WorldWideScience

Sample records for emg silent period

  1. Origin of the low-level EMG during the silent period following transcranial magnetic stimulation

    DEFF Research Database (Denmark)

    Butler, Jane E; Petersen, Nicolas C; Herbert, Robert D

    2012-01-01

    OBJECTIVE: The cortical silent period refers to a period of near silence in the electromyogram (EMG) after transcranial magnetic stimulation (TMS) of the motor cortex during contraction. However, low-level EMG of unknown origin is often present. We hypothesised that it arises through spinal...... the motor cortex. The rate of flexion during shortening contractions reduced muscle lengthening caused by muscle relaxation. Surface EMG was recorded from biceps brachii and brachioradialis, and the low-level EMG during silent periods produced by TMS was measured. RESULTS: Low-level EMG activity was reduced...

  2. A critical period of corticomuscular and EMG-EMG coherence detection in healthy infants aged 9-25weeks

    DEFF Research Database (Denmark)

    Ritterband-Rosenbaum, Anina; Herskind, Anna; Li, Xi

    2017-01-01

    The early postnatal development of functional corticospinal connections in human infants is not fully clarified. We used EEG and EMG to investigate the development of corticomuscular and intramuscular coherence as indicators of functional corticospinal connectivity in healthy infants aged 1...... for infants younger than 9 weeks, whereas a short-lasting (10-20 ms) central peak was observed for EMG-EMG synchronization in older infants. This peak was largest for infants aged 9-25 weeks. These data suggest that the corticospinal drive to lower and upper limb muscles shows significant developmental...... changes with an increase in functional coupling in infants aged 9-25 weeks, a period which coincides partly with the developmental period of normal fidgety movements. We propose that these neurophysiological findings may reflect the existence of a sensitive period where the functional connections between...

  3. EMG parameters and EEG α Index change at fatigue period during different types of muscle contraction

    Science.gov (United States)

    Zhang, Li; Zhou, Bin; Song, Gaoqing

    2011-03-01

    The purpose of this study is to measure and analyze the characteristics in change of EMG and EEG parameters at muscle fatigue period in participants with different exercise capacity. Twenty participants took part in the tests. They were divided into two groups, Group A (constant exerciser) and Group B (seldom-exerciser). MVC dynamic and 1/3 isometric exercises were performed; EMG and EEG signals were recorded synchronously during different type of muscle contraction. Results indicated that values of MVC, RMS and IEMG in Group A were greater than Group B, but isometric exercise time was shorter than the time of dynamic exercise although its intensity was light. Turning point of IEMG and α Index occurred synchronously during constant muscle contraction of isometric or dynamic exercise. It is concluded that IEMG turning point may be an indication to justify muscle fatigue. Synchronization of EEG and EMG reflects its common characteristics on its bio-electric change.

  4. Estimation of cortical silent period following transcranial magnetic stimulation using a computerised cumulative sum method.

    Science.gov (United States)

    King, Nicolas K K; Kuppuswamy, Annapoorna; Strutton, Paul H; Davey, Nick J

    2006-01-15

    The cortical silent period (CSP) following transcranial magnetic stimulation (TMS) of the motor cortex can be used to measure intra-cortical inhibition and changes in a number of important pathologies affecting the central nervous system. The main drawback of this technique has been the difficulty in accurately identifying the onset and offset of the cortical silent period leading to inter-observer variability. We developed an automated method based on the cumulative sum (Cusum) technique to improve the determination of the duration and area of the cortical silent period. This was compared with experienced raters and two other automated methods. We showed that the automated Cusum method reliably correlated with the experienced raters for both duration and area of CSP. Compared with the automated methods, the Cusum also showed the strongest correlation with the experienced raters. Our results show the Cusum method to be a simple, graphical and powerful method of detecting low-intensity CSP that can be easily automated using standard software.

  5. Adaptive Control of Exoskeleton Robots for Periodic Assistive Behaviours Based on EMG Feedback Minimisation.

    Directory of Open Access Journals (Sweden)

    Luka Peternel

    Full Text Available In this paper we propose an exoskeleton control method for adaptive learning of assistive joint torque profiles in periodic tasks. We use human muscle activity as feedback to adapt the assistive joint torque behaviour in a way that the muscle activity is minimised. The user can then relax while the exoskeleton takes over the task execution. If the task is altered and the existing assistive behaviour becomes inadequate, the exoskeleton gradually adapts to the new task execution so that the increased muscle activity caused by the new desired task can be reduced. The advantage of the proposed method is that it does not require biomechanical or dynamical models. Our proposed learning system uses Dynamical Movement Primitives (DMPs as a trajectory generator and parameters of DMPs are modulated using Locally Weighted Regression. Then, the learning system is combined with adaptive oscillators that determine the phase and frequency of motion according to measured Electromyography (EMG signals. We tested the method with real robot experiments where subjects wearing an elbow exoskeleton had to move an object of an unknown mass according to a predefined reference motion. We further evaluated the proposed approach on a whole-arm exoskeleton to show that it is able to adaptively derive assistive torques even for multiple-joint motion.

  6. Adaptive Control of Exoskeleton Robots for Periodic Assistive Behaviours Based on EMG Feedback Minimisation

    Science.gov (United States)

    Peternel, Luka; Noda, Tomoyuki; Petrič, Tadej; Ude, Aleš; Morimoto, Jun; Babič, Jan

    2016-01-01

    In this paper we propose an exoskeleton control method for adaptive learning of assistive joint torque profiles in periodic tasks. We use human muscle activity as feedback to adapt the assistive joint torque behaviour in a way that the muscle activity is minimised. The user can then relax while the exoskeleton takes over the task execution. If the task is altered and the existing assistive behaviour becomes inadequate, the exoskeleton gradually adapts to the new task execution so that the increased muscle activity caused by the new desired task can be reduced. The advantage of the proposed method is that it does not require biomechanical or dynamical models. Our proposed learning system uses Dynamical Movement Primitives (DMPs) as a trajectory generator and parameters of DMPs are modulated using Locally Weighted Regression. Then, the learning system is combined with adaptive oscillators that determine the phase and frequency of motion according to measured Electromyography (EMG) signals. We tested the method with real robot experiments where subjects wearing an elbow exoskeleton had to move an object of an unknown mass according to a predefined reference motion. We further evaluated the proposed approach on a whole-arm exoskeleton to show that it is able to adaptively derive assistive torques even for multiple-joint motion. PMID:26881743

  7. Adaptive Control of Exoskeleton Robots for Periodic Assistive Behaviours Based on EMG Feedback Minimisation.

    Science.gov (United States)

    Peternel, Luka; Noda, Tomoyuki; Petrič, Tadej; Ude, Aleš; Morimoto, Jun; Babič, Jan

    2016-01-01

    In this paper we propose an exoskeleton control method for adaptive learning of assistive joint torque profiles in periodic tasks. We use human muscle activity as feedback to adapt the assistive joint torque behaviour in a way that the muscle activity is minimised. The user can then relax while the exoskeleton takes over the task execution. If the task is altered and the existing assistive behaviour becomes inadequate, the exoskeleton gradually adapts to the new task execution so that the increased muscle activity caused by the new desired task can be reduced. The advantage of the proposed method is that it does not require biomechanical or dynamical models. Our proposed learning system uses Dynamical Movement Primitives (DMPs) as a trajectory generator and parameters of DMPs are modulated using Locally Weighted Regression. Then, the learning system is combined with adaptive oscillators that determine the phase and frequency of motion according to measured Electromyography (EMG) signals. We tested the method with real robot experiments where subjects wearing an elbow exoskeleton had to move an object of an unknown mass according to a predefined reference motion. We further evaluated the proposed approach on a whole-arm exoskeleton to show that it is able to adaptively derive assistive torques even for multiple-joint motion.

  8. Altered Modulation of Silent Period in Tongue Motor Cortex of Persistent Developmental Stuttering in Relation to Stuttering Severity.

    Science.gov (United States)

    Busan, Pierpaolo; Del Ben, Giovanni; Bernardini, Simona; Natarelli, Giulia; Bencich, Marco; Monti, Fabrizio; Manganotti, Paolo; Battaglini, Piero Paolo

    2016-01-01

    Motor balance in developmental stuttering (DS) was investigated with Transcranial Magnetic Stimulation (TMS), with the aim to define novel neural markers of persistent DS in adulthood. Eleven DS adult males were evaluated with TMS on tongue primary motor cortex, compared to 15 matched fluent speakers, in a "state" condition (i.e. stutterers vs. fluent speakers, no overt stuttering). Motor and silent period thresholds (SPT), recruitment curves, and silent period durations were acquired by recording tongue motor evoked potentials. Tongue silent period duration was increased in DS, especially in the left hemisphere (Pstuttering severity. Pre-TMS electromyography data gave overlapping evidence. Findings suggest the existence of a complex intracortical balance in DS tongue primary motor cortex, with a particular interplay between excitatory and inhibitory mechanisms, also in neural substrates related to silent periods. Findings are discussed with respect to functional and structural impairments in stuttering, and are also proposed as novel neural markers of a stuttering "state" in persistent DS, helping to define more focused treatments (e.g. neuro-modulation).

  9. Temporal integration of sequential auditory events: silent period in sound pattern activates human planum temporale.

    Science.gov (United States)

    Mustovic, Henrietta; Scheffler, Klaus; Di Salle, Francesco; Esposito, Fabrizio; Neuhoff, John G; Hennig, Jürgen; Seifritz, Erich

    2003-09-01

    Temporal integration is a fundamental process that the brain carries out to construct coherent percepts from serial sensory events. This process critically depends on the formation of memory traces reconciling past with present events and is particularly important in the auditory domain where sensory information is received both serially and in parallel. It has been suggested that buffers for transient auditory memory traces reside in the auditory cortex. However, previous studies investigating "echoic memory" did not distinguish between brain response to novel auditory stimulus characteristics on the level of basic sound processing and a higher level involving matching of present with stored information. Here we used functional magnetic resonance imaging in combination with a regular pattern of sounds repeated every 100 ms and deviant interspersed stimuli of 100-ms duration, which were either brief presentations of louder sounds or brief periods of silence, to probe the formation of auditory memory traces. To avoid interaction with scanner noise, the auditory stimulation sequence was implemented into the image acquisition scheme. Compared to increased loudness events, silent periods produced specific neural activation in the right planum temporale and temporoparietal junction. Our findings suggest that this area posterior to the auditory cortex plays a critical role in integrating sequential auditory events and is involved in the formation of short-term auditory memory traces. This function of the planum temporale appears to be fundamental in the segregation of simultaneous sound sources.

  10. Measuring ipsilateral silent period: Effects of muscle contraction levels and quantification methods.

    Science.gov (United States)

    Kuo, Yi-Ling; Dubuc, Tobin; Boufadel, Danielle F; Fisher, Beth E

    2017-11-01

    Ipsilateral silent period (iSP) is a frequently measured index of interhemispheric inhibition. However, the methodology used across studies has been inconsistent and variable. We investigated the optimal contraction level and quantification methods for achieving iSP measurement consistency. Twenty-five healthy adults performed right isometric thumb abduction under three conditions (30%, 50%, and 100% of maximal voluntary contraction) while transcranial magnetic stimulation was applied over the primary motor cortex representational area of the abductor pollicis brevis. iSP was quantified by: iSP duration, iSP area and normalized iSP. Measurement consistency was determined by the homogeneity of variance test and by the coefficient of variation. iSP was consistent across all contraction levels when measured by iSP duration and normalized iSP. Normalized iSP showed the least measurement variability. We propose that future investigations examining interhemispheric inhibition use normalized iSP for measurement consistency and the ability to compare results across studies. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Lengthened Cutaneous Silent Period in Fibromyalgia Suggesting Central Sensitization as a Pathogenesis.

    Directory of Open Access Journals (Sweden)

    Seol-Hee Baek

    Full Text Available The pathogenesis of fibromyalgia (FM has not been clearly elucidated, but central sensitization, which plays an important role in the development of neuropathic pain, is considered to be the main mechanism. The cutaneous silent period (CSP, which is a spinal reflex mediated by A-delta cutaneous afferents, is useful for the evaluation of sensorimotor integration at the spinal and supraspinal levels. To understand the pathophysiology of FM, we compared CSP patterns between patients with FM and normal healthy subjects. Twenty-four patients with FM diagnosed in accordance with the 1990 American College of Rheumatology classification system and 24 age- and sex-matched healthy volunteers were recruited. The CSP was measured from the abductor pollicis brevis muscle. Demographic data, number of tender points, and visual analog scale and FM impact questionnaire scores were collected. The measured CSP and clinical parameters of the patient and control groups were compared. In addition, possible correlations between the CSP parameters and the other clinical characteristics were analyzed. Mean CSP latencies did not differ between patients (55.50 ± 10.97 ms and healthy controls (60.23 ± 11.87 ms; p = 0.158, although the mean CSP duration was significantly longer in patients (73.75 ± 15.67 ms than in controls (63.50 ± 14.05 ms; p = 0.021. CSP variables did not correlate with any clinical variables. The significantly longer CSP duration in FM patients suggests central dysregulation at the spinal and supraspinal levels, rather than peripheral small fiber dysfunction.

  12. Lengthened Cutaneous Silent Period in Fibromyalgia Suggesting Central Sensitization as a Pathogenesis.

    Science.gov (United States)

    Baek, Seol-Hee; Seok, Hung Youl; Koo, Yong Seo; Kim, Byung-Jo

    2016-01-01

    The pathogenesis of fibromyalgia (FM) has not been clearly elucidated, but central sensitization, which plays an important role in the development of neuropathic pain, is considered to be the main mechanism. The cutaneous silent period (CSP), which is a spinal reflex mediated by A-delta cutaneous afferents, is useful for the evaluation of sensorimotor integration at the spinal and supraspinal levels. To understand the pathophysiology of FM, we compared CSP patterns between patients with FM and normal healthy subjects. Twenty-four patients with FM diagnosed in accordance with the 1990 American College of Rheumatology classification system and 24 age- and sex-matched healthy volunteers were recruited. The CSP was measured from the abductor pollicis brevis muscle. Demographic data, number of tender points, and visual analog scale and FM impact questionnaire scores were collected. The measured CSP and clinical parameters of the patient and control groups were compared. In addition, possible correlations between the CSP parameters and the other clinical characteristics were analyzed. Mean CSP latencies did not differ between patients (55.50 ± 10.97 ms) and healthy controls (60.23 ± 11.87 ms; p = 0.158), although the mean CSP duration was significantly longer in patients (73.75 ± 15.67 ms) than in controls (63.50 ± 14.05 ms; p = 0.021). CSP variables did not correlate with any clinical variables. The significantly longer CSP duration in FM patients suggests central dysregulation at the spinal and supraspinal levels, rather than peripheral small fiber dysfunction.

  13. Cortical Silent Period Reveals Differences Between Adductor Spasmodic Dysphonia and Muscle Tension Dysphonia.

    Science.gov (United States)

    Samargia, Sharyl; Schmidt, Rebekah; Kimberley, Teresa Jacobson

    2016-03-01

    The pathophysiology of adductor spasmodic dysphonia (AdSD), like other focal dystonias, is largely unknown. The purposes of this study were to determine (a) cortical excitability differences between AdSD, muscle tension dysphonia (MTD), and healthy controls; (b) distribution of potential differences in cranial or skeletal muscle; and (c) if cortical excitability measures assist in the differential diagnosis of AdSD and MTD. Ten participants with adductor spasmodic dysphonia, 8 with muscle tension dysphonia, and 10 healthy controls received single and paired pulse transcranial magnetic stimulation (TMS) to the primary motor cortex contralateral to tested muscles, first dorsal interosseus (FDI), and masseter. We tested the hypothesis that cortical excitability measures in AdSD would be significantly different from those in MTD and healthy controls. In addition, we hypothesized that there would be a correlation between cortical excitability measures and clinical voice severity in AdSD. Cortical silent period duration in masseter and FDI was significantly shorter in AdSD than MTD and healthy controls. Other measures failed to demonstrate differences. There are differences in cortical excitability between AdSD, MTD, and healthy controls. These differences in the cortical measure of both the FDI and masseter muscles in AdSD suggest widespread dysfunction of the GABAB mechanism may be a pathophysiologic feature of AdSD, similar to other forms of focal dystonia. Further exploration of the use of TMS to assist in the differential diagnosis of AdSD and MTD is warranted. © The Author(s) 2015.

  14. Assessment of work-related muscle strain by using surface EMG during test contractions interposed between work periods of simulateted mushroom picking

    DEFF Research Database (Denmark)

    Ohashi, Jun-Ya; Blangsted, Anne Katrine; Nielsen, Pernille Kofoed

    2010-01-01

    Surface electromyograms(EMG) during test contractions (TCs) were studied to assess the muscle strain in simulated mushroom picking. Additionally, the duration of the TC for the effective assessment was investigated. Nine female subjects performed standardized shoulder abduction and a stooped...... minutes in the rest periods. EMGs were recorded from the trapezius, infraspinatus, deltoid, and erector spinae muscles. The amplitude of EMG (AEMG) and mean power frequency (MPF) of EMG were calculated. Each TC was divided equally into three parts. Ratings of perceived exertion (RPE) in the neck, shoulder...... during the TCs. AEMG and MPF fluctuated before W1 although the changes of RPE were small. Averaging several TCs was recommended to get stable results from TCs. EMG changes and appropriate TC conditions were discussed in relation to the adaptation in fatiguing contractions....

  15. Silent Ischemia

    Science.gov (United States)

    ... blood pressure (hypertension). Coronary artery anomalies (CAAs). Smoking. Obesity. Cardiomyopathy. Alcohol and drug abuse. What are the symptoms of silent ischemia? Silent ischemia has no symptoms. ...

  16. 'Silent mentors'

    DEFF Research Database (Denmark)

    Douglas-Jones, Rachel

    2017-01-01

    Unlike cadaver donation in the West, which has to a large degree maintained the anonymity of the body used to teach medical students, the Taiwanese Tzu Chi Buddhist Silent Mentor programme at the centre of this article foregrounds the identity of the training cadaver as an essential element in me...

  17. Foule et public Crowd and audience. Reflections about the French theory of reception studies in the silent period

    Directory of Open Access Journals (Sweden)

    Emmanuel Plasseraud

    2012-04-01

    Full Text Available La conception de la réception filmique de la théorie française, lors de la période muette, repose sur la notion de foule. Apparue au cours du xixe siècle, cette notion a donné lieu à de nombreuses appréciations, que l’on retrouve dans les textes sur le cinéma. Reprenant la conception dominante, héritée de la psychologie des foules vulgarisée par Gustave Le Bon, les cinéphobes considèrent le cinéma comme un lieu où les foules réunies soulagent ou excitent leurs bas-instincts. Les cinéphiles, en revanche, voient dans le cinéma la possibilité d’une refondation communautaire moderne où les foules retrouvent une spiritualité perdue. Pour eux, dans les salles obscures propices à une expérience hypnotique, les foules communient. C’est cette dernière conception qui est à la base de l’idée, inventée par Canudo et reprise, avec des nuances, par Delluc, Gance, Epstein ou L’Herbier, de « septième art ». Mais correspond-elle à la réalité des pratiques spectatorielles de l’époque ? Peut-on considérer le public de cinéma comme un ensemble uniforme, tel qu’il semble apparaître à travers l’idée de foule ? On peut penser que non, et que cet écart entre théorie et réalité de la réception filmique est une des raisons des difficultés du cinéma français face au cinéma américain. L’impasse théorique dans laquelle la notion de foule a entraîné la conception française de la réception filmique apparaît avec évidence à travers l’exemple de Germaine Dulac. La première parmi ses confrères français, elle exprima des réserves sur la capacité du cinéma à faire communier les foules. Elle reconnut que c’était le public dans sa diversité qui imposerait ses goûts aux fabricants de films, ce que les producteurs hollywoodiens avaient déjà assimilé.The film reception idea of French theory, in the silent period, is basically linked to the notion of crowd. This notion appeared during the19

  18. Assessment of work-related muscle strain by using surface EMG during test contractions interposed between work periods of simulateted mushroom picking

    DEFF Research Database (Denmark)

    Ohashi, Jun-Ya; Blangsted, Anne Katrine; Nielsen, Pernille Kofoed

    2010-01-01

    Surface electromyograms(EMG) during test contractions (TCs) were studied to assess the muscle strain in simulated mushroom picking. Additionally, the duration of the TC for the effective assessment was investigated. Nine female subjects performed standardized shoulder abduction and a stooped post...... during the TCs. AEMG and MPF fluctuated before W1 although the changes of RPE were small. Averaging several TCs was recommended to get stable results from TCs. EMG changes and appropriate TC conditions were discussed in relation to the adaptation in fatiguing contractions....

  19. Assessment of work-related muscle strain by using surface EMG during test contractions interposed between work periods of simulateted mushroom picking

    DEFF Research Database (Denmark)

    Ohashi, Jun-Ya; Blangsted, Anne Katrine; Nielsen, Pernille Kofoed

    2010-01-01

    Surface electromyograms(EMG) during test contractions (TCs) were studied to assess the muscle strain in simulated mushroom picking. Additionally, the duration of the TC for the effective assessment was investigated. Nine female subjects performed standardized shoulder abduction and a stooped...

  20. Experimentally induced stress validated by EMG activity.

    Directory of Open Access Journals (Sweden)

    Rosan Luijcks

    Full Text Available Experience of stress may lead to increased electromyography (EMG activity in specific muscles compared to a non-stressful situation. The main aim of this study was to develop and validate a stress-EMG paradigm in which a single uncontrollable and unpredictable nociceptive stimulus was presented. EMG activity of the trapezius muscles was the response of interest. In addition to linear time effects, non-linear EMG time courses were also examined. Taking into account the hierarchical structure of the dataset, a multilevel random regression model was applied. The stress paradigm, executed in N = 70 subjects, consisted of a 3-minute baseline measurement, a 3-minute pre-stimulus stress period and a 2-minute post-stimulus phase. Subjects were unaware of the precise moment of stimulus delivery and its intensity level. EMG activity during the entire experiment was conform a priori expectations: the pre-stimulus phase showed a significantly higher mean EMG activity level compared to the other two phases, and an immediate EMG response to the stimulus was demonstrated. In addition, the analyses revealed significant non-linear EMG time courses in all three phases. Linear and quadratic EMG time courses were significantly modified by subjective anticipatory stress level, measured just before the start of the stress task. Linking subjective anticipatory stress to EMG stress reactivity revealed that subjects with a high anticipatory stress level responded with more EMG activity during the pre-stimulus stress phase, whereas subjects with a low stress level showed an inverse effect. Results suggest that the stress paradigm presented here is a valid test to quantify individual differences in stress susceptibility. Further studies with this paradigm are required to demonstrate its potential use in mechanistic clinical studies.

  1. Characteristics of silent countingin synchronized swimmers

    Directory of Open Access Journals (Sweden)

    Sergey V. Leonov

    2012-01-01

    Full Text Available This article describes the temporal characteristics of silent counting as used duringa competition by the Russian youth team of synchronized swimmers. Theathletes listened to the music that accompanied their performance at the competition.Diff erent indices of silent counting were defi ned, such as the beginningand cessation of diff erent periods of counting, counting frequency, the stabilityof the temporal structure of silent counting, the degree of synchronization of silentcounting at diff erent moments during the sports program. We studied therelationship of these characteristics of counting with expert estimates of the athletes’sense of tempo, coordination of movements, and choreographic abilities.

  2. Challenging silent PPO discounts.

    Science.gov (United States)

    Speisman, Albert; Hachenburg, Mary

    2006-11-01

    Hospitals and other healthcare providers suffer considerable financial loss each year because of silent PPOs. By following these measures, you can help protect your organization from such loss: Educating hospital staff to recognize silent PPO patterns Carefully wording and negotiating managed care contracts Requiring payers to fully comply with all contract terms

  3. Silent ischaemia and hypertension

    NARCIS (Netherlands)

    Boon, D.; Piek, J. J.; van Montfrans, G. A.

    2000-01-01

    For many years now, silent ischaemia has been recognized as a distinct clinical entity, and its relevance in different patient groups has been established. However, a number of basic questions have not been answered. In explaining the pathophysiology of silent ischaemia, factors affecting both the

  4. Subauditory Speech Recognition based on EMG/EPG Signals

    Science.gov (United States)

    Jorgensen, Charles; Lee, Diana Dee; Agabon, Shane; Lau, Sonie (Technical Monitor)

    2003-01-01

    Sub-vocal electromyogram/electro palatogram (EMG/EPG) signal classification is demonstrated as a method for silent speech recognition. Recorded electrode signals from the larynx and sublingual areas below the jaw are noise filtered and transformed into features using complex dual quad tree wavelet transforms. Feature sets for six sub-vocally pronounced words are trained using a trust region scaled conjugate gradient neural network. Real time signals for previously unseen patterns are classified into categories suitable for primitive control of graphic objects. Feature construction, recognition accuracy and an approach for extension of the technique to a variety of real world application areas are presented.

  5. Difficulty with out-loud and silent reading in glaucoma.

    Science.gov (United States)

    Ramulu, Pradeep Y; Swenor, Bonnielin K; Jefferys, Joan L; Friedman, David S; Rubin, Gary S

    2013-01-23

    We evaluated the impact of glaucoma on out-loud and silent reading. METHODS. Glaucoma patients with bilateral visual field (VF) loss and normally-sighted controls had the following parameters measured: speed reading an International Reading Speed Text (IReST) passage out loud, maximum out-loud MNRead chart reading speed, sustained (30 minutes) silent reading speed, and change in reading speed during sustained silent reading. Glaucoma subjects read slower than controls on the IReST (147 vs. 163 words per minute [wpm], P reading speeds were 12 wpm (6%-7%) slower among glaucoma subjects compared to controls (P reading speed was 16% slower (95% confidence interval [CI] = -24 to -6%, P = 0.002). Each 5 decibel (dB) decrement in better-eye VF mean deviation was associated with 6 wpm slower IReST reading (95% CI = -9 to -3%, P reading (95% CI = -7 to -2%, P reading (95% CI = -13 to -6%, P reading speed decline of 0.5 wpm/min or more over the sustained silent reading period was more common among glaucoma subjects than controls (odds ratio [OR] = 2.2, 95% CI = 1.0-4.9, P Reading speed is slower among glaucoma patients with bilateral VF loss, with the greatest impact present during sustained silent reading. Persons with glaucoma fatigue during silent reading, resulting in slower reading over time.

  6. EMG processing to interpret a neural tension-limiting mechanism with fatigue.

    Science.gov (United States)

    La Delfa, Nicholas J; Sutherland, Chad A; Potvin, Jim R

    2014-09-01

    Surface electromyography (sEMG) amplitude increases with constant muscle tension during fatiguing sub-maximum efforts. The purpose of this study was to determine if extreme highpass filtering and/or autoregressive whitening would result in a more consistent sEMG-to-moment ratio than a standard bandpass filter (20-500 Hz) during repeated, dynamic maximal efforts of the quadriceps. We collected sEMG and knee extensor moment from 16 participants during the concentric and eccentric phases of repeated, maximal knee extensor efforts. The alternative processing methods provided more consistent vastus medialis and lateralis sEMG-to-moment ratios. A neural tension-limiting mechanism appeared to exist and was magnified during the eccentric phase, particularly with fatigue. There appears to be a difference in how the central nervous system controls concentric and eccentric efforts as the quadriceps fatigues, and this is more apparent with the alternative EMG processing methods we used. Copyright © 2013 Wiley Periodicals, Inc.

  7. EEG–EMG polygraphic study of dystonia and myoclonus in a case of Creutzfeldt–Jakob disease

    Directory of Open Access Journals (Sweden)

    Takao Hashimoto

    2015-01-01

    Full Text Available We report on a patient with sporadic Creutzfeldt–Jakob disease (CJD who showed dystonia, periodic myoclonus, and periodic sharp wave complexes (PSWCs on EEG. The EEG–EMG polygraphic study revealed that dystonia appeared without relation to periodic myoclonus and PSWCs and that dystonia EMGs were strongly suppressed after periodic myoclonus EMGs. These findings suggest that dystonia has a pathogenesis different from that of periodic myoclonus and PSWCs, but dystonia and periodic myoclonus may be generated through the sensorimotor cortex in CJD.

  8. From "silent teachers" to models.

    Science.gov (United States)

    Eisma, Roos; Wilkinson, Tracey

    2014-10-01

    For decades, embalmed cadavers have played an important role in teaching anatomy to the scientists and doctors of the future. Most anatomy departments use a traditional formaldehyde-based embalming method, but formalin embalming makes the bodies very rigid, which limits their usefulness for procedures other than dissection. A more recent embalming method developed by W. Thiel has allowed these "silent teachers" to take on a further role in applied anatomy research and teaching: to act as models for surgical training and medical research.

  9. From "silent teachers" to models.

    Directory of Open Access Journals (Sweden)

    Roos Eisma

    2014-10-01

    Full Text Available For decades, embalmed cadavers have played an important role in teaching anatomy to the scientists and doctors of the future. Most anatomy departments use a traditional formaldehyde-based embalming method, but formalin embalming makes the bodies very rigid, which limits their usefulness for procedures other than dissection. A more recent embalming method developed by W. Thiel has allowed these "silent teachers" to take on a further role in applied anatomy research and teaching: to act as models for surgical training and medical research.

  10. From Silent to Talkative Participants

    DEFF Research Database (Denmark)

    Nielsen, Kurt Aagaard; Olsén, Peter; Nielsen, Birger Steen

    1996-01-01

    Recent research on the social construction of technology stresses the importance of investigating the negotiation between all interests in production and reproduction. This article presents the weaknesses and strengths of the so-called theory of social shaping of technology. The authors...... are sceptical as to the ability of this tradition to explain the fact that workers are silent participants in negotiations. In an account of a project called 'Industry and Happiness' the authors argue that attention must be paid to workers' life situation and not only to their work experience. They further...

  11. Masticatory Muscle Sleep Background EMG Activity is Elevated in Myofascial TMD Patients

    Science.gov (United States)

    Raphael, Karen G.; Janal, Malvin N.; Sirois, David A.; Dubrovsky, Boris; Wigren, Pia E.; Klausner, Jack J.; Krieger, Ana C.; Lavigne, Gilles J.

    2013-01-01

    Despite theoretical speculation and strong clinical belief, recent research using laboratory polysomnographic (PSG) recording has provided new evidence that frequency of sleep bruxism (SB) masseter muscle events, including grinding or clenching of the teeth during sleep, is not increased for women with chronic myofascial temporomandibular disorder (TMD). The current case-control study compares a large sample of women suffering from chronic myofascial TMD (n=124) with a demographically matched control group without TMD (n=46) on sleep background electromyography (EMG) during a laboratory PSG study. Background EMG activity was measured as EMG root mean square (RMS) from the right masseter muscle after lights out. Sleep background EMG activity was defined as EMG RMS remaining after activity attributable to SB, other orofacial activity, other oromotor activity and movement artifacts were removed. Results indicated that median background EMG during these non SB-event periods was significantly higher (pmyofascial TMD (median=3.31 μV and mean=4.98 μV) than for control women (median=2.83 μV and mean=3.88 μV) with median activity in 72% of cases exceeding control activity. Moreover, for TMD cases, background EMG was positively associated and SB event-related EMG was negatively associated with pain intensity ratings (0–10 numerical scale) on post sleep waking. These data provide the foundation for a new focus on small, but persistent, elevations in sleep EMG activity over the course of the night as a mechanism of pain induction or maintenance. PMID:24237356

  12. Underlying skills of oral and silent reading

    NARCIS (Netherlands)

    Van Den Boer, Madelon; van Bergen, Elsje; de Jong, Peter F.

    2014-01-01

    Many studies have examined reading and reading development. The majority of these studies, however, focused on oral reading rather than on the more dominant silent reading mode. Similarly, it is common practice to assess oral reading abilities rather than silent reading abilities in schools and in

  13. Seizure detection algorithms based on EMG signals

    DEFF Research Database (Denmark)

    Conradsen, Isa

    Background: the currently used non-invasive seizure detection methods are not reliable. Muscle fibers are directly connected to the nerves, whereby electric signals are generated during activity. Therefore, an alarm system on electromyography (EMG) signals is a theoretical possibility. Objective......: to show whether medical signal processing of EMG data is feasible for detection of epileptic seizures. Methods: EMG signals during generalised seizures were recorded from 3 patients (with 20 seizures in total). Two possible medical signal processing algorithms were tested. The first algorithm was based...... the frequency-based algorithm was efficient for detecting the seizures in the third patient. Conclusion: Our results suggest that EMG signals could be used to develop an automatic seizuredetection system. However, different patients might require different types of algorithms /approaches....

  14. [Silent myocardial ischemia in diabetics].

    Science.gov (United States)

    Zednícek, L; Hrubá, J

    1989-11-01

    The present communication deals with knowledge gained at detecting episodes of silent myocardial ischaemia in a group of diabetics with a positive load ECG test. With the recent advance of new examination methods it becomes evident that the asymptomatic transitional defects of perfusion or myocardial function in patients with ischaemic heart disease are apparently the most frequent ischaemic accidents which the patient experiences during his or her usual daily activity. They are not caused by increased demands on oxygen supply by the myocardium, rather it is the case of decreased oxygen supply due to dynamic changes in arterial blood supply of the myocardium during transient arterial vasoconstriction. These accidents are markedly more frequent in diabetic patients in whom an earlier and more severe development of ischaemic heart disease occurs. Associated are also specific changes in autonomous nerve fibres conducting pain, which shift a number of ischaemic episodes to the asymptomatic form.

  15. A Study on EMG-based Biometrics

    Directory of Open Access Journals (Sweden)

    Jin Su Kim

    2017-05-01

    Full Text Available Biometrics is a technology that recognizes user's information by using unique physical features of his or her body such as face, fingerprint, and iris. It also uses behavioral features such as signature, electrocardiogram (ECG, electromyogram (EMG, and electroencephalogram (EEG. Among them, the EMG signal is a sign generated when the muscles move, which can be used in various fields such as motion recognition, personal identification, and disease diagnosis. In this paper, we analyze EMG-based biometrics and implement a motion recognition and personal identification system. The system extracted features using non-uniform filter bank and Waveform Length (WL, and reduces the dimension using Principal Component Analysis (PCA and Linear Discriminant Analysis (LDA. Afterward, it classified the features using Euclidean Distance (ED, Support Vector Machine (SVM and K Nearest Neighbors (KNN. As a result of the motion recognition experiment, 95% of acquired EMG data and 84.66% of UCI data were obtained and as a result of the personal recognition experiment, 85% of acquired EMG data and 88.66% of UCI data were obtained.

  16. The Response of Hyperkinesis to EMG Biofeedback.

    Science.gov (United States)

    Haight, Maryellen J.; And Others

    A study was conducted involving eight hyperkinetic males (11-15 years old) to determine if Ss receiving electromyography (EMG) biofeedback training would show a reduction in frontalis muscle tension, hyperactivity, and lability, and increases in self-esteem and visual and auditory attention span. Individual 45- and 30-minute relaxation exercises…

  17. Predicting 3D lip shapes using facial surface EMG

    NARCIS (Netherlands)

    Eskes, Merijn; van Alphen, Maarten J. A.; Balm, Alfons J. M.; Smeele, Ludi E.; Brandsma, Dieta; van der Heijden, Ferdinand

    2017-01-01

    Aim The aim of this study is to prove that facial surface electromyography (sEMG) conveys sufficient information to predict 3D lip shapes. High sEMG predictive accuracy implies we could train a neural control model for activation of biomechanical models by simultaneously recording sEMG signals and

  18. Achieving professional success in US government, academia, and industry: an EMGS commentary.

    Science.gov (United States)

    Poirier, Miriam C; Schwartz, Jeffrey L; Aardema, Marilyn J

    2014-08-01

    One of the goals of the EMGS is to help members achieve professional success in the fields they have trained in. Today, there is greater competition for jobs in genetic toxicology, genomics, and basic research than ever before. In addition, job security and the ability to advance in one's career is challenging, regardless of whether one works in a regulatory, academic, or industry environment. At the EMGS Annual Meeting in Monterey, CA (September, 2013), the Women in EMGS Special Interest Group held a workshop to discuss strategies for achieving professional success. Presentations were given by three speakers, each representing a different employment environment: Government (Miriam C. Poirier), Academia (Jeffrey L. Schwartz), and Industry (Marilyn J. Aardema). Although some differences in factors or traits affecting success in the three employment sectors were noted by each of the speakers, common factors considered important for advancement included networking, seeking out mentors, and developing exceptional communication skills. © 2014 Wiley Periodicals, Inc.

  19. Prevalence and prognostic significance of silent myocardial ischemia in patients after myocardial infarction

    Directory of Open Access Journals (Sweden)

    Deljanin-Ilić Marina Ž.

    2007-01-01

    Full Text Available Background/Aim. Silent myocardial ischemia (MI can be detected in subjects with any symptoms, in patients after myocardial infarction and in coronary patients who have episodes of symptomatic, as well as of silent MI. This study was carried out to evaluate the frequency, characteristics and prognostic significance of silent MI detected in stress echocardiography test in patients after myocardial infarction. Methods. In 210 patients within three months after myocardial infarction exercise test was performed. In those patients with ischemic ST depression on exercise electrocardiogram, in order to confirm MI stress echocardiography was additionally performed. To assess the incidence of major cariovascular events, all the patients were followed at least five years after the first myocardial infraction. Results. Out of 210 patients 88 (42% had ischemic response during stress echocardiography test. Out of 88 patients with MI 54 (61% had anginal pain (patients with symptomatic MI, while 34 (39% were free of symptoms (patients with silent MI. Level of exercise test, heart rate, time to the onset of ST segment depression, and the magnitude of ST segment depression were similar in both subgroups of the patients with MI. Duration of exercise test was longer in patients with silent MI (p < 0.05. Wall motion score index during stress echocardiography was higher in patients with symptomatic MI (p < 0.05. Coronary angiography findings were similar in patients with silent and those with symptomatic MI. During a five- yearsfollow- up period the occurrence of major cardic events (cardiac mortality and recurrent myocardial infarction was similar in both subgroups of the patients with MI. Conclusion. In more than one third of patients after myocardial infarction silent MI during stress echocardiography was detected. The patients with silent ischemia had longer duration of exercise test and smaller wall motion score index on stress echocardiography. There was no

  20. Modulation of EMG-EMG Coherence in a Choice Stepping Task

    Directory of Open Access Journals (Sweden)

    Ippei Nojima

    2018-02-01

    Full Text Available The voluntary step execution task is a popular measure for identifying fall risks among elderly individuals in the community setting because most falls have been reported to occur during movement. However, the neurophysiological functions during this movement are not entirely understood. Here, we used electromyography (EMG to explore the relationship between EMG-EMG coherence, which reflects common oscillatory drive to motoneurons, and motor performance associated with stepping tasks: simple reaction time (SRT and choice reaction time (CRT tasks. Ten healthy elderly adults participated in the study. Participants took a single step forward in response to a visual imperative stimulus. EMG-EMG coherence was analyzed for 1000 ms before the presentation of the stimulus (stationary standing position from proximal and distal tibialis anterior (TA and soleus (SOL muscles. The main result showed that all paired EMG-EMG coherences in the alpha and beta frequency bands were greater in the SRT than the CRT task. This finding suggests that the common oscillatory drive to the motoneurons during the SRT task occurred prior to taking a step, whereas the lower value of corticospinal activity during the CRT task prior to taking a step may indicate an involvement of inhibitory activity, which is consistent with observations from our previous study (Watanabe et al., 2016. Furthermore, the beta band coherence in intramuscular TA tended to positively correlate with the number of performance errors that are associated with fall risks in the CRT task, suggesting that a reduction in the inhibitory activity may result in a decrease of stepping performance. These findings could advance the understanding of the neurophysiological features of postural adjustments in elderly individuals.

  1. Purely Magnetic Silent Universes do not Exist

    Science.gov (United States)

    Vu, K. T.; Carminati, J.

    2008-09-01

    We present a new Maple package called STeM (Symbolic Tetrad Manipulation). Using STeM, we outline, using a formalism which is a hybrid of the NP and Orthonormal ones, the proof of the nonexistence of purely magnetic silent universes.

  2. Cor Winkler Prins, the silent force

    NARCIS (Netherlands)

    Hoek Ostende, van den L.W.; Donovan, S.K.

    2010-01-01

    Contents - Introduction - Son of a famous family - The student years - Curator and science manager - A brachiopod life - Acknowledgements - Principal scientific publications of Cor Winkler Prins Introduction Silent respect. It is the way the Cornelius Winkler Prins treated the world, and often the

  3. Augmented effects of EMG biofeedback interfaced with virtual reality on neuromuscular control and movement coordination during reaching in children with cerebral palsy.

    Science.gov (United States)

    Yoo, Ji Won; Lee, Dong Ryul; Cha, Young Joo; You, Sung Hyun

    2017-01-01

    The purpose of the present study was to compare therapeutic effects of an electromyography (EMG) biofeedback augmented by virtual reality (VR) and EMG biofeedback alone on the triceps and biceps (T:B) muscle activity imbalance and elbow joint movement coordination during a reaching motor taskOBJECTIVE: To compare therapeutic effects of an electromyography (EMG) biofeedback augmented by virtual reality (VR) and EMG biofeedback alone on the triceps and biceps muscle activity imbalance and elbow joint movement coordination during a reaching motor task in normal children and children with spastic cerebral palsy (CP). 18 children with spastic CP (2 females; mean±standard deviation = 9.5 ± 1.96 years) and 8 normal children (3 females; mean ± standard deviation = 9.75 ± 2.55 years) were recruited from a local community center. All children with CP first underwent one intensive session of EMG feedback (30 minutes), followed by one session of the EMG-VR feedback (30 minutes) after a 1-week washout period. Clinical tests included elbow extension range of motion (ROM), biceps muscle strength, and box and block test. EMG triceps and biceps (T:B) muscle activity imbalance and reaching movement acceleration coordination were concurrently determined by EMG and 3-axis accelerometer measurements respectively. Independent t-test and one-way repeated analysis of variance (ANOVA) were performed at p peak triceps muscle activity (p = 0.01). However, one-way repeated ANOVA produced no statistical significance in the composite 3-dimensional movement acceleration coordination data (p = 0.12). The present study is a first clinical trial that demonstrated the superior benefits of the EMG biofeedback when augmented by virtual reality exercise games in children with spastic CP. The augmented EMG and VR feedback produced better neuromuscular balance control in the elbow joint than the EMG biofeedback alone.

  4. Evoked EMG-based torque prediction under muscle fatigue in implanted neural stimulation

    Science.gov (United States)

    Hayashibe, Mitsuhiro; Zhang, Qin; Guiraud, David; Fattal, Charles

    2011-10-01

    In patients with complete spinal cord injury, fatigue occurs rapidly and there is no proprioceptive feedback regarding the current muscle condition. Therefore, it is essential to monitor the muscle state and assess the expected muscle response to improve the current FES system toward adaptive force/torque control in the presence of muscle fatigue. Our team implanted neural and epimysial electrodes in a complete paraplegic patient in 1999. We carried out a case study, in the specific case of implanted stimulation, in order to verify the corresponding torque prediction based on stimulus evoked EMG (eEMG) when muscle fatigue is occurring during electrical stimulation. Indeed, in implanted stimulation, the relationship between stimulation parameters and output torques is more stable than external stimulation in which the electrode location strongly affects the quality of the recruitment. Thus, the assumption that changes in the stimulation-torque relationship would be mainly due to muscle fatigue can be made reasonably. The eEMG was proved to be correlated to the generated torque during the continuous stimulation while the frequency of eEMG also decreased during fatigue. The median frequency showed a similar variation trend to the mean absolute value of eEMG. Torque prediction during fatigue-inducing tests was performed based on eEMG in model cross-validation where the model was identified using recruitment test data. The torque prediction, apart from the potentiation period, showed acceptable tracking performances that would enable us to perform adaptive closed-loop control through implanted neural stimulation in the future.

  5. STUDY OF IMMUNITY TO POLIOVIRUSES ON CERTAIN "SILENT" TERRITORIES OF RUSSIA

    Directory of Open Access Journals (Sweden)

    N. I. Romanenkova

    2011-01-01

    Full Text Available Abstract. The degree of immunity to polioviruses of three serotypes among children of different ages was analysed on certain "controlled" and "silent" territories of Russia in different periods of Polio Eradication Initiative. It was shown that the levels of immunity of children’s population to polioviruses on "controlled" and "silent" territories had no significant difference. It was stated that on the phase which preceded the certification for the absence of circulation of wild polioviruses, when the National Immunisation Days were conducted in the country, the percentage of eronegative children to polioviruses of different serotypes was low on all the territories of Russia. After Russia as a part of the WHO European region was certified as a polio free country and mass immunisation was stopped thepercentage of seronegative children increased, especially to poliovirus of serotype 3, both on the "controlled" and on the "silent" territories.

  6. Locomotor training with body weight support in SCI: EMG improvement is more optimally expressed at a low testing speed.

    Science.gov (United States)

    Meyns, P; Van de Crommert, H W A A; Rijken, H; van Kuppevelt, D H J M; Duysens, J

    2014-12-01

    Case series. To determine the optimal testing speed at which the recovery of the EMG (electromyographic) activity should be assessed during and after body weight supported (BWS) locomotor training. Tertiary hospital, Sint Maartenskliniek, Nijmegen, The Netherlands. Four participants with incomplete chronic SCI were included for BWS locomotor training; one AIS-C and three AIS-D (according to the ASIA (American Spinal Injury Association) Impairment Scale or AIS). All were at least 5 years after injury. The SCI participants were trained three times a week for a period of 6 weeks. They improved their locomotor function in terms of higher walking speed, less BWS and less assistance needed. To investigate which treadmill speed for EMG assessment reflects the functional improvement most adequately, all participants were assessed weekly using the same two speeds (0.5 and 1.5 km h(-1), referred to as low and high speed, respectively) for 6 weeks. The change in root mean square EMG (RMS EMG) was assessed in four leg muscles; biceps femoris, rectus femoris, gastrocnemius medialis and tibialis anterior. The changes in RMS EMG occurred at similar phases of the step cycle for both walking conditions, but these changes were larger when the treadmill was set at a low speed (0.5 km h(-1)). Improvement in gait is feasible with BWS treadmill training even long after injury. The EMG changes after treadmill training are more optimally expressed using a low rather than a high testing treadmill speed.

  7. EMG evaluation of hip adduction exercises for soccer players

    DEFF Research Database (Denmark)

    Serner, Andreas; Jakobsen, Markus Due; Andersen, Lars Louis

    2014-01-01

    traditional and two new hip adduction exercises. Additionally, to analyse muscle activation of gluteals and abdominals. MATERIALS AND METHODS: 40 healthy male elite soccer players, training >5 h a week, participated in the study. Muscle activity using surface electromyography (sEMG) was measured bilaterally...... for the adductor longus during eight hip adduction strengthening exercises and peak EMG was normalised (nEMG) using an isometric maximal voluntary contraction (MVC) as reference. Furthermore, muscle activation of the gluteus medius, rectus abdominis and the external abdominal obliques was analysed during...... the exercises. RESULTS: There were large differences in peak nEMG of the adductor longus between the exercises, with values ranging from 14% to 108% nEMG (pEMG results for the gluteals...

  8. Filter banks and the "Intensity Analysis" of EMG

    OpenAIRE

    Borg, Frank

    2010-01-01

    Vinzenz von Tscharner (2000) has presented an interesting mathematical method for analyzing EMG-data called "intensity analysis" (EMG = electromyography). Basically the method is a sort of bandpassing of the signal. The central idea of the method is to describe the "power" (or "intensity") of a non-stationary EMG signal as a function both of time and of frequency. The connection with wavelet theory is that the filter is constructed by rescaling a given mother wavelet using a special array of ...

  9. Circadian force and EMG activity in hindlimb muscles of rhesus monkeys

    Science.gov (United States)

    Hodgson, J. A.; Wichayanuparp, S.; Recktenwald, M. R.; Roy, R. R.; McCall, G.; Day, M. K.; Washburn, D.; Fanton, J. W.; Kozlovskaya, I.; Edgerton, V. R.; hide

    2001-01-01

    Continuous intramuscular electromyograms (EMGs) were recorded from the soleus (Sol), medial gastrocnemius (MG), tibialis anterior (TA), and vastus lateralis (VL) muscles of Rhesus during normal cage activity throughout 24-h periods and also during treadmill locomotion. Daily levels of MG tendon force and EMG activity were obtained from five monkeys with partial datasets from three other animals. Activity levels correlated with the light-dark cycle with peak activities in most muscles occurring between 08:00 and 10:00. The lowest levels of activity generally occurred between 22:00 and 02:00. Daily EMG integrals ranged from 19 mV/s in one TA muscle to 3339 mV/s in one Sol muscle: average values were 1245 (Sol), 90 (MG), 65 (TA), and 209 (VL) mV/s. The average Sol EMG amplitude per 24-h period was 14 microV, compared with 246 microV for a short burst of locomotion. Mean EMG amplitudes for the Sol, MG, TA, and VL during active periods were 102, 18, 20, and 33 microV, respectively. EMG amplitudes that approximated recruitment of all fibers within a muscle occurred for 5-40 s/day in all muscles. The duration of daily activation was greatest in the Sol [151 +/- 45 (SE) min] and shortest in the TA (61 +/- 19 min). The results show that even a "postural" muscle such as the Sol was active for only approximately 9% of the day, whereas less active muscles were active for approximately 4% of the day. MG tendon forces were generally very low, consistent with the MG EMG data but occasionally reached levels close to estimates of the maximum force generating potential of the muscle. The Sol and TA activities were mutually exclusive, except at very low levels, suggesting very little coactivation of these antagonistic muscles. In contrast, the MG activity usually accompanied Sol activity suggesting that the MG was rarely used in the absence of Sol activation. The results clearly demonstrate a wide range of activation levels among muscles of the same animal as well as among different

  10. Correlated EMG Oscillations between Antagonists during Cocontraction in Men.

    Science.gov (United States)

    Yoshitake, Yasuhide; Kanehisa, Hiroaki; Shinohara, Minoru

    2017-03-01

    The purpose of this study was to determine the modulation of common low-frequency oscillations in pools of motor units across antagonistic muscles because of the difference in the activation level of pools of spinal motor neurons and the presence of neuromuscular fatigue during intended cocontraction. Ten healthy young men (21.8 ± 1.5 yr) performed intended steady cocontractions of elbow flexors and extensors at maximal and a submaximal (10% of maximal EMG) effort. The submaximal cocontraction was repeated after sustained maximal contraction of elbow flexors. Surface EMG was recorded from the biceps brachii and triceps brachii muscles. Correlated EMG oscillations between the antagonistic muscles were quantified by the cross-correlation function (CCF) using rectified EMG for the EMG for the 3- to 15-Hz bands. The positive CCF peak in rectified EMG EMG, a negative CCF peak (i.e., out-of-phase oscillations) during submaximal cocontraction was smaller compared with maximal cocontraction but increased after the sustained contraction. Across subjects, the degree of reduction in maximal EMG amplitude after the sustained contraction was correlated with the amount of change in the CCF peak in EMG oscillations between antagonistic muscles occur during intended cocontraction, and 2) the magnitude of these correlated oscillations increases with the activation level of pools of spinal motor neurons and neuromuscular fatigue.

  11. Surface EMG measurements during fMRI at 3T : Accurate EMG recordings after artifact correction

    NARCIS (Netherlands)

    van Duinen, Hiske; Zijdewind, Inge; Hoogduin, H; Maurits, N

    2005-01-01

    In this experiment, we have measured surface EMG of the first dorsal interosseus during predefined submaximal isometric contractions (5, 15, 30, 50, and 70% of maximal force) of the index finger simultaneously with fMRI measurements. Since we have used sparse sampling fMRI (3-s scanning; 2-s

  12. Teen Depression and Suicide, A SILENT CRISIS.

    Science.gov (United States)

    Kroning, Maureen; Kroning, Kayla

    2016-01-01

    Adolescent depression is a serious problem affecting 10.7% of all teens and 29.9% of high school students; 17% of high school students have contemplated suicide. Yet, depression in teens is often unrecognized. This article relays the tragic death of a 17-year-old, along with symptoms of depression and suicide in adolescents; DSM-5 criteria for depression; treatments including protective factors, psychotherapy, and medications; and imparts interventions for addressing this huge but silent crisis.

  13. Musical hallucination: Silent presentation of stroke

    Directory of Open Access Journals (Sweden)

    Prerna Kukreti

    2016-01-01

    Full Text Available Temporal lobe pathologies have often been associated with psychiatric symptoms. Left temporal lobe pathologies usually present with localizing neurological signs, however, right temporal lobe pathologies often go undetected. Here, we describe a case with unique psychopathology in form of musical hallucinations as the only silent manifestation of underlying right temporal lobe stroke. Case presentation, inherent diagnostic dilemma, and innovative treatment methodology have been described.

  14. EMG-Based Estimation of Limb Movement Using Deep Learning With Recurrent Convolutional Neural Networks.

    Science.gov (United States)

    Xia, Peng; Hu, Jie; Peng, Yinghong

    2017-10-25

    A novel model based on deep learning is proposed to estimate kinematic information for myoelectric control from multi-channel electromyogram (EMG) signals. The neural information of limb movement is embedded in EMG signals that are influenced by all kinds of factors. In order to overcome the negative effects of variability in signals, the proposed model employs the deep architecture combining convolutional neural networks (CNNs) and recurrent neural networks (RNNs). The EMG signals are transformed to time-frequency frames as the input to the model. The limb movement is estimated by the model that is trained with the gradient descent and backpropagation procedure. We tested the model for simultaneous and proportional estimation of limb movement in eight healthy subjects and compared it with support vector regression (SVR) and CNNs on the same data set. The experimental studies show that the proposed model has higher estimation accuracy and better robustness with respect to time. The combination of CNNs and RNNs can improve the model performance compared with using CNNs alone. The model of deep architecture is promising in EMG decoding and optimization of network structures can increase the accuracy and robustness. © 2017 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  15. Effect of hypnosis on masseter EMG recorded during the 'resting' and a slightly open jaw posture.

    Science.gov (United States)

    Al-Enaizan, N; Davey, K J; Lyons, M F; Cadden, S W

    2015-11-01

    The aim of this experimental study was to determine whether minimal levels of electromyographic activity in the masseter muscle are altered when individuals are in a verified hypnotic state. Experiments were performed on 17 volunteer subjects (8 male, 9 female) all of whom gave informed consent. The subjects were dentate and had no symptoms of pain or masticatory dysfunction. Surface electromyograms (EMGs) were made from the masseter muscles and quantified by integration following full-wave rectification and averaging. The EMGs were obtained (i) with the mandible in 'resting' posture; (ii) with the mandible voluntarily lowered (but with the lips closed); (iii) during maximum voluntary clenching (MVC). The first two recordings were made before, during and after the subjects were in a hypnotic state. Susceptibility to hypnosis was assessed with Spiegel's eye-roll test, and the existence of the hypnotic state was verified by changes in ventilatory pattern. On average, EMG levels expressed as percentages of MVC were less: (i) when the jaw was deliberately lowered as opposed to being in the postural position: (ii) during hypnosis compared with during the pre- and post-hypnotic periods. However, analysis of variance followed by post hoc tests with multiple comparison corrections (Bonferroni) revealed that only the differences between the level during hypnosis and those before and after hypnosis were statistically significant (P hypnosis, it appears that part of that EMG is of biological origin. © 2015 John Wiley & Sons Ltd.

  16. Influence of fatigue on hand muscle coordination and EMG-EMG coherence during three-digit grasping.

    Science.gov (United States)

    Danna-Dos Santos, Alessander; Poston, Brach; Jesunathadas, Mark; Bobich, Lisa R; Hamm, Thomas M; Santello, Marco

    2010-12-01

    Fingertip force control requires fine coordination of multiple hand muscles within and across the digits. While the modulation of neural drive to hand muscles as a function of force has been extensively studied, much less is known about the effects of fatigue on the coordination of simultaneously active hand muscles. We asked eight subjects to perform a fatiguing contraction by gripping a manipulandum with thumb, index, and middle fingers while matching an isometric target force (40% maximal voluntary force) for as long as possible. The coordination of 12 hand muscles was quantified as electromyographic (EMG) muscle activation pattern (MAP) vector and EMG-EMG coherence. We hypothesized that muscle fatigue would cause uniform changes in EMG amplitude across all muscles and an increase in EMG-EMG coherence in the higher frequency bands but with an invariant heterogeneous distribution across muscles. Muscle fatigue caused a 12.5% drop in the maximum voluntary contraction force (P EMG amplitude of all muscles increased during the fatiguing contraction (P muscle coordination pattern was used throughout the fatiguing contraction. Last, EMG-EMG coherence (0-35 Hz) was significantly greater at the end than at the beginning of the fatiguing contraction (P muscles. These findings suggest that similar mechanisms are involved for modulating and sustaining digit forces in nonfatiguing and fatiguing contractions, respectively.

  17. Averaged EMG profiles in jogging and running at different speeds

    NARCIS (Netherlands)

    Gazendam, Marnix G. J.; Hof, At L.

    EMGs were collected from 14 muscles with surface electrodes in 10 subjects walking 1.25-2.25 m s(-1) and running 1.25-4.5 m s(-1). The EMGs were rectified, interpolated in 100% of the stride, and averaged over all subjects to give an average profile. In running, these profiles could be decomposed

  18. sEMG Signal Acquisition Strategy towards Hand FES Control

    Directory of Open Access Journals (Sweden)

    Cinthya Lourdes Toledo-Peral

    2018-01-01

    Full Text Available Due to damage of the nervous system, patients experience impediments in their daily life: severe fatigue, tremor or impaired hand dexterity, hemiparesis, or hemiplegia. Surface electromyography (sEMG signal analysis is used to identify motion; however, standardization of electrode placement and classification of sEMG patterns are major challenges. This paper describes a technique used to acquire sEMG signals for five hand motion patterns from six able-bodied subjects using an array of recording and stimulation electrodes placed on the forearm and its effects over functional electrical stimulation (FES and volitional sEMG combinations, in order to eventually control a sEMG-driven FES neuroprosthesis for upper limb rehabilitation. A two-part protocol was performed. First, personalized templates to place eight sEMG bipolar channels were designed; with these data, a universal template, called forearm electrode set (FELT, was built. Second, volitional and evoked movements were recorded during FES application. 95% classification accuracy was achieved using two sessions per movement. With the FELT, it was possible to perform FES and sEMG recordings simultaneously. Also, it was possible to extract the volitional and evoked sEMG from the raw signal, which is highly important for closed-loop FES control.

  19. Speed dependence of averaged EMG profiles in walking

    NARCIS (Netherlands)

    Hof, AL; Elzinga, H; Grimmius, W; Halbertsma, JPK

    Electromyogram (EMG) profiles strongly depend on walking speed and, in pathological gait, patients do not usually walk at normal speeds. EMG data was collected from 14 muscles in two groups of healthy young subjects who walked at five different speeds ranging from 0.75 to 1.75 ms(-1). We found that

  20. EMGTools, an adaptive and versatile tool for detailed EMG analysis

    DEFF Research Database (Denmark)

    Nikolic, M; Krarup, C

    2010-01-01

    We have developed an EMG decomposition system called EMGTools that can extract the constituent MUAPs and firing patterns for quantitative analysis from the EMG signal recorded at slight effort for clinical evaluation. The aim was to implement a robust system able to handle the challenges...

  1. EMG MEDIAN POWER FREQUENCY IN AN EXHAUSTING EXERCISE

    NARCIS (Netherlands)

    AMENT, W; BONGA, GJJ; HOF, AL; VERKERKE, GJ

    1993-01-01

    EMG median power frequency of the calf muscles was investigated during an exhausting treadmill exercise. This exercise was an uphill run, the average endurance time was 1.5 min. Median power frequency of the calf muscles declined by more than 10% during this exercise. In addition EMG median power

  2. Recidivemeting LEMA en EMG 2009 : Achtergrondkenmerken en strafrechtelijke recidive van de eerste LEMA- en EMG-deelnemers - tussentijdse rapportage

    NARCIS (Netherlands)

    Blom, M.

    2013-01-01

    In oktober 2008 zijn in Nederland de Lichte Educatieve Maatregel Alcohol en Verkeer (LEMA) en de Educatieve Maatregel Gedrag en Verkeer (EMG) ingevoerd. De volgende onderzoeksvragen staan centraal: Wat zijn de achtergrondkenmerken van LEMA- en EMG-deelnemers uit 2009?Wat is het recidivebeeld van

  3. Tension-type headache: pain, fatigue, tension, and EMG responses to mental activation.

    Science.gov (United States)

    Bansevicius, D; Westgaard, R H; Sjaastad, O M

    1999-06-01

    Twenty patients with tension-type headache (14 chronic and 6 episodic) and 20 group-matched controls were selected for this study. They participated in a 1-hour, complex, two-choice, reaction-time test, as well as 5-minute pretest and 20-minute posttest periods. Subjects reported any pain in the forehead, temples, neck, and shoulders, as well as any feelings of fatigue and tension during the pretest, and every 10 minutes during the test and posttest by visual analog scales. Superficial electromyography was recorded simultaneously from positions representing the frontal and temporal muscles, neck (mostly splenius), and trapezius muscles. The location of pain corresponded to the position of the electrodes, but extended over a larger area. The test provoked pain in the forehead, neck, and shoulders of patients, i.e., pain scores from these regions increased significantly during the test. The pain scores continued to increase posttest. In patients, the EMG response of the trapezius (first 10 minutes of the test) was elevated relative to pretest. In controls, only the frontal muscles showed an EMG test response. Patients showed significantly higher EMG responses than controls in the neck (whole test period) and trapezius (first 10 minutes of the test period). There were significant differences in pain and fatigue scoring between patients and controls in all three periods and in tension scoring posttest. Fatigue correlated with pain, with increasing significance for all locations examined, while tension was mainly associated with the neck pain. The meaning of the variables "tension" and "fatigue" in headache, and their association with recorded muscle activity in various regions is discussed. The EMG response of the trapezius muscle to the test is discussed in comparison with similar responses observed in patients with other pain syndromes.

  4. An introduction to silent speech interfaces

    CERN Document Server

    Freitas, João; Dias, Miguel Sales; Silva, Samuel

    2017-01-01

    This book provides a broad and comprehensive overview of the existing technical approaches in the area of silent speech interfaces (SSI), both in theory and in application. Each technique is described in the context of the human speech production process, allowing the reader to clearly understand the principles behind SSI in general and across different methods. Additionally, the book explores the combined use of different data sources, collected from various sensors, in order to tackle the limitations of simpler SSI approaches, addressing current challenges of this field. The book also provides information about existing SSI applications, resources and a simple tutorial on how to build an SSI.

  5. From “Silent Teachers” to Models

    Science.gov (United States)

    Eisma, Roos; Wilkinson, Tracey

    2014-01-01

    For decades, embalmed cadavers have played an important role in teaching anatomy to the scientists and doctors of the future. Most anatomy departments use a traditional formaldehyde-based embalming method, but formalin embalming makes the bodies very rigid, which limits their usefulness for procedures other than dissection. A more recent embalming method developed by W. Thiel has allowed these “silent teachers” to take on a further role in applied anatomy research and teaching: to act as models for surgical training and medical research. PMID:25333490

  6. Eye Movement during Silent and Oral Reading: How Can we Compensate the Loss of Multisensory Process during Silent Reading?

    Directory of Open Access Journals (Sweden)

    Maiko Takahashi

    2011-10-01

    Full Text Available While reading texts orally, we process the multisensory language information. Accordingly, in the context of reading aloud, we process the visually presented text and produce the auditory information of the text through articulatory movement. These multisensory processing activities are assumed to facilitate the memory and comprehension of textual information. Conversely, while reading silently, we process only the visual information of the text. Although we cannot use the multisensory language information while reading silently, several researchers have found that there is little difference between the degree of comprehension based on silent and oral reading for adult readers. The purpose of this study is to explain how we compensate the loss of multisensory process during silent reading by comparing the visual processing process during silent and oral reading. By conducting two experiments, we measured and compared the eye movement during silent and oral reading. The results showed that silent reading took shorter time for comprehension than oral reading, and readers had more visual fixation points and read back frequently during reading silently than orally. These reading strategies during silent reading seemed to compensate the loss of multisensory process and support the text comprehension.

  7. Predicting 3D lip shapes using facial surface EMG.

    Directory of Open Access Journals (Sweden)

    Merijn Eskes

    Full Text Available The aim of this study is to prove that facial surface electromyography (sEMG conveys sufficient information to predict 3D lip shapes. High sEMG predictive accuracy implies we could train a neural control model for activation of biomechanical models by simultaneously recording sEMG signals and their associated motions.With a stereo camera set-up, we recorded 3D lip shapes and simultaneously performed sEMG measurements of the facial muscles, applying principal component analysis (PCA and a modified general regression neural network (GRNN to link the sEMG measurements to 3D lip shapes. To test reproducibility, we conducted our experiment on five volunteers, evaluating several sEMG features and window lengths in unipolar and bipolar configurations in search of the optimal settings for facial sEMG.The errors of the two methods were comparable. We managed to predict 3D lip shapes with a mean accuracy of 2.76 mm when using the PCA method and 2.78 mm when using modified GRNN. Whereas performance improved with shorter window lengths, feature type and configuration had little influence.

  8. Silent Bodies: Japanese taciturnity and image thinking

    Directory of Open Access Journals (Sweden)

    Ana Došen

    2017-03-01

    Full Text Available A nonverbal transmission and an implicit way of communication are highly encouraged in Japanese society. The reason for this “silence prerogative” is often found in historical facts of lengthy feudal era or in ancient philosophies and religions such as Buddhism and Confucianism and their various concepts which privilege taciturn way of communication. Moreover, the unspoken comprehension is often complemented by the attitude which equates truthfulness with silence. This paper explores the silence as a communicative act in the domain of Japanese art, where the body takes over the place of the language. In traditional Japanese theatrical performance, such as noh, words are often inadequate to convey emotion and therefore the aesthetics of emptiness, understatement and abstraction is transcended by the masks with "nonmoving lips". Drawing on theoretical perspectives from both East and West, I argue that the silent bodies operate as deliberate and integral determinants of Japanese non-silent art forms – especially in cinema and theatre. In the Eastern thought, visual perception is fundamental in cognition of the world, whereas auditory discernment is secondary to "image-thinking" (Yuasa. Accustomed to taciturnity, Japanese audience effectively corresponds to the performance and "completes" it in silence.

  9. A Spiking Neural Network in sEMG Feature Extraction.

    Science.gov (United States)

    Lobov, Sergey; Mironov, Vasiliy; Kastalskiy, Innokentiy; Kazantsev, Victor

    2015-11-03

    We have developed a novel algorithm for sEMG feature extraction and classification. It is based on a hybrid network composed of spiking and artificial neurons. The spiking neuron layer with mutual inhibition was assigned as feature extractor. We demonstrate that the classification accuracy of the proposed model could reach high values comparable with existing sEMG interface systems. Moreover, the algorithm sensibility for different sEMG collecting systems characteristics was estimated. Results showed rather equal accuracy, despite a significant sampling rate difference. The proposed algorithm was successfully tested for mobile robot control.

  10. EMG Pattern Recognition based on Evidence Accumulation for Prosthesis Control

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S.P. [Daewoo Electronics Co., Ltd., Seoul (Korea, Republic of); Park, S.H. [Yonsei University, Seoul (Korea, Republic of)

    1997-12-01

    We present a method of electromyography(EMG) pattern recognition to identify motion commands for the control of a prosthetic arm by evidence accumulation with multiple parameters. Integral absolute value, variance, autoregressive(AR) model coefficients, linear cepstrum coefficients, and adaptive cepstrum vector are extracted as feature parameters from several time segments of the EMG signals. Pattern recognition is carried out through the evidence accumulation procedure using the distances measured with reference parameters. A fuzzy mapping function is designed to transform the distances for the application of the evidence accumulation method. Results are presented to support the feasibility of the suggested approach for EMG pattern recognition. (author). 29 refs., 11 figs., 7 tabs.

