engineered to feature bends along the height: these are used as pinning sites for domain walls, which are obtained at remanence after saturation of the nanostructure in a horizontally applied magnetic field. The presence of domain walls is investigated using x-ray magnetic circular dichroism (XMCD) coupled to photoemission electron microscopy (PEEM). The vertical geometry of our sample combined with the low incidence of the x-ray beam produce an extended wire shadow which we use to recover the wire’s magnetic configuration. In this transmission configuration, the whole sample volume is probed, thus circumventing the limitation of PEEM to surfaces. This article reports on the first study of magnetic nanostructures standing perpendicular to the substrate with XMCD-PEEM. The use of this technique in shadow mode enabled us to confirm the presence of a domain wall without direct imaging of the nanowire.

  4. Determination of the Goos-Hänchen shift in dielectric waveguides via photo emission electron microscopy in the visible spectrum.

    Science.gov (United States)

    Stenmark, Theodore; Word, R C; Könenkamp, R

    2016-02-22

    Photoemission Electron Microscopy (PEEM) is a versatile tool that relies on the photoelectric effect to produce high-resolution images. Pulse lasers allow for multi-photon PEEM where multiple photons are required excite a single electron. This non-linear process can directly image the near field region of electromagnetic fields in materials. We use this ability here to analyze wave propagation in a linear dielectric waveguide with wavelengths of 410 nm and 780 nm. The propagation constant of the waveguide can be extracted from the interference pattern created by the coupled and incident light and shows distinct polarization dependence. The electromagnetic field interaction at the boundaries can then be deduced which is essential to understand power flow in wave guiding structures. These results match well with simulations using finite element techniques.

  5. Design and development of PEEM/ARPES beamline for Indus-2 synchrotron radiation source

    International Nuclear Information System (INIS)

    Goutam, U.K.; Sharma, R.K.; Jagannath; Gadkari, S.C.; Yakhmi, J.V.; Sahni, V.C.

    2008-06-01

    A high resolution beamline having two branches dedicated to Photo Emission Electron Microscopy (PEEM) and Angle Resolved Photo Electron Spectroscopy (ARPES) is planned for Indus-2 synchrotron radiation source. These two techniques open a wide field of new applications in materials research and have proven to be powerful tools to investigate topological, elemental, chemical state, electronic and magnetic properties of surfaces, thin films, and multilayers at high resolutions.The beamline will cover a large energy range from 10 to 4000 eV and is expected to deliver a flux of the order of ∼10 13 ph/s/0.1%B.W. with an energy resolution of ∼10 -4 . This report describes the optical design, beamline layout, effects of heat load on various components and the expected performance of the beamline. This beamline would have a collimating mirror for vertical collimation of the beam, plane grating/double crystal monochromator to make the white synchrotron beam monochromatic in entire energy range, toroidal mirror for splitting the beam as well as for intermediate focusing and a Kirkpatrick-Baez (K-B) mirror system for focusing the beam both in vertical and horizontal directions at the final sample location. Total beamline will be 36m long. Optical design has been carried out involving various computer codes such as XOP2.1, SHADOWVUI, SPECTRA 8.0 etc. Head load calculations have been performed using ANSYS, a finite element analysis code. Using this code, temperature distribution, thermal deformation and slope error values for collimating mirror, grating monochromator and double crystal monochromator using several possible cooling arrangements have been calculated and depending on these parameters, best options for different components have been selected for the beamline. Experimental stations of this beamline consist of ultra-high vacuum compatible chambers in which various probes, analyzers, detectors and other facilities are housed. A toroidal electron energy analyzer will

  6. Using X-PEEM to study biomaterials: Protein and peptide adsorption to a polystyrene-poly(methyl methacrylate)-b-polyacrylic acid blend

    Energy Technology Data Exchange (ETDEWEB)

    Leung, Bonnie O. [Chemistry and Chemical Biology, BIMR, McMaster University, Hamilton, ON, Canada L8S 4M1 (Canada); Hitchcock, Adam P., E-mail: aph@mcmaster.ca [Chemistry and Chemical Biology, BIMR, McMaster University, Hamilton, ON, Canada L8S 4M1 (Canada); Cornelius, Rena M.; Brash, John L. [School of Biomedical Engineering, McMaster University, Hamilton, ON, Canada L8S 4M1 (Canada); Scholl, Andreas; Doran, Andrew [Advanced Light Source, Berkeley Lab, Berkeley, CA 94720 (United States)

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer We review applications of synchrotron X-PEEM to biomaterials. Black-Right-Pointing-Pointer We report characterization of a PS/PMMA-b-PAA blend surface by AFM and X-PEEM. Black-Right-Pointing-Pointer We report quantitative mapping of protein (HSA) and peptide adsorption on PS/PMMA-b-PAA. Black-Right-Pointing-Pointer We report how this adsorption changes with pH. -- Abstract: Recent synchrotron-based soft X-ray photoemission electron microscopy (X-PEEM) studies of protein and peptide interaction with phase segregated and patterned polymer surfaces in the context of optimization of candidate biomaterials are reviewed and a study of a new system is reported. X-PEEM and atomic force microscopy (AFM) were used to investigate the morphology of a phase-segregated thin film of a polystyrene/poly(methyl methacrylate)-b-polyacrylic acid (PS/PMMA-PAA) blend, and its interactions with negatively charged human serum albumin (HSA) and positively charged SUB-6 (a cationic antimicrobial peptide, RWWKIWVIRWWR-NH{sub 2}) at several pHs. At neutral pH, where the polymer surface is partially negatively charged, HSA and SUB-6 peptide showed contrasting adsorption behavior which is interpreted in terms of differences in their electrostatic interactions with the polymer surface.

  7. A new aberration-corrected, energy-filtered LEEM/PEEM instrument. I. Principles and design

    International Nuclear Information System (INIS)

    Tromp, R.M.; Hannon, J.B.; Ellis, A.W.; Wan, W.; Berghaus, A.; Schaff, O.

    2010-01-01

    We describe a new design for an aberration-corrected low energy electron microscope (LEEM) and photo electron emission microscope (PEEM), equipped with an in-line electron energy filter. The chromatic and spherical aberrations of the objective lens are corrected with an electrostatic electron mirror that provides independent control over the chromatic and spherical aberration coefficients C c and C 3 , as well as the mirror focal length, to match and correct the aberrations of the objective lens. For LEEM (PEEM) the theoretical resolution is calculated to be ∼1.5 nm (∼4 nm). Unlike previous designs, this instrument makes use of two magnetic prism arrays to guide the electron beam from the sample to the electron mirror, removing chromatic dispersion in front of the mirror by symmetry. The aberration correction optics was retrofitted to an uncorrected instrument with a base resolution of 4.1 nm in LEEM. Initial results in LEEM show an improvement in resolution to ∼2 nm.

  8. A new aberration-corrected, energy-filtered LEEM/PEEM instrument II. Operation and results

    International Nuclear Information System (INIS)

    Tromp, R.M.; Hannon, J.B.; Wan, W.; Berghaus, A.; Schaff, O.

    2013-01-01

    In Part I we described a new design for an aberration-corrected Low Energy Electron Microscope (LEEM) and Photo Electron Emission Microscope (PEEM) equipped with an in-line electron energy filter. The chromatic and spherical aberrations of the objective lens are corrected with an electrostatic electron mirror that provides independent control of the chromatic and spherical aberration coefficients C c and C 3 , as well as the mirror focal length. In this Part II we discuss details of microscope operation, how the microscope is set up in a systematic fashion, and we present typical results. - Highlights: ► The C c and C 3 aberrations of a LEEM/PEEM instrument are corrected with an electrostatic electron mirror. ► The mirror provides independent control over C c , C 3 and focal length in close agreement with theory. ► A detailed alignment procedure for the corrected microscope is given. ► Novel methods to measure C c and C 3 of the objective lens and the mirror are presented. ► We demonstrate a record spatial resolution of 2 nm

  9. Low energy electron microscopy imaging using Medipix2 detector

    International Nuclear Information System (INIS)

    Sikharulidze, I.; Gastel, R. van; Schramm, S.; Abrahams, J.P.; Poelsema, B.; Tromp, R.M.; Molen, S.J. van der

    2011-01-01

    Low Energy Electron Microscopy (LEEM) and Photo-Emission Electron Microscopy (PEEM) predominantly use a combination of microchannel plate (MCP), phosphor screen and optical camera to record images formed by 10-20 keV electrons. We have tested the performance of a LEEM/PEEM instrument with a Medipix2 hybrid pixel detector using an Ir(1 1 1) sample with graphene flakes grown on its surface. We find that Medipix2 offers a number of advantages over the MCP. The adjustable threshold settings allow Medipix2 to operate as a noiseless detector, offering an improved signal-to-noise ratio for the same amount of signal compared to the MCP. At the same magnification Medipix2 images exhibit superior resolution and can handle significantly higher electron current densities than an MCP, offering the prospect of substantially higher frame rates in LEEM imaging. These factors make Medipix2 an excellent candidate to become the detector of choice for LEEM/PEEM applications.

  10. Low energy electron microscopy imaging using Medipix2 detector

    Energy Technology Data Exchange (ETDEWEB)

    Sikharulidze, I., E-mail: irakli@chem.leidenuniv.nl [Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300RA Leiden (Netherlands); Gastel, R. van [MESA Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500AE Enschede (Netherlands); Schramm, S. [Kamerlingh Onnes Laboratory, Leiden University, P.O. Box 9504, 2300RA Leiden (Netherlands); Abrahams, J.P. [Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300RA Leiden (Netherlands); Poelsema, B. [MESA Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500AE Enschede (Netherlands); Tromp, R.M. [Kamerlingh Onnes Laboratory, Leiden University, P.O. Box 9504, 2300RA Leiden (Netherlands); IBM Research Division, T. J. Watson Research Center, P.O. Box 218, Yorktown Heights, NY 10598 (United States); Molen, S.J. van der [Kamerlingh Onnes Laboratory, Leiden University, P.O. Box 9504, 2300RA Leiden (Netherlands)

    2011-05-15

    Low Energy Electron Microscopy (LEEM) and Photo-Emission Electron Microscopy (PEEM) predominantly use a combination of microchannel plate (MCP), phosphor screen and optical camera to record images formed by 10-20 keV electrons. We have tested the performance of a LEEM/PEEM instrument with a Medipix2 hybrid pixel detector using an Ir(1 1 1) sample with graphene flakes grown on its surface. We find that Medipix2 offers a number of advantages over the MCP. The adjustable threshold settings allow Medipix2 to operate as a noiseless detector, offering an improved signal-to-noise ratio for the same amount of signal compared to the MCP. At the same magnification Medipix2 images exhibit superior resolution and can handle significantly higher electron current densities than an MCP, offering the prospect of substantially higher frame rates in LEEM imaging. These factors make Medipix2 an excellent candidate to become the detector of choice for LEEM/PEEM applications.

  11. Saturated virtual fluorescence emission difference microscopy based on detector array

    Science.gov (United States)

    Liu, Shaocong; Sun, Shiyi; Kuang, Cuifang; Ge, Baoliang; Wang, Wensheng; Liu, Xu

    2017-07-01

    Virtual fluorescence emission difference microscopy (vFED) has been proposed recently to enhance the lateral resolution of confocal microscopy with a detector array, implemented by scanning a doughnut-shaped pattern. Theoretically, the resolution can be enhanced by around 1.3-fold compared with that in confocal microscopy. For further improvement of the resolving ability of vFED, a novel method is presented utilizing fluorescence saturation for super-resolution imaging, which we called saturated virtual fluorescence emission difference microscopy (svFED). With a point detector array, matched solid and hollow point spread functions (PSF) can be obtained by photon reassignment, and the difference results between them can be used to boost the transverse resolution. Results show that the diffraction barrier can be surpassed by at least 34% compared with that in vFED and the resolution is around 2-fold higher than that in confocal microscopy.

  12. Experimental assessment of fluorescence microscopy signal enhancement by stimulated emission

    Science.gov (United States)

    Dake, Fumihiro; Yazawa, Hiroki

    2017-10-01

    The quantity of photons generated during fluorescence microscopy is principally determined by the quantum yield of the fluorescence dyes and the optical power of the excitation beam. However, even though low quantum yields can produce poor images, it is challenging to tune this parameter, while increasing the power of the excitation beam often results in photodamage. Here, we propose the use of stimulated emission (SE) as a means of enhancing both the signal intensity and signal-to-noise ratio during confocal fluorescence microscopy. This work experimentally confirmed that both these factors can be enhanced by SE radiation, through generating a greater number of photons than are associated with the standard fluorescence signal. We also propose the concept of stimulated emission enhancing fluorescence (SEEF) microscopy, which employs both the SE and fluorescence signals, and demonstrate that the intensity of an SEEF signal is greater than those of the individual SE and fluorescence signals.

  13. Design and analysis of beam separator magnets for third generation aberration compensated PEEMs

    International Nuclear Information System (INIS)

    Wu, Y.K.; Robin, D.S.; Forest, E.; Schlueter, R.; Anders, S.; Feng, J.; Padmore, H.; Wei, D.H.

    2004-01-01

    A state of the art X-ray photoemission electron microscope (PEEM2) is operational at the Advanced Light Source at a resolution of typically 50 nm for a range of chemical and magnetic surface studies. A new microscope, PEEM3, is under development with an aim of achieving a resolution of 5 nm and more than an order of magnitude increase in transmission at the nominal resolution of PEEM2. The resolution and flux improvement is realized by providing geometric and chromatic aberration compensations in the system using an electron mirror and a beam separator magnet. The nearly aberration-free design of the beam separator is critical to the performance of third generation PEEMs. In this paper, we present the optics design model, optimal operation parameters, analyses of aberration impact, as well as the mechanical alignment tolerance for PEEM3 separator prototypes. In particular, we emphasize the importance of a new semi-analytical approach to design complex charged particle optics using the truncated power series algebra. Because of its ability to compute high-order aberrations, this approach allows systematic and comprehensive analyses of any charged particle optics systems with analytical electric and magnetic fields

  14. Axial ion-electron emission microscopy of IC radiation hardness

    Science.gov (United States)

    Doyle, B. L.; Vizkelethy, G.; Walsh, D. S.; Swenson, D.

    2002-05-01

    A new system for performing radiation effects microscopy (REM) has been developed at Sandia National Laboratory in Albuquerque. This system combines two entirely new concepts in accelerator physics and nuclear microscopy. A radio frequency quadrupole (RFQ) linac is used to boost the energy of ions accelerated by a conventional Tandem Van de Graaff-Pelletron to velocities of 1.9 MeV/amu. The electronic stopping power for heavy ions is near a maximum at this velocity, and their range is ˜20 μm in Si. These ions therefore represent the most ionizing form of radiation in nature, and are nearly ideal for performing single event effects testing of integrated circuits. Unfortunately, the energy definition of the RFQ-boosted ions is rather poor (˜ a few %), which makes problematic the focussing of such ions to the submicron spots required for REM. To circumvent this problem, we have invented ion electron emission microscopy (IEEM). One can perform REM with the IEEM system without focussing or scanning the ion beam. This is because the position on the sample where each ion strikes is determined by projecting ion-induced secondary electrons at high magnification onto a single electron position sensitive detector. This position signal is then correlated with each REM event. The IEEM system is now mounted along the beam line in an axial geometry so that the ions pass right through the electron detector (which is annular), and all of the electrostatic lenses used for projection. The beam then strikes the sample at normal incidence which results in maximum ion penetration and removes a parallax problem experienced in an earlier system. Details of both the RFQ-booster and the new axial IEEM system are given together with some of the initial results of performing REM on Sandia-manufactured radiation hardened integrated circuits.

  15. Photoemission electron microscopy for the study of ferromagnetic and antiferromagnetic materials

    International Nuclear Information System (INIS)

    Anders, Simone; Scholl, Andreas; Nolting, Frithjof; Padmore, Howard A.; Luening, Jan; Stoehr, Joachim; Scheinfein, Michael

    2000-01-01

    Photoemission electron microscopy (PEEM) is a full field imaging technique where x-ray exited electrons are used to form an image of the sample surface as a function of the x-ray photon energy and polarization. Contrast in PEEM can be due to a number of mechanisms including topographical, work function, elemental, chemical, polarization, x-ray magnetic circular and linear dichroism contrast. This wide range of contrast mechanisms together with the surface sensitivity and high spatial resolution make PEEM a very useful tool for the study of magnetic materials. PEEM-II is a new microscope installed at the bending magnet beamline 7.3.1.1 of the Advanced Light Source. In the present paper we describe the design and features of PEEM-II, and show results of our recent studies. Using PEEM and its elemental specificity, it is possible to investigate the various layers in magnetic multilayer structures independently. The experiments described here include the investigation of the switching behavior of magnetic multilayer structures that are of interest for magnetic RAM applications. The study of antiferromagnetic surfaces and thin films are of great importance for devices based on the effect of exchange bias. To date, studies at high-spatial-resolution of exchange bias systems has been difficult because of the lack of appropriate investigation methods. Here we demonstrate how PEEM has been used to image antiferromagnetic structure on surfaces with high spatial resolution

  16. Laser terahertz emission microscopy with near-field probes

    DEFF Research Database (Denmark)

    Pedersen, Pernille Klarskov; Mittleman, Daniel M.

    2016-01-01

    Using an AFM, an optical near-field image at 800 nm of a dipole antenna for THz emission is measured, and by simultaneously collecting the emitted THz radiation, the laser light confined under the AFM probe gives a THz emission resolution of less than 50 nm.......Using an AFM, an optical near-field image at 800 nm of a dipole antenna for THz emission is measured, and by simultaneously collecting the emitted THz radiation, the laser light confined under the AFM probe gives a THz emission resolution of less than 50 nm....

  17. Hyperspectral stimulated emission depletion microscopy and methods of use thereof

    Science.gov (United States)

    Timlin, Jerilyn A; Aaron, Jesse S

    2014-04-01

    A hyperspectral stimulated emission depletion ("STED") microscope system for high-resolution imaging of samples labeled with multiple fluorophores (e.g., two to ten fluorophores). The hyperspectral STED microscope includes a light source, optical systems configured for generating an excitation light beam and a depletion light beam, optical systems configured for focusing the excitation and depletion light beams on a sample, and systems for collecting and processing data generated by interaction of the excitation and depletion light beams with the sample. Hyperspectral STED data may be analyzed using multivariate curve resolution analysis techniques to deconvolute emission from the multiple fluorophores. The hyperspectral STED microscope described herein can be used for multi-color, subdiffraction imaging of samples (e.g., materials and biological materials) and for analyzing a tissue by Forster Resonance Energy Transfer ("FRET").

  18. Solid-immersion fluorescence microscopy with increased emission and super resolution

    Energy Technology Data Exchange (ETDEWEB)

    Liau, Z. L.; Porter, J. M. [Lincoln Laboratory, Massachusetts Institute of Technology, Lexington, Massachusetts 02420 (United States); Liau, A. A.; Chen, J. J. [Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Salmon, W. C. [Whitehead Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Sheu, S. S. [Department of Medicine, Jefferson Medical College, Philadelphia, Pennsylvania 19107 (United States)

    2015-01-07

    We investigate solid-immersion fluorescence microscopy suitable for super-resolution nanotechnology and biological imaging, and have observed limit of resolution as small as 15 nm with microspheres, mitochondria, and chromatin fibers. We have further observed that fluorescence efficiency increases with excitation power density, implicating appreciable stimulated emission and increased resolution. We discuss potential advantages of the solid-immersion microscopy, including combined use with previously established super-resolution techniques for reaching deeper beyond the conventional diffraction limit.

  19. A theoretical analysis of ballistic electron emission microscopy: band structure effects and attenuation lengths

    International Nuclear Information System (INIS)

    Andres, P.L. de; Reuter, K.; Garcia-Vidal, F.J.; Flores, F.; Hohenester, U.; Kocevar, P.

    1998-01-01

    Using quantum mechanical approach, we compute the ballistic electron emission microscopy current distribution in reciprocal space to compare experimental and theoretical spectroscopic I(V) curves. In the elastic limit, this formalism is a 'parameter free' representation of the problem. At low voltages, low temperatures, and for thin metallic layers, the elastic approximation is enough to explain the experiments (ballistic conditions). At low temperatures, inelastic effects can be taken into account approximately by introducing an effective electron-electron lifetime as an imaginary part in the energy. Ensemble Monte Carlo calculations were also performed to obtain ballistic electron emission microscopy currents in good agreement with the previous approach. (author)

  20. Creating infinite contrast in fluorescence microscopy by using lanthanide centered emission

    DEFF Research Database (Denmark)

    R. Carro-Temboury, Miguel; Arppe, Riikka Matleena; Hempel, Casper

    2017-01-01

    The popularity of fluorescence microscopy arises from the inherent mode of action, where the fluorescence emission from probes is used to visualize selected features on a presumed dark background. However, the background is rarely truly dark, and image processing and analysis is needed to enhance...

  1. Microscopy

    Science.gov (United States)

    Patricia A. Moss; Les Groom

    2001-01-01

    Microscopy is the study and interpretation of images produced by a microscope. "Interpretation" is the keyword, because the microscope enables one to see structures that are too small or too close together to be resolved by the unaided eye. (The human eye cannot separate two points or lines that are closer together than 0.1 mm.) it is important to...

  2. Hartmann characterization of the PEEM-3 aberration-corrected X-ray photoemission electron microscope.

    Science.gov (United States)

    Scholl, A; Marcus, M A; Doran, A; Nasiatka, J R; Young, A T; MacDowell, A A; Streubel, R; Kent, N; Feng, J; Wan, W; Padmore, H A

    2018-05-01

    Aberration correction by an electron mirror dramatically improves the spatial resolution and transmission of photoemission electron microscopes. We will review the performance of the recently installed aberration corrector of the X-ray Photoemission Electron Microscope PEEM-3 and show a large improvement in the efficiency of the electron optics. Hartmann testing is introduced as a quantitative method to measure the geometrical aberrations of a cathode lens electron microscope. We find that aberration correction leads to an order of magnitude reduction of the spherical aberrations, suggesting that a spatial resolution of below 100 nm is possible at 100% transmission of the optics when using x-rays. We demonstrate this improved performance by imaging test patterns employing element and magnetic contrast. Published by Elsevier B.V.

  3. X-ray imaging and spectroscopy of individual cobalt nanoparticles using photoemission electron microscopy

    International Nuclear Information System (INIS)

    Fraile Rodriguez, A.; Nolting, F.; Bansmann, J.; Kleibert, A.; Heyderman, L.J.

    2007-01-01

    Photoemission electron microscopy (PEEM) was employed for X-ray imaging and absorption spectroscopy of individual cobalt nanoparticles as small as 8 nm grown using an arc ion cluster source. Using lithographic markers on the samples we were able to identify the same particles with PEEM and scanning electron microscopy. Significant variations in the shape of the X-ray absorption spectra between different cobalt particles were detected. Furthermore, our data suggest that distinctive spectral information about the individual particles, such as the quenching of oxide-related features and changes in the cobalt L 3 -edge intensity, cancel out and cannot be detected in the measurement over an ensemble of particles

  4. Three-dimensional super-resolution imaging for fluorescence emission difference microscopy

    Energy Technology Data Exchange (ETDEWEB)

    You, Shangting; Kuang, Cuifang, E-mail: cfkuang@zju.edu.cn; Li, Shuai; Liu, Xu; Ding, Zhihua [State key laboratory of modern optical instrumentations, Zhejiang University, Hangzhou 310027 (China)

    2015-08-15

    We propose a method theoretically to break the diffraction limit and to improve the resolution in all three dimensions for fluorescence emission difference microscopy. We produce two kinds of hollow focal spot by phase modulation. By incoherent superposition, these two kinds of focal spot yield a 3D hollow focal spot. The optimal proportion of these two kinds of spot is given in the paper. By employing 3D hollow focal spot, super-resolution image can be yielded by means of fluorescence emission difference microscopy, with resolution enhanced both laterally and axially. According to computation result, size of point spread function of three-dimensional super-resolution imaging is reduced by about 40% in all three spatial directions with respect to confocal imaging.

  5. Stimulated emission depletion microscopy resolves individual nitrogen vacancy centers in diamond nanocrystals.

    OpenAIRE

    Arroyo Camejo, S.; Adam, M.; Besbes, M.; Hugonin, J.; Jaques, V.; Greffet, J.; Roch, J.; Hell, S.; Treussart, F.

    2013-01-01

    Nitrogen-vacancy (NV) color centers in nanodiamonds are highly promising for bioimaging and sensing. However, resolving individual NV centers within nanodiamond particles and the controlled addressing and readout of their spin state has remained a major challenge. Spatially stochastic super-resolution techniques cannot provide this capability in principle, whereas coordinate-controlled super-resolution imaging methods, like stimulated emission depletion (STED) microscopy, have been predicted ...

  6. An Energy-Stabilized Varied-Line-Space-Monochromator Undulator Beam Line for PEEM Illumination and Magnetic Circular Dichroism

    International Nuclear Information System (INIS)

    Warwick, Tony; McKinney, Wayne; Domning, Ed; Doran, Andrew; Padmore, Howard

    2006-01-01

    A new undulator beam line has been built and commissioned at the Advanced Light Source for illumination of the PEEM3 microscope. The beam line delivers high flux beams over an energy range from C1s through the transition metals to include the M edges of the magnetic rare earth elements. We present details of the optical design, and data on the performance of the zero-order tracking of the photon energy

  7. SISGR: Room Temperature Single-Molecule Detection and Imaging by Stimulated Emission Microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Xiaoliang Sunney [Harvard Univ., Cambridge, MA (United States). Dept. of Chemistry and Chemical Biology

    2017-03-13

    Single-molecule spectroscopy has made considerable impact on many disciplines including chemistry, physics, and biology. To date, most single-molecule spectroscopy work is accomplished by detecting fluorescence. On the other hand, many naturally occurring chromophores, such as retinal, hemoglobin and cytochromes, do not have detectable fluorescence. There is an emerging need for single-molecule spectroscopy techniques that do not require fluorescence. In the last proposal period, we have successfully demonstrated stimulated emission microscopy, single molecule absorption, and stimulated Raman microscopy based on a high-frequency modulation transfer technique. These first-of-a- kind new spectroscopy/microscopy methods tremendously improved our ability to observe molecules that fluorescence weakly, even to the limit of single molecule detection for absorption measurement. All of these methods employ two laser beams: one (pump beam) excites a single molecule to a real or virtual excited state, and the other (probe beam) monitors the absorption/emission property of the single. We extract the intensity change of the probe beam with high sensitivity by implementing a high-frequency phase-sensitive detection scheme, which offers orders of magnitude improvement in detection sensitivity over direct absorption/emission measurement. However, single molecule detection based on fluorescence or absorption is fundamentally limited due to their broad spectral response. It is important to explore other avenues in single molecule detection and imaging which provides higher molecular specificity for studying a wide variety of heterogeneous chemical and biological systems. This proposal aimed to achieve single-molecule detection sensitivity with near resonance stimulated Raman scattering (SRS) microscopy. SRS microscopy was developed in our lab as a powerful technique for imaging heterogeneous samples based on their intrinsic vibrational contrasts, which provides much higher molecular

  8. Ga droplet morphology on GaAs(001) studied by Lloyd's mirror photoemission electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Tang, W X; Jesson, D E; Pavlov, K M; Morgan, M J [School of Physics, Monash University, Victoria 3800 (Australia); Usher, B F [Department of Electronic Engineering, La Trobe University, Victoria 3086 (Australia)

    2009-08-05

    We apply Lloyd's mirror photoemission electron microscopy (PEEM) to study the surface shape of Ga droplets on GaAs(001). An unusual rectangular-based droplet shape is identified and the contact angle is determined in situ. It is shown that quenching does not appreciably affect droplet shape and ex situ measurements of the contact angle by atomic force microscopy are in good agreement with Lloyd's mirror PEEM. Extension of Lloyd's mirror technique to reconstruct general three-dimensional (3D) surface shapes and the potential use of synchrotron radiation to improve vertical resolution is discussed.

  9. X-ray photoemission electron microscopy for the study of semiconductor materials

    International Nuclear Information System (INIS)

    Anders, Simone; Stammler, Thomas; Padmore, Howard A.; Terminello, Louis J.; Jankowski, Alan F.; Stoehr, Joachim; Diaz, Javier; Cossy-Favre, Aline; Singh, Sangeet

    1998-01-01

    Photoemission Electron Microscopy using X-rays (X-PEEM) is a novel combination of two established materials analysis techniques--PEEM using UV light, and Near Edge X-ray Absorption Fine Structure (NEXAFS) spectroscopy. This combination allows the study of elemental composition and bonding structure of the sample by NEXAFS spectroscopy with a high spatial resolution given by the microscope. A simple, two lens, 10 kV operation voltage PEEM has been used at the Stanford Synchrotron Radiation Laboratory and at the Advanced Light Source (ALS) in Berkeley to study various problems including materials of interest for the semiconductor industry. In the present paper we give a short overview over the method and the instrument which was used, and describe in detail a number of applications. These applications include the study of the different phases of titanium disilicide, various phases of boron nitride, and the analysis of small particles. A brief outlook is given on possible new fields of application of the PEEM technique, and the development of new PEEM instruments

  10. Microstructure-Sensitive Investigation of Fracture Using Acoustic Emission Coupled With Electron Microscopy

    Science.gov (United States)

    Wisner, Brian; Cabal, Mike; Vanniamparambiland, Prashanth A.; Leser, William; Hochhalter, Jacob; Kontsos, Antonios

    2015-01-01

    A novel technique using Scanning Electron Microscopy (SEM) in conjunction with Acoustic Emission (AE) monitoring is proposed to investigate microstructure-sensitive fatigue and fracture of metals. The coupling between quasi in situ microscopy with actual in situ nondestructive evaluation falls into the ICME framework and the idea of quantitative data-driven characterization of material behavior. To validate the use of AE monitoring inside the SEM chamber, Aluminum 2024-B sharp notch specimen were tested both inside and outside the microscope using a small scale mechanical testing device. Subsequently, the same type of specimen was tested inside the SEM chamber. Load data were correlated with both AE information and observations of microcracks around grain boundaries as well as secondary cracks, voids, and slip bands. The preliminary results are in excellent agreement with similar findings at the mesoscale. Extensions of the application of this novel technique are discussed.

  11. Creating infinite contrast in fluorescence microscopy by using lanthanide centered emission

    DEFF Research Database (Denmark)

    R. Carro-Temboury, Miguel; Arppe, Riikka Matleena; Hempel, Casper

    2017-01-01

    The popularity of fluorescence microscopy arises from the inherent mode of action, where the fluorescence emission from probes is used to visualize selected features on a presumed dark background. However, the background is rarely truly dark, and image processing and analysis is needed to enhance...... the fluorescent signal that is ascribed to the selected feature. The image acquisition is facilitated by using considerable illumination, bright probes at a relatively high concentration in order to make the fluorescent signal significantly more intense than the background signal. Here, we present two methods......, while method II resolves the fluorescent signal by subtracting a background calculated via the gradient. Both methods improve signal-to-background ratio significantly and we suggest that spectral imaging of lanthanide-centered emission can be used as a tool to obtain absolute contrast in bioimaging....

  12. Parallel excitation-emission multiplexed fluorescence lifetime confocal microscopy for live cell imaging.

    Science.gov (United States)

    Zhao, Ming; Li, Yu; Peng, Leilei

    2014-05-05

    We present a novel excitation-emission multiplexed fluorescence lifetime microscopy (FLIM) method that surpasses current FLIM techniques in multiplexing capability. The method employs Fourier multiplexing to simultaneously acquire confocal fluorescence lifetime images of multiple excitation wavelength and emission color combinations at 44,000 pixels/sec. The system is built with low-cost CW laser sources and standard PMTs with versatile spectral configuration, which can be implemented as an add-on to commercial confocal microscopes. The Fourier lifetime confocal method allows fast multiplexed FLIM imaging, which makes it possible to monitor multiple biological processes in live cells. The low cost and compatibility with commercial systems could also make multiplexed FLIM more accessible to biological research community.

  13. Microscopy of thin polymer blend films of polystyrene and poly-n-butyl-methacrylate

    International Nuclear Information System (INIS)

    Schmitt, T.; Guttmann, P.; Schmahl, G.; Schmidt, O.; Schoenhense, G.; Mueller-Buschbaum, P.; Stamm, M.

    2000-01-01

    The structure of thin polymer blend films of polystyrene (PS) and poly-n-butyl-methacrylate (PnBMA) was examined with Transmission X-ray Microscopy (TXM), Scanning Force Microscopy (SFM), X-Ray Photoemission Electron Microscopy (X-PEEM) and Optical Microscopy (OM). Thin films were prepared by spin casting of a toluene solution of the polymer mixture onto silicon wafers retaining the native oxide. Depending on blend composition and annealing conditions smooth films with and without holes or films with well pronounced surface features (ribbons or islands) were produced. By TXM measurements a high lateral resolution study of the as cast and the annealed polymer blend samples was performed. The contrast in TXM is due to different absorption of x-radiation of the used polymers and due to variation in thickness. With X-PEEM the lateral distribution of the two polymers near the surface was mapped by employing the characteristic Near Edge X-ray Absorption Fine Structure (NEXAFS) spectra of the polymers. The TXM technique is a microscopic method integrating over the total film thickness, whereas the X-PEEM technique is a highly surface sensitive method. TXM and X-PEEM are therefore complementary methods which provide important information on the structure of thin polymer blend films additional to the standard techniques SFM and OM

  14. Catadioptric aberration correction in cathode lens microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Tromp, R.M. [IBM T.J. Watson Research Center, PO Box 218, Yorktown Heights, NY 10598 (United States); Kamerlingh Onnes Laboratory, Leiden Institute of Physics, Niels Bohrweg 2, 2333 CA Leiden (Netherlands)

    2015-04-15

    In this paper I briefly review the use of electrostatic electron mirrors to correct the aberrations of the cathode lens objective lens in low energy electron microscope (LEEM) and photo electron emission microscope (PEEM) instruments. These catadioptric systems, combining electrostatic lens elements with a reflecting mirror, offer a compact solution, allowing simultaneous and independent correction of both spherical and chromatic aberrations. A comparison with catadioptric systems in light optics informs our understanding of the working principles behind aberration correction with electron mirrors, and may point the way to further improvements in the latter. With additional developments in detector technology, 1 nm spatial resolution in LEEM appears to be within reach. - Highlights: • The use of electron mirrors for aberration correction in LEEM/PEEM is reviewed. • A comparison is made with similar systems in light optics. • Conditions for 1 nm spatial resolution are discussed.

  15. Schottky barrier height measurements of Cu/Si(001), Ag/Si(001), and Au/Si(001) interfaces utilizing ballistic electron emission microscopy and ballistic hole emission microscopy

    International Nuclear Information System (INIS)

    Balsano, Robert; Matsubayashi, Akitomo; LaBella, Vincent P.

    2013-01-01

    The Schottky barrier heights of both n and p doped Cu/Si(001), Ag/Si(001), and Au/Si(001) diodes were measured using ballistic electron emission microscopy and ballistic hole emission microscopy (BHEM), respectively. Measurements using both forward and reverse ballistic electron emission microscopy (BEEM) and (BHEM) injection conditions were performed. The Schottky barrier heights were found by fitting to a linearization of the power law form of the Bell-Kaiser BEEM model. The sum of the n-type and p-type barrier heights are in good agreement with the band gap of silicon and independent of the metal utilized. The Schottky barrier heights are found to be below the region of best fit for the power law form of the BK model, demonstrating its region of validity

  16. Compact three-dimensional super-resolution system based on fluorescence emission difference microscopy

    Science.gov (United States)

    Zhu, Dazhao; Chen, Youhua; Fang, Yue; Hussain, Anwar; Kuang, Cuifang; Zhou, Xiaoxu; Xu, Yingke; Liu, Xu

    2017-12-01

    A compact microscope system for three-dimensional (3-D) super-resolution imaging is presented. The super-resolution capability of the system is based on a size-reduced effective 3-D point spread function generated through the fluorescence emission difference (FED) method. The appropriate polarization direction distribution and manipulation allows the panel active area of the spatial light modulator to be fully utilized. This allows simultaneous modulation of the incident light by two kinds of phase masks to be performed with a single spatial light modulator in order to generate a 3-D negative spot. The system is more compact than standard 3-D FED systems while maintaining all the advantages of 3-D FED microscopy. The experimental results demonstrated the improvement in 3-D resolution by nearly 1.7 times and 1.6 times compared to the classic confocal resolution in the lateral and axial directions, respectively.

  17. Ballistic electron emissions microscopy (BEEM) of ferromagnet-semiconductor interfaces; Ballistische Elektronen Emissions Mikroskopie (BEEM) an Ferromagnet-Halbleitergrenzflaechen

    Energy Technology Data Exchange (ETDEWEB)

    Obernhuber, S.

    2007-04-15

    For current research on spin-transistors it is important to know the characteristics of ferromagnet semiconductor interfaces. The ballistic electron emission microscopy (BEEM) is a method to investigate such a buried interface with nanometer resolution. In this work several ferromagnet/GaAs(110) interfaces have been analysed concerning their homogeneity and mean local Schottky-barrier heights (SBH) have been determined. In Addition, the resulting integral SBH was calculated from the distribution of the local SBHs and compared with the SBH determined from voltage/current characteristics. The areas with a low SBH dominate the current conduction across the interface. Additional BEEM measurements on (AlGaAs/GaAs) heterostructures have been performed. This heterostructures consist of 50 nm AlGaAs/GaAs layers. The results of the BEEM measurements indicate, that the GaAs QWs are defined by AlGaAs barriers. The transition from AlGaAs to GaAs is done within 10 nm. (orig.)

  18. Photoemission electron microscopy of localized surface plasmons in silver nanostructures at telecommunication wavelengths

    Energy Technology Data Exchange (ETDEWEB)

    Mårsell, Erik; Larsen, Esben W.; Arnold, Cord L.; Xu, Hongxing; Mauritsson, Johan; Mikkelsen, Anders, E-mail: anders.mikkelsen@sljus.lu.se [Department of Physics, Lund University, P.O. Box 118, 22 100 Lund (Sweden)

    2015-02-28

    We image the field enhancement at Ag nanostructures using femtosecond laser pulses with a center wavelength of 1.55 μm. Imaging is based on non-linear photoemission observed in a photoemission electron microscope (PEEM). The images are directly compared to ultra violet PEEM and scanning electron microscopy (SEM) imaging of the same structures. Further, we have carried out atomic scale scanning tunneling microscopy on the same type of Ag nanostructures and on the Au substrate. Measuring the photoelectron spectrum from individual Ag particles shows a larger contribution from higher order photoemission processes above the work function threshold than would be predicted by a fully perturbative model, consistent with recent results using shorter wavelengths. Investigating a wide selection of both Ag nanoparticles and nanowires, field enhancement is observed from 30% of the Ag nanoparticles and from none of the nanowires. No laser-induced damage is observed of the nanostructures neither during the PEEM experiments nor in subsequent SEM analysis. By direct comparison of SEM and PEEM images of the same nanostructures, we can conclude that the field enhancement is independent of the average nanostructure size and shape. Instead, we propose that the variations in observed field enhancement could originate from the wedge interface between the substrate and particles electrically connected to the substrate.

  19. Stimulated-emission pumping enabling sub-diffraction-limited spatial resolution in coherent anti-Stokes Raman scattering microscopy

    NARCIS (Netherlands)

    Cleff, C.; Gross, P.; Fallnich, C.; Offerhaus, Herman L.; Herek, Jennifer Lynn; Kruse, K.; Beeker, W.P.; Lee, Christopher James; Boller, Klaus J.

    2013-01-01

    We present a theoretical investigation of stimulated emission pumping to achieve sub-diffraction-limited spatial resolution in coherent anti-Stokes Raman scattering (CARS) microscopy. A pair of control light fields is used to prepopulate the Raman state involved in the CARS process prior to the CARS

  20. Multi-technique application of a double reflection electron emission microscope

    International Nuclear Information System (INIS)

    Jian-liang, J.; Bao-gui, S.; Guo-jun, Z

    2002-01-01

    Full text: In this paper the results acquired with the most recently developed double reflection electron emission microscope applied in different imaging modes are presented. The novel illumination system is based on a (100)-oriented single crystalline W wire electron microreflector and an electron gun placed in the back focal plane of the immersion objective. After being elastically reflected from the W tip surface, the primary electrons of energy ranging from 1 to 6 keV are decelerated to the desired impact energy in the range 0 to 200 eV for mirror electron microscopy (MEM), low energy electron emission microscopy (LEEM) and low energy electron diffraction (LEED) modes or to 5 keV for the secondary electron imaging mode. Photoelectron emission microscopy (PEEM), MEM, LEEM, secondary images of Pd/Si(111) and a set of selected area LEED patterns of the W(100) surface taken at energies ranging from 5 to 40 eV are presented for the first time. Copyright (2002) Australian Society for Electron Microscopy Inc

  1. Ballistic Electron Emission Microscopy/Spectroscopy on Au/Titanylphthalocyanine/GaAs Heterostructures

    International Nuclear Information System (INIS)

    Oezcan, S; Roch, T; Strasser, G; Smoliner, J; Franke, R; Fritz, T

    2007-01-01

    In this article Au/titanylphthalocyanine/GaAs diodes incorporating ultra smooth thin films of the archetypal organic semiconductor titanylphthalocyanine (TiOPc) were investigated by Ballistic Electron Emission Microscopy/Spectroscopy (BEEM/S). Analyzing the BEEM spectra, we find that the TiOPc increases the BEEM threshold voltage compared to reference Au/GaAs diodes. From BEEM images taken we conclude that our molecular beam epitaxial (MBE) grown samples show very homogeneous transmission, compare to wet chemically manufactured organic films. The barrier height measured on the Au- TiOPc-GaAs is V b ∼ 1.2eV, which is in good agreement with the data found in [T. Nishi, K. Tanai, Y. Cuchi, M. R. Willis, and K. Seki Chem. Phys. Lett., vol. 414, pp. 479-482, 2005.]. The results indicate that TiOPc functions as a p-type semiconductor, which is plausible since the measurements were carried out in air [K. Walzer, T. Toccoli, A. Pallaori, R. Verucchi, T. Fritz, K. Leo, A. Boschetti, and S. Iannotte Surf. Scie., vol. 573, pp. 346-358, 2004

  2. Stimulated emission depletion microscopy resolves individual nitrogen vacancy centers in diamond nanocrystals.

    Science.gov (United States)

    Arroyo-Camejo, Silvia; Adam, Marie-Pierre; Besbes, Mondher; Hugonin, Jean-Paul; Jacques, Vincent; Greffet, Jean-Jacques; Roch, Jean-François; Hell, Stefan W; Treussart, François

    2013-12-23

    Nitrogen-vacancy (NV) color centers in nanodiamonds are highly promising for bioimaging and sensing. However, resolving individual NV centers within nanodiamond particles and the controlled addressing and readout of their spin state has remained a major challenge. Spatially stochastic super-resolution techniques cannot provide this capability in principle, whereas coordinate-controlled super-resolution imaging methods, like stimulated emission depletion (STED) microscopy, have been predicted to fail in nanodiamonds. Here we show that, contrary to these predictions, STED can resolve single NV centers in 40-250 nm sized nanodiamonds with a resolution of ≈10 nm. Even multiple adjacent NVs located in single nanodiamonds can be imaged individually down to relative distances of ≈15 nm. Far-field optical super-resolution of NVs inside nanodiamonds is highly relevant for bioimaging applications of these fluorescent nanolabels. The targeted addressing and readout of individual NV(-) spins inside nanodiamonds by STED should also be of high significance for quantum sensing and information applications.

  3. Method to characterize inorganic particulates in lung tissue biopsies using field emission scanning electron microscopy

    Science.gov (United States)

    Lowers, Heather; Breit, George N.; Strand, Matthew; Pillers, Renee M.; Meeker, Gregory P.; Todorov, Todor I.; Plumlee, Geoffrey S.; Wolf, Ruth E.; Robinson, Maura; Parr, Jane; Miller, Robert J.; Groshong, Steve; Green, Francis; Rose, Cecile

    2018-01-01

    Humans accumulate large numbers of inorganic particles in their lungs over a lifetime. Whether this causes or contributes to debilitating disease over a normal lifespan depends on the type and concentration of the particles. We developed and tested a protocol for in situ characterization of the types and distribution of inorganic particles in biopsied lung tissue from three human groups using field emission scanning electron microscopy (FE-SEM) combined with energy dispersive spectroscopy (EDS). Many distinct particle types were recognized among the 13 000 particles analyzed. Silica, feldspars, clays, titanium dioxides, iron oxides and phosphates were the most common constituents in all samples. Particles were classified into three general groups: endogenous, which form naturally in the body; exogenic particles, natural earth materials; and anthropogenic particles, attributed to industrial sources. These in situ results were compared with those using conventional sodium hypochlorite tissue digestion and particle filtration. With the exception of clays and phosphates, the relative abundances of most common particle types were similar in both approaches. Nonetheless, the digestion/filtration method was determined to alter the texture and relative abundances of some particle types. SEM/EDS analysis of digestion filters could be automated in contrast to the more time intensive in situ analyses.

  4. Some studies of lead and iron adsorption on the W(100) surface by field emission microscopy

    International Nuclear Information System (INIS)

    Jones, J.P.; Roberts, E.W.

    1978-01-01

    The behaviour of lead and iron adsorbed on the W(100) surface has been studied by probe hole field emission microscopy, field desorption, and by measurement of the total energy distribution (TED) of field-emitted electrons. Lead adsorbed at 300 K which reduces the work function of W(100) can be completely removed at 78 K by field desorption below 3.2 V A -1 and the resulting surface has both the work function and TED, which are characteristic of the clean plane. Condensation at 800 K followed by field desorption, results in a plane surface of work function 4.17 eV and an altered TED. This effect is attributed to the microfacetting, which is observed by LEED. The Swanson peak in the W(100) TED which is removed by submonolayer amounts of lead re-emerges at monolayer coverage when lead adopts the (1 X 1) structure. Such behaviour is consistent with the model proposed by Kar and Soven. A spectral peak observed when lead is adsorbed on the reconstructed W(100) surface is thought to derive for the atomic 1 D state. Adsorption of iron on a W(100) surface reduces phi considerably due to dipole formation and efficiently quenches the Swanson peak. (Auth.)

  5. An adjustable electron achromat for cathode lens microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Tromp, R.M., E-mail: rtromp@us.ibm.com [IBM T.J. Watson Research Center, 1101 Kitchawan Road, Yorktown Heights, NY 10598 (United States); Leiden Institute of Physics, Kamerlingh Onnes Laboratory, Niels Bohrweg 2, 2333 CA Leiden (Netherlands)

    2015-12-15

    Chromatic aberration correction in light optics began with the invention of a two-color-corrected achromatic crown/flint lens doublet by Chester Moore Hall in 1730. Such color correction is necessary because any single glass shows dispersion (i.e. its index of refraction changes with wavelength), which can be counteracted by combining different glasses with different dispersions. In cathode lens microscopes (such as Photo Electron Emission MicroscopyPEEM) we encounter a similar situation, where the chromatic aberration coefficient of the cathode lens shows strong dispersion, i.e. depends (non-linearly) on the energy with which the electrons leave the sample. Here I show how a cathode lens in combination with an electron mirror can be configured as an adjustable electron achromat. The lens/mirror combination can be corrected at two electron energies by balancing the settings of the electron mirror against the settings of the cathode lens. The achromat can be adjusted to deliver optimum performance, depending on the requirements of a specific experiment. Going beyond the achromat, an apochromat would improve resolution and transmission by a very significant margin. I discuss the requirements and outlook for such a system, which for now remains a wish waiting for fulfilment. - Highlights: • The properties of cathode objective lens plus electron mirror are discussed. • In analogy with light-optical achromats, cathode lens plus mirror can be configured as an electron achromat. • Unlike light optics, the electron achromat can be adjusted to best fulfill experimental requirements.

  6. Scattering theory of ballistic-electron-emission microscopy at nonepitaxial interfaces

    International Nuclear Information System (INIS)

    Smith, D. L.; Kozhevnikov, M.; Lee, E. Y.; Narayanamurti, V.

    2000-01-01

    We present an interface scattering model to describe ballistic-electron-emission microscopy (BEEM) at nonepitaxial metal/semiconductor interfaces. The model starts with a Hamiltonian consisting of the sum of two terms: one term, H 0 , describes an ideal interface for which the interface parallel component of wave vector is a good quantum number, and the second term, δH, describes interfacial scattering centers. The eigenstates of H 0 consist of an incident and a reflected part in the metal and a transmitted part in the semiconductor. The three components of each eigenstate have the same interface parallel wave vector. Because tunneling preferentially weights forward-directed states, the interface parallel component of wave vector is small for the H 0 eigenstates that are initially populated with high probability in BEEM. δH scatters electrons between the eigenstates of H 0 . The scattering conserves energy, but not the interface parallel wave vector. In the final state of the scattering process, states with a large interface parallel wave vector can be occupied with reasonable probability. If scattering is weak, so that the parallel wave vector is nearly conserved, the calculated collector current into conduction-band valleys with zero parallel wave vector at the minimum, such as the Γ valley for GaAs(100), is much larger than the calculated collector current into conduction-band valleys with a large parallel wave vector at the minimum, such as the L valleys for GaAs(100). However, if scattering is strong, the injected electron flux distribution is redistributed and valleys with zero interface transverse wave vector at their energy minimum are not preferentially weighted. Instead, the weighting varies as the density of final states for the scattering process so that, for example, the calculated L-channel collector current is much larger than the calculated Γ-channel collector current for GaAs(100). Interfacial scattering reduces the overall magnitude of the

  7. Proton induced X-ray emission and electron microscopy analysis of induced mutants of sorghum

    CSIR Research Space (South Africa)

    Mbambo, Z

    2014-01-01

    Full Text Available of elements in preferential accumulation tissues and entire changes in cellular localization. Transmission and scanning electron microscopy of the mutants resolved changes in size, shape, ultra-structure and packed cell volumes of protein- and starch bodies...

  8. Surface and electron emission properties of hydrogen-free diamond-like carbon films investigated by atomic force microscopy

    International Nuclear Information System (INIS)

    Liu Dongping; Zhang, Sam; Ong, S.-E.; Benstetter, Guenther; Du Hejun

    2006-01-01

    In this study, we have deposited hydrogen-free diamond-like carbon (DLC) films by using DC magnetron sputtering of graphite target at various r.f. bias voltages. Surface and nanoscale emission properties of these DLC films have been investigated using a combination of atomic force microscopy (AFM)-based nanowear tests and conducting-AFM, by simultaneously measuring the topography and the conductivity of the samples. Nanowear tests show that these DLC films are covered with the thin (1.5-2.0 nm) graphite-like layers at surfaces. Compared to the film bulk structure, the graphite-like surface layers are more conductive. The graphite-like surface layers significantly influence the electron emission properties of these films. Low-energy carbon species can be responsible for the formation of graphite-like surface layers. Nanoscale electron emission measurements have revealed the inhomogeneous emission nature of these films. The low-field emission from these films can be attributed to the existence of sp 2 -configured nanoclusters inside the films

  9. A study of internal oxidation in carburized steels by glow discharge optical emission spectroscopy and scanning electron microscopy

    CERN Document Server

    An, X; Rainforth, W M; Chen, L

    2003-01-01

    The internal oxidation of Cr-Mn carburizing steel was studied. Internal oxidation was induced using a commercial carburizing process. Sputter erosion coupled with glow discharge optical emission spectroscopy (GDOES) was used to determine the depth profile elemental distribution within the internal oxidation layer (<10 mu m). In addition, scanning electron microscopy (SEM) equipped with energy dispersive spectrometer (EDS) studies were carried out on selected sputter eroded surfaces. Oxide type was identified primarily by transmission electron microscopy (TEM). The carburized surface was found to consist of a continuous oxide layer, followed by a complex internal oxidation layer, where Cr and Mn oxides were found to populate grain boundaries in a globular form in the near surface region. At greater depths (5-10 mu m), Si oxides formed as a grain boundary network. The internal oxides (mainly complex oxides) grew quickly during the initial stages of the carburizing process (2 h, 800 deg. C+3 h, 930 deg. C). G...

  10. Stimulated Emission Pumping Enablling Sub-Diffraction-Limited Spatial Resolution in CARS Microscopy

    NARCIS (Netherlands)

    Cleff, C.; Gross, P.; Fallnich, C.; Offerhaus, Herman L.; Herek, Jennifer Lynn; Kruse, K.; Beeker, W.P; Beeker, W.P.; Lee, Christopher James; Boller, Klaus J.; Dobner, S.

    2012-01-01

    Suppression of CARS signal generation is demonstrated by equalization of the ground and Raman states via a control state in a theoretical investigation. Using donut-shaped control light fields for population transfer results in sub-diffraction-limited spatial resolution CARS microscopy.

  11. Reliability Study of Mechatronic Power Components Using Spectral Photon Emission Microscopy

    Directory of Open Access Journals (Sweden)

    N. Moultif

    2016-11-01

    Full Text Available In this paper, we present one of the most important failure analysis tools that permits the localizing and the identification of the failure mechanisms. It is a new spectral photon emission system, enabling to localize the failure, and quickly get the photon emission spectra that characterize the failure with high resolution. A diffraction grating is used as a spectrometer in the system. Application results on mechatronic power devices such as HEMT AlGaN/GAN and SiC MOSFETs are reported.

  12. Spectrally resolved confocal microscopy using lanthanide centred near-IR emission

    DEFF Research Database (Denmark)

    Liao, Zhiyu; Tropiano, Manuel; Mantulnikovs, Konstantins

    2015-01-01

    The narrow, near infrared (NIR) emission from lanthanide ions has attracted great interest, particularly with regard to developing tools for bioimaging, where the long lifetimes of lanthanide excited states can be exploited to address problems arising from autofluorescence and sample transparency...

  13. Field emission scanning electron microscopy (FE-SEM) as an approach for nanoparticle detection inside cells

    Czech Academy of Sciences Publication Activity Database

    Havrdová, M.; Poláková, K.; Skopalík, J.; Vůjtek, M.; Mokdad, A.; Homolková, M.; Tuček, J.; Nebesářová, Jana; Zbořil, R.

    2014-01-01

    Roč. 67, DEC 2014 (2014), s. 149-154 ISSN 0968-4328 Institutional support: RVO:60077344 Keywords : Field emission scanning electronmicroscopy (FE-SEM) * Stem cells * Iron oxide nanoparticles * Cellular morphology * Endosomes * Cell uptake Subject RIV: FD - Oncology ; Hematology Impact factor: 1.988, year: 2014

  14. Relative work function of clean molybdenum single-crystal planes determined by field emission microscopy

    International Nuclear Information System (INIS)

    Bergeret, G.; Abon, M.; Tardy, B.; Teichner, S.J.

    1974-01-01

    A probe-hole field emission microscope was used to determine the work function of clean molybdenum single crystal planes relative to the average work function of the field emitter, assumed to be 4.20 eV. Results are compared with other available data

  15. The future of the SIRAD SEE facility Ion-Electron Emission Microscopy

    CERN Document Server

    Wyss, J; Kaminski, A; Magalini, A; Nigro, M; Pantano, D; Sedhykh, S

    2002-01-01

    The SIRAD facility is dedicated to radiation damage studies on semiconductor detectors, electronic devices and systems, using proton and ion beams delivered by a 15 MV tandem accelerator. It is routinely used by groups involved in detector development for elementary particle physics, electronic device physics and space applications. In particular, Single Event Effect studies are very important to the latter two activities. Presently, the facility can only characterize the global sensitivity of a device or system to single ion impacts. To map out the sensitivity of a device with micrometric resolution, following an idea developed at SANDIA, we will implement an Ion-Electron Emission Microscope (IEEM) to reconstruct the X,Y and time coordinates of an impacting energetic ion by imaging the secondary electrons emitted by the sample using a standard emission electron microscope and position sensitive detector system. After describing typical Single Event Effect activities at SIRAD we will discuss the basic princip...

  16. Valence change detection in memristive oxide based heterostructure cells by hard X-ray photoelectron emission spectroscopy

    Science.gov (United States)

    Kindsmüller, A.; Schmitz, C.; Wiemann, C.; Skaja, K.; Wouters, D. J.; Waser, R.; Schneider, C. M.; Dittmann, R.

    2018-04-01

    The switching mechanism of valence change resistive memory devices is widely accepted to be an ionic movement of oxygen vacancies resulting in a valence change of the metal cations. However, direct experimental proofs of valence changes in memristive devices are scarce. In this work, we have employed hard X-ray photoelectron emission microscopy (PEEM) to probe local valence changes in Pt/ZrOx/Ta memristive devices. The use of hard X-ray radiation increases the information depth, thus providing chemical information from buried layers. By extracting X-ray photoelectron spectra from different locations in the PEEM images, we show that zirconia in the active device area is reduced compared to a neighbouring region, confirming the valence change in the ZrOx film during electroforming. Furthermore, we succeeded in measuring the Ta 4f spectrum for two different resistance states on the same device. In both states, as well as outside the device region, the Ta electrode is composed of different suboxides without any metallic contribution, hinting to the formation of TaOx during the deposition of the Ta thin film. We observed a reduction of the Ta oxidation state in the low resistance state with respect to the high resistive state. This observation is contradictory to the established model, as the internal redistribution of oxygen between ZrOx and the Ta electrode during switching would lead to an oxidation of the Ta layer in the low resistance state. Instead, we have to conclude that the Ta electrode takes an active part in the switching process in our devices and that oxygen is released and reincorporated in the ZrOx/TaOx bilayer during switching. This is confirmed by the degradation of the high resistance state during endurance measurements under vacuum.

