WorldWideScience

Sample records for emergent quantum geometry

  1. Emergent Braided Matter of Quantum Geometry

    Directory of Open Access Journals (Sweden)

    Sundance Bilson-Thompson

    2012-03-01

    Full Text Available We review and present a few new results of the program of emergent matter as braid excitations of quantum geometry that is represented by braided ribbon networks. These networks are a generalisation of the spin networks proposed by Penrose and those in models of background independent quantum gravity theories, such as Loop Quantum Gravity and Spin Foam models. This program has been developed in two parallel but complimentary schemes, namely the trivalent and tetravalent schemes. The former studies the braids on trivalent braided ribbon networks, while the latter investigates the braids on tetravalent braided ribbon networks. Both schemes have been fruitful. The trivalent scheme has been quite successful at establishing a correspondence between braids and Standard Model particles, whereas the tetravalent scheme has naturally substantiated a rich, dynamical theory of interactions and propagation of braids, which is ruled by topological conservation laws. Some recent advances in the program indicate that the two schemes may converge to yield a fundamental theory of matter in quantum spacetime.

  2. Geometry of Quantum States

    International Nuclear Information System (INIS)

    Hook, D W

    2008-01-01

    A geometric framework for quantum mechanics arose during the mid 1970s when authors such as Cantoni explored the notion of generalized transition probabilities, and Kibble promoted the idea that the space of pure quantum states provides a natural quantum mechanical analogue for classical phase space. This central idea can be seen easily since the projection of Schroedinger's equation from a Hilbert space into the space of pure spaces is a set of Hamilton's equations. Over the intervening years considerable work has been carried out by a variety of authors and a mature description of quantum mechanics in geometric terms has emerged with many applications. This current offering would seem ideally placed to review the last thirty years of progress and relate this to the most recent work in quantum entanglement. Bengtsson and Zyczkowski's beautifully illustrated volume, Geometry of Quantum States (referred to as GQS from now on) attempts to cover considerable ground in its 466 pages. Its topics range from colour theory in Chapter 1 to quantum entanglement in Chapter 15-to say that this is a whirlwind tour is, perhaps, no understatement. The use of the work 'introduction' in the subtitle of GQS, might suggest to the reader that this work be viewed as a textbook and I think that this interpretation would be incorrect. The authors have chosen to present a survey of different topics with the specific aim to introduce entanglement in geometric terms-the book is not intended as a pedagogical introduction to the geometric approach to quantum mechanics. Each of the fifteen chapters is a short, and mostly self-contained, essay on a particular aspect or application of geometry in the context of quantum mechanics with entanglement being addressed specifically in the final chapter. The chapters fall into three classifications: those concerned with the mathematical background, those which discuss quantum theory and the foundational aspects of the geometric framework, and

  3. A Lorentzian quantum geometry

    Energy Technology Data Exchange (ETDEWEB)

    Grotz, Andreas

    2011-10-07

    In this thesis, a formulation of a Lorentzian quantum geometry based on the framework of causal fermion systems is proposed. After giving the general definition of causal fermion systems, we deduce space-time as a topological space with an underlying causal structure. Restricting attention to systems of spin dimension two, we derive the objects of our quantum geometry: the spin space, the tangent space endowed with a Lorentzian metric, connection and curvature. In order to get the correspondence to classical differential geometry, we construct examples of causal fermion systems by regularizing Dirac sea configurations in Minkowski space and on a globally hyperbolic Lorentzian manifold. When removing the regularization, the objects of our quantum geometry reduce to the common objects of spin geometry on Lorentzian manifolds, up to higher order curvature corrections.

  4. A Lorentzian quantum geometry

    International Nuclear Information System (INIS)

    Grotz, Andreas

    2011-01-01

    In this thesis, a formulation of a Lorentzian quantum geometry based on the framework of causal fermion systems is proposed. After giving the general definition of causal fermion systems, we deduce space-time as a topological space with an underlying causal structure. Restricting attention to systems of spin dimension two, we derive the objects of our quantum geometry: the spin space, the tangent space endowed with a Lorentzian metric, connection and curvature. In order to get the correspondence to classical differential geometry, we construct examples of causal fermion systems by regularizing Dirac sea configurations in Minkowski space and on a globally hyperbolic Lorentzian manifold. When removing the regularization, the objects of our quantum geometry reduce to the common objects of spin geometry on Lorentzian manifolds, up to higher order curvature corrections.

  5. Towards relativistic quantum geometry

    Energy Technology Data Exchange (ETDEWEB)

    Ridao, Luis Santiago [Instituto de Investigaciones Físicas de Mar del Plata (IFIMAR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mar del Plata (Argentina); Bellini, Mauricio, E-mail: mbellini@mdp.edu.ar [Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Funes 3350, C.P. 7600, Mar del Plata (Argentina); Instituto de Investigaciones Físicas de Mar del Plata (IFIMAR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mar del Plata (Argentina)

    2015-12-17

    We obtain a gauge-invariant relativistic quantum geometry by using a Weylian-like manifold with a geometric scalar field which provides a gauge-invariant relativistic quantum theory in which the algebra of the Weylian-like field depends on observers. An example for a Reissner–Nordström black-hole is studied.

  6. A quantum field theory of simplicial geometry and the emergence of spacetime

    Energy Technology Data Exchange (ETDEWEB)

    Oriti, Daniele [Institute for Theoretical Physics and Spinoza Institute, Utrecht University, Minnaert Building, Leuvenlaan 4, Utrecht (Netherlands)

    2007-05-15

    We present the case for a fundamentally discrete quantum spacetime and for Group Field Theories as a candidate consistent description of it, briefly reviewing the key properties of the GFT formalism. We then argue that the outstanding problem of the emergence of a continuum spacetime and of General Relativity from fundamentally discrete quantum structures should be tackled from a condensed matter perspective and using purely QFT methods, adapted to the GFT context. We outline the picture of continuum spacetime as a condensed phase of a GFT and a research programme aimed at realizing this picture in concrete terms.

  7. Nonperturbative quantum geometries

    International Nuclear Information System (INIS)

    Jacobson, T.; California Univ., Santa Barbara; Smolin, L.; California Univ., Santa Barbara

    1988-01-01

    Using the self-dual representation of quantum general relativity, based on Ashtekar's new phase space variables, we present an infinite dimensional family of quantum states of the gravitational field which are exactly annihilated by the hamiltonian constraint. These states are constructed from Wilson loops for Ashtekar's connection (which is the spatial part of the left handed spin connection). We propose a new regularization procedure which allows us to evaluate the action of the hamiltonian constraint on these states. Infinite linear combinations of these states which are formally annihilated by the diffeomorphism constraints as well are also described. These are explicit examples of physical states of the gravitational field - and for the compact case are exact zero eigenstates of the hamiltonian of quantum general relativity. Several different approaches to constructing diffeomorphism invariant states in the self dual representation are also described. The physical interpretation of the states described here is discussed. However, as we do not yet know the physical inner product, any interpretation is at this stage speculative. Nevertheless, this work suggests that quantum geometry at Planck scales might be much simpler when explored in terms of the parallel transport of left-handed spinors than when explored in terms of the three metric. (orig.)

  8. Topology Change and the Emergence of Geometry in Two Dimensional Causal Quantum Gravity

    NARCIS (Netherlands)

    Westra, W.

    2007-01-01

    Despite many attempts, gravity has vigorously resisted a unification with the laws of quantum mechanics. Besides a plethora of technical issues, one is also faced with many interesting conceptual problems. The study of quantum gravity in lower dimensional models ameliorates the technical

  9. Emergent geometry of membranes

    Energy Technology Data Exchange (ETDEWEB)

    Badyn, Mathias Hudoba de; Karczmarek, Joanna L.; Sabella-Garnier, Philippe; Yeh, Ken Huai-Che [Department of Physics and Astronomy, University of British Columbia,6224 Agricultural Road, Vancouver (Canada)

    2015-11-13

    In work http://dx.doi.org/10.1103/PhysRevD.86.086001, a surface embedded in flat ℝ{sup 3} is associated to any three hermitian matrices. We study this emergent surface when the matrices are large, by constructing coherent states corresponding to points in the emergent geometry. We find the original matrices determine not only shape of the emergent surface, but also a unique Poisson structure. We prove that commutators of matrix operators correspond to Poisson brackets. Through our construction, we can realize arbitrary noncommutative membranes: for example, we examine a round sphere with a non-spherically symmetric Poisson structure. We also give a natural construction for a noncommutative torus embedded in ℝ{sup 3}. Finally, we make remarks about area and find matrix equations for minimal area surfaces.

  10. Spectral dimension of quantum geometries

    International Nuclear Information System (INIS)

    Calcagni, Gianluca; Oriti, Daniele; Thürigen, Johannes

    2014-01-01

    The spectral dimension is an indicator of geometry and topology of spacetime and a tool to compare the description of quantum geometry in various approaches to quantum gravity. This is possible because it can be defined not only on smooth geometries but also on discrete (e.g., simplicial) ones. In this paper, we consider the spectral dimension of quantum states of spatial geometry defined on combinatorial complexes endowed with additional algebraic data: the kinematical quantum states of loop quantum gravity (LQG). Preliminarily, the effects of topology and discreteness of classical discrete geometries are studied in a systematic manner. We look for states reproducing the spectral dimension of a classical space in the appropriate regime. We also test the hypothesis that in LQG, as in other approaches, there is a scale dependence of the spectral dimension, which runs from the topological dimension at large scales to a smaller one at short distances. While our results do not give any strong support to this hypothesis, we can however pinpoint when the topological dimension is reproduced by LQG quantum states. Overall, by exploring the interplay of combinatorial, topological and geometrical effects, and by considering various kinds of quantum states such as coherent states and their superpositions, we find that the spectral dimension of discrete quantum geometries is more sensitive to the underlying combinatorial structures than to the details of the additional data associated with them. (paper)

  11. Quantum groups: Geometry and applications

    International Nuclear Information System (INIS)

    Chu, C.S.

    1996-01-01

    The main theme of this thesis is a study of the geometry of quantum groups and quantum spaces, with the hope that they will be useful for the construction of quantum field theory with quantum group symmetry. The main tool used is the Faddeev-Reshetikhin-Takhtajan description of quantum groups. A few content-rich examples of quantum complex spaces with quantum group symmetry are treated in details. In chapter 1, the author reviews some of the basic concepts and notions for Hopf algebras and other background materials. In chapter 2, he studies the vector fields of quantum groups. A compact realization of these vector fields as pseudodifferential operators acting on the linear quantum spaces is given. In chapter 3, he describes the quantum sphere as a complex quantum manifold by means of a quantum stereographic projection. A covariant calculus is introduced. An interesting property of this calculus is the existence of a one-form realization of the exterior differential operator. The concept of a braided comodule is introduced and a braided algebra of quantum spheres is constructed. In chapter 4, the author considers the more general higher dimensional quantum complex projective spaces and the quantum Grassman manifolds. Differential calculus, integration and braiding can be introduced as in the one dimensional case. Finally, in chapter 5, he studies the framework of quantum principal bundle and construct the q-deformed Dirac monopole as a quantum principal bundle with a quantum sphere as the base and a U(1) with non-commutative calculus as the fiber. The first Chern class can be introduced and integrated to give the monopole charge

  12. Emergent Geometry from Entropy and Causality

    Science.gov (United States)

    Engelhardt, Netta

    In this thesis, we investigate the connections between the geometry of spacetime and aspects of quantum field theory such as entanglement entropy and causality. This work is motivated by the idea that spacetime geometry is an emergent phenomenon in quantum gravity, and that the physics responsible for this emergence is fundamental to quantum field theory. Part I of this thesis is focused on the interplay between spacetime and entropy, with a special emphasis on entropy due to entanglement. In general spacetimes, there exist locally-defined surfaces sensitive to the geometry that may act as local black hole boundaries or cosmological horizons; these surfaces, known as holographic screens, are argued to have a connection with the second law of thermodynamics. Holographic screens obey an area law, suggestive of an association with entropy; they are also distinguished surfaces from the perspective of the covariant entropy bound, a bound on the total entropy of a slice of the spacetime. This construction is shown to be quite general, and is formulated in both classical and perturbatively quantum theories of gravity. The remainder of Part I uses the Anti-de Sitter/ Conformal Field Theory (AdS/CFT) correspondence to both expand and constrain the connection between entanglement entropy and geometry. The AdS/CFT correspondence posits an equivalence between string theory in the "bulk" with AdS boundary conditions and certain quantum field theories. In the limit where the string theory is simply classical General Relativity, the Ryu-Takayanagi and more generally, the Hubeny-Rangamani-Takayanagi (HRT) formulae provide a way of relating the geometry of surfaces to entanglement entropy. A first-order bulk quantum correction to HRT was derived by Faulkner, Lewkowycz and Maldacena. This formula is generalized to include perturbative quantum corrections in the bulk at any (finite) order. Hurdles to spacetime emergence from entanglement entropy as described by HRT and its quantum

  13. Geometry of quantum computation with qutrits.

    Science.gov (United States)

    Li, Bin; Yu, Zu-Huan; Fei, Shao-Ming

    2013-01-01

    Determining the quantum circuit complexity of a unitary operation is an important problem in quantum computation. By using the mathematical techniques of Riemannian geometry, we investigate the efficient quantum circuits in quantum computation with n qutrits. We show that the optimal quantum circuits are essentially equivalent to the shortest path between two points in a certain curved geometry of SU(3(n)). As an example, three-qutrit systems are investigated in detail.

  14. Discrete quantum geometries and their effective dimension

    International Nuclear Information System (INIS)

    Thuerigen, Johannes

    2015-01-01

    In several approaches towards a quantum theory of gravity, such as group field theory and loop quantum gravity, quantum states and histories of the geometric degrees of freedom turn out to be based on discrete spacetime. The most pressing issue is then how the smooth geometries of general relativity, expressed in terms of suitable geometric observables, arise from such discrete quantum geometries in some semiclassical and continuum limit. In this thesis I tackle the question of suitable observables focusing on the effective dimension of discrete quantum geometries. For this purpose I give a purely combinatorial description of the discrete structures which these geometries have support on. As a side topic, this allows to present an extension of group field theory to cover the combinatorially larger kinematical state space of loop quantum gravity. Moreover, I introduce a discrete calculus for fields on such fundamentally discrete geometries with a particular focus on the Laplacian. This permits to define the effective-dimension observables for quantum geometries. Analysing various classes of quantum geometries, I find as a general result that the spectral dimension is more sensitive to the underlying combinatorial structure than to the details of the additional geometric data thereon. Semiclassical states in loop quantum gravity approximate the classical geometries they are peaking on rather well and there are no indications for stronger quantum effects. On the other hand, in the context of a more general model of states which are superposition over a large number of complexes, based on analytic solutions, there is a flow of the spectral dimension from the topological dimension d on low energy scales to a real number between 0 and d on high energy scales. In the particular case of 1 these results allow to understand the quantum geometry as effectively fractal.

  15. Intersecting Quantum Gravity with Noncommutative Geometry - a Review

    Directory of Open Access Journals (Sweden)

    Johannes Aastrup

    2012-03-01

    Full Text Available We review applications of noncommutative geometry in canonical quantum gravity. First, we show that the framework of loop quantum gravity includes natural noncommutative structures which have, hitherto, not been explored. Next, we present the construction of a spectral triple over an algebra of holonomy loops. The spectral triple, which encodes the kinematics of quantum gravity, gives rise to a natural class of semiclassical states which entail emerging fermionic degrees of freedom. In the particular semiclassical approximation where all gravitational degrees of freedom are turned off, a free fermionic quantum field theory emerges. We end the paper with an extended outlook section.

  16. Quantum geometry of bosonic strings - revisited

    International Nuclear Information System (INIS)

    Botelho, Luiz C.L.; Botelho, Raimundo C.L.; Universidade Federal Rural do Rio de Janeiro, RJ

    1999-07-01

    We review the original paper by A.M. Polyakov (Quantum Geometry of Bosonic Strings) with corrections and improvements the concepts exposed there and following as closely as possible to the original A.M. Polyakov's paper. (author)

  17. Quantum logics and convex geometry

    International Nuclear Information System (INIS)

    Bunce, L.J.; Wright, J.D.M.

    1985-01-01

    The main result is a representation theorem which shows that, for a large class of quantum logics, a quantum logic, Q, is isomorphic to the lattice of projective faces in a suitable convex set K. As an application we extend our earlier results, which, subject to countability conditions, gave a geometric characterization of those quantum logics which are isomorphic to the projection lattice of a von Neumann algebra or a JBW-algebra. (orig.)

  18. Contact geometry and quantum mechanics

    Science.gov (United States)

    Herczeg, Gabriel; Waldron, Andrew

    2018-06-01

    We present a generally covariant approach to quantum mechanics in which generalized positions, momenta and time variables are treated as coordinates on a fundamental "phase-spacetime". We show that this covariant starting point makes quantization into a purely geometric flatness condition. This makes quantum mechanics purely geometric, and possibly even topological. Our approach is especially useful for time-dependent problems and systems subject to ambiguities in choices of clock or observer. As a byproduct, we give a derivation and generalization of the Wigner functions of standard quantum mechanics.

  19. Network geometry with flavor: From complexity to quantum geometry

    Science.gov (United States)

    Bianconi, Ginestra; Rahmede, Christoph

    2016-03-01

    Network geometry is attracting increasing attention because it has a wide range of applications, ranging from data mining to routing protocols in the Internet. At the same time advances in the understanding of the geometrical properties of networks are essential for further progress in quantum gravity. In network geometry, simplicial complexes describing the interaction between two or more nodes play a special role. In fact these structures can be used to discretize a geometrical d -dimensional space, and for this reason they have already been widely used in quantum gravity. Here we introduce the network geometry with flavor s =-1 ,0 ,1 (NGF) describing simplicial complexes defined in arbitrary dimension d and evolving by a nonequilibrium dynamics. The NGF can generate discrete geometries of different natures, ranging from chains and higher-dimensional manifolds to scale-free networks with small-world properties, scale-free degree distribution, and nontrivial community structure. The NGF admits as limiting cases both the Bianconi-Barabási models for complex networks, the stochastic Apollonian network, and the recently introduced model for complex quantum network manifolds. The thermodynamic properties of NGF reveal that NGF obeys a generalized area law opening a new scenario for formulating its coarse-grained limit. The structure of NGF is strongly dependent on the dimensionality d . In d =1 NGFs grow complex networks for which the preferential attachment mechanism is necessary in order to obtain a scale-free degree distribution. Instead, for NGF with dimension d >1 it is not necessary to have an explicit preferential attachment rule to generate scale-free topologies. We also show that NGF admits a quantum mechanical description in terms of associated quantum network states. Quantum network states evolve by a Markovian dynamics and a quantum network state at time t encodes all possible NGF evolutions up to time t . Interestingly the NGF remains fully classical but

  20. From quantum gravity to quantum field theory via noncommutative geometry

    International Nuclear Information System (INIS)

    Aastrup, Johannes; Grimstrup, Jesper Møller

    2014-01-01

    A link between canonical quantum gravity and fermionic quantum field theory is established in this paper. From a spectral triple construction, which encodes the kinematics of quantum gravity, we construct semi-classical states which, in a semi-classical limit, give a system of interacting fermions in an ambient gravitational field. The emergent interaction involves flux tubes of the gravitational field. In the additional limit, where all gravitational degrees of freedom are turned off, a free fermionic quantum field theory emerges. (paper)

  1. Non-Perturbative Quantum Geometry III

    CERN Document Server

    Krefl, Daniel

    2016-08-02

    The Nekrasov-Shatashvili limit of the refined topological string on toric Calabi-Yau manifolds and the resulting quantum geometry is studied from a non-perturbative perspective. The quantum differential and thus the quantum periods exhibit Stockes phenomena over the combined string coupling and quantized Kaehler moduli space. We outline that the underlying formalism of exact quantization is generally applicable to points in moduli space featuring massless hypermultiplets, leading to non-perturbative band splitting. Our prime example is local P1xP1 near a conifold point in moduli space. In particular, we will present numerical evidence that in a Stockes chamber of interest the string based quantum geometry reproduces the non-perturbative corrections for the Nekrasov-Shatashvili limit of 4d supersymmetric SU(2) gauge theory at strong coupling found in the previous part of this series. A preliminary discussion of local P2 near the conifold point in moduli space is also provided.

  2. Quantum geometry of bosonic strings - revisited

    Energy Technology Data Exchange (ETDEWEB)

    Botelho, Luiz C.L.; Botelho, Raimundo C.L. [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil); Universidade Federal Rural do Rio de Janeiro, RJ (Brazil). Dept. de Fisica

    1999-07-01

    We review the original paper by A.M. Polyakov (Quantum Geometry of Bosonic Strings) with corrections and improvements the concepts exposed there and following as closely as possible to the original A.M. Polyakov's paper. (author)

  3. Geometry of Gaussian quantum states

    International Nuclear Information System (INIS)

    Link, Valentin; Strunz, Walter T

    2015-01-01

    We study the Hilbert–Schmidt measure on the manifold of mixed Gaussian states in multi-mode continuous variable quantum systems. An analytical expression for the Hilbert–Schmidt volume element is derived. Its corresponding probability measure can be used to study typical properties of Gaussian states. It turns out that although the manifold of Gaussian states is unbounded, an ensemble of Gaussian states distributed according to this measure still has a normalizable distribution of symplectic eigenvalues, from which unitarily invariant properties can be obtained. By contrast, we find that for an ensemble of one-mode Gaussian states based on the Bures measure the corresponding distribution cannot be normalized. As important applications, we determine the distribution and the mean value of von Neumann entropy and purity for the Hilbert–Schmidt measure. (paper)

  4. Quantum Entanglement of Matter and Geometry in Large Systems

    Energy Technology Data Exchange (ETDEWEB)

    Hogan, Craig J.

    2014-12-04

    Standard quantum mechanics and gravity are used to estimate the mass and size of idealized gravitating systems where position states of matter and geometry become indeterminate. It is proposed that well-known inconsistencies of standard quantum field theory with general relativity on macroscopic scales can be reconciled by nonstandard, nonlocal entanglement of field states with quantum states of geometry. Wave functions of particle world lines are used to estimate scales of geometrical entanglement and emergent locality. Simple models of entanglement predict coherent fluctuations in position of massive bodies, of Planck scale origin, measurable on a laboratory scale, and may account for the fact that the information density of long lived position states in Standard Model fields, which is determined by the strong interactions, is the same as that determined holographically by the cosmological constant.

  5. Noncommutative Geometry, Quantum Fields and Motives

    CERN Document Server

    Connes, Alain

    2007-01-01

    The unifying theme of this book is the interplay among noncommutative geometry, physics, and number theory. The two main objects of investigation are spaces where both the noncommutative and the motivic aspects come to play a role: space-time, where the guiding principle is the problem of developing a quantum theory of gravity, and the space of primes, where one can regard the Riemann Hypothesis as a long-standing problem motivating the development of new geometric tools. The book stresses the relevance of noncommutative geometry in dealing with these two spaces. The first part of the book dea

  6. Quantum symplectic geometry. 1. The matrix Hamiltonian formalism

    International Nuclear Information System (INIS)

    Djemai, A.E.F.

    1994-07-01

    The main purpose of this work is to describe the quantum analogue of the usual classical symplectic geometry and then to formulate the quantum mechanics as a (quantum) non-commutative symplectic geometry. In this first part, we define the quantum symplectic structure in the context of the matrix differential geometry by using the discrete Weyl-Schwinger realization of the Heisenberg group. We also discuss the continuous limit and give an expression of the quantum structure constants. (author). 42 refs

  7. Information theory, spectral geometry, and quantum gravity.

    Science.gov (United States)

    Kempf, Achim; Martin, Robert

    2008-01-18

    We show that there exists a deep link between the two disciplines of information theory and spectral geometry. This allows us to obtain new results on a well-known quantum gravity motivated natural ultraviolet cutoff which describes an upper bound on the spatial density of information. Concretely, we show that, together with an infrared cutoff, this natural ultraviolet cutoff beautifully reduces the path integral of quantum field theory on curved space to a finite number of ordinary integrations. We then show, in particular, that the subsequent removal of the infrared cutoff is safe.

  8. Laplacians on discrete and quantum geometries

    International Nuclear Information System (INIS)

    Calcagni, Gianluca; Oriti, Daniele; Thürigen, Johannes

    2013-01-01

    We extend discrete calculus for arbitrary (p-form) fields on embedded lattices to abstract discrete geometries based on combinatorial complexes. We then provide a general definition of discrete Laplacian using both the primal cellular complex and its combinatorial dual. The precise implementation of geometric volume factors is not unique and, comparing the definition with a circumcentric and a barycentric dual, we argue that the latter is, in general, more appropriate because it induces a Laplacian with more desirable properties. We give the expression of the discrete Laplacian in several different sets of geometric variables, suitable for computations in different quantum gravity formalisms. Furthermore, we investigate the possibility of transforming from position to momentum space for scalar fields, thus setting the stage for the calculation of heat kernel and spectral dimension in discrete quantum geometries. (paper)

  9. Finite quantum physics and noncommutative geometry

    International Nuclear Information System (INIS)

    Balachandran, A.P.; Ercolessi, E.; Landi, G.; Teotonio-Sobrinho, P.; Lizzi, F.; Sparano, G.

    1994-04-01

    Conventional discrete approximations of a manifold do not preserve its nontrivial topological features. In this article we describe an approximation scheme due to Sorkin which reproduces physically important aspects of manifold topology with striking fidelity. The approximating topological spaces in this scheme are partially ordered sets (posets). Now, in ordinary quantum physics on a manifold M, continuous probability densities generate the commutative C * -algebra C(M) of continuous functions on M. It has a fundamental physical significance, containing the information to reconstruct the topology of M, and serving to specify the domains of observables like the Hamiltonian. For a poset, the role of this algebra is assumed by a noncommutative C * -algebra A. As noncommutative geometries are based on noncommutative C * -algebra, we therefore have a remarkable connection between finite approximations to quantum physics and noncommutative geometries. Varies methods for doing quantum physics using A are explored. Particular attention is paid to developing numerically viable approximation schemes which at the same time preserve important topological features of continuum physics. (author). 21 refs, 13 figs

  10. Quantum-corrected geometry of horizon vicinity

    Energy Technology Data Exchange (ETDEWEB)

    Park, I.Y. [Department of Applied Mathematics, Philander Smith College, Little Rock, AR (United States)

    2017-12-15

    We study the deformation of the horizon-vicinity geometry caused by quantum gravitational effects. Departure from the semi-classical picture is noted, and the fact that the matter part of the action comes at a higher order in Newton's constant than does the Einstein-Hilbert term is crucial for the departure. The analysis leads to a Firewall-type energy measured by an infalling observer for which quantum generation of the cosmological constant is critical. The analysis seems to suggest that the Firewall should be a part of such deformation and that the information be stored both in the horizon-vicinity and asymptotic boundary region. We also examine the behavior near the cosmological horizon. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  11. Quantum-corrected geometry of horizon vicinity

    International Nuclear Information System (INIS)

    Park, I.Y.

    2017-01-01

    We study the deformation of the horizon-vicinity geometry caused by quantum gravitational effects. Departure from the semi-classical picture is noted, and the fact that the matter part of the action comes at a higher order in Newton's constant than does the Einstein-Hilbert term is crucial for the departure. The analysis leads to a Firewall-type energy measured by an infalling observer for which quantum generation of the cosmological constant is critical. The analysis seems to suggest that the Firewall should be a part of such deformation and that the information be stored both in the horizon-vicinity and asymptotic boundary region. We also examine the behavior near the cosmological horizon. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  12. Emergent mechanics, quantum and un-quantum

    Science.gov (United States)

    Ralston, John P.

    2013-10-01

    There is great interest in quantum mechanics as an "emergent" phenomenon. The program holds that nonobvious patterns and laws can emerge from complicated physical systems operating by more fundamental rules. We find a new approach where quantum mechanics itself should be viewed as an information management tool not derived from physics nor depending on physics. The main accomplishment of quantum-style theory comes in expanding the notion of probability. We construct a map from macroscopic information as data" to quantum probability. The map allows a hidden variable description for quantum states, and efficient use of the helpful tools of quantum mechanics in unlimited circumstances. Quantum dynamics via the time-dependent Shroedinger equation or operator methods actually represents a restricted class of classical Hamiltonian or Lagrangian dynamics, albeit with different numbers of degrees of freedom. We show that under wide circumstances such dynamics emerges from structureless dynamical systems. The uses of the quantum information management tools are illustrated by numerical experiments and practical applications

  13. Quantum self-gravitating collapsing matter in a quantum geometry

    International Nuclear Information System (INIS)

    Campiglia, Miguel; Gambini, Rodolfo; Olmedo, Javier; Pullin, Jorge

    2016-01-01

    The problem of how space–time responds to gravitating quantum matter in full quantum gravity has been one of the main questions that any program of quantization of gravity should address. Here we analyze this issue by considering the quantization of a collapsing null shell coupled to spherically symmetric loop quantum gravity. We show that the constraint algebra of canonical gravity is Abelian both classically and when quantized using loop quantum gravity techniques. The Hamiltonian constraint is well defined and suitable Dirac observables characterizing the problem were identified at the quantum level. We can write the metric as a parameterized Dirac observable at the quantum level and study the physics of the collapsing shell and black hole formation. We show how the singularity inside the black hole is eliminated by loop quantum gravity and how the shell can traverse it. The construction is compatible with a scenario in which the shell tunnels into a baby universe inside the black hole or one in which it could emerge through a white hole. (letter)

  14. Convex geometry of quantum resource quantification

    Science.gov (United States)

    Regula, Bartosz

    2018-01-01

    We introduce a framework unifying the mathematical characterisation of different measures of general quantum resources and allowing for a systematic way to define a variety of faithful quantifiers for any given convex quantum resource theory. The approach allows us to describe many commonly used measures such as matrix norm-based quantifiers, robustness measures, convex roof-based measures, and witness-based quantifiers together in a common formalism based on the convex geometry of the underlying sets of resource-free states. We establish easily verifiable criteria for a measure to possess desirable properties such as faithfulness and strong monotonicity under relevant free operations, and show that many quantifiers obtained in this framework indeed satisfy them for any considered quantum resource. We derive various bounds and relations between the measures, generalising and providing significantly simplified proofs of results found in the resource theories of quantum entanglement and coherence. We also prove that the quantification of resources in this framework simplifies for pure states, allowing us to obtain more easily computable forms of the considered measures, and show that many of them are in fact equal on pure states. Further, we investigate the dual formulation of resource quantifiers, which provide a characterisation of the sets of resource witnesses. We present an explicit application of the results to the resource theories of multi-level coherence, entanglement of Schmidt number k, multipartite entanglement, as well as magic states, providing insight into the quantification of the four resources by establishing novel quantitative relations and introducing new quantifiers, such as a measure of entanglement of Schmidt number k which generalises the convex roof-extended negativity, a measure of k-coherence which generalises the \

  15. Interferometers as probes of Planckian quantum geometry

    Science.gov (United States)

    Hogan, Craig J.

    2012-03-01

    A theory of position of massive bodies is proposed that results in an observable quantum behavior of geometry at the Planck scale, tP. Departures from classical world lines in flat spacetime are described by Planckian noncommuting operators for position in different directions, as defined by interactions with null waves. The resulting evolution of position wave functions in two dimensions displays a new kind of directionally coherent quantum noise of transverse position. The amplitude of the effect in physical units is predicted with no parameters, by equating the number of degrees of freedom of position wave functions on a 2D space-like surface with the entropy density of a black hole event horizon of the same area. In a region of size L, the effect resembles spatially and directionally coherent random transverse shear deformations on time scale ≈L/c with typical amplitude ≈ctPL. This quantum-geometrical “holographic noise” in position is not describable as fluctuations of a quantized metric, or as any kind of fluctuation, dispersion or propagation effect in quantum fields. In a Michelson interferometer the effect appears as noise that resembles a random Planckian walk of the beam splitter for durations up to the light-crossing time. Signal spectra and correlation functions in interferometers are derived, and predicted to be comparable with the sensitivities of current and planned experiments. It is proposed that nearly colocated Michelson interferometers of laboratory scale, cross-correlated at high frequency, can test the Planckian noise prediction with current technology.