  11. EMG biofeedback of the abductor pollicis brevis in piano performance.

    Science.gov (United States)

    Montes, R; Bedmar, M; Sol Martin, M

    1993-06-01

    The aim of the present study was to apply EMG biofeedback as an auxiliary to piano teaching techniques. We studied the changes in integrated electromyographic activity, using the abductor pollicis brevis functioning as an agonist during the teaching of identical selective movements of piano playing in two groups, one with EMG biofeedback and the other following traditional method of instruction. The analysis of variance revealed an increase in the peak amplitude and the relaxation rate values for the biofeedback group. These results have implications for the application of piano playing techniques and reveal EMG biofeedback as an aid in the teaching of thumb attack with the abductor pollicis brevis as agonist.

  12. Silent brain infarcts : frequency, risk factors, and prognosis

    NARCIS (Netherlands)

    S.E. Vermeer (Sarah)

    2002-01-01

    textabstractSilent- i.e. asymptomatic -brain infarcts are frequently seen on cerebral magnetic resonance imaging (MRl) scans in patients admitted to the hospital with their first stroke. With the increasing use and improvement of imaging techniques, these silent lesions are more often found in

  13. Silent Conversations in the Labyrinth of Artistic Research and Practice

    Science.gov (United States)

    Eis, Andrea

    2013-01-01

    This essay explores silent conversations with the past, but also navigates through the labyrinth of artistic process, with its manifold passages of research, chance occurrence and aesthetic experimentation. The double metaphors of silent conversations and labyrinths apply to the essay and the artwork within it, to the research and to the practice.…

  14. Difficulty with Out-Loud and Silent Reading in Glaucoma

    OpenAIRE

    Ramulu, Pradeep Y.; Swenor, Bonnielin K.; Jefferys, Joan L.; Friedman, David S.; Rubin, Gary S.

    2013-01-01

    Bilateral visual field loss from glaucoma is associated with slower reading speed and decline of reading speed during prolonged silent reading. Silent reading speed over prolonged durations is more affected by glaucomatous visual field loss than reading out loud for short durations.

  15. Heterogeneity of secretory granules of silent pituitary adenomas

    DEFF Research Database (Denmark)

    Holck, S; Wewer, U M; Albrechtsen, R

    1988-01-01

    Silent pituitary adenomas were compared with hormonally active tumors taking into account the size, number, and ultrastructural characteristics of secretory granules (SG). The study group (a total of 79 primary pituitary adenomas) comprised 27 silent, 21 growth hormone (GH)-producing-, 16 prolactin...

  16. Silent trade and the supposed continuum between OIE and NIE

    NARCIS (Netherlands)

    Dolfsma, W.A.; Spithovem, A.

    New institutional Economics (NIE) claims that Silent Trade exists. Indeed, it would constitute the first step 'as trade moves beyond the border of the village' (North). In this brief article we show both that Silent Trade - trade between parties who have only the most minimal of a shared frame of

  17. Heterogeneity of secretory granules of silent pituitary adenomas

    DEFF Research Database (Denmark)

    Holck, S; Wewer, U M; Albrechtsen, R

    1988-01-01

    Silent pituitary adenomas were compared with hormonally active tumors taking into account the size, number, and ultrastructural characteristics of secretory granules (SG). The study group (a total of 79 primary pituitary adenomas) comprised 27 silent, 21 growth hormone (GH)-producing-, 16 prolactin...... (PRL)-producing-, 5 GH-PRL-producing- and 10 adrenocorticotropic hormone (ACTH)-producing adenomas. The SG of silent adenomas were significantly smaller than SG in endocrine active adenomas. All hormonally inactive tumors also contained small (mean, 94 nm) specific cytoplasmic granules, designated...... "silent adenoma granules" (SIG). The fine structural features of the SIG included: a flocculent, granular material occupying an eccentric position in a larger vesicle limited by a double membrane. In the silent adenomas this particular granule was present in up to 90% of the adenoma cells and constituted...

  18. siGnum: graphical user interface for EMG signal analysis.

    Science.gov (United States)

    Kaur, Manvinder; Mathur, Shilpi; Bhatia, Dinesh; Verma, Suresh

    2015-01-01

    Electromyography (EMG) signals that represent the electrical activity of muscles can be used for various clinical and biomedical applications. These are complicated and highly varying signals that are dependent on anatomical location and physiological properties of the muscles. EMG signals acquired from the muscles require advanced methods for detection, decomposition and processing. This paper proposes a novel Graphical User Interface (GUI) siGnum developed in MATLAB that will apply efficient and effective techniques on processing of the raw EMG signals and decompose it in a simpler manner. It could be used independent of MATLAB software by employing a deploy tool. This would enable researcher's to gain good understanding of EMG signal and its analysis procedures that can be utilized for more powerful, flexible and efficient applications in near future.

  19. EMG amplifier with wireless data transmission

    Science.gov (United States)

    Kowalski, Grzegorz; Wildner, Krzysztof

    2017-08-01

    Wireless medical diagnostics is a trend in modern technology used in medicine. This paper presents a concept of realization, architecture of hardware and software implementation of an elecromyography signal (EMG) amplifier with wireless data transmission. This amplifier consists of three components: analogue processing of bioelectric signal module, micro-controller circuit and an application enabling data acquisition via a personal computer. The analogue bioelectric signal processing circuit receives electromyography signals from the skin surface, followed by initial analogue processing and preparation of the signals for further digital processing. The second module is a micro-controller circuit designed to wirelessly transmit the electromyography signals from the analogue signal converter to a personal computer. Its purpose is to eliminate the need for wired connections between the patient and the data logging device. The third block is a computer application designed to display the transmitted electromyography signals, as well as data capture and analysis. Its purpose is to provide a graphical representation of the collected data. The entire device has been thoroughly tested to ensure proper functioning. In use, the device displayed the captured electromyography signal from the arm of the patient. Amplitude- frequency characteristics were set in order to investigate the bandwidth and the overall gain of the device.

  20. FEATURE EXTRACTION FOR EMG BASED PROSTHESES CONTROL

    Directory of Open Access Journals (Sweden)

    R. Aishwarya

    2013-01-01

    Full Text Available The control of prosthetic limb would be more effective if it is based on Surface Electromyogram (SEMG signals from remnant muscles. The analysis of SEMG signals depend on a number of factors, such as amplitude as well as time- and frequency-domain properties. Time series analysis using Auto Regressive (AR model and Mean frequency which is tolerant to white Gaussian noise are used as feature extraction techniques. EMG Histogram is used as another feature vector that was seen to give more distinct classification. The work was done with SEMG dataset obtained from the NINAPRO DATABASE, a resource for bio robotics community. Eight classes of hand movements hand open, hand close, Wrist extension, Wrist flexion, Pointing index, Ulnar deviation, Thumbs up, Thumb opposite to little finger are taken into consideration and feature vectors are extracted. The feature vectors can be given to an artificial neural network for further classification in controlling the prosthetic arm which is not dealt in this paper.

  1. Contemporary linkages between EMG, kinetics and stroke rehabilitation

    OpenAIRE

    Wolf, Steven L.; Butler, Andrew J.; Alberts, Jay L.; Kim, Min Wook

    2005-01-01

    EMG and kinetic measures have been primary tools in the study of movement and have provided the foundation for much of the work presented in this journal. Recently, novel ways of combining these tools have provided opportunities to examine elements of motor learning and brain plasticity. This presentation reviews the quantification of EMG within the context of transcranial magnetic stimulation. This vehicle permits acquisition of measures that are fundamental to examining prospects for cortic...

  2. Anal sphincter EMG in the diagnosis of parkinsonian syndromes

    DEFF Research Database (Denmark)

    Winge, K; Jennum, Poul Jørgen; Løkkegaard, Annemette

    2010-01-01

    The role of electromyography (EMG) recorded from the external anal sphincter (EAS) in the diagnosis of atypical parkinsonian syndromes is a matter for continuous debate. Most studies addressing this issue are retrospective.......The role of electromyography (EMG) recorded from the external anal sphincter (EAS) in the diagnosis of atypical parkinsonian syndromes is a matter for continuous debate. Most studies addressing this issue are retrospective....

  3. Estimation of Upper Limb Joint Angle Using Surface EMG Signal

    Directory of Open Access Journals (Sweden)

    Yee Mon Aung

    2013-10-01

    Full Text Available In the development of robot-assisted rehabilitation systems for upper limb rehabilitation therapy, human electromyogram (EMG is widely used due to its ability to detect the user intended motion. EMG is one kind of biological signal that can be recorded to evaluate the performance of skeletal muscles by means of a sensor electrode. Based on recorded EMG signals, user intended motion could be extracted via estimation of joint torque, force or angle. Therefore, this estimation becomes one of the most important factors to achieve accurate user intended motion. In this paper, an upper limb joint angle estimation methodology is proposed. A back propagation neural network (BPNN is developed to estimate the shoulder and elbow joint angles from the recorded EMG signals. A Virtual Human Model (VHM is also developed and integrated with BPNN to perform the simulation of the estimated angle. The relationships between sEMG signals and upper limb movements are observed in this paper. The effectiveness of our developments is evaluated with four healthy subjects and a VHM simulation. The results show that the methodology can be used in the estimation of joint angles based on EMG.

  4. Effect of Selective Muscle Training Using Visual EMG Biofeedback on Infraspinatus and Posterior Deltoid

    OpenAIRE

    Lim, One-bin; Kim, Jeong-ah; Song, Si-jeong; Cynn, Heon-seock; Yi, Chung-hwi

    2014-01-01

    We investigated the effects of visual electromyography (EMG) biofeedback during side-lying shoulder external rotation exercise on the EMG amplitude for the posterior deltoid, infraspinatus, and infraspinatus/posterior deltoid EMG activity ratio. Thirty-one asymptomatic subjects were included. Subjects performed side-lying shoulder external rotation exercise with and without visual EMG biofeedback. Surface EMG was used to collect data from the posterior deltoid and infraspinatus muscles. The v...

  5. Three Decades of Sustained Silent Reading: A Meta-Analytic Review of the Effects of SSR on Attitude toward Reading.

    Science.gov (United States)

    Yoon, Jun-Chae

    2002-01-01

    Investigates the overall effect of Sustained Silent Reading (SSR) on attitude toward reading and identifies the moderator variables of SSR on it. Suggests that providing a fixed period of time for students to read materials of their own choosing either for pleasure or for information facilitates their attitude toward reading. Supports the…

  6. Electrotactile EMG feedback improves the control of prosthesis grasping force

    Science.gov (United States)

    Schweisfurth, Meike A.; Markovic, Marko; Dosen, Strahinja; Teich, Florian; Graimann, Bernhard; Farina, Dario

    2016-10-01

    Objective. A drawback of active prostheses is that they detach the subject from the produced forces, thereby preventing direct mechanical feedback. This can be compensated by providing somatosensory feedback to the user through mechanical or electrical stimulation, which in turn may improve the utility, sense of embodiment, and thereby increase the acceptance rate. Approach. In this study, we compared a novel approach to closing the loop, namely EMG feedback (emgFB), to classic force feedback (forceFB), using electrotactile interface in a realistic task setup. Eleven intact-bodied subjects and one transradial amputee performed a routine grasping task while receiving emgFB or forceFB. The two feedback types were delivered through the same electrotactile interface, using a mixed spatial/frequency coding to transmit 8 discrete levels of the feedback variable. In emgFB, the stimulation transmitted the amplitude of the processed myoelectric signal generated by the subject (prosthesis input), and in forceFB the generated grasping force (prosthesis output). The task comprised 150 trials of routine grasping at six forces, randomly presented in blocks of five trials (same force). Interquartile range and changes in the absolute error (AE) distribution (magnitude and dispersion) with respect to the target level were used to assess precision and overall performance, respectively. Main results. Relative to forceFB, emgFB significantly improved the precision of myoelectric commands (min/max of the significant levels) for 23%/36% as well as the precision of force control for 12%/32%, in intact-bodied subjects. Also, the magnitude and dispersion of the AE distribution were reduced. The results were similar in the amputee, showing considerable improvements. Significance. Using emgFB, the subjects therefore decreased the uncertainty of the forward pathway. Since there is a correspondence between the EMG and force, where the former anticipates the latter, the emgFB allowed for

  7. Silent Circulation of Ross River Virus in French Polynesia

    Directory of Open Access Journals (Sweden)

    Maite Aubry

    2015-08-01

    Discussion: Our results support the existence of autochthonous RRV transmission and suggest that this pathogen has silently circulated in French Polynesia. These findings raise the question of possible undetected circulation of RRV in other Pacific Island Countries and Territories.

  8. Silent Synapse-Based Circuitry Remodeling in Drug Addiction.

    Science.gov (United States)

    Dong, Yan

    2016-05-01

    Exposure to cocaine, and likely other drugs of abuse, generates α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor-silent glutamatergic synapses in the nucleus accumbens. These immature synaptic contacts evolve after drug withdrawal to redefine the neurocircuital properties. These results raise at least three critical questions: (1) what are the molecular and cellular mechanisms that mediate drug-induced generation of silent synapses; (2) how are neurocircuits remodeled upon generation and evolution of drug-generated silent synapses; and (3) what behavioral consequences are produced by silent synapse-based circuitry remodeling? This short review analyzes related experimental results, and extends them to some speculations. © The Author 2015. Published by Oxford University Press on behalf of CINP.

  9. Simultaneous EEG and EMG biofeedback for peak performance in musicians.

    Science.gov (United States)

    Markovska-Simoska, Silvana; Pop-Jordanova, Nada; Georgiev, Dejan

    2008-07-01

    The aim of this study was to determine the effects of alpha neurofeedback and EMG biofeedback protocols for improvement of musical performance in violinists. The sample consisted of 12 music students (10 violinists and 2 viola players) from the Faculty of Music, Skopje (3 males, mean age of 20 +/- 0 and 9 females, mean age = 20.89 +/- 2.98). Six of them had a low alpha peak frequency (APF) ( 10 Hz). The sample was randomized in two groups. The students from the experimental group participated in 20 sessions of biofeedback (alpha/EMG), combined with music practice, while the students from the control group did only music practice. Average absolute power, interhemispheric coherence in the alpha band, alpha peak frequency (APF), individual alpha band width (IABW), amount of alpha suppression (AAS) and surface forehead integrated EMG power (IEMG), as well as a score on musical performance and inventories measuring anxiety, were assessed. Alpha-EEG/EMG-biofeedback was associated with a significant increase in average alpha power, APF and IABW in all the participants and with decreases in IEMG only in high-APF musicians. The biofeedback training success was positively correlated with the alpha power, IcoH, APF, IABW and baseline level of APF and IABW. Alpha-EEG/EMG biofeedback is capable of increasing voluntary self-regulation and the quality of musical performance. The efficiency of biofeedback training depends on the baseline EEG alpha activity status, in particular the APF.

  10. Silent communication: toward using brain signals.

    Science.gov (United States)

    Pei, Xiaomei; Hill, Jeremy; Schalk, Gerwin

    2012-01-01

    From the 1980s movie Firefox to the more recent Avatar, popular science fiction has speculated about the possibility of a persons thoughts being read directly from his or her brain. Such braincomputer interfaces (BCIs) might allow people who are paralyzed to communicate with and control their environment, and there might also be applications in military situations wherever silent user-to-user communication is desirable. Previous studies have shown that BCI systems can use brain signals related to movements and movement imagery or attention-based character selection. Although these systems have successfully demonstrated the possibility to control devices using brain function, directly inferring which word a person intends to communicate has been elusive. A BCI using imagined speech might provide such a practical, intuitive device. Toward this goal, our studies to date addressed two scientific questions: (1) Can brain signals accurately characterize different aspects of speech? (2) Is it possible to predict spoken or imagined words or their components using brain signals?

  11. How can gynaecologists cope with the silent killer ? osteoporosis?

    OpenAIRE

    Szamatowicz, Marian

    2017-01-01

    Osteoporosis is a very common disease among women. It is frequently called a silent epidemic and, due to its impact on osteoporotic fractures with high morbidity and mortality, also a silent killer. There are a number of significant risk factors for osteoporosis, some of them very strongly related to the functioning of the reproductive system. These include menstrual irregularities, premature ovarian failure, early natural or surgical menopause, a high number of pregnancies, and long-term bre...

  12. Silent polypoidal choroidal vasculopathy in a patient with angioid streaks

    Directory of Open Access Journals (Sweden)

    Zafer Cebeci

    2016-06-01

    Full Text Available ABSTRACT We present a case of silent polypoidal choroidal vasculopathy (PCV in a patient with angioid streaks. PCV was detected during a routine ophthalmic examination and confirmed by fluorescein angiography, indocyanine green angiography, and optical coherence tomography. After 2 years of follow-up, the PCV remained silent without any complications. We report this rare coexistence and review literature on this topic.

  13. Silent aspiration: results of 2,000 video fluoroscopic evaluations.

    Science.gov (United States)

    Garon, Bernard R; Sierzant, Tess; Ormiston, Charles

    2009-08-01

    The purpose of this retrospective study of aspiration and the lack of a protective cough reflex at the vocal folds (silent aspiration) was to increase the awareness of nursing staffs of the diagnostic pathology groups associated with silent aspiration. Of the 2,000 patients evaluated in this study, 51% aspirated on the video fluoroscopic evaluation. Of the patients who aspirated, 55% had no protective cough reflex (silent aspiration). The diagnostic pathology groups with the highest rates of silent aspiration were brain cancer, brainstem stroke, head-neck cancer, pneumonia, dementia/Alzheimer, chronic obstructive lung disease, seizures, myocardial infarcts, neurodegenerative pathologies, right hemisphere stroke, closed head injury, and left hemisphere stroke. It is of high concern that the diagnostic groups identified in this research as having the highest risk of silent aspiration be viewed as "red-flag" patients by the nursing staff caring for them. Early nursing dysphagia screens, with close attention to the clinical symptoms associated with silent aspiration, and early referral for formal dysphagia evaluation are stressed.

  14. Intramuscular pressure and EMG relate during static contractions but dissociate with movement and fatigue

    DEFF Research Database (Denmark)

    Sjøgaard, Gisela; Jensen, Bente R.; Hargens, Allan R.

    2004-01-01

    Intramuscular pressure (IMP) and electromyography (EMG) mirror muscle force in the nonfatigued muscle during static contractions. The present study explores whether the constant IMP-EMG relationship with increased force may be extended to dynamic contractions and to fatigued muscle. IMP and EMG...... with speed of abduction. In the nonfatigued supraspinatus muscle, a linear relationship was found between IMP and EMG; in contrast, during fatigue and recovery, significant timewise changes of the IMP-to-EMG ratio occurred. The results indicate that IMP should be included along with EMG when mechanical load...... sharing between muscles is evaluated during dynamic and fatiguing contractions....

  15. Reliability of surface EMG measurements from the suprahyoid muscle complex

    DEFF Research Database (Denmark)

    Kothari, Mohit; Stubbs, Peter William; Pedersen, Asger Roer

    2017-01-01

    of using the suprahyoid muscle complex (SMC) using surface electromyography (sEMG) to assess changes to neural pathways by determining the reliability of measurements in healthy participants over days. Methods: Seventeen healthy participants were recruited. Measurements were performed twice with one week...... between sessions. Single pulse (at 120% and 140% of the resting motor threshold (rMT)) and paired pulse (2 ms and 15 ms paired pulse) transcranial magnetic stimulation (TMS) were used to elicit MEPs in the SMC which were recorded using sEMG. Results: ≈50% of participants (range: 42%-58%; depending...... on stimulus type/intensity) had significantly different MEP values between day 1 and day 2 for single pulse and paired pulse TMS. A large stimulus artefact resulted in MEP responses that could not be assessed in four participants. Conclusions: The assessment of the SMC using sEMG following TMS was poorly...

  16. [The ECCIS study: the epidemiology and clinical picture of silent ischemic cardiopathy. Epidemiologia e Clinica della Cardiopatia Ischemica Silente].

    Science.gov (United States)

    Fazzini, P F; Prati, P L; Rovelli, F; Antoniucci, D; Menghini, F; Seccareccia, F; Menotti, A

    1994-12-01

    The ECCIS project (Epidemiology and Clinic of Silent Ischemic Heart Disease) is an italian epidemiological study based on a population sample of 4,842 totally asymptomatic men aged 40-59 whose primary aim is the evaluation of the prevalence of totally silent myocardial ischemia and silent myocardial infarction. The systemic search for markers of silent ischemia and infarction was pursued along 3 screening stages: the 1st stage included resting electrocardiogram, hyperventilation test, exercise electrocardiogram and 24-hour Holter electrocardiogram; the 2nd stage included echocardiogram, thallium-201 scintigraphy in conjunction with exercise test or dypiridamole test, exercise radionuclide ventriculography and ergometrine test; the 3rd stage included coronary angiography. After the completion of the 1st stage procedures 439 men (9.1%) with abnormal results and low probability of disease were invited to the 2nd stage and 387 accepted to undergo the diagnostic procedures. After the completion of the 2nd stage, 104 men with moderate or high suspicion of silent myocardial ischemia or infarction were invited to perform coronary angiography but only 62 men accepted to undergo the 3rd stage procedures (participation rate 59.6%). The final diagnosis of totally silent myocardial ischemia or infarction on the basis of predefined criteria was established in 25 patients. The prevalence of silent ischemic heart disease on the overall original 4,842 men was 0.52% (95% CL, 0.32 and 0.72%), while the final estimate after adjusting for participation rates at 2nd and 3rd stages was 0.89% (95% CL, 0.6 and 1.1%). The results of the ECCIS study show that the prevalence of silent myocardial ischemia is definitely lower than that revealed by prior epidemiological studies in Norway and in USA.

  17. Measurement of EMG activity with textile electrodes embedded into clothing.

    Science.gov (United States)

    Finni, T; Hu, M; Kettunen, P; Vilavuo, T; Cheng, S

    2007-11-01

    Novel textile electrodes that can be embedded into sports clothing to measure averaged rectified electromyography (EMG) have been developed for easy use in field tests and in clinical settings. The purpose of this study was to evaluate the validity, reliability and feasibility of this new product to measure averaged rectified EMG. The validity was tested by comparing the signals from bipolar textile electrodes (42 cm(2)) and traditional bipolar surface electrodes (1.32 cm(2)) during bilateral isometric knee extension exercise with two electrode locations (A: both electrodes located in the same place, B: traditional electrodes placed on the individual muscles according to SENIAM, n=10 persons for each). Within-session repeatability (the coefficient of variation CV%, n=10) was calculated from five repetitions of 60% maximum voluntary contraction (MVC). The day-to-day repeatability (n=8) was assessed by measuring three different isometric force levels on five consecutive days. The feasibility of the textile electrodes in field conditions was assessed during a maximal treadmill test (n=28). Bland-Altman plots showed a good agreement within 2SD between the textile and traditional electrodes, demonstrating that the textile electrodes provide similar information on the EMG signal amplitude to the traditional electrodes. The within-session CV ranged from 13% to 21% in both the textile and traditional electrodes. The day-to-day CV was smaller, ranging from 4% to 11% for the textile electrodes. A similar relationship (r(2)=0.5) was found between muscle strength and the EMG of traditional and textile electrodes. The feasibility study showed that the textile electrode technique can potentially make EMG measurements very easy in field conditions. This study indicates that textile electrodes embedded into shorts is a valid and feasible method for assessing the average rectified value of EMG.

  18. Analysis of the sEMG/force relationship using HD-sEMG technique and data fusion: A simulation study.

    Science.gov (United States)

    Al Harrach, Mariam; Carriou, Vincent; Boudaoud, Sofiane; Laforet, Jeremy; Marin, Frederic

    2017-04-01

    The relationship between the surface Electromyogram (sEMG) signal and the force of an individual muscle is still ambiguous due to the complexity of experimental evaluation. However, understanding this relationship should be useful for the assessment of neuromuscular system in healthy and pathological contexts. In this study, we present a global investigation of the factors governing the shape of this relationship. Accordingly, we conducted a focused sensitivity analysis of the sEMG/force relationship form with respect to neural, functional and physiological parameters variation. For this purpose, we used a fast generation cylindrical model for the simulation of an 8×8 High Density-sEMG (HD-sEMG) grid and a twitch based force model for the muscle force generation. The HD-sEMG signals as well as the corresponding force signals were simulated in isometric non-fatiguing conditions and were based on the Biceps Brachii (BB) muscle properties. A total of 10 isometric constant contractions of 5s were simulated for each configuration of parameters. The Root Mean Squared (RMS) value was computed in order to quantify the sEMG amplitude. Then, an image segmentation method was used for data fusion of the 8×8 RMS maps. In addition, a comparative study between recent modeling propositions and the model proposed in this study is presented. The evaluation was made by computing the Normalized Root Mean Squared Error (NRMSE) of their fitting to the simulated relationship functions. Our results indicated that the relationship between the RMS (mV) and muscle force (N) can be modeled using a 3rd degree polynomial equation. Moreover, it appears that the obtained coefficients are patient-specific and dependent on physiological, anatomical and neural parameters. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Analysis of EMG Signals in Aggressive and Normal Activities by Using Higher-Order Spectra

    Science.gov (United States)

    Sezgin, Necmettin

    2012-01-01

    The analysis and classification of electromyography (EMG) signals are very important in order to detect some symptoms of diseases, prosthetic arm/leg control, and so on. In this study, an EMG signal was analyzed using bispectrum, which belongs to a family of higher-order spectra. An EMG signal is the electrical potential difference of muscle cells. The EMG signals used in the present study are aggressive or normal actions. The EMG dataset was obtained from the machine learning repository. First, the aggressive and normal EMG activities were analyzed using bispectrum and the quadratic phase coupling of each EMG episode was determined. Next, the features of the analyzed EMG signals were fed into learning machines to separate the aggressive and normal actions. The best classification result was 99.75%, which is sufficient to significantly classify the aggressive and normal actions. PMID:23193379

  20. Analysis of EMG Signals in Aggressive and Normal Activities by Using Higher-Order Spectra

    Directory of Open Access Journals (Sweden)

    Necmettin Sezgin

    2012-01-01

    Full Text Available The analysis and classification of electromyography (EMG signals are very important in order to detect some symptoms of diseases, prosthetic arm/leg control, and so on. In this study, an EMG signal was analyzed using bispectrum, which belongs to a family of higher-order spectra. An EMG signal is the electrical potential difference of muscle cells. The EMG signals used in the present study are aggressive or normal actions. The EMG dataset was obtained from the machine learning repository. First, the aggressive and normal EMG activities were analyzed using bispectrum and the quadratic phase coupling of each EMG episode was determined. Next, the features of the analyzed EMG signals were fed into learning machines to separate the aggressive and normal actions. The best classification result was 99.75%, which is sufficient to significantly classify the aggressive and normal actions.

  1. Mass media effect on vaccines uptake during silent polio outbreak.

    Science.gov (United States)

    Sagy, Iftach; Novack, Victor; Gdalevich, Michael; Greenberg, Dan

    2018-03-14

    During 2013, isolation of a wild type 1 poliovirus from routine sewage sample in Israel, led to a national OPV campaign. During this period, there was a constant cover of the outbreak by the mass media. To investigate the association of media exposure and OPV and non-OPV vaccines uptake during the 2013 silent polio outbreak in Israel. We received data on daily immunization rates during the outbreak period from the Ministry of Health (MoH). We conducted a multivariable time trend analysis to assess the association between daily media exposure and vaccines uptake. Analysis was stratified by ethnicity and socio-economic status (SES). During the MoH supplemental immunization activity, 138,799 OPV vaccines were given. There was a significant association between media exposure and OPV uptake, most prominent in a lag of 3-5 days from the exposure among Jews (R.R 1.79C.I 95% 1.32-2.41) and high SES subgroups (R.R 1.71C.I 95% 1.27-2.30). These subgroups also showed increased non-OPV uptake in a lag of 3-5 days from the media exposure, in all vaccines except for MMR. Lower SES and non-Jewish subgroups did not demonstrate the same association. Our findings expand the understanding of public behaviour during outbreaks. The public response shows high variability within specific subgroups. These findings highlight the importance of tailored communication strategies for each subgroup. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Does EMG activation differ among fatigue-resistant leg muscles ...

    African Journals Online (AJOL)

    The participants (N=32) were divided into two groups according to the Fatigue Index value [Group I: Less Fatigue Resistant (LFR), n=17; Group II: More Fatigue Resistant (MFR), n=15]. The repeated EMG activities of four leg muscles [rectus femoris, biceps femoris, vastus lateralis and vastus medialis] were analysed during ...

  3. EMG Processing Based Measures of Fatigue Assessment during Manual Lifting

    Directory of Open Access Journals (Sweden)

    E. F. Shair

    2017-01-01

    Full Text Available Manual lifting is one of the common practices used in the industries to transport or move objects to a desired place. Nowadays, even though mechanized equipment is widely available, manual lifting is still considered as an essential way to perform material handling task. Improper lifting strategies may contribute to musculoskeletal disorders (MSDs, where overexertion contributes as the highest factor. To overcome this problem, electromyography (EMG signal is used to monitor the workers’ muscle condition and to find maximum lifting load, lifting height and number of repetitions that the workers are able to handle before experiencing fatigue to avoid overexertion. Past researchers have introduced several EMG processing techniques and different EMG features that represent fatigue indices in time, frequency, and time-frequency domain. The impact of EMG processing based measures in fatigue assessment during manual lifting are reviewed in this paper. It is believed that this paper will greatly benefit researchers who need a bird’s eye view of the biosignal processing which are currently available, thus determining the best possible techniques for lifting applications.

  4. EMG Processing Based Measures of Fatigue Assessment during Manual Lifting

    Science.gov (United States)

    Marhaban, M. H.; Abdullah, A. R.

    2017-01-01

    Manual lifting is one of the common practices used in the industries to transport or move objects to a desired place. Nowadays, even though mechanized equipment is widely available, manual lifting is still considered as an essential way to perform material handling task. Improper lifting strategies may contribute to musculoskeletal disorders (MSDs), where overexertion contributes as the highest factor. To overcome this problem, electromyography (EMG) signal is used to monitor the workers' muscle condition and to find maximum lifting load, lifting height and number of repetitions that the workers are able to handle before experiencing fatigue to avoid overexertion. Past researchers have introduced several EMG processing techniques and different EMG features that represent fatigue indices in time, frequency, and time-frequency domain. The impact of EMG processing based measures in fatigue assessment during manual lifting are reviewed in this paper. It is believed that this paper will greatly benefit researchers who need a bird's eye view of the biosignal processing which are currently available, thus determining the best possible techniques for lifting applications. PMID:28303251

  5. Comparison of the EMG Activities in the Vastus Medialis Oblique ...

    African Journals Online (AJOL)

    The purpose of this study was to compare the electromyographic (EMG) activities in the vastus medialis oblique (VMO) and vastus lateralis (VL) muscles during two open chain exercises commonly used in the management of patellofemoral pain syndrome (PFPS). Twenty-five (14 female and 11 male) healthy subjects ...

  6. EMG patterns during assisted walking in the exoskeleton

    Directory of Open Access Journals (Sweden)

    Francesca eSylos-Labini

    2014-06-01

    Full Text Available Neuroprosthetic technology and robotic exoskeletons are being developed to facilitate stepping, reduce muscle efforts and promote motor recovery. Nevertheless, the guidance forces of an exoskeleton may influence the sensory inputs, sensorimotor interactions and resulting muscle activity patterns during stepping. The aim of this study was to report the muscle activation patterns in a sample of intact and injured subjects while walking with a robotic exoskeleton and, in particular, to quantify the level of muscle activity during assisted gait. We recorded electromyographic (EMG activity of different leg and arm muscles during overground walking in an exoskeleton in six healthy individuals and four spinal cord injury (SCI participants. In SCI patients, EMG activity of the upper limb muscles was augmented while activation of leg muscles was typically small. Contrary to our expectations, however, in neurologically intact subjects, EMG activity of leg muscles was similar or even larger during exoskeleton-assisted walking compared to normal overground walking. In addition, significant variations in the EMG waveforms were found across different walking conditions. The most variable pattern was observed in the hamstring muscles. Overall, the results are consistent with a non-linear reorganization of the locomotor output when using the robotic stepping devices. The findings may contribute to our understanding of human-machine interactions and adaptation of locomotor activity patterns.

  7. Comparative study of PCA in classification of multichannel EMG signals.

    Science.gov (United States)

    Geethanjali, P

    2015-06-01

    Electromyographic (EMG) signals are abundantly used in the field of rehabilitation engineering in controlling the prosthetic device and significantly essential to find fast and accurate EMG pattern recognition system, to avoid intrusive delay. The main objective of this paper is to study the influence of Principal component analysis (PCA), a transformation technique, in pattern recognition of six hand movements using four channel surface EMG signals from ten healthy subjects. For this reason, time domain (TD) statistical as well as auto regression (AR) coefficients are extracted from the four channel EMG signals. The extracted statistical features as well as AR coefficients are transformed using PCA to 25, 50 and 75 % of corresponding original feature vector space. The classification accuracy of PCA transformed and non-PCA transformed TD statistical features as well as AR coefficients are studied with simple logistic regression (SLR), decision tree (DT) with J48 algorithm, logistic model tree (LMT), k nearest neighbor (kNN) and neural network (NN) classifiers in the identification of six different movements. The Kruskal-Wallis (KW) statistical test shows that there is a significant reduction (P PCA transformed features compared to non-PCA transformed features. SLR with non-PCA transformed time domain (TD) statistical features performs better in accuracy and computational power compared to other features considered in this study. In addition, the motion control of three drives for six movements of the hand is implemented with SLR using TD statistical features in off-line with TMSLF2407 digital signal controller (DSC).

  8. Recording and conditioning of surface EMG signal for decomposition

    Czech Academy of Sciences Publication Activity Database

    Pošusta, A.; Otáhal, Jakub

    2012-01-01

    Roč. 8, č. 30 (2012), s. 28-31 ISSN 1801-1217 R&D Projects: GA AV ČR(CZ) 1QS501210509; GA ČR(CZ) GBP304/12/G069 Grant - others:GA MŠk(CZ) LH12070 Institutional support: RVO:67985823 Keywords : surface electromyography * decomposition * EMG Lab * prosthetics Subject RIV: FH - Neurology

  9. Trapezius muscle EMG as predictor of mental stress

    NARCIS (Netherlands)

    Wijsman, J.L.P; Grundlehner, B.; Penders, J.; Hermens, Hermanus J.

    Stress is a growing problem in society and can cause musculoskeletal complaints. It would be useful to measure stress for prevention of stress-related health problems. An experiment is described in which EMG signals of the upper trapezius muscle were measured with a wireless system during three

  10. Effects of load on good morning kinematics and EMG activity

    Directory of Open Access Journals (Sweden)

    Andrew David Vigotsky

    2015-01-01

    Full Text Available Many strength and conditioning coaches utilize the good morning (GM to strengthen the hamstrings and spinal erectors. However, little research exists on its electromyography (EMG activity and kinematics, and how these variables change as a function of load. The purpose of this investigation was to examine how estimated hamstring length, integrated EMG (IEMG activity of the hamstrings and spinal erectors, and kinematics of the lumbar spine, hip, knee, and ankle are affected by changes in load. Fifteen trained male participants (age = 24.6 ± 5.3 years; body mass = 84.7 ± 11.3 kg; height = 180.9 ± 6.8 cm were recruited for this study. Participants performed five sets of the GM, utilizing 50, 60, 70, 80, and 90% of one-repetition maximum (1RM in a randomized fashion. IEMG activity of hamstrings and spinal erectors tended to increase with load. Knee flexion increased with load on all trials. Estimated hamstring length decreased with load. However, lumbar flexion, hip flexion, and plantar flexion experienced no remarkable changes between trials. These data provide insight as to how changing the load of the GM affects EMG activity, kinematic variables, and estimated hamstring length. Implications for hamstring injury prevention are discussed. More research is needed for further insight as to how load affects EMG activity and kinematics of other exercises.

  11. EMG patterns during assisted walking in the exoskeleton

    Science.gov (United States)

    Sylos-Labini, Francesca; La Scaleia, Valentina; d'Avella, Andrea; Pisotta, Iolanda; Tamburella, Federica; Scivoletto, Giorgio; Molinari, Marco; Wang, Shiqian; Wang, Letian; van Asseldonk, Edwin; van der Kooij, Herman; Hoellinger, Thomas; Cheron, Guy; Thorsteinsson, Freygardur; Ilzkovitz, Michel; Gancet, Jeremi; Hauffe, Ralf; Zanov, Frank; Lacquaniti, Francesco; Ivanenko, Yuri P.

    2014-01-01

    Neuroprosthetic technology and robotic exoskeletons are being developed to facilitate stepping, reduce muscle efforts, and promote motor recovery. Nevertheless, the guidance forces of an exoskeleton may influence the sensory inputs, sensorimotor interactions and resulting muscle activity patterns during stepping. The aim of this study was to report the muscle activation patterns in a sample of intact and injured subjects while walking with a robotic exoskeleton and, in particular, to quantify the level of muscle activity during assisted gait. We recorded electromyographic (EMG) activity of different leg and arm muscles during overground walking in an exoskeleton in six healthy individuals and four spinal cord injury (SCI) participants. In SCI patients, EMG activity of the upper limb muscles was augmented while activation of leg muscles was typically small. Contrary to our expectations, however, in neurologically intact subjects, EMG activity of leg muscles was similar or even larger during exoskeleton-assisted walking compared to normal overground walking. In addition, significant variations in the EMG waveforms were found across different walking conditions. The most variable pattern was observed in the hamstring muscles. Overall, the results are consistent with a non-linear reorganization of the locomotor output when using the robotic stepping devices. The findings may contribute to our understanding of human-machine interactions and adaptation of locomotor activity patterns. PMID:24982628

  12. 3D-printing soft sEMG sensing structures

    NARCIS (Netherlands)

    Wolterink, Gerjan; Sanders, Remco; Muijzer, Frodo; van Beijnum, Bert-Jan; Krijnen, Gijs

    2017-01-01

    This paper describes the development and characterization of soft and flexible 3D-printed sEMG electrodes. The electrodes are printed in one go on a low cost consumer multi-material FDM printer. The printed structures do not need any further production steps to give them conductive properties.

  13. EOG-sEMG Human Interface for Communication.

    Science.gov (United States)

    Tamura, Hiroki; Yan, Mingmin; Sakurai, Keiko; Tanno, Koichi

    2016-01-01

    The aim of this study is to present electrooculogram (EOG) and surface electromyogram (sEMG) signals that can be used as a human-computer interface. Establishing an efficient alternative channel for communication without overt speech and hand movements is important for increasing the quality of life for patients suffering from amyotrophic lateral sclerosis, muscular dystrophy, or other illnesses. In this paper, we propose an EOG-sEMG human-computer interface system for communication using both cross-channels and parallel lines channels on the face with the same electrodes. This system could record EOG and sEMG signals as "dual-modality" for pattern recognition simultaneously. Although as much as 4 patterns could be recognized, dealing with the state of the patients, we only choose two classes (left and right motion) of EOG and two classes (left blink and right blink) of sEMG which are easily to be realized for simulation and monitoring task. From the simulation results, our system achieved four-pattern classification with an accuracy of 95.1%.

  14. EMG Processing Based Measures of Fatigue Assessment during Manual Lifting.

    Science.gov (United States)

    Shair, E F; Ahmad, S A; Marhaban, M H; Mohd Tamrin, S B; Abdullah, A R

    2017-01-01

    Manual lifting is one of the common practices used in the industries to transport or move objects to a desired place. Nowadays, even though mechanized equipment is widely available, manual lifting is still considered as an essential way to perform material handling task. Improper lifting strategies may contribute to musculoskeletal disorders (MSDs), where overexertion contributes as the highest factor. To overcome this problem, electromyography (EMG) signal is used to monitor the workers' muscle condition and to find maximum lifting load, lifting height and number of repetitions that the workers are able to handle before experiencing fatigue to avoid overexertion. Past researchers have introduced several EMG processing techniques and different EMG features that represent fatigue indices in time, frequency, and time-frequency domain. The impact of EMG processing based measures in fatigue assessment during manual lifting are reviewed in this paper. It is believed that this paper will greatly benefit researchers who need a bird's eye view of the biosignal processing which are currently available, thus determining the best possible techniques for lifting applications.

  15. EMG based FES for post-stroke rehabilitation

    Science.gov (United States)

    Piyus, Ceethal K.; Anjaly Cherian, V.; Nageswaran, Sharmila

    2017-11-01

    Annually, 15 million in world population experiences stroke. Nearly 9 million stroke survivors every year experience mild to severe disability. The loss of upper extremity function in stroke survivors still remains a major rehabilitation challenge. The proposed EMG Abstract—Annually, 15 million in world population experiences stroke. Nearly 9 million stroke survivors every year experience mild to severe disability. The loss of upper extremity function in stroke survivors still remains a major rehabilitation challenge. The proposed EMG based FES system can be used for effective upper limb motor re-education in post stroke upper limb rehabilitation. The governing feature of the designed system is its synchronous activation, in which the FES stimulation is dependent on the amplitude of the EMG signal acquired from the unaffected upper limb muscle of the hemiplegic patient. This proportionate operation eliminates the undesirable damage to the patient’s skin by generating stimulus in proportion to voluntary EMG signals. This feature overcomes the disadvantages of currently available manual motor re-education systems. This model can be used in home-based post stroke rehabilitation, to effectively improve the upper limb functions.

  16. Our silent enemy: ashes in our libraries.

    Science.gov (United States)

    DeBakey, L; DeBakey, S

    1989-07-01

    SCHOLARS, SCIENTISTS, PHYSICIANS, OTHER HEALTH PROFESSIONALS, AND LIBRARIANS FACE A CRUCIAL DECISION TODAY: shall we nourish the biomedical archives as a viable and indispensable source of information, or shall we bury their ashes and lose a century or more of consequential scientific history? Biomedical books and journals published since the 1850s on self-destructing acidic paper are silently and insidiously scorching on our shelves. The associated risks for scientists and physicians are serious-incomplete assessment of past knowledge; unnecessary repetition of studies that have already led to conclusive results; delay in scientific advances when important concepts, techniques, instruments, and procedures are overlooked; faulty comparative analyses; or improper assignment of priority. The archives also disclose the nature of biomedical research, which builds on past knowledge, advances incrementally, and is strewn with missteps, frustrations, detours, inconsistencies, enigmas, and contradictions. The public's familiarity with the scientific process will avoid unrealistic expectations and will encourage support for research in health. But a proper historical perspective requires access to the biomedical archives. Since journals will apparently continue to be published on paper, it is folly to persist in the use of acidic paper and thus magnify for future librarians and preservationists the already Sisyphean and costly task of deacidifying their collections. Our plea for conversion to acid-free paper is accompanied by an equally strong appeal for more rigorous criteria for journal publication. The glut of journal articles-many superficial, redundant, mediocre, or otherwise flawed and some even fraudulent-has overloaded our databases, complicated bibliographic research, and exacerbated the preservation problem. Before accepting articles, journal editors should ask: If it is not worth preserving, is it worth publishing?It is our responsibility to protect the integrity

  17. Replacing dark energy by silent virialisation

    Science.gov (United States)

    Roukema, Boudewijn F.

    2018-02-01

    Context. Standard cosmological N-body simulations have background scale factor evolution that is decoupled from non-linear structure formation. Prior to gravitational collapse, kinematical backreaction (𝒬𝒟) justifies this approach in a Newtonian context. Aims: However, the final stages of a gravitational collapse event are sudden; a globally imposed smooth expansion rate forces at least one expanding region to suddenly and instantaneously decelerate in compensation for the virialisation event. This is relativistically unrealistic. A more conservative hypothesis is to allow non-collapsed domains to continue their volume evolution according to the 𝒬𝒟 Zel'dovich approximation (QZA). We aim to study the inferred average expansion under this "silent" virialisation hypothesis. Methods: We set standard (MPGRAFIC) EdS 3-torus (T3) cosmological N-body initial conditions. Using RAMSES, we partitioned the volume into domains and called the DTFE library to estimate the per-domain initial values of the three invariants of the extrinsic curvature tensor that determine the QZA. We integrated the Raychaudhuri equation in each domain using the INHOMOG library, and adopted the stable clustering hypothesis to represent virialisation (VQZA). We spatially averaged to obtain the effective global scale factor. We adopted an early-epoch-normalised EdS reference-model Hubble constant H1EdS = 37.7 km s-1 /Mpc and an effective Hubble constant Heff,0 = 67.7 km s-1 /Mpc. Results: From 2000 simulations at resolution 2563, we find that reaching a unity effective scale factor at 13.8 Gyr (16% above EdS), occurs for an averaging scale of L13.813 = 2.5-0.1+0.1 Mpc/heff. Relativistically interpreted, this corresponds to strong average negative curvature evolution, with the mean (median) curvature functional Ωℛ𝒟 growing from zero to about 1.5-2 by the present. Over 100 realisations, the virialisation fraction and super-EdS expansion correlate strongly at

  18. A Versatile Embedded Platform for EMG Acquisition and Gesture Recognition.

    Science.gov (United States)

    Benatti, Simone; Casamassima, Filippo; Milosevic, Bojan; Farella, Elisabetta; Schönle, Philipp; Fateh, Schekeb; Burger, Thomas; Huang, Qiuting; Benini, Luca

    2015-10-01

    Wearable devices offer interesting features, such as low cost and user friendliness, but their use for medical applications is an open research topic, given the limited hardware resources they provide. In this paper, we present an embedded solution for real-time EMG-based hand gesture recognition. The work focuses on the multi-level design of the system, integrating the hardware and software components to develop a wearable device capable of acquiring and processing EMG signals for real-time gesture recognition. The system combines the accuracy of a custom analog front end with the flexibility of a low power and high performance microcontroller for on-board processing. Our system achieves the same accuracy of high-end and more expensive active EMG sensors used in applications with strict requirements on signal quality. At the same time, due to its flexible configuration, it can be compared to the few wearable platforms designed for EMG gesture recognition available on market. We demonstrate that we reach similar or better performance while embedding the gesture recognition on board, with the benefit of cost reduction. To validate this approach, we collected a dataset of 7 gestures from 4 users, which were used to evaluate the impact of the number of EMG channels, the number of recognized gestures and the data rate on the recognition accuracy and on the computational demand of the classifier. As a result, we implemented a SVM recognition algorithm capable of real-time performance on the proposed wearable platform, achieving a classification rate of 90%, which is aligned with the state-of-the-art off-line results and a 29.7 mW power consumption, guaranteeing 44 hours of continuous operation with a 400 mAh battery.

  19. Estimating mood variation from MPF of EMG during walking.

    Science.gov (United States)

    Kinase, Yuta; Venture, Gentiane

    2013-01-01

    The information on the mood included in behavior is classified into nonverbal information, and is included in behavior without necessarily being based on the intention of an agent. Consequently, it is considered that we can estimate the mood from the measurement of the behavior. In this work, we estimate the mood from the surface electromyogram (EMG) information of the muscles of the upper limb during walking. Identification of emotion and mood using EMG information has been done with a variety of methods until now. In addition, it is known that human walking includes information that is specific to the individual and be affected by mood. Therefore, it is thought that the EMG analysis of walking is effective in the identification of human mood. In this work, we made a subject walk in the various mood states and answer psychological tests that measure the mood. We use two types of tasks (music listening and numerical calculation) for evoking different moods. Statistical features of EMG signals are calculated using Fast Fourier Transform (FFT) and Principal Component Analysis (PCA). These statistical features are related with psychological test scores, using regression analysis. In this paper, we have shown the statistical significance of the linear model to predict the variation of mood based on the information on the variation in MPF of EMG data of the muscles of the upper limb during walking with different moods. This shows the validity of such a mapping. However, since the interpretability of the model is still low, it cannot be said that the model is able to accurately represent the mood variation. Creating a model with high accuracy is a key issue in the future.

  20. A novel method for EMG decomposition based on matched filters

    Directory of Open Access Journals (Sweden)

    Ailton Luiz Dias Siqueira Júnior

    Full Text Available Introduction Decomposition of electromyography (EMG signals into the constituent motor unit action potentials (MUAPs can allow for deeper insights into the underlying processes associated with the neuromuscular system. The vast majority of the methods for EMG decomposition found in the literature depend on complex algorithms and specific instrumentation. As an attempt to contribute to solving these issues, we propose a method based on a bank of matched filters for the decomposition of EMG signals. Methods Four main units comprise our method: a bank of matched filters, a peak detector, a motor unit classifier and an overlapping resolution module. The system’s performance was evaluated with simulated and real EMG data. Classification accuracy was measured by comparing the responses of the system with known data from the simulator and with the annotations of a human expert. Results The results show that decomposition of non-overlapping MUAPs can be achieved with up to 99% accuracy for signals with up to 10 active motor units and a signal-to-noise ratio (SNR of 10 dB. For overlapping MUAPs with up to 10 motor units per signal and a SNR of 20 dB, the technique allows for correct classification of approximately 71% of the MUAPs. The method is capable of processing, decomposing and classifying a 50 ms window of data in less than 5 ms using a standard desktop computer. Conclusion This article contributes to the ongoing research on EMG decomposition by describing a novel technique capable of delivering high rates of success by means of a fast algorithm, suggesting its possible use in future real-time embedded applications, such as myoelectric prostheses control and biofeedback systems.

  1. EMG (elektromyografie jako metoda pro sledování účinnosti sportovního tréninku Surface EMG as a method for following-up sports training efficiency

    Directory of Open Access Journals (Sweden)

    Damian Miklavčič

    2005-02-01

    training related changes in muscle contractile properties. Eight nationally ranked junior tennis players participated in a six weeks training program designed to increase speed and explosiveness. Their physical characteristics were evaluated before and after the training period by: tennis-specific field tests, measuring isometric twitch contraction of the medial gastrocnemius muscle, and by monitoring the frequency spectrum of the EMG at 50% of the maximal voluntary contraction. All the players improved the results of tennis specific field tests after the training period, but only three players were recognized to increase contractile speed of the medial gastrocnemius muscle expressed by shorter twitch contraction times after the training period. The same three players exhibited higher characteristic frequency (defined as the mean frequency lying between the sixth and ninth decile of the spectral distribution function and a wider EMG amplitude spectrum after the training period. A good correlation was found between the number of the parameters of the isometric twitch contraction that were improved by more than 2% after the training period (NP and the ratio between characteristic frequency after the training period (fA and characteristic frequency before the training period (fB (fA/fB (p = 0.0065, as well as between NP and the slope of the linear approximation of the dependence between decile frequencies of the EMG signal after the training period (dAf and decile frequencies of the EMG signal before the training period (dBf (dAf = f(dBf (p = 0.0035. The correlation between the number of parameters of the isometric twitch contraction that were improved after the training period and the changes in characteristic parameters of EMG suggests the applicability of EMG for following-up sports training efficiency.

  2. Silent Revolution in Research for Sustainability

    Directory of Open Access Journals (Sweden)

    Bruce Alder

    2016-06-01

    Full Text Available Is research ‘fit-for-purpose’ for realizing sustainable development? More than two decades after the Brundtland report and UNCED Earth summit, the world has now adopted Sustainable Development Goals(SDGs. Rather than a cause for celebration, this delay should encourage reflection on the role of research in society. Why is it so difficult to realize sustainability in practice? The answer lies in the fact that universities and research centres persist with 19th century methods of data gathering, scholarly analysis, and journal articles. Today’s world needs science in real-time, whether to detect drought, confront Ebola, or assist refugees. Research needs to work faster and embrace 21st century practices including data science, open access, and infographics.A silent revolution is occurring in the ways of organizing and conducting research, enabled by new technology and encouraging work that tackles the key challenges facing society. A variety of new arrangements have come into existence that promote international collaboration, including Horizon 2020 with its emphasis on societal challenges, the Bill & Melinda Gates Foundation which has inspired a family of grand challenges funds on health and development, and the Future Earth joint program of research for global sustainability. These arrangements not only control billions of dollars in research funding, they also influence the strategies of national research councils and international organizations. The result is no less than a transformation in the incentives that reward how researchers invest their time and effort.Why is a revolution needed? Within research, substantial growth in knowledge production coincided with fragmentation among disciplines. One can easily find expertise and publications in soil science or agronomy, yet integrated efforts on food security and climate adaptation remain scarce. Beyond research, society remains largely uninformed, as academics avoid engaging in public

  3. Silent method for mathematics instruction: An overview of teaching subsets

    Science.gov (United States)

    Sugiman, Apino, Ezi

    2017-05-01

    Generally, teachers use oral communication for teaching mathematics. Taking an opposite perspective, this paper describes how instructional practices for mathematics can be carried out namely a silent method. Silent method uses body language, written, and oral communication for classroom interaction. This research uses a design research approach consisting of four phases: preliminary, prototyping and developing the instruction, and assessment. There are four stages of silent method. The first stage is conditioning stage in which the teacher introduces the method and makes agreement about the `rule of the game'. It is followed by the second one, elaborating stage, where students guess and explore alternative answers. The third stage is developing mathematical thinking by structuring and symbolizing. Finally, the method is ended by reinforcing stage which aims at strengthening and reflecting student's understanding. In this paper, every stage is described on the basis of practical experiences in a real mathematics classroom setting.

  4. Symptomatic hemorrhage after alteplase therapy not due to silent ischemia

    Directory of Open Access Journals (Sweden)

    Barber Philip A

    2001-01-01

    Full Text Available Abstract Background Stroke thrombolysis-related intracerebral hemorrhage may occur remotely from the anatomical site of ischemia. One postulated mechanism for this is simultaneous multiple embolization with hemorrhage into a "silent" area of ischemia. Results A patient suffered a disabling stroke affecting the right cerebral hemisphere. He was treated with intravenous alteplase and underwent extensive early imaging with multimodal MRI. Several hours after treatment he developed a brainstem hemorrhage despite having no evidence of ischemia on DWI MRI in the brainstem. Conclusion Not all occurrences of remote ICH after stroke thrombolysis are secondary to multiple emboli with silent ischemia.

  5. Dreamless: the silent epidemic of REM sleep loss.

    Science.gov (United States)

    Naiman, Rubin

    2017-10-01

    We are at least as dream deprived as we are sleep deprived. Many of the health concerns attributed to sleep loss result from a silent epidemic of REM sleep deprivation. REM/dream loss is an unrecognized public health hazard that silently wreaks havoc with our lives, contributing to illness, depression, and an erosion of consciousness. This paper compiles data about the causes and extent of REM/dream loss associated with commonly used medications, endemic substance use disorders, rampant sleep disorders, and behavioral and lifestyle factors. It examines the consequences of REM/dream loss and concludes with recommendations for restoring healthy REM/dreaming. © 2017 New York Academy of Sciences.

  6. Upper-Limb Recovery After Stroke: A Randomized Controlled Trial Comparing EMG-Triggered, Cyclic, and Sensory Electrical Stimulation.

    Science.gov (United States)

    Wilson, Richard D; Page, Stephen J; Delahanty, Michael; Knutson, Jayme S; Gunzler, Douglas D; Sheffler, Lynne R; Chae, John

    2016-11-01

    This study compared the effect of cyclic neuromuscular electrical stimulation (NMES), electromyographically (EMG)-triggered NMES, and sensory stimulation on motor impairment and activity limitations in patients with upper-limb hemiplegia. This was a multicenter, single-blind, multiarm parallel-group study of nonhospitalized hemiplegic stroke survivors within 6 months of stroke. A total of 122 individuals were randomized to receive either cyclic NMES, EMG-triggered NMES, or sensory stimulation twice every weekday in 40-minute sessions, over an 8 week-period. Patients were followed for 6 months after treatment concluded. There were significant increases in the Fugl-Meyer Assessment [F(1, 111) = 92.6, P stimulation therapy applied within 6 months of stroke. Improvements were likely a result of spontaneous recovery. There was no difference based on the type of electrical stimulation that was administered. © The Author(s) 2016.

  7. EMG signal morphology in essential tremor and Parkinson's disease.

    Science.gov (United States)

    Ruonala, V; Meigal, A; Rissanen, S M; Airaksinen, O; Kankaanpaa, M; Karjalainen, P A

    2013-01-01

    The aim of this work was to differentiate patients with essential tremor from patients with Parkinson's disease. The electromyographic signal from the biceps brachii muscle was measured during isometric tension from 17 patients with essential tremor, 35 patients with Parkinson's disease, and 40 healthy controls. The EMG signals were high pass filtered and divided to smaller segments from which histograms were calculated using 200 histogram bins. EMG signal histogram shape was analysed with a feature dimension reduction method, the principal component analysis, and the shape parameters were used to differentiate between different patient groups. The height of the histogram and the side difference between left and right hand were the best discriminators between essential tremor and Parkinson's disease groups. With this method, it was possible to discriminate 13/17 patients with essential tremor from 26/35 patients with Parkinson's disease and 14/17 patients with essential tremor from 29/40 healthy controls.

  8. A heuristic fuzzy logic approach to EMG pattern recognition for multifunctional prosthesis control.

    Science.gov (United States)

    Ajiboye, Abidemi Bolu; Weir, Richard F ff

    2005-09-01

    This paper presents a heuristic fuzzy logic approach to multiple electromyogram (EMG) pattern recognition for multifunctional prosthesis control. Basic signal statistics (mean and standard deviation) are used for membership function construction, and fuzzy c-means (FCMs) data clustering is used to automate the construction of a simple amplitude-driven inference rule base. The result is a system that is transparent to, and easily "tweaked" by, the prosthetist/clinician. Other algorithms in current literature assume a longer period of unperceivable delay, while the system we present has an update rate of 45.7 ms with little postprocessing time, making it suitable for real-time application. Five subjects were investigated (three with intact limbs, one with a unilateral transradial amputation, and one with a unilateral transradial limb-deficiency from birth). Four subjects were used for system offline analysis, and the remaining intact-limbed subject was used for system real-time analysis. We discriminated between four EMG patterns for subjects with intact limbs, and between three patterns for limb-deficient subjects. Overall classification rates ranged from 94% to 99%. The fuzzy algorithm also demonstrated success in real-time classification, both during steady state motions and motion state transitioning. This functionality allows for seamless control of multiple degrees-of-freedom in a multifunctional prosthesis.

  9. Detection of driving fatigue by using noncontact EMG and ECG signals measurement system.

    Science.gov (United States)

    Fu, Rongrong; Wang, Hong

    2014-05-01

    Driver fatigue can be detected by constructing a discriminant mode using some features obtained from physiological signals. There exist two major challenges of this kind of methods. One is how to collect physiological signals from subjects while they are driving without any interruption. The other is to find features of physiological signals that are of corresponding change with the loss of attention caused by driver fatigue. Driving fatigue is detected based on the study of surface electromyography (EMG) and electrocardiograph (ECG) during the driving period. The noncontact data acquisition system was used to collect physiological signals from the biceps femoris of each subject to tackle the first challenge. Fast independent component analysis (FastICA) and digital filter were utilized to process the original signals. Based on the statistical analysis results given by Kolmogorov-Smirnov Z test, the peak factor of EMG (p fatigue of drivers. The discriminant criterion of fatigue was obtained from the training samples by using Mahalanobis distance, and then the average classification accuracy was given by 10-fold cross-validation. The results showed that the method proposed in this paper can give well performance in distinguishing the normal state and fatigue state. The noncontact, onboard vehicle drivers' fatigue detection system was developed to reduce fatigue-related risks.

  10. Correlation between increased platelet ADP aggregability and silent brain infarcts

    International Nuclear Information System (INIS)

    Ono, Kenichiro; Arimoto, Hirohiko; Shirotani, Toshiki

    2012-01-01

    The purpose of this study was to investigate the correlation between platelet aggregability and silent brain infarcts. The study subjects were 445 people (264 men, 181 women; mean age, 53±14 years) with no neurologic signs, history of brain tumor, trauma, cerebrovascular disease, or antiplatelet medications. Adenosine diphosphate (ADP)-induced platelet aggregation was measured by the aggregation-size analytic method. Platelet aggregability was classified into 9 classes. The presence of headache/vertigo, hypertension, diabetes mellitus, hyperlipidemia, or smoking was elicited by questioning or blood sampling. A head MRI scan was performed, and if marked atherosclerosis or obvious stenosis in the intracranial vessels was detected, it was defined as a positive MR angiography (MRA) finding. Silent brain infarcts were detected in 26.3% of subjects. Hyperaggregability defined as that above class 6, 7, and 8 was present in 43.8%, 30.8%, and 15.7% of subjects, respectively. The risk factors for silent brain infarcts by multiple logistic regression analysis were aging, hypertension, positive MRA findings, and hyperaggregability. Platelet ADP hyperaggregability might be a risk factor for silent brain infarcts. (author)

  11. The Effects of Oral and Silent Reading on Reading Comprehension

    Science.gov (United States)

    Schimmel, Naomi; Ness, Molly

    2017-01-01

    This study examined the effects of reading mode (oral and silent) and text genre (narrative and expository) on fourth graders' reading comprehension. While controlling for prior reading ability of 48 participants, we measured comprehension. Using a repeated measured design, data were analyzed using analysis of covariance, paired t-tests, and…

  12. Simulation of right atrial cardiac myxoma by silent hepatocellular carcinoma.

    Science.gov (United States)

    Giacalone, A; Suriani, A; Monga, G

    1996-12-01

    A clinically silent hepatocellular carcinoma presenting as a mixoma of the right atrium is described. Intra-atrial growth has been reported in advanced, clinically manifested cases of liver carcinomas in African and Japanese subjects, but very occasionally in Caucasian people. Our case further suggests that this occurrence should also be considered in Western Countries.

  13. Health Education Films of the Silent Era: A Historical Analysis

    Science.gov (United States)

    Sofalvi, Alan

    2011-01-01

    Films have been used to present health messages throughout the history of the medium. The purpose of this article is to describe pictures from the silent film era that were designed to educate people about health issues. Films still available in at least one format were reviewed. Published reviews were also used to obtain information about these…

  14. Silent, indirect strategic processes in small and medium sized enterprises

    DEFF Research Database (Denmark)

    Larsen, Mette Vinther; Madsen, Charlotte Øland; Rasmussen, Jørgen Gulddahl

    Based on empirical data we in this paper explore day-to-day strategising with an emphasis on phronesis. This way we shed some light on the nearly silent, quiet, indirect strategic change processes as they are practiced and reflected upon by leaders in small companies in their daily practice...

  15. High Tension Electric Current Injury and Silent Myocardial Infarction ...

    African Journals Online (AJOL)

    A 55-year-old male, non-diabetic, sustained severe electric current injury as evidenced by the grievous exit wound on the left dorsum of foot as well as entry wound in both palms. There was silent anterior wall myocardial infarction, discovered from incidental electrocardiograph. Keywords: Electric current injury, grievous exit ...

  16. Silent voices of time | Monick | Scientia Militaria: South African ...

    African Journals Online (AJOL)

    Scientia Militaria: South African Journal of Military Studies. Journal Home · ABOUT THIS JOURNAL · Advanced Search · Current Issue · Archives · Journal Home > Vol 21, No 3 (1991) >. Log in or Register to get access to full text downloads. Username, Password, Remember me, or Register. Silent voices of time. S Monick ...

  17. Silent ischemia and severity of pain in acute myocardial infarction

    DEFF Research Database (Denmark)

    Nielsen, F E; Nielsen, S L; Knudsen, F

    1991-01-01

    An overall low tendency to complain of pain, due to a low perception of pain, has been suggested in the pathogenesis of silent ischemia, independent of the extent of the diseased coronaries and a history of previous acute myocardial infarction. This hypothesis has been tested indirectly...

  18. Silent Letters Are Activated in Spoken Word Recognition

    Science.gov (United States)

    Ranbom, Larissa J.; Connine, Cynthia M.

    2011-01-01

    Four experiments are reported that investigate processing of mispronounced words for which the phonological form is inconsistent with the graphemic form (words spelled with silent letters). Words produced as mispronunciations that are consistent with their spelling were more confusable with their citation form counterpart than mispronunciations…

  19. Using Vocal and Silent Reading Approaches for the Enhancement ...

    African Journals Online (AJOL)

    Nekky Umera

    Silent reading involves reading without vocalization. No sound and no noise ... mastered this process of reading from left to right because order and memory not only requires the student to perceive words .... that there was no significant difference in the background knowledge of the students used for the study. Hence, any ...

  20. Ketene formation from aliphatic ketones in a silent electrical discharge

    NARCIS (Netherlands)

    Drumpt, J.D. van; Mackor, A.

    1973-01-01

    The title reaction in the plasma of a silent electrical discharge at 40° is described. Acetone, ethyl methyl ketone, diethyl ketone and diisopropyl ketone all give rise to the formation of ketenes. From these ketones not only is the corresponding ketene formed, but the lower ketenes also, presumably

  1. Bizarre repetitive discharges recorded with single fibre EMG.

    OpenAIRE

    Trontelj, J; Stålberg, E

    1983-01-01

    Single fibre EMG was used to record bizarre repetitive discharges in patients with chronic denervation or muscle disorders. The low variability of intervals between individual spike components on successive discharges suggests that the bizarre repetitive discharges are based on ephaptic impulse transmission from the muscle fibre starting the discharge (principal pacemaker) to the adjacent muscle fibres. The low variability of the interdischarge intervals is explained by ephaptic reactivation ...

  2. Fuzzy Control of a Robotic Arm using EMG Signals

    OpenAIRE

    Hidalgo, M.; Tene, G.; Sánchez Terán, Alberto

    2007-01-01

    This paper presents the control design of a robotic arm employing Fuzzy algorithms to interpret electromiographic (EMG) signals from the Flexor Carpi Radialis, Extensor Carpi Radialis and Biceps Brachii muscles. The control and aquisition systems is composed of a microprocessor, analog ?ltering, digital ?ltering and frequency analysis, and ?nally a fuzzy control system. The system has been implemented over a MICROCHIP PIC 16F876 and LabVIEW.

  3. Oral Reading Fluency as a Predictor of Silent Reading Fluency at Secondary and Postsecondary Levels

    Science.gov (United States)

    Seok, Soonhwa; DaCosta, Boaventura

    2014-01-01

    This research investigated oral reading fluency as a predictor of silent reading fluency at the secondary and postsecondary levels. Several measures were used, including the Gray Oral Reading Test, the Test of Silent Word Reading Fluency, the Test of Silent Contextual Reading Fluency, and the Reading Observation Scale. A total of 223 students…

  4. An EMG-Controlled Robotic Hand Exoskeleton for Bilateral Rehabilitation.

    Science.gov (United States)

    Leonardis, Daniele; Barsotti, Michele; Loconsole, Claudio; Solazzi, Massimiliano; Troncossi, Marco; Mazzotti, Claudio; Castelli, Vincenzo Parenti; Procopio, Caterina; Lamola, Giuseppe; Chisari, Carmelo; Bergamasco, Massimo; Frisoli, Antonio

    2015-01-01

    This paper presents a novel electromyography (EMG)-driven hand exoskeleton for bilateral rehabilitation of grasping in stroke. The developed hand exoskeleton was designed with two distinctive features: (a) kinematics with intrinsic adaptability to patient's hand size, and (b) free-palm and free-fingertip design, preserving the residual sensory perceptual capability of touch during assistance in grasping of real objects. In the envisaged bilateral training strategy, the patient's non paretic hand acted as guidance for the paretic hand in grasping tasks. Grasping force exerted by the non paretic hand was estimated in real-time from EMG signals, and then replicated as robotic assistance for the paretic hand by means of the hand-exoskeleton. Estimation of the grasping force through EMG allowed to perform rehabilitation exercises with any, non sensorized, graspable objects. This paper presents the system design, development, and experimental evaluation. Experiments were performed within a group of six healthy subjects and two chronic stroke patients, executing robotic-assisted grasping tasks. Results related to performance in estimation and modulation of the robotic assistance, and to the outcomes of the pilot rehabilitation sessions with stroke patients, positively support validity of the proposed approach for application in stroke rehabilitation.