  17. X-ray photoelectron emission spectromicroscopic analysis of arborescent lycopsid cell wall composition and Carboniferous coal ball preservation

    Energy Technology Data Exchange (ETDEWEB)

    Boyce, C. Kevin [Department of the Geophysical Sciences, University of Chicago, Chicago, IL 60637 (United States); Abrecht, Mike; Zhou, Dong; Gilbert, P.U.P.A. [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States)

    2010-08-01

    Two alternative processes complicate understanding of the biochemical origins and geochemical alteration of organic matter over geologic time: selective preservation of original biopolymers and in situ generation of new geopolymers. One of the best constrained potential sources of bio- and geochemical information about extinct fossil plants is frequently overlooked. Permineralized anatomically preserved plant fossils allow analysis of individual cell and tissue types that have an original biochemical composition already known from living plants. The original composition of more enigmatic fossils can be constrained by geochemical comparisons to tissues of better understood fossils from the same locality. This strategy is possible using synchrotron-based techniques for submicron-scale imaging with X-rays over a range of frequencies in order to provide information concerning the relative abundance of different organic bonds with X-ray Absorption Near Edge Spectroscopy. In this study, X-ray PhotoElectron Emission spectroMicroscopy (X-PEEM) was used to analyze the tissues of Lepidodendron, one of the lycopsid trees that were canopy dominants of many Pennsylvanian coal swamp forests. Its periderm or bark - the single greatest biomass contributor to many Late Paleozoic coals - is found to have a greater aliphatic content and an overall greater density of organic matter than lignified wood. Because X-PEEM allows simultaneous analysis of organic matter and matrix calcite in fully mineralized fossils, this technique also has great potential for analysis of fossil preservation, including documentation of significant traces of organic matter entrained in the calcite crystal fabric that fills the cell lumens. (author)

  18. Using ballistic electron emission microscopy to investigate the metal-vacuum interface

    International Nuclear Information System (INIS)

    Baykul, M.C.

    1993-01-01

    This dissertation investigates the possibility of using the ballistic electron microscope (BEEM) to study the metal-vacuum interface. In order to do that, we have designed and built a novel experimental setup which consists of an STM tip from which electrons tunnel into a thin (<60 nm), free-standing metal film in vacuum ambient. When the tunnel bias exceeds the work function of the metal, some small fraction of the tunneling electrons traverses through the film without any energy loss, and emits into the vacuum through the back side of the film. The rate of emission of such ballistic electrons, which is called the collector current, is measured by a channel electron multiplier. One of the major challenges for this investigation was preparing free-standing thin films by the following steps: (a) evaporating Au onto a (100) face of NaCl at room temperature, (b) dissolving the NaCl in a 50-50 mixture of ethyl alcohol and distilled water, and (c) catching the Au film that floats on the surface of the solvent onto a Cu grid. Subsequent annealing increased the grain size, and improved the bonding of the film onto the grid. We have succeeded in observing ballistic electron emission through these free-standing thin films, even though the collector current tended to decay in a time interval of a few tenths of a second. The exact cause of this decay is not known, however we have suggested some possibilities. By ramping the bias voltage from about 0.2 V to about 10.5 V, we find the threshold bias voltage at which the collector current begins. This threshold voltage is an upper limit for the work function of AU. From our data we obtained a value of 5.2 V for this upper limit. We also have plotted the collector current, that was averaged over a scan area of 375 nm x 375 nm, against the tunnel bias. This plot shows that, for this region, the lowest threshold bias voltage for ballistic electron emission is between 3.5 V and 4.5 V

  19. Study of Deformation Phenomena in TRIP/TWIP Steels by Acoustic Emission and Scanning Electron Microscopy

    Science.gov (United States)

    Linderov, M. L.; Segel, C.; Weidner, A.; Biermann, H.; Vinogradov, A. Yu.

    2018-04-01

    Modern metastable steels with TRIP/TWIP effects have a unique set of physical-mechanical properties. They combine both high-strength and high-plasticity characteristics, which is governed by processes activated during deformation, namely, twinning, the formation of stacking faults, and martensitic transformations. To study the behavior of these phenomena in CrMnNi TRIP/TWIP steels and stainless CrNiMo steel, which does not have these effects in the temperature range under study, we used the method of acoustic emission and modern methods of signal processing, including the cluster analysis of spectral-density functions. The results of this study have been compared with a detailed microstructural analysis performed with a scanning electron microscope using electron backscatter diffraction (EBSD).

  20. Features of CO2 fracturing deduced from acoustic emission and microscopy in laboratory experiments

    Science.gov (United States)

    Ishida, Tsuyoshi; Chen, Youqing; Bennour, Ziad; Yamashita, Hiroto; Inui, Shuhei; Nagaya, Yuya; Naoi, Makoto; Chen, Qu; Nakayama, Yoshiki; Nagano, Yu

    2016-11-01

    We conducted hydraulic fracturing (HF) experiments on 170 mm cubic granite specimens with a 20 mm diameter central hole to investigate how fluid viscosity affects HF process and crack properties. In experiments using supercritical carbon dioxide (SC-CO2), liquid carbon dioxide (L-CO2), water, and viscous oil with viscosity of 0.051-336.6 mPa · s, we compared the results for breakdown pressure, the distribution and fracturing mechanism of acoustic emission, and the microstructure of induced cracks revealed by using an acrylic resin containing a fluorescent compound. Fracturing with low-viscosity fluid induced three-dimensionally sinuous cracks with many secondary branches, which seem to be desirable pathways for enhanced geothermal system, shale gas recovery, and other processes.

  1. A study of internal oxidation in carburized steels by glow discharge optical emission spectroscopy and scanning electron microscopy

    International Nuclear Information System (INIS)

    An, X; Cawley, J.; Rainforth, W.M.; Chen, L.

    2003-01-01

    The internal oxidation of Cr-Mn carburizing steel was studied. Internal oxidation was induced using a commercial carburizing process. Sputter erosion coupled with glow discharge optical emission spectroscopy (GDOES) was used to determine the depth profile elemental distribution within the internal oxidation layer (<10 μm). In addition, scanning electron microscopy (SEM) equipped with energy dispersive spectrometer (EDS) studies were carried out on selected sputter eroded surfaces. Oxide type was identified primarily by transmission electron microscopy (TEM). The carburized surface was found to consist of a continuous oxide layer, followed by a complex internal oxidation layer, where Cr and Mn oxides were found to populate grain boundaries in a globular form in the near surface region. At greater depths (5-10 μm), Si oxides formed as a grain boundary network. The internal oxides (mainly complex oxides) grew quickly during the initial stages of the carburizing process (2 h, 800 deg. C+3 h, 930 deg. C). GDOES proved to be an excellent tool for the quantification of oxidation and element distribution as a function of depth, particularly when combined with SEM and TEM to identify oxide type and morphology

  2. Metallic microwires obtained as replicas of etched ion tracks in polymer matrixes: Microscopy and emission properties

    International Nuclear Information System (INIS)

    Zagorski, D.L.; Bedin, S.A.; Oleinikov, V.A.; Polyakov, N.B.; Rybalko, O.G.; Mchedlishvili, B.V.

    2009-01-01

    Specially prepared porous matrixes (with through and dead-end pores of cylindrical or conical forms) were used as the templates for making ensembles of microwires. The process of electrodeposition of metal (Cu) into these pores was investigated. AFM technique was used for studying the 'composite material' (metal microwires embedded into the polymer matrix). It was shown that the combination of different modes of AFM (tapping with phase-contrast mode, contact with lateral force mode) makes it possible to detect metal in the polymer matrix. Additional spread resistance mode in the contact regime allowed to measure the electrical conductivity of a single wire. The ensembles of free-standing microwires (metallic replicas of the pores obtained after removing of the polymer matrix) were used as the substrates (for deposition of the probe) for ion emission in the mass-spectrometer. It was shown that the intensity of formed ion beam increases with increasing of power of the laser pulse and with increasing of the mass of the probe. The intensity of mass-spectra signal on the power of laser pulse has a threshold character with saturation accompanied with the appearance of dimer ions. At the same time this intensity decreases with the increasing of the surface density of wires. The effect of degradation of wires during the laser pulse irradiation was found.

  3. New method for characterizing paper coating structures using argon ion beam milling and field emission scanning electron microscopy.

    Science.gov (United States)

    Dahlström, C; Allem, R; Uesaka, T

    2011-02-01

    We have developed a new method for characterizing microstructures of paper coating using argon ion beam milling technique and field emission scanning electron microscopy. The combination of these two techniques produces extremely high-quality images with very few artefacts, which are particularly suited for quantitative analyses of coating structures. A new evaluation method has been developed by using marker-controlled watershed segmentation technique of the secondary electron images. The high-quality secondary electron images with well-defined pores makes it possible to use this semi-automatic segmentation method. One advantage of using secondary electron images instead of backscattered electron images is being able to avoid possible overestimation of the porosity because of the signal depth. A comparison was made between the new method and the conventional method using greyscale histogram thresholding of backscattered electron images. The results showed that the conventional method overestimated the pore area by 20% and detected around 5% more pores than the new method. As examples of the application of the new method, we have investigated the distributions of coating binders, and the relationship between local coating porosity and base sheet structures. The technique revealed, for the first time with direct evidence, the long-suspected coating non-uniformity, i.e. binder migration, and the correlation between coating porosity versus base sheet mass density, in a straightforward way. © 2010 The Authors Journal compilation © 2010 The Royal Microscopical Society.

  4. Spatially resolved band alignments at Au-hexadecanethiol monolayer-GaAs(001) interfaces by ballistic electron emission microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Junay, A.; Guézo, S., E-mail: sophie.guezo@univ-rennes1.fr; Turban, P.; Delhaye, G.; Lépine, B.; Tricot, S.; Ababou-Girard, S.; Solal, F. [Département Matériaux-Nanosciences, Institut de Physique de Rennes, UMR 6251, CNRS-Université de Rennes 1, Campus de Beaulieu, Bât 11E, 35042 Rennes Cedex (France)

    2015-08-28

    We study structural and electronic inhomogeneities in Metal—Organic Molecular monoLayer (OML)—semiconductor interfaces at the sub-nanometer scale by means of in situ Ballistic Electron Emission Microscopy (BEEM). BEEM imaging of Au/1-hexadecanethiols/GaAs(001) heterostructures reveals the evolution of pinholes density as a function of the thickness of the metallic top-contact. Using BEEM in spectroscopic mode in non-short-circuited areas, local electronic fingerprints (barrier height values and corresponding spectral weights) reveal a low-energy tunneling regime through the insulating organic monolayer. At higher energies, BEEM evidences new conduction channels, associated with hot-electron injection in the empty molecular orbitals of the OML. Corresponding band diagrams at buried interfaces can be thus locally described. The energy position of GaAs conduction band minimum in the heterostructure is observed to evolve as a function of the thickness of the deposited metal, and coherently with size-dependent electrostatic effects under the molecular patches. Such BEEM analysis provides a quantitative diagnosis on metallic top-contact formation on organic molecular monolayer and appears as a relevant characterization for its optimization.

  5. Localization of burn mark under an abnormal topography on MOSFET chip surface using liquid crystal and emission microscopy tools.

    Science.gov (United States)

    Lau, C K; Sim, K S; Tso, C P

    2011-01-01

    This article focuses on the localization of burn mark in MOSFET and the scanning electron microscope (SEM) inspection on the defect location. When a suspect abnormal topography is shown on the die surface, further methods to pin-point the defect location is necessary. Fault localization analysis becomes important because an abnormal spot on the chip surface may and may not have a defect underneath it. The chip surface topography can change due to the catastrophic damage occurred at layers under the chip surface, but it could also be due to inconsistency during metal deposition in the wafer fabrication process. Two localization techniques, liquid crystal thermography and emission microscopy, were performed to confirm that the abnormal topography spot is the actual defect location. The tiny burn mark was surfaced by performing a surface decoration at the defect location using hot hydrochloric acid. SEM imaging, which has the high magnification and three-dimensional capabilities, was used to capture the images of the burn mark. Copyright © 2011 Wiley Periodicals, Inc.

  6. Investigation of Electron Transport Across Vertically Grown CNTs Using Combination of Proximity Field Emission Microscopy and Scanning Probe Image Processing Techniques

    KAUST Repository

    Kolekar, Sadhu

    2018-02-26

    Field emission from nanostructured films is known to be dominated by only small number of localized spots which varies with the voltage, electric field and heat treatment. It is important to develop processing methods which will produce stable and uniform emitting sites. In this paper we report a novel approach which involves analysis of Proximity Field Emission Microscopic (PFEM) images using Scanning Probe Image Processing technique. Vertically aligned carbon nanotube emitters have been deposited on tungsten foil by water assisted chemical vapor deposition. Prior to the field electron emission studies, these films were characterized by scanning electron microscopy, transmission electron microscopy, and Atomic Force Microscopy (AFM). AFM images of the samples show bristle like structure, the size of bristle varying from 80 to 300 nm. The topography images were found to exhibit strong correlation with current images. Current–Voltage (I–V) measurements both from Scanning Tunneling Microscopy and Conducting-AFM mode suggest that electron transport mechanism in imaging vertically grown CNTs is ballistic rather than usual tunneling or field emission with a junction resistance of ~10 kΩ. It was found that I–V curves for field emission mode in PFEM geometry vary initially with number of I–V cycles until reproducible I–V curves are obtained. Even for reasonably stable I–V behavior the number of spots was found to increase with the voltage leading to a modified Fowler–Nordheim (F–N) behavior. A plot of ln(I/V3) versus 1/V was found to be linear. Current versus time data exhibit large fluctuation with the power spectral density obeying 1/f2 law. It is suggested that an analogue of F–N equation of the form ln(I/Vα) versus 1/V may be used for the analysis of field emission data, where α may depend on nanostructure configuration and can be determined from the dependence of emitting spots on the voltage.Graphical Abstract

  7. Investigation of Electron Transport Across Vertically Grown CNTs Using Combination of Proximity Field Emission Microscopy and Scanning Probe Image Processing Techniques

    Science.gov (United States)

    Kolekar, Sadhu; Patole, Shashikant P.; Yoo, Ji-Beom; Dharmadhikari, Chandrakant V.

    2018-03-01

    Field emission from nanostructured films is known to be dominated by only small number of localized spots which varies with the voltage, electric field and heat treatment. It is important to develop processing methods which will produce stable and uniform emitting sites. In this paper we report a novel approach which involves analysis of Proximity Field Emission Microscopic (PFEM) images using Scanning Probe Image Processing technique. Vertically aligned carbon nanotube emitters have been deposited on tungsten foil by water assisted chemical vapor deposition. Prior to the field electron emission studies, these films were characterized by scanning electron microscopy, transmission electron microscopy, and Atomic Force Microscopy (AFM). AFM images of the samples show bristle like structure, the size of bristle varying from 80 to 300 nm. The topography images were found to exhibit strong correlation with current images. Current-Voltage (I-V) measurements both from Scanning Tunneling Microscopy and Conducting-AFM mode suggest that electron transport mechanism in imaging vertically grown CNTs is ballistic rather than usual tunneling or field emission with a junction resistance of 10 kΩ. It was found that I-V curves for field emission mode in PFEM geometry vary initially with number of I-V cycles until reproducible I-V curves are obtained. Even for reasonably stable I-V behavior the number of spots was found to increase with the voltage leading to a modified Fowler-Nordheim (F-N) behavior. A plot of ln(I/V3) versus 1/V was found to be linear. Current versus time data exhibit large fluctuation with the power spectral density obeying 1/f2 law. It is suggested that an analogue of F-N equation of the form ln(I/Vα) versus 1/V may be used for the analysis of field emission data, where α may depend on nanostructure configuration and can be determined from the dependence of emitting spots on the voltage.

  8. Development of wave length-dispersive soft x-ray emission spectrometers for transmission electron microscopes - an introduction of valence electron spectroscopy for transmission electron microscopy

    International Nuclear Information System (INIS)

    Terauchi, Masami; Koike, Masato; Fukushima, Kurio; Kimura, Atsushi

    2010-01-01

    Two types of wavelength-dispersive soft X-ray spectrometers, a high-dispersion type and a conventional one, for transmission electron microscopes were constructed. Those spectrometers were used to study the electronic states of valence electrons (bonding electrons). Both spectrometers extended the acceptable energy regions to higher than 2000 eV. The best energy resolution of 0.08 eV was obtained for an Al L-emission spectrum by using the high-dispersion type spectrometer. By using the spectrometer, C K-emission of carbon allotropes, Cu L-emission of Cu 1-x Zn x alloys and Pt M-emission spectra were presented. The FWHM value of 12 eV was obtained for the Pt Mα-emission peak. The performance of the conventional one was also presented for ZnS and a section specimen of a multilayer device. W-M and Si-K emissions were clearly resolved. Soft X-ray emission spectroscopy based on transmission electron microscopy (TEM) has an advantage for obtaining spectra from a single crystalline specimen with a defined crystal setting. As an example of anisotropic soft X-ray emission, C K-emission spectra of single crystalline graphite with different crystal settings were presented. From the spectra, density of states of π- and σ-bondings were separately derived. These results demonstrated a method to analyse the electronic states of valence electrons of materials in the nanometre scale based on TEM. (author)

  9. Hierarchical super-structure identified by polarized light microscopy, electron microscopy and nanoindentation: Implications for the limits of biological control over the growth mode of abalone sea shells

    Directory of Open Access Journals (Sweden)

    Schneider Andreas S

    2012-09-01

    Full Text Available Abstract Background Mollusc shells are commonly investigated using high-resolution imaging techniques based on cryo-fixation. Less detailed information is available regarding the light-optical properties. Sea shells of Haliotis pulcherina were embedded for polishing in defined orientations in order to investigate the interface between prismatic calcite and nacreous aragonite by standard materialographic methods. A polished thin section of the interface was prepared with a defined thickness of 60 μm for quantitative birefringence analysis using polarized light and LC-PolScope microscopy. Scanning electron microscopy images were obtained for comparison. In order to study structural-mechanical relationships, nanoindentation experiments were performed. Results Incident light microscopy revealed a super-structure in semi-transparent regions of the polished cross-section under a defined angle. This super-structure is not visible in transmitted birefringence analysis due to the blurred polarization of small nacre platelets and numerous organic interfaces. The relative orientation and homogeneity of calcite prisms was directly identified, some of them with their optical axes exactly normal to the imaging plane. Co-oriented "prism colonies" were identified by polarized light analyses. The nacreous super-structure was also visualized by secondary electron imaging under defined angles. The domains of the super-structure were interpreted to consist of crystallographically aligned platelet stacks. Nanoindentation experiments showed that mechanical properties changed with the same periodicity as the domain size. Conclusions In this study, we have demonstrated that insights into the growth mechanisms of nacre can be obtained by conventional light-optical methods. For example, we observed super-structures formed by co-oriented nacre platelets as previously identified using X-ray Photo-electron Emission Microscopy (X-PEEM [Gilbert et al., Journal of the

  10. Field emission scanning electron microscopy and transmission electron microscopy studies of the chorion, plasma membrane and syncytial layers of the gastrula-stage embryo of the zebrafish Brachydanio rerio : a consideration of the structural and functional relationships with respect to cryoprotectant penetration

    NARCIS (Netherlands)

    Rawson, DM; Zhang, T; Kalicharan, D; Jongebloed, WL

    The structure of the chorion and plasma membranes of gastrula-stage zebrafish Brachydanio rerio embryos were studied using field emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM). These studies confirm the outer chorion membrane complex to be 1.5-2.5 mu m in

  11. Secondary electron images obtained with a standard photoelectron emission microscope set-up

    International Nuclear Information System (INIS)

    Benka, Oswald; Zeppenfeld, Peter

    2005-01-01

    The first results of secondary electron images excited by 3-4.3 keV electrons are presented. The images are obtained with a standard FOCUS-PEEM set-up equipped with an imaging energy filter (IEF). The electron gun was mounted on a standard PEEM entrance flange at an angle of 25 deg. with respect to the sample surface. A low extraction voltage of 500 V was used to minimize the deflection of the electron beam by the PEEM extraction electrode. The secondary electron images are compared to photoelectron images excited by a standard 4.9 eV UV lamp. In the case of a Cu pattern on a Si substrate it is found that the lateral resolution without the IEF is about the same for electron and photon excitation but that the relative electron emission intensities are very different. The use of the IEF reduces the lateral resolution. Images for secondary electron energies between eV 1 and eV 2 were obtained by setting the IEF to -V 1 and -V 2 ∼-(V 1 +5V) potentials and taking the difference of both images. Images up to 100 eV electron energies were recorded. The material contrast obtained in these difference images is discussed in terms of a secondary electron and photoelectron emission model and secondary electron energy spectra measured with a LEED-Auger spectrometer

  12. Image enhancement in photoemission electron microscopy by means of imaging time-of-flight analysis

    International Nuclear Information System (INIS)

    Oelsner, A.; Krasyuk, A.; Fecher, G.H.; Schneider, C.M.; Schoenhense, G.

    2004-01-01

    Photoemission electron microscopy (PEEM) is widely used in combination with synchrotron sources as a powerful tool to observe chemical and magnetic properties of metal and semiconductor surfaces. Presently, the resolution limit of these instruments using soft-X-ray excitation is limited to about 50 nm, because of the chromatic aberration of the electron optics used. Various sophisticated approaches have thus been reported for enhancing the spatial resolution in photoemission electron microscopy. This work demonstrates the use of a simple imaging energy filter based on electron time-of-flight (ToF) selection. The spatial resolution could be improved dramatically, even though the instrument was optimized using a rather large contrast aperture of 50 μm. A special (x, y, t)-resolving delayline detector was used as the imaging unit of this ToF-PEEM. It is operated in phase with the time structure of the synchrotron source, cutting time intervals from the raw image-forming data set in order to reduce the electron energy width contributing to the final images

  13. Application of particle-induced X-ray emission, backscattering spectrometry and scanning electron microscopy in the evaluation of orthodontic materials

    International Nuclear Information System (INIS)

    Gihwala, D.; Mars, J.A.; Pineda-Vargas, C.

    2013-01-01

    The focus of this investigation was on orthodontic materials used in the manufacture of dental brackets. The properties of these dental materials are subjected to various physical parameters such as elongation, yield strength and elasticity that justify their application. In turn, these parameters depend on the quantitative elemental concentration distribution (QECD) in the materials used in the manufacture. For compositional analysis, proton-induced X-ray emission (PIXE), backscatter spectrometry (BS) and scanning electron microscopy (SEM) were applied. QECD analysis was performed to correlate the physical parameters with the composition and to quantify imperfections in the materials. PIXE and BS analyses were performed simultaneously with a 3 MeV proton beam while electrons accelerated at 25 keV were used for the SEM analysis. From the QECDs it was observed that: (1) the major elements Cr, Fe and Ni were homogeneously distributed in the orthodontic plate; (2) the distribution of Mo and O correlated with one another; (3) there was a spread of Cr around regions of high C concentration; and, (4) areas of high concentrations of Mo and O corresponded to a decrease in C concentrations. Elemental concentration correlations are shown to indicate the similarities and differences in the ease of formation of phases, based on the tangent of linearity. (author)

  14. The discrepancies between theory and experiment in the optical emission of monolayer In(Ga)N quantum wells revisited by transmission electron microscopy

    Science.gov (United States)

    Suski, T.; Schulz, T.; Albrecht, M.; Wang, X. Q.; Gorczyca, I.; Skrobas, K.; Christensen, N. E.; Svane, A.

    2014-05-01

    Quantitative high resolution transmission electron microscopy studies of intentionally grown 1InN/nGaN short-period superlattices (SLs) were performed. The structures were found to consist of an InxGa1-xN monolayer with an Indium content of x = 0.33 instead of the intended x = 1. Self-consistent calculations of the band structures of 1In0.33Ga0.67N/nGaN SLs were carried out, including a semi-empirical correction for the band gaps. The calculated band gap, Eg, as well as its pressure derivative, dEg/dp, are in very good agreement with the measured photoluminescence energy, EPL, and its pressure derivative, dEPL/dp, for a series of 1In0.33Ga0.67N/nGaN samples with n ranging from 2 to 40. This resolves a discrepancy found earlier between measured and calculated optical emission properties, as those calculations were made with the assumption of a 1InN/nGaN SL composition.

  15. Fluorescence microscopy.

    Science.gov (United States)

    Sanderson, Michael J; Smith, Ian; Parker, Ian; Bootman, Martin D

    2014-10-01

    Fluorescence microscopy is a major tool with which to monitor cell physiology. Although the concepts of fluorescence and its optical separation using filters remain similar, microscope design varies with the aim of increasing image contrast and spatial resolution. The basics of wide-field microscopy are outlined to emphasize the selection, advantages, and correct use of laser scanning confocal microscopy, two-photon microscopy, scanning disk confocal microscopy, total internal reflection, and super-resolution microscopy. In addition, the principles of how these microscopes form images are reviewed to appreciate their capabilities, limitations, and constraints for operation. © 2014 Cold Spring Harbor Laboratory Press.

  16. Ballistic Electron Emission Microscopy (BEEM) of Au/Pr{sub 2}O{sub 3}/Si structures; Ballistische Elektronen Emissions Mikroskopie (BEEM) an Au/Si und Au/Pr{sub 2}O{sub 3}/Si-Strukturen

    Energy Technology Data Exchange (ETDEWEB)

    Mauch, I.

    2007-05-15

    This thesis describes Ballistic Electron Emission Microscopy (BEEM) measurements of Au/Si(111) and Au/Pr{sub 2}O{sub 3}/Si(111) structures. This technique is based on Scanning Tunnelling Microscopy (STM). It measures the ballistic transport of hot electrons through parts of the sample and across an interface, which provides a potential barrier. One part of this work was to modify the BEEM apparatus and to implement a lock in method, which modulates the tunnel current with a small frequency. In this way it is possible to study samples with very low resistance (as low as 30 k{omega}), which widely enlarges the number of samples which are appropriate for BEEM measurement at room temperature. Both types of samples studied in this thesis had low resistance and were therefore studied using the lock in method. For the classical BEEM system Au/Si(111), we observed a pronounced dependence of the sample resistance of Au/Si(111)-7 x 7 on the preparation temperature. We developed a model for the resistance of thermal prepared Au/Si(111)-7 x 7 samples. The model identifies that the low resistance is due to the surface conductivity of the reconstructed silicon surface. If the surface is prepared at a lower temperature (but still high enough that the surface is cleaned and the silicon dioxide desorbed) rough areas remain on the surface, which reduce the surface conductivity. For BEEM measurements flat areas of the sample surface are selected. The low temperature prepared samples we were able to obtain BEEM spectra as well as images at room temperature using the lock in method. The sesquioxide of praseodymium (Pr{sub 2}O{sub 3}) is currently discussed as a possible candidate for a gate oxide in semiconductor devices, since it has some of the required material properties such as a high dielectric constant, low leakage current and epitaxial growth on Si(100). We have for the first time performed BEEM measurement of praseodymium oxide. Despite a low resistance of the structures we

  17. Investigation of Electron Transport Across Vertically Grown CNTs Using Combination of Proximity Field Emission Microscopy and Scanning Probe Image Processing Techniques

    KAUST Repository

    Kolekar, Sadhu; Patole, Shashikant P.; Yoo, Ji-Beom; Dharmadhikari, Chandrakant V.

    2018-01-01

    Field emission from nanostructured films is known to be dominated by only small number of localized spots which varies with the voltage, electric field and heat treatment. It is important to develop processing methods which will produce stable

  18. Time- and energy resolved photoemission electron microscopy-imaging of photoelectron time-of-flight analysis by means of pulsed excitations

    International Nuclear Information System (INIS)

    Oelsner, Andreas; Rohmer, Martin; Schneider, Christian; Bayer, Daniela; Schoenhense, Gerd; Aeschlimann, Martin

    2010-01-01

    The present work enlightens the developments in time- and energy resolved photoemission electron microscopy over the past few years. We describe basic principles of the technique and demonstrate different applications. An energy- and time-filtering photoemission electron microscopy (PEEM) for real-time spectroscopic imaging can be realized either by a retarding field or hemispherical energy analyzer or by using time-of-flight optics with a delay line detector. The latter method has the advantage of no data loss at all as all randomly incoming particles are measured not only by position but also by time. This is of particular interest for pump-probe experiments in the femtosecond and attosecond time scale where space charge processes drastically limit the maximum number of photoemitted electrons per laser pulse. This work focuses particularly on time-of-flight analysis using a novel delay line detector. Time and energy resolved PEEM instruments with delay line detectors enable 4D imaging (x, y, Δt, E Kin ) on a true counting basis. This allows a broad range of applications from real-time observation of dynamic phenomena at surfaces to fs time-of-flight spectro-microscopy and even aberration correction. By now, these time-of-flight analysis instruments achieve intrinsic time resolutions of 108 ps absolute and 13.5 ps relative. Very high permanent measurement speeds of more than 4 million events per second in random detection regimes have been realized using a standard USB2.0 interface. By means of this performance, the time-resolved PEEM technique enables to display evolutions of spatially resolved (<25 nm) and temporal sliced images life on any modern computer. The method allows dynamics investigations of variable electrical, magnetic, and optical near fields at surfaces and great prospects in dynamical adaptive photoelectron optics. For dynamical processes in the ps time scale such as magnetic domain wall movements, the time resolution of the delay line detectors

  19. Enhanced Emission from Single Isolated Gold Quantum Dots Investigated Using Two-Photon-Excited Fluorescence Near-Field Scanning Optical Microscopy.

    Science.gov (United States)

    Abeyasinghe, Neranga; Kumar, Santosh; Sun, Kai; Mansfield, John F; Jin, Rongchao; Goodson, Theodore

    2016-12-21

    New approaches in molecular nanoscopy are greatly desired for interrogation of biological, organic, and inorganic objects with sizes below the diffraction limit. Our current work investigates emergent monolayer-protected gold quantum dots (nanoclusters, NCs) composed of 25 Au atoms by utilizing two-photon-excited fluorescence (TPEF) near-field scanning optical microscopy (NSOM) at single NC concentrations. Here, we demonstrate an approach to synthesize and isolate single NCs on solid glass substrates. Subsequent investigation of the NCs using TPEF NSOM reveals that, even when they are separated by distances of several tens of nanometers, we can excite and interrogate single NCs individually. Interestingly, we observe an enhanced two-photon absorption (TPA) cross section for single Au 25 NCs that can be attributed to few-atom local field effects and to local field-induced microscopic cascading, indicating their potential for use in ultrasensitive sensing, disease diagnostics, cancer cell therapy, and molecular computers. Finally, we report room-temperature aperture-based TPEF NSOM imaging of these NCs for the first time at 30 nm point resolution, which is a ∼5-fold improvement compared to the previous best result for the same technique. This report unveils the unique combination of an unusually large TPA cross section and the high photostability of Au NCs to (non-destructively) investigate stable isolated single NCs using TPEF NSOM. This is the first reported optical study of monolayer-protected single quantum clusters, opening some very promising opportunities in spectroscopy of nanosized objects, bioimaging, ultrasensitive sensing, molecular computers, and high-density data storage.

  20. Scanning electron microscopy-energy dispersive X-ray spectrometry (SEM-EDX) and aerosol time-of-flight mass spectrometry (ATOFMS) single particle analysis of metallurgy plant emissions.

    Science.gov (United States)

    Arndt, J; Deboudt, K; Anderson, A; Blondel, A; Eliet, S; Flament, P; Fourmentin, M; Healy, R M; Savary, V; Setyan, A; Wenger, J C

    2016-03-01

    The chemical composition of single particles deposited on industrial filters located in three different chimneys of an iron-manganese (Fe-Mn) alloy manufacturing plant have been compared using aerosol time-of-flight mass spectrometry (ATOFMS) and scanning electron microscopy-energy dispersive X-ray spectrometry (SEM-EDX). Very similar types of particles were observed using both analytical techniques. Calcium-containing particles dominated in the firing area of the sintering unit, Mn and/or Al-bearing particles were observed at the cooling area of the sintering unit, while Mn-containing particles were dominant at the smelting unit. SEM-EDX analysis of particles collected downstream of the industrial filters showed that the composition of the particles emitted from the chimneys is very similar to those collected on the filters. ATOFMS analysis of ore samples was also performed to identify particulate emissions that could be generated by wind erosion and manual activities. Specific particle types have been identified for each emission source (chimneys and ore piles) and can be used as tracers for source apportionment of ambient PM measured in the vicinity of the industrial site. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Deformation mechanisms in austenitic TRIP/TWIP steels at room and elevated temperature investigated by acoustic emission and scanning electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Linderov, M. [Laboratory of Physics of Strength of Materials and Intelligent Diagnostic Systems, Togliatti State University, Togliatti 445667 (Russian Federation); Segel, C.; Weidner, A.; Biermann, H. [Institute of Materials Engineering, Technische Universität Bergakademie Freiberg, 09599 Freiberg (Germany); Vinogradov, A., E-mail: vinogradov@tltsu.ru [Laboratory of Physics of Strength of Materials and Intelligent Diagnostic Systems, Togliatti State University, Togliatti 445667 (Russian Federation)

    2014-03-01

    The modern austenitic stainless TRIP/TWIP steels have an outstanding combination of strength and ductility, depending on their chemical composition and loading conditions. A critical factor, which strongly affects all deformation-induced processes in metastable austenitic steels, is the temperature. To get a better insight into the effect of temperature on the deformation kinetics and transformation processes in high-alloy CrMnNi TRIP/TWIP steels with different austenite stability due to a varied content of Ni (3, 6 and 9 wt%), an acoustic emission (AE) technique was used during uniaxial tension at two different temperatures – ambient and 373 K. The in-situ AE results were paired with detailed SEM investigations using the electron backscattered diffraction (EBSD) technique to identify the deformation-induced phase transformations and mechnical twinning. The cluster analysis of the AE signals has revealed an excellent correlation of AE features with synergistic complexity of deformation mechanisms involved in various combinations: dislocation glide, stacking faults, martensitic phase transformation and twinning.

  2. Beamline for Photoemission Spectromicroscopy and Spin Polarized Microscopy with Slow Electrons at CESLAB

    Czech Academy of Sciences Publication Activity Database

    Frank, Luděk

    2008-01-01

    Roč. 15, č. 1 (2008), s. 111-112 ISSN 1210-8529 Institutional research plan: CEZ:AV0Z20650511 Keywords : CESLAB * beamline * LEEM/PEEM Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering

  3. Pigment organization effects on energy transfer and Chl a emission imaged in the diatoms C. meneghiniana and P. tricornutum in vivo: a confocal laser scanning fluorescence (CLSF) microscopy and spectroscopy study.

    Science.gov (United States)

    Premvardhan, Lavanya; Réfrégiers, Matthieu; Büchel, Claudia

    2013-09-26

    The (auto)fluorescence from three diatom strains, Cyclotella meneghiniana (Cm), Phaeodactylum tricornutum 1a (Pt1a), and Phaeodactylum UTex (PtUTex), has been imaged in vivo to submicrometer resolution using confocal laser scanning fluorescence (CLSF) microscopy. The diatoms are excited at 473 and 532 nm, energy primarily absorbed by the carotenoid fucoxanthin (Fx) found within the fucoxanthin chlorophyll a/c proteins (FCPs). On the basis of the fluorescence spectra measured in each image voxel, we obtain information about the spatial and energetic distribution of the terminal Chl a emitters, localized in the FCPs and the reaction centers of the PSII protein complexes, and the nature and location of the primary absorbers that are linked to these emitters; 532 nm excites the highly efficient Fx(red) light harvesters, and lesser amounts of Fx(green)s, that are enriched in some FCPs and preferentially transfer energy to PSII, compared to 473 nm, which excites almost equal amounts of all three previously identified sets of Fx--Fx(red), Fx(green) and Fx(blue)--as well as Chl c. The heterogeneous Chl a emission observed from the (C)LSF images indicates that the different Fx's serve different final emitters in P. tricornutum and suggest, at least in C. meneghiniana , a localization of FCPs with relatively greater Fx(red) content at the chloroplast edges, but with overall higher FCP concentration in the interior of the plastid. To better understand our results, the concentration-dependent ensemble-averaged diatom solution spectra are compared to the (auto)fluorescence spectra of individual diatoms, which indicate that pigment packing effects at an intracellular level do affect the diatoms' spectral properties, in particular, concerning a 710 nm emission band apparent under stress conditions. A species-specific response of the spectral signature to the incident light is also discussed in terms of the presence of a silica shell in Cm but not in Pt1a nor PtUTex.

  4. Atom probe field ion microscopy and related topics: A bibliography 1991

    International Nuclear Information System (INIS)

    Russell, K.F.; Miller, M.K.

    1993-01-01

    This report contains a bibliography for 1991 on the following topics: Atom probe field ion microscopy; field desorption mass spectrometry; field emission; field ion microscopy; and field emission theory

  5. Heavy-ion microscopy

    International Nuclear Information System (INIS)

    Kraft, G.; Yang, T.C.H.; Richards, T.; Tobias, C.A.

    1980-01-01

    This chapter briefly describes the techniques of optical microscopy, scanning and transmission electron microscopy, soft x-ray microscopy and compares these latter techniques with heavy-ion microscopy. The resolution obtained with these various types of microscopy are compared and the influence of the etching procedure on total resolution is discussed. Several micrographs of mammalian cells are included

  6. eV-TEM: Transmission electron microscopy in a low energy cathode lens instrument

    Energy Technology Data Exchange (ETDEWEB)

    Geelen, Daniël, E-mail: geelen@physics.leidenuniv.nl [Huygens-Kamerlingh Onnes Laboratory, Leiden Institute of Physics, Leiden University, P.O. Box 9504, 2300 RA Leiden (Netherlands); Thete, Aniket [Huygens-Kamerlingh Onnes Laboratory, Leiden Institute of Physics, Leiden University, P.O. Box 9504, 2300 RA Leiden (Netherlands); Schaff, Oliver; Kaiser, Alexander [SPECS GmbH, Voltastrasse 5, D-13355 Berlin (Germany); Molen, Sense Jan van der [Huygens-Kamerlingh Onnes Laboratory, Leiden Institute of Physics, Leiden University, P.O. Box 9504, 2300 RA Leiden (Netherlands); Tromp, Rudolf [IBM T.J. Watson Research Center, 1101 Kitchawan Road, P.O. Box 218, Yorktown Heights, NY 10598 (United States)

    2015-12-15

    We are developing a transmission electron microscope that operates at extremely low electron energies, 0–40 eV. We call this technique eV-TEM. Its feasibility is based on the fact that at very low electron energies the number of energy loss pathways decreases. Hence, the electron inelastic mean free path increases dramatically. eV-TEM will enable us to study elastic and inelastic interactions of electrons with thin samples. With the recent development of aberration correction in cathode lens instruments, a spatial resolution of a few nm appears within range, even for these very low electron energies. Such resolution will be highly relevant to study biological samples such as proteins and cell membranes. The low electron energies minimize adverse effects due to radiation damage. - Highlights: • We present a new way of performing low energy transmission electron microscopy in an aberration corrected LEEM/PEEM instrument. • We show a proof of principle where we measure transmitted electrons through a suspended graphene monolayer with a preliminary setup. • We present an improved setup design that provides better control of the incident electron beam.

  7. Correlated Light Microscopy and Electron Microscopy

    NARCIS (Netherlands)

    Sjollema, Klaas A.; Schnell, Ulrike; Kuipers, Jeroen; Kalicharan, Ruby; Giepmans, Ben N. G.; MullerReichert, T; Verkade, P

    2012-01-01

    Understanding where, when, and how biomolecules (inter)act is crucial to uncover fundamental mechanisms in cell biology. Recent developments in fluorescence light microscopy (FLM) allow protein imaging in living cells and at the near molecular level. However, fluorescence microscopy only reveals

  8. Resolution improvement by nonconfocal theta microscopy.

    Science.gov (United States)

    Lindek, S; Stelzer, E H

    1999-11-01

    We present a novel scanning fluorescence microscopy technique, nonconfocal theta microscopy (NCTM), that provides almost isotropic resolution. In NCTM, multiphoton absorption from two orthogonal illumination directions is used to induce fluorescence emission. Therefore the point-spread function of the microscope is described by the product of illumination point-spread functions with reduced spatial overlap, which provides the resolution improvement and the more isotropic observation volume. We discuss the technical details of this new method.

  9. Microsphere imaging with confocal microscopy and two photon microscopy

    International Nuclear Information System (INIS)

    Chun, Hyung Su; An, Kyung Won; Lee, Jai Hyung

    2002-01-01

    We have acquired images of polystyrene and fused-silica microsphere by using conventional optical microscopy, confocal microscopy and two-photon microscopy, and performed comparative analysis of these images. Different from conventional optical microscopy, confocal and two-photon microscopy had good optical sectioning capability. In addition, confocal microscopy and two-photon microscopy had better lateral resolution than conventional optical microscopy. These results are attributed to confocality and nonlinearity of confocal microscopy and two photon microscopy, respectively.

  10. Electron microscopy for Engineers

    International Nuclear Information System (INIS)

    Jones, I P

    2009-01-01

    This paper reviews the application of (mainly) Transmission Electron Microscopy (TEM) in an engineering context. The first two sections are TEM and chemical in nature; the final three sections are more general and include aspects of Scanning Electron Microscopy (SEM).

  11. High-resolution electron microscopy

    CERN Document Server

    Spence, John C H

    2013-01-01

    This new fourth edition of the standard text on atomic-resolution transmission electron microscopy (TEM) retains previous material on the fundamentals of electron optics and aberration correction, linear imaging theory (including wave aberrations to fifth order) with partial coherence, and multiple-scattering theory. Also preserved are updated earlier sections on practical methods, with detailed step-by-step accounts of the procedures needed to obtain the highest quality images of atoms and molecules using a modern TEM or STEM electron microscope. Applications sections have been updated - these include the semiconductor industry, superconductor research, solid state chemistry and nanoscience, and metallurgy, mineralogy, condensed matter physics, materials science and material on cryo-electron microscopy for structural biology. New or expanded sections have been added on electron holography, aberration correction, field-emission guns, imaging filters, super-resolution methods, Ptychography, Ronchigrams, tomogr...

  12. Electron microscopy of surfaces

    International Nuclear Information System (INIS)

    Venables, J.A.

    1981-01-01

    Electron beam techniques used to study clean surfaces and surface processes on a microscopic scale are reviewed. Recent experimental examples and possible future developments are discussed. Special emphasis is given to (i) transmission diffraction and microscopy techniques, including atomic imaging; (ii) Auger microscopy on bulk and thin film samples; (iii) secondary electron microscopy, especially low energy secondaries for work-function imaging and photoelectron imaging; and (iv) reflection electron microscopy and diffraction. (orig.)

  13. Dictionary of Microscopy

    Science.gov (United States)

    Heath, Julian

    2005-10-01

    The past decade has seen huge advances in the application of microscopy in all areas of science. This welcome development in microscopy has been paralleled by an expansion of the vocabulary of technical terms used in microscopy: terms have been coined for new instruments and techniques and, as microscopes reach even higher resolution, the use of terms that relate to the optical and physical principles underpinning microscopy is now commonplace. The Dictionary of Microscopy was compiled to meet this challenge and provides concise definitions of over 2,500 terms used in the fields of light microscopy, electron microscopy, scanning probe microscopy, x-ray microscopy and related techniques. Written by Dr Julian P. Heath, Editor of Microscopy and Analysis, the dictionary is intended to provide easy navigation through the microscopy terminology and to be a first point of reference for definitions of new and established terms. The Dictionary of Microscopy is an essential, accessible resource for: students who are new to the field and are learning about microscopes equipment purchasers who want an explanation of the terms used in manufacturers' literature scientists who are considering using a new microscopical technique experienced microscopists as an aide mémoire or quick source of reference librarians, the press and marketing personnel who require definitions for technical reports.

  14. Magnetic imaging with full-field soft X-ray microscopies

    International Nuclear Information System (INIS)

    Fischer, Peter; Im, Mi-Young; Baldasseroni, Chloe; Bordel, Catherine; Hellman, Frances; Lee, Jong-Soo; Fadley, Charles S.

    2013-01-01

    Progress toward a fundamental understanding of magnetism continues to be of great scientific interest and high technological relevance. To control magnetization on the nanoscale, external magnetic fields and spin polarized currents are commonly used. In addition, novel concepts based on spin manipulation by electric fields or photons are emerging which benefit from advances in tailoring complex magnetic materials. Although the nanoscale is at the very origin of magnetic behavior, there is a new trend toward investigating mesoscale magnetic phenomena, thus adding complexity and functionality, both of which will become crucial for future magnetic devices. Advanced analytical tools are thus needed for the characterization of magnetic properties spanning the nano- to the meso-scale. Imaging magnetic structures with high spatial and temporal resolution over a large field of view and in three dimensions is therefore a key challenge. A variety of spectromicroscopic techniques address this challenge by taking advantage of variable-polarization soft X-rays, thus enabling X-ray dichroism effects provide magnetic contrast. These techniques are also capable of quantifying in an element-, valence- and site-sensitive way the basic properties of ferro(i)- and antiferro-magnetic systems, such as spin and orbital moments, spin configurations from the nano- to the meso-scale and spin dynamics with sub-ns time resolution. This paper reviews current achievements and outlines future trends with one of these spectromicroscopies, magnetic full field transmission soft X-ray microscopy (MTXM) using a few selected examples of recent research on nano- and meso-scale magnetic phenomena. The complementarity of MTXM to X-ray photoemission electron microscopy (X-PEEM) is also emphasized

  15. Magnetic imaging with full-field soft X-ray microscopies

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, Peter, E-mail: PJFischer@lbl.gov [Center for X-ray Optics, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States); Im, Mi-Young [Center for X-ray Optics, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States); Baldasseroni, Chloe [Department of Materials Science and Engineering, University of California Berkeley, Berkeley, CA 94720 (United States); Bordel, Catherine; Hellman, Frances [Department of Physics, University of California Berkeley, Berkeley, CA 94720 (United States); Material Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94270 (United States); Lee, Jong-Soo [Department of Energy Systems Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 711-873 (Korea, Republic of); Fadley, Charles S. [Department of Physics, University of California Davis, Davis, CA 95616 (United States); Material Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94270 (United States)

    2013-08-15

    Progress toward a fundamental understanding of magnetism continues to be of great scientific interest and high technological relevance. To control magnetization on the nanoscale, external magnetic fields and spin polarized currents are commonly used. In addition, novel concepts based on spin manipulation by electric fields or photons are emerging which benefit from advances in tailoring complex magnetic materials. Although the nanoscale is at the very origin of magnetic behavior, there is a new trend toward investigating mesoscale magnetic phenomena, thus adding complexity and functionality, both of which will become crucial for future magnetic devices. Advanced analytical tools are thus needed for the characterization of magnetic properties spanning the nano- to the meso-scale. Imaging magnetic structures with high spatial and temporal resolution over a large field of view and in three dimensions is therefore a key challenge. A variety of spectromicroscopic techniques address this challenge by taking advantage of variable-polarization soft X-rays, thus enabling X-ray dichroism effects provide magnetic contrast. These techniques are also capable of quantifying in an element-, valence- and site-sensitive way the basic properties of ferro(i)- and antiferro-magnetic systems, such as spin and orbital moments, spin configurations from the nano- to the meso-scale and spin dynamics with sub-ns time resolution. This paper reviews current achievements and outlines future trends with one of these spectromicroscopies, magnetic full field transmission soft X-ray microscopy (MTXM) using a few selected examples of recent research on nano- and meso-scale magnetic phenomena. The complementarity of MTXM to X-ray photoemission electron microscopy (X-PEEM) is also emphasized.

  16. Examining Thermally Sprayed Coats By Fluorescence Microscopy

    Science.gov (United States)

    Street, Kenneth W., Jr.; Leonhardt, Todd A.

    1994-01-01

    True flaws distinquished from those induced by preparation of specimens. Fluorescence microscopy reveals debonding, porosity, cracks, and other flaws in specimens of thermally sprayed coating materials. Specimen illuminated, and dye it contains fluoresces, emitting light at different wavelength. Filters emphasize contrast between excitation light and emission light. Specimen viewed directly or photographed on color film.

  17. The 2015 super-resolution microscopy roadmap

    International Nuclear Information System (INIS)

    Hell, Stefan W; Sahl, Steffen J; Bates, Mark; Jakobs, Stefan; Zhuang, Xiaowei; Heintzmann, Rainer; Booth, Martin J; Bewersdorf, Joerg; Shtengel, Gleb; Hess, Harald; Tinnefeld, Philip; Honigmann, Alf; Testa, Ilaria; Cognet, Laurent; Lounis, Brahim; Ewers, Helge; Davis, Simon J; Eggeling, Christian; Klenerman, David; Willig, Katrin I

    2015-01-01

    Far-field optical microscopy using focused light is an important tool in a number of scientific disciplines including chemical, (bio)physical and biomedical research, particularly with respect to the study of living cells and organisms. Unfortunately, the applicability of the optical microscope is limited, since the diffraction of light imposes limitations on the spatial resolution of the image. Consequently the details of, for example, cellular protein distributions, can be visualized only to a certain extent. Fortunately, recent years have witnessed the development of ‘super-resolution’ far-field optical microscopy (nanoscopy) techniques such as stimulated emission depletion (STED), ground state depletion (GSD), reversible saturated optical (fluorescence) transitions (RESOLFT), photoactivation localization microscopy (PALM), stochastic optical reconstruction microscopy (STORM), structured illumination microscopy (SIM) or saturated structured illumination microscopy (SSIM), all in one way or another addressing the problem of the limited spatial resolution of far-field optical microscopy. While SIM achieves a two-fold improvement in spatial resolution compared to conventional optical microscopy, STED, RESOLFT, PALM/STORM, or SSIM have all gone beyond, pushing the limits of optical image resolution to the nanometer scale. Consequently, all super-resolution techniques open new avenues of biomedical research. Because the field is so young, the potential capabilities of different super-resolution microscopy approaches have yet to be fully explored, and uncertainties remain when considering the best choice of methodology. Thus, even for experts, the road to the future is sometimes shrouded in mist. The super-resolution optical microscopy roadmap of Journal of Physics D: Applied Physics addresses this need for clarity. It provides guidance to the outstanding questions through a collection of short review articles from experts in the field, giving a thorough

  18. New microscopy for nanoimaging

    CERN Document Server

    Kinjo, Y; Watanabe, M

    2002-01-01

    Two types of new microscopy, namely, X-ray contact microscopy (XRCM) in combination with atomic force microscopy (AFM) and X-ray projection microscopy (XRPM) using synchrotron radiation and zone plate optics were used to image the fine structures of human chromosomes. In the XRCM plus AFM system, location of X-ray images on a photoresist has become far easier than that with our previous method using transmission electron microscopy coupled with the replica method. In addition, the images obtained suggested that the conformation of chromatin fiber differs from the current textbook model regarding the architecture of a eukaryotic chromosome. X-ray images with high contrast of the specimens could be obtained with XRPM. The resolution of each microscopy was about 30 and 200-300 nm for XRCM plus AFM and XRPM, respectively. (author)

  19. Atom probe field ion microscopy and related topics: A bibliography 1992

    Energy Technology Data Exchange (ETDEWEB)

    Russell, K.F.; Godfrey, R.D.; Miller, M.K.

    1993-12-01

    This bibliography contains citations of books, conference proceedings, journals, and patents published in 1992 on the following types of microscopy: atom probe field ion microscopy (108 items); field emission microscopy (101 items); and field ion microscopy (48 items). An addendum of 34 items missed in previous bibliographies is included.

  20. Microscopy and Image Analysis.

    Science.gov (United States)

    McNamara, George; Difilippantonio, Michael; Ried, Thomas; Bieber, Frederick R

    2017-07-11

    This unit provides an overview of light microscopy, including objectives, light sources, filters, film, and color photography for fluorescence microscopy and fluorescence in situ hybridization (FISH). We believe there are excellent opportunities for cytogeneticists, pathologists, and other biomedical readers, to take advantage of specimen optical clearing techniques and expansion microscopy-we briefly point to these new opportunities. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.

  1. CARS microscopy for imaging

    International Nuclear Information System (INIS)

    Arzumanyan Grigory; Voskanyan Karine

    2013-01-01

    Optical microscopy grows in its importance with the development of modern nanotechnology, biotechnology, methods of diagnostics and treatment of most dangerous diseases for mankind. There are several important goals of optical microscopy for biomedical studies among which the next three may be distinguished: fast imaging with high lateral spatial resolution, 3-D sectioning capability and high contrast for chemical selectivity. To meet these specific requirements, various types of both linear and nonlinear optical microscopy were elaborated. (authors)

  2. Fluorescence (Multiwave) Confocal Microscopy.

    Science.gov (United States)

    Welzel, J; Kästle, Raphaela; Sattler, Elke C

    2016-10-01

    In addition to reflectance confocal microscopy, multiwave confocal microscopes with different laser wavelengths in combination with exogenous fluorophores allow fluorescence mode confocal microscopy in vivo and ex vivo. Fluorescence mode confocal microscopy improves the contrast between the epithelium and the surrounding soft tissue and allows the depiction of certain structures, like epithelial tumors, nerves, and glands. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Electron Microscopy Center (EMC)

    Data.gov (United States)

    Federal Laboratory Consortium — The Electron Microscopy Center (EMC) at Argonne National Laboratory develops and maintains unique capabilities for electron beam characterization and applies those...

  4. Coherent light microscopy

    CERN Document Server

    Ferraro, Pietro; Zalevsky, Zeev

    2011-01-01

    This book deals with the latest achievements in the field of optical coherent microscopy. While many other books exist on microscopy and imaging, this book provides a unique resource dedicated solely to this subject. Similarly, many books describe applications of holography, interferometry and speckle to metrology but do not focus on their use for microscopy. The coherent light microscopy reference provided here does not focus on the experimental mechanics of such techniques but instead is meant to provide a users manual to illustrate the strengths and capabilities of developing techniques. Th

  5. Bridging fluorescence microscopy and electron microscopy

    NARCIS (Netherlands)

    Giepmans, Ben N. G.

    Development of new fluorescent probes and fluorescence microscopes has led to new ways to study cell biology. With the emergence of specialized microscopy units at most universities and research centers, the use of these techniques is well within reach for a broad research community. A major

  6. Confocal Raman microscopy

    CERN Document Server

    Dieing, Thomas; Hollricher, Olaf

    2018-01-01

    This second edition provides a cutting-edge overview of physical, technical and scientific aspects related to the widely used analytical method of confocal Raman microscopy. The book includes expanded background information and adds insights into how confocal Raman microscopy, especially 3D Raman imaging, can be integrated with other methods to produce a variety of correlative microscopy combinations. The benefits are then demonstrated and supported by numerous examples from the fields of materials science, 2D materials, the life sciences, pharmaceutical research and development, as well as the geosciences.

  7. International Multidisciplinary Microscopy Congress

    CERN Document Server

    Oral, Ahmet; Ozer, Mehmet; InterM; INTERM2013

    2014-01-01

    The International Multidisciplinary Microscopy Congress (INTERM2013) was organized on October 10-13, 2013. The aim of the congress was to bring together scientists from various branches to discuss the latest advances in the field of microscopy. The contents of the congress have been broadened to a more "interdisciplinary" scope, so as to allow all scientists working on related subjects to participate and present their work. These proceedings include 39 peer-reviewed technical papers, submitted by leading academic and research institutions from over 12 countries and representing some of the most cutting-edge research available. The 39 papers are grouped into the following sections: - Applications of Microscopy in the Physical Sciences - Applications of Microscopy in the Biological Sciences

  8. Electron holography for polymer microscopy

    International Nuclear Information System (INIS)

    Joy, D.C.

    1992-01-01

    Electron holography provides a radically new approach to the problem of imaging objects such as macromolecules, which exhibit little or no contrast when viewed in the conventional transmission electron microscope (TEM). This is overcome in electron holography by using the macromolecule as a phase object. Computer reconstruction of the hologram then allows the phase to be viewed as an image, and amplified. Holography requires a TEM with a field emission gun, and with an electro-static biprism to produce the interference pattern. The hologram requires a similar radiation dose to conventional microscopy but many different images (e.g. a through focal series) can be extracted from the same hologram. Further developments of the technique promise to combine high contrast imaging of the bulk of the macromolecule together with high spatial resolution imaging of surface detail

  9. Confocal Raman Microscopy

    CERN Document Server

    Dieing, Thomas; Toporski, Jan

    2011-01-01

    Confocal Raman Microscopy is a relatively new technique that allows chemical imaging without specific sample preparation. By integrating a sensitive Raman spectrometer within a state-of-the-art microscope, Raman microscopy with a spatial resolution down to 200nm laterally and 500nm vertically can be achieved using visible light excitation. Recent developments in detector and computer technology as well as optimized instrument design have reduced integration times of Raman spectra by orders of magnitude, so that complete images consisting of tens of thousands of Raman spectra can be acquired in seconds or minutes rather than hours, which used to be standard just one decade ago. The purpose of this book is to provide the reader a comprehensive overview of the rapidly developing field of Confocal Raman Microscopy and its applications.

  10. Confocal scanning microscopy

    DEFF Research Database (Denmark)

    Bariani, Paolo

    This report is based on a metrological investigation on confocal microscopy technique carried out by Uffe Rolf Arlø Theilade and Paolo Bariani. The purpose of the experimental activity was twofold a metrological instrument characterization and application to assessment of rough PP injection moulded...... replicated topography. Confocal microscopy is seen to be a promising technique in metrology of microstructures. Some limitations with respect to surface metrology were found during the experiments. The experiments were carried out using a Zeiss LSM 5 Pascal microscope owned by the Danish Polymer Centre...

  11. Leakage radiation interference microscopy.

    Science.gov (United States)

    Descrovi, Emiliano; Barakat, Elsie; Angelini, Angelo; Munzert, Peter; De Leo, Natascia; Boarino, Luca; Giorgis, Fabrizio; Herzig, Hans Peter

    2013-09-01

    We present a proof of principle for a new imaging technique combining leakage radiation microscopy with high-resolution interference microscopy. By using oil immersion optics it is demonstrated that amplitude and phase can be retrieved from optical fields, which are evanescent in air. This technique is illustratively applied for mapping a surface mode propagating onto a planar dielectric multilayer on a thin glass substrate. The surface mode propagation constant estimated after Fourier transformation of the measured complex field is well matched with an independent measurement based on back focal plane imaging.

  12. ZnO nanocrystals on SiO2/Si surfaces thermally cleaned in ultrahigh vacuum and characterized using spectroscopic photoemission and low energy electron microscopy

    International Nuclear Information System (INIS)

    Ericsson, Leif K. E.; Magnusson, Kjell O.; Zakharov, Alexei A.