  16. Classical geometry from the quantum Liouville theory

    Science.gov (United States)

    Hadasz, Leszek; Jaskólski, Zbigniew; Piaţek, Marcin

    2005-09-01

    Zamolodchikov's recursion relations are used to analyze the existence and approximations to the classical conformal block in the case of four parabolic weights. Strong numerical evidence is found that the saddle point momenta arising in the classical limit of the DOZZ quantum Liouville theory are simply related to the geodesic length functions of the hyperbolic geometry on the 4-punctured Riemann sphere. Such relation provides new powerful methods for both numerical and analytical calculations of these functions. The consistency conditions for the factorization of the 4-point classical Liouville action in different channels are numerically verified. The factorization yields efficient numerical methods to calculate the 4-point classical action and, by the Polyakov conjecture, the accessory parameters of the Fuchsian uniformization of the 4-punctured sphere.

  17. Classical geometry from the quantum Liouville theory

    Energy Technology Data Exchange (ETDEWEB)

    Hadasz, Leszek [M. Smoluchowski Institute of Physics, Jagellonian University, Reymonta 4, 30-059 Cracow (Poland)]. E-mail: hadasz@th.if.uj.edu.pl; Jaskolski, Zbigniew [Institute of Theoretical Physics, University of WrocIaw, pl. M. Borna, 950-204 WrocIaw (Poland)]. E-mail: jask@ift.uni.wroc.pl; Piatek, Marcin [Institute of Theoretical Physics, University of WrocIaw, pl. M. Borna, 950-204 WrocIaw (Poland)]. E-mail: piatek@ift.uni.wroc.pl

    2005-09-26

    Zamolodchikov's recursion relations are used to analyze the existence and approximations to the classical conformal block in the case of four parabolic weights. Strong numerical evidence is found that the saddle point momenta arising in the classical limit of the DOZZ quantum Liouville theory are simply related to the geodesic length functions of the hyperbolic geometry on the 4-punctured Riemann sphere. Such relation provides new powerful methods for both numerical and analytical calculations of these functions. The consistency conditions for the factorization of the 4-point classical Liouville action in different channels are numerically verified. The factorization yields efficient numerical methods to calculate the 4-point classical action and, by the Polyakov conjecture, the accessory parameters of the Fuchsian uniformization of the 4-punctured sphere.

  18. Classical geometry from the quantum Liouville theory

    International Nuclear Information System (INIS)

    Hadasz, Leszek; Jaskolski, Zbigniew; Piatek, Marcin

    2005-01-01

    Zamolodchikov's recursion relations are used to analyze the existence and approximations to the classical conformal block in the case of four parabolic weights. Strong numerical evidence is found that the saddle point momenta arising in the classical limit of the DOZZ quantum Liouville theory are simply related to the geodesic length functions of the hyperbolic geometry on the 4-punctured Riemann sphere. Such relation provides new powerful methods for both numerical and analytical calculations of these functions. The consistency conditions for the factorization of the 4-point classical Liouville action in different channels are numerically verified. The factorization yields efficient numerical methods to calculate the 4-point classical action and, by the Polyakov conjecture, the accessory parameters of the Fuchsian uniformization of the 4-punctured sphere

  19. Complex geometry and quantum string theory

    International Nuclear Information System (INIS)

    Belavin, A.A.; Knizhnik, V.G.

    1986-01-01

    Summation over closed oriented surfaces of genus p ≥ 2 (p - loop vacuum amplitudes in boson string theory) in a critical dimensions D=26 is reduced to integration over M p space of complex structures of Riemann surfaces of genus p. The analytic properties of the integration measure as a function of the complex coordinates on M p are studied. It is shown that the measure multiplied by (det Im τ-circumflex) 13 (τ-circumflex is the surface period matrix) is the square of the modulus of a function which is holomorphic on M p and does not vanish anywhere. The function has a second order pole at infinity of compactified space of moduli M p . These properties define the measure uniquely up to a constant multiple and this permits one to set up explicitformulae for p=2,3 in terms of the theta-constants. Power and logarithmic divergences connected with renormalization of the tachyon wave function and of the slope respectively are involved in the theory. Quantum geometry of critical strings turns out to be a complex geometry

  20. Quantum Entanglement and Projective Ring Geometry

    Directory of Open Access Journals (Sweden)

    Michel Planat

    2006-08-01

    Full Text Available The paper explores the basic geometrical properties of the observables characterizing two-qubit systems by employing a novel projective ring geometric approach. After introducing the basic facts about quantum complementarity and maximal quantum entanglement in such systems, we demonstrate that the 15 × 15 multiplication table of the associated four-dimensional matrices exhibits a so-far-unnoticed geometrical structure that can be regarded as three pencils of lines in the projective plane of order two. In one of the pencils, which we call the kernel, the observables on two lines share a base of Bell states. In the complement of the kernel, the eight vertices/observables are joined by twelve lines which form the edges of a cube. A substantial part of the paper is devoted to showing that the nature of this geometry has much to do with the structure of the projective lines defined over the rings that are the direct product of n copies of the Galois field GF(2, with n = 2, 3 and 4.

  1. Plasmonics for emerging quantum technologies

    DEFF Research Database (Denmark)

    Bozhevolnyi, Sergey I.; Mortensen, N. Asger

    2017-01-01

    to exponentially increase computing power, quantum computing opens up possibilities to carry out calculations that ordinary computers could not finish in the lifetime of the Universe, while optical communications based on quantum cryptography become completely secure. At the same time, the emergence of Big Data...

  2. Geometry from dynamics, classical and quantum

    CERN Document Server

    Cariñena, José F; Marmo, Giuseppe; Morandi, Giuseppe

    2015-01-01

    This book describes, by using elementary techniques, how some geometrical structures widely used today in many areas of physics, like symplectic, Poisson, Lagrangian, Hermitian, etc., emerge from dynamics. It is assumed that what can be accessed in actual experiences when studying a given system is just its dynamical behavior that is described by using a family of variables ("observables" of the system).   The book departs from the principle that ''dynamics is first'', and then tries to answer in what sense the sole dynamics determines the geometrical structures that have proved so useful to describe the dynamics in so many important instances. In this vein it is shown that most of the geometrical structures that are used in the standard presentations of classical dynamics (Jacobi, Poisson, symplectic, Hamiltonian, Lagrangian) are determined, though in general not uniquely, by the dynamics alone. The same program is accomplished for the geometrical structures relevant to describe quantum dynamics.  Finall...

  3. Emergent quantum mechanics without wavefunctions

    Science.gov (United States)

    Mesa Pascasio, J.; Fussy, S.; Schwabl, H.; Grössing, G.

    2016-03-01

    We present our model of an Emergent Quantum Mechanics which can be characterized by “realism without pre-determination”. This is illustrated by our analytic description and corresponding computer simulations of Bohmian-like “surreal” trajectories, which are obtained classically, i.e. without the use of any quantum mechanical tool such as wavefunctions. However, these trajectories do not necessarily represent ontological paths of particles but rather mappings of the probability density flux in a hydrodynamical sense. Modelling emergent quantum mechanics in a high-low intesity double slit scenario gives rise to the “quantum sweeper effect” with a characteristic intensity pattern. This phenomenon should be experimentally testable via weak measurement techniques.

  4. Emergent quantum mechanics without wavefunctions

    International Nuclear Information System (INIS)

    Pascasio, J Mesa; Fussy, S; Schwabl, H; Grössing, G

    2016-01-01

    We present our model of an Emergent Quantum Mechanics which can be characterized by “realism without pre-determination”. This is illustrated by our analytic description and corresponding computer simulations of Bohmian-like “surreal” trajectories, which are obtained classically, i.e. without the use of any quantum mechanical tool such as wavefunctions. However, these trajectories do not necessarily represent ontological paths of particles but rather mappings of the probability density flux in a hydrodynamical sense. Modelling emergent quantum mechanics in a high-low intesity double slit scenario gives rise to the “quantum sweeper effect” with a characteristic intensity pattern. This phenomenon should be experimentally testable via weak measurement techniques. (paper)

  5. Quantum Riemannian geometry of phase space and nonassociativity

    Directory of Open Access Journals (Sweden)

    Beggs Edwin J.

    2017-04-01

    Full Text Available Noncommutative or ‘quantum’ differential geometry has emerged in recent years as a process for quantizing not only a classical space into a noncommutative algebra (as familiar in quantum mechanics but also differential forms, bundles and Riemannian structures at this level. The data for the algebra quantisation is a classical Poisson bracket while the data for quantum differential forms is a Poisson-compatible connection. We give an introduction to our recent result whereby further classical data such as classical bundles, metrics etc. all become quantised in a canonical ‘functorial’ way at least to 1st order in deformation theory. The theory imposes compatibility conditions between the classical Riemannian and Poisson structures as well as new physics such as typical nonassociativity of the differential structure at 2nd order. We develop in detail the case of ℂℙn where the commutation relations have the canonical form [wi, w̄j] = iλδij similar to the proposal of Penrose for quantum twistor space. Our work provides a canonical but ultimately nonassociative differential calculus on this algebra and quantises the metric and Levi-Civita connection at lowest order in λ.

  6. Quantum algebras and Poisson geometry in mathematical physics

    CERN Document Server

    Karasev, M V

    2005-01-01

    This collection presents new and interesting applications of Poisson geometry to some fundamental well-known problems in mathematical physics. The methods used by the authors include, in addition to advanced Poisson geometry, unexpected algebras with non-Lie commutation relations, nontrivial (quantum) Kählerian structures of hypergeometric type, dynamical systems theory, semiclassical asymptotics, etc.

  7. Plasmonics for emerging quantum technologies

    DEFF Research Database (Denmark)

    Bozhevolnyi, Sergey I.; Mortensen, N. Asger

    2017-01-01

    Expanding the frontiers of information processing technologies and, in particular, computing with ever increasing speed and capacity has long been recognized an important societal challenge, calling for the development of the next generation of quantum technologies. With its potential...... to exponentially increase computing power, quantum computing opens up possibilities to carry out calculations that ordinary computers could not finish in the lifetime of the Universe, while optical communications based on quantum cryptography become completely secure. At the same time, the emergence of Big Data...... and the ever increasing demands of miniaturization and energy saving technologies bring about additional fundamental problems and technological challenges to be addressed in scientific disciplines dealing with light-matter interactions. In this context, quantum plasmonics represents one of the most promising...

  8. Plasmonics for emerging quantum technologies

    DEFF Research Database (Denmark)

    Bozhevolnyi, Sergey I.; Mortensen, N. Asger

    2017-01-01

    Expanding the frontiers of information processing technologies and, in particular, computing with ever-increasing speed and capacity has long been recognized as an important societal challenge, calling for the development of the next generation of quantum technologies. With its potential...... to exponentially increase computing power, quantum computing opens up possibilities to carry out calculations that ordinary computers could not finish in the lifetime of the universe, whereas optical communications based on quantum cryptography become completely secure. At the same time, the emergence of Big Data...... and the ever-increasing demands of miniaturization and energy-saving technologies bring about additional fundamental problems and technological challenges to be addressed in scientific disciplines dealing with light-matter interactions. In this context, quantum plasmonics represents one of the most promising...

  9. Structural aspects of quantum field theory and noncommutative geometry

    CERN Document Server

    Grensing, Gerhard

    2013-01-01

    This book is devoted to the subject of quantum field theory. It is divided into two volumes. The first can serve as a textbook on the main techniques and results of quantum field theory, while the second treats more recent developments, in particular the subject of quantum groups and noncommutative geometry, and their interrelation. The first volume is directed at graduate students who want to learn the basic facts about quantum field theory. It begins with a gentle introduction to classical field theory, including the standard model of particle physics, general relativity, and also supergravity. The transition to quantized fields is performed with path integral techniques, by means of which the one-loop renormalization of a self-interacting scalar quantum field, of quantum electrodynamics, and the asymptotic freedom of quantum chromodynamics is treated. In the last part of the first volume, the application of path integral methods to systems of quantum statistical mechanics is covered. The book ends with a r...

  10. Quantum entanglement and geometry of determinantal varieties

    International Nuclear Information System (INIS)

    Chen Hao

    2006-01-01

    Quantum entanglement was first recognized as a feature of quantum mechanics in the famous paper of Einstein, Podolsky, and Rosen. Recently it has been realized that quantum entanglement is a key ingredient in quantum computation, quantum communication, and quantum cryptography. In this paper, we introduce algebraic sets, which are determinantal varieties in the complex projective spaces or the products of complex projective spaces, for the mixed states on bipartite or multipartite quantum systems as their invariants under local unitary transformations. These invariants are naturally arised from the physical consideration of measuring mixed states by separable pure states. Our construction has applications in the following important topics in quantum information theory: (1) separability criterion, it is proved that the algebraic sets must be a union of the linear subspaces if the mixed states are separable; (2) simulation of Hamiltonians, it is proved that the simulation of semipositive Hamiltonians of the same rank implies the projective isomorphisms of the corresponding algebraic sets; (3) construction of bound entangled mixed states, examples of the entangled mixed states which are invariant under partial transpositions (thus PPT bound entanglement) are constructed systematically from our new separability criterion

  11. Quantum potential physics, geometry and algebra

    CERN Document Server

    Licata, Ignazio

    2014-01-01

    Recently the interest in Bohm realist interpretation of quantum mechanics has grown. The important advantage of this approach lies in the possibility to introduce non-locality ab initio, and not as an “unexpected host”. In this book the authors give a detailed analysis of quantum potential, the non-locality term and its role in quantum cosmology and information. The different approaches to the quantum potential are analysed, starting from the original attempt to introduce a realism of particles trajectories (influenced by de Broglie’s pilot wave) to the recent dynamic interpretation provided by Goldstein, Durr, Tumulka and Zanghì, and the geometrodynamic picture, with suggestion about quantum gravity. Finally we focus on the algebraic reading of Hiley and Birkbeck school, that analyse the meaning of the non-local structure of the world, bringing important consequences for the space, time and information concepts.

  12. Geometry of Quantum Principal Bundles. Pt. 1

    International Nuclear Information System (INIS)

    Durdevic, M.

    1996-01-01

    A theory of principal bundles possessing quantum structure groups and classical base manifolds is presented. Structural analysis of such quantum principal bundles is performed. A differential calculus is constructed, combining differential forms on the base manifold with an appropriate differential calculus on the structure quantum group. Relations between the calculus on the group and the calculus on the bundle are investigated. A concept of (pseudo)tensoriality is formulated. The formalism of connections is developed. In particular, operators of horizontal projection, covariant derivative and curvature are constructed and analyzed. Generalizations of the first Structure Equation and of the Bianchi identity are found. Illustrative examples are presented. (orig.)

  13. On the geometry of inhomogeneous quantum groups

    Energy Technology Data Exchange (ETDEWEB)

    Aschieri, Paolo [Scuola Normale Superiore, Pisa (Italy)

    1998-01-01

    The author gives a pedagogical introduction to the differential calculus on quantum groups by stressing at all stages the connection with the classical case. He further analyzes the relation between differential calculus and quantum Lie algebra of left (right) invariant vectorfields. Equivalent definitions of bicovariant differential calculus are studied and their geometrical interpretation is explained. From these data he constructs and analyzes the space of vectorfields, and naturally introduces a contraction operator and a Lie derivative. Their properties are discussed.

  14. Semiclassical quantum gravity: statistics of combinatorial Riemannian geometries

    International Nuclear Information System (INIS)

    Bombelli, L.; Corichi, A.; Winkler, O.

    2005-01-01

    This paper is a contribution to the development of a framework, to be used in the context of semiclassical canonical quantum gravity, in which to frame questions about the correspondence between discrete spacetime structures at ''quantum scales'' and continuum, classical geometries at large scales. Such a correspondence can be meaningfully established when one has a ''semiclassical'' state in the underlying quantum gravity theory, and the uncertainties in the correspondence arise both from quantum fluctuations in this state and from the kinematical procedure of matching a smooth geometry to a discrete one. We focus on the latter type of uncertainty, and suggest the use of statistical geometry as a way to quantify it. With a cell complex as an example of discrete structure, we discuss how to construct quantities that define a smooth geometry, and how to estimate the associated uncertainties. We also comment briefly on how to combine our results with uncertainties in the underlying quantum state, and on their use when considering phenomenological aspects of quantum gravity. (Abstract Copyright [2005], Wiley Periodicals, Inc.)

  15. Complex quantum network geometries: Evolution and phase transitions

    Science.gov (United States)

    Bianconi, Ginestra; Rahmede, Christoph; Wu, Zhihao

    2015-08-01

    Networks are topological and geometric structures used to describe systems as different as the Internet, the brain, or the quantum structure of space-time. Here we define complex quantum network geometries, describing the underlying structure of growing simplicial 2-complexes, i.e., simplicial complexes formed by triangles. These networks are geometric networks with energies of the links that grow according to a nonequilibrium dynamics. The evolution in time of the geometric networks is a classical evolution describing a given path of a path integral defining the evolution of quantum network states. The quantum network states are characterized by quantum occupation numbers that can be mapped, respectively, to the nodes, links, and triangles incident to each link of the network. We call the geometric networks describing the evolution of quantum network states the quantum geometric networks. The quantum geometric networks have many properties common to complex networks, including small-world property, high clustering coefficient, high modularity, and scale-free degree distribution. Moreover, they can be distinguished between the Fermi-Dirac network and the Bose-Einstein network obeying, respectively, the Fermi-Dirac and Bose-Einstein statistics. We show that these networks can undergo structural phase transitions where the geometrical properties of the networks change drastically. Finally, we comment on the relation between quantum complex network geometries, spin networks, and triangulations.

  16. Quantum geometry in dynamical Regge calculus

    International Nuclear Information System (INIS)

    Hagura, Hiroyuki

    2002-01-01

    We study geometric properties of dynamical Regge calculus which is a hybridization of dynamical triangulation and quantum Regge calculus. Lattice diffeomorphisms are generated by certain elementary moves on a simplicial lattice in the hybrid model. At the semiclassical level, we discuss a possibility that the lattice diffeomorphisms give a simple explanation for the Bekenstein-Hawking entropy of a black hole. At the quantum level, numerical calculations of 3D pure gravity show that a fractal structure of the hybrid model is the same as that of dynamical triangulation in the strong-coupling phase. In the weak-coupling phase, on the other hand, space-time becomes a spiky configuration, which often occurs in quantum Regge calculus

  17. Plasmonics for emerging quantum technologies

    Directory of Open Access Journals (Sweden)

    Bozhevolnyi Sergey I.

    2017-01-01

    Full Text Available Expanding the frontiers of information processing technologies and, in particular, computing with ever-increasing speed and capacity has long been recognized as an important societal challenge, calling for the development of the next generation of quantum technologies. With its potential to exponentially increase computing power, quantum computing opens up possibilities to carry out calculations that ordinary computers could not finish in the lifetime of the universe, whereas optical communications based on quantum cryptography become completely secure. At the same time, the emergence of Big Data and the ever-increasing demands of miniaturization and energy-saving technologies bring about additional fundamental problems and technological challenges to be addressed in scientific disciplines dealing with light-matter interactions. In this context, quantum plasmonics represents one of the most promising and fundamental research directions and, indeed, the only one that enables the ultimate miniaturization of photonic components for quantum optics when being taken to extreme limits in light-matter interactions.

  18. Topological network entanglement as order parameter for the emergence of geometry

    International Nuclear Information System (INIS)

    Diamantini, M Cristina; Trugenberger, Carlo A

    2017-01-01

    We show that, in discrete models of quantum gravity, emergent geometric space can be viewed as the entanglement pattern in a mixed quantum state of the ‘universe’, characterized by a universal topological network entanglement. As a concrete example we analyze the recently proposed model in which geometry emerges due to the condensation of 4-cycles in random regular bipartite graphs, driven by the combinatorial Ollivier–Ricci curvature. Using this model we show that the emergence of geometric order decreases the entanglement entropy of random configurations. The lowest geometric entanglement entropy is realized in four dimensions. (paper)

  19. Geometry of abstraction in quantum computation

    NARCIS (Netherlands)

    Pavlovic, Dusko; Abramsky, S.; Mislove, M.W.

    2012-01-01

    Quantum algorithms are sequences of abstract operations, per­ formed on non-existent computers. They are in obvious need of categorical semantics. We present some steps in this direction, following earlier contribu­ tions of Abramsky, Goecke and Selinger. In particular, we analyze function

  20. Geometry of abstraction in quantum computation

    NARCIS (Netherlands)

    Pavlovic, Dusko; Abramsky, S.; Mislove, M.W.

    2012-01-01

    Quantum algorithms are sequences of abstract operations, per formed on non-existent computers. They are in obvious need of categorical semantics. We present some steps in this direction, following earlier contribu tions of Abramsky, Goecke and Selinger. In particular, we analyze function abstraction

  1. Differential geometry on Hopf algebras and quantum groups

    International Nuclear Information System (INIS)

    Watts, P.

    1994-01-01

    The differential geometry on a Hopf algebra is constructed, by using the basic axioms of Hopf algebras and noncommutative differential geometry. The space of generalized derivations on a Hopf algebra of functions is presented via the smash product, and used to define and discuss quantum Lie algebras and their properties. The Cartan calculus of the exterior derivative, Lie derivative, and inner derivation is found for both the universal and general differential calculi of an arbitrary Hopf algebra, and, by restricting to the quasitriangular case and using the numerical R-matrix formalism, the aforementioned structures for quantum groups are determined

  2. Prime factorization using quantum annealing and computational algebraic geometry

    Science.gov (United States)

    Dridi, Raouf; Alghassi, Hedayat

    2017-02-01

    We investigate prime factorization from two perspectives: quantum annealing and computational algebraic geometry, specifically Gröbner bases. We present a novel autonomous algorithm which combines the two approaches and leads to the factorization of all bi-primes up to just over 200000, the largest number factored to date using a quantum processor. We also explain how Gröbner bases can be used to reduce the degree of Hamiltonians.

  3. Prime factorization using quantum annealing and computational algebraic geometry

    OpenAIRE

    Dridi, Raouf; Alghassi, Hedayat

    2017-01-01

    We investigate prime factorization from two perspectives: quantum annealing and computational algebraic geometry, specifically Gr?bner bases. We present a novel autonomous algorithm which combines the two approaches and leads to the factorization of all bi-primes up to just over 200000, the largest number factored to date using a quantum processor. We also explain how Gr?bner bases can be used to reduce the degree of Hamiltonians.

  4. Exotic rotational correlations in quantum geometry

    Energy Technology Data Exchange (ETDEWEB)

    Hogan, Craig

    2017-05-01

    It is argued by extrapolation of general relativity and quantum mechanics that a classical inertial frame corresponds to a statistically defined observable that rotationally fluctuates due to Planck scale indeterminacy. Physical effects of exotic nonlocal rotational correlations on large scale field states are estimated. Their entanglement with the strong interaction vacuum is estimated to produce a universal, statistical centrifugal acceleration that resembles the observed cosmological constant.

  5. Modular Theory, Non-Commutative Geometry and Quantum Gravity

    Directory of Open Access Journals (Sweden)

    Wicharn Lewkeeratiyutkul

    2010-08-01

    Full Text Available This paper contains the first written exposition of some ideas (announced in a previous survey on an approach to quantum gravity based on Tomita-Takesaki modular theory and A. Connes non-commutative geometry aiming at the reconstruction of spectral geometries from an operational formalism of states and categories of observables in a covariant theory. Care has been taken to provide a coverage of the relevant background on modular theory, its applications in non-commutative geometry and physics and to the detailed discussion of the main foundational issues raised by the proposal.

  6. Exceptional quantum geometry and particle physics

    Directory of Open Access Journals (Sweden)

    Michel Dubois-Violette

    2016-11-01

    Full Text Available Based on an interpretation of the quark–lepton symmetry in terms of the unimodularity of the color group SU(3 and on the existence of 3 generations, we develop an argumentation suggesting that the “finite quantum space” corresponding to the exceptional real Jordan algebra of dimension 27 (the Euclidean Albert algebra is relevant for the description of internal spaces in the theory of particles. In particular, the triality which corresponds to the 3 off-diagonal octonionic elements of the exceptional algebra is associated to the 3 generations of the Standard Model while the representation of the octonions as a complex 4-dimensional space C⊕C3 is associated to the quark–lepton symmetry (one complex for the lepton and 3 for the corresponding quark. More generally it is suggested that the replacement of the algebra of real functions on spacetime by the algebra of functions on spacetime with values in a finite-dimensional Euclidean Jordan algebra which plays the role of “the algebra of real functions” on the corresponding almost classical quantum spacetime is relevant in particle physics. This leads us to study the theory of Jordan modules and to develop the differential calculus over Jordan algebras (i.e. to introduce the appropriate notion of differential forms. We formulate the corresponding definition of connections on Jordan modules.

  7. Quantum memories: emerging applications and recent advances

    Science.gov (United States)

    Heshami, Khabat; England, Duncan G.; Humphreys, Peter C.; Bustard, Philip J.; Acosta, Victor M.; Nunn, Joshua; Sussman, Benjamin J.

    2016-01-01

    Quantum light–matter interfaces are at the heart of photonic quantum technologies. Quantum memories for photons, where non-classical states of photons are mapped onto stationary matter states and preserved for subsequent retrieval, are technical realizations enabled by exquisite control over interactions between light and matter. The ability of quantum memories to synchronize probabilistic events makes them a key component in quantum repeaters and quantum computation based on linear optics. This critical feature has motivated many groups to dedicate theoretical and experimental research to develop quantum memory devices. In recent years, exciting new applications, and more advanced developments of quantum memories, have proliferated. In this review, we outline some of the emerging applications of quantum memories in optical signal processing, quantum computation and non-linear optics. We review recent experimental and theoretical developments, and their impacts on more advanced photonic quantum technologies based on quantum memories. PMID:27695198

  8. Black Holes and Large Order Quantum Geometry

    CERN Document Server

    Huang, Min-xin; Mariño, Marcos; Tavanfar, Alireza

    2009-01-01

    We study five-dimensional black holes obtained by compactifying M theory on Calabi-Yau threefolds. Recent progress in solving topological string theory on compact, one-parameter models allows us to test numerically various conjectures about these black holes. We give convincing evidence that a microscopic description based on Gopakumar-Vafa invariants accounts correctly for their macroscopic entropy, and we check that highly nontrivial cancellations -which seem necessary to resolve the so-called entropy enigma in the OSV conjecture- do in fact occur. We also study analytically small 5d black holes obtained by wrapping M2 branes in the fiber of K3 fibrations. By using heterotic/type II duality we obtain exact formulae for the microscopic degeneracies in various geometries, and we compute their asymptotic expansion for large charges.

  9. A game with geometry and quantum mechanics

    International Nuclear Information System (INIS)

    Caianiello, E.R.

    1981-01-01

    An attempt is made to geometrize quantum mechanics. A hermitian metric has been taken as a dogma. The Heisenberg commutation relations in cartesian coordinates were taken for the single particle. Position and momentum operators become covariant derivatives, whose commutator is the curvature tensor. The Bohz-Sommerfeld rules are derived both for rotation and vibration degrees of freedom. The Klein-Gordon equation is determined by the first Beltrami parameters. The Dirac equation splits into two sets coupling 8-component semispinors of first and second kind. The only invariance allowed is found to be CPT. A study of the solutions of the Klein-Gordon equation shows that the free particle described by this formalism has inner degrees of freedom [ru

  10. Tensorial spacetime geometries and background-independent quantum field theory

    International Nuclear Information System (INIS)

    Raetzel, Dennis

    2012-01-01

    Famously, Einstein read off the geometry of spacetime from Maxwell's equations. Today, we take this geometry that serious that our fundamental theory of matter, the standard model of particle physics, is based on it. However, it seems that there is a gap in our understanding if it comes to the physics outside of the solar system. Independent surveys show that we need concepts like dark matter and dark energy to make our models fit with the observations. But these concepts do not fit in the standard model of particle physics. To overcome this problem, at least, we have to be open to matter fields with kinematics and dynamics beyond the standard model. But these matter fields might then very well correspond to different spacetime geometries. This is the basis of this thesis: it studies the underlying spacetime geometries and ventures into the quantization of those matter fields independently of any background geometry. In the first part of this thesis, conditions are identified that a general tensorial geometry must fulfill to serve as a viable spacetime structure. Kinematics of massless and massive point particles on such geometries are introduced and the physical implications are investigated. Additionally, field equations for massive matter fields are constructed like for example a modified Dirac equation. In the second part, a background independent formulation of quantum field theory, the general boundary formulation, is reviewed. The general boundary formulation is then applied to the Unruh effect as a testing ground and first attempts are made to quantize massive matter fields on tensorial spacetimes.

  11. Geometry of quantum dynamics in infinite-dimensional Hilbert space

    Science.gov (United States)

    Grabowski, Janusz; Kuś, Marek; Marmo, Giuseppe; Shulman, Tatiana

    2018-04-01

    We develop a geometric approach to quantum mechanics based on the concept of the Tulczyjew triple. Our approach is genuinely infinite-dimensional, i.e. we do not restrict considerations to finite-dimensional Hilbert spaces, contrary to many other works on the geometry of quantum mechanics, and include a Lagrangian formalism in which self-adjoint (Schrödinger) operators are obtained as Lagrangian submanifolds associated with the Lagrangian. As a byproduct we also obtain results concerning coadjoint orbits of the unitary group in infinite dimensions, embedding of pure states in the unitary group, and self-adjoint extensions of symmetric relations.

  12. Fuzzy Geometry of Commutative Spaces and Quantum Dynamics

    International Nuclear Information System (INIS)

    Mayburov, S.N.

    2016-01-01

    Fuzzy topology and geometry considered as the possible mathematical framework for novel quantum-mechanical formalism. In such formalism the states of massive particle m correspond to the elements of fuzzy manifold called fuzzy points. Due to the manifold weak topology, m space coordinate x acquires principal uncertainty σ_x and described by the positive, normalized density w(r-vector , t) in 3-dimensional case. It’s shown that the evolution of m state on such 3-dimensional manifold corresponds to Shroedinger dynamics of massive quantum particle

  13. Separation of attractors in 1-modulus quantum corrected special geometry

    CERN Document Server

    Bellucci, S; Marrani, A; Shcherbakov, A

    2008-01-01

    We study the solutions to the N=2, d=4 Attractor Equations in a dyonic, extremal, static, spherically symmetric and asymptotically flat black hole background, in the simplest case of perturbative quantum corrected cubic Special Kahler geometry consistent with continuous axion-shift symmetry, namely in the 1-modulus Special Kahler geometry described (in a suitable special symplectic coordinate) by the holomorphic Kahler gauge-invariant prepotential F=t^3+i*lambda, with lambda real. By performing computations in the ``magnetic'' charge configuration, we find evidence for interesting phenomena (absent in the classical limit of vanishing lambda). Namely, for a certain range of the quantum parameter lambda we find a ``splitting'' of attractors, i.e. the existence of multiple solutions to the Attractor Equations for fixed supporting charge configuration. This corresponds to the existence of ``area codes'' in the radial evolution of the scalar t, determined by the various disconnected regions of the moduli space, wh...

  14. Stochastic Geometry and Quantum Gravity: Some Rigorous Results

    Science.gov (United States)

    Zessin, H.

    The aim of these lectures is a short introduction into some recent developments in stochastic geometry which have one of its origins in simplicial gravity theory (see Regge Nuovo Cimento 19: 558-571, 1961). The aim is to define and construct rigorously point processes on spaces of Euclidean simplices in such a way that the configurations of these simplices are simplicial complexes. The main interest then is concentrated on their curvature properties. We illustrate certain basic ideas from a mathematical point of view. An excellent representation of this area can be found in Schneider and Weil (Stochastic and Integral Geometry, Springer, Berlin, 2008. German edition: Stochastische Geometrie, Teubner, 2000). In Ambjørn et al. (Quantum Geometry Cambridge University Press, Cambridge, 1997) you find a beautiful account from the physical point of view. More recent developments in this direction can be found in Ambjørn et al. ("Quantum gravity as sum over spacetimes", Lect. Notes Phys. 807. Springer, Heidelberg, 2010). After an informal axiomatic introduction into the conceptual foundations of Regge's approach the first lecture recalls the concepts and notations used. It presents the fundamental zero-infinity law of stochastic geometry and the construction of cluster processes based on it. The second lecture presents the main mathematical object, i.e. Poisson-Delaunay surfaces possessing an intrinsic random metric structure. The third and fourth lectures discuss their ergodic behaviour and present the two-dimensional Regge model of pure simplicial quantum gravity. We terminate with the formulation of basic open problems. Proofs are given in detail only in a few cases. In general the main ideas are developed. Sufficiently complete references are given.