  5. Evaluation of EMG processing techniques using Information Theory

    Directory of Open Access Journals (Sweden)

    Felice Carmelo J

    2010-11-01

    Full Text Available Abstract Background Electromyographic signals can be used in biomedical engineering and/or rehabilitation field, as potential sources of control for prosthetics and orthotics. In such applications, digital processing techniques are necessary to follow efficient and effectively the changes in the physiological characteristics produced by a muscular contraction. In this paper, two methods based on information theory are proposed to evaluate the processing techniques. Methods These methods determine the amount of information that a processing technique is able to extract from EMG signals. The processing techniques evaluated with these methods were: absolute mean value (AMV, RMS values, variance values (VAR and difference absolute mean value (DAMV. EMG signals from the middle deltoid during abduction and adduction movement of the arm in the scapular plane was registered, for static and dynamic contractions. The optimal window length (segmentation, abduction and adduction movements and inter-electrode distance were also analyzed. Results Using the optimal segmentation (200 ms and 300 ms in static and dynamic contractions, respectively the best processing techniques were: RMS, AMV and VAR in static contractions, and only the RMS in dynamic contractions. Using the RMS of EMG signal, variations in the amount of information between the abduction and adduction movements were observed. Conclusions Although the evaluation methods proposed here were applied to standard processing techniques, these methods can also be considered as alternatives tools to evaluate new processing techniques in different areas of electrophysiology.

  6. EMG spectral indices and muscle power fatigue during dynamic contractions.

    Science.gov (United States)

    González-Izal, M; Malanda, A; Navarro-Amézqueta, I; Gorostiaga, E M; Mallor, F; Ibañez, J; Izquierdo, M

    2010-04-01

    The purpose of this study was to examine acute exercise-induced changes on muscle power output and surface electromyography (sEMG) parameters (amplitude and spectral indices of muscle fatigue) during a dynamic fatiguing protocol. Fifteen trained subjects performed five sets consisting of 10 leg presses (10RM), with 2min rest between sets. Surface electromyography was recorded from vastus medialis (VM) and lateralis (VL) and biceps femoris (BF) muscles. A number of EMG-based parameters were compared for estimation accuracy and sensitivity to detect peripheral muscle fatigue. These were: Mean Average Voltage, median spectral frequency, Dimitrov spectral index of muscle fatigue (FI(nsm5)), as well as other parameters obtained from a time-frequency analysis (Choi-Williams distributions) such as mean and variance of the instantaneous frequency and frequency variance. The log FI(nsm5) as a single parameter predictor accounted for 37% of the performance variance of changes in muscle power and the log FI(nsm5) and MFM as a two factor combination predictor accounted for 44%. Peripheral impairments assessed by sEMG spectral index FI(nsm5) may be a relevant factor involved in the loss of power output after dynamic high-loading fatiguing task. 2009 Elsevier Ltd. All rights reserved.

  7. A Variance Distribution Model of Surface EMG Signals Based on Inverse Gamma Distribution.

    Science.gov (United States)

    Hayashi, Hideaki; Furui, Akira; Kurita, Yuichi; Tsuji, Toshio

    2017-11-01

    Objective: This paper describes the formulation of a surface electromyogram (EMG) model capable of representing the variance distribution of EMG signals. Methods: In the model, EMG signals are handled based on a Gaussian white noise process with a mean of zero for each variance value. EMG signal variance is taken as a random variable that follows inverse gamma distribution, allowing the representation of noise superimposed onto this variance. Variance distribution estimation based on marginal likelihood maximization is also outlined in this paper. The procedure can be approximated using rectified and smoothed EMG signals, thereby allowing the determination of distribution parameters in real time at low computational cost. Results: A simulation experiment was performed to evaluate the accuracy of distribution estimation using artificially generated EMG signals, with results demonstrating that the proposed model's accuracy is higher than that of maximum-likelihood-based estimation. Analysis of variance distribution using real EMG data also suggested a relationship between variance distribution and signal-dependent noise. Conclusion: The study reported here was conducted to examine the performance of a proposed surface EMG model capable of representing variance distribution and a related distribution parameter estimation method. Experiments using artificial and real EMG data demonstrated the validity of the model. Significance: Variance distribution estimated using the proposed model exhibits potential in the estimation of muscle force. Objective: This paper describes the formulation of a surface electromyogram (EMG) model capable of representing the variance distribution of EMG signals. Methods: In the model, EMG signals are handled based on a Gaussian white noise process with a mean of zero for each variance value. EMG signal variance is taken as a random variable that follows inverse gamma distribution, allowing the representation of noise superimposed onto this

  8. Effects of innovative virtual reality game and EMG biofeedback on neuromotor control in cerebral palsy.

    Science.gov (United States)

    Yoo, Ji Won; Lee, Dong Ryul; Sim, Yon Ju; You, Joshua H; Kim, Cheol J

    2014-01-01

    Sensorimotor control dysfunction or dyskinesia is a hallmark of neuromuscular impairment in children with cerebral palsy (CP), and is often implicated in reaching and grasping deficiencies due to a neuromuscular imbalance between the triceps and biceps. To mitigate such muscle imbalances, an innovative electromyography (EMG)-virtual reality (VR) biofeedback system were designed to provide accurate information about muscle activation and motivation. However, the clinical efficacy of this approach has not yet been determined in children with CP. The purpose of this study was to investigate the effectiveness of a combined EMG biofeedback and VR (EMG-VR biofeedback) intervention system to improve muscle imbalance between triceps and biceps during reaching movements in children with spastic CP. Raw EMG signals were recorded at a sampling rate of 1,000 Hz, band-pass filtered between 20-450 Hz, and notch-filtered at 60 Hz during elbow flexion and extension movements. EMG data were then processed using MyoResearch Master Edition 1.08 XP software. All participants underwent both interventions consisting of the EMG-VR biofeedback combination and EMG biofeedback alone. EMG analysis resulted in improved muscle activation in the underactive triceps while decreasing overactive or hypertonic biceps in the EMG-VR biofeedback compared with EMG biofeedback. The muscle imbalance ratio between the triceps and biceps was consistently improved. The present study is the first clinical trial to provide evidence for the additive benefits of VR intervention for enhancing the upper limb function of children with spastic CP.

  9. How salient is the silent period? The role of the silent period in the prognosis of upper extremity motor recovery after severe stroke.

    NARCIS (Netherlands)

    Kuijk, A. van; Pasman, J.W.; Geurts, A.C.H.; Hendricks, H.T.

    2005-01-01

    Transcranial magnetic stimulation (TMS) has been successful in the prediction of motor recovery in acute stroke patients with initially severe paresis or paralysis of the upper extremity. Motor evoked potentials (MEP) appear to have a high specificity but a rather low sensitivity with regard to

  10. "So oft to the movies they've been": British fan writing and female audiences in the silent cinema

    Directory of Open Access Journals (Sweden)

    Lisa Rose Stead

    2011-03-01

    Full Text Available This article aims to address the ways in which working-class and lower-middle-class British women used silent-era fan magazines as a space for articulating their role within the development of a female film culture. The article focuses on letter pages that formed a key site for female contribution to British fan magazines across the silent era. In contributing to these pages, women found a space to debate and discuss the appeal and significance of particular female representations within film culture. Using detailed archival research tracing the content of a specific magazine, Picturegoer, across a 15-year period (1913–28, the article will show the dominance of particular types of female representation in both fan and "official" magazine discourses, analyzing the ways in which British women used these images to work through national tensions regarding modern femininity and traditional ideas of female propriety and restraint.

  11. The "silent" imprint of musical training.

    Science.gov (United States)

    Klein, Carina; Liem, Franziskus; Hänggi, Jürgen; Elmer, Stefan; Jäncke, Lutz

    2016-02-01

    Playing a musical instrument at a professional level is a complex multimodal task requiring information integration between different brain regions supporting auditory, somatosensory, motor, and cognitive functions. These kinds of task-specific activations are known to have a profound influence on both the functional and structural architecture of the human brain. However, until now, it is widely unknown whether this specific imprint of musical practice can still be detected during rest when no musical instrument is used. Therefore, we applied high-density electroencephalography and evaluated whole-brain functional connectivity as well as small-world topologies (i.e., node degree) during resting state in a sample of 15 professional musicians and 15 nonmusicians. As expected, musicians demonstrate increased intra- and interhemispheric functional connectivity between those brain regions that are typically involved in music perception and production, such as the auditory, the sensorimotor, and prefrontal cortex as well as Broca's area. In addition, mean connectivity within this specific network was positively related to musical skill and the total number of training hours. Thus, we conclude that musical training distinctively shapes intrinsic functional network characteristics in such a manner that its signature can still be detected during a task-free condition. Hum Brain Mapp 37:536-546, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  12. EMG analysis of back muscles during various types of sitting position

    OpenAIRE

    Nitka, Radek

    2009-01-01

    Title: EMG Analysis of Back Muscles during various Types of Sitting Position Purposes: The purpose of the thesis is the assessment of EMG activity of back muscles while sitting on a chair without any back support, and while sitting on a gymball. Methods: Surface electromyography - recording EMG activity of back muscles (20 minutes sitting on a chair and 20 minutes sitting on a gymball). Results: The mean muscle activity of all probands while sitting on a chair is higher than while sitting on ...

  13. How can gynaecologists cope with the silent killer – osteoporosis?

    Directory of Open Access Journals (Sweden)

    Marian Szamatowicz

    2017-02-01

    Full Text Available Osteoporosis is a very common disease among women. It is frequently called a silent epidemic and, due to its impact on osteoporotic fractures with high morbidity and mortality, also a silent killer. There are a number of significant risk factors for osteoporosis, some of them very strongly related to the functioning of the reproductive system. These include menstrual irregularities, premature ovarian failure, early natural or surgical menopause, a high number of pregnancies, and long-term breast-feeding. Hence, there is every reason to include gynaecologists in the multidisciplinary team striving to cope with this dreadful disease. Calculation of the 10-year fracture risk, done by means of the FRAX calculator, and classification of women according to the level of risk could prove to be an effective method of limiting the negative effects of osteoporosis.

  14. Evaluation of Linear Regression Simultaneous Myoelectric Control Using Intramuscular EMG.

    Science.gov (United States)

    Smith, Lauren H; Kuiken, Todd A; Hargrove, Levi J

    2016-04-01

    The objective of this study was to evaluate the ability of linear regression models to decode patterns of muscle coactivation from intramuscular electromyogram (EMG) and provide simultaneous myoelectric control of a virtual 3-DOF wrist/hand system. Performance was compared to the simultaneous control of conventional myoelectric prosthesis methods using intramuscular EMG (parallel dual-site control)-an approach that requires users to independently modulate individual muscles in the residual limb, which can be challenging for amputees. Linear regression control was evaluated in eight able-bodied subjects during a virtual Fitts' law task and was compared to performance of eight subjects using parallel dual-site control. An offline analysis also evaluated how different types of training data affected prediction accuracy of linear regression control. The two control systems demonstrated similar overall performance; however, the linear regression method demonstrated improved performance for targets requiring use of all three DOFs, whereas parallel dual-site control demonstrated improved performance for targets that required use of only one DOF. Subjects using linear regression control could more easily activate multiple DOFs simultaneously, but often experienced unintended movements when trying to isolate individual DOFs. Offline analyses also suggested that the method used to train linear regression systems may influence controllability. Linear regression myoelectric control using intramuscular EMG provided an alternative to parallel dual-site control for 3-DOF simultaneous control at the wrist and hand. The two methods demonstrated different strengths in controllability, highlighting the tradeoff between providing simultaneous control and the ability to isolate individual DOFs when desired.

  15. The Silent Revolution in Methods of Advocacy in English Courts

    OpenAIRE

    Watson, Andrew

    2016-01-01

    George Keeton wrote, in 1943, about “a silent revolution in methods of advocacy as practiced by the English Bar over the last fifty years” . Changed standards of etiquette, professional rules and greater control exerted by judges over these years led to a vast increase in courtesy in interactions with judges and between counsel. The conduct of prosecutions had also improved. They were generally no longer carried out in a sneering hectoring manner with witnesses mercilessly browbeaten or bulli...

  16. Effect of Selective Muscle Training Using Visual Emg Biofeedback on Infraspinatus and Posterior Deltoid

    Directory of Open Access Journals (Sweden)

    Lim One-bin

    2014-12-01

    Full Text Available We investigated the effects of visual electromyography (EMG biofeedback during side-lying shoulder external rotation exercise on the EMG amplitude for the posterior deltoid, infraspinatus, and infraspinatus/posterior deltoid EMG activity ratio. Thirty-one asymptomatic subjects were included. Subjects performed side-lying shoulder external rotation exercise with and without visual EMG biofeedback. Surface EMG was used to collect data from the posterior deltoid and infraspinatus muscles. The visual EMG biofeedback applied the pre-established threshold to prevent excessive posterior deltoid muscle contraction. A paired t-test was used to determine the significance of the measurements between without vs. with visual EMG biofeedback. Posterior deltoid activity significantly decreased while infraspinatus activity and the infraspinatus/posterior activity ratio significantly increased during side-lying shoulder external rotation exercise with visual EMG biofeedback. This suggests that using visual EMG biofeedback during shoulder external rotation exercise is a clinically effective training method for reducing posterior deltoid activity and increasing infraspinatus activity.

  17. Effect of Selective Muscle Training Using Visual EMG Biofeedback on Infraspinatus and Posterior Deltoid

    Science.gov (United States)

    Lim, One-bin; Kim, Jeong-ah; Song, Si-jeong; Cynn, Heon-seock; Yi, Chung-hwi

    2014-01-01

    We investigated the effects of visual electromyography (EMG) biofeedback during side-lying shoulder external rotation exercise on the EMG amplitude for the posterior deltoid, infraspinatus, and infraspinatus/posterior deltoid EMG activity ratio. Thirty-one asymptomatic subjects were included. Subjects performed side-lying shoulder external rotation exercise with and without visual EMG biofeedback. Surface EMG was used to collect data from the posterior deltoid and infraspinatus muscles. The visual EMG biofeedback applied the pre-established threshold to prevent excessive posterior deltoid muscle contraction. A paired t-test was used to determine the significance of the measurements between without vs. with visual EMG biofeedback. Posterior deltoid activity significantly decreased while infraspinatus activity and the infraspinatus/posterior activity ratio significantly increased during side-lying shoulder external rotation exercise with visual EMG biofeedback. This suggests that using visual EMG biofeedback during shoulder external rotation exercise is a clinically effective training method for reducing posterior deltoid activity and increasing infraspinatus activity. PMID:25713668

  18. Interpreting Changes in Surface EMG Amplitude During High-Level Fatiguing Contractions of the Brachioradialis

    National Research Council Canada - National Science Library

    Lowery, M

    2001-01-01

    ... to estimate muscle fatigue. In this paper, theoretical relationships between surface EMG amplitude measures and mean motor unit firing rates and muscle fiber conduction velocity (MFCV) are established...

  19. EMG of the hip adductor muscles in six clinical examination tests.

    Science.gov (United States)

    Lovell, Gregory A; Blanch, Peter D; Barnes, Christopher J

    2012-08-01

    To assess activation of muscles of hip adduction using EMG and force analysis during standard clinical tests, and compare athletes with and without a prior history of groin pain. Controlled laboratory study. 21 male athletes from an elite junior soccer program. Bilateral surface EMG recordings of the adductor magnus, adductor longus, gracilis and pectineus as well as a unilateral fine-wire EMG of the pectineus were made during isometric holds in six clinical examination tests. A load cell was used to measure force data. Test type was a significant factor in the EMG output for all four muscles (all muscles p magnus, adductor longus and gracilis. EMG activation for pectineus was highest in Hips 90. Injury history was a significant factor in the EMG output for the adductor longus (p magnus. For force data, clinical test type was a significant factor (p force. All other factors had no significant effect on the force outputs. Hip adduction strength assessment is best measured at hips 0 (which produced most force) or 45° flexion (which generally gave the highest EMG output). Muscle EMG varied significantly with clinical test position. Athletes with previous groin injury had a significant fall in some EMG outputs. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Postural and dynamic masseter and anterior temporalis muscle EMG repeatability in serial assessments.

    Science.gov (United States)

    Suvinen, T I; Malmberg, J; Forster, C; Kemppainen, P

    2009-11-01

    Electromyographic (EMG) assessment has been used as a non-invasive tool to objectively assess muscle function, although with controversial research and clinical potential. The aim of this study was to assess within-, inter-subject and between-day repeatability of serial EMG recordings. The study sample included 10 asymptomatic subjects with no history of temporomandibular disorders or muscle parafunctions. Bilateral masseter and anterior temporalis muscle EMG parameters were assessed in two standardized serial recordings (day 1 to day 2) using a portable EMG equipment (ME 6000 recorder, Mega Electronics, Kuopio, Finland). The functional tasks included postural/resting activities as pre- and post-recording series of 30 s each and jaw opening/closing, intercuspal and maximal voluntary clenching activities of 5 s, repeated three times. The assessed EMG parameters included the mean amplitude, s.d. and error. In addition, the power spectrum EMG parameter assessment included the median power frequencies and the averaged EMG spectrum data values. The results of the intraclass correlation coefficient analysis indicated reliability for nearly all of the intercuspal and all clenching EMG amplitude and power spectrum parameters. This was complemented by the repeated measures anova and post hoc analyses that indicated non-significant differences between day 1 and 2 in task- and muscle-related analyses. Most variability was noted in postural and some in opening/closing tasks. In conclusion this study assessed the reliability, repeatability and limitations of postural and various dynamic masseter and temporalis EMG recordings for serial assessment.

  1. Performances evaluation of textile electrodes for EMG remote measurements.

    Science.gov (United States)

    Sumner, B; Mancuso, C; Paradiso, R

    2013-01-01

    This work focus on the evaluation of textile electrodes for EMG signals acquisition. Signals have been acquired simultaneously from textile electrode and from gold standard electrodes, by using the same acquisition system; tests were done across subjects and with multiple trials to enable a more complete analysis. This research activity was done in the frame of the European Project Interaction, aiming at the development of a system for a continuous daily-life monitoring of the functional performance of stroke survivors in their physical interaction with the environment.

  2. Assessing reading fluency in Kenya: Oral or silent assessment?

    Science.gov (United States)

    Piper, Benjamin; Zuilkowski, Stephanie Simmons

    2015-04-01

    In recent years, the Education for All movement has focused more intensely on the quality of education, rather than simply provision. Many recent and current education quality interventions focus on literacy, which is the core skill required for further academic success. Despite this focus on the quality of literacy instruction in developing countries, little rigorous research has been conducted on critical issues of assessment. This analysis, which uses data from the Primary Math and Reading Initiative (PRIMR) in Kenya, aims to begin filling this gap by addressing a key assessment issue - should literacy assessments in Kenya be administered orally or silently? The authors compared second-grade students' scores on oral and silent reading tasks of the Early Grade Reading Assessment (EGRA) in Kiswahili and English, and found no statistically significant differences in either language. They did, however, find oral reading rates to be more strongly related to reading comprehension scores. Oral assessment has another benefit for programme evaluators - it allows for the collection of data on student errors, and therefore the calculation of words read correctly per minute, as opposed to simply words read per minute. The authors therefore recommend that, in Kenya and in similar contexts, student reading fluency be assessed via oral rather than silent assessment.

  3. Transluminal coronary angioplasty in the treatment of silent ischemia

    International Nuclear Information System (INIS)

    Bergin, P.; Myler, R.K.; Shaw, R.E.; Stertzer, S.H.; Clark, D.A.; Ryan, C.; Murphy, M.C.

    1988-01-01

    Fifty-four asymptomatic patients with positive thallium exercise tests underwent coronary angiography followed by coronary angioplasty (PTCA), as the primary therapy for silent ischemia. The procedure was technically successful in 89% of these patients. Emergency bypass graft surgery was necessary in 2 (3.6%) and q-wave myocardial infarction occurred in 1 (1.8%) of these. All fifty-four patients have been followed for a mean of 35 months since angioplasty. Of the 48 patients with initially successful PTCA, 12 had either clinical restenosis (9/14 or 19%) or a new lesion (3/48 or 6%) during follow-up, which required a repeat PTCA. At the longest follow-up, 46 (85%) had been successfully treated with on or more PTCA procedures. Two patients (3.6%) had sustained late q-wave myocardial infarction and two additional patients reported angina pectoris. There were no deaths. Angioplasty as a primary therapy for silent ischemia appears efficacious, with success and restenosis rates comparable to those in the symptomatic population. Event-free survival is improved, compared with natural history data for patients with silent ischemia from other studies. Prudent risk/benefit analysis may help to define subgroups most likely to benefit from this intervention

  4. Prevalence of silent gastrointestinal complications in maintenance renal transplant population

    Directory of Open Access Journals (Sweden)

    Teplitsky Susan

    2010-01-01

    Full Text Available This study aims to determine the prevalence of silent GI complications within a stable renal transplant population and to investigate whether the conversion to enteric-coated myco-phenolate sodium (EC-MPS, Myfortic; would improve symptom scores. This was a single-center, open-label, non-randomized, prospective study. Patients without any history of GI com-plaints were evaluated by means of the gastrointestinal symptom rating scale (GSRS, with subse-quent switch to EC-MPS in a group of patients. Silent complications were defined as patients who voiced no GI complaints at clinic visits despite a score of ≥ 2 on GSRS scale. A total of 236 stable patients participated in the trial. The prevalence of baseline scores ≥ 2 was relatively high with abdominal pain 29.66%, reflux 37.28%, indigestion 50%, constipation 58.47% and diarrhea 33.4%. Of 236 patients, 80 were converted to EC-MPS. There was statistically significant improvement on all scales in the subgroup of patients with GSRS score ≥ 2 (P< 0.05. In conclusion, the GSRS scale identified a high percentage of silent gastrointestinal complications in this renal transplant population. The converted patients with higher GSRS scores reported a sustained improvement.

  5. Multiple Silent Lacunes Are Associated with Recurrent Ischemic Stroke

    DEFF Research Database (Denmark)

    Andersen, Søren Due; Skjøth, Flemming; Yavarian, Yousef

    2016-01-01

    in a cohort of patients with incident ischemic stroke and no atrial fibrillation (AF). Methods: We included 786 patients (mean age 59.5 (SD 14.0); 42.9% females) in a registry-based, observational cohort study on patients with first-ever ischemic stroke. On brain MRI we assessed the number of silent lacunes....... Incidence rates per 100 person-years of ischemic stroke recurrence were 1.6, 2.5, and 5.0 for none, single, and multiple silent lacunes respectively. Corresponding incidence rates were 2.6, 2.4, and 4.4 for death, and 3.4, 4.0, and 6.6 for cardiovascular events respectively. Adjusted HRs of ischemic stroke...... recurrence were 1.53 (0.67-3.49) and 2.52 (1.25-5.09) for a single and multiple silent lacunes, respectively. Further adjustment for white matter hyperintensities maintained positive association although not significant. Corresponding adjusted HRs were 0.56 (0.25-1.25) and 0.65 (0.33-1.25) for death and 1...

  6. Locomotor adaptation to a soleus EMG-controlled antagonistic exoskeleton

    Science.gov (United States)

    Kinnaird, Catherine R.; Ferris, Daniel P.

    2013-01-01

    Locomotor adaptation in humans is not well understood. To provide insight into the neural reorganization that occurs following a significant disruption to one's learned neuromuscular map relating a given motor command to its resulting muscular action, we tied the mechanical action of a robotic exoskeleton to the electromyography (EMG) profile of the soleus muscle during walking. The powered exoskeleton produced an ankle dorsiflexion torque proportional to soleus muscle recruitment thus limiting the soleus' plantar flexion torque capability. We hypothesized that neurologically intact subjects would alter muscle activation patterns in response to the antagonistic exoskeleton by decreasing soleus recruitment. Subjects practiced walking with the exoskeleton for two 30-min sessions. The initial response to the perturbation was to “fight” the resistive exoskeleton by increasing soleus activation. By the end of training, subjects had significantly reduced soleus recruitment resulting in a gait pattern with almost no ankle push-off. In addition, there was a trend for subjects to reduce gastrocnemius recruitment in proportion to the soleus even though only the soleus EMG was used to control the exoskeleton. The results from this study demonstrate the ability of the nervous system to recalibrate locomotor output in response to substantial changes in the mechanical output of the soleus muscle and associated sensory feedback. This study provides further evidence that the human locomotor system of intact individuals is highly flexible and able to adapt to achieve effective locomotion in response to a broad range of neuromuscular perturbations. PMID:23307949

  7. Grid investments in a Nordic perspective. Report to EMG

    Energy Technology Data Exchange (ETDEWEB)

    2010-05-15

    In a letter of 20 November 2008, the Electricity Market Group (EMG) under the Nordic Council of Ministers requested NordREG to carry out an assignment related to transmission network investments in the Nordic countries. The assignment to NordREG was divided into two tasks; to map the differences in the legislation and licensing processes in the Nordic countries and to analyse these differences and possible ways of financing common network investment projects. In the second half of 2009 the consultant Econ Poeyry was engaged to support in the finalisation of this project, mainly concerning possibilities for Nordic financing. The final text is however the sole responsibility of the task force. A draft version of the final report was delivered to EMG in December 2009. At the same time the report was sent to the Nordic TSOs together with an invitation to a workshop at Gardermoen on 26 January 2010. The comments from the TSOs are included in appendix 2 of the report

  8. Ventilatory threshold during incremental running can be estimated using EMG shorts.

    Science.gov (United States)

    Tikkanen, Olli; Hu, Min; Vilavuo, Toivo; Tolvanen, Pekka; Cheng, Sulin; Finni, Taija

    2012-04-01

    The present study examined whether shorts with textile electromyographic (EMG) electrodes can be used to detect second ventilatory threshold (V(T2)) during incremental treadmill running. Thirteen recreationally active (REC) and eight endurance athletes were measured for EMG, heart rate, blood lactate and respiratory gases during VO(2max) test (3 min ramps, 1 km·h(-1) increments). V(T)(2), onset of blood lactate accumulation (OBLA) and EMG threshold (EMG(T)) were determined. In athletes, OBLA occurred at 56 ± 6 mL·kg(-1)·min(-1), V(T2) occurred at 59 ± 6 mL·kg(-1)·min(-1), and EMG(T) at 62 ± 6 mL·kg(-1)·min(-1) without significant differences between methods (analysis of variance: ANOVA). In REC participants, OBLA occurred at 40 ± 10 mL·kg(-1)·min(-1), V(T2) occurred at 43 ± 7 mL·kg(-1)·min(-1), and EMG(T) at 41 ± 9 mL·kg(-1)·min(-1) without significant differences between methods (ANOVA). For the entire group, correlation between EMG(T) and V(T2) was 0.86 (P < 0.001) and 0.84 (P < 0.001) between EMG(T) and OBLA. Limits of agreement between EMG(T) and V(T2) were narrower in athletes than in REC participants. Thus, it is concluded that estimation of V(T2) using EMG(T) in athletes is more valid than in REC participants. In practice, experienced runners could use online feedback from EMG garments to monitor whether their running intensity is near V(T2). © 2012 Institute of Physics and Engineering in Medicine

  9. EMG-driven models of human-machine interaction in individuals wearing the H2 exoskeleton

    NARCIS (Netherlands)

    Durandau, Guillaume; Sartori, Massimo; Bortole, Magdo; Moreno, Juan C.; Pons, José L.; Farina, Dario

    2016-01-01

    EMG-driven modeling has been mostly used offline and on powerful desktop computers, limiting the application of this technique to neurorehabilitation settings. In this paper, we demonstrate the use of EMG-driven modeling in online (i.e. in real-time) running on a fully portable embedded system and

  10. An open and configurable embedded system for EMG pattern recognition implementation for artificial arms.

    Science.gov (United States)

    Jun Liu; Fan Zhang; Huang, He Helen

    2014-01-01

    Pattern recognition (PR) based on electromyographic (EMG) signals has been developed for multifunctional artificial arms for decades. However, assessment of EMG PR control for daily prosthesis use is still limited. One of the major barriers is the lack of a portable and configurable embedded system to implement the EMG PR control. This paper aimed to design an open and configurable embedded system for EMG PR implementation so that researchers can easily modify and optimize the control algorithms upon our designed platform and test the EMG PR control outside of the lab environments. The open platform was built on an open source embedded Linux Operating System running a high-performance Gumstix board. Both the hardware and software system framework were openly designed. The system was highly flexible in terms of number of inputs/outputs and calibration interfaces used. Such flexibility enabled easy integration of our embedded system with different types of commercialized or prototypic artificial arms. Thus far, our system was portable for take-home use. Additionally, compared with previously reported embedded systems for EMG PR implementation, our system demonstrated improved processing efficiency and high system precision. Our long-term goals are (1) to develop a wearable and practical EMG PR-based control for multifunctional artificial arms, and (2) to quantify the benefits of EMG PR-based control over conventional myoelectric prosthesis control in a home setting.

  11. Effect of a pelvic belt on EMG activity during manual load lifting

    Directory of Open Access Journals (Sweden)

    Marcelo Pinto Pereira

    2009-04-01

    Full Text Available Manual lifting (ML capacity is still a matter of concern for industry administrators and electromyography (EMG seems to be a good alternative for the evaluation of muscles involved in this task. However, the reliability of these measures is very important. Thus, the objective of this study was to evaluate the influence of a pelvic belt on EMG activity of the erector spinus (ES and rectus femoralis (RF muscles during ML and during maximal voluntary contractions (MVC of trunk extension performed before (baseline and after ML. In addition, the variabilityin the EMG signal normalized by the following three different methods was evaluated: peak EMG activity, mean EMG activity, and EMG activity obtained during MVC. Eight volunteers performed ML of 15% and 25% of their body weight for 1 minute in the presence or absence of a pelvic belt. The coefficient of variation (CV of the EMG signal obtained for the ES and RF muscles was calculated during ML. Load cell traction values and the electromyographic variables RMS, median frequency, mean power frequency and total power of the ES muscle were obtained during MVC. The results showed lower CV (smaller variability when the EMG signal was normalized by peak activity, with this method thus being preferable. During MVC, only the load cell traction value differed from baseline after ML of 25% body weight without the pelvic belt (p=0.035, a finding suggesting rapid recovery of ES muscle after ML for 1 minute.

  12. The influence of mental fatigue on facial EMG activity during a simulated workday

    NARCIS (Netherlands)

    Veldhuizen, I.J.T.; Gaillard, A.W.K.; Vries, J. de

    2003-01-01

    The present study investigated whether facial EMG measures are sensitive to the effects of fatigue. EMG activity of the corrugator and frontalis muscles was recorded during and after a simulated workday. Fatigue was evaluated in four ways: (a) the building up of fatigue effects during the workday,

  13. Automated real-time detection of tonic-clonic seizures using a wearable EMG device

    DEFF Research Database (Denmark)

    Beniczky, Sándor; Conradsen, Isa; Henning, Oliver

    2018-01-01

    OBJECTIVE: To determine the accuracy of automated detection of generalized tonic-clonic seizures (GTCS) using a wearable surface EMG device. METHODS: We prospectively tested the technical performance and diagnostic accuracy of real-time seizure detection using a wearable surface EMG device. The s...

  14. Intelligent Noise Removal from EMG Signal Using Focused Time-Lagged Recurrent Neural Network

    Directory of Open Access Journals (Sweden)

    S. N. Kale

    2009-01-01

    Full Text Available Electromyography (EMG signals can be used for clinical/biomedical application and modern human computer interaction. EMG signals acquire noise while traveling through tissue, inherent noise in electronics equipment, ambient noise, and so forth. ANN approach is studied for reduction of noise in EMG signal. In this paper, it is shown that Focused Time-Lagged Recurrent Neural Network (FTLRNN can elegantly solve to reduce the noise from EMG signal. After rigorous computer simulations, authors developed an optimal FTLRNN model, which removes the noise from the EMG signal. Results show that the proposed optimal FTLRNN model has an MSE (Mean Square Error as low as 0.000067 and 0.000048, correlation coefficient as high as 0.99950 and 0.99939 for noise signal and EMG signal, respectively, when validated on the test dataset. It is also noticed that the output of the estimated FTLRNN model closely follows the real one. This network is indeed robust as EMG signal tolerates the noise variance from 0.1 to 0.4 for uniform noise and 0.30 for Gaussian noise. It is clear that the training of the network is independent of specific partitioning of dataset. It is seen that the performance of the proposed FTLRNN model clearly outperforms the best Multilayer perceptron (MLP and Radial Basis Function NN (RBF models. The simple NN model such as the FTLRNN with single-hidden layer can be employed to remove noise from EMG signal.

  15. Effect of Vibration Training on Anaerobic Power and Quardroceps Surface EMG in Long Jumpers

    Science.gov (United States)

    Liu, Bin; Luo, Jiong

    2015-01-01

    Objective: To explore the anaerobic power and surface EMG (sEMG) of quardrocep muscle in lower extremities after single vibration training intervention. Methods: 8 excellent male long jumpers voluntarily participated in this study. Four intervention modes were devised, including high frequency high amplitude (HFHA,30Hz,6mm), low frequency low…

  16. Respiratory muscle activity measured with a noninvasive EMG technique : technical aspects and reproducibility

    NARCIS (Netherlands)

    Maarsingh, EJW; Van Eykern, LA; Sprikkelman, AB; Hoekstra, MO; Van Aalderen, WMC

    A new method is being developed to investigate airway obstruction in young children by means of noninvasive electromyography (EMG) of diaphragmatic and intercostal muscles. The purpose of this study was to evaluate the reproducibility of the EMG measurements. Eleven adults, 39 school children (20

  17. THE EFFECT OF EARLY MOVEMENT RESTRICTION - AN EMG STUDY IN THE RAT

    NARCIS (Netherlands)

    WESTERGA, J; GRAMSBERGEN, A

    1993-01-01

    The effect of early immobilization upon the adult locomotor pattern was studied. One hindlimb of neonatal rats was immobilized during 20 days and the EMG pattern was studied 3-8 weeks after termination of movement restriction. All rats showed a fluent locomotion pattern at these ages, but the EMG

  18. Recognition of grasp types through principal components of DWT based EMG features.

    Science.gov (United States)

    Kakoty, Nayan M; Hazarika, Shyamanta M

    2011-01-01

    With the advancement in machine learning and signal processing techniques, electromyogram (EMG) signals have increasingly gained importance in man-machine interaction. Multifingered hand prostheses using surface EMG for control has appeared in the market. However, EMG based control is still rudimentary, being limited to a few hand postures based on higher number of EMG channels. Moreover, control is non-intuitive, in the sense that the user is required to learn to associate muscle remnants actions to unrelated posture of the prosthesis. Herein lies the promise of a low channel EMG based grasp classification architecture for development of an embedded intelligent prosthetic controller. This paper reports classification of six grasp types used during 70% of daily living activities based on two channel forearm EMG. A feature vector through principal component analysis of discrete wavelet transform coefficients based features of the EMG signal is derived. Classification is through radial basis function kernel based support vector machine following preprocessing and maximum voluntary contraction normalization of EMG signals. 10-fold cross validation is done. We have achieved an average recognition rate of 97.5%. © 2011 IEEE

  19. Differences in the EMG pattern of lea muscle activation during locomotion in Parkinson's disease

    NARCIS (Netherlands)

    Albani, G; Sandrini, G; Kunig, G; Martin-Soelch, C; Mauro, A; Pignatti, R; Pacchetti, C; Dietz, [No Value; Leenders, KL

    2003-01-01

    In this pilot study, EMG patterns of leg muscle activation were studied in five parkinsonian patients with (B1) and five without (B2) freezing. Gastrocnemius medialis (GM) and tibialis anterior (TA) activity was analysed, by means of surface electromyography (EMG), during treadmill walking at two

  20. Long-term surface EMG monitoring using K-means clustering and compressive sensing

    Science.gov (United States)

    Balouchestani, Mohammadreza; Krishnan, Sridhar

    2015-05-01

    In this work, we present an advanced K-means clustering algorithm based on Compressed Sensing theory (CS) in combination with the K-Singular Value Decomposition (K-SVD) method for Clustering of long-term recording of surface Electromyography (sEMG) signals. The long-term monitoring of sEMG signals aims at recording of the electrical activity produced by muscles which are very useful procedure for treatment and diagnostic purposes as well as for detection of various pathologies. The proposed algorithm is examined for three scenarios of sEMG signals including healthy person (sEMG-Healthy), a patient with myopathy (sEMG-Myopathy), and a patient with neuropathy (sEMG-Neuropathr), respectively. The proposed algorithm can easily scan large sEMG datasets of long-term sEMG recording. We test the proposed algorithm with Principal Component Analysis (PCA) and Linear Correlation Coefficient (LCC) dimensionality reduction methods. Then, the output of the proposed algorithm is fed to K-Nearest Neighbours (K-NN) and Probabilistic Neural Network (PNN) classifiers in order to calclute the clustering performance. The proposed algorithm achieves a classification accuracy of 99.22%. This ability allows reducing 17% of Average Classification Error (ACE), 9% of Training Error (TE), and 18% of Root Mean Square Error (RMSE). The proposed algorithm also reduces 14% clustering energy consumption compared to the existing K-Means clustering algorithm.

  1. Boundary element analysis of the directional sensitivity of the concentric EMG electrode

    DEFF Research Database (Denmark)

    Henneberg, Kaj-åge; R., Plonsey

    1993-01-01

    Assessment of the motor unit architecture based on concentric electrode motor unit potentials requires a thorough understanding of the recording characteristics of the concentric EMG electrode. Previous simulation studies have attempted to include the effect of EMG electrodes on the recorded...

  2. Muscle activity and inactivity periods during normal daily life.

    Directory of Open Access Journals (Sweden)

    Olli Tikkanen

    Full Text Available Recent findings suggest that not only the lack of physical activity, but also prolonged times of sedentary behaviour where major locomotor muscles are inactive, significantly increase the risk of chronic diseases. The purpose of this study was to provide details of quadriceps and hamstring muscle inactivity and activity during normal daily life of ordinary people. Eighty-four volunteers (44 females, 40 males, 44.1±17.3 years, 172.3±6.1 cm, 70.1±10.2 kg were measured during normal daily life using shorts measuring muscle electromyographic (EMG activity (recording time 11.3±2.0 hours. EMG was normalized to isometric MVC (EMG(MVC during knee flexion and extension, and inactivity threshold of each muscle group was defined as 90% of EMG activity during standing (2.5±1.7% of EMG(MVC. During normal daily life the average EMG amplitude was 4.0±2.6% and average activity burst amplitude was 5.8±3.4% of EMG(MVC (mean duration of 1.4±1.4 s which is below the EMG level required for walking (5 km/h corresponding to EMG level of about 10% of EMG(MVC. Using the proposed individual inactivity threshold, thigh muscles were inactive 67.5±11.9% of the total recording time and the longest inactivity periods lasted for 13.9±7.3 min (2.5-38.3 min. Women had more activity bursts and spent more time at intensities above 40% EMG(MVC than men (p<0.05. In conclusion, during normal daily life the locomotor muscles are inactive about 7.5 hours, and only a small fraction of muscle's maximal voluntary activation capacity is used averaging only 4% of the maximal recruitment of the thigh muscles. Some daily non-exercise activities such as stair climbing produce much higher muscle activity levels than brisk walking, and replacing sitting by standing can considerably increase cumulative daily muscle activity.

  3. Femoral anteversion influences vastus medialis and gluteus medius EMG amplitude: composite hip abductor EMG amplitude ratios during isometric combined hip abduction-external rotation.

    Science.gov (United States)

    Nyland, J; Kuzemchek, S; Parks, M; Caborn, D N M

    2004-04-01

    This prospective study evaluated differences in vastus medialis (VM) and gluteus medius (GM) EMG amplitude:composite hip abductor (gluteus maximus, gluteus medius, tensor fascia lata) EMG amplitude ratios among subjects with low or high relative femoral anteversion. Data were collected during the performance of a non-weight bearing, non-sagittal plane maximal volitional effort isometric combined hip abduction-external rotation maneuver. Eighteen nonimpaired athletically active females participated in this surface EMG study. Medial hip rotation (relative femoral anteversion estimate) was measured with a handheld goniometer. Subjects were grouped by medial hip rotation displacement (group 1 42 degrees =52.7+/-7 degrees ) for statistical analysis (Mann Whitney U-tests, p < 0.05). Group 2 had decreased VM (42+/-23% vs. 69+/-30%, U=19, p=0.034) and GM (62+/-25% vs. 96+/-39%, U=19, p=0.034) normalized mean peak EMG amplitude:composite mean peak hip abductor EMG amplitude ratios compared to group 1. Decreased normalized VM (-27%) and GM (-34%) EMG amplitudes among subjects with increased relative femoral anteversion suggest reduced dynamic frontal and transverse plane femoral control from these muscles, possibly contributing to the increased incidence of non-contact knee injury observed among athletic females.

  4. Hardware System for Real-Time EMG Signal Acquisition and Separation Processing during Electrical Stimulation.

    Science.gov (United States)

    Hsueh, Ya-Hsin; Yin, Chieh; Chen, Yan-Hong

    2015-09-01

    The study aimed to develop a real-time electromyography (EMG) signal acquiring and processing device that can acquire signal during electrical stimulation. Since electrical stimulation output can affect EMG signal acquisition, to integrate the two elements into one system, EMG signal transmitting and processing method has to be modified. The whole system was designed in a user-friendly and flexible manner. For EMG signal processing, the system applied Altera Field Programmable Gate Array (FPGA) as the core to instantly process real-time hybrid EMG signal and output the isolated signal in a highly efficient way. The system used the power spectral density to evaluate the accuracy of signal processing, and the cross correlation showed that the delay of real-time processing was only 250 μs.

  5. Crohn's disease-associated silent aspiration in the outpatient setting: Anesthesiologists beware.

    Science.gov (United States)

    Snell, Christopher; Coleman, Scott; Van Hal, Michele; Rashidian, Farshad; Okum, Gary; Green, Michael Stuart

    2018-01-01

    Every anesthesia provider fears aspiration of gastric contents during an anesthetic, and it may occur even in the absence of overt signs such as coughing or choking. Whether the aspiration is frank or silent, catastrophic and deleterious consequences may ensue. Therefore, familiarity with risk factors for silent aspiration is essential. Crohn's disease reportedly delays gastric emptying making these patients more susceptible to silent aspiration during surgery. Anesthesia providers must be cognizant of this risk and vigilant in the recognition to formulate a specific treatment plan preoperatively. We present a case of an ambulatory surgical patient with suspected silent aspiration undiagnosed by the anesthesia care team before induction of anesthesia.

  6. Assessment of Silent T1-weighted head imaging at 7 T

    Energy Technology Data Exchange (ETDEWEB)

    Costagli, Mauro; Tiberi, Gianluigi; Tosetti, Michela [Imago7 Foundation, Pisa (Italy); IRCCS Stella Maris, Laboratory of Medical Physics and Biotechnologies for Magnetic Resonance, Pisa (Italy); Symms, Mark R. [GE Applied Science Laboratory, Pisa (Italy); Angeli, Lorenzo [University of Pisa, Department of Translational Research and New Technologies in Medicine and Surgery, Pisa (Italy); Kelley, Douglas A.C. [GE Healthcare Technologies, San Francisco, CA (United States); Biagi, Laura [IRCCS Stella Maris, Laboratory of Medical Physics and Biotechnologies for Magnetic Resonance, Pisa (Italy); Farnetani, Andrea [University of Ferrara, Engineering Department, Ferrara (Italy); Materiacustica s.r.l., Ferrara (Italy); Rua, Catarina [University of Pisa, Department of Physics, Pisa (Italy); Donatelli, Graziella [Azienda Ospedaliero-Universitaria Pisana (AOUP), Neuroradiology Unit, Department of Diagnostic and Interventional Radiology, Pisa (Italy); Cosottini, Mirco [Imago7 Foundation, Pisa (Italy); University of Pisa, Department of Translational Research and New Technologies in Medicine and Surgery, Pisa (Italy)

    2016-06-15

    This study aimed to assess the performance of a ''Silent'' zero time of echo (ZTE) sequence for T1-weighted brain imaging using a 7 T MRI system. The Silent sequence was evaluated qualitatively by two neuroradiologists, as well as quantitatively in terms of tissue contrast, homogeneity, signal-to-noise ratio (SNR) and acoustic noise. It was compared to conventional T1-weighted imaging (FSPGR). Adequacy for automated segmentation was evaluated in comparison with FSPGR acquired at 7 T and 1.5 T. Specific absorption rate (SAR) was also measured. Tissue contrast and homogeneity in Silent were remarkable in deep brain structures and in the occipital and temporal lobes. Mean tissue contrast was significantly (p < 0.002) higher in Silent (0.25) than in FSPGR (0.11), which favoured automated tissue segmentation. On the other hand, Silent images had lower SNR with respect to conventional imaging: average SNR of FSPGR was 2.66 times that of Silent. Silent images were affected by artefacts related to projection reconstruction, which nevertheless did not compromise the depiction of brain tissues. Silent acquisition was 35 dB(A) quieter than FSPGR and less than 2.5 dB(A) louder than ambient noise. Six-minute average SAR was <2 W/kg. The ZTE Silent sequence provides high-contrast T1-weighted imaging with low acoustic noise at 7 T. (orig.)

  7. The Rachel Carson Letters and the Making of Silent Spring

    Directory of Open Access Journals (Sweden)

    John Paull

    2013-06-01

    Full Text Available Environment, conservation, green, and kindred movements look back to Rachel Carson’s 1962 book Silent Spring as a milestone. The impact of the book, including on government, industry, and civil society, was immediate and substantial, and has been extensively described; however, the provenance of the book has been less thoroughly examined. Using Carson’s personal correspondence, this paper reveals that the primary source for Carson’s book was the extensive evidence and contacts compiled by two biodynamic farmers, Marjorie Spock and Mary T. Richards, of Long Island, New York. Their evidence was compiled for a suite of legal actions (1957-1960 against the U.S. Government and that contested the aerial spraying of dichlorodiphenyltrichloroethane (DDT. During Rudolf Steiner’s lifetime, Spock and Richards both studied at Steiner’s Goetheanum, the headquarters of Anthroposophy, located in Dornach, Switzerland. Spock and Richards were prominent U.S. anthroposophists, and established a biodynamic farm under the tutelage of the leading biodynamics exponent of the time, Dr. Ehrenfried Pfeiffer. When their property was under threat from a government program of DDT spraying, they brought their case, eventually lost it, in the process spent US$100,000, and compiled the evidence that they then shared with Carson, who used it, and their extensive contacts and the trial transcripts, as the primary input for Silent Spring. Carson attributed to Spock, Richards, and Pfeiffer, no credit whatsoever in her book. As a consequence, the organics movement has not received the recognition, that is its due, as the primary impulse for Silent Spring, and it is, itself, unaware of this provenance.

  8. EMG amplitude, fatigue threshold, and time to task failure: A meta-analysis.

    Science.gov (United States)

    McCrary, J Matt; Ackermann, Bronwen J; Halaki, Mark

    2017-11-11

    Electromyographic (EMG) fatigue threshold (EMG FT ) is utilised as a correlate of critical power, torque, and force thresholds that establishes a theoretical exercise intensity-the power, torque, or force at which the rate of change of EMG amplitude (ΔEM¯G) is zero-below which neuromuscular fatigue is negligible and unpredictable. Recent studies demonstrating neuromuscular fatigue below critical thresholds raise questions about the construct validity of EMG FT . The purpose of this analysis is to evaluate the construct validity of EMGFT by aggregating ΔEM¯G and time to task failure (T lim ) data. Meta-analysis. Database search of MEDLINE, SPORTDiscus, Web of Science, and Cochrane (inception - September 2016) conducted using terms relevant to EMG and muscle fatigue. Inclusion criteria were studies reporting agonist muscle EMG amplitude data during constant force voluntary isometric contractions taken to task failure. Linear and nonlinear regression models were used to relate ΔEM¯G and T lim data extracted from included studies. Regression analyses included data from 837 healthy adults from 43 studies. Relationships between ΔEM¯G and T lim were strong in both nonlinear (R 2 =0.65) and linear (R 2 =0.82) models. ΔEM¯G at EMG FT was significantly nonzero overall and in 3 of 5 cohorts in the nonlinear model (pEMG FT lacks face validity as currently calculated; models for more precise EMG FT calculation are proposed. A new framework for prediction of task failure using EMG amplitude data alone is presented. The ΔEM¯G vs. Tlim relationship remains consistent across sexes and force vs. position tasks. Copyright © 2017 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  9. Force control is related to low-frequency oscillations in force and surface EMG.

    Directory of Open Access Journals (Sweden)

    Hwasil Moon

    Full Text Available Force variability during constant force tasks is directly related to oscillations below 0.5 Hz in force. However, it is unknown whether such oscillations exist in muscle activity. The purpose of this paper, therefore, was to determine whether oscillations below 0.5 Hz in force are evident in the activation of muscle. Fourteen young adults (21.07 ± 2.76 years, 7 women performed constant isometric force tasks at 5% and 30% MVC by abducting the left index finger. We recorded the force output from the index finger and surface EMG from the first dorsal interosseous (FDI muscle and quantified the following outcomes: 1 variability of force using the SD of force; 2 power spectrum of force below 2 Hz; 3 EMG bursts; 4 power spectrum of EMG bursts below 2 Hz; and 5 power spectrum of the interference EMG from 10-300 Hz. The SD of force increased significantly from 5 to 30% MVC and this increase was significantly related to the increase in force oscillations below 0.5 Hz (R(2 = 0.82. For both force levels, the power spectrum for force and EMG burst was similar and contained most of the power from 0-0.5 Hz. Force and EMG burst oscillations below 0.5 Hz were highly coherent (coherence = 0.68. The increase in force oscillations below 0.5 Hz from 5 to 30% MVC was related to an increase in EMG burst oscillations below 0.5 Hz (R(2 = 0.51. Finally, there was a strong association between the increase in EMG burst oscillations below 0.5 Hz and the interference EMG from 35-60 Hz (R(2 = 0.95. In conclusion, this finding demonstrates that bursting of the EMG signal contains low-frequency oscillations below 0.5 Hz, which are associated with oscillations in force below 0.5 Hz.

  10. The Hand of The Silent Worker: Reading an ASL imageword

    Directory of Open Access Journals (Sweden)

    Pamela J. Kincheloe

    2016-05-01

    Full Text Available The essay argues that the attempt to represent ASL in two dimensions is not a new, postmodern phenomenon, but is instead one that is embedded in deaf history at least as far back as the nineteenth century.  The essay then provides a close, historically contextual reading of a particular illustration from the October 1928 issue of The Silent Worker, showing evidence of a multivocal imageword; a successful two dimensional representation of ASL, depicted in a clash with the heteroglossic English text with which it appears.

  11. EMG analysis of lumbar paraspinal muscles as a predictor of the risk of low-back pain

    OpenAIRE

    Heydari, Abbas; Nargol, Antoni V. F.; Jones, Anthony P. C.; Humphrey, Anthony R.; Greenough, Charles G.

    2010-01-01

    Studies of EMG power spectra have established associations between low-back pain (LBP) and median frequency (MF). This 2-year prospective study investigates the association of LBP with EMG variables over time. 120 health care workers underwent paraspinal EMG measurements and assessment of back pain disability. The EMG recordings were performed under isometric trunk extension at 2/3 maximum voluntary contraction and acquired from erector spinae muscles at the level of L4/L5. 108 (90%) subjects...

  12. Instrumentation for ENG and EMG recordings in FES systems.

    Science.gov (United States)

    Nikolić, Z M; Popović, D B; Stein, R B; Kenwell, Z

    1994-07-01

    An electronic circuit for analog processing of neural (electroneurogram or ENG) and muscular (electromyogram or EMG) signals in functional electrical stimulation (FES) systems is described in this paper. The basic circuit consists of a low-noise gated preamplifier, band-pass filter, amplifier, and a blanking circuit to minimize stimulation artifacts during electrical stimulation. This device was tested in chronic recordings using a triphasic cuff electrode for nerves and epimysial electrodes for muscles in the hind limbs of cats. The device was used for nerve recordings in the presence of electrical stimulation of muscles in the same leg. The recordings showed rejection of stimulation and muscle (M-wave) artifacts, while retaining the information of interest.

  13. To What Extent Is Mean EMG Frequency during Gait a Reflection of Functional Muscle Strength in Children with Cerebral Palsy?

    Science.gov (United States)

    Van Gestel, L.; Wambacq, H.; Aertbelien, E.; Meyns, P.; Bruyninckx, H.; Bar-On, L.; Molenaers, G.; De Cock, P.; Desloovere, K.

    2012-01-01

    The aim of the current paper was to analyze the potential of the mean EMG frequency, recorded during 3D gait analysis (3DGA), for the evaluation of functional muscle strength in children with cerebral palsy (CP). As walking velocity is known to also influence EMG frequency, it was investigated to which extent the mean EMG frequency is a reflection…

  14. Dynamic wind turbine models in power system simulation tool DIgSILENT

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, A.D.; Iov, F.; Soerensen, Poul.; Cutululis, N.; Jauch, C.; Blaabjerg, F.

    2007-08-15

    This report presents a collection of models and control strategies developed and implemented in the power system simulation tool PowerFactory DIgSILENT for different wind turbine concepts. It is the second edition of Risoe-R-1400(EN) and it gathers and describes a whole wind turbine model database built-op and developed during several national research projects, carried out at Risoe DTU National Laboratory for Sustainable Energy and Aalborg University, in the period 2001-2007. The overall objective of these projects was to create a wind turbine model database able to support the analysis of the interaction between the mechanical structure of the wind turbine and the electrical grid during different operational modes. The report provides thus a description of the wind turbines modelling, both at a component level and at a system level. The report contains both the description of DIgSILENT built-in models for the electrical components of a grid connected wind turbine (e.g. induction generators, power converters, transformers) and the models developed by the user, in the dynamic simulation language DSL of DIgSILENT, for the non-electrical components of the wind turbine (wind model, aerodynamic model, mechanical model). The initialisation issues on the wind turbine models into the power system simulation are also presented. The main attention in the report is drawn to the modelling at the system level of the following wind turbine concepts: (1) Fixed speed active stall wind turbine concept (2) Variable speed doubly-fed induction generator wind turbine concept (3) Variable speed multi-pole permanent magnet synchronous generator wind turbine concept These wind turbine concept models can be used and even extended for the study of different aspects, e.g. the assessment of power quality, control strategies, connection of the wind turbine at different types of grid and storage systems. Different control strategies have been developed and implemented for these wind turbine

  15. Silent ureteral stones: impact on kidney function--can treatment of silent ureteral stones preserve kidney function?

    Science.gov (United States)

    Marchini, Giovanni S; Vicentini, Fabio C; Mazzucchi, Eduardo; Brito, Arthur; Ebaid, Gustavo; Srougi, Miguel

    2012-02-01

    To report our experience with silent ureteral stones and expose their true influence on renal function. We analyzed 506 patients who had undergone ureterolithotripsy from January 2005 to May 2010. Silent ureteral stones were calculi found in the absence of any specific or subjective ureteral stone-related symptoms. Of the 506 patients, 27 (5.3%) met these criteria (global cohort). All patients were assessed postoperatively with dimercaptosuccinic acid scintigraphy (DMSA). A difference in relative kidney function of >10% was considered abnormal. Pre- and postoperative comparative DMSA analyses were electively obtained for 9 patients (kidney function cohort). A t test was used to assess the numeric variables, and the chi-square test or Fisher's exact test was used for categorical variables. Two-tailed PStones were diagnosed by radiologic abdominal evaluation for nonurologic diseases in 40% and after previous nephrolithiasis treatment in 33%. The primary therapy was ureterolithotripsy in 88%. The mean follow-up time was 23 months. The overall ureteral stone-free rate after 1 and 2 procedures was 96% and 100%, respectively. In the global cohort, the mean pre- and postoperative serum creatinine levels were similar (P=.39), and the mean postoperative function on DMSA was 31%. In the kidney function cohort, no difference was found between the pre- and postoperative DMSA findings (22%±12.1% vs 20%±11.8%; P=.83) and serum creatinine (0.8±0.13 mg/dL vs 1.0±0.21 mg/dL; P=.45). Silent ureteral stones are associated with decreased kidney function present at the diagnosis. Hydronephrosis tends to diminish after stone removal, and kidney function remains unaltered. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. The effect of different attachment systems with implant-retained overdentures on maximum bite force and EMG.

    Science.gov (United States)

    Uçankale, Mert; Akoğlu, Burçin; Ozkan, Yaşar; Ozkan, Yasemin Kulak

    2012-03-01

    To compare the effect of different attachment systems with implant-retained overdentures on maximum bite force and muscle activity using electromyography (EMG). Denture retention and stability is of considerable interest in prosthetic dentistry. Thirty-five patients were examined: 15 edentulous patients treated with mandibular implant-retained overdentures (MIRO) and maxillary dentures (MCD) (two implant-ball attachment) (BC); 10 edentulous patients treated with MIRO and MCD (four implants-bar attachments) (BRC); 10 patients with edentulous mandibular treated with MIRO and maxillary fixed partial dentures (MFPD) (two implant-ball attachments) (BF). Before implant placement all patients received new dentures. After using these dentures for 3 months the maximum bite force and electrical activity of masseter muscle were measured. Two or four implants were then inserted into the intraforaminal region. After osseointegration periods, patients were treated with MIRO which duplicated their dentures and after three months the measurements were repeated. The data were collected and statistically analysed. Muscle activity and chewing ability increased in the second period of measurements. Also chewing time was significantly decreased at the first measurements. The highest muscle activity was observed in the group of patients treated with group BF. The EMG values of the masseter muscle significantly increased when an implant attachments was used in the overdenture. © 2010 The Gerodontology Society and John Wiley & Sons A/S.

  17. Electrocardiographically and symptomatically silent myocardial ischemia during exercise testing

    International Nuclear Information System (INIS)

    Kurata, Chinori; Tawarahara, Kei; Sakata, Kazuyuki; Taguchi, Takahisa; Fukumoto, Yoshihiro; Kobayashi, Akira; Yamazaki, Noboru; Tanaka, Hiroshi

    1991-01-01

    Certain patients with coronary artery disease (CAD) may have neither ST depression nor chest pain during exercise despite the presence of myocardial ischemia. The frequency and characteristics of such electrocardiographically and symptomatically silent ischemia were studied in 171 patients with both angiographically documented CAD and scintigraphically documented ischemia. Fifty-six (33%) of 171 patients had neither ST depression nor chest pain (Group N), and 115 (67%) had ST depression and/or chest pain (Group P). The two groups were similar with respect to age, gender, the prevalence of prior infarction, and peak systolic blood pressure. Group N patients, however, had a higher mean peak heart rate and rate-pressure product, less severe scintigraphic ischemia, a lower lung thallium-201 uptake, and a smaller number of diseased vessels. Stepwise discriminant analysis showed a history of effort angina, lung thallium-201 uptake, and scintigraphic severity of ischemia to be significant discriminators between Groups N and P. In conclusion, electrocardiographically and symptomatically silent ischemia may be common during exercise in patients with CAD, and less severe ischemia may be one of important determinants. (author)

  18. Effect of a jig on EMG activity in different orofacial pain conditions.

    Science.gov (United States)

    Bodere, Celine; Woda, Alain

    2008-01-01

    The bite stop (jig) is commonly used in clinical practice. It has been recommended as a simple means to routinely record or provide centric relation closure and, more recently, to reduce migraines and tension-type headaches. However, the reason for the jig effect has yet to be explained. This study tested the hypothesis that it works through a decrease in masticatory muscle activity. The effect of a jig placed on the maxillary anterior teeth was investigated by recording the electromyographic (EMG) activity of the superficial masseter and anterior temporal muscles at postural position and when swallowing on the jig. EMG recordings were obtained from 2 groups of pain patients (myofascial and neuropathic) and from 2 groups of pain-free patients (disc derangement and controls) unaware of the role of dental occlusion treatments. EMG activity in postural position was higher in pain groups than in pain-free groups. The jig strongly but temporarily decreased the postural EMG activity for masseter muscles in all groups except for the neuropathic group and for temporal muscles in the myofascial group. The EMG activity when swallowing with the jig was reduced in control, disc derangement, and myofascial groups; however, EMG "hyperactivity" in the neuropathic pain group seemed to be locked. The decrease of postural EMG activity, especially in the myofascial group, was short lasting and cannot be considered as evidence to support the hypothesis of a long-term muscle relaxation jig effect. However, the results may uphold certain short-term clinical approaches.

  19. Motor imagery modulation of postural sway is accompanied by changes in the EMG-COP association.

    Science.gov (United States)

    Lemos, Thiago; Rodrigues, Erika C; Vargas, Claudia D

    2014-08-08

    Motor imagery (MI) performed in an upright stance promotes increases in postural sway without changes in usual amplitude measures of calf muscle EMG. However, postural muscle activity can also be determined from the temporal association between EMG and center of pressure (COP) displacements. In this study we investigated whether the MI modulation of postural sway is accompanied by changes in EMG-COP association. Surface EMG from the lateral gastrocnemius (LG) muscle and COP coordinates were collected from 12 subjects while they imagined themselves performing a rising on tiptoes movement via kinesthetic or visual imagery. As a control condition subjects were requested to imagine singing a song. The standard deviation of the forward-backward COP sway and the coefficient of variation of the EMG were calculated and compared across tasks. The degree of association between COP sways and LG activity was evaluated through a cross-correlation function. Kinesthetic imagery promoted a larger COP displacement than both visual and control imagery (pCOP association during kinesthetic imagery compared to control imagery (p=0.02), whereas the EMG-COP association in visual imagery was not different from that observed during kinesthetic or control imagery (p>0.19). In conclusion, kinesthetic imagery resulted in a higher EMG-COP temporal association. Subliminal fringe mechanisms may account for the imagery effects on muscle activity and postural sway during upright stance. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  20. Reducing calorie sales from supermarkets - 'silent' reformulation of retailer-brand food products.

    Science.gov (United States)

    Jensen, Jørgen Dejgård; Sommer, Iben

    2017-08-23

    Food product reformulation is seen as one among several tools to promote healthier eating. Reformulating the recipe for a processed food, e.g. reducing the fat, sugar or salt content of the foods, or increasing the content of whole-grains, can help the consumers to pursue a healthier life style. In this study, we evaluate the effects on calorie sales of a 'silent' reformulation strategy, where a retail chain's private-label brands are reformulated to a lower energy density without making specific claims on the product. Using an ecological study design, we analyse 52 weeks' sales data - enriched with data on products' energy density - from a Danish retail chain. Sales of eight product categories were studied. Within each of these categories, specific products had been reformulated during the 52 weeks data period. Using econometric methods, we decompose the changes in calorie turnover and sales value into direct and indirect effects of product reformulation. For all considered products, the direct effect of product reformulation was a reduction in the sale of calories from the respective product categories - between 0.5 and 8.2%. In several cases, the reformulation led to indirect substitution effects that were counterproductive with regard to reducing calorie turnover. However, except in two insignificant cases, these indirect substitution effects were dominated by the direct effect of the reformulation, leading to net reductions in calorie sales between -3.1 and 7.5%. For all considered product reformulations, the reformulation had either positive, zero or very moderate negative effects on the sales value of the product category to which the reformulated product belonged. Based on these findings, 'silent' reformulation of retailer's private brands towards lower energy density seems to contribute to lowering the calorie intake in the population (although to a moderate extent) with moderate losses in retailer's sales revenues.

  1. The French Quest for the Silent Car Body: Technology, Comfort and Distinction in the Interwar Period

    OpenAIRE

    Krebs, Stefan

    2011-01-01

    Up until the First World War the open tourer had been the predominant car type in France. Then, during the 1920s, it was swiftly replaced by the closed sedan. The closed car revolution was accompanied by an intricate discourse on body noise and silence: motorists and journalists for example criticized noisy cars, test drivers praised the silence of certain car models, and automotive engineers investigated means to quieten car components with special consideration of the closed body. To unrave...

  2. Inhibition of motoneurons during the cutaneous silent period in the spinal cord of the turtle

    DEFF Research Database (Denmark)

    Guzulaitis, Robertas; Hounsgaard, Jørn Dybkjær; Alaburda, Aidas

    2012-01-01

    motoneurons in the isolated carapace-spinal cord preparation from adult turtles during rhythmic scratch-like reflex. Electrical stimulation of cutaneous nerves induced CSP-like suppression of motor nerve firing during rhythmic network activity. The stimulus that generated the CSP-like suppression of motor...

  3. EMG-force relationship during static contraction: Effects on sensor placement locations on biceps brachii muscle.

    Science.gov (United States)

    Ahamed, Nizam Uddin; Sundaraj, Kenneth; Alqahtani, Mahdi; Altwijri, Omar; Ali, Md Asraf; Islam, Md Anamul

    2014-10-15

    The relationship between surface electromyography (EMG) and force have been the subject of ongoing investigations and remain a subject of controversy. Even under static conditions, the relationships at different sensor placement locations in the biceps brachii (BB) muscle are complex. The aim of this study was to compare the activity and relationship between surface EMG and static force from the BB muscle in terms of three sensor placement locations. Twenty-one right hand dominant male subjects (age 25.3 ± 1.2 years) participated in the study. Surface EMG signals were detected from the subject's right BB muscle. The muscle activation during force was determined as the root mean square (RMS) electromyographic signal normalized to the peak RMS EMG signal of isometric contraction for 10 s. The statistical analysis included linear regression to examine the relationship between EMG amplitude and force of contraction [40-100% of maximal voluntary contraction (MVC)], repeated measures ANOVA to assess differences among the sensor placement locations, and coefficient of variation (CoV) for muscle activity variation. The results demonstrated that when the sensor was placed on the muscle belly, the linear slope coefficient was significantly greater for EMG versus force testing (r^{2} = 0.61, P > 0.05) than when placed on the lower part (r^{2}=0.31, Pr^{2}=0.29, P > 0.05). In addition, the EMG signal activity on the muscle belly had less variability than the upper and lower parts (8.55% vs. 15.12% and 12.86%, respectively). These findings indicate the importance of applying the surface EMG sensor at the appropriate locations that follow muscle fiber orientation of the BB muscle during static contraction. As a result, EMG signals of three different placements may help to understand the difference in the amplitude of the signals due to placement.

  4. EMG-based pattern recognition approach in post stroke robot-aided rehabilitation: a feasibility study

    Science.gov (United States)

    2013-01-01

    Background Several studies investigating the use of electromyographic (EMG) signals in robot-based stroke neuro-rehabilitation to enhance functional recovery. Here we explored whether a classical EMG-based patterns recognition approach could be employed to predict patients’ intentions while attempting to generate goal-directed movements in the horizontal plane. Methods Nine right-handed healthy subjects and seven right-handed stroke survivors performed reaching movements in the horizontal plane. EMG signals were recorded and used to identify the intended motion direction of the subjects. To this aim, a standard pattern recognition algorithm (i.e., Support Vector Machine, SVM) was used. Different tests were carried out to understand the role of the inter- and intra-subjects’ variability in affecting classifier accuracy. Abnormal muscular spatial patterns generating misclassification were evaluated by means of an assessment index calculated from the results achieved with the PCA, i.e., the so-called Coefficient of Expressiveness (CoE). Results Processing the EMG signals of the healthy subjects, in most of the cases we were able to build a static functional map of the EMG activation patterns for point-to-point reaching movements on the horizontal plane. On the contrary, when processing the EMG signals of the pathological subjects a good classification was not possible. In particular, patients’ aimed movement direction was not predictable with sufficient accuracy either when using the general map extracted from data of normal subjects and when tuning the classifier on the EMG signals recorded from each patient. Conclusions The experimental findings herein reported show that the use of EMG patterns recognition approach might not be practical to decode movement intention in subjects with neurological injury such as stroke. Rather than estimate motion from EMGs, future scenarios should encourage the utilization of these signals to detect and interpret the normal and

  5. EFFICACY OF METOPROLOL AND DILTIAZEM IN TREATING SILENT-MYOCARDIAL-ISCHEMIA

    NARCIS (Netherlands)

    PORTEGIES, MCM; SIJBRING, P; GOBEL, JAM; VIERSMA, JW; LIE, KI

    1994-01-01

    Recent studies strongly support the prognostic importance of transient silent ischemia. Because patients with silent ischemia are at higher risk of a cardiac event, they are likely to benefit not only from control of symptoms, but also from treatment directed at prevention of ischemia. The efficacy

  6. Silent ischemic brain lesions after transcatheter aortic valve replacement : lesion distribution and predictors

    NARCIS (Netherlands)

    Samim, Mariam; Hendrikse, Jeroen; van der Worp, H. Bart; Agostoni, Pierfrancesco; Nijhoff, Freek; Doevendans, Pieter A.; Stella, Pieter R.