    2010-01-01

    Thermal cleaning in ultrahigh vacuum of ZnO nanocrystals distributed on SiO 2 /Si surfaces has been studied using spectroscopic photoemission and low energy electron microscopy (SPELEEM). This study thus concern weakly bound ZnO nanocrystals covering only 5%-10% of the substrate. Chemical properties, crystallinity, and distribution of nanocrystals are used to correlate images acquired with the different techniques showing excellent correspondence. The nanocrystals are shown to be clean enough after thermal cleaning at 650 deg. C to be imaged by LEEM and x-ray PEEM as well as chemically analyzed by site selective x-ray photoelectron spectroscopy (μ-XPS). μ-XPS shows a sharp Zn 3d peak and resolve differences in O 1s states in oxides. The strong LEEM reflections together with the obtained chemical information indicates that the ZnO nanocrystals were thermally cleaned, but do not indicate any decomposition of the nanocrystals. μ-XPS was also used to determine the thickness of SiO 2 on Si. This article is the first to our knowledge where the versatile technique SPELEEM has been used to characterize ZnO nanocrystals.

  13. Application of super-resolution optical microscopy in biology

    International Nuclear Information System (INIS)

    Mao Xiuhai; Du Jiancong; Huang Qing; Fan Chunhai; Deng Suhui

    2013-01-01

    Background: A noninvasive, real-time far-field optical microscopy is needed to study the dynamic function inside cells and proteins. However, the resolution limit of traditional optical microscope is about 200 nm due to the diffraction limit of light. So, it's hard to directly observe the subcellular structures. Over the past several years of microscopy development, the diffraction limit of fluorescence microscopy has been overcome and its resolution limit is about tens of nanometers. Methods: To overcome the diffraction limit of light, many super-resolution fluoresce microscopes, including stimulated emission of depletion microscopy (STED), photoactivation localization microscopy (PALM) and stochastic optical reconstruction microscopy (STORM), have been developed. Conclusions: These methods have been applied in cell biology, microbiology and neurobiology, and the technology of super-resolution provides a new insight into the life science. (authors)

  14. Fluorescence confocal polarizing microscopy

    Indian Academy of Sciences (India)

    Much of the modern understanding of orientational order in liquid crystals (LCs) is based on polarizing microscopy (PM). A PM image bears only two-dimensional (2D) information, integrating the 3D pattern of optical birefringence over the path of light. Recently, we proposed a technique to image 3D director patterns by ...

  15. Ballistic hole magnetic microscopy

    NARCIS (Netherlands)

    Haq, E.; Banerjee, T.; Siekman, M.H.; Lodder, J.C.; Jansen, R.

    2005-01-01

    A technique to study nanoscale spin transport of holes is presented: ballistic hole magnetic microscopy. The tip of a scanning tunneling microscope is used to inject hot electrons into a ferromagnetic heterostructure, where inelastic decay creates a distribution of electron-hole pairs.

  16. Advanced Microscopy of Microbial Cells

    DEFF Research Database (Denmark)

    Haagensen, Janus Anders Juul; Regenberg, Birgitte; Sternberg, Claus

    2011-01-01

    microscopy, super-resolution optical microscopy (STED, SIM, PALM) as well as atomic force microscopy and Raman spectroscopy. Using examples of bistability in microbial populations as well as biofilm development and differentiation in bacterial and yeast consortia, we demonstrate the importance of microscopy...

  17. Scanning electron microscopy-energy dispersive X-ray spectrometry (SEM-EDX) and aerosol time-of-flight mass spectrometry (ATOFMS) single particle analysis of metallurgy plant emissions

    International Nuclear Information System (INIS)

    Arndt, J.; Deboudt, K.; Anderson, A.; Blondel, A.; Eliet, S.; Flament, P.; Fourmentin, M.; Healy, R.M.; Savary, V.; Setyan, A.; Wenger, J.C.

    2016-01-01

    The chemical composition of single particles deposited on industrial filters located in three different chimneys of an iron-manganese (Fe–Mn) alloy manufacturing plant have been compared using aerosol time-of-flight mass spectrometry (ATOFMS) and scanning electron microscopy–energy dispersive X-ray spectrometry (SEM-EDX). Very similar types of particles were observed using both analytical techniques. Calcium-containing particles dominated in the firing area of the sintering unit, Mn and/or Al-bearing particles were observed at the cooling area of the sintering unit, while Mn-containing particles were dominant at the smelting unit. SEM-EDX analysis of particles collected downstream of the industrial filters showed that the composition of the particles emitted from the chimneys is very similar to those collected on the filters. ATOFMS analysis of ore samples was also performed to identify particulate emissions that could be generated by wind erosion and manual activities. Specific particle types have been identified for each emission source (chimneys and ore piles) and can be used as tracers for source apportionment of ambient PM measured in the vicinity of the industrial site. - Highlights: • Similar composition for emitted particles as those collected on the chimney filters. • Emitted particles dominated by Ca-, Mn and/or Al-containing particles. • Identification of specific particle types emitted by the different process units. - The particles emitted by metallurgy activities are fully described by ATOFMS and SEM-EDX, enabling the identification of specific particle types from the different units of the process.

  18. Bessel light sheet structured illumination microscopy

    Science.gov (United States)

    Noshirvani Allahabadi, Golchehr

    Biomedical study researchers using animals to model disease and treatment need fast, deep, noninvasive, and inexpensive multi-channel imaging methods. Traditional fluorescence microscopy meets those criteria to an extent. Specifically, two-photon and confocal microscopy, the two most commonly used methods, are limited in penetration depth, cost, resolution, and field of view. In addition, two-photon microscopy has limited ability in multi-channel imaging. Light sheet microscopy, a fast developing 3D fluorescence imaging method, offers attractive advantages over traditional two-photon and confocal microscopy. Light sheet microscopy is much more applicable for in vivo 3D time-lapsed imaging, owing to its selective illumination of tissue layer, superior speed, low light exposure, high penetration depth, and low levels of photobleaching. However, standard light sheet microscopy using Gaussian beam excitation has two main disadvantages: 1) the field of view (FOV) of light sheet microscopy is limited by the depth of focus of the Gaussian beam. 2) Light-sheet images can be degraded by scattering, which limits the penetration of the excitation beam and blurs emission images in deep tissue layers. While two-sided sheet illumination, which doubles the field of view by illuminating the sample from opposite sides, offers a potential solution, the technique adds complexity and cost to the imaging system. We investigate a new technique to address these limitations: Bessel light sheet microscopy in combination with incoherent nonlinear Structured Illumination Microscopy (SIM). Results demonstrate that, at visible wavelengths, Bessel excitation penetrates up to 250 microns deep in the scattering media with single-side illumination. Bessel light sheet microscope achieves confocal level resolution at a lateral resolution of 0.3 micron and an axial resolution of 1 micron. Incoherent nonlinear SIM further reduces the diffused background in Bessel light sheet images, resulting in

  19. Polarized Light Microscopy

    Science.gov (United States)

    Frandsen, Athela F.

    2016-01-01

    Polarized light microscopy (PLM) is a technique which employs the use of polarizing filters to obtain substantial optical property information about the material which is being observed. This information can be combined with other microscopy techniques to confirm or elucidate the identity of an unknown material, determine whether a particular contaminant is present (as with asbestos analysis), or to provide important information that can be used to refine a manufacturing or chemical process. PLM was the major microscopy technique in use for identification of materials for nearly a century since its introduction in 1834 by William Fox Talbot, as other techniques such as SEM (Scanning Electron Microscopy), FTIR (Fourier Transform Infrared spectroscopy), XPD (X-ray Powder Diffraction), and TEM (Transmission Electron Microscopy) had not yet been developed. Today, it is still the only technique approved by the Environmental Protection Agency (EPA) for asbestos analysis, and is often the technique first applied for identification of unknown materials. PLM uses different configurations in order to determine different material properties. With each configuration additional clues can be gathered, leading to a conclusion of material identity. With no polarizing filter, the microscope can be used just as a stereo optical microscope, and view qualities such as morphology, size, and number of phases. With a single polarizing filter (single polars), additional properties can be established, such as pleochroism, individual refractive indices, and dispersion staining. With two polarizing filters (crossed polars), even more can be deduced: isotropy vs. anisotropy, extinction angle, birefringence/degree of birefringence, sign of elongation, and anomalous polarization colors, among others. With the use of PLM many of these properties can be determined in a matter of seconds, even for those who are not highly trained. McCrone, a leader in the field of polarized light microscopy, often

  20. Low copper and high manganese levels in prion protein plaques

    Science.gov (United States)

    Johnson, Christopher J.; Gilbert, P.U.P.A.; Abrecth, Mike; Baldwin, Katherine L.; Russell, Robin E.; Pedersen, Joel A.; McKenzie, Debbie

    2013-01-01

    Accumulation of aggregates rich in an abnormally folded form of the prion protein characterize the neurodegeneration caused by transmissible spongiform encephalopathies (TSEs). The molecular triggers of plaque formation and neurodegeneration remain unknown, but analyses of TSE-infected brain homogenates and preparations enriched for abnormal prion protein suggest that reduced levels of copper and increased levels of manganese are associated with disease. The objectives of this study were to: (1) assess copper and manganese levels in healthy and TSE-infected Syrian hamster brain homogenates; (2) determine if the distribution of these metals can be mapped in TSE-infected brain tissue using X-ray photoelectron emission microscopy (X-PEEM) with synchrotron radiation; and (3) use X-PEEM to assess the relative amounts of copper and manganese in prion plaques in situ. In agreement with studies of other TSEs and species, we found reduced brain levels of copper and increased levels of manganese associated with disease in our hamster model. We also found that the in situ levels of these metals in brainstem were sufficient to image by X-PEEM. Using immunolabeled prion plaques in directly adjacent tissue sections to identify regions to image by X-PEEM, we found a statistically significant relationship of copper-manganese dysregulation in prion plaques: copper was depleted whereas manganese was enriched. These data provide evidence for prion plaques altering local transition metal distribution in the TSE-infected central nervous system.

  1. Electron microscopy in metallurgy

    International Nuclear Information System (INIS)

    Loretto, M.H.

    1980-01-01

    The aim of this paper is to review briefly the contribution which (TEM) transmission electron microscopy (including high voltage electron microscopy (HVEM)) has made to metallurgy. Since it is straightforward with modern electron microscopes to extract the crystallographic information which provides the basis for any interpretation, the major problem in most metallurgical work lies in assessing how the structure (which TEM has characterised) has arisen and which properties of the specimen can be understood in terms of this structure. Radiation damage, quenching, phase transformations, grain boundaries and plastic deformation have been the main fields in which TEM has contributed significantly. After briefly summarising the role of TEM in each field, examples of recent work will be used to indicate current TEM activity in physical metallurgy. (author)

  2. Second harmonic generation microscopy

    DEFF Research Database (Denmark)

    Brüggemann, Dagmar Adeline; Brewer, Jonathan R.; Risbo, Jens

    2010-01-01

    Myofibers and collagen show non-linear optical properties enabling imaging using second harmonic generation (SHG) microscopy. The technique is evaluated for use as a tool for real-time studies of thermally induced changes in thin samples of unfixed and unstained pork. The forward and the backward...... scattered SHG light reveal complementary features of the structures of myofibers and collagen fibers. Upon heating the myofibers show no structural changes before reaching a temperature of 53 °C. At this temperature the SHG signal becomes extinct. The extinction of the SHG at 53 °C coincides with a low......-temperature endotherm peak observable in the differential scanning calorimetry (DSC) thermograms. DSC analysis of epimysium, the connective tissue layer that enfold skeletal muscles, produces one large endotherm starting at 57 °C and peaking at 59.5 °C. SHG microscopy of collagen fibers reveals a variability of thermal...

  3. Electron microscopy and diffraction

    International Nuclear Information System (INIS)

    Gjoennes, J.; Olsen, A.

    1986-01-01

    This report is a description of research activities and plans at the electron microscopy laboratorium, Physics Department, University of Oslo. Since the first electron microscope was installed in 1968, the research has covered inorganic structures, physical metallurgy, as well as theory of electron scattering and the development of methods in this field. The current plans involve efforts in the development of crystallographic and spectroscopic methods

  4. Deep Learning Microscopy

    KAUST Repository

    Rivenson, Yair

    2017-05-12

    We demonstrate that a deep neural network can significantly improve optical microscopy, enhancing its spatial resolution over a large field-of-view and depth-of-field. After its training, the only input to this network is an image acquired using a regular optical microscope, without any changes to its design. We blindly tested this deep learning approach using various tissue samples that are imaged with low-resolution and wide-field systems, where the network rapidly outputs an image with remarkably better resolution, matching the performance of higher numerical aperture lenses, also significantly surpassing their limited field-of-view and depth-of-field. These results are transformative for various fields that use microscopy tools, including e.g., life sciences, where optical microscopy is considered as one of the most widely used and deployed techniques. Beyond such applications, our presented approach is broadly applicable to other imaging modalities, also spanning different parts of the electromagnetic spectrum, and can be used to design computational imagers that get better and better as they continue to image specimen and establish new transformations among different modes of imaging.

  5. Fourier plane imaging microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Dominguez, Daniel, E-mail: daniel.dominguez@ttu.edu; Peralta, Luis Grave de [Department of Physics, Texas Tech University, Lubbock, Texas 79409 (United States); Nano Tech Center, Texas Tech University, Lubbock, Texas 79409 (United States); Alharbi, Nouf; Alhusain, Mdhaoui [Department of Physics, Texas Tech University, Lubbock, Texas 79409 (United States); Bernussi, Ayrton A. [Nano Tech Center, Texas Tech University, Lubbock, Texas 79409 (United States); Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, Texas 79409 (United States)

    2014-09-14

    We show how the image of an unresolved photonic crystal can be reconstructed using a single Fourier plane (FP) image obtained with a second camera that was added to a traditional compound microscope. We discuss how Fourier plane imaging microscopy is an application of a remarkable property of the obtained FP images: they contain more information about the photonic crystals than the images recorded by the camera commonly placed at the real plane of the microscope. We argue that the experimental results support the hypothesis that surface waves, contributing to enhanced resolution abilities, were optically excited in the studied photonic crystals.

  6. Electrochemical force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kalinin, Sergei V.; Jesse, Stephen; Collins, Liam F.; Rodriguez, Brian J.

    2017-01-10

    A system and method for electrochemical force microscopy are provided. The system and method are based on a multidimensional detection scheme that is sensitive to forces experienced by a biased electrode in a solution. The multidimensional approach allows separation of fast processes, such as double layer charging, and charge relaxation, and slow processes, such as diffusion and faradaic reactions, as well as capturing the bias dependence of the response. The time-resolved and bias measurements can also allow probing both linear (small bias range) and non-linear (large bias range) electrochemical regimes and potentially the de-convolution of charge dynamics and diffusion processes from steric effects and electrochemical reactivity.

  7. Super-resolution Microscopy in Plant Cell Imaging.

    Science.gov (United States)

    Komis, George; Šamajová, Olga; Ovečka, Miroslav; Šamaj, Jozef

    2015-12-01

    Although the development of super-resolution microscopy methods dates back to 1994, relevant applications in plant cell imaging only started to emerge in 2010. Since then, the principal super-resolution methods, including structured-illumination microscopy (SIM), photoactivation localization microscopy (PALM), stochastic optical reconstruction microscopy (STORM), and stimulated emission depletion microscopy (STED), have been implemented in plant cell research. However, progress has been limited due to the challenging properties of plant material. Here we summarize the basic principles of existing super-resolution methods and provide examples of applications in plant science. The limitations imposed by the nature of plant material are reviewed and the potential for future applications in plant cell imaging is highlighted. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Correlative Stochastic Optical Reconstruction Microscopy and Electron Microscopy

    Science.gov (United States)

    Kim, Doory; Deerinck, Thomas J.; Sigal, Yaron M.; Babcock, Hazen P.; Ellisman, Mark H.; Zhuang, Xiaowei

    2015-01-01

    Correlative fluorescence light microscopy and electron microscopy allows the imaging of spatial distributions of specific biomolecules in the context of cellular ultrastructure. Recent development of super-resolution fluorescence microscopy allows the location of molecules to be determined with nanometer-scale spatial resolution. However, correlative super-resolution fluorescence microscopy and electron microscopy (EM) still remains challenging because the optimal specimen preparation and imaging conditions for super-resolution fluorescence microscopy and EM are often not compatible. Here, we have developed several experiment protocols for correlative stochastic optical reconstruction microscopy (STORM) and EM methods, both for un-embedded samples by applying EM-specific sample preparations after STORM imaging and for embedded and sectioned samples by optimizing the fluorescence under EM fixation, staining and embedding conditions. We demonstrated these methods using a variety of cellular targets. PMID:25874453

  9. Calcified-tissue investigations using synchrotron x-ray microscopy

    International Nuclear Information System (INIS)

    Jones, K.W.; Spanne, P.; Schidlovsky, G.; Dejun, X.; Bockman, R.S.; Hammond, P.B.; Bornschein, R.L.; Hoeltzel, D.A.

    1990-10-01

    Synchrotron x-ray microscopy (SXRM) in both emission and absorption modes has been used to examine elemental distributions in specimens of rat tibia, human deciduous teeth, and an orthopedic implant phantom. The work was performed with a spatial resolution of 8 μm for the emission work and 25 μm for the absorption work. The results illustrate the usefulness of SXRM for measurements of different types of calcified tissue. 3 figs

  10. Acoustic emission

    International Nuclear Information System (INIS)

    Nichols, R.W.

    1976-01-01

    The volume contains six papers which together provide an overall review of the inspection technique known as acoustic emission or stress wave emission. The titles are: a welder's introduction to acoustic emission technology; use of acoustic emission for detection of defects as they arise during fabrication; examples of laboratory application and assessment of acoustic emission in the United Kingdom; (Part I: acoustic emission behaviour of low alloy steels; Part II: fatigue crack assessment from proof testing and continuous monitoring); inspection of selected areas of engineering structures by acoustic emission; Japanese experience in laboratory and practical applications of acoustic emission to welded structures; and ASME acoustic emission code status. (U.K.)

  11. Advanced Microscopy of Microbial Cells

    DEFF Research Database (Denmark)

    Haagensen, Janus Anders Juul; Regenberg, Birgitte; Sternberg, Claus

    2011-01-01

    Growing awareness of heterogeneity in cells of microbial populations has emphasized the importance of advanced microscopy for visualization and understanding of the molecular mechanisms underlying cell-to-cell variation. In this review, we highlight some of the recent advances in confocal...... microscopy, super-resolution optical microscopy (STED, SIM, PALM) as well as atomic force microscopy and Raman spectroscopy. Using examples of bistability in microbial populations as well as biofilm development and differentiation in bacterial and yeast consortia, we demonstrate the importance of microscopy...

  12. Hyperspectral light sheet microscopy

    Science.gov (United States)

    Jahr, Wiebke; Schmid, Benjamin; Schmied, Christopher; Fahrbach, Florian O.; Huisken, Jan

    2015-09-01

    To study the development and interactions of cells and tissues, multiple fluorescent markers need to be imaged efficiently in a single living organism. Instead of acquiring individual colours sequentially with filters, we created a platform based on line-scanning light sheet microscopy to record the entire spectrum for each pixel in a three-dimensional volume. We evaluated data sets with varying spectral sampling and determined the optimal channel width to be around 5 nm. With the help of these data sets, we show that our setup outperforms filter-based approaches with regard to image quality and discrimination of fluorophores. By spectral unmixing we resolved overlapping fluorophores with up to nanometre resolution and removed autofluorescence in zebrafish and fruit fly embryos.

  13. Progress in the Correlative Atomic Force Microscopy and Optical Microscopy

    Directory of Open Access Journals (Sweden)

    Lulu Zhou

    2017-04-01

    Full Text Available Atomic force microscopy (AFM has evolved from the originally morphological imaging technique to a powerful and multifunctional technique for manipulating and detecting the interactions between molecules at nanometer resolution. However, AFM cannot provide the precise information of synchronized molecular groups and has many shortcomings in the aspects of determining the mechanism of the interactions and the elaborate structure due to the limitations of the technology, itself, such as non-specificity and low imaging speed. To overcome the technical limitations, it is necessary to combine AFM with other complementary techniques, such as fluorescence microscopy. The combination of several complementary techniques in one instrument has increasingly become a vital approach to investigate the details of the interactions among molecules and molecular dynamics. In this review, we reported the principles of AFM and optical microscopy, such as confocal microscopy and single-molecule localization microscopy, and focused on the development and use of correlative AFM and optical microscopy.

  14. Electron microscopy (nonbiological)

    International Nuclear Information System (INIS)

    Cowley, J.M.

    1986-01-01

    The period 1982-1985, which is covered by this review, has seen major advances in the capabilities of the commercially available instruments. The new electron microscopes operating in the range of 300-400 keV have provided important improvements in the resolution available and in the possibilities for microanalysis of very small specimen areas. Correspondingly there has been a broadening in the range of possible applications of the techniques. Electron microscopy has become a much more powerful tool for studies of semiconductors and catalysts, for example, and offers promise of a major revolution in surface science. The major industrial laboratories, in particular, are investing in million-dollar instruments and in the highly skilled scientists needed to run them because the capabilities of the new instruments are seen to have immediate practical applications to current industrial research. Unfortunately all of the new instruments and most of the skilled users come from overseas. The American instrument industry, although showing some limited signs of life, is not yet in a position to compete in this lucrative market and the training of electron optics specialists in this country is far from meeting the demand. The increased sophistication required for both the operation of the instruments and the interpretation of the observation requires that the quality as well as the quantity of trainees must be improved. 62 references

  15. Ultrafast scanning tunneling microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Botkin, D.A. [California Univ., Berkeley, CA (United States). Dept. of Physics]|[Lawrence Berkeley Lab., CA (United States)

    1995-09-01

    I have developed an ultrafast scanning tunneling microscope (USTM) based on uniting stroboscopic methods of ultrafast optics and scanned probe microscopy to obtain nanometer spatial resolution and sub-picosecond temporal resolution. USTM increases the achievable time resolution of a STM by more than 6 orders of magnitude; this should enable exploration of mesoscopic and nanometer size systems on time scales corresponding to the period or decay of fundamental excitations. USTM consists of a photoconductive switch with subpicosecond response time in series with the tip of a STM. An optical pulse from a modelocked laser activates the switch to create a gate for the tunneling current, while a second laser pulse on the sample initiates a dynamic process which affects the tunneling current. By sending a large sequence of identical pulse pairs and measuring the average tunnel current as a function of the relative time delay between the pulses in each pair, one can map the time evolution of the surface process. USTM was used to measure the broadband response of the STM`s atomic size tunnel barrier in frequencies from tens to hundreds of GHz. The USTM signal amplitude decays linearly with the tunnel junction conductance, so the spatial resolution of the time-resolved signal is comparable to that of a conventional STM. Geometrical capacitance of the junction does not appear to play an important role in the measurement, but a capacitive effect intimately related to tunneling contributes to the measured signals and may limit the ultimate resolution of the USTM.

  16. Superconductivity and electron microscopy

    International Nuclear Information System (INIS)

    Hawkes, P.W.; Valdre, U.

    1977-01-01

    In this review article, two aspects of the role of superconductivity in electron microscopy are examined: (i) the development of superconducting devices (mainly lenses) and their incorporation in electron microscopes; (ii) the development of electron microscope techniques for studying fundamental and technological problems associated with superconductivity. The first part opens with a brief account of the relevant properties of conventional lenses, after which the various types of superconducting lenses are described and their properties compared. The relative merits and inconveniences of superconducting and conventional lenses are examined, particular attention being paid to the spherical and chromatic aberration coefficients at accelerating voltages above a megavolt. This part closes with a survey of the various microscope designs that have been built or proposed, incorporating superconducting components. In the second part, some methods that have been or might be used in the study of superconductivity in the electron microscope are described. A brief account of the types of application for which they are suitable is given. (author)

  17. Transmission acoustic microscopy investigation

    Science.gov (United States)

    Maev, Roman; Kolosov, Oleg; Levin, Vadim; Lobkis, Oleg

    The nature of acoustic contrast, i.e. the connection of the amplitude and phase of the output signal of the acoustic microscope with the local values of the acoustic parameters of the sample (density, elasticity, viscosity) is a central problem of acoustic microscopy. A considerable number of studies have been devoted to the formation of the output signal of the reflection scanning acoustic microscope. For the transmission acoustic microscope (TAM) this problem has remained almost unstudied. Experimental investigation of the confocal system of the TAM was carried out on an independently manufactured laboratory mockup of the TAM with the working frequency of the 420 MHz. Acoustic lenses with the radius of curvature of about 500 microns and aperture angle of 45 deg were polished out in the end faces of two cylindrical sound conductors made from Al2O3 single crystals with an axis parallel to the axis C of the crystal (the length of the sound conductor is 20 mm; diameter, 6 mm). At the end faces of the sound conductor, opposite to the lenses, CdS transducers with a diameter of 2 mm were disposed. The electric channel of the TAM provided a possibility for registering the amplitude of the microscope output signal in the case of the dynamic range of the 50 dB.

  18. Innovative Strategies for Clinical Microscopy Instruction: Virtual Versus Light Microscopy.

    Science.gov (United States)

    McDaniel, M Jane; Russell, Gregory B; Crandall, Sonia J

    2018-06-01

    The purpose of the study was to compare virtual microscopy with light microscopy to determine differences in learning outcomes and learner attitudes in teaching clinical microscopy to physician assistant (PA) students. A prospective, randomized, crossover design study was conducted with a convenience sample of 67 first-year PA students randomized to 2 groups. One group used light microscopes to find microscopic structures, whereas the other group used instructor-directed video streaming of microscopic elements. At the midpoint of the study, the groups switched instructional strategies. Learning outcomes were assessed via posttest after each section of the study, with comparison of final practical examination results to previous cohorts. Attitudes about the 2 educational strategies were assessed through a postcourse questionnaire with a Likert scale. Analysis of the first posttest demonstrated that students in the video-streamed group had significantly better learning outcomes than those in the light microscopy group (P = .004; Cohen's d = 0.74). Analysis of the posttest after crossover showed no differences between the 2 groups (P = .48). Between the 2 posttests, students first assigned to the light microscopy group scored a 6.6 mean point increase (±10.4 SD; p = .0011), whereas students first assigned to the virtual microscopy group scored a 1.3 mean point increase (±7.1 SD; p = .29). The light microscopy group improved more than the virtual microscopy group (P = .019). Analysis of practical examination data revealed higher scores for the study group compared with 5 previous cohorts of first-year students (P virtual microscopy to traditional light microscopy. Virtual microscopy is an effective educational strategy, and students prefer this method when learning to interpret images of clinical specimens.

  19. Single cell elemental analysis using nuclear microscopy

    International Nuclear Information System (INIS)

    Ren, M.Q.; Thong, P.S.P.; Kara, U.; Watt, F.

    1999-01-01

    The use of Particle Induced X-ray Emission (PIXE), Rutherford Backscattering Spectrometry (RBS) and Scanning Transmission Ion Microscopy (STIM) to provide quantitative elemental analysis of single cells is an area which has high potential, particularly when the trace elements such as Ca, Fe, Zn and Cu can be monitored. We describe the methodology of sample preparation for two cell types, the procedures of cell imaging using STIM, and the quantitative elemental analysis of single cells using RBS and PIXE. Recent work on single cells at the Nuclear Microscopy Research Centre,National University of Singapore has centred around two research areas: (a) Apoptosis (programmed cell death), which has been recently implicated in a wide range of pathological conditions such as cancer, Parkinson's disease etc, and (b) Malaria (infection of red blood cells by the malaria parasite). Firstly we present results on the elemental analysis of human Chang liver cells (ATTCC CCL 13) where vanadium ions were used to trigger apoptosis, and demonstrate that nuclear microscopy has the capability of monitoring vanadium loading within individual cells. Secondly we present the results of elemental changes taking place in individual mouse red blood cells which have been infected with the malaria parasite and treated with the anti-malaria drug Qinghaosu (QHS)

  20. NDE Acoustic Microscopy Research Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The purpose is to develop advanced, more effective high-resolution micro-NDE materials characterization methods using scanning acoustic microscopy. The laboratory's...

  1. Magnetic Resonance Force Microscopy System

    Data.gov (United States)

    Federal Laboratory Consortium — The Magnetic Resonance Force Microscopy (MRFM) system, developed by ARL, is the world's most sensitive nuclear magnetic resonance (NMR) spectroscopic analysis tool,...

  2. Evaluations of carbon nanotube field emitters for electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Nakahara, Hitoshi, E-mail: nakahara@nagoya-u.jp [Department of Quantum Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); Kusano, Yoshikazu; Kono, Takumi; Saito, Yahachi [Department of Quantum Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan)

    2009-11-30

    Brightness of carbon nanotube (CNT) emitters was already reported elsewhere. However, brightness of electron emitter is affected by a virtual source size of the emitter, which strongly depends on electron optical configuration around the emitter. In this work, I-V characteristics and brightness of a CNT emitter are measured under a practical field emission electron gun (e-gun) configuration to investigate availability of CNT for electron microscopy. As a result, it is obtained that an emission area of MWNT is smaller than its tip surface area, and the emission area corresponds to a five-membered-ring with 2nd nearest six-membered-rings on the MWNT cap surface. Reduced brightness of MWNT is measured as at least 2.6x10{sup 9} A/m{sup 2} sr V. It is concluded that even a thick MWNT has enough brightness under a practical e-gun electrode configuration and suitable for electron microscopy.

  3. Evaluations of carbon nanotube field emitters for electron microscopy

    Science.gov (United States)

    Nakahara, Hitoshi; Kusano, Yoshikazu; Kono, Takumi; Saito, Yahachi

    2009-11-01

    Brightness of carbon nanotube (CNT) emitters was already reported elsewhere. However, brightness of electron emitter is affected by a virtual source size of the emitter, which strongly depends on electron optical configuration around the emitter. In this work, I- V characteristics and brightness of a CNT emitter are measured under a practical field emission electron gun (e-gun) configuration to investigate availability of CNT for electron microscopy. As a result, it is obtained that an emission area of MWNT is smaller than its tip surface area, and the emission area corresponds to a five-membered-ring with 2nd nearest six-membered-rings on the MWNT cap surface. Reduced brightness of MWNT is measured as at least 2.6×109 A/m 2 sr V. It is concluded that even a thick MWNT has enough brightness under a practical e-gun electrode configuration and suitable for electron microscopy.

  4. Scanning Emitter Lifetime Imaging Microscopy for Spontaneous Emission Control

    DEFF Research Database (Denmark)

    Frimmer, Martin; Chen, Yuntian; Koenderink, A. Femius

    2011-01-01

    We report an experimental technique to map and exploit the local density of optical states of arbitrary planar nanophotonic structures. The method relies on positioning a spontaneous emitter attached to a scanning probe deterministically and reversibly with respect to its photonic environment while...

  5. Crystals for krypton helium-alpha line emission microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Koch, Jeffrey A.; Haugh, Michael J.

    2018-04-17

    A system for reflecting and recording x-ray radiation from an x-ray emitting event to characterize the event. A crystal is aligned to receive radiation along a first path from an x-ray emitting event. Upon striking the crystal, the x-ray reflects from the crystal along a second path due to a reflection plane of the crystal defined by one of the following Miller indices: (9,7,3) or (11,3,3). Exemplary crystalline material is germanium. The x-rays are reflected to a detector aligned to receive reflected x-rays that are reflected from the crystal along the second path and the detector generates a detector signal in response to x-rays impacting the detector. The detector may include a CCD electronic detector, film plates, or any other detector type. A processor receives and processes the detector signal to generate reflection data representing the x-rays emitted from the x-ray emitting event.

  6. Aberrations and adaptive optics in super-resolution microscopy

    Science.gov (United States)

    Booth, Martin; Andrade, Débora; Burke, Daniel; Patton, Brian; Zurauskas, Mantas

    2015-01-01

    As one of the most powerful tools in the biological investigation of cellular structures and dynamic processes, fluorescence microscopy has undergone extraordinary developments in the past decades. The advent of super-resolution techniques has enabled fluorescence microscopy – or rather nanoscopy – to achieve nanoscale resolution in living specimens and unravelled the interior of cells with unprecedented detail. The methods employed in this expanding field of microscopy, however, are especially prone to the detrimental effects of optical aberrations. In this review, we discuss how super-resolution microscopy techniques based upon single-molecule switching, stimulated emission depletion and structured illumination each suffer from aberrations in different ways that are dependent upon intrinsic technical aspects. We discuss the use of adaptive optics as an effective means to overcome this problem. PMID:26124194

  7. Electronic Blending in Virtual Microscopy

    Science.gov (United States)

    Maybury, Terrence S.; Farah, Camile S.

    2010-01-01

    Virtual microscopy (VM) is a relatively new technology that transforms the computer into a microscope. In essence, VM allows for the scanning and transfer of glass slides from light microscopy technology to the digital environment of the computer. This transition is also a function of the change from print knowledge to electronic knowledge, or as…

  8. Atom probe field ion microscopy and related topics: A bibliography 1989

    International Nuclear Information System (INIS)

    Miller, M.K.; Hawkins, A.R.; Russell, K.F.

    1990-12-01

    This bibliography includes references related to the following topics: atom probe field ion microscopy (APFIM), field ion spectroscopy (FIM), field emission microscopy (FEM), liquid metal ion sources (LMIS), scanning tunneling microscopy (STM), and theory. Technique-orientated studies and applications are included. This bibliography covers the period 1989. The references contained in this document were compiled from a variety of sources including computer searches and personal lists of publications

  9. Microscopy techniques in flavivirus research.

    Science.gov (United States)

    Chong, Mun Keat; Chua, Anthony Jin Shun; Tan, Terence Tze Tong; Tan, Suat Hoon; Ng, Mah Lee

    2014-04-01

    The Flavivirus genus is composed of many medically important viruses that cause high morbidity and mortality, which include Dengue and West Nile viruses. Various molecular and biochemical techniques have been developed in the endeavour to study flaviviruses. However, microscopy techniques still have irreplaceable roles in the identification of novel virus pathogens and characterization of morphological changes in virus-infected cells. Fluorescence microscopy contributes greatly in understanding the fundamental viral protein localizations and virus-host protein interactions during infection. Electron microscopy remains the gold standard for visualizing ultra-structural features of virus particles and infected cells. New imaging techniques and combinatory applications are continuously being developed to push the limit of resolution and extract more quantitative data. Currently, correlative live cell imaging and high resolution three-dimensional imaging have already been achieved through the tandem use of optical and electron microscopy in analyzing biological specimens. Microscopy techniques are also used to measure protein binding affinities and determine the mobility pattern of proteins in cells. This chapter will consolidate on the applications of various well-established microscopy techniques in flavivirus research, and discuss how recently developed microscopy techniques can potentially help advance our understanding in these membrane viruses. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Fluorescence confocal microscopy for pathologists.

    Science.gov (United States)

    Ragazzi, Moira; Piana, Simonetta; Longo, Caterina; Castagnetti, Fabio; Foroni, Monica; Ferrari, Guglielmo; Gardini, Giorgio; Pellacani, Giovanni

    2014-03-01

    Confocal microscopy is a non-invasive method of optical imaging that may provide microscopic images of untreated tissue that correspond almost perfectly to hematoxylin- and eosin-stained slides. Nowadays, following two confocal imaging systems are available: (1) reflectance confocal microscopy, based on the natural differences in refractive indices of subcellular structures within the tissues; (2) fluorescence confocal microscopy, based on the use of fluorochromes, such as acridine orange, to increase the contrast epithelium-stroma. In clinical practice to date, confocal microscopy has been used with the goal of obviating the need for excision biopsies, thereby reducing the need for pathological examination. The aim of our study was to test fluorescence confocal microscopy on different types of surgical specimens, specifically breast, lymph node, thyroid, and colon. The confocal images were correlated to the corresponding histological sections in order to provide a morphologic parallel and to highlight current limitations and possible applications of this technology for surgical pathology practice. As a result, neoplastic tissues were easily distinguishable from normal structures and reactive processes such as fibrosis; the use of fluorescence enhanced contrast and image quality in confocal microscopy without compromising final histologic evaluation. Finally, the fluorescence confocal microscopy images of the adipose tissue were as accurate as those of conventional histology and were devoid of the frozen-section-related artefacts that can compromise intraoperative evaluation. Despite some limitations mainly related to black/white images, which require training in imaging interpretation, this study confirms that fluorescence confocal microscopy may represent an alternative to frozen sections in the assessment of margin status in selected settings or when the conservation of the specimen is crucial. This is the first study to employ fluorescent confocal microscopy on

  11. Transmission electron microscopy physics of image formation and microanalysis

    CERN Document Server

    Reimer, Ludwig

    1993-01-01

    "Transmission Electron Microscopy" presents the theory of image and contrastformation, and the analytical modes in transmission electron microscopy Theprinciples of particle and wave optics of electrons are described Electron-specimen interactions are discussed for evaluating the theory of scattering and phase contrast Also analysed are the kinetical and dynamical theories of electron diffraction and their applications for crystal-structure determination and imaging of lattices and their defects X-ray microanalysis and electron energy-loss spectroscopy are treated as analytical methods The third edition includes a brief discussionof Schottky emission guns, some clarification of minor details, and references to the recent literature

  12. Emissions Trading

    NARCIS (Netherlands)

    Woerdman, Edwin; Backhaus, Juergen

    2014-01-01

    Emissions trading is a market-based instrument to achieve environmental targets in a cost-effective way by allowing legal entities to buy and sell emission rights. The current international dissemination and intended linking of emissions trading schemes underlines the growing relevance of this

  13. Scanning Tunneling Microscopy - image interpretation

    International Nuclear Information System (INIS)

    Maca, F.

    1998-01-01

    The basic ideas of image interpretation in Scanning Tunneling Microscopy are presented using simple quantum-mechanical models and supplied with examples of successful application. The importance is stressed of a correct interpretation of this brilliant experimental surface technique

  14. Emission Facilities - Air Emission Plants

    Data.gov (United States)

    NSGIC Education | GIS Inventory — Represents the Primary Facility type Air Emission Plant (AEP) point features. Air Emissions Plant is a DEP primary facility type related to the Air Quality Program....

  15. Emission inventory; Inventaire des emissions

    Energy Technology Data Exchange (ETDEWEB)

    Fontelle, J.P. [CITEPA, Centre Interprofessionnel Technique d`Etudes de la Pollution Atmospherique, 75 - Paris (France)

    1997-12-31

    Statistics on air pollutant (sulfur dioxide, nitrogen oxides and ammonium) emissions, acid equivalent emissions and their evolution since 1990 in the various countries of Europe and the USA, are presented. Emission data from the industrial, agricultural, transportation and power sectors are given, and comparisons are carried out between countries based on Gnp and population, pollution import/export fluxes and compliance to the previous emission reduction objectives

  16. Optimal model-based sensorless adaptive optics for epifluorescence microscopy.

    Science.gov (United States)

    Pozzi, Paolo; Soloviev, Oleg; Wilding, Dean; Vdovin, Gleb; Verhaegen, Michel

    2018-01-01

    We report on a universal sample-independent sensorless adaptive optics method, based on modal optimization of the second moment of the fluorescence emission from a point-like excitation. Our method employs a sample-independent precalibration, performed only once for the particular system, to establish the direct relation between the image quality and the aberration. The method is potentially applicable to any form of microscopy with epifluorescence detection, including the practically important case of incoherent fluorescence emission from a three dimensional object, through minor hardware modifications. We have applied the technique successfully to a widefield epifluorescence microscope and to a multiaperture confocal microscope.

  17. Investigation of ceramic devices by analytical electron microscopy techniques

    International Nuclear Information System (INIS)

    Shiojiri, M.; Saijo, H.; Isshiki, T.; Kawasaki, M.; Yoshioka, T.; Sato, S.; Nomura, T.

    1999-01-01

    Ceramics are widely used as capacitors and varistors. Their electrical properties depend on the structure, which is deeply influenced not only by the composition of raw materials and additives but also by heating treatments in the production process. This paper reviews our investigations of SrTiO 3 ceramic devices, which have been performed using various microscopy techniques such as high-resolution transmission electron microscopy (HRTEM), cathodoluminescence scanning electron microscopy (CLSEM), field emission SEM (FE-SEM), energy dispersive X-ray spectroscopy (EDS), electron energy-loss spectroscopy (EELS) and high angle annular dark field (HAADF) imaging method in a FE-(scanning) transmission electron microscope(FE-(S)TEM). (author)

  18. Nuclear microscopy in medical research. Investigations into degenerative diseases

    Energy Technology Data Exchange (ETDEWEB)

    Makjanic, J; Thong, P; Watt, F [National University of Singapore (Singapore). Dept. of Physics

    1997-03-01

    The high energy (1-4MeV) focused ion beam (nuclear microbeam) has found uses in many scientific disciplines through a wide variety of ion beam based techniques. Of the many techniques available, the powerful combination of Particle Induced X-Ray Emission (PIXE), Rutherford Backscattering Spectrometry (RBS), and Scanning Transmission Ion Microscopy (STIM) is proving to be extremely useful, particularly in the characterisation and elemental analysis of thin specimens. In this paper we briefly review these ion beam techniques, as well as the hardware required for their application. Finally, we describe the application of the PIXE, RBS and STIM techniques in conjunction with a scanning focused 2MeV proton microbeam (nuclear microscopy). The examples chosen to illustrate the potential of nuclear microscopy are recent investigations into the degenerative diseases atherosclerosis (coronary heart disease), Parkinson`s disease and Alzheimer`s disease. (author)

  19. Particles and waves in electron optics and microscopy

    CERN Document Server

    Pozzi, Giulio

    2016-01-01

    Advances in Imaging and Electron Physics merges two long-running serials, Advances in Electronics and Electron Physics and Advances in Optical and Electron Microscopy. The series features extended articles on the physics of electron devices (especially semiconductor devices), particle optics at high and low energies, microlithography, image science, digital image processing, electromagnetic wave propagation, electron microscopy, and the computing methods used in all these domains. * Contains contributions from leading authorities on the subject matter* Informs and updates all the latest developments in the field of imaging and electron physics* Provides practitioners interested in microscopy, optics, image processing, mathematical morphology, electromagnetic fields, electron, and ion emission with a valuable resource* Features extended articles on the physics of electron devices (especially semiconductor devices), particle optics at high and low energies, microlithography, image science, and digital image pro...

  20. Image formation and image analysis in electron microscopy

    International Nuclear Information System (INIS)

    Heel, M. van.

    1981-01-01

    This thesis covers various aspects of image formation and image analysis in electron microscopy. The imaging of relatively strong objects in partially coherent illumination, the coherence properties of thermionic emission sources and the detection of objects in quantum noise limited images are considered. IMAGIC, a fast, flexible and friendly image analysis software package is described. Intelligent averaging of molecular images is discussed. (C.F.)

  1. Light microscopy - Methods and protocols

    Directory of Open Access Journals (Sweden)

    CarloAlberto Redi

    2011-11-01

    Full Text Available The first part of the book (six chapters is devoted to some selected applications of bright-field microscopy while the second part (eight chapters to some fluorescence microscopy studies. Both animal and plant biology investigations are presented covering multiple fields like immunology, cell signaling, cancer biology and, surprisingly to me, ecology. This chapter is titled: Light microscopy in aquatic ecology: Methods for plankton communities studies and it is due to Maria Carolina S. Soares and colleagues from the Laboratory of Aquatic Ecology, Dept. of Biology, Federal University of Juiz de Fora (Brazil. Here they present methods to quantify the different component of planktonic communities in a step-by-step manner so that virus, bacteria, algae and animals pertaining to different taxa can be recognized and the contribution they made to the plankton composition evaluated. It descends that even how the plankton composition is changing due to environmental variations can be accurately determined....

  2. Multiphoton Microscopy for Ophthalmic Imaging

    Directory of Open Access Journals (Sweden)

    Emily A. Gibson

    2011-01-01

    Full Text Available We review multiphoton microscopy (MPM including two-photon autofluorescence (2PAF, second harmonic generation (SHG, third harmonic generation (THG, fluorescence lifetime (FLIM, and coherent anti-Stokes Raman Scattering (CARS with relevance to clinical applications in ophthalmology. The different imaging modalities are discussed highlighting the particular strength that each has for functional tissue imaging. MPM is compared with current clinical ophthalmological imaging techniques such as reflectance confocal microscopy, optical coherence tomography, and fluorescence imaging. In addition, we discuss the future prospects for MPM in disease detection and clinical monitoring of disease progression, understanding fundamental disease mechanisms, and real-time monitoring of drug delivery.

  3. Illuminating Electron Microscopy of Photocatalysts

    DEFF Research Database (Denmark)

    Cavalca, Filippo

    .1% of the surface of the planet with a device that converts solar energy into a useable form at 10% efficiency would give more than the present worldwide consumption of fossil energy. Photocatalysts are of fundamental interest for sustainable energy research because they provide a viable route for converting solar...... energy into chemical bonds. By means of Transmission Electron Microscopy (TEM) it is possible to gain insight in the fundamentals of their reaction mechanisms, chemical behaviour, structure and morphology before, during and after reaction using in situ investigations. In particular, the environmental TEM...... the microscope that allows electron microscopy under nonconventional TEM conditions and new kinds of in situ spectroscopy....

  4. New developments in transmission electron microscopy for nanotechnology

    International Nuclear Information System (INIS)

    Wang, Z.L.

    2003-01-01

    High-resolution transmission electron microscopy (HRTEM) is one of the most powerful tools used for characterizing nanomaterials, and it is indispensable for nanotechnology. This paper reviews some of the most recent developments in electron microscopy techniques for characterizing nanomaterials. The review covers the following areas: in-situ microscopy for studying dynamic shape transformation of nanocrystals; in-situ nanoscale property measurements on the mechanical, electrical and field emission properties of nanotubes/nanowires; environmental microscopy for direct observation of surface reactions; aberration-free angstrom-resolution imaging of light elements (such as oxygen and lithium); high-angle annular-dark-field scanning transmission electron microscopy (STEM); imaging of atom clusters with atomic resolution chemical information; electron holography of magnetic materials; and high-spatial resolution electron energy-loss spectroscopy (EELS) for nanoscale electronic and chemical analysis. It is demonstrated that the picometer-scale science provided by HRTEM is the foundation of nanometer-scale technology. (Abstract Copyright [2003], Wiley Periodicals, Inc.)

  5. High Resolution Scanning Ion Microscopy

    NARCIS (Netherlands)

    Castaldo, V.

    2011-01-01

    The structure of the thesis is the following. The first chapter is an introduction to scanning microscopy, where the path that led to the Focused Ion Beam (FIB) is described and the main differences between electrons and ion beams are highlighted. Chapter 2 is what is normally referred to (which I

  6. Illuminating Electron Microscopy of Photocatalysts

    DEFF Research Database (Denmark)

    Cavalca, Filippo

    Photocatalysts are of fundamental interest for sustainable energy research because of their wide range of applications and great potential for state of the art and future usages [1]. By means of Transmission Electron Microscopy (TEM) it is possible to give a deep insight in the structure, composi...

  7. Light Microscopy at Maximal Precision

    Directory of Open Access Journals (Sweden)

    Matthew Bierbaum

    2017-10-01

    Full Text Available Microscopy is the workhorse of the physical and life sciences, producing crisp images of everything from atoms to cells well beyond the capabilities of the human eye. However, the analysis of these images is frequently little more accurate than manual marking. Here, we revolutionize the analysis of microscopy images, extracting all the useful information theoretically contained in a complex microscope image. Using a generic, methodological approach, we extract the information by fitting experimental images with a detailed optical model of the microscope, a method we call parameter extraction from reconstructing images (PERI. As a proof of principle, we demonstrate this approach with a confocal image of colloidal spheres, improving measurements of particle positions and radii by 10–100 times over current methods and attaining the maximum possible accuracy. With this unprecedented accuracy, we measure nanometer-scale colloidal interactions in dense suspensions solely with light microscopy, a previously impossible feat. Our approach is generic and applicable to imaging methods from brightfield to electron microscopy, where we expect accuracies of 1 nm and 0.1 pm, respectively.

  8. Mechanics in Steels through Microscopy

    NARCIS (Netherlands)

    Tirumalasetty, G.K.

    2013-01-01

    The goal of the study consolidated in this thesis is to understand the mechanics in steels using microscopy. In particular, the mechanical response of Transformation Induced Plasticity (TRIP) steels is correlated with their microstructures. Chapter 1 introduces the current state of the art of TRIP

  9. Light Microscopy at Maximal Precision

    Science.gov (United States)

    Bierbaum, Matthew; Leahy, Brian D.; Alemi, Alexander A.; Cohen, Itai; Sethna, James P.

    2017-10-01

    Microscopy is the workhorse of the physical and life sciences, producing crisp images of everything from atoms to cells well beyond the capabilities of the human eye. However, the analysis of these images is frequently little more accurate than manual marking. Here, we revolutionize the analysis of microscopy images, extracting all the useful information theoretically contained in a complex microscope image. Using a generic, methodological approach, we extract the information by fitting experimental images with a detailed optical model of the microscope, a method we call parameter extraction from reconstructing images (PERI). As a proof of principle, we demonstrate this approach with a confocal image of colloidal spheres, improving measurements of particle positions and radii by 10-100 times over current methods and attaining the maximum possible accuracy. With this unprecedented accuracy, we measure nanometer-scale colloidal interactions in dense suspensions solely with light microscopy, a previously impossible feat. Our approach is generic and applicable to imaging methods from brightfield to electron microscopy, where we expect accuracies of 1 nm and 0.1 pm, respectively.

  10. Stochastic Optical Reconstruction Microscopy (STORM).

    Science.gov (United States)

    Xu, Jianquan; Ma, Hongqiang; Liu, Yang

    2017-07-05

    Super-resolution (SR) fluorescence microscopy, a class of optical microscopy techniques at a spatial resolution below the diffraction limit, has revolutionized the way we study biology, as recognized by the Nobel Prize in Chemistry in 2014. Stochastic optical reconstruction microscopy (STORM), a widely used SR technique, is based on the principle of single molecule localization. STORM routinely achieves a spatial resolution of 20 to 30 nm, a ten-fold improvement compared to conventional optical microscopy. Among all SR techniques, STORM offers a high spatial resolution with simple optical instrumentation and standard organic fluorescent dyes, but it is also prone to image artifacts and degraded image resolution due to improper sample preparation or imaging conditions. It requires careful optimization of all three aspects-sample preparation, image acquisition, and image reconstruction-to ensure a high-quality STORM image, which will be extensively discussed in this unit. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.

  11. Transmission electron microscopy of bone

    NARCIS (Netherlands)

    Everts, Vincent; Niehof, Anneke; Tigchelaar-Gutter, Wikky; Beertsen, Wouter

    2012-01-01

    This chapter describes procedures to process mineralized tissues obtained from different sources for transmission electron microscopy (TEM). Methods for fixation, resin embedding, staining of semi-thin sections and ultrathin sections are presented. In addition, attention will be paid to processing

  12. High-resolution intravital microscopy.

    Directory of Open Access Journals (Sweden)

    Volker Andresen

    Full Text Available Cellular communication constitutes a fundamental mechanism of life, for instance by permitting transfer of information through synapses in the nervous system and by leading to activation of cells during the course of immune responses. Monitoring cell-cell interactions within living adult organisms is crucial in order to draw conclusions on their behavior with respect to the fate of cells, tissues and organs. Until now, there is no technology available that enables dynamic imaging deep within the tissue of living adult organisms at sub-cellular resolution, i.e. detection at the level of few protein molecules. Here we present a novel approach called multi-beam striped-illumination which applies for the first time the principle and advantages of structured-illumination, spatial modulation of the excitation pattern, to laser-scanning-microscopy. We use this approach in two-photon-microscopy--the most adequate optical deep-tissue imaging-technique. As compared to standard two-photon-microscopy, it achieves significant contrast enhancement and up to 3-fold improved axial resolution (optical sectioning while photobleaching, photodamage and acquisition speed are similar. Its imaging depth is comparable to multifocal two-photon-microscopy and only slightly less than in standard single-beam two-photon-microscopy. Precisely, our studies within mouse lymph nodes demonstrated 216% improved axial and 23% improved lateral resolutions at a depth of 80 µm below the surface. Thus, we are for the first time able to visualize the dynamic interactions between B cells and immune complex deposits on follicular dendritic cells within germinal centers (GCs of live mice. These interactions play a decisive role in the process of clonal selection, leading to affinity maturation of the humoral immune response. This novel high-resolution intravital microscopy method has a huge potential for numerous applications in neurosciences, immunology, cancer research and

  13. High-Resolution Intravital Microscopy

    Science.gov (United States)

    Andresen, Volker; Pollok, Karolin; Rinnenthal, Jan-Leo; Oehme, Laura; Günther, Robert; Spiecker, Heinrich; Radbruch, Helena; Gerhard, Jenny; Sporbert, Anje; Cseresnyes, Zoltan; Hauser, Anja E.; Niesner, Raluca

    2012-01-01

    Cellular communication constitutes a fundamental mechanism of life, for instance by permitting transfer of information through synapses in the nervous system and by leading to activation of cells during the course of immune responses. Monitoring cell-cell interactions within living adult organisms is crucial in order to draw conclusions on their behavior with respect to the fate of cells, tissues and organs. Until now, there is no technology available that enables dynamic imaging deep within the tissue of living adult organisms at sub-cellular resolution, i.e. detection at the level of few protein molecules. Here we present a novel approach called multi-beam striped-illumination which applies for the first time the principle and advantages of structured-illumination, spatial modulation of the excitation pattern, to laser-scanning-microscopy. We use this approach in two-photon-microscopy - the most adequate optical deep-tissue imaging-technique. As compared to standard two-photon-microscopy, it achieves significant contrast enhancement and up to 3-fold improved axial resolution (optical sectioning) while photobleaching, photodamage and acquisition speed are similar. Its imaging depth is comparable to multifocal two-photon-microscopy and only slightly less than in standard single-beam two-photon-microscopy. Precisely, our studies within mouse lymph nodes demonstrated 216% improved axial and 23% improved lateral resolutions at a depth of 80 µm below the surface. Thus, we are for the first time able to visualize the dynamic interactions between B cells and immune complex deposits on follicular dendritic cells within germinal centers (GCs) of live mice. These interactions play a decisive role in the process of clonal selection, leading to affinity maturation of the humoral immune response. This novel high-resolution intravital microscopy method has a huge potential for numerous applications in neurosciences, immunology, cancer research and developmental biology

  14. Contact microscopy with synchrotron radiation

    International Nuclear Information System (INIS)

    Panessa-Warren, B.J.

    1985-10-01

    Soft x-ray contact microscopy with synchrotron radiation offers the biologist and especially the microscopist, a way to morphologically study specimens that could not be imaged by conventional TEM, STEM or SEM methods (i.e. hydrated samples, samples easily damaged by an electron beam, electron dense samples, thick specimens, unstained low contrast specimens) at spatial resolutions approaching those of the TEM, with the additional possibility to obtain compositional (elemental) information about the sample as well. Although flash x-ray sources offer faster exposure times, synchrotron radiation provides a highly collimated, intense radiation that can be tuned to select specific discrete ranges of x-ray wavelengths or specific individual wavelengths which optimize imaging or microanalysis of a specific sample. This paper presents an overview of the applications of x-ray contact microscopy to biological research and some current research results using monochromatic synchrotron radiation to image biological samples. 24 refs., 10 figs

  15. QUANTITATIVE CONFOCAL LASER SCANNING MICROSCOPY

    Directory of Open Access Journals (Sweden)

    Merete Krog Raarup

    2011-05-01

    Full Text Available This paper discusses recent advances in confocal laser scanning microscopy (CLSM for imaging of 3D structure as well as quantitative characterization of biomolecular interactions and diffusion behaviour by means of one- and two-photon excitation. The use of CLSM for improved stereological length estimation in thick (up to 0.5 mm tissue is proposed. The techniques of FRET (Fluorescence Resonance Energy Transfer, FLIM (Fluorescence Lifetime Imaging Microscopy, FCS (Fluorescence Correlation Spectroscopy and FRAP (Fluorescence Recovery After Photobleaching are introduced and their applicability for quantitative imaging of biomolecular (co-localization and trafficking in live cells described. The advantage of two-photon versus one-photon excitation in relation to these techniques is discussed.

  16. Selective sensitivity in Kerr microscopy.

    Science.gov (United States)

    Soldatov, I V; Schäfer, R

    2017-07-01

    A new technique for contrast separation in wide-field magneto-optical Kerr microscopy is introduced. Utilizing the light from eight light emitting diodes, guided to the microscope by glass fibers and being switched synchronously with the camera exposure, domain images with orthogonal in-plane sensitivity can be displayed simultaneously at real-time, and images with pure in-plane or polar contrast can be obtained. The benefit of this new method of contrast separation is demonstrated for Permalloy films, a NdFeB sinter magnet, and a cobalt crystal. Moreover, the new technique is shown to strongly enhance the sensitivity of Kerr microscopy by eliminating parasitic contrast contributions occurring in conventional setups. A doubling of the in-plane domain contrast and a sensitivity to Kerr rotations as low as 0.6 mdeg is demonstrated.

  17. Selective sensitivity in Kerr microscopy

    Science.gov (United States)

    Soldatov, I. V.; Schäfer, R.

    2017-07-01

    A new technique for contrast separation in wide-field magneto-optical Kerr microscopy is introduced. Utilizing the light from eight light emitting diodes, guided to the microscope by glass fibers and being switched synchronously with the camera exposure, domain images with orthogonal in-plane sensitivity can be displayed simultaneously at real-time, and images with pure in-plane or polar contrast can be obtained. The benefit of this new method of contrast separation is demonstrated for Permalloy films, a NdFeB sinter magnet, and a cobalt crystal. Moreover, the new technique is shown to strongly enhance the sensitivity of Kerr microscopy by eliminating parasitic contrast contributions occurring in conventional setups. A doubling of the in-plane domain contrast and a sensitivity to Kerr rotations as low as 0.6 mdeg is demonstrated.

  18. Limits to magnetic resonance microscopy

    International Nuclear Information System (INIS)

    Glover, Paul; Mansfield, Peter

    2002-01-01

    The last quarter of the twentieth century saw the development of magnetic resonance imaging (MRI) grow from a laboratory demonstration to a multi-billion dollar worldwide industry. There is a clinical body scanner in almost every hospital of the developed nations. The field of magnetic resonance microscopy (MRM), after mostly being abandoned by researchers in the first decade of MRI, has become an established branch of the science. This paper reviews the development of MRM over the last decade with an emphasis on the current state of the art. The fundamental principles of imaging and signal detection are examined to determine the physical principles which limit the available resolution. The limits are discussed with reference to liquid, solid and gas phase microscopy. In each area, the novel approaches employed by researchers to push back the limits of resolution are discussed. Although the limits to resolution are well known, the developments and applications of MRM have not reached their limit. (author)

  19. Computers in field ion microscopy

    International Nuclear Information System (INIS)

    Suvorov, A.L.; Razinkova, T.L.; Sokolov, A.G.