  15. Entropy, Topological Theories and Emergent Quantum Mechanics

    Directory of Open Access Journals (Sweden)

    D. Cabrera

    2017-02-01

    Full Text Available The classical thermostatics of equilibrium processes is shown to possess a quantum mechanical dual theory with a finite dimensional Hilbert space of quantum states. Specifically, the kernel of a certain Hamiltonian operator becomes the Hilbert space of quasistatic quantum mechanics. The relation of thermostatics to topological field theory is also discussed in the context of the approach of the emergence of quantum theory, where the concept of entropy plays a key role.

  16. Quantum geometry of resurgent perturbative/nonperturbative relations

    Energy Technology Data Exchange (ETDEWEB)

    Basar, Gökçe [Maryland Center for Fundamental Physics, University of Maryland, College Park, MD 20742 (United States); Dunne, Gerald V. [Department of Physics, University of Connecticut, Storrs, CT 06269-3046 (United States); Ünsal, Mithat [Department of Physics, North Carolina State University, Raleigh, NC 27695-8202 (United States)

    2017-05-16

    For a wide variety of quantum potentials, including the textbook ‘instanton’ examples of the periodic cosine and symmetric double-well potentials, the perturbative data coming from fluctuations about the vacuum saddle encodes all non-perturbative data in all higher non-perturbative sectors. Here we unify these examples in geometric terms, arguing that the all-orders quantum action determines the all-orders quantum dual action for quantum spectral problems associated with a classical genus one elliptic curve. Furthermore, for a special class of genus one potentials this relation is particularly simple: this class includes the cubic oscillator, symmetric double-well, symmetric degenerate triple-well, and periodic cosine potential. These are related to the Chebyshev potentials, which are in turn related to certain N=2 supersymmetric quantum field theories, to mirror maps for hypersurfaces in projective spaces, and also to topological c=3 Landau-Ginzburg models and ‘special geometry’. These systems inherit a natural modular structure corresponding to Ramanujan’s theory of elliptic functions in alternative bases, which is especially important for the quantization. Insights from supersymmetric quantum field theory suggest similar structures for more complicated potentials, corresponding to higher genus. Our approach is very elementary, using basic classical geometry combined with all-orders WKB.

  17. Geometry, commutation relations and the quantum fictitious force

    DEFF Research Database (Denmark)

    Botero, J.; Cirone, M.A.; Dahl, Jens Peder

    2003-01-01

    We express the commutation relation between the operators of the momentum and the radial unit vectors in D dimensions in differential and integral form. We connect this commutator with the quantum fictitious potential emerging in the radial Schrodinger equation of an s-wave.......We express the commutation relation between the operators of the momentum and the radial unit vectors in D dimensions in differential and integral form. We connect this commutator with the quantum fictitious potential emerging in the radial Schrodinger equation of an s-wave....

  18. PREFACE: Conceptual and Technical Challenges for Quantum Gravity 2014 - Parallel session: Noncommutative Geometry and Quantum Gravity

    Science.gov (United States)

    Martinetti, P.; Wallet, J.-C.; Amelino-Camelia, G.

    2015-08-01

    The conference Conceptual and Technical Challenges for Quantum Gravity at Sapienza University of Rome, from 8 to 12 September 2014, has provided a beautiful opportunity for an encounter between different approaches and different perspectives on the quantum-gravity problem. It contributed to a higher level of shared knowledge among the quantum-gravity communities pursuing each specific research program. There were plenary talks on many different approaches, including in particular string theory, loop quantum gravity, spacetime noncommutativity, causal dynamical triangulations, asymptotic safety and causal sets. Contributions from the perspective of philosophy of science were also welcomed. In addition several parallel sessions were organized. The present volume collects contributions from the Noncommutative Geometry and Quantum Gravity parallel session4, with additional invited contributions from specialists in the field. Noncommutative geometry in its many incarnations appears at the crossroad of many researches in theoretical and mathematical physics: • from models of quantum space-time (with or without breaking of Lorentz symmetry) to loop gravity and string theory, • from early considerations on UV-divergencies in quantum field theory to recent models of gauge theories on noncommutative spacetime, • from Connes description of the standard model of elementary particles to recent Pati-Salam like extensions. This volume provides an overview of these various topics, interesting for the specialist as well as accessible to the newcomer. 4partially funded by CNRS PEPS /PTI ''Metric aspect of noncommutative geometry: from Monge to Higgs''

  19. Tunneling into microstate geometries: quantum effects stop gravitational collapse

    International Nuclear Information System (INIS)

    Bena, Iosif; Mayerson, Daniel R.; Puhm, Andrea; Vercnocke, Bert

    2016-01-01

    Collapsing shells form horizons, and when the curvature is small classical general relativity is believed to describe this process arbitrarily well. On the other hand, quantum information theory based (fuzzball/firewall) arguments suggest the existence of some structure at the black hole horizon. This structure can only form if classical general relativity stops being the correct description of the collapsing shell before it reaches the horizon size. We present strong evidence that classical general relativity can indeed break down prematurely, by explicitly computing the quantum tunneling amplitude of a collapsing shell of branes into smooth horizonless microstate geometries. We show that the amplitude for tunneling into microstate geometries with a large number of topologically non-trivial cycles is parametrically larger than e −S BH , which indicates that the shell can tunnel into a horizonless configuration long before the horizon has any chance to form. We also use this technology to investigate the tunneling of M2 branes into LLM bubbling geometries.

  20. Quantum cosmology of a Bianchi III LRS geometry coupled to a source free electromagnetic field

    Science.gov (United States)

    Karagiorgos, A.; Pailas, T.; Dimakis, N.; Terzis, Petros A.; Christodoulakis, T.

    2018-03-01

    We consider a Bianchi type III axisymmetric geometry in the presence of an electromagnetic field. A first result at the classical level is that the symmetry of the geometry need not be applied on the electromagnetic tensor Fμν the algebraic restrictions, implied by the Einstein field equations to the stress energy tensor Tμν, suffice to reduce the general Fμν to the appropriate form. The classical solution thus found contains a time dependent electric and a constant magnetic charge. The solution is also reachable from the corresponding mini-superspace action, which is strikingly similar to the Reissner-Nordstr{öm one. This points to a connection between the black hole geometry and the cosmological solution here found, which is the analog of the known correlation between the Schwarzschild and the Kantowski-Sachs metrics. The configuration space is drastically modified by the presence of the magnetic charge from a 3D flat to a 3D pp wave geometry. We map the emerging linear and quadratic classical integrals of motion, to quantum observables. Along with the Wheeler-DeWitt equation these observables provide unique, up to constants, wave functions. The employment of a Bohmian interpretation of these quantum states results in deterministic (semi-classical) geometries most of which are singularity free.

  1. Quantum entanglement as an aspect of pure spinor geometry

    International Nuclear Information System (INIS)

    Kiosses, V

    2014-01-01

    Relying on the mathematical analogy of the pure states of a two-qubit system with four-component Dirac spinors, we provide an alternative consideration of quantum entanglement using the mathematical formulation of Cartan's pure spinors. A result of our analysis is that the Cartan equation of a two-qubit state is entanglement sensitive in the same way that the Dirac equation for fermions is mass sensitive. The Cartan equation for unentangled qubits is reduced to a pair of Cartan equations for single qubits as the Dirac equation for massless fermions separates into two Weyl equations. Finally, we establish a correspondence between the separability condition in qubit geometry and the separability condition in spinor geometry. (paper)

  2. Quantum κ-deformed differential geometry and field theory

    Science.gov (United States)

    Mercati, Flavio

    2016-03-01

    I introduce in κ-Minkowski noncommutative spacetime the basic tools of quantum differential geometry, namely bicovariant differential calculus, Lie and inner derivatives, the integral, the Hodge-∗ and the metric. I show the relevance of these tools for field theory with an application to complex scalar field, for which I am able to identify a vector-valued four-form which generalizes the energy-momentum tensor. Its closedness is proved, expressing in a covariant form the conservation of energy-momentum.

  3. Geometry of perturbed Gaussian states and quantum estimation

    International Nuclear Information System (INIS)

    Genoni, Marco G; Giorda, Paolo; Paris, Matteo G A

    2011-01-01

    We address the non-Gaussianity (nG) of states obtained by weakly perturbing a Gaussian state and investigate the relationships with quantum estimation. For classical perturbations, i.e. perturbations to eigenvalues, we found that the nG of the perturbed state may be written as the quantum Fisher information (QFI) distance minus a term depending on the infinitesimal energy change, i.e. it provides a lower bound to statistical distinguishability. Upon moving on isoenergetic surfaces in a neighbourhood of a Gaussian state, nG thus coincides with a proper distance in the Hilbert space and exactly quantifies the statistical distinguishability of the perturbations. On the other hand, for perturbations leaving the covariance matrix unperturbed, we show that nG provides an upper bound to the QFI. Our results show that the geometry of non-Gaussian states in the neighbourhood of a Gaussian state is definitely not trivial and cannot be subsumed by a differential structure. Nevertheless, the analysis of perturbations to a Gaussian state reveals that nG may be a resource for quantum estimation. The nG of specific families of perturbed Gaussian states is analysed in some detail with the aim of finding the maximally non-Gaussian state obtainable from a given Gaussian one. (fast track communication)

  4. Influence of the quantum dot geometry on p -shell transitions in differently charged quantum dots

    Science.gov (United States)

    Holtkemper, M.; Reiter, D. E.; Kuhn, T.

    2018-02-01

    Absorption spectra of neutral, negatively, and positively charged semiconductor quantum dots are studied theoretically. We provide an overview of the main energetic structure around the p -shell transitions, including the influence of nearby nominally dark states. Based on the envelope function approximation, we treat the four-band Luttinger theory as well as the direct and short-range exchange Coulomb interactions within a configuration interaction approach. The quantum dot confinement is approximated by an anisotropic harmonic potential. We present a detailed investigation of state mixing and correlations mediated by the individual interactions. Differences and similarities between the differently charged quantum dots are highlighted. Especially large differences between negatively and positively charged quantum dots become evident. We present a visualization of energetic shifts and state mixtures due to changes in size, in-plane asymmetry, and aspect ratio. Thereby we provide a better understanding of the experimentally hard to access question of quantum dot geometry effects. Our findings show a method to determine the in-plane asymmetry from photoluminescence excitation spectra. Furthermore, we supply basic knowledge for tailoring the strength of certain state mixtures or the energetic order of particular excited states via changes of the shape of the quantum dot. Such knowledge builds the basis to find the optimal QD geometry for possible applications and experiments using excited states.

  5. Spin-dependent quantum transport in nanoscaled geometries

    Science.gov (United States)

    Heremans, Jean J.

    2011-10-01

    We discuss experiments where the spin degree of freedom leads to quantum interference phenomena in the solid-state. Under spin-orbit interactions (SOI), spin rotation modifies weak-localization to weak anti-localization (WAL). WAL's sensitivity to spin- and phase coherence leads to its use in determining the spin coherence lengths Ls in materials, of importance moreover in spintronics. Using WAL we measure the dependence of Ls on the wire width w in narrow nanolithographic ballistic InSb wires, ballistic InAs wires, and diffusive Bi wires with surface states with Rashba-like SOI. In all three systems we find that Ls increases with decreasing w. While theory predicts the increase for diffusive wires with linear (Rashba) SOI, we experimentally conclude that the increase in Ls under dimensional confinement may be more universal, with consequences for various applications. Further, in mesoscopic ring geometries on an InAs/AlGaSb 2D electron system (2DES) we observe both Aharonov-Bohm oscillations due to spatial quantum interference, and Altshuler-Aronov-Spivak oscillations due to time-reversed paths. A transport formalism describing quantum coherent networks including ballistic transport and SOI allows a comparison of spin- and phase coherence lengths extracted for such spatial- and temporal-loop quantum interference phenomena. We further applied WAL to study the magnetic interactions between a 2DES at the surface of InAs and local magnetic moments on the surface from rare earth (RE) ions (Gd3+, Ho3+, and Sm3+). The magnetic spin-flip rate carries information about magnetic interactions. Results indicate that the heavy RE ions increase the SOI scattering rate and the spin-flip rate, the latter indicating magnetic interactions. Moreover Ho3+ on InAs yields a spin-flip rate with an unusual power 1/2 temperature dependence, possibly characteristic of a Kondo system. We acknowledge funding from DOE (DE-FG02-08ER46532).

  6. The emerging quantum the physics behind quantum mechanics

    CERN Document Server

    Pena, Luis de la; Valdes-Hernandez, Andrea

    2014-01-01

    This monograph presents the latest findings from a long-term research project intended to identify the physics behind Quantum Mechanics. A fundamental theory for quantum mechanics is constructed from first physical principles, revealing quantization as an emergent phenomenon arising from a deeper stochastic process. As such, it offers the vibrant community working on the foundations of quantum mechanics an alternative contribution open to discussion. The book starts with a critical summary of the main conceptual problems that still beset quantum mechanics.  The basic consideration is then introduced that any material system is an open system in permanent contact with the random zero-point radiation field, with which it may reach a state of equilibrium. Working from this basis, a comprehensive and self-consistent theoretical framework is then developed. The pillars of the quantum-mechanical formalism are derived, as well as the radiative corrections of nonrelativistic QED, while revealing the underlying physi...

  7. Emergence of quantum mechanics from classical statistics

    International Nuclear Information System (INIS)

    Wetterich, C

    2009-01-01

    The conceptual setting of quantum mechanics is subject to an ongoing debate from its beginnings until now. The consequences of the apparent differences between quantum statistics and classical statistics range from the philosophical interpretations to practical issues as quantum computing. In this note we demonstrate how quantum mechanics can emerge from classical statistical systems. We discuss conditions and circumstances for this to happen. Quantum systems describe isolated subsystems of classical statistical systems with infinitely many states. While infinitely many classical observables 'measure' properties of the subsystem and its environment, the state of the subsystem can be characterized by the expectation values of only a few probabilistic observables. They define a density matrix, and all the usual laws of quantum mechanics follow. No concepts beyond classical statistics are needed for quantum physics - the differences are only apparent and result from the particularities of those classical statistical systems which admit a quantum mechanical description. In particular, we show how the non-commuting properties of quantum operators are associated to the use of conditional probabilities within the classical system, and how a unitary time evolution reflects the isolation of the subsystem.

  8. On the ontological emergence from quantum regime

    Energy Technology Data Exchange (ETDEWEB)

    Luty, Damian [Adam Mickiewicz University, Poznan (Poland)

    2014-07-01

    There are several views on the relation between quantum physics and theory of relativity (especially General Relativity, GR). A popular perspective is this: GR with its macroscopic gravitational effects will turn out to be a limit of a more fundamental theory which should consider discrete physics and not deal with continuity (like theory of relativity). Thus, GR will emerge from a more basic theory, which should be quantum-like. One could call this an epistemic emergence view towards fundamental theories. The question is, given that scientific realism is valid: should emergence be a fundamental notion in our ontological view about the evolving, physical Universe? Is there an ontological emergence fully compatible with the notion of fundamentality? I argue that if we want to defend ontological emergence (from quantum to macroscopic regime) as something fundamental, we will arrive at the position of metaphysics of dispositions (and I argue, why this is undesirable), or conclude, that we cannot square fully fundamental ontology with the notion of emergence, and that we have to accept an ontological pluralism relativised to a certain scale. I defend the latter proposition, showing, that epistemic emergence doesn't entail (logically) ontological emergence.

  9. Phonon impact on optical control schemes of quantum dots: Role of quantum dot geometry and symmetry

    Science.gov (United States)

    Lüker, S.; Kuhn, T.; Reiter, D. E.

    2017-12-01

    Phonons strongly influence the optical control of semiconductor quantum dots. When modeling the electron-phonon interaction in several theoretical approaches, the quantum dot geometry is approximated by a spherical structure, though typical self-assembled quantum dots are strongly lens-shaped. By explicitly comparing simulations of a spherical and a lens-shaped dot using a well-established correlation expansion approach, we show that, indeed, lens-shaped dots can be exactly mapped to a spherical geometry when studying the phonon influence on the electronic system. We also give a recipe to reproduce spectral densities from more involved dots by rather simple spherical models. On the other hand, breaking the spherical symmetry has a pronounced impact on the spatiotemporal properties of the phonon dynamics. As an example we show that for a lens-shaped quantum dot, the phonon emission is strongly concentrated along the direction of the smallest axis of the dot, which is important for the use of phonons for the communication between different dots.

  10. Value of the Cosmological Constant in Emergent Quantum Gravity

    Energy Technology Data Exchange (ETDEWEB)

    Hogan, Craig [Fermilab

    2018-03-30

    It is suggested that the exact value of the cosmological constant could be derived from first principles, based on entanglement of the Standard Model field vacuum with emergent holographic quantum geometry. For the observed value of the cosmological constant, geometrical information is shown to agree closely with the spatial information density of the QCD vacuum, estimated in a free-field approximation. The comparison is motivated by a model of exotic rotational fluctuations in the inertial frame that can be precisely tested in laboratory experiments. Cosmic acceleration in this model is always positive, but fluctuates with characteristic coherence length $\\approx 100$km and bandwidth $\\approx 3000$ Hz.

  11. Signatures of lattice geometry in quantum and topological Hall effect

    International Nuclear Information System (INIS)

    Göbel, Börge; Mook, Alexander; Mertig, Ingrid; Henk, Jürgen

    2017-01-01

    The topological Hall effect (THE) of electrons in skyrmion crystals (SkXs) is strongly related to the quantum Hall effect (QHE) on lattices. This relation suggests to revisit the QHE because its Hall conductivity can be unconventionally quantized. It exhibits a jump and changes sign abruptly if the Fermi level crosses a van Hove singularity. In this Paper, we investigate the unconventional QHE features by discussing band structures, Hall conductivities, and topological edge states for square and triangular lattices; their origin are Chern numbers of bands in the SkX (THE) or of the corresponding Landau levels (QHE). Striking features in the energy dependence of the Hall conductivities are traced back to the band structure without magnetic field whose properties are dictated by the lattice geometry. Based on these findings, we derive an approximation that allows us to determine the energy dependence of the topological Hall conductivity on any two-dimensional lattice. The validity of this approximation is proven for the honeycomb lattice. We conclude that SkXs lend themselves for experiments to validate our findings for the THE and—indirectly—the QHE. (paper)

  12. Can quantum mechanics be an emergent phenomenon?

    Science.gov (United States)

    Blasone, Massimo; Jizba, Petr; Scardigli, Fabio

    2009-06-01

    We raise the issue whether conventional quantum mechanics, which is not a hidden variable theory in the usual Jauch-Piron's sense, might nevertheless be a hidden variable theory in the sense recently conjectured by G. 't Hooft in his pre-quantization scheme. We find that quantum mechanics might indeed have a fully deterministic underpinning by showing that Born's rule naturally emerges (i.e., it is not postulated) when 't Hooft's Hamiltonian for be-ables is combined with Koopmann-von Neumann operatorial formulation of classical physics.

  13. Can quantum mechanics be an emergent phenomenon?

    Energy Technology Data Exchange (ETDEWEB)

    Blasone, Massimo [INFN, Gruppo Collegato di Salerno, DMI, Universita di Salerno, Fisciano - 84084 (Italy); Jizba, Petr [ITP, Freie Universitaet Berlin, Arnimallee 14 D-14195 Berlin (Germany); Scardigli, Fabio, E-mail: blasone@sa.infn.i, E-mail: jizba@physik.fu-berlin.d, E-mail: fabio@phys.ntu.edu.t [Leung Center for Cosmology and Particle Astrophysics (LeCosPA), Department of Physics, National Taiwan University, Taipei 106, Taiwan (China)

    2009-06-01

    We raise the issue whether conventional quantum mechanics, which is not a hidden variable theory in the usual Jauch-Piron's sense, might nevertheless be a hidden variable theory in the sense recently conjectured by G. 't Hooft in his pre-quantization scheme. We find that quantum mechanics might indeed have a fully deterministic underpinning by showing that Born's rule naturally emerges (i.e., it is not postulated) when 't Hooft's Hamiltonian for be-ables is combined with Koopmann-von Neumann operatorial formulation of classical physics.

  14. Can quantum mechanics be an emergent phenomenon?

    International Nuclear Information System (INIS)

    Blasone, Massimo; Jizba, Petr; Scardigli, Fabio

    2009-01-01

    We raise the issue whether conventional quantum mechanics, which is not a hidden variable theory in the usual Jauch-Piron's sense, might nevertheless be a hidden variable theory in the sense recently conjectured by G. 't Hooft in his pre-quantization scheme. We find that quantum mechanics might indeed have a fully deterministic underpinning by showing that Born's rule naturally emerges (i.e., it is not postulated) when 't Hooft's Hamiltonian for be-ables is combined with Koopmann-von Neumann operatorial formulation of classical physics.

  15. The emergent Copenhagen interpretation of quantum mechanics

    Science.gov (United States)

    Hollowood, Timothy J.

    2014-05-01

    We introduce a new and conceptually simple interpretation of quantum mechanics based on reduced density matrices of sub-systems from which the standard Copenhagen interpretation emerges as an effective description of macroscopically large systems. This interpretation describes a world in which definite measurement results are obtained with probabilities that reproduce the Born rule. Wave function collapse is seen to be a useful but fundamentally unnecessary piece of prudent book keeping which is only valid for macro-systems. The new interpretation lies in a class of modal interpretations in that it applies to quantum systems that interact with a much larger environment. However, we show that it does not suffer from the problems that have plagued similar modal interpretations like macroscopic superpositions and rapid flipping between macroscopically distinct states. We describe how the interpretation fits neatly together with fully quantum formulations of statistical mechanics and that a measurement process can be viewed as a process of ergodicity breaking analogous to a phase transition. The key feature of the new interpretation is that joint probabilities for the ergodic subsets of states of disjoint macro-systems only arise as emergent quantities. Finally we give an account of the EPR-Bohm thought experiment and show that the interpretation implies the violation of the Bell inequality characteristic of quantum mechanics but in a way that is rather novel. The final conclusion is that the Copenhagen interpretation gives a completely satisfactory phenomenology of macro-systems interacting with micro-systems.

  16. The emergent Copenhagen interpretation of quantum mechanics

    International Nuclear Information System (INIS)

    Hollowood, Timothy J

    2014-01-01

    We introduce a new and conceptually simple interpretation of quantum mechanics based on reduced density matrices of sub-systems from which the standard Copenhagen interpretation emerges as an effective description of macroscopically large systems. This interpretation describes a world in which definite measurement results are obtained with probabilities that reproduce the Born rule. Wave function collapse is seen to be a useful but fundamentally unnecessary piece of prudent book keeping which is only valid for macro-systems. The new interpretation lies in a class of modal interpretations in that it applies to quantum systems that interact with a much larger environment. However, we show that it does not suffer from the problems that have plagued similar modal interpretations like macroscopic superpositions and rapid flipping between macroscopically distinct states. We describe how the interpretation fits neatly together with fully quantum formulations of statistical mechanics and that a measurement process can be viewed as a process of ergodicity breaking analogous to a phase transition. The key feature of the new interpretation is that joint probabilities for the ergodic subsets of states of disjoint macro-systems only arise as emergent quantities. Finally we give an account of the EPR–Bohm thought experiment and show that the interpretation implies the violation of the Bell inequality characteristic of quantum mechanics but in a way that is rather novel. The final conclusion is that the Copenhagen interpretation gives a completely satisfactory phenomenology of macro-systems interacting with micro-systems. (paper)

  17. Quantum group of isometries in classical and noncommutative geometry

    International Nuclear Information System (INIS)

    Goswami, D.

    2007-04-01

    We formulate a quantum generalization of the notion of the group of Riemannian isometries for a compact Riemannian manifold, by introducing a natural notion of smooth and isometric action by a compact quantum group on a classical or noncommutative manifold described by spectral triples, and then proving the existence of a universal object (called the quantum isometry group) in the category of compact quantum groups acting smoothly and isometrically on a given (possibly noncommutative) manifold. Our formulation accommodates spectral triples which are not of type II. We give an explicit description of quantum isometry groups of commutative and noncommutative tori, and in this context, obtain the quantum double torus defined in [7] as the universal quantum group of holomorphic isometries of the noncommutative torus. (author)

  18. Quantum Hamiltonian differential geometry: how does quantization affect space?

    International Nuclear Information System (INIS)

    Aldrovandi, R.

    1993-01-01

    Quantum phase space is given a description which entirely parallels the usual presentation of Classical Phase Space. A particular Schwinger unitary operator basis, in which the expansion of each operator is its own Weyl expression, is specially convenient for the purpose. The quantum Hamiltonian structure obtains from the classical structure by the conversion of the classical pointwise product of dynamical quantities into the noncommutative star product of Wigner functions. The main qualitative difference in the general structure is that, in the quantum case, the inverse symplectic matrix is not simply antisymmetric. This difference leads to the presence of braiding in the backstage of Quantum Mechanics. (author)

  19. Quantum and classical optics–emerging links

    International Nuclear Information System (INIS)

    Eberly, J H; Qian, Xiao-Feng; Qasimi, Asma Al; Ali, Hazrat; Alonso, M A; Gutiérrez-Cuevas, R; Little, Bethany J; Howell, John C; Malhotra, Tanya; Vamivakas, A N

    2016-01-01

    Quantum optics and classical optics are linked in ways that are becoming apparent as a result of numerous recent detailed examinations of the relationships that elementary notions of optics have with each other. These elementary notions include interference, polarization, coherence, complementarity and entanglement. All of them are present in both quantum and classical optics. They have historic origins, and at least partly for this reason not all of them have quantitative definitions that are universally accepted. This makes further investigation into their engagement in optics very desirable. We pay particular attention to effects that arise from the mere co-existence of separately identifiable and readily available vector spaces. Exploitation of these vector-space relationships are shown to have unfamiliar theoretical implications and new options for observation. It is our goal to bring emerging quantum–classical links into wider view and to indicate directions in which forthcoming and future work will promote discussion and lead to unified understanding. (invited comment)

  20. Muon 2 measurements and non-commutative geometry of quantum ...

    Indian Academy of Sciences (India)

    Abstract. We discuss a completely quantum mechanical treatment of the measurement of the anomalous magnetic moment of the muon. A beam of muons move in a strong uniform magnetic field and a weak focusing electrostatic field. Errors in the classical beam analysis are exposed. In the Dirac quantum beam analysis, ...

  1. Quantum group symmetry of classical and noncommutative geometry

    Indian Academy of Sciences (India)

    Debashish Goswami

    2016-07-01

    Jul 1, 2016 ... universal enveloping algebra U(L) of a Lie algebra L, (iv) ... Kustermans defined locally compact quantum groups too. .... There are other versions of quantum isometries formulated by me ..... classical connected spaces when either the space is ..... Etingof-Walton's paper, we have : (i) M0 is open and dense,.

  2. Non-commutative geometry on quantum phase-space

    International Nuclear Information System (INIS)

    Reuter, M.

    1995-06-01

    A non-commutative analogue of the classical differential forms is constructed on the phase-space of an arbitrary quantum system. The non-commutative forms are universal and are related to the quantum mechanical dynamics in the same way as the classical forms are related to classical dynamics. They are constructed by applying the Weyl-Wigner symbol map to the differential envelope of the linear operators on the quantum mechanical Hilbert space. This leads to a representation of the non-commutative forms considered by A. Connes in terms of multiscalar functions on the classical phase-space. In an appropriate coincidence limit they define a quantum deformation of the classical tensor fields and both commutative and non-commutative forms can be studied in a unified framework. We interprete the quantum differential forms in physical terms and comment on possible applications. (orig.)

  3. Quantum groups, non-commutative differential geometry and applications

    International Nuclear Information System (INIS)

    Schupp, P.; California Univ., Berkeley, CA

    1993-01-01

    The topic of this thesis is the development of a versatile and geometrically motivated differential calculus on non-commutative or quantum spaces, providing powerful but easy-to-use mathematical tools for applications in physics and related sciences. A generalization of unitary time evolution is proposed and studied for a simple 2-level system, leading to non-conservation of microscopic entropy, a phenomenon new to quantum mechanics. A Cartan calculus that combines functions, forms, Lie derivatives and inner derivations along general vector fields into one big algebra is constructed for quantum groups and then extended to quantum planes. The construction of a tangent bundle on a quantum group manifold and an BRST type approach to quantum group gauge theory are given as further examples of applications. The material is organized in two parts: Part I studies vector fields on quantum groups, emphasizing Hopf algebraic structures, but also introducing a ''quantum geometric'' construction. Using a generalized semi-direct product construction we combine the dual Hopf algebras A of functions and U of left-invariant vector fields into one fully bicovariant algebra of differential operators. The pure braid group is introduced as the commutant of Δ(U). It provides invariant maps A → U and thereby bicovariant vector fields, casimirs and metrics. This construction allows the translation of undeformed matrix expressions into their less obvious quantum algebraic counter parts. We study this in detail for quasitriangular Hopf algebras, giving the determinant and orthogonality relation for the ''reflection'' matrix. Part II considers the additional structures of differential forms and finitely generated quantum Lie algebras -- it is devoted to the construction of the Cartan calculus, based on an undeformed Cartan identity

  4. Beyond the Standard Model with noncommutative geometry, strolling towards quantum gravity

    International Nuclear Information System (INIS)

    Martinetti, Pierre

    2015-01-01

    Noncommutative geometry in its many incarnations appears at the crossroad of many researches in theoretical and mathematical physics: from models of quantum spacetime(with or without breaking of Lorentz symmetry) to loop gravity and string theory, from early considerations on UV-divergenciesin quantum field theory to recent models of gauge theories on noncommutatives pacetime, from Connes description of the standard model of elementary particles to recent Pati-Salam like extensions. We list several of these applications, emphasizing also the original point of view brought by noncommutative geometry on the nature of time. This text serves as an introduction to the volume of proceedings of the parallel session “Noncommutative geometry and quantum gravity”, as a part of the conference “Conceptual and technical challenges in quantum gravity” organized at the University of Rome La Sapienza sin September 2014. (paper)

  5. Multicomponent Density Functional Theory: Impact of Nuclear Quantum Effects on Proton Affinities and Geometries.

    Science.gov (United States)

    Brorsen, Kurt R; Yang, Yang; Hammes-Schiffer, Sharon

    2017-08-03

    Nuclear quantum effects such as zero point energy play a critical role in computational chemistry and often are included as energetic corrections following geometry optimizations. The nuclear-electronic orbital (NEO) multicomponent density functional theory (DFT) method treats select nuclei, typically protons, quantum mechanically on the same level as the electrons. Electron-proton correlation is highly significant, and inadequate treatments lead to highly overlocalized nuclear densities. A recently developed electron-proton correlation functional, epc17, has been shown to provide accurate nuclear densities for molecular systems. Herein, the NEO-DFT/epc17 method is used to compute the proton affinities for a set of molecules and to examine the role of nuclear quantum effects on the equilibrium geometry of FHF - . The agreement of the computed results with experimental and benchmark values demonstrates the promise of this approach for including nuclear quantum effects in calculations of proton affinities, pK a 's, optimized geometries, and reaction paths.

  6. Geometries

    CERN Document Server

    Sossinsky, A B

    2012-01-01

    The book is an innovative modern exposition of geometry, or rather, of geometries; it is the first textbook in which Felix Klein's Erlangen Program (the action of transformation groups) is systematically used as the basis for defining various geometries. The course of study presented is dedicated to the proposition that all geometries are created equal--although some, of course, remain more equal than others. The author concentrates on several of the more distinguished and beautiful ones, which include what he terms "toy geometries", the geometries of Platonic bodies, discrete geometries, and classical continuous geometries. The text is based on first-year semester course lectures delivered at the Independent University of Moscow in 2003 and 2006. It is by no means a formal algebraic or analytic treatment of geometric topics, but rather, a highly visual exposition containing upwards of 200 illustrations. The reader is expected to possess a familiarity with elementary Euclidean geometry, albeit those lacking t...

  7. Quantum groups and algebraic geometry in conformal field theory

    International Nuclear Information System (INIS)

    Smit, T.J.H.