    Silent ischemic brain lesions and ischemic stroke are known complications of transcatheter aortic valve replacement (TAVR). We aimed to investigate the occurrence and distribution of TAVR-related silent ischemic brain lesions using diffusion-weighted magnetic resonance imaging (DWI). Consecutive

  7. Silent no more: Sexual violence in conflict as a challenge to the ...

    African Journals Online (AJOL)

    The Tearfund report Silent No More (2011) challenges the worldwide church to respond to sexual violence in conflicts. This article argues that a church response should have pastoral, biblical and theological dimensions. Starting with the Silent No More report it examines the prevalence of sexual violence in conflict and the ...

  8. The Contributions of Oral and Silent Reading Fluency to Reading Comprehension

    Science.gov (United States)

    Price, Katherine W.; Meisinger, Elizabeth B.; Louwerse, Max M.; D'Mello, Sidney

    2016-01-01

    Silent reading fluency has received limited attention in the school-based literatures across the past decade. We fill this gap by examining both oral and silent reading fluency and their relation to overall abilities in reading comprehension in fourth-grade students. Lower-level reading skills (word reading, rapid automatic naming) and vocabulary…

  9. Adductor magnus: An EMG investigation into proximal and distal portions and direction specific action.

    Science.gov (United States)

    Benn, Matthew L; Pizzari, Tania; Rath, Leanne; Tucker, Kylie; Semciw, Adam I

    2018-03-09

    Cadaveric studies indicate that adductor magnus is structurally partitioned into at least two regions. The aim of this study was to investigate the direction-specific actions of proximal and distal portions of adductor magnus, and in doing so determine if these segments have distinct functional roles. Fine-wire EMG electrodes were inserted into two portions of adductor magnus of 12 healthy young adults. Muscle activity was recorded during maximum voluntary isometric contractions (MVICs) across eight tests (hip flexion/extension, internal/external rotation, abduction, and adduction at 0°, 45°, and 90° hip flexion). Median activity within each action (normalized to peak) was compared between segments using repeated measures nonparametric tests (α = 0.05). An effect size (ES = z-score/√sample size) was calculated to determine the magnitude of difference between muscle segments. The relative contribution of each muscle segment differed significantly during internal rotation (P magnus has at least two functionally unique regions. Differences were most evident during rotation. The different direction-specific actions may imply that each segment performs separate roles in hip stability and movement. These findings may have implications on injury prevention and rehabilitation for adductor-related groin injuries, hamstring strain injury, and hip pathology. Clin. Anat., 2018. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.

  10. Analysis of sEMG signals using discrete wavelet transform for muscle fatigue detection

    Science.gov (United States)

    Flórez-Prias, L. A.; Contreras-Ortiz, S. H.

    2017-11-01

    The purpose of the present article is to characterize sEMG signals to determine muscular fatigue levels. To do this, the signal is decomposed using the discrete wavelet transform, which offers noise filtering features, simplicity and efficiency. sEMG signals on the forearm were acquired and analyzed during the execution of cyclic muscular contractions in the presence and absence of fatigue. When the muscle fatigues, the sEMG signal shows a more erratic behavior of the signal as more energy is required to maintain the effort levels.

  11. Effect of vibrotactile feedback on an EMG-based proportional cursor control system.

    Science.gov (United States)

    Li, Shunchong; Chen, Xingyu; Zhang, Dingguo; Sheng, Xinjun; Zhu, Xiangyang

    2013-01-01

    Surface electromyography (sEMG) has been introduced into the bio-mechatronics systems, however, most of them are lack of the sensory feedback. In this paper, the effect of vibrotactile feedback for a myoelectric cursor control system is investigated quantitatively. Simultaneous and proportional control signals are extracted from EMG using a muscle synergy model. Different types of feedback including vibrotactile feedback and visual feedback are added, assessed and compared with each other. The results show that vibrotactile feedback is capable of improving the performance of EMG-based human machine interface.

  12. Detection of EMG-based muscle fatigue during cyclic dynamic contraction using a monopolar configuration.

    Science.gov (United States)

    Hotta, Yu; Ito, Kenichi

    2013-01-01

    Measurement of surface EMG signals is usually performed using the bipolar (single differential) configuration. However, even if contraction during exercise is performed until near-complete exhaustion, the change in the surface EMG accompanying the fatigue could be undetectable using the bipolar configuration. In order to overcome this disadvantage, this study proposes the measurement of surface EMG using the monopolar configuration. Experimental results show that the monopolar configuration can detect the change in muscle fatigue with greater sensitivity and better stability, as compared to the bipolar configuration.

  13. Description and Validation of a Test to Evaluate Sustained Silent Reading

    Science.gov (United States)

    Ramulu, Pradeep Y.; Swenor, Bonnielin K.; Jefferys, Joan L.; Rubin, Gary S.

    2013-01-01

    Purpose. To construct and validate a test of sustained silent reading. Methods. Standardized 7300 and 7600 word passages were written to evaluate sustained silent reading. Two hundred forty subjects validated whether comprehension questions could discriminate subjects who did and did not read the passage. To evaluate test–retest properties, 49 subjects silently read the standardized passages on separate days. Sixty glaucoma suspect controls and 64 glaucoma subjects had their out loud reading evaluated with the MNRead card and an International Reading Speed Texts (IReST) passage, and their silent reading measured using the 7300 word passage. Sustained silent reading parameters included reading speed and reading speed slope over time. Results. Comprehension questions distinguished individuals who had and had not read passage materials. Bland-Altman analyses of intersession sustained reading speed and reading speed slope demonstrated 95% coefficients of repeatability of 57 words per minute (wpm) and 2.76 wpm/minute. Sustained silent reading speed was less correlated with MNRead (r = 0.59) or IReST passage (r = 0.68) reading speeds than the correlation of these two measures of out loud reading speed with each other (r = 0.72). Sustained silent reading speed was more likely to differ from IReST reading speed by more than 50% in rapid silent readers (odds ratio [OR] = 29, 95% confidence interval [CI] = 10–87), and comparisons of sustained and out loud reading speeds demonstrated proportional error in Bland-Altman analyses. Conclusions. Tests of out loud reading do not accurately reflect silent reading speed in individuals with normal vision or glaucoma. The described test offers a standardized way to evaluate the impact of eye disease and/or visual rehabilitation on sustained silent reading. PMID:23258146

  14. Silent Reading Fluency and Comprehension in Bilingual Children

    Science.gov (United States)

    O'Brien, Beth A.; Wallot, Sebastian

    2016-01-01

    This paper focuses on reading fluency by bilingual primary school students, and the relation of text fluency to their reading comprehension. Group differences were examined in a cross-sectional design across the age range when fluency is posed to shift from word-level to text-level. One hundred five bilingual children from primary grades 3, 4, and 5 were assessed for English word reading and decoding fluency, phonological awareness, rapid symbol naming, and oral language proficiency with standardized measures. These skills were correlated with their silent reading fluency on a self-paced story reading task. Text fluency was quantified using non-linear analytic methods: recurrence quantification and fractal analyses. Findings indicate that more fluent text reading appeared by grade 4, similar to monolingual findings, and that different aspects of fluency characterized passage reading performance at different grade levels. Text fluency and oral language proficiency emerged as significant predictors of reading comprehension. PMID:27630590

  15. Isolated and silent spinal neurocysticercosis associated with pseudotumor cerebri

    Directory of Open Access Journals (Sweden)

    Mohapatra Rabindra

    2008-01-01

    Full Text Available Incidence of spinal neurocysticercosis (NCC is rare. Isolated spinal NCC is still rarer. We present here a case report where a young lady presented with all the clinical features of pseudotumor cerebri (PTC, where medical treatment for PTC failed and the presence of cysticercous in spinal canal was detected only on the operation table, while doing a lumbo-peritoneal shunt (LP shunt to save her vision. Diagnosis could be confirmed only after the histopathology report was received. She did not have any direct evidence of spinal involvement, thereby eluding correct diagnosis. In English literature, we could not find any report of isolated and silent spinal NCC associated with PTC. In addition, we could not find any report of recovery of cysticercous larva through the Touhey′s needle injury, although this was an incidental finding. In endemic areas, isolated spinal NCC should be suspected in patients presenting with PTC.

  16. Stopping the Silent Killer: Hepatitis B Among Asian Americans

    Centers for Disease Control (CDC) Podcasts

    2008-04-18

    This podcast discusses an underappreciated health threat to many Asians and Pacific Islanders in the United States: chronic infection with the hepatitis B virus. Dr. John Ward, director of CDC's Division of Viral Hepatitis, and Dr. Sam So, founder of the Asian Liver Center at Stanford University, address the importance of testing, vaccination, and care to prevent serious health consequences from this "silent" disease.  Created: 4/18/2008 by National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention (NCHHSTP), Division of Viral Hepatitis (DVH) and Office of Dispute Resolution and Equal Employment Opportunity, Office of the Director (OD).   Date Released: 5/1/2008.

  17. Soundless Speech/ Wordless Writing: Language and German Silent Cinema

    Directory of Open Access Journals (Sweden)

    Marc Silberman

    2010-12-01

    Full Text Available Speech / Wordless Writing: Language and German Silent Cinema Marc Silberman If language loses its communicative and interpretative functions in direct proportion to the loss of its referential grounding, then the modernist crisis is simultaneously a crisis of its signifying practices. This means that the evolution of the silent cinema is a particularly rich site to examine the problematic relationship of language and image. This essay presents several expressionist films as a specific response to this crisis in order to describe the diverse cinematic forms of resistance to the word, to articulated speech. While some film makers developed the silence of the silent film into a “gestural language” that dramatized light and movement, others reproduced the film figures’ silent speech by means of graphically stylized intertitles. My thesis is that the expressionist cinema maintained an idealistic notion of the film as a pure work of art that aimed at a unified composition of all elements and missed the opportunity to explore the rich semiotic possibilities of the new technological medium with its hybrid, synergetic forms and provocative force. Hence, the expressionist cinema marks a transition or even the endpoint of a long process of reflection about the communicative possibilities of language that shifted to a fundamentally new level with the invention of sound cinema at the end of the 1920s. Parole muette / écriture sans mot: Le langage et le cinéma allemand muet Marc Silberman Le langage, dit-on, perd de ses functions communicatrices et interpretatives en proportion directe à la perte de sa force référentielle. On dira que la crise moderniste est également une crise des pratiques signifiantes. Ce qui revient à dire aussi que l’évolution du cinéma muet serait une site particulièrement riche pour examiner les problématiques du langage vs. l’image. Cet essai présente quelques films expressionnistes comme réactions à la crise

  18. Sweet silent thought: alliteration and resonance in poetry comprehension.

    Science.gov (United States)

    Lea, R Brooke; Rapp, David N; Elfenbein, Andrew; Mitchel, Aaron D; Romine, Russell Swinburne

    2008-07-01

    Poetic devices like alliteration can heighten readers' aesthetic experiences and enhance poets' recall of their epic pieces. The effects of such devices on memory for and appreciation of poetry are well known; however, the mechanisms underlying these effects are not yet understood. We used current theories of language comprehension as a framework for understanding how alliteration affects comprehension processes. Across three experiments, alliterative cues reactivated readers' memories for previous information when it was phonologically similar to the cue. These effects were obtained when participants read aloud and when they read silently, and with poetry and prose. The results support everyday intuitions about the effects of poetry and aesthetics, and explain the nature of such effects. These findings extend the scope of general memory models by indicating their capacity to explain the influence of nonsemantic discourse features.

  19. Verification of a standardized method for inserting intramuscular EMG electrodes into uniquely oriented segments of gluteus minimus and gluteus medius.

    Science.gov (United States)

    Semciw, A I; Green, R A; Pizzari, T; Briggs, C

    2013-03-01

    Guidelines for assessing the function of gluteus minimus and gluteus medius with electromyography (EMG) traditionally offer one electrode placement site per muscle. However, anatomical studies suggest that there are two uniquely oriented segments within gluteus minimus (anterior and posterior), and three within gluteus medius (anterior, middle, and posterior) with potential for independent function. Assessment of these muscles with one electrode may therefore provide only a limited account of their role. Thus, the aim of this cadaveric study was to verify guidelines for placing intramuscular electrodes into two uniquely oriented segments of gluteus minimus, and three segments of gluteus medius. The guidelines were developed with reference to anatomical reports, cadaveric observation and real-time ultrasound imaging in vivo. Five cadaveric gluteal regions were marked for intramuscular electrode insertions based on these guidelines. Intramuscular electrodes were inserted into the marked regions of gluteus minimus (2×) and gluteus medius (3×) with the aid of a 15 cm biopsy needle. Systematic dissection revealed that electrodes were successfully inserted into uniquely oriented segments of gluteus minimus and medius. The orientation of fascicles surrounding each electrode was also consistent with segmental descriptions in past anatomical research. The findings of this research suggest that the guidelines described may be used to assess the functional role of segments within gluteus minimus and medius in health and dysfunction using EMG. Finally, electromyographers intent on investigating the role of posterior gluteus minimus must be cautious of the superior gluteal neurovascular bundle. Copyright © 2012 Wiley Periodicals, Inc.

  20. Treatment of hazardous organic wastes using silent discharge plasmas

    International Nuclear Information System (INIS)

    Rosocha, L.A.; Anderson, G.K.; Bechtold, L.A.; Coogan, J.J.; Heck, H.G.; Kang, M.; McCulla, W.H.; Tennant, R.A.; Wantuck, P.J.

    1992-01-01

    During the past two decades, interest in applying non-equilibrium plasmas to the removal of hazardous chemicals from gaseous media has been growing, in particular from heightened concerns over the pollution of our environment and a growing body of environmental regulations. At the Los Alamos National Laboratory, we are currently engaged in a project to develop non-equilibrium plasma technology for hazardous waste treatment. Our present focus is on dielectric-barrier discharges, which are historically called silent electrical discharges. This type of plasma is also named a silent discharge plasma (SDP). We have chosen this method due to its potential for high energy efficiency, its scientific and technological maturity, and its scalability. The SDP process has been demonstrated to be reliable and economical for the industrial-scale synthesis of ozone, where municipal water treatment plants frequently require the on-site generation of thousands of kilograins per day (Eliasson ampersand Kogelschatz). The related methods of corona processing are presently the focus of work at other institutions, particularly for flue gas processing. Both SDP and corona processes are characterized by the production of large quantities of highly reactive free radicals, especially atomic oxygen O(3P) and the hydroxyl OH, in the gaseous medium and their subsequent reaction with contaminants. Our primary objective is to convert hazardous or toxic chemicals into non-hazardous compounds or into materials which are more amenable to treatment. In the ideal case, the hazardous wastes are destructively oxidized to simpler, non-hazardous compounds plus CO2 and H2O. Sometimes the reaction products are still potentially hazardous, but are easily treated by conventional methods to yield non-hazardous products

  1. Increasing Elbow Torque Output of Stroke Patients by EMG-Controlled External Torque

    National Research Council Canada - National Science Library

    Lin, C

    2001-01-01

    .... The control signal to the manipulator is the difference between the weighted biceps and triceps EMG, so that the system moves with the forearm and provides assisting torque proportional to the voluntary effort...

  2. Electrical stimulation of the upper extremity in stroke: cyclic versus EMG-triggered stimulation

    NARCIS (Netherlands)

    de Kroon, Joke R.; IJzerman, Maarten Joost

    2008-01-01

    Objective: To compare the effect of cyclic and electromyography (EMG)-triggered electrical stimulation on motor impairment and function of the affected upper extremity in chronic stroke. Design: Randomized controlled trial. Setting: Outpatient clinic of a rehabilitation centre. Subjects and

  3. An implementation of movement classification for prosthesis control using custom-made EMG system

    Directory of Open Access Journals (Sweden)

    Mejić Luka

    2017-01-01

    Full Text Available Electromyography (EMG is a well known technique used for recording electrical activity produced by human muscles. In the last few decades, EMG signals are used as a control input for prosthetic hands. There are several multifunctional myoelectric prosthetic hands for amputees on the market, but so forth, none of these devices permits the natural control of more than two degrees of freedom. In this paper we present our implementation of the pattern classification using custom made components (electrodes and an embedded EMG amplifier. The components were evaluated in offline and online tests, in able bodied as well as amputee subjects. This type of control is based on computing the time domain features of the EMG signals recorded from the forearm and using these features as input for a Linear Discriminant Analysis (LDA classifier estimating the intention of the prosthetic user. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. III - 41007

  4. Neuromuscular functions in sportsmen and fibromyalgia patients : a surface EMG study in static and dynamic conditions

    NARCIS (Netherlands)

    Klaver-Krol, E.G.

    2012-01-01

    This thesis presents two studies, one involving sportsmen (sprinters versus endurance athletes) and one fibromyalgia patients (patients versus healthy controls). The studies have investigated muscular functions using a non-invasive method: surface electromyography (sEMG). In the sportsmen,

  5. Sequential decoding of intramuscular EMG signals via estimation of a Markov model.

    Science.gov (United States)

    Monsifrot, Jonathan; Le Carpentier, Eric; Aoustin, Yannick; Farina, Dario

    2014-09-01

    This paper addresses the sequential decoding of intramuscular single-channel electromyographic (EMG) signals to extract the activity of individual motor neurons. A hidden Markov model is derived from the physiological generation of the EMG signal. The EMG signal is described as a sum of several action potentials (wavelet) trains, embedded in noise. For each train, the time interval between wavelets is modeled by a process that parameters are linked to the muscular activity. The parameters of this process are estimated sequentially by a Bayes filter, along with the firing instants. The method was tested on some simulated signals and an experimental one, from which the rates of detection and classification of action potentials were above 95% with respect to the reference decomposition. The method works sequentially in time, and is the first to address the problem of intramuscular EMG decomposition online. It has potential applications for man-machine interfacing based on motor neuron activities.

  6. Tremor Frequency Assessment by iPhone® Applications: Correlation with EMG Analysis.

    Science.gov (United States)

    Araújo, Rui; Tábuas-Pereira, Miguel; Almendra, Luciano; Ribeiro, Joana; Arenga, Marta; Negrão, Luis; Matos, Anabela; Morgadinho, Ana; Januário, Cristina

    2016-10-19

    Tremor frequency analysis is usually performed by EMG studies but accelerometers are progressively being more used. The iPhone® contains an accelerometer and many applications claim to be capable of measuring tremor frequency. We tested three applications in twenty-two patients with a diagnosis of PD, ET and Holmes' tremor. EMG needle assessment as well as accelerometry was performed at the same time. There was very strong correlation (Pearson >0.8, p < 0.001) between the three applications, the EMG needle and the accelerometry. Our data suggests the apps LiftPulse®, iSeismometer® and Studymytremor® are a reliable alternative to the EMG for tremor frequency assessment.

  7. Portable EMG devices, Biofeedback and Contingent Electrical Stimulation applications in Bruxism

    DEFF Research Database (Denmark)

    Castrillon, Eduardo

    characteristics make it complicated to assess bruxism using portable EMG devices. The possibility to assess bruxism like EMG activity on a portable device made it possible to use biofeedback and CES approaches in order to treat / manage bruxism. The available scientific information about CES effects on bruxism......Portable EMG devices, Biofeedback and Contingent Electrical Stimulation applications in Bruxism Eduardo Enrique, Castrillon Watanabe, DDS, MSc, PhD Section of Orofacial Pain and Jaw Function, Department of Dentistry, Aarhus University, Aarhus, Denmark; Scandinavian Center for Orofacial Neuroscience...... Summary: Bruxism is a parafunctional activity, which involves the masticatory muscles and probably it is as old as human mankind. Different methods such as portable EMG devices have been proposed to diagnose and understand the pathophysiology of bruxism. Biofeedback / contingent electrical stimulation...

  8. Sleep telemetry in the rat: I. a miniaturized FM--AM transmitter for EEG and EMG.

    Science.gov (United States)

    Ruedin, P; Bisang, J; Waser, P G; Borbely, A A

    1978-01-01

    The article describes a miniature 2-channel FM-AM transmitter for recording EEG and EMG in unrestrained, small animals. Field changes during head movements yield a signal which can serve as a measure of motor activity.

  9. Three-Dimensional Model of a Muscle and Simulation of its Surface EMG

    National Research Council Canada - National Science Library

    Schnetzer, M

    2001-01-01

    ...) and a simulation of its surface EMG. The simulations are part of a larger model including in addition the input system to the motoneuronal pool, the motoneuronal pool itself and the force generating mechanism...

  10. Identification of a Hammerstein Model of the Stretch Reflex EMG using Cubic Splines

    National Research Council Canada - National Science Library

    Dempsey, Erika

    2001-01-01

    .... The identification algorithm based on a separable least squares Levenberg-Marquardt optimization is used to identify a Hammerstein model of the stretch reflex EMG recorded from a spinal cord injured patient...

  11. EMG System for Production of Methane From Carbon Dioxide, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Sustainable Innovations, LLC, is developing an Electrochemical Methane Generator (EMG), which comprises a novel method of converting CO2 and H2O to hydrocarbon fuels...

  12. Helical EMG module with explosive current opening switches

    International Nuclear Information System (INIS)

    Chernyshev, V.K.; Vakhrushev, V.V.; Volkov, G.I.; Ivanov, V.A.; Fetisov, I.K.

    1990-01-01

    To carry out the experimental work to study plasma properties, electromagnetic sources with 10 6 to 10 8 J of stored energy delivered to the load in microsecond time, are required. Among the current electromagnetic storage devices, the explosive magnetic generators (EMG) are of the largest energy capacity. The disadvantages of this type of generators is relatively long time (ten of microseconds) of electromagnetic energy cumulation in the deformable circuit. To reduce the time of energy transfer to the load to a microsecond range the switching scheme is generally used, where the cumulation circuit and that of the load are separated and connected in parallel via a switching element (opening switch) providing generation of desired power. In this paper, some ways and means of designing opening switches to generate high current pulses have been investigated. The opening switches to generate high current pulses have been investigated. The opening switches which operation is based on mechanic destruction of the conductor using high explosive, have the highest and most reliable performance. The authors have explored the mechanic disruption of a thin conductor (foil), the technique based on throwing the foil at the ribbed barrier of electric insulator material. The report presents the data obtained in studying the operation of this type of opening switch having cylindrical shape, 200 mm in diameter and 200 mm long, designed for generation of 5.5 MA current pulse in the load

  13. Development of a concept-based EMG-based speller

    Directory of Open Access Journals (Sweden)

    Robertas Damasevicius

    2015-01-01

    Full Text Available La computación fisiológica es un p aradigma de la computación qu e usa los datos de los usuarios como entradas durante las tarea s computacionales en un Ambiente de vidacotidianasoportado po rco mputadores (AAL. Monitoreando, an alizando y respondiendo a dic has entradas, los Sistemas de Computación Fisiológica pueden respon der al estado cognitivo, emocional y físico de los usuarios. Un caso particular es el de la interface de Computación Neuronal (NCI, que usa señales eléctricas para manejar la actividad muscular del usuario establecioendo una comunicación d irecta entre el usuario y el c omputador. Se present una taxonomía de parametros de aplicación de deletreo, proponiendo un modelo de PCS y describiendo el desarr ollo de un deletreador basado en EMG. Se analiza y desarrolla unaaplicación con un sistema basa do en letras tradicionales y u na interfaz visual. Finalmente, se evalua el desempeño y usabil idad del sistemadesarrollado.

  14. Estimation of distal arm joint angles from EMG and shoulder orientation for transhumeral prostheses.

    Science.gov (United States)

    Akhtar, Aadeel; Aghasadeghi, Navid; Hargrove, Levi; Bretl, Timothy

    2017-08-01

    In this paper, we quantify the extent to which shoulder orientation, upper-arm electromyography (EMG), and forearm EMG are predictors of distal arm joint angles during reaching in eight subjects without disability as well as three subjects with a unilateral transhumeral amputation and targeted reinnervation. Prior studies have shown that shoulder orientation and upper-arm EMG, taken separately, are predictors of both elbow flexion/extension and forearm pronation/supination. We show that, for eight subjects without disability, shoulder orientation and upper-arm EMG together are a significantly better predictor of both elbow flexion/extension during unilateral (R 2 =0.72) and mirrored bilateral (R 2 =0.72) reaches and of forearm pronation/supination during unilateral (R 2 =0.77) and mirrored bilateral (R 2 =0.70) reaches. We also show that adding forearm EMG further improves the prediction of forearm pronation/supination during unilateral (R 2 =0.82) and mirrored bilateral (R 2 =0.75) reaches. In principle, these results provide the basis for choosing inputs for control of transhumeral prostheses, both by subjects with targeted motor reinnervation (when forearm EMG is available) and by subjects without target motor reinnervation (when forearm EMG is not available). In particular, we confirm that shoulder orientation and upper-arm EMG together best predict elbow flexion/extension (R 2 =0.72) for three subjects with unilateral transhumeral amputations and targeted motor reinnervation. However, shoulder orientation alone best predicts forearm pronation/supination (R 2 =0.88) for these subjects, a contradictory result that merits further study. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Steering a Tractor by Means of an EMG-Based Human-Machine Interface

    Science.gov (United States)

    Gomez-Gil, Jaime; San-Jose-Gonzalez, Israel; Nicolas-Alonso, Luis Fernando; Alonso-Garcia, Sergio

    2011-01-01

    An electromiographic (EMG)-based human-machine interface (HMI) is a communication pathway between a human and a machine that operates by means of the acquisition and processing of EMG signals. This article explores the use of EMG-based HMIs in the steering of farm tractors. An EPOC, a low-cost human-computer interface (HCI) from the Emotiv Company, was employed. This device, by means of 14 saline sensors, measures and processes EMG and electroencephalographic (EEG) signals from the scalp of the driver. In our tests, the HMI took into account only the detection of four trained muscular events on the driver’s scalp: eyes looking to the right and jaw opened, eyes looking to the right and jaw closed, eyes looking to the left and jaw opened, and eyes looking to the left and jaw closed. The EMG-based HMI guidance was compared with manual guidance and with autonomous GPS guidance. A driver tested these three guidance systems along three different trajectories: a straight line, a step, and a circumference. The accuracy of the EMG-based HMI guidance was lower than the accuracy obtained by manual guidance, which was lower in turn than the accuracy obtained by the autonomous GPS guidance; the computed standard deviations of error to the desired trajectory in the straight line were 16 cm, 9 cm, and 4 cm, respectively. Since the standard deviation between the manual guidance and the EMG-based HMI guidance differed only 7 cm, and this difference is not relevant in agricultural steering, it can be concluded that it is possible to steer a tractor by an EMG-based HMI with almost the same accuracy as with manual steering. PMID:22164006

  16. Steering a Tractor by Means of an EMG-Based Human-Machine Interface

    Directory of Open Access Journals (Sweden)

    Sergio Alonso-Garcia

    2011-07-01

    Full Text Available An electromiographic (EMG-based human-machine interface (HMI is a communication pathway between a human and a machine that operates by means of the acquisition and processing of EMG signals. This article explores the use of EMG-based HMIs in the steering of farm tractors. An EPOC, a low-cost human-computer interface (HCI from the Emotiv Company, was employed. This device, by means of 14 saline sensors, measures and processes EMG and electroencephalographic (EEG signals from the scalp of the driver. In our tests, the HMI took into account only the detection of four trained muscular events on the driver’s scalp: eyes looking to the right and jaw opened, eyes looking to the right and jaw closed, eyes looking to the left and jaw opened, and eyes looking to the left and jaw closed. The EMG-based HMI guidance was compared with manual guidance and with autonomous GPS guidance. A driver tested these three guidance systems along three different trajectories: a straight line, a step, and a circumference. The accuracy of the EMG-based HMI guidance was lower than the accuracy obtained by manual guidance, which was lower in turn than the accuracy obtained by the autonomous GPS guidance; the computed standard deviations of error to the desired trajectory in the straight line were 16 cm, 9 cm, and 4 cm, respectively. Since the standard deviation between the manual guidance and the EMG-based HMI guidance differed only 7 cm, and this difference is not relevant in agricultural steering, it can be concluded that it is possible to steer a tractor by an EMG-based HMI with almost the same accuracy as with manual steering.

  17. Measuring theory of mind across middle childhood: Reliability and validity of the Silent Films and Strange Stories tasks.

    Science.gov (United States)

    Devine, Rory T; Hughes, Claire

    2016-09-01

    Recent years have seen a growth of research on the development of children's ability to reason about others' mental states (or "theory of mind") beyond the narrow confines of the preschool period. The overall aim of this study was to investigate the psychometric properties of a task battery composed of items from Happé's Strange Stories task and Devine and Hughes' Silent Film task. A sample of 460 ethnically and socially diverse children (211 boys) between 7 and 13years of age completed the task battery at two time points separated by 1month. The Strange Stories and Silent Film tasks were strongly correlated even when verbal ability and narrative comprehension were taken into account, and all items loaded onto a single theory-of-mind latent factor. The theory-of-mind latent factor provided reliable estimates of performance across a wide range of theory-of-mind ability and showed no evidence of differential item functioning across gender, ethnicity, or socioeconomic status. The theory-of-mind latent factor also exhibited strong 1-month test-retest reliability, and this stability did not vary as a function of child characteristics. Taken together, these findings provide evidence for the validity and reliability of the Strange Stories and Silent Film task battery as a measure of individual differences in theory of mind suitable for use across middle childhood. We consider the methodological and conceptual implications of these findings for research on theory of mind beyond the preschool years. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Learning an EMG Controlled Game: Task-Specific Adaptations and Transfer.

    Science.gov (United States)

    van Dijk, Ludger; van der Sluis, Corry K; van Dijk, Hylke W; Bongers, Raoul M

    2016-01-01

    Video games that aim to improve myoelectric control (myogames) are gaining popularity and are often part of the rehabilitation process following an upper limb amputation. However, direct evidence for their effect on prosthetic skill is limited. This study aimed to determine whether and how myogaming improves EMG control and whether performance improvements transfer to a prosthesis-simulator task. Able-bodied right-handed participants (N = 28) were randomly assigned to 1 of 2 groups. The intervention group was trained to control a video game (Breakout-EMG) using the myosignals of wrist flexors and extensors. Controls played a regular Mario computer game. Both groups trained 20 minutes a day for 4 consecutive days. Before and after training, two tests were conducted: one level of the Breakout-EMG game, and grasping objects with a prosthesis-simulator. Results showed a larger increase of in-game accuracy for the Breakout-EMG group than for controls. The Breakout-EMG group moreover showed increased adaptation of the EMG signal to the game. No differences were found in using a prosthesis-simulator. This study demonstrated that myogames lead to task-specific myocontrol skills. Transfer to a prosthesis task is therefore far from easy. We discuss several implications for future myogame designs.

  19. Recognition and prediction of individual and combined muscular activation modes via surface EMG analysis

    Directory of Open Access Journals (Sweden)

    Daniel Graupe

    2010-09-01

    Full Text Available The paper discusses how recognition of individual and combined muscular activation modes (functions and the prediction of intended such modes can be accomplished by identifying parameters of noninvasive surface EMG signals. It outlines the mathematical analysis of surface EMG signal to facilitate such recognition and related prediction, including recognition of intention (in terms of attempts to activate motor functions from the EMG, without accessing the CNS itself, in cases where a patient, say, a high-level amputee does not have the final-activation muscles and joints. The EMG activity thus allows to interpret and recognize CNS commands from minute variations in the parameters of surface EMG signals that record changes in the firing of motor neurons triggering contractions in related muscle fibers. We note that although in popular media this is sometimes referred to as detection of “thoughts”, no thoughts are detected, but only motor-outcomes of thoughts as found in the EMG signal. Examples of concrete cases where such recognition or prediction were accomplished in the author’s lab and in devices that came out of that lab, are given as are references to these in the literature over the last 35 years.

  20. Muscle fatigue detection in EMG using time-frequency methods, ICA and neural networks.

    Science.gov (United States)

    Subasi, Abdulhamit; Kiymik, M Kemal

    2010-08-01

    The electromyography (EMG) signals give information about different features of muscle function. Real-time measurements of EMG have been used to observe the dissociation between the electrical and mechanical measures that occurs with fatigue. The purpose of this study was to detect fatigue of biceps brachia muscle using time-frequency methods and independent component analysis (ICA). In order to realize this aim, EMG activity obtained from activated muscle during a phasic voluntary movement was recorded for 14 healthy young persons and EMG signals were observed in time-frequency domain for determination of fatigue. Time-frequency methods are used for the processing of signals that are non-stationary and time varying. The EMG contains transient signals related to muscle activity. The proposed method for the detection of muscle fatigue is automated by using artificial neural networks (ANN). The results show that ANN with ICA separates EMG signals from fresh and fatigued muscles, hence providing a visualization of the onset of fatigue over time. The system is adaptable to different subjects and conditions since the techniques used are not subject or workload regime specific.

  1. Influence on muscle oxygenation to EMG parameters at different skeletal muscle contraction

    Science.gov (United States)

    Zhang, Li; Song, Gaoqing

    2010-02-01

    The purpose of this study is to investigate the influence of muscle oxygenation on EMG parameters during isometric and incremental exercises and to observe the relationship between EMG parameters and muscle oxygenation. Twelve rowers took part in the tests. Near infrared spectrometer was utilized for measurements of muscle oxygenation on lateral quadriceps. sEMG measurement is performed for EMG parameters during isometric and incremental exercises. Results indicated that Oxy-Hb decrease significantly correlated with IEMG, E/T ratio and frequency of impulse signal during 1/3 MVC and 2/3 MVC isometric exercise, and it is also correlated with IEMG, E/T ratio and frequency of impulse signal. Increase of IEMG occurred at the time after Oxy-Hb decrease during incremental exercise and highly correlated with BLa. It is concluded that no matter how heavy the intensity is, Oxy-Hb dissociation may play an important role in affecting EMG parameters of muscle fatigue during isometric exercise. 2) EMG parameters may be influenced by Oxy-Hb dissociation and blood lactate concentration during dynamic exercise.

  2. Prevalence and prediction of silent ischaemia in diabetes mellitus: a population-based study

    DEFF Research Database (Denmark)

    May, O; Arildsen, H; Damsgaard, E M

    1997-01-01

    OBJECTIVES: The aim of the study was to estimate the prevalence of silent ischaemia in diabetic subjects in the population, to compare the prevalence of silent ischaemia in diabetics and non-diabetics and to attempt to predict the presence of silent ischaemia in diabetic subjects. METHODS: A random...... was registered simultaneously with ECG evidence of ischaemia. Individuals with ischaemia, but without angina pectoris, were defined as persons with silent ischaemia. RESULTS: Seventy-four percent of the invited group were included. The observed prevalence of silent ischaemia in diabetics was 13.5% (95% CI = 8.......5-19.8%). No association was found between silent ischaemia and gender (P = 0.83) or diabetes type (P = 0.67). In the group of diabetics who had controls, the prevalence was 11.4%, and among the controls the prevalence was 6.4% (OR = 1.87, one-sided P = 0.079). Systolic blood pressure was highly predictive of silent...

  3. Migraine with aura and silent brain infarcts lack of mediation of patent foramen ovale.

    Science.gov (United States)

    Calviere, L; Tall, P; Massabuau, P; Bonneville, F; Larrue, V

    2013-12-01

    Population-based studies have shown a heightened prevalence of clinically silent brain infarcts in subjects who have migraine with aura (MA). We sought to determine whether this association could be confirmed in young patients with cryptogenic ischemic stroke, and explored the role of patent foramen ovale (PFO) as a potential underlying mechanism. Patients were selected from a registry of young patients consecutively treated for ischemic stroke in a tertiary university hospital among those without definite cause of stroke. Patients with PFO were matched for age and gender with patients with normal atrial septum. Migraine and MA were evaluated after patient selection and matching. Silent brain infarcts were independently evaluated on MRI. We included 100 patients [60 men; mean age (SD), 44.8 years (8.3)], 50 patients with PFO. We found silent brain infarcts in 36 patients and MA in 13 patients. MA was more frequent in patients with silent brain infarcts than in patients without silent brain infarcts (25.0% vs. 6.3%; OR, 5; 95% CI, 1.4-17.6; P = 0.01). Traditional cardiovascular risk factors were not associated with silent brain infarcts. PFO was neither associated with MA (OR, 1.7; 95% CI, 0.5-5.3) nor silent brain infarcts (OR, 0.7; 95% CI, 0.3-1.5). The association of MA with silent brain infarcts was not altered after adjustment for PFO. Findings suggest that silent brain infarcts in young patients with cryptogenic stroke is associated with MA. We found no evidence for a mediating effect of PFO on this association. © 2013 The Author(s) European Journal of Neurology © 2013 EFNS.

  4. Screening for silent myocardial ischemia caseof diabetics : interest of myocardial perfusion scintigraphy

    International Nuclear Information System (INIS)

    Bahri, Haifa

    2007-01-01

    Silent myocardial ischemia is a major cause of morbidity and mortality in diabetic patients. Its diagnosis by noninvasive means such as myocardial SPECT would improve the management of these patients. The purpose of this study is to assess the frequency of silent myocardial ischemia in asymptomatic diabetics and their evolution. As a result, the myocardial SPECT is a reliable tool for screening for silent myocardial ischemia in diabetic patients. Its prognostic value allows to stratify the cardiac risk and guide therapeutic management. Its integration into a screening strategy in Tunisia seems limited by its low availability and cost. The latter could be reduced by better patient selection.

  5. Static optimization of muscle forces during gait in comparison to EMG-to-force processing approach.

    Science.gov (United States)

    Heintz, Sofia; Gutierrez-Farewik, Elena M

    2007-07-01

    Individual muscle forces evaluated from experimental motion analysis may be useful in mathematical simulation, but require additional musculoskeletal and mathematical modelling. A numerical method of static optimization was used in this study to evaluate muscular forces during gait. The numerical algorithm used was built on the basis of traditional optimization techniques, i.e., constrained minimization technique using the Lagrange multiplier method to solve for constraints. Measuring exact muscle forces during gait analysis is not currently possible. The developed optimization method calculates optimal forces during gait, given a specific performance criterion, using kinematics and kinetics from gait analysis together with muscle architectural data. Experimental methods to validate mathematical methods to calculate forces are limited. Electromyography (EMG) is frequently used as a tool to determine muscle activation in experimental studies on human motion. A method of estimating force from the EMG signal, the EMG-to-force approach, was recently developed by Bogey et al. [Bogey RA, Perry J, Gitter AJ. An EMG-to-force processing approach for determining ankle muscle forcs during normal human gait. IEEE Trans Neural Syst Rehabil Eng 2005;13:302-10] and is based on normalization of activation during a maximum voluntary contraction to documented maximal muscle strength. This method was adapted in this study as a tool with which to compare static optimization during a gait cycle. Muscle forces from static optimization and from EMG-to-force muscle forces show reasonably good correlation in the plantarflexor and dorsiflexor muscles, but less correlation in the knee flexor and extensor muscles. Additional comparison of the mathematical muscle forces from static optimization to documented averaged EMG data reveals good overall correlation to patterns of evaluated muscular activation. This indicates that on an individual level, muscular force patterns from mathematical

  6. Low-amplitude craniofacial EMG power spectral density and 3D muscle reconstruction from MRI

    Directory of Open Access Journals (Sweden)

    Lukas Wiedemann

    2015-03-01

    Full Text Available Improving EEG signal interpretation, specificity, and sensitivity is a primary focus of many current investigations, and the successful application of EEG signal processing methods requires a detailed knowledge of both the topography and frequency spectra of low-amplitude, high-frequency craniofacial EMG. This information remains limited in clinical research, and as such, there is no known reliable technique for the removal of these artifacts from EEG data. The results presented herein outline a preliminary investigation of craniofacial EMG high-frequency spectra and 3D MRI segmentation that offers insight into the development of an anatomically-realistic model for characterizing these effects. The data presented highlights the potential for confounding signal contribution from around 60 to 200 Hz, when observed in frequency space, from both low and high-amplitude EMG signals. This range directly overlaps that of both low γ (30-50 Hz and high γ (50-80 Hz waves, as defined traditionally in standatrd EEG measurements, and mainly with waves presented in dense-array EEG recordings. Likewise, average EMG amplitude comparisons from each condition highlights the similarities in signal contribution of low-activity muscular movements and resting, control conditions. In addition to the FFT analysis performed, 3D segmentation and reconstruction of the craniofacial muscles whose EMG signals were measured was successful. This recapitulation of the relevant EMG morphology is a crucial first step in developing an anatomical model for the isolation and removal of confounding low-amplitude craniofacial EMG signals from EEG data. Such a model may be eventually applied in a clinical setting to ultimately help to extend the use of EEG in various clinical roles.

  7. Surface EMG decomposition based on K-means clustering and convolution kernel compensation.

    Science.gov (United States)

    Ning, Yong; Zhu, Xiangjun; Zhu, Shanan; Zhang, Yingchun

    2015-03-01

    A new approach has been developed by combining the K-mean clustering (KMC) method and a modified convolution kernel compensation (CKC) method for multichannel surface electromyogram (EMG) decomposition. The KMC method was first utilized to cluster vectors of observations at different time instants and then estimate the initial innervation pulse train (IPT). The CKC method, modified with a novel multistep iterative process, was conducted to update the estimated IPT. The performance of the proposed K-means clustering-Modified CKC (KmCKC) approach was evaluated by reconstructing IPTs from both simulated and experimental surface EMG signals. The KmCKC approach successfully reconstructed all 10 IPTs from the simulated surface EMG signals with true positive rates (TPR) of over 90% with a low signal-to-noise ratio (SNR) of -10 dB. More than 10 motor units were also successfully extracted from the 64-channel experimental surface EMG signals of the first dorsal interosseous (FDI) muscles when a contraction force was held at 8 N by using the KmCKC approach. A "two-source" test was further conducted with 64-channel surface EMG signals. The high percentage of common MUs and common pulses (over 92% at all force levels) between the IPTs reconstructed from the two independent groups of surface EMG signals demonstrates the reliability and capability of the proposed KmCKC approach in multichannel surface EMG decomposition. Results from both simulated and experimental data are consistent and confirm that the proposed KmCKC approach can successfully reconstruct IPTs with high accuracy at different levels of contraction.

  8. Comparative Analysis of Wavelet-based Feature Extraction for Intramuscular EMG Signal Decomposition.

    Science.gov (United States)

    Ghofrani Jahromi, M; Parsaei, H; Zamani, A; Dehbozorgi, M

    2017-12-01

    Electromyographic (EMG) signal decomposition is the process by which an EMG signal is decomposed into its constituent motor unit potential trains (MUPTs). A major step in EMG decomposition is feature extraction in which each detected motor unit potential (MUP) is represented by a feature vector. As with any other pattern recognition system, feature extraction has a significant impact on the performance of a decomposition system. EMG decomposition has been studied well and several systems were proposed, but feature extraction step has not been investigated in detail. Several EMG signals were generated using a physiologically-based EMG signal simulation algorithm. For each signal, the firing patterns of motor units (MUs) provided by the simulator were used to extract MUPs of each MU. For feature extraction, different wavelet families including Daubechies (db), Symlets, Coiflets, bi-orthogonal, reverse bi-orthogonal and discrete Meyer were investigated. Moreover, the possibility of reducing the dimensionality of MUP feature vector is explored in this work. The MUPs represented using wavelet-domain features are transformed into a new coordinate system using Principal Component Analysis (PCA). The features were evaluated regarding their capability in discriminating MUPs of individual MUs. Extensive studies on different mother wavelet functions revealed that db2, coif1, sym5, bior2.2, bior4.4, and rbior2.2 are the best ones in differentiating MUPs of different MUs. The best results were achieved at the 4th detail coefficient. Overall, rbior2.2 outperformed all wavelet functions studied; nevertheless for EMG signals composed of more than 12 MUPTs, syms5 wavelet function is the best function. Applying PCA slightly enhanced the results.

  9. Alternating Syntagm on the Texture of the Work En blanc et noir by Debussy: An Analogy to Silent Film

    Directory of Open Access Journals (Sweden)

    Menan Medeiros Duwe

    2012-12-01

    Full Text Available We will reveal the concept of alternating syntagm as an important feature of cinematic narrative made possible by a certain arrangement off rames during the montage. In the first part of this article we apply the concept as suggested by Rebecca Leydon (2001 to show that analogous situations can be identified in the music of Debussy's late period by using a representative sample: episodes in the second piece of the work En blanc et noir derived from a textural analysis that is based on Wallace Berry’s theories (1987. This analytical approach will allow us to discuss in the second part of the article the possibility of establishing analogies between Debussy’s works and silent film, within the context of the period of question, comparing Leydon’s proposal to Scott Paulin (2010 criticism on this subject. The discussion calls attention to the correlation between artistic media tending to imitate the thought processes of the early twentieth century.

  10. Single-Trial EEG-EMG coherence analysis reveals muscle fatigue-related progressive alterations in corticomuscular coupling.

    Science.gov (United States)

    Siemionow, Vlodek; Sahgal, Vinod; Yue, Guang H

    2010-04-01

    Voluntary muscle fatigue is a progressive process. A recent study demonstrated muscle fatigue-induced weakening of functional corticomuscular coupling measured by coherence between the brain [electroencephalogram (EEG)] and muscle [electromyogram (EMG)] signals after a relatively long-duration muscle contraction. Comparing the EEG-EMG coherence before versus after fatigue or between data of two long-duration time blocks is not adequate to reveal the dynamic nature of the fatigue process. The purpose of this study was to address this issue by quantifying single-trial EEG-EMG coherence and EEG, EMG power based on wavelet transform. Eight healthy subjects performed 200 maximal intermittent handgrip contractions in a single session with handgrip force, EEG and EMG signals acquired simultaneously. The EEG and EMG data during each 2-s handgrip was subjected to single trial EEG-EMG wavelet energy spectrum and coherence computation. The EEG-EMG coherence and energy spectrum at beta (15 ~ 35 Hz) and gamma (35-50 Hz) frequency bands were statistically analyzed in 2-block (75 trials per block), 5-block (30 trials/block), and 10-block (15 trials/block) data settings. The energy of both the EEG and EMG signals decreased significantly with muscle fatigue. The EEG-EMG coherence had a significant reduction for the 2-block comparison. More detailed dynamical changing and inter-subject variation of the EEG-EMG coherence and energy were revealed by 5- and 10-block comparisons. These results show feasibility of wavelet transform-based measurement of the EEG-EMG coherence and corresponding energy based on single-trial data, which provides extra information to demonstrate a time course of dynamic adaptations of the functional corticomuscular coupling, as well as brain and muscle signals during muscle fatigue.

  11. The silent mass extinction of insect herbivores in biodiversity hotspots.

    Science.gov (United States)

    Fonseca, Carlos Roberto

    2009-12-01

    Habitat loss is silently leading numerous insects to extinction. Conservation efforts, however, have not been designed specifically to protect these organisms, despite their ecological and evolutionary significance. On the basis of species-host area equations, parameterized with data from the literature and interviews with botanical experts, I estimated the number of specialized plant-feeding insects (i.e., monophages) that live in 34 biodiversity hotspots and the number committed to extinction because of habitat loss. I estimated that 795,971-1,602,423 monophagous insect species live in biodiversity hotspots on 150,371 endemic plant species, which is 5.3-10.6 monophages per plant species. I calculated that 213,830-547,500 monophagous species are committed to extinction in biodiversity hotspots because of reduction of the geographic range size of their endemic hosts. I provided rankings of biodiversity hotspots on the basis of estimated richness of monophagous insects and on estimated number of extinctions of monophagous species. Extinction rates were predicted to be higher in biodiversity hotspots located along strong environmental gradients and on archipelagos, where high spatial turnover of monophagous species along the geographic distribution of their endemic plants is likely. The results strongly support the overall strategy of selecting priority conservation areas worldwide primarily on the basis of richness of endemic plants. To face the global decline of insect herbivores, one must expand the coverage of the network of protected areas and improve the richness of native plants on private lands.

  12. Silent Spring, the 50th anniversary of Rachel Carson's book.

    Science.gov (United States)

    Pimentel, David

    2012-09-27

    David Pimentel is a professor of ecology and agricultural sciences at Cornell University, Ithaca, NY 14853-0901. His Ph.D. is from Cornell University and had postdoctoral research at the University of Chicago, MIT, and fellowship at Oxford University (England). He was awarded a distinguished honorary degree from the University of Massachusetts. His research spans the fields of energy, population ecology, biological pest control, pesticides, sustainable agriculture, land and water conservation, livestock, and environmental policy. Pimentel has published more than 700 scientific papers and 37 books and has served on many national and government committees including the National Academy of Sciences; President's Science Advisory Council; U.S Department of Agriculture; U.S. Department of Energy; U.S. Department of Health, Education and Welfare; Office of Technology Assessment of the U.S. Congress; and the U.S. State Department. He is currently Editorial Advisor for BMC Ecology. In this article, he reflects on 50 years since the publication of Rachel Carson's influential book, Silent Spring.

  13. Needs of a Silent Minority: Mexican Transgender Asylum Seekers.

    Science.gov (United States)

    Gowin, Mary; Taylor, E Laurette; Dunnington, Jamie; Alshuwaiyer, Ghadah; Cheney, Marshall K

    2017-05-01

    Mexican male to female transgender asylum seekers in the United States suffer from serious health issues that can be attributed to stressors related to their transgender, ethnic minority, and socioeconomic status. This study explored these stressors, the resulting health issues, and the needs of this particularly vulnerable population. Asylum seekers' (n = 45) sworn declarations and psychological evaluations were examined by a multidisciplinary research team using a systematic document review process. The review identified stressors that occurred both in Mexico and the United States: verbal, physical, and sexual assaults; unstable environments; fear for safety/security; hiding undocumented status; and economic insecurity. The health issues that resulted in part from these stressors include posttraumatic stress disorder, depression, anxiety, sleep issues, isolation, avoidance, drug/alcohol use, and suicidal tendencies. Despite suffering from multiple health issues, asylum seekers rarely sought health or social services. Health promotion practitioners can play an important role in serving this silent minority by (1) expanding community-based research focused on the intersection of transgender, ethnic minority, and socioeconomic status; (2) using trusted community members to connect this population to necessary resources; (3) providing communication training/resource development for health care providers; and (4) creating a network of service organizations that understand the needs of transgender asylum seekers.

  14. Silent disease progression in clinically stable heart failure.

    Science.gov (United States)

    Sabbah, Hani N

    2017-04-01

    Heart failure with reduced ejection fraction (HFrEF) is a progressive disorder whereby cardiac structure and function continue to deteriorate, often despite the absence of clinically apparent signs and symptoms of a worsening disease state. This silent yet progressive nature of HFrEF can contribute to the increased risk of death-even in patients who are 'clinically stable', or who are asymptomatic or only mildly symptomatic-because it often goes undetected and/or undertreated. Current therapies are aimed at improving clinical symptoms, and several agents more directly target the underlying causes of disease; however, new therapies are needed that can more fully address factors responsible for underlying progressive cardiac dysfunction. In this review, mechanisms that drive HFrEF, including ongoing cardiomyocyte loss, mitochondrial abnormalities, impaired calcium cycling, elevated LV wall stress, reactive interstitial fibrosis, and cardiomyocyte hypertrophy, are discussed. Additionally, limitations of current HF therapies are reviewed, with a focus on how these therapies are designed to counteract the deleterious effects of compensatory neurohumoral activation but do not fully prevent disease progression. Finally, new investigational therapies that may improve the underlying molecular, cellular, and structural abnormalities associated with HF progression are reviewed. © 2016 The Authors. European Journal of Heart Failure published by John Wiley & Sons Ltd on behalf of European Society of Cardiology.

  15. Construction of the Cylindrical Ozone Generator by Silent Discharge Method

    International Nuclear Information System (INIS)

    Agus Purwadi; Widdi Usada; Suryadi; Isyuniarto; Sri Sukmajaya

    2002-01-01

    It has been constructed the ozone generator by silent discharge method. Anode and cathode of discharge tube were made of stainless steel (SS) in the cylinder form with diameters of 22 mm and 25 mm, the length of 100 mm and 110 mm, the equal thickness of 1 mm respectively. The dielectric was made of cylinder glass with diameter of 23 cm, the length of 105 cm and the thickness of 1 mm. The testing of apparatus was carried out by using discharge voltage of 12.5 kV and frequency of 1.5 kHz. Identification of the ozone gas formation was marked by the existing of special ozone smell and the separated of iodine molecule (yellow colour) from the potassium iodide solution which contaminated gas out put from the ozonizer. By using absorbing method can be shown that the ozone production rate was 0.196 mg/s by using oxygen gas input and 0.065 mg/s by using ordinary air input. (author)

  16. Silent angels the genetic and clinical aspects of Rett syndrome

    Directory of Open Access Journals (Sweden)

    Dziwota Ewelina

    2016-12-01

    Full Text Available Rett syndrome is a neurodevelopmental genetic disorder and, because of some behavioral characteristics, individuals affected by the disease are known as silent angels. Girls with Rett syndrome perform stereotyped movements, they have learning difficulties, their reaction time is prolonged, and they seem alienated in the environment. These children require constant pediatric, neurological and orthopedic care. In the treatment of Rett syndrome physical therapy, music therapy, hydrotherapy, hippotherapy, behavioral methods, speech therapy and diet, are also used. In turn, psychological therapy of the syndrome is based on the sensory integration method, using two or more senses simultaneously. In 80% of cases, the syndrome is related to mutations of the MECP2 gene, located on chromosome X. The pathogenesis of Rett syndrome is caused by the occurrence of a non-functional MeCP2 protein, which is a transcription factor of many genes, i.e. Bdnf, mef2c, Sgk1, Uqcrc1. Abnormal expression of these genes reveals a characteristic disease phenotype. Clinical symptoms relate mainly to the nervous, respiratory, skeletal and gastrointestinal systems. Currently causal treatment is not possible. However, researchers are developing methods by which, perhaps in the near future, it will be possible to eliminate the mutations in the MECP2 gene, and this will give a chance to the patient for normal functioning.

  17. Sonographically determined clues to the symptomatic or silent cholelithiasis

    International Nuclear Information System (INIS)

    Saba, S.; Iqbal, Z.

    2007-01-01

    To determine an association between sonographically determined contractility with the symptomatic or silent nature of gallstone. Adult gallstone patients without (group I) and with biliary symptoms (group II) were compared with age and gender-matched controls. Demographic data, body mass index, risk factors, size, number and mobility of gallstone, gallbladder wall thickness (GBWT), volume and Ejection Fraction (EF) were determined on ultrasound before and after a standardized fatty meal (BFM and AFM). Demographic data, risk factors and gallstone characteristics were analyzed by Pearson Chi-square test and the gallbladder characteristics were analyzed by One-way ANOVA and Post Hoc tests by multiple comparisons on SPSS 11 with significance p=0.05. The gallbladder contractility as measured by changes in wall thickness and volume changes BFM and AFM, and ejection fraction was similar in controls and asymptomatic cholelithiasis groups and significantly reduced in symptomatic patients (p<.001). Multiparity (p=0.002), female gender (p=0.018), age less than 50 years (0.05), impacted calculi (p=0.001), multiple calculi (<.001) and calculi 5 mm (p<0.001) were associated with pain. A sluggishly emptying gallbladder was more significantly associated with symptomatic cholelithiasis compared to controls and asymptomatic cholelithiasis state in this series. Consideration of age, gender, impaction of calculi, number and size of calculi is important in causing symptom state and management options. (author)

  18. [Silent cerebral infarct in patients with sickle cell anemia].

    Science.gov (United States)

    Ferrer O, O; Plumacher-Rincón, Z; Arteaga-Vizcaíno, M; Weir-Medina, J; Hernández-Pernía, A

    Ictus is a complication in patients with Sickle Cell Anemia (SCA), in these is of importance the precocious diagnosis of Silent Cerebral Infarcts (SCI). To determine the incidence of ICS in patients with SCA without neurological symptoms but with images in Cerebral Magnetic Resonance (RMC). A total of 18 patients (13 males, 5 females) with ages between 5 and 24 years (11.5 4,9), without history of neurological alterations, taken care at the Instituto Hematol gico de Occidente Banco de Sangre, Estado Zulia Venezuela. Methods. A clinical history was made to each patient in addition to detailed physical and neurological examinations that included the state of mind, conscience, language, sensitivity, cranial pairs, muscular force, reflexes, cerebella tests, neck and march. Later, RMC studies were carried out. It was found that 2/18 (11,1%) patients without neurological manifestations showed alterations in the RMC and they were diagnosed as ICS. The findings by images showed asymmetry of lateral ventricles and one of them showed gliosis as well. 11,1% of the all the studied cases (2/18) showed SCI, for what is suggested to carry out neurological evaluation and images, once a year, and to offer opportune therapies, for their impact in the function neurocognitive

  19. Peak and average rectified EMG measures: which method of data reduction should be used for assessing core training exercises?

    Science.gov (United States)

    Hibbs, A E; Thompson, K G; French, D N; Hodgson, D; Spears, I R

    2011-02-01

    Core strengthening and stability exercises are fundamental for any conditioning training program. Although surface electromyography (sEMG) is used to quantify muscle activity there is a lack of research using this method to investigate the core musculature and core stability. Two types of data reduction are commonly used for sEMG; peak and average rectified EMG methods. Peak EMG has been infrequently reported in the literature with regard to the assessment of core training while even fewer studies have incorporated average rectified EMG data (ARV). The aim of the study was to establish the repeatability of peak and average rectified EMG data during core training exercises and their interrelationship. Ten male highly trained athletes (inter-subject repeatability group; age, 18 ± 1.2 years; height, 176.5 ± 3.2 cm; body mass, 71 ± 4.5 kg) and one female highly trained athlete (intra-subject repeatability group; age; 27 years old; height; 180 cm; weight; 53 kg) performed five maximal voluntary isometric contractions (MVIC) and five core exercises, chosen to represent a range of movement and muscle recruitment patterns. Peak EMG and ARV EMG were calculated for eight core muscles (rectus abdominis, RA; external oblique, EO; internal oblique, IO; multifidis, MF; latissimus dorsi, LD; longissimus, LG; gluteus maximus, GM; rectus femoris, RF) using sEMG. Average coefficient of variation (CV%) for peak EMG across all the exercises and muscles was 45%. This is in comparison to 35% for the ARV method, which was found to be a significant difference (Pexercise. Analysis of the inter-subject and intra-subject CV% values suggest that these exercises and muscles are sufficiently repeatable using sEMG. Five muscles were highly correlated (R>0.70; RA, EO, MF, GM, LG) between peak and ARV EMG suggesting, that for these core muscles, the two methods provide a similar evaluation of muscle activity. However, for other muscles (IO, RF, LD) the relationship was found to range from poor

  20. High-density surface EMG maps from upper-arm and forearm muscles

    Directory of Open Access Journals (Sweden)

    Rojas-Martínez Monica

    2012-12-01

    Full Text Available Abstract Background sEMG signal has been widely used in different applications in kinesiology and rehabilitation as well as in the control of human-machine interfaces. In general, the signals are recorded with bipolar electrodes located in different muscles. However, such configuration may disregard some aspects of the spatial distribution of the potentials like location of innervation zones and the manifestation of inhomogineties in the control of the muscular fibers. On the other hand, the spatial distribution of motor unit action potentials has recently been assessed with activation maps obtained from High Density EMG signals (HD-EMG, these lasts recorded with arrays of closely spaced electrodes. The main objective of this work is to analyze patterns in the activation maps, associating them with four movement directions at the elbow joint and with different strengths of those tasks. Although the activation pattern can be assessed with bipolar electrodes, HD-EMG maps could enable the extraction of features that depend on the spatial distribution of the potentials and on the load-sharing between muscles, in order to have a better differentiation between tasks and effort levels. Methods An experimental protocol consisting of isometric contractions at three levels of effort during flexion, extension, supination and pronation at the elbow joint was designed and HD-EMG signals were recorded with 2D electrode arrays on different upper-limb muscles. Techniques for the identification and interpolation of artifacts are explained, as well as a method for the segmentation of the activation areas. In addition, variables related to the intensity and spatial distribution of the maps were obtained, as well as variables associated to signal power of traditional single bipolar recordings. Finally, statistical tests were applied in order to assess differences between information extracted from single bipolar signals or from HD-EMG maps and to analyze

  1. Real-time intelligent pattern recognition algorithm for surface EMG signals

    Directory of Open Access Journals (Sweden)

    Jahed Mehran

    2007-12-01

    Full Text Available Abstract Background Electromyography (EMG is the study of muscle function through the inquiry of electrical signals that the muscles emanate. EMG signals collected from the surface of the skin (Surface Electromyogram: sEMG can be used in different applications such as recognizing musculoskeletal neural based patterns intercepted for hand prosthesis movements. Current systems designed for controlling the prosthetic hands either have limited functions or can only be used to perform simple movements or use excessive amount of electrodes in order to achieve acceptable results. In an attempt to overcome these problems we have proposed an intelligent system to recognize hand movements and have provided a user assessment routine to evaluate the correctness of executed movements. Methods We propose to use an intelligent approach based on adaptive neuro-fuzzy inference system (ANFIS integrated with a real-time learning scheme to identify hand motion commands. For this purpose and to consider the effect of user evaluation on recognizing hand movements, vision feedback is applied to increase the capability of our system. By using this scheme the user may assess the correctness of the performed hand movement. In this work a hybrid method for training fuzzy system, consisting of back-propagation (BP and least mean square (LMS is utilized. Also in order to optimize the number of fuzzy rules, a subtractive clustering algorithm has been developed. To design an effective system, we consider a conventional scheme of EMG pattern recognition system. To design this system we propose to use two different sets of EMG features, namely time domain (TD and time-frequency representation (TFR. Also in order to decrease the undesirable effects of the dimension of these feature sets, principle component analysis (PCA is utilized. Results In this study, the myoelectric signals considered for classification consists of six unique hand movements. Features chosen for EMG signal

  2. Comparison of Silent and Conventional MR Imaging for the Evaluation of Myelination in Children.

    Science.gov (United States)

    Matsuo-Hagiyama, Chisato; Watanabe, Yoshiyuki; Tanaka, Hisashi; Takahashi, Hiroto; Arisawa, Atsuko; Yoshioka, Eri; Nabatame, Shin; Nakano, Sayaka; Tomiyama, Noriyuki

    2017-07-10

    Silent magnetic resonance imaging (MRI) scans produce reduced acoustic noise and are considered more gentle for sedated children. The aim of this study was to compare the validity of T 1 - (T 1 W) and T 2 -weighted (T 2 W) silent sequences for myelination assessment in children with conventional spin-echo sequences. A total of 30 children (21 boys, 9 girls; age range: 1-83 months, mean age: 35.5 months, median age: 28.5 months) were examined using both silent and spin-echo sequences. Acoustic noise levels were analyzed and compared. The degree of myelination was qualitatively assessed via consensus, and T 1 W and T 2 W signal intensities were quantitatively measured by percent contrast. Acoustic noise levels were significantly lower during silent sequences than during conventional sequences (P myelination on T 1 W images (κ = 0.14). The percent contrast of silent and conventional MRI sequences had a strong correlation (T 1 W, correlation coefficient [CC] = 0.76; T 1 W excluding the middle cerebellar peduncle, CC = 0.82; T 2 W, CC = 0.91). For brain MRI, silent sequences significantly reduced acoustic noise and provided diagnostic image quality for myelination evaluations; however, the two methods differed with respect to cerebellar delineation on T 1 W sequences.

  3. Surface EMG signals based motion intent recognition using multi-layer ELM

    Science.gov (United States)

    Wang, Jianhui; Qi, Lin; Wang, Xiao

    2017-11-01

    The upper-limb rehabilitation robot is regard as a useful tool to help patients with hemiplegic to do repetitive exercise. The surface electromyography (sEMG) contains motion information as the electric signals are generated and related to nerve-muscle motion. These sEMG signals, representing human's intentions of active motions, are introduced into the rehabilitation robot system to recognize upper-limb movements. Traditionally, the feature extraction is an indispensable part of drawing significant information from original signals, which is a tedious task requiring rich and related experience. This paper employs a deep learning scheme to extract the internal features of the sEMG signals using an advanced Extreme Learning Machine based auto-encoder (ELMAE). The mathematical information contained in the multi-layer structure of the ELM-AE is used as the high-level representation of the internal features of the sEMG signals, and thus a simple ELM can post-process the extracted features, formulating the entire multi-layer ELM (ML-ELM) algorithm. The method is employed for the sEMG based neural intentions recognition afterwards. The case studies show the adopted deep learning algorithm (ELM-AE) is capable of yielding higher classification accuracy compared to the Principle Component Analysis (PCA) scheme in 5 different types of upper-limb motions. This indicates the effectiveness and the learning capability of the ML-ELM in such motion intent recognition applications.

  4. A modified multi-channel EMG feature for upper limb motion pattern recognition.

    Science.gov (United States)

    Tsai, An-Chih; Luh, Jer-Junn; Lin, Ta-Te

    2012-01-01

    The EMG signal is a well-known and useful biomedical signal. Much information related to muscles and human motions is included in EMG signals. Many approaches have proposed various methods that tried to recognize human motion via EMG signals. However, one of the critical problems of motion pattern recognition is that the performance of recognition is easily affected by the normalization procedure and may not work well on different days. In this paper, a modified feature of the multi-channel EMG signal is proposed and the normalization procedure is also simplified by using this modified feature. To recognize motion pattern, we applied the support vector machine (SVM) to build the motion pattern recognition model. In training and validation procedures, we used the 2-DoF exoskeleton robot arm system to do the designed pose, and the multi-channel EMG signals were obtained while the user resisted the robot. Experiment results indicate that the performance of applying the proposed feature (94.9%) is better than that of conventional features. Moreover, the performances of the recognition model, which applies the modified feature to recognize the motions on different days, are more stable than other conventional features.

  5. Effectiveness of the Wavelet Transform on the Surface EMG to Understand the Muscle Fatigue During Walk

    Science.gov (United States)

    Hussain, M. S.; Mamun, Md.

    2012-01-01

    Muscle fatigue is the decline in ability of a muscle to create force. Electromyography (EMG) is a medical technique for measuring muscle response to nervous stimulation. During a sustained muscle contraction, the power spectrum of the EMG shifts towards lower frequencies. These effects are due to muscle fatigue. Muscle fatigue is often a result of unhealthy work practice. In this research, the effectiveness of the wavelet transform applied to the surface EMG (SEMG) signal as a means of understanding muscle fatigue during walk is presented. Power spectrum and bispectrum analysis on the EMG signal getting from right rectus femoris muscle is executed utilizing various wavelet functions (WFs). It is possible to recognize muscle fatigue appreciably with the proper choice of the WF. The outcome proves that the most momentous changes in the EMG power spectrum are symbolized by WF Daubechies45. Moreover, this research has compared bispectrum properties to the other WFs. To determine muscle fatigue during gait, Daubechies45 is used in this research to analyze the SEMG signal.