    1980-01-01

    A review is presented of computer applications in field ion microscopy (FIM). The following topics are discussed in detail: (1) modeling field ion images in perfect crystals, (2) a general scheme of modeling, (3) modeling of the process of field evaporation, (4) crystal structure defects, (5) alloys, and (6) automation of FIM experiments and computer-assisted processing of real images. 146 references are given

  20. CNNs for electron microscopy segmentation

    OpenAIRE

    García-Amorena García, Pablo

    2013-01-01

    In the framework of Biomedicine, mitochondria are known to play an important role in neural function. Recent studies show mitochondrial morphology to be crucial to cellular physiology and synaptic function, and a link between mitochondrial defects and neuro-degenerative diseases is strongly suspected. Electron microscopy (EM), with its very high resolution in all three directions, is one of the key tools to look more closely into these tissues, but the huge amounts of data it produces m...

  1. Paleomagnetic Analysis Using SQUID Microscopy

    Science.gov (United States)

    Weiss, Benjamin P.; Lima, Eduardo A.; Fong, Luis E.; Baudenbacher, Franz J.

    2007-01-01

    Superconducting quantum interference device (SQUID) microscopes are a new generation of instruments that map magnetic fields with unprecedented spatial resolution and moment sensitivity. Unlike standard rock magnetometers, SQUID microscopes map magnetic fields rather than measuring magnetic moments such that the sample magnetization pattern must be retrieved from source model fits to the measured field data. In this paper, we presented the first direct comparison between paleomagnetic analyses on natural samples using joint measurements from SQUID microscopy and moment magnetometry. We demonstrated that in combination with apriori geologic and petrographic data, SQUID microscopy can accurately characterize the magnetization of lunar glass spherules and Hawaiian basalt. The bulk moment magnitude and direction of these samples inferred from inversions of SQUID microscopy data match direct measurements on the same samples using moment magnetometry. In addition, these inversions provide unique constraints on the magnetization distribution within the sample. These measurements are among the most sensitive and highest resolution quantitative paleomagnetic studies of natural remanent magnetization to date. We expect that this technique will be able to extend many other standard paleomagnetic techniques to previously inaccessible microscale samples.

  2. X-ray microscopy in Aarhus

    International Nuclear Information System (INIS)

    Uggerhoej, Erik; Abraham-Peskir, Joanna V.

    2000-01-01

    The Aarhus imaging soft X-ray microscope is now a busy multi-user facility. The optical set-up will be described and project highlights discussed. a) Metal-induced structural changes in whole cells in solution. The effects of aluminum, copper, nickel and zinc on protozoa investigated by using a combination of light microscopy, confocal scanning laser microscopy and X-ray microscopy. b) Botanical studies by X-ray microscopy used to compliment electron microscopy studies. c) Sludge morphology and iron precipitation in Danish freshwater plants by combining X-ray, scanning electron and transmission electron microscopy

  3. French Society of Microscopy, 10. conference

    International Nuclear Information System (INIS)

    Thibault-Penisson, J.; Cremer, Ch.; Susini, J.; Kirklanda, A.I.; Rigneault, H.; Renault, O.; Bailly, A.; Zagonel, L.F.; Barrett, N.; Bogner, A.; Gauthier, C.; Jouneau, P.H.; Thollet, G.; Fuchs, G.; Basset, D.; Deconihout, B.; Vurpillot, F.; Vella, A.; Matthieu, G.; Cadel, E.; Bostel, A.; Blavette, D.; Baumeister, W.; Usson, Y.; Zaefferer, St.; Laffont, L.; Weyland, M.; Thomas, J.M.; Midgley, P.; Benlekbir, S.; Epicier, Th.; Diop, B.N.; Roux, St.; Ou, M.; Perriat, P.; Bausach, M.; Aouine, M.; Berhault, G.; Idrissi, H.; Cottevieille, M.; Jonic, S.; Larquet, E.; Svergun, D.; Vannoni, M.A.; Boisset, N.; Ersena, O.; Werckmann, J.; Ulhaq, C.; Hirlimann, Ch.; Tihay, F.; Cuong, Pham-Huu; Crucifix, C.; Schultz, P.; Jornsanoha, P.; Thollet, G.; Masenelli-Varlot, K.; Gauthier, C.; Ludwig, W.; King, A.; Johnson, G.; Gonzalves-Hoennicke, M.; Reischig, P.; Messaoudi, C.; Ibrahim, R.; Marco, S.; Klie, R.F.; Zhao, Y.; Yang, G.; Zhu, Y.; Hue, F.; Hytch, M.; Hartmann, J.M.; Bogumilowicz, Y.; Claverie, A.; Klein, H.; Alloyeau, D.; Ricolleau, C.; Langlois, C.; Le Bouar, Y.; Loiseau, A.; Colliex, C.; Stephan, O.; Kociak, M.; Tence, M.; Gloter, A.; Imhoff, D.; Walls, M.; Nelayah, J.; March, K.; Couillard, M.; Ailliot, C.; Bertin, F.; Cooper, D.; Rivallin, P.; Dumelie, N.; Benhayoune, H.; Balossier, G.; Cheynet, M.; Pokrant, S.; Tichelaar, F.; Rouviere, J.L.; Cooper, D.; Truche, R.; Chabli, A.; Debili, M.Y.; Houdellier, F.; Warot-Fonrose, B.; Hytch, M.J.; Snoeck, E.; Calmels, L.; Serin, V.; Schattschneider, P.; Jacob, D.; Cordier, P.

    2007-01-01

    This document gathers the resumes of some of the presentations made at this conference whose aim was to present the last developments and achievements of the 3 complementary microscopies: optical microscopy, electron microscopy and X-ray microscopy. The contributions have been organized around the following 12 topics: 1) new technical developments, 2) 3-dimensional imaging, 3) quantitative microscopy, 4) technical progress in photon microscopy, 5) synchrotron radiation, 6) measurements of patterns, deformations and strains, 7) materials for energy and transports, 8) nano-structures, 9) virus: structure and infection mechanisms, 10) 3-dimensional imaging for molecules, cells and cellular tissues, 11) nano-particles and colloids, and 12) liquid crystals

  4. Scanning tunnel microscopy of semiconductor nanostructures

    International Nuclear Information System (INIS)

    Eder, C.

    1997-09-01

    In this work a scanning tunneling microscope (STM) is utilized as a surface sensitive tool for local characterization of internal potential profiles of GaAs/AlGaAs heterostructures. The STM is operated at variable temperatures under ambient conditions, i.e. either in air or in the variable temperature insert of a cryostat. Distinct local differences between current-voltage curves taken on inverted heterostructures, which were patterned by wet chemically etching, are found. The spectroscopic differences can be ascribed to the internal potential profile in the subsurface regions of the sample. Current imaging tunneling spectroscopy (CITS) is applied to study quantum wire regions. It is found that the magnitude of the CITS-current is an indirect measure of edge depletion zones, which are much larger at 4.2 K. Direct measurements of relevant energy levels in quantum structures were obtained by ballistic electron emission microscopy (BEEM). It is shown that this 3-terminal technique is an excellent tool for transport characterization of minibands formed in semiconductor superlattices. Furthermore, low dimensional electron gases are shown to act as very efficient collector electrodes at low temperatures. For the first time, BEEM experiments were performed at 4.2 K. The enhanced thermal resolution at 4.2 K allows an analysis of the relevant scattering processes. It is found that the collector current is strongly influenced by diffusive scattering at the metal/semiconductor interface. (author)

  5. A portable microscopy system for fluorescence, polarized, and brightfield imaging

    Science.gov (United States)

    Gordon, Paul; Wattinger, Rolla; Lewis, Cody; Venancio, Vinicius Paula; Mertens-Talcott, Susanne U.; Coté, Gerard

    2018-02-01

    The use of mobile phones to conduct diagnostic microscopy at the point-of-care presents intriguing possibilities for the advancement of high-quality medical care in remote settings. However, it is challenging to create a single device that can adapt to the ever-varying camera technologies in phones or that can image with the customization that multiple modalities require for applications such as malaria diagnosis. A portable multi-modal microscope system is presented that utilizes a Raspberry Pi to collect and transmit data wirelessly to a myriad of electronic devices for image analysis. The microscopy system is capable of providing to the user correlated brightfield, polarized, and fluorescent images of samples fixed on traditional microscopy slides. The multimodal diagnostic capabilities of the microscope were assessed by measuring parasitemia of Plasmodium falciparum-infected thin blood smears. The device is capable of detecting fluorescently-labeled DNA using FITC excitation (490 nm) and emission (525 nm), the birefringent P. falciparum byproduct hemozoin, and detecting brightfield absorption with a resolution of 0.78 micrometers (element 9-3 of a 1951 Air Force Target). This microscopy system is a novel portable imaging tool that may be a viable candidate for field implementation if challenges of system durability, cost considerations, and full automation can be overcome.

  6. Visual-servoing optical microscopy

    Science.gov (United States)

    Callahan, Daniel E.; Parvin, Bahram

    2009-06-09

    The present invention provides methods and devices for the knowledge-based discovery and optimization of differences between cell types. In particular, the present invention provides visual servoing optical microscopy, as well as analysis methods. The present invention provides means for the close monitoring of hundreds of individual, living cells over time: quantification of dynamic physiological responses in multiple channels; real-time digital image segmentation and analysis; intelligent, repetitive computer-applied cell stress and cell stimulation; and the ability to return to the same field of cells for long-term studies and observation. The present invention further provides means to optimize culture conditions for specific subpopulations of cells.

  7. Electron Microscopy of Intracellular Protozoa

    Science.gov (United States)

    1988-12-20

    Classification) " ELECTRON MICROSCOPY OF INTRACELLULAR PROTOZOA 12. PERSONAL AUTHOR(S) Aikawa, Masamichi 13a. TYPE OF REPORT I13b. TIME COVERED 114...authors suggest that anti-CS protein antibody is important in reducing the prevalence of malaria with increasing age among persons in such areas and... Hygine 33, 220-226. 0Giudice, G.D., Engers, H.D., Tougne, C., Biro, S.S., Weiss, N., Verdini, A.S., Pessi, A., Degremont, A.A., Freyvogel, T.A., Lambert

  8. Use of Kelvin probe force microscopy for identification of CVD grown graphene flakes on copper foil

    Science.gov (United States)

    Kumar, Rakesh; Mehta, B. R.; Kanjilal, D.

    2017-05-01

    Graphene flakes have been grown by chemical vapour deposition (CVD) method on Cu foils. The obtained graphene flakes have been characterized by optical microscopy, field emission scanning electron microscopy, Kelvin probe force microscopy (KPFM) and Raman spectroscopy. The graphene flakes grown on Cu foil comprise mainly single layer graphene and confirm that the nucleation for graphene growth starts very quickly. Moreover, KPFM has been found to be a valuable technique to differentiate between covered and uncovered portion of Cu foil by graphene flakes deposited for shorter duration. The results show that KPFM can be a very useful technique in understanding the mechanism of graphene growth.

  9. NICHD Microscopy and Imaging Core (MIC)

    Data.gov (United States)

    Federal Laboratory Consortium — The NICHD Microscopy and Imaging Core (MIC) is designed as a multi-user research facility providing training and instrumentation for high resolution microscopy and...

  10. Concepts in Light Microscopy of Viruses

    Science.gov (United States)

    Witte, Robert; Georgi, Fanny

    2018-01-01

    Viruses threaten humans, livestock, and plants, and are difficult to combat. Imaging of viruses by light microscopy is key to uncover the nature of known and emerging viruses in the quest for finding new ways to treat viral disease and deepening the understanding of virus–host interactions. Here, we provide an overview of recent technology for imaging cells and viruses by light microscopy, in particular fluorescence microscopy in static and live-cell modes. The review lays out guidelines for how novel fluorescent chemical probes and proteins can be used in light microscopy to illuminate cells, and how they can be used to study virus infections. We discuss advantages and opportunities of confocal and multi-photon microscopy, selective plane illumination microscopy, and super-resolution microscopy. We emphasize the prevalent concepts in image processing and data analyses, and provide an outlook into label-free digital holographic microscopy for virus research. PMID:29670029

  11. Scanning transmission ion microscopy on Fudan SPM facility

    International Nuclear Information System (INIS)

    Li Yongqiang; Shen Hao; Zheng Yi; Li Xinyi; Liu Bo; Satoh Takahiro

    2011-01-01

    In this paper, we report a novel measurement system based on the development of Fudan Scanning Proton Microscopy (SPM) facility. By using Si-PIN diode(Hamamatsu S1223-01) detector, scanning transmission ion microscopy (STIM) measurement system has been set up. It can provide density and structural images with high probing efficiency and non-destruction by utilizing the energy loss of high energy (MeV) and focused ions penetrating through a thin sample. STIM measurement is able to map the density distribution of organic elements which mostly compose biology materials, such information can not be detected by using conventional Be-windowed Si (Li) X-ray detector in Particle Induced X-ray Emission (PIXE) technique. The spatial resolution capability of STIM is higher than PIXE technique at same accelerator status. As a result of STIM measurement, Paramecium attached on the top of Kapton tube was measured by STIM. (authors)

  12. Laboratory design for high-performance electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    O' Keefe, Michael A.; Turner, John H.; Hetherington, Crispin J.D.; Cullis, A.G.; Carragher, Bridget; Jenkins, Ron; Milgrim, Julie; Milligan,Ronald A.; Potter, Clinton S.; Allard, Lawrence F.; Blom, Douglas A.; Degenhardt, Lynn; Sides, William H.

    2004-04-23

    Proliferation of electron microscopes with field emission guns, imaging filters and hardware spherical aberration correctors (giving higher spatial and energy resolution) has resulted in the need to construct special laboratories. As resolutions improve, transmission electron microscopes (TEMs) and scanning transmission electron microscopes (STEMs) become more sensitive to ambient conditions. State-of-the-art electron microscopes require state-of-the-art environments, and this means careful design and implementation of microscope sites, from the microscope room to the building that surrounds it. Laboratories have been constructed to house high-sensitive instruments with resolutions ranging down to sub-Angstrom levels; we present the various design philosophies used for some of these laboratories and our experiences with them. Four facilities are described: the National Center for Electron Microscopy OAM Laboratory at LBNL; the FEGTEM Facility at the University of Sheffield; the Center for Integrative Molecular Biosciences at TSRI; and the Advanced Microscopy Laboratory at ORNL.

  13. Transmission electron microscopy physics of image formation and microanalysis

    CERN Document Server

    Reimer, Ludwig

    1997-01-01

    Transmission Electron Microscopy presents the theory of image and contrast formation, and the analytical modes in transmission electron microscopy. The principles of particle and wave optics of electrons are described. Electron-specimen interactions are discussed for evaluating the theory of scattering and phase contrast. Also discussed are the kinematical and dynamical theories of electron diffraction and their applications for crystal-structure analysis and imaging of lattices and their defects. X-ray micronanalysis and electron energy-loss spectroscopy are treated as analytical methods. Specimen damage and contamination by electron irradiation limits the resolution for biological and some inorganic specimens. This fourth edition includes discussion of recent progress, especially in the area of Schottky emission guns, convergent-beam electron diffraction, electron tomography, holography and the high resolution of crystal lattices.

  14. Acoustic emission

    International Nuclear Information System (INIS)

    Straus, A.; Lopez Pumarega, M.I.; Di Gaetano, J.O.; D'Atellis, C.E.; Ruzzante, J.E.

    1990-01-01

    This paper is related to our activities on acoustic emission (A.E.). The work is made with different materials: metals and fibre reinforced plastics. At present, acoustic emission transducers are being developed for low and high temperature. A test to detect electrical discharges in electrical transformers was performed. Our experience in industrial tests to detect cracks or failures in tanks or tubes is also described. The use of A.E. for leak detection is considered. Works on pattern recognition of A.E. signals are also being performed. (Author)

  15. Electron Microscopy Society of Southern Africa : proceedings

    International Nuclear Information System (INIS)

    Snyman, H.C.; Coetzee, J.; Coubrough, R.I.

    1987-01-01

    The proceedings of the 26th annual conference of the Electron Microscopy Society of Southern Africa are presented. Papers were presented on the following topics: techniques and instrumentation used in electron microscopy, and applications of electron microscopy in the life sciences, including applications in medicine, zoology, botany and microbiology. The use of electron microscopy in the physical sciences was also discussed. Separate abstracts were prepared for seven of the papers presented. The remaining papers were considered outside the subject scope of INIS

  16. Plasmonics Enhanced Smartphone Fluorescence Microscopy

    KAUST Repository

    Wei, Qingshan; Acuna, Guillermo; Kim, Seungkyeum; Vietz, Carolin; Tseng, Derek; Chae, Jongjae; Shir, Daniel; Luo, Wei; Tinnefeld, Philip; Ozcan, Aydogan

    2017-01-01

    Smartphone fluorescence microscopy has various applications in point-of-care (POC) testing and diagnostics, ranging from e.g., quantification of immunoassays, detection of microorganisms, to sensing of viruses. An important need in smartphone-based microscopy and sensing techniques is to improve the detection sensitivity to enable quantification of extremely low concentrations of target molecules. Here, we demonstrate a general strategy to enhance the detection sensitivity of a smartphone-based fluorescence microscope by using surface-enhanced fluorescence (SEF) created by a thin metal-film. In this plasmonic design, the samples are placed on a silver-coated glass slide with a thin spacer, and excited by a laser-diode from the backside through a glass hemisphere, generating surface plasmon polaritons. We optimized this mobile SEF system by tuning the metal-film thickness, spacer distance, excitation angle and polarization, and achieved ~10-fold enhancement in fluorescence intensity compared to a bare glass substrate, which enabled us to image single fluorescent particles as small as 50 nm in diameter and single quantum-dots. Furthermore, we quantified the detection limit of this platform by using DNA origami-based brightness standards, demonstrating that ~80 fluorophores per diffraction-limited spot can be readily detected by our mobile microscope, which opens up new opportunities for POC diagnostics and sensing applications in resource-limited-settings.

  17. Multifunctional scanning ion conductance microscopy

    Science.gov (United States)

    Page, Ashley; Unwin, Patrick R.

    2017-01-01

    Scanning ion conductance microscopy (SICM) is a nanopipette-based technique that has traditionally been used to image topography or to deliver species to an interface, particularly in a biological setting. This article highlights the recent blossoming of SICM into a technique with a much greater diversity of applications and capability that can be used either standalone, with advanced control (potential–time) functions, or in tandem with other methods. SICM can be used to elucidate functional information about interfaces, such as surface charge density or electrochemical activity (ion fluxes). Using a multi-barrel probe format, SICM-related techniques can be employed to deposit nanoscale three-dimensional structures and further functionality is realized when SICM is combined with scanning electrochemical microscopy (SECM), with simultaneous measurements from a single probe opening up considerable prospects for multifunctional imaging. SICM studies are greatly enhanced by finite-element method modelling for quantitative treatment of issues such as resolution, surface charge and (tip) geometry effects. SICM is particularly applicable to the study of living systems, notably single cells, although applications extend to materials characterization and to new methods of printing and nanofabrication. A more thorough understanding of the electrochemical principles and properties of SICM provides a foundation for significant applications of SICM in electrochemistry and interfacial science. PMID:28484332

  18. Plasmonics Enhanced Smartphone Fluorescence Microscopy

    KAUST Repository

    Wei, Qingshan

    2017-05-12

    Smartphone fluorescence microscopy has various applications in point-of-care (POC) testing and diagnostics, ranging from e.g., quantification of immunoassays, detection of microorganisms, to sensing of viruses. An important need in smartphone-based microscopy and sensing techniques is to improve the detection sensitivity to enable quantification of extremely low concentrations of target molecules. Here, we demonstrate a general strategy to enhance the detection sensitivity of a smartphone-based fluorescence microscope by using surface-enhanced fluorescence (SEF) created by a thin metal-film. In this plasmonic design, the samples are placed on a silver-coated glass slide with a thin spacer, and excited by a laser-diode from the backside through a glass hemisphere, generating surface plasmon polaritons. We optimized this mobile SEF system by tuning the metal-film thickness, spacer distance, excitation angle and polarization, and achieved ~10-fold enhancement in fluorescence intensity compared to a bare glass substrate, which enabled us to image single fluorescent particles as small as 50 nm in diameter and single quantum-dots. Furthermore, we quantified the detection limit of this platform by using DNA origami-based brightness standards, demonstrating that ~80 fluorophores per diffraction-limited spot can be readily detected by our mobile microscope, which opens up new opportunities for POC diagnostics and sensing applications in resource-limited-settings.

  19. Kelvin probe force microscopy in liquid using electrochemical force microscopy

    Directory of Open Access Journals (Sweden)

    Liam Collins

    2015-01-01

    Full Text Available Conventional closed loop-Kelvin probe force microscopy (KPFM has emerged as a powerful technique for probing electric and transport phenomena at the solid–gas interface. The extension of KPFM capabilities to probe electrostatic and electrochemical phenomena at the solid–liquid interface is of interest for a broad range of applications from energy storage to biological systems. However, the operation of KPFM implicitly relies on the presence of a linear lossless dielectric in the probe–sample gap, a condition which is violated for ionically-active liquids (e.g., when diffuse charge dynamics are present. Here, electrostatic and electrochemical measurements are demonstrated in ionically-active (polar isopropanol, milli-Q water and aqueous NaCl and ionically-inactive (non-polar decane liquids by electrochemical force microscopy (EcFM, a multidimensional (i.e., bias- and time-resolved spectroscopy method. In the absence of mobile charges (ambient and non-polar liquids, KPFM and EcFM are both feasible, yielding comparable contact potential difference (CPD values. In ionically-active liquids, KPFM is not possible and EcFM can be used to measure the dynamic CPD and a rich spectrum of information pertaining to charge screening, ion diffusion, and electrochemical processes (e.g., Faradaic reactions. EcFM measurements conducted in isopropanol and milli-Q water over Au and highly ordered pyrolytic graphite electrodes demonstrate both sample- and solvent-dependent features. Finally, the feasibility of using EcFM as a local force-based mapping technique of material-dependent electrostatic and electrochemical response is investigated. The resultant high dimensional dataset is visualized using a purely statistical approach that does not require a priori physical models, allowing for qualitative mapping of electrostatic and electrochemical material properties at the solid–liquid interface.

  20. Relationships between acoustic emissions and microstructures

    International Nuclear Information System (INIS)

    Rao, G.V.; Gopal, R.

    1979-01-01

    Results of a systematic study of 'microstructure-deformation-acoustic emission' relationships on two widely used pressure retaining component materials, namely A533-B nuclear pressure vessel steel and a 7075 aluminum alloy, are presented. The study consists of conducting acoustic monitored tensile tests on a variety of quenched and aged microstructures in the two alloy systems and extensive microstructural characterization of test specimens by light optic and electron microscopy techniques. The results suggest a consistent relationship between acoustic emissions and microdeformation mechanisms. The role of specific microstructural constituents in generating acoustic emissions in the two alloys is discussed. (author)

  1. Ore microscopy applied to beneficiation

    International Nuclear Information System (INIS)

    Hagni, R.D.

    1978-01-01

    Ore microscopy can be an important adjunct to beneficiation, because it can be used not only to predict mill problems of undeveloped ore deposits but to identify the causes for the loss of minerals in the products of operating mines and mills. Mineral distribution among various mill products can be determined by examining polished sections prepared from samples obtained from each step of the beneficiation process. The degree of liberation of each mineral can be quantitatively determined for each mill product by counting locked vs. free particles. For many beneficiation problems, the preparation of a few polished sections of carefully selected mill products can yield useful information, which the mill dressing engineer can effectively use to alleviate those problems

  2. Lensfree microscopy on a cellphone

    Science.gov (United States)

    Tseng, Derek; Mudanyali, Onur; Oztoprak, Cetin; Isikman, Serhan O.; Sencan, Ikbal; Yaglidere, Oguzhan; Ozcan, Aydogan

    2010-01-01

    We demonstrate lensfree digital microscopy on a cellphone. This compact and light-weight holographic microscope installed on a cellphone does not utilize any lenses, lasers or other bulky optical components and it may offer a cost-effective tool for telemedicine applications to address various global health challenges. Weighing ~38 grams (cellphone where the samples are loaded from the side, and are vertically illuminated by a simple light-emitting diode (LED). This incoherent LED light is then scattered from each micro-object to coherently interfere with the background light, creating the lensfree hologram of each object on the detector array of the cellphone. These holographic signatures captured by the cellphone permit reconstruction of microscopic images of the objects through rapid digital processing. We report the performance of this lensfree cellphone microscope by imaging various sized micro-particles, as well as red blood cells, white blood cells, platelets and a waterborne parasite (Giardia lamblia). PMID:20445943

  3. Superresolution microscopy with transient binding.

    Science.gov (United States)

    Molle, Julia; Raab, Mario; Holzmeister, Susanne; Schmitt-Monreal, Daniel; Grohmann, Dina; He, Zhike; Tinnefeld, Philip

    2016-06-01

    For single-molecule localization based superresolution, the concentration of fluorescent labels has to be thinned out. This is commonly achieved by photophysically or photochemically deactivating subsets of molecules. Alternatively, apparent switching of molecules can be achieved by transient binding of fluorescent labels. Here, a diffusing dye yields bright fluorescent spots when binding to the structure of interest. As the binding interaction is weak, the labeling is reversible and the dye ligand construct diffuses back into solution. This approach of achieving superresolution by transient binding (STB) is reviewed in this manuscript. Different realizations of STB are discussed and compared to other localization-based superresolution modalities. We propose the development of labeling strategies that will make STB a highly versatile tool for superresolution microscopy at highest resolution. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Resolution enhancement techniques in microscopy

    Science.gov (United States)

    Cremer, Christoph; Masters, Barry R.

    2013-05-01

    We survey the history of resolution enhancement techniques in microscopy and their impact on current research in biomedicine. Often these techniques are labeled superresolution, or enhanced resolution microscopy, or light-optical nanoscopy. First, we introduce the development of diffraction theory in its relation to enhanced resolution; then we explore the foundations of resolution as expounded by the astronomers and the physicists and describe the conditions for which they apply. Then we elucidate Ernst Abbe's theory of optical formation in the microscope, and its experimental verification and dissemination to the world wide microscope communities. Second, we describe and compare the early techniques that can enhance the resolution of the microscope. Third, we present the historical development of various techniques that substantially enhance the optical resolution of the light microscope. These enhanced resolution techniques in their modern form constitute an active area of research with seminal applications in biology and medicine. Our historical survey of the field of resolution enhancement uncovers many examples of reinvention, rediscovery, and independent invention and development of similar proposals, concepts, techniques, and instruments. Attribution of credit is therefore confounded by the fact that for understandable reasons authors stress the achievements from their own research groups and sometimes obfuscate their contributions and the prior art of others. In some cases, attribution of credit is also made more complex by the fact that long term developments are difficult to allocate to a specific individual because of the many mutual connections often existing between sometimes fiercely competing, sometimes strongly collaborating groups. Since applications in biology and medicine have been a major driving force in the development of resolution enhancing approaches, we focus on the contribution of enhanced resolution to these fields.

  5. Nanoscale spatial analysis of clay minerals containing cesium by synchrotron radiation photoemission electron microscopy

    Science.gov (United States)

    Yoshigoe, Akitaka; Shiwaku, Hideaki; Kobayashi, Toru; Shimoyama, Iwao; Matsumura, Daiju; Tsuji, Takuya; Nishihata, Yasuo; Kogure, Toshihiro; Ohkochi, Takuo; Yasui, Akira; Yaita, Tsuyoshi

    2018-01-01

    A synchrotron radiation photoemission electron microscope (SR-PEEM) was applied to demonstrate the pinpoint analysis of micrometer-sized weathered biotite clay particles with artificially adsorbed cesium (Cs) atoms. Despite the insulating properties of the clay, we observed the spatial distributions of constituent elements (Si, Al, Cs, Mg, and Fe) without charging issues and clarified reciprocal site-correlations among these elements with nanometer resolution. We found that Cs atoms were likely to be adsorbed evenly over the entire particle; however, we identified an occupational conflict between Cs and Mg atoms, implying that Cs sorption involves ion exchange processes. Spatially resolved X-ray absorption spectra (XAS) of the Cs4,5 M-edge region showed Cs to be present in a monocation state (Cs+) as typically observed for Cs compounds. Further pinpoint XAS measurements were also performed at the Fe L2,3-edge to determine the chemical valence of the Fe atoms. The shapes of the spectra were similar to those for Fe2O3, indicating that Fe in the clay was in a 3+ oxidation state. From these observations, we infer that charge compensation facilitates Cs adsorption in the vicinity of a substitution site where Si4+ ions are replaced by Fe3+ ions in SiO4 tetrahedral sheets. Our results demonstrate the utility of SR-PEEM as a tool for spatially resolved chemical analyses of various environmental substances, which is not limited by the poor conductivity of samples.

  6. Scanning Tunneling Optical Resonance Microscopy

    Science.gov (United States)

    Bailey, Sheila; Wilt, Dave; Raffaelle, Ryne; Gennett, Tom; Tin, Padetha; Lau, Janice; Castro, Stephanie; Jenkins, Philip; Scheiman, Dave

    2003-01-01

    Scanning tunneling optical resonance microscopy (STORM) is a method, now undergoing development, for measuring optoelectronic properties of materials and devices on the nanoscale by means of a combination of (1) traditional scanning tunneling microscopy (STM) with (2) tunable laser spectroscopy. In STORM, an STM tip probing a semiconductor is illuminated with modulated light at a wavelength in the visible-to-near-infrared range and the resulting photoenhancement of the tunneling current is measured as a function of the illuminating wavelength. The photoenhancement of tunneling current occurs when the laser photon energy is sufficient to excite charge carriers into the conduction band of the semiconductor. Figure 1 schematically depicts a proposed STORM apparatus. The light for illuminating the semiconductor specimen at the STM would be generated by a ring laser that would be tunable across the wavelength range of interest. The laser beam would be chopped by an achromatic liquid-crystal modulator. A polarization-maintaining optical fiber would couple the light to the tip/sample junction of a commercial STM. An STM can be operated in one of two modes: constant height or constant current. A STORM apparatus would be operated in the constant-current mode, in which the height of the tip relative to the specimen would be varied in order to keep the tunneling current constant. In this mode, a feedback control circuit adjusts the voltage applied to a piezoelectric actuator in the STM that adjusts the height of the STM tip to keep the tunneling current constant. The exponential relationship between the tunneling current and tip-to-sample distance makes it relatively easy to implement this mode of operation. The choice of method by which the photoenhanced portion of the tunneling current would be measured depends on choice of the frequency at which the input illumination would be modulated (chopped). If the frequency of modulation were low enough (typically tunneling current

  7. Super-nonlinear fluorescence microscopy for high-contrast deep tissue imaging

    Science.gov (United States)

    Wei, Lu; Zhu, Xinxin; Chen, Zhixing; Min, Wei

    2014-02-01

    Two-photon excited fluorescence microscopy (TPFM) offers the highest penetration depth with subcellular resolution in light microscopy, due to its unique advantage of nonlinear excitation. However, a fundamental imaging-depth limit, accompanied by a vanishing signal-to-background contrast, still exists for TPFM when imaging deep into scattering samples. Formally, the focusing depth, at which the in-focus signal and the out-of-focus background are equal to each other, is defined as the fundamental imaging-depth limit. To go beyond this imaging-depth limit of TPFM, we report a new class of super-nonlinear fluorescence microscopy for high-contrast deep tissue imaging, including multiphoton activation and imaging (MPAI) harnessing novel photo-activatable fluorophores, stimulated emission reduced fluorescence (SERF) microscopy by adding a weak laser beam for stimulated emission, and two-photon induced focal saturation imaging with preferential depletion of ground-state fluorophores at focus. The resulting image contrasts all exhibit a higher-order (third- or fourth- order) nonlinear signal dependence on laser intensity than that in the standard TPFM. Both the physical principles and the imaging demonstrations will be provided for each super-nonlinear microscopy. In all these techniques, the created super-nonlinearity significantly enhances the imaging contrast and concurrently extends the imaging depth-limit of TPFM. Conceptually different from conventional multiphoton processes mediated by virtual states, our strategy constitutes a new class of fluorescence microscopy where high-order nonlinearity is mediated by real population transfer.

  8. Fluorescence lifetime imaging microscopy using near-infrared contrast agents.

    Science.gov (United States)

    Nothdurft, R; Sarder, P; Bloch, S; Culver, J; Achilefu, S

    2012-08-01

    Although single-photon fluorescence lifetime imaging microscopy (FLIM) is widely used to image molecular processes using a wide range of excitation wavelengths, the captured emission of this technique is confined to the visible spectrum. Here, we explore the feasibility of utilizing near-infrared (NIR) fluorescent molecular probes with emission >700 nm for FLIM of live cells. The confocal microscope is equipped with a 785 nm laser diode, a red-enhanced photomultiplier tube, and a time-correlated single photon counting card. We demonstrate that our system reports the lifetime distributions of NIR fluorescent dyes, cypate and DTTCI, in cells. In cells labelled separately or jointly with these dyes, NIR FLIM successfully distinguishes their lifetimes, providing a method to sort different cell populations. In addition, lifetime distributions of cells co-incubated with these dyes allow estimate of the dyes' relative concentrations in complex cellular microenvironments. With the heightened interest in fluorescence lifetime-based small animal imaging using NIR fluorophores, this technique further serves as a bridge between in vitro spectroscopic characterization of new fluorophore lifetimes and in vivo tissue imaging. © 2012 The Author Journal of Microscopy © 2012 Royal Microscopical Society.

  9. Electron microscopy and forensic practice

    Science.gov (United States)

    Kotrlý, Marek; Turková, Ivana

    2013-05-01

    Electron microanalysis in forensic practice ranks among basic applications used in investigation of traces (latents, stains, etc.) from crime scenes. Applying electron microscope allows for rapid screening and receiving initial information for a wide range of traces. SEM with EDS/WDS makes it possible to observe topography surface and morphology samples and examination of chemical components. Physical laboratory of the Institute of Criminalistics Prague use SEM especially for examination of inorganic samples, rarely for biology and other material. Recently, possibilities of electron microscopy have been extended considerably using dual systems with focused ion beam. These systems are applied mainly in study of inner micro and nanoparticles , thin layers (intersecting lines in graphical forensic examinations, analysis of layers of functional glass, etc.), study of alloys microdefects, creating 3D particles and aggregates models, etc. Automated mineralogical analyses are a great asset to analysis of mineral phases, particularly soils, similarly it holds for cathode luminescence, predominantly colour one and precise quantitative measurement of their spectral characteristics. Among latest innovations that are becoming to appear also at ordinary laboratories are TOF - SIMS systems and micro Raman spectroscopy with a resolution comparable to EDS/WDS analysis (capable of achieving similar level as through EDS/WDS analysis).

  10. Vacuum scanning capillary photoemission microscopy.

    Science.gov (United States)

    Aseyev, S A; Cherkun, A P; Mironov, B N; Petrunin, V V; Chekalin, S V

    2017-08-01

    We demonstrate the use of a conical capillary in a scanning probe microscopy for surface analysis. The probe can measure photoemission from a substrate by transmitting photoelectrons along the capillary as a function of probe position. The technique is demonstrated on a model substrate consisting of a gold reflecting layer on a compact disc which has been illuminated by an unfocused laser beam with a wavelength 400nm, from a femtosecond laser with a beam size of 4mm. A quartz capillary with a 2-µm aperture has been used in the experiments. The period of gold microstructure, shown to be 1.6µ, was measured by the conical probe operating in shear force mode. In shear force regime, the dielectric capillary has been used as a "classical" SPM tip, which provided images reflecting the surface topology. In a photoelectron regime photoelectrons passed through hollow tip and entered a detector. The spatial distribution of the recorded photoelectrons consisted of periodic mountain-valley strips, resembling the surface profile of the sample. Submicron spatial resolution has been achieved. This approach paves the way to study pulsed photodesorption of large organic molecular ions with high spatial and element resolution using the combination of a hollow-tip scanner with time-of-flight technique. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Ultrafast photon counting applied to resonant scanning STED microscopy.

    Science.gov (United States)

    Wu, Xundong; Toro, Ligia; Stefani, Enrico; Wu, Yong

    2015-01-01

    To take full advantage of fast resonant scanning in super-resolution stimulated emission depletion (STED) microscopy, we have developed an ultrafast photon counting system based on a multigiga sample per second analogue-to-digital conversion chip that delivers an unprecedented 450 MHz pixel clock (2.2 ns pixel dwell time in each scan). The system achieves a large field of view (∼50 × 50 μm) with fast scanning that reduces photobleaching, and advances the time-gated continuous wave STED technology to the usage of resonant scanning with hardware-based time-gating. The assembled system provides superb signal-to-noise ratio and highly linear quantification of light that result in superior image quality. Also, the system design allows great flexibility in processing photon signals to further improve the dynamic range. In conclusion, we have constructed a frontier photon counting image acquisition system with ultrafast readout rate, excellent counting linearity, and with the capacity of realizing resonant-scanning continuous wave STED microscopy with online time-gated detection. © 2014 The Authors Journal of Microscopy © 2014 Royal Microscopical Society.

  12. French Society of Microscopy, 10. conference; Societe Francaise des Microscopies, 10. colloque

    Energy Technology Data Exchange (ETDEWEB)

    Thibault-Penisson, J; Cremer, Ch; Susini, J; Kirklanda, A I; Rigneault, H; Renault, O; Bailly, A; Zagonel, L F; Barrett, N; Bogner, A; Gauthier, C; Jouneau, P H; Thollet, G; Fuchs, G; Basset, D; Deconihout, B; Vurpillot, F; Vella, A; Matthieu, G; Cadel, E; Bostel, A; Blavette, D; Baumeister, W; Usson, Y; Zaefferer, St; Laffont, L; Weyland, M; Thomas, J M; Midgley, P; Benlekbir, S; Epicier, Th; Diop, B N; Roux, St; Ou, M; Perriat, P; Bausach, M; Aouine, M; Berhault, G; Idrissi, H; Cottevieille, M; Jonic, S; Larquet, E; Svergun, D; Vannoni, M A; Boisset, N; Ersena, O; Werckmann, J; Ulhaq, C; Hirlimann, Ch; Tihay, F; Cuong, Pham-Huu; Crucifix, C; Schultz, P; Jornsanoha, P; Thollet, G; Masenelli-Varlot, K; Gauthier, C; Ludwig, W; King, A; Johnson, G; Gonzalves-Hoennicke, M; Reischig, P; Messaoudi, C; Ibrahim, R; Marco, S; Klie, R F; Zhao, Y; Yang, G; Zhu, Y; Hue, F; Hytch, M; Hartmann, J M; Bogumilowicz, Y; Claverie, A; Klein, H; Alloyeau, D; Ricolleau, C; Langlois, C; Le Bouar, Y; Loiseau, A; Colliex, C; Stephan, O; Kociak, M; Tence, M; Gloter, A; Imhoff, D; Walls, M; Nelayah, J; March, K; Couillard, M; Ailliot, C; Bertin, F; Cooper, D; Rivallin, P; Dumelie, N; Benhayoune, H; Balossier, G; Cheynet, M; Pokrant, S; Tichelaar, F; Rouviere, J L; Cooper, D; Truche, R; Chabli, A; Debili, M Y; Houdellier, F; Warot-Fonrose, B; Hytch, M J; Snoeck, E; Calmels, L; Serin, V; Schattschneider, P; Jacob, D; Cordier, P

    2007-07-01

    This document gathers the resumes of some of the presentations made at this conference whose aim was to present the last developments and achievements of the 3 complementary microscopies: optical microscopy, electron microscopy and X-ray microscopy. The contributions have been organized around the following 12 topics: 1) new technical developments, 2) 3-dimensional imaging, 3) quantitative microscopy, 4) technical progress in photon microscopy, 5) synchrotron radiation, 6) measurements of patterns, deformations and strains, 7) materials for energy and transports, 8) nano-structures, 9) virus: structure and infection mechanisms, 10) 3-dimensional imaging for molecules, cells and cellular tissues, 11) nano-particles and colloids, and 12) liquid crystals.

  13. Nanoparticle discrimination based on wavelength and lifetime-multiplexed cathodoluminescence microscopy.

    Science.gov (United States)

    Garming, Mathijs W H; Weppelman, I Gerward C; de Boer, Pascal; Martínez, Felipe Perona; Schirhagl, Romana; Hoogenboom, Jacob P; Moerland, Robert J

    2017-08-31

    Nanomaterials can be identified in high-resolution electron microscopy images using spectrally-selective cathodoluminescence. Capabilities for multiplex detection can however be limited, e.g., due to spectral overlap or availability of filters. Also, the available photon flux may be limited due to degradation under electron irradiation. Here, we demonstrate single-pass cathodoluminescence-lifetime based discrimination of different nanoparticles, using a pulsed electron beam. We also show that cathodoluminescence lifetime is a robust parameter even when the nanoparticle cathodoluminescence intensity decays over an order of magnitude. We create lifetime maps, where the lifetime of the cathodoluminescence emission is correlated with the emission intensity and secondary-electron images. The consistency of lifetime-based discrimination is verified by also correlating the emission wavelength and the lifetime of nanoparticles. Our results show how cathodoluminescence lifetime provides an additional channel of information in electron microscopy.

  14. Microsphere-aided optical microscopy and its applications for super-resolution imaging

    Science.gov (United States)

    Upputuri, Paul Kumar; Pramanik, Manojit

    2017-12-01

    The spatial resolution of a standard optical microscope (SOM) is limited by diffraction. In visible spectrum, SOM can provide ∼ 200 nm resolution. To break the diffraction limit several approaches were developed including scanning near field microscopy, metamaterial super-lenses, nanoscale solid immersion lenses, super-oscillatory lenses, confocal fluorescence microscopy, techniques that exploit non-linear response of fluorophores like stimulated emission depletion microscopy, stochastic optical reconstruction microscopy, etc. Recently, photonic nanojet generated by a dielectric microsphere was used to break the diffraction limit. The microsphere-approach is simple, cost-effective and can be implemented under a standard microscope, hence it has gained enormous attention for super-resolution imaging. In this article, we briefly review the microsphere approach and its applications for super-resolution imaging in various optical imaging modalities.

  15. Imaging cellular structures in super-resolution with SIM, STED and Localisation Microscopy: A practical comparison.

    Science.gov (United States)

    Wegel, Eva; Göhler, Antonia; Lagerholm, B Christoffer; Wainman, Alan; Uphoff, Stephan; Kaufmann, Rainer; Dobbie, Ian M

    2016-06-06

    Many biological questions require fluorescence microscopy with a resolution beyond the diffraction limit of light. Super-resolution methods such as Structured Illumination Microscopy (SIM), STimulated Emission Depletion (STED) microscopy and Single Molecule Localisation Microscopy (SMLM) enable an increase in image resolution beyond the classical diffraction-limit. Here, we compare the individual strengths and weaknesses of each technique by imaging a variety of different subcellular structures in fixed cells. We chose examples ranging from well separated vesicles to densely packed three dimensional filaments. We used quantitative and correlative analyses to assess the performance of SIM, STED and SMLM with the aim of establishing a rough guideline regarding the suitability for typical applications and to highlight pitfalls associated with the different techniques.

  16. Time-Resolved Scanning Electron Microscopy

    National Research Council Canada - National Science Library

    Weber, Peter M

    2006-01-01

    .... The pulsed electron beam is obtained by rapidly switching the electron emission of a field emission tip using the AC electric field arising from exposure to the intense electromagnetic radiation...

  17. Nuclear microscopy of biological specimens

    International Nuclear Information System (INIS)

    Watt, F.; Grime, G.W.; Brook, A.J.; Gadd, G.M.; Perry, C.C.; Pearce, R.B.; Turnau, K.; Watkinson, S.C.

    1991-01-01

    Recent developments in technology have enabled the scanning proton microprobe to scan at submicron spatial resolution on a routine basis. The use of the powerful combination of techniques PIXE (proton induced X-ray emission), nuclear (or Rutherford) backscattering (RBS), and secondary electron detection operating at this resolution will open up new areas in many scientific disciplines. This paper describes some of the work carried out in the biological sciences over the last year, using the Oxford SPM facility. Collaborations with biological scientists have drawn attention to the wealth of information that can be derived when these techniques are applied to micro-organisms, cells and plant tissue. Briefly described here are investigations into the uptake of heavy metals by the alga Pandorina morum, the structure of the diatom Stephanopyxis turris, the presence of various types of crystal structures within the cells of Spirogyra, the heavy metal uptake of a mycorrhizal fungus present in the bracken (Pteridium aquilinum) root, the role of sphagnum moss in the absorption of inorganic elements, the measurement of heavy metals in environmentally-adapted cells of the yeast Saccharomyces cerevisiae, and the elemental distribution in the growing tip of a spore from the plant Equisetum arvense, with special emphasis placed on the visual interpretation of the elemental and secondary-electron maps provided by the nuclear microscopical techniques. (orig.)

  18. Physical methods for studying minerals and solid materials: X-ray, electron and neutron diffraction; scanning and transmission electron microscopy; X-ray, electron and ion spectrometry

    International Nuclear Information System (INIS)

    Eberhart, J.-P.

    1976-01-01

    The following topics are discussed: theoretical aspects of radiation-matter interactions; production and measurement of radiations (X rays, electrons, neutrons); applications of radiation interactions to the study of crystalline materials. The following techniques are presented: X-ray and neutron diffraction, electron microscopy, electron diffraction, X-ray fluorescence analysis, electron probe microanalysis, surface analysis by electron emission spectrometry (ESCA and Auger electrons), scanning electron microscopy, secondary ion emission analysis [fr

  19. Analysis of ancient pigments by Raman microscopy

    International Nuclear Information System (INIS)

    Zuo Jian; Xu Cunyi

    1999-01-01

    Raman microscopy can be applied for the spatial resolution, and non-destructive in situ analysis of inorganic pigments in pottery, manuscripts and paintings. Compared with other techniques, it is the best single technique for this purpose. An overview is presented of the applications of Raman microscopy in the analysis of ancient pigments

  20. Confocal Raman Microscopy; applications in tissue engineering

    NARCIS (Netherlands)

    van Apeldoorn, Aart A.

    2005-01-01

    This dissertation describes the use of confocal Raman microscopy and spectroscopy in the field of tissue engineering. Moreover, it describes the combination of two already existing technologies, namely scanning electron microscopy and confocal Raman spectroscopy in one apparatus for the enhancement

  1. Scanning transmission electron microscopy imaging and analysis

    CERN Document Server

    Pennycook, Stephen J

    2011-01-01

    Provides the first comprehensive treatment of the physics and applications of this mainstream technique for imaging and analysis at the atomic level Presents applications of STEM in condensed matter physics, materials science, catalysis, and nanoscience Suitable for graduate students learning microscopy, researchers wishing to utilize STEM, as well as for specialists in other areas of microscopy Edited and written by leading researchers and practitioners

  2. Magnetic force microscopy : Quantitative issues in biomaterials

    NARCIS (Netherlands)

    Passeri, D.; Dong, C.; Reggente, M.; Angeloni, L.; Barteri, M.; Scaramuzzo, F.A.; De Angelis, F.; Marinelli, F.; Antonelli, F.; Rinaldi, F.; Marianecci, C.; Carafa, M.; Sorbo, A.; Sordi, D.; Arends, I.W.C.E.; Rossi, M.

    2014-01-01

    Magnetic force microscopy (MFM) is an atomic force microscopy (AFM) based technique in which an AFM tip with a magnetic coating is used to probe local magnetic fields with the typical AFM spatial resolution, thus allowing one to acquire images reflecting the local magnetic properties of the samples

  3. Multiphoton microscopy imaging of developing tooth germs

    Directory of Open Access Journals (Sweden)

    Pei-Yu Pan

    2014-01-01

    Conclusion: In this study, a novel multiphoton microscopy database of images from developing tooth germs in mice was set up. We confirmed that multiphoton laser microscopy is a powerful tool for investigating the development of tooth germ and is worthy for further application in the study of tooth regeneration.

  4. Scanning Capacitance Microscopy | Materials Science | NREL

    Science.gov (United States)

    obtained using scanning capacitance microscopy. Top Right: Image of p-type and n-type material, obtained 'fingers' of light-colored n-type material on a yellow and blue background representing p-type material material, obtained using scanning capacitance microscopy, in a sample semiconductor device; the image shows

  5. Electron microscopy of atmospheric particles

    Science.gov (United States)

    Huang, Po-Fu

    Electron microscopy coupled with energy dispersive spectrometry (EM/EDS) is a powerful tool for single particle analysis. However, the accuracy with which atmospheric particle compositions can be quantitatively determined by EDS is often hampered by substrate-particle interactions, volatilization losses in the low pressure microscope chamber, electron beam irradiation and use of inaccurate quantitation factors. A pseudo-analytical solution was derived to calculate the temperature rise due to the dissipation of the electron energy on a particle-substrate system. Evaporative mass loss for a spherical cap-shaped sulfuric acid particle resting on a thin film supported by a TEM grid during electron beam impingement has been studied. Measured volatilization rates were found to be in very good agreement with theoretical predictions. The method proposed can also be used to estimate the vapor pressure of a species by measuring the decay of X-ray intensities. Several types of substrates were studied. We found that silver-coated silicon monoxide substrates give carbon detection limits comparable to commercially available substrates. An advantage of these substrates is that the high thermal conductivity of the silver reduces heating due to electron beam impingement. In addition, exposure of sulfuric acid samples to ammonia overnight substantially reduces sulfur loss in the electron beam. Use of size-dependent k-factors determined from particles of known compositions shows promise for improving the accuracy of atmospheric particle compositions measured by EM/EDS. Knowledge accumulated during the course of this thesis has been used to analyze atmospheric particles (Minneapolis, MN) selected by the TDMA and collected by an aerodynamic focusing impactor. 'Less' hygroscopic particles, which do not grow to any measurable extent when humidified to ~90% relative humidity, included chain agglomerates, spheres, flakes, and irregular shapes. Carbon was the predominant element detected in

  6. Structured illumination microscopy and its new developments

    Directory of Open Access Journals (Sweden)

    Jianling Chen

    2016-05-01

    Full Text Available Optical microscopy allows us to observe the biological structures and processes within living cells. However, the spatial resolution of the optical microscopy is limited to about half of the wavelength by the light diffraction. Structured illumination microscopy (SIM, a type of new emerging super-resolution microscopy, doubles the spatial resolution by illuminating the specimen with a patterned light, and the sample and light source requirements of SIM are not as strict as the other super-resolution microscopy. In addition, SIM is easier to combine with the other imaging techniques to improve their imaging resolution, leading to the developments of diverse types of SIM. SIM has great potential to meet the various requirements of living cells imaging. Here, we review the recent developments of SIM and its combination with other imaging techniques.

  7. Nanophotonics with Surface Enhanced Coherent Raman Microscopy

    Science.gov (United States)

    Fast, Alexander

    Nonlinear nanophotonics is a rapidly developing field of research that aims at detecting and disentangling weak congested optical signatures on the nanoscale. Sub-wavelength field confinement of the local electromagnetic fields and the resulting field enhancement is achieved by utilizing plasmonic near-field antennas. This allows for probing nanoscopic volumes, a property unattainable by conventional far-field microscopy techniques. Combination of plasmonics and nonlinear optical microscopy provides a path to visualizing a small chemical and spatial subset of target molecules within an ensemble. This is achieved while maintaining rapid signal acquisition, which is necessary for capturing biological processes in living systems. Herein, a novel technique, wide-field surface enhanced coherent anti-Stokes Raman scattering (wfSE-CARS) is presented. This technique allows for isolating weak vibrational signals in nanoscopic proximity to the surface by using chemical sensitivity of coherent Raman microspectroscopy (CRM) and field confinement from surface plasmons supported on a thin gold film. Uniform field enhancement over a large field of view, achieved with surface plasmon polaritons (SPP) in wfSE-CARSS, allows for biomolecular imaging demonstrated on extended structures like phospholipid droplets and live cells. Surface selectivity and chemical contrast are achieved at 70 fJ/mum2 incident energy densities, which is over five orders of magnitude lower than used in conventional point scanning CRM. Next, a novel surface sensing imaging technique, local field induced metal emission (LFIME), is introduced. Presence of a sample material at the surface influences the local fields of a thin flat gold film, such that nonlinear fluorescence signal of the metal can be detected in the far-field. Nanoscale nonmetallic, nonfluorescent objects can be imaged with high signal-to-background ratio and diffraction limited lateral resolution using LFIME. Additionally, structure of the

  8. High-resolution electron microscopy of advanced materials

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, T.E.; Kung, H.H.; Sickafus, K.E.; Gray, G.T. III; Field, R.D.; Smith, J.F. [Los Alamos National Lab., NM (United States). Materials Science and Technology Div.

    1997-11-01

    This final report chronicles a three-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). The High-Resolution Electron Microscopy Facility has doubled in size and tripled in quality since the beginning of the three-year period. The facility now includes a field-emission scanning electron microscope, a 100 kV field-emission scanning transmission electron microscope (FE-STEM), a 300 kV field-emission high-resolution transmission electron microscope (FE-HRTEM), and a 300 kV analytical transmission electron microscope. A new orientation imaging microscope is being installed. X-ray energy dispersive spectrometers for chemical analysis are available on all four microscopes; parallel electron energy loss spectrometers are operational on the FE-STEM and FE-HRTEM. These systems enable evaluation of local atomic bonding, as well as chemical composition in nanometer-scale regions. The FE-HRTEM has a point-to-point resolution of 1.6 {angstrom}, but the resolution can be pushed to its information limit of 1 {angstrom} by computer reconstruction of a focal series of images. HRTEM has been used to image the atomic structure of defects such as dislocations, grain boundaries, and interfaces in a variety of materials from superconductors and ferroelectrics to structural ceramics and intermetallics.

  9. The electron microscopy facility at the LNLS

    International Nuclear Information System (INIS)

    Ugarte, D.; Zanchet, D.; Silva, P.C.; Araujo, S.R. de; Bettini, J.; Gonzalez, J.C.; Nakabayashi, D.B.

    2004-01-01

    Full text: The Electron Microscopy Laboratory (LME, Lab. Microscopia Eletronica) is one of the multi user facilities of the Laboratorio Nacional de Luz Sincrotron (LNLS). It has been in operation since the beginning of 1999 to provide spatial high resolution tools, making the LNLS a unique center for advanced characterization of materials. The equipment installed at the LME can be brie y described as: a) a Low Vacuum Scanning Electron Microscope (SEM, JSM-5900LV) with microanalysis and crystallographic mapping capabilities; b) a Field Emission Gun SEM (JSM-6330F); c) a 300 kV High Resolution Transmission Electron Microscope (HRTEM, JEM 3010 URP, 1.7 A Point Res.) with TV Camera, Multi-Scan CCD Camera and X-ray Si(Li) detector; and d) a complete sample preparation laboratory for EM studies A simple procedure allows access to the LME instruments, firstly a short research project must be submitted for evaluation of viability and relevance; subsequently the training microscope sessions are scheduled. It is important to remark that EM is a routine characterization tool and the researchers have to operate the microscope by themselves; for that a training period is necessary, which may vary from 1-2 weeks for a SEM to 2-4 months for the HRTEM. Our staff addresses a great effort to the formation of human resources in order to allow inexperienced Users to become capable of acquiring and interpreting data for their research projects. Since its installation, the LME has trained more than 300 Users in EM techniques. In 2003, the number of projects developed was: 36 in the HRTEM, 16 in the FEG-SEM and 48 in the LV-SEM. This means that just the HRTEM has operated 2157 hours. The constant increase of users in addition to the more exigent EM studies being proposed indicates the necessity of an expansion of the LME by the purchase of a 200 kV FEG-TEM oriented for nano-analysis and Electron Energy Loss Spectroscopy.. (author)

  10. Helium ion microscopy and energy selective scanning electron microscopy - two advanced microscopy techniques with complementary applications

    Science.gov (United States)

    Rodenburg, C.; Jepson, M. A. E.; Boden, Stuart A.; Bagnall, Darren M.

    2014-06-01

    Both scanning electron microscopes (SEM) and helium ion microscopes (HeIM) are based on the same principle of a charged particle beam scanning across the surface and generating secondary electrons (SEs) to form images. However, there is a pronounced difference in the energy spectra of the emitted secondary electrons emitted as result of electron or helium ion impact. We have previously presented evidence that this also translates to differences in the information depth through the analysis of dopant contrast in doped silicon structures in both SEM and HeIM. Here, it is now shown how secondary electron emission spectra (SES) and their relation to depth of origin of SE can be experimentally exploited through the use of energy filtering (EF) in low voltage SEM (LV-SEM) to access bulk information from surfaces covered by damage or contamination layers. From the current understanding of the SES in HeIM it is not expected that EF will be as effective in HeIM but an alternative that can be used for some materials to access bulk information is presented.

  11. Microscopy of the hair and trichogram

    Directory of Open Access Journals (Sweden)

    Özlem Dicle

    2014-06-01

    Full Text Available Hair microscopy is a fast and simple method for the diagnosis of various disorders affecting the hair in daily practice. For the microscopy of the hair, samples are collected by either clipping or plucking. The trichogram technique which the hair sample is collected by a standardized plucking method is used for the diagnosis of hair shedding and of alopecia via hair root pattern. In this review, the examination techniques and details are discussed and the most common indications for the hair microscopy including hair abnormalities as a part of genodermatosis and, infections and infestations affecting the hair are highlighted.

  12. Atom probe field ion microscopy and related topics: A bibliography 1993

    Energy Technology Data Exchange (ETDEWEB)

    Godfrey, R.D.; Miller, M.K.; Russell, K.F.

    1994-10-01

    This bibliography, covering the period 1993, includes references related to the following topics: atom probe field ion microscopy (APFIM), field emission (FE), and field ion microscopy (FIM). Technique-oriented studies and applications are included. The references contained in this document were compiled from a variety of sources including computer searches and personal lists of publications. To reduce the length of this document, the references have been reduced to the minimum necessary to locate the articles. The references are listed alphabetically by authors, an Addendum of references missed in previous bibliographies is included.