    1989-01-01

    The classification of two-dimensional conformal field theories is described with algebraic geometry and group theory. This classification is necessary in a consistent formulation of a string theory. (author). 130 refs.; 4 figs.; schemes

  8. Geometry of time-spaces non-commutative algebraic geometry, applied to quantum theory

    CERN Document Server

    Landau, Olav Arnfinn

    2011-01-01

    This is a monograph about non-commutative algebraic geometry, and its application to physics. The main mathematical inputs are the non-commutative deformation theory, moduli theory of representations of associative algebras, a new non-commutative theory o

  9. Emerging interpretations of quantum mechanics and recent progress in quantum measurement

    International Nuclear Information System (INIS)

    Clarke, M L

    2014-01-01

    The focus of this paper is to provide a brief discussion on the quantum measurement process, by reviewing select examples highlighting recent progress towards its understanding. The areas explored include an outline of the measurement problem, the standard interpretation of quantum mechanics, quantum to classical transition, types of measurement (including weak and projective measurements) and newly emerging interpretations of quantum mechanics (decoherence theory, objective reality, quantum Darwinism and quantum Bayesianism). (paper)

  10. Device geometry considerations for ridge waveguide quantum dot mode-locked lasers

    International Nuclear Information System (INIS)

    Mee, J K; Raghunathan, R; Lester, L F; Wright, J B

    2014-01-01

    Quantum dot mode-locked lasers have emerged as a leading source for the efficient generation of high-quality optical pulses from a compact package, attracting considerable attention for support of multiple high-speed applications, owing to characteristics such as low noise operation and high pulse peak power, in addition to the ability to multiplex the output pulse train in temporal and frequency domains in order to obtain hundreds of GHz pulse repetition rates potentially operating at 1 Tbps. This topical review provides a detailed explanation into the primary advantages of quantum dots, identifying the key features that have made them superior to other material systems for passive mode-locking in semiconductor lasers. Following this account, the impact of the device's cavity geometry on the operational range of two-section, monolithic passively mode-locked lasers is investigated both experimentally and analytically. A model is described that predicts regimes of pulsed operation as a function of absorber length to gain length ratio. Experimental measurements of the pulse time-domain characteristics over a wide range of operating temperatures are found to be in excellent agreement with analytical predictions. The impact of ridge waveguide design on the operational range is also examined and the key dimensions that most strongly impact efficient operation are identified. (topical review)

  11. Quantum-deformed geometry on phase-space

    International Nuclear Information System (INIS)

    Gozzi, E.; Reuter, M.

    1992-12-01

    In this paper we extend the standard Moyal formalism to the tangent and cotangent bundle of the phase-space of any hamiltonian mechanical system. In this manner we build the quantum analog of the classical hamiltonian vector-field of time evolution and its associated Lie-derivative. We also use this extended Moyal formalism to develop a quantum analog of the Cartan calculus on symplectic manifolds. (orig.)

  12. Geometry

    Indian Academy of Sciences (India)

    . In the previous article we looked at the origins of synthetic and analytic geometry. More practical minded people, the builders and navigators, were studying two other aspects of geometry- trigonometry and integral calculus. These are actually ...

  13. Geometry

    CERN Document Server

    Prasolov, V V

    2015-01-01

    This book provides a systematic introduction to various geometries, including Euclidean, affine, projective, spherical, and hyperbolic geometries. Also included is a chapter on infinite-dimensional generalizations of Euclidean and affine geometries. A uniform approach to different geometries, based on Klein's Erlangen Program is suggested, and similarities of various phenomena in all geometries are traced. An important notion of duality of geometric objects is highlighted throughout the book. The authors also include a detailed presentation of the theory of conics and quadrics, including the theory of conics for non-Euclidean geometries. The book contains many beautiful geometric facts and has plenty of problems, most of them with solutions, which nicely supplement the main text. With more than 150 figures illustrating the arguments, the book can be recommended as a textbook for undergraduate and graduate-level courses in geometry.

  14. Geometry of real and complex canonical transformations in quantum mechanics

    International Nuclear Information System (INIS)

    Grossmann, A.

    1977-08-01

    Quantum mechanics of finitely many particles involves the group of linear (and affine) canonical transformations. A well-defined ray representation of this group acts in the space of states of any quantum-mechanical system with finitely many degrees of freedom and plays a central role in many different contexts. This representation appears quite naturally in quantum mechanics over phase space (Weyl-Wigner correspondence), that it becomes, when suitably written, just a matter of looking at one object from different symplectic reference frames. This is particularly interesting for complex canonical transformations which are represented by unbounded operators. The list of references gives an idea of the variety of motivations and points of view in the subject

  15. Integrability and chaos in quantum systems (as viewed from geometry and dynamical symmetry)

    International Nuclear Information System (INIS)

    Zhang, Wei-Min.

    1989-01-01

    It is known that the development and deep understanding of modern interaction theory and classical mechanics are made through geometry and symmetry. Yet, quantum mechanics which was regarded to be the microscopic theory of classical mechanics and achieved the crowning success in interpreting the entire microscopic world was developed purely from algebraic methods. In this thesis, the author will study the geometry and dynamical symmetry in quantum systems, from which the question of integrability and chaos are explicitly addressed. First of all, the quantum dynamical degrees of freedom and quantum integrability are precisely defined and the inherent geometrical structure of quantum systems is explored from the fundamental structure of quantum theory. Such a geometrical structure can provide a framework to simultaneously build quantum and classical mechanics. The quantum-classical correspondence is then explicitly deduced. The dynamics of quantum system before it reaches the classical limit is formulated. Thus, the classical chaos is proven to be a special limiting phenomena of quantum systems and the dynamics before the system reaches its classical chaos is explored. The latter is the first step to seek the quantum manifestation of chaos. The relationship between integrability and dynamical symmetry are studied and some universal properties are discovered: a dynamical system (both quantum and classical) in integrable if it possesses a dynamical symmetry. Chaos will occur if the system undergoes a dynamical symmetry breaking and is accompanied by a structural phase transition. Thus, the concept of dynamical symmetry can be used to predict the general behaviors of a system. The theoretical underpinnings developed in this thesis are verified by many basic quantum mechanical examples

  16. Quantum coherence generating power, maximally abelian subalgebras, and Grassmannian geometry

    Science.gov (United States)

    Zanardi, Paolo; Campos Venuti, Lorenzo

    2018-01-01

    We establish a direct connection between the power of a unitary map in d-dimensions (d algebra). This set can be seen as a topologically non-trivial subset of the Grassmannian over linear operators. The natural distance over the Grassmannian induces a metric structure on Md, which quantifies the lack of commutativity between the pairs of subalgebras. Given a maximally abelian subalgebra, one can define, on physical grounds, an associated measure of quantum coherence. We show that the average quantum coherence generated by a unitary map acting on a uniform ensemble of quantum states in the algebra (the so-called coherence generating power of the map) is proportional to the distance between a pair of maximally abelian subalgebras in Md connected by the unitary transformation itself. By embedding the Grassmannian into a projective space, one can pull-back the standard Fubini-Study metric on Md and define in this way novel geometrical measures of quantum coherence generating power. We also briefly discuss the associated differential metric structures.

  17. Instanton geometry and quantum A∞ structure on the elliptic curve

    International Nuclear Information System (INIS)

    Herbst, M.; Lerche, W.; Nemeschansky, D.

    2006-03-01

    We first determine and then study the complete set of non-vanishing A-model correlation functions associated with the 'long-diagonal branes' on the elliptic curve. We verify that they satisfy the relevant A ∞ consistency relations at both classical and quantum levels. In particular we find that the A ∞ relation for the annulus provides a reconstruction of annulus instantons out of disk instantons. We note in passing that the naive application of the Cardy-constraint does not hold for our correlators, confirming expectations. Moreover, we analyze various analytical properties of the correlators, including instanton flops and the mixing of correlators with different numbers of legs under monodromy. The classical and quantum A ∞ relations turn out to be compatible with such homotopy transformations. They lead to a non-invariance of the effective action under modular transformations, unless compensated by suitable contact terms which amount to redefinitions of the tachyon fields. (orig.)

  18. Non-Euclidean Geometry, Nontrivial Topology and Quantum Vacuum Effects

    Directory of Open Access Journals (Sweden)

    Yurii A. Sitenko

    2018-01-01

    Full Text Available Space out of a topological defect of the Abrikosov–Nielsen–Olesen (ANO vortex type is locally flat but non-Euclidean. If a spinor field is quantized in such a space, then a variety of quantum effects are induced in the vacuum. On the basis of the continuum model for long-wavelength electronic excitations originating in the tight-binding approximation for the nearest-neighbor interaction of atoms in the crystal lattice, we consider quantum ground-state effects in Dirac materials with two-dimensional monolayer structures warped into nanocones by a disclination; the nonzero size of the disclination is taken into account, and a boundary condition at the edge of the disclination is chosen to ensure self-adjointness of the Dirac–Weyl Hamiltonian operator. We show that the quantum ground-state effects are independent of the disclination size, and we find circumstances in which they are independent of parameters of the boundary condition.

  19. Firewalls as artefacts of inconsistent truncations of quantum geometries

    Energy Technology Data Exchange (ETDEWEB)

    Germani, Cristiano [Max-Planck-Institut fuer Physik, Muenchen (Germany); Arnold Sommerfeld Center, Ludwig-Maximilians-University, Muenchen (Germany); Institut de Ciencies del Cosmos, Universitat de Barcelona (Spain); Sarkar, Debajyoti [Max-Planck-Institut fuer Physik, Muenchen (Germany); Arnold Sommerfeld Center, Ludwig-Maximilians-University, Muenchen (Germany)

    2016-01-15

    In this paper we argue that a firewall is simply a manifestation of an inconsistent truncation of non-perturbative effects that unitarize the semiclassical black hole. Namely, we show that a naive truncation of quantum corrections to the Hawking spectrum at order O(e{sup -S}), inexorably leads to a ''localised'' divergent energy density near the black hole horizon. Nevertheless, in the same approximation, a distant observer only sees a discretised spectrum and concludes that unitarity is achieved by (e{sup -S}) effects. This is due to the fact that instead, the correct quantum corrections to the Hawking spectrum go like (g{sup tt}e{sup -S}). Therefore, while at a distance far away from the horizon, where g{sup tt} ∼ 1, quantum corrections are perturbative, they do diverge close to the horizon, where g{sup tt} → ∞. Nevertheless, these ''corrections'' nicely re-sum so that correlations functions are smooth at the would-be black hole horizon. Thus, we conclude that the appearance of firewalls is just a signal of the breaking of the semiclassical approximation at the Page time, even for large black holes. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  20. Firewalls as artefacts of inconsistent truncations of quantum geometries

    Science.gov (United States)

    Germani, Cristiano; Sarkar, Debajyoti

    2016-01-01

    In this paper we argue that a firewall is simply a manifestation of an inconsistent truncation of non-perturbative effects that unitarize the semiclassical black hole. Namely, we show that a naive truncation of quantum corrections to the Hawking spectrum at order ${\\cal O}(e^{-S})$, inexorably leads to a "localised'' divergent energy density near the black hole horizon. Nevertheless, in the same approximation, a distant observer only sees a discretised spectrum and concludes that unitarity is achieved by ${\\cal O}(e^{-S})$ effects. This is due to the fact that instead, the correct quantum corrections to the Hawking spectrum go like ${\\cal O}( g^{tt} e^{-S})$. Therefore, while at a distance far away from the horizon, where $g^{tt}\\approx 1$, quantum corrections {\\it are} perturbative, they {\\it do} diverge close to the horizon, where $g^{tt}\\rightarrow \\infty$. Nevertheless, these "corrections" nicely re-sum so that correlations functions are smooth at the would-be black hole horizon. Thus, we conclude that the appearance of firewalls is just a signal of the breaking of the semiclassical approximation at the Page time, even for large black holes.

  1. Firewalls as artefacts of inconsistent truncations of quantum geometries

    International Nuclear Information System (INIS)

    Germani, Cristiano; Sarkar, Debajyoti

    2016-01-01

    In this paper we argue that a firewall is simply a manifestation of an inconsistent truncation of non-perturbative effects that unitarize the semiclassical black hole. Namely, we show that a naive truncation of quantum corrections to the Hawking spectrum at order O(e -S ), inexorably leads to a ''localised'' divergent energy density near the black hole horizon. Nevertheless, in the same approximation, a distant observer only sees a discretised spectrum and concludes that unitarity is achieved by (e -S ) effects. This is due to the fact that instead, the correct quantum corrections to the Hawking spectrum go like (g tt e -S ). Therefore, while at a distance far away from the horizon, where g tt ∼ 1, quantum corrections are perturbative, they do diverge close to the horizon, where g tt → ∞. Nevertheless, these ''corrections'' nicely re-sum so that correlations functions are smooth at the would-be black hole horizon. Thus, we conclude that the appearance of firewalls is just a signal of the breaking of the semiclassical approximation at the Page time, even for large black holes. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  2. Type II InAs/GaAsSb quantum dots: Highly tunable exciton geometry and topology

    Energy Technology Data Exchange (ETDEWEB)

    Llorens, J. M.; Wewior, L.; Cardozo de Oliveira, E. R.; Alén, B., E-mail: benito.alen@csic.es [IMM-Instituto de Microelectrónica de Madrid (CNM-CSIC), Isaac Newton 8, PTM, E-28760 Tres Cantos, Madrid (Spain); Ulloa, J. M.; Utrilla, A. D.; Guzmán, A.; Hierro, A. [Institute for Systems based on Optoelectronics and Microtechnology (ISOM), Universidad Politécnica de Madrid, Ciudad Universitaria s/n, 28040 Madrid (Spain)

    2015-11-02

    External control over the electron and hole wavefunctions geometry and topology is investigated in a p-i-n diode embedding a dot-in-a-well InAs/GaAsSb quantum structure with type II band alignment. We find highly tunable exciton dipole moments and largely decoupled exciton recombination and ionization dynamics. We also predicted a bias regime where the hole wavefunction topology changes continuously from quantum dot-like to quantum ring-like as a function of the external bias. All these properties have great potential in advanced electro-optical applications and in the investigation of fundamental spin-orbit phenomena.

  3. A note on entanglement entropy and quantum geometry

    International Nuclear Information System (INIS)

    Bodendorfer, N

    2014-01-01

    It has been argued that the entropy computed in the isolated horizon framework of loop quantum gravity is closely related to the entanglement entropy of the gravitational field, and that the calculation performed is not restricted to horizons. We recall existing work on this issue and explain how recent work on generalizing these computations to arbitrary spacetime dimensions D+1⩾3 supports this point of view and makes the duality between entanglement entropy and the entropy computed from counting boundary states manifest. In a certain semiclassical regime in 3+1 dimensions, this entropy is given by the Bekenstein–Hawking formula. (paper)

  4. (3+1)-dimensional topological phases and self-dual quantum geometries encoded on Heegaard surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Dittrich, Bianca [Perimeter Institute for Theoretical Physics,31 Caroline Street North, Waterloo, Ontario N2L 2Y5 (Canada)

    2017-05-22

    We apply the recently suggested strategy to lift state spaces and operators for (2+1)-dimensional topological quantum field theories to state spaces and operators for a (3+1)-dimensional TQFT with defects. We start from the (2+1)-dimensional Turaev-Viro theory and obtain a state space, consistent with the state space expected from the Crane-Yetter model with line defects. This work has important applications for quantum gravity as well as the theory of topological phases in (3+1) dimensions. It provides a self-dual quantum geometry realization based on a vacuum state peaked on a homogeneously curved geometry. The state spaces and operators we construct here provide also an improved version of the Walker-Wang model, and simplify its analysis considerably. We in particular show that the fusion bases of the (2+1)-dimensional theory lead to a rich set of bases for the (3+1)-dimensional theory. This includes a quantum deformed spin network basis, which in a loop quantum gravity context diagonalizes spatial geometry operators. We also obtain a dual curvature basis, that diagonalizes the Walker-Wang Hamiltonian. Furthermore, the construction presented here can be generalized to provide state spaces for the recently introduced dichromatic four-dimensional manifold invariants.

  5. Orthogonality and quantum geometry: Towards a relational reconstruction of quantum theory

    NARCIS (Netherlands)

    Zhong, S.

    2015-01-01

    This thesis is an in-depth mathematical study of the non-orthogonality relation between the (pure) states of quantum systems. In Chapter 2, I define quantum Kripke frames, the protagonists of this thesis. A quantum Kripke frame is a Kripke frame in which the binary relation possesses some simple

  6. 4d quantum geometry from 3d supersymmetric gauge theory and holomorphic block

    International Nuclear Information System (INIS)

    Han, Muxin

    2016-01-01

    A class of 3d N=2 supersymmetric gauge theories are constructed and shown to encode the simplicial geometries in 4-dimensions. The gauge theories are defined by applying the Dimofte-Gaiotto-Gukov construction http://dx.doi.org/10.1007/s00220-013-1863-2 in 3d-3d correspondence to certain graph complement 3-manifolds. Given a gauge theory in this class, the massive supersymmetric vacua of the theory contain the classical geometries on a 4d simplicial complex. The corresponding 4d simplicial geometries are locally constant curvature (either dS or AdS), in the sense that they are made by gluing geometrical 4-simplices of the same constant curvature. When the simplicial complex is sufficiently refined, the simplicial geometries can approximate all possible smooth geometries on 4-manifold. At the quantum level, we propose that a class of holomorphic blocks defined in http://dx.doi.org/10.1007/JHEP12(2014)177 from the 3d N=2 gauge theories are wave functions of quantum 4d simplicial geometries. In the semiclassical limit, the asymptotic behavior of holomorphic block reproduces the classical action of 4d Einstein-Hilbert gravity in the simplicial context.

  7. Geometry

    CERN Document Server

    Pedoe, Dan

    1988-01-01

    ""A lucid and masterly survey."" - Mathematics Gazette Professor Pedoe is widely known as a fine teacher and a fine geometer. His abilities in both areas are clearly evident in this self-contained, well-written, and lucid introduction to the scope and methods of elementary geometry. It covers the geometry usually included in undergraduate courses in mathematics, except for the theory of convex sets. Based on a course given by the author for several years at the University of Minnesota, the main purpose of the book is to increase geometrical, and therefore mathematical, understanding and to he

  8. Generic emergence of classical features in quantum Darwinism

    Science.gov (United States)

    Brandão, Fernando G. S. L.; Piani, Marco; Horodecki, Paweł

    2015-08-01

    Quantum Darwinism posits that only specific information about a quantum system that is redundantly proliferated to many parts of its environment becomes accessible and objective, leading to the emergence of classical reality. However, it is not clear under what conditions this mechanism holds true. Here we prove that the emergence of classical features along the lines of quantum Darwinism is a general feature of any quantum dynamics: observers who acquire information indirectly through the environment have effective access at most to classical information about one and the same measurement of the quantum system. Our analysis does not rely on a strict conceptual splitting between a system-of-interest and its environment, and allows one to interpret any system as part of the environment of any other system. Finally, our approach leads to a full operational characterization of quantum discord in terms of local redistribution of correlations.

  9. Emergence of classical theories from quantum mechanics

    International Nuclear Information System (INIS)

    Hájícek, P

    2012-01-01

    Three problems stand in the way of deriving classical theories from quantum mechanics: those of realist interpretation, of classical properties and of quantum measurement. Recently, we have identified some tacit assumptions that lie at the roots of these problems. Thus, a realist interpretation is hindered by the assumption that the only properties of quantum systems are values of observables. If one simply postulates the properties to be objective that are uniquely defined by preparation then all difficulties disappear. As for classical properties, the wrong assumption is that there are arbitrarily sharp classical trajectories. It turns out that fuzzy classical trajectories can be obtained from quantum mechanics by taking the limit of high entropy. Finally, standard quantum mechanics implies that any registration on a quantum system is disturbed by all quantum systems of the same kind existing somewhere in the universe. If one works out systematically how quantum mechanics must be corrected so that there is no such disturbance, one finds a new interpretation of von Neumann's 'first kind of dynamics', and so a new way to a solution of the quantum measurement problem. The present paper gives a very short review of this work.

  10. Quantum Hall states of atomic Bose gases: Density profiles in single-layer and multilayer geometries

    International Nuclear Information System (INIS)

    Cooper, N. R.; Lankvelt, F. J. M. van; Reijnders, J. W.; Schoutens, K.

    2005-01-01

    We describe the density profiles of confined atomic Bose gases in the high-rotation limit, in single-layer and multilayer geometries. We show that, in a local-density approximation, the density in a single layer shows a landscape of quantized steps due to the formation of incompressible liquids, which are analogous to fractional quantum Hall liquids for a two-dimensional electron gas in a strong magnetic field. In a multilayered setup we find different phases, depending on the strength of the interlayer tunneling t. We discuss the situation where a vortex lattice in the three-dimensional condensate (at large tunneling) undergoes quantum melting at a critical tunneling t c 1 . For tunneling well below t c 1 one expects weakly coupled or isolated layers, each exhibiting a landscape of quantum Hall liquids. After expansion, this gives a radial density distribution with characteristic features (cusps) that provide experimental signatures of the quantum Hall liquids

  11. Relativistic quantum chaos-An emergent interdisciplinary field.

    Science.gov (United States)

    Lai, Ying-Cheng; Xu, Hong-Ya; Huang, Liang; Grebogi, Celso

    2018-05-01

    Quantum chaos is referred to as the study of quantum manifestations or fingerprints of classical chaos. A vast majority of the studies were for nonrelativistic quantum systems described by the Schrödinger equation. Recent years have witnessed a rapid development of Dirac materials such as graphene and topological insulators, which are described by the Dirac equation in relativistic quantum mechanics. A new field has thus emerged: relativistic quantum chaos. This Tutorial aims to introduce this field to the scientific community. Topics covered include scarring, chaotic scattering and transport, chaos regularized resonant tunneling, superpersistent currents, and energy level statistics-all in the relativistic quantum regime. As Dirac materials have the potential to revolutionize solid-state electronic and spintronic devices, a good understanding of the interplay between chaos and relativistic quantum mechanics may lead to novel design principles and methodologies to enhance device performance.

  12. Relativistic quantum chaos—An emergent interdisciplinary field

    Science.gov (United States)

    Lai, Ying-Cheng; Xu, Hong-Ya; Huang, Liang; Grebogi, Celso

    2018-05-01

    Quantum chaos is referred to as the study of quantum manifestations or fingerprints of classical chaos. A vast majority of the studies were for nonrelativistic quantum systems described by the Schrödinger equation. Recent years have witnessed a rapid development of Dirac materials such as graphene and topological insulators, which are described by the Dirac equation in relativistic quantum mechanics. A new field has thus emerged: relativistic quantum chaos. This Tutorial aims to introduce this field to the scientific community. Topics covered include scarring, chaotic scattering and transport, chaos regularized resonant tunneling, superpersistent currents, and energy level statistics—all in the relativistic quantum regime. As Dirac materials have the potential to revolutionize solid-state electronic and spintronic devices, a good understanding of the interplay between chaos and relativistic quantum mechanics may lead to novel design principles and methodologies to enhance device performance.

  13. Fluctuating twistor-beam solutions and Pre-Quantum Kerr-Schild geometry

    Energy Technology Data Exchange (ETDEWEB)

    Burinskii, Alexander, E-mail: bur@ibrae.ac.r [Laboratory of Theoretical Physics, NSI Russian Academy of Sciences, B.Tulskaya 52, Moscow, 115191 (Russian Federation)

    2010-04-01

    Kerr-Schild (KS) geometry is based on a congruence of twistors which is determined by the Kerr theorem. We describe time-dependent KS solutions for electromagnetic excitations of black-holes taking into account the consistent back-reaction to metric. The exact solutions have the form of singular beam-like pulses supported on twistor null lines of the Kerr congruence. The twistor-beams have very strong back reaction to metric and BH horizon and produce a fluctuating KS geometry which takes an intermediate position between the Classical and Quantum gravity.

  14. Fluctuating twistor-beam solutions and Pre-Quantum Kerr-Schild geometry

    International Nuclear Information System (INIS)

    Burinskii, Alexander

    2010-01-01

    Kerr-Schild (KS) geometry is based on a congruence of twistors which is determined by the Kerr theorem. We describe time-dependent KS solutions for electromagnetic excitations of black-holes taking into account the consistent back-reaction to metric. The exact solutions have the form of singular beam-like pulses supported on twistor null lines of the Kerr congruence. The twistor-beams have very strong back reaction to metric and BH horizon and produce a fluctuating KS geometry which takes an intermediate position between the Classical and Quantum gravity.

  15. Realization of the revival of silenced echo (ROSE) quantum memory scheme in orthogonal geometry

    Science.gov (United States)

    Minnegaliev, M. M.; Gerasimov, K. I.; Urmancheev, R. V.; Moiseev, S. A.; Chanelière, T.; Louchet-Chauvet, A.

    2018-02-01

    We demonstrated quantum memory scheme on revival of silenced echo in orthogonal geometry in Tm3+: Y3Al5O12 crystal. The retrieval efficiency of ˜14% was demonstrated with the 36 µs storage time. In this scheme for the first time we also implemented a suppression of the revived echo signal by applying an external electric field and the echo signal has been recovered on demand if we then applied a second electric pulse with opposite polarity. This technique opens the possibilities for realizing addressing in multi-qubit quantum memory in Tm3+: Y3Al5O12 crystal.

  16. Entropic dynamics: From entropy and information geometry to Hamiltonians and quantum mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Caticha, Ariel; Bartolomeo, Daniel [Department of Physics, University at Albany-SUNY, Albany, NY 12222 (United States); Reginatto, Marcel [Physicalisch-Technische Bundesanstalt, 38116 Braunschweig (Germany)

    2015-01-13

    Entropic Dynamics is a framework in which quantum theory is derived as an application of entropic methods of inference. There is no underlying action principle. Instead, the dynamics is driven by entropy subject to the appropriate constraints. In this paper we show how a Hamiltonian dynamics arises as a type of non-dissipative entropic dynamics. We also show that the particular form of the 'quantum potential' that leads to the Schrödinger equation follows naturally from information geometry.

  17. Entropic dynamics: From entropy and information geometry to Hamiltonians and quantum mechanics

    International Nuclear Information System (INIS)

    Caticha, Ariel; Bartolomeo, Daniel; Reginatto, Marcel

    2015-01-01

    Entropic Dynamics is a framework in which quantum theory is derived as an application of entropic methods of inference. There is no underlying action principle. Instead, the dynamics is driven by entropy subject to the appropriate constraints. In this paper we show how a Hamiltonian dynamics arises as a type of non-dissipative entropic dynamics. We also show that the particular form of the 'quantum potential' that leads to the Schrödinger equation follows naturally from information geometry

  18. Geometric back-reaction in pre-inflation from relativistic quantum geometry

    Energy Technology Data Exchange (ETDEWEB)

    Arcodia, Marcos R.A. [Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET), Instituto de Investigaciones Fisicas de Mar del Plata (IFIMAR), Mar del Plata (Argentina); Bellini, Mauricio [Universidad Nacional de Mar del Plata, Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Mar del Plata (Argentina); Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET), Instituto de Investigaciones Fisicas de Mar del Plata (IFIMAR), Mar del Plata (Argentina)

    2016-06-15

    The pre-inflationary evolution of the universe describes the beginning of the expansion from a static initial state, such that the Hubble parameter is initially zero, but increases to an asymptotic constant value, in which it could achieve a de Sitter (inflationary) expansion. The expansion is driven by a background phantom field. The back-reaction effects at this moment should describe vacuum geometrical excitations, which are studied in detail in this work using relativistic quantum geometry. (orig.)

  19. Emergence of geometry: A two-dimensional toy model

    International Nuclear Information System (INIS)

    Alfaro, Jorge; Espriu, Domene; Puigdomenech, Daniel

    2010-01-01

    We review the similarities between the effective chiral Lagrangrian, relevant for low-energy strong interactions, and the Einstein-Hilbert action. We use these analogies to suggest a specific mechanism whereby gravitons would emerge as Goldstone bosons of a global SO(D)xGL(D) symmetry broken down to SO(D) by fermion condensation. We propose a two-dimensional toy model where a dynamical zweibein is generated from a topological theory without any preexisting metric structure, the space being endowed only with an affine connection. A metric appears only after the symmetry breaking; thus the notion of distance is an induced effective one. In spite of several nonstandard features this simple toy model appears to be renormalizable and at long distances is described by an effective Lagrangian that corresponds to that of two-dimensional gravity (Liouville theory). The induced cosmological constant is related to the dynamical mass M acquired by the fermion fields in the breaking, which also acts as an infrared regulator. The low-energy expansion is valid for momenta k>M, i.e. for supra-horizon scales. We briefly discuss a possible implementation of a similar mechanism in four dimensions.

  20. The emergence of geometry: a two-dimensional toy model

    CERN Document Server

    Alfaro, Jorge; Puigdomenech, Daniel

    2010-01-01

    We review the similarities between the effective chiral lagrangrian, relevant for low-energy strong interactions, and the Einstein-Hilbert action. We use these analogies to suggest a specific mechanism whereby gravitons would emerge as Goldstone bosons of a global SO(D) X GL(D) symmetry broken down to SO(D) by fermion condensation. We propose a two-dimensional toy model where a dynamical zwei-bein is generated from a topological theory without any pre-existing metric structure, the space being endowed only with an affine connection. A metric appears only after the symmetry breaking; thus the notion of distance is an induced effective one. In spite of several non-standard features this simple toy model appears to be renormalizable and at long distances is described by an effective lagrangian that corresponds to that of two-dimensional gravity (Liouville theory). The induced cosmological constant is related to the dynamical mass M acquired by the fermion fields in the breaking, which also acts as an infrared re...

  1. Emergence of classical reality from a quantum mechanical background

    International Nuclear Information System (INIS)

    Sommer, Hanns

    2009-01-01

    A model for the process of knowledge acquisition is presented that shows how naive realism emerges from a quantum mechanical background. We formalise this process of emergence and obtain in this way an illustrative insight to some of the most fundamental physical theories: GRW-theory and E ∞ -theory.

  2. Emergence of classical reality from a quantum mechanical background

    Energy Technology Data Exchange (ETDEWEB)

    Sommer, Hanns [Department of Mechanical Engineering, University of Kassel, 34109 Kassel, Moenchebergstr 7 (Germany)], E-mail: hanns.sommer@mrt.uni-kassel.de

    2009-02-15

    A model for the process of knowledge acquisition is presented that shows how naive realism emerges from a quantum mechanical background. We formalise this process of emergence and obtain in this way an illustrative insight to some of the most fundamental physical theories: GRW-theory and E{sup {infinity}}-theory.

  3. A 2D model of causal set quantum gravity: the emergence of the continuum

    International Nuclear Information System (INIS)

    Brightwell, Graham; Henson, Joe; Surya, Sumati

    2008-01-01

    Non-perturbative theories of quantum gravity inevitably include configurations that fail to resemble physically reasonable spacetimes at large scales. Often, these configurations are entropically dominant and pose an obstacle to obtaining the desired classical limit. We examine this 'entropy problem' in a model of causal set quantum gravity corresponding to a discretization of 2D spacetimes. Using results from the theory of partial orders we show that, in the large volume or continuum limit, its partition function is dominated by causal sets which approximate to a region of 2D Minkowski space. This model of causal set quantum gravity thus overcomes the entropy problem and predicts the emergence of a physically reasonable geometry

  4. Symmetry aspects in emergent quantum mechanics

    Science.gov (United States)

    Elze, Hans-Thomas

    2009-06-01

    We discuss an explicit realization of the dissipative dynamics anticipated in the proof of 't Hooft's existence theorem, which states that 'For any quantum system there exists at least one deterministic model that reproduces all its dynamics after prequantization'. - There is an energy-parity symmetry hidden in the Liouville equation, which mimics the Kaplan-Sundrum protective symmetry for the cosmological constant. This symmetry may be broken by the coarse-graining inherent in physics at scales much larger than the Planck length. We correspondingly modify classical ensemble theory by incorporating dissipative fluctuations (information loss) - which are caused by discrete spacetime continually 'measuring' matter. In this way, aspects of quantum mechanics, such as the von Neumann equation, including a Lindblad term, arise dynamically and expectations of observables agree with the Born rule. However, the resulting quantum coherence is accompanied by an intrinsic decoherence and continuous localization mechanism. Our proposal leads towards a theory that is linear and local at the quantum mechanical level, but the relation to the underlying classical degrees of freedom is nonlocal.

  5. Emerging Connections: Quantum & Classical Optics Incubator Program Book

    Energy Technology Data Exchange (ETDEWEB)

    Lesky, Marcia [Optical Society of America, Washington, DC (United States)

    2016-11-06

    The Emerging Connections: Quantum & Classical Optics Incubator was a scientific meeting held in Washington, DC on 6-8 November 2016. This Incubator provided unique and focused experiences and valuable opportunities to discuss advances, challenges and opportunities regarding this important area of research. Quantum optics and classical optics have coexisted for nearly a century as two distinct, but consistent descriptions of light in their respective domains. Recently, a number of detailed examinations of the structure of classical light beams have revealed that effects widely thought to be solely quantum in origin also have a place in classical optics. These new quantum-classical connections are informing classical optics in meaningful ways specifically by expanding understanding of optical coherence. Simultaneously, relationships discovered with classical light beams now also serve as a vehicle to illuminate concepts that no longer solely belong to the quantum realm. Interference, polarization, coherence, complementarity and entanglement are a partial list of elementary notions that now appear to belong to both quantum and classical optics. The goal of this meeting was to bring emerging quantum-classical links into wider view and to indicate directions in which forthcoming and future work would promote discussion and lead to a more unified understanding of optics.