  6. A Wireless sEMG Recording System and Its Application to Muscle Fatigue Detection

    Science.gov (United States)

    Chang, Kang-Ming; Liu, Shin-Hong; Wu, Xuan-Han

    2012-01-01

    Surface electromyography (sEMG) is an important measurement for monitoring exercise and fitness. Because if its high sampling frequency requirement, wireless transmission of sEMG data is a challenge. In this article a wireless sEMG measurement system with a sampling frequency of 2 KHz is developed based upon a MSP 430 microcontroller and Bluetooth transmission. Standard isotonic and isometric muscle contraction are clearly represented in the receiving user interface. Muscle fatigue detection is an important application of sEMG. Traditional muscle fatigue is detected from the median frequency of the sEMG power spectrum. The regression slope of the linear regression of median frequency is an important muscle fatigue index. A more negative slope value represents a higher muscle fatigue condition. To test the system performance, muscle fatigue detection was examined by having subjects run on a pedaled-multifunctional elliptical trainer for approximately 30 minutes at three loading levels. Ten subjects underwent a total of 60 exercise sessions to provide the experimental data. Results showed that the regression slope gradually decreases as expected, and there is a significant gender difference. PMID:22368481

  7. A Wireless sEMG Recording System and Its Application to Muscle Fatigue Detection

    Directory of Open Access Journals (Sweden)

    Xuan-Han Wu

    2012-01-01

    Full Text Available Surface electromyography (sEMG is an important measurement for monitoring exercise and fitness. Because if its high sampling frequency requirement, wireless transmission of sEMG data is a challenge. In this article a wireless sEMG measurement system with a sampling frequency of 2 KHz is developed based upon a MSP 430 microcontroller and Bluetooth transmission. Standard isotonic and isometric muscle contraction are clearly represented in the receiving user interface. Muscle fatigue detection is an important application of sEMG. Traditional muscle fatigue is detected from the median frequency of the sEMG power spectrum. The regression slope of the linear regression of median frequency is an important muscle fatigue index. A more negative slope value represents a higher muscle fatigue condition. To test the system performance, muscle fatigue detection was examined by having subjects run on a pedaled-multifunctional elliptical trainer for approximately 30 minutes at three loading levels. Ten subjects underwent a total of 60 exercise sessions to provide the experimental data. Results showed that the regression slope gradually decreases as expected, and there is a significant gender difference.

  8. Comparison of surface and intramuscular EMG pattern recognition for simultaneous wrist/hand motion classification.

    Science.gov (United States)

    Smith, Lauren H; Hargrove, Levi J

    2013-01-01

    The simultaneous control of multiple degrees of freedom (DOFs) is important for the intuitive, life-like control of artificial limbs. The objective of this study was to determine whether the use of intramuscular electromyogram (EMG) improved pattern classification of simultaneous wrist/hand movements compared to surface EMG. Two pattern classification methods were used in this analysis, and were trained to predict 1-DOF and 2-DOF movements involving wrist rotation, wrist flexion/extension, and hand open/close. The classification methods used were (1) a single pattern classifier discriminating between 1-DOF and 2-DOF motion classes, and (2) a parallel set of three classifiers to predict the activity of each of the 3 DOFs. We demonstrate that in this combined wrist/hand classification task, the use of intramuscular EMG significantly decreases classification error compared to surface EMG for the parallel configuration (p<0.01), but not for the single classifier. We also show that the use of intramuscular EMG mitigates the increase in errors produced when the parallel classifier method is trained without 2-DOF motion class data.

  9. Analysis of scapular muscle EMG activity in patients with idiopathic neck pain: a systematic review.

    Science.gov (United States)

    Castelein, Birgit; Cools, Ann; Bostyn, Emma; Delemarre, Jolien; Lemahieu, Trees; Cagnie, Barbara

    2015-04-01

    It is proposed that altered scapular muscle function can contribute to abnormal loading of the cervical spine. However, it is not clear if patients with idiopathic neck pain show altered activity of the scapular muscles. The aim of this paper was to systematically review the literature regarding the differences or similarities in scapular muscle activity, measured by electromyography ( = EMG), between patients with chronic idiopathic neck pain compared to pain-free controls. Case-control (neck pain/healthy) studies investigating scapular muscle EMG activity (amplitude, timing and fatigue parameters) were searched in Pubmed and Web of Science. 25 articles were included in the systematic review. During rest and activities below shoulder height, no clear differences in mean Upper Trapezius ( = UT) EMG activity exist between patients with idiopathic neck pain and a healthy control group. During overhead activities, no conclusion for scapular EMG amplitude can be drawn as a large variation of results were reported. Adaptation strategies during overhead tasks are not the same between studies. Only one study investigated timing of the scapular muscles and found a delayed onset and shorter duration of the SA during elevation in patients with idiopathic neck pain. For scapular muscle fatigue, no definite conclusions can be made as a wide variation and conflicting results are reported. Further high quality EMG research on scapular muscles (broader than the UT) is necessary to understand/draw conclusions on how scapular muscles react in the presence of idiopathic neck pain. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Functional mapping of the pelvic floor and sphincter muscles from high-density surface EMG recordings.

    Science.gov (United States)

    Peng, Yun; He, Jinbao; Khavari, Rose; Boone, Timothy B; Zhang, Yingchun

    2016-11-01

    Knowledge of the innervation of pelvic floor and sphincter muscles is of great importance to understanding the pathophysiology of female pelvic floor dysfunctions. This report presents our high-density intravaginal and intrarectal electromyography (EMG) probes and a comprehensive innervation zone (IZ) imaging technique based on high-density EMG readings to characterize the IZ distribution. Both intravaginal and intrarectal probes are covered with a high-density surface electromyography electrode grid (8 × 8). Surface EMG signals were acquired in ten healthy women performing maximum voluntary contractions of their pelvic floor. EMG decomposition was performed to separate motor-unit action potentials (MUAPs) and then localize their IZs. High-density surface EMG signals were successfully acquired over the vaginal and rectal surfaces. The propagation patterns of muscle activity were clearly visualized for multiple muscle groups of the pelvic floor and anal sphincter. During each contraction, up to 218 and 456 repetitions of motor units were detected by the vaginal and rectal probes, respectively. MUAPs were separated with their IZs identified at various orientations and depths. The proposed probes are capable of providing a comprehensive mapping of IZs of the pelvic floor and sphincter muscles. They can be employed as diagnostic and preventative tools in clinical practices.

  11. A Control Strategy with Tactile Perception Feedback for EMG Prosthetic Hand

    Directory of Open Access Journals (Sweden)

    Changcheng Wu

    2015-01-01

    Full Text Available To improve the control effectiveness and make the prosthetic hand not only controllable but also perceivable, an EMG prosthetic hand control strategy was proposed in this paper. The control strategy consists of EMG self-learning motion recognition, backstepping controller with stiffness fuzzy observation, and force tactile representation. EMG self-learning motion recognition is used to reduce the influence on EMG signals caused by the uncertainty of the contacting position of the EMG sensors. Backstepping controller with stiffness fuzzy observation is used to realize the position control and grasp force control. Velocity proportional control in free space and grasp force tracking control in restricted space can be realized by the same controller. The force tactile representation helps the user perceive the states of the prosthetic hand. Several experiments were implemented to verify the effect of the proposed control strategy. The results indicate that the proposed strategy has effectiveness. During the experiments, the comments of the participants show that the proposed strategy is a better choice for amputees because of the improved controllability and perceptibility.

  12. Evaluation of methods for extraction of the volitional EMG in dynamic hybrid muscle activation

    Directory of Open Access Journals (Sweden)

    Mizrahi Joseph

    2006-11-01

    Full Text Available Abstract Background Hybrid muscle activation is a modality used for muscle force enhancement, in which muscle contraction is generated from two different excitation sources: volitional and external, by means of electrical stimulation (ES. Under hybrid activation, the overall EMG signal is the combination of the volitional and ES-induced components. In this study, we developed a computational scheme to extract the volitional EMG envelope from the overall dynamic EMG signal, to serve as an input signal for control purposes, and for evaluation of muscle forces. Methods A "synthetic" database was created from in-vivo experiments on the Tibialis Anterior of the right foot to emulate hybrid EMG signals, including the volitional and induced components. The database was used to evaluate the results obtained from six signal processing schemes, including seven different modules for filtration, rectification and ES component removal. The schemes differed from each other by their module combinations, as follows: blocking window only, comb filter only, blocking window and comb filter, blocking window and peak envelope, comb filter and peak envelope and, finally, blocking window, comb filter and peak envelope. Results and conclusion The results showed that the scheme including all the modules led to an excellent approximation of the volitional EMG envelope, as extracted from the hybrid signal, and underlined the importance of the artifact blocking window module in the process. The results of this work have direct implications on the development of hybrid muscle activation rehabilitation systems for the enhancement of weakened muscles.

  13. Prediction of distal arm joint angles from EMG and shoulder orientation for prosthesis control.

    Science.gov (United States)

    Akhtar, Aadeel; Hargrove, Levi J; Bretl, Timothy

    2012-01-01

    Current state-of-the-art upper limb myoelectric prostheses are limited by only being able to control a single degree of freedom at a time. However, recent studies have separately shown that the joint angles corresponding to shoulder orientation and upper arm EMG can predict the joint angles corresponding to elbow flexion/extension and forearm pronation/ supination, which would allow for simultaneous control over both degrees of freedom. In this preliminary study, we show that the combination of both upper arm EMG and shoulder joint angles may predict the distal arm joint angles better than each set of inputs alone. Also, with the advent of surgical techniques like targeted muscle reinnervation, which allows a person with an amputation intuitive muscular control over his or her prosthetic, our results suggest that including a set of EMG electrodes around the forearm increases performance when compared to upper arm EMG and shoulder orientation. We used a Time-Delayed Adaptive Neural Network to predict distal arm joint angles. Our results show that our network's root mean square error (RMSE) decreases and coefficient of determination (R(2)) increases when combining both shoulder orientation and EMG as inputs.

  14. Signaling context modulates social function of silent bared-teeth displays in rhesus macaques (Macaca mulatta).

    Science.gov (United States)

    Beisner, Brianne A; McCowan, Brenda

    2014-02-01

    The signaling context has been found to change the meaning of the silent bared-teeth display (SBT) in pigtail macaques (Macaca nemestrina) such that the SBT in apparently peaceful contexts communicates subordination, a long-term pattern of behavior, whereas in conflict contexts it communicates immediate submission (PNAS, 104: 1581-1586). However, the context dependent nature of the SBT has not yet been explored in other species. We investigated SBT usage with respect to grooming, severe aggression, and signaler-receiver sex, rank difference, and body size in seven captive groups of rhesus macaques. Peaceful SBTs were given most often to male receivers by male and female signalers whereas conflict SBTs were given to both male and female receivers primarily by female signalers. Male signalers rarely gave SBTs (peaceful or conflict) to female receivers. Unlike pigtail macaques, peaceful SBTs in rhesus were often accompanied by withdrawal behavior (referred to as peaceful SBT-leave), which influenced grooming, but not aggression, at the dyadic level. Severe aggression was less frequent among dyads using peaceful SBTs (regardless of withdrawal behavior) than those using conflict SBTs. In contrast, grooming was more frequent among dyads using peaceful SBT-stay signals than those using peaceful SBT-leave signals or conflict SBTs. In total, our results indicate that peaceful SBTs are a functionally different signal from conflict SBTs in rhesus macaques. © 2013 Wiley Periodicals, Inc.

  15. A canonical correlation analysis based EMG classification algorithm for eliminating electrode shift effect.

    Science.gov (United States)

    Zhe Fan; Zhong Wang; Guanglin Li; Ruomei Wang

    2016-08-01

    Motion classification system based on surface Electromyography (sEMG) pattern recognition has achieved good results in experimental condition. But it is still a challenge for clinical implement and practical application. Many factors contribute to the difficulty of clinical use of the EMG based dexterous control. The most obvious and important is the noise in the EMG signal caused by electrode shift, muscle fatigue, motion artifact, inherent instability of signal and biological signals such as Electrocardiogram. In this paper, a novel method based on Canonical Correlation Analysis (CCA) was developed to eliminate the reduction of classification accuracy caused by electrode shift. The average classification accuracy of our method were above 95% for the healthy subjects. In the process, we validated the influence of electrode shift on motion classification accuracy and discovered the strong correlation with correlation coefficient of >0.9 between shift position data and normal position data.

  16. Task discrimination from myoelectric activity: a learning scheme for EMG-based interfaces.

    Science.gov (United States)

    Liarokapis, Minas V; Artemiadis, Panagiotis K; Kyriakopoulos, Kostas J

    2013-06-01

    A learning scheme based on Random Forests is used to discriminate the task to be executed using only myoelectric activity from the upper limb. Three different task features can be discriminated: subspace to move towards, object to be grasped and task to be executed (with the object). The discrimination between the different reach to grasp movements is accomplished with a random forests classifier, which is able to perform efficient features selection, helping us to reduce the number of EMG channels required for task discrimination. The proposed scheme can take advantage of both a classifier and a regressor that cooperate advantageously to split the task space, providing better estimation accuracy with task-specific EMG-based motion decoding models, as reported in [1] and [2]. The whole learning scheme can be used by a series of EMG-based interfaces, that can be found in rehabilitation cases and neural prostheses.

  17. Arm Orthosis/Prosthesis Movement Control Based on Surface EMG Signal Extraction.

    Science.gov (United States)

    Suberbiola, Aaron; Zulueta, Ekaitz; Lopez-Guede, Jose Manuel; Etxeberria-Agiriano, Ismael; Graña, Manuel

    2015-05-01

    This paper shows experimental results on electromyography (EMG)-based system control applied to motorized orthoses. Biceps and triceps EMG signals are captured through two biometrical sensors, which are then filtered and processed by an acquisition system. Finally an output/control signal is produced and sent to the actuators, which will then perform the actual movement, using algorithms based on autoregressive (AR) models and neural networks, among others. The research goal is to predict the desired movement of the lower arm through the analysis of EMG signals, so that the movement can be reproduced by an arm orthosis, powered by two linear actuators. In this experiment, best accuracy has achieved values up to 91%, using a fourth-order AR-model and 100ms block length.

  18. Comparison of jaw muscle EMG activity in awake and sleep bruxers

    DEFF Research Database (Denmark)

    Castrillon, Eduardo; Dreyer Nielsen, Patricia; Haugland, Morten

    2015-01-01

    TITLE: Comparison of Jaw Muscle EMG Activity in Awake and Sleep Bruxers AUTHORS: E. E. Castrillon, P. Dreyer, M. Haugland, W. Yachida, T. Arima, P. Svensson AUTHORS/INSTITUTIONS: E.E. Castrillon, P. Dreyer, P. Svensson, Aarhus School of Dentistry, Aarhus C, DENMARK; E.E. Castrillon, P. Svensson, ...... of the jaw muscle activity in different populations of self-reported bruxers and non-bruxers. Financial Interest Disclosure: Morten Haughland works for DELTA A/S that has commercial agreement with SUNSTAR that produces Grindcare (portable EMG device)...... been proposed to have different underlying pathophysiology. Objectives: To compare the characteristics of multiple days EMG assessment of the anterior temporalis muscles between patients with self-reported awake bruxism, sleep bruxism and healthy individuals. Methods: Methods: Participants...

  19. EMG monitoring during functional non-surgical therapy of Achilles tendon rupture.

    Science.gov (United States)

    Hüfner, Tobias; Wohifarth, Kai; Fink, Matthias; Thermann, H; Rollnik, Jens D

    2002-07-01

    After surgical therapy of Achilles tendon rupture, neuromuscular changes may persist, even one year after surgery. We were interested whether these changes are also evident following a non-surgical functional therapy (Variostabil therapy boot/Adidas). Twenty-one patients with complete Achilles tendon rupture were enrolled in the study (mean age 38.5 years, range 24 to 60; 18 men, three women) and followed-up clinically and with surface EMG of the gastrocnemius muscles after four, eight, 12 weeks, and one year after rupture. EMG differences between the affected and non-affected side could only be observed at baseline and after four weeks following Achilles tendon rupture. The results from our study show that EMG changes are not found following non-surgical functional therapy.

  20. Multiple sclerosis lesions of the auditory pons are not silent.

    Science.gov (United States)

    Levine, R A; Gardner, J C; Fullerton, B C; Stufflebeam, S M; Furst, M; Rosen, B R

    1994-10-01

    To understand the relationship between brainstem lesions and auditory neurology in patients with multiple sclerosis, we compared behavioural, electrophysiological and imaging data in 38 patients with probable or definite multiple sclerosis and normal or near normal hearing. Behavioural measures included (i) general hearing tests (audiogram, speech discrimination) and (ii) hearing tests likely to be critically dependent upon brainstem processing (masking level difference, interaural time and level discrimination). Brainstem auditory evoked potentials provided the electrophysiological data. Multiplanar high-resolution MRI of the brainstem provided the anatomical data. Interaural time discrimination for high-frequency sounds was by far the most sensitive of all tests with abnormalities in 71% of all subjects. Whenever any other test was abnormal this test was always abnormal. Interaural time discrimination for low-frequency sounds and evoked potentials were closely related and next most sensitive with abnormalities in approximately 40% of all subjects. Interaural level discrimination and masking level difference were least sensitive with abnormalities in < 10% of subjects. Speech discrimination scores correlated significantly with the masking level differences, as well as with interaural time discrimination for high-frequency sounds. Pontine lesions were found in five of the 16 patients, in whom an objective method for detecting magnetic resonance lesions could be applied. All four with lesions involving the pontine auditory pathway had marked abnormalities in interaural time discrimination and evoked potentials. None of the other 12 had evoked potentials abnormalities. We conclude that neurological tests requiring precise neural timing can reveal behavioural deficits for multiple sclerosis lesions of the auditory pons that are otherwise 'silent'. Of all neurological systems the auditory system at the level of the pons is probably the most sensitive to multiple

  1. Analyzing surface EMG signals to determine relationship between jaw imbalance and arm strength loss

    Directory of Open Access Journals (Sweden)

    Truong Quang Dang Khoa

    2012-08-01

    Full Text Available Abstract Background This study investigated the relationship between dental occlusion and arm strength; in particular, the imbalance in the jaw can cause loss in arm strength phenomenon. One of the goals of this study was to record the maximum forces that the subjects can resist against the pull-down force on their hands while biting a spacer of adjustable height on the right or left side of the jaw. Then EMG measurement was used to determine the EMG-Force relationship of the jaw, neck and arms muscles. This gave us useful insights on the arms strength loss due to the biomechanical effects of the imbalance in the jaw mechanism. Methods In this study to determine the effects of the imbalance in the jaw to the strength of the arms, we conducted experiments with a pool of 20 healthy subjects of both genders. The subjects were asked to resist a pull down force applied on the contralateral arm while biting on a firm spacer using one side of the jaw. Four different muscles – masseter muscles, deltoid muscles, bicep muscles and trapezoid muscles – were involved. Integrated EMG (iEMG and Higuchi fractal dimension (HFD were used to analyze the EMG signals. Results The results showed that (1 Imbalance in the jaw causes loss of arm strength contra-laterally; (2 The loss is approximately a linear function of the height of the spacers. Moreover, the iEMG showed the intensity of muscle activities decreased when the degrees of jaw imbalance increased (spacer thickness increased. In addition, the tendency of Higuchi fractal dimension decreased for all muscles. Conclusions This finding indicates that muscle fatigue and the decrease in muscle contraction level leads to the loss of arm strength.

  2. Subspace based adaptive denoising of surface EMG from neurological injury patients

    Science.gov (United States)

    Liu, Jie; Ying, Dongwen; Zev Rymer, William; Zhou, Ping

    2014-10-01

    Objective: After neurological injuries such as spinal cord injury, voluntary surface electromyogram (EMG) signals recorded from affected muscles are often corrupted by interferences, such as spurious involuntary spikes and background noises produced by physiological and extrinsic/accidental origins, imposing difficulties for signal processing. Conventional methods did not well address the problem caused by interferences. It is difficult to mitigate such interferences using conventional methods. The aim of this study was to develop a subspace-based denoising method to suppress involuntary background spikes contaminating voluntary surface EMG recordings. Approach: The Karhunen-Loeve transform was utilized to decompose a noisy signal into a signal subspace and a noise subspace. An optimal estimate of EMG signal is derived from the signal subspace and the noise power. Specifically, this estimator is capable of making a tradeoff between interference reduction and signal distortion. Since the estimator partially relies on the estimate of noise power, an adaptive method was presented to sequentially track the variation of interference power. The proposed method was evaluated using both semi-synthetic and real surface EMG signals. Main results: The experiments confirmed that the proposed method can effectively suppress interferences while keep the distortion of voluntary EMG signal in a low level. The proposed method can greatly facilitate further signal processing, such as onset detection of voluntary muscle activity. Significance: The proposed method can provide a powerful tool for suppressing background spikes and noise contaminating voluntary surface EMG signals of paretic muscles after neurological injuries, which is of great importance for their multi-purpose applications.

  3. A Novel EMG Interface for Individuals With Tetraplegia to Pilot Robot Hand Grasping.

    Science.gov (United States)

    Tigra, Wafa; Navarro, Benjamin; Cherubini, Andrea; Gorron, X; Gelis, Anthony; Fattal, Charles; Guiraud, David; Azevedo Coste, Christine

    2018-02-01

    This paper introduces a new human-machine interface for individuals with tetraplegia. We investigated the feasibility of piloting an assistive device by processing supra-lesional muscle responses online. The ability to voluntarily contract a set of selected muscles was assessed in five spinal cord-injured subjects through electromyographic (EMG) analysis. Two subjects were also asked to use the EMG interface to control palmar and lateral grasping of a robot hand. The use of different muscles and control modalities was also assessed. These preliminary results open the way to new interface solutions for high-level spinal cord-injured patients.

  4. High-density EMG e-textile systems for the control of active prostheses

    DEFF Research Database (Denmark)

    Farina, Dario; Lorrain, Thomas; Negro, Francesco

    2010-01-01

    Myoelectric control of active prostheses requires electrode systems that are easy to apply for daily repositioning of the electrodes by the user. In this study we propose the use of Smart Fabric and Interactive Textile (SFIT) systems as an alternative solution for recording high-density EMG signals...... for myoelectric control. A sleeve covering the upper and lower arm, which contains 100 electrodes arranged in four grids of 5 * 5 electrodes, was used to record EMG signals in 3 subjects during the execution of 9 tasks of the wrist and hand. The signals were analyzed by extracting wavelet coefficients which were...

  5. Assessment of the paraspinal muscles of subjects presenting an idiopathic scoliosis: an EMG pilot study

    Directory of Open Access Journals (Sweden)

    Larivière Christian

    2005-03-01

    Full Text Available Abstract Background It is known that the back muscles of scoliotic subjects present abnormalities in their fiber type composition. Some researchers have hypothesized that abnormal fiber composition can lead to paraspinal muscle dysfunction such as poor neuromuscular efficiency and muscle fatigue. EMG parameters were used to evaluate these impairments. The purpose of the present study was to examine the clinical potential of different EMG parameters such as amplitude (RMS and median frequency (MF of the power spectrum in order to assess the back muscles of patients presenting idiopathic scoliosis in terms of their neuromuscular efficiency and their muscular fatigue. Methods L5/S1 moments during isometric efforts in extension were measured in six subjects with idiopathic scoliosis and ten healthy controls. The subjects performed three 7 s ramp contractions ranging from 0 to 100% maximum voluntary contraction (MVC and one 30 s sustained contraction at 75% MVC. Surface EMG activity was recorded bilaterally from the paraspinal muscles at L5, L3, L1 and T10. The slope of the EMG RMS/force (neuromuscular efficiency and MF/force (muscle composition relationships were computed during the ramp contractions while the slope of the EMG RMS/time and MF/time relationships (muscle fatigue were computed during the sustained contraction. Comparisons were performed between the two groups and between the left and right sides for the EMG parameters. Results No significant group or side differences between the slopes of the different measures used were found at the level of the apex (around T10 of the major curve of the spine. However, a significant side difference was seen at a lower level (L3, p = 0.01 for the MF/time parameter. Conclusion The EMG parameters used in this study could not discriminate between the back muscles of scoliotic subjects and those of control subject regarding fiber type composition, neuromuscular efficiency and muscle fatigue at the level

  6. How the silent mentor program improves our surgical level and safety and nourishes our spiritual life

    Directory of Open Access Journals (Sweden)

    Mun-Kun Hong

    2017-08-01

    Full Text Available We briefly share our experience of using the silent mentor program in the Medical Simulation Center (MSC of Tzu Chi University (TCU, Hualien, Taiwan, to improve our minimally invasive surgical level and patient's safety. The silent mentor program, established in 2000 by the Department of Anatomy of TCU, is a pioneering clinical skill training program based on unembalmed bodies. This program provides three valuable advantages for surgery. The first is the comprehensive understanding of the deep or rarely observed but crucial structures of the human body, which is normally difficult to achieve in living humans. The second is gaining the first experience of a novel procedure or surgery on silent mentors rather than on living humans, which is essential for young surgeons to begin their careers. The third is evaluating the safety and feasibility of a novel surgical method. In addition to surgical techniques, the most valuable point of the program is the humane ceremonies conducted for silent mentors to nourish our soul. After the workshop, all the incision wounds on every silent mentor were carefully checked and sutured in the same manner as in closing surgical wounds in a patient. Subsequently, encoffining, cremation, and thanksgiving ceremonies were solemnly held, in the hope that the medical students or trainees would imperceptibly understand their responsibility to society and the silent mentor's expectations. The Asia-Pacific Association for Gynecologic Endoscopy and Minimally Invasive Therapy, or the Taiwan Association for Minimally Gynecology Therapy, or both can consider initiating a regular silent mentor program in the MSC of TCU. It is not only intended to improve the skills of surgeons but also to allow them to participate in the interactive ceremony and thus refresh their humanitarian knowledge.

  7. Silex: A database for silent-letter endings in French words.

    Science.gov (United States)

    Gingras, Maxime; Sénéchal, Monique

    2017-10-01

    Silent-letter endings are often claimed to be a major source of inconsistency in the French orthography. In this report, we introduce Silex, a database designed to facilitate the study of spelling performance in general, and silent-letter endings in particular. It was derived from two large and recent corpora based on child- and adult-targeted material. Silex consists of three kinds of Excel workbooks: a set of Stimuli Selector workbooks that allow researchers to select words based on a variety of statistics and word characteristics; a Table Generator workbook that allows researchers to build consistency distribution tables by selecting specific phonological or orthographic units; and a Master File workbook, from which all statistics were derived, and that allows researchers to compute other statistics. Silex is different from existing databases in the manner that silent-letter endings were coded and how consistency indices were computed. Importantly, Silex provides unconditional- and conditional-consistency indices for silent-letter endings. To demonstrate the utility of Silex, we first described the silent-letter phenomenon in French. We found that, at minimum, 28 % of French words end with a silent letter. Moreover, silent-letter endings are usually t, e, s, x, or d, and the occurrence of these letters is conditioned by the phonological ending of words. Second, we showed how Silex could prove useful for the development of theoretical models and for empirical studies. The novel information provided in Silex as well as the flexibility of this database should enable researchers to advance our understanding of developing and skilled spelling performance.

  8. Before and after Silent Spring: from chemical pesticides to biological control and integrated pest management--Britain, 1945-1980.

    Science.gov (United States)

    Gay, Hannah

    2012-07-01

    The use of chemical pesticides increased considerably after World War II, and ecological damage was noticeable by the late 1940s. This paper outlines some ecological problems experienced during the post-war period in the UK, and in parts of what is now Malaysia. Also discussed is the government's response. Although Rachel Carson's book, Silent Spring (1962), was important in bringing the problems to a wider public, she was not alone in sounding the alarm. Pressure from the public and from British scientists led, among other things, to the founding of the Natural Environment Research Council in 1965. By the 1970s, environmentalism was an important movement, and funding for ecological and environmental research was forthcoming even during the economic recession. Some of the recipients were ecologists working at Imperial College London. Moved by the political climate, and by the evidence of ecological damage, they carried out research on the biological control of insect pests.

  9. EMG feature assessment for myoelectric pattern recognition and channel selection: a study with incomplete spinal cord injury.

    Science.gov (United States)

    Liu, Jie; Li, Xiaoyan; Li, Guanglin; Zhou, Ping

    2014-07-01

    Myoelectric pattern recognition with a large number of electromyogram (EMG) channels provides an approach to assessing motor control information available from the recorded muscles. In order to develop a practical myoelectric control system, a feature dependent channel reduction method was developed in this study to determine a small number of EMG channels for myoelectric pattern recognition analysis. The method selects appropriate raw EMG features for classification of different movements, using the minimum Redundancy Maximum Relevance (mRMR) and the Markov random field (MRF) methods to rank a large number of EMG features, respectively. A k-nearest neighbor (KNN) classifier was used to evaluate the performance of the selected features in terms of classification accuracy. The method was tested using 57 channels' surface EMG signals recorded from forearm and hand muscles of individuals with incomplete spinal cord injury (SCI). Our results demonstrate that appropriate selection of a small number of raw EMG features from different recording channels resulted in similar high classification accuracies as achieved by using all the EMG channels or features. Compared with the conventional sequential forward selection (SFS) method, the feature dependent method does not require repeated classifier implementation. It can effectively reduce redundant information not only cross different channels, but also cross different features in the same channel. Such hybrid feature-channel selection from a large number of EMG recording channels can reduce computational cost for implementation of a myoelectric pattern recognition based control system. Copyright © 2014 IPEM. Published by Elsevier Ltd. All rights reserved.

  10. Myopathic EMG findings and type II muscle fiber atrophy in patients with Lambert-Eaton myasthenic syndrome

    DEFF Research Database (Denmark)

    Crone, Clarissa; Christiansen, Ingelise; Vissing, John

    2013-01-01

    Lambert-Eaton myasthenic syndrome (LEMS) is a rare condition, which may mimic myopathy. A few reports have described that EMG in LEMS may show changes compatible with myopathy, and muscle biopsies have been described with type II as well as type I atrophy. The EMG results were, however, based...

  11. The utility of EMG interference pattern analysis in botulinum toxin treatment of torticollis: A randomised, controlled and blinded study

    DEFF Research Database (Denmark)

    Werdelin, L; Dalager, T; Fuglsang-Frederiksen, Anders

    2011-01-01

    OBJECTIVE: The significance of electromyography (EMG) guidance in botulinum toxin (BT) treatment has been much debated. The aim of this study was to evaluate if EMG guidance in the treatment of torticollis in BT-naive patients had a better outcome than treatment after clinical evaluation alone. M...

  12. Compensation of the effects of muscle fatigue on EMG-based control using fuzzy rules based scheme.

    Science.gov (United States)

    Lalitharatne, Thilina Dulantha; Hayashi, Yoshiaki; Teramoto, Kenbu; Kiguchi, Kazuo

    2013-01-01

    Estimation of the correct motion intention of the user is very important for most of the Electromyography (EMG) based control applications such as prosthetics, power-assist exoskeletons, rehabilitation and teleoperation robots. On the other hand, safety and long term reliability are also vital for those applications, as they interact with human users. By considering these requirements, many EMG-based control applications have been proposed and developed. However, there are still many challenges to be addressed in the case of EMG based control systems. One of the challenges that had not been considered in such EMG-based control in common is the muscle fatigue. The muscle fatiguing effects of the user can deteriorate the effectiveness of the EMG-based control in the long run, which makes the EMG-based control to produce less accurate results. Therefore, in this study we attempted to develop a fuzzy rule based scheme to compensate the effects of muscle fatigues on EMG based control. Fuzzy rule based weights have been estimated based on time and frequency domain features of the EMG signals. Eventually, these weights have been used to modify the controller output according with the muscle fatigue condition in the muscles. The effectiveness of the proposed method has been evaluated by experiments.

  13. Engagement and EMG in serious gaming : Experimenting with sound and dynamics in the levee patroller training game

    NARCIS (Netherlands)

    Schuurink, E.L.; Houtkamp, J.; Toet, A.

    2008-01-01

    We measured the effects of sound and visual dynamic elements on user experience of a serious game, with special interest in engagement and arousal. Engagement was measured through questionnaires and arousal through the SAM and electromyography (EMG). We adopted the EMG of the corrugator (frown

  14. Synergy of EMG patterns in gait as an objective measure of muscle selectivity in children with spastic cerebral palsy

    NARCIS (Netherlands)

    Zwaan, E.; Becher, J.G.; Harlaar, J.

    2012-01-01

    Selective motor control (SMC) is an important determinant of functioning in cerebral palsy (CP). Currently its assessment is based on subjective clinical tests with a low sensitivity. Electromyography (EMG) profiles during gait represent muscle coordination and might be used to assess SMC. EMG

  15. Comparison of EMG during passive stretching and shortening phases of each muscle for the investigation of parkinsonian rigidity.

    Science.gov (United States)

    Kwon, Yuri; Kim, Ji-Won; Kim, Ji-Sun; Koh, Seong-Beom; Eom, Gwang-Moon; Lim, Tae-Hong

    2015-01-01

    The aim of this study was to test the hypothesis in the literature that torque resistance of parkinsonian rigidity is the difference between the independent contributions of stretched and shortened muscles. The hypothesis was tested using muscle-specific stretch-shortening (MSSS) EMG ratio in this study. Nineteen patients with idiopathic Parkinson's disease (PD) and 18 healthy subjects (the mean age comparable to that of patients) participated in this study. The EMG activity was measured in the four muscles involved in wrist joint movement, i.e. flexor carpi radialis, flexor carpi ulnaris, extensor carpi radialis and extensor carpi ulnaris. The passive flexion-extension movement with a range of ±30∘ was applied at wrist joint. Root mean squared (RMS) mean was calculated from the envelope of the EMG for each of stretching and shortening phases. MSSS EMG ratio was defined as the ratio of RMS EMG of stretching phase and RMS EMG of shortening phase of a single muscle, and it was calculated for each muscle. MSSS EMG ratios were smaller than one in all muscles. These results indicate that all wrist muscles generate greater mean EMG during shortening than during stretching. Therefore, the torque resistance of parkinsonian rigidity cannot be explained as the simple summation of independent antagonistic torque pair.

  16. Effect of EMG-triggered stimulation combined with comprehensive rehabilitation training on muscle tension in poststroke hemiparetic patients.

    Science.gov (United States)

    Xu, H; Jie, J; Hailiang, Z; Ma, C

    2015-11-01

    The aim of this study was to investigate the effect of electromyography stimulation (EMGS) combined with comprehensive rehabilitation training on muscle tension of paretic limb in poststroke hemiparetic patients. Forty poststroke hemiparetic patients were randomly divided into 2 groups (N.=20 each): control group that received conventional therapy and experimental group that underwent EMGS combined with comprehensive rehabilitation training in addition to conventional therapy. The outcome was assessed by Fugl-Meyer Score, functional ambulation category (FAC) Scale and integrated electromyography (iEMG) for both pretreatment and post-treatment. The results were analyzed using paired t-test and group t-test. No statistical significance was observed for Fugl-Meyer Score, FAC Score and iEMG values between control and experimental groups prior to the treatment (P>0.05). However, Fugl-Meyer and FAC scores were improved and iEMG values of gastrocnemius muscle were significantly decreased (PFugl-Meyer Score, FAC score and iEMG values (PFugl-Meyer and FAC scores. EMGS combined with comprehensive rehabilitation training can synergistically reduce muscle tension and relieve muscular spasticity of paretic limb in post-stroke patients. The iEMG proved to be a potential candidate for the evaluation of motor function in these patients.

  17. Comparison of EMG signals recorded by surface electrodes on endotracheal tube and thyroid cartilage during monitored thyroidectomy

    Directory of Open Access Journals (Sweden)

    Feng-Yu Chiang

    2017-10-01

    Full Text Available A variety of electromyography (EMG recording methods were reported during intraoperative neural monitoring (IONM of recurrent laryngeal nerve (RLN in thyroid surgery. This study compared two surface recording methods that were obtained by electrodes on endotracheal tube (ET and thyroid cartilage (TC. This study analyzed 205 RLNs at risk in 110 patients undergoing monitored thyroidectomy. Each patient was intubated with an EMG ET during general anesthesia. A pair of single needle electrode was inserted obliquely into the TC lamina on each side. Standard IONM procedure was routinely followed, and EMG signals recorded by the ET and TC electrodes at each step were compared. In all nerves, evoked laryngeal EMG signals were reliably recorded by the ET and TC electrodes, and showed the same typical waveform and latency. The EMG signals recorded by the TC electrodes showed significantly higher amplitudes and stability compared to those by the ET electrodes. Both recording methods accurately detected 7 partial loss of signal (LOS and 2 complete LOS events caused by traction stress, but only the ET electrodes falsely detected 3 LOS events caused by ET displacement during surgical manipulation. Two patients with true complete LOS experienced temporary RLN palsy postoperatively. Neither permanent RLN palsy, nor complications from ET or TC electrodes were encountered in this study. Both electrodes are effective and reliable for recording laryngeal EMG signals during monitored thyroidectomy. Compared to ET electrodes, TC electrodes obtain higher and more stable EMG signals as well as fewer false EMG results during IONM.

  18. The Right to Remain Silent in Criminal Trial

    Directory of Open Access Journals (Sweden)

    Gianina Anemona Radu

    2013-05-01

    Full Text Available A person's right not to incriminate oneself or to remain silent and not contribute to their own incrimination is a basic requirement of due process, although the right not to testify against oneself is not expressly guaranteed. This legal right is intended to protect the accused/ the defendant against the authorities’ abusive coercion. The scope of the right not to incriminate oneself is related to criminal matter under the Convention, and thus susceptible or applicable to criminal proceedings concerning all types of crimes as a guarantee to a fair trial. The European Court of Justice ruled that despite the fact that art. 6 paragraph 2 of the Convention does not expressly mention the right not to incriminate oneself and the right not to contribute to their own incrimination (nemo tenetur are ipsum accusare these are generally recognized international rules that are in consistence with the notion of “fair trial” stipulated in art. 6. By virtue of the right to silence, the person charged with a crime is free to answer the questions or not, as he/she believes it is in his/her interest. Therefore, the right to silence involves not only the right not to testify against oneself, but also the right of the accused/ defendant not to incriminate oneself. Thus, the accused/defendant cannot be compelled to assist in the production of evidence and cannot be sanctioned for failing to provide certain documents or other evidence. Obligation to testify against personal will, under the constraint of a fine or any other form of coercion constitutes an interference with the negative aspect of the right to freedom of expression which must be necessary in a democratic society. It is essential to clarify certain issues as far as this right is concerned. First of all, the statutory provision in question is specific to adversarial systems, which are found mainly in Anglo-Saxon countries and are totally different from that underlying the current Romanian Criminal

  19. An Embedded, Eight Channel, Noise Canceling, Wireless, Wearable sEMG Data Acquisition System With Adaptive Muscle Contraction Detection.

    Science.gov (United States)

    Ergeneci, Mert; Gokcesu, Kaan; Ertan, Erhan; Kosmas, Panagiotis

    2018-02-01

    Wearable technology has gained increasing popularity in the applications of healthcare, sports science, and biomedical engineering in recent years. Because of its convenient nature, the wearable technology is particularly useful in the acquisition of the physiological signals. Specifically, the (surface electromyography) sEMG systems, which measure the muscle activation potentials, greatly benefit from this technology in both clinical and industrial applications. However, the current wearable sEMG systems have several drawbacks including inefficient noise cancellation, insufficient measurement quality, and difficult integration to customized applications. Additionally, none of these sEMG data acquisition systems can detect sEMG signals (i.e., contractions), which provides a valuable environment for further studies such as human machine interaction, gesture recognition, and fatigue tracking. To this end, we introduce an embedded, eight channel, noise canceling, wireless, wearable sEMG data acquisition system with adaptive muscle contraction detection. Our design consists of two stages, which are the sEMG sensors and the multichannel data acquisition unit. For the first stage, we propose a low cost, dry, and active sEMG sensor that captures the muscle activation potentials, a data acquisition unit that evaluates these captured multichannel sEMG signals and transmits them to a user interface. In the data acquisition unit, the sEMG signals are processed through embedded, adaptive methods in order to reject the power line noise and detect the muscle contractions. Through extensive experiments, we demonstrate that our sEMG sensor outperforms a widely used commercially available product and our data acquisition system achieves 4.583 dB SNR gain with accuracy in the detection of the contractions.

  20. Repeatability of grasp recognition for robotic hand prosthesis control based on sEMG data.

    Science.gov (United States)

    Palermo, Francesca; Cognolato, Matteo; Gijsberts, Arjan; Muller, Henning; Caputo, Barbara; Atzori, Manfredo

    2017-07-01

    Control methods based on sEMG obtained promising results for hand prosthetics. Control system robustness is still often inadequate and does not allow the amputees to perform a large number of movements useful for everyday life. Only few studies analyzed the repeatability of sEMG classification of hand grasps. The main goals of this paper are to explore repeatability in sEMG data and to release a repeatability database with the recorded experiments. The data are recorded from 10 intact subjects repeating 7 grasps 12 times, twice a day for 5 days. The data are publicly available on the Ninapro web page. The analysis for the repeatability is based on the comparison of movement classification accuracy in several data acquisitions and for different subjects. The analysis is performed using mean absolute value and waveform length features and a Random Forest classifier. The accuracy obtained by training and testing on acquisitions at different times is on average 27.03% lower than training and testing on the same acquisition. The results obtained by training and testing on different acquisitions suggest that previous acquisitions can be used to train the classification algorithms. The inter-subject variability is remarkable, suggesting that specific characteristics of the subjects can affect repeatibility and sEMG classification accuracy. In conclusion, the results of this paper can contribute to develop more robust control systems for hand prostheses, while the presented data allows researchers to test repeatability in further analyses.

  1. fMRI analysis for motor paradigms using EMG-based designs: a validation study

    NARCIS (Netherlands)

    van Rootselaar, Anne-Fleur; Renken, Remco; de Jong, Bauke M.; Hoogduin, Johannes M.; Tijssen, Marina A. J.; Maurits, Natasha M.

    2007-01-01

    The goal of the present validation study is to show that continuous surface EMG recorded simultaneously with 3T fMRI can be used to identify local brain activity related to (1) motor tasks, and to (2) muscle activity independently of a specific motor task, i.e. spontaneous (abnormal) movements. Five

  2. FMRl analysis for motor paradigms using EMG-Based designs : A validation study

    NARCIS (Netherlands)

    Van Rootselaar, Anne-Fleur; Renken, Remco; De Jong, Bauke M.; Hoogduin, Johannes M.; Tijssen, Marina A. J.; Maurits, Natasha M.

    2007-01-01

    The goal of the present validation study is to show that continuous surface EMG recorded simultaneously with 3T fMRI can be used to identify local brain activity related to (1) motor tasks, and to (2) muscle activity independently of a specific motor task, i.e. spontaneous (abnormal) movements. Five

  3. Knee joint angle affects EMG-force relationship in the vastus intermedius muscle.

    Science.gov (United States)

    Saito, Akira; Akima, Hiroshi

    2013-12-01

    It is not understood how the knee joint angle affects the relationship between electromyography (EMG) and force of four individual quadriceps femoris (QF) muscles. The purpose of this study was to examine the effect of the knee joint angle on the EMG-force relationship of the four individual QF muscles, particularly the vastus intermedius (VI), during isometric knee extensions. Eleven healthy men performed 20-100% of maximal voluntary contraction (MVC) at knee joint angles of 90°, 120° and 150°. Surface EMG of the four QF synergists was recorded and normalized by the root mean square during MVC. The normalized EMG of the four QF synergists at a knee joint angle of 150° was significantly lower than that at 90° and 120° (P knee joint angle of 150°. Furthermore, the neuromuscular activation of the VI was the most sensitive to change in muscle length among the four QF synergistic muscles. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. EMG activities and plantar pressures during ski jumping take-off on three different sized hills.

    Science.gov (United States)

    Virmavirta, M; Perttunen, J; Komi, P V

    2001-04-01

    Different profiles of ski jumping hills have been assumed to make the initiation of take-off difficult especially when moving from one hill to another. Neuromuscular adaptation of ski jumpers to the different jumping hills was examined by measuring muscle activation and plantar pressure of the primary take-off muscles on three different sized hills. Two young ski jumpers volunteered as subjects and they performed several trials from each hill (K-35 m, K-65 m and K-90 m) with the same electromyographic (EMG) electrode and insole pressure transducer set-up. The results showed that the differences in plantar pressure and EMGs between the jumping hills were smaller than expected for both jumpers. The small changes in EMG amplitudes between the hills support the assumption that the take-off was performed with the same intensity on different jumping hills and the timing of the gluteus EMG demonstrates well the similarity of the muscle activation on different hills. On the basis of the results obtained it seems that ski jumping training on small hills does not disturb the movement patterns for bigger hills and can also be helpful for special take-off training with low speed.

  5. Muscle fatigue evaluation of astronaut upper limb based on sEMG and subjective assessment

    Science.gov (United States)

    Zu, Xiaoqi; Zhou, Qianxiang; Li, Yun

    2012-07-01

    All movements are driven by muscle contraction, and it is easy to cause muscle fatigue. Evaluation of muscle fatigue is a hot topic in the area of astronaut life support training and rehabilitation. If muscle gets into fatigue condition, it may reduce work efficiency and has an impact on psychological performance. Therefore it is necessary to develop an accurate and usable method on muscle fatigue evaluation of astronaut upper limb. In this study, we developed a method based on surface electromyography (sEMG) and subjective assessment (Borg scale) to evaluate local muscle fatigue. Fifteen healthy young male subjects participated in the experiment. They performed isometric muscle contractions of the upper limb. sEMG of the biceps brachii were recorded during the entire process of isotonic muscle contraction and Borg scales of muscle fatigue were collected in certain times. sEMG were divided into several parts, and then mean energy of each parts were calculated by the one-twelfth band octave method. Equations were derived based on the relationship between the mean energy of sEMG and Borg scale. The results showed that cubic curve could describe the degree of local muscle fatigue, and could be used to evaluate and monitor local muscle fatigue during the entire process.

  6. A study of ureteric peristalsis using a single catheter to record EMG, impedance, and pressure changes

    NARCIS (Netherlands)

    Roshani, H.; Dabhoiwala, N. F.; tee, S.; Dijkhuis, T.; Kurth, K. H.; Ongerboer de Visser, B. W.; de Jong, J. M.; Lamers, W. H.

    1999-01-01

    Ureteric peristalsis transports a urinary bolus from the renal pelvis to the bladder. We developed an intraluminal catheter with a pressure transducer on it to study intraluminal pressure changes and a twin bipolar electrode to record the ureteric EMG and impedance (Z) changes during a peristaltic

  7. Detection of Simulated Vocal Dysfunctions Using Complex sEMG Patterns.

    Science.gov (United States)

    Smith, Nicholas R; Rivera, Luis A; Dietrich, Maria; Shyu, Chi-Ren; Page, Matthew P; DeSouza, Guilherme N

    2016-05-01

    Symptoms of voice disorder may range from slight hoarseness to complete loss of voice; from modest vocal effort to uncomfortable neck pain. But even minor symptoms may still impact personal and especially professional lives. While early detection and diagnosis can ameliorate that effect, to date, we are still largely missing reliable and valid data to help us better screen for voice disorders. In our previous study, we started to address this gap in research by introducing an ambulatory voice monitoring system using surface electromyography (sEMG) and a robust algorithm (HiGUSSS) for pattern recognition of vocal gestures. Here, we expand on that work by further analyzing a larger set of simulated vocal dysfunctions. Our goal is to demonstrate that such a system has the potential to recognize and detect real vocal dysfunctions from multiple individuals with high accuracy under both intra and intersubject conditions. The proposed system relies on four sEMG channels to simultaneously process various patterns of sEMG activation in the search for maladaptive laryngeal activity that may lead to voice disorders. In the results presented here, our pattern recognition algorithm detected from two to ten different classes of sEMG patterns of muscle activation with an accuracy as high as 99%, depending on the subject and the testing conditions.

  8. Detection of the onset of gait initiation using kinematic sensors and EMG in transfemoral amputees

    NARCIS (Netherlands)

    Wentink, E.C.; Schut, V.G.H.; Prinsen, E.C.; Prinsen, Erik Christiaan; Rietman, Johan Swanik; Veltink, Petrus H.

    In this study we determined if detection of the onset of gait initiation in transfemoral amputees can be useful for voluntary control of upper leg prostheses. From six transfemoral amputees inertial sensor data and EMG were measured at the prosthetic leg during gait initiation. First, initial

  9. Robust functional statistics applied to Probability Density Function shape screening of sEMG data.

    Science.gov (United States)

    Boudaoud, S; Rix, H; Al Harrach, M; Marin, F

    2014-01-01

    Recent studies pointed out possible shape modifications of the Probability Density Function (PDF) of surface electromyographical (sEMG) data according to several contexts like fatigue and muscle force increase. Following this idea, criteria have been proposed to monitor these shape modifications mainly using High Order Statistics (HOS) parameters like skewness and kurtosis. In experimental conditions, these parameters are confronted with small sample size in the estimation process. This small sample size induces errors in the estimated HOS parameters restraining real-time and precise sEMG PDF shape monitoring. Recently, a functional formalism, the Core Shape Model (CSM), has been used to analyse shape modifications of PDF curves. In this work, taking inspiration from CSM method, robust functional statistics are proposed to emulate both skewness and kurtosis behaviors. These functional statistics combine both kernel density estimation and PDF shape distances to evaluate shape modifications even in presence of small sample size. Then, the proposed statistics are tested, using Monte Carlo simulations, on both normal and Log-normal PDFs that mimic observed sEMG PDF shape behavior during muscle contraction. According to the obtained results, the functional statistics seem to be more robust than HOS parameters to small sample size effect and more accurate in sEMG PDF shape screening applications.

  10. Convolutive blind source separation of surface EMG measurements of the respiratory muscles.

    Science.gov (United States)

    Petersen, Eike; Buchner, Herbert; Eger, Marcus; Rostalski, Philipp

    2017-04-01

    Electromyography (EMG) has long been used for the assessment of muscle function and activity and has recently been applied to the control of medical ventilation. For this application, the EMG signal is usually recorded invasively by means of electrodes on a nasogastric tube which is placed inside the esophagus in order to minimize noise and crosstalk from other muscles. Replacing these invasive measurements with an EMG signal obtained non-invasively on the body surface is difficult and requires techniques for signal separation in order to reconstruct the contributions of the individual respiratory muscles. In the case of muscles with small cross-sectional areas, or with muscles at large distances from the recording site, solutions to this problem have been proposed previously. The respiratory muscles, however, are large and distributed widely over the upper body volume. In this article, we describe an algorithm for convolutive blind source separation (BSS) that performs well even for large, distributed muscles such as the respiratory muscles, while using only a small number of electrodes. The algorithm is derived as a special case of the TRINICON general framework for BSS. To provide evidence that it shows potential for separating inspiratory, expiratory, and cardiac activities in practical applications, a joint numerical simulation of EMG and ECG activities was performed, and separation success was evaluated in a variety of noise settings. The results are promising.

  11. Control of Leg Movements Driven by EMG Activity of Shoulder Muscles

    Science.gov (United States)

    La Scaleia, Valentina; Sylos-Labini, Francesca; Hoellinger, Thomas; Wang, Letian; Cheron, Guy; Lacquaniti, Francesco; Ivanenko, Yuri P.

    2014-01-01

    During human walking, there exists a functional neural coupling between arms and legs, and between cervical and lumbosacral pattern generators. Here, we present a novel approach for associating the electromyographic (EMG) activity from upper limb muscles with leg kinematics. Our methodology takes advantage of the high involvement of shoulder muscles in most locomotor-related movements and of the natural co-ordination between arms and legs. Nine healthy subjects were asked to walk at different constant and variable speeds (3–5 km/h), while EMG activity of shoulder (deltoid) muscles and the kinematics of walking were recorded. To ensure a high level of EMG activity in deltoid, the subjects performed slightly larger arm swinging than they usually do. The temporal structure of the burst-like EMG activity was used to predict the spatiotemporal kinematic pattern of the forthcoming step. A comparison of actual and predicted stride leg kinematics showed a high degree of correspondence (r > 0.9). This algorithm has been also implemented in pilot experiments for controlling avatar walking in a virtual reality setup and an exoskeleton during over-ground stepping. The proposed approach may have important implications for the design of human–machine interfaces and neuroprosthetic technologies such as those of assistive lower limb exoskeletons. PMID:25368569

  12. Macro EMG follow-up study in post-poliomyelitis patients

    NARCIS (Netherlands)

    Ivanyi, B.; Ongerboer de Visser, B. W.; Nelemans, P. J.; de Visser, M.

    1994-01-01

    We investigated the muscle strength and motor unit (MU) territory of five patients with postpolio syndrome (PPS), six stable patients with prior poliomyelitis, and five healthy volunteers. The MU territory was assessed by measuring amplitudes of motor unit potentials (MUPs) recorded by the macro EMG

  13. Classification of EMG signals using PSO optimized SVM for diagnosis of neuromuscular disorders.

    Science.gov (United States)

    Subasi, Abdulhamit

    2013-06-01

    Support vector machine (SVM) is an extensively used machine learning method with many biomedical signal classification applications. In this study, a novel PSO-SVM model has been proposed that hybridized the particle swarm optimization (PSO) and SVM to improve the EMG signal classification accuracy. This optimization mechanism involves kernel parameter setting in the SVM training procedure, which significantly influences the classification accuracy. The experiments were conducted on the basis of EMG signal to classify into normal, neurogenic or myopathic. In the proposed method the EMG signals were decomposed into the frequency sub-bands using discrete wavelet transform (DWT) and a set of statistical features were extracted from these sub-bands to represent the distribution of wavelet coefficients. The obtained results obviously validate the superiority of the SVM method compared to conventional machine learning methods, and suggest that further significant enhancements in terms of classification accuracy can be achieved by the proposed PSO-SVM classification system. The PSO-SVM yielded an overall accuracy of 97.41% on 1200 EMG signals selected from 27 subject records against 96.75%, 95.17% and 94.08% for the SVM, the k-NN and the RBF classifiers, respectively. PSO-SVM is developed as an efficient tool so that various SVMs can be used conveniently as the core of PSO-SVM for diagnosis of neuromuscular disorders. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. A Review of Classification Techniques of EMG Signals during Isotonic and Isometric Contractions

    Directory of Open Access Journals (Sweden)

    Nurhazimah Nazmi

    2016-08-01

    Full Text Available In recent years, there has been major interest in the exposure to physical therapy during rehabilitation. Several publications have demonstrated its usefulness in clinical/medical and human machine interface (HMI applications. An automated system will guide the user to perform the training during rehabilitation independently. Advances in engineering have extended electromyography (EMG beyond the traditional diagnostic applications to also include applications in diverse areas such as movement analysis. This paper gives an overview of the numerous methods available to recognize motion patterns of EMG signals for both isotonic and isometric contractions. Various signal analysis methods are compared by illustrating their applicability in real-time settings. This paper will be of interest to researchers who would like to select the most appropriate methodology in classifying motion patterns, especially during different types of contractions. For feature extraction, the probability density function (PDF of EMG signals will be the main interest of this study. Following that, a brief explanation of the different methods for pre-processing, feature extraction and classifying EMG signals will be compared in terms of their performance. The crux of this paper is to review the most recent developments and research studies related to the issues mentioned above.

  15. Sammenligning af to 3D-ganganalysesystemer – understøttet af EMG

    DEFF Research Database (Denmark)

    Koblauch, Henrik; Heilskov-Hansen, Thomas

    2010-01-01

    forsøges ændringer i moment forklaret ved hjælpaf elektromyografi (EMG).Metode10 raske unge mænd (alder 29,7 år, range 25-32) deltog i forsøget. Refleksmarkører svarende tilde to ovennævnte modeller blev påsat, hvorpå forsøgspersonen foretog 12 gennemgange med 7forskellige gangarter. EMG og gangsekvenser...... blev optaget af et VICON-MX-system(OxfordMetrics, Limited, Oxford, England). Data for Helen Hayes-modellen blev analyseret i VICONprogrammetNexus. Vaughan-modellen blev analyseret i et speciallavet MATLAB-program. Datafor de to modeller blev statistisk bearbejdet ved hjælp af en mixed model. EMG data...... forløb. De største forskelle, modellerne imellem, er fundet ianklens sagittalplan og knæets frontalplan. Disse forskelle synes at aftage, jo mere proximaltbeliggende leddet er. Sekundært blev det undersøgt, hvorledes de enkelte gangarter adskilte sigfra hinanden i henholdsvis momenter, vinkler og EMG...

  16. A new technique for simultaneously recording EMG and movements in experimental animals

    NARCIS (Netherlands)

    van Eykern, LA; Geisler, HC; Gramsbergen, A

    In this protocol a new system is presented fur recording EMG signals from leg and trunk muscles along with video-recording of leg and trunk movements. The system comprises a front-end amplifier consisting of a reference amplifier, a differential amplifier with a filter combination and an analog to

  17. Adaptive EMG noise reduction in ECG signals using noise level approximation

    Science.gov (United States)

    Marouf, Mohamed; Saranovac, Lazar

    2017-12-01

    In this paper the usage of noise level approximation for adaptive Electromyogram (EMG) noise reduction in the Electrocardiogram (ECG) signals is introduced. To achieve the adequate adaptiveness, a translation-invariant noise level approximation is employed. The approximation is done in the form of a guiding signal extracted as an estimation of the signal quality vs. EMG noise. The noise reduction framework is based on a bank of low pass filters. So, the adaptive noise reduction is achieved by selecting the appropriate filter with respect to the guiding signal aiming to obtain the best trade-off between the signal distortion caused by filtering and the signal readability. For the evaluation purposes; both real EMG and artificial noises are used. The tested ECG signals are from the MIT-BIH Arrhythmia Database Directory, while both real and artificial records of EMG noise are added and used in the evaluation process. Firstly, comparison with state of the art methods is conducted to verify the performance of the proposed approach in terms of noise cancellation while preserving the QRS complex waves. Additionally, the signal to noise ratio improvement after the adaptive noise reduction is computed and presented for the proposed method. Finally, the impact of adaptive noise reduction method on QRS complexes detection was studied. The tested signals are delineated using a state of the art method, and the QRS detection improvement for different SNR is presented.

  18. Effects of using dynamic office chairs on posture and EMG in standardized office tasks

    NARCIS (Netherlands)

    Ellegast, R.; Hamburger, R.; Keller, K.; Krause, F.; Groenesteijn, L.; Vink, P.; Berger, H.

    2007-01-01

    In the paper a measuring system for the comparative posture and EMG analysis of office chairs is presented. With the system four specific dynamic office chairs that promote dynamic sitting and therefore aim to prevent musculoskeletal disorders (MSD), were analyzed in comparison to a reference chair

  19. The averaged EMGs recorded from the arm muscles during bimanual rowing movements

    Directory of Open Access Journals (Sweden)

    Tomasz eTomiak

    2015-11-01

    Full Text Available The main purpose was to analyze quantitatively the the average surface EMGs of the muscles that function around the elbow and shoulder joints of both arms in similar bimanual ‘rowing’ movements, which were produced under identical elastic loads applied to the levers (‘oars’. The muscles of PM group (‘pulling’ muscles: elbow flexors, shoulder extensors generated noticeable velocity-dependent dynamic EMG components during the pulling and returning phases of movement and supported a steady-state activity during the hold phase. The muscles of RM group (‘returning’ muscles: elbow extensors, shoulder flexors co-contracted with PM group during the movement phases and decreased activity during the hold phase. The dynamic components of the EMGs strongly depended on the velocity factor in both muscle groups, whereas the side and load factors and combinations of various factors acted only in PM group muscles. Various subjects demonstrated diverse patterns of activity redistribution among muscles. We assume that central commands to the same muscles in two arms may be essentially different during execution of similar movement programs. Extent of the diversity in the EMG patterns of such muscles may reflect the subject’s skilling in motor performance; on the other hand, the diversity can reflect redistribution of activity between synergic muscles, thus providing a mechanism directed against development of the muscle fatigue.

  20. Statistical processing of facial electromyography (EMG) signals in emotional film scenes

    NARCIS (Netherlands)

    Westerink, Joyce; van den Broek, Egon; van Herk, Jan; Tuinenbreijer, Kees; Schut, Marleen

    To improve human-computer interaction, computers need to recognize and respond properly to their users’ emotional state. As a first step to such systems, we investigated how emotional experiences are expressed in various statistical parameters of facial EMG signals. 22 Subjects were presented with 8

  1. High energy spectrogram with integrated prior knowledge for EMG-based locomotion classification.

    Science.gov (United States)

    Joshi, Deepak; Nakamura, Bryson H; Hahn, Michael E

    2015-05-01

    Electromyogram (EMG) signal representation is crucial in classification applications specific to locomotion and transitions. For a given signal, classification can be performed using discriminant functions or if-else rule sets, using learning algorithms derived from training examples. In the present work, a spectrogram based approach was developed to classify (EMG) signals for locomotion mode. Spectrograms for each muscle were calculated and summed to develop a histogram. If-else rules were used to classify test data based on a matching score. Prior knowledge of locomotion type reduced class space to exclusive locomotion modes. The EMG data were collected from seven leg muscles in a sample of able-bodied subjects while walking over ground (W), ascending stairs (SA) and the transition between (W-SA). Three muscles with least discriminating power were removed from the original data set to examine the effect on classification accuracy. Initial classification error was <20% across all modes, using leave one out cross validation. Use of prior knowledge reduced the average classification error to <11%. Removing three EMG channels decreased the classification accuracy by 10.8%, 24.3%, and 8.1% for W, W-SA, and SA respectively, and reduced computation time by 42.8%. This approach may be useful in the control of multi-mode assistive devices. Copyright © 2015 IPEM. Published by Elsevier Ltd. All rights reserved.

  2. Calibration of EMG to force for knee muscles is applicable with submaximal voluntary contractions

    NARCIS (Netherlands)

    Doorenbosch, C.A.M.; Joosten, A.; Harlaar, J.

    2005-01-01

    Purpose: In this study, the influence of using submaximal isokinetic contractions about the knee compared to maximal voluntary contractions as input to obtain the calibration of an EMG-force model for knee muscles is investigated. Methods: Isokinetic knee flexion and extension contractions were

  3. Effect of sex on torque, recovery, EMG, and MMG responses to fatigue

    Science.gov (United States)

    Hill, E.C.; Housh, T.J.; Smith, C.M.; Cochrane, K.C.; Jenkins, N.D.M.; Cramer, J.T.; Schmidt, R.J.; Johnson, G.O.

    2016-01-01

    Objective: The purpose of the present investigation was to examine the effect of sex on maximal voluntary isometric contraction (MVIC) torque and the EMG and MMG responses as a result of fatiguing, intermittent, submaximal (65% of MVIC), isometric elbow flexion muscle contractions. Methods: Eighteen men and women performed MVIC trials before (pretest), after (posttest), and 5-min after (5-min recovery) performing 50 intermittent, submaximal isometric muscle contractions. Surface electromyographic (EMG) and mechanomyographic (MMG) signals were simultaneously recorded from the biceps brachii muscle. Results: As a result of the fatiguing workbout torque decreased similarly from pretest to posttest for both the men (24.0%) and women (23.3%). After 5-min of recovery, torque had partially recovered for the men, while torque had returned to pretest levels for the women. For both sexes, from pretest to posttest EMG mean power frequency and MMG amplitude decreased, but returned to pretest levels after 5-min of recovery. Conclusions: In the present study, there were sex-related differences in muscle fatigue that were not associated with the EMG or MMG responses. PMID:27973383

  4. EMG-based facial gesture recognition through versatile elliptic basis function neural network.

    Science.gov (United States)

    Hamedi, Mahyar; Salleh, Sh-Hussain; Astaraki, Mehdi; Noor, Alias Mohd

    2013-07-17

    Recently, the recognition of different facial gestures using facial neuromuscular activities has been proposed for human machine interfacing applications. Facial electromyograms (EMGs) analysis is a complicated field in biomedical signal processing where accuracy and low computational cost are significant concerns. In this paper, a very fast versatile elliptic basis function neural network (VEBFNN) was proposed to classify different facial gestures. The effectiveness of different facial EMG time-domain features was also explored to introduce the most discriminating. In this study, EMGs of ten facial gestures were recorded from ten subjects using three pairs of surface electrodes in a bi-polar configuration. The signals were filtered and segmented into distinct portions prior to feature extraction. Ten different time-domain features, namely, Integrated EMG, Mean Absolute Value, Mean Absolute Value Slope, Maximum Peak Value, Root Mean Square, Simple Square Integral, Variance, Mean Value, Wave Length, and Sign Slope Changes were extracted from the EMGs. The statistical relationships between these features were investigated by Mutual Information measure. Then, the feature combinations including two to ten single features were formed based on the feature rankings appointed by Minimum-Redundancy-Maximum-Relevance (MRMR) and Recognition Accuracy (RA) criteria. In the last step, VEBFNN was employed to classify the facial gestures. The effectiveness of single features as well as the feature sets on the system performance was examined by considering the two major metrics, recognition accuracy and training time. Finally, the proposed classifier was assessed and compared with conventional methods support vector machines and multilayer perceptron neural network. The average classification results showed that the best performance for recognizing facial gestures among all single/multi-features was achieved by Maximum Peak Value with 87.1% accuracy. Moreover, the results proved a

  5. Agreement of the silent partnership – tax and legal consequences of its conclusion and execution

    Directory of Open Access Journals (Sweden)

    Monika Zieniewicz

    2016-12-01

    Full Text Available The institution of the silent partnership is not currently regulated by any legal act in the Polish legal system, although its importance in practice is not in doubt. As every action made in the economic sphere and economic execution of the contract is associated with specific effects on the basis of the tax laws. However, due to the lack of statutory regulation of the institution of silent partnership problematic is the question of determining the effects of tax legislation. Therefore, special attention is needed to determine the issue of these effects on the basis of income tax, tax on goods and services, transfer tax and the tax on inheritance and donations, as well as the question of liability for the tax liabilities of the silent partnership.

  6. Silent game as Model for Examining Student Online Creativity - Preliminary Results from an Experiment

    DEFF Research Database (Denmark)

    Sørensen, Jannick Kirk

    2016-01-01

    -called “Silent game” (Habraken & Gross, 1988). But where Habraken et al.’s research in design games focussed on how professional architects and designers collaborate, we examine the potential of Silent game as model for researching online creative collaboration among students. This paper presents the results...... of the experiment and a tentative analysis. The aim is to discuss the possibilities in using Silent game as a model for examining and improving online creativity.......The ERASMUS+ project “OnCreate” aims at improving online mediated creative collaboration among students. But what are the differences between collaboration online and in a face-to-face setting in terms of creative processes? Theories on media richness and collaborative creativity can provide...

  7. Silent Synapses Speak Up: Updates of the Neural Rejuvenation Hypothesis of Drug Addiction.

    Science.gov (United States)

    Huang, Yanhua H; Schlüter, Oliver M; Dong, Yan

    2015-10-01

    A transient but prominent increase in the level of "silent synapses"--a signature of immature glutamatergic synapses that contain only NMDA receptors without stably expressed AMPA receptors--has been identified in the nucleus accumbens (NAc) following exposure to cocaine. As the NAc is a critical forebrain region implicated in forming addiction-associated behaviors, the initial discoveries have raised speculations about whether and how these drug-induced synapses mature and potentially contribute to addiction-related behaviors. Here, we summarize recent progress in recognizing the pathway-specific regulations of silent synapse maturation, and its diverse impacts on behavior. We provide an update of the guiding hypothesis--the "neural rejuvenation hypothesis"--with recently emerged evidence of silent synapses in cocaine craving and relapse. © The Author(s) 2015.