  13. Electron microscopy of Mg/TiO{sub 2} photocatalyst morphology for deep desulfurization of diesel

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Yee Cia, E-mail: gabrielle.ciayin@gmail.com [Department of Chemical Engineering, Universiti Teknologi PETRONAS, 31750 Tronoh, Perak (Malaysia); Kait, Chong Fai, E-mail: chongfaikait@petronas.com.my; Fatimah, Hayyiratul, E-mail: hayyiratulfatimah@yahoo.com; Wilfred, Cecilia, E-mail: cecili@petronas.com.my [Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 31750 Tronoh, Perak (Malaysia)

    2015-07-22

    A series of Mg/TiO{sub 2} photocatalysts were prepared and characterized using Field Emission Scanning Electron Microscopy (FESEM) and High-Resolution Transmission Electron Microscopy (HRTEM). The average particle sizes of the photocatalysts were ranging from 25.7 to 35.8 nm. Incorporation of Mg on TiO{sub 2} did not lead to any surface lattice distortion to TiO{sub 2}. HRTEM data indicated the presence of MgO and Mg(OH){sub 2} mixture at low Mg loading while at higher Mg loading, the presence of lamellar Mg-oxyhydroxide intermediates and Mg(OH){sub 2}.

  14. Electron microscopy of Mg/TiO2 photocatalyst morphology for deep desulfurization of diesel

    International Nuclear Information System (INIS)

    Yin, Yee Cia; Kait, Chong Fai; Fatimah, Hayyiratul; Wilfred, Cecilia

    2015-01-01

    A series of Mg/TiO 2 photocatalysts were prepared and characterized using Field Emission Scanning Electron Microscopy (FESEM) and High-Resolution Transmission Electron Microscopy (HRTEM). The average particle sizes of the photocatalysts were ranging from 25.7 to 35.8 nm. Incorporation of Mg on TiO 2 did not lead to any surface lattice distortion to TiO 2 . HRTEM data indicated the presence of MgO and Mg(OH) 2 mixture at low Mg loading while at higher Mg loading, the presence of lamellar Mg-oxyhydroxide intermediates and Mg(OH) 2

  15. Atom probe field ion microscopy and related topics: A bibliography 1993

    International Nuclear Information System (INIS)

    Godfrey, R.D.; Miller, M.K.; Russell, K.F.

    1994-10-01

    This bibliography, covering the period 1993, includes references related to the following topics: atom probe field ion microscopy (APFIM), field emission (FE), and field ion microscopy (FIM). Technique-oriented studies and applications are included. The references contained in this document were compiled from a variety of sources including computer searches and personal lists of publications. To reduce the length of this document, the references have been reduced to the minimum necessary to locate the articles. The references are listed alphabetically by authors, an Addendum of references missed in previous bibliographies is included

  16. Field emission from the surface of highly ordered pyrolytic graphite

    Czech Academy of Sciences Publication Activity Database

    Knápek, Alexandr; Sobola, D.; Tománek, P.; Pokorná, Zuzana; Urbánek, Michal

    2017-01-01

    Roč. 395, FEB 15 (2017), s. 157-161 ISSN 0169-4332 R&D Projects: GA TA ČR(CZ) TE01020118 Institutional support: RVO:68081731 Keywords : field emission * HOPG * scanning electron microscopy * scanning near-field optical microscopy Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering OBOR OECD: Nano-processes (applications on nano-scale) Impact factor: 3.387, year: 2016

  17. Nanoscale surface characterization using laser interference microscopy

    Science.gov (United States)

    Ignatyev, Pavel S.; Skrynnik, Andrey A.; Melnik, Yury A.

    2018-03-01

    Nanoscale surface characterization is one of the most significant parts of modern materials development and application. The modern microscopes are expensive and complicated tools, and its use for industrial tasks is limited due to laborious sample preparation, measurement procedures, and low operation speed. The laser modulation interference microscopy method (MIM) for real-time quantitative and qualitative analysis of glass, metals, ceramics, and various coatings has a spatial resolution of 0.1 nm for vertical and up to 100 nm for lateral. It is proposed as an alternative to traditional scanning electron microscopy (SEM) and atomic force microscopy (AFM) methods. It is demonstrated that in the cases of roughness metrology for super smooth (Ra >1 nm) surfaces the application of a laser interference microscopy techniques is more optimal than conventional SEM and AFM. The comparison of semiconductor test structure for lateral dimensions measurements obtained with SEM and AFM and white light interferometer also demonstrates the advantages of MIM technique.

  18. Scanning probe microscopy experiments in microgravity

    International Nuclear Information System (INIS)

    Drobek, Tanja; Reiter, Michael; Heckl, Wolfgang M.

    2004-01-01

    The scanning probe microscopy setups are small, lightweight and do not require vacuum or high voltage supply. In addition, samples can be investigated directly without further preparation. Therefore, these techniques are well-suited for applications in space, in particular, for operation on the International Space Station (ISS) or for high resolution microscopy on planetary missions. A feasibility study for a scanning tunneling microscopy setup was carried out on a parabolic flight campaign in November 2001 in order to test the technical setup for microgravity applications. With a pocket-size design microscope, a graphite surface was imaged under ambient conditions. Atomic resolution was achieved although the quality of the images was inferior in comparison to laboratory conditions. Improvements for future scanning probe microscopy experiments in microgravity are suggested

  19. Physicists bag Chemistry Nobel for microscopy method

    Science.gov (United States)

    Johnston, Hamish

    2017-11-01

    The 2017 Nobel Prize for Chemistry has been given to Jacques Dubochet, Joachim Frank and Richard Henderson “for developing cryo-electron microscopy for the high-resolution structure determination of biomolecules in solution”.

  20. Sample preparation method for scanning force microscopy

    CERN Document Server

    Jankov, I R; Szente, R N; Carreno, M N P; Swart, J W; Landers, R

    2001-01-01

    We present a method of sample preparation for studies of ion implantation on metal surfaces. The method, employing a mechanical mask, is specially adapted for samples analysed by Scanning Force Microscopy. It was successfully tested on polycrystalline copper substrates implanted with phosphorus ions at an acceleration voltage of 39 keV. The changes of the electrical properties of the surface were measured by Kelvin Probe Force Microscopy and the surface composition was analysed by Auger Electron Spectroscopy.

  1. Single spin stochastic optical reconstruction microscopy

    OpenAIRE

    Pfender, Matthias; Aslam, Nabeel; Waldherr, Gerald; Wrachtrup, Jörg

    2014-01-01

    We experimentally demonstrate precision addressing of single quantum emitters by combined optical microscopy and spin resonance techniques. To this end we utilize nitrogen-vacancy (NV) color centers in diamond confined within a few ten nanometers as individually resolvable quantum systems. By developing a stochastic optical reconstruction microscopy (STORM) technique for NV centers we are able to simultaneously perform sub diffraction-limit imaging and optically detected spin resonance (ODMR)...

  2. Integrated Photoacoustic and Fluorescence Confocal Microscopy

    OpenAIRE

    Wang, Yu; Maslov, Konstantin; Kim, Chulhong; Hu, Song; Wang, Lihong V.

    2010-01-01

    We have developed a dual-modality imaging system by integrating optical-resolution photoacoustic microscopy and fluorescence confocal microscopy to provide optical absorption and fluorescence contrasts simultaneously. By sharing the same laser source and objective lens, intrinsically registered photoacoustic and fluorescence images are acquired in a single scan. The micrometer resolution allows imaging of both blood and lymphatic vessels down to the capillary level. Simultaneous photoacoustic...

  3. Emission Inventory for Fugitive Emissions in Denmark

    DEFF Research Database (Denmark)

    Plejdrup, Marlene Schmidt; Nielsen, Ole-Kenneth; Nielsen, Malene

    This report presents the methodology and data used in the Danish inventory of fugitive emissions from fuels for the years until 2007. The inventory of fugitive emissions includes CO2, CH4, N2O, NOx, CO, NMVOC, SO2, dioxin, PAH and particulate matter. In 2007 the total Danish emission of greenhouse...

  4. Biological applications of novel nonlinear optical microscopy

    International Nuclear Information System (INIS)

    Kajiyama, Shin'ichiro; Ozeki, Yasuyuki; Itoh, Kazuyoshi; Fukui, Kiichi

    2010-01-01

    Two types of newly developed nonlinear optical microscopes namely stimulated parametric emission (SPE) microscope and stimulated Raman scattering (SRS) microscope were presented together with their biological applications.

  5. Cell reactions with biomaterials: the microscopies

    Directory of Open Access Journals (Sweden)

    Curtis A. S.G.

    2001-01-01

    Full Text Available The methods and results of optical microscopy that can be used to observe cell reactions to biomaterials are Interference Reflection Microscopy (IRM, Total Internal Reflection Fluorescence Microscopy (TIRFM, Surface Plasmon Resonance Microscopy (SPRM and Forster Resonance Energy Transfer Microscopy (FRETM and Standing Wave Fluorescence Microscopy. The last three are new developments, which have not yet been fully perfected. TIRFM and SPRM are evanescent wave methods. The physics of these methods depend upon optical phenomena at interfaces. All these methods give information on the dimensions of the gap between cell and the substratum to which it is adhering and thus are especially suited to work with biomaterials. IRM and FRETM can be used on opaque surfaces though image interpretation is especially difficult for IRM on a reflecting opaque surface. These methods are compared with several electron microscopical methods for studying cell adhesion to substrata. These methods all yield fairly consistent results and show that the cell to substratum distance on many materials is in the range 5 to 30 nm. The area of contact relative to the total projected area of the cell may vary from a few per cent to close to 100% depending on the cell type and substratum. These methods show that those discrete contact areas well known as focal contacts are frequently present. The results of FRETM suggest that the separation from the substratum even in a focal contact is about 5 nm.

  6. Scanning electron microscopy physics of image formation and microanalysis

    CERN Document Server

    Reimer, Ludwig

    1985-01-01

    The aim of this book is to outline the physics of image formation, electron­ specimen interactions, imaging modes, the interpretation of micrographs and the use of quantitative modes "in scanning electron microscopy (SEM). lt forms a counterpart to Transmission Electron Microscopy (Vol. 36 of this Springer Series in Optical Sciences) . The book evolved from lectures delivered at the University of Münster and from a German text entitled Raster-Elektronenmikroskopie (Springer-Verlag), published in collaboration with my colleague Gerhard Pfefferkorn. In the introductory chapter, the principles of the SEM and of electron­ specimen interactions are described, the most important imaging modes and their associated contrast are summarized, and general aspects of eiemental analysis by x-ray and Auger electron emission are discussed. The electron gun and electron optics are discussed in Chap. 2 in order to show how an electron probe of small diameter can be formed, how the elec­ tron beam can be blanked at high fre...

  7. Application of spectroscopy and super-resolution microscopy: Excited state

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharjee, Ujjal [Iowa State Univ., Ames, IA (United States)

    2016-02-19

    Photophysics of inorganic materials and organic molecules in complex systems have been extensively studied with absorption and emission spectroscopy.1-4 Steady-state and time-resolved fluorescence studies are commonly carried out to characterize excited-state properties of fluorophores. Although steady-state fluorescence measurements are widely used for analytical applications, time-resolved fluorescence measurements provide more detailed information about excited-state properties and the environment in the vicinity of the fluorophore. Many photophysical processes, such as photoinduced electron transfer (PET), rotational reorientation, solvent relaxation, and energy transfer, occur on a nanosecond (10-9 s) timescale, thus affecting the lifetime of the fluorophores. Moreover, time-resolved microscopy methods, such as lifetimeimaging, combine the benefits of the microscopic measurement and information-rich, timeresolved data. Thus, time-resolved fluorescence spectroscopy combined with microscopy can be used to quantify these processes and to obtain a deeper understanding of the chemical surroundings of the fluorophore in a small area under investigation. This thesis discusses various photophysical and super-resolution microscopic studies of organic and inorganic materials, which have been outlined below.

  8. Nanomorphology of polythiophene–fullerene bulk-heterojunction films investigated by structured illumination optical imaging and time-resolved confocal microscopy

    International Nuclear Information System (INIS)

    Hao, X-T; Hirvonen, L M; Smith, T A

    2013-01-01

    Structured illumination microscopy (SIM) and time-resolved confocal fluorescence microscopy are applied to investigate the nanomorphology of thin films comprising typical blends of the conjugated polymer, poly (3-hexylthiophene) (P3HT), and [6, 6]-phenyl C 61 -butyric acid methyl ester (PCBM), used for organic photovoltaic applications. SIM provides evidence for the presence of a thin emissive region around the crystalline regions of PCBM and at the tips of rod-like domains. The time-resolved measurements show that the emission surrounding the PCBM rods is longer lived than the bulk of the film. The two modes of microscopy provide complementary evidence indicating that electron–hole separation is inhibited between the polymer and the large PCBM-rich domains in these regions. We show here that structured illumination microscopy is a viable method of gaining additional information from these photovoltaic materials, despite their weak emission. (paper)

  9. Fluorescence spectroscopy and confocal microscopy of the mycotoxin citrinin in condensed phase and hydrogel films.

    Science.gov (United States)

    Lauer, Milena H; Gehlen, Marcelo H; de Jesus, Karen; Berlinck, Roberto G S

    2014-05-01

    The emission spectra, quantum yields and fluorescence lifetimes of citrinin in organic solvents and hydrogel films have been determined. Citrinin shows complex fluorescence decays due to the presence of two tautomers in solution and interconversion from excited-state double proton transfer (ESDPT) process. The fluorescence decay times associated with the two tautomers have values near 1 and 5 ns depending on the medium. In hydrogel films of agarose and alginate, fluorescence imaging showed that citrinin is not homogeneously dispersed and highly emissive micrometer spots may be formed. Fluorescence spectrum and decay analysis are used to recognize the presence of citrinin in hydrogel films using confocal fluorescence microscopy and spectroscopy.

  10. Synchrotron X-ray microscopy of marine calcifiers: how plankton record past climate change

    International Nuclear Information System (INIS)

    Redfern, S A T; Branson, O; Read, E

    2017-01-01

    We have used STXM and PEEM to reveal the underpinning chemistry and nanoscale structure behind palaeo-climate geochemical signatures, such as trace Mg in shells- proposed proxies for palaeo-ocean temperature. This has allowed us to test the chemical assumptions and mechanisms underpinning the use of such empirical proxies. We have determined the control on driving chemical variations in biogenic carbonates using STXM at the absorption edge of Mg, B, and Na in the shells of modern plankton. The power of these observations lies in their ability to link changes in chemistry, microstructure, and growth process in biogenic carbonate to environmental influences. We have seen that such changes occur at length scales of tens of nanometres and demonstrated that STXM provides an invaluable route to understanding chemical environment and key heterogeneity at the appropriate length scale. This new understanding provides new routes for future measurements of past climate variation in the sea floor fossil record. (paper)

  11. Three-dimensional characterization of extreme ultraviolet mask blank defects by interference contrast photoemission electron microscopy.

    Science.gov (United States)

    Lin, Jingquan; Weber, Nils; Escher, Matthias; Maul, Jochen; Han, Hak-Seung; Merkel, Michael; Wurm, Stefan; Schönhense, Gerd; Kleineberg, Ulf

    2008-09-29

    A photoemission electron microscope based on a new contrast mechanism "interference contrast" is applied to characterize extreme ultraviolet lithography mask blank defects. Inspection results show that positioning of interference destructive condition (node of standing wave field) on surface of multilayer in the local region of a phase defect is necessary to obtain best visibility of the defect on mask blank. A comparative experiment reveals superiority of the interference contrast photoemission electron microscope (Extreme UV illumination) over a topographic contrast one (UV illumination with Hg discharge lamp) in detecting extreme ultraviolet mask blank phase defects. A depth-resolved detection of a mask blank defect, either by measuring anti-node peak shift in the EUV-PEEM image under varying inspection wavelength condition or by counting interference fringes with a fixed illumination wavelength, is discussed.

  12. Field emission from the surface of highly ordered pyrolytic graphite

    Energy Technology Data Exchange (ETDEWEB)

    Knápek, Alexandr, E-mail: knapek@isibrno.cz [Institute of Scientific Instruments of the ASCR, v.v.i., Královopolská 147, Brno (Czech Republic); Sobola, Dinara; Tománek, Pavel [Department of Physics, FEEC, Brno University of Technology, Technická 8, Brno (Czech Republic); Pokorná, Zuzana; Urbánek, Michal [Institute of Scientific Instruments of the ASCR, v.v.i., Královopolská 147, Brno (Czech Republic)

    2017-02-15

    Highlights: • HOPG shreds were created and analyzed in the UHV conditions. • Current-voltage measurements have been done to confirm electron tunneling, based on the Fowler-Nordheim theory. • Surface was characterized by other surface evaluation methods, in particular by: SNOM, SEM and AFM. - Abstract: This paper deals with the electrical characterization of highly ordered pyrolytic graphite (HOPG) surface based on field emission of electrons. The effect of field emission occurs only at disrupted surface, i.e. surface containing ripped and warped shreds of the uppermost layers of graphite. These deformations provide the necessary field gradients which are required for measuring tunneling current caused by field electron emission. Results of the field emission measurements are correlated with other surface characterization methods such as scanning near-field optical microscopy (SNOM) or atomic force microscopy.

  13. Field emission from the surface of highly ordered pyrolytic graphite

    International Nuclear Information System (INIS)

    Knápek, Alexandr; Sobola, Dinara; Tománek, Pavel; Pokorná, Zuzana; Urbánek, Michal

    2017-01-01

    Highlights: • HOPG shreds were created and analyzed in the UHV conditions. • Current-voltage measurements have been done to confirm electron tunneling, based on the Fowler-Nordheim theory. • Surface was characterized by other surface evaluation methods, in particular by: SNOM, SEM and AFM. - Abstract: This paper deals with the electrical characterization of highly ordered pyrolytic graphite (HOPG) surface based on field emission of electrons. The effect of field emission occurs only at disrupted surface, i.e. surface containing ripped and warped shreds of the uppermost layers of graphite. These deformations provide the necessary field gradients which are required for measuring tunneling current caused by field electron emission. Results of the field emission measurements are correlated with other surface characterization methods such as scanning near-field optical microscopy (SNOM) or atomic force microscopy.

  14. Validation of Digital Microscopy Compared With Light Microscopy for the Diagnosis of Canine Cutaneous Tumors.

    Science.gov (United States)

    Bertram, Christof A; Gurtner, Corinne; Dettwiler, Martina; Kershaw, Olivia; Dietert, Kristina; Pieper, Laura; Pischon, Hannah; Gruber, Achim D; Klopfleisch, Robert

    2018-07-01

    Integration of new technologies, such as digital microscopy, into a highly standardized laboratory routine requires the validation of its performance in terms of reliability, specificity, and sensitivity. However, a validation study of digital microscopy is currently lacking in veterinary pathology. The aim of the current study was to validate the usability of digital microscopy in terms of diagnostic accuracy, speed, and confidence for diagnosing and differentiating common canine cutaneous tumor types and to compare it to classical light microscopy. Therefore, 80 histologic sections including 17 different skin tumor types were examined twice as glass slides and twice as digital whole-slide images by 6 pathologists with different levels of experience at 4 time points. Comparison of both methods found digital microscopy to be noninferior for differentiating individual tumor types within the category epithelial and mesenchymal tumors, but diagnostic concordance was slightly lower for differentiating individual round cell tumor types by digital microscopy. In addition, digital microscopy was associated with significantly shorter diagnostic time, but diagnostic confidence was lower and technical quality was considered inferior for whole-slide images compared with glass slides. Of note, diagnostic performance for whole-slide images scanned at 200× magnification was noninferior in diagnostic performance for slides scanned at 400×. In conclusion, digital microscopy differs only minimally from light microscopy in few aspects of diagnostic performance and overall appears adequate for the diagnosis of individual canine cutaneous tumors with minor limitations for differentiating individual round cell tumor types and grading of mast cell tumors.

  15. Visualization of Oil Body Distribution in Jatropha curcas L. by Four-Wave Mixing Microscopy

    Science.gov (United States)

    Ishii, Makiko; Uchiyama, Susumu; Ozeki, Yasuyuki; Kajiyama, Sin'ichiro; Itoh, Kazuyoshi; Fukui, Kiichi

    2013-06-01

    Jatropha curcas L. (jatropha) is a superior oil crop for biofuel production. To improve the oil yield of jatropha by breeding, the development of effective and reliable tools to evaluate the oil production efficiency is essential. The characteristics of the jatropha kernel, which contains a large amount of oil, are not fully understood yet. Here, we demonstrate the application of four-wave mixing (FWM) microscopy to visualize the distribution of oil bodies in a jatropha kernel without staining. FWM microscopy enables us to visualize the size and morphology of oil bodies and to determine the oil content in the kernel to be 33.2%. The signal obtained from FWM microscopy comprises both of stimulated parametric emission (SPE) and coherent anti-Stokes Raman scattering (CARS) signals. In the present situation, where a very short pump pulse is employed, the SPE signal is believed to dominate the FWM signal.

  16. Electrocatalytic activity mapping of model fuel cell catalyst films using scanning electrochemical microscopy

    International Nuclear Information System (INIS)

    Nicholson, P.G.; Zhou, S.; Hinds, G.; Wain, A.J.; Turnbull, A.

    2009-01-01

    Scanning electrochemical microscopy has been employed to spatially map the electrocatalytic activity of model proton exchange membrane fuel cell (PEMFC) catalyst films towards the hydrogen oxidation reaction (the PEMFC anode reaction). The catalyst films were composed of platinum-loaded carbon nanoparticles, similar to those typically used in PEMFCs. The electrochemical characterisation was correlated with a detailed physical characterisation using dynamic light scattering, transmission electron microscopy and field-emission scanning electron microscopy. The nanoparticles were found to be reasonably mono-dispersed, with a tendency to agglomerate into porous bead-type structures when spun-cast. The number of carbon nanoparticles with little or no platinum was surprisingly higher than would be expected based on the platinum-carbon mass ratio. Furthermore, the platinum-rich carbon particles tended to agglomerate and the clusters formed were non-uniformly distributed. This morphology was reflected in a high degree of heterogeneity in the film activity towards the hydrogen oxidation reaction.

  17. A novel method for enhancing the lateral resolution and image SNR in confocal microscopy

    Science.gov (United States)

    Chen, Youhua; Zhu, Dazhao; Fang, Yue; Kuang, Cuifang; Liu, Xu

    2017-12-01

    There is always a tradeoff between the resolution and the signal-to-noise ratio (SNR) in confocal microscopy. In particular, the pinhole size is very important for maintaining a balance between them. In this paper, we propose a method for improving the lateral resolution and image SNR in confocal microscopy without making any changes to the hardware. By using the fluorescence emission difference (FED) approach, we divide the images acquired by different pinhole sizes into one image acquired by the central pinhole and several images acquired by ring-shaped pinholes. Then, they are added together with the deconvolution method. Simulation and experimental results for fluorescent particles and cells show that our method can achieve a far better resolution than a large pinhole and a higher SNR than a small pinhole. Moreover, our method can improve the performance of classic confocal laser scanning microscopy (CLSM) to a certain extent, especially CLSM with a continuously variable pinhole.

  18. High resolution, high speed ultrahigh vacuum microscopy

    International Nuclear Information System (INIS)

    Poppa, Helmut

    2004-01-01

    The history and future of transmission electron microscopy (TEM) is discussed as it refers to the eventual development of instruments and techniques applicable to the real time in situ investigation of surface processes with high resolution. To reach this objective, it was necessary to transform conventional high resolution instruments so that an ultrahigh vacuum (UHV) environment at the sample site was created, that access to the sample by various in situ sample modification procedures was provided, and that in situ sample exchanges with other integrated surface analytical systems became possible. Furthermore, high resolution image acquisition systems had to be developed to take advantage of the high speed imaging capabilities of projection imaging microscopes. These changes to conventional electron microscopy and its uses were slowly realized in a few international laboratories over a period of almost 40 years by a relatively small number of researchers crucially interested in advancing the state of the art of electron microscopy and its applications to diverse areas of interest; often concentrating on the nucleation, growth, and properties of thin films on well defined material surfaces. A part of this review is dedicated to the recognition of the major contributions to surface and thin film science by these pioneers. Finally, some of the important current developments in aberration corrected electron optics and eventual adaptations to in situ UHV microscopy are discussed. As a result of all the path breaking developments that have led to today's highly sophisticated UHV-TEM systems, integrated fundamental studies are now possible that combine many traditional surface science approaches. Combined investigations to date have involved in situ and ex situ surface microscopies such as scanning tunneling microscopy/atomic force microscopy, scanning Auger microscopy, and photoemission electron microscopy, and area-integrating techniques such as x-ray photoelectron

  19. Nano-contact microscopy of supracrystals

    Directory of Open Access Journals (Sweden)

    Adam Sweetman

    2015-05-01

    Full Text Available Background: Highly ordered three-dimensional colloidal crystals (supracrystals comprised of 7.4 nm diameter Au nanocrystals (with a 5% size dispersion have been imaged and analysed using a combination of scanning tunnelling microscopy and dynamic force microscopy.Results: By exploring the evolution of both the force and tunnel current with respect to tip–sample separation, we arrive at the surprising finding that single nanocrystal resolution is readily obtained in tunnelling microscopy images acquired more than 1 nm into the repulsive (i.e., positive force regime of the probe–nanocrystal interaction potential. Constant height force microscopy has been used to map tip–sample interactions in this regime, revealing inhomogeneities which arise from the convolution of the tip structure with the ligand distribution at the nanocrystal surface.Conclusion: Our combined STM–AFM measurements show that the contrast mechanism underpinning high resolution imaging of nanoparticle supracrystals involves a form of nanoscale contact imaging, rather than the through-vacuum tunnelling which underpins traditional tunnelling microscopy and spectroscopy.

  20. CARS microscopy of Alzheimer's diseased brain tissue

    Science.gov (United States)

    Enejder, Annika; Kiskis, Juris; Fink, Helen; Nyberg, Lena; Thyr, Jakob; Li, Jia-Yi

    2014-02-01

    Alzheimer's disease (AD) is a progressive neurodegenerative disorder currently without cure, characterized by the presence of extracellular plaques surrounded by dystrophic neurites. In an effort to understand the underlying mechanisms, biochemical analysis (protein immunoblot) of plaque extracts reveals that they consist of amyloid-beta (Aβ) peptides assembled as oligomers, protofibrils and aggregates. Their spatial distribution has been confirmed by Thioflavin-S or immuno-staining with fluorescence microscopy. However, it is increasingly understood that the protein aggregation is only one of several mechanism that causes neuronal dysfunction and death. This raises the need for a more complete biochemical analysis. In this study, we have complemented 2-photon fluorescence microscopy of Thioflavin-S and Aβ immuno-stained human AD plaques with CARS microscopy. We show that the chemical build-up of AD plaques is more complex and that Aβ staining does not provide the complete picture of the spatial distribution or the molecular composition of AD plaques. CARS images provide important complementary information to that obtained by fluorescence microscopy, motivating a broader introduction of CARS microscopy in the AD research field.

  1. X-ray microscopy of human malaria

    Energy Technology Data Exchange (ETDEWEB)

    Magowan, C.; Brown, J.T.; Mohandas, N.; Meyer-Ilse, W. [Ernest Orlando Lawrence Berkeley National Lab., CA (United States)

    1997-04-01

    Associations between intracellular organisms and host cells are complex and particularly difficult to examine. X-ray microscopy provides transmission images of subcellular structures in intact cells at resolutions superior to available methodologies. The spatial resolution is 50-60nm with a 1 micron depth of focus, superior to anything achievable with light microscopy. Image contrast is generated by differences in photoelectric absorption by the atoms in different areas (i.e. subcellular structures) throughout the full thickness of the sample. Absorption due to carbon dominates among all the elements in the sample at 2.4 nm x-ray wavelength. Thus images show features or structures, in a way not usually seen by other types of microscopy. The authors used soft x-ray microscopy to investigate structural development of Plasmodium falciparum malaria parasites in normal and genetically abnormal erythrocytes, and in infected erythrocytes treated with compounds that have anti-malarial effects. X-ray microscopy showed newly elaborated structures in the cytosol of unstained, intact erythrocytes, redistribution of mass (carbon) in infected erythrocytes, and aberrant parasite morphology. Better understanding of the process of intracellular parasite maturation and the interactions between the parasite and its host erythrocyte can help define new approaches to the control of this deadly disease.

  2. X-ray microscopy of human malaria

    International Nuclear Information System (INIS)

    Magowan, C.; Brown, J.T.; Mohandas, N.; Meyer-Ilse, W.

    1997-01-01

    Associations between intracellular organisms and host cells are complex and particularly difficult to examine. X-ray microscopy provides transmission images of subcellular structures in intact cells at resolutions superior to available methodologies. The spatial resolution is 50-60nm with a 1 micron depth of focus, superior to anything achievable with light microscopy. Image contrast is generated by differences in photoelectric absorption by the atoms in different areas (i.e. subcellular structures) throughout the full thickness of the sample. Absorption due to carbon dominates among all the elements in the sample at 2.4 nm x-ray wavelength. Thus images show features or structures, in a way not usually seen by other types of microscopy. The authors used soft x-ray microscopy to investigate structural development of Plasmodium falciparum malaria parasites in normal and genetically abnormal erythrocytes, and in infected erythrocytes treated with compounds that have anti-malarial effects. X-ray microscopy showed newly elaborated structures in the cytosol of unstained, intact erythrocytes, redistribution of mass (carbon) in infected erythrocytes, and aberrant parasite morphology. Better understanding of the process of intracellular parasite maturation and the interactions between the parasite and its host erythrocyte can help define new approaches to the control of this deadly disease

  3. Calcite biomineralization in coccoliths: Evidence from atomic force microscopy (AFM)

    DEFF Research Database (Denmark)

    Henriksen, Karen; Stipp, S.L.S.

    2002-01-01

    geochemistry, crystal orientation, coccolith function, biomineralization, biological calcite, atomic force microscopy......geochemistry, crystal orientation, coccolith function, biomineralization, biological calcite, atomic force microscopy...

  4. Transmission-type angle deviation microscopy

    International Nuclear Information System (INIS)

    Chiu, M.-H.; Lai, C.-W.; Tan, C.-T.; Lai, C.-F.

    2008-01-01

    We present a new microscopy technique that we call transmission angle deviation microscopy (TADM). It is based on common-path heterodyne interferometry and geometrical optics. An ultrahigh sensitivity surface plasmon resonance (SPR) angular sensor is used to expand dynamic measurement ranges and to improve the axial resolution in three-dimensional optical microscopy. When transmitted light is incident upon a specimen, the beam converges or diverges because of refractive and/or surface height variations. Advantages include high axial resolution (∼32 nm), nondestructive and noncontact measurement, and larger measurement ranges (± 80 μm) for a numerical aperture of 0.21in a transparent measurement medium. The technique can be used without conductivity and pretreatment

  5. Using environmental forensic microscopy in exposure science.

    Science.gov (United States)

    Millette, James R; Brown, Richard S; Hill, Whitney B

    2008-01-01

    Environmental forensic microscopy investigations are based on the methods and procedures developed in the fields of criminal forensics, industrial hygiene and environmental monitoring. Using a variety of microscopes and techniques, the environmental forensic scientist attempts to reconstruct the sources and the extent of exposure based on the physical evidence left behind after particles are exchanged between an individual and the environments he or she passes through. This article describes how environmental forensic microscopy uses procedures developed for environmental monitoring, criminal forensics and industrial hygiene investigations. It provides key references to the interdisciplinary approach used in microscopic investigations. Case studies dealing with lead, asbestos, glass fibers and other particulate contaminants are used to illustrate how environmental forensic microscopy can be very useful in the initial stages of a variety of environmental exposure characterization efforts to eliminate some agents of concern and to narrow the field of possible sources of exposure.

  6. Transmission Electron Microscopy Physics of Image Formation

    CERN Document Server

    Kohl, Helmut

    2008-01-01

    Transmission Electron Microscopy: Physics of Image Formation presents the theory of image and contrast formation, and the analytical modes in transmission electron microscopy. The principles of particle and wave optics of electrons are described. Electron-specimen interactions are discussed for evaluating the theory of scattering and phase contrast. Also discussed are the kinematical and dynamical theories of electron diffraction and their applications for crystal-structure analysis and imaging of lattices and their defects. X-ray microanalysis and electron energy-loss spectroscopy are treated as analytical methods. Specimen damage and contamination by electron irradiation limits the resolution for biological and some inorganic specimens. This fifth edition includes discussion of recent progress, especially in the area of aberration correction and energy filtering; moreover, the topics introduced in the fourth edition have been updated. Transmission Electron Microscopy: Physics of Image Formation is written f...

  7. Optofluidic time-stretch quantitative phase microscopy.

    Science.gov (United States)

    Guo, Baoshan; Lei, Cheng; Wu, Yi; Kobayashi, Hirofumi; Ito, Takuro; Yalikun, Yaxiaer; Lee, Sangwook; Isozaki, Akihiro; Li, Ming; Jiang, Yiyue; Yasumoto, Atsushi; Di Carlo, Dino; Tanaka, Yo; Yatomi, Yutaka; Ozeki, Yasuyuki; Goda, Keisuke

    2018-03-01

    Innovations in optical microscopy have opened new windows onto scientific research, industrial quality control, and medical practice over the last few decades. One of such innovations is optofluidic time-stretch quantitative phase microscopy - an emerging method for high-throughput quantitative phase imaging that builds on the interference between temporally stretched signal and reference pulses by using dispersive properties of light in both spatial and temporal domains in an interferometric configuration on a microfluidic platform. It achieves the continuous acquisition of both intensity and phase images with a high throughput of more than 10,000 particles or cells per second by overcoming speed limitations that exist in conventional quantitative phase imaging methods. Applications enabled by such capabilities are versatile and include characterization of cancer cells and microalgal cultures. In this paper, we review the principles and applications of optofluidic time-stretch quantitative phase microscopy and discuss its future perspective. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. 3DSEM: A 3D microscopy dataset

    Directory of Open Access Journals (Sweden)

    Ahmad P. Tafti

    2016-03-01

    Full Text Available The Scanning Electron Microscope (SEM as a 2D imaging instrument has been widely used in many scientific disciplines including biological, mechanical, and materials sciences to determine the surface attributes of microscopic objects. However the SEM micrographs still remain 2D images. To effectively measure and visualize the surface properties, we need to truly restore the 3D shape model from 2D SEM images. Having 3D surfaces would provide anatomic shape of micro-samples which allows for quantitative measurements and informative visualization of the specimens being investigated. The 3DSEM is a dataset for 3D microscopy vision which is freely available at [1] for any academic, educational, and research purposes. The dataset includes both 2D images and 3D reconstructed surfaces of several real microscopic samples. Keywords: 3D microscopy dataset, 3D microscopy vision, 3D SEM surface reconstruction, Scanning Electron Microscope (SEM

  9. Biostatistical analysis of quantitative immunofluorescence microscopy images.

    Science.gov (United States)

    Giles, C; Albrecht, M A; Lam, V; Takechi, R; Mamo, J C

    2016-12-01

    Semiquantitative immunofluorescence microscopy has become a key methodology in biomedical research. Typical statistical workflows are considered in the context of avoiding pseudo-replication and marginalising experimental error. However, immunofluorescence microscopy naturally generates hierarchically structured data that can be leveraged to improve statistical power and enrich biological interpretation. Herein, we describe a robust distribution fitting procedure and compare several statistical tests, outlining their potential advantages/disadvantages in the context of biological interpretation. Further, we describe tractable procedures for power analysis that incorporates the underlying distribution, sample size and number of images captured per sample. The procedures outlined have significant potential for increasing understanding of biological processes and decreasing both ethical and financial burden through experimental optimization. © 2016 The Authors Journal of Microscopy © 2016 Royal Microscopical Society.

  10. Ultrafast Science Opportunities with Electron Microscopy

    Energy Technology Data Exchange (ETDEWEB)

    DURR, HERMANN; Wang, X.J., ed.

    2016-04-28

    X-rays and electrons are two of the most fundamental probes of matter. When the Linac Coherent Light Source (LCLS), the world’s first x-ray free electron laser, began operation in 2009, it transformed ultrafast science with the ability to generate laser-like x-ray pulses from the manipulation of relativistic electron beams. This document describes a similar future transformation. In Transmission Electron Microscopy, ultrafast relativistic (MeV energy) electron pulses can achieve unsurpassed spatial and temporal resolution. Ultrafast temporal resolution will be the next frontier in electron microscopy and can ideally complement ultrafast x-ray science done with free electron lasers. This document describes the Grand Challenge science opportunities in chemistry, material science, physics and biology that arise from an MeV ultrafast electron diffraction & microscopy facility, especially when coupled with linac-based intense THz and X-ray pump capabilities.

  11. Spectroscopy and atomic force microscopy of biomass.

    Science.gov (United States)

    Tetard, L; Passian, A; Farahi, R H; Kalluri, U C; Davison, B H; Thundat, T

    2010-05-01

    Scanning probe microscopy has emerged as a powerful approach to a broader understanding of the molecular architecture of cell walls, which may shed light on the challenge of efficient cellulosic ethanol production. We have obtained preliminary images of both Populus and switchgrass samples using atomic force microscopy (AFM). The results show distinctive features that are shared by switchgrass and Populus. These features may be attributable to the lignocellulosic cell wall composition, as the collected images exhibit the characteristic macromolecular globule structures attributable to the lignocellulosic systems. Using both AFM and a single case of mode synthesizing atomic force microscopy (MSAFM) to characterize Populus, we obtained images that clearly show the cell wall structure. The results are of importance in providing a better understanding of the characteristic features of both mature cells as well as developing plant cells. In addition, we present spectroscopic investigation of the same samples.

  12. Optofluidic time-stretch microscopy: recent advances

    Science.gov (United States)

    Lei, Cheng; Nitta, Nao; Ozeki, Yasuyuki; Goda, Keisuke

    2018-04-01

    Flow cytometry is an indispensable method for valuable applications in numerous fields such as immunology, pathology, pharmacology, molecular biology, and marine biology. Optofluidic time-stretch microscopy is superior to conventional flow cytometry methods for its capability to acquire high-quality images of single cells at a high-throughput exceeding 10,000 cells per second. This makes it possible to extract copious information from cellular images for accurate cell detection and analysis with the assistance of machine learning. Optofluidic time-stretch microscopy has proven its effectivity in various applications, including microalga-based biofuel production, evaluation of thrombotic disorders, as well as drug screening and discovery. In this review, we discuss the principles and recent advances of optofluidic time-stretch microscopy.

  13. Plasma emission mechanisms

    International Nuclear Information System (INIS)

    Melrose, D.B.

    1985-01-01

    Only three emission processes are thought to play a role in solar radio emission: plasma emission, gyromagnetic emission and bremsstrahlung. In this chapter plasma emission is discussed and the processes involved in its production are treated, namely, the generation of Langmuir turbulence, the partial conversion into fundamental transverse radiation, production of secondary Langmuir waves and the generation of second-harmonic transverse radiation. (U.K.)

  14. Assessment of regional tumor hypoxia using 18F-fluoromisonidazole and 64Cu(II)-diacetyl-bis(N4-methylthiosemicarbazone) positron emission tomography: Comparative study featuring microPET imaging, PO2 probe measurement, autoradiography, and fluorescent microscopy in the R3327-AT and FaDu rat tumor models

    International Nuclear Information System (INIS)

    O'Donoghue, Joseph A.; Zanzonico, Pat; Pugachev, Andrei; Wen Bixiu; Smith-Jones, Peter; Cai Shangde; Burnazi, Eva; Finn, Ronald D.; Burgman, Paul; Ruan, Shutian; Lewis, Jason S.; Welch, Michael J.; Ling, C. Clifton; Humm, John L.

    2005-01-01

    Purpose: To compare two potential positron emission tomography (PET) tracers of tumor hypoxia in an animal model. Methods and Materials: The purported hypoxia imaging agents 18 F-fluoromisonidazole (FMISO) and 64 Cu(II)-diacetyl-bis(N4-methylthiosemicarbazone) (Cu-ATSM) were compared by serial microPET imaging of Fisher-Copenhagen rats bearing the R3327-AT anaplastic rat prostate tumor. Probe measurements of intratumoral PO 2 were compared with the image data. At the microscopic level, the relationship between the spatial distributions of 64 Cu (assessed by digital autoradiography) and tumor hypoxia (assessed by immunofluorescent detection of pimonidazole) was examined. 18 F-FMISO and 64 Cu-ATSM microPET images were also acquired in nude rats bearing xenografts derived from the human squamous cell carcinoma cell line, FaDu. Results: In R3327-AT tumors, the intratumoral distribution of 18 F-FMISO remained relatively constant 1-4 h after injection. However, that of 64 Cu-ATSM displayed a significant temporal evolution for 0.5-20 h after injection in most tumors. In general, only when 64 Cu-ATSM was imaged at later times (16-20 h after injection) did it correspond to the distribution of 18 F-FMISO. Oxygen probe measurements were broadly consistent with 18 F-FMISO and late 64 Cu-ATSM images but not with early 64 Cu-ATSM images. At the microscopic level, a negative correlation was found between tumor hypoxia and 64 Cu distribution when assessed at early times and a positive correlation when assessed at later times. For the FaDu tumor model, the early and late 64 Cu-ATSM microPET images were similar and were in general concordance with the 18 F-FMISO scans. Conclusion: The difference in behavior between the R3327-AT and FaDu tumor models suggests a tumor-specific dependence of Cu-ATSM uptake and retention under hypoxic conditions

  15. Ion cyclotron emission by spontaneous emission

    Energy Technology Data Exchange (ETDEWEB)

    Da Costa, O [Commission of the European Communities, Abingdon (United Kingdom). JET Joint Undertaking; Gresillon, D [Ecole Polytechnique, 91 - Palaiseau (France). Lab. de Physique des Milieux Ionises

    1994-07-01

    The goal of the study is to examine whether the spontaneous emission can account for ICE (ion cyclotron emission) experimental results, or part of them. A straightforward approach to plasma emission is chosen, investigating the near equilibrium wave radiation by gyrating ions, and thus building from the majority and fast fusion ions the plasma fluctuations and emission on the fast magnetoacoustic or compressional Alfven wave mode in the IC frequency range. Similarities with the ICE experiments are shown: the emission temperature in the presence of fast ions (even in a very small amount), the strong fast ion emission increase with the harmonic, the fine double-line splitting of each peak, the linear but not proportional increase of the peak width with the harmonic. 3 refs., 2 figs.

  16. Ion cyclotron emission by spontaneous emission

    International Nuclear Information System (INIS)

    Da Costa, O.; Gresillon, D.

    1994-01-01

    The goal of the study is to examine whether the spontaneous emission can account for ICE (ion cyclotron emission) experimental results, or part of them. A straightforward approach to plasma emission is chosen, investigating the near equilibrium wave radiation by gyrating ions, and thus building from the majority and fast fusion ions the plasma fluctuations and emission on the fast magnetoacoustic or compressional Alfven wave mode in the IC frequency range. Similarities with the ICE experiments are shown: the emission temperature in the presence of fast ions (even in a very small amount), the strong fast ion emission increase with the harmonic, the fine double-line splitting of each peak, the linear but not proportional increase of the peak width with the harmonic. 3 refs., 2 figs

  17. Applications of microscopy in Salmonella research.

    Science.gov (United States)

    Malt, Layla M; Perrett, Charlotte A; Humphrey, Suzanne; Jepson, Mark A

    2015-01-01

    Salmonella enterica is a Gram-negative enteropathogen that can cause localized infections, typically resulting in gastroenteritis, or systemic infection, e.g., typhoid fever, in humans and many other animals. Understanding the mechanisms by which Salmonella induces disease has been the focus of intensive research. This has revealed that Salmonella invasion requires dynamic cross-talk between the microbe and host cells, in which bacterial adherence rapidly leads to a complex sequence of cellular responses initiated by proteins translocated into the host cell by a type 3 secretion system. Once these Salmonella-induced responses have resulted in bacterial invasion, proteins translocated by a second type 3 secretion system initiate further modulation of cellular activities to enable survival and replication of the invading pathogen. Elucidation of the complex and highly dynamic pathogen-host interactions ultimately requires analysis at the level of single cells and single infection events. To achieve this goal, researchers have applied a diverse range of microscopy techniques to analyze Salmonella infection in models ranging from whole animal to isolated cells and simple eukaryotic organisms. For example, electron microscopy and high-resolution light microscopy techniques such as confocal microscopy can reveal the precise location of Salmonella and its relationship to cellular components. Widefield light microscopy is a simpler approach with which to study the interaction of bacteria with host cells and often has advantages for live cell imaging, enabling detailed analysis of the dynamics of infection and cellular responses. Here we review the use of imaging techniques in Salmonella research and compare the capabilities of different classes of microscope to address specific types of research question. We also provide protocols and notes on some microscopy techniques used routinely in our own research.

  18. Advanced Electron Microscopy in Materials Physics

    International Nuclear Information System (INIS)

    Zhu, Y.; Jarausch, K.

    2009-01-01

    Aberration correction has opened a new frontier in electron microscopy by overcoming the limitations of conventional round lenses, providing sub-angstrom-sized probes and extending information limits. The imaging and analytical performance of these corrector-equipped microscopes affords an unprecedented opportunity to study structure-property relationships of matter at the atomic scale. This new generation of microscopes is able to retrieve high-quality structural information comparable to neutron and synchrotron x-ray experiments, but with local atomic resolution. These advances in instrumentation are accelerating the research and development of various functional materials ranging from those for energy generation, conversion, transportation and storage to those for catalysis and nano-device applications. The dramatic improvements in electron-beam illumination and detection also present a host of new challenges for the interpretation and optimization of experiments. During 7-9 November 2007, a workshop, entitled 'Aberration Corrected Electron Microscopy in Material Physics', was convened at the Center for Functional Nanomaterials, Brookhaven National Laboratories (BNL) to address these opportunities and challenges. The workshop was co-sponsored by Hitachi High Technologies, a leader in electron microscopy instrumentation, and BNL's Institute of Advanced Electron Microscopy, a leader in materials physics research using electron microscopy. The workshop featured presentations by internationally prominent scientists working at the frontiers of electron microscopy, both on developing instrumentation and applying it in materials physics. The meeting, structured to stimulate scientific exchanges and explore new capabilities, brought together ∼100 people from over 10 countries. This special issue complies many of the advances in instrument performance and materials physics reported by the invited speakers and attendees at the workshop.

  19. Time-resolved cathodoluminescence microscopy with sub-nanosecond beam blanking for direct evaluation of the local density of states

    NARCIS (Netherlands)

    Moerland, R.J.; Weppelman, I.G.C.; Garming, M.W.H.; Kruit, P.; Hoogenboom, J.P.

    2016-01-01

    We show cathodoluminescence-based time-resolved electron beam spectroscopy in order to directly probe the spontaneous emission decay rate that is modified by the local density of states in a nanoscale environment. In contrast to dedicated laser-triggered electron-microscopy setups, we use commercial

  20. Polarization contrast in photon scanning tunnelling microscopy combined with atomic force microscopy

    NARCIS (Netherlands)

    Propstra, K.; Propstra, K.; van Hulst, N.F.

    1995-01-01

    Photon scanning tunnelling microscopy combined with atomic force microscopy allows simultaneous acquisition and direct comparison of optical and topographical images, both with a lateral resolution of about 30 nm, far beyond the optical diffraction limit. The probe consists of a modified

  1. Quantitative transmission electron microscopy at atomic resolution

    International Nuclear Information System (INIS)

    Allen, L J; D'Alfonso, A J; Forbes, B D; Findlay, S D; LeBeau, J M; Stemmer, S

    2012-01-01

    In scanning transmission electron microscopy (STEM) it is possible to operate the microscope in bright-field mode under conditions which, by the quantum mechanical principle of reciprocity, are equivalent to those in conventional transmission electron microscopy (CTEM). The results of such an experiment will be presented which are in excellent quantitative agreement with theory for specimens up to 25 nm thick. This is at variance with the large contrast mismatch (typically between two and five) noted in equivalent CTEM experiments. The implications of this will be discussed.

  2. Scanning photoemission microscopy with synchrotron radiation

    Science.gov (United States)

    Ade, Harald W.

    1992-08-01

    Progress in photoemission spectro-microscopy at various synchrotron radiation facilities is reviewed. Microprobe devices such as MAXIMUM at the SRC in Wisconsin, the X1-SPEM at the NSLS at BNL, as well as the ellipsoidal ring mirror microscope at DESY in Hamburg, recorded first images during the last few years. The present status of these devices which achieve their lateral resolution by focusing X-rays to a small spot is the primary focus of this paper, but work representing other approaches to spectro-microscopy is also discussed.

  3. Functional photoacoustic microscopy of pH.

    Science.gov (United States)

    Chatni, Muhammad Rameez; Yao, Junjie; Danielli, Amos; Favazza, Christopher P; Maslov, Konstantin I; Wang, Lihong V

    2011-10-01

    pH is a tightly regulated indicator of metabolic activity. In mammalian systems, an imbalance of pH regulation may result from or result in serious illness. In this paper, we report photoacoustic microscopy (PAM) of a commercially available pH-sensitive fluorescent dye (SNARF-5F carboxylic acid) in tissue phantoms. We demonstrated that PAM is capable of pH imaging in absolute values at tissue depths of up to 2.0 mm, greater than possible with other forms of optical microscopy.

  4. Electron microscopy of nuclear zirconium alloys

    International Nuclear Information System (INIS)

    Versaci, R.A.; Ipohorski, Miguel

    1986-01-01

    Transmission electron microscopy observations of the microstructure of zirconium alloys used in fuel sheaths of nuclear power reactors are reported. Specimens were observed after different thermal and mechanical treatment, similar to those actually used during fabrication of the sheaths. Electron micrographs and electron diffraction patterns of second phase particles present in zircaloy-2 and zircaloy-4 were also obtained, as well as some characteristic parameters. Images of oxides and hydrides most commonly present in zirconium alloys are also shown. Finally, the structure of a Zr-2,5Nb alloy used in CANDU reactors pressure tubes, is observed by electron microscopy. (Author) [es

  5. Detection of laser damage by Raman microscopy

    International Nuclear Information System (INIS)

    Fauchet, P.M.; Campbell, I.H.; Adar, F.

    1988-01-01

    The authors demonstrate that Raman miroscopy is a sensitive and quantitative tool to detect and characterize laser-induced damage in solids. After damage is induced with single or multiple high power laser pulses, a Raman microprobe maps the surface of the sample with one micron spatial resolution. By performing accurate measurements of the Stokes line, the authors have been able to measure stress, strain and crystallinity in various samples which had been exposed to high intensity pulses. These results are compared to those obtained using conventional tools such as Nomarski microscopy. Major advantages of Raman microscopy include sensitivity to subtle structural modifications and the fact that it gives quantitative measurements

  6. Active Pixel Sensors for electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Denes, P. [Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States)], E-mail: pdenes@lbl.gov; Bussat, J.-M. [Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Lee, Z.; Radmillovic, V. [National Center for Electron Microscopy, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States)

    2007-09-01

    The technology used for monolithic CMOS imagers, popular for cell phone cameras and other photographic applications, has been explored for charged particle tracking by the high-energy physics community for several years. This technology also lends itself to certain imaging detector applications in electron microscopy. We have been developing such detectors for several years at Lawrence Berkeley National Laboratory, and we and others have shown that this technology can offer excellent point-spread function, direct detection and high readout speed. In this paper, we describe some of the design constraints peculiar to electron microscopy and summarize where such detectors could play a useful role.

  7. Fidelity imaging for atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ghosal, Sayan, E-mail: ghos0087@umn.edu; Salapaka, Murti, E-mail: murtis@umn.edu [Nanodynamics Systems Laboratory, Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455 (United States)

    2015-01-05

    Atomic force microscopy is widely employed for imaging material at the nanoscale. However, real-time measures on image reliability are lacking in contemporary atomic force microscopy literature. In this article, we present a real-time technique that provides an image of fidelity for a high bandwidth dynamic mode imaging scheme. The fidelity images define channels that allow the user to have additional authority over the choice of decision threshold that facilitates where the emphasis is desired, on discovering most true features on the sample with the possible detection of high number of false features, or emphasizing minimizing instances of false detections. Simulation and experimental results demonstrate the effectiveness of fidelity imaging.

  8. Optically sectioned imaging by oblique plane microscopy

    Science.gov (United States)

    Kumar, Sunil; Lin, Ziduo; Lyon, Alex R.; MacLeod, Ken T.; Dunsby, Chris

    2011-03-01

    Oblique Plane Microscopy (OPM) is a light sheet microscopy technique that combines oblique illumination with correction optics that tilt the focal plane of the collection system. OPM can be used to image conventionally mounted specimens on coverslips or tissue culture dishes and has low out-of-plane photobleaching and phototoxicity. No moving parts are required to achieve an optically sectioned image and so high speed optically sectioned imaging is possible. The first OPM results obtained using a high NA water immersion lens on a commercially available inverted microscope frame are presented, together with a measurement of the achievable optical resolution.

  9. Graphene-enabled electron microscopy and correlated super-resolution microscopy of wet cells.

    Science.gov (United States)

    Wojcik, Michal; Hauser, Margaret; Li, Wan; Moon, Seonah; Xu, Ke

    2015-06-11

    The application of electron microscopy to hydrated biological samples has been limited by high-vacuum operating conditions. Traditional methods utilize harsh and laborious sample dehydration procedures, often leading to structural artefacts and creating difficulties for correlating results with high-resolution fluorescence microscopy. Here, we utilize graphene, a single-atom-thick carbon meshwork, as the thinnest possible impermeable and conductive membrane to protect animal cells from vacuum, thus enabling high-resolution electron microscopy of wet and untreated whole cells with exceptional ease. Our approach further allows for facile correlative super-resolution and electron microscopy of wet cells directly on the culturing substrate. In particular, individual cytoskeletal actin filaments are resolved in hydrated samples through electron microscopy and well correlated with super-resolution results.

  10. Vehicle Emissions Risk Management

    International Nuclear Information System (INIS)

    Ibrahem, L.G.

    2004-01-01

    Vehicle emissions are considered as a main source for air pollution. Emissions regulation is now well developed in most countries to meet cleaner air quality. Reducing emissions by using cleaner fuels, which meet certain specification, is not enough to get cleaner air, yet the vehicle technology is not improved. Here we will outline the following: - development in fuel specification and emissions regulation. main facts linking vehicle emissions, fuel properties and air quality. catalytic converter technology. Emissions sources: In modem cities, vehicle traffic is potentially a major source of emissions. However sometimes other sources of emissions from industry and other stationary sources can be equally important and include emissions that are of greater toxicity than those from vehicles

  11. Resonant Scanning with Large Field of View Reduces Photobleaching and Enhances Fluorescence Yield in STED Microscopy.

    Science.gov (United States)

    Wu, Yong; Wu, Xundong; Lu, Rong; Zhang, Jin; Toro, Ligia; Stefani, Enrico

    2015-10-01

    Photobleaching is a major limitation of superresolution Stimulated Depletion Emission (STED) microscopy. Fast scanning has long been considered an effective means to reduce photobleaching in fluorescence microscopy, but a careful quantitative study of this issue is missing. In this paper, we show that the photobleaching rate in STED microscopy can be slowed down and the fluorescence yield be enhanced by scanning with high speed, enabled by using large field of view in a custom-built resonant-scanning STED microscope. The effect of scanning speed on photobleaching and fluorescence yield is more remarkable at higher levels of depletion laser irradiance, and virtually disappears in conventional confocal microscopy. With ≥6 GW∙cm(-2) depletion irradiance, we were able to extend the fluorophore survival time of Atto 647N and Abberior STAR 635P by ~80% with 8-fold wider field of view. We confirm that STED Photobleaching is primarily caused by the depletion light acting upon the excited fluorophores. Experimental data agree with a theoretical model. Our results encourage further increasing the linear scanning speed for photobleaching reduction in STED microscopy.

  12. Dark Field Microscopy for Analytical Laboratory Courses

    Science.gov (United States)

    Augspurger, Ashley E.; Stender, Anthony S.; Marchuk, Kyle; Greenbowe, Thomas J.; Fang, Ning

    2014-01-01

    An innovative and inexpensive optical microscopy experiment for a quantitative analysis or an instrumental analysis chemistry course is described. The students have hands-on experience with a dark field microscope and investigate the wavelength dependence of localized surface plasmon resonance in gold and silver nanoparticles. Students also…

  13. Confocal microscopy imaging of the biofilm matrix

    DEFF Research Database (Denmark)

    Schlafer, Sebastian; Meyer, Rikke L

    2017-01-01

    The extracellular matrix is an integral part of microbial biofilms and an important field of research. Confocal laser scanning microscopy is a valuable tool for the study of biofilms, and in particular of the biofilm matrix, as it allows real-time visualization of fully hydrated, living specimens...... the concentration of solutes and the diffusive properties of the biofilm matrix....

  14. Fluorescence confocal polarizing microscopy: Three-dimensional ...

    Indian Academy of Sciences (India)

    Much of the modern understanding of orientational order in liquid crystals (LCs) is based on polarizing microscopy (PM). A PM image bears only two-dimensional (2D) information, integrating the 3D pattern of optical birefringence over the path of light. Recently, we proposed a technique to image 3D director patterns by ...

  15. Electrochemical gating in scanning electrochemical microscopy

    NARCIS (Netherlands)

    Ahonen, P.; Ruiz, V.; Kontturi, K.; Liljeroth, P.; Quinn, B.M.

    2008-01-01

    We demonstrate that scanning electrochemical microscopy (SECM) can be used to determine the conductivity of nanoparticle assemblies as a function of assembly potential. In contrast to conventional electron transport measurements, this method is unique in that electrical connection to the film is not

  16. New directions in scanning-tunneling microscopy

    International Nuclear Information System (INIS)

    Ferrell, T.L.; Warmack, R.J.; Reddick, R.C.

    1989-01-01

    The tunneling of electrons in scanning-tunneling microscopy (STM) has permitted imaging of the electronic distribution about individual atoms on surfaces. The need for use of conducting surfaces in STM limits its applicability, and new forms of scanning microscopy have emerged as a result of interest in poorly conducting samples. Atomic force microscopy has demonstrated that the force between a surface and a probe tip can be used to image selected materials. Now being developed are magnetic probe STM's and photon tunneling microscopes in which the probe is a sharpened optical fiber. Also of great interest presently is the measurement of differential conductance of surfaces using electron STM's. This method supplies spectral information and contrast enhancement in images. At present there remains much theoretical work to be carried out in order to better characterize related data on inelastic electron tunneling, and valuable insight may be gained from data being gathered on the local work function of materials. As matters stand today, the key problems lie in determining tip and contamination effects, preparation of samples, and understanding conductivity mechanisms in very thin materials on conducting substrates. Resolution of these problems and introduction of new forms of scanning microscopy may permit novel and important applications in biology as well as surface science

  17. Light Microscopy Module (LMM)-Emulator

    Science.gov (United States)

    Levine, Howard G.; Smith, Trent M.; Richards, Stephanie E.