  6. Einstein gravity emerging from quantum weyl gravity

    International Nuclear Information System (INIS)

    Zee, A.

    1983-01-01

    We advocate a conformal invariant world described by the sum of the Weyl, Dirac, and Yang-Mills action. Quantum fluctuations bring back Einstein gravity so that the long-distance phenomenology is as observed. Formulas for the induced Newton's constant and Eddington's constant are derived in quantized Weyl gravity. We show that the analogue of the trace anomaly for the Weyl action is structurally similar to that for the Yang-Mills action

  7. Geometry effect on energy transfer rate in a coupled-quantum-well structure: nonlinear regime

    International Nuclear Information System (INIS)

    Salavati-fard, T; Vazifehshenas, T

    2014-01-01

    We study theoretically the effect of geometry on the energy transfer rate at nonlinear regime in a coupled-quantum-well system using the balance equation approach. To investigate comparatively the effect of both symmetric and asymmetric geometry, different structures are considered. The random phase approximation dynamic dielectric function is employed to include the contributions from both quasiparticle and plasmon excitations. Also, the short-range exchange interaction is taken into account through the Hubbard approximation. Our numerical results show that the energy transfer rate increases by increasing the well thicknesses in symmetric structures. Furthermore, by increasing spatial asymmetry, the energy transfer rate decreases for the electron temperature range of interest. From numerical calculations, it is obtained that the nonlinear energy transfer rate is proportional to the square of electron drift velocity in all structures and also, found that the influence of Hubbard local field correction on the energy transfer rate gets weaker by increasing the strength of applied electric field. (paper)

  8. Decrease of Fisher information and the information geometry of evolution equations for quantum mechanical probability amplitudes.

    Science.gov (United States)

    Cafaro, Carlo; Alsing, Paul M

    2018-04-01

    The relevance of the concept of Fisher information is increasing in both statistical physics and quantum computing. From a statistical mechanical standpoint, the application of Fisher information in the kinetic theory of gases is characterized by its decrease along the solutions of the Boltzmann equation for Maxwellian molecules in the two-dimensional case. From a quantum mechanical standpoint, the output state in Grover's quantum search algorithm follows a geodesic path obtained from the Fubini-Study metric on the manifold of Hilbert-space rays. Additionally, Grover's algorithm is specified by constant Fisher information. In this paper, we present an information geometric characterization of the oscillatory or monotonic behavior of statistically parametrized squared probability amplitudes originating from special functional forms of the Fisher information function: constant, exponential decay, and power-law decay. Furthermore, for each case, we compute both the computational speed and the availability loss of the corresponding physical processes by exploiting a convenient Riemannian geometrization of useful thermodynamical concepts. Finally, we briefly comment on the possibility of using the proposed methods of information geometry to help identify a suitable trade-off between speed and thermodynamic efficiency in quantum search algorithms.

  9. Classical geometry to quantum behavior correspondence in a virtual extra dimension

    International Nuclear Information System (INIS)

    Dolce, Donatello

    2012-01-01

    In the Lorentz invariant formalism of compact space–time dimensions the assumption of periodic boundary conditions represents a consistent semi-classical quantization condition for relativistic fields. In Dolce (2011) we have shown, for instance, that the ordinary Feynman path integral is obtained from the interference between the classical paths with different winding numbers associated with the cyclic dynamics of the field solutions. By means of the boundary conditions, the kinematical information of interactions can be encoded on the relativistic geometrodynamics of the boundary, see Dolce (2012) . Furthermore, such a purely four-dimensional theory is manifestly dual to an extra-dimensional field theory. The resulting correspondence between extra-dimensional geometrodynamics and ordinary quantum behavior can be interpreted in terms of AdS/CFT correspondence. By applying this approach to a simple Quark–Gluon–Plasma freeze-out model we obtain fundamental analogies with basic aspects of AdS/QCD phenomenology. - Highlights: ► Quantum behavior is related to the intrinsic periodicity of isolated systems. ► A periodic phenomenon can be parameterized by a virtual extra dimension. ► KK modes are used to describe the quantum excitations. ► 5D classical geometry encodes 4D quantum behavior. ► Geometrodynamical description of AdS/QCD as modulation of space–time periodicity.

  10. Decrease of Fisher information and the information geometry of evolution equations for quantum mechanical probability amplitudes

    Science.gov (United States)

    Cafaro, Carlo; Alsing, Paul M.

    2018-04-01

    The relevance of the concept of Fisher information is increasing in both statistical physics and quantum computing. From a statistical mechanical standpoint, the application of Fisher information in the kinetic theory of gases is characterized by its decrease along the solutions of the Boltzmann equation for Maxwellian molecules in the two-dimensional case. From a quantum mechanical standpoint, the output state in Grover's quantum search algorithm follows a geodesic path obtained from the Fubini-Study metric on the manifold of Hilbert-space rays. Additionally, Grover's algorithm is specified by constant Fisher information. In this paper, we present an information geometric characterization of the oscillatory or monotonic behavior of statistically parametrized squared probability amplitudes originating from special functional forms of the Fisher information function: constant, exponential decay, and power-law decay. Furthermore, for each case, we compute both the computational speed and the availability loss of the corresponding physical processes by exploiting a convenient Riemannian geometrization of useful thermodynamical concepts. Finally, we briefly comment on the possibility of using the proposed methods of information geometry to help identify a suitable trade-off between speed and thermodynamic efficiency in quantum search algorithms.

  11. Beyond peaceful coexistence the emergence of space, time and quantum

    CERN Document Server

    2016-01-01

    Beyond Peaceful Coexistence: The Emergence of Space, Time and Quantum brings together leading academics in mathematics and physics to address going beyond the 'peaceful coexistence' of space-time descriptions (local and continuous ones) and quantum events (discrete and non-commutative ones). Formidable challenges waiting beyond the Standard Model require a new semantic consistency within the theories in order to build new ways of understanding, working and relating to them. The original A. Shimony meaning of the peaceful coexistence (the collapse postulate and non-locality) appear to be just the tip of the iceberg in relation to more serious fundamental issues across physics as a whole.Chapters in this book present perspectives on emergent, discrete, geometrodynamic and topological approaches, as well as a new interpretative spectrum of quantum theories after Copenhagen, discrete time theories, time-less approaches and 'super-fluid' pictures of space-time.As well as stimulating further research among establis...

  12. Experimental probes of emergent symmetries in the quantum Hall system

    CERN Document Server

    Lutken, C A

    2011-01-01

    Experiments studying renormalization group flows in the quantum Hall system provide significant evidence for the existence of an emergent holomorphic modular symmetry Gamma(0)(2). We briefly review this evidence and show that, for the lowest temperatures, the experimental determination of the position of the quantum critical points agrees to the parts per mille level with the prediction from Gamma(0)(2). We present evidence that experiments giving results that deviate substantially from the symmetry predictions are not cold enough to be in the quantum critical domain. We show how the modular symmetry extended by a non-holomorphic particle hole duality leads to an extensive web of dualities related to those in plateau insulator transitions, and we derive a formula relating dual pairs (B, B(d)) of magnetic field strengths across any transition. The experimental data obtained for the transition studied so far is in excellent agreement with the duality relations following from this emergent symmetry, and rule out...

  13. Transport spin dependent in nanostructures: Current and geometry effect of quantum dots in presence of spin-orbit interaction

    Science.gov (United States)

    Paredes-Gutiérrez, H.; Pérez-Merchancano, S. T.; Beltran-Rios, C. L.

    2017-12-01

    In this work, we study the quantum electron transport through a Quantum Dots Structure (QDs), with different geometries, embedded in a Quantum Well (QW). The behaviour of the current through the nanostructure (dot and well) is studied considering the orbital spin coupling of the electrons and the Rashba effect, by means of the second quantization theory and the standard model of Green’s functions. Our results show the behaviour of the current in the quantum system as a function of the electric field, presenting resonant states for specific values of both the external field and the spin polarization. Similarly, the behaviour of the current on the nanostructure changes when the geometry of the QD and the size of the same are modified as a function of the polarization of the electron spin and the potential of quantum confinement.

  14. Probing bulk physics in the 5/2 fractional quantum Hall effect using the Corbino geometry

    Science.gov (United States)

    Schmidt, Benjamin; Bennaceur, Keyan; Bilodeau, Simon; Gaucher, Samuel; Lilly, Michael; Reno, John; Pfeiffer, Loren; West, Ken; Reulet, Bertrand; Gervais, Guillaume

    We present two- and four-point Corbino geometry transport measurements in the second Landau level in GaAs/AlGaAs heterostructures. By avoiding edge transport, we are able to directly probe the physics of the bulk quasiparticles in fractional quantum Hall (FQH) states including 5/2. Our highest-quality sample shows stripe and bubble phases in high Landau levels, and most importantly well-resolved FQH minima in the second Landau level. We report Arrhenius-type fits to the activated conductance, and find that σ0 agrees well with theory and existing Hall geometry data in the first Landau level, but not in the second Landau level. We will discuss the advantages the Corbino geometry could bring to various experiments designed to detect the non-Abelian entropy at 5/2, and our progress towards realizing those schemes. The results of these experiments could complement interferometry and other edge-based measurements by providing direct evidence for non-Abelian behaviour of the bulk quasiparticles. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL8500.

  15. Emergent/quantum gravity: macro/micro structures of spacetime

    International Nuclear Information System (INIS)

    Hu, B L

    2009-01-01

    Emergent gravity views spacetime as an entity emergent from a more complete theory of interacting fundamental constituents valid at much finer resolution or higher energies, usually assumed to be above the Planck energy. In this view general relativity is an effective theory valid only at long wavelengths and low energies. We describe the tasks of emergent gravity from any ('top-down') candidate theory for the microscopic structure of spacetime (quantum gravity), namely, identifying the conditions and processes or mechanisms whereby the familiar macroscopic spacetime described by general relativity and matter content described by quantum field theory both emerge with high probability and reasonable robustness. We point out that this task may not be so easy as commonly conjured (as implied in the 'theory of everything') because there are emergent phenomena which cannot simply be deduced from a given micro-theory. Going in the opposite direction ('bottom-up') is the task of quantum gravity, i.e., finding a theory for the microscopic structure of spacetime, which, in this new view, cannot come from quantizing the metric or connection forms because they are the collective variables which are meaningful only for the macroscopic theory (valid below the Planck energy). This task looks very difficult or almost impossible because it entails reconstructing lost information. We point out that the situation may not be so hopeless if we ask the right questions and have the proper tools for what we want to look for. We suggest pathways to move 'up' (in energy) from the given macroscopic conditions of classical gravity and quantum field theory to the domain closer to the micro-macro interface where spacetime emerged and places to look for clues or tell-tale signs at low energy where one could infer indirectly some salient features of the micro-structure of spacetime.

  16. On the Emergence of the Coulomb Forces in Quantum Electrodynamics

    Directory of Open Access Journals (Sweden)

    Jan Naudts

    2017-01-01

    Full Text Available A simple transformation of field variables eliminates Coulomb forces from the theory of quantum electrodynamics. This suggests that Coulomb forces may be an emergent phenomenon rather than being fundamental. This possibility is investigated in the context of reducible quantum electrodynamics. It is shown that states exist which bind free photon and free electron fields. The binding energy peaks in the long-wavelength limit. This makes it plausible that Coulomb forces result from the interaction of the electron/positron field with long-wavelength transversely polarized photons.

  17. 6j symbols for the modular double, quantum hyperbolic geometry, and supersymmetric gauge theories

    Energy Technology Data Exchange (ETDEWEB)

    Teschner, J.; Vartanov, G.S.

    2012-02-15

    We revisit the definition of the 6j-symbols from the modular double of U{sub q}(sl(2,R)), referred to as b-6j symbols. Our new results are (i) the identification of particularly natural normalization conditions, and (ii) new integral representations for this object. This is used to briefly discuss possible applications to quantum hyperbolic geometry, and to the study of certain supersymmetric gauge theories. We show, in particular, that the b-6j symbol has leading semiclassical asymptotics given by the volume of a non-ideal tetrahedron. We furthermore observe a close relation with the problem to quantize natural Darboux coordinates for moduli spaces of flat connections on Riemann surfaces related to the Fenchel-Nielsen coordinates. Our new integral representations finally indicate a possible interpretation of the b-6j symbols as partition functions of three-dimensional N=2 supersymmetric gauge theories. (orig.)

  18. 6j symbols for the modular double, quantum hyperbolic geometry, and supersymmetric gauge theories

    International Nuclear Information System (INIS)

    Teschner, J.; Vartanov, G.S.

    2012-02-01

    We revisit the definition of the 6j-symbols from the modular double of U q (sl(2,R)), referred to as b-6j symbols. Our new results are (i) the identification of particularly natural normalization conditions, and (ii) new integral representations for this object. This is used to briefly discuss possible applications to quantum hyperbolic geometry, and to the study of certain supersymmetric gauge theories. We show, in particular, that the b-6j symbol has leading semiclassical asymptotics given by the volume of a non-ideal tetrahedron. We furthermore observe a close relation with the problem to quantize natural Darboux coordinates for moduli spaces of flat connections on Riemann surfaces related to the Fenchel-Nielsen coordinates. Our new integral representations finally indicate a possible interpretation of the b-6j symbols as partition functions of three-dimensional N=2 supersymmetric gauge theories. (orig.)

  19. Electron Raman scattering in semiconductor quantum well wire of cylindrical ring geometry

    International Nuclear Information System (INIS)

    Betancourt-Riera, Re.; Betancourt-Riera, Ri.; Nieto Jalil, J. M.; Riera, R.

    2015-01-01

    We study the electron states and the differential cross section for an electron Raman scattering process in a semiconductor quantum well wire of cylindrical ring geometry. The electron Raman scattering developed here can be used to provide direct information about the electron band structures of these confinement systems. We assume that the system grows in a GaAs/Al 0.35 Ga 0.65 As matrix. The system is modeled by considering T = 0 K and also a single parabolic conduction band, which is split into a sub-band system due to the confinement. The emission spectra are discussed for different scattering configurations, and the selection rules for the processes are also studied. Singularities in the spectra are found and interpreted. (paper)

  20. The emergent multiverse quantum theory according to the Everett interpretation

    CERN Document Server

    Wallace, David

    2014-01-01

    The Emergent Multiverse presents a striking new account of the 'many worlds' approach to quantum theory. The point of science, it is generally accepted, is to tell us how the world works and what it is like. But quantum theory seems to fail to do this: taken literally as a theory of the world, it seems to make crazy claims: particles are in two places at once; cats are alive and dead at the same time. So physicists and philosophers have often been led either to give up on the idea that quantum theory describes reality, or to modify or augment the theory. The Everett interpretation of quantum mechanics takes the apparent craziness seriously, and asks, 'what would it be like if particles really were in two places at once, if cats really were alive and dead at the same time'? The answer, it turns out, is that if the world were like that-if it were as quantum theory claims-it would be a world that, at the macroscopic level, was constantly branching into copies-hence the more sensationalist name for the Everett in...

  1. The Emergence of Consciousness in the Quantum Universe

    OpenAIRE

    Zhang, Xiaolei

    2011-01-01

    It is argued that human consciousness is likely to have emerged during the self-consistent evolution of the physical universe, through the gradual accumulation of biological entities' ability to tap into the intrinsic non-deterministic potentiality in the global nonequilibrium phase transitions occurring continually in the quantum universe. Due to the fact that the matter and energy content participating in these global phase transitions is a continuum, there are in effect infinite degrees-of...

  2. On the geometry of the spin-statistics connection in quantum mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Reyes, A.

    2006-07-01

    The Spin-Statistics theorem states that the statistics of a system of identical particles is determined by their spin: Particles of integer spin are Bosons (i.e. obey Bose-Einstein statistics), whereas particles of half-integer spin are Fermions (i.e. obey Fermi-Dirac statistics). Since the original proof by Fierz and Pauli, it has been known that the connection between Spin and Statistics follows from the general principles of relativistic Quantum Field Theory. In spite of this, there are different approaches to Spin-Statistics and it is not clear whether the theorem holds under assumptions that are different, and even less restrictive, than the usual ones (e.g. Lorentz-covariance). Additionally, in Quantum Mechanics there is a deep relation between indistinguishability and the geometry of the configuration space. This is clearly illustrated by Gibbs' paradox. Therefore, for many years efforts have been made in order to find a geometric proof of the connection between Spin and Statistics. Recently, various proposals have been put forward, in which an attempt is made to derive the Spin-Statistics connection from assumptions different from the ones used in the relativistic, quantum field theoretic proofs. Among these, there is the one due to Berry and Robbins (BR), based on the postulation of a certain single-valuedness condition, that has caused a renewed interest in the problem. In the present thesis, we consider the problem of indistinguishability in Quantum Mechanics from a geometric-algebraic point of view. An approach is developed to study configuration spaces Q having a finite fundamental group, that allows us to describe different geometric structures of Q in terms of spaces of functions on the universal cover of Q. In particular, it is shown that the space of complex continuous functions over the universal cover of Q admits a decomposition into C(Q)-submodules, labelled by the irreducible representations of the fundamental group of Q, that can be

  3. Emergence of fractal geometry on the surface of human cervical epithelial cells during progression towards cancer

    International Nuclear Information System (INIS)

    Dokukin, M E; Sokolov, I; Guz, N V; Woodworth, C D

    2015-01-01

    Despite considerable advances in understanding the molecular nature of cancer, many biophysical aspects of malignant development are still unclear. Here we study physical alterations of the surface of human cervical epithelial cells during stepwise in vitro development of cancer (from normal to immortal (premalignant), to malignant). We use atomic force microscopy to demonstrate that development of cancer is associated with emergence of simple fractal geometry on the cell surface. Contrary to the previously expected correlation between cancer and fractals, we find that fractal geometry occurs only at a limited period of development when immortal cells become cancerous; further cancer progression demonstrates deviation from fractal. Because of the connection between fractal behaviour and chaos (or far from equilibrium behaviour), these results suggest that chaotic behaviour coincides with the cancer transformation of the immortalization stage of cancer development, whereas further cancer progression recovers determinism of processes responsible for cell surface formation. (paper)

  4. Are quantum spin Hall edge modes more resilient to disorder, sample geometry and inelastic scattering than quantum Hall edge modes?

    Science.gov (United States)

    Mani, Arjun; Benjamin, Colin

    2016-04-13

    On the surface of 2D topological insulators, 1D quantum spin Hall (QSH) edge modes occur with Dirac-like dispersion. Unlike quantum Hall (QH) edge modes, which occur at high magnetic fields in 2D electron gases, the occurrence of QSH edge modes is due to spin-orbit scattering in the bulk of the material. These QSH edge modes are spin-dependent, and chiral-opposite spins move in opposing directions. Electronic spin has a larger decoherence and relaxation time than charge. In view of this, it is expected that QSH edge modes will be more robust to disorder and inelastic scattering than QH edge modes, which are charge-dependent and spin-unpolarized. However, we notice no such advantage accrues in QSH edge modes when subjected to the same degree of contact disorder and/or inelastic scattering in similar setups as QH edge modes. In fact we observe that QSH edge modes are more susceptible to inelastic scattering and contact disorder than QH edge modes. Furthermore, while a single disordered contact has no effect on QH edge modes, it leads to a finite charge Hall current in the case of QSH edge modes, and thus a vanishing of the pure QSH effect. For more than a single disordered contact while QH states continue to remain immune to disorder, QSH edge modes become more susceptible--the Hall resistance for the QSH effect changes sign with increasing disorder. In the case of many disordered contacts with inelastic scattering included, while quantization of Hall edge modes holds, for QSH edge modes a finite charge Hall current still flows. For QSH edge modes in the inelastic scattering regime we distinguish between two cases: with spin-flip and without spin-flip scattering. Finally, while asymmetry in sample geometry can have a deleterious effect in the QSH case, it has no impact in the QH case.

  5. Are quantum spin Hall edge modes more resilient to disorder, sample geometry and inelastic scattering than quantum Hall edge modes?

    International Nuclear Information System (INIS)

    Mani, Arjun; Benjamin, Colin

    2016-01-01

    On the surface of 2D topological insulators, 1D quantum spin Hall (QSH) edge modes occur with Dirac-like dispersion. Unlike quantum Hall (QH) edge modes, which occur at high magnetic fields in 2D electron gases, the occurrence of QSH edge modes is due to spin–orbit scattering in the bulk of the material. These QSH edge modes are spin-dependent, and chiral-opposite spins move in opposing directions. Electronic spin has a larger decoherence and relaxation time than charge. In view of this, it is expected that QSH edge modes will be more robust to disorder and inelastic scattering than QH edge modes, which are charge-dependent and spin-unpolarized. However, we notice no such advantage accrues in QSH edge modes when subjected to the same degree of contact disorder and/or inelastic scattering in similar setups as QH edge modes. In fact we observe that QSH edge modes are more susceptible to inelastic scattering and contact disorder than QH edge modes. Furthermore, while a single disordered contact has no effect on QH edge modes, it leads to a finite charge Hall current in the case of QSH edge modes, and thus a vanishing of the pure QSH effect. For more than a single disordered contact while QH states continue to remain immune to disorder, QSH edge modes become more susceptible—the Hall resistance for the QSH effect changes sign with increasing disorder. In the case of many disordered contacts with inelastic scattering included, while quantization of Hall edge modes holds, for QSH edge modes a finite charge Hall current still flows. For QSH edge modes in the inelastic scattering regime we distinguish between two cases: with spin-flip and without spin-flip scattering. Finally, while asymmetry in sample geometry can have a deleterious effect in the QSH case, it has no impact in the QH case. (paper)

  6. Communication: Calculation of interatomic forces and optimization of molecular geometry with auxiliary-field quantum Monte Carlo

    Science.gov (United States)

    Motta, Mario; Zhang, Shiwei

    2018-05-01

    We propose an algorithm for accurate, systematic, and scalable computation of interatomic forces within the auxiliary-field quantum Monte Carlo (AFQMC) method. The algorithm relies on the Hellmann-Feynman theorem and incorporates Pulay corrections in the presence of atomic orbital basis sets. We benchmark the method for small molecules by comparing the computed forces with the derivatives of the AFQMC potential energy surface and by direct comparison with other quantum chemistry methods. We then perform geometry optimizations using the steepest descent algorithm in larger molecules. With realistic basis sets, we obtain equilibrium geometries in agreement, within statistical error bars, with experimental values. The increase in computational cost for computing forces in this approach is only a small prefactor over that of calculating the total energy. This paves the way for a general and efficient approach for geometry optimization and molecular dynamics within AFQMC.

  7. PREFACE: EmQM13: Emergent Quantum Mechanics 2013

    Science.gov (United States)

    2014-04-01

    These proceedings comprise the invited lectures of the second international symposium on Emergent Quantum Mechanics (EmQM13), which was held at the premises of the Austrian Academy of Sciences in Vienna, Austria, 3-6 October 2013. The symposium was held at the ''Theatersaal'' of the Academy of Sciences, and was devoted to the open exploration of emergent quantum mechanics, a possible ''deeper level theory'' that interconnects three fields of knowledge: emergence, the quantum, and information. Could there appear a revised image of physical reality from recognizing new links between emergence, the quantum, and information? Could a novel synthesis pave the way towards a 21st century, ''superclassical'' physics? The symposium provided a forum for discussing (i) important obstacles which need to be overcome as well as (ii) promising developments and research opportunities on the way towards emergent quantum mechanics. Contributions were invited that presented current advances in both standard as well as unconventional approaches to quantum mechanics. The EmQM13 symposium was co-organized by Gerhard Grössing (Austrian Institute for Nonlinear Studies (AINS), Vienna), and by Jan Walleczek (Fetzer Franklin Fund, USA, and Phenoscience Laboratories, Berlin). After a very successful first conference on the same topic in 2011, the new partnership between AINS and the Fetzer Franklin Fund in producing the EmQM13 symposium was able to further expand interest in the promise of emergent quantum mechanics. The symposium consisted of two parts, an opening evening addressing the general public, and the scientific program of the conference proper. The opening evening took place at the Great Ceremonial Hall (Grosser Festsaal) of the Austrian Academy of Sciences, and it presented talks and a panel discussion on ''The Future of Quantum Mechanics'' with three distinguished speakers: Stephen Adler (Princeton), Gerard 't Hooft (Utrecht) and Masanao Ozawa (Nagoya). The articles contained in

  8. Causal fermion systems: A quantum space-time emerging from an action principle

    Energy Technology Data Exchange (ETDEWEB)

    Finster, Felix [Mathematics Department, University of Regensburg (Germany)

    2013-07-01

    Causal fermion systems provide a general framework for the formulation of relativistic quantum theory. A particular feature is that space-time is a secondary object which emerges by minimizing an action. The aim of the talk is to give a simple introduction, with an emphasis on conceptual issues. We begin with Dirac spinors in Minkowski space and explain how to formulate the system as a causal fermion system. As an example in curved space-time, we then consider spinors on a globally hyperbolic space-time. An example on a space-time lattice illustrates that causal fermion systems also allow for the description of discrete space-times. These examples lead us to the general definition of causal fermion systems. The causal action principle is introduced. We outline how for a given minimizer, one has notions of causality, connection and curvature, which generalize the classical notions and give rise to a proposal for a ''quantum geometry''. In the last part of the talk, we outline how quantum field theory can be described in this framework and discuss the relation to other approaches.

  9. Quantum critical spin-2 chain with emergent SU(3) symmetry.

    Science.gov (United States)

    Chen, Pochung; Xue, Zhi-Long; McCulloch, I P; Chung, Ming-Chiang; Huang, Chao-Chun; Yip, S-K

    2015-04-10

    We study the quantum critical phase of an SU(2) symmetric spin-2 chain obtained from spin-2 bosons in a one-dimensional lattice. We obtain the scaling of the finite-size energies and entanglement entropy by exact diagonalization and density-matrix renormalization group methods. From the numerical results of the energy spectra, central charge, and scaling dimension we identify the conformal field theory describing the whole critical phase to be the SU(3)_{1} Wess-Zumino-Witten model. We find that, while the Hamiltonian is only SU(2) invariant, in this critical phase there is an emergent SU(3) symmetry in the thermodynamic limit.

  10. Emergent Hydrodynamics in Integrable Quantum Systems Out of Equilibrium

    Directory of Open Access Journals (Sweden)

    Olalla A. Castro-Alvaredo

    2016-12-01

    Full Text Available Understanding the general principles underlying strongly interacting quantum states out of equilibrium is one of the most important tasks of current theoretical physics. With experiments accessing the intricate dynamics of many-body quantum systems, it is paramount to develop powerful methods that encode the emergent physics. Up to now, the strong dichotomy observed between integrable and nonintegrable evolutions made an overarching theory difficult to build, especially for transport phenomena where space-time profiles are drastically different. We present a novel framework for studying transport in integrable systems: hydrodynamics with infinitely many conservation laws. This bridges the conceptual gap between integrable and nonintegrable quantum dynamics, and gives powerful tools for accurate studies of space-time profiles. We apply it to the description of energy transport between heat baths, and provide a full description of the current-carrying nonequilibrium steady state and the transition regions in a family of models including the Lieb-Liniger model of interacting Bose gases, realized in experiments.

  11. Diffusion Geometry Unravels the Emergence of Functional Clusters in Collective Phenomena

    Science.gov (United States)

    De Domenico, Manlio

    2017-04-01

    Collective phenomena emerge from the interaction of natural or artificial units with a complex organization. The interplay between structural patterns and dynamics might induce functional clusters that, in general, are different from topological ones. In biological systems, like the human brain, the overall functionality is often favored by the interplay between connectivity and synchronization dynamics, with functional clusters that do not coincide with anatomical modules in most cases. In social, sociotechnical, and engineering systems, the quest for consensus favors the emergence of clusters. Despite the unquestionable evidence for mesoscale organization of many complex systems and the heterogeneity of their interconnectivity, a way to predict and identify the emergence of functional modules in collective phenomena continues to elude us. Here, we propose an approach based on random walk dynamics to define the diffusion distance between any pair of units in a networked system. Such a metric allows us to exploit the underlying diffusion geometry to provide a unifying framework for the intimate relationship between metastable synchronization, consensus, and random search dynamics in complex networks, pinpointing the functional mesoscale organization of synthetic and biological systems.

  12. Quantum field theory in curved graphene spacetimes, Lobachevsky geometry, Weyl symmetry, Hawking effect, and all that

    Science.gov (United States)

    Iorio, Alfredo; Lambiase, Gaetano

    2014-07-01

    The solutions of many issues, of the ongoing efforts to make deformed graphene a tabletop quantum field theory in curved spacetimes, are presented. A detailed explanation of the special features of curved spacetimes, originating from embedding portions of the Lobachevsky plane into R3, is given, and the special role of coordinates for the physical realizations in graphene is explicitly shown, in general, and for various examples. The Rindler spacetime is reobtained, with new important differences with respect to earlier results. The de Sitter spacetime naturally emerges, for the first time, paving the way to future applications in cosmology. The role of the Bañados, Teitelboim, and Zanelli (BTZ) black hole is also briefly addressed. The singular boundary of the pseudospheres, "Hilbert horizon," is seen to be closely related to the event horizon of the Rindler, de Sitter, and BTZ kind. This gives new, and stronger, arguments for the Hawking phenomenon to take place. An important geometric parameter, c, overlooked in earlier work, takes here its place for physical applications, and it is shown to be related to graphene's lattice spacing, ℓ. It is shown that all surfaces of constant negative curvature, K =-r-2, are unified, in the limit c/r→0, where they are locally applicable to the Beltrami pseudosphere. This, and c=ℓ, allow us (a) to have a phenomenological control on the reaching of the horizon; (b) to use spacetimes different from the Rindler spacetime for the Hawking phenomenon; and (c) to approach the generic surface of the family. An improved expression for the thermal LDOS is obtained. A nonthermal term for the total LDOS is found. It takes into account (i) the peculiarities of the graphene-based Rindler spacetime; (ii) the finiteness of a laboratory surface; and (iii) the optimal use of the Minkowski quantum vacuum, through the choice of this Minkowski-static boundary.

  13. Quantum Hall conductivity in a Landau type model with a realistic geometry

    International Nuclear Information System (INIS)

    Chandelier, F.; Georgelin, Y.; Masson, T.; Wallet, J.-C.

    2003-01-01

    In this paper, we revisit some quantum mechanical aspects related to the quantum Hall effect. We consider a Landau type model, paying a special attention to the experimental and geometrical features of quantum Hall experiments. The resulting formalism is then used to compute explicitly the Hall conductivity from a Kubo formula

  14. Probing emergent geometry through phase transitions in free vector and matrix models

    Energy Technology Data Exchange (ETDEWEB)

    Amado, Irene; Sundborg, Bo [The Oskar Klein Centre for Cosmoparticle Physics, Department of Physics, Stockholm University,AlbaNova, 106 91 Stockholm (Sweden); Thorlacius, Larus [The Oskar Klein Centre for Cosmoparticle Physics, Department of Physics, Stockholm University,AlbaNova, 106 91 Stockholm (Sweden); Science Institute, University of Iceland, Dunhaga 3, 107 Reykjavik (Iceland); Wintergerst, Nico [The Oskar Klein Centre for Cosmoparticle Physics, Department of Physics, Stockholm University,AlbaNova, 106 91 Stockholm (Sweden)

    2017-02-01

    Boundary correlation functions provide insight into the emergence of an effective geometry in higher spin gravity duals of O(N) or U(N) symmetric field theories. On a compact manifold, the singlet constraint leads to nontrivial dynamics at finite temperature and large N phase transitions even at vanishing ’t Hooft coupling. At low temperature, the leading behavior of boundary two-point functions is consistent with propagation through a bulk thermal anti de Sitter space. Above the phase transition, the two-point function shows significant departure from thermal AdS space and the emergence of localized black hole like objects in the bulk. In adjoint models, these objects appear at length scales of order of the AdS radius, consistent with a Hawking-Page transition, but in vector models they are parametrically larger than the AdS scale. In low dimensions, we find another crossover at large distances beyond which the correlation function again takes a thermal AdS form, albeit with a temperature dependent normalization factor.