  8. sEMG during Whole-Body Vibration Contains Motion Artifacts and Reflex Activity

    Directory of Open Access Journals (Sweden)

    Karin Lienhard

    2015-01-01

    Full Text Available The purpose of this study was to determine whether the excessive spikes observed in the surface electromyography (sEMG spectrum recorded during whole-body vibration (WBV exercises contain motion artifacts and/or reflex activity. The occurrence of motion artifacts was tested by electrical recordings of the patella. The involvement of reflex activity was investigated by analyzing the magnitude of the isolated spikes during changes in voluntary background muscle activity. Eighteen physically active volunteers performed static squats while the sEMG was measured of five lower limb muscles during vertical WBV using no load and an additional load of 33 kg. In order to record motion artifacts during WBV, a pair of electrodes was positioned on the patella with several layers of tape between skin and electrodes. Spectral analysis of the patella signal revealed recordings of motion artifacts as high peaks at the vibration frequency (fundamental and marginal peaks at the multiple harmonics were observed. For the sEMG recordings, the root mean square of the spikes increased with increasing additional loads (p < 0.05, and was significantly correlated to the sEMG signal without the spikes of the respective muscle (r range: 0.54 - 0.92, p < 0.05. This finding indicates that reflex activity might be contained in the isolated spikes, as identical behavior has been found for stretch reflex responses evoked during direct vibration. In conclusion, the spikes visible in the sEMG spectrum during WBV exercises contain motion artifacts and possibly reflex activity.

  9. S-EMG signal compression based on domain transformation and spectral shape dynamic bit allocation.

    Science.gov (United States)

    Trabuco, Marcel Henrique; Costa, Marcus Vinícius Chaffim; Nascimento, Francisco Assis de Oliveira

    2014-02-27

    Surface electromyographic (S-EMG) signal processing has been emerging in the past few years due to its non-invasive assessment of muscle function and structure and because of the fast growing rate of digital technology which brings about new solutions and applications. Factors such as sampling rate, quantization word length, number of channels and experiment duration can lead to a potentially large volume of data. Efficient transmission and/or storage of S-EMG signals are actually a research issue. That is the aim of this work. This paper presents an algorithm for the data compression of surface electromyographic (S-EMG) signals recorded during isometric contractions protocol and during dynamic experimental protocols such as the cycling activity. The proposed algorithm is based on discrete wavelet transform to proceed spectral decomposition and de-correlation, on a dynamic bit allocation procedure to code the wavelets transformed coefficients, and on an entropy coding to minimize the remaining redundancy and to pack all data. The bit allocation scheme is based on mathematical decreasing spectral shape models, which indicates a shorter digital word length to code high frequency wavelets transformed coefficients. Four bit allocation spectral shape methods were implemented and compared: decreasing exponential spectral shape, decreasing linear spectral shape, decreasing square-root spectral shape and rotated hyperbolic tangent spectral shape. The proposed method is demonstrated and evaluated for an isometric protocol and for a dynamic protocol using a real S-EMG signal data bank. Objective performance evaluations metrics are presented. In addition, comparisons with other encoders proposed in scientific literature are shown. The decreasing bit allocation shape applied to the quantized wavelet coefficients combined with arithmetic coding results is an efficient procedure. The performance comparisons of the proposed S-EMG data compression algorithm with the established

  10. G-LOC Warning Algorithms Based on EMG Features of the Gastrocnemius Muscle.

    Science.gov (United States)

    Kim, Sungho; Cho, Taehwan; Lee, Yongkyun; Koo, Hyojin; Choi, Booyong; Kim, Dongsoo

    2017-08-01

    G-induced loss of consciousness (G-LOC) is mainly caused by failure to sustain an oxygenated blood supply to the pilot's brain because of the sudden acceleration in the direction of the +Gz axis, and is considered a critical safety issue. The purpose of this study was to develop G-LOC warning algorithms based on monitoring electromyograms (EMG) of the gastrocnemius muscle on the calf. EMG data was retrieved from a total of 67 pilots and pilot trainees of the Korean Air Force during high-G training on a human centrifugal simulator. Seven EMG features were obtained from root mean square (RMS), integrated absolute value (IAV), and mean absolute value (MAV) for muscle contraction, slope sign changes (SSC), waveform length (WL), zero crossing (ZC), and median frequency (MF) for muscle contraction and fatigue. Out of seven EMG features, IAV and WL showed a rapid decay before G-LOC. Based on these findings, this study developed two algorithms which can detect G-LOC during flight and provide warning signals to the pilots. The probability of G-LOC occurrence was detected through monitoring the decay trend for representing muscle endurance and climb rate of the IAV and WL value during sudden acceleration above 6 G, representing muscle power. The sensitivity of the algorithms using IAV and WL features was 100% and the specificity was 66.7%. This study suggests that a G-LOC detecting and warning system may be a customized, real-time countermeasure by improving the accuracy of detecting G-LOC.Kim S, Cho T, Lee Y, Koo H, Choi B, Kim D. G-LOC warning algorithms based on EMG features of the gastrocnemius muscle. Aerosp Med Hum Perform. 2017; 88(8):737-742.

  11. [The dynamics of shoulder joint function in patients with hemiparesis in the acute period of carotid stroke].

    Science.gov (United States)

    Skvortsov, D V; Kaurkin, S N; Ivanova, G E; Lobov, A N; Zhuravleva, A N

    2017-01-01

    To evaluate the recovery of shoulder joint function in patients with hemiparesis in the acute period of hemispheric stroke on the basis of the analysis of electromyography (fEMG) of the muscles of this region before and after rehabilitation measures, including targeted training with biofeedback (BFB). Three groups of 25 people each were studied. Patients of the physical therapy (PT) group received standard treatment and physical therapy; patients of the PT+BFB group received BFB training in addition to PT; the control group consisted of people without neurological and orthopedic symptoms. A clinical study and EMG of the muscles of the shoulder girdle during testing movements was performed. On the side of paresis, the function of muscles was characterized by a decrease in the bioelectric activity (movement amplitude was decreased as well) and later phase of the maximum EMG activity compared to the norm. The time of maximum EMG activity had a trend towards the shift to the normal values during the treatment process, but the difference reached a statistically significant level not for all muscles and all movements. There were variants of the functions of the paretic muscles accompanied by the increased EMG activity. In the early stages (up to 21 days) of stroke, no significant changes in the EMG activity of shoulder girdle muscles were observed. The PT+BFB group showed better results than the PT group not only in the onset of activity, but also in the reduction of the amplitude when performing the same movement that indirectly suggested the more optimal inclusion of muscles in the motor act. In the period of acute hemispheric stroke, there were changes not only in the EMG activity of muscles of the affected side, but also of the contralateral side. A fEMG of the muscles is a more sensitive and informative method of the diagnosis of disorders of motor function and assessment of recovery process of the muscles of the shoulder joint in patients with hemiparesis.

  12. Silent reading fluency: Implications for the assessment of adults with developmental dyslexia.

    Science.gov (United States)

    Gagliano, Antonella; Ciuffo, Massimo; Ingrassia, Massimo; Ghidoni, Enrico; Angelini, Damiano; Benedetto, Loredana; Germanò, Eva; Stella, Giacomo

    2015-01-01

    Understanding silent reading fluency (SRF) is of a paramount importance, given that silent reading is the principal manner of reading for capable readers. But the assessment of SRF is not commonly useful for identifying students with reading difficulties and monitoring their progress. The paper presents the SRF scores of adults with dyslexia compared to SRF scores of skilled readers and discusses the power of the SRF measure in identifying adults with specific learning disorders with impairment in reading. Participants recruited were 68 dyslexic and age-matched skilled adult readers (18-48 years old). Among them, 24 were skilled readers with a university degree (GRS), 22 were skilled readers with a high school diploma (DSR), and 22 participants had been diagnosed with dyslexia (DR). We used a standardized oral reading fluency (ORF) test and an original SRF task to measure the reading fluency. All participants increased their reading fluency in silent mode (p reading was 7.19 syllables per second (syl/s) for the GSR group, 7.11 syl/s for the DSR group, and 4.95 syl/s for the DR group. The average speed of the silent reading was 11.62 syl/s and 10.75 syl/s for GSR and DSR, respectively, and 6.15 syl/s for DR. The reading fluency differential (Δf) between ORF and SRF was significantly different among the dyslexic participants and the other two groups. Our results strongly suggest that dyslexic readers are less capable of significantly improve their reading speed when they read silently. Thus SRF could be considered a suitable parameter for identifying older students and adults with impairment in reading. A broader investigation of the issues surrounding silent reading is needed.

  13. Ethnozoological study of animals used by traditional healers in Silent Valley of Kerala, India.

    Science.gov (United States)

    Vijayakumar, S; Yabesh, J E Morvin; Prabhu, S; Ayyanar, M; Damodaran, R

    2015-03-13

    India has great biodiversity of fauna. The use of fauna with medicinal properties is a common practice since pre-hispanic times. In the last decade, there has been an interest in ethnozoological studies in India. Ethnozoological studies are necessary in order to discover new medications for human health. There is urgency in recording such data. This is the first ethnozoological study in which statistical calculations about animals are done by the ICF method in Kerala, India. The purpose of this study is to analyze and record traditional knowledge of animals utilized by the indigenous people living on Silent Valley, located in Palakkad district of Kerala, India and to document the traditional names, preparation and uses of these animals. Field study was carried out for a period of September 2011 to August 2012 years in Kerala. The ethnomedicinal information was collected through interviews, informal meetings, open and group discussions and overt observations with semi-structured questionnaires among traditional healers. The collected data were analyzed through informant consensus factor (ICF) and fidelity level (FL). This study recorded a total of 57 families, 66 genera, and 69 species of animals that produced 163 methods for usages. Mammalian occupied 29% of the total animals listed, followed by aves (28%), insects (17%), reptiles (10%), actinopterygii (4%), malacostraca, amphibians and clitellata (each 3%), chilopoda (2%) and gastropoda (1%) of the whole, respectively. In regards to usage, 68 species utilized as food products and medicinal uses, totaled 98.55% followed by one species for cosmetics (1.45%). This study indicated that the animals are still being used by the local healers of Palakkad district, to treat various illnesses. The empirical knowledge reported in this study will provide outstanding possibilities for the discovery of new sources of medicine for the drug industry. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  14. Prevalence and prediction of silent ischaemia in diabetes mellitus: a population-based study

    DEFF Research Database (Denmark)

    May, O; Arildsen, H; Damsgaard, E M

    1997-01-01

    Register. ST-depression of horizontal or descending character of at least 0.1 mV measured 80 ms after the J-point on either exercise ECG or Holter ECG was considered indicative of myocardial ischaemia. Angina pectoris was considered present if the Rose questionnaire was positive, or chest pain...... was registered simultaneously with ECG evidence of ischaemia. Individuals with ischaemia, but without angina pectoris, were defined as persons with silent ischaemia. RESULTS: Seventy-four percent of the invited group were included. The observed prevalence of silent ischaemia in diabetics was 13.5% (95% CI = 8...

  15. Análisis del entorno narrativo de Silent Hill 2

    OpenAIRE

    Sánchez Menchén, Sergio

    2017-01-01

    Anàlisi estructural i de contingut del videojoc Silent Hill 2, prenent com a punt de sortida la rellevància dels personatges i de la seva psicologia respecte de la trama. L'anàlisis estructural comprèn la estructura narrativa emprada i l'ús dels recursos narratius, així com l'anàlisi de contingut investiga i relaciona qualsevol element del joc amb els personatges i la seva psicologia. Análisis estructural y de contenido del videojuego Silent Hill 2, tomando coo punto de partida la relevanc...

  16. Torque prediction using stimulus evoked EMG and its identification for different muscle fatigue states in SCI subjects.

    Science.gov (United States)

    Zhang, Qin; Hayashibe, Mitsuhiro; Papaiordanidou, Maria; Fraisse, Philippe; Fattal, Charles; Guiraud, David

    2010-01-01

    Muscle fatigue is an unavoidable problem when electrical stimulation is applied to paralyzed muscles. The detection and compensation of muscle fatigue is essential to avoid movement failure and achieve desired trajectory. This work aims to predict ankle plantar-flexion torque using stimulus evoked EMG (eEMG) during different muscle fatigue states. Five spinal cord injured patients were recruited for this study. An intermittent fatigue protocol was delivered to triceps surae muscle to induce muscle fatigue. A hammerstein model was used to capture the muscle contraction dynamics to represent eEMG-torque relationship. The prediction of ankle torque was based on measured eEMG and past measured or past predicted torque. The latter approach makes it possible to use eEMG as a synthetic force sensor when force measurement is not available in daily use. Some previous researches suggested to use eEMG information directly to detect and predict muscle force during fatigue assuming a fixed relationship between eEMG and generated force. However, we found that the prediction became less precise with the increase of muscle fatigue when fixed parameter model was used. Therefore, we carried out the torque prediction with an adaptive parameters using the latest measurement. The prediction of adapted model was improved with 16.7%-50.8% comparing to the fixed model.

  17. Silent infarction on a second CT scan in 91 patients without manifest stroke in the Dutch TIA trial

    NARCIS (Netherlands)

    Herderscheê, D.; Hijdra, A.; Algra, A.; Kappelle, L. J.; Koudstaal, P. J.; van Gijn, J.

    1994-01-01

    The frequency of silent infarction is an important issue because it is a marker of vascular disease. We studied the occurrence of silent infarction in a sample of patients from the Dutch TIA trial, in which patients were randomized between 30 and 283 mg of aspirin. A total of 91 patients with TIA or

  18. Surface EMG of the masticatory muscles (part 2): fatigue testing, mastication analysis and influence of different factors.

    Science.gov (United States)

    Hugger, S; Schindler, H J; Kordass, B; Hugger, A

    2013-01-01

    The second part of this review of the literature on the clinical significance of surface electromyography (EMG) of the masticatory muscles systematically examines the results of clinical studies in patients with temporomandibular disorders (TMD), preferably randomized controlled trials, investigating relevant aspects of EMG activity during prolonged chewing activity (fatigue effects), during the mastication process, and under the influence of different factors. Studies on the influence of factors such as gender, age, tooth status, orofacial morphology and (acute) pain, the significance of different occlusal relationships during static and dynamic occlusion, and the impact of changes in static occlusion on EMG activity of the masticatory muscles were included in the review.

  19. A hybrid BMI-based exoskeleton for paresis: EMG control for assisting arm movements

    Science.gov (United States)

    Kawase, Toshihiro; Sakurada, Takeshi; Koike, Yasuharu; Kansaku, Kenji

    2017-02-01

    Objective. Brain-machine interface (BMI) technologies have succeeded in controlling robotic exoskeletons, enabling some paralyzed people to control their own arms and hands. We have developed an exoskeleton asynchronously controlled by EEG signals. In this study, to enable real-time control of the exoskeleton for paresis, we developed a hybrid system with EEG and EMG signals, and the EMG signals were used to estimate its joint angles. Approach. Eleven able-bodied subjects and two patients with upper cervical spinal cord injuries (SCIs) performed hand and arm movements, and the angles of the metacarpophalangeal (MP) joint of the index finger, wrist, and elbow were estimated from EMG signals using a formula that we derived to calculate joint angles from EMG signals, based on a musculoskeletal model. The formula was exploited to control the elbow of the exoskeleton after automatic adjustments. Four able-bodied subjects and a patient with upper cervical SCI wore an exoskeleton controlled using EMG signals and were required to perform hand and arm movements to carry and release a ball. Main results. Estimated angles of the MP joints of index fingers, wrists, and elbows were correlated well with the measured angles in 11 able-bodied subjects (correlation coefficients were 0.81  ±  0.09, 0.85  ±  0.09, and 0.76  ±  0.13, respectively) and the patients (e.g. 0.91  ±  0.01 in the elbow of a patient). Four able-bodied subjects successfully positioned their arms to adequate angles by extending their elbows and a joint of the exoskeleton, with root-mean-square errors  BMI-based exoskeleton for paralyzed arms and hands using real-time control was realized by designing a new method to estimate joint angles based on EMG signals, and these may be useful for practical rehabilitation and the support of daily actions.

  20. A mechatronics platform to study prosthetic hand control using EMG signals.

    Science.gov (United States)

    Geethanjali, P

    2016-09-01

    In this paper, a low-cost mechatronics platform for the design and development of robotic hands as well as a surface electromyogram (EMG) pattern recognition system is proposed. This paper also explores various EMG classification techniques using a low-cost electronics system in prosthetic hand applications. The proposed platform involves the development of a four channel EMG signal acquisition system; pattern recognition of acquired EMG signals; and development of a digital controller for a robotic hand. Four-channel surface EMG signals, acquired from ten healthy subjects for six different movements of the hand, were used to analyse pattern recognition in prosthetic hand control. Various time domain features were extracted and grouped into five ensembles to compare the influence of features in feature-selective classifiers (SLR) with widely considered non-feature-selective classifiers, such as neural networks (NN), linear discriminant analysis (LDA) and support vector machines (SVM) applied with different kernels. The results divulged that the average classification accuracy of the SVM, with a linear kernel function, outperforms other classifiers with feature ensembles, Hudgin's feature set and auto regression (AR) coefficients. However, the slight improvement in classification accuracy of SVM incurs more processing time and memory space in the low-level controller. The Kruskal-Wallis (KW) test also shows that there is no significant difference in the classification performance of SLR with Hudgin's feature set to that of SVM with Hudgin's features along with AR coefficients. In addition, the KW test shows that SLR was found to be better in respect to computation time and memory space, which is vital in a low-level controller. Similar to SVM, with a linear kernel function, other non-feature selective LDA and NN classifiers also show a slight improvement in performance using twice the features but with the drawback of increased memory space requirement and time

  1. Test-retest reliability of cardinal plane isokinetic hip torque and EMG.

    Science.gov (United States)

    Claiborne, Tina L; Timmons, Mark K; Pincivero, Danny M

    2009-10-01

    The objective of the present study was to establish test-retest reliability of isokinetic hip torque and prime mover electromyogram (EMG) through the three cardinal planes of motion. Thirteen healthy young adults participated in two experimental sessions, separated by approximately one week. During each session, isokinetic hip torque was evaluated on the Biodex Isokinetic Dynamometer at a velocity of 60 deg/s. Subjects performed three maximal-effort concentric and eccentric contractions, separately, for right and left hip abduction/adduction, flexion/extension, and internal/external rotation. Surface EMGs were sampled from the gluteus maximus, gluteus medius, adductor, medial and lateral hamstring, and rectus femoris muscles during all contractions. Intraclass correlation coefficients (ICC - 2,1) and standard errors of measurement (SEM) were calculated for peak torque for each movement direction and contraction mode, while ICCs were only computed for the EMG data. Motions that demonstrated high torque reliability included concentric hip abduction (right and left), flexion (right and left), extension (right) and internal rotation (right and left), and eccentric hip abduction (left), adduction (left), flexion (right), and extension (right and left) (ICC range=0.81-0.91). Motions with moderate torque reliability included concentric hip adduction (right), extension (left), internal rotation (left), and external rotation (right), and eccentric hip abduction and adduction (right), flexion (left), internal rotation (right and left), and external rotation (right and left) (ICC range=0.49-0.79). The majority of the EMG sampled muscles (n=12 and n=11 for concentric and eccentric contractions, respectively) demonstrated high reliability (ICC=0.81-0.95). Instances of low, or unacceptable, EMG reliability values occurred for the medial hamstring muscle of the left leg (both contraction modes) and the adductor muscle of the right leg during eccentric internal rotation. The major

  2. Obstructive sleep apnoea (OSA) - a silent killer in anaesthesia ...

    African Journals Online (AJOL)

    Sleep-disordered breathing (SDB) encompasses a wide range of disorders that afflict both adults and children. These disorders are often unrecognised preoperatively and the pathophysiological consequences may impact severely on the patient in the peri-operative period.

  3. Sustained Silent Reading and Young Adult Short Stories for High School Classes.

    Science.gov (United States)

    Jensen, Terry L.; Jensen, Valarie S.

    2002-01-01

    Describes the implementation of a version of Sustained Silent Reading (SSR), called the DEAR (Drop Everything And Read) program, throughout their school. Presents their experience with the program in the KWL format (what we KNOW, what we WANTED to know, and what we LEARNED). Provides a bibliography of 12 young adult short stories used in the…

  4. Book Riview- The silent take over: Global capitalism and the death ...

    African Journals Online (AJOL)

    Book Riview- The silent take over: Global capitalism and the death of democracy. N Hertz, N Hertz. Abstract. No Abstract. African Journal of International Affairs and Development Vol. 11 (2) 2007: pp. 150-155. Full Text: EMAIL FULL TEXT EMAIL FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT.

  5. Characterisation of silent and active genes for a variable large protein of Borrelia recurrentis

    Directory of Open Access Journals (Sweden)

    Scragg Ian G

    2002-10-01

    Full Text Available Abstract Background We report the characterisation of the variable large protein (vlp gene expressed by clinical isolate A1 of Borrelia recurrentis; the agent of the life-threatening disease louse-borne relapsing fever. Methods The major vlp protein of this isolate was characterised and a DNA probe created. Use of this together with standard molecular methods was used to determine the location of the vlp1B. recurrentis A1 gene in both this and other isolates. Results This isolate was found to carry silent and expressed copies of the vlp1B. recurrentis A1 gene on plasmids of 54 kbp and 24 kbp respectively, whereas a different isolate, A17, had only the silent vlp1B. recurrentis A17 on a 54 kbp plasmid. Silent and expressed vlp1 have identical mature protein coding regions but have different 5' regions, both containing different potential lipoprotein leader sequences. Only one form of vlp1 is transcribed in the A1 isolate of B. recurrentis, yet both 5' upstream sequences of this vlp1 gene possess features of bacterial promoters. Conclusion Taken together these results suggest that antigenic variation in B. recurrentis may result from recombination of variable large and small protein genes at the junction between lipoprotein leader sequence and mature protein coding region. However, this hypothetical model needs to be validated by further identification of expressed and silent variant protein genes in other B. recurrentis isolates.

  6. Research of an Automatic Control Method of NO Removal System by Silent Discharge

    Science.gov (United States)

    Kimura, Kouhei; Hayashi, Kenji; Yoshioka, Yoshio

    An automatic NOx control device was developed for NOx removal system by silent discharge targeting diesel engine generator. A new algorithm of controlling the exit NO concentration at specified values was developed. The control system was actually made in our laboratory and it was confirmed that exit NO concentration could be controlled in the specified value.

  7. Silent Films and Strange Stories: Theory of Mind, Gender, and Social Experiences in Middle Childhood

    Science.gov (United States)

    Devine, Rory T.; Hughes, Claire

    2013-01-01

    In this study of two hundred and thirty 8- to 13-year-olds, a new "Silent Films" task is introduced, designed to address the dearth of research on theory of mind in older children by providing a film-based analogue of F. G. E. Happe's (1994) Strange Stories task. Confirmatory factor analysis showed that all items from both tasks loaded…

  8. Reflections on clinical expertise and silent know-how in voice therapy

    DEFF Research Database (Denmark)

    Iwarsson, Jenny

    2014-01-01

    . The expertise seems to consist partly of silent know-how that, from the outside, may seem improperly related to the personality of the speech-language pathologist or exclusively dependent on the number of years in the field. In this paper, it is suggested that clinical expertise in voice therapy consists...

  9. Cinderella vs Statistics: The Silent Movie Heroine as a Jazz Age Working Girl.

    Science.gov (United States)

    Higashi, Sumiko

    The portrayal of the working girl in the silent films of the 1920s ignored the fact that in reality women worked to help support their families, to be financially independent, or to supplement their family's income. A study of movie heroines from that era reveals that these characterizations reinforce the image of the traditionally dependent woman…

  10. Silent film: The Carlsberg Foundation’s Oceanographic Expedition Round the World, 1928–30

    DEFF Research Database (Denmark)

    Poulsen, Bo

    2016-01-01

    the surveys conducted onboard, as well as encounters with local populations round the World. This silent film consists of c. 20 different sequences. There is a very instructive introduction to the fishing gear, as it is being deployed in the sea, although this is supplemented by camera shots from what......-1933, (Leiden: Brill, 2016) written by Associate Professor, Bo Poulsen, Aalborg University....

  11. [Study of the predictive value of detection tests for silent aspirations].

    Science.gov (United States)

    Woisard, V; Réhault, E; Brouard, C; Fichaux-Bourin, P; Puech, M; Grand, S

    2009-01-01

    Screening for aspiration in patients with swallowing disorders is important in preventing complications. The tests used in this regard are insufficient due to silent aspiration relating to abnormal protective reflexes in many patients with swallowing problems. The aim of this study is to determine the predictive values of simple tests in screening for silent aspiration. The reference test used was videofluoroscopic examination on swallowing. In the presence of aspiration (FR+) the presence (ME+) or not (ME-) of a cough of throat clearing was noted. The tests being studied were a nasal test with isotonic saline and swallowing according to a set time. For screening for aspiration the presence of a "wet voice" was considered to be a sign of reduced protective reflexes. 1) During the nasal test, the results are 100% for the positive predictive value (VPp) and 83.3% for the negative predictive value (VPn); 2) These results are respectively 84.6% and 35.9% during the swallowing test. Regarding screening for silent aspiration, 1) during the nasal test, the results are 62.5% for the positive predictive value (VPp) and 36.3% for the negative predictive value (VPn); 2) These results are respectively 54.5% and 26.6% during the swallowing test. This preliminary study points out the lack of predictive value of the nasal test and the swallow test for the silent aspirations. However the results could be useful for other researchers developing other tests in this area.

  12. The Nuts and Bolts of Transcriptionally Silent Chromatin in Saccharomyces cerevisiae

    Science.gov (United States)

    Gartenberg, Marc R.; Smith, Jeffrey S.

    2016-01-01

    Transcriptional silencing in Saccharomyces cerevisiae occurs at several genomic sites including the silent mating-type loci, telomeres, and the ribosomal DNA (rDNA) tandem array. Epigenetic silencing at each of these domains is characterized by the absence of nearly all histone modifications, including most prominently the lack of histone H4 lysine 16 acetylation. In all cases, silencing requires Sir2, a highly-conserved NAD+-dependent histone deacetylase. At locations other than the rDNA, silencing also requires additional Sir proteins, Sir1, Sir3, and Sir4 that together form a repressive heterochromatin-like structure termed silent chromatin. The mechanisms of silent chromatin establishment, maintenance, and inheritance have been investigated extensively over the last 25 years, and these studies have revealed numerous paradigms for transcriptional repression, chromatin organization, and epigenetic gene regulation. Studies of Sir2-dependent silencing at the rDNA have also contributed to understanding the mechanisms for maintaining the stability of repetitive DNA and regulating replicative cell aging. The goal of this comprehensive review is to distill a wide array of biochemical, molecular genetic, cell biological, and genomics studies down to the “nuts and bolts” of silent chromatin and the processes that yield transcriptional silencing. PMID:27516616

  13. Reflections on the Digital Youth Leadership for Social Justice Activism: Understanding Silent Dialogues through Critical Pedagogy

    Science.gov (United States)

    Kurubacak, Gulsun

    2006-01-01

    The main purpose of this paper is to explore and discuss youth reflections toward digital leadership for social justice activism. Besides, this paper aims to explore the evidence and truth that meant for understanding silent dialogues through critical pedagogy in a digital society. In this study, the strategies and principles of their leaderships…

  14. The Effect of Background Music While Silent Reading on EFL Learners’ Reading Comprehension

    Directory of Open Access Journals (Sweden)

    sakineh sahebdel

    2014-05-01

    Full Text Available This study attempted to determine the effect of background music while silent reading on Iranian EFL learners’ reading comprehension. The participants were 57 Iranian EFL learners between the ages of 14 and 16 in two 3rd grade high schoolclasses at pre-intermediate proficiency level. Before treatment,both experimental and control groups took a reading comprehension pretest. In the experimental group, the researchers played Mozart sonatas as background music and asked them to read the passage silently and then answer the reading comprehension questions. In the control group, the procedure was the same, but no music was played while silent reading by the students. After ten sessions, the students of both groups were asked to answer another independent but parallel form of reading section of PET as their post-test. The independent samples t-testresultsindicated that the experimental group outperformed the control group in reading comprehension posttest, and listening to background music while silent reading had a significantly positive effect on Iranian EFL learners’ reading comprehension. The results of the present study have implications for EFL students, teachers, and teacher educators as well as syllabus designers and materials developers.

  15. Cervical Cancer as a silent killer: A rare case report with review of literature

    Directory of Open Access Journals (Sweden)

    Deeksha Pandey

    2015-01-01

    Full Text Available Advanced-stage cervical cancer almost always presents either with abnormal vaginal bleeding or with foul-smelling vaginal discharge. We present here a rare case, where a postmenopausal lady presented almost silently with stage IVA cervical cancer. Fortunately, timely referral, correct diagnosis, and multispecialty team work could save her life.

  16. BOOK REVIEW: ARE YOU AN ADVOCATE, TACIT SUPPORTER, CRITICAL SKEPTIC, OR SILENT SKEPTIC?

    Science.gov (United States)

    "Silent Sperm," "You're not half the man your grandfather was," "Assault on the Male," "Gender Benders,"-perhaps no other public health concern has given rise to the number of memorable sound bites than has the issue of whether environmental contaminants are causing adverse healt...

  17. Harmonic Domain Modelling of Transformer Core Nonlinearities Using the DIgSILENT PowerFactory Software

    DEFF Research Database (Denmark)

    Bak, Claus Leth; Bak-Jensen, Birgitte; Wiechowski, Wojciech

    2008-01-01

    the DIgSILENT Programming Language (DPL) as an external script in the harmonic domain calculations of a power system analysis tool PowerFactory [10]. The algorithm is verified by harmonic measurements on a single-phase power transformer. A theoretical analysis of the core nonlinearities phenomena...

  18. Neural responses to silent lipreading in normal hearing male and female subjects

    NARCIS (Netherlands)

    Ruytjens, Liesbet; Albers, Frans; van Dijk, Pim; Wit, Hero; Willemsen, Antoon

    In the past, researchers investigated silent lipreading in normal hearing subjects with functional neuroimaging tools and showed how the brain processes visual stimuli that are normally accompanied by an auditory counterpart. Previously, we showed activation differences between males and females in

  19. 76 FR 56099 - Implementation of a Decision Adopted Under the Australia Group (AG) Intersessional Silent...

    Science.gov (United States)

    2011-09-12

    .... 110222155-1110-01] RIN 0694-AF14 Implementation of a Decision Adopted Under the Australia Group (AG... proposal that was discussed at the 2010 Australia Group (AG) Plenary and adopted under the AG... under the Australia Group (AG) intersessional silent approval procedures in November 2010. The AG is a...

  20. Tobacco use in silent film: precedents of modern-day substance use portrayals.

    Science.gov (United States)

    St Romain, Theresa; Hawley, Suzanne R; Ablah, Elizabeth; Kabler, Bethany S; Molgaard, Craig A

    2007-12-01

    Much research has been done into tobacco use portrayals in film since the mid-twentieth century, but the earlier years of Hollywood history have been overlooked. Yet the first decades of the twentieth century saw annual per capita cigarette consumption increase from under 100 in 1900 upto 1,500 in 1930. The current study looks at frequency and context (gender, age range, socioeconomic status, type of portrayal) of tobacco use in 20 top-grossing silent films spanning the silent feature era (1915-1928). The sample averaged 23.31 tobacco uses per hour. Tobacco use was most often associated with positive characterizations, working/middle class status, masculinity, and youth. Previous research has verified the influence of the film industry on tobacco consumption in modern years, and this potential connection should not be ignored for the silent film era. Top-grossing silent films set a precedent for positive media portrayals of substance use that have persisted to the present day.

  1. Occurrence and Natural History of Clinically Silent Episodes of Atrial Fibrillation in Hypertrophic Cardiomyopathy.

    Science.gov (United States)

    Rowin, Ethan J; Orfanos, Alexander; Estes, N A Mark; Wang, Wendy; Link, Mark S; Maron, Martin S; Maron, Barry J

    2017-06-01

    Overt symptomatic atrial fibrillation (AF) occurs in over 20% of patients with hypertrophic cardiomyopathy (HC) leading to impaired quality of life, loss of productivity, and the risk for embolic stroke. However, the overall burden presented by AF in the HC population is unresolved due to the unknown frequency of silent asymptomatic episodes that do not necessarily achieve clinical recognition but nevertheless may have important disease-related implications. Therefore, stored electrograms were analyzed retrospectively for AF in 75 consecutive patients with HC (without AF history) implanted with dual-chamber cardioverter-defibrillators. Patients were followed for 5.0 ± 4.1 years at the Tufts Medical Center HCM Institute; ages were 50 ± 15 years, and 55% were male. Implantable cardioverter-defibrillator interrogation in the 75 patients showed AF to be absent in 54 (72%), 18 (24%) had clinically silent AF episodes, and the remaining 3 (4%) without previous asymptomatic episodes developed symptomatic and clinically overt paroxysmal AF. Of the 18 patients with clinically silent AF, 8 developed symptomatic AF, 4.1 ± 1.5 years later. Nonfatal embolic stroke occurred in 1 patient associated with asymptomatic AF and without other risk factors. In conclusion, clinically silent AF appears to be common in HC, occurring in almost 25% of patients. Such asymptomatic episodes of AF have important future implications, including potential thromboembolic risk, and development of symptomatic and clinically overt AF requiring prophylactic anticoagulation. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. The Silent Thief: Osteoporosis and Women's Health Care across the Life Span

    Science.gov (United States)

    Munch, Shari; Shapiro, Sarah

    2006-01-01

    Osteoporosis is a skeletal disease characterized by loss of bone mass and density, which results in an increased risk of fractures. The disease is referred to as the "silent thief," because it is often not until a person falls and breaks a bone that patients and their physicians become aware of weakening bones. An estimated 1.5 million…

  3. Direct and Indirect Effects of Print Exposure on Silent Reading Fluency

    Science.gov (United States)

    Mano, Quintino R.; Guerin, Julia M.

    2018-01-01

    Print exposure is an important causal factor in reading development. Little is known, however, of the mechanisms through which print exposure exerts an effect onto reading. To address this gap, we examined the direct and indirect effects of print exposure on silent reading fluency among college students (n = 52). More specifically, we focused on…

  4. Dual silent communication system development based on subvocal speech and Raspberry Pi

    Directory of Open Access Journals (Sweden)

    José Daniel Ramírez-Corzo

    2016-09-01

    Additionally, in this article we show the speech subvocal signals’ recording system realization. The average accuracy percentage was 72.5 %, and includes a total of 50 words by class, this is 200 signals. Finally, it demonstrated that using the Raspberry Pi it is possible to set a silent communication system, using subvocal. speech signals.

  5. Underlying Skills of Oral and Silent Reading Fluency in Chinese: Perspective of Visual Rapid Processing.

    Science.gov (United States)

    Zhao, Jing; Kwok, Rosa K W; Liu, Menglian; Liu, Hanlong; Huang, Chen

    2016-01-01

    Reading fluency is a critical skill to improve the quality of our daily life and working efficiency. The majority of previous studies focused on oral reading fluency rather than silent reading fluency, which is a much more dominant reading mode that is used in middle and high school and for leisure reading. It is still unclear whether the oral and silent reading fluency involved the same underlying skills. To address this issue, the present study examined the relationship between the visual rapid processing and Chinese reading fluency in different modes. Fifty-eight undergraduate students took part in the experiment. The phantom contour paradigm and the visual 1-back task were adopted to measure the visual rapid temporal and simultaneous processing respectively. These two tasks reflected the temporal and spatial dimensions of visual rapid processing separately. We recorded the temporal threshold in the phantom contour task, as well as reaction time and accuracy in the visual 1-back task. Reading fluency was measured in both single-character and sentence levels. Fluent reading of single characters was assessed with a paper-and-pencil lexical decision task, and a sentence verification task was developed to examine reading fluency on a sentence level. The reading fluency test in each level was conducted twice (i.e., oral reading and silent reading). Reading speed and accuracy were recorded. The correlation analysis showed that the temporal threshold in the phantom contour task did not correlate with the scores of the reading fluency tests. Although, the reaction time in visual 1-back task correlated with the reading speed of both oral and silent reading fluency, the comparison of the correlation coefficients revealed a closer relationship between the visual rapid simultaneous processing and silent reading. Furthermore, the visual rapid simultaneous processing exhibited a significant contribution to reading fluency in silent mode but not in oral reading mode. These

  6. High-density EMG E-textile systems for the control of active prostheses.

    Science.gov (United States)

    Farina, Dario; Lorrain, Thomas; Negro, Francesco; Jiang, Ning

    2010-01-01

    Myoelectric control of active prostheses requires electrode systems that are easy to apply for daily repositioning of the electrodes by the user. In this study we propose the use of Smart Fabric and Interactive Textile (SFIT) systems as an alternative solution for recording high-density EMG signals for myoelectric control. A sleeve covering the upper and lower arm, which contains 100 electrodes arranged in four grids of 5 × 5 electrodes, was used to record EMG signals in 3 subjects during the execution of 9 tasks of the wrist and hand. The signals were analyzed by extracting wavelet coefficients which were classified with linear discriminant analysis. The average classification accuracy for the nine tasks was 89.1 ± 1.9 %. These results show that SFIT systems can be used as an effective way for muscle-machine interfacing.

  7. Rhesus leg muscle EMG activity during a foot pedal pressing task on Bion 11

    Science.gov (United States)

    Hodgson, J. A.; Riazansky, S. N.; Goulet, C.; Badakva, A. M.; Kozlovskaya, I. B.; Recktenwald, M. R.; McCall, G.; Roy, R. R.; Fanton, J. W.; Edgerton, V. R.

    2000-01-01

    Rhesus monkeys (Macaca mulatta) were trained to perform a foot lever pressing task for a food reward. EMG activity was recorded from selected lower limb muscles of 2 animals before, during, and after a 14-day spaceflight and from 3 animals during a ground-based simulation of the flight. Integrated EMG activity was calculated for each muscle during the 20-min test. Comparisons were made between data recorded before any experimental manipulations and during flight or flight simulation. Spaceflight reduced soleus (Sol) activity to 25% of preflight levels, whereas it was reduced to 50% of control in the flight simulation. During flight, medial gastrocnemius (MG) activity was reduced to 25% of preflight activity, whereas the simulation group showed normal activity levels throughout all tests. The change in MG activity was apparent in the first inflight recording, suggesting that some effect of microgravity on MG activity was immediate.

  8. EMG signals characterization in three states of contraction by fuzzy network and feature extraction

    CERN Document Server

    Mokhlesabadifarahani, Bita

    2015-01-01

    Neuro-muscular and musculoskeletal disorders and injuries highly affect the life style and the motion abilities of an individual. This brief highlights a systematic method for detection of the level of muscle power declining in musculoskeletal and Neuro-muscular disorders. The neuro-fuzzy system is trained with 70 percent of the recorded Electromyography (EMG) cut off window and then used for classification and modeling purposes. The neuro-fuzzy classifier is validated in comparison to some other well-known classifiers in classification of the recorded EMG signals with the three states of contractions corresponding to the extracted features. Different structures of the neuro-fuzzy classifier are also comparatively analyzed to find the optimum structure of the classifier used.

  9. Oxygenation and EMG in the proximal and distal vastus lateralis during submaximal isometric knee extension

    DEFF Research Database (Denmark)

    Crenshaw, Albert G.; Bronee, Lars; Krag, Ida

    2010-01-01

    for oxygen saturation (StO(2)%) were initial slope at contraction onset, peak drop, and recovery slope at contraction end. Electromyography produced the root mean square to indicate muscle activation and mean power frequency changes over time (decreasing slope) to indicate fatigue development. For StO(2......Muscle oxygenation responses are reportedly greater in the distal muscle region than in the proximal muscle region. We combined near infrared spectroscopy and electromyography (EMG) to determine whether regional differences in oxygenation are associated with differences in (1) muscle activation and....../or (2) fatigue development. Nine males performed 2-min sustained isometric knee extensions at 15% and 30% maximum voluntary contraction during which oxygenation and EMG were recorded simultaneously from proximal and distal locations of the vastus lateralis muscle. Near infrared spectroscopy variables...

  10. A comparison of two gluteus maximus EMG maximum voluntary isometric contraction positions.

    Science.gov (United States)

    Contreras, Bret; Vigotsky, Andrew D; Schoenfeld, Brad J; Beardsley, Chris; Cronin, John

    2015-01-01

    Background. The purpose of this study was to compare the peak electromyography (EMG) of the most commonly-used position in the literature, the prone bent-leg (90°) hip extension against manual resistance applied to the distal thigh (PRONE), to a novel position, the standing glute squeeze (SQUEEZE). Methods. Surface EMG electrodes were placed on the upper and lower gluteus maximus of thirteen recreationally active females (age = 28.9 years; height = 164 cm; body mass = 58.2 kg), before three maximum voluntary isometric contraction (MVIC) trials for each position were obtained in a randomized, counterbalanced fashion. Results. No statistically significant (p gluteus maximus. Neither the PRONE nor SQUEEZE was more effective between all subjects. Conclusions. In agreement with other studies, no single testing position is ideal for every participant. Therefore, it is recommended that investigators employ multiple MVIC positions, when possible, to ensure accuracy. Future research should investigate a variety of gluteus maximus MVIC positions in heterogeneous samples.

  11. Amplitude and frequency changes in surface EMG of biceps femoris during five days Bruce Protocol treadmill test.

    Science.gov (United States)

    Jamaluddin, Fauzani N; Ahmad, Siti A; Noor, Samsul Bahari Mohd; Hassan, Wan Zuha Wan; Yaakob, Azhar; Adam, Yunus; Ali, Sawal H M

    2015-01-01

    Electromyography (EMG) is one of the indirect tools in indexing fatigue. Fatigue can be detected when there are changes on amplitude and frequency. However, various outcomes from literature make researchers conclude that EMG is not a reliable tool to measure fatigue. This paper investigates EMG behavior of biceps femoris in median frequency and mean absolute value during five days of Bruce Protocol treadmill test. Before that, surface EMG signals are filtered using band pass filter cut-off at 20-500Hz and are de-noised using db45 1-decimated wavelet transform. Five participants achieved more than 85% of their maximal heart rate during the running activity. The authors also consider other markers of fatigue such as performance, muscle soreness and lethargy as indicators to adaptation and maladaptation conditions. Result shows that turning points of median frequency and mean absolute value are very significant in indexing fatigue and indicators to adaptation of resistive training.

  12. EMG burst presence probability: a joint time-frequency representation of muscle activity and its application to onset detection.

    Science.gov (United States)

    Liu, Jie; Ying, Dongwen; Rymer, William Zev

    2015-04-13

    The purpose of this study was to quantify muscle activity in the time-frequency domain, therefore providing an alternative tool to measure muscle activity. This paper presents a novel method to measure muscle activity by utilizing EMG burst presence probability (EBPP) in the time-frequency domain. The EMG signal is grouped into several Mel-scale subbands, and the logarithmic power sequence is extracted from each subband. Each log-power sequence can be regarded as a dynamic process that transits between the states of EMG burst and non-burst. The hidden Markov model (HMM) was employed to elaborate this dynamic process since HMM is intrinsically advantageous in modeling the temporal correlation of EMG burst/non-burst presence. The EBPP was eventually yielded by HMM based on the criterion of maximum likelihood. Our approach achieved comparable performance with the Bonato method. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Locomotor training with body weight support in SCI : EMG improvement is more optimally expressed at a low testing speed

    NARCIS (Netherlands)

    Meyns, P.; Van de Crommert, H. W. A. A.; Rijken, H.; van Kuppevelt, D. H. J. M.; Duysens, J.

    2014-01-01

    Study design: Case series. Objectives: To determine the optimal testing speed at which the recovery of the EMG (electromyographic) activity should be assessed during and after body weight supported (BWS) locomotor training. Setting: Tertiary hospital, Sint Maartenskliniek, Nijmegen, The Netherlands.

  14. Histamine induced airway response in pre-school children assessed by a non-invasive EMG technique

    NARCIS (Netherlands)

    Maarsingh, E. J. W.; van Eykern, LA; Sprikkelman, AB; van Aalderen, WMC

    The aim of the study was to investigate the association between surface electromyographic (EMG) activity of the diaphragm and intercostal muscles, and clinical symptoms (wheeze, cough, increased respiratory rate and prolonged expiration) during bronchial challenge testing and after administration of

  15. Reproducibility and responsiveness of a noninvasive EMG technique of the respiratory muscles in COPD patients and in healthy subjects

    NARCIS (Netherlands)

    Duiverman, ML; van Eykern, LA; Vennik, PW; Koeter, GH; Maarsingh, EJW; Wijkstra, PJ

    2004-01-01

    In the present study, we assessed the reproducibility and responsiveness of transcutaneous electromyography (EMG) of the respiratory muscles in patients with chronic obstructive pulmonary disease ( COPD) and healthy subjects during breathing against an inspiratory load. In seven healthy subjects and

  16. EMG-Torque correction on Human Upper extremity using Evolutionary Computation

    Science.gov (United States)

    JL, Veronica; Parasuraman, S.; Khan, M. K. A. Ahamed; Jeba DSingh, Kingsly

    2016-09-01

    There have been many studies indicating that control system of rehabilitative robot plays an important role in determining the outcome of the therapy process. Existing works have done the prediction of feedback signal in the controller based on the kinematics parameters and EMG readings of upper limb's skeletal system. Kinematics and kinetics based control signal system is developed by reading the output of the sensors such as position sensor, orientation sensor and F/T (Force/Torque) sensor and there readings are to be compared with the preceding measurement to decide on the amount of assistive force. There are also other works that incorporated the kinematics parameters to calculate the kinetics parameters via formulation and pre-defined assumptions. Nevertheless, these types of control signals analyze the movement of the upper limb only based on the movement of the upper joints. They do not anticipate the possibility of muscle plasticity. The focus of the paper is to make use of the kinematics parameters and EMG readings of skeletal system to predict the individual torque of upper extremity's joints. The surface EMG signals are fed into different mathematical models so that these data can be trained through Genetic Algorithm (GA) to find the best correlation between EMG signals and torques acting on the upper limb's joints. The estimated torque attained from the mathematical models is called simulated output. The simulated output will then be compared with the actual individual joint which is calculated based on the real time kinematics parameters of the upper movement of the skeleton when the muscle cells are activated. The findings from this contribution are extended into the development of the active control signal based controller for rehabilitation robot.

  17. A Hybrid FPGA-Based System for EEG- and EMG-Based Online Movement Prediction

    OpenAIRE

    W?hrle, Hendrik; Tabie, Marc; Kim, Su Kyoung; Kirchner, Frank; Kirchner, Elsa Andrea

    2017-01-01

    A current trend in the development of assistive devices for rehabilitation, for example exoskeletons or active orthoses, is to utilize physiological data to enhance their functionality and usability, for example by predicting the patient?s upcoming movements using electroencephalography (EEG) or electromyography (EMG). However, these modalities have different temporal properties and classification accuracies, which results in specific advantages and disadvantages. To use physiological data an...

  18. Assessment of Diaphragm and External Intercostals Fatigue from Surface EMG using Cervical Magnetic Stimulation

    Directory of Open Access Journals (Sweden)

    Ya-Ju Chang

    2008-03-01

    Full Text Available This study was designed: (1 to test the reliability of surface electromyography (sEMG recording of the diaphragm and external intercostals contractions response to cervical magnetic stimulation (CMS, (2 to examine the amount and the types of inspiratory muscle fatigue that developed after maximum voluntary ventilation (MVV maneuvers.Ten male college students without physical disability (22.1±2.0 years old participated in the study and each completed a control (quiet breathing trial and a fatigue (MVV maneuvers trial sequentially. In the quiet breathing trial, the subjects maintained quiet breathing for five minutes. The subjects performed five maximal static inspiratory efforts and received five CMS before and after the quiet breathing. In the MVV trial, subjects performed five maximal inspiratory efforts and received five CMS before, immediately after, and ten minutes after two sets of MVV maneuvers performed five minutes apart. Maximal inspiratory pressure (PImax, sEMG of diaphragm and external intercostals during maximal static inspiratory efforts and during CMS were recorded. In the quiet breathing trial, high intraclass correlation coefficients (ICC=0.95-0.99 were observed in all the variables. In the MVV trial, the PImax, the EMG amplitude and the median power frequency during maximal static inspiratory efforts significantly decreased in both the diaphragm and the external intercostals immediately after the MVV maneuvers Sensors 2008, 8 2175 (P 0.05. It is concluded that the sEMG recordings of the diaphragm during maximal static inspiratory efforts and in response to CMS allow reproducible sequential assessment of diaphragm contractility. MVV maneuvers resulted in inspiratory muscles fatigue, possibly central fatigue.

  19. EMG Pattern Classification to Control a Hand Orthosis for Functional Grasp Assistance after Stroke

    OpenAIRE

    Meeker, Cassie; Park, Sangwoo; Bishop, Lauri; Stein, Joel; Ciocarlie, Matei

    2018-01-01

    Wearable orthoses can function both as assistive devices, which allow the user to live independently, and as rehabilitation devices, which allow the user to regain use of an impaired limb. To be fully wearable, such devices must have intuitive controls, and to improve quality of life, the device should enable the user to perform Activities of Daily Living. In this context, we explore the feasibility of using electromyography (EMG) signals to control a wearable exotendon device to enable pick ...

  20. Number of sources uncertainty in blind source separation. Application to EMG signal processing.

    Science.gov (United States)

    Snoussi, Hichem; Khanna, Saurabh; Hewson, David; Duchene, Jacques

    2007-01-01

    This contribution deals with the number of components uncertainty in blind source separation. The number of components is estimated by maximizing its marginal a posteriori probability which favors the simplest explanation of the observed data. Marginalizing (integrating over all the parameters) is implemented through the Laplace approximation based on an efficient wavelet spectral matching separating algorithm. The effectiveness of the proposed method is shown on EMG data processing.

  1. EMG and strength in trunk and hip muscles : particular the iliopsoas

    OpenAIRE

    Andersson, Eva A.

    1997-01-01

    EMG AND STRENGTH IN TRUNK AND HIP MUSCLES - PARTICULARLY THE ILIOPSOAS Eva A. Andersson Dissertation from the Department of Neuroscience, Karolinska Institute, and the Department of Human Biology, University College of Physical Education and Sports, Box 5626, S-l 14 86, Stockholm, Sweden. . The overall aim of this thesis was to study the myoelectric activity of all major muscles involved in the movements and stabilization of the trunk, pelvis and hips ...

  2. Statistically significant contrasts between EMG waveforms revealed using wavelet-based functional ANOVA

    Science.gov (United States)

    McKay, J. Lucas; Welch, Torrence D. J.; Vidakovic, Brani

    2013-01-01

    We developed wavelet-based functional ANOVA (wfANOVA) as a novel approach for comparing neurophysiological signals that are functions of time. Temporal resolution is often sacrificed by analyzing such data in large time bins, increasing statistical power by reducing the number of comparisons. We performed ANOVA in the wavelet domain because differences between curves tend to be represented by a few temporally localized wavelets, which we transformed back to the time domain for visualization. We compared wfANOVA and ANOVA performed in the time domain (tANOVA) on both experimental electromyographic (EMG) signals from responses to perturbation during standing balance across changes in peak perturbation acceleration (3 levels) and velocity (4 levels) and on simulated data with known contrasts. In experimental EMG data, wfANOVA revealed the continuous shape and magnitude of significant differences over time without a priori selection of time bins. However, tANOVA revealed only the largest differences at discontinuous time points, resulting in features with later onsets and shorter durations than those identified using wfANOVA (P < 0.02). Furthermore, wfANOVA required significantly fewer (∼¼×; P < 0.015) significant F tests than tANOVA, resulting in post hoc tests with increased power. In simulated EMG data, wfANOVA identified known contrast curves with a high level of precision (r2 = 0.94 ± 0.08) and performed better than tANOVA across noise levels (P < <0.01). Therefore, wfANOVA may be useful for revealing differences in the shape and magnitude of neurophysiological signals (e.g., EMG, firing rates) across multiple conditions with both high temporal resolution and high statistical power. PMID:23100136

  3. Compression des signaux EMG par la Transformée dite « impaire ...

    African Journals Online (AJOL)

    Le problème étudié dans cet article est la compression de données des signaux ElectroMyographiques (EMG) par la Transformée dite « impaire ». Cette nouvelle méthode est la version du Lifting Scheme Modifié. La technique utilisée est celle d\\'un sous-échantillonnage des signaux d\\'indices pair et impair. La réduction ...

  4. Facial EMG responses to odors in solitude and with an audience.

    Science.gov (United States)

    Jäncke, L; Kaufmann, N

    1994-04-01

    Two experiments were undertaken to examine whether facial responses to odors correlate with the hedonic odor evaluation. Experiment 1 examined whether subjects (n = 20) spontaneously generated facial movements associated with odor evaluation when they are tested in private. To measure facial responses, EMG was recorded over six muscle regions (M. corrugator supercilii, M. procerus, M. nasalis, M. levator, M. orbicularis oculi and M. zygomaticus major) using surface electrodes. In experiment 2 the experimental group (n = 10) smelled the odors while they were visually inspected by the experimenter sitting in front of the test subjects. The control group (n = 10) performed the same experimental condition as those subjects participating in experiment 1. Facial EMG over four mimetic muscle regions (M. nasalis, M. levator, M. zygomaticus major, M. orbicularis oculi) was measured while subjects smelled different odors. The main findings of this study may be summarized as follows: (i) there was no correlation between valence rating and facial EMG responses; (ii) pleasant odors did not evoke smiles when subjects smelled the odors in private; (iii) in solitude, highly concentrated malodors evoked facial EMG reactions of those mimetic muscles which are mainly involved in generating a facial display of disgust; (iv) those subjects confronted with an audience showed stronger facial reactions over the periocular and cheek region (indicative of a smile) during the smelling of pleasant odors than those who smelled these odors in private; (v) those subjects confronted with an audience showed stronger facial reactions over the M. nasalis region (indicative of a display of disgust) during the smelling of malodors than those who smelled the malodors in private. These results were taken as evidence for a more social communicative function of facial displays and strongly mitigates the reflexive-hedonic interpretation of facial displays to odors as supposed by Steiner.

  5. Adaptive Admittance Control for an Ankle Exoskeleton Using an EMG-Driven Musculoskeletal Model

    Directory of Open Access Journals (Sweden)

    Shaowei Yao

    2018-04-01

    Full Text Available Various rehabilitation robots have been employed to recover the motor function of stroke patients. To improve the effect of rehabilitation, robots should promote patient participation and provide compliant assistance. This paper proposes an adaptive admittance control scheme (AACS consisting of an admittance filter, inner position controller, and electromyography (EMG-driven musculoskeletal model (EDMM. The admittance filter generates the subject's intended motion according to the joint torque estimated by the EDMM. The inner position controller tracks the intended motion, and its parameters are adjusted according to the estimated joint stiffness. Eight healthy subjects were instructed to wear the ankle exoskeleton robot, and they completed a series of sinusoidal tracking tasks involving ankle dorsiflexion and plantarflexion. The robot was controlled by the AACS and a non-adaptive admittance control scheme (NAACS at four fixed parameter levels. The tracking performance was evaluated using the jerk value, position error, interaction torque, and EMG levels of the tibialis anterior (TA and gastrocnemius (GAS. For the NAACS, the jerk value and position error increased with the parameter levels, and the interaction torque and EMG levels of the TA tended to decrease. In contrast, the AACS could maintain a moderate jerk value, position error, interaction torque, and TA EMG level. These results demonstrate that the AACS achieves a good tradeoff between accurate tracking and compliant assistance because it can produce a real-time response to stiffness changes in the ankle joint. The AACS can alleviate the conflict between accurate tracking and compliant assistance and has potential for application in robot-assisted rehabilitation.

  6. The reliability of surface EMG recorded from the pelvic floor muscles.

    Science.gov (United States)

    Auchincloss, Cindy C; McLean, Linda

    2009-08-30

    The neuromuscular function of the pelvic floor muscles (PFMs) is frequently evaluated using surface electrodes embedded on vaginal probes. The purpose of this study was to determine the between-trial and between-day reliability of EMG data recorded from the PFM using two different vaginal probes while subjects performed PFM maximum voluntary contractions and a coughing task. The Femiscan and the Periform vaginal probes were used to acquire EMG data while the subjects performed the tasks. Peak RMS amplitudes were computed for each instrument, task, and side of the pelvic floor using a sliding window technique. The between-trial reliability was evaluated using intraclass correlation coefficients (ICCs) and coefficients of variation (CV). Between-trial reliability was determined using ICCs, Pearson's correlation coefficients, computing the mean absolute difference between days, and calculating the standard error the measurement (SEM) for each instrument and task. EMG amplitude differences were detected between the left and right PFM (pperformed separately for each side. Overall, between-trial reliability was fair to high for the Femiscan (ICC((3,1))=0.58-0.98, CV=8.5-20.7%) and good to high for the Periform (ICC((3,1))=0.80-0.98, CV=9.6-19.5%), however between-day reliability was generally poor for both vaginal probes (ICC((3,1))=0.08-0.84). The results suggest that although it is acceptable to use PFM surface EMG as a biofeedback tool for training purposes, it is not recommended for use to make between-subject comparisons or to use as an outcome measure between-days when evaluating PFM function.

  7. Period Cramps

    Science.gov (United States)

    ... Safe Videos for Educators Search English Español Period Cramps KidsHealth / For Kids / Period Cramps Print en español ... a girl who gets them. What Are Period Cramps? Lots of girls experience cramps before or during ...

  8. A motion-classification strategy based on sEMG-EEG signal combination for upper-limb amputees.

    Science.gov (United States)

    Li, Xiangxin; Samuel, Oluwarotimi Williams; Zhang, Xu; Wang, Hui; Fang, Peng; Li, Guanglin

    2017-01-07

    Most of the modern motorized prostheses are controlled with the surface electromyography (sEMG) recorded on the residual muscles of amputated limbs. However, the residual muscles are usually limited, especially after above-elbow amputations, which would not provide enough sEMG for the control of prostheses with multiple degrees of freedom. Signal fusion is a possible approach to solve the problem of insufficient control commands, where some non-EMG signals are combined with sEMG signals to provide sufficient information for motion intension decoding. In this study, a motion-classification method that combines sEMG and electroencephalography (EEG) signals were proposed and investigated, in order to improve the control performance of upper-limb prostheses. Four transhumeral amputees without any form of neurological disease were recruited in the experiments. Five motion classes including hand-open, hand-close, wrist-pronation, wrist-supination, and no-movement were specified. During the motion performances, sEMG and EEG signals were simultaneously acquired from the skin surface and scalp of the amputees, respectively. The two types of signals were independently preprocessed and then combined as a parallel control input. Four time-domain features were extracted and fed into a classifier trained by the Linear Discriminant Analysis (LDA) algorithm for motion recognition. In addition, channel selections were performed by using the Sequential Forward Selection (SFS) algorithm to optimize the performance of the proposed method. The classification performance achieved by the fusion of sEMG and EEG signals was significantly better than that obtained by single signal source of either sEMG or EEG. An increment of more than 14% in classification accuracy was achieved when using a combination of 32-channel sEMG and 64-channel EEG. Furthermore, based on the SFS algorithm, two optimized electrode arrangements (10-channel sEMG + 10-channel EEG, 10-channel sEMG + 20-channel

  9. Computational Intelligence Based Data Fusion Algorithm for Dynamic sEMG and Skeletal Muscle Force Modelling

    Energy Technology Data Exchange (ETDEWEB)

    Chandrasekhar Potluri,; Madhavi Anugolu; Marco P. Schoen; D. Subbaram Naidu

    2013-08-01

    In this work, an array of three surface Electrography (sEMG) sensors are used to acquired muscle extension and contraction signals for 18 healthy test subjects. The skeletal muscle force is estimated using the acquired sEMG signals and a Non-linear Wiener Hammerstein model, relating the two signals in a dynamic fashion. The model is obtained from using System Identification (SI) algorithm. The obtained force models for each sensor are fused using a proposed fuzzy logic concept with the intent to improve the force estimation accuracy and resilience to sensor failure or misalignment. For the fuzzy logic inference system, the sEMG entropy, the relative error, and the correlation of the force signals are considered for defining the membership functions. The proposed fusion algorithm yields an average of 92.49% correlation between the actual force and the overall estimated force output. In addition, the proposed fusionbased approach is implemented on a test platform. Experiments indicate an improvement in finger/hand force estimation.

  10. Self-Recalibrating Surface EMG Pattern Recognition for Neuroprosthesis Control Based on Convolutional Neural Network

    Directory of Open Access Journals (Sweden)

    Xiaolong Zhai

    2017-07-01

    Full Text Available Hand movement classification based on surface electromyography (sEMG pattern recognition is a promising approach for upper limb neuroprosthetic control. However, maintaining day-to-day performance is challenged by the non-stationary nature of sEMG in real-life operation. In this study, we propose a self-recalibrating classifier that can be automatically updated to maintain a stable performance over time without the need for user retraining. Our classifier is based on convolutional neural network (CNN using short latency dimension-reduced sEMG spectrograms as inputs. The pretrained classifier is recalibrated routinely using a corrected version of the prediction results from recent testing sessions. Our proposed system was evaluated with the NinaPro database comprising of hand movement data of 40 intact and 11 amputee subjects. Our system was able to achieve ~10.18% (intact, 50 movement types and ~2.99% (amputee, 10 movement types increase in classification accuracy averaged over five testing sessions with respect to the unrecalibrated classifier. When compared with a support vector machine (SVM classifier, our CNN-based system consistently showed higher absolute performance and larger improvement as well as more efficient training. These results suggest that the proposed system can be a useful tool to facilitate long-term adoption of prosthetics for amputees in real-life applications.

  11. Spectral analysis of erector spinae EMG during intermittent isometric fatiguing exercise.

    Science.gov (United States)

    van Dieën, J H; Toussaint, H M; Thissen, C; van de Ven, A

    1993-04-01

    The applicability of EMG spectral analysis in the study of muscular fatigue of the erector spinae muscle was investigated. At three locations (L1, L2, L5) of the erector spinae muscle, representing different functional parts, EMG was sampled during fatiguing intermittent isometric extension of the trunk. The multifidus muscle (L5) appeared to show the most consistent changes of the EMG power spectrum as a consequence of fatigue. Whether the effects of the increase in muscle temperature on the power spectrum could be eliminated by low-pass filtering the data (60 Hz and 40 Hz) was also investigated. It was expected that this would make it possible to detect better the effects of fatigue on the firing characteristics of the motorunits by the inherent changes in the power spectrum. Low-pass filtering did not cause a more significant trend of the median frequency of the power spectrum. Future research will have to explore which parts of the power spectrum are affected by an increase of the muscle temperature.

  12. Optimal Elbow Angle for Extracting sEMG Signals During Fatiguing Dynamic Contraction

    Directory of Open Access Journals (Sweden)

    Mohamed R. Al-Mulla

    2015-09-01

    Full Text Available Surface electromyographic (sEMG activity of the biceps muscle was recorded from 13 subjects. Data was recorded while subjects performed dynamic contraction until fatigue and the signals were segmented into two parts (Non-Fatigue and Fatigue. An evolutionary algorithm was used to determine the elbow angles that best separate (using Davies-Bouldin Index, DBI both Non-Fatigue and Fatigue segments of the sEMG signal. Establishing the optimal elbow angle for feature extraction used in the evolutionary process was based on 70% of the conducted sEMG trials. After completing 26 independent evolution runs, the best run containing the optimal elbow angles for separation (Non-Fatigue and Fatigue was selected and then tested on the remaining 30% of the data to measure the classification performance. Testing the performance of the optimal angle was undertaken on nine features extracted from each of the two classes (Non-Fatigue and Fatigue to quantify the performance. Results showed that the optimal elbow angles can be used for fatigue classification, showing 87.90% highest correct classification for one of the features and on average of all eight features (including worst performing features giving 78.45%.

  13. EMG pattern classification to control a hand orthosis for functional grasp assistance after stroke.

    Science.gov (United States)

    Meeker, Cassie; Park, Sangwoo; Bishop, Lauri; Stein, Joel; Ciocarlie, Matei

    2017-07-01

    Wearable orthoses can function both as assistive devices, which allow the user to live independently, and as rehabilitation devices, which allow the user to regain use of an impaired limb. To be fully wearable, such devices must have intuitive controls, and to improve quality of life, the device should enable the user to perform Activities of Daily Living. In this context, we explore the feasibility of using electromyography (EMG) signals to control a wearable exotendon device to enable pick and place tasks. We use an easy to don, commodity forearm EMG band with 8 sensors to create an EMG pattern classification control for an exotendon device. With this control, we are able to detect a user's intent to open, and can thus enable extension and pick and place tasks. In experiments with stroke survivors, we explore the accuracy of this control in both non-functional and functional tasks. Our results support the feasibility of developing wearable devices with intuitive controls which provide a functional context for rehabilitation.

  14. Predicting Blood Lactate Concentration and Oxygen Uptake from sEMG Data during Fatiguing Cycling Exercise

    Directory of Open Access Journals (Sweden)

    Petras Ražanskas

    2015-08-01

    Full Text Available This article presents a study of the relationship between electromyographic (EMG signals from vastus lateralis, rectus femoris, biceps femoris and semitendinosus muscles, collected during fatiguing cycling exercises, and other physiological measurements, such as blood lactate concentration and oxygen consumption. In contrast to the usual practice of picking one particular characteristic of the signal, e.g., the median or mean frequency, multiple variables were used to obtain a thorough characterization of EMG signals in the spectral domain. Based on these variables, linear and non-linear (random forest models were built to predict blood lactate concentration and oxygen consumption. The results showed that mean and median frequencies are sub-optimal choices for predicting these physiological quantities in dynamic exercises, as they did not exhibit significant changes over the course of our protocol and only weakly correlated with blood lactate concentration or oxygen uptake. Instead, the root mean square of the original signal and backward difference, as well as parameters describing the tails of the EMG power distribution were the most important variables for these models. Coefficients of determination ranging from R2 = 0:77 to R2 = 0:98 (for blood lactate and from R2 = 0:81 to R2 = 0:97 (for oxygen uptake were obtained when using random forest regressors.

  15. Prosthetic EMG control enhancement through the application of man-machine principles

    Science.gov (United States)

    Simcox, W. A.

    1977-01-01

    An area in medicine that appears suitable to man-machine principles is rehabilitation research, particularly when the motor aspects of the body are involved. If one considers the limb, whether functional or not, as the machine, the brain as the controller and the neuromuscular system as the man-machine interface, the human body is reduced to a man-machine system that can benefit from the principles behind such systems. The area of rehabilitation that this paper deals with is that of an arm amputee and his prosthetic device. Reducing this area to its man-machine basics, the problem becomes one of attaining natural multiaxis prosthetic control using Electromyographic activity (EMG) as the means of communication between man and prothesis. In order to use EMG as the communication channel it must be amplified and processed to yield a high information signal suitable for control. The most common processing scheme employed is termed Mean Value Processing. This technique for extracting the useful EMG signal consists of a differential to single ended conversion to the surface activity followed by a rectification and smoothing.

  16. Neuromuscular interfacing: a novel approach to EMG-driven multiple DOF physiological models.

    Science.gov (United States)

    Pau, James W L; Xie, Shane S Q; Xu, W L

    2013-01-01

    This paper presents a novel approach that involves first identifying and verifying the available superficial muscles that can be recorded by surface electromyography (EMG) signals, and then developing a musculoskeletal model based on these findings, which have specifically independent DOFs for movement. Such independently controlled multiple DOF EMG-driven models have not been previously developed and a two DOF model for the masticatory system was achieved by implementing independent antagonist muscle combinations for vertical and lateral movements of the jaw. The model has six channels of EMG signals from the bilateral temporalis, masseter and digastric muscles to predict the motion of the mandible. This can be used in a neuromuscular interface to manipulate a jaw exoskeleton for rehabilitation. For a range of different complexities of jaw movements, the presented model is able to consistently identify movements with 0.28 - 0.46 average normalized RMSE. The results demonstrate the feasibility of the approach at determining complex multiple DOF movements and its applicability to any joint system.