    2016-01-01

    The Light Microscopy Module (LMM) is a microscope facility developed at Glenn Research Center (GRC) that provides researchers with powerful imaging capability onboard the International Space Station (ISS). LMM has the ability to have its hardware recongured on-orbit to accommodate a wide variety of investigations, with the capability of remotely acquiring and downloading digital images across multiple levels of magnication.

  18. Tapping mode atomic force microscopy in liquid

    NARCIS (Netherlands)

    Putman, Constant A.J.; Putman, C.A.J.; van der Werf, Kees; de Grooth, B.G.; van Hulst, N.F.; Greve, Jan

    1994-01-01

    We show that standard silicon nitride cantilevers can be used for tapping mode atomic force microscopy (AFM) in air, provided that the energy of the oscillating cantilever is sufficiently high to overcome the adhesion of the water layer. The same cantilevers are successfully used for tapping mode

  19. Handheld Fluorescence Microscopy based Flow Analyzer.

    Science.gov (United States)

    Saxena, Manish; Jayakumar, Nitin; Gorthi, Sai Siva

    2016-03-01

    Fluorescence microscopy has the intrinsic advantages of favourable contrast characteristics and high degree of specificity. Consequently, it has been a mainstay in modern biological inquiry and clinical diagnostics. Despite its reliable nature, fluorescence based clinical microscopy and diagnostics is a manual, labour intensive and time consuming procedure. The article outlines a cost-effective, high throughput alternative to conventional fluorescence imaging techniques. With system level integration of custom-designed microfluidics and optics, we demonstrate fluorescence microscopy based imaging flow analyzer. Using this system we have imaged more than 2900 FITC labeled fluorescent beads per minute. This demonstrates high-throughput characteristics of our flow analyzer in comparison to conventional fluorescence microscopy. The issue of motion blur at high flow rates limits the achievable throughput in image based flow analyzers. Here we address the issue by computationally deblurring the images and show that this restores the morphological features otherwise affected by motion blur. By further optimizing concentration of the sample solution and flow speeds, along with imaging multiple channels simultaneously, the system is capable of providing throughput of about 480 beads per second.

  20. Cathodoluminescence Microscopy of Nanostructures on Transparent Substrates

    NARCIS (Netherlands)

    Narváez, A.C.

    2014-01-01

    Cathodoluminescence (CL), the excitation of light by an electron beam, has gained attention as an analysis tool for investigating the optical response of a structure, at a resolution that approaches that in electron microscopy, in the nanometer range. However, the application possibilities are

  1. National Center for Electron Microscopy users' guide

    International Nuclear Information System (INIS)

    1987-01-01

    The National Center for Electron Microscopy (NCEM) in the Materials and Molecular Research Division of the Lawrence Berkeley Laboratory is a high voltage electron microscope facility for ultra-high resolution or dynamic in-situ studies. This guide describes the instruments and their specifications, support instrumentation, and user policies. Advice as to travel and accommodations is provided in the guide. (FI)

  2. Atomic Resolution Microscopy of Nitrides in Steel

    DEFF Research Database (Denmark)

    Danielsen, Hilmar Kjartansson

    2014-01-01

    MN and CrMN type nitride precipitates in 12%Cr steels have been investigated using atomic resolution microscopy. The MN type nitrides were observed to transform into CrMN both by composition and crystallography as Cr diffuses from the matrix into the MN precipitates. Thus a change from one...

  3. Digital Fourier microscopy for soft matter dynamics

    International Nuclear Information System (INIS)

    Giavazzi, Fabio; Cerbino, Roberto

    2014-01-01

    Soft matter is studied with a large portfolio of methods. Light scattering and video microscopy are the most employed at optical wavelengths. Light scattering provides ensemble-averaged information on soft matter in the reciprocal space. The wave-vectors probed correspond to length scales ranging from a few nanometers to fractions of millimetre. Microscopy probes the sample directly in the real space, by offering a unique access to the local properties. However, optical resolution issues limit the access to length scales smaller than approximately 200 nm. We describe recent work that bridges the gap between scattering and microscopy. Several apparently unrelated techniques are found to share a simple basic idea: the correlation properties of the sample can be characterized in the reciprocal space via spatial Fourier analysis of images collected in the real space. We describe the main features of such digital Fourier microscopy (DFM), by providing examples of several possible experimental implementations of it, some of which not yet realized in practice. We also provide an overview of experimental results obtained with DFM for the study of the dynamics of soft materials. Finally, we outline possible future developments of DFM that would ease its adoption as a standard laboratory method. (topical review)

  4. Interfacial force measurements using atomic force microscopy

    NARCIS (Netherlands)

    Chu, L.

    2018-01-01

    Atomic Force Microscopy (AFM) can not only image the topography of surfaces at atomic resolution, but can also measure accurately the different interaction forces, like repulsive, adhesive and lateral existing between an AFM tip and the sample surface. Based on AFM, various extended techniques have

  5. Microparticle adhesion studies by atomic force microscopy

    NARCIS (Netherlands)

    Segeren, L.H.G.J.; Siebum, B.; Karssenberg, F.G.; Berg, van den J.W.A.; Vancso, G.J.

    2002-01-01

    Atomic force microscopy (AFM) is one of the most flexible and simple techniques for probing surface interactions. This article reviews AFM studies on particle adhesion. Special attention is paid to the characterization of roughness and its effect on adhesion. This is of importance when comparing the

  6. Time-resolved scanning tunnelling microscopy

    NARCIS (Netherlands)

    van Houselt, Arie; Zandvliet, Henricus J.W.

    2010-01-01

    Scanning tunneling microscopy has revolutionized our ability to image, study, and manipulate solid surfaces on the size scale of atoms. One important limitation of the scanning tunneling microscope (STM) is, however, its poor time resolution. Recording a standard image with a STM typically takes

  7. Ammonia emissions in Europe

    DEFF Research Database (Denmark)

    Jacobsen, Brian H.

    2012-01-01

    The NEC (National Emission Ceiling) directive has set targets for the 2010 ammonia emissions from a number of European countries. The target will be reached by most EU-countries and the total emission for EU-27 has been reduced by 22% from 1990 to 2007. Denmark is one of the countries with the la......The NEC (National Emission Ceiling) directive has set targets for the 2010 ammonia emissions from a number of European countries. The target will be reached by most EU-countries and the total emission for EU-27 has been reduced by 22% from 1990 to 2007. Denmark is one of the countries...

  8. Coating adherence in galvanized steel assessed by acoustic emission wavelet analysis

    International Nuclear Information System (INIS)

    Gallego, Antolino; Gil, Jose F.; Vico, Juan M.; Ruzzante, Jose E.; Piotrkowski, Rosa

    2005-01-01

    Coating-substrate adherence in galvanized steel is evaluated by acoustic emission wavelet analysis in scratch tests on hot-dip galvanized samples. The acoustic emission results are compared with optical and electron microscopy observations in order to understand coating features related to adherence and to establish criteria aimed at improving the manufacture process

  9. Traditional microscopy instruction versus process-oriented virtual microscopy instruction: a naturalistic experiment with control group.

    Science.gov (United States)

    Helle, Laura; Nivala, Markus; Kronqvist, Pauliina; Gegenfurtner, Andreas; Björk, Pasi; Säljö, Roger

    2011-03-30

    Virtual microscopy is being introduced in medical education as an approach for learning how to interpret information in microscopic specimens. It is, however, far from evident how to incorporate its use into existing teaching practice. The aim of the study was to explore the consequences of introducing virtual microscopy tasks into an undergraduate pathology course in an attempt to render the instruction more process-oriented. The research questions were: 1) How is virtual microscopy perceived by students? 2) Does work on virtual microscopy tasks contribute to improvement in performance in microscopic pathology in comparison with attending assistant-led demonstrations only? During a one-week period, an experimental group completed three sets of virtual microscopy homework assignments in addition to attending demonstrations. A control group attended the demonstrations only. Performance in microscopic pathology was measured by a pre-test and a post-test. Student perceptions of regular instruction and virtual microscopy were collected one month later by administering the Inventory of Intrinsic Motivation and open-ended questions. The students voiced an appreciation for virtual microscopy for the purposes of the course and for self-study. As for learning gains, the results indicated that learning was speeded up in a subgroup of students consisting of conscientious high achievers. The enriched instruction model may be suited as such for elective courses following the basic course. However, the instructional model needs further development to be suited for basic courses.

  10. Simultaneous differential spinning disk fluorescence optical sectioning microscopy and nanomechanical mapping atomic force microscopy

    International Nuclear Information System (INIS)

    Miranda, Adelaide; De Beule, Pieter A. A.; Martins, Marco

    2015-01-01

    Combined microscopy techniques offer the life science research community a powerful tool to investigate complex biological systems and their interactions. Here, we present a new combined microscopy platform based on fluorescence optical sectioning microscopy through aperture correlation microscopy with a Differential Spinning Disk (DSD) and nanomechanical mapping with an Atomic Force Microscope (AFM). The illumination scheme of the DSD microscope unit, contrary to standard single or multi-point confocal microscopes, provides a time-independent illumination of the AFM cantilever. This enables a distortion-free simultaneous operation of fluorescence optical sectioning microscopy and atomic force microscopy with standard probes. In this context, we discuss sample heating due to AFM cantilever illumination with fluorescence excitation light. Integration of a DSD fluorescence optical sectioning unit with an AFM platform requires mitigation of mechanical noise transfer of the spinning disk. We identify and present two solutions to almost annul this noise in the AFM measurement process. The new combined microscopy platform is applied to the characterization of a DOPC/DOPS (4:1) lipid structures labelled with a lipophilic cationic indocarbocyanine dye deposited on a mica substrate

  11. Simultaneous differential spinning disk fluorescence optical sectioning microscopy and nanomechanical mapping atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Miranda, Adelaide; De Beule, Pieter A. A., E-mail: pieter.de-beule@inl.int [Applied Nano-Optics Laboratory, International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga, s/n, 4715-330 Braga (Portugal); Martins, Marco [Nano-ICs Group, International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga, s/n, 4715-330 Braga (Portugal)

    2015-09-15

    Combined microscopy techniques offer the life science research community a powerful tool to investigate complex biological systems and their interactions. Here, we present a new combined microscopy platform based on fluorescence optical sectioning microscopy through aperture correlation microscopy with a Differential Spinning Disk (DSD) and nanomechanical mapping with an Atomic Force Microscope (AFM). The illumination scheme of the DSD microscope unit, contrary to standard single or multi-point confocal microscopes, provides a time-independent illumination of the AFM cantilever. This enables a distortion-free simultaneous operation of fluorescence optical sectioning microscopy and atomic force microscopy with standard probes. In this context, we discuss sample heating due to AFM cantilever illumination with fluorescence excitation light. Integration of a DSD fluorescence optical sectioning unit with an AFM platform requires mitigation of mechanical noise transfer of the spinning disk. We identify and present two solutions to almost annul this noise in the AFM measurement process. The new combined microscopy platform is applied to the characterization of a DOPC/DOPS (4:1) lipid structures labelled with a lipophilic cationic indocarbocyanine dye deposited on a mica substrate.

  12. Atomic force microscopy and confocal laser scanning microscopy on the cytoskeleton of permeabilised and embedded cells

    International Nuclear Information System (INIS)

    Meller, Karl; Theiss, Carsten

    2006-01-01

    We describe a technical method of cell permeabilisation and embedding to study the organisation and distribution of intracellular proteins with aid of atomic force microscopy and confocal laser scanning microscopy in identical areas. While confocal laser scanning microscopy is useful for the identification of certain proteins subsequent labelling with markers or antibodies, atomic force microscopy allows the observation of macromolecular structures in fixed and living cells. To demonstrate the field of application of this preparatory technique, cells were permeabilised, fixed, and the actin cytoskeleton was stained with phalloidin-rhodamine. Confocal laser scanning microscopy was used to show the organisation of these microfilaments, e.g. geodesic dome structures. Thereafter, cells were embedded in Durcupan water-soluble resin, followed by UV-polymerisation of resin at 4 o C. This procedure allowed intracellular visualisation of the cell nucleus or cytoskeletal elements by atomic force microscopy, for instance to analyse the globular organisation of actin filaments. Therefore, this method offers a great potential to combine both microscopy techniques in order to understand and interpret intracellular protein relations, for example, the biochemical and morphological interaction of the cytoskeleton

  13. Dysprosium disilicide nanostructures on silicon(001) studied by scanning tunneling microscopy and transmission electron microscopy

    International Nuclear Information System (INIS)

    Ye Gangfeng; Nogami, Jun; Crimp, Martin A.

    2006-01-01

    The microstructure of self-assembled dysprosium silicide nanostructures on silicon(001) has been studied by scanning tunneling microscopy and transmission electron microscopy. The studies focused on nanostructures that involve multiple atomic layers of the silicide. Cross-sectional high resolution transmission electron microscopy images and fast Fourier transform analysis showed that both hexagonal and orthorhombic/tetragonal silicide phases were present. Both the magnitude and the anisotropy of lattice mismatch between the silicide and the substrate play roles in the morphology and epitaxial growth of the nanostructures formed

  14. Surfing Silicon Nanofacets for Cold Cathode Electron Emission Sites.

    Science.gov (United States)

    Basu, Tanmoy; Kumar, Mohit; Saini, Mahesh; Ghatak, Jay; Satpati, Biswarup; Som, Tapobrata

    2017-11-08

    Point sources exhibit low threshold electron emission due to local field enhancement at the tip. In the case of silicon, however, the realization of tip emitters has been hampered by unwanted oxidation, limiting the number of emission sites and the overall current. In contrast to this, here, we report the fascinating low threshold (∼0.67 V μm -1 ) cold cathode electron emission from silicon nanofacets (Si-NFs). The ensembles of nanofacets fabricated at different time scales, under low energy ion impacts, yield tunable field emission with a Fowler-Nordheim tunneling field in the range of 0.67-4.75 V μm -1 . The local probe surface microscopy-based tunneling current mapping in conjunction with Kelvin probe force microscopy measurements revealed that the valleys and a part of the sidewalls of the nanofacets contribute more to the field emission process. The observed lowest turn-on field is attributed to the absence of native oxide on the sidewalls of the smallest facets as well as their lowest work function. In addition, first-principle density functional theory-based simulation revealed a crystal orientation-dependent work function of Si, which corroborates well with our experimental observations. The present study demonstrates a novel way to address the origin of the cold cathode electron emission sites from Si-NFs fabricated at room temperature. In principle, the present methodology can be extended to probe the cold cathode electron emission sites from any nanostructured material.

  15. Probing cytotoxicity of nanoparticles and organic compounds using scanning proton microscopy, scanning electron microscopy and fluorescence microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Tong Yongpeng [Institute of Nuclear Techniques, Shenzhen University, Nanhai Avenue 3688, Shenzhen 518060 (China)], E-mail: yongpengt@yahoo.com.cn; Li Changming [School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637457 (Singapore); Liang Feng [Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200025 (China); Chen Jianmin [Shenzhen Municipal Hospital for Chronic Disease Control and Prevention, Guangdong 518020 (China); Zhang Hong; Liu Guoqing; Sun Huibin [Institute of Nuclear Techniques, Shenzhen University, Nanhai Avenue 3688, Shenzhen 518060 (China); Luong, John H.T. [Biotechnology Research Institute, National Research Council Canada, Montreal, Quebec, H4P 2R2 (Canada)

    2008-12-15

    Scanning proton microscopy, scanning electron microscopy (SEM) and fluorescence microscopy have been used to probe the cytotoxicity effect of benzo[a]pyrene (BaP), ethidium bromide (EB) and nanoparticles (ZnO, Al{sub 2}O{sub 3} and TiO{sub 2}) on a T lymphoblastic leukemia Jurkat cell line. The increased calcium ion (from CaCl{sub 2}) in the culture medium stimulated the accumulation of BaP and EB inside the cell, leading to cell death. ZnO, Al{sub 2}O{sub 3} and TiO{sub 2} nanoparticles, however, showed a protective effect against these two organic compounds. Such inorganic nanoparticles complexed with BaP or EB which became less toxic to the cell. Fe{sub 2}O{sub 3} nanoparticles as an insoluble particle model scavenged by macrophage were investigated in rats. They were scavenged out of the lung tissue about 48 h after infection. This result suggest that some insoluble inorganic nanoparticles of PM (particulate matters) showed protective effects on organic toxins induced acute toxic effects as they can be scavenged by macrophage cells. Whereas, some inorganic ions such as calcium ion in PM may help environmental organic toxins to penetrate cell membrane and induce higher toxic effect.

  16. Emissions Modeling Clearinghouse

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Emissions Modeling Clearinghouse (EMCH) supports and promotes emissions modeling activities both internal and external to the EPA. Through this site, the EPA...

  17. National Emission Inventory

    Data.gov (United States)

    U.S. Environmental Protection Agency — The National Emission Inventory contains measured, modeled, and estimated data for emissions of all known source categories in the US (stationary sources, fires,...

  18. Emissions Trading Resources

    Science.gov (United States)

    Learn about emissions trading programs, also known as cap and trade programs, which are market-based policy tools for protecting human health and the environment by controlling emissions from a group of sources.

  19. What Is Emissions Trading?

    Science.gov (United States)

    Learn the basics about how emissions trading uses a market-based policy tool used to control large amounts of pollution emissions from a group of sources in order to protect human health and the environment.

  20. World Emission RETRO ANTHRO

    Data.gov (United States)

    Washington University St Louis — Anthropogenic and vegetation fire emissions data were generated monthly covering a period of 1960 to 2000. Anthropogenic emissions in the RETRO inventory are derived...

  1. Emissions & Measurements - Black Carbon

    Science.gov (United States)

    Emissions and Measurement (EM) research activities performed within the National Risk Management Research Lab NRMRL) of EPA's Office of Research and Development (ORD) support measurement and laboratory analysis approaches to accurately characterize source emissions, and near sour...

  2. Biodiesel Emissions Analysis Program

    Science.gov (United States)

    Using existing data, the EPA's biodiesel emissions analysis program sought to quantify the air pollution emission effects of biodiesel for diesel engines that have not been specifically modified to operate on biodiesel.

  3. Dioxin emissions and sources

    International Nuclear Information System (INIS)

    1994-01-01

    The papers presented at the seminar discussed dioxin emissions and sources, dioxin pollution of soils, waste water and sewage sludge, stocktaking of emission sources, and exposure and risk analyses for dioxin and other pollutants. (EF) [de

  4. National Emission Information System

    International Nuclear Information System (INIS)

    Sajtakova, E.; Spisakova, K.

    2005-01-01

    In this presentation the Slovak National Emission Information System (NEIS) is presented. The NEIS represents hierarchical oriented modular system of acquisition, verification, saving and reporting of data about annual emissions and payments for pollution of atmosphere

  5. Blue Emission in Proteins

    OpenAIRE

    Sarkar, Sohini; Sengupta, Abhigyan; Hazra, Partha; Mandal, Pankaj

    2014-01-01

    Recent literatures reported blue-green emission from amyloid fibril as exclusive signature of fibril formation. This unusual visible luminescence is regularly used to monitor fibril growth. Blue-green emission has also been observed in crystalline protein and in solution. However, the origin of this emission is not known exactly. Our spectroscopic study of serum proteins reveals that the blue-green emission is a property of protein monomer. Evidences suggest that semiconductor-like band struc...

  6. Emission computed tomography

    International Nuclear Information System (INIS)

    Ott, R.J.

    1986-01-01

    Emission Computed Tomography is a technique used for producing single or multiple cross-sectional images of the distribution of radionuclide labelled agents in vivo. The techniques of Single Photon Emission Computed Tomography (SPECT) and Positron Emission Tomography (PET) are described with particular regard to the function of the detectors used to produce images and the computer techniques used to build up images. (UK)

  7. New fluorinated rhodamines for optical microscopy and nanoscopy.

    Science.gov (United States)

    Mitronova, Gyuzel Yu; Belov, Vladimir N; Bossi, Mariano L; Wurm, Christian A; Meyer, Lars; Medda, Rebecca; Moneron, Gael; Bretschneider, Stefan; Eggeling, Christian; Jakobs, Stefan; Hell, Stefan W

    2010-04-19

    New photostable rhodamine dyes represented by the compounds 1 a-r and 3-5 are proposed as efficient fluorescent markers with unique combination of structural features. Unlike rhodamines with monoalkylated nitrogen atoms, N',N-bis(2,2,2-trifluoroethyl) derivatives 1 e, 1 i, 1 j, 3-H and 5 were found to undergo sulfonation of the xanthene fragment at the positions 4' and 5'. Two fluorine atoms were introduced into the positions 2' and 7' of the 3',6'-diaminoxanthene fragment in compounds 1 a-d, 1 i-l and 1 m-r. The new rhodamine dyes may be excited with λ=488 or 514 nm light; most of them emit light at λ=512-554 nm (compounds 1 q and 1r at λ=576 and 589 nm in methanol, respectively) and have high fluorescence quantum yields in solution (up to 98 %), relatively long excited-state lifetimes (>3 ns) and are resistant against photobleaching, especially at high laser intensities, as is usually applied in confocal microscopy. Sulfonation of the xanthene fragment with 30 % SO3 in H2SO4 is compatible with the secondary amide bond (rhodamine-CON(Me)CH2CH2COOH) formed with MeNHCH2CH2COOCH3 to providing the sterically unhindered carboxylic group required for further (bio)conjugation reactions. After creating the amino reactive sites, the modified derivatives may be used as fluorescent markers and labels for (bio)molecules in optical microscopy and nanoscopy with very-high light intensities. Further, the new rhodamine dyes are able to pass the plasma membrane of living cells, introducing them as potential labels for recent live-cell-tag approaches. We exemplify the excellent performance of the fluorinated rhodamines in optical microscopy by fluorescence correlation spectroscopy (FCS) and stimulated emission depletion (STED) nanoscopy experiments. Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. High-speed atomic force microscopy combined with inverted optical microscopy for studying cellular events.

    OpenAIRE

    Suzuki, Yuki; Sakai, Nobuaki; Yoshida, Aiko; Uekusa, Yoshitsugu; Yagi, Akira; Imaoka, Yuka; Ito, Shuichi; Karaki, Koichi; Takeyasu, Kunio

    2013-01-01

    A hybrid atomic force microscopy (AFM)-optical fluorescence microscopy is a powerful tool for investigating cellular morphologies and events. However, the slow data acquisition rates of the conventional AFM unit of the hybrid system limit the visualization of structural changes during cellular events. Therefore, high-speed AFM units equipped with an optical/fluorescence detection device have been a long-standing wish. Here we describe the implementation of high-speed AFM coupled with an optic...

  9. Nanoparticle sizing: a comparative study using atomic force microscopy, transmission electron microscopy, and ferromagnetic resonance

    International Nuclear Information System (INIS)

    Lacava, L.M.; Lacava, B.M.; Azevedo, R.B.; Lacava, Z.G.M.; Buske, N.; Tronconi, A.L.; Morais, P.C.

    2001-01-01

    Atomic force microscopy (AFM), transmission electron microscopy (TEM), and ferromagnetic resonance (FMR) were used to unfold the nanoparticle size of a ferrofluid sample. Compared to TEM, the AFM method showed a nanoparticle diameter (D m ) reduction of 20% and standard deviation (σ) increase of 15%. The differences in D m and σ were associated with the AFM tip and the nanoparticle concentration on the substrate

  10. Circumventing photodamage in live-cell microscopy

    Science.gov (United States)

    Magidson, Valentin; Khodjakov, Alexey

    2013-01-01

    Fluorescence microscopy has become an essential tool in cell biology. This technique allows researchers to visualize the dynamics of tissue, cells, individual organelles and macromolecular assemblies inside the cell. Unfortunately, fluorescence microscopy is not completely ‘non-invasive’ as the high-intensity excitation light required for excitation of fluorophores is inherently toxic for live cells. Physiological changes induced by excessive illumination can lead to artifacts and abnormal responses. In this chapter we review major factors that contribute to phototoxicity and discuss practical solutions for circumventing photodamage. These solutions include the proper choice of image acquisition parameters, optimization of filter sets, hardware synchronization, and the use of intelligent illumination to avoid unnecessary light exposure. PMID:23931522

  11. Scanning Near-Field Optical Microscopy

    Directory of Open Access Journals (Sweden)

    Dušan Vobornik

    2008-02-01

    Full Text Available An average human eye can see details down to 0,07 mm in size. The ability to see smaller details of the matter is correlated with the development of the science and the comprehension of the nature. Today’s science needs eyes for the nano-world. Examples are easily found in biology and medical sciences. There is a great need to determine shape, size, chemical composition, molecular structure and dynamic properties of nano-structures. To do this, microscopes with high spatial, spectral and temporal resolution are required. Scanning Near-field Optical Microscopy (SNOM is a new step in the evolution of microscopy. The conventional, lens-based microscopes have their resolution limited by diffraction. SNOM is not subject to this limitation and can offer up to 70 times better resolution.

  12. Scanning near-field optical microscopy.

    Science.gov (United States)

    Vobornik, Dusan; Vobornik, Slavenka

    2008-02-01

    An average human eye can see details down to 0,07 mm in size. The ability to see smaller details of the matter is correlated with the development of the science and the comprehension of the nature. Today's science needs eyes for the nano-world. Examples are easily found in biology and medical sciences. There is a great need to determine shape, size, chemical composition, molecular structure and dynamic properties of nano-structures. To do this, microscopes with high spatial, spectral and temporal resolution are required. Scanning Near-field Optical Microscopy (SNOM) is a new step in the evolution of microscopy. The conventional, lens-based microscopes have their resolution limited by diffraction. SNOM is not subject to this limitation and can offer up to 70 times better resolution.

  13. Reflectance Confocal Microscopy in Lentigo Maligna.

    Science.gov (United States)

    Gamo, R; Pampín, A; Floristán, U

    2016-12-01

    Lentigo maligna is the most common type of facial melanoma. Diagnosis is complicated, however, as it shares clinical and dermoscopic characteristics with other cutaneous lesions of the face. Reflectance confocal microscopy is an imaging technique that permits the visualization of characteristic features of lentigo maligna. These include a disrupted honeycomb pattern and pagetoid cells with a tendency to show folliculotropism. These cells typically have a dendritic morphology, although they may also appear as round cells measuring over 20μm with atypical nuclei. Poorly defined dermal papillae and atypical cells may be seen at the dermal-epidermal junction and can form bridges resembling mitochondrial structures. Other characteristic findings include junctional swelling with atypical cells located around the follicles, resembling caput medusae. Reflectance confocal microscopy is a very useful tool for diagnosing lentigo maligna. Copyright © 2016 AEDV. Publicado por Elsevier España, S.L.U. All rights reserved.

  14. Diffractive elements performance in chromatic confocal microscopy

    International Nuclear Information System (INIS)

    Garzon, J; Duque, D; Alean, A; Toledo, M; Meneses, J; Gharbi, T

    2011-01-01

    The Confocal Laser Scanning Microscopy (CLSM) has been widely used in the semiconductor industry and biomedicine because of its depth discrimination capability. Subsequent to this technique has been developed in recent years Chromatic Confocal Microscopy. This method retains the same principle of confocal and offers the added advantage of removing the axial movement of the moving system. This advantage is usually accomplished with an optical element that generates a longitudinal chromatic aberration and a coding system that relates the axial position of each point of the sample with the wavelength that is focused on each. The present paper shows the performance of compact chromatic confocal microscope when some different diffractive elements are used for generation of longitudinal chromatic aberration. Diffractive elements, according to the process and manufacturing parameters, may have different diffraction efficiency and focus a specific wavelength in a specific focal position. The performance assessment is carried out with various light sources which exhibit an incoherent behaviour and a broad spectral width.

  15. Scanning electron microscopy of coal macerals

    Energy Technology Data Exchange (ETDEWEB)

    Davis, M.R.; White, A.; Deegan, M.D.

    1986-02-01

    Individual macerals separated from some United Kingdom coals of Carboniferous age and bituminous rank were examined by scanning electron microscopy. In each case a specific morphology characteristic of the macerals studied could be recognized. Collinite (a member of the vitrinite maceral group) was recognizable in all samples by its angular shape and characteristic fracture patterns, the particles (30-200 ..mu..m) frequently showing striated or laminated surface. Sporinite particles had no well defined shape and were associated with more detrital material than were the other macerals studied. This detritus was shown by conventional light microscopy to be the maceral micrinite. Fusinite was remarkable in having a chunky needle form, with lengths of up to 200 ..mu..m. 8 references.

  16. High performance field emission of silicon carbide nanowires and their applications in flexible field emission displays

    Science.gov (United States)

    Cui, Yunkang; Chen, Jing; Di, Yunsong; Zhang, Xiaobing; Lei, Wei

    2017-12-01

    In this paper, a facile method to fabricate the flexible field emission devices (FEDs) based on SiC nanostructure emitters by a thermal evaporation method has been demonstrated. The composition characteristics of SiC nanowires was characterized by X-ray diffraction (XRD), selected area electron diffraction (SAED) and energy dispersive X-ray spectrometer (EDX), while the morphology was revealed by field emission scanning electron microscopy (SEM) and high resolution transmission electron microscopy (HRTEM). The results showed that the SiC nanowires grew along the [111] direction with the diameter of ˜110 nm and length of˜30 μm. The flexible FEDs have been fabricated by transferring and screen-printing the SiC nanowires onto the flexible substrates exhibited excellent field emission properties, such as the low turn-on field (˜0.95 V/μm) and threshold field (˜3.26 V/μm), and the high field enhancement factor (β=4670). It is worth noting the current density degradation can be controlled lower than 2% per hour during the stability tests. In addition, the flexible FEDs based on SiC nanowire emitters exhibit uniform bright emission modes under bending test conditions. As a result, this strategy is very useful for its potential application in the commercial flexible FEDs.

  17. High performance field emission of silicon carbide nanowires and their applications in flexible field emission displays

    Directory of Open Access Journals (Sweden)

    Yunkang Cui

    2017-12-01

    Full Text Available In this paper, a facile method to fabricate the flexible field emission devices (FEDs based on SiC nanostructure emitters by a thermal evaporation method has been demonstrated. The composition characteristics of SiC nanowires was characterized by X-ray diffraction (XRD, selected area electron diffraction (SAED and energy dispersive X-ray spectrometer (EDX, while the morphology was revealed by field emission scanning electron microscopy (SEM and high resolution transmission electron microscopy (HRTEM. The results showed that the SiC nanowires grew along the [111] direction with the diameter of ∼110 nm and length of∼30 μm. The flexible FEDs have been fabricated by transferring and screen-printing the SiC nanowires onto the flexible substrates exhibited excellent field emission properties, such as the low turn-on field (∼0.95 V/μm and threshold field (∼3.26 V/μm, and the high field enhancement factor (β=4670. It is worth noting the current density degradation can be controlled lower than 2% per hour during the stability tests. In addition, the flexible FEDs based on SiC nanowire emitters exhibit uniform bright emission modes under bending test conditions. As a result, this strategy is very useful for its potential application in the commercial flexible FEDs.

  18. For seeing atoms: tunnel effect microscopy

    International Nuclear Information System (INIS)

    Stoll, E.; Humbert, A.

    1985-01-01

    A new technique, Scanning Tunneling Microscopy (STM) is described, which allows surface detail to be resolved at atomic level. The principles are described, together with an account of a recent experiment; various theoretical considerations are examined. Samples of recorded topographies are depicted and analysed. It is concluded that the technique is of value for chemical studies of surfaces on an atomic scale. (D.A.J.)

  19. Scanning thermal microscopy of thermoelectric nanostructures

    Czech Academy of Sciences Publication Activity Database

    Vaniš, Jan; Zelinka, Jiří; Zeipl, Radek; Jelínek, Miroslav; Kocourek, Tomáš; Remsa, Jan; Navrátil, Jiří

    2016-01-01

    Roč. 45, č. 3 (2016), s. 1734-1739 ISSN 0361-5235 R&D Projects: GA ČR(CZ) GA15-05864S; GA ČR(CZ) GA13-33056S Institutional support: RVO:68378271 ; RVO:61389013 Keywords : thermoelectric layer * scanning thermal microscopy * pulsed laser deposition * laser deposition * secondary ion mass spectrometry Subject RIV: BM - Solid Matter Physics ; Magnetism; CA - Inorganic Chemistry (UMCH-V) Impact factor: 1.579, year: 2016

  20. Energy dissipation in multifrequency atomic force microscopy

    Directory of Open Access Journals (Sweden)

    Valentina Pukhova

    2014-04-01

    Full Text Available The instantaneous displacement, velocity and acceleration of a cantilever tip impacting onto a graphite surface are reconstructed. The total dissipated energy and the dissipated energy per cycle of each excited flexural mode during the tip interaction is retrieved. The tip dynamics evolution is studied by wavelet analysis techniques that have general relevance for multi-mode atomic force microscopy, in a regime where few cantilever oscillation cycles characterize the tip–sample interaction.

  1. Scanning electron microscopy of superficial white onychomycosis*

    Science.gov (United States)

    de Almeida Jr., Hiram Larangeira; Boabaid, Roberta Oliveira; Timm, Vitor; Silva, Ricardo Marques e; de Castro, Luis Antonio Suita

    2015-01-01

    Superficial white onychomycosis is characterized by opaque, friable, whitish superficial spots on the nail plate. We examined an affected halux nail of a 20-year-old male patient with scanning electron microscopy. The mycological examination isolated Trichophyton mentagrophytes. Abundant hyphae with the formation of arthrospores were found on the nail's surface, forming small fungal colonies. These findings showed the great capacity for dissemination of this form of onychomycosis. PMID:26560225

  2. High-energy electron diffraction and microscopy

    CERN Document Server

    Peng, L M; Whelan, M J

    2011-01-01

    This book provides a comprehensive introduction to high energy electron diffraction and elastic and inelastic scattering of high energy electrons, with particular emphasis on applications to modern electron microscopy. Starting from a survey of fundamental phenomena, the authors introduce the most important concepts underlying modern understanding of high energy electron diffraction. Dynamical diffraction in transmission (THEED) and reflection (RHEED) geometries is treated using ageneral matrix theory, where computer programs and worked examples are provided to illustrate the concepts and to f

  3. Quantitative imaging of bilirubin by photoacoustic microscopy

    Science.gov (United States)

    Zhou, Yong; Zhang, Chi; Yao, Da-Kang; Wang, Lihong V.

    2013-03-01

    Noninvasive detection of both bilirubin concentration and its distribution is important for disease diagnosis. Here we implemented photoacoustic microscopy (PAM) to detect bilirubin distribution. We first demonstrate that our PAM system can measure the absorption spectra of bilirubin and blood. We also image bilirubin distributions in tissuemimicking samples, both without and with blood mixed. Our results show that PAM has the potential to quantitatively image bilirubin in vivo for clinical applications.

  4. Scanning electron microscopy of primary bone tumors

    International Nuclear Information System (INIS)

    Pool, R.R.; Kerner, B.

    1975-01-01

    Critical-point-drying of tumor tissue fixed in a glutaraldehyde-paraformaldehyde solution and viewed by scanning electron microscopy (SEM) provides a 3-dimensional view of tumor cells and their matrices. This report describes the SEM appearance of three primary bone tumors: a canine osteosarcoma of the distal radius, a feline chondrosarcoma of the proximal tibia and a canine fibrosarcoma of the proximal humerus. The ultrastructural morphology is compared with the histologic appearance of each tumor

  5. Magnetic circular dichroism in electron microscopy

    Czech Academy of Sciences Publication Activity Database

    Rusz, Ján; Novák, Pavel; Rubino, S.; Hébert, C.; Schattschneider, P.

    2008-01-01

    Roč. 113, č. 1 (2008), s. 599-604 ISSN 0587-4246. [CSMAG'07. Košice, 09.07.2007-12.07.2007] EU Projects: European Commission(XE) 508971 - CHIRALTEM Institutional research plan: CEZ:AV0Z10100521 Keywords : magnetic circular dichroism * electron microscopy Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.321, year: 2008

  6. Spin-polarized scanning electron microscopy

    International Nuclear Information System (INIS)

    Kohashi, Teruo

    2014-01-01

    Spin-Polarized Scanning Electron Microscopy (Spin SEM) is one way for observing magnetic domain structures taking advantage of the spin polarization of the secondary electrons emitted from a ferromagnetic sample. This principle brings us several excellent capabilities such as high-spatial resolution better than 10 nm, and analysis of magnetization direction in three dimensions. In this paper, the principle and the structure of the spin SEM is briefly introduced, and some examples of the spin SEM measurements are shown. (author)

  7. Transmission electron microscopy of amyloid fibrils.

    Science.gov (United States)

    Gras, Sally L; Waddington, Lynne J; Goldie, Kenneth N

    2011-01-01

    Transmission Electron Microscopy of negatively stained and cryo-prepared specimens allows amyloid fibrils to be visualised at high resolution in a dried or a hydrated state, and is an essential method for characterising the morphology of fibrils and pre-fibrillar species. We outline the key steps involved in the preparation and observation of samples using negative staining and cryo-electron preservation. We also discuss methods to measure fibril characteristics, such as fibril width, from electron micrographs.

  8. Electron microscopy of nanostructured semiconductor materials

    International Nuclear Information System (INIS)

    Neumann, Wolfgang

    2003-01-01

    For various material systems of low dimensions, including multilayers, islands, and quantum dots, the potential applicability of transmission electron microscopy (TEM) is demonstrated. Conventional TEM is applied to elucidate size, shape, and arrangement of nanostructures, whereas high-resolution imaging is used for visualizing their atomic structure. In addition, microchemical peculiarities of the nanoscopic objects are investigated by analytical TEM techniques (energy-filtered TEM, energy-dispersive X-ray spectroscopy)

  9. Field emission studies of silver nanoparticles synthesized by electron cyclotron resonance plasma

    International Nuclear Information System (INIS)

    Purohit, Vishwas; Mazumder, Baishakhi; Bhise, A.B.; Poddar, Pankaj; Joag, D.S.; Bhoraskar, S.V.

    2011-01-01

    Field emission has been studied for silver nanoparticles (25-200 nm), deposited within a cylindrical silver target in an electron cyclotron resonance (ECR) plasma. Particle size distribution was controlled by optimum biasing voltages between the chamber and the target. Presence of non-oxidized silver was confirmed from the X-Ray diffraction analysis; however, thin protective layer of oxide was identified from the selective area electron diffraction pattern obtained with transmission electron microscopy. The silver nanoparticles were seen to exhibit hilly pointed like structures when viewed under the atomic force microscopy (AFM). The emissive properties of these particles were investigated by field emission microscopy. It is found that this technique of deposition is ideal for formation of nanoparticles films on different substrate geometries with size controllability as well as its application to emission devices.

  10. Invited Review Article: Pump-probe microscopy

    Science.gov (United States)

    Wilson, Jesse W.; Robles, Francisco E.; Warren, Warren S.

    2016-01-01

    Multiphoton microscopy has rapidly gained popularity in biomedical imaging and materials science because of its ability to provide three-dimensional images at high spatial and temporal resolution even in optically scattering environments. Currently the majority of commercial and home-built devices are based on two-photon fluorescence and harmonic generation contrast. These two contrast mechanisms are relatively easy to measure but can access only a limited range of endogenous targets. Recent developments in fast laser pulse generation, pulse shaping, and detection technology have made accessible a wide range of optical contrasts that utilize multiple pulses of different colors. Molecular excitation with multiple pulses offers a large number of adjustable parameters. For example, in two-pulse pump-probe microscopy, one can vary the wavelength of each excitation pulse, the detection wavelength, the timing between the excitation pulses, and the detection gating window after excitation. Such a large parameter space can provide much greater molecular specificity than existing single-color techniques and allow for structural and functional imaging without the need for exogenous dyes and labels, which might interfere with the system under study. In this review, we provide a tutorial overview, covering principles of pump-probe microscopy and experimental setup, challenges associated with signal detection and data processing, and an overview of applications. PMID:27036751

  11. Axial tomography in live cell laser microscopy

    Science.gov (United States)

    Richter, Verena; Bruns, Sarah; Bruns, Thomas; Weber, Petra; Wagner, Michael; Cremer, Christoph; Schneckenburger, Herbert

    2017-09-01

    Single cell microscopy in a three-dimensional (3-D) environment is reported. Cells are grown in an agarose culture gel, located within microcapillaries and observed from different sides after adaptation of an innovative device for sample rotation. Thus, z-stacks can be recorded by confocal microscopy in different directions and used for illustration in 3-D. This gives additional information, since cells or organelles that appear superimposed in one direction, may be well resolved in another one. The method is tested and validated with single cells expressing a membrane or a mitochondrially associated green fluorescent protein, or cells accumulating fluorescent quantum dots. In addition, axial tomography supports measurements of cellular uptake and distribution of the anticancer drug doxorubicin in the nucleus (2 to 6 h after incubation) or the cytoplasm (24 h). This paper discusses that upon cell rotation an enhanced optical resolution in lateral direction compared to axial direction can be utilized to obtain an improved effective 3-D resolution, which represents an important step toward super-resolution microscopy of living cells.

  12. Brillouin microscopy: assessing ocular tissue biomechanics.

    Science.gov (United States)

    Yun, Seok Hyun; Chernyak, Dimitri

    2018-07-01

    Assessment of corneal biomechanics has been an unmet clinical need in ophthalmology for many years. Many researchers and clinicians have identified corneal biomechanics as source of variability in refractive procedures and one of the main factors in keratoconus. However, it has been difficult to accurately characterize corneal biomechanics in patients. The recent development of Brillouin light scattering microscopy heightens the promise of bringing biomechanics into the clinic. The aim of this review is to overview the progress and discuss prospective applications of this new technology. Brillouin microscopy uses a low-power near-infrared laser beam to determine longitudinal modulus or mechanical compressibility of tissue by analyzing the return signal spectrum. Human clinical studies have demonstrated significant difference in the elastic properties of normal corneas versus corneas diagnosed with mild and severe keratoconus. Clinical data have also shown biomechanical changes after corneal cross-linking treatment of keratoconus patients. Brillouin measurements of the crystalline lens and sclera have also been demonstrated. Brillouin microscopy is a promising technology under commercial development at present. The technique enables physicians to characterize the biomechanical properties of ocular tissues.

  13. Fluctuation microscopy analysis of amorphous silicon models

    Energy Technology Data Exchange (ETDEWEB)

    Gibson, J.M., E-mail: jmgibson@fsu.edu [Northeastern University, Department of Physics, Boston MA 02115 (United States); FAMU/FSU Joint College of Engineering, 225 Pottsdamer Street, Tallahassee, FL 32310 (United States); Treacy, M.M.J. [Arizona State University, Department of Physics, Tempe AZ 85287 (United States)

    2017-05-15

    Highlights: • Studied competing computer models for amorphous silicon and simulated fluctuation microscopy data. • Show that only paracrystalline/random network composite can fit published data. • Specifically show that pure random network or random network with void models do not fit available data. • Identify a new means to measure volume fraction of ordered material. • Identify unreported limitations of the Debye model for simulating fluctuation microscopy data. - Abstract: Using computer-generated models we discuss the use of fluctuation electron microscopy (FEM) to identify the structure of amorphous silicon. We show that a combination of variable resolution FEM to measure the correlation length, with correlograph analysis to obtain the structural motif, can pin down structural correlations. We introduce the method of correlograph variance as a promising means of independently measuring the volume fraction of a paracrystalline composite. From comparisons with published data, we affirm that only a composite material of paracrystalline and continuous random network that is substantially paracrystalline could explain the existing experimental data, and point the way to more precise measurements on amorphous semiconductors. The results are of general interest for other classes of disordered materials.

  14. Clinical applications of corneal confocal microscopy

    Directory of Open Access Journals (Sweden)

    Mitra Tavakoli

    2008-06-01

    Full Text Available Mitra Tavakoli1, Parwez Hossain2, Rayaz A Malik11Division of Cardiovascular Medicine, University of Manchester and Manchester Royal Infirmary, Manchester, UK; 2University of Southampton, Southampton Eye Unit, Southampton General Hospital, Southampton, UKAbstract: Corneal confocal microscopy is a novel clinical technique for the study of corneal cellular structure. It provides images which are comparable to in-vitro histochemical techniques delineating corneal epithelium, Bowman’s layer, stroma, Descemet’s membrane and the corneal endothelium. Because, corneal confocal microscopy is a non invasive technique for in vivo imaging of the living cornea it has huge clinical potential to investigate numerous corneal diseases. Thus far it has been used in the detection and management of pathologic and infectious conditions, corneal dystrophies and ecstasies, monitoring contact lens induced corneal changes and for pre and post surgical evaluation (PRK, LASIK and LASEK, flap evaluations and Radial Keratotomy, and penetrating keratoplasty. Most recently it has been used as a surrogate for peripheral nerve damage in a variety of peripheral neuropathies and may have potential in acting as a surrogate marker for endothelial abnormalities.Keywords: corneal confocal microscopy, cornea, infective keratitis, corneal dystrophy, neuropathy

  15. Video-rate resonant scanning multiphoton microscopy

    Science.gov (United States)

    Kirkpatrick, Nathaniel D.; Chung, Euiheon; Cook, Daniel C.; Han, Xiaoxing; Gruionu, Gabriel; Liao, Shan; Munn, Lance L.; Padera, Timothy P.; Fukumura, Dai; Jain, Rakesh K.

    2013-01-01

    The abnormal tumor microenvironment fuels tumor progression, metastasis, immune suppression, and treatment resistance. Over last several decades, developments in and applications of intravital microscopy have provided unprecedented insights into the dynamics of the tumor microenvironment. In particular, intravital multiphoton microscopy has revealed the abnormal structure and function of tumor-associated blood and lymphatic vessels, the role of aberrant tumor matrix in drug delivery, invasion and metastasis of tumor cells, the dynamics of immune cell trafficking to and within tumors, and gene expression in tumors. However, traditional multiphoton microscopy suffers from inherently slow imaging rates—only a few frames per second, thus unable to capture more rapid events such as blood flow, lymphatic flow, and cell movement within vessels. Here, we report the development and implementation of a video-rate multiphoton microscope (VR-MPLSM) based on resonant galvanometer mirror scanning that is capable of recording at 30 frames per second and acquiring intravital multispectral images. We show that the design of the system can be readily implemented and is adaptable to various experimental models. As examples, we demonstrate the utility of the system to directly measure flow within tumors, capture metastatic cancer cells moving within the brain vasculature and cells in lymphatic vessels, and image acute responses to changes in a vascular network. VR-MPLSM thus has the potential to further advance intravital imaging and provide new insight into the biology of the tumor microenvironment. PMID:24353926

  16. Invited Review Article: Pump-probe microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, Martin C., E-mail: Martin.Fischer@duke.edu; Wilson, Jesse W.; Robles, Francisco E. [Department of Chemistry, Duke University, Durham, North Carolina 27708 (United States); Warren, Warren S. [Departments of Chemistry, Biomedical Engineering, Physics, and Radiology, Duke University, Durham, North Carolina 27708 (United States)

    2016-03-15

    Multiphoton microscopy has rapidly gained popularity in biomedical imaging and materials science because of its ability to provide three-dimensional images at high spatial and temporal resolution even in optically scattering environments. Currently the majority of commercial and home-built devices are based on two-photon fluorescence and harmonic generation contrast. These two contrast mechanisms are relatively easy to measure but can access only a limited range of endogenous targets. Recent developments in fast laser pulse generation, pulse shaping, and detection technology have made accessible a wide range of optical contrasts that utilize multiple pulses of different colors. Molecular excitation with multiple pulses offers a large number of adjustable parameters. For example, in two-pulse pump-probe microscopy, one can vary the wavelength of each excitation pulse, the detection wavelength, the timing between the excitation pulses, and the detection gating window after excitation. Such a large parameter space can provide much greater molecular specificity than existing single-color techniques and allow for structural and functional imaging without the need for exogenous dyes and labels, which might interfere with the system under study. In this review, we provide a tutorial overview, covering principles of pump-probe microscopy and experimental setup, challenges associated with signal detection and data processing, and an overview of applications.

  17. Fluctuation microscopy analysis of amorphous silicon models

    International Nuclear Information System (INIS)

    Gibson, J.M.; Treacy, M.M.J.

    2017-01-01

    Highlights: • Studied competing computer models for amorphous silicon and simulated fluctuation microscopy data. • Show that only paracrystalline/random network composite can fit published data. • Specifically show that pure random network or random network with void models do not fit available data. • Identify a new means to measure volume fraction of ordered material. • Identify unreported limitations of the Debye model for simulating fluctuation microscopy data. - Abstract: Using computer-generated models we discuss the use of fluctuation electron microscopy (FEM) to identify the structure of amorphous silicon. We show that a combination of variable resolution FEM to measure the correlation length, with correlograph analysis to obtain the structural motif, can pin down structural correlations. We introduce the method of correlograph variance as a promising means of independently measuring the volume fraction of a paracrystalline composite. From comparisons with published data, we affirm that only a composite material of paracrystalline and continuous random network that is substantially paracrystalline could explain the existing experimental data, and point the way to more precise measurements on amorphous semiconductors. The results are of general interest for other classes of disordered materials.

  18. Nucleation and growth characterization by field-ion microscopy

    International Nuclear Information System (INIS)

    Inal, O.T.; Scherer, A.

    1985-01-01

    Field-ion microscopy affords atomic resolution and thus is ideally suited for studies involving the nucleation and growth of overlayers on the conical field-emission end forms. The added capability of filed-assisted removal of atomic layers gives this technique a unique three-dimensional capability which is invaluable for the controlled removal of atomic layers and delineation of the depth information. The description of the transition from overlayer to substrate is afforded by a change in the ratio of best image to field evaporation voltages (BIV/FEV). Since the adatom layers are necessarily quite thin (>20 nm) a careful characterization in an SEM and the associated energy dispersive x-ray analysis (EDAX) is certainly worthwhile. The modes of deposition utilized in the studies to be presented include in-situ vapor deposition, electroless (cementation) and electrodeposition of metallic and oxide overgrowths. In-situ vapor deposition allows for imaging-coating-reimaging practice without the introduction of artifacts on these small substrate surfaces quite prone to air of humidity induced etching and alteration. Vapor deposition thus affords the only means of full recovery of the imaging surface at thin coverages. The extent of the coverage can be increased by in-situ tip heating and through reduced misfit between the two species of concern. Although electrolytic or electroless depositions afford much thicker overgrowths, the contact of the field-emission end form with an aqueous medium results in a chemical dissolution that increases with the increasing pH of the solution. The recovered surface is a new surface generated through this etching but still containing the imaging features of the substrate and thus is quite easy to distinguish

  19. MAE measurements and studies of magnetic domains by electron microscopy

    International Nuclear Information System (INIS)

    Lo, C.C.H.

    1998-01-01

    There is a pressing need for non-destructive testing (NDT) methods for monitoring steel microstructures as they determine the mechanical properties of steel products. Magnetoacoustic emission (MAE) has potential for this application since it is sensitive to steel microstructure. The aim of this project is to study systematically the dependence of MAE upon steel microstructure, and to apply the technique to examine the industrial steel components which have complicated microstructures. Studies of MAE and Barkhausen emission (BE) were made on several systems including fully pearlitic, fully ferritic, ferritic/pearlitic and spheroidized steels. Results suggest that there is a correlation between the microstructural parameters and the MAE and BE profiles. The study of fully pearlitic steel shows that both MAE and BE are sensitive to the interlamellar spacing of pearlite. Low-carbon ferritic steel samples give different MAE and BE profiles which are dependent on ferrite grain size. Lorentz microscopy reveals that there are differences in domain structures and magnetization processes between fully ferritic and fully pearlitic samples. Study of ferritic/pearlitic samples indicates that both MAE and BE depend on the ferrite content. In the case of spheroidized steel samples MAE and BE profiles were found to be sensitive to the changes in the morphology and size of carbides. Samples of industrial steel products including pearlitic rail steel and decarburized billet were investigated. The MAE profiles obtained from the rail are consistent with those measured from the fully pearlitic rod samples. This suggests that MAE can be used for monitoring the microstructure of large steel components, provided that another technique such as BE is also used to complement the MAE measurements. In the study of the billet samples, MAE and BE were found to be dependent on the decarburization depth. The results are discussed in the context of the change in ferrite content of the surface layer

  20. International emissions trading

    DEFF Research Database (Denmark)

    Boom, Jan Tjeerd

    This thesis discusses the design and political acceptability of international emissions trading. It is shown that there are several designs options for emissions trading at the national level that have a different impact on output and thereby related factors such as employment and consumer prices....... The differences in impact of the design make that governments may prefer different designs of emissions trading in different situations. The thesis furthermore establishes that international emissions trading may lead to higher overall emissions, which may make it a less attractive instrument....

  1. Shipping emissions in ports

    OpenAIRE

    Merk, Olaf

    2014-01-01

    Shipping emissions in ports are substantial, accounting for 18 million tonnes of CO2 emissions, 0.4 million tonnes of NOx, 0.2 million of SOx and 0.03 million tonnes of PM10 in 2011. Around 85% of emissions come from containerships and tankers. Containerships have short port stays, but high emissions during these stays. Most of CO2 emissions in ports from shipping are in Asia and Europe (58%), but this share is low compared to their share of port calls (70%). European ports have much less emi...

  2. Electron field emission for ultrananocrystalline diamond films

    Energy Technology Data Exchange (ETDEWEB)

    Krauss, A. R.; Auciello, O.; Ding, M. Q.; Gruen, D. M.; Huang, Y.; Zhirnov, V. V.; Givargizov, E. I.; Breskin, A.; Chechen, R.; Shefer, E. (and others)

    2001-03-01

    Ultrananocrystalline diamond (UNCD) films 0.1--2.4 {mu}m thick were conformally deposited on sharp single Si microtip emitters, using microwave CH{sub 4}--Ar plasma-enhanced chemical vapor deposition in combination with a dielectrophoretic seeding process. Field-emission studies exhibited stable, extremely high (60--100 {mu}A/tip) emission current, with little variation in threshold fields as a function of film thickness or Si tip radius. The electron emission properties of high aspect ratio Si microtips, coated with diamond using the hot filament chemical vapor deposition (HFCVD) process were found to be very different from those of the UNCD-coated tips. For the HFCVD process, there is a strong dependence of the emission threshold on both the diamond coating thickness and Si tip radius. Quantum photoyield measurements of the UNCD films revealed that these films have an enhanced density of states within the bulk diamond band gap that is correlated with a reduction in the threshold field for electron emission. In addition, scanning tunneling microscopy studies indicate that the emission sites from UNCD films are related to minima or inflection points in the surface topography, and not to surface asperities. These data, in conjunction with tight binding pseudopotential calculations, indicate that grain boundaries play a critical role in the electron emission properties of UNCD films, such that these boundaries: (a) provide a conducting path from the substrate to the diamond--vacuum interface, (b) produce a geometric enhancement in the local electric field via internal structures, rather than surface topography, and (c) produce an enhancement in the local density of states within the bulk diamond band gap.

  3. Air Emissions Factors and Quantification

    Science.gov (United States)

    Emissions factors are used in developing air emissions inventories for air quality management decisions and in developing emissions control strategies. This area provides technical information on and support for the use of emissions factors.

  4. Scanning probe microscopy of single Au ion implants in Si

    International Nuclear Information System (INIS)

    Vines, L.; Monakhov, E.; Maknys, K.; Svensson, B.G.; Jensen, J.; Hallen, A.; Kuznetsov, A. Yu.

    2006-01-01

    We have studied 5 MeV Au 2+ ion implantation with fluences between 7 x 10 7 and 2 x 10 8 cm -2 in Si by deep level transient spectroscopy (DLTS) and scanning capacitance microscopy (SCM). The DLTS measurements show formation of electrically active defects such as the two negative charge states of the divacancy (V 2 (=/-) and V 2 (-/0)) and the vacancy-oxygen (VO) center. It is observed that the intensity of the V 2 (=/-) peak is lower compared to that of V 2 (-/0) by a factor of 5. This has been attributed to a highly localized distribution of the defects along the ion tracks, which results in trapping of the carriers at V 2 (-/0) and incomplete occupancy of V 2 (=/-). The SCM measurements obtained in a plan view show a random pattern of regions with a reduced SCM signal for the samples implanted with fluence above 2 x 10 8 cm -2 . The reduced SCM signal is attributed to extra charges associated with acceptor states, such as V 2 (-/0), formed along the ion tracks in the bulk Si. Indeed, the electron emission rate from the V 2 (-/0) state is in the range of 10 kHz at room temperature, which is well below the probing frequency of the SCM measurements, resulting in 'freezing' of electrons at V 2 (-/0)

  5. The tetraspanin web revisited by super-resolution microscopy.

    Science.gov (United States)

    Zuidscherwoude, Malou; Göttfert, Fabian; Dunlock, Vera Marie E; Figdor, Carl G; van den Bogaart, Geert; van Spriel, Annemiek B

    2015-07-17

    The spatial organization of membrane proteins in the plasma membrane is critical for signal transduction, cell communication and membrane trafficking. Tetraspanins organize functional higher-order protein complexes called 'tetraspanin-enriched microdomains (TEMs)' via interactions with partner molecules and other tetraspanins. Still, the nanoscale organization of TEMs in native plasma membranes has not been resolved. Here, we elucidated the size, density and distribution of TEMs in the plasma membrane of human B cells and dendritic cells using dual color stimulated emission depletion (STED) microscopy. We demonstrate that tetraspanins form individual nanoclusters smaller than 120 nm and quantified that a single tetraspanin CD53 cluster contains less than ten CD53 molecules. CD53 and CD37 domains were adjacent to and displayed only minor overlap with clusters containing tetraspanins CD81 or CD82. Moreover, CD53 and CD81 were found in closer proximity to their partners MHC class II and CD19 than to other tetraspanins. Although these results indicate that tetraspanin domains are adjacently positioned in the plasma membrane, they challenge the current view of the tetraspanin web of multiple tetraspanin species organized into a single domain. This study increases the molecular understanding of TEMs at the nanoscale level which is essential for comprehending tetraspanin function in cell biology.