  15. Machine learning spatial geometry from entanglement features

    Science.gov (United States)

    You, Yi-Zhuang; Yang, Zhao; Qi, Xiao-Liang

    2018-02-01

    Motivated by the close relations of the renormalization group with both the holography duality and the deep learning, we propose that the holographic geometry can emerge from deep learning the entanglement feature of a quantum many-body state. We develop a concrete algorithm, call the entanglement feature learning (EFL), based on the random tensor network (RTN) model for the tensor network holography. We show that each RTN can be mapped to a Boltzmann machine, trained by the entanglement entropies over all subregions of a given quantum many-body state. The goal is to construct the optimal RTN that best reproduce the entanglement feature. The RTN geometry can then be interpreted as the emergent holographic geometry. We demonstrate the EFL algorithm on a 1D free fermion system and observe the emergence of the hyperbolic geometry (AdS3 spatial geometry) as we tune the fermion system towards the gapless critical point (CFT2 point).

  16. Emergence of a classical Universe from quantum gravity and cosmology.

    Science.gov (United States)

    Kiefer, Claus

    2012-09-28

    I describe how we can understand the classical appearance of our world from a universal quantum theory. The essential ingredient is the process of decoherence. I start with a general discussion in ordinary quantum theory and then turn to quantum gravity and quantum cosmology. There is a whole hierarchy of classicality from the global gravitational field to the fluctuations in the cosmic microwave background, which serve as the seeds for the structure in the Universe.

  17. A Genuine Jahn-Teller System with Compressed Geometry and Quantum Effects Originating from Zero-Point Motion

    DEFF Research Database (Denmark)

    Aramburu, José Antonio; García-Fernández, Pablo; García Lastra, Juan Maria

    2016-01-01

    that the anomalous positive g∥ shift (g∥−g0=0.065) measured at T=20 K obeys the superposition of the |3 z2−r2⟩ and |x2−y2⟩ states driven by quantum effects associated with the zero-point motion, a mechanism first put forward by O'Brien for static Jahn–Teller systems and later extended by Ham to the dynamic Jahn...... of the calculated energy barriers for different Jahn–Teller systems allowed us to explain the origin of the compressed geometry observed for CaO:Ni+....

  18. Can Topology and Geometry be Measured by an Operator Measurement in Quantum Gravity?

    Science.gov (United States)

    Berenstein, David; Miller, Alexandra

    2017-06-30

    In the context of Lin-Lunin-Maldacena geometries, we show that superpositions of classical coherent states of trivial topology can give rise to new classical limits where the topology of spacetime has changed. We argue that this phenomenon implies that neither the topology nor the geometry of spacetime can be the result of an operator measurement. We address how to reconcile these statements with the usual semiclassical analysis of low energy effective field theory for gravity.

  19. Casimir quantum levitation tuned by means of material properties and geometries

    OpenAIRE

    Dou, Maofeng; Lui, F; Boström, Mathias; Brevik, Iver Håkon; Persson, Clas

    2014-01-01

    The Casimir force between two surfaces is attractive in most cases. Although stable suspension of nano-objects has been achieved, the sophisticated geometries make them difficult to be merged with well-established thin film processes. We find that by introducing thin film surface coating on porous substrates, a repulsive to attractive force transition is achieved when the separations are increased in planar geometries, resulting in a stable suspension of two surfaces near the force transition...

  20. Quantum theory as an emergent phenomenon the statistical mechanics of matrix models as the precursor of quantum field theory

    CERN Document Server

    Adler, Stephen L

    2004-01-01

    Quantum mechanics is our most successful physical theory. However, it raises conceptual issues that have perplexed physicists and philosophers of science for decades. This 2004 book develops an approach, based on the proposal that quantum theory is not a complete, final theory, but is in fact an emergent phenomenon arising from a deeper level of dynamics. The dynamics at this deeper level are taken to be an extension of classical dynamics to non-commuting matrix variables, with cyclic permutation inside a trace used as the basic calculational tool. With plausible assumptions, quantum theory is shown to emerge as the statistical thermodynamics of this underlying theory, with the canonical commutation/anticommutation relations derived from a generalized equipartition theorem. Brownian motion corrections to this thermodynamics are argued to lead to state vector reduction and to the probabilistic interpretation of quantum theory, making contact with phenomenological proposals for stochastic modifications to Schr�...

  1. Is the World Local or Nonlocal? Towards an Emergent Quantum Mechanics in the 21st Century

    International Nuclear Information System (INIS)

    Walleczek, Jan; Grössing, Gerhard

    2016-01-01

    What defines an emergent quantum mechanics (EmQM)? Can new insight be advanced into the nature of quantum nonlocality by seeking new links between quantum and emergent phenomena as described by self-organization, complexity, or emergence theory? Could the development of a future EmQM lead to a unified, relational image of the cosmos? One key motivation for adopting the concept of emergence in relation to quantum theory concerns the persistent failure in standard physics to unify the two pillars in the foundations of physics: quantum theory and general relativity theory (GRT). The total contradiction in the foundational, metaphysical assumptions that define orthodox quantum theory versus GRT might render inter-theoretic unification impossible. On the one hand, indeterminism and non-causality define orthodox quantum mechanics, and, on the other hand, GRT is governed by causality and determinism. How could these two metaphysically-contradictory theories ever be reconciled? The present work argues that metaphysical contradiction necessarily implies physical contradiction. The contradictions are essentially responsible also for the measurement problem in quantum mechanics. A common foundation may be needed for overcoming the contradictions between the two foundational theories. The concept of emergence, and the development of an EmQM, might help advance a common foundation - physical and metaphysical - as required for successfull inter-theory unification. (paper)

  2. The MaxEnt extension of a quantum Gibbs family, convex geometry and geodesics

    International Nuclear Information System (INIS)

    Weis, Stephan

    2015-01-01

    We discuss methods to analyze a quantum Gibbs family in the ultra-cold regime where the norm closure of the Gibbs family fails due to discontinuities of the maximum-entropy inference. The current discussion of maximum-entropy inference and irreducible correlation in the area of quantum phase transitions is a major motivation for this research. We extend a representation of the irreducible correlation from finite temperatures to absolute zero

  3. Approximation methods in loop quantum cosmology: from Gowdy cosmologies to inhomogeneous models in Friedmann–Robertson–Walker geometries

    International Nuclear Information System (INIS)

    Martín-Benito, Mercedes; Martín-de Blas, Daniel; Marugán, Guillermo A Mena

    2014-01-01

    We develop approximation methods in the hybrid quantization of the Gowdy model with linear polarization and a massless scalar field, for the case of three-torus spatial topology. The loop quantization of the homogeneous gravitational sector of the Gowdy model (according to the improved dynamics prescription) and the presence of inhomogeneities lead to a very complicated Hamiltonian constraint. Therefore, the extraction of physical results calls for the introduction of well justified approximations. We first show how to approximate the homogeneous part of the Hamiltonian constraint, corresponding to Bianchi I geometries, as if it described a Friedmann–Robertson–Walker (FRW) model corrected with anisotropies. This approximation is valid in the sector of high energies of the FRW geometry (concerning its contribution to the constraint) and for anisotropy profiles that are sufficiently smooth. In addition, for certain families of states related to regimes of physical interest, with negligible quantum effects of the anisotropies and small inhomogeneities, one can approximate the Hamiltonian constraint of the inhomogeneous system by that of an FRW geometry with a relatively simple matter content, and then obtain its solutions. (paper)

  4. Emergence of the persistent spin helix in semiconductor quantum wells

    International Nuclear Information System (INIS)

    Koralek, Jake; Weber, Chris; Orenstein, Joe; Bernevig, Andrei; Zhang, Shoucheng; Mack, Shawn; Awschalom, David

    2008-01-01

    According to Noether's theorem, for every symmetry in nature there is a corresponding conservation law. For example, invariance with respect to spatial translation corresponds to conservation of momentum. In another well-known example, invariance with respect to rotation of the electron's spin, or SU(2) symmetry, leads to conservation of spin polarization. For electrons in a solid, this symmetry is ordinarily broken by spin-orbit (SO) coupling, allowing spin angular momentum to flow to orbital angular momentum. However, it has recently been predicted that SU(2) can be recovered in a two-dimensional electron gas (2DEG), despite the presence of SO coupling. The corresponding conserved quantities include the amplitude and phase of a helical spin density wave termed the 'persistent spin helix' (PSH) .2 SU(2) is restored, in principle, when the strength of two dominant SO interactions, the Rashba (alpha) and linear Dresselhaus (beta 1), are equal. This symmetry is predicted to be robust against all forms of spin-independent scattering, including electron-electron interactions, but is broken by the cubic Dresselhaus term (beta 3) and spin-dependent scattering. When these terms are negligible, the distance over which spin information can propagate is predicted to diverge as alpha approaches beta 1. Here we observe experimentally the emergence of the PSH in GaAs quantum wells (QW's) by independently tuning alpha and beta 1. Using transient spin-grating spectroscopy (TSG), we find a spin-lifetime enhancement of two orders of magnitude near the symmetry point. Excellent quantitative agreement with theory across a wide range of sample parameters allows us to obtain an absolute measure of all relevant SO terms, identifying beta 3 as the main SU(2) violating term in our samples. The tunable suppression of spin-relaxation demonstrated in this work is well-suited for application to spintronics

  5. Emergence of the Persistent Spin Helix in Semiconductor Quantum Wells

    International Nuclear Information System (INIS)

    Koralek, Jake

    2011-01-01

    According to Noether's theorem, for every symmetry in nature there is a corresponding conservation law. For example, invariance with respect to spatial translation corresponds to conservation of momentum. In another well-known example, invariance with respect to rotation of the electron's spin, or SU(2) symmetry, leads to conservation of spin polarization. For electrons in a solid, this symmetry is ordinarily broken by spin-orbit (SO) coupling, allowing spin angular momentum to flow to orbital angular momentum. However, it has recently been predicted that SU(2) can be recovered in a two-dimensional electron gas (2DEG), despite the presence of SO coupling. The corresponding conserved quantities include the amplitude and phase of a helical spin density wave termed the 'persistent spin helix' (PSH). SU(2) is restored, in principle, when the strength of two dominant SO interactions, the Rashba (α) and linear Dresselhaus (β 1 ), are equal. This symmetry is predicted to be robust against all forms of spin-independent scattering, including electron-electron interactions, but is broken by the cubic Dresselhaus term (β 3 ) and spin-dependent scattering. When these terms are negligible, the distance over which spin information can propagate is predicted to diverge as α → β 1 . Here we observe experimentally the emergence of the PSH in GaAs quantum wells (QW's) by independently tuning α and β 1 . Using transient spin-grating spectroscopy (TSG), we find a spin-lifetime enhancement of two orders of magnitude near the symmetry point. Excellent quantitative agreement with theory across a wide range of sample parameters allows us to obtain an absolute measure of all relevant SO terms, identifying β 3 as the main SU(2) violating term in our samples. The tunable suppression of spin-relaxation demonstrated in this work is well-suited for application to spintronics.

  6. How Classical Particles Emerge From the Quantum World

    NARCIS (Netherlands)

    Dieks, D.G.B.J.|info:eu-repo/dai/nl/068635508; Lubberdink, A.

    2010-01-01

    The symmetrization postulates of quantum mechanics (symmetry for bosons, antisymmetry for fermions) are usually taken to entail that quantum particles of the same kind (e.g., electrons) are all in exactly the same state and therefore indistinguishable in the strongest possible sense. These

  7. Non-extensive statistical mechanics and black hole entropy from quantum geometry

    Directory of Open Access Journals (Sweden)

    Abhishek Majhi

    2017-12-01

    Full Text Available Using non-extensive statistical mechanics, the Bekenstein–Hawking area law is obtained from microstates of black holes in loop quantum gravity, for arbitrary real positive values of the Barbero–Immirzi parameter (γ. The arbitrariness of γ is encoded in the strength of the “bias” created in the horizon microstates through the coupling with the quantum geometric fields exterior to the horizon. An experimental determination of γ will fix this coupling, leaving out the macroscopic area of the black hole to be the only free quantity of the theory.

  8. No firewalls in quantum gravity: the role of discreteness of quantum geometry in resolving the information loss paradox

    International Nuclear Information System (INIS)

    Perez, Alejandro

    2015-01-01

    In an approach to quantum gravity where space-time arises from coarse graining of fundamentally discrete structures, black hole formation and subsequent evaporation can be described by a unitary evolution without the problems encountered by the standard remnant scenario or the schemes where information is assumed to come out with the radiation during evaporation (firewalls and complementarity). The final state is purified by correlations with the fundamental pre-geometric structures (in the sense of Wheeler), which are available in such approaches, and, like defects in the underlying space-time weave, can carry zero energy. (paper)

  9. No firewalls in quantum gravity: the role of discreteness of quantum geometry in resolving the information loss paradox

    Science.gov (United States)

    Perez, Alejandro

    2015-04-01

    In an approach to quantum gravity where space-time arises from coarse graining of fundamentally discrete structures, black hole formation and subsequent evaporation can be described by a unitary evolution without the problems encountered by the standard remnant scenario or the schemes where information is assumed to come out with the radiation during evaporation (firewalls and complementarity). The final state is purified by correlations with the fundamental pre-geometric structures (in the sense of Wheeler), which are available in such approaches, and, like defects in the underlying space-time weave, can carry zero energy.

  10. Quantum Statistical Mechanics, L-Series and Anabelian Geometry I: Partition Functions

    NARCIS (Netherlands)

    Marcolli, Matilde; Cornelissen, Gunther

    2014-01-01

    The zeta function of a number field can be interpreted as the partition function of an associated quantum statistical mechanical (QSM) system, built from abelian class field theory. We introduce a general notion of isomorphism of QSM-systems and prove that it preserves (extremal) KMS equilibrium

  11. Effective spacetime understanding emergence in effective field theory and quantum gravity

    CERN Document Server

    Crowther, Karen

    2016-01-01

    This book discusses the notion that quantum gravity may represent the "breakdown" of spacetime at extremely high energy scales. If spacetime does not exist at the fundamental level, then it has to be considered "emergent", in other words an effective structure, valid at low energy scales. The author develops a conception of emergence appropriate to effective theories in physics, and shows how it applies (or could apply) in various approaches to quantum gravity, including condensed matter approaches, discrete approaches, and loop quantum gravity.

  12. Casimir quantum levitation tuned by means of material properties and geometries

    Science.gov (United States)

    Dou, Maofeng; Lou, Fei; Boström, Mathias; Brevik, Iver; Persson, Clas

    2014-05-01

    The Casimir force between two surfaces is attractive in most cases. Although stable suspension of nano-objects has been achieved, the sophisticated geometries make them difficult to be merged with well-established thin film processes. We find that by introducing thin film surface coating on porous substrates, a repulsive to attractive force transition is achieved when the separations are increased in planar geometries, resulting in a stable suspension of two surfaces near the force transition separation. Both the magnitude of the force and the transition distance can be flexibly tailored though modifying the properties of the considered materials, that is, thin film thickness, doping concentration, and porosity. This stable suspension can be used to design new nanodevices with ultralow friction. Moreover, it might be convenient to merge this thin film coating approach with micro- and nanofabrication processes in the future.

  13. Towards canonical quantum gravity for 3+1 geometries admitting maximally symmetric two-dimensional surfaces

    International Nuclear Information System (INIS)

    Christodoulakis, T; Doulis, G; Terzis, Petros A; Melas, E; Grammenos, Th; Papadopoulos, G O; Spanou, A

    2010-01-01

    The canonical decomposition of all 3+1 geometries admitting two-dimensional space-like surfaces is exhibited as a generalization of a previous work. A proposal, consisting of a specific renormalization Assumption and an accompanying Requirement, which has been put forward in the 2+1 case is now generalized to 3+1 dimensions. This enables the canonical quantization of these geometries through a generalization of Kuchar's quantization scheme in the case of infinite degrees of freedom. The resulting Wheeler-DeWitt equation is based on a renormalized manifold parameterized by three smooth scalar functionals. The entire space of solutions to this equation is analytically given, a fact that is entirely new to the present case. This is made possible through the exploitation of the residual freedom in the choice of the third functional, which is left by the imposition of the Requirement, and is proven to correspond to a general coordinate transformation in the renormalized manifold.

  14. Optimization of the geometry of the diphenylamine molecule by semiempirical quantum chemical methods

    International Nuclear Information System (INIS)

    Pankratov, A.N.; Mushtakova, S.P.; Gribov, L.A.

    1986-01-01

    Available data on experimental study of the geometry of the diphenylamine molecule (I) in solution and in the crystal are fragmentary and not always reliable. Previously, they did a conformational analysis of molecule I using the atom-atom potential method. In order to refine the geometric parameters found for molecule I, optimization of its geometry is provided in the paper using the CNDO/2, INDO, MINDO/3 methods with the use of programs for the BESM-6 computer which are part of the VIKING program set. The angles of rotation for the phenyl rings relative to the CNC plane, the bond angles C 2 N 7 C 8 and C 2 N 7 H 19 , and also the dihedral angle H 19 N 7 C 8 C 9 were subjected to optimization. For any set of values for the indicated parameters, the bond angle C 8 N 7 H 19 is determined unambiguously. The results of the calculations are evidence that the MINDO/3 method is not suitable for optimization of the geometry for molecules of the indicated series; in particular, it leads to much too high a value for the CNC angles (135.9 0 ). The CNDO/2 method reproduces well the real value of the CNC angle (124.1 0 ) and confirms the known pyrimidal character of the nitrogen atom, the sum of the bond angles of which proved to be equal to 353.6 0 . The calculation in the INDO approximation successfully gives the basic characteristics of the molecular geometry of (I); according to this approximation, the CNC angle is equal to 123.2 0 , the CNH angles are equal to 118.0 and 118.8 0 , the sum of the angles for the nitrogen atom is 360.0 0

  15. Holographic geometry of cMERA for quantum quenches and finite temperature

    International Nuclear Information System (INIS)

    Mollabashi, Ali; Naozaki, Masahiro; Ryu, Shinsei; Takayanagi, Tadashi

    2014-01-01

    We study the time evolution of cMERA (continuous MERA) under quantum quenches in free field theories. We calculate the corresponding holographic metric using the proposal in http://arxiv.org/abs/1208.3469 and confirm that it qualitatively agrees with its gravity dual given by a half of the AdS black hole spacetime, argued by Hartman and Maldacena in http://arxiv.org/abs/1303.1080. By doubling the cMERA for the quantum quench, we give an explicit construction of finite temperature cMERA. We also study cMERA in the presence of chemical potential and show that there is an enhancement of metric in the infrared region corresponding to the Fermi energy

  16. Quantum Geometry: Relativistic energy approach to cooperative electron-nucleary-transition spectrum

    Directory of Open Access Journals (Sweden)

    Ольга Юрьевна Хецелиус

    2014-11-01

    Full Text Available An advanced relativistic energy approach is presented and applied to calculating parameters of electron-nuclear 7-transition spectra of nucleus in the atom. The intensities of the spectral satellites are defined in the relativistic version of the energy approach (S-matrix formalism, and gauge-invariant quantum-electrodynamical perturbation theory with the Dirac-Kohn-Sham density-functional zeroth approximation.

  17. Dimensional flow and fuzziness in quantum gravity: Emergence of stochastic spacetime

    Directory of Open Access Journals (Sweden)

    Gianluca Calcagni

    2017-10-01

    Full Text Available We show that the uncertainty in distance and time measurements found by the heuristic combination of quantum mechanics and general relativity is reproduced in a purely classical and flat multi-fractal spacetime whose geometry changes with the probed scale (dimensional flow and has non-zero imaginary dimension, corresponding to a discrete scale invariance at short distances. Thus, dimensional flow can manifest itself as an intrinsic measurement uncertainty and, conversely, measurement-uncertainty estimates are generally valid because they rely on this universal property of quantum geometries. These general results affect multi-fractional theories, a recent proposal related to quantum gravity, in two ways: they can fix two parameters previously left free (in particular, the value of the spacetime dimension at short scales and point towards a reinterpretation of the ultraviolet structure of geometry as a stochastic foam or fuzziness. This is also confirmed by a correspondence we establish between Nottale scale relativity and the stochastic geometry of multi-fractional models.

  18. Dimensional flow and fuzziness in quantum gravity: Emergence of stochastic spacetime

    International Nuclear Information System (INIS)

    Calcagni, Gianluca; Ronco, Michele

    2017-01-01

    We show that the uncertainty in distance and time measurements found by the heuristic combination of quantum mechanics and general relativity is reproduced in a purely classical and flat multi-fractal spacetime whose geometry changes with the probed scale (dimensional flow) and has non-zero imaginary dimension, corresponding to a discrete scale invariance at short distances. Thus, dimensional flow can manifest itself as an intrinsic measurement uncertainty and, conversely, measurement-uncertainty estimates are generally valid because they rely on this universal property of quantum geometries. These general results affect multi-fractional theories, a recent proposal related to quantum gravity, in two ways: they can fix two parameters previously left free (in particular, the value of the spacetime dimension at short scales) and point towards a reinterpretation of the ultraviolet structure of geometry as a stochastic foam or fuzziness. This is also confirmed by a correspondence we establish between Nottale scale relativity and the stochastic geometry of multi-fractional models.

  19. Dimensional flow and fuzziness in quantum gravity: Emergence of stochastic spacetime

    Science.gov (United States)

    Calcagni, Gianluca; Ronco, Michele

    2017-10-01

    We show that the uncertainty in distance and time measurements found by the heuristic combination of quantum mechanics and general relativity is reproduced in a purely classical and flat multi-fractal spacetime whose geometry changes with the probed scale (dimensional flow) and has non-zero imaginary dimension, corresponding to a discrete scale invariance at short distances. Thus, dimensional flow can manifest itself as an intrinsic measurement uncertainty and, conversely, measurement-uncertainty estimates are generally valid because they rely on this universal property of quantum geometries. These general results affect multi-fractional theories, a recent proposal related to quantum gravity, in two ways: they can fix two parameters previously left free (in particular, the value of the spacetime dimension at short scales) and point towards a reinterpretation of the ultraviolet structure of geometry as a stochastic foam or fuzziness. This is also confirmed by a correspondence we establish between Nottale scale relativity and the stochastic geometry of multi-fractional models.

  20. Quantum hall conductivity in a Landau type model with a realistic geometry II

    International Nuclear Information System (INIS)

    Chandelier, F.; Georgelin, Y.; Masson, T.; Wallet, J.-C.

    2004-01-01

    We use a mathematical framework that we introduced in a previous paper to study geometrical and quantum mechanical aspects of a Hall system with finite size and general boundary conditions. Geometrical structures control possibly the integral or fractional quantization of the Hall conductivity depending on the value of NB/2π (N is the number of charge carriers and B is the magnetic field). When NB/2π is irrational, we show that monovaluated wave functions can be constructed only on the graph of a free group with two generators. When NB/2π is rational, the relevant space becomes a punctured Riemann surface. We finally discuss our results from a phenomenological viewpoint

  1. Three-space from quantum mechanics

    International Nuclear Information System (INIS)

    Chew, G.F.; Stapp, H.P.

    1988-01-01

    We formulate a discrete quantum-mechanical precursor to spacetime geometry. The objective is to provide the foundation for a quantum mechanics that is rooted exclusively in quantum-mechanical concepts, with all classical features, including the three-dimensional spatial continuum, emerging dynamically

  2. Instanton geometry and quantum A{sub {infinity}} structure on the elliptic curve

    Energy Technology Data Exchange (ETDEWEB)

    Herbst, M. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Lerche, W. [European Lab. for Particle Physics (CERN), Geneva (Switzerland); Nemeschansky, D. [University of Southern California, Los Angeles, CA (United States). Dept. of Physics

    2006-03-15

    We first determine and then study the complete set of non-vanishing A-model correlation functions associated with the 'long-diagonal branes' on the elliptic curve. We verify that they satisfy the relevant A{sub {infinity}} consistency relations at both classical and quantum levels. In particular we find that the A{sub {infinity}} relation for the annulus provides a reconstruction of annulus instantons out of disk instantons. We note in passing that the naive application of the Cardy-constraint does not hold for our correlators, confirming expectations. Moreover, we analyze various analytical properties of the correlators, including instanton flops and the mixing of correlators with different numbers of legs under monodromy. The classical and quantum A{sub {infinity}} relations turn out to be compatible with such homotopy transformations. They lead to a non-invariance of the effective action under modular transformations, unless compensated by suitable contact terms which amount to redefinitions of the tachyon fields. (orig.)

  3. One-loop pure-gravity contributions to a black-hole geometry with quantum fluctuations

    International Nuclear Information System (INIS)

    Peterkin, R.E.

    1985-01-01

    A black-hole is unstable to zero-means quantum fluctuations of its metric. These quantum fluctuations break the degeneracy of the locations of the event-horizon and the apparent-horizon for a Schwarzschild black-hole. The path-integral in spacetime with Euclidean signature is calculated from the ADM action to second order in the variations. It is found that the second-order term of this perturbation expansion gives the same contribution to the path-integral as the zeroth-order term for these particular fluctuations. A surface near the black-hole event-horizon is correctly treated as a boundary, and this surface makes a substantial contribution to the path-integral. One may treat this path-integral as a partition function and calculate thermodynamic quantities. The entropy of this black-hole, for example, is found to be close to the accepted value of A/4h, where A is the black-hole surface area. The meaning of these particular fluctuations and the importance of the boundary near the event-horizon is discussed

  4. Geometry optimization of supersymmetrical molecules in quantum chemical ab-initio calculations

    International Nuclear Information System (INIS)

    Gruenbichler, H.

    1985-01-01

    One-dimensional geometry optimizations in ab-initio SCF-calculations are investigated. It is shown, that the well known standard algorithms are sometimes too expensive and can be replaced or accompanied by more recent algorithms. Two alternatives were realized in the molecule calculating program GAUSSIAN 80, basing on the Fibonacci algorithm and Kryachco potential adjustment. The algorithms were compared in terms of accuracy of results, CPU-time used and reliability of the method. The results are presented in various tables, showing the efficiency of the various methods. A survey of the usual model potentials is given and the compatibility with ab-initio data is evaluated. (Author, shortened and translated by A.N.)

  5. Emergence and frustration of magnetism with variable-range interactions in a quantum simulator.

    Science.gov (United States)

    Islam, R; Senko, C; Campbell, W C; Korenblit, S; Smith, J; Lee, A; Edwards, E E; Wang, C-C J; Freericks, J K; Monroe, C

    2013-05-03

    Frustration, or the competition between interacting components of a network, is often responsible for the emergent complexity of many-body systems. For instance, frustrated magnetism is a hallmark of poorly understood systems such as quantum spin liquids, spin glasses, and spin ices, whose ground states can be massively degenerate and carry high degrees of quantum entanglement. Here, we engineer frustrated antiferromagnetic interactions between spins stored in a crystal of up to 16 trapped (171)Yb(+) atoms. We control the amount of frustration by continuously tuning the range of interaction and directly measure spin correlation functions and their coherent dynamics. This prototypical quantum simulation points the way toward a new probe of frustrated quantum magnetism and perhaps the design of new quantum materials.

  6. Chaos in Dirac electron optics: Emergence of a relativistic quantum chimera

    OpenAIRE

    Xu, Hong-Ya; Wang, Guang-Lei; Huang, Liang; Lai, Ying-Cheng

    2018-01-01

    We uncover a remarkable quantum scattering phenomenon in two-dimensional Dirac material systems where the manifestations of both classically integrable and chaotic dynamics emerge simultaneously and are electrically controllable. The distinct relativistic quantum fingerprints associated with different electron spin states are due to a physical mechanism analogous to chiroptical effect in the presence of degeneracy breaking. The phenomenon mimics a chimera state in classical complex dynamical ...

  7. Holomorphic field realization of SH"c and quantum geometry of quiver gauge theories

    International Nuclear Information System (INIS)

    Bourgine, Jean-Emile; Matsuo, Yutaka; Zhang, Hong

    2016-01-01

    In the context of 4D/2D dualities, SH"c algebra, introduced by Schiffmann and Vasserot, provides a systematic method to analyse the instanton partition functions of N=2 supersymmetric gauge theories. In this paper, we rewrite the SH"c algebra in terms of three holomorphic fields D_0(z), D_±_1(z) with which the algebra and its representations are simplified. The instanton partition functions for arbitrary N=2 super Yang-Mills theories with A_n and A_n"("1") type quiver diagrams are compactly expressed as a product of four building blocks, Gaiotto state, dilatation, flavor vertex operator and intertwiner which are written in terms of SH"c and the orthogonal basis introduced by Alba, Fateev, Litvinov and Tarnopolskiy. These building blocks are characterized by new conditions which generalize the known ones on the Gaiotto state and the Carlsson-Okounkov vertex. Consistency conditions of the inner product give algebraic relations for the chiral ring generating functions defined by Nekrasov, Pestun and Shatashvili. In particular we show the polynomiality of the qq-characters which have been introduced as a deformation of the Yangian characters. These relations define a second quantization of the Seiberg-Witten geometry, and, accordingly, reduce to a Baxter TQ-equation in the Nekrasov-Shatashvili limit of the Omega-background.

  8. Emergent geometry experienced by fermions in graphene in the presence of dislocations

    Energy Technology Data Exchange (ETDEWEB)

    Volovik, G.E. [Low Temperature Laboratory, School of Science and Technology, Aalto University, P.O. Box 15100, FI-00076 AALTO (Finland); L. D. Landau Institute for Theoretical Physics, Kosygina 2, 119334 Moscow (Russian Federation); Zubkov, M.A., E-mail: zubkov@itep.ru [The University of Western Ontario, Department of Applied Mathematics, 1151 Richmond St. N., London (ON), Canada N6A 5B7 (Canada); ITEP, B.Cheremushkinskaya 25, Moscow, 117259 (Russian Federation)

    2015-05-15

    In graphene in the presence of strain the elasticity theory metric naturally appears. However, this is not the one experienced by fermionic quasiparticles. Fermions propagate in curved space, whose metric is defined by expansion of the effective Hamiltonian near the topologically protected Fermi point. We discuss relation between both types of metric for different parametrizations of graphene surface. Next, we extend our consideration to the case, when the dislocations are present. We consider the situation, when the deformation is described by elasticity theory and calculate both torsion and emergent magnetic field carried by the dislocation. The dislocation carries singular torsion in addition to the quantized flux of emergent magnetic field. Both may be observed in the scattering of quasiparticles on the dislocation. Emergent magnetic field flux manifests itself in the Aharonov–Bohm effect while the torsion singularity results in Stodolsky effect.

  9. Emergent gravity on covariant quantum spaces in the IKKT model

    Energy Technology Data Exchange (ETDEWEB)

    Steinacker, Harold C. [Faculty of Physics, University of Vienna,Boltzmanngasse 5, A-1090 Vienna (Austria)

    2016-12-30

    We study perturbations of 4-dimensional fuzzy spheres as backgrounds in the IKKT or IIB matrix model. Gauge fields and metric fluctuations are identified among the excitation modes with lowest spin, supplemented by a tower of higher-spin fields. They arise from an internal structure which can be viewed as a twisted bundle over S{sup 4}, leading to a covariant noncommutative geometry. The linearized 4-dimensional Einstein equations are obtained from the classical matrix model action under certain conditions, modified by an IR cutoff. Some one-loop contributions to the effective action are computed using the formalism of string states.

  10. Emergence of cosmic space and minimal length in quantum gravity

    Energy Technology Data Exchange (ETDEWEB)

    Farag Ali, Ahmed, E-mail: ahmed.ali@fsc.bu.edu.eg [Center for Fundamental Physics, Zewail City of Science and Technology, Giza, 12588 (Egypt); Dept. of Physics, Faculty of Sciences, Benha University, Benha, 13518 (Egypt)

    2014-05-01

    An emergence of cosmic space has been suggested by Padmanabhan in [1]. This new interesting approach argues that the expansion of the universe is due to the difference between the number of degrees of freedom on a holographic surface and the one in the emerged bulk. In this paper, we derive, using emergence of cosmic space framework, the general dynamical equation of FRW universe filled with a perfect fluid by considering a generic form of the entropy as a function of area. Our derivation is considered as a generalization of emergence of cosmic space with a general form of entropy. We apply our equation with higher dimensional spacetime and derive modified Friedmann equation in Gauss–Bonnet gravity. We then apply our derived equation with the corrected entropy-area law that follows from Generalized Uncertainty Principle (GUP) and derive a modified Friedmann equations due to the GUP. We then derive the modified Raychaudhuri equation due to GUP in emergence of cosmic space framework and investigate it using fixed point method. Studying this modified Raychaudhuri equation leads to nonsingular solutions which may resolve singularities in FRW universe.