  17. Does Heel Height Cause Imbalance during Sit-to-Stand Task: Surface EMG Perspective

    Directory of Open Access Journals (Sweden)

    Ganesh R. Naik

    2017-08-01

    Full Text Available The purpose of this study was to determine whether electromyography (EMG muscle activities around the knee differ during sit-to-stand (STS and returning task for females wearing shoes with different heel heights. Sixteen healthy young women (age = 25.2 ± 3.9 years, body mass index = 20.8 ± 2.7 kg/m2 participated in this study. Electromyography signals were recorded from the two muscles, vastus medialis (VM and vastus lateralis (VL that involve in the extension of knee. The participants wore shoes with five different heights, including 4, 6, 8, 10, and 12 cm. Surface electromyography (sEMG data were acquired during STS and stand-to-sit-returning (STSR tasks. The data was filtered using a fourth order Butterworth (band pass filter of 20–450 Hz frequency range. For each heel height, we extracted median frequency (MDF and root mean square (RMS features to measure sEMG activities between VM and VL muscles. The experimental results (based on MDF and RMS-values indicated that there is imbalance between vasti muscles for more elevated heels. The results are also quantified with statistical measures. The study findings suggest that there would be an increased likelihood of knee imbalance and fatigue with regular usage of high heel shoes (HHS in women.

  18. Different fatigue-resistant leg muscles and EMG response during whole-body vibration.

    Science.gov (United States)

    Simsek, Deniz

    2017-12-01

    The purpose of this study was to determine the effects of static whole-body vibration (WBV) on the Electromyograhic (EMG) responses of leg muscles, which are fatigue-resistant in different manner. The study population was divided into two groups according to the values obtained by the Fatigue Index [Group I: Less Fatigue Resistant (LFR), n=11; Group II: More Fatigue Resistant (MFR), n=11]. The repeated electromyographic (EMG) activities of four leg muscles were analyzed the following determinants: (1) frequency (30 Hz, 35 Hz and 40 Hz); (2) stance position (static squat position); (3) amplitude (2 mm and 4 mm) and (4) knee flexion angle (120°), (5) vertical vibration platform. Vibration data were analyzed using Minitab 16 (Minitab Ltd, State College, PA, USA). The significance level was set at pmuscle fatigue (pEMG activation at higher frequencies (max at 40 Hz) and amplitudes (4 mm) (p<.05). The present study can be used for the optimal prescription of vibration exercise and can serve to guide the development of training programs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Predicting Blood Lactate Concentration and Oxygen Uptake from sEMG Data during Fatiguing Cycling Exercise.

    Science.gov (United States)

    Ražanskas, Petras; Verikas, Antanas; Olsson, Charlotte; Viberg, Per-Arne

    2015-08-19

    This article presents a study of the relationship between electromyographic (EMG) signals from vastus lateralis, rectus femoris, biceps femoris and semitendinosus muscles, collected during fatiguing cycling exercises, and other physiological measurements, such as blood lactate concentration and oxygen consumption. In contrast to the usual practice of picking one particular characteristic of the signal, e.g., the median or mean frequency, multiple variables were used to obtain a thorough characterization of EMG signals in the spectral domain. Based on these variables, linear and non-linear (random forest) models were built to predict blood lactate concentration and oxygen consumption. The results showed that mean and median frequencies are sub-optimal choices for predicting these physiological quantities in dynamic exercises, as they did not exhibit significant changes over the course of our protocol and only weakly correlated with blood lactate concentration or oxygen uptake. Instead, the root mean square of the original signal and backward difference, as well as parameters describing the tails of the EMG power distribution were the most important variables for these models. Coefficients of determination ranging from R(2) = 0:77 to R(2) = 0:98 (for blood lactate) and from R(2) = 0:81 to R(2) = 0:97 (for oxygen uptake) were obtained when using random forest regressors.

  20. Development of Hand Grip Assistive Device Control System for Old People through Electromyography (EMG Signal Acquisitions

    Directory of Open Access Journals (Sweden)

    Khamis Herman

    2017-01-01

    Full Text Available The hand grip assistive device is a glove to assist old people who suffer from hand weakness in their daily life activities. The device earlier control system only use simple on and off switch. This required old people to use both hand to activate the device. The new control system of the hand grip assistive device was developed to allow single hand operation for old people. New control system take advantages of electromyography (EMG and flex sensor which was implemented to the device. It was programmed into active and semi-active mode operation. EMG sensors were placed on the forearm to capture EMG signal of Flexor Digitorum Profundus muscle to activate the device. Flex sensor was used to indicate the finger position and placed on top of the finger. The signal from both sensors then used to control the device. The new control system allowed single hand operation and designed to prevent user from over depended on the device by activating it through moving their fingers.

  1. Relationship among the myelography, MRI and EMG in young patients with low back pain or radiating pain

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Ji Youn [Soonchunhyang University Hospital, Seoul (Korea, Republic of); Kim, Dong Hun [Chosun University Hospital, Gwangju (Korea, Republic of); Park, Young Jae [Gwang-Ju City Geriatiric Hospital, Gwangju (Korea, Republic of)

    2006-06-15

    We wanted to evaluate the relationship among the myelography, magnetic resonance imaging (MRI), and electromyography (EMG) findings in young patients with low back pain, and we wanted to assess the significance of the spinal geometric measurements as well as type of disc herniation seen on MRI. Forty-four young men with lower back pain were included, and they were all clinically suspected of suffering with lumbar disc herniation. All of them underwent myelography, MRI and EMG. We measured spinal geometry including the anteroposterior diameters of the central canal and thecal sac, the interlaminar distance, the width of the lateral recess and the thickness of the ligamentum flavum, and we evaluated for root deviation as well as disc herniation on the MRIs. We compared the types of disc herniation on MRI with the myelography and EMG findings. Also, we investigated the correlation of the spinal geometric measurements on MRI with the EMG and myelography findings. The types of disc herniation on MRI were not significantly related to the myelography ({rho} = 0.298) and EMG findings ({rho} = 0.372). The EMG findings were not related to either the myelography findings ({rho} = 0.435) or the spinal geometric measurements ({rho} > 0.05) on MRI. Nerve root compression that was noted on myelography was related to the thecal sac AP diameter ({rho} = 0.016) and the width of the lateral recess ({rho} = 0.011). There were no correlations between myelography and the findings of root deviation on MRI ({rho} = 0.052). MRI can play an excellent diagnostic role for young patients with radiculopathy or lower back pain. It could increase the diagnostic accuracy if it is used in conjunction with myelography and EMG. The narrowing of thecal sac AP diameter and the width of lateral recess rather than the type of disc herniation on MRI were well correlated with the myelography and EMG findings.

  2. Does a SLAP lesion affect shoulder muscle recruitment as measured by EMG activity during a rugby tackle?

    OpenAIRE

    Herrington Lee C; Horsley Ian G; Rolf Christer

    2010-01-01

    Abstract Background The study objective was to assess the influence of a SLAP lesion on onset of EMG activity in shoulder muscles during a front on rugby football tackle within professional rugby players. Methods Mixed cross-sectional study evaluating between and within group differences in EMG onset times. Testing was carried out within the physiotherapy department of a university sports medicine clinic. The test group consisted of 7 players with clinically diagnosed SLAP lesions, later veri...

  3. Young, healthy subjects can reduce the activity of calf muscles when provided with EMG biofeedback in upright stance

    Directory of Open Access Journals (Sweden)

    Taian M. Vieira

    2016-04-01

    Full Text Available Recent evidence suggests the minimisation of muscular effort rather than of the size of bodily sway may be the primary, nervous system goal when regulating the human, standing posture. Different programs have been proposed for balance training; none however has been focused on the activation of postural muscles during standing. In this study we investigated the possibility of minimising the activation of the calf muscles during standing through biofeedback. By providing subjects with an audio signal that varied in amplitude and frequency with the amplitude of surface electromyograms (EMG recorded from different regions of the gastrocnemius and soleus muscles, we expected them to be able to minimise the level of muscle activation during standing without increasing the excursion of the centre of pressure (CoP. CoP data and surface EMG from gastrocnemii, soleus and tibialis anterior muscles were obtained from ten healthy participants while standing at ease and while standing with EMG biofeedback. Four sensitivities were used to test subjects’ responsiveness to the EMG biofeedback. Compared with standing at ease, the two most sensitive feedback conditions induced a decrease in plantar flexor activity (~15%; P<0.05 and an increase in tibialis anterior EMG (~10%; P<0.05. Furthermore, CoP mean position significantly shifted backward (~30 mm. In contrast, the use of less sensitive EMG biofeedback resulted in a significant decrease in EMG activity of ankle plantar flexors with a marginal increase in TA activity compared with standing at ease. These changes were not accompanied by greater CoP displacements or significant changes in mean CoP position. Key results revealed subjects were able to keep standing stability while reducing the activity of gastrocnemius and soleus without loading their tibialis anterior muscle when standing with EMG biofeedback. These results may therefore posit the basis for the development of training protocols aimed at

  4. Effect of EMG biofeedback training of gluteus maximus muscle on gait parameters in incomplete spinal cord injury.

    Science.gov (United States)

    Govil, Kanika; Noohu, Majumi M

    2013-01-01

    A Pretest -Posttest Experimental Design. Patients with incomplete spinal cord injury (ISCI) retain or regain the ability to walk, but due to limitations in gait parameters, walking may not be the practical method of mobility in the community. Specific muscle training plays an important role in gait training. The purpose of this study was to determine the effect of EMG Biofeedback training of gluteus maximus muscle on gait parameters in ISCI patients. Indian Spinal Injury Center, New Delhi, India. 30 incomplete spinal cord injured (ISCI) patients were included and randomly assigned to two groups. Group 1 received EMG Biofeedback (EMG BF), Traditional Rehabilitation and Gait Training. Group 2 received Traditional Rehabilitation and Gait Training. Gait parameters were measured prior to the intervention for all 30 ISCI patients. EMG Biofeedback was given specifically over gluteus maximus muscle along with traditional rehabilitation and gait training to Group 1 for 5 days/week for 4 weeks. Group 2 received traditional rehabilitation and gait training for 5 days/week for 4 weeks. The results were interpreted on the basis of: EMG amplitude, step length, walking velocity and cadence. Results showed significant difference between two groups for EMG amplitude (t = 6.06, p = 0.001), walking velocity (t = 2.12, p = 0.043), cadence (t = 1.96, p = 0.05). Step length did not show any significant difference (t = 0.66, p = 0.512). The study concluded that EMG BF when given specifically over gluteus maximus resulted in improvement of EMG amplitude and various gait parameters (walking velocity, cadence).

  5. [Benzodiazepin addiction: a silent addiction among older people].

    NARCIS (Netherlands)

    Oude Voshaar, R.C.

    2012-01-01

    Benzodiazepines are frequently prescribed for a longer period of time for anxiety disorders and insomnia in spite of the many guidelines to prescribe these drugs only short-term. These guidelines are based on the risk-benefit balance between long-term effectiveness and side effects like addiction,

  6. Treatable renal disease in children with silent lupus nephritis detected by baseline biopsy: association with serum C3 levels.

    Science.gov (United States)

    Wakiguchi, Hiroyuki; Takei, Syuji; Kubota, Tomohiro; Miyazono, Akinori; Kawano, Yoshifumi

    2017-02-01

    Lupus nephritis is identified in up to 75% of patients with juvenile systemic lupus erythematosus and may present with abnormal urinary findings (overt lupus nephritis) or be apparent only upon renal biopsy (silent lupus nephritis). We investigated whether serum complement levels correlate with renal pathology in pediatric patients with silent lupus nephritis. We performed baseline renal biopsy in 45 children diagnosed with juvenile systemic lupus erythematosus who were admitted to Kagoshima University Hospital between January 2000 and June 2015. Patients were classified as having overt or silent lupus nephritis based on urinary findings at renal biopsy. Silent lupus nephritis was identified in 55.5% (25/45) of cases. Of these, 6 (13.3%) were classified as class III nephritis, according to the International Society of Nephrology/Renal Pathology Society criteria. Decreased serum C3 levels were associated with the renal pathology classification for patients with silent but not with overt lupus nephritis. No differences in serum C4 levels were identified between cases of silent and overt lupus nephritis. Baseline renal biopsy is a critical component of the work-up of juvenile systemic lupus erythematosus as treatable renal pathology may be present in the absence of urinary signs. Serum C3 may be an important marker of the progression of silent lupus nephritis.

  7. EMG-Based Continuous and Simultaneous Estimation of Arm Kinematics in Able-Bodied Individuals and Stroke Survivors

    Directory of Open Access Journals (Sweden)

    Jie Liu

    2017-08-01

    Full Text Available Among the potential biological signals for human-machine interactions (brain, nerve, and muscle signals, electromyography (EMG widely used in clinical setting can be obtained non-invasively as motor commands to control movements. The aim of this study was to develop a model for continuous and simultaneous decoding of multi-joint dynamic arm movements based on multi-channel surface EMG signals crossing the joints, leading to application of myoelectrically controlled exoskeleton robots for upper-limb rehabilitation. Twenty subjects were recruited for this study including 10 stroke subjects and 10 able-bodied subjects. The subjects performed free arm reaching movements in the horizontal plane with an exoskeleton robot. The shoulder, elbow and wrist movements and surface EMG signals from six muscles crossing the three joints were recorded. A non-linear autoregressive exogenous (NARX model was developed to continuously decode the shoulder, elbow and wrist movements based solely on the EMG signals. The shoulder, elbow and wrist movements were decoded accurately based only on the EMG inputs in all the subjects, with the variance accounted for (VAF > 98% for all three joints. The proposed approach is capable of simultaneously and continuously decoding multi-joint movements of the human arm by taking into account the non-linear mappings between the muscle EMGs and joint movements, which may provide less effortful control of robotic exoskeletons for rehabilitation training of individuals with neurological disorders and arm impairment.

  8. The impact of shoulder abduction loading on EMG-based intention detection of hand opening and closing after stroke.

    Science.gov (United States)

    Lan, Yiyun; Yao, Jun; Dewald, Julius P A

    2011-01-01

    Many stroke patients are subject to limited hand functions in the paretic arm due to a significant loss of Corticospinal Tract (CST) fibers. A possible solution for this problem is to classify surface Electromyography (EMG) signals generated by hand movements and uses that to implement Functional Electrical Stimulation (FES). However, EMG usually presents an abnormal muscle coactivation pattern shown as increased coupling between muscles within and/or across joints after stroke. The resulting Abnormal Muscle Synergies (AMS) could make the classification more difficult in individuals with stroke, especially when attempting to use the hand together with other joints in the paretic arm. Therefore, this study is aimed at identifying the impact of AMS following stroke on EMG pattern recognition between two hand movements. In an effort to achieve this goal, 7 chronic hemiparetic chronic stroke subjects were recruited and asked to perform hand opening and closing movements at their paretic arm while being either fully supported by a virtual table or loaded with 25% of subject's maximum shoulder abduction force. During the execution of motor tasks EMG signals from the wrist flexors and extensors were simultaneously acquired. Our results showed that increased synergy-induced activity at elbow flexors, induced by increasing shoulder abduction loading, deteriorated the performance of EMG pattern recognition for hand opening for those with a weak grasp strength and EMG activity. However, no such impact on hand closing has yet been observed possibly because finger/wrist flexion is facilitated by the shoulder abduction-induced flexion synergy.

  9. EMG-Based Continuous and Simultaneous Estimation of Arm Kinematics in Able-Bodied Individuals and Stroke Survivors

    Science.gov (United States)

    Liu, Jie; Kang, Sang Hoon; Xu, Dali; Ren, Yupeng; Lee, Song Joo; Zhang, Li-Qun

    2017-01-01

    Among the potential biological signals for human-machine interactions (brain, nerve, and muscle signals), electromyography (EMG) widely used in clinical setting can be obtained non-invasively as motor commands to control movements. The aim of this study was to develop a model for continuous and simultaneous decoding of multi-joint dynamic arm movements based on multi-channel surface EMG signals crossing the joints, leading to application of myoelectrically controlled exoskeleton robots for upper-limb rehabilitation. Twenty subjects were recruited for this study including 10 stroke subjects and 10 able-bodied subjects. The subjects performed free arm reaching movements in the horizontal plane with an exoskeleton robot. The shoulder, elbow and wrist movements and surface EMG signals from six muscles crossing the three joints were recorded. A non-linear autoregressive exogenous (NARX) model was developed to continuously decode the shoulder, elbow and wrist movements based solely on the EMG signals. The shoulder, elbow and wrist movements were decoded accurately based only on the EMG inputs in all the subjects, with the variance accounted for (VAF) > 98% for all three joints. The proposed approach is capable of simultaneously and continuously decoding multi-joint movements of the human arm by taking into account the non-linear mappings between the muscle EMGs and joint movements, which may provide less effortful control of robotic exoskeletons for rehabilitation training of individuals with neurological disorders and arm impairment. PMID:28890685

  10. An EMG Interface for the Control of Motion and Compliance of a Supernumerary Robotic Finger

    Science.gov (United States)

    Hussain, Irfan; Spagnoletti, Giovanni; Salvietti, Gionata; Prattichizzo, Domenico

    2016-01-01

    In this paper, we propose a novel electromyographic (EMG) control interface to control motion and joints compliance of a supernumerary robotic finger. The supernumerary robotic fingers are a recently introduced class of wearable robotics that provides users additional robotic limbs in order to compensate or augment the existing abilities of natural limbs without substituting them. Since supernumerary robotic fingers are supposed to closely interact and perform actions in synergy with the human limbs, the control principles of extra finger should have similar behavior as human’s ones including the ability of regulating the compliance. So that, it is important to propose a control interface and to consider the actuators and sensing capabilities of the robotic extra finger compatible to implement stiffness regulation control techniques. We propose EMG interface and a control approach to regulate the compliance of the device through servo actuators. In particular, we use a commercial EMG armband for gesture recognition to be associated with the motion control of the robotic device and surface one channel EMG electrodes interface to regulate the compliance of the robotic device. We also present an updated version of a robotic extra finger where the adduction/abduction motion is realized through ball bearing and spur gears mechanism. We have validated the proposed interface with two sets of experiments related to compensation and augmentation. In the first set of experiments, different bimanual tasks have been performed with the help of the robotic device and simulating a paretic hand since this novel wearable system can be used to compensate the missing grasping abilities in chronic stroke patients. In the second set, the robotic extra finger is used to enlarge the workspace and manipulation capability of healthy hands. In both sets, the same EMG control interface has been used. The obtained results demonstrate that the proposed control interface is intuitive and can

  11. Muscle Performance Investigated With a Novel Smart Compression Garment Based on Pressure Sensor Force Myography and Its Validation Against EMG

    Directory of Open Access Journals (Sweden)

    Aaron Belbasis

    2018-04-01

    Full Text Available Muscle activity and fatigue performance parameters were obtained and compared between both a smart compression garment and the gold-standard, a surface electromyography (EMG system during high-speed cycling in seven participants. The smart compression garment, based on force myography (FMG, comprised of integrated pressure sensors that were sandwiched between skin and garment, located on five thigh muscles. The muscle activity was assessed by means of crank cycle diagrams (polar plots that displayed the muscle activity relative to the crank cycle. The fatigue was assessed by means of the median frequency of the power spectrum of the EMG signal; the fractal dimension (FD of the EMG signal; and the FD of the pressure signal. The smart compression garment returned performance parameters (muscle activity and fatigue comparable to the surface EMG. The major differences were that the EMG measured the electrical activity, whereas the pressure sensor measured the mechanical activity. As such, there was a phase shift between electrical and mechanical signals, with the electrical signals preceding the mechanical counterparts in most cases. This is specifically pronounced in high-speed cycling. The fatigue trend over the duration of the cycling exercise was clearly reflected in the fatigue parameters (FDs and median frequency obtained from pressure and EMG signals. The fatigue parameter of the pressure signal (FD showed a higher time dependency (R2 = 0.84 compared to the EMG signal. This reflects that the pressure signal puts more emphasis on the fatigue as a function of time rather than on the origin of fatigue (e.g., peripheral or central fatigue. In light of the high-speed activity results, caution should be exerted when using data obtained from EMG for biomechanical models. In contrast to EMG data, activity data obtained from FMG are considered more appropriate and accurate as an input for biomechanical modeling as they truly reflect the mechanical

  12. Function of cell-cycle regulators in predicting silent pituitary adenoma progression following surgical resection.

    Science.gov (United States)

    Park, Sung Hyun; Jang, Ji Hwan; Lee, Young Min; Kim, Joon Soo; Kim, Kyu Hong; Kim, Young Zoon

    2017-12-01

    The present study investigated the use of cell-cycle regulators for predicting the progression of silent pituitary adenoma (SPA) following surgical resection, via immunohistochemical analysis of tumor samples obtained by surgical resection. The medical records of patients diagnosed with SPA between January 2000 and December 2013 in the Samsung Changwon Hospital, Sungkyunkwan University School of Medicine (Changwon, South Korea) were reviewed. Immunohistochemical staining was performed on sections of the archived, paraffin-embedded tissues obtained by surgery, with all tissues stained for cell-cycle regulatory proteins p16, p15, p21, cyclin-dependent kinase (CDK)4, CDK6, retinoblastoma protein (pRb) and cyclin D1, as well as E3 ubiquitin-protein ligase mib1 (MIB-1) antigen and p53. The primary end-point was to investigate the expression of cell-cycle regulatory proteins in SPA. The secondary end-point was to estimate the progression-free survival of patients with SPA following surgical resection and to identify its association with the expression of cell-cycle regulatory proteins. Of the 127 SPA samples, 44 (34.6%) were from patients with progression during a mean follow-up period of 62.4 months (range, 24.2-118.9 months). Immunohistochemical overexpression was identified in 61 samples (48.0%) for p16, 38 samples (29.9%) for p15, 19 samples (15.0%) for p21, 49 samples (38.6%) for CDK4, 17 samples (13.4%) for CDK6, 57 samples (44.9%) for pRb and in 65 samples (51.2%) for cyclin D1. Multivariate analysis revealed that null cell adenoma [95% confidence interval (CI), 0.276-0.808], somatotroph SPAs (95% CI, 1.296-3.121), corticotroph SPAs (95% CI, 1.811-4.078), pluripotent SPAs (95% CI, 2.264-5.194), decreased expression of p16 (95% CI, 2.724-5.588), overexpression of pRb (95% CI, 2.557-5.333), cyclin D1 (95% CI, 1.894-4.122) and MIB-1 (95% CI, 1.561-4.133), increased mitotic index (95% CI, 1.228-4.079), increased p53 expression (95% CI, 1.307-4.065) and invasion into

  13. Problem Periods

    Science.gov (United States)

    ... during your menstrual cycle Premenstrual syndrome (PMS) Problem periods Getting enough sleep Looking and feeling your best Fighting germs Your sexuality What are STDs and STIs? Seeing the doctor Quizzes Links to more information on girls' bodies girlshealth glossary girlshealth.gov home http://www.girlshealth.gov/ Home ... Problem periods It’s common to have ...

  14. Typical and atypical (silent) subacute thyroiditis in a wife and husband

    International Nuclear Information System (INIS)

    Morrison, J.; Caplan, R.H.

    1978-01-01

    Typical subacute thyroiditis was diagnosed in a woman. Three weeks later, signs and symptoms of hyperthyroidism developed in her husband. Although the right lobe of his thyroid gland was slightly enlarged, pain and tenderness were absent throughout the course of his illness. The free thyroxine equivalent (FTE) value and the sedimentation rate were elevated; the low uptake of radioactive iodine by the thyroid gland was consistent with ''silent'' subacute thyroiditis. We postulate that a common etiology, probably viral, was operative in both cases. Nine additional cases of hyperthyroidism with low levels of thyroidal uptake of radioactive iodine are described. The thyroid glands of these patients were normal or slightly enlarged. Antithyroglobulin antibody levels determined in seven patients were not substantially elevated. The clinical course of these patients was characteristic of ''silent'' subacute thyroiditis. Although the origin of the syndrome remains unclear, the disease is self-limited and therapy, if any, is supportive

  15. When Spiders Bite: The Use, Misuse, and Unintended Consequences of ``Silent Information''

    Science.gov (United States)

    Keenan, Thomas P.

    Spiders are the workhorses of the Internet, silently (and almost invisibly) traversing the online world, 24 hours a day, looking for information that may be of interest to someone. It is being archived, organized, and sold, usually without the knowledge or consent of the subject of the information. Serious consequences are starting to appear, such as the withdrawal of three candidates from the October 2008 Canadian Federal election because of previous online indiscretions. While these were intentional if mis-guided postings, information made available without our consent can have equally devastating effects. Advances in artificial intelligence, as well as the increasing tendency to post more and more information, such as videos, will make the gathering, aggregation, and republishing of this “silent information” an increasingly important issue that must be addressed from the technical, social, ethical and legal perspectives, and sooner rather than later.

  16. The Effectiveness of FES-Evoked EMG Potentials to Assess Muscle Force and Fatigue in Individuals with Spinal Cord Injury

    Directory of Open Access Journals (Sweden)

    Morufu Olusola Ibitoye

    2014-07-01

    Full Text Available The evoked electromyographic signal (eEMG potential is the standard index used to monitor both electrical changes within the motor unit during muscular activity and the electrical patterns during evoked contraction. However, technical and physiological limitations often preclude the acquisition and analysis of the signal especially during functional electrical stimulation (FES-evoked contractions. Hence, an accurate quantification of the relationship between the eEMG potential and FES-evoked muscle response remains elusive and continues to attract the attention of researchers due to its potential application in the fields of biomechanics, muscle physiology, and rehabilitation science. We conducted a systematic review to examine the effectiveness of eEMG potentials to assess muscle force and fatigue, particularly as a biofeedback descriptor of FES-evoked contractions in individuals with spinal cord injury. At the outset, 2867 citations were identified and, finally, fifty-nine trials met the inclusion criteria. Four hypotheses were proposed and evaluated to inform this review. The results showed that eEMG is effective at quantifying muscle force and fatigue during isometric contraction, but may not be effective during dynamic contractions including cycling and stepping. Positive correlation of up to r = 0.90 (p < 0.05 between the decline in the peak-to-peak amplitude of the eEMG and the decline in the force output during fatiguing isometric contractions has been reported. In the available prediction models, the performance index of the eEMG signal to estimate the generated muscle force ranged from 3.8% to 34% for 18 s to 70 s ahead of the actual muscle force generation. The strength and inherent limitations of the eEMG signal to assess muscle force and fatigue were evident from our findings with implications in clinical management of spinal cord injury (SCI population.

  17. An EMG-driven biomechanical model that accounts for the decrease in moment generation capacity during a dynamic fatigued condition.

    Science.gov (United States)

    Rao, Guillaume; Berton, Eric; Amarantini, David; Vigouroux, Laurent; Buchanan, Thomas S

    2010-07-01

    Although it is well known that fatigue can greatly reduce muscle forces, it is not generally included in biomechanical models. The aim of the present study was to develop an electromyographic-driven (EMG-driven) biomechanical model to estimate the contributions of flexor and extensor muscle groups to the net joint moment during a nonisokinetic functional movement (squat exercise) performed in nonfatigued and in fatigued conditions. A methodology that aims at balancing the decreased muscle moment production capacity following fatigue was developed. During an isometric fatigue session, a linear regression was created linking the decrease in force production capacity of the muscle (normalized force/EMG ratio) to the EMG mean frequency. Using the decrease in mean frequency estimated through wavelet transforms between dynamic squats performed before and after the fatigue session as input to the previous linear regression, a coefficient accounting for the presence of fatigue in the quadriceps group was computed. This coefficient was used to constrain the moment production capacity of the fatigued muscle group within an EMG-driven optimization model dedicated to estimate the contributions of the knee flexor and extensor muscle groups to the net joint moment. During squats, our results showed significant increases in the EMG amplitudes with fatigue (+23.27% in average) while the outputs of the EMG-driven model were similar. The modifications of the EMG amplitudes following fatigue were successfully taken into account while estimating the contributions of the flexor and extensor muscle groups to the net joint moment. These results demonstrated that the new procedure was able to estimate the decrease in moment production capacity of the fatigued muscle group.

  18. Association of the Bedside Shivering Assessment Scale and derived EMG power during therapeutic hypothermia in survivors of cardiac arrest.

    Science.gov (United States)

    May, Teresa; Seder, David B; Fraser, Gilles L; Tu, Chunhao; McCrum, Barbara; Lucas, Lee; Riker, Richard R

    2011-08-01

    Shivering during therapeutic hypothermia (TH) after cardiac arrest (CA) is common, but the optimal means of detection and appropriate threshold for treatment are not established. In an effort to develop a quantitative, continuous tool to measure shivering, we hypothesized that continuous derived electromyography (dEMG) power detected by the Aspect A2000 or VISTA monitor would correlate with the intermittent Bedside Shivering Assessment Scale (BSAS) performed by nurses. Among 38 patients treated with TH after CA, 853 hourly BSAS measurements were compared to dEMG power measured every minute by a frontal surface electrode. Patients received intermittent vecuronium by protocol to treat clinically recognized shivering (BSAS>0). Mean dEMG power in decibels (dB) was determined for the hour preceding each BSAS measurement. dEMG and BSAS were compared using ANOVA. The median dEMG power for a BSAS score of 0 (no shivering) was 27 dB (IQR 26-31 dB), BSAS 1 was 30.5 dB (IQR 28-35 dB), BSAS 2 was 34 dB (IQR 30-38 dB), and BSAS 3 was 34.5 dB (IQR 32-44.25). The dEMG for BSAS≥1 (shivering) was statistically different from BSAS 0 (pShivering Assessment Scale. Given its continuous trending of dEMG power, the A2000 or VISTA may be a useful research and clinical tool for objectively monitoring shivering. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  19. The effectiveness of FES-evoked EMG potentials to assess muscle force and fatigue in individuals with spinal cord injury.

    Science.gov (United States)

    Ibitoye, Morufu Olusola; Estigoni, Eduardo H; Hamzaid, Nur Azah; Wahab, Ahmad Khairi Abdul; Davis, Glen M

    2014-07-14

    The evoked electromyographic signal (eEMG) potential is the standard index used to monitor both electrical changes within the motor unit during muscular activity and the electrical patterns during evoked contraction. However, technical and physiological limitations often preclude the acquisition and analysis of the signal especially during functional electrical stimulation (FES)-evoked contractions. Hence, an accurate quantification of the relationship between the eEMG potential and FES-evoked muscle response remains elusive and continues to attract the attention of researchers due to its potential application in the fields of biomechanics, muscle physiology, and rehabilitation science. We conducted a systematic review to examine the effectiveness of eEMG potentials to assess muscle force and fatigue, particularly as a biofeedback descriptor of FES-evoked contractions in individuals with spinal cord injury. At the outset, 2867 citations were identified and, finally, fifty-nine trials met the inclusion criteria. Four hypotheses were proposed and evaluated to inform this review. The results showed that eEMG is effective at quantifying muscle force and fatigue during isometric contraction, but may not be effective during dynamic contractions including cycling and stepping. Positive correlation of up to r = 0.90 (p peak-to-peak amplitude of the eEMG and the decline in the force output during fatiguing isometric contractions has been reported. In the available prediction models, the performance index of the eEMG signal to estimate the generated muscle force ranged from 3.8% to 34% for 18 s to 70 s ahead of the actual muscle force generation. The strength and inherent limitations of the eEMG signal to assess muscle force and fatigue were evident from our findings with implications in clinical management of spinal cord injury (SCI) population.

  20. Historiske perioder

    DEFF Research Database (Denmark)

    2017-01-01

    For at forstå fortiden og fortællingerne om den, må vi skabe en form for orden og systematik. Her spiller inddelingen af fortiden i historiske perioder en afgørende rolle – og historiske perioder er da også et kompetencemål efter 6. klasse. Videoen diskuterer forskellige principper...... for periodisering. Kronologi og sammenhænge hænger naturligt sammen med historiske perioder. Videoen handler også om forståelser og brug af synkrone og diakrone sammenhænge i faget....

  1. Revascularization compared to medical treatment in patients with silent vs. symptomatic residual ischemia after thrombolyzed myocardial infarction

    DEFF Research Database (Denmark)

    Madsen, Jan K; Nielsen, Torsten T; Grande, Peer

    2007-01-01

    .3-7.2%, p unstable angina in symptomatic (44.5-27.6%, p ... reinfarction and hospital admissions for unstable angina in thrombolyzed post-AMI patients with silent as well as symptomatic exercise-induced ischemia....

  2. Silent hepatic lesions detected with computed tomography in aplastic anemia patients administered androgens for a long period

    International Nuclear Information System (INIS)

    Yamagishi, Morihisa; Hiraoka, Atsunobu; Uchino, Haruto.

    1982-01-01

    Macroscopic liver lesions were investigated with the use of computed tomography (CT) and radionuclide imaging (RN) in 15 aplastic anemia patients who were administered anabolic steroids for over one year and who showed no apparent physical and biochemical sign of liver tumor. In 3 patients, CT scans showed radiolucent areas in the liver. Contrast enhancements revealed these lesions to be well vascularized, suggesting they were not cysts but probably tumors. RN imaging could not demonstrate any definite space occupying lesions. Total dose of AS administered to each of the three patients exceeded 30,000 mg. It was felt that attention should be paid to the possible development of hepatic tumor when the dose of AS administered exceeds 30,000 mg. (author)

  3. Silent hepatic lesions detected with computed tomography in aplastic anemia patients administered androgens for a long period

    Energy Technology Data Exchange (ETDEWEB)

    Yamagishi, Morihisa (Shiga Univ., Otsu (Japan)); Hiraoka, Atsumobu; Uchino, Haruto

    1982-07-01

    Macroscopic liver lesions were investigated with the use of computed tomography (CT) and radionuclide imaging (RN) in 15 aplastic anemia patients who were administered anabolic steroids for over one year and who showed no apparent physical and biochemical sign of liver tumor. In 3 patients, CT scans showed radiolucent areas in the liver. Contrast enhancements revealed these lesions to be well vascularized, suggesting they were not cysts but probably tumors. RN imaging could not demonstrate any definite space occupying lesions. Total dose of AS administered to each of the three patients exceeded 30,000 mg. It was felt that attention should be paid to the possible development of hepatic tumor when the dose of AS administered exceeds 30,000 mg.

  4. Effects of DBS, premotor rTMS, and levodopa on motor function and silent period in advanced Parkinson's disease

    DEFF Research Database (Denmark)

    Bäumer, Tobias; Hidding, Ute; Hamel, Wolfgang

    2009-01-01

    Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is a widely used and highly effective treatment for patients with advanced Parkinson's disease (PD). Repetitive TMS (rTMS) applied to motor cortical areas has also been shown to improve symptoms in PD and modulate motor cortical excita...

  5. [Value of left atrial dilation in the diagnosis of silent myocardial ischemia in diabetes mellitus patients].

    Science.gov (United States)

    Pereira, B; Morel, O; Blondet, C; Grunebaum, L; Goichot, B; Merrien, N; Jesel, L; Faure, A; Trinh, A; Vinzio, S; Constantinesco, A; Bareiss, P

    2008-08-01

    Accelerated atherothrombosis is a common feature in diabetes mellitus patients (DM), which can be related to abnormalities in vascular cell apoptosis and activation leading to the release of procoagulant microparticles (MPs). In DM patients, we hypothesized that circulating levels of biomarkers involved in atherothrombosis processes as well as cardiac and carotid echocardiography variables could be useful in the detection of silent myocardial diagnosed by myocardial perfusion imaging. We investigated, in 55 patients with diabetes (mean age 62+/-10 years) and 15 nondiabetics (46+/-14 years) patients the prevalence of silent myocardial ischemia (SMI) detected by a treadmill exercise or dipyridamole (99m)Tc-sestamibi stress test. Echocardiographic and -carotid variables were obtained using standardized methods. Biomarkers assessing endothelial apoptosis or activation (CD31+-MPs, CD62+-MPs, VCAM-1), inflammatory status (CD11a +/- MPs, MCP-1, CRP), platelet activation (GPIb+/-MPs, CD40-L, P-selectin, GPV) ventricular stretch (BNP) were measured in the plasma. SMI was diagnosed in 23/55 (42%) diabetics patients and in 3/15 (20%) nondiabetics patients. Enhanced inflammatory status and leukocyte damage (CD11a+-MPs) were evidenced in diabetic patients. Within the diabetic population, biomarkers levels of atherothrombosis were not significantly associated to the detection of SMI. In multivariable analyses adjusted for LV hypertophy, left atrial surface (LA) remained independent predictor of silent myocardial ischemia (OR 4.14; IC [1.7-16.13]; P=0.039). In diabetes mellitus patients, LA surface independently predicted silent myocardial ischemia after adjustment for established echocardiographic, and inflammatory risk factors. This simple measure of LA dilation could be helpful in the identification of diabetes mellitus patients at heightened cardiovascular risk.

  6. Survey Results : Attitude toward Sustained Silent Reading and Extensive Reading outside the Classroom

    OpenAIRE

    桜井, 延子

    2014-01-01

     This paper discusses the findings of the questionnaire surveys on Sustained Silent Reading (SSR) and extensive reading (ER) outside the classroom together with the implication of the amount of reading that participants achieved for one academic year. Thirty-seven first-year university students experienced SSR for ten minutes every lesson, filling out record sheets. As homework, they were expected to read and take quizzes on Moodle Reader. The records of the number of words read showed that t...

  7. Silent reading of music and texts; eye movements and integrative reading mechanisms

    OpenAIRE

    Cara, Michel André; Gómez, Gabriela

    2016-01-01

    This study investigates to what extent structural units defined by physical and structural markers elicit different eye movement patterns when reading contrasting stimuli of music and verbal texts. Eye movements were tracked and compared in ten musicians undergoing Bachelor’s degrees as they silently read six texts and six pieces of music for piano: the music was contemporary, in modal style, and the style of the texts was informative and literary. Participants were music students at Universi...

  8. Direct speech quotations promote low relative-clause attachment in silent reading of English.

    Science.gov (United States)

    Yao, Bo; Scheepers, Christoph

    2018-03-31

    The implicit prosody hypothesis (Fodor, 1998, 2002) proposes that silent reading coincides with a default, implicit form of prosody to facilitate sentence processing. Recent research demonstrated that a more vivid form of implicit prosody is mentally simulated during silent reading of direct speech quotations (e.g., Mary said, "This dress is beautiful"), with neural and behavioural consequences (e.g., Yao, Belin, & Scheepers, 2011; Yao & Scheepers, 2011). Here, we explored the relation between 'default' and 'simulated' implicit prosody in the context of relative-clause (RC) attachment in English. Apart from confirming a general low RC-attachment preference in both production (Experiment 1) and comprehension (Experiments 2 and 3), we found that during written sentence completion (Experiment 1) or when reading silently (Experiment 2), the low RC-attachment preference was reliably enhanced when the critical sentences were embedded in direct speech quotations as compared to indirect speech or narrative sentences. However, when reading aloud (Experiment 3), direct speech did not enhance the general low RC-attachment preference. The results from Experiments 1 and 2 suggest a quantitative boost to implicit prosody (via auditory perceptual simulation) during silent production/comprehension of direct speech. By contrast, when reading aloud (Experiment 3), prosody becomes equally salient across conditions due to its explicit nature; indirect speech and narrative sentences thus become as susceptible to prosody-induced syntactic biases as direct speech. The present findings suggest a shared cognitive basis between default implicit prosody and simulated implicit prosody, providing a new platform for studying the effects of implicit prosody on sentence processing. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Reduced Maximum Pitch Elevation Predicts Silent Aspiration of Small Liquid Volumes in Stroke Patients

    Directory of Open Access Journals (Sweden)

    Akila Theyyar Rajappa

    2017-08-01

    Full Text Available Background and purposePreliminary evidence has shown that reduced ability to maximally raise vocal pitch correlates with the occurrence of aspiration (i.e., airway invasion by food or liquid. However, it is unclear if this simple task can be used as a reliable predictor of aspiration in stroke patients. Our aim was to examine whether maximum vocal pitch elevation predicted airway invasion and dysphagia in stroke.MethodsForty-five consecutive stroke patients (<1 month poststroke at a rehabilitation setting participated in a videofluoroscopic swallow study and two maximum vocal pitch elevation tasks. Maximum pitch was evaluated acoustically [maximum fundamental frequency (max F0] and perceptually. Swallowing safety was rated using the Penetration/Aspiration Scale and swallowing performance was assessed using components of the Modified Barium Swallow Impairment Profile (MBSImPTM©. Data were analyzed using simple regression and receiver operating characteristics curves to test the sensitivity and specificity of max F0 in predicting aspiration. Correlations between max F0 and MBSImP variables were also examined.ResultsMax F0 predicted silent aspiration of small liquid volumes with 80% sensitivity and 65% specificity (p = 0.023; area under the curve: 0.815; cutoff value of 359.03 Hz. Max F0 did not predict non-silent aspiration or penetration in this sample and did not significantly correlate with MBSImP variables. Furthermore, all participants who aspirated silently on small liquid volumes (11% of sample had suffered cortical or subcortical lesions.ConclusionIn stroke patients (<1 month poststroke, reduced maximum pitch elevation predicts silent aspiration of small liquid volumes with high sensitivity and moderate specificity. Future large-scale studies focusing on further validating this finding and exploring the value of this simple and non-invasive tool as part of a dysphagia screening are warranted.

  10. Psychosis and Silent Celiac Disease in a Down Syndrome Adolescent: A Case Report

    Directory of Open Access Journals (Sweden)

    Amparo Morant

    2011-01-01

    Full Text Available Celiac disease is an autoimmune systemic disorder. It presents gastrointestinal and nongastrointestinal manifestations as well as associated conditions. We report a 16-year-old Down syndrome girl who presented psychosis symptomatology, and she was diagnosed as having silent celiac disease. Olanzapine treatment and gluten-free diet were satisfactory. It is necessary to consider celiac disease in Down syndrome patients with psychiatric symptoms, mainly psychotic symptomatology.

  11. Gated single photon emission computer tomography for the detection of silent myocardial ischemia

    International Nuclear Information System (INIS)

    Pena Q, Yamile; Coca P, Marco Antonio; Batista C, Juan Felipe; Fernandez-Britto, Jose; Quesada P, Rodobaldo; Pena C; Andria

    2009-01-01

    Background: Asymptomatic patients with severe coronary atherosclerosis may have a normal resting electrocardiogram and stress test. Aim: To assess the yield of Gated Single Photon Emission Computer Tomography (SPECT) for the screening of silent myocardial ischemia in type 2 diabetic patients. Material and methods: Electrocardiogram, stress test and gated-SPECT were performed on 102 type 2 diabetic patients aged 60 ± 8 years without cardiovascular symptoms. All subjects were also subjected to a coronary angiography, whose results were used as gold standard. Results: Gated-SPECT showed myocardial ischemia on 26.5% of studied patients. The sensibility, specificity, accuracy, positive predictive value and negative predictive value were 92.3%, 96%, 95%, 88.8%, 97.3%, respectively. In four and six patients ischemia was detected on resting electrocardiogram and stress test, respectively. Eighty percent of patients with doubtful resting electrocardiogram results and 70% with a doubtful stress test had a silent myocardial ischemia detected by gated-SPECT. There was a good agreement between the results of gated-SPECT and coronary angiography (k =0.873). Conclusions: Gated-SPECT was an useful tool for the screening of silent myocardial ischemia

  12. Detecting Silent Data Corruption for Extreme-Scale Applications through Data Mining

    Energy Technology Data Exchange (ETDEWEB)

    Bautista-Gomez, Leonardo [Argonne National Lab. (ANL), Argonne, IL (United States); Cappello, Franck [Argonne National Lab. (ANL), Argonne, IL (United States)

    2014-01-16

    Supercomputers allow scientists to study natural phenomena by means of computer simulations. Next-generation machines are expected to have more components and, at the same time, consume several times less energy per operation. These trends are pushing supercomputer construction to the limits of miniaturization and energy-saving strategies. Consequently, the number of soft errors is expected to increase dramatically in the coming years. While mechanisms are in place to correct or at least detect some soft errors, a significant percentage of those errors pass unnoticed by the hardware. Such silent errors are extremely damaging because they can make applications silently produce wrong results. In this work we propose a technique that leverages certain properties of high-performance computing applications in order to detect silent errors at the application level. Our technique detects corruption solely based on the behavior of the application datasets and is completely application-agnostic. We propose multiple corruption detectors, and we couple them to work together in a fashion transparent to the user. We demonstrate that this strategy can detect the majority of the corruptions, while incurring negligible overhead. We show that with the help of these detectors, applications can have up to 80% of coverage against data corruption.

  13. Clinically silent Alzheimer's and vascular pathologies influence brain networks supporting executive function in healthy older adults.

    Science.gov (United States)

    Gold, Brian T; Brown, Christopher A; Hakun, Jonathan G; Shaw, Leslie M; Trojanowski, John Q; Smith, Charles D

    2017-10-01

    Aging is associated with declines in executive function. We examined how executive functional brain systems are influenced by clinically silent Alzheimer's disease (AD) pathology and cerebral white-matter hyperintensities (WMHs). Twenty-nine younger adults and 34 cognitively normal older adults completed a working memory paradigm while functional magnetic resonance imaging was performed. Older adults further underwent lumbar cerebrospinal fluid draw for the assessment of AD pathology and FLAIR imaging for the assessment of WMHs. Accurate working memory performance in both age groups was associated with high fronto-visual functional connectivity (fC). However, in older adults, higher expression of fronto-visual fC was linked with lower levels of clinically silent AD pathology. In addition, AD pathology and WMHs were each independently related to increased functional magnetic resonance imaging response in the left dorsolateral prefrontal cortex, a pattern associated with slower task performance. Our results suggest that clinically silent AD pathology is related to lower expression of a fronto-visual fC pattern supporting executive task performance. Further, our findings suggest that AD pathology and WMHs appear to be linked with ineffective increases in frontal response in CN older adults. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Silent reading of direct versus indirect speech activates voice-selective areas in the auditory cortex.

    Science.gov (United States)

    Yao, Bo; Belin, Pascal; Scheepers, Christoph

    2011-10-01

    In human communication, direct speech (e.g., Mary said: "I'm hungry") is perceived to be more vivid than indirect speech (e.g., Mary said [that] she was hungry). However, for silent reading, the representational consequences of this distinction are still unclear. Although many of us share the intuition of an "inner voice," particularly during silent reading of direct speech statements in text, there has been little direct empirical confirmation of this experience so far. Combining fMRI with eye tracking in human volunteers, we show that silent reading of direct versus indirect speech engenders differential brain activation in voice-selective areas of the auditory cortex. This suggests that readers are indeed more likely to engage in perceptual simulations (or spontaneous imagery) of the reported speaker's voice when reading direct speech as opposed to meaning-equivalent indirect speech statements as part of a more vivid representation of the former. Our results may be interpreted in line with embodied cognition and form a starting point for more sophisticated interdisciplinary research on the nature of auditory mental simulation during reading.

  15. Identification of sites required for repression of a silent mating type locus in yeast.

    Science.gov (United States)

    Feldman, J B; Hicks, J B; Broach, J R

    1984-10-05

    There are three loci in the yeast Saccharomyces, each containing one of two possible genetic elements that can determine cell type. At one of these loci, MAT, this information is expressed to establish the mating type of the cell. At the other two loci, HML and HMR, this same information is phenotypically and transcriptionally silent, even though a large amount of identical sequence flanks MAT, HML and HMR coding regions. Transcriptional repression of HML and HMR requires the trans active gene products of four loci, designated variously as MAR or SIR, that are unlinked to each other or to MAT, HML or HMR. We have examined the phenotypic expression of a cloned, plasmid-borne copy of HML and of various deletion and insertion derivatives of this plasmid following their reintroduction into Mar+/Sir+ yeast strains. From these data, we have identified two sites flanking the locus, both of which are required for MAR/SIR repression of the locus. In addition, we demonstrate that each of these sites promotes autonomous replication in yeast. Abraham et al. (1984) have presented evidence demonstrating that a similar regulatory structure exists at the other silent locus, HMR. From an analysis of the sequences of these four regulatory sites, we have identified several specific sequences that may be involved in mediating repression of these loci and in promoting replication in yeast. These results are discussed in the context of potential models for the mechanism of regulation of the silent mating type loci.

  16. The prevalence and the clinical characteristics of silent myocardial ischemia detected by stress thallium scintigraphy

    International Nuclear Information System (INIS)

    Matsuo, Hitoshi; Watanabe, Sachiro; Nishida, Yoshio

    1992-01-01

    The prevalence of silent myocardial ischemia was retrospectively assessed in a group of 100 consecutive patients with angiographically proved coronary artery disease, and diagnostic ECG, by symptom-limited exercise thallium-201 scintigraphy. Twenty-four patients had no evidence of ischemia despite adequate exercise level. So among 76 patients with exercise induced ischemia, only 33 patients (43%) stopped exercise due to anginal pain (symptomatic ischemia: Group 3). And 43 patients with asymptomatic ischemia composed of 23 patients (30%) with ECG change (Group 2B) and 20 patients (26%) without ECG change (Group 2A). Patients background including the history of old myocardial infarction and diabetes mellitus, were similar among Group 2A, 2B, and Group 3. Our Major observation was that the extent and severity of quantified SPECT perfusion defects was nearly identified between 3 groups. Thus in this study group, there was a rather high prevalence rate of silent ischemia (57%) by exercise thallium-201 criteria. Patients with silent ischemia, associated with positive and negative exercise ECG findings, and those with exercise angina had similar background and comparable amount of jeopardized myocardium. (author)

  17. Silent and a audible stereotypes: The constitution of "ethnic character" in Serbian epic poetry

    Directory of Open Access Journals (Sweden)

    Đerić Gordana

    2005-01-01

    Full Text Available The article deals with the explanatory relevance of the concept of stereotype in one of its original meanings - as a "mental image". This meaning of the term is the starting point for further differentiations, such as: between linguistic and behavioral stereotypes (in the sense of nonverbal, expected responses; universal and particular stereotypes; self representative and introspective stereotypes; permanent and contemporary stereotypes; and finally, what is most important for our purposes, the difference between silent and audible stereotypes. These distinctions, along with the functions of stereotype, are discussed in the first part of the paper. In the second part, the relations of silent and audible stereotypes are tested against the introduction of "innovative vocabularies" in popular lore. In other words, the explanatory power of this differentiation is checked through an analysis of unconventional motives in Serbian epic poems. The goal of the argument is to clarify the procedure of self creation of masculinity as a relevant feature of the "national character" through "tactic games" of silent and audible stereotypes. The examination of these "poetic strategies" serves a twofold purpose: to illustrate the process of constructing particular features of the "ethno type", on one hand, and to check hypotheses and models which are taken as frameworks in analyzing stereotypes, on the other.

  18. Perception of silent and motionless prey on vegetation by echolocation in the gleaning bat Micronycteris microtis.

    Science.gov (United States)

    Geipel, Inga; Jung, Kirsten; Kalko, Elisabeth K V

    2013-03-07

    Gleaning insectivorous bats that forage by using echolocation within dense forest vegetation face the sensorial challenge of acoustic masking effects. Active perception of silent and motionless prey in acoustically cluttered environments by echolocation alone has thus been regarded impossible. The gleaning insectivorous bat Micronycteris microtis however, forages in dense understory vegetation and preys on insects, including dragonflies, which rest silent and motionless on vegetation. From behavioural experiments, we show that M. microtis uses echolocation as the sole sensorial modality for successful prey perception within a complex acoustic environment. All individuals performed a stereotypical three-dimensional hovering flight in front of prey items, while continuously emitting short, multi-harmonic, broadband echolocation calls. We observed a high precision in target localization which suggests that M. microtis perceives a detailed acoustic image of the prey based on shape, surface structure and material. Our experiments provide, to our knowledge, the first evidence that a gleaning bat uses echolocation alone for successful detection, classification and precise localization of silent and motionless prey in acoustic clutter. Overall, we conclude that the three-dimensional hovering flight of M. microtis in combination with a frequent emission of short, high-frequency echolocation calls is the key for active prey perception in acoustically highly cluttered environments.

  19. Decoding mechanisms by which silent codon changes influence protein biogenesis and function.

    Science.gov (United States)

    Bali, Vedrana; Bebok, Zsuzsanna

    2015-07-01

    Synonymous codon usage has been a focus of investigation since the discovery of the genetic code and its redundancy. The occurrences of synonymous codons vary between species and within genes of the same genome, known as codon usage bias. Today, bioinformatics and experimental data allow us to compose a global view of the mechanisms by which the redundancy of the genetic code contributes to the complexity of biological systems from affecting survival in prokaryotes, to fine tuning the structure and function of proteins in higher eukaryotes. Studies analyzing the consequences of synonymous codon changes in different organisms have revealed that they impact nucleic acid stability, protein levels, structure and function without altering amino acid sequence. As such, synonymous mutations inevitably contribute to the pathogenesis of complex human diseases. Yet, fundamental questions remain unresolved regarding the impact of silent mutations in human disorders. In the present review we describe developments in this area concentrating on mechanisms by which synonymous mutations may affect protein function and human health. This synopsis illustrates the significance of synonymous mutations in disease pathogenesis. We review the different steps of gene expression affected by silent mutations, and assess the benefits and possible harmful effects of codon optimization applied in the development of therapeutic biologics. Understanding mechanisms by which synonymous mutations contribute to complex diseases such as cancer, neurodegeneration and genetic disorders, including the limitations of codon-optimized biologics, provides insight concerning interpretation of silent variants and future molecular therapies. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Silent cerebral infarction, income, and grade retention among students with sickle cell anemia

    Science.gov (United States)

    King, Allison A.; Rodeghier, Mark J.; Panepinto, Julie Ann; Strouse, John J.; Casella, James F.; Quinn, Charles T.; Dowling, Michael M.; Sarnaik, Sharada A.; Thompson, Alexis A.; Woods, Gerald M.; Minniti, Caterina P.; Redding-Lallinger, Rupa C.; Kirby-Allen, Melanie; Kirkham, Fenella J.; McKinstry, Robert; Noetzel, Michael J.; White, Desiree A.; Kwiatkowski, Janet K.; Howard, Thomas H.; Kalinyak, Karen A.; Inusa, Baba; Rhodes, Melissa M.; Heiny, Mark E.; Fuh, Ben; Fixler, Jason M.; Gordon, Mae O.; DeBaun, Michael R.

    2014-01-01

    Children with sickle cell anemia have a higher-than-expected prevalence of poor educational attainment. We test two key hypotheses about educational attainment among students with sickle cell anemia, as measured by grade retention and use of special education services: (1) lower household per capita income is associated with lower educational attainment; (2) the presence of a silent cerebral infarct is associated with lower educational attainment. We conducted a multicenter, cross-sectional study of cases from 22 U.S. sites included in the Silent Infarct Transfusion Trial. During screening, parents completed a questionnaire that included sociodemographic information and details of their child’s academic status. Of 835 students, 670 were evaluable; 536 had data on all covariates and were used for analysis. The students’ mean age was 9.4 years (range: 5–15) with 52.2% male; 17.5% of students were retained one grade level and 18.3% received special education services. A multiple variable logistic regression model identified that lower household per capita income (odds ratio [OR] of quartile 1 = 6.36, OR of quartile 2 = 4.7, OR of quartile 3 = 3.87; P = 0.001 for linear trend), age (OR = 1.3; P sickle cell anemia, household per capita income is associated with grade retention, whereas the presence of a silent cerebral infarct is not. Future educational interventions will need to address both the medical and socioeconomic issues that affect students with sickle cell anemia. PMID:25042018

  1. The Assessment of Muscular Effort, Fatigue, and Physiological Adaptation Using EMG and Wavelet Analysis.

    Science.gov (United States)

    Graham, Ryan B; Wachowiak, Mark P; Gurd, Brendon J

    2015-01-01

    Peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1α) is a transcription factor co-activator that helps coordinate mitochondrial biogenesis within skeletal muscle following exercise. While evidence gleaned from submaximal exercise suggests that intracellular pathways associated with the activation of PGC-1α, as well as the expression of PGC-1α itself are activated to a greater extent following higher intensities of exercise, we have recently shown that this effect does not extend to supramaximal exercise, despite corresponding increases in muscle activation amplitude measured with electromyography (EMG). Spectral analyses of EMG data may provide a more in-depth assessment of changes in muscle electrophysiology occurring across different exercise intensities, and therefore the goal of the present study was to apply continuous wavelet transforms (CWTs) to our previous data to comprehensively evaluate: 1) differences in muscle electrophysiological properties at different exercise intensities (i.e. 73%, 100%, and 133% of peak aerobic power), and 2) muscular effort and fatigue across a single interval of exercise at each intensity, in an attempt to shed mechanistic insight into our previous observations that the increase in PGC-1α is dissociated from exercise intensity following supramaximal exercise. In general, the CWTs revealed that localized muscle fatigue was only greater than the 73% condition in the 133% exercise intensity condition, which directly matched the work rate results. Specifically, there were greater drop-offs in frequency, larger changes in burst power, as well as greater changes in burst area under this intensity, which were already observable during the first interval. As a whole, the results from the present study suggest that supramaximal exercise causes extreme localized muscular fatigue, and it is possible that the blunted PGC-1α effects observed in our previous study are the result of fatigue-associated increases in

  2. The Assessment of Muscular Effort, Fatigue, and Physiological Adaptation Using EMG and Wavelet Analysis.

    Directory of Open Access Journals (Sweden)

    Ryan B Graham

    Full Text Available Peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1α is a transcription factor co-activator that helps coordinate mitochondrial biogenesis within skeletal muscle following exercise. While evidence gleaned from submaximal exercise suggests that intracellular pathways associated with the activation of PGC-1α, as well as the expression of PGC-1α itself are activated to a greater extent following higher intensities of exercise, we have recently shown that this effect does not extend to supramaximal exercise, despite corresponding increases in muscle activation amplitude measured with electromyography (EMG. Spectral analyses of EMG data may provide a more in-depth assessment of changes in muscle electrophysiology occurring across different exercise intensities, and therefore the goal of the present study was to apply continuous wavelet transforms (CWTs to our previous data to comprehensively evaluate: 1 differences in muscle electrophysiological properties at different exercise intensities (i.e. 73%, 100%, and 133% of peak aerobic power, and 2 muscular effort and fatigue across a single interval of exercise at each intensity, in an attempt to shed mechanistic insight into our previous observations that the increase in PGC-1α is dissociated from exercise intensity following supramaximal exercise. In general, the CWTs revealed that localized muscle fatigue was only greater than the 73% condition in the 133% exercise intensity condition, which directly matched the work rate results. Specifically, there were greater drop-offs in frequency, larger changes in burst power, as well as greater changes in burst area under this intensity, which were already observable during the first interval. As a whole, the results from the present study suggest that supramaximal exercise causes extreme localized muscular fatigue, and it is possible that the blunted PGC-1α effects observed in our previous study are the result of fatigue

  3. Surface EMG and intra-socket force measurement to control a prosthetic device

    Science.gov (United States)

    Sanford, Joe; Patterson, Rita; Popa, Dan

    2015-06-01

    Surface electromyography (SEMG) has been shown to be a robust and reliable interaction method allowing for basic control of powered prosthetic devices. Research has shown a marked decrease in EMG-classification efficiency throughout activities of daily life due to socket shift and movement and fatigue as well as changes in degree of fit of the socket throughout the subject's lifetime. Users with the most severe levels of amputation require the most complex devices with the greatest number of degrees of freedom. Controlling complex dexterous devices with limited available inputs requires the addition of sensing and interaction modalities. However, the larger the amputation severity, the fewer viable SEMG sites are available as control inputs. Previous work reported the use of intra-socket pressure, as measured during wrist flexion and extension, and has shown that it is possible to control a powered prosthetic device with pressure sensors. In this paper, we present data correlations of SEMG data with intra-socket pressure data. Surface EMG sensors and force sensors were housed within a simulated prosthetic cuff fit to a healthy-limbed subject. EMG and intra-socket force data was collected from inside the cuff as a subject performed pre-defined grip motions with their dominant hand. Data fusion algorithms were explored and allowed a subject to use both intra-socket pressure and SEMG data as control inputs for a powered prosthetic device. This additional input modality allows for an improvement in input classification as well as information regarding socket fit through out activities of daily life.

  4. Reflex-mediated dynamic neuromuscular stabilization in stroke patients: EMG processing and ultrasound imaging.

    Science.gov (United States)

    Yoon, Hyun S; You, Joshua Sung H

    2017-07-20

    Postural core instability is associated with poor dynamic balance and a high risk of serious falls. Both neurodevelopmental treatment (NDT) and dynamic neuromuscular stabilization (DNS) core stabilization exercises have been used to improve core stability, but the outcomes of these treatments remain unclear. This study was undertaken to examine the therapeutic effects of NDT and DNS core stabilization exercises on muscular activity, core stability, and core muscle thickness. Ten participants (5 healthy adults; 5 hemiparetic stroke patients) were recruited. Surface electromyography (EMG) was used to determine core muscle activity of the transversus abdominis/internal oblique (TrA/IO), external oblique (EO), and rectus abdominis (RA) muscles. Ultrasound imaging was used to measure transversus abdominals/internal oblique (TrA/IO) thickness, and a pressure biofeedback unit (PBU) was used to measure core stability during the DNS and NDT core exercise conditions. Data are reported as median and range and were compared using nonparametric Mann - Whitney U test and Wilcoxon signed rank test at p< 0.05. Both healthy and hemiparetic stroke groups showed greater median EMG amplitude in the TrA/IO muscles, core stability, and muscle thickness values during the DNS exercise condition than during the NDT core exercise condition, respectively (p< 0.05). However, the relative changes in the EMG amplitude, core stability, and muscle thickness values were greater during the DNS exercise condition than during the NDT core exercise condition in the hemiparetic stroke patient group (p< 0.05). Our novel results provide the first clinical evidence that DNS is more effective than NDT in both healthy and hemiparetic stroke subjects to provide superior deep core muscle activation, core stabilization, and muscle thickness. Moreover, such advantageous therapeutic benefits of the DNS core stabilization exercise over the NDT exercise were more apparent in the hemiparetis stroke patients than

  5. Real-time muscle state estimation from EMG signals during isometric contractions using Kalman filters.

    Science.gov (United States)

    Menegaldo, Luciano L

    2017-12-01

    State-space control of myoelectric devices and real-time visualization of muscle forces in virtual rehabilitation require measuring or estimating muscle dynamic states: neuromuscular activation, tendon force and muscle length. This paper investigates whether regular (KF) and extended Kalman filters (eKF), derived directly from Hill-type muscle mechanics equations, can be used as real-time muscle state estimators for isometric contractions using raw electromyography signals (EMG) as the only available measurement. The estimators' amplitude error, computational cost, filtering lags and smoothness are compared with usual EMG-driven analysis, performed offline, by integrating the nonlinear Hill-type muscle model differential equations (offline simulations-OS). EMG activity of the three triceps surae components (soleus, gastrocnemius medialis and gastrocnemius lateralis), in three torque levels, was collected for ten subjects. The actualization interval (AI) between two updates of the KF and eKF was also varied. The results show that computational costs are significantly reduced (70x for KF and 17[Formula: see text] for eKF). The filtering lags presented sharp linear relationships with the AI (0-300 ms), depending on the state and activation level. Under maximum excitation, amplitude errors varied in the range 10-24% for activation, 5-8% for tendon force and 1.4-1.8% for muscle length, reducing linearly with the excitation level. Smoothness, measured by the ratio between the average standard variations of KF/eKF and OS estimations, was greatly reduced for activation but converged exponentially to 1 for the other states by increasing AI. Compared to regular KF, extended KF does not seem to improve estimation accuracy significantly. Depending on the particular application requirements, the most appropriate KF actualization interval can be selected.

  6. Surface EMG-based Sketching Recognition Using Two Analysis Windows and Gene Expression Programming

    Science.gov (United States)

    Yang, Zhongliang; Chen, Yumiao

    2016-01-01

    Sketching is one of the most important processes in the conceptual stage of design. Previous studies have relied largely on the analyses of sketching process and outcomes; whereas surface electromyographic (sEMG) signals associated with sketching have received little attention. In this study, we propose a method in which 11 basic one-stroke sketching shapes are identified from the sEMG signals generated by the forearm and upper arm muscles from 4 subjects. Time domain features such as integrated electromyography, root mean square and mean absolute value were extracted with analysis windows of two length conditions for pattern recognition. After reducing data dimensionality using principal component analysis, the shapes were classified using Gene Expression Programming (GEP). The performance of the GEP classifier was compared to the Back Propagation neural network (BPNN) and the Elman neural network (ENN). Feature extraction with the short analysis window (250 ms with a 250 ms increment) improved the recognition rate by around 6.4% averagely compared with the long analysis window (2500 ms with a 2500 ms increment). The average recognition rate for the eleven basic one-stroke sketching patterns achieved by the GEP classifier was 96.26% in the training set and 95.62% in the test set, which was superior to the performance of the BPNN and ENN classifiers. The results show that the GEP classifier is able to perform well with either length of the analysis window. Thus, the proposed GEP model show promise for recognizing sketching based on sEMG signals. PMID:27790083

  7. Effective Low-Power Wearable Wireless Surface EMG Sensor Design Based on Analog-Compressed Sensing

    Directory of Open Access Journals (Sweden)

    Mohammadreza Balouchestani

    2014-12-01

    Full Text Available Surface Electromyography (sEMG is a non-invasive measurement process that does not involve tools and instruments to break the skin or physically enter the body to investigate and evaluate the muscular activities produced by skeletal muscles. The main drawbacks of existing sEMG systems are: (1 they are not able to provide real-time monitoring; (2 they suffer from long processing time and low speed; (3 they are not effective for wireless healthcare systems because they consume huge power. In this work, we present an analog-based Compressed Sensing (CS architecture, which consists of three novel algorithms for design and implementation of wearable wireless sEMG bio-sensor. At the transmitter side, two new algorithms are presented in order to apply the analog-CS theory before Analog to Digital Converter (ADC. At the receiver side, a robust reconstruction algorithm based on a combination of ℓ1-ℓ1-optimization and Block Sparse Bayesian Learning (BSBL framework is presented to reconstruct the original bio-signals from the compressed bio-signals. The proposed architecture allows reducing the sampling rate to 25% of Nyquist Rate (NR. In addition, the proposed architecture reduces the power consumption to 40%, Percentage Residual Difference (PRD to 24%, Root Mean Squared Error (RMSE to 2%, and the computation time from 22 s to 9.01 s, which provide good background for establishing wearable wireless healthcare systems. The proposed architecture achieves robust performance in low Signal-to-Noise Ratio (SNR for the reconstruction process.