  6. Multispectral detection of cutaneous lesions using spectroscopy and microscopy approaches

    Science.gov (United States)

    Borisova, E.; Genova-Hristova, Ts.; Troyanova, P.; Pavlova, E.; Terziev, I.; Semyachkina-Glushkovskaya, O.; Lomova, M.; Genina, E.; Stanciu, G.; Tranca, D.; Avramov, L.

    2018-02-01

    Autofluorescence, diffuse-reflectance and transmission spectral, and microscopic measurements were made on different cutaneous neoplastic lesions, namely basal cell carcinoma, squamous cell carcinoma, malignant melanoma, and dysplastic and benign lesions related. Spectroscopic measurements were made on ex vivo tissue samples, and confocal microscopy investigations were made on thin tissue slices. Fluorescence spectra obtained reveal statistically significant differences between the different benign, dysplastic and malignant lesions by the level of emission intensity, as well by spectral shape, which are fingerprints applicable for differentiation algorithms. In reflectance mode the most significant differences are related to the influence of skin pigments - melanin and hemoglobin. Transmission spectroscopy mode gave complementary optical properties information about the tissue samples investigated to that one of reflectance and absorption spectroscopy. Using autofluorescence detection of skin lesions we obtain very good diagnostic performance for distinguishing of nonmelanoma lesions. Using diffuse reflectance and transmission spectroscopy we obtain significant tool for pigmented pathologies differentiation, but it is a tool with moderate sensitivity for non-melanoma lesions detection. One could rapidly increase the diagnostic accuracy of the received combined "optical biopsy" method when several spectral detection techniques are applied in common algorithm for lesions' differentiation. Specific spectral features observed in each type of lesion investigated on micro and macro level would be presented and discussed. Correlation between the spectral data received and the microscopic features observed would be discussed in the report.

  7. Quantitative high dynamic range beam profiling for fluorescence microscopy

    International Nuclear Information System (INIS)

    Mitchell, T. J.; Saunter, C. D.; O’Nions, W.; Girkin, J. M.; Love, G. D.

    2014-01-01

    Modern developmental biology relies on optically sectioning fluorescence microscope techniques to produce non-destructive in vivo images of developing specimens at high resolution in three dimensions. As optimal performance of these techniques is reliant on the three-dimensional (3D) intensity profile of the illumination employed, the ability to directly record and analyze these profiles is of great use to the fluorescence microscopist or instrument builder. Though excitation beam profiles can be measured indirectly using a sample of fluorescent beads and recording the emission along the microscope detection path, we demonstrate an alternative approach where a miniature camera sensor is used directly within the illumination beam. Measurements taken using our approach are solely concerned with the illumination optics as the detection optics are not involved. We present a miniature beam profiling device and high dynamic range flux reconstruction algorithm that together are capable of accurately reproducing quantitative 3D flux maps over a large focal volume. Performance of this beam profiling system is verified within an optical test bench and demonstrated for fluorescence microscopy by profiling the low NA illumination beam of a single plane illumination microscope. The generality and success of this approach showcases a widely flexible beam amplitude diagnostic tool for use within the life sciences

  8. An approach to estimate spatial distribution of analyte within cells using spectrally-resolved fluorescence microscopy

    Science.gov (United States)

    Sharma, Dharmendar Kumar; Irfanullah, Mir; Basu, Santanu Kumar; Madhu, Sheri; De, Suman; Jadhav, Sameer; Ravikanth, Mangalampalli; Chowdhury, Arindam

    2017-03-01

    While fluorescence microscopy has become an essential tool amongst chemists and biologists for the detection of various analyte within cellular environments, non-uniform spatial distribution of sensors within cells often restricts extraction of reliable information on relative abundance of analytes in different subcellular regions. As an alternative to existing sensing methodologies such as ratiometric or FRET imaging, where relative proportion of analyte with respect to the sensor can be obtained within cells, we propose a methodology using spectrally-resolved fluorescence microscopy, via which both the relative abundance of sensor as well as their relative proportion with respect to the analyte can be simultaneously extracted for local subcellular regions. This method is exemplified using a BODIPY sensor, capable of detecting mercury ions within cellular environments, characterized by spectral blue-shift and concurrent enhancement of emission intensity. Spectral emission envelopes collected from sub-microscopic regions allowed us to compare the shift in transition energies as well as integrated emission intensities within various intracellular regions. Construction of a 2D scatter plot using spectral shifts and emission intensities, which depend on the relative amount of analyte with respect to sensor and the approximate local amounts of the probe, respectively, enabled qualitative extraction of relative abundance of analyte in various local regions within a single cell as well as amongst different cells. Although the comparisons remain semi-quantitative, this approach involving analysis of multiple spectral parameters opens up an alternative way to extract spatial distribution of analyte in heterogeneous systems. The proposed method would be especially relevant for fluorescent probes that undergo relatively nominal shift in transition energies compared to their emission bandwidths, which often restricts their usage for quantitative ratiometric imaging in

  9. Measuring and correcting aberrations of a cathode objective lens

    International Nuclear Information System (INIS)

    Tromp, R.M.

    2011-01-01

    In this paper I discuss several theoretical and practical aspects related to measuring and correcting the chromatic and spherical aberrations of a cathode objective lens as used in Low Energy Electron Microscopy (LEEM) and Photo Electron Emission Microscopy (PEEM) experiments. Special attention is paid to the various components of the cathode objective lens as they contribute to chromatic and spherical aberrations, and affect practical methods for aberration correction. This analysis has enabled us to correct a LEEM instrument for the spherical and chromatic aberrations of the objective lens. -- Research highlights: → Presents a comprehensive theory of the relation between chromatic aberration and lens current in a cathode objective lens. → Presents practical methods for measuring both spherical and chromatic aberrations of a cathode objective lens. → Presents measurements of these aberrations in good agreement with theory. → Presents practical methods for measuring and correcting these aberrations with an electron mirror.

  10. Non-descanned multifocal multiphoton microscopy with a multianode photomultiplier tube

    International Nuclear Information System (INIS)

    Cha, Jae Won; Yew, Elijah Y. S.; Kim, Daekeun; Subramanian, Jaichandar; Nedivi, Elly; So, Peter T. C.

    2015-01-01

    Multifocal multiphoton microscopy (MMM) improves imaging speed over a point scanning approach by parallelizing the excitation process. Early versions of MMM relied on imaging detectors to record emission signals from multiple foci simultaneously. For many turbid biological specimens, the scattering of emission photons results in blurred images and degrades the signal-to-noise ratio (SNR). We have recently demonstrated that a multianode photomultiplier tube (MAPMT) placed in a descanned configuration can effectively collect scattered emission photons from each focus into their corresponding anodes significantly improving image SNR for highly scattering specimens. Unfortunately, a descanned MMM has a longer detection path resulting in substantial emission photon loss. Optical design constraints in a descanned geometry further results in significant optical aberrations especially for large field-of-view (FOV), high NA objectives. Here, we introduce a non-descanned MMM based on MAPMT that substantially overcomes most of these drawbacks. We show that we improve signal efficiency up to fourfold with limited image SNR degradation due to scattered emission photons. The excitation foci can also be spaced wider to cover the full FOV of the objective with minimal aberrations. The performance of this system is demonstrated by imaging interneuron morphological structures deep in the brains of living mice

  11. Non-descanned multifocal multiphoton microscopy with a multianode photomultiplier tube

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Jae Won; Yew, Elijah Y. S. [Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA (United States); Kim, Daekeun [Department of Mechanical Engineering, Dankook University (Korea, Republic of); Subramanian, Jaichandar [Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA (United States); Nedivi, Elly [Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA (United States); Departments of Brain and Cognitive Sciences, and Biology, Massachusetts Institute of Technology, Cambridge, MA (United States); So, Peter T. C. [Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA (United States); Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA (United States)

    2015-08-15

    Multifocal multiphoton microscopy (MMM) improves imaging speed over a point scanning approach by parallelizing the excitation process. Early versions of MMM relied on imaging detectors to record emission signals from multiple foci simultaneously. For many turbid biological specimens, the scattering of emission photons results in blurred images and degrades the signal-to-noise ratio (SNR). We have recently demonstrated that a multianode photomultiplier tube (MAPMT) placed in a descanned configuration can effectively collect scattered emission photons from each focus into their corresponding anodes significantly improving image SNR for highly scattering specimens. Unfortunately, a descanned MMM has a longer detection path resulting in substantial emission photon loss. Optical design constraints in a descanned geometry further results in significant optical aberrations especially for large field-of-view (FOV), high NA objectives. Here, we introduce a non-descanned MMM based on MAPMT that substantially overcomes most of these drawbacks. We show that we improve signal efficiency up to fourfold with limited image SNR degradation due to scattered emission photons. The excitation foci can also be spaced wider to cover the full FOV of the objective with minimal aberrations. The performance of this system is demonstrated by imaging interneuron morphological structures deep in the brains of living mice.

  12. Combined frequency modulated atomic force microscopy and scanning tunneling microscopy detection for multi-tip scanning probe microscopy applications

    International Nuclear Information System (INIS)

    Morawski, Ireneusz; Spiegelberg, Richard; Korte, Stefan; Voigtländer, Bert

    2015-01-01

    A method which allows scanning tunneling microscopy (STM) tip biasing independent of the sample bias during frequency modulated atomic force microscopy (AFM) operation is presented. The AFM sensor is supplied by an electronic circuit combining both a frequency shift signal and a tunneling current signal by means of an inductive coupling. This solution enables a control of the tip potential independent of the sample potential. Individual tip biasing is specifically important in order to implement multi-tip STM/AFM applications. An extensional quartz sensor (needle sensor) with a conductive tip is applied to record simultaneously topography and conductivity of the sample. The high resonance frequency of the needle sensor (1 MHz) allows scanning of a large area of the surface being investigated in a reasonably short time. A recipe for the amplitude calibration which is based only on the frequency shift signal and does not require the tip being in contact is presented. Additionally, we show spectral measurements of the mechanical vibration noise of the scanning system used in the investigations

  13. Combined frequency modulated atomic force microscopy and scanning tunneling microscopy detection for multi-tip scanning probe microscopy applications

    Energy Technology Data Exchange (ETDEWEB)

    Morawski, Ireneusz [Peter Grünberg Institut (PGI-3) and JARA-Fundamentals of Future Information Technology, Forschungszentrum Jülich, 52425 Jülich (Germany); Institute of Experimental Physics, University of Wrocław, pl. M. Borna 9, 50-204 Wrocław (Poland); Spiegelberg, Richard; Korte, Stefan; Voigtländer, Bert [Peter Grünberg Institut (PGI-3) and JARA-Fundamentals of Future Information Technology, Forschungszentrum Jülich, 52425 Jülich (Germany)

    2015-12-15

    A method which allows scanning tunneling microscopy (STM) tip biasing independent of the sample bias during frequency modulated atomic force microscopy (AFM) operation is presented. The AFM sensor is supplied by an electronic circuit combining both a frequency shift signal and a tunneling current signal by means of an inductive coupling. This solution enables a control of the tip potential independent of the sample potential. Individual tip biasing is specifically important in order to implement multi-tip STM/AFM applications. An extensional quartz sensor (needle sensor) with a conductive tip is applied to record simultaneously topography and conductivity of the sample. The high resonance frequency of the needle sensor (1 MHz) allows scanning of a large area of the surface being investigated in a reasonably short time. A recipe for the amplitude calibration which is based only on the frequency shift signal and does not require the tip being in contact is presented. Additionally, we show spectral measurements of the mechanical vibration noise of the scanning system used in the investigations.

  14. A correlative optical microscopy and scanning electron microscopy approach to locating nanoparticles in brain tumors.

    Science.gov (United States)

    Kempen, Paul J; Kircher, Moritz F; de la Zerda, Adam; Zavaleta, Cristina L; Jokerst, Jesse V; Mellinghoff, Ingo K; Gambhir, Sanjiv S; Sinclair, Robert

    2015-01-01

    The growing use of nanoparticles in biomedical applications, including cancer diagnosis and treatment, demands the capability to exactly locate them within complex biological systems. In this work a correlative optical and scanning electron microscopy technique was developed to locate and observe multi-modal gold core nanoparticle accumulation in brain tumor models. Entire brain sections from mice containing orthotopic brain tumors injected intravenously with nanoparticles were imaged using both optical microscopy to identify the brain tumor, and scanning electron microscopy to identify the individual nanoparticles. Gold-based nanoparticles were readily identified in the scanning electron microscope using backscattered electron imaging as bright spots against a darker background. This information was then correlated to determine the exact location of the nanoparticles within the brain tissue. The nanoparticles were located only in areas that contained tumor cells, and not in the surrounding healthy brain tissue. This correlative technique provides a powerful method to relate the macro- and micro-scale features visible in light microscopy with the nanoscale features resolvable in scanning electron microscopy. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Circularly polarized light emission in scanning tunneling microscopy of magnetic systems

    International Nuclear Information System (INIS)

    Apell, S.P.; Penn, D.R.; Johansson, P.

    2000-01-01

    Light is produced when a scanning tunneling microscope is used to probe a metal surface. Recent experiments on cobalt utilizing a tungsten tip found that the light is circularly polarized; the sense of circular polarization depends on the direction of the sample magnetization, and the degree of polarization is of order 10%. This raises the possibility of constructing a magnetic microscope with very good spatial resolution. We present a theory of this effect for iron and cobalt and find a degree of polarization of order 0.1%. This is in disagreement with the experiments on cobalt as well as previous theoretical work which found order of magnitude agreement with the experimental results. However, a recent experiment on iron showed 0.0±2%. We predict that the use of a silver tip would increase the degree of circular polarization for a range of photon energies

  16. Influence of fluorescence time characteristics on the spatial resolution of CW-stimulated emission depletion microscopy

    Science.gov (United States)

    Qin, Haiyun; Zhao, Wei; Zhang, Chen; Liu, Yong; Wang, Guiren; Wang, Kaige

    2018-03-01

    Not Available Project supported by the National Natural Science Foundation of China (Grant Nos. 11672229 and 61378083), International Cooperation Foundation of the National Science and Technology Major Project of the Ministry of Science and Technology of China (Grant No. 2011DFA12220), Major Research Plan of the National Natural Science Foundation of China (Grant No. 91123030), Natural Science Foundation of Shaanxi Province of China (Grant Nos. 2010JS110 and 2013SZS03-Z01), Natural Science Basic Research Program of Shaanxi Province — Major Basic Research Project, China (Grant No. 2016ZDJC-15), Young Scientist Fund of the National Natural Science Foundation of China (Grant No. 11504294), and the Youth Talent Plan of the Natural Science Foundation of Shaanxi Province of China (Grant No. 2016JQ103).

  17. Original Research. Photoacoustic Microscopy in Dental Medicine

    Directory of Open Access Journals (Sweden)

    Stan Adrian Tudor

    2017-03-01

    Full Text Available Introduction: Photoacoustic microscopy, also known as optoacoustic imaging, is a comparatively new method of investigation in dental medicine, which uses a laser-generated ultrasound (short laser pulses to achieve images for interpretation. Photoacoustic microscopy can be used in a broad spectrum, from detecting tooth decay at its earliest stages to dental anatomy analysis. Material and methods: The energy emitted by the photoacoustic pulse is moderately absorbed by the target and exchanged into heat, leading to a local transitory temperature upsurge. The tension propagates and grows as ultrasonic waves, distinguished by the ultrasonic transducers which are planted apart from the tissue. The photoacoustic microscope has a tunable dye laser which passes through a condensing lens, an objective and ultimately an ultrasonic transducer attached to an acoustic lens to capture and receive information about the scanned probe from a sample moved on the X, Y dimensions. Results: The precise anatomy of layered concentric structures can be clearly observed in photoacoustic microscopy. The image value of the inner layer can be higher, indicating strong optical absorption, while the image value of the outer layer is lower, indicating weaker optical absorption. Meanwhile, the inner layer has the exact same size as the dentin structure and the outer layer has the exact same size as the enamel structure in this cross-section. Conclusions: The photoacoustic microscope (all-optical comes out to be a future and promising tool for detecting early-stage caries and lesions on the surface of the teeth, where micro-leakage occurs at the interface of tooth restoration, and also the anatomy of dental tissues.

  18. Scanning Ion Conductance Microscopy of Live Keratinocytes

    International Nuclear Information System (INIS)

    Hegde, V; Mason, A; Saliev, T; Smith, F J D; McLean, W H I; Campbell, P A

    2012-01-01

    Scanning ion conductance microscopy (SICM) is perhaps the least well known technique from the scanning probe microscopy (SPM) family of instruments. As with its more familiar counterpart, atomic force microscopy (AFM), the technique provides high-resolution topographic imaging, with the caveat that target structures must be immersed in a conducting solution so that a controllable ion current may be utilised as the basis for feedback. In operation, this non-contact characteristic of SICM makes it ideal for the study of delicate structures, such as live cells. Moreover, the intrinsic architecture of the instrument, incorporating as it does, a scanned micropipette, lends itself to combination approaches with complementary techniques such as patch-clamp electrophysiology: SICM therefore boasts the capability for both structural and functional imaging. For the present observations, an ICnano S system (Ionscope Ltd., Melbourn, UK) operating in 'hopping mode' was used, with the objective of assessing the instrument's utility for imaging live keratinocytes under physiological buffers. In scans employing cultured HaCaT cells (spontaneously immortalised, human keratinocytes), we compared the qualitative differences of live cells imaged with SICM and AFM, and also with their respective counterparts after chemical fixation in 4% paraformaldehyde. Characteristic surface microvilli were particularly prominent in live cell imaging by SICM. Moreover, time lapse SICM imaging on live cells revealed that changes in the pattern of microvilli could be tracked over time. By comparison, AFM imaging on live cells, even at very low contact forces (< nN), could not routinely image microvilli: rather, an apparently convolved image of the underlying cytoskeleton was instead prevalent. We note that the present incarnation of the commercial instrument falls some way behind the market leading SPMs in terms of technical prowess and scanning speed, however, the intrinsic non-obtrusive nature of

  19. System analysis of force feedback microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, Mario S. [CFMC/Dep. de Física, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa (Portugal); Costa, Luca [European Synchrotron Radiation Facility, 6 rue Jules Horowitz BP 220, 38043 Grenoble Cedex (France); Université Joseph Fourier BP 53, 38041 Grenoble Cedex 9 (France); Chevrier, Joël [European Synchrotron Radiation Facility, 6 rue Jules Horowitz BP 220, 38043 Grenoble Cedex (France); Université Grenoble Alpes, Inst NEEL, F-38042 Grenoble (France); CNRS, Inst NEEL, F-38042 Grenoble (France); Comin, Fabio [European Synchrotron Radiation Facility, 6 rue Jules Horowitz BP 220, 38043 Grenoble Cedex (France)

    2014-02-07

    It was shown recently that the Force Feedback Microscope (FFM) can avoid the jump-to-contact in Atomic force Microscopy even when the cantilevers used are very soft, thus increasing force resolution. In this letter, we explore theoretical aspects of the associated real time control of the tip position. We take into account lever parameters such as the lever characteristics in its environment, spring constant, mass, dissipation coefficient, and the operating conditions such as controller gains and interaction force. We show how the controller parameters are determined so that the FFM functions at its best and estimate the bandwidth of the system under these conditions.

  20. Transmission electron microscopy in micro-nanoelectronics

    CERN Document Server

    Claverie, Alain

    2013-01-01

    Today, the availability of bright and highly coherent electron sources and sensitive detectors has radically changed the type and quality of the information which can be obtained by transmission electron microscopy (TEM). TEMs are now present in large numbers not only in academia, but also in industrial research centers and fabs.This book presents in a simple and practical way the new quantitative techniques based on TEM which have recently been invented or developed to address most of the main challenging issues scientists and process engineers have to face to develop or optimize sem

  1. Phase-Modulation Laser Interference Microscopy

    DEFF Research Database (Denmark)

    Brazhe, Alexey; Brazhe, Nadezda; Maximov, G. V.

    2008-01-01

    We describe how phase-modulation laser interference microscopy and wavelet analysis can be applied to noninvasive nonstained visualization and study of the structural and dynamical properties of living cells. We show how phase images of erythrocytes can reveal the difference between various...... erythrocyte forms and stages of hemolysis and how phase images of neurons reveal their complex intracellular structure. Temporal variations of the refractive index are analyzed to detect cellular rhythmic activity on different time scales as well as to uncover interactions between the cellular processes....

  2. Scanning electron microscopy of semiconductor materials

    International Nuclear Information System (INIS)

    Bresse, J.F.; Dupuy, M.

    1978-01-01

    The use of scanning electron microscopy in semiconductors opens up a large field of use. The operating modes lending themselves to the study of semiconductors are the induced current, cathodoluminescence and the use of the potential contrast which can also be applied very effectively to the study of the devices (planar in particular). However, a thorough knowledge of the mechanisms of the penetration of electrons, generation and recombination of generated carriers in a semiconductor is necessary in order to attain a better understanding of the operating modes peculiar to semiconductors [fr

  3. Handling of biological specimens for electron microscopy

    International Nuclear Information System (INIS)

    Bullock, G.

    1987-01-01

    There are many different aspects of specimen preparation procedure which need to be considered in order to achieve good results. Whether using the scanning or transmission microscope, the initial handling procedures are very similar and are selected for the information required. Handling procedures and techniques described are: structural preservation; immuno-and histo-chemistry; x-ray microanalysis and autoradiography; dehydration and embedding; mounting and coating specimens for scanning electron microscopy; and sectioning of resin embedded material. With attention to detail and careful choice of the best available technique, excellent results should be obtainable whatever the specimen. 6 refs

  4. Nanoscale microwave microscopy using shielded cantilever probes

    KAUST Repository

    Lai, Keji; Kundhikanjana, Worasom; Kelly, Michael A.; Shen, Zhi-Xun

    2011-01-01

    Quantitative dielectric and conductivity mapping in the nanoscale is highly desirable for many research disciplines, but difficult to achieve through conventional transport or established microscopy techniques. Taking advantage of the micro-fabrication technology, we have developed cantilever-based near-field microwave probes with shielded structures. Sensitive microwave electronics and finite-element analysis modeling are also utilized for quantitative electrical imaging. The system is fully compatible with atomic force microscope platforms for convenient operation and easy integration of other modes and functions. The microscope is ideal for interdisciplinary research, with demonstrated examples in nano electronics, physics, material science, and biology.

  5. In vivo virtual intraoperative surgical photoacoustic microscopy

    International Nuclear Information System (INIS)

    Han, Seunghoon; Kim, Sehui; Kim, Jeehyun; Lee, Changho; Jeon, Mansik; Kim, Chulhong

    2013-01-01

    We developed a virtual intraoperative surgical photoacoustic microscopy system by combining with a commercial surgical microscope and photoacoustic microscope (PAM). By sharing the common optical path in the microscope and PAM system, we could acquire the PAM and microscope images simultaneously. Moreover, by employing a beam projector to back-project 2D PAM images onto the microscope view plane as augmented reality, the conventional microscopic and 2D cross-sectional PAM images are concurrently mapped on the plane via an ocular lens of the microscope in real-time. Further, we guided needle insertion into phantom ex vivo and mice skins in vivo

  6. Electron microscopy at reduced levels of irradiation

    International Nuclear Information System (INIS)

    Kuo, I.A.M.

    1975-05-01

    Specimen damage by electron radiation is one of the factors that limits high resolution electron microscopy of biological specimens. A method was developed to record images of periodic objects at a reduced electron exposure in order to preserve high resolution structural detail. The resulting image would tend to be a statistically noisy one, as the electron exposure is reduced to lower and lower values. Reconstruction of a statistically defined image from such data is possible by spatial averaging of the electron signals from a large number of identical unit cells. (U.S.)

  7. Fast electron microscopy via compressive sensing

    Science.gov (United States)

    Larson, Kurt W; Anderson, Hyrum S; Wheeler, Jason W

    2014-12-09

    Various technologies described herein pertain to compressive sensing electron microscopy. A compressive sensing electron microscope includes a multi-beam generator and a detector. The multi-beam generator emits a sequence of electron patterns over time. Each of the electron patterns can include a plurality of electron beams, where the plurality of electron beams is configured to impart a spatially varying electron density on a sample. Further, the spatially varying electron density varies between each of the electron patterns in the sequence. Moreover, the detector collects signals respectively corresponding to interactions between the sample and each of the electron patterns in the sequence.

  8. Developments in Scanning Hall Probe Microscopy

    Science.gov (United States)

    Chouinard, Taras; Chu, Ricky; David, Nigel; Broun, David

    2009-05-01

    Low temperature scanning Hall probe microscopy is a sensitive means of imaging magnetic structures with high spatial resolution and magnetic flux sensitivity approaching that of a Superconducting Quantum Interference Device. We have developed a scanning Hall probe microscope with novel features, including highly reliable coarse positioning, in situ optimization of sensor-sample alignment and capacitive transducers for linear, long range positioning measurement. This has been motivated by the need to reposition accurately above fabricated nanostructures such as small superconducting rings. Details of the design and performance will be presented as well as recent progress towards time-resolved measurements with sub nanosecond resolution.

  9. Immunoelectron microscopy of lipopolysaccharide in Chlamydia trachomatis

    DEFF Research Database (Denmark)

    Birkelund, Svend; Lundemose, AG; Christiansen, Gunna

    1989-01-01

    Monoclonal antibodies (MAb) specific for Chlamydia trachomatis lipopolysaccharide (LPS) and major outer membrane protein (MOMP) were used for immunoelectron microscopy analysis. MAb specific for MOMP showed strong reaction with the chlamydial surface, whereas MAb specific for LPS showed strong...... association of gold particles with the periphery of the chlamydial body. After fixation of the chlamydia cells, the reactivity was, however, similar to the anti-MOMP reactivity. Enzyme-linked immunosorbent assay showed that MAb specific for LPS could remove LPS from the chlamydial membrane....

  10. System analysis of force feedback microscopy

    International Nuclear Information System (INIS)

    Rodrigues, Mario S.; Costa, Luca; Chevrier, Joël; Comin, Fabio

    2014-01-01

    It was shown recently that the Force Feedback Microscope (FFM) can avoid the jump-to-contact in Atomic force Microscopy even when the cantilevers used are very soft, thus increasing force resolution. In this letter, we explore theoretical aspects of the associated real time control of the tip position. We take into account lever parameters such as the lever characteristics in its environment, spring constant, mass, dissipation coefficient, and the operating conditions such as controller gains and interaction force. We show how the controller parameters are determined so that the FFM functions at its best and estimate the bandwidth of the system under these conditions

  11. Mueller matrix microscopy on a Morpho butterfly

    International Nuclear Information System (INIS)

    Arteaga, Oriol; Kuntman, Ertan; Antó, Joan; Pascual, Esther; Canillas, Adolf; Bertran, Enric

    2015-01-01

    The brilliant iridescent colouring in male Morpho butterflies is due to the microstrutures and nanostructures present in the wing scales, rather than pigments. In this work Mueller matrix microscopy is used to investigate the polarization properties of butterfly wing scales in reflection and transmission. It is found that the top layer of more transparent scales (cover scales) have very different polarimetric properties from the ground iridescent scales. Images with high spatial resolution showing the retarding and diattenuating optical properties for both types of scales are provided. (paper)

  12. Epidermis area detection for immunofluorescence microscopy

    Science.gov (United States)

    Dovganich, Andrey; Krylov, Andrey; Nasonov, Andrey; Makhneva, Natalia

    2018-04-01

    We propose a novel image segmentation method for immunofluorescence microscopy images of skin tissue for the diagnosis of various skin diseases. The segmentation is based on machine learning algorithms. The feature vector is filled by three groups of features: statistical features, Laws' texture energy measures and local binary patterns. The images are preprocessed for better learning. Different machine learning algorithms have been used and the best results have been obtained with random forest algorithm. We use the proposed method to detect the epidermis region as a part of pemphigus diagnosis system.

  13. In vivo virtual intraoperative surgical photoacoustic microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Han, Seunghoon, E-mail: hsh860504@gmail.com; Kim, Sehui, E-mail: sehui0916@nate.com; Kim, Jeehyun, E-mail: jeehk@knu.ac.kr, E-mail: chulhong@postech.edu [School of Electrical Engineering and Computer Science, Kyungpook National University, Daegu 702-701 (Korea, Republic of); Lee, Changho, E-mail: ch31037@postech.edu; Jeon, Mansik, E-mail: msjeon@postech.edu [Department of Creative IT Engineering, Pohang University of Science and Technology (POSTECH), Pohang 790-784 (Korea, Republic of); Kim, Chulhong, E-mail: jeehk@knu.ac.kr, E-mail: chulhong@postech.edu [Department of Creative IT Engineering, Pohang University of Science and Technology (POSTECH), Pohang 790-784 (Korea, Republic of); Department of Biomedical Engineering, The State University of New York at Buffalo, Buffalo, New York 14221 (United States)

    2013-11-11

    We developed a virtual intraoperative surgical photoacoustic microscopy system by combining with a commercial surgical microscope and photoacoustic microscope (PAM). By sharing the common optical path in the microscope and PAM system, we could acquire the PAM and microscope images simultaneously. Moreover, by employing a beam projector to back-project 2D PAM images onto the microscope view plane as augmented reality, the conventional microscopic and 2D cross-sectional PAM images are concurrently mapped on the plane via an ocular lens of the microscope in real-time. Further, we guided needle insertion into phantom ex vivo and mice skins in vivo.

  14. Electron microscopy - principles of radiation protection

    International Nuclear Information System (INIS)

    1990-01-01

    This 8 minute programme explains the nature of the possible radiation hazard in Electron Microscopy and outlines the ways in which modern equipment is designed and made so that in normal use the worker is not exposed to radiation. The interlock principle is explained and illustrated by an example from the field of X-ray crystallography. By filming machines while they were dismantled for servicing, details of several internal safety devices have been included. In this way workers who normally use the equipment as a 'black box' get some insight into the principles and practice of radiation protection in the field. (author)

  15. Reconstruction of Undersampled Atomic Force Microscopy Images

    DEFF Research Database (Denmark)

    Jensen, Tobias Lindstrøm; Arildsen, Thomas; Østergaard, Jan

    2013-01-01

    Atomic force microscopy (AFM) is one of the most advanced tools for high-resolution imaging and manipulation of nanoscale matter. Unfortunately, standard AFM imaging requires a timescale on the order of seconds to minutes to acquire an image which makes it complicated to observe dynamic processes....... Moreover, it is often required to take several images before a relevant observation region is identified. In this paper we show how to significantly reduce the image acquisition time by undersampling. The reconstruction of an undersampled AFM image can be viewed as an inpainting, interpolating problem...... should be reconstructed using interpolation....

  16. Nano, Queensland and cryo-electron microscopy

    International Nuclear Information System (INIS)

    McDowall, A.W.

    2002-01-01

    Full text: In a recent review the authors, Wolfgang Baumeister and Alasdair Steven wrote, '....there is immense opportunity for Cryo-EM, especially as boosted by merging crystallographic structures of individual subunits into moderate resolution Cryo-EM density maps of whole complexes. Electron tomography has now advanced to the point where it is a realistic goal to glimpse molecular machines operating inside cells....' This statement gives testament to the advances made over the past 25 years by many labs around the world to the area of microscopy referred to as Cryo-EM and related 3-D computing technologies. Australian scientific societies have been eager followers of this progress and heard first hand of the new developments in the field at the 1984 ACEM-8 (2). Since those early days the ACEM and other Australian/NZ societies have sponsored numerous researchers and workshops in the field of Cryo-EM to their conferences, Helin Sabil, Wah Chiu, Ron Milligan, Richard Henderson and Werner Kuhlbrandt to name only a few. These visits have stimulated a desire from Australian/NZ researchers to establish collaborations and access to prominent labs in the USA and Europe, where the means and knowledge to provide Cryo EM and 3D reconstruction technology for studying macromolecular complexes is well established. However, Australia has not been backward in seeking to provide its home research community with access to a base in biological molecular microscopy and electron crystallography technology. Since the last ACEM we have seen the emergence of a number of crucial factors, which will make the establishment of a national research facility in this field an operational reality in early 2003. Well publicized is the development of Australia's newest and perhaps most unique research institute, the institute for Molecular Bioscience (IMB) to open at the University of Queensland (UQ) in 2002. The IMB will be the platform for a new research group in advanced computational 3D

  17. Scanning electron microscopy and micro-analyses

    International Nuclear Information System (INIS)

    Brisset, F.; Repoux, L.; Ruste, J.; Grillon, F.; Robaut, F.

    2008-01-01

    Scanning electron microscopy (SEM) and the related micro-analyses are involved in extremely various domains, from the academic environments to the industrial ones. The overall theoretical bases, the main technical characteristics, and some complements of information about practical usage and maintenance are developed in this book. high-vacuum and controlled-vacuum electron microscopes are thoroughly presented, as well as the last generation of EDS (energy dispersive spectrometer) and WDS (wavelength dispersive spectrometer) micro-analysers. Beside these main topics, other analysis or observation techniques are approached, such as EBSD (electron backscattering diffraction), 3-D imaging, FIB (focussed ion beams), Monte-Carlo simulations, in-situ tests etc.. This book, in French language, is the only one which treats of this subject in such an exhaustive way. It represents the actualized and totally updated version of a previous edition of 1979. It gathers the lectures given in 2006 at the summer school of Saint Martin d'Heres (France). Content: 1 - electron-matter interactions; 2 - characteristic X-radiation, Bremsstrahlung; 3 - electron guns in SEM; 4 - elements of electronic optics; 5 - vacuum techniques; 6 - detectors used in SEM; 7 - image formation and optimization in SEM; 7a - SEM practical instructions for use; 8 - controlled pressure microscopy; 8a - applications; 9 - energy selection X-spectrometers (energy dispersive spectrometers - EDS); 9a - EDS analysis; 9b - X-EDS mapping; 10 - technological aspects of WDS; 11 - processing of EDS and WDS spectra; 12 - X-microanalysis quantifying methods; 12a - quantitative WDS microanalysis of very light elements; 13 - statistics: precision and detection limits in microanalysis; 14 - analysis of stratified samples; 15 - crystallography applied to EBSD; 16 - EBSD: history, principle and applications; 16a - EBSD analysis; 17 - Monte Carlo simulation; 18 - insulating samples in SEM and X-ray microanalysis; 18a - insulating

  18. Atomic force microscopy of starch systems.

    Science.gov (United States)

    Zhu, Fan

    2017-09-22

    Atomic force microscopy (AFM) generates information on topography, adhesion, and elasticity of sample surface by touching with a tip. Under suitable experimental settings, AFM can image biopolymers of few nanometers. Starch is a major food and industrial component. AFM has been used to probe the morphology, properties, modifications, and interactions of starches from diverse botanical origins at both micro- and nano-structural levels. The structural information obtained by AFM supports the blocklet structure of the granules, and provides qualitative and quantitative basis for some physicochemical properties of diverse starch systems. It becomes evident that AFM can complement other microscopic techniques to provide novel structural insights for starch systems.

  19. Nanoscale microwave microscopy using shielded cantilever probes

    KAUST Repository

    Lai, Keji

    2011-04-21

    Quantitative dielectric and conductivity mapping in the nanoscale is highly desirable for many research disciplines, but difficult to achieve through conventional transport or established microscopy techniques. Taking advantage of the micro-fabrication technology, we have developed cantilever-based near-field microwave probes with shielded structures. Sensitive microwave electronics and finite-element analysis modeling are also utilized for quantitative electrical imaging. The system is fully compatible with atomic force microscope platforms for convenient operation and easy integration of other modes and functions. The microscope is ideal for interdisciplinary research, with demonstrated examples in nano electronics, physics, material science, and biology.

  20. Denaturing of single electrospun fibrinogen fibers studied by deep ultraviolet fluorescence microscopy.

    Science.gov (United States)

    Kim, Jeongyong; Song, Hugeun; Park, Inho; Carlisle, Christine R; Bonin, Keith; Guthold, Martin

    2011-03-01

    Deep ultraviolet (DUV) microscopy is a fluorescence microscopy technique to image unlabeled proteins via the native fluorescence of some of their amino acids. We constructed a DUV fluorescence microscope, capable of 280 nm wavelength excitation by modifying an inverted optical microscope. Moreover, we integrated a nanomanipulator-controlled micropipette into this instrument for precise delivery of picoliter amounts of fluid to selected regions of the sample. In proof-of-principle experiments, we used this instrument to study, in situ, the effect of a denaturing agent on the autofluorescence intensity of single, unlabeled, electrospun fibrinogen nanofibers. Autofluorescence emission from the nanofibers was excited at 280 nm and detected at ∼350 nm. A denaturant solution was discretely applied to small, select sections of the nanofibers and a clear local reduction in autofluorescence intensity was observed. This reduction is attributed to the dissolution of the fibers and the unfolding of proteins in the fibers. Copyright © 2010 Wiley-Liss, Inc.

  1. Multispectral digital lensless holographic microscopy: from femtosecond laser to white light LED

    International Nuclear Information System (INIS)

    Garcia-Sucerquia, J

    2015-01-01

    The use of femtosecond laser radiation and super bright white LED in digital lensless holographic microscopy is presented. For the ultrafast laser radiation two different configurations of operation of the microscope are presented and the dissimilar performance of each one analyzed. The microscope operating with a super bright white light LED in combination with optical filters shows very competitive performance as it is compared with more expensive optical sources. The broadband emission of both radiation sources allows the multispectral imaging of biological samples to obtain spectral responses and/or full color images of the microscopic specimens; sections of the head of a Drosophila melanogaster fly are imaged in this contribution. The simple, solid, compact, lightweight, and reliable architecture of digital lensless holographic microscopy operating with broadband light sources to image biological specimens exhibiting micrometer-sized details is evaluated in the present contribution. (paper)

  2. Spatial distribution of Na+-K+-ATPase in dendritic spines dissected by nanoscale superresolution STED microscopy

    Directory of Open Access Journals (Sweden)

    Bondar Alexander

    2011-01-01

    Full Text Available Abstract Background The Na+,K+-ATPase plays an important role for ion homeostasis in virtually all mammalian cells, including neurons. Despite this, there is as yet little known about the isoform specific distribution in neurons. Results With help of superresolving stimulated emission depletion microscopy the spatial distribution of Na+,K+-ATPase in dendritic spines of cultured striatum neurons have been dissected. The found compartmentalized distribution provides a strong evidence for the confinement of neuronal Na+,K+-ATPase (α3 isoform in the postsynaptic region of the spine. Conclusions A compartmentalized distribution may have implications for the generation of local sodium gradients within the spine and for the structural and functional interaction between the sodium pump and other synaptic proteins. Superresolution microscopy has thus opened up a new perspective to elucidate the nature of the physiological function, regulation and signaling role of Na+,K+-ATPase from its topological distribution in dendritic spines.

  3. Schottky barrier measurements on individual GaAs nanowires by X-ray photoemission microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Di Mario, Lorenzo [IMM-CNR, via del Fosso del Cavaliere 100, 00133 Rome (Italy); Turchini, Stefano, E-mail: stefano.turchini@cnr.it [ISM-CNR, via del Fosso del Cavaliere 100, 00133 Rome (Italy); Zamborlini, Giovanni; Feyer, Vitaly [Peter Grünberg Institute (PGI-6) and JARA-FIT, Research Center Jülich, 52425 Jülich (Germany); Tian, Lin [IMM-CNR, via del Fosso del Cavaliere 100, 00133 Rome (Italy); Schneider, Claus M. [Peter Grünberg Institute (PGI-6) and JARA-FIT, Research Center Jülich, 52425 Jülich (Germany); Fakultät für Physik and Center for Nanointegration Duisburg-Essen (CENIDE), Universität Duisburg-Essen, D-47048 Duisburg (Germany); Rubini, Silvia [IOM-CNR, TASC Laboratory, Basovizza 34149, Trieste (Italy); Martelli, Faustino, E-mail: faustino.martelli@cnr.it [IMM-CNR, via del Fosso del Cavaliere 100, 00133 Rome (Italy)

    2016-11-15

    Highlights: • The Schottky barrier at the interface between Cu and GaAs nanowires was measured. • Individual nanowires were investigated by X-ray Photoemission Microscopy. • The Schottky barrier at different positions along the nanowire was evaluated. - Abstract: We present measurements of the Schottky barrier height on individual GaAs nanowires by means of x-ray photoelectron emission microscopy (XPEEM). Values of 0.73 and 0.51 eV, averaged over the entire wires, were measured on Cu-covered n-doped and p-doped GaAs nanowires, respectively, in agreement with results obtained on bulk material. Our measurements show that XPEEM can become a feasible and reliable investigation tool of interface formation at the nanoscale and pave the way towards the study of size-dependent effects on semiconductor-based structures.

  4. Super-resolved linear fluorescence localization microscopy using photostable fluorophores: A virtual microscopy study

    Science.gov (United States)

    Birk, Udo; Szczurek, Aleksander; Cremer, Christoph

    2017-12-01

    Current approaches to overcome the conventional limit of the resolution potential of light microscopy (of about 200 nm for visible light), often suffer from non-linear effects, which render the quantification of the image intensities in the reconstructions difficult, and also affect the quantification of the biological structure under investigation. As an attempt to face these difficulties, we discuss a particular method of localization microscopy which is based on photostable fluorescent dyes. The proposed method can potentially be implemented as a fast alternative for quantitative localization microscopy, circumventing the need for the acquisition of thousands of image frames and complex, highly dye-specific imaging buffers. Although the need for calibration remains in order to extract quantitative data (such as the number of emitters), multispectral approaches are largely facilitated due to the much less stringent requirements on imaging buffers. Furthermore, multispectral acquisitions can be readily obtained using commercial instrumentation such as e.g. the conventional confocal laser scanning microscope.

  5. Use of atomic force microscopy and transmission electron microscopy for correlative studies of bacterial capsules.

    Science.gov (United States)

    Stukalov, Oleg; Korenevsky, Anton; Beveridge, Terry J; Dutcher, John R

    2008-09-01

    Bacteria can possess an outermost assembly of polysaccharide molecules, a capsule, which is attached to their cell wall. We have used two complementary, high-resolution microscopy techniques, atomic force microscopy (AFM) and transmission electron microscopy (TEM), to study bacterial capsules of four different gram-negative bacterial strains: Escherichia coli K30, Pseudomonas aeruginosa FRD1, Shewanella oneidensis MR-4, and Geobacter sulfurreducens PCA. TEM analysis of bacterial cells using different preparative techniques (whole-cell mounts, conventional embeddings, and freeze-substitution) revealed capsules for some but not all of the strains. In contrast, the use of AFM allowed the unambiguous identification of the presence of capsules on all strains used in the present study, including those that were shown by TEM to be not encapsulated. In addition, the use of AFM phase imaging allowed the visualization of the bacterial cell within the capsule, with a depth sensitivity that decreased with increasing tapping frequency.

  6. Observation of multicellular spinning behavior of Proteus mirabilis by atomic force microscopy and multifunctional microscopy.

    Science.gov (United States)

    Liu, Yanxia; Deng, Yuanxin; Luo, Shuxiu; Deng, Yu; Guo, Linming; Xu, Weiwei; Liu, Lei; Liu, Junkang

    2014-01-01

    This study aimed to observe the multicellular spinning behavior of Proteus mirabilis by atomic force microscopy (AFM) and multifunctional microscopy in order to understand the mechanism underlying this spinning movement and its biological significance. Multifunctional microscopy with charge-coupled device (CCD) and real-time AFM showed changes in cell structure and shape of P. mirabilis during multicellular spinning movement. Specifically, the morphological characteristics of P. mirabilis, multicellular spinning dynamics, and unique movement were observed. Our findings indicate that the multicellular spinning behavior of P. mirabilis may be used to collect nutrients, perform colonization, and squeeze out competitors. The movement characteristics of P. mirabilis are vital to the organism's biological adaptability to the surrounding environment. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. BP's emissions trading system

    International Nuclear Information System (INIS)

    Victor, David G.; House, Joshua C.

    2006-01-01

    Between 1998 and 2001, BP reduced its emissions of greenhouse gases by more than 10%. BP's success in cutting emissions is often equated with its use of an apparently market-based emissions trading program. However no independent study has ever examined the rules and operation of BP's system and the incentives acting on managers to reduce emissions. We use interviews with key managers and with traders in several critical business units to explore the bound of BP's success with emissions trading. No money actually changed hands when permits were traded, and the main effect of the program was to create awareness of money-saving emission controls rather than strong price incentives. We show that the trading system did not operate like a 'textbook' cap and trade scheme. Rather, the BP system operated much like a 'safety valve' trading system, where managers let the market function until the cost of doing so surpassed what the company was willing to tolerate

  8. Scanning probe microscopy in material science and biology

    International Nuclear Information System (INIS)

    Cricenti, A; Colonna, S; Girasole, M; Gori, P; Ronci, F; Longo, G; Dinarelli, S; Luce, M; Rinaldi, M; Ortenzi, M

    2011-01-01

    A review of the activity of scanning probe microscopy at our Institute is presented, going from instrumentation to software development of scanning tunnelling microscopy, atomic force microscopy and scanning near-field optical microscopy (SNOM). Some of the most important experiments in material science and biology performed by our group through the years with these SPM techniques will be presented. Finally, infrared applications by coupling a SNOM with a free electron laser will also be presented.

  9. Application of Confocal Laser Scanning Microscopy in Biology and Medicine

    OpenAIRE

    I. A. Volkov; N. V. Frigo; L. F. Znamenskaya; O. R. Katunina

    2014-01-01

    Fluorescence confocal laser scanning microscopy and reflectance confocal laser scanning microscopy are up-to-date highend study methods. Confocal microscopy is used in cell biology and medicine. By using confocal microscopy, it is possible to study bioplasts and localization of protein molecules and other compounds relative to cell or tissue structures, and to monitor dynamic cell processes. Confocal microscopes enable layer-by-layer scanning of test items to create demonstrable 3D models. As...

  10. Prompt neutron emission

    International Nuclear Information System (INIS)

    Sher, R.

    1959-01-01

    It is shown that Ramanna and Rao's tentative conclusion that prompt fission neutrons are emitted (in the fragment system) preferentially in the direction of fragment motion is not necessitated by their angular distribution measurements, which are well explained by the usual assumptions of isotropic emission with a Maxwell (or Maxwell-like) emission spectrum. The energy distribution (Watt spectrum) and the angular distribution, both including the effects of anisotropic emission, are given. (author) [fr

  11. Magnetoelectric force microscopy based on magnetic force microscopy with modulated electric field.

    Science.gov (United States)

    Geng, Yanan; Wu, Weida

    2014-05-01

    We present the realization of a mesoscopic imaging technique, namely, the Magnetoelectric Force Microscopy (MeFM), for visualization of local magnetoelectric effect. The basic principle of MeFM is the lock-in detection of local magnetoelectric response, i.e., the electric field-induced magnetization, using magnetic force microscopy. We demonstrate MeFM capability by visualizing magnetoelectric domains on single crystals of multiferroic hexagonal manganites. Results of several control experiments exclude artifacts or extrinsic origins of the MeFM signal. The parameters are tuned to optimize the signal to noise ratio.

  12. Confocal filtering in cathodoluminescence microscopy of nanostructures

    Science.gov (United States)

    Narváez, Angela C.; Weppelman, I. Gerward C.; Moerland, Robert J.; Hoogenboom, Jacob P.; Kruit, Pieter

    2014-06-01

    Cathodoluminescence (CL) microscopy allows optical characterization of nanostructures at high spatial resolution. At the nanoscale, a main challenge of the technique is related to the background CL generated within the sample substrate. Here, we implement confocal detection of the CL signal to minimize the background contribution to the measurement. Nano-phosphors were used as point sources to evaluate the filtering capabilities of our confocal CL system, obtaining an axial intensity profile with 2.7 μm full width at half maximum for the central peak, in good correspondence with theoretical expectations. Considering the electron interaction volume, we found that the confocal filter becomes effective for electron energies above 20 keV, when using a 25 μm pinhole (0.86 Airy units). To illustrate our approach, we present confocal CL imaging of gold nanowires and triangular shaped plates deposited on an indium-tin oxide covered glass substrate, comparing the images with those obtained in standard unfiltered CL detection. The results show that confocal CL microscopy is a valuable tool for the investigation of nanostructures on highly cathodoluminescent substrates, widely used in biological and optical applications.

  13. Confocal filtering in cathodoluminescence microscopy of nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Narváez, Angela C., E-mail: a.c.narvaez@tudelft.nl, E-mail: j.p.hoogenboom@tudelft.nl; Weppelman, I. Gerward C.; Moerland, Robert J.; Hoogenboom, Jacob P., E-mail: a.c.narvaez@tudelft.nl, E-mail: j.p.hoogenboom@tudelft.nl; Kruit, Pieter [Imaging Physics, Faculty of Applied Sciences, Delft University of Technology, Lorentzweg 1, 2628CJ Delft (Netherlands)

    2014-06-23

    Cathodoluminescence (CL) microscopy allows optical characterization of nanostructures at high spatial resolution. At the nanoscale, a main challenge of the technique is related to the background CL generated within the sample substrate. Here, we implement confocal detection of the CL signal to minimize the background contribution to the measurement. Nano-phosphors were used as point sources to evaluate the filtering capabilities of our confocal CL system, obtaining an axial intensity profile with 2.7 μm full width at half maximum for the central peak, in good correspondence with theoretical expectations. Considering the electron interaction volume, we found that the confocal filter becomes effective for electron energies above 20 keV, when using a 25 μm pinhole (0.86 Airy units). To illustrate our approach, we present confocal CL imaging of gold nanowires and triangular shaped plates deposited on an indium-tin oxide covered glass substrate, comparing the images with those obtained in standard unfiltered CL detection. The results show that confocal CL microscopy is a valuable tool for the investigation of nanostructures on highly cathodoluminescent substrates, widely used in biological and optical applications.

  14. Nuclear microscopy of rat colon epithelial cells

    Science.gov (United States)

    Ren, M.; Rajendran, Reshmi; Ng, Mary; Udalagama, Chammika; Rodrigues, Anna E.; Watt, Frank; Jenner, Andrew Michael

    2011-10-01

    Using Nuclear microscopy, we have investigated iron distributions in the colons of Sprague Dawley rats, in order to elucidate heme uptake. Four groups of five Sprague Dawley rats (mean weight 180 g) were fed different purified diets containing either heme diet (2.5% w/w hemoglobin), high fat diet (HFD) (18% w/w fat, 1% w/w cholesterol), 'western' diet (combination of hemoglobin 2.5% and 18% fat, 1% cholesterol) or control diet (7% w/w fat). After 4 weeks, animals were sacrificed by exsanguination after anaesthesia. Thin sections of frozen colon tissue were taken, freeze dried and scanned using nuclear microscopy utilising the techniques PIXE, RBS and STIM. The new data acquisition system (IonDaq) developed in CIBA was used to obtain high resolution images and line scans were used to map the iron distributions across the colon boundaries. The nuclear microscope results indicate that when HFD is given in addition to heme, the iron content of the epithelial cells that line the colon decreases, and the zinc in the smooth muscle wall increases. This implies that the level of heme and fat in diet has an important role in colon health, possibly by influencing epithelial cells directly or changing luminal composition such as bacterial flora or levels of metabolites and cytotoxins.

  15. Elemental mapping in scanning transmission electron microscopy

    International Nuclear Information System (INIS)

    Allen, L J; D'Alfonso, A J; Lugg, N R; Findlay, S D; LeBeau, J M; Stemmer, S

    2010-01-01

    We discuss atomic resolution chemical mapping in scanning transmission electron microscopy (STEM) based on core-loss electron energy loss spectroscopy (EELS) and also on energy dispersive X-ray (EDX) imaging. Chemical mapping using EELS can yield counterintuitive results which, however, can be understood using first principles calculations. Experimental chemical maps based on EDX bear out the thesis that such maps are always likely to be directly interpretable. This can be explained in terms of the local nature of the effective optical potential for ionization under those imaging conditions. This is followed by an excursion into the complementary technique of elemental mapping using energy-filtered transmission electron microscopy (EFTEM) in a conventional transmission electron microscope. We will then consider the widely used technique of Z-contrast or high-angle annular dark field (HAADF) imaging, which is based on phonon excitation, where it has recently been shown that intensity variations can be placed on an absolute scale by normalizing the measured intensities to the incident beam. Results, showing excellent agreement between theory and experiment to within a few percent, are shown for Z-contrast imaging from a sample of PbWO 4 .

  16. X-ray Tomographic Microscopy at TOMCAT

    Energy Technology Data Exchange (ETDEWEB)

    Marone, F; Hintermueller, C; McDonald, S; Abela, R; Mikuljan, G; Isenegger, A; Stampanoni, M, E-mail: federica.marone@psi.c [Swiss Light Source, Paul Scherrer Institut, 5232 Villigen (Switzerland)

    2009-09-01

    Synchrotron-based X-ray Tomographic Microscopy is a powerful technique for fast non-destructive, high resolution quantitative volumetric investigations on diverse samples. At the TOMCAT (TOmographic Microscopy and Coherent rAdiology experimenTs) beamline at the Swiss Light Source, synchrotron light is delivered by a 2.9 T superbend. The main optical component, a Double Crystal Multilayer Monochromator, covers an energy range between 8 and 45 keV. The standard TOMCAT detector offers field of views ranging from 0.75x0.75 mm{sup 2} up to 12.1x12.1 mm{sup 2} with a pixel size of 0.37 {mu}m and 5.92 {mu}m, respectively. In addition to routine measurements, which exploit the absorption contrast, the high coherence of the source also enables phase contrast tomography, implemented with two complementary techniques (Modified Transport of Intensity approach and Grating Interferometry). Typical acquisition times for a tomogram are in the order of few minutes, ensuring high throughput and allowing for semi-dynamical investigations. Raw data are automatically post-processed online and full reconstructed volumes are available shortly after a scan with minimal user intervention.

  17. Atomic Force Microscopy Based Cell Shape Index

    Science.gov (United States)

    Adia-Nimuwa, Usienemfon; Mujdat Tiryaki, Volkan; Hartz, Steven; Xie, Kan; Ayres, Virginia

    2013-03-01

    Stellation is a measure of cell physiology and pathology for several cell groups including neural, liver and pancreatic cells. In the present work, we compare the results of a conventional two-dimensional shape index study of both atomic force microscopy (AFM) and fluorescent microscopy images with the results obtained using a new three-dimensional AFM-based shape index similar to sphericity index. The stellation of astrocytes is investigated on nanofibrillar scaffolds composed of electrospun polyamide nanofibers that has demonstrated promise for central nervous system (CNS) repair. Recent work by our group has given us the ability to clearly segment the cells from nanofibrillar scaffolds in AFM images. The clear-featured AFM images indicated that the astrocyte processes were longer than previously identified at 24h. It was furthermore shown that cell spreading could vary significantly as a function of environmental parameters, and that AFM images could record these variations. The new three-dimensional AFM-based shape index incorporates the new information: longer stellate processes and cell spreading. The support of NSF PHY-095776 is acknowledged.

  18. Use of astronomy filters in fluorescence microscopy.

    Science.gov (United States)

    Piper, Jörg

    2012-02-01

    Monochrome astronomy filters are well suited for use as excitation or suppression filters in fluorescence microscopy. Because of their particular optical design, such filters can be combined with standard halogen light sources for excitation in many fluorescent probes. In this "low energy excitation," photobleaching (fading) or other irritations of native specimens are avoided. Photomicrographs can be taken from living motile fluorescent specimens also with a flash so that fluorescence images can be created free from indistinctness caused by movement. Special filter cubes or dichroic mirrors are not needed for our method. By use of suitable astronomy filters, fluorescence microscopy can be carried out with standard laboratory microscopes equipped with condensers for bright-field (BF) and dark-field (DF) illumination in transmitted light. In BF excitation, the background brightness can be modulated in tiny steps up to dark or black. Moreover, standard industry microscopes fitted with a vertical illuminator for examinations of opaque probes in DF or BF illumination based on incident light (wafer inspections, for instance) can also be used for excitation in epi-illumination when adequate astronomy filters are inserted as excitatory and suppression filters in the illuminating and imaging light path. In all variants, transmission bands can be modulated by transmission shift.

  19. Transmission Electron Microscopy of Minerals and Rocks

    Science.gov (United States)

    McLaren, Alex C.

    1991-04-01

    Of the many techniques that have been applied to the study of crystal defects, none has contributed more to our understanding of their nature and influence on the physical and chemical properties of crystalline materials than transmission electron microscopy (TEM). TEM is now used extensively by an increasing number of earth scientists for direct observation of defect microstructures in minerals and rocks. Transmission Electron Microscopy of Rocks and Minerals is an introduction to the principles of the technique and is the only book to date on the subject written specifically for geologists and mineralogists. The first part of the book deals with the essential physics of the transmission electron microscope and presents the basic theoretical background required for the interpretation of images and electron diffraction patterns. The final chapters are concerned with specific applications of TEM in mineralogy and deal with such topics as planar defects, intergrowths, radiation-induced defects, dislocations and deformation-induced microstructures. The examples cover a wide range of rock-forming minerals from crustal rocks to those in the lower mantle, and also take into account the role of defects in important mineralogical and geological processes.

  20. Nuclear microscopy of rat colon epithelial cells

    International Nuclear Information System (INIS)

    Ren, M.; Rajendran, Reshmi; Ng, Mary; Udalagama, Chammika; Rodrigues, Anna E.; Watt, Frank; Jenner, Andrew Michael

    2011-01-01

    Using Nuclear microscopy, we have investigated iron distributions in the colons of Sprague Dawley rats, in order to elucidate heme uptake. Four groups of five Sprague Dawley rats (mean weight 180 g) were fed different purified diets containing either heme diet (2.5% w/w hemoglobin), high fat diet (HFD) (18% w/w fat, 1% w/w cholesterol), 'western' diet (combination of hemoglobin 2.5% and 18% fat, 1% cholesterol) or control diet (7% w/w fat). After 4 weeks, animals were sacrificed by exsanguination after anaesthesia. Thin sections of frozen colon tissue were taken, freeze dried and scanned using nuclear microscopy utilising the techniques PIXE, RBS and STIM. The new data acquisition system (IonDaq) developed in CIBA was used to obtain high resolution images and line scans were used to map the iron distributions across the colon boundaries. The nuclear microscope results indicate that when HFD is given in addition to heme, the iron content of the epithelial cells that line the colon decreases, and the zinc in the smooth muscle wall increases. This implies that the level of heme and fat in diet has an important role in colon health, possibly by influencing epithelial cells directly or changing luminal composition such as bacterial flora or levels of metabolites and cytotoxins.