  11. Testing a Model of Planck-Scale Quantum Geometry With Broadband Correlation of Colocated 40m Interferometers

    International Nuclear Information System (INIS)

    McCuller, Lee Patrick

    2015-01-01

    The Holometer is designed to test for a Planck diffractive-scaling uncertainty in long-baseline position measurements due to an underlying noncommutative geometry normalized to relate Black hole entropy bounds of the Holographic principle to the now-finite number of position states. The experiment overlaps two independent 40 meter optical Michelson interferometers to detect the proposed uncertainty as a common broadband length fluctuation. 150 hours of instrument cross-correlation data are analyzed to test the prediction of a correlated noise magnitude of 7·10 -21 m/√Hz with an effective bandwidth of 750kHz. The interferometers each have a quantum-limited sensitivity of 2.5·10 -18 m/√Hz, but their correlation with a time-bandwidth product of 4·10 11 digs between the noise floors in search for the covarying geometric jitter. The data presents an exclusion of 5 standard deviations for the tested model. This exclusion is defended through analysis of the calibration methods for the instrument as well as further sub shot noise characterization of the optical systems to limit spurious background-correlations from undermining the signal.

  12. Testing a Model of Planck-Scale Quantum Geometry With Broadband Correlation of Colocated 40m Interferometers

    Energy Technology Data Exchange (ETDEWEB)

    McCuller, Lee Patrick [Univ. of Chicago, IL (United States)

    2015-12-01

    The Holometer is designed to test for a Planck diffractive-scaling uncertainty in long-baseline position measurements due to an underlying noncommutative geometry normalized to relate Black hole entropy bounds of the Holographic principle to the now-finite number of position states. The experiment overlaps two independent 40 meter optical Michelson interferometers to detect the proposed uncertainty as a common broadband length fluctuation. 150 hours of instrument cross-correlation data are analyzed to test the prediction of a correlated noise magnitude of $7\\times10^{−21}$ m/$\\sqrt{\\rm Hz}$ with an effective bandwidth of 750kHz. The interferometers each have a quantum-limited sensitivity of $2.5\\times 10^{−18}$ m/$\\sqrt{\\rm Hz}$, but their correlation with a time-bandwidth product of $4\\times 10^{11}$ digs between the noise floors in search for the covarying geometric jitter. The data presents an exclusion of 5 standard deviations for the tested model. This exclusion is defended through analysis of the calibration methods for the instrument as well as further sub shot noise characterization of the optical systems to limit spurious background-correlations from undermining the signal.

  13. Classically and quantum stable emergent universe from conservation laws

    Energy Technology Data Exchange (ETDEWEB)

    Campo, Sergio del; Herrera, Ramón [Instituto de Física, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2950, Casilla 4059, Valparaíso (Chile); Guendelman, Eduardo I. [Physics Department, Ben Gurion University of the Negev, Beer Sheva 84105 (Israel); Labraña, Pedro, E-mail: guendel@bgu.ac.il, E-mail: ramon.herrera@ucv.cl, E-mail: plabrana@ubiobio.cl [Departamento de Física, Universidad del Bío Bío and Grupo de Cosmología y Gravitación-UBB, Avenida Collao 1202, Casilla 5-C, Concepción (Chile)

    2016-08-01

    It has been recently pointed out by Mithani-Vilenkin [1-4] that certain emergent universe scenarios which are classically stable are nevertheless unstable semiclassically to collapse. Here, we show that there is a class of emergent universes derived from scale invariant two measures theories with spontaneous symmetry breaking (s.s.b) of the scale invariance, which can have both classical stability and do not suffer the instability pointed out by Mithani-Vilenkin towards collapse. We find that this stability is due to the presence of a symmetry in the 'emergent phase', which together with the non linearities of the theory, does not allow that the FLRW scale factor to be smaller that a certain minimum value a {sub 0} in a certain protected region.

  14. Large N BPS states and emergent quantum gravity

    International Nuclear Information System (INIS)

    Berenstein, David

    2006-01-01

    This paper provides a heuristic derivation of how classical gravitational physics in the AdS/CFT correspondence appears from the strong dynamics of the N = 4 SYM theory in a systematic way. We do this in a minisuperspace approximation by studying 1/8 BPS configurations. We can show that our description matches the semiclassical physics of 1/8 BPS states in supergravity. We also provide a heuristic description of how massive strings appear in the geometry, and how at strong 't Hooft coupling they become local on the S 5 suggesting that they can be realized as a sigma model on a weakly curved background. We show that the dynamics of 1/8 BPS dynamics of N = 4 SYM on a round S 3 can be reduced to that of a matrix model for commuting matrices. Including measure factors, we show that this effective dynamics is related to bosons living on a six dimensional phase space with repulsive interactions. Because of these interactions, we can argue that on the ground state the bosons assemble themselves on a spherical shell in the shape of a round five sphere. This sphere will be identified with the S 5 in the AdS dual geometry. To do this, we first define a precise way to coarse grain the dynamics. We use half BPS configurations as a toy model for this coarse graining, and we can reproduce the droplet picture of these half BPS states systematically. The droplet appears as the saddle point approximation of a statistical ensemble related to the square of the wave function of the eigenvalues of a complex matrix. This procedure is also applied to the set of 1/8 BPS configurations to extract the geometry, giving an analog of the droplet picture of half BPS states for the case of 1/8 BPS configurations. We also have a conjectured realization of some 1/8 BPS giant graviton wave functions in the dynamics, which captures all 1/8 BPS giant gravitons constructed by Mikhailov. This leads to a lot of different topology changes which can be treated heuristically

  15. Emergence of liquid crystalline order in the lowest Landau level of a quantum Hall system with internal anisotropy

    Science.gov (United States)

    Ciftja, Orion

    2018-05-01

    It has now become evident that interplay between internal anisotropy parameters (such as electron mass anisotropy and/or anisotropic coupling of electrons to the substrate) and electron-electron correlation effects can create a rich variety of possibilities especially in quantum Hall systems. The electron mass anisotropy or material substrate effects (for example, the piezoelectric effect in GaAs) can lead to an effective anisotropic interaction potential between electrons. For lack of knowledge of realistic ab-initio potentials that may describe such effects, we adopt a phenomenological approach and assume that an anisotropic Coulomb interaction potential mimics the internal anisotropy of the system. In this work we investigate the emergence of liquid crystalline order at filling factor ν = 1/6 of the lowest Landau level, a state very close to the point where a transition from the liquid to the Wigner solid happens. We consider small finite systems of electrons interacting with an anisotropic Coulomb interaction potential and study the energy stability of an anisotropic liquid crystalline state relative to its isotropic Fermi-liquid counterpart. Quantum Monte Carlo simulation results in disk geometry show stabilization of liquid crystalline order driven by an anisotropic Coulomb interaction potential at all values of the interaction anisotropy parameter studied.

  16. Equilibration, thermalisation, and the emergence of statistical mechanics in closed quantum systems.

    Science.gov (United States)

    Gogolin, Christian; Eisert, Jens

    2016-05-01

    We review selected advances in the theoretical understanding of complex quantum many-body systems with regard to emergent notions of quantum statistical mechanics. We cover topics such as equilibration and thermalisation in pure state statistical mechanics, the eigenstate thermalisation hypothesis, the equivalence of ensembles, non-equilibration dynamics following global and local quenches as well as ramps. We also address initial state independence, absence of thermalisation, and many-body localisation. We elucidate the role played by key concepts for these phenomena, such as Lieb-Robinson bounds, entanglement growth, typicality arguments, quantum maximum entropy principles and the generalised Gibbs ensembles, and quantum (non-)integrability. We put emphasis on rigorous approaches and present the most important results in a unified language.

  17. Chaos in Dirac Electron Optics: Emergence of a Relativistic Quantum Chimera.

    Science.gov (United States)

    Xu, Hong-Ya; Wang, Guang-Lei; Huang, Liang; Lai, Ying-Cheng

    2018-03-23

    We uncover a remarkable quantum scattering phenomenon in two-dimensional Dirac material systems where the manifestations of both classically integrable and chaotic dynamics emerge simultaneously and are electrically controllable. The distinct relativistic quantum fingerprints associated with different electron spin states are due to a physical mechanism analogous to a chiroptical effect in the presence of degeneracy breaking. The phenomenon mimics a chimera state in classical complex dynamical systems but here in a relativistic quantum setting-henceforth the term "Dirac quantum chimera," associated with which are physical phenomena with potentially significant applications such as enhancement of spin polarization, unusual coexisting quasibound states for distinct spin configurations, and spin selective caustics. Experimental observations of these phenomena are possible through, e.g., optical realizations of ballistic Dirac fermion systems.

  18. Chaos in Dirac Electron Optics: Emergence of a Relativistic Quantum Chimera

    Science.gov (United States)

    Xu, Hong-Ya; Wang, Guang-Lei; Huang, Liang; Lai, Ying-Cheng

    2018-03-01

    We uncover a remarkable quantum scattering phenomenon in two-dimensional Dirac material systems where the manifestations of both classically integrable and chaotic dynamics emerge simultaneously and are electrically controllable. The distinct relativistic quantum fingerprints associated with different electron spin states are due to a physical mechanism analogous to a chiroptical effect in the presence of degeneracy breaking. The phenomenon mimics a chimera state in classical complex dynamical systems but here in a relativistic quantum setting—henceforth the term "Dirac quantum chimera," associated with which are physical phenomena with potentially significant applications such as enhancement of spin polarization, unusual coexisting quasibound states for distinct spin configurations, and spin selective caustics. Experimental observations of these phenomena are possible through, e.g., optical realizations of ballistic Dirac fermion systems.

  19. Rounding by disorder of first-order quantum phase transitions: emergence of quantum critical points.

    Science.gov (United States)

    Goswami, Pallab; Schwab, David; Chakravarty, Sudip

    2008-01-11

    We give a heuristic argument for disorder rounding of a first-order quantum phase transition into a continuous phase transition. From both weak and strong disorder analysis of the N-color quantum Ashkin-Teller model in one spatial dimension, we find that, for N > or =3, the first-order transition is rounded to a continuous transition and the physical picture is the same as the random transverse field Ising model for a limited parameter regime. The results are strikingly different from the corresponding classical problem in two dimensions where the fate of the renormalization group flows is a fixed point corresponding to N-decoupled pure Ising models.

  20. PREFACE: DICE 2012 : Spacetime Matter Quantum Mechanics - from the Planck scale to emergent phenomena

    Science.gov (United States)

    Diósi, Lajos; Elze, Hans-Thomas; Fronzoni, Leone; Halliwell, Jonathan; Prati, Enrico; Vitiello, Giuseppe; Yearsley, James

    2013-06-01

    Presented in this volume are the Invited Lectures and the Contributed Papers of the Sixth International Workshop on Decoherence, Information, Complexity and Entropy - DICE 2012, held at Castello Pasquini, Castiglioncello (Tuscany), 17-21 September 2012. These proceedings may document to the interested public and to the wider scientific community the stimulating exchange of ideas at the meeting. The number of participants has been steadily growing over the years, reflecting an increasing attraction, if not need, of such conference. Our very intention has always been to bring together leading researchers, advanced students, and renowned scholars from various areas, in order to stimulate new ideas and their exchange across the borders of specialization. In this way, the series of meetings successfully continued from the beginning with DICE 20021, followed by DICE 20042, DICE 20063, DICE 20084, and DICE 20105, Most recently, DICE 2012 brought together more than 120 participants representing more than 30 countries worldwide. It has been a great honour and inspiration to have Professor Yakir Aharonov (Tel Aviv) with us, who presented the opening Keynote Lecture 'The two-vector quantum formalism'. With the overarching theme 'Spacetime - Matter - Quantum Mechanics - from the Planck scale to emergent phenomena', the conference took place in the very pleasant and inspiring atmosphere of Castello Pasquini - in beautiful surroundings, overlooking a piece of Tuscany's coast. The 5-day program covered these major topics: Quantum Mechanics, Foundations and Quantum-Classical Border Quantum-Classical Hybrids and Many-Body Systems Spectral Geometry, Path Integrals and Experiments Quantum -/- Gravity -/- Spacetime Quantum Mechanics on all Scales? A Roundtable Discussion under the theme 'Nuovi orizzonti nella ricerca scientifica. Ci troviamo di fronte ad una rivoluzione scientifica?' formed an integral part of the program. With participation of E Del Giudice (INFN & Università di

  1. Quantum thermodynamics. Emergence of thermodynamic behavior within composite quantum systems. 2. ed.

    International Nuclear Information System (INIS)

    Gemmer, Jochen; Michel, M.; Mahler, Guenter

    2009-01-01

    This introductory text treats thermodynamics as an incomplete description of quantum systems with many degrees of freedom. Its main goal is to show that the approach to equilibrium -with equilibrium characterized by maximum ignorance about the open system of interest- neither requires that many particles nor is the precise way of partitioning, relevant for the salient features of equilibrium and equilibration. Furthermore, the text depicts that it is indeed quantum effects that are at work in bringing about thermodynamic behavior of modest-sized open systems, thus making Von Neumann's concept of entropy appear much more widely useful than sometimes feared, far beyond truly macroscopic systems in equilibrium. This significantly revised and expanded second edition pays more attention to the growing number of applications, especially non-equilibrium phenomena and thermodynamic processes of the nano-domain. In addition, to improve readability and reduce unneeded technical details, a large portion of this book has been thoroughly rewritten. (orig.)

  2. Classical universe emerging from quantum cosmology without horizon and flatness problems

    Energy Technology Data Exchange (ETDEWEB)

    Fathi, M.; Jalalzadeh, S. [Shahid Beheshti University, Department of Physics, Tehran (Iran, Islamic Republic of); Moniz, P.V. [Centro de Matematica e Aplicacoes-UBI, Covilha (Portugal); Universidade da Beira Interior, Departmento de Fisica, Covilha (Portugal)

    2016-10-15

    We apply the complex de Broglie-Bohm formulation of quantum mechanics in Chou and Wyatt (Phys Rev A 76: 012115, 2007), Gozzi (Phys Lett B 165: 351, 1985), Bhalla et al. (Am J Phys 65: 1187, 1997) to a spatially closed homogeneous and isotropic early universe whose matter contents are radiation and dust perfect fluids. We then show that an expanding classical universe can emerge from an oscillating (with complex scale factor) quantum universe without singularity. Furthermore, the universe obtained in this process has no horizon or flatness problems. (orig.)

  3. Particle-hole symmetry for composite fermions: An emergent symmetry in the fractional quantum Hall effect

    DEFF Research Database (Denmark)

    Coimbatore Balram, Ajit; Jain, Jainendra

    2017-01-01

    The particle-hole (PH) symmetry of {\\em electrons} is an exact symmetry of the electronic Hamiltonian confined to a specific Landau level, and its interplay with the formation of composite fermions has attracted much attention of late. This article investigates an emergent symmetry...... in the fractional quantum Hall effect, namely the PH symmetry of {\\em composite fermions}, which relates states at composite fermion filling factors $\

  4. Quantum Darwinism: Entanglement, branches, and the emergent classicality of redundantly stored quantum information

    International Nuclear Information System (INIS)

    Blume-Kohout, Robin; Zurek, Wojciech H.

    2006-01-01

    We lay a comprehensive foundation for the study of redundant information storage in decoherence processes. Redundancy has been proposed as a prerequisite for objectivity, the defining property of classical objects. We consider two ensembles of states for a model universe consisting of one system and many environments: the first consisting of arbitrary states, and the second consisting of 'singly branching' states consistent with a simple decoherence model. Typical states from the random ensemble do not store information about the system redundantly, but information stored in branching states has a redundancy proportional to the environment's size. We compute the specific redundancy for a wide range of model universes, and fit the results to a simple first-principles theory. Our results show that the presence of redundancy divides information about the system into three parts: classical (redundant); purely quantum; and the borderline, undifferentiated or 'nonredundant', information

  5. Quantum Darwinism: Entanglement, branches, and the emergent classicality of redundantly stored quantum information

    Science.gov (United States)

    Blume-Kohout, Robin; Zurek, Wojciech H.

    2006-06-01

    We lay a comprehensive foundation for the study of redundant information storage in decoherence processes. Redundancy has been proposed as a prerequisite for objectivity, the defining property of classical objects. We consider two ensembles of states for a model universe consisting of one system and many environments: the first consisting of arbitrary states, and the second consisting of “singly branching” states consistent with a simple decoherence model. Typical states from the random ensemble do not store information about the system redundantly, but information stored in branching states has a redundancy proportional to the environment’s size. We compute the specific redundancy for a wide range of model universes, and fit the results to a simple first-principles theory. Our results show that the presence of redundancy divides information about the system into three parts: classical (redundant); purely quantum; and the borderline, undifferentiated or “nonredundant,” information.

  6. Emergence of the product of constant curvature spaces in loop quantum cosmology

    International Nuclear Information System (INIS)

    Dadhich, Naresh; Joe, Anton; Singh, Parampreet

    2015-01-01

    The loop quantum dynamics of Kantowski–Sachs spacetime and the interior of higher genus black hole spacetimes with a cosmological constant has some peculiar features not shared by various other spacetimes in loop quantum cosmology. As in the other cases, though the quantum geometric effects resolve the physical singularity and result in a non-singular bounce, after the bounce a spacetime with small spacetime curvature does not emerge in either the subsequent backward or the forward evolution. Rather, in the asymptotic limit the spacetime manifold is a product of two constant curvature spaces. Interestingly, though the spacetime curvature of these asymptotic spacetimes is very high, their effective metric is a solution to Einstein’s field equations. Analysis of the components of the Ricci tensor shows that after the singularity resolution, the Kantowski–Sachs spacetime leads to an effective metric which can be interpreted as the ‘charged’ Nariai, while the higher genus black hole interior can similarly be interpreted as an anti Bertotti–Robinson spacetime with a cosmological constant. These spacetimes are ‘charged’ in the sense that the energy–momentum tensor that satisfies Einstein’s field equations is formally the same as the one for the uniform electromagnetic field, albeit it has a purely quantum geometric origin. The asymptotic spacetimes also have an emergent cosmological constant which is different in magnitude, and sometimes even its sign, from the cosmological constant in the Kantowski–Sachs and the interior of higher genus black hole metrics. With a fine tuning of the latter cosmological constant, we show that ‘uncharged’ Nariai, and anti Bertotti–Robinson spacetimes with a vanishing emergent cosmological constant can also be obtained. (paper)

  7. Spinning geometry = Twisted geometry

    International Nuclear Information System (INIS)

    Freidel, Laurent; Ziprick, Jonathan

    2014-01-01

    It is well known that the SU(2)-gauge invariant phase space of loop gravity can be represented in terms of twisted geometries. These are piecewise-linear-flat geometries obtained by gluing together polyhedra, but the resulting geometries are not continuous across the faces. Here we show that this phase space can also be represented by continuous, piecewise-flat three-geometries called spinning geometries. These are composed of metric-flat three-cells glued together consistently. The geometry of each cell and the manner in which they are glued is compatible with the choice of fluxes and holonomies. We first remark that the fluxes provide each edge with an angular momentum. By studying the piecewise-flat geometries which minimize edge lengths, we show that these angular momenta can be literally interpreted as the spin of the edges: the geometries of all edges are necessarily helices. We also show that the compatibility of the gluing maps with the holonomy data results in the same conclusion. This shows that a spinning geometry represents a way to glue together the three-cells of a twisted geometry to form a continuous geometry which represents a point in the loop gravity phase space. (paper)

  8. Theoretical analysis of geometry and NMR isotope shift in hydrogen-bonding center of photoactive yellow protein by combination of multicomponent quantum mechanics and ONIOM scheme

    Energy Technology Data Exchange (ETDEWEB)

    Kanematsu, Yusuke; Tachikawa, Masanori [Quantum Chemistry Division, Yokohama City University, Seto 22-2, Kanazawa-ku, Yokohama 236-0027 (Japan)

    2014-11-14

    Multicomponent quantum mechanical (MC-QM) calculation has been extended with ONIOM (our own N-layered integrated molecular orbital + molecular mechanics) scheme [ONIOM(MC-QM:MM)] to take account of both the nuclear quantum effect and the surrounding environment effect. The authors have demonstrated the first implementation and application of ONIOM(MC-QM:MM) method for the analysis of the geometry and the isotope shift in hydrogen-bonding center of photoactive yellow protein. ONIOM(MC-QM:MM) calculation for a model with deprotonated Arg52 reproduced the elongation of O–H bond of Glu46 observed by neutron diffraction crystallography. Among the unique isotope shifts in different conditions, the model with protonated Arg52 with solvent effect reasonably provided the best agreement with the corresponding experimental values from liquid NMR measurement. Our results implied the availability of ONIOM(MC-QM:MM) to distinguish the local environment around hydrogen bonds in a biomolecule.

  9. Preface [EmQM15: 3. international symposium on emergent quantum mechanics

    International Nuclear Information System (INIS)

    2016-01-01

    These proceedings comprise the invited lectures of the third international symposium on Emergent Quantum Mechanics (EmQM15), which was held at the Vienna University of Technology in Vienna, Austria, 23-25 October 2015. The symposium convened at the Festsaal and the adjacent Boeckl-Saal of the Technical University, and was devoted to the open exploration of the quantum state as a reality. The resurgence of interest in ontological quantum theory, including both deterministic and indeterministic approaches, challenges long held assumptions and focuses on the following questions: Is the world local or nonlocal? What is the nature of quantum nonlocality? If nonlocal, i.e., superluminal, influences exist then why can't they be used for superluminal signaling and communication? How is the role of the scientific observer/agent to be accounted for in realistic approaches to quantum theory? How could recent developments in the field of space-time as an emergent phenomenon advance new insight at this research frontier? What new experiments might contribute to new understanding? These and related questions were addressed in the context also of a possible deeper level theory for quantum mechanics that interconnects three fields of knowledge: emergence, the quantum, and information. Could there appear a revised image of physical reality from recognizing new links between emergence, the quantum, and information? The symposium provided a forum for considering (i) current theoretical and conceptual obstacles which need to be overcome as well as (ii) promising developments and research opportunities on the way towards realistic quantum mechanics. Contributions were invited that present current advances in both standard as well as unconventional approaches. The EmQM15 symposium was co-organized by Gerhard Grössing (Austrian Institute for Nonlinear Studies (AINS), Vienna), and by Jan Walleczek (Fetzer Franklin Fund, USA, and Phenoscience Laboratories, Berlin). After two

  10. Geometry-based approach to studying the semi-classical limit in quantum dynamics by the coherent states and quantum mechanics on the torus

    International Nuclear Information System (INIS)

    Faure, F.

    1993-01-01

    This thesis deals with problems linked to the study of the semi-classical limit in quantum dynamics. The first part presents a geometrical formulation which is tantamount to the time dependent variational principle. The classical dynamics is considered as an orthogonal projection of the quantum dynamics on the family of coherent states. The angle of projection provides an information on the validity of the approximation. This angle is studied in an illustrating example. In the second part, we study quantum mechanics on the torus as a phase space, and particularly degeneracies in the spectrum of Harper like models or kicked Harper like models which manifest chaotic dynamics. These models find direct applications in solid state physics, especially with the quantum Hall effect. In this study, we use the Chern index, which is a topological characterization of the localization of the eigenfunctions as some periodicity conditions are changed. The use of the Husimi distribution provides a phase space representation of the quantum states. We discuss the role played by separatrix-states, by the effects of quantum tunneling, and by a classically chaotic dynamics. (orig.)

  11. The vacuum structure, special relativity theory and quantum mechanics revisited: a field theory-no-geometry approach

    International Nuclear Information System (INIS)

    Bogolubov, N.N. Jr.; Prykarpatsky, A.K.; Ufuk Taneri

    2008-07-01

    The main fundamental principles characterizing the vacuum field structure are formulated and the modeling of the related vacuum medium and charged point particle dynamics by means of de- vised field theoretic tools are analyzed. The Maxwell electrodynamic theory is revisited and newly derived from the suggested vacuum field structure principles and the classical special relativity theory relationship between the energy and the corresponding point particle mass is revisited and newly obtained. The Lorentz force expression with respect to arbitrary non-inertial reference frames is revisited and discussed in detail, and some new interpretations of relations between the special relativity theory and quantum mechanics are presented. The famous quantum-mechanical Schroedinger type equations for a relativistic point particle in the external potential and magnetic fields within the quasiclassical approximation as the Planck constant (h/2π) → 0 and the light velocity c → ∞ are obtained. (author)

  12. Preconditioner and convergence study for the Quantum Computer Aided Design (QCAD) nonlinear poisson problem posed on the Ottawa Flat 270 design geometry.

    Energy Technology Data Exchange (ETDEWEB)

    Kalashnikova, Irina

    2012-05-01

    A numerical study aimed to evaluate different preconditioners within the Trilinos Ifpack and ML packages for the Quantum Computer Aided Design (QCAD) non-linear Poisson problem implemented within the Albany code base and posed on the Ottawa Flat 270 design geometry is performed. This study led to some new development of Albany that allows the user to select an ML preconditioner with Zoltan repartitioning based on nodal coordinates, which is summarized. Convergence of the numerical solutions computed within the QCAD computational suite with successive mesh refinement is examined in two metrics, the mean value of the solution (an L{sup 1} norm) and the field integral of the solution (L{sup 2} norm).

  13. Entanglement and quantum state geometry of a spin system with all-range Ising-type interaction

    Science.gov (United States)

    Kuzmak, A. R.

    2018-04-01

    The evolution of an N spin-1/2 system with all-range Ising-type interaction is considered. For this system we study the entanglement of one spin with the rest spins. It is shown that the entanglement depends on the number of spins and the initial state. Also, the geometry of the manifold, which contains entangled states, is obtained. For this case we find the dependence of entanglement on the scalar curvature of the manifold and examine it for different numbers of spins in the system. Finally we show that the transverse magnetic field leads to a change in the manifold topology.

  14. Communication and the Emergence of Collective Behavior in Living Organisms: A Quantum Approach

    Science.gov (United States)

    Bischof, Marco; Del Giudice, Emilio

    2013-01-01

    Intermolecular interactions within living organisms have been found to occur not as individual independent events but as a part of a collective array of interconnected events. The problem of the emergence of this collective dynamics and of the correlated biocommunication therefore arises. In the present paper we review the proposals given within the paradigm of modern molecular biology and those given by some holistic approaches to biology. In recent times, the collective behavior of ensembles of microscopic units (atoms/molecules) has been addressed in the conceptual framework of Quantum Field Theory. The possibility of producing physical states where all the components of the ensemble move in unison has been recognized. In such cases, electromagnetic fields trapped within the ensemble appear. In the present paper we present a scheme based on Quantum Field Theory where molecules are able to move in phase-correlated unison among them and with a self-produced electromagnetic field. Experimental corroboration of this scheme is presented. Some consequences for future biological developments are discussed. PMID:24288611

  15. Quantum criticality and emergence of the T/B scaling in strongly correlated metals

    International Nuclear Information System (INIS)

    Watanabe, Shinji; Miyake, Kazumasa

    2016-01-01

    A new type of scaling observed in heavy-electron metal β-YbAlB_4, where the magnetic susceptibility is expressed as a single scaling function of the ratio of temperature T and magnetic field B over four decades, is examined theoretically. We develop the mode-coupling theory for critical Yb-valence fluctuations under a magnetic field, verifying that the T/B scaling behavior appears near the QCP of the valence transition. Emergence of the T/B scaling indicates the presence of the small characteristic temperature of the critical Yb-valence fluctuation due to the strong local correlation effect. It is discussed that the T/B scaling as well as the unconventional criticality is explained from the viewpoint of the quantum valence criticality in a unified way.

  16. Quantum criticality and emergence of the T/B scaling in strongly correlated metals

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Shinji [Department of Basic Sciences, Kyushu Institute of Technology, Kitakyushu (Japan); Miyake, Kazumasa [Toyota Physical and Chemical Research Institute, Nagakute (Japan)

    2016-02-15

    A new type of scaling observed in heavy-electron metal β-YbAlB{sub 4}, where the magnetic susceptibility is expressed as a single scaling function of the ratio of temperature T and magnetic field B over four decades, is examined theoretically. We develop the mode-coupling theory for critical Yb-valence fluctuations under a magnetic field, verifying that the T/B scaling behavior appears near the QCP of the valence transition. Emergence of the T/B scaling indicates the presence of the small characteristic temperature of the critical Yb-valence fluctuation due to the strong local correlation effect. It is discussed that the T/B scaling as well as the unconventional criticality is explained from the viewpoint of the quantum valence criticality in a unified way.

  17. Emergence of currents as a transient quantum effect in nonequilibrium systems

    Energy Technology Data Exchange (ETDEWEB)

    Granot, Er' el; Marchewka, Avi [Department of Electrical and Electronics Engineering, Ariel University Center of Samaria, Ariel (Israel)

    2011-09-15

    Most current calculations are based on equilibrium or semi-equilibrium models. However, except for very special scenarios (like ring configuration), the current cannot exist in equilibrium. Moreover, unlike with equilibrium scenarios, there is no generic approach to confront out-of-equilibrium currents. In this paper we used recent studies on transient quantum mechanics to solve the current, which appears in the presence of very high density gradients and fast transients. It shows that the emerging current appears instantaneously, and although the density beyond the discontinuity is initially negligible the currents there have a finite value, and remain constant for a finite period. It is shown that this nonequilibrium effect can be measured in real experiments (such as cooled rubidium atoms), where the discontinuity is replaced with a finite width (hundreds of nanometers) gradient.

  18. Emergence of currents as a transient quantum effect in nonequilibrium systems

    International Nuclear Information System (INIS)

    Granot, Er'el; Marchewka, Avi

    2011-01-01

    Most current calculations are based on equilibrium or semi-equilibrium models. However, except for very special scenarios (like ring configuration), the current cannot exist in equilibrium. Moreover, unlike with equilibrium scenarios, there is no generic approach to confront out-of-equilibrium currents. In this paper we used recent studies on transient quantum mechanics to solve the current, which appears in the presence of very high density gradients and fast transients. It shows that the emerging current appears instantaneously, and although the density beyond the discontinuity is initially negligible the currents there have a finite value, and remain constant for a finite period. It is shown that this nonequilibrium effect can be measured in real experiments (such as cooled rubidium atoms), where the discontinuity is replaced with a finite width (hundreds of nanometers) gradient.

  19. Emergence of currents as a transient quantum effect in nonequilibrium systems

    Science.gov (United States)

    Granot, Er'El; Marchewka, Avi

    2011-09-01

    Most current calculations are based on equilibrium or semi-equilibrium models. However, except for very special scenarios (like ring configuration), the current cannot exist in equilibrium. Moreover, unlike with equilibrium scenarios, there is no generic approach to confront out-of-equilibrium currents. In this paper we used recent studies on transient quantum mechanics to solve the current, which appears in the presence of very high density gradients and fast transients. It shows that the emerging current appears instantaneously, and although the density beyond the discontinuity is initially negligible the currents there have a finite value, and remain constant for a finite period. It is shown that this nonequilibrium effect can be measured in real experiments (such as cooled rubidium atoms), where the discontinuity is replaced with a finite width (hundreds of nanometers) gradient.

  20. Wave Function and Emergent SU(2) Symmetry in the ν_{T}=1 Quantum Hall Bilayer.

    Science.gov (United States)

    Lian, Biao; Zhang, Shou-Cheng

    2018-02-16

    We propose a trial wave function for the quantum Hall bilayer system of total filling factor ν_{T}=1 at a layer distance d to magnetic length ℓ ratio d/ℓ=κ_{c1}≈1.1, where the lowest charged excitation is known to have a level crossing. The wave function has two-particle correlations, which fit well with those in previous numerical studies, and can be viewed as a Bose-Einstein condensate of free excitons formed by composite bosons and anticomposite bosons in different layers. We show the free nature of these excitons indicating an emergent SU(2) symmetry for the composite bosons at d/ℓ=κ_{c1}, which leads to the level crossing in low-lying charged excitations. We further show the overlap between the trial wave function, and the ground state of a small size exact diagonalization is peaked near d/ℓ=κ_{c1}, which supports our theory.