  8. Human-machine interfaces based on EMG and EEG applied to robotic systems

    Directory of Open Access Journals (Sweden)

    Sarcinelli-Filho Mario

    2008-03-01

    Full Text Available Abstract Background Two different Human-Machine Interfaces (HMIs were developed, both based on electro-biological signals. One is based on the EMG signal and the other is based on the EEG signal. Two major features of such interfaces are their relatively simple data acquisition and processing systems, which need just a few hardware and software resources, so that they are, computationally and financially speaking, low cost solutions. Both interfaces were applied to robotic systems, and their performances are analyzed here. The EMG-based HMI was tested in a mobile robot, while the EEG-based HMI was tested in a mobile robot and a robotic manipulator as well. Results Experiments using the EMG-based HMI were carried out by eight individuals, who were asked to accomplish ten eye blinks with each eye, in order to test the eye blink detection algorithm. An average rightness rate of about 95% reached by individuals with the ability to blink both eyes allowed to conclude that the system could be used to command devices. Experiments with EEG consisted of inviting 25 people (some of them had suffered cases of meningitis and epilepsy to test the system. All of them managed to deal with the HMI in only one training session. Most of them learnt how to use such HMI in less than 15 minutes. The minimum and maximum training times observed were 3 and 50 minutes, respectively. Conclusion Such works are the initial parts of a system to help people with neuromotor diseases, including those with severe dysfunctions. The next steps are to convert a commercial wheelchair in an autonomous mobile vehicle; to implement the HMI onboard the autonomous wheelchair thus obtained to assist people with motor diseases, and to explore the potentiality of EEG signals, making the EEG-based HMI more robust and faster, aiming at using it to help individuals with severe motor dysfunctions.

  9. Slow-time changes in human EMG muscle fatigue states are fully represented in movement kinematics.

    Science.gov (United States)

    Song, Miao; Segala, David B; Dingwell, Jonathan B; Chelidze, David

    2009-02-01

    The ability to identify physiologic fatigue and related changes in kinematics can provide an important tool for diagnosing fatigue-related injuries. This study examined an exhaustive cycling task to demonstrate how changes in movement kinematics and variability reflect underlying changes in local muscle states. Motion kinematics data were used to construct fatigue features. Their multivariate analysis, based on smooth orthogonal decomposition, was used to reconstruct physiological fatigue. Two different features composed of (1) standard statistical metrics (SSM), which were a collection of standard long-time measures, and (2) phase space warping (PSW)-based metrics, which characterized short-time variations in the phase space trajectories, were considered. Movement kinematics and surface electromyography (EMG) signals were measured from the lower extremities of seven highly trained cyclists as they cycled to voluntary exhaustion on a stationary bicycle. Mean and median frequencies from the EMG time series were computed to measure the local fatigue dynamics of individual muscles independent of the SSM- and PSW-based features, which were extracted solely from the kinematics data. A nonlinear analysis of kinematic features was shown to be essential for capturing full multidimensional fatigue dynamics. A four-dimensional fatigue manifold identified using a nonlinear PSW-based analysis of kinematics data was shown to adequately predict all EMG-based individual muscle fatigue trends. While SSM-based analyses showed similar dominant global fatigue trends, they failed to capture individual muscle activities in a low-dimensional manifold. Therefore, the nonlinear PSW-based analysis of strictly kinematic time series data directly predicted all of the local muscle fatigue trends in a low-dimensional systemic fatigue trajectory. These results provide the first direct quantitative link between changes in muscle fatigue dynamics and resulting changes in movement kinematics.

  10. EMG analysis of human inspiratory muscle resistance to fatigue during exercise.

    Science.gov (United States)

    Segizbaeva, M O; Donina, Zh A; Timofeev, N N; Korolyov, Yu N; Golubev, V N; Aleksandrova, N P

    2013-01-01

    The aim of this study was to characterize the pattern of inspiratory muscle fatigue and to assess the resistance to fatigue of the diaphragm (D), parasternal (PS), sternocleidomastoid (SCM), and scalene (SC) muscles. Nine healthy, untrained male subjects participated in this study. Electromyographic activity (EMG) of D, PS, SCM, and SC was recorded during an incremental cycling test to exhaustion (workload of 1.0 W/kg with 0.5 W/kg increments every 5 min). The before-to-after exercise measurements of maximal inspiratory pressure (MIP) and EMG power spectrum changes were performed. The maximal inspiratory pressure declined about 8.1 % after exercise compared with that in the control condition (124.3 ± 8.5 vs. 114.2 ± 8.9 cmH2O) (P > 0.05), whereas the peak magnitude of integrated electrical activity of D, PS, SCM, and SC during the post-exercise Müller maneuver was significantly greater in all subjects than that pre-exercise. The extent of inspiratory muscles fatigue was evaluated by analysis of a shift in centroid frequency (fc) of EMG power spectrum. Exercise-induced D fatigue was present in three subjects and PS fatigue was another in two; whereas both D and PC fatigue were observed in four subjects. All subjects demonstrated a significant reduction in fc of SCM and SC. Results indicate that early signs of the fatiguing process might be detected in the D, PS, SCM, and SC muscles during exercise to exhaustion. Fatigue of either D or PS muscles develops selectively or together during exhaustive exercise, depending on the recruitment pattern of respiratory muscles. Accessory inspiratory muscles of the neck are less resistant to fatigue compared with the D and PS muscles.

  11. Yeast homologous recombination-based promoter engineering for the activation of silent natural product biosynthetic gene clusters.

    Science.gov (United States)

    Montiel, Daniel; Kang, Hahk-Soo; Chang, Fang-Yuan; Charlop-Powers, Zachary; Brady, Sean F

    2015-07-21

    Large-scale sequencing of prokaryotic (meta)genomic DNA suggests that most bacterial natural product gene clusters are not expressed under common laboratory culture conditions. Silent gene clusters represent a promising resource for natural product discovery and the development of a new generation of therapeutics. Unfortunately, the characterization of molecules encoded by these clusters is hampered owing to our inability to express these gene clusters in the laboratory. To address this bottleneck, we have developed a promoter-engineering platform to transcriptionally activate silent gene clusters in a model heterologous host. Our approach uses yeast homologous recombination, an auxotrophy complementation-based yeast selection system and sequence orthogonal promoter cassettes to exchange all native promoters in silent gene clusters with constitutively active promoters. As part of this platform, we constructed and validated a set of bidirectional promoter cassettes consisting of orthogonal promoter sequences, Streptomyces ribosome binding sites, and yeast selectable marker genes. Using these tools we demonstrate the ability to simultaneously insert multiple promoter cassettes into a gene cluster, thereby expediting the reengineering process. We apply this method to model active and silent gene clusters (rebeccamycin and tetarimycin) and to the silent, cryptic pseudogene-containing, environmental DNA-derived Lzr gene cluster. Complete promoter refactoring and targeted gene exchange in this "dead" cluster led to the discovery of potent indolotryptoline antiproliferative agents, lazarimides A and B. This potentially scalable and cost-effective promoter reengineering platform should streamline the discovery of natural products from silent natural product biosynthetic gene clusters.

  12. Aberrant white matter networks mediate cognitive impairment in patients with silent lacunar infarcts in basal ganglia territory.

    Science.gov (United States)

    Tang, Jinfu; Zhong, Suyu; Chen, Yaojing; Chen, Kewei; Zhang, Junying; Gong, Gaolang; Fleisher, Adam S; He, Yong; Zhang, Zhanjun

    2015-09-01

    Silent lacunar infarcts, which are present in over 20% of healthy elderly individuals, are associated with subtle deficits in cognitive functions. However, it remains largely unclear how these silent brain infarcts lead to cognitive deficits and even dementia. Here, we used diffusion tensor imaging tractography and graph theory to examine the topological organization of white matter networks in 27 patients with silent lacunar infarcts in the basal ganglia territory and 30 healthy controls. A whole-brain white matter network was constructed for each subject, where the graph nodes represented brain regions and the edges represented interregional white matter tracts. Compared with the controls, the patients exhibited a significant reduction in local efficiency and global efficiency. In addition, a total of eighteen brain regions showed significantly reduced nodal efficiency in patients. Intriguingly, nodal efficiency-behavior associations were significantly different between the two groups. The present findings provide new aspects into our understanding of silent infarcts that even small lesions in subcortical brain regions may affect large-scale cortical white matter network, as such may be the link between subcortical silent infarcts and the associated cognitive impairments. Our findings highlight the need for network-level neuroimaging assessment and more medical care for individuals with silent subcortical infarcts.

  13. Torque-EMG-velocity relationship in female workers with chronic neck muscle pain

    DEFF Research Database (Denmark)

    Andersen, Lars L; Nielsen, Pernille K; Søgaard, Karen

    2008-01-01

    The present study investigated the effect of chronic neck muscle pain (defined as trapezius myalgia) on neck/shoulder muscle function during concentric, eccentric and static contraction. Forty-two female office workers with trapezius myalgia (MYA) and 20 healthy matched controls (CON) participated....... Isokinetic (-60, 60 and 180 degrees s(-1)) and static maximal voluntary shoulder abductions were performed in a Biodex dynamometer, and electromyography (EMG) obtained in the trapezius and deltoideus muscles. Muscle thickness in the trapezius was measured with ultrasound. Pain and perceived exertion were...... were not significantly different between the groups. While perceived exertion increased in both groups in response to the test (ppain increased in MYA only (ppainful...

  14. Kahden eri istuma-asennon vaikutus lantionpohjan lihasten EMG-aktiviteettiin

    OpenAIRE

    Anttonen, Elina; Jukarainen, Satu

    2010-01-01

    Opinnäytetyön tavoitteena on selvittää kahden eri istuma-asennon vaikutusta lantionpohjan lihasten ja vatsalihasten EMG-aktiviteettiin. Opinnäytetyö koostuu kirjallisuuskatsauksesta ja tutkimusosuudesta. Opinnäytetyö toteutettiin yhteistyössä Keski-Suomen keskussairaalan kanssa. Kirjallisuuskatsaus käsittelee keskivartalon syvän lihasjärjestelmän merkitystä lannerangan hallinnassa istuma-asennon aikana sekä lantionpohjan lihasten toimintaa yhdessä muiden keskivartalon syvää...

  15. The "silent world" of Comet 15P/Finlay

    CERN Document Server

    Beech, M; Jones, J

    1999-01-01

    Comet 15P/Finlay is unusual in that, contrary to ab initio expectations, it demonstrates no apparent linkage to any known meteor shower. Using data contained within the Electronic Atlas of Dynamical Evolutions of Short-Period Comets, the authors evaluate theoretical shower radiants for Comet 15P/Finlay, but find no evidence to link it to any meteoric anomalies in recorded antiquity. This result, however, must be tempered by the fact that any Comet 15P/Finlay- derived meteoroids will have a low, 16 km s/sup -1/, encounter velocity with Earth's atmosphere. Typically, therefore, one would expect mostly faint meteors to be produced during an encounter with a Comet 15P/Finlay-derived meteoroid stream. they have conducted a D- criterion survey of meteoroid orbits derived from three southern hemisphere meteor radar surveys conducted during the 1960s, and again they find no evidence for any Comet 15P/Finlay-related activity. Numerical calculations following the orbital evolution of hypothetical meteoroids ejected fro...

  16. EMG evaluation of hip adduction exercises for soccer players: implications for exercise selection in prevention and treatment of groin injuries.

    Science.gov (United States)

    Serner, Andreas; Jakobsen, Markus Due; Andersen, Lars Louis; Hölmich, Per; Sundstrup, Emil; Thorborg, Kristian

    2014-07-01

    Exercise programmes are used in the prevention and treatment of adductor-related groin injuries in soccer; however, there is a lack of knowledge concerning the intensity of frequently used exercises. Primarily to investigate muscle activity of adductor longus during six traditional and two new hip adduction exercises. Additionally, to analyse muscle activation of gluteals and abdominals. 40 healthy male elite soccer players, training >5 h a week, participated in the study. Muscle activity using surface electromyography (sEMG) was measured bilaterally for the adductor longus during eight hip adduction strengthening exercises and peak EMG was normalised (nEMG) using an isometric maximal voluntary contraction (MVC) as reference. Furthermore, muscle activation of the gluteus medius, rectus abdominis and the external abdominal obliques was analysed during the exercises. There were large differences in peak nEMG of the adductor longus between the exercises, with values ranging from 14% to 108% nEMG (pinjuries. The Copenhagen Adduction and the hip adduction with an elastic band are dynamic high-intensity exercises, which can easily be performed at any training facility and could therefore be relevant to include in future prevention and treatment programmes. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  17. Electromyography (EMG) signal recognition using combined discrete wavelet transform based adaptive neuro-fuzzy inference systems (ANFIS)

    Science.gov (United States)

    Arozi, Moh; Putri, Farika T.; Ariyanto, Mochammad; Khusnul Ari, M.; Munadi, Setiawan, Joga D.

    2017-01-01

    People with disabilities are increasing from year to year either due to congenital factors, sickness, accident factors and war. One form of disability is the case of interruptions of hand function. The condition requires and encourages the search for solutions in the form of creating an artificial hand with the ability as a human hand. The development of science in the field of neuroscience currently allows the use of electromyography (EMG) to control the motion of artificial prosthetic hand into the necessary use of EMG as an input signal to control artificial prosthetic hand. This study is the beginning of a significant research planned in the development of artificial prosthetic hand with EMG signal input. This initial research focused on the study of EMG signal recognition. Preliminary results show that the EMG signal recognition using combined discrete wavelet transform and Adaptive Neuro-Fuzzy Inference System (ANFIS) produces accuracy 98.3 % for training and 98.51% for testing. Thus the results can be used as an input signal for Simulink block diagram of a prosthetic hand that will be developed on next study. The research will proceed with the construction of artificial prosthetic hand along with Simulink program controlling and integrating everything into one system.

  18. Young, Healthy Subjects Can Reduce the Activity of Calf Muscles When Provided with EMG Biofeedback in Upright Stance.

    Science.gov (United States)

    Vieira, Taian M; Baudry, Stéphane; Botter, Alberto

    2016-01-01

    Recent evidence suggests the minimization of muscular effort rather than of the size of bodily sway may be the primary, nervous system goal when regulating the human, standing posture. Different programs have been proposed for balance training; none however has been focused on the activation of postural muscles during standing. In this study we investigated the possibility of minimizing the activation of the calf muscles during standing through biofeedback. By providing subjects with an audio signal that varied in amplitude and frequency with the amplitude of surface electromyograms (EMG) recorded from different regions of the gastrocnemius and soleus muscles, we expected them to be able to minimize the level of muscle activation during standing without increasing the excursion of the center of pressure (CoP). CoP data and surface EMG from gastrocnemii, soleus and tibialis anterior muscles were obtained from 10 healthy participants while standing at ease and while standing with EMG biofeedback. Four sensitivities were used to test subjects' responsiveness to the EMG biofeedback. Compared with standing at ease, the two most sensitive feedback conditions induced a decrease in plantar flexor activity (~15%; P muscle when standing with EMG biofeedback. These results may therefore posit the basis for the development of training protocols aimed at assisting subjects in more efficiently controlling leg muscle activity during standing.

  19. Synergy of EMG patterns in gait as an objective measure of muscle selectivity in children with spastic cerebral palsy.

    Science.gov (United States)

    Zwaan, Esther; Becher, Jules G; Harlaar, Jaap

    2012-01-01

    Selective motor control (SMC) is an important determinant of functioning in cerebral palsy (CP). Currently its assessment is based on subjective clinical tests with a low sensitivity. Electromyography (EMG) profiles during gait represent muscle coordination and might be used to assess SMC. EMG measurements during gait were processed into a measure of extensor synergy and thigh synergy. This was obtained in two groups of children with CP, and 30 typically developing children. Extensor synergy in CP was higher (0.95) than in healthy children (0.77), thigh synergy was almost equal in both groups. GMFM scores in the first group of 39 children with CP did not correlate to EMG based synergy measures. In a second group of 38 children with CP, a clear relation of clinical SMC score with extensor synergy was found, but only a weak relation with thigh synergy. Although an extensor synergy was validated at group level, our results present no convincing evidence for the use of EMG during gait to assess SMC in individual subjects with CP. Since gait involves both synergistic and selective contractions, the inherent motor control properties of this task will not allow for an assessment of selectivity comparable to the ability to perform isolated movements. Nevertheless, our results support the sensitive nature of EMG to represent an aberrant motor control in CP. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. User adaptation in long-term, open-loop myoelectric training: implications for EMG pattern recognition in prosthesis control

    Science.gov (United States)

    He, Jiayuan; Zhang, Dingguo; Jiang, Ning; Sheng, Xinjun; Farina, Dario; Zhu, Xiangyang

    2015-08-01

    Objective. Recent studies have reported that the classification performance of electromyographic (EMG) signals degrades over time without proper classification retraining. This problem is relevant for the applications of EMG pattern recognition in the control of active prostheses. Approach. In this study we investigated the changes in EMG classification performance over 11 consecutive days in eight able-bodied subjects and two amputees. Main results. It was observed that, when the classifier was trained on data from one day and tested on data from the following day, the classification error decreased exponentially but plateaued after four days for able-bodied subjects and six to nine days for amputees. The between-day performance became gradually closer to the corresponding within-day performance. Significance. These results indicate that the relative changes in EMG signal features over time become progressively smaller when the number of days during which the subjects perform the pre-defined motions are increased. The performance of the motor tasks is thus more consistent over time, resulting in more repeatable EMG patterns, even if the subjects do not have any external feedback on their performance. The learning curves for both able-bodied subjects and subjects with limb deficiencies could be modeled as an exponential function. These results provide important insights into the user adaptation characteristics during practical long-term myoelectric control applications, with implications for the design of an adaptive pattern recognition system.

  1. Differential EMG biofeedback for children with ADHD: a control method for neurofeedback training with a case illustration.

    Science.gov (United States)

    Maurizio, S; Liechti, M D; Brandeis, D; Jäncke, L; Drechsler, R

    2013-06-01

    The objective of the present paper was to develop a differential electromyographic biofeedback (EMG-BF) training for children with attention-deficit/hyperactivity disorder (ADHD) matching multiple neurofeedback training protocols in order to serve as a valid control training. This differential EMG-BF training method feeds back activity from arm muscles involved in fine motor skills such as writing and grip force control. Tonic EMG-BF training (activation and deactivation blocks, involving bimanual motor tasks) matches the training of EEG frequency bands, while phasic EMG-BF training (short activation and deactivation trials) was developed as an equivalent to the training of slow cortical potentials. A case description of a child who learned to improve motor regulation in most task conditions and showed a clinically relevant reduction of behavioral ADHD symptoms illustrates the training course and outcome. Differential EMG-BF training is feasible and provides well-matched control conditions for neurofeedback training in ADHD research. Future studies should investigate its value as a specific intervention for children diagnosed with ADHD and comorbid sensorimotor problems.

  2. Features extraction and multi-classification of sEMG using a GPU-Accelerated GA/MLP hybrid algorithm.

    Science.gov (United States)

    Luo, Weizhen; Zhang, Zhongnan; Wen, Tingxi; Li, Chunfeng; Luo, Ziheng

    2017-01-01

    Surface electromyography (sEMG) signal is the combined effect of superficial muscle EMG and neural electrical activity. In recent years, researchers did large amount of human-machine system studies by using the physiological signals as control signals. To develop and test a new multi-classification method to improve performance of analyzing sEMG signals based on public sEMG dataset. First, ten features were selected as candidate features. Second, a genetic algorithm (GA) was applied to select representative features from the initial ten candidates. Third, a multi-layer perceptron (MLP) classifier was trained by the selected optimal features. Last, the trained classifier was used to predict the classes of sEMG signals. A special graphics processing unit (GPU) was used to speed up the learning process. Experimental results show that the classification accuracy of the new method reached higher than 90%. Comparing to other previously reported results, using the new method yielded higher performance. The proposed features selection method is effective and the classification result is accurate. In addition, our method could have practical application value in medical prosthetics and the potential to improve robustness of myoelectric pattern recognition.

  3. Transradial Amputee Gesture Classification Using an Optimal Number of sEMG Sensors: An Approach Using ICA Clustering.

    Science.gov (United States)

    Naik, Ganesh R; Al-Timemy, Ali H; Nguyen, Hung T

    2016-08-01

    Surface electromyography (sEMG)-based pattern recognition studies have been widely used to improve the classification accuracy of upper limb gestures. Information extracted from multiple sensors of the sEMG recording sites can be used as inputs to control powered upper limb prostheses. However, usage of multiple EMG sensors on the prosthetic hand is not practical and makes it difficult for amputees due to electrode shift/movement, and often amputees feel discomfort in wearing sEMG sensor array. Instead, using fewer numbers of sensors would greatly improve the controllability of prosthetic devices and it would add dexterity and flexibility in their operation. In this paper, we propose a novel myoelectric control technique for identification of various gestures using the minimum number of sensors based on independent component analysis (ICA) and Icasso clustering. The proposed method is a model-based approach where a combination of source separation and Icasso clustering was utilized to improve the classification performance of independent finger movements for transradial amputee subjects. Two sEMG sensor combinations were investigated based on the muscle morphology and Icasso clustering and compared to Sequential Forward Selection (SFS) and greedy search algorithm. The performance of the proposed method has been validated with five transradial amputees, which reports a higher classification accuracy ( > 95%). The outcome of this study encourages possible extension of the proposed approach to real time prosthetic applications.

  4. Induction period

    International Nuclear Information System (INIS)

    Land, C.E.; Tokunaga, M.

    1984-01-01

    Induction period is the temporal aspect of the excess cancer risk that follows an exposure to ionizing radiation. Operationally, it can be thought of as the time from an exposure of brief duration to the diagnosis of any resultant cancer. Whereas the magnitude of excess risk can be described by a single number, such as the average yearly excess risk over some fixed time interval after exposure, the temporal distribution requires a histogram or a curve, that is, an array or continuum of numbers. The study of induction period involves a search for a simple way of describing the temporal distribution of risk, that is, a way of describing a continuum by using only one or two numbers. In other words, the goal is to describe induction period probabilistically, using a parametric model with a few parameters

  5. Violence against wives: a silent suffering in northern Saudi community.

    Science.gov (United States)

    Abo-Elfetoh, Nagah M; Abd El-Mawgod, Mohamed M

    2015-09-01

    Violence against women is a worldwide epidemic. It may take different forms depending on history, culture, background, and experiences, but it causes great suffering for women, their families, and the communities in which they live. Despite its high prevalence, no previous studies that have been conducted in Arar, northern area of Kingdom of Saudi Arabia (KSA), addressing this issue could be traced. The aim of this study was to measure the prevalence and determinants of violence experienced by ever-married women attending primary health centers in Arar city, Northern Border, KSA. This study is a cross-sectional study conducted during the period from January to June 2014 in Arar city in the Northern Province of the KSA. Data were collected through an interviewer-administered questionnaire. A total of 208 wives (184 currently married, 16 divorced, and eight widowed) attending five randomly selected primary healthcare centers in Arar, KSA, were interviewed. Collected data provided information on both physical and emotional violence. The study revealed that the overall prevalence of domestic violence in the studied group was 80.7 and 100.0% for physical and psychological violence, respectively. On studying the reasons for physical violence, half (50%) of the participants reported no clear cause, 19.2% reported failure to adequately care for children (such as cleaning, feeding, and dressing), and 7.8% reported causes related to poor scholastic achievement and couple conflict about appropriate approaches of upbringing of children. Suspicion on wife's fidelity was the most common form of psychological violence (21%). The perpetrator was the husband in 76.9% of cases and the husband's family was the perpetrator in 3.8% of cases. Physical violence was significantly higher during the first 10 years of marriage compared with other durations. University-educated husbands showed significantly lower percentage of physical violence against women compared with those of other

  6. PERIODIC BEHAVIORS

    NARCIS (Netherlands)

    Napp, Diego; Put, Marius van der; Shankar, Shiva

    2010-01-01

    This paper studies behaviors that are defined on a torus, or equivalently, behaviors defined in spaces of periodic functions, and establishes their basic properties analogous to classical results of Malgrange, Palamodov, Oberst et al. for behaviors on R(n). These properties-in particular the

  7. Periodical Economics

    OpenAIRE

    King, Andrew

    2016-01-01

    This is the first overview of the economics of nineteenth-century periodicals and newspapers. While media economics is an established field in business studies, the chapter redefines economics by looking at value systems including capitalist ones but no confined to them. Original case studies are offered as models for research into the economics of nineteenth-century print culture.

  8. High efficiency and simple technique for controlling mechanisms by EMG signals

    Science.gov (United States)

    Dugarte, N.; Álvarez, A.; Balacco, J.; Mercado, G.; Gonzalez, A.; Dugarte, E.; Javier, F.; Ceballos, G.; Olivares, A.

    2016-04-01

    This article reports the development of a simple and efficient system that allows control of mechanisms through electromyography (EMG) signals. The novelty about this instrument is focused on individual control of each motion vector mechanism through independent electronic circuits. Each of electronic circuit does positions a motor according to intensity of EMG signal captured. This action defines movement in one mechanical axis considered from an initial point, based on increased muscle tension. The final displacement of mechanism depends on individual’s ability to handle the levels of muscle tension at different body parts. This is the design of a robotic arm where each degree of freedom is handled with a specific microcontroller that responds to signals taken from a defined muscle. The biophysical interaction between the person and the final positioning of the robotic arm is used as feedback. Preliminary tests showed that the control operates with minimal positioning error margins. The constant use of system with the same operator showed that the person adapts and progressively improves at control technique.

  9. Muscular co-operation during joint stabilisation, as reflected by EMG.

    Science.gov (United States)

    Kornecki, S; Kebel, A; Siemieński, A

    2001-05-01

    The experiment that was carried out consisted of subjects pushing an external object (a heavy pendulum) using stable and unstable handles of increasing mobility. Using this protocol it was possible to distinguish between the motor and stabilising functions of the muscles of the upper extremity. The motor functions were realised by the extensors of the upper extremity, whereas stabilising functions were effected by the muscles spanning the wrist joint. The experiment involved synchronised measurements of the electromyographic (EMG) activity of the muscles in question together with several mechanical quantities revealed against the external object: force, velocity and power. As a result, the instantaneous and global EMG contributions of the extensor and stabilising muscles were determined. It was found that it is the equilibrium state of the object being set in motion and not its mobility (expressed in terms of the number of degrees of freedom) that influences the forces produced by individual muscles. We also suggest that the realisation of stabilising functions by skeletal muscles is a necessary condition of performing any voluntary and co-ordinated movement.

  10. Facial EMG responses to emotional expressions are related to emotion perception ability.

    Directory of Open Access Journals (Sweden)

    Janina Künecke

    Full Text Available Although most people can identify facial expressions of emotions well, they still differ in this ability. According to embodied simulation theories understanding emotions of others is fostered by involuntarily mimicking the perceived expressions, causing a "reactivation" of the corresponding mental state. Some studies suggest automatic facial mimicry during expression viewing; however, findings on the relationship between mimicry and emotion perception abilities are equivocal. The present study investigated individual differences in emotion perception and its relationship to facial muscle responses - recorded with electromyogram (EMG--in response to emotional facial expressions. N° = °269 participants completed multiple tasks measuring face and emotion perception. EMG recordings were taken from a subsample (N° = °110 in an independent emotion classification task of short videos displaying six emotions. Confirmatory factor analyses of the m. corrugator supercilii in response to angry, happy, sad, and neutral expressions showed that individual differences in corrugator activity can be separated into a general response to all faces and an emotion-related response. Structural equation modeling revealed a substantial relationship between the emotion-related response and emotion perception ability, providing evidence for the role of facial muscle activation in emotion perception from an individual differences perspective.

  11. Analysis of EMG temporal parameters from the tibialis anterior during hemiparetic gait

    International Nuclear Information System (INIS)

    Bonell, Claudia E; Cherniz, AnalIa S; Tabernig, Carolina B

    2007-01-01

    Functional electrical stimulation is a rehabilitation technique used to restore the motor muscular function by means of electrical stimulus commanded by a trigger signal under volitional control. In order to enhance the motor rehabilitation, a more convenient control signal may be provided by the same muscle that is being stimulated. For example, the tibialis anterior (TA) in the applications of foot drop correction could be used. This work presents the statistical analysis of the root mean square (RMS) and the absolute mean value (VMA) of the TA electromyogram (EMG) signal computed from different phases of the gait cycle related with increases/decreases stages of muscle activity. The EMG records of 40 strides of 2 subjects with hemiparesia were processed. The RMS and VMA parameters allow distinguishing the oscillation phase from the other analyzed intervals, but they present significant spreading of mean values. This led to conclude that it is possible to use these parameters to identify the start of TA muscle activity, but altogether with other parameter or sensor that would reduce the number of false positives

  12. Estimating Isometric Tension of Finger Muscle Using Needle EMG Signals and the Twitch Contraction Model

    Science.gov (United States)

    Tachibana, Hideyuki; Suzuki, Takafumi; Mabuchi, Kunihiko

    We address an estimation method of isometric muscle tension of fingers, as fundamental research for a neural signal-based prosthesis of fingers. We utilize needle electromyogram (EMG) signals, which have approximately equivalent information to peripheral neural signals. The estimating algorithm comprised two convolution operations. The first convolution is between normal distribution and a spike array, which is detected by needle EMG signals. The convolution estimates the probability density of spike-invoking time in the muscle. In this convolution, we hypothesize that each motor unit in a muscle activates spikes independently based on a same probability density function. The second convolution is between the result of the previous convolution and isometric twitch, viz., the impulse response of the motor unit. The result of the calculation is the sum of all estimated tensions of whole muscle fibers, i.e., muscle tension. We confirmed that there is good correlation between the estimated tension of the muscle and the actual tension, with >0.9 correlation coefficients at 59%, and >0.8 at 89% of all trials.

  13. Cortico-muscular coherence on artifact corrected EEG-EMG data recorded with a MRI scanner.

    Science.gov (United States)

    Muthuraman, M; Galka, A; Hong, V N; Heute, U; Deuschl, G; Raethjen, J

    2013-01-01

    Simultaneous recording of electroencephalogram (EEG) and electromyogram (EMG) with magnetic resonance imaging (MRI) provides great potential for studying human brain activity with high temporal and spatial resolution. But, due to the MRI, the recorded signals are contaminated with artifacts. The correction of these artifacts is important to use these signals for further spectral analysis. The coherence can reveal the cortical representation of peripheral muscle signal in particular motor tasks, e.g. finger movements. The artifact correction of these signals was done by two different algorithms the Brain vision analyzer (BVA) and the Matlab FMRIB plug-in for EEGLAB. The Welch periodogram method was used for estimating the cortico-muscular coherence. Our analysis revealed coherence with a frequency of 5Hz in the contralateral side of the brain. The entropy is estimated for the calculated coherence to get the distribution of coherence in the scalp. The significance of the paper is to identify the optimal algorithm to rectify the MR artifacts and as a first step to use both these signals EEG and EMG in conjunction with MRI for further studies.

  14. A Novel Unsupervised Adaptive Learning Method for Long-Term Electromyography (EMG Pattern Recognition

    Directory of Open Access Journals (Sweden)

    Qi Huang

    2017-06-01

    Full Text Available Performance degradation will be caused by a variety of interfering factors for pattern recognition-based myoelectric control methods in the long term. This paper proposes an adaptive learning method with low computational cost to mitigate the effect in unsupervised adaptive learning scenarios. We presents a particle adaptive classifier (PAC, by constructing a particle adaptive learning strategy and universal incremental least square support vector classifier (LS-SVC. We compared PAC performance with incremental support vector classifier (ISVC and non-adapting SVC (NSVC in a long-term pattern recognition task in both unsupervised and supervised adaptive learning scenarios. Retraining time cost and recognition accuracy were compared by validating the classification performance on both simulated and realistic long-term EMG data. The classification results of realistic long-term EMG data showed that the PAC significantly decreased the performance degradation in unsupervised adaptive learning scenarios compared with NSVC (9.03% ± 2.23%, p < 0.05 and ISVC (13.38% ± 2.62%, p = 0.001, and reduced the retraining time cost compared with ISVC (2 ms per updating cycle vs. 50 ms per updating cycle.

  15. Surface EMG to assess arm function in boys with DMD: a pilot study.

    Science.gov (United States)

    Janssen, Mariska M H P; Harlaar, Jaap; de Groot, Imelda J M

    2015-04-01

    Preserving functional abilities of the upper extremities is a major concern in boys with Duchenne Muscular Dystrophy (DMD). To assess disease progression and treatments, good knowledge on arm function in boys with DMD is essential. Therefore, feasibility and validity of the use of surface electromyography (sEMG) to assess arm function in boys with DMD was examined. Five boys with DMD and 6 age-matched controls participated in this study. Single joint movements and ADL activities were examined while recording sEMG of main shoulder and elbow muscles. All boys with DMD and controls were able to perform the non standardized movements of the measurement protocol, however one boy with DMD was not able to perform all the standardized movements. Boys with DMD used significantly more of their maximal muscle capacity for all muscles to conduct movements compared to controls. The measurement protocol was feasible to assess arm function in boys with DMD. This tool was able to discriminate between DMD patients and controls. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. A Hybrid FPGA-Based System for EEG- and EMG-Based Online Movement Prediction.

    Science.gov (United States)

    Wöhrle, Hendrik; Tabie, Marc; Kim, Su Kyoung; Kirchner, Frank; Kirchner, Elsa Andrea

    2017-07-03

    A current trend in the development of assistive devices for rehabilitation, for example exoskeletons or active orthoses, is to utilize physiological data to enhance their functionality and usability, for example by predicting the patient's upcoming movements using electroencephalography (EEG) or electromyography (EMG). However, these modalities have different temporal properties and classification accuracies, which results in specific advantages and disadvantages. To use physiological data analysis in rehabilitation devices, the processing should be performed in real-time, guarantee close to natural movement onset support, provide high mobility, and should be performed by miniaturized systems that can be embedded into the rehabilitation device. We present a novel Field Programmable Gate Array (FPGA) -based system for real-time movement prediction using physiological data. Its parallel processing capabilities allows the combination of movement predictions based on EEG and EMG and additionally a P300 detection, which is likely evoked by instructions of the therapist. The system is evaluated in an offline and an online study with twelve healthy subjects in total. We show that it provides a high computational performance and significantly lower power consumption in comparison to a standard PC. Furthermore, despite the usage of fixed-point computations, the proposed system achieves a classification accuracy similar to systems with double precision floating-point precision.

  17. A comparison of two gluteus maximus EMG maximum voluntary isometric contraction positions

    Directory of Open Access Journals (Sweden)

    Bret Contreras

    2015-09-01

    Full Text Available Background. The purpose of this study was to compare the peak electromyography (EMG of the most commonly-used position in the literature, the prone bent-leg (90° hip extension against manual resistance applied to the distal thigh (PRONE, to a novel position, the standing glute squeeze (SQUEEZE.Methods. Surface EMG electrodes were placed on the upper and lower gluteus maximus of thirteen recreationally active females (age = 28.9 years; height = 164 cm; body mass = 58.2 kg, before three maximum voluntary isometric contraction (MVIC trials for each position were obtained in a randomized, counterbalanced fashion.Results. No statistically significant (p < 0.05 differences were observed between PRONE (upper: 91.94%; lower: 94.52% and SQUEEZE (upper: 92.04%; lower: 85.12% for both the upper and lower gluteus maximus. Neither the PRONE nor SQUEEZE was more effective between all subjects.Conclusions. In agreement with other studies, no single testing position is ideal for every participant. Therefore, it is recommended that investigators employ multiple MVIC positions, when possible, to ensure accuracy. Future research should investigate a variety of gluteus maximus MVIC positions in heterogeneous samples.

  18. [Hip abduction force measured by a new method and its relation to EMG activity].

    Science.gov (United States)

    Murakami, K

    1989-11-01

    I measured hip abduction force using a new device of my own design and evaluated the correlation between hip abduction force and electromyographic (EMG) activity of the gluteus medius, gluteus maximus, rectus femoris and adductor longus in 20 normal adults. Hip abduction force showed a maximum value on starting and decreased during abduction of the hip joint. Durability, on the other hand, showed an increase. The attenuation curve was approximated to the exponential function A.e-Kt; A and l/k indicating maximum hip abduction force and durability, respectively. Maximum hip abduction force was about 20 kg and durability was about 160 seconds on starting hip abduction. The regression coefficient between hip abduction force and EMG activity of the gluteus medius, gluteus maximus, rectus femoris and adductor longus was 1.5, 06, 0.6 and 0.2 respectively. From these results, I concluded that although the gluteus medius plays the major role in hip abduction, the rectus femoris and gluteus maximus may act as stabilizers for maintaining the position of hip abduction.

  19. Facial EMG responses to emotional expressions are related to emotion perception ability.

    Science.gov (United States)

    Künecke, Janina; Hildebrandt, Andrea; Recio, Guillermo; Sommer, Werner; Wilhelm, Oliver

    2014-01-01

    Although most people can identify facial expressions of emotions well, they still differ in this ability. According to embodied simulation theories understanding emotions of others is fostered by involuntarily mimicking the perceived expressions, causing a "reactivation" of the corresponding mental state. Some studies suggest automatic facial mimicry during expression viewing; however, findings on the relationship between mimicry and emotion perception abilities are equivocal. The present study investigated individual differences in emotion perception and its relationship to facial muscle responses - recorded with electromyogram (EMG)--in response to emotional facial expressions. N° = °269 participants completed multiple tasks measuring face and emotion perception. EMG recordings were taken from a subsample (N° = °110) in an independent emotion classification task of short videos displaying six emotions. Confirmatory factor analyses of the m. corrugator supercilii in response to angry, happy, sad, and neutral expressions showed that individual differences in corrugator activity can be separated into a general response to all faces and an emotion-related response. Structural equation modeling revealed a substantial relationship between the emotion-related response and emotion perception ability, providing evidence for the role of facial muscle activation in emotion perception from an individual differences perspective.

  20. Multiscale feature based analysis of surface EMG signals under fatigue and non-fatigue conditions.

    Science.gov (United States)

    Navaneethakrishna, M; Ramakrishnan, S

    2014-01-01

    In this work, an attempt has been made to differentiate sEMG signals under muscle fatigue and non-fatigue conditions using multiscale features. Signals are recorded from biceps brachii muscle of 50 normal adults during repetitive dynamic contractions. After prescribed preprocessing, each signal is divided into six segments out of which first and last segments are considered in this analysis. Multiscale RMS (MSRMS) and Multiscale Permutation Entropy (MSPE) are computed for each subject in the time scales ranging from 1 to 50. The median values of the MSRMS and MSPE are calculated for further analysis. The results show an increase in amplitude for sEMG signals under fatigue condition. MSRMS values are found to be significantly higher in fatigue. An approximately constant difference in MSRMS value between fatigue and non-fatigue condition is observed over the entire time scale with a negative slope. Further, the median of MSRMS values for each subject is able to distinguish fatigue and non-fatigue conditions. Similar analysis on MSPE showed significant difference between fatigue and non-fatigue cases and lower values of MSPE is observed in fatigue. It is also observed that the median value of MSRMS and MSPE are able to distinguish these conditions. t-test for MSRMS, MSPE and their median value show high statistical significance. It appears that this method of analysis can be used for clinical evaluation of muscles.

  1. Real Time Hand Motion Reconstruction System for Trans-Humeral Amputees Using EEG and EMG

    Directory of Open Access Journals (Sweden)

    Jacobo Fernandez-Vargas

    2016-08-01

    Full Text Available Predicting a hand’s position using only biosignals is a complex problem that has not been completely solved. The only reliable solutions currently available require invasive surgery. The attempts using non-invasive technologies are rare, and usually have led to lower correlation values between the real and the reconstructed position than those required for real-world applications. In this study, we propose a solution for reconstructing the hand’s position in three dimensions using EEG and EMG to detect from the shoulder area. This approach would be valid for most trans-humeral amputees. In order to find the best solution, we tested four different architectures for the system based on artificial neural networks. Our results show that it is possible to reconstruct the hand’s motion trajectory with a correlation value up to 0.809 compared to a typical value in the literature of 0.6. We also demonstrated that both EEG and EMG contribute jointly to the motion reconstruction. Furthermore, we discovered that the system architectures do not change the results radically. In addition, our results suggest that different motions may have different brain activity patterns that could be detected through EEG. Finally, we suggest a method to study non-linear relations in the brain through the EEG signals, which may lead to a more accurate system.

  2. Fuel selection during intense shivering in humans: EMG pattern reflects carbohydrate oxidation

    Science.gov (United States)

    Haman, François; Legault, Stéphane R; Weber, Jean-Michel

    2004-01-01

    The thermogenic response of humans depends critically on the coordination of muscle fibre recruitment and oxidative fuel metabolism. The primary goal of this study was to determine whether the electromyographic (EMG) pattern of muscle recruitment could provide metabolic information on oxidative fuel selection during high-intensity shivering. EMG activity (of 8 large muscles) and fuel metabolism were monitored simultaneously in non-acclimatized adult men during high-intensity shivering. Even though acute cold exposure elicited similar changes in metabolic rate among subjects, lipid and carbohydrate use was very different. Depending on the subject, the cold-induced increase in carbohydrate (CHO) oxidation ranged between 2- and 8-fold, with CHO accounting for 33–78% of total heat production (Ḣprod), and lipids for 14–60% Ḣprod. This high variability in fuel selection was primarily explained by differences in ‘burst shivering’ rate, indicating that the recruitment of type II fibres plays a key role in orchestrating fuel selection. This study is the first to show that the pattern of muscle recruitment can provide quantitative information on energy metabolism. Future work should focus on the study of shivering bursts that may provide essential clues on what limits human survival in the cold. PMID:14742724

  3. A Novel Unsupervised Adaptive Learning Method for Long-Term Electromyography (EMG) Pattern Recognition.

    Science.gov (United States)

    Huang, Qi; Yang, Dapeng; Jiang, Li; Zhang, Huajie; Liu, Hong; Kotani, Kiyoshi

    2017-06-13

    Performance degradation will be caused by a variety of interfering factors for pattern recognition-based myoelectric control methods in the long term. This paper proposes an adaptive learning method with low computational cost to mitigate the effect in unsupervised adaptive learning scenarios. We presents a particle adaptive classifier (PAC), by constructing a particle adaptive learning strategy and universal incremental least square support vector classifier (LS-SVC). We compared PAC performance with incremental support vector classifier (ISVC) and non-adapting SVC (NSVC) in a long-term pattern recognition task in both unsupervised and supervised adaptive learning scenarios. Retraining time cost and recognition accuracy were compared by validating the classification performance on both simulated and realistic long-term EMG data. The classification results of realistic long-term EMG data showed that the PAC significantly decreased the performance degradation in unsupervised adaptive learning scenarios compared with NSVC (9.03% ± 2.23%, p < 0.05) and ISVC (13.38% ± 2.62%, p = 0.001), and reduced the retraining time cost compared with ISVC (2 ms per updating cycle vs. 50 ms per updating cycle).

  4. Hallermann–Streiff syndrome with severe bilateral enophthalmos and radiological evidence of silent brain syndrome: a new congenital silent brain syndrome?

    Directory of Open Access Journals (Sweden)

    Nucci P

    2011-07-01

    Full Text Available Paolo Nucci¹, Carlo de Conciliis², Matteo Sacchi¹, Massimiliano Serafino¹¹Eye Clinic, San Giuseppe Hospital, University of Milan, ²Eye Clinic, Istituto Auxologico Italiano, Milan, ItalyBackground: We present the first case of a congenital form of silent brain syndrome (SBS in a young patient affected by Hallermann–Streiff syndrome (HSS and the surgical management of the associated eyelid anomalies.Methods: HSS signs were evaluated according to the Francois criteria. Orbital computed tomography (CT and genetic analysis were performed. An upper eyelid retractor-free recession was performed. Follow-up visits were performed at day 1, weeks 1 and 3, and months 3, 6, 9 (for both eyes, and 12 (for left eye after surgery.Results: The patient exhibited six of the seven signs of HSS. Orbital CT showed bilateral enophthalmos and upward bowing of the orbital roof with air entrapment under the upper eyelid as previously described for SBS. Genetic analysis showed a 2q polymorphism. During follow-up, the cornea showed absence of epithelial damage and the upper eyelids were lowered symmetrically, with a regular contour.Conclusion: Our HSS patient shares features with SBS. We postulate that SBS could include more than one pattern, ie, an acquired form following ventriculoperitoneal shunting and this newly reported congenital form in our HSS patient in whom typical syndromic skull anomalies led to this condition. The surgical treatment has been effective in restoring an appropriate lid level, with good globe apposition and a good cosmetic result.Keywords: Hallermann–Streiff syndrome, silent brain syndrome, upper eyelid entropion

  5. EMG analysis of lumbar paraspinal muscles as a predictor of the risk of low-back pain.

    Science.gov (United States)

    Heydari, Abbas; Nargol, Antoni V F; Jones, Anthony P C; Humphrey, Anthony R; Greenough, Charles G

    2010-07-01

    Studies of EMG power spectra have established associations between low-back pain (LBP) and median frequency (MF). This 2-year prospective study investigates the association of LBP with EMG variables over time. 120 health care workers underwent paraspinal EMG measurements and assessment of back pain disability. The EMG recordings were performed under isometric trunk extension at 2/3 maximum voluntary contraction and acquired from erector spinae muscles at the level of L4/L5. 108 (90%) subjects were reviewed at a minimum 2-year follow up. 16 out of 93 subjects with no history of chronic low-back pain became worse as measured by time off work, disability, reported pain and self-assessment rating. The value of the EMG variable half-width at inception demonstrated significant association with changes in subject's outcome measure and their own assessment of their LBP at follow up (p assessment data, subjects with no history of chronic LBP with half-width of greater than 56 Hz were at threefold greater risk of developing back pain compared with the remainder of the population (p = 0.045). The value of the initial median frequency (IMF) and MF slope at inception were also associated with the subjects' own assessment of LBP at follow up. Subjects with an IMF greater than 49 Hz were at 5.8-fold greater risk of developing back pain compared with the remainder of the population (p = 0.014). EMG variables recorded from lumbar paraspinal muscles can identify a sub group of subjects at increased risk of developing low-back pain in the future.

  6. Speedup computation of HD-sEMG signals using a motor unit-specific electrical source model.

    Science.gov (United States)

    Carriou, Vincent; Boudaoud, Sofiane; Laforet, Jeremy

    2018-01-23

    Nowadays, bio-reliable modeling of muscle contraction is becoming more accurate and complex. This increasing complexity induces a significant increase in computation time which prevents the possibility of using this model in certain applications and studies. Accordingly, the aim of this work is to significantly reduce the computation time of high-density surface electromyogram (HD-sEMG) generation. This will be done through a new model of motor unit (MU)-specific electrical source based on the fibers composing the MU. In order to assess the efficiency of this approach, we computed the normalized root mean square error (NRMSE) between several simulations on single generated MU action potential (MUAP) using the usual fiber electrical sources and the MU-specific electrical source. This NRMSE was computed for five different simulation sets wherein hundreds of MUAPs are generated and summed into HD-sEMG signals. The obtained results display less than 2% error on the generated signals compared to the same signals generated with fiber electrical sources. Moreover, the computation time of the HD-sEMG signal generation model is reduced to about 90% compared to the fiber electrical source model. Using this model with MU electrical sources, we can simulate HD-sEMG signals of a physiological muscle (hundreds of MU) in less than an hour on a classical workstation. Graphical Abstract Overview of the simulation of HD-sEMG signals using the fiber scale and the MU scale. Upscaling the electrical source to the MU scale reduces the computation time by 90% inducing only small deviation of the same simulated HD-sEMG signals.

  7. Use of EMG biofeedback for basic activities of daily living training in stroke patients. Pilot randomized clinical trial

    Directory of Open Access Journals (Sweden)

    Maricel Garrido-Montenegro

    2016-07-01

    Full Text Available Introduction: Sequels in stroke patients include hemiparesis and dependency for performing basic activities of daily living (BADL. EMG biofeedback has yielded some benefits but has been limited to repetitive movement, therefore, it is insufficient for current task-oriented neurorehabilitation paradigms. Objective: To assess whether the application of EMG biofeedback in upper limbs during BADL training improves motor, occupational and satisfaction performances compared to BADL training without this feedback. Materials and methods: A pilot randomized clinical trial was conducted with stroke patients of more than six months of evolution, who showed hemiparesis and no cognitive deterioration. These patients were randomly classified into two groups: control group, who underwent conventional occupational therapy (COT, and experimental group, who underwent COT+EMG-BF. Patients were given 10 therapy sessions. Entry, evaluation and data analysis were masked. Results: Seven patients were included in each group, showing the same initial clinical and demographic characteristics (p>0.05. The group that underwent COT+EMG-BF showed a significantly better performance in all assessments. For example, the Barthel scale obtained a median of 100 points [85-100] for the COT+EMG-BF group versus 85 [80-90] for the control group (p<0.05, whereas ARAT score was 42 [40-47] points versus 20 [15-38] (p=0.03, respectively. Conclusion: The combination of COT+EMG-BF for BADL may be considered as an alternative for treatment of stroke patients.

  8. Muscle synergy control model-tuned EMG driven torque estimation system with a musculo-skeletal model.

    Science.gov (United States)

    Min, Kyuengbo; Shin, Duk; Lee, Jongho; Kakei, Shinji

    2013-01-01

    Muscle activity is the final signal for motion control from the brain. Based on this biological characteristic, Electromyogram (EMG) signals have been applied to various systems that interface human with external environments such as external devices. In order to use EMG signals as input control signal for this kind of system, the current EMG driven torque estimation models generally employ the mathematical model that estimates the nonlinear transformation function between the input signal and the output torque. However, these models need to estimate too many parameters and this process cause its estimation versatility in various conditions to be poor. Moreover, as these models are designed to estimate the joint torque, the input EMG signals are tuned out of consideration for the physiological synergetic contributions of multiple muscles for motion control. To overcome these problems of the current models, we proposed a new tuning model based on the synergy control mechanism between multiple muscles in the cortico-spinal tract. With this synergetic tuning model, the estimated contribution of multiple muscles for the motion control is applied to tune the EMG signals. Thus, this cortico-spinal control mechanism-based process improves the precision of torque estimation. This system is basically a forward dynamics model that transforms EMG signals into the joint torque. It should be emphasized that this forward dynamics model uses a musculo-skeletal model as a constraint. The musculo-skeletal model is designed with precise musculo-skeletal data, such as origins and insertions of individual muscles or maximum muscle force. Compared with the mathematical model, the proposed model can be a versatile model for the torque estimation in the various conditions and estimates the torque with improved accuracy. In this paper, we also show some preliminary experimental results for the discussion about the proposed model.

  9. Continuous Estimation of Human Multi-Joint Angles From sEMG Using a State-Space Model.

    Science.gov (United States)

    Ding, Qichuan; Han, Jianda; Zhao, Xingang

    2017-09-01

    Due to the couplings among joint-relative muscles, it is a challenge to accurately estimate continuous multi-joint movements from multi-channel sEMG signals. Traditional approaches always build a nonlinear regression model, such as artificial neural network, to predict the multi-joint movement variables using sEMG as inputs. However, the redundant sEMG-data are always not distinguished; the prediction errors cannot be evaluated and corrected online as well. In this work, a correlation-based redundancy-segmentation method is proposed to segment the sEMG-vector including redundancy into irredundant and redundant subvectors. Then, a general state-space framework is developed to build the motion model by regarding the irredundant subvector as input and the redundant one as measurement output. With the built state-space motion model, a closed-loop prediction-correction algorithm, i.e., the unscented Kalman filter (UKF), can be employed to estimate the multi-joint angles from sEMG, where the redundant sEMG-data are used to reject model uncertainties. After having fully employed the redundancy, the proposed method can provide accurate and smooth estimation results. Comprehensive experiments are conducted on the multi-joint movements of the upper limb. The maximum RMSE of the estimations obtained by the proposed method is 0.16±0.03, which is significantly less than 0.25±0.06 and 0.27±0.07 (p < 0.05) obtained by common neural networks.

  10. Isquemia miocárdica silente en diabéticos tipo 2 Silent myocardial ischemia in type 2 diabetes patients

    Directory of Open Access Journals (Sweden)

    Yordanka Piña Rivera

    2012-08-01

    Full Text Available Objetivos: determinar la frecuencia de isquemia miocárdica silente en diabéticos tipo 2 y su relación con el control metabólico. Métodos: se realizó un estudio descriptivo transversal en 79 pacientes asintomáticos con diabetes mellitus tipo 2 sin antecedentes de cardiopatía isquémica, hipertensión arterial o de ser fumador, que acudieron a la Consulta de Endocrinología del Hospital Militar Central "Dr. Carlos J. Finlay", entre febrero de 2009 y febrero de 2011. Se les realizó ecocardiografía con doppler tisular y se determinaron los niveles de glucemia en ayunas, posprandial, hemoglobina glucosilada, colesterol y triglicéridos. Las variables clínicas analizadas en relación con la isquemia miocárdica silente fueron: edad, sexo, tiempo de evolución de la diabetes e índice de masa corporal. Para las variables cualitativas se utilizaron distribuciones de frecuencia con el cálculo del porcentaje y para establecer relación entre variables la prueba de chi cuadrado. Resultados: la edad media del total de pacientes fue de 54 años, de ellos el 69,1 % correspondió al sexo masculino y el 31,9 % al femenino. En el 20,2 % de los pacientes se observaron signos de isquemia miocárdica por doppler tisular, y de ellos, un 75 % tuvo niveles patológicos de colesterol total, con relación estadísticamente significativa (p= 0,01, sujetos que tuvieron 4,4 veces más riesgo relativo de presentar isquemia miocárdica, que los pacientes con colesterol normal. Las cifras de glucemia en ayunas, posprandial y hemoglobina glucosilada fueron significativamente mayor en el grupo con isquemia. Los pacientes con niveles elevados de glucemia en ayunas tuvieron 10,5 veces más riesgo de isquemia miocárdica que los que tenían cifras adecuadas. Igualmente, los casos con cifras elevadas de glucemia posprandial presentaron 12 veces más riesgo de enfermar. Conclusiones: la isquemia miocárdica silente es frecuente en los diabéticos tipo 2 y se relaciona

  11. Extracting time-frequency feature of single-channel vastus medialis EMG signals for knee exercise pattern recognition.

    Science.gov (United States)

    Zhang, Yi; Li, Peiyang; Zhu, Xuyang; Su, Steven W; Guo, Qing; Xu, Peng; Yao, Dezhong

    2017-01-01

    The EMG signal indicates the electrophysiological response to daily living of activities, particularly to lower-limb knee exercises. Literature reports have shown numerous benefits of the Wavelet analysis in EMG feature extraction for pattern recognition. However, its application to typical knee exercises when using only a single EMG channel is limited. In this study, three types of knee exercises, i.e., flexion of the leg up (standing), hip extension from a sitting position (sitting) and gait (walking) are investigated from 14 healthy untrained subjects, while EMG signals from the muscle group of vastus medialis and the goniometer on the knee joint of the detected leg are synchronously monitored and recorded. Four types of lower-limb motions including standing, sitting, stance phase of walking, and swing phase of walking, are segmented. The Wavelet Transform (WT) based Singular Value Decomposition (SVD) approach is proposed for the classification of four lower-limb motions using a single-channel EMG signal from the muscle group of vastus medialis. Based on lower-limb motions from all subjects, the combination of five-level wavelet decomposition and SVD is used to comprise the feature vector. The Support Vector Machine (SVM) is then configured to build a multiple-subject classifier for which the subject independent accuracy will be given across all subjects for the classification of four types of lower-limb motions. In order to effectively indicate the classification performance, EMG features from time-domain (e.g., Mean Absolute Value (MAV), Root-Mean-Square (RMS), integrated EMG (iEMG), Zero Crossing (ZC)) and frequency-domain (e.g., Mean Frequency (MNF) and Median Frequency (MDF)) are also used to classify lower-limb motions. The five-fold cross validation is performed and it repeats fifty times in order to acquire the robust subject independent accuracy. Results show that the proposed WT-based SVD approach has the classification accuracy of 91.85%±0.88% which

  12. Selective depletion of spinal monoamines changes the rat soleus EMG from a tonic to a more phasic pattern

    DEFF Research Database (Denmark)

    Kiehn, Ole; Erdal, Jesper; Eken, Torsten

    1996-01-01

    subarachnoid space and gross-EMG recording electrodes in the soleus muscle. EMG recordings were performed in control conditions and at different times after intrathecal administration of either 40-55 μg 5,6-dihydroxytryptamine (5,6-DHT) and 40-55 μg 6-hydroxydopamine (6-OHDA) or 80 μg 5,7-dihydroxytryptamine...... (5,7-DHT) alone. The depletions were evaluated biochemically in brains and spinal cords after recordings. 3. In agreement with previous studies the intrathecal administration of neurotoxins caused a reduction of the noradrenaline (NA) and serotonin (5-HT) content of the lumbar spinal cord to about 2...

  13. Extracting time-frequency feature of single-channel vastus medialis EMG signals for knee exercise pattern recognition.

    Directory of Open Access Journals (Sweden)

    Yi Zhang

    Full Text Available The EMG signal indicates the electrophysiological response to daily living of activities, particularly to lower-limb knee exercises. Literature reports have shown numerous benefits of the Wavelet analysis in EMG feature extraction for pattern recognition. However, its application to typical knee exercises when using only a single EMG channel is limited. In this study, three types of knee exercises, i.e., flexion of the leg up (standing, hip extension from a sitting position (sitting and gait (walking are investigated from 14 healthy untrained subjects, while EMG signals from the muscle group of vastus medialis and the goniometer on the knee joint of the detected leg are synchronously monitored and recorded. Four types of lower-limb motions including standing, sitting, stance phase of walking, and swing phase of walking, are segmented. The Wavelet Transform (WT based Singular Value Decomposition (SVD approach is proposed for the classification of four lower-limb motions using a single-channel EMG signal from the muscle group of vastus medialis. Based on lower-limb motions from all subjects, the combination of five-level wavelet decomposition and SVD is used to comprise the feature vector. The Support Vector Machine (SVM is then configured to build a multiple-subject classifier for which the subject independent accuracy will be given across all subjects for the classification of four types of lower-limb motions. In order to effectively indicate the classification performance, EMG features from time-domain (e.g., Mean Absolute Value (MAV, Root-Mean-Square (RMS, integrated EMG (iEMG, Zero Crossing (ZC and frequency-domain (e.g., Mean Frequency (MNF and Median Frequency (MDF are also used to classify lower-limb motions. The five-fold cross validation is performed and it repeats fifty times in order to acquire the robust subject independent accuracy. Results show that the proposed WT-based SVD approach has the classification accuracy of 91.85%±0

  14. Learning an intermittent control strategy for postural balancing using an EMG-based human-computer interface.

    Directory of Open Access Journals (Sweden)

    Yoshiyuki Asai

    Full Text Available It has been considered that the brain stabilizes unstable body dynamics by regulating co-activation levels of antagonist muscles. Here we critically reexamined this established theory of impedance control in a postural balancing task using a novel EMG-based human-computer interface, in which subjects were asked to balance a virtual inverted pendulum using visual feedback information on the pendulum's position. The pendulum was actuated by a pair of antagonist joint torques determined in real-time by activations of the corresponding pair of antagonist ankle muscles of subjects standing upright. This motor-task raises a frustrated environment; a large feedback time delay in the sensorimotor loop, as a source of instability, might favor adopting the non-reactive, preprogrammed impedance control, but the ankle muscles are relatively hard to co-activate, which hinders subjects from adopting the impedance control. This study aimed at discovering how experimental subjects resolved this frustrated environment through motor learning. One third of subjects adapted to the balancing task in a way of the impedance-like control. It was remarkable, however, that the majority of subjects did not adopt the impedance control. Instead, they acquired a smart and energetically efficient strategy, in which two muscles were inactivated simultaneously at a sequence of optimal timings, leading to intermittent appearance of periods of time during which the pendulum was not actively actuated. Characterizations of muscle inactivations and the pendulum¡Çs sway showed that the strategy adopted by those subjects was a type of intermittent control that utilizes a stable manifold of saddle-type unstable upright equilibrium that appeared in the state space of the pendulum when the active actuation was turned off.

  15. Learning an intermittent control strategy for postural balancing using an EMG-based human-computer interface.

    Science.gov (United States)

    Asai, Yoshiyuki; Tateyama, Shota; Nomura, Taishin

    2013-01-01

    It has been considered that the brain stabilizes unstable body dynamics by regulating co-activation levels of antagonist muscles. Here we critically reexamined this established theory of impedance control in a postural balancing task using a novel EMG-based human-computer interface, in which subjects were asked to balance a virtual inverted pendulum using visual feedback information on the pendulum's position. The pendulum was actuated by a pair of antagonist joint torques determined in real-time by activations of the corresponding pair of antagonist ankle muscles of subjects standing upright. This motor-task raises a frustrated environment; a large feedback time delay in the sensorimotor loop, as a source of instability, might favor adopting the non-reactive, preprogrammed impedance control, but the ankle muscles are relatively hard to co-activate, which hinders subjects from adopting the impedance control. This study aimed at discovering how experimental subjects resolved this frustrated environment through motor learning. One third of subjects adapted to the balancing task in a way of the impedance-like control. It was remarkable, however, that the majority of subjects did not adopt the impedance control. Instead, they acquired a smart and energetically efficient strategy, in which two muscles were inactivated simultaneously at a sequence of optimal timings, leading to intermittent appearance of periods of time during which the pendulum was not actively actuated. Characterizations of muscle inactivations and the pendulum¡Çs sway showed that the strategy adopted by those subjects was a type of intermittent control that utilizes a stable manifold of saddle-type unstable upright equilibrium that appeared in the state space of the pendulum when the active actuation was turned off.

  16. Design, Development and Testing of a Low-Cost sEMG System and Its Use in Recording Muscle Activity in Human Gait

    Directory of Open Access Journals (Sweden)

    Tamara Grujic Supuk

    2014-05-01

    Full Text Available Surface electromyography (sEMG is an important measurement technique used in biomechanical, rehabilitation and sport environments. In this article the design, development and testing of a low-cost wearable sEMG system are described. The hardware architecture consists of a two-cascade small-sized bioamplifier with a total gain of 2,000 and band-pass of 3 to 500 Hz. The sampling frequency of the system is 1,000 Hz. Since real measured EMG signals are usually corrupted by various types of noises (motion artifacts, white noise and electromagnetic noise present at 50 Hz and higher harmonics, we have tested several denoising techniques, both on artificial and measured EMG signals. Results showed that a wavelet—based technique implementing Daubechies5 wavelet and soft sqtwolog thresholding is the most appropriate for EMG signals denoising. To test the system performance, EMG activities of six dominant muscles of ten healthy subjects during gait were measured (gluteus maximus, biceps femoris, sartorius, rectus femoris, tibialis anterior and medial gastrocnemius. The obtained EMG envelopes presented against the duration of gait cycle were compared favourably with the EMG data available in the literature, suggesting that the proposed system is suitable for a wide range of applications in biomechanics.

  17. Impact of EMG-triggered neuromuscular stimulation of the wrist and finger extensors of the paretic hand after stroke: a systematic review of the literature

    NARCIS (Netherlands)

    Meilink, A.; Hemmen, B.; Seelen, H.A.; Kwakkel, G.

    2008-01-01

    Objective: To assess whether EMG-triggered neuromuscular electrical stimulation (EMG-NMES) applied to the extensor muscles of the forearm improves hand function after stroke. Design: Systematic review of randomized controlled trials. Methods: A computer-aided literature search up to June 2006

  18. Migraine with aura and risk of silent brain infarcts and white matter hyperintensities: an MRI study.

    Science.gov (United States)

    Gaist, David; Garde, Ellen; Blaabjerg, Morten; Nielsen, Helle H; Krøigård, Thomas; Østergaard, Kamilla; Møller, Harald S; Hjelmborg, Jacob; Madsen, Camilla G; Iversen, Pernille; Kyvik, Kirsten O; Siebner, Hartwig R; Ashina, Messoud

    2016-07-01

    A small number of population-based studies reported an association between migraine with aura and risk of silent brain infarcts and white matter hyperintensities in females. We investigated these relations in a population-based sample of female twins. We contacted female twins ages 30-60 years identified through the population-based Danish Twin Registry. Based on questionnaire responses, twins were invited to participate in a telephone-based interview conducted by physicians. Headache diagnoses were established according to the International Headache Society criteria. Cases with migraine with aura, their co-twins, and unrelated migraine-free twins (controls) were invited to a brain magnetic resonance imaging scan performed at a single centre. Brain scans were assessed for the presence of infarcts, and white matter hyperintensities (visual rating scales and volumetric analyses) blinded to headache diagnoses. Comparisons were based on 172 cases, 34 co-twins, and 139 control subjects. Compared with control subjects, cases did not differ with regard to frequency of silent brain infarcts (four cases versus one control), periventricular white matter hyperintensity scores [adjusted mean difference (95% confidence interval): -0.1 (-0.5 to 0.2)] or deep white matter hyperintensity scores [adjusted mean difference (95% confidence interval): 0.1 (-0.8 to 1.1)] assessed by Scheltens' scale. Cases had a slightly higher total white matter hyperintensity volume compared with controls [adjusted mean difference (95% confidence interval): 0.17 (-0.08 to 0.41) cm(3)] and a similar difference was present in analyses restricted to twin pairs discordant for migraine with aura [adjusted mean difference 0.21 (-0.20 to 0.63)], but these differences did not reach statistical significance. We found no evidence of an association between silent brain infarcts, white matter hyperintensities, and migraine with aura. © The Author (2016). Published by Oxford University Press on behalf of the

  19. High frequency of silent brain infarcts associated with cognitive deficits in an economically disadvantaged population

    Directory of Open Access Journals (Sweden)

    Paula Squarzoni

    Full Text Available OBJECTIVE: Using magnetic resonance imaging, we aimed to assess the presence of silent brain vascular lesions in a sample of apparently healthy elderly individuals who were recruited from an economically disadvantaged urban region (São Paulo, Brazil. We also wished to investigate whether the findings were associated with worse cognitive performance. METHODS: A sample of 250 elderly subjects (66-75 years without dementia or neuropsychiatric disorders were recruited from predefined census sectors of an economically disadvantaged area of Sao Paulo and received structural magnetic resonance imaging scans and cognitive testing. A high proportion of individuals had very low levels of education (4 years or less, n=185; 21 with no formal education. RESULTS: The prevalence of at least one silent vascular-related cortical or subcortical lesion was 22.8% (95% confidence interval, 17.7-28.5, and the basal ganglia was the most frequently affected site (63.14% of cases. The subgroup with brain infarcts presented significantly lower levels of education than the subgroup with no brain lesions as well as significantly worse current performance in cognitive test domains, including memory and attention (p<0.002. CONCLUSIONS: Silent brain infarcts were present at a substantially high frequency in our elderly sample from an economically disadvantaged urban region and were significantly more prevalent in subjects with lower levels of education. Covert cerebrovascular disease significantly contributes to cognitive deficits, and in the absence of magnetic resonance imaging data, this cognitive impairment may be considered simply related to ageing. Emphatic attention should be paid to potentially deleterious effects of vascular brain lesions in poorly educated elderly individuals from economically disadvantaged environments.

  20. Dynamic wind turbine models in power system simulation tool DIgSILENT

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, A.C.; Jauch, C.; Soerensen, P.; Iov, F.; Blaabjerg, F.

    2003-12-01

    The present report describes the dynamic wind turbine models implemented in the power system simulation tool DIgSILENT (Version 12.0). The developed models are a part of the results of a national research project, whose overall objective is to create a model database in different simulation tools. This model database should be able to support the analysis of the interaction between the mechanical structure of the wind turbine and the electrical grid during different operational modes. The report provides a description of the wind turbines modelling, both at a component level and at a system level. The report contains both the description of DIgSILENT built-in models for the electrical components of a grid connected wind turbine (e.g. induction generators, power converters, transformers) and the models developed by the user, in the dynamic simulation language DSL of DIgSILENT, for the non-electrical components of the wind turbine (wind model, aerodynamic model, mechanical model). The initialisation issues on the wind turbine models into the power system simulation are also presented. However, the main attention in this report is drawn to the modelling at the system level of two wind turbine concepts: 1. Active stall wind turbine with induction generator 2. Variable speed, variable pitch wind turbine with doubly fed induction generator. These wind turbine concept models can be used and even extended for the study of different aspects, e.g. the assessment of power quality, control strategies, connection of the wind turbine at different types of grid and storage systems. For both these two concepts, control strategies are developed and implemented, their performance assessed and discussed by means of simulations. (au)