  1. Nuclear microscopy of rat colon epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Ren, M., E-mail: phyrenmq@nus.edu.sg [Centre for Ion Beam Applications (CIBA), Department of Physics, National University of Singapore, Singapore 117542 (Singapore); Rajendran, Reshmi [Lab of Molecular Imaging, Singapore Bioimaging Consotium, 11 Biopolis Way, 02-02 Helios, Singapore 138667 (Singapore); Ng, Mary [Department of Pharmacology, National University of Singapore (Singapore); Udalagama, Chammika; Rodrigues, Anna E.; Watt, Frank [Centre for Ion Beam Applications (CIBA), Department of Physics, National University of Singapore, Singapore 117542 (Singapore); Jenner, Andrew Michael [Illawara Health and Medical Research Institute (IHMRI), University of Wollongong, NSW 2522 (Australia)

    2011-10-15

    Using Nuclear microscopy, we have investigated iron distributions in the colons of Sprague Dawley rats, in order to elucidate heme uptake. Four groups of five Sprague Dawley rats (mean weight 180 g) were fed different purified diets containing either heme diet (2.5% w/w hemoglobin), high fat diet (HFD) (18% w/w fat, 1% w/w cholesterol), 'western' diet (combination of hemoglobin 2.5% and 18% fat, 1% cholesterol) or control diet (7% w/w fat). After 4 weeks, animals were sacrificed by exsanguination after anaesthesia. Thin sections of frozen colon tissue were taken, freeze dried and scanned using nuclear microscopy utilising the techniques PIXE, RBS and STIM. The new data acquisition system (IonDaq) developed in CIBA was used to obtain high resolution images and line scans were used to map the iron distributions across the colon boundaries. The nuclear microscope results indicate that when HFD is given in addition to heme, the iron content of the epithelial cells that line the colon decreases, and the zinc in the smooth muscle wall increases. This implies that the level of heme and fat in diet has an important role in colon health, possibly by influencing epithelial cells directly or changing luminal composition such as bacterial flora or levels of metabolites and cytotoxins.

  2. Photoacoustic microscopy imaging for microneedle drug delivery

    Science.gov (United States)

    Moothanchery, Mohesh; Seeni, Razina Z.; Xu, Chenjie; Pramanik, Manojit

    2018-02-01

    The recent development of novel transdermal drug delivery systems (TDDS) using microneedle technology allows micron-sized conduits to be formed within the outermost skin layers attracting keen interest in skin as an interface for localized and systemic delivery of therapeutics. In light of this, researchers are using microneedles as tools to deliver nanoparticle formulations to targeted sites for effective therapy. However, in such studies the use of traditional histological methods are employed for characterization and do not allow for the in vivo visualization of drug delivery mechanism. Hence, this study presents a novel imaging technology to characterize microneedle based nanoparticle delivery systems using optical resolution-photoacoustic microscopy (OR-PAM). In this study in vivo transdermal delivery of gold nanoparticles using microneedles in mice ear and the spatial distribution of the nanoparticles in the tissue was successfully illustrated. Characterization of parameters that are relevant in drug delivery studies such as penetration depth, efficiency of delivered gold nanoparticles were monitored using the system. Photoacoustic microscopy proves an ideal tool for the characterization studies of microneedle properties and the studies shows microneedles as an ideal tool for precise and controlled drug delivery.

  3. Single-spin stochastic optical reconstruction microscopy.

    Science.gov (United States)

    Pfender, Matthias; Aslam, Nabeel; Waldherr, Gerald; Neumann, Philipp; Wrachtrup, Jörg

    2014-10-14

    We experimentally demonstrate precision addressing of single-quantum emitters by combined optical microscopy and spin resonance techniques. To this end, we use nitrogen vacancy (NV) color centers in diamond confined within a few ten nanometers as individually resolvable quantum systems. By developing a stochastic optical reconstruction microscopy (STORM) technique for NV centers, we are able to simultaneously perform sub-diffraction-limit imaging and optically detected spin resonance (ODMR) measurements on NV spins. This allows the assignment of spin resonance spectra to individual NV center locations with nanometer-scale resolution and thus further improves spatial discrimination. For example, we resolved formerly indistinguishable emitters by their spectra. Furthermore, ODMR spectra contain metrology information allowing for sub-diffraction-limit sensing of, for instance, magnetic or electric fields with inherently parallel data acquisition. As an example, we have detected nuclear spins with nanometer-scale precision. Finally, we give prospects of how this technique can evolve into a fully parallel quantum sensor for nanometer resolution imaging of delocalized quantum correlations.

  4. A dark mode in scanning thermal microscopy

    Science.gov (United States)

    Ramiandrisoa, Liana; Allard, Alexandre; Joumani, Youssef; Hay, Bruno; Gomés, Séverine

    2017-12-01

    The need for high lateral spatial resolution in thermal science using Scanning Thermal Microscopy (SThM) has pushed researchers to look for more and more tiny probes. SThM probes have consequently become more and more sensitive to the size effects that occur within the probe, the sample, and their interaction. Reducing the tip furthermore induces very small heat flux exchanged between the probe and the sample. The measurement of this flux, which is exploited to characterize the sample thermal properties, requires then an accurate thermal management of the probe-sample system and to reduce any phenomenon parasitic to this system. Classical experimental methodologies must then be constantly questioned to hope for relevant and interpretable results. In this paper, we demonstrate and estimate the influence of the laser of the optical force detection system used in the common SThM setup that is based on atomic-force microscopy equipment on SThM measurements. We highlight the bias induced by the overheating due to the laser illumination on the measurements performed by thermoresistive probes (palladium probe from Kelvin Nanotechnology). To face this issue, we propose a new experimental procedure based on a metrological approach of the measurement: a SThM "dark mode." The comparison with the classical procedure using the laser shows that errors between 14% and 37% can be reached on the experimental data exploited to determine the heat flux transferred from the hot probe to the sample.

  5. Correlative Super-Resolution Microscopy: New Dimensions and New Opportunities.

    Science.gov (United States)

    Hauser, Meghan; Wojcik, Michal; Kim, Doory; Mahmoudi, Morteza; Li, Wan; Xu, Ke

    2017-06-14

    Correlative microscopy, the integration of two or more microscopy techniques performed on the same sample, produces results that emphasize the strengths of each technique while offsetting their individual weaknesses. Light microscopy has historically been a central method in correlative microscopy due to its widespread availability, compatibility with hydrated and live biological samples, and excellent molecular specificity through fluorescence labeling. However, conventional light microscopy can only achieve a resolution of ∼300 nm, undercutting its advantages in correlations with higher-resolution methods. The rise of super-resolution microscopy (SRM) over the past decade has drastically improved the resolution of light microscopy to ∼10 nm, thus creating exciting new opportunities and challenges for correlative microscopy. Here we review how these challenges are addressed to effectively correlate SRM with other microscopy techniques, including light microscopy, electron microscopy, cryomicroscopy, atomic force microscopy, and various forms of spectroscopy. Though we emphasize biological studies, we also discuss the application of correlative SRM to materials characterization and single-molecule reactions. Finally, we point out current limitations and discuss possible future improvements and advances. We thus demonstrate how a correlative approach adds new dimensions of information and provides new opportunities in the fast-growing field of SRM.

  6. Radio emission from Jupiter

    International Nuclear Information System (INIS)

    Velusamy, T.

    1976-01-01

    The basic features of the different radio emissions from the planet Jupiter are reviewed. These radio emissions characterized into three types as thermal, decimetric and decametric, are discussed. The coherent emission mechanism for the origin of the decametric bursts and the acceleration mechanism for relativistic electrons in the decimetric radiation have not been properly understood. The emissions are much related to the magnetic field of Jupiter. The system III rotation period for Jupiter has been calculated as 092 55 m 29.74 S. (A.K.)

  7. VOC emissions chambers

    Data.gov (United States)

    Federal Laboratory Consortium — In order to support the development of test methods and reference materials for volatile organic compounds (VOC) emissions from building materials and furnishings,...

  8. Microgravity Emissions Laboratory (MEL)

    Data.gov (United States)

    Federal Laboratory Consortium — The Microgravity Emissions Laboratory (MEL) utilizes a low-frequency acceleration measurement system for the characterization of rigid body inertial forces generated...

  9. Polarization-dependent Imaging Contrast (PIC) mapping reveals nanocrystal orientation patterns in carbonate biominerals

    Energy Technology Data Exchange (ETDEWEB)

    Gilbert, Pupa U.P.A., E-mail: pupa@physics.wisc.edu [University of Wisconsin-Madison, Departments of Physics and Chemistry, Madison, WI 53706 (United States)

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer Nanocrystal orientation shown by Polarization-dependent Imaging Contrast (PIC) maps. Black-Right-Pointing-Pointer PIC-mapping of carbonate biominerals reveals their ultrastructure at the nanoscale. Black-Right-Pointing-Pointer The formation mechanisms of biominerals is discovered by PIC-mapping using PEEM. -- Abstract: Carbonate biominerals are one of the most interesting systems a physicist can study. They play a major role in the CO{sub 2} cycle, they master templation, self-assembly, nanofabrication, phase transitions, space filling, crystal nucleation and growth mechanisms. A new imaging modality was introduced in the last 5 years that enables direct observation of the orientation of carbonate single crystals, at the nano- and micro-scale. This is Polarization-dependent Imaging Contrast (PIC) mapping, which is based on X-ray linear dichroism, and uses PhotoElectron Emission spectroMicroscopy (PEEM). Here we present PIC-mapping results from biominerals, including the nacre and prismatic layers of mollusk shells, and sea urchin teeth. We describe various PIC-mapping approaches, and show that these lead to fundamental discoveries on the formation mechanisms of biominerals.

  10. Testing and Comparison of Imaging Detectors for Electrons in the Energy Range 10-20 keV

    Science.gov (United States)

    Matheson, J.; Moldovan, G.; Kirkland, A.; Allinson, N.; Abrahams, J. P.

    2017-11-01

    Interest in direct detectors for low-energy electrons has increased markedly in recent years. Detection of electrons in the energy range up to low tens of keV is important in techniques such as photoelectron emission microscopy (PEEM) and electron backscatter diffraction (EBSD) on scanning electron microscopes (SEMs). The PEEM technique is used both in the laboratory and on synchrotron light sources worldwide. The ubiquity of SEMs means that there is a very large market for EBSD detectors for materials studies. Currently, the most widely used detectors in these applications are based on indirect detection of incident electrons. Examples include scintillators or microchannel plates (MCPs), coupled to CCD cameras. Such approaches result in blurring in scintillators/phosphors, distortions in optical systems, and inefficiencies due the limited active area of MCPs. In principle, these difficulties can be overcome using direct detection in a semiconductor device. Growing out of a feasibility study into the use of a direct detector for use on an XPEEM, we have built at Rutherford Appleton Laboratory a system to illuminate detectors with an electron beam of energy up to 20 keV . We describe this system in detail. It has been used to measure the performance of a custom back-thinned monolithic active pixel sensor (MAPS), a detector based on the Medipix2 chip, and a commercial detector based on MCPs. We present a selection of the results from these measurements and compare and contrast different detector types.

  11. Evidence of different red emissions in irradiated germanosilicate materials

    Energy Technology Data Exchange (ETDEWEB)

    Alessi, A., E-mail: antonino.alessi@univ-st-etienne.fr [Univ-Lyon, Laboratoire H. Curien, UMR CNRS 5516, Université Jean Monnet, 18 rue du Pr. Benoît Lauras, 42000 Saint-Etienne (France); Di Francesca, D. [Univ-Lyon, Laboratoire H. Curien, UMR CNRS 5516, Université Jean Monnet, 18 rue du Pr. Benoît Lauras, 42000 Saint-Etienne (France); Agnello, S. [Dipartimento di Fisica e Chimica, Università di Palermo, I-90123 Palermo (Italy); Girard, S. [Univ-Lyon, Laboratoire H. Curien, UMR CNRS 5516, Université Jean Monnet, 18 rue du Pr. Benoît Lauras, 42000 Saint-Etienne (France); Cannas, M. [Dipartimento di Fisica e Chimica, Università di Palermo, I-90123 Palermo (Italy); Richard, N. [CEA, DAM, DIF, F91297 Arpajon (France); Boukenter, A.; Ouerdane, Y. [Univ-Lyon, Laboratoire H. Curien, UMR CNRS 5516, Université Jean Monnet, 18 rue du Pr. Benoît Lauras, 42000 Saint-Etienne (France)

    2016-09-15

    This experimental investigation is focused on a radiation induced red emission in Ge doped silica materials, elaborated with different methods and processes. The differently irradiated samples as well as the pristine ones were analyzed with various spectroscopic techniques, such as confocal microscopy luminescence (CML), time resolved luminescence (TRL), photoluminescence excitation (PLE) and electron paramagnetic resonance (EPR). Our data prove that irradiation induces a red luminescence related to the presence of the Ge atoms. Such emission features a photoexcitation spectrum in the UV-blue spectral range and, TRL measurements show that its decrease differs from a single exponential law with a lifetime of tens of nanoseconds. CML measurements under laser at 633 nm evidenced the lack of correlation of the emission here reported with that of the Ge- or Si- non bridging oxygen hole centers. Moreover, our EPR experiments highlighted the lack of correlation between the red emitting defect with other radiation induced paramagnetic centers such as the E′Ge and Ge(2). The relation of the investigated emission with the H(II) defects, previously considered as responsible for a red emission, can not be totally excluded. - Highlights: • Composite nature of the red emission in Ge-doped doped silica materials. • Experimental study with various spectroscopic techniques and on different samples. • Time resolved and stationary characterization of an new red emission. • Study of the spatial distributions of diverse red emissions in optical fibers.

  12. Fluorescent Rhodamines and Fluorogenic Carbopyronines for Super‐Resolution STED Microscopy in Living Cells

    Science.gov (United States)

    Mitronova, Gyuzel Yu.; Sidenstein, Sven C.; Klocke, Jessica L.; Kamin, Dirk; Meineke, Dirk N. H.; D'Este, Elisa; Kraemer, Philip‐Tobias; Danzl, Johann G.

    2016-01-01

    Abstract A range of bright and photostable rhodamines and carbopyronines with absorption maxima in the range of λ=500–630 nm were prepared, and enabled the specific labeling of cytoskeletal filaments using HaloTag technology followed by staining with 1 μm solutions of the dye–ligand conjugates. The synthesis, photophysical parameters, fluorogenic behavior, and structure–property relationships of the new dyes are discussed. Light microscopy with stimulated emission depletion (STED) provided one‐ and two‐color images of living cells with an optical resolution of 40–60 nm. PMID:26844929

  13. The Fresnel mode of Lorentz microscopy using a scanning transmission electron microscope

    International Nuclear Information System (INIS)

    Chapman, J.N.; Waddell, E.M.; Batson, P.E.; Ferrier, R.P.

    1979-01-01

    The most widely used method of investigating ferromagnetic films in the transmission electron microscope is the Fresnel or defocus mode of Lorentz microscopy. This may be implemented either in a fixed beam or a scanning instrument. Despite a rather inefficient utilization of electrons, several advantages accrue if the latter is used, and provided it is equipped with a field emission gun, low noise images may be obtained in acceptable recording times. To extract quantitative estimates of domain wall widths from such images it is necessary to measure accurately both instrumental and specimen parameters. Methods for this are discussed and an example of an analysis using a polycrystalline permalloy film is given. (Auth.)

  14. LED arrays as cost effective and efficient light sources for widefield microscopy.

    Directory of Open Access Journals (Sweden)

    Dinu F Albeanu

    Full Text Available New developments in fluorophores as well as in detection methods have fueled the rapid growth of optical imaging in the life sciences. Commercial widefield microscopes generally use arc lamps, excitation/emission filters and shutters for fluorescence imaging. These components can be expensive, difficult to maintain and preclude stable illumination. Here, we describe methods to construct inexpensive and easy-to-use light sources for optical microscopy using light-emitting diodes (LEDs. We also provide examples of its applicability to biological fluorescence imaging.

  15. Using STED and ELSM confocal microscopy for a better knowledge of fused silica polished glass interface

    International Nuclear Information System (INIS)

    Catrin, Rodolphe; Neauport, Jerome; Taroux, Daniel; Corbineau, Thomas; Cormont, Philippe; Maunier, Cedric; Legros, Philippe

    2013-01-01

    Characteristics and nature of close surface defects existing in fused silica polished optical surfaces were explored. Samples were deliberately scratched using a modified polishing process in presence of different fluorescent dyes. Various techniques including Epi-fluorescence Laser Scanning Mode (ELSM) or Stimulated Emission Depletion (STED) confocal microscopy were used to measure and quantify scratches that are sometimes embedded under the polished layer. We show using a nondestructive technique that depth of the modified region extends far below the surface. Moreover cracks of 120 nm width can be present ten micrometers below the surface. (authors)

  16. Outsourcing CO2 Emissions

    Science.gov (United States)

    Davis, S. J.; Caldeira, K. G.

    2009-12-01

    CO2 emissions from the burning of fossil fuels are the primary cause of global warming. Much attention has been focused on the CO2 directly emitted by each country, but relatively little attention has been paid to the amount of emissions associated with consumption of goods and services in each country. This consumption-based emissions inventory differs from the production-based inventory because of imports and exports of goods and services that, either directly or indirectly, involved CO2 emissions. Using the latest available data and reasonable assumptions regarding trans-shipment of embodied carbon through third-party countries, we developed a global consumption-based CO2 emissions inventory and have calculated associated consumption-based energy and carbon intensities. We find that, in 2004, 24% of CO2 emissions are effectively outsourced to other countries, with much of the developed world outsourcing CO2 emissions to emerging markets, principally China. Some wealthy countries, including Switzerland and Sweden, outsource over half of their consumption-based emissions, with many northern Europeans outsourcing more than three tons of emissions per person per year. The United States is both a big importer and exporter of emissions embodied in trade, outsourcing >2.6 tons of CO2 per person and at the same time as >2.0 tons of CO2 per person are outsourced to the United States. These large flows indicate that CO2 emissions embodied in trade must be taken into consideration when considering responsibility for increasing atmospheric greenhouse gas concentrations.

  17. Study of Thermal-Field Emission Properties and Investigation of Temperature dependent Noise in the Emission Current form vertical Carbon nanotube emitters

    KAUST Repository

    Kolekar, Sadhu

    2017-05-05

    We have investigated temperature dependent field electron emission characteristics of vertical carbon nanotubes (CNTs). The generalized expression for electron emission from well defined cathode surface is given by Millikan and Lauritsen [1] for the combination of temperature and electric field effect. The same expression has been used to explain the electron emission characteristics from vertical CNT emitters. Furthermore, this has been applied to explain the electron emission for different temperatures ranging from room temperature to 1500 K. The real-time field electron emission images at room temperature and 1500 K are recorded by using Charge Coupled Device (CCD), in order to understand the effect of temperature on electron emission spots in image morphology (as indicated by ring like structures) and electron emission spot intensity of the emitters. Moreover, the field electron emission images can be used to calculate the total number of emitters per cm2 for electron emission. The calculated number of emitters per cm2 is 4.5x107 and, the actual number emitters per cm2 present for electron emission calculated from Atomic Force Microscopy (AFM) data is 1.2x1012. The measured Current-Voltage (I-V) characteristics obey the Folwer-Nordheim (F-N) type behavior. The fluctuations in the emission current are recorded at different temperatures and, temperature dependence of power spectral density obeys power law relation s(f)=I2/f2 with that of emission current and frequency.

  18. Electrophoretic deposition and field emission properties of patterned carbon nanotubes

    International Nuclear Information System (INIS)

    Zhao Haifeng; Song Hang; Li Zhiming; Yuan Guang; Jin Yixin

    2005-01-01

    Patterned carbon nanotubes on silicon substrates were obtained using electrophoretic method. The carbon nanotubes migrated towards the patterned silicon electrode in the electrophoresis suspension under the applied voltage. The carbon nanotubes arrays adhered well on the silicon substrates. The surface images of carbon nanotubes were observed by scanning electron microscopy. The field emission properties of the patterned carbon nanotubes were tested in a diode structure under a vacuum pressure below 5 x 10 -4 Pa. The measured emission area was about 1.0 mm 2 . The emission current density up to 30 mA/cm 2 at an electric field of 8 V/μm has been obtained. The deposition of patterned carbon nanotubes by electrophoresis is an alternative method to prepare field emission arrays

  19. 47 CFR 78.103 - Emissions and emission limitations.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Emissions and emission limitations. 78.103... CABLE TELEVISION RELAY SERVICE Technical Regulations § 78.103 Emissions and emission limitations. (a) A CARS station may be authorized to employ any type of emission, for which there are technical standards...

  20. Air Emission Inventory for the INEEL -- 1999 Emission Report

    Energy Technology Data Exchange (ETDEWEB)

    Zohner, Steven K

    2000-05-01

    This report presents the 1999 calendar year update of the Air Emission Inventory for the Idaho National Engineering and Environmental Laboratory (INEEL). The INEEL Air Emission Inventory documents sources and emissions of nonradionuclide pollutants from operations at the INEEL. The report describes the emission inventory process and all of the sources at the INEEL, and provides nonradionuclide emissions estimates for stationary sources.

  1. Analyzing Lysosome-Related Organelles by Electron Microscopy

    KAUST Repository

    Hurbain, Ilse

    2017-04-29

    Intracellular organelles have a particular morphological signature that can only be appreciated by ultrastructural analysis at the electron microscopy level. Optical imaging and associated methodologies allow to explore organelle localization and their dynamics at the cellular level. Deciphering the biogenesis and functions of lysosomes and lysosome-related organelles (LROs) and their dysfunctions requires their visualization and detailed characterization at high resolution by electron microscopy. Here, we provide detailed protocols for studying LROs by transmission electron microscopy. While conventional electron microscopy and its recent improvements is the method of choice to investigate organelle morphology, immunoelectron microscopy allows to localize organelle components and description of their molecular make up qualitatively and quantitatively.

  2. Scanning probe recognition microscopy investigation of tissue scaffold properties

    Science.gov (United States)

    Fan, Yuan; Chen, Qian; Ayres, Virginia M; Baczewski, Andrew D; Udpa, Lalita; Kumar, Shiva

    2007-01-01

    Scanning probe recognition microscopy is a new scanning probe microscopy technique which enables selective scanning along individual nanofibers within a tissue scaffold. Statistically significant data for multiple properties can be collected by repetitively fine-scanning an identical region of interest. The results of a scanning probe recognition microscopy investigation of the surface roughness and elasticity of a series of tissue scaffolds are presented. Deconvolution and statistical methods were developed and used for data accuracy along curved nanofiber surfaces. Nanofiber features were also independently analyzed using transmission electron microscopy, with results that supported the scanning probe recognition microscopy-based analysis. PMID:18203431

  3. Quantitative fluorescence microscopy and image deconvolution.

    Science.gov (United States)

    Swedlow, Jason R

    2013-01-01

    Quantitative imaging and image deconvolution have become standard techniques for the modern cell biologist because they can form the basis of an increasing number of assays for molecular function in a cellular context. There are two major types of deconvolution approaches--deblurring and restoration algorithms. Deblurring algorithms remove blur but treat a series of optical sections as individual two-dimensional entities and therefore sometimes mishandle blurred light. Restoration algorithms determine an object that, when convolved with the point-spread function of the microscope, could produce the image data. The advantages and disadvantages of these methods are discussed in this chapter. Image deconvolution in fluorescence microscopy has usually been applied to high-resolution imaging to improve contrast and thus detect small, dim objects that might otherwise be obscured. Their proper use demands some consideration of the imaging hardware, the acquisition process, fundamental aspects of photon detection, and image processing. This can prove daunting for some cell biologists, but the power of these techniques has been proven many times in the works cited in the chapter and elsewhere. Their usage is now well defined, so they can be incorporated into the capabilities of most laboratories. A major application of fluorescence microscopy is the quantitative measurement of the localization, dynamics, and interactions of cellular factors. The introduction of green fluorescent protein and its spectral variants has led to a significant increase in the use of fluorescence microscopy as a quantitative assay system. For quantitative imaging assays, it is critical to consider the nature of the image-acquisition system and to validate its response to known standards. Any image-processing algorithms used before quantitative analysis should preserve the relative signal levels in different parts of the image. A very common image-processing algorithm, image deconvolution, is used

  4. Nonlinear Polarimetric Microscopy for Biomedical Imaging

    Science.gov (United States)

    Samim, Masood

    A framework for the nonlinear optical polarimetry and polarimetric microscopy is developed. Mathematical equations are derived in terms of linear and nonlinear Stokes Mueller formalism, which comprehensively characterize the polarization properties of the incoming and outgoing radiations, and provide structural information about the organization of the investigated materials. The algebraic formalism developed in this thesis simplifies many predictions for a nonlinear polarimetry study and provides an intuitive understanding of various polarization properties for radiations and the intervening medium. For polarimetric microscopy experiments, a custom fast-scanning differential polarization microscope is developed, which is also capable of real-time three-dimensional imaging. The setup is equipped with a pair of high-speed resonant and galvanometric scanning mirrors, and supplemented by advanced adaptive optics and data acquisition modules. The scanning mirrors when combined with the adaptive optics deformable mirror enable fast 3D imaging. Deformable membrane mirrors and genetic algorithm optimization routines are employed to improve the imaging conditions including correcting the optical aberrations, maximizing signal intensities, and minimizing point-spread-functions of the focal volume. A field-programmable-gate array (FPGA) chip is exploited to rapidly acquire and process the multidimensional data. Using the nonlinear optical polarimetry framework and the home-built polarization microscope, a few biologically important tissues are measured and analyzed to gain insight as to their structure and dynamics. The structure and distribution of muscle sarcomere myosins, connective tissue collagen, carbohydrate-rich starch, and fruit fly eye retinal molecules are characterized with revealing polarization studies. In each case, using the theoretical framework, polarization sensitive data are analyzed to decipher the molecular orientations and nonlinear optical

  5. Re-scan confocal microscopy (RCM) improves the resolution of confocal microscopy and increases the sensitivity

    NARCIS (Netherlands)

    de Luca, Giulia; Breedijk, Ronald; Hoebe, Ron; Stallinga, Sjoerd; Manders, Erik

    2017-01-01

    Re-scan confocal microscopy (RCM) is a new super-resolution technique based on a standard confocal microscope extended with a re-scan unit in the detection path that projects the emitted light onto a sensitive camera. In this paper the fundamental properties of RCM, lateral resolution, axial

  6. Re-scan confocal microscopy (RCM) improves the resolution of confocal microscopy and increases the sensitivity

    NARCIS (Netherlands)

    De Luca, G.; Breedijk, R.; Hoebe, R.; Stallinga, S.; Manders, E.

    Re-scan confocal microscopy (RCM) is a new super-resolution technique based on a standard confocal microscope extended with a re-scan unit in the detection path that projects the emitted light onto a sensitive camera. In this paper the fundamental properties of RCM, lateral resolution, axial

  7. Improved axial resolution of FINCH fluorescence microscopy when combined with spinning disk confocal microscopy.

    Science.gov (United States)

    Siegel, Nisan; Brooker, Gary

    2014-09-22

    FINCH holographic fluorescence microscopy creates super-resolved images with enhanced depth of focus. Addition of a Nipkow disk real-time confocal image scanner is shown to reduce the FINCH depth of focus while improving transverse confocal resolution in a combined method called "CINCH".

  8. Uncertainties in emission inventories

    NARCIS (Netherlands)

    Aardenne, van J.A.

    2002-01-01

    Emission inventories provide information about the amount of a pollutant that is emitted to the atmosphere as a result of a specific anthropogenic or natural process at a given time or place. Emission inventories can be used for either policy or scientific purposes. For

  9. Positron emission tomography

    International Nuclear Information System (INIS)

    Reivich, M.; Alavi, A.

    1985-01-01

    This book contains 24 selections. Some of the titles are: Positron Emission Tomography Instrumentation, Generator Systems for Positron Emitters, Reconstruction Algorithms, Cerebral Glucose Consumption: Methodology and Validation, Cerebral Blood Flow Tomography Using Xenon-133 Inhalation: Methods and Clinical Applications, PET Studies of Stroke, Cardiac Positron Emission Tomography, and Use of PET in Oncology

  10. National pollutants emission limits

    International Nuclear Information System (INIS)

    Chmielewski, A.G.; Pawelec, A.

    2011-01-01

    Fossil fuels are the main energy sources. Unfortunately the vast quantities of pollutants are emitted to the atmosphere during their combustion. These emissions lead to the environment degradation and affect human health. Therefore most of the countries have introduced the standards concerning emission control. These regulations for some countries are presented in the paper. (author)

  11. National pollutants emission limits

    Energy Technology Data Exchange (ETDEWEB)

    Chmielewski, A. G.; Pawelec, A. [Institute of Nuclear Chemistry and Technology, Warsaw (Poland)

    2011-07-01

    Fossil fuels are the main energy sources. Unfortunately the vast quantities of pollutants are emitted to the atmosphere during their combustion. These emissions lead to the environment degradation and affect human health. Therefore most of the countries have introduced the standards concerning emission control. These regulations for some countries are presented in the paper. (author)

  12. Database of emission lines

    Science.gov (United States)

    Binette, L.; Ortiz, P.; Joguet, B.; Rola, C.

    1998-11-01

    A widely accessible data bank (available through Netscape) and consiting of all (or most) of the emission lines reported in the litterature is being built. It will comprise objects as diverse as HII regions, PN, AGN, HHO. One of its use will be to define/refine existing diagnostic emission line diagrams.

  13. Microscopy image segmentation tool: Robust image data analysis

    Energy Technology Data Exchange (ETDEWEB)

    Valmianski, Ilya, E-mail: ivalmian@ucsd.edu; Monton, Carlos; Schuller, Ivan K. [Department of Physics and Center for Advanced Nanoscience, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093 (United States)

    2014-03-15

    We present a software package called Microscopy Image Segmentation Tool (MIST). MIST is designed for analysis of microscopy images which contain large collections of small regions of interest (ROIs). Originally developed for analysis of porous anodic alumina scanning electron images, MIST capabilities have been expanded to allow use in a large variety of problems including analysis of biological tissue, inorganic and organic film grain structure, as well as nano- and meso-scopic structures. MIST provides a robust segmentation algorithm for the ROIs, includes many useful analysis capabilities, and is highly flexible allowing incorporation of specialized user developed analysis. We describe the unique advantages MIST has over existing analysis software. In addition, we present a number of diverse applications to scanning electron microscopy, atomic force microscopy, magnetic force microscopy, scanning tunneling microscopy, and fluorescent confocal laser scanning microscopy.

  14. Microscopy image segmentation tool: Robust image data analysis

    Science.gov (United States)

    Valmianski, Ilya; Monton, Carlos; Schuller, Ivan K.

    2014-03-01

    We present a software package called Microscopy Image Segmentation Tool (MIST). MIST is designed for analysis of microscopy images which contain large collections of small regions of interest (ROIs). Originally developed for analysis of porous anodic alumina scanning electron images, MIST capabilities have been expanded to allow use in a large variety of problems including analysis of biological tissue, inorganic and organic film grain structure, as well as nano- and meso-scopic structures. MIST provides a robust segmentation algorithm for the ROIs, includes many useful analysis capabilities, and is highly flexible allowing incorporation of specialized user developed analysis. We describe the unique advantages MIST has over existing analysis software. In addition, we present a number of diverse applications to scanning electron microscopy, atomic force microscopy, magnetic force microscopy, scanning tunneling microscopy, and fluorescent confocal laser scanning microscopy.

  15. Microscopy image segmentation tool: Robust image data analysis

    International Nuclear Information System (INIS)

    Valmianski, Ilya; Monton, Carlos; Schuller, Ivan K.

    2014-01-01

    We present a software package called Microscopy Image Segmentation Tool (MIST). MIST is designed for analysis of microscopy images which contain large collections of small regions of interest (ROIs). Originally developed for analysis of porous anodic alumina scanning electron images, MIST capabilities have been expanded to allow use in a large variety of problems including analysis of biological tissue, inorganic and organic film grain structure, as well as nano- and meso-scopic structures. MIST provides a robust segmentation algorithm for the ROIs, includes many useful analysis capabilities, and is highly flexible allowing incorporation of specialized user developed analysis. We describe the unique advantages MIST has over existing analysis software. In addition, we present a number of diverse applications to scanning electron microscopy, atomic force microscopy, magnetic force microscopy, scanning tunneling microscopy, and fluorescent confocal laser scanning microscopy

  16. Platinum replica electron microscopy: Imaging the cytoskeleton globally and locally.

    Science.gov (United States)

    Svitkina, Tatyana M

    2017-05-01

    Structural studies reveal how smaller components of a system work together as a whole. However, combining high resolution of details with full coverage of the whole is challenging. In cell biology, light microscopy can image many cells in their entirety, but at a lower resolution, whereas electron microscopy affords very high resolution, but usually at the expense of the sample size and coverage. Structural analyses of the cytoskeleton are especially demanding, because cytoskeletal networks are unresolvable by light microscopy due to their density and intricacy, whereas their proper preservation is a challenge for electron microscopy. Platinum replica electron microscopy can uniquely bridge the gap between the "comfort zones" of light and electron microscopy by allowing high resolution imaging of the cytoskeleton throughout the entire cell and in many cells in the population. This review describes the principles and applications of platinum replica electron microscopy for studies of the cytoskeleton. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Electron microscopy of intermediate filaments: teaming up with atomic force and confocal laser scanning microscopy.

    Science.gov (United States)

    Kreplak, Laurent; Richter, Karsten; Aebi, Ueli; Herrmann, Harald

    2008-01-01

    Intermediate filaments (IFs) were originally discovered and defined by electron microscopy in myoblasts. In the following it was demonstrated and confirmed that they constitute, in addition to microtubules and microfilaments, a third independent, general filament system in the cytoplasm of most metazoan cells. In contrast to the other two systems, IFs are present in cells in two principally distinct cytoskeletal forms: (i) extended and free-running filament arrays in the cytoplasm that are integrated into the cytoskeleton by associated proteins of the plakin type; and (ii) a membrane- and chromatin-bound thin 'lamina' of a more or less regular network of interconnected filaments made from nuclear IF proteins, the lamins, which differ in several important structural aspects from cytoplasmic IF proteins. In man, more than 65 genes code for distinct IF proteins that are expressed during embryogenesis in various routes of differentiation in a tightly controlled manner. IF proteins exhibit rather limited sequence identity implying that the different types of IFs have distinct biochemical properties. Hence, to characterize the structural properties of the various IFs, in vitro assembly regimes have been developed in combination with different visualization methods such as transmission electron microscopy of fixed and negatively stained samples as well as methods that do not use staining such as scanning transmission electron microscopy (STEM) and cryoelectron microscopy as well as atomic force microscopy. Moreover, with the generation of both IF-type specific antibodies and chimeras of fluorescent proteins and IF proteins, it has become possible to investigate the subcellular organization of IFs by correlative fluorescence and electron microscopic methods. The combination of these powerful methods should help to further develop our understanding of nuclear architecture, in particular how nuclear subcompartments are organized and in which way lamins are involved.

  18. Characterization of nanoparticles using Atomic Force Microscopy

    International Nuclear Information System (INIS)

    Rao, A; Schoenenberger, M; Gnecco, E; Glatzel, Th; Meyer, E; Braendlin, D; Scandella, L

    2007-01-01

    Nanoparticles are becoming increasingly important in many areas, including catalysis, biomedical applications, and information storage. Their unique size-dependent properties make these materials superior. Using the Atomic Force Microscope (AFM), individual particles and groups of particles can be resolved and unlike other microscopy techniques, the AFM offers visualization and analysis in three dimensions. We prepared titanium oxide, zirconium oxide and alumina nanoparticles and/or agglomerates on different surfaces and characterized them by AFM in the dynamic mode. The goal was to determine the shape, size and/or size distribution of nanoparticles. Different dilutions of nanoparticles were applied on various substrates e.g. clean silicon, mica and chemically treated silicon and imaged at ambient conditions. Nanoparticles deposited on mica appeared to be coagulated as compared to those on silicon. Whereas, on a chemically treated surface the density of the nanoparticles was very low because of the increased hydrophobicity of the surface

  19. Oxygen radical microscopy in living plant tissues

    DEFF Research Database (Denmark)

    Kristiansen, Kim Anker; Møller, Ian Max; Schulz, Alexander

    the ROS production stems from the mitochondria and peroxisomes as is seen in animal cells. At the Bioimaging Center at KVL we employ different techniques to induce, detect and monitor ROS production, distribution and in and among living plant cells. Both confocal laser scanning microscopy and 2-photon......Reactive oxygen species (ROS) play a crucial role in a wide variety of processes. Initiation of many different cellular pathways, crosstalk between cells, developmental signalling in planta, programmed cell death and hypersensitive response in connection with plant-pathogen interactions are among...... the different roles ROS play. On the other hand ROS also cause damage to cellular components at sub-lethal to lethal levels. In photosynthesizing plants the major production of ROS origin from the chloroplast. ROS is a by product from the Photosystem I/II handling of light energy. In nonphotosynthesizing plants...

  20. Nailfold capillaroscopy microscopy - an interdisciplinary appraisal.

    Science.gov (United States)

    Klein-Weigel, Peter Franz; Sunderkötter, Cord; Sander, Oliver

    2016-09-01

    Nailfold capillaroscopy is a method of great diagnostic value in the differential diagnosis of primary versus secondary Raynaud´s phenomenon, of systemic sclerosis versus other so called connective tissue diseases and of additional diagnostic value in other entities. Rheumatologists, dermatologists, and angiologists in Germany have convened in an interdisciplinary working group in which they synergistically combined their expertise to develop a common nomenclature and standards for the technical performance of nailfold capillary microscopy. The article gives an overview of historical and technical aspects of capillaroscopy, morphologic findings, and disease-specific patterns. It also provides a critical appraisal of its significance in the diagnosis and sequelae of these interdisciplinarily-managed diseases including its performance in children and gives an excursion in the potential perspectives of capillaroscopy in less common indications.

  1. Electronic microscopy application in artificial minerals

    International Nuclear Information System (INIS)

    Gomez, L E.

    1995-07-01

    One of the uses of electronic microscopy in combination with the analysis microprobe EDAX is to characterize the properties of the minerals. The technique consist of studying the chemical composition by elements or by oxides of particles which can be enlarged successfully up to 100000x. With the help of the optical microscope one is able to determine the textual characteristics, the form, cleavage and other cristallographic properties which, combined with microprobe analysis enable one to determine its classification. The industrial processes which use ovens usually have problems due to the formation of impurities, spots and abnormal aspects which are reflected in a lower quality of the final material produced. These types of defects appear in minerals which are made in laboratories; knowing the natural minerals one can exercise a better quality control since this permits to know the behaviour of the raw material at a particular temperature and its reactions depending on the additives used

  2. MR microscopy as a research modality

    International Nuclear Information System (INIS)

    Kang, Heung Sik; Kim, Seung Hyup; Han, Man Chung; Lee, Sang Hoon; Lee, Yoon Seong; Yi, Jung Han; Cho, Zang Hee

    1988-01-01

    A combination of high gradient (0.46mT/cm) and small radiofrequency coils (8cm diameter) was used to obtain images with effective thickness of 2.0mm and pixel dimensions as small as 196 μ in the live chick embryo and surgically resected human femoral head with avascular necrosis. The signal-to-noise ratio was sufficient to allow identification of major anatomical structures of live chick embryo and delineation of osteonecrotic segment in femoral head. The changes of signal intensity in necrotic femoral head was well correlated with histopathologic findings. MR microscopy is considered as a good research modality in the field of embryology, teratology and MR tissue characterization

  3. Transmission Electron Microscopy and Diffractometry of Materials

    CERN Document Server

    Fultz, Brent

    2013-01-01

    This book explains concepts of transmission electron microscopy (TEM) and x-ray diffractometry (XRD) that are important for the characterization of materials. The fourth edition adds important new techniques of TEM such as electron tomography, nanobeam diffraction, and geometric phase analysis. A new chapter on neutron scattering completes the trio of x-ray, electron and neutron diffraction. All chapters were updated and revised for clarity. The book explains the fundamentals of how waves and wavefunctions interact with atoms in solids, and the similarities and differences of using x-rays, electrons, or neutrons for diffraction measurements. Diffraction effects of crystalline order, defects, and disorder in materials are explained in detail. Both practical and theoretical issues are covered. The book can be used in an introductory-level or advanced-level course, since sections are identified by difficulty. Each chapter includes a set of problems to illustrate principles, and the extensive Appendix includes la...

  4. Transmission electron microscopy and diffractometry of materials

    CERN Document Server

    Fultz, Brent

    2001-01-01

    This book teaches graduate students the concepts of trans- mission electron microscopy (TEM) and x-ray diffractometry (XRD) that are important for the characterization of materi- als. It emphasizes themes common to both techniques, such as scattering from atoms and the formation and analysis of dif- fraction patterns. It also describes unique aspects of each technique, especially imaging and spectroscopy in the TEM. The textbook thoroughly develops both introductory and ad- vanced-level material, using over 400 accompanying illustra- tions. Problems are provided at the end of each chapter to reinforce key concepts. Simple citatioins of rules are avoi- ded as much as possible, and both practical and theoretical issues are explained in detail. The book can be used as both an introductory and advanced-level graduate text since sec- tions/chapters are sorted according to difficulty and grou- ped for use in quarter and semester courses on TEM and XRD.

  5. High-frequency multimodal atomic force microscopy

    Directory of Open Access Journals (Sweden)

    Adrian P. Nievergelt

    2014-12-01

    Full Text Available Multifrequency atomic force microscopy imaging has been recently demonstrated as a powerful technique for quickly obtaining information about the mechanical properties of a sample. Combining this development with recent gains in imaging speed through small cantilevers holds the promise of a convenient, high-speed method for obtaining nanoscale topography as well as mechanical properties. Nevertheless, instrument bandwidth limitations on cantilever excitation and readout have restricted the ability of multifrequency techniques to fully benefit from small cantilevers. We present an approach for cantilever excitation and deflection readout with a bandwidth of 20 MHz, enabling multifrequency techniques extended beyond 2 MHz for obtaining materials contrast in liquid and air, as well as soft imaging of delicate biological samples.

  6. Digital Holographic Microscopy Principles, Techniques, and Applications

    CERN Document Server

    Kim, Myung K

    2011-01-01

    Digital holography is an emerging field of new paradigm in general imaging applications. By replacing the photochemical procedures with electronic imaging and having a direct numerical access to the complex optical field, a wide range of new imaging capabilities become available, many of them difficult or infeasible in conventional holography. An increasing number of researchers—not only in optical physics and optical engineering, but also in diverse applications areas such as microbiology, medicine, marine science, particle analysis, microelectromechanics, and metrology—are realizing and exploiting the new capabilities of digital holography. Digital Holographic Microscopy: Principles, Techniques, and Applications, by Dr. Myung K. Kim, is intended to provide a brief but consistent introduction to the principles of digital holography as well as to give an organized overview of the large number of techniques and applications being developed. This will also shed some light on the range of possibilities for f...

  7. Photoacoustic microscopy of bilirubin in tissue phantoms

    Science.gov (United States)

    Zhou, Yong; Zhang, Chi; Yao, Da-Kang; Wang, Lihong V.

    2012-12-01

    Determining both bilirubin's concentration and its spatial distribution are important in disease diagnosis. Here, for the first time, we applied quantitative multiwavelength photoacoustic microscopy (PAM) to detect bilirubin concentration and distribution simultaneously. By measuring tissue-mimicking phantoms with different bilirubin concentrations, we showed that the root-mean-square error of prediction has reached 0.52 and 0.83 mg/dL for pure bilirubin and for blood-mixed bilirubin detection (with 100% oxygen saturation), respectively. We further demonstrated the capability of the PAM system to image bilirubin distribution both with and without blood. Finally, by underlaying bilirubin phantoms with mouse skins, we showed that bilirubin can be imaged with consistent accuracy down to >400 μm in depth. Our results show that PAM has potential for noninvasive bilirubin monitoring in vivo, as well as for further clinical applications.

  8. Photobleaching correction in fluorescence microscopy images

    International Nuclear Information System (INIS)

    Vicente, Nathalie B; Diaz Zamboni, Javier E; Adur, Javier F; Paravani, Enrique V; Casco, Victor H

    2007-01-01

    Fluorophores are used to detect molecular expression by highly specific antigen-antibody reactions in fluorescence microscopy techniques. A portion of the fluorophore emits fluorescence when irradiated with electromagnetic waves of particular wavelengths, enabling its detection. Photobleaching irreversibly destroys fluorophores stimulated by radiation within the excitation spectrum, thus eliminating potentially useful information. Since this process may not be completely prevented, techniques have been developed to slow it down or to correct resulting alterations (mainly, the decrease in fluorescent signal). In the present work, the correction by photobleaching curve was studied using E-cadherin (a cell-cell adhesion molecule) expression in Bufo arenarum embryos. Significant improvements were observed when applying this simple, inexpensive and fast technique

  9. Fungal keratitis - improving diagnostics by confocal microscopy

    DEFF Research Database (Denmark)

    Nielsen, Esben; Heegaard, S; Prause, J U

    2013-01-01

    Purpose: Introducing a simple image grading system to support the interpretation of in vivo confocal microscopy (IVCM) images in filamentous fungal keratitis. Setting: Clinical and confocal studies took place at the Department of Ophthalmology, Aarhus University Hospital, Denmark. Histopathological...... analysis was performed at the Eye Pathology Institute, Department of Neuroscience and Pharmacology, University of Copenhagen, Denmark. Methods: A recent series of consecutive patients with filamentous fungal keratitis is presented to demonstrate the results from in-house IVCM. Based upon our experience...... with IVCM and previously published images, we composed a grading system for interpreting IVCM images of filamentous fungal keratitis. Results: A recent case series of filamentous fungal keratitis from 2011 to 2012 was examined. There were 3 male and 3 female patients. Mean age was 44.5 years (range 12...

  10. Improved methods for high resolution electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, J.R.

    1987-04-01

    Existing methods of making support films for high resolution transmission electron microscopy are investigated and novel methods are developed. Existing methods of fabricating fenestrated, metal reinforced specimen supports (microgrids) are evaluated for their potential to reduce beam induced movement of monolamellar crystals of C/sub 44/H/sub 90/ paraffin supported on thin carbon films. Improved methods of producing hydrophobic carbon films by vacuum evaporation, and improved methods of depositing well ordered monolamellar paraffin crystals on carbon films are developed. A novel technique for vacuum evaporation of metals is described which is used to reinforce microgrids. A technique is also developed to bond thin carbon films to microgrids with a polymer bonding agent. Unique biochemical methods are described to accomplish site specific covalent modification of membrane proteins. Protocols are given which covalently convert the carboxy terminus of papain cleaved bacteriorhodopsin to a free thiol. 53 refs., 19 figs., 1 tab.

  11. MR microscopy as a research modality

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Heung Sik; Kim, Seung Hyup; Han, Man Chung; Lee, Sang Hoon; Lee, Yoon Seong [College of Medicine, Seoul National University, Seoul (Korea, Republic of); Yi, Jung Han; Cho, Zang Hee [Korea Advanced insititute of Science, Taejon (Korea, Republic of)

    1988-02-15

    A combination of high gradient (0.46mT/cm) and small radiofrequency coils (8cm diameter) was used to obtain images with effective thickness of 2.0mm and pixel dimensions as small as 196 {mu} in the live chick embryo and surgically resected human femoral head with avascular necrosis. The signal-to-noise ratio was sufficient to allow identification of major anatomical structures of live chick embryo and delineation of osteonecrotic segment in femoral head. The changes of signal intensity in necrotic femoral head was well correlated with histopathologic findings. MR microscopy is considered as a good research modality in the field of embryology, teratology and MR tissue characterization.

  12. Electron Microscopy of Nanostructures in Cells

    DEFF Research Database (Denmark)

    Købler, Carsten

    with cells is therefore increasingly more relevant from both an engineering and a toxicological viewpoint. My work involves developing and exploring electron microscopy (EM) for imaging nanostructures in cells, for the purpose of understanding nanostructure-cell interactions in terms of their possibilities...... in science and concerns in toxicology. In the present work, EM methods for imaging nanostructure-cell interactions have been explored, and the complex interactions documented and ordered. In particular the usability of the focused ion beam scanning electron microscope (FIB-SEM) was explored. Using EM...... in literature. Furthermore, EM proved valuable as it revealed an unnoticed CNT effect. FIB-SEM helped establish that the effect was linked to eosionophilic crystalline pneumonia (ECP)....

  13. Surface chemistry and microscopy of food powders

    Science.gov (United States)

    Burgain, Jennifer; Petit, Jeremy; Scher, Joël; Rasch, Ron; Bhandari, Bhesh; Gaiani, Claire

    2017-12-01

    Despite high industrial and scientific interest, a comprehensive review of the surface science of food powders is still lacking. There is a real gap between scientific concerns of the field and accessible reviews on the subject. The global description of the surface of food powders by multi-scale microscopy approaches seems to be essential in order to investigate their complexity and take advantage of their high innovation potential. Links between these techniques and the interest to develop a multi-analytical approach to investigate scientific questions dealing with powder functionality are discussed in the second part of the review. Finally, some techniques used in others fields and showing promising possibilities in the food powder domain will be highlighted.

  14. Observed Barium Emission Rates

    Science.gov (United States)

    Stenbaek-Nielsen, H. C.; Wescott, E. M.; Hallinan, T. J.

    1993-01-01

    The barium releases from the CRRES satellite have provided an opportunity for verifying theoretically calculated barium ion and neutral emission rates. Spectra of the five Caribbean releases in the summer of 1991 were taken with a spectrograph on board a U.S. Air Force jet aircraft. Because the line of sight release densities are not known, only relative rates could be obtained. The observed relative rates agree well with the theoretically calculated rates and, together with other observations, confirm the earlier detailed theoretical emission rates. The calculated emission rates can thus with good accuracy be used with photometric observations. It has been postulated that charge exchange between neutral barium and oxygen ions represents a significant source for ionization. If so. it should be associated with emissions at 4957.15 A and 5013.00 A, but these emissions were not detected.

  15. Nuclear microscopy of atherosclerotic tissue: A review

    International Nuclear Information System (INIS)

    Watt, Frank; Ren, M.Q.; Xie, J.P.; Tan, B.K.H.; Halliwell, B.

    2001-01-01

    This paper reviews the work carried out in the Research Centre for Nuclear Microscopy, NUS on the role of iron in coronary heart disease, using the technique of nuclear microscopy to determine the levels of iron and other trace elements in the artery wall and lesions. These investigations have indicated that iron may play a significant role in the development of atherosclerosis, probably through the promotion of cytotoxic free radicals leading to the oxidation of low-density lipoprotein (LDL). Using a rabbit model we have observed that early atherosclerotic lesions, induced by feeding the animals on a 1% cholesterol diet, contain increased levels of iron (up to 8 times) compared with the adjacent healthy artery wall. In a follow-up time sequence study, we have shown that iron accumulation occurs at the onset of lesion formation, which takes place around 4-6 weeks after exposure to the 1% cholesterol diet. As the lesions mature, they enlarge to occupy a significant fraction of the artery wall, and at about 16 weeks the lesions begin to show signs of calcification. In an additional experiment, where the cholesterol fed rabbits were kept anaemic through weekly bleeding, the iron content of the artery wall was reduced and the onset of atherogenesis was delayed. In a further investigation, rabbits were fed on a 1% cholesterol diet and after 6 weeks (corresponding to the period of early lesion formation) a test group was subjected to treatment using the iron chelator desferal. Preliminary results indicate that during the treatment with desferal, lesion development was slowed down

  16. Thermal diffuse scattering in transmission electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Forbes, B.D.; D' Alfonso, A.J. [School of Physics, University of Melbourne, Parkville, Victoria 3010 (Australia); Findlay, S.D. [School of Physics, Monash University, Victoria 3800 (Australia); Van Dyck, D. [EMAT, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium); LeBeau, J.M. [North Carolina State University, Raleigh, NC 27695-7907 (United States); Stemmer, S. [Materials Department, University of California, Santa Barbara, CA 93106-5050 (United States); Allen, L.J., E-mail: lja@unimelb.edu.au [School of Physics, University of Melbourne, Parkville, Victoria 3010 (Australia)

    2011-12-15

    In conventional transmission electron microscopy, thermal scattering significantly affects the image contrast. It has been suggested that not accounting for this correctly is the main cause of the Stobbs factor, the ubiquitous, large contrast mismatch found between theory and experiment. In the case where a hard aperture is applied, we show that previous conclusions drawn from work using bright field scanning transmission electron microscopy and invoking the principle of reciprocity are reliable in the presence of thermal scattering. In the aperture-free case it has been suggested that even the most sophisticated mathematical models for thermal diffuse scattering lack in their numerical implementation, specifically that there may be issues in sampling, including that of the contrast transfer function of the objective lens. We show that these concerns can be satisfactorily overcome with modest computing resources; thermal scattering can be modelled accurately enough for the purpose of making quantitative comparison between simulation and experiment. Spatial incoherence of the source is also investigated. Neglect or inadequate handling of thermal scattering in simulation can have an appreciable effect on the predicted contrast and can be a significant contribution to the Stobbs factor problem. -- Highlights: Black-Right-Pointing-Pointer We determine the numerical requirements for accurate simulation of TDS in CTEM. Black-Right-Pointing-Pointer TDS can be simulated to high precision using the Born-Oppenheimer model. Black-Right-Pointing-Pointer Such calculations establish the contribution of TDS to the Stobbs factor problem. Black-Right-Pointing-Pointer Treating spatial incoherence using envelope functions increases image contrast. Black-Right-Pointing-Pointer Rigorous treatment of spatial incoherence significantly reduces image contrast.

  17. Bright field electron microscopy of biological specimens

    International Nuclear Information System (INIS)

    Johansen, B.V.

    1976-01-01

    A preirradiation procedure is described which preserves negatively stained morphological features in bright field electron micrographs to a resolution of about 1.2 nm. Prior to microscopy the pre-irradiation dose (1.6 x 10 -3 C cm -2 ) is given at low electron optical magnification at five different areas on the grid (the centre plus four 'corners'). This pre-irradiation can be measured either with a Faraday cage or through controlled exposure-developing conditions. Uranyl formate stained T2 bacteriophages and stacked disk aggregates of Tobacco Mosaic Virus (TMV) protein served as test objects. A comparative study was performed on specimens using either the pre-irradiation procedure or direct irradiation by the 'minimum beam exposure' technique. Changes in the electron diffraction pattern of the stain-protein complex and the disappearance of certain morphological features in the specimens were both used in order to compare the pre-irradiation method with the direct exposure technique. After identical electron exposures the pre-irradiation approach gave a far better preservation of specimen morphology. Consequently this procedure gives the microscopist more time to select and focus appropriate areas for imaging before deteriorations take place. The investigation also suggested that microscopy should be carried out between 60,000 and 100,000 times magnification. Within this magnification range, it is possible to take advantage of the phase contrast transfer characteristics of the objective lens while the electron load on the object is kept at a moderate level. Using the pre-irradiation procedure special features of the T2 bacteriophage morphology could be established. (author)

  18. Acoustic emission characterization of the tetragonal-monoclinic phase transformation in zirconia

    International Nuclear Information System (INIS)

    Clarke, D.R.; Arora, A.

    1983-01-01

    The processes accompanying the tetragonal-monoclinic phase transformation in zirconia (ZrO 2 ) have been studied using acoustic emission and electron microscopy in an attempt to characterize the different mechanisms by which the transformation can be accommodated in bulk materials. Experiments in which the acoustic emission is detected as specimens are cooled through the transformation, following densification by sintering, are described. For comparison, the acoustic emission from free, nominally unconstrained powders similarly cooled through the transformation is reported. The existence of distinct processes accompanying the phase transformation is established on the basis of postexperiment multiparametric correlation analysis of the acoustic emission

  19. Electron emission induced modifications in amorphous tetrahedral diamondlike carbon

    International Nuclear Information System (INIS)

    Mercer, T.W.; DiNardo, N.J.; Rothman, J.B.; Siegal, M.P.; Friedmann, T.A.; Martinez-Miranda, L.J.

    1998-01-01

    The cold-cathode electron emission properties of amorphous tetrahedral diamondlike carbon are promising for flat-panel display and vacuum microelectronics technologies. The onset of electron emission is, typically, preceded by open-quotes conditioningclose quotes where the material is stressed by an applied electric field. To simulate conditioning and assess its effect, we combined the spatially localized field and current of a scanning tunneling microscope tip with high-spatial-resolution characterization. Scanning force microscopy shows that conditioning alters surface morphology and electronic structure. Spatially resolved electron-energy-loss spectroscopy indicates that the predominant bonding configuration changes from predominantly fourfold to threefold coordination. copyright 1998 American Institute of Physics

  20. Source identification of individual soot agglomerates in Arctic air by transmission electron microscopy

    Science.gov (United States)

    Weinbruch, S.; Benker, N.; Kandler, K.; Schütze, K.; Kling, K.; Berlinger, B.; Thomassen, Y.; Drotikova, T.; Kallenborn, R.

    2018-01-01

    Individual soot agglomerates collected at four different locations on the Arctic archipelago Svalbard (Norway) were characterised by transmission electron microscopy and energy-dispersive X-ray microanalysis. For source identification of the ambient soot agglomerates, samples from different local sources (coal burning power plants in Longyearbyen and Barentsburg, diesel and oil burning for power generation in Sveagruva and Ny Ålesund, cruise ship) as well as from other sources which may contribute to Arctic soot concentrations (biomass burning, aircraft emissions, diesel engines) were investigated. Diameter and graphene sheet separation distance of soot primary particles were found to be highly variable within each source and are not suited for source identification. In contrast, concentrations of the minor elements Si, P, K, Ca and Fe showed significant differences which can be used for source attribution. The presence/absence of externally mixed particle groups (fly ashes, tar balls, mercury particles) gives additional hints about the soot sources. Biomass/wood burning, ship emissions and coal burning in Barentsburg can be excluded as major source for ambient soot at Svalbard. The coal power plant in Longyearbyen is most likely a major source of soot in the settlement of Longyearbyen but does not contribute significantly to soot collected at the Global Atmosphere Watch station Zeppelin Mountain near Ny Ålesund. The most probable soot sources at Svalbard are aircraft emissions and diesel exhaust as well as long range transport of coal burning emissions.