  1. Towards canonical quantum gravity for G1 geometries in 2+1 dimensions with a Λ-term

    International Nuclear Information System (INIS)

    Christodoulakis, T; Doulis, G; Terzis, Petros A; Melas, E; Grammenos, Th; Papadopoulos, G O; Spanou, A

    2008-01-01

    The canonical analysis and subsequent quantization of the (2+1)-dimensional action of pure gravity plus a cosmological constant term is considered, under the assumption of the existence of one spacelike Killing vector field. The proper imposition of the quantum analogues of two linear (momentum) constraints reduces an initial collection of state vectors, consisting of all smooth functionals of the components (and/or their derivatives) of the spatial metric, to particular scalar smooth functionals. The demand that the midi-superspace metric (inferred from the kinetic part of the quadratic (Hamiltonian) constraint) must define on the space of these states an induced metric whose components are given in terms of the same states, which is made possible through an appropriate re-normalization assumption, severely reduces the possible state vectors to three unique (up to general coordinate transformations) smooth scalar functionals. The quantum analogue of the Hamiltonian constraint produces a Wheeler-DeWitt equation based on this reduced manifold of states, which is completely integrated

  2. Sub-Riemannian geometry and time optimal control of three spin systems: Quantum gates and coherence transfer

    International Nuclear Information System (INIS)

    Khaneja, Navin; Brockett, Roger; Glaser, Steffen J.

    2002-01-01

    Radio-frequency pulses are used in nuclear-magnetic-resonance spectroscopy to produce unitary transfer of states. Pulse sequences that accomplish a desired transfer should be as short as possible in order to minimize the effects of relaxation, and to optimize the sensitivity of the experiments. Many coherence-transfer experiments in NMR, involving a network of coupled spins, use temporary spin decoupling to produce desired effective Hamiltonians. In this paper, we demonstrate that significant time can be saved in producing an effective Hamiltonian if spin decoupling is avoided. We provide time-optimal pulse sequences for producing an important class of effective Hamiltonians in three-spin networks. These effective Hamiltonians are useful for coherence-transfer experiments in three-spin systems and implementation of indirect swap and Λ 2 (U) gates in the context of NMR quantum computing. It is shown that computing these time-optimal pulses can be reduced to geometric problems that involve computing sub-Riemannian geodesics. Using these geometric ideas, explicit expressions for the minimum time required for producing these effective Hamiltonians, transfer of coherence, and implementation of indirect swap gates, in a three-spin network are derived (Theorems 1 and 2). It is demonstrated that geometric control techniques provide a systematic way of finding time-optimal pulse sequences for transferring coherence and synthesizing unitary transformations in quantum networks, with considerable time savings (e.g., 42.3% for constructing indirect swap gates)

  3. Quantum gravity from noncommutative spacetime

    International Nuclear Information System (INIS)

    Lee, Jungjai; Yang, Hyunseok

    2014-01-01

    We review a novel and authentic way to quantize gravity. This novel approach is based on the fact that Einstein gravity can be formulated in terms of a symplectic geometry rather than a Riemannian geometry in the context of emergent gravity. An essential step for emergent gravity is to realize the equivalence principle, the most important property in the theory of gravity (general relativity), from U(1) gauge theory on a symplectic or Poisson manifold. Through the realization of the equivalence principle, which is an intrinsic property in symplectic geometry known as the Darboux theorem or the Moser lemma, one can understand how diffeomorphism symmetry arises from noncommutative U(1) gauge theory; thus, gravity can emerge from the noncommutative electromagnetism, which is also an interacting theory. As a consequence, a background-independent quantum gravity in which the prior existence of any spacetime structure is not a priori assumed but is defined by using the fundamental ingredients in quantum gravity theory can be formulated. This scheme for quantum gravity can be used to resolve many notorious problems in theoretical physics, such as the cosmological constant problem, to understand the nature of dark energy, and to explain why gravity is so weak compared to other forces. In particular, it leads to a remarkable picture of what matter is. A matter field, such as leptons and quarks, simply arises as a stable localized geometry, which is a topological object in the defining algebra (noncommutative *-algebra) of quantum gravity.

  4. Quantum gravity from noncommutative spacetime

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jungjai [Daejin University, Pocheon (Korea, Republic of); Yang, Hyunseok [Korea Institute for Advanced Study, Seoul (Korea, Republic of)

    2014-12-15

    We review a novel and authentic way to quantize gravity. This novel approach is based on the fact that Einstein gravity can be formulated in terms of a symplectic geometry rather than a Riemannian geometry in the context of emergent gravity. An essential step for emergent gravity is to realize the equivalence principle, the most important property in the theory of gravity (general relativity), from U(1) gauge theory on a symplectic or Poisson manifold. Through the realization of the equivalence principle, which is an intrinsic property in symplectic geometry known as the Darboux theorem or the Moser lemma, one can understand how diffeomorphism symmetry arises from noncommutative U(1) gauge theory; thus, gravity can emerge from the noncommutative electromagnetism, which is also an interacting theory. As a consequence, a background-independent quantum gravity in which the prior existence of any spacetime structure is not a priori assumed but is defined by using the fundamental ingredients in quantum gravity theory can be formulated. This scheme for quantum gravity can be used to resolve many notorious problems in theoretical physics, such as the cosmological constant problem, to understand the nature of dark energy, and to explain why gravity is so weak compared to other forces. In particular, it leads to a remarkable picture of what matter is. A matter field, such as leptons and quarks, simply arises as a stable localized geometry, which is a topological object in the defining algebra (noncommutative *-algebra) of quantum gravity.

  5. Classical boundary-value problem in Riemannian quantum gravity and self-dual Taub-NUT-(anti)de Sitter geometries

    International Nuclear Information System (INIS)

    Akbar, M.M.; D'Eath, P.D.

    2003-01-01

    The classical boundary-value problem of the Einstein field equations is studied with an arbitrary cosmological constant, in the case of a compact (S 3 ) boundary given a biaxial Bianchi-IX positive-definite three-metric, specified by two radii (a,b). For the simplest, four-ball, topology of the manifold with this boundary, the regular classical solutions are found within the family of Taub-NUT-(anti)de Sitter metrics with self-dual Weyl curvature. For arbitrary choice of positive radii (a,b), we find that there are three solutions for the infilling geometry of this type. We obtain exact solutions for them and for their Euclidean actions. The case of negative cosmological constant is investigated further. For reasonable squashing of the three-sphere, all three infilling solutions have real-valued actions which possess a 'cusp catastrophe' structure with a non-self-intersecting 'catastrophe manifold' implying that the dominant contribution comes from the unique real positive-definite solution on the ball. The positive-definite solution exists even for larger deformations of the three-sphere, as long as a certain inequality between a and b holds. The action of this solution is proportional to -a 3 for large a (∼b) and hence larger radii are favoured. The same boundary-value problem with more complicated interior topology containing a 'bolt' is investigated in a forthcoming paper

  6. The Emergence of a Root Metaphor in Modern Physics: Max Planck's "Quantum" Metaphor.

    Science.gov (United States)

    Johnson-Sheehan, Richard D.

    1997-01-01

    Uses metaphorical analysis to determine whether or not Max Planck invented the quantum postulate. Demonstrates how metaphorical analysis can be used to analyze the rhetoric of revolutionary texts in science. Concludes that, in his original 1900 quantum paper, Planck considered the quantum postulate to be important, but not revolutionary. (PA)

  7. Quantum

    CERN Document Server

    Al-Khalili, Jim

    2003-01-01

    In this lively look at quantum science, a physicist takes you on an entertaining and enlightening journey through the basics of subatomic physics. Along the way, he examines the paradox of quantum mechanics--beautifully mathematical in theory but confoundingly unpredictable in the real world. Marvel at the Dual Slit experiment as a tiny atom passes through two separate openings at the same time. Ponder the peculiar communication of quantum particles, which can remain in touch no matter how far apart. Join the genius jewel thief as he carries out a quantum measurement on a diamond without ever touching the object in question. Baffle yourself with the bizzareness of quantum tunneling, the equivalent of traveling partway up a hill, only to disappear then reappear traveling down the opposite side. With its clean, colorful layout and conversational tone, this text will hook you into the conundrum that is quantum mechanics.

  8. Symplectic geometry and Fourier analysis

    CERN Document Server

    Wallach, Nolan R

    2018-01-01

    Suitable for graduate students in mathematics, this monograph covers differential and symplectic geometry, homogeneous symplectic manifolds, Fourier analysis, metaplectic representation, quantization, Kirillov theory. Includes Appendix on Quantum Mechanics by Robert Hermann. 1977 edition.

  9. PREFACE: DICE 2008 - From Quantum Mechanics through Complexity to Spacetime: the role of emergent dynamical structures

    Science.gov (United States)

    Diósi, Lajos; Elze, Hans-Thomas; Fronzoni, Leone; Halliwell, Jonathan; Vitiello, Giuseppe

    2009-07-01

    These proceedings present the Invited Lectures and Contributed Papers of the Fourth International Workshop on Decoherence, Information, Complexity and Entropy - DICE 2008, held at Castello Pasquini, Castiglioncello (Tuscany), 22-26 September 2008. We deliver these proceedings as a means to document to the interested public, to the wider scientific community, and to the participants themselves the stimulating exchange of ideas at this conference. The steadily growing number of participants, among them acclaimed scientists in their respective fields, show its increasing attraction and a fruitful concept, based on bringing leading researchers together and in contact with a mix of advanced students and scholars. Thus, this series of meetings successfully continued from the beginning with DICE 2002, (Decoherence and Entropy in Complex Systems ed H-T Elze Lecture Notes in Physics 633 (Berlin: Springer, 2004)) followed by DICE 2004 (Proceedings of the Second International Workshop on Decoherence, Information, Complexity and Entropy - DICE 2004 ed H-T Elze Braz. Journ. Phys. 35, 2A & 2B (2005) pp 205-529 free access at: www.sbfisica.org.br/bjp) and by DICE 2006, (Proceedings of the Third International Workshop on Decoherence, Information, Complexity and Entropy - DICE 2006 eds H-T Elze, L Diósi and G Vitiello Journal of Physics: Conference Series 67 (2007); free access at: http://www.iop.org/EJ/toc/1742-6596/67/1) uniting about one hundred participants from more than twenty different countries worldwide this time. It has been a great honour and inspiration for all of us to have Professor Sir Roger Penrose from the Mathematical Institute at the University of Oxford with us, who presented the lecture ``Black holes, quantum theory and cosmology'' (included in this volume). Discussions under the wider theme ``From Quantum Mechanics through Complexity to Spacetime: the role of emergent dynamical structures'' took place in the very pleasant and inspiring atmosphere of Castello

  10. Quantum optics with ultracold quantum gases: towards the full quantum regime of the light-matter interaction

    International Nuclear Information System (INIS)

    Mekhov, Igor B; Ritsch, Helmut

    2012-01-01

    Although the study of ultracold quantum gases trapped by light is a prominent direction of modern research, the quantum properties of light were widely neglected in this field. Quantum optics with quantum gases closes this gap and addresses phenomena where the quantum statistical natures of both light and ultracold matter play equally important roles. First, light can serve as a quantum nondemolition probe of the quantum dynamics of various ultracold particles from ultracold atomic and molecular gases to nanoparticles and nanomechanical systems. Second, due to the dynamic light-matter entanglement, projective measurement-based preparation of the many-body states is possible, where the class of emerging atomic states can be designed via optical geometry. Light scattering constitutes such a quantum measurement with controllable measurement back-action. As in cavity-based spin squeezing, the atom number squeezed and Schrödinger cat states can be prepared. Third, trapping atoms inside an optical cavity, one creates optical potentials and forces, which are not prescribed but quantized and dynamical variables themselves. Ultimately, cavity quantum electrodynamics with quantum gases requires a self-consistent solution for light and particles, which enriches the picture of quantum many-body states of atoms trapped in quantum potentials. This will allow quantum simulations of phenomena related to the physics of phonons, polarons, polaritons and other quantum quasiparticles. (topical review)

  11. Flow equation, conformal symmetry, and anti-de Sitter geometry

    Science.gov (United States)

    Aoki, Sinya; Yokoyama, Shuichi

    2018-03-01

    We argue that the anti-de Sitter (AdS) geometry in d+1 dimensions naturally emerges from an arbitrary conformal field theory in d dimensions using the free flow equation. We first show that an induced metric defined from the flowed field generally corresponds to the quantum information metric, called the Bures or Helstrom metric, if the flowed field is normalized appropriately. We next verify that the induced metric computed explicitly with the free flow equation always becomes the AdS metric when the theory is conformal. We finally prove that the conformal symmetry in d dimensions converts to the AdS isometry in d+1 dimensions after d-dimensional quantum averaging. This guarantees the emergence of AdS geometry without explicit calculation.

  12. Covariant entropy bound and loop quantum cosmology

    International Nuclear Information System (INIS)

    Ashtekar, Abhay; Wilson-Ewing, Edward

    2008-01-01

    We examine Bousso's covariant entropy bound conjecture in the context of radiation filled, spatially flat, Friedmann-Robertson-Walker models. The bound is violated near the big bang. However, the hope has been that quantum gravity effects would intervene and protect it. Loop quantum cosmology provides a near ideal setting for investigating this issue. For, on the one hand, quantum geometry effects resolve the singularity and, on the other hand, the wave function is sharply peaked at a quantum corrected but smooth geometry, which can supply the structure needed to test the bound. We find that the bound is respected. We suggest that the bound need not be an essential ingredient for a quantum gravity theory but may emerge from it under suitable circumstances.

  13. Methods of information geometry

    CERN Document Server

    Amari, Shun-Ichi

    2000-01-01

    Information geometry provides the mathematical sciences with a new framework of analysis. It has emerged from the investigation of the natural differential geometric structure on manifolds of probability distributions, which consists of a Riemannian metric defined by the Fisher information and a one-parameter family of affine connections called the \\alpha-connections. The duality between the \\alpha-connection and the (-\\alpha)-connection together with the metric play an essential role in this geometry. This kind of duality, having emerged from manifolds of probability distributions, is ubiquitous, appearing in a variety of problems which might have no explicit relation to probability theory. Through the duality, it is possible to analyze various fundamental problems in a unified perspective. The first half of this book is devoted to a comprehensive introduction to the mathematical foundation of information geometry, including preliminaries from differential geometry, the geometry of manifolds or probability d...

  14. Hyperbolic geometry

    CERN Document Server

    Iversen, Birger

    1992-01-01

    Although it arose from purely theoretical considerations of the underlying axioms of geometry, the work of Einstein and Dirac has demonstrated that hyperbolic geometry is a fundamental aspect of modern physics

  15. Twistor geometry

    NARCIS (Netherlands)

    van den Broek, P.M.

    1984-01-01

    The aim of this paper is to give a detailed exposition of the relation between the geometry of twistor space and the geometry of Minkowski space. The paper has a didactical purpose; no use has been made of differential geometry and cohomology.

  16. Generalizing optical geometry

    International Nuclear Information System (INIS)

    Jonsson, Rickard; Westman, Hans

    2006-01-01

    We show that by employing the standard projected curvature as a measure of spatial curvature, we can make a certain generalization of optical geometry (Abramowicz M A and Lasota J-P 1997 Class. Quantum Grav. A 14 23-30). This generalization applies to any spacetime that admits a hypersurface orthogonal shearfree congruence of worldlines. This is a somewhat larger class of spacetimes than the conformally static spacetimes assumed in standard optical geometry. In the generalized optical geometry, which in the generic case is time dependent, photons move with unit speed along spatial geodesics and the sideways force experienced by a particle following a spatially straight line is independent of the velocity. Also gyroscopes moving along spatial geodesics do not precess (relative to the forward direction). Gyroscopes that follow a curved spatial trajectory precess according to a very simple law of three-rotation. We also present an inertial force formalism in coordinate representation for this generalization. Furthermore, we show that by employing a new sense of spatial curvature (Jonsson R 2006 Class. Quantum Grav. 23 1)) closely connected to Fermat's principle, we can make a more extensive generalization of optical geometry that applies to arbitrary spacetimes. In general this optical geometry will be time dependent, but still geodesic photons move with unit speed and follow lines that are spatially straight in the new sense. Also, the sideways experienced (comoving) force on a test particle following a line that is straight in the new sense will be independent of the velocity

  17. From correspondence to complementarity: The emergence of Bohr's Copenhagen interpretation of quantum mechanics

    Science.gov (United States)

    Tanona, Scott Daniel

    I develop a new analysis of Niels Bohr's Copenhagen interpretation of quantum mechanics by examining the development of his views from his earlier use of the correspondence principle in the so-called 'old quantum theory' to his articulation of the idea of complementarity in the context of the novel mathematical formalism of quantum mechanics. I argue that Bohr was motivated not by controversial and perhaps dispensable epistemological ideas---positivism or neo-Kantianism, for example---but by his own unique perspective on the difficulties of creating a new working physics of the internal structure of the atom. Bohr's use of the correspondence principle in the old quantum theory was associated with an empirical methodology that used this principle as an epistemological bridge to connect empirical phenomena with quantum models. The application of the correspondence principle required that one determine the validity of the idealizations and approximations necessary for the judicious use of classical physics within quantum theory. Bohr's interpretation of the new quantum mechanics then focused on the largely unexamined ways in which the developing abstract mathematical formalism is given empirical content by precisely this process of approximation. Significant consistency between his later interpretive framework and his forms of argument with the correspondence principle indicate that complementarity is best understood as a relationship among the various approximations and idealizations that must be made when one connects otherwise meaningless quantum mechanical symbols to empirical situations or 'experimental arrangements' described using concepts from classical physics. We discover that this relationship is unavoidable not through any sort of a priori analysis of the priority of classical concepts, but because quantum mechanics incorporates the correspondence approach in the way in which it represents quantum properties with matrices of transition probabilities, the

  18. Quantum torsors

    OpenAIRE

    Grunspan, C.

    2003-01-01

    This text gives some results about quantum torsors. Our starting point is an old reformulation of torsors recalled recently by Kontsevich. We propose an unification of the definitions of torsors in algebraic geometry and in Poisson geometry. Any quantum torsor is equipped with two comodule-algebra structures over Hopf algebras and these structures commute with each other. In the finite dimensional case, these two Hopf algebras share the same finite dimension. We show that any Galois extension...

  19. Molecular geometry

    CERN Document Server

    Rodger, Alison

    1995-01-01

    Molecular Geometry discusses topics relevant to the arrangement of atoms. The book is comprised of seven chapters that tackle several areas of molecular geometry. Chapter 1 reviews the definition and determination of molecular geometry, while Chapter 2 discusses the unified view of stereochemistry and stereochemical changes. Chapter 3 covers the geometry of molecules of second row atoms, and Chapter 4 deals with the main group elements beyond the second row. The book also talks about the complexes of transition metals and f-block elements, and then covers the organometallic compounds and trans

  20. Optical geometry

    International Nuclear Information System (INIS)

    Robinson, I.; Trautman, A.

    1988-01-01

    The geometry of classical physics is Lorentzian; but weaker geometries are often more appropriate: null geodesics and electromagnetic fields, for example, are well known to be objects of conformal geometry. To deal with a single null congruence, or with the radiative electromagnetic fields associated with it, even less is needed: flag geometry for the first, optical geometry, with which this paper is chiefly concerned, for the second. The authors establish a natural one-to-one correspondence between optical geometries, considered locally, and three-dimensional Cauchy-Riemann structures. A number of Lorentzian geometries are shown to be equivalent from the optical point of view. For example the Goedel universe, the Taub-NUT metric and Hauser's twisting null solution have an optical geometry isomorphic to the one underlying the Robinson congruence in Minkowski space. The authors present general results on the problem of lifting a CR structure to a Lorentz manifold and, in particular, to Minkowski space; and exhibit the relevance of the deviation form to this problem

  1. Quantum symmetry in quantum theory

    International Nuclear Information System (INIS)

    Schomerus, V.

    1993-02-01

    Symmetry concepts have always been of great importance for physical problems like explicit calculations, classification or model building. More recently, new 'quantum symmetries' ((quasi) quantum groups) attracted much interest in quantum theory. It is shown that all these quantum symmetries permit a conventional formulation as symmetry in quantum mechanics. Symmetry transformations can act on the Hilbert space H of physical states such that the ground state is invariant and field operators transform covariantly. Models show that one must allow for 'truncation' in the tensor product of representations of a quantum symmetry. This means that the dimension of the tensor product of two representations of dimension σ 1 and σ 2 may be strictly smaller than σ 1 σ 2 . Consistency of the transformation law of field operators local braid relations leads us to expect, that (weak) quasi quantum groups are the most general symmetries in local quantum theory. The elements of the R-matrix which appears in these local braid relations turn out to be operators on H in general. It will be explained in detail how examples of field algebras with weak quasi quantum group symmetry can be obtained. Given a set of observable field with a finite number of superselection sectors, a quantum symmetry together with a complete set of covariant field operators which obey local braid relations are constructed. A covariant transformation law for adjoint fields is not automatic but will follow when the existence of an appropriate antipode is assumed. At the example of the chiral critical Ising model, non-uniqueness of the quantum symmetry will be demonstrated. Generalized quantum symmetries yield examples of gauge symmetries in non-commutative geometry. Quasi-quantum planes are introduced as the simplest examples of quasi-associative differential geometry. (Weak) quasi quantum groups can act on them by generalized derivations much as quantum groups do in non-commutative (differential-) geometry

  2. Quantum optics with quantum dots in photonic nanowires

    DEFF Research Database (Denmark)

    We will review recent studies performed on InAs quantum dots embedded in GaAs photonic wires, which highlight the strong interest of the photonic wire geometry for quantum optics experiments and quantum optoelectronic devices.......We will review recent studies performed on InAs quantum dots embedded in GaAs photonic wires, which highlight the strong interest of the photonic wire geometry for quantum optics experiments and quantum optoelectronic devices....

  3. Architectural geometry

    KAUST Repository

    Pottmann, Helmut; Eigensatz, Michael; Vaxman, Amir; Wallner, Johannes

    2014-01-01

    Around 2005 it became apparent in the geometry processing community that freeform architecture contains many problems of a geometric nature to be solved, and many opportunities for optimization which however require geometric understanding. This area of research, which has been called architectural geometry, meanwhile contains a great wealth of individual contributions which are relevant in various fields. For mathematicians, the relation to discrete differential geometry is significant, in particular the integrable system viewpoint. Besides, new application contexts have become available for quite some old-established concepts. Regarding graphics and geometry processing, architectural geometry yields interesting new questions but also new objects, e.g. replacing meshes by other combinatorial arrangements. Numerical optimization plays a major role but in itself would be powerless without geometric understanding. Summing up, architectural geometry has become a rewarding field of study. We here survey the main directions which have been pursued, we show real projects where geometric considerations have played a role, and we outline open problems which we think are significant for the future development of both theory and practice of architectural geometry.

  4. Architectural geometry

    KAUST Repository

    Pottmann, Helmut

    2014-11-26

    Around 2005 it became apparent in the geometry processing community that freeform architecture contains many problems of a geometric nature to be solved, and many opportunities for optimization which however require geometric understanding. This area of research, which has been called architectural geometry, meanwhile contains a great wealth of individual contributions which are relevant in various fields. For mathematicians, the relation to discrete differential geometry is significant, in particular the integrable system viewpoint. Besides, new application contexts have become available for quite some old-established concepts. Regarding graphics and geometry processing, architectural geometry yields interesting new questions but also new objects, e.g. replacing meshes by other combinatorial arrangements. Numerical optimization plays a major role but in itself would be powerless without geometric understanding. Summing up, architectural geometry has become a rewarding field of study. We here survey the main directions which have been pursued, we show real projects where geometric considerations have played a role, and we outline open problems which we think are significant for the future development of both theory and practice of architectural geometry.

  5. Beautiful geometry

    CERN Document Server

    Maor, Eli

    2014-01-01

    If you've ever thought that mathematics and art don't mix, this stunning visual history of geometry will change your mind. As much a work of art as a book about mathematics, Beautiful Geometry presents more than sixty exquisite color plates illustrating a wide range of geometric patterns and theorems, accompanied by brief accounts of the fascinating history and people behind each. With artwork by Swiss artist Eugen Jost and text by acclaimed math historian Eli Maor, this unique celebration of geometry covers numerous subjects, from straightedge-and-compass constructions to intriguing configur

  6. Donor-impurity related photoionization cross section in GaAs/Ga{sub 1−x}Al{sub x}As concentric double quantum rings: Effects of geometry and hydrostatic pressure

    Energy Technology Data Exchange (ETDEWEB)

    Baghramyan, H.M. [Department of Solid State Physics, Yerevan State University, Alex Manoogian 1, 0025 Yerevan (Armenia); Barseghyan, M.G., E-mail: mbarsegh@ysu.am [Department of Solid State Physics, Yerevan State University, Alex Manoogian 1, 0025 Yerevan (Armenia); Kirakosyan, A.A. [Department of Solid State Physics, Yerevan State University, Alex Manoogian 1, 0025 Yerevan (Armenia); Laroze, D. [Instituto de Alta Investigación, Universidad de Tarapacá, Casilla 7D, Arica (Chile); Duque, C.A. [Grupo de Materia Condensada-UdeA, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín (Colombia)

    2014-09-15

    The donor-impurity related photoionization cross section in GaAs/Ga{sub 1−x}Al{sub x}As three-dimensional concentric double quantum rings is investigated. The photoionization cross section dependence on the incident photon energy is studied considering the effects of hydrostatic pressure, variations of aluminum concentration, geometries of the structure, and impurity position. The interpretation of the dipole matrix element, which reflects the photoionization probability, is also given. We have found that these parameters can lead to both redshift and blueshift of the photoionization spectrum and also influence the cross section peak value.

  7. Analytische Geometrie

    Science.gov (United States)

    Kemnitz, Arnfried

    Der Grundgedanke der Analytischen Geometrie besteht darin, dass geometrische Untersuchungen mit rechnerischen Mitteln geführt werden. Geometrische Objekte werden dabei durch Gleichungen beschrieben und mit algebraischen Methoden untersucht.

  8. Algebraic geometry

    CERN Document Server

    Lefschetz, Solomon

    2005-01-01

    An introduction to algebraic geometry and a bridge between its analytical-topological and algebraical aspects, this text for advanced undergraduate students is particularly relevant to those more familiar with analysis than algebra. 1953 edition.

  9. Information geometry

    CERN Document Server

    Ay, Nihat; Lê, Hông Vân; Schwachhöfer, Lorenz

    2017-01-01

    The book provides a comprehensive introduction and a novel mathematical foundation of the field of information geometry with complete proofs and detailed background material on measure theory, Riemannian geometry and Banach space theory. Parametrised measure models are defined as fundamental geometric objects, which can be both finite or infinite dimensional. Based on these models, canonical tensor fields are introduced and further studied, including the Fisher metric and the Amari-Chentsov tensor, and embeddings of statistical manifolds are investigated. This novel foundation then leads to application highlights, such as generalizations and extensions of the classical uniqueness result of Chentsov or the Cramér-Rao inequality. Additionally, several new application fields of information geometry are highlighted, for instance hierarchical and graphical models, complexity theory, population genetics, or Markov Chain Monte Carlo. The book will be of interest to mathematicians who are interested in geometry, inf...

  10. Environment as a witness: Selective proliferation of information and emergence of objectivity in a quantum universe

    International Nuclear Information System (INIS)

    Ollivier, Harold; Poulin, David; Zurek, Wojciech H.

    2005-01-01

    We study the role of the information deposited in the environment of an open quantum system in the course of the decoherence process. Redundant spreading of information--the fact that some observables of the system can be independently read off from many distinct fragments of the environment--is investigated as the key to effective objectivity, the essential ingredient of classical reality. This focus on the environment as a communication channel through which observers learn about physical systems underscores the importance of quantum Darwinism--selective proliferation of information about 'the fittest states' chosen by the dynamics of decoherence at the expense of their superpositions--as redundancy imposes the existence of preferred observables. We demonstrate that the only observables that can leave multiple imprints in the environment are the familiar pointer observables singled out by environment-induced superselection (einselection) for their predictability. Many independent observers monitoring the environment will therefore agree on properties of the system as they can only learn about preferred observables. In this operational sense, the selective spreading of information leads to appearance of an objective classical reality from within the quantum substrate

  11. Emergence of localized states in narrow GaAs/AlGaAs nanowire quantum well tubes.

    Science.gov (United States)

    Shi, Teng; Jackson, Howard E; Smith, Leigh M; Jiang, Nian; Gao, Qiang; Tan, H Hoe; Jagadish, Chennupati; Zheng, Changlin; Etheridge, Joanne

    2015-03-11

    We use low-temperature photoluminescence, photoluminescence excitation, and photoluminescence imaging spectroscopy to explore the optical and electronic properties of GaAs/AlGaAs quantum well tube (QWT) heterostructured nanowires (NWs). We find that GaAs QWTs with widths >5 nm have electronic states which are delocalized and continuous along the length of the NW. As the NW QWT width decreases from 5 to 1.5 nm, only a single electron state is bound to the well, and no optical excitations to a confined excited state are present. Simultaneously, narrow emission lines (fwhm points along the length of the NW. We find that these quantum-dot-like states broaden at higher temperatures and quench at temperatures above 80 K. The lifetimes of these localized states are observed to vary from dot to dot from 160 to 400 ps. The presence of delocalized states and then localized states as the QWTs become more confined suggests both opportunities and challenges for possible incorporation into quantum-confined device structures.

  12. Emergence of resonant mode-locking via delayed feedback in quantum dot semiconductor lasers.

    Science.gov (United States)

    Tykalewicz, B; Goulding, D; Hegarty, S P; Huyet, G; Erneux, T; Kelleher, B; Viktorov, E A

    2016-02-22

    With conventional semiconductor lasers undergoing external optical feedback, a chaotic output is typically observed even for moderate levels of the feedback strength. In this paper we examine single mode quantum dot lasers under strong optical feedback conditions and show that an entirely new dynamical regime is found consisting of spontaneous mode-locking via a resonance between the relaxation oscillation frequency and the external cavity repetition rate. Experimental observations are supported by detailed numerical simulations of rate equations appropriate for this laser type. The phenomenon constitutes an entirely new mode-locking mechanism in semiconductor lasers.

  13. Analytic geometry

    CERN Document Server

    Burdette, A C

    1971-01-01

    Analytic Geometry covers several fundamental aspects of analytic geometry needed for advanced subjects, including calculus.This book is composed of 12 chapters that review the principles, concepts, and analytic proofs of geometric theorems, families of lines, the normal equation of the line, and related matters. Other chapters highlight the application of graphing, foci, directrices, eccentricity, and conic-related topics. The remaining chapters deal with the concept polar and rectangular coordinates, surfaces and curves, and planes.This book will prove useful to undergraduate trigonometric st

  14. Geometry Revealed

    CERN Document Server

    Berger, Marcel

    2010-01-01

    Both classical geometry and modern differential geometry have been active subjects of research throughout the 20th century and lie at the heart of many recent advances in mathematics and physics. The underlying motivating concept for the present book is that it offers readers the elements of a modern geometric culture by means of a whole series of visually appealing unsolved (or recently solved) problems that require the creation of concepts and tools of varying abstraction. Starting with such natural, classical objects as lines, planes, circles, spheres, polygons, polyhedra, curves, surfaces,

  15. Vector geometry

    CERN Document Server

    Robinson, Gilbert de B

    2011-01-01

    This brief undergraduate-level text by a prominent Cambridge-educated mathematician explores the relationship between algebra and geometry. An elementary course in plane geometry is the sole requirement for Gilbert de B. Robinson's text, which is the result of several years of teaching and learning the most effective methods from discussions with students. Topics include lines and planes, determinants and linear equations, matrices, groups and linear transformations, and vectors and vector spaces. Additional subjects range from conics and quadrics to homogeneous coordinates and projective geom

  16. Noncommutative geometry

    CERN Document Server

    Connes, Alain

    1994-01-01

    This English version of the path-breaking French book on this subject gives the definitive treatment of the revolutionary approach to measure theory, geometry, and mathematical physics developed by Alain Connes. Profusely illustrated and invitingly written, this book is ideal for anyone who wants to know what noncommutative geometry is, what it can do, or how it can be used in various areas of mathematics, quantization, and elementary particles and fields.Key Features* First full treatment of the subject and its applications* Written by the pioneer of this field* Broad applications in mathemat

  17. Optical geometry across the horizon

    International Nuclear Information System (INIS)

    Jonsson, Rickard

    2006-01-01

    In a recent paper (Jonsson and Westman 2006 Class. Quantum Grav. 23 61), a generalization of optical geometry, assuming a non-shearing reference congruence, is discussed. Here we illustrate that this formalism can be applied to (a finite four-volume) of any spherically symmetric spacetime. In particular we apply the formalism, using a non-static reference congruence, to do optical geometry across the horizon of a static black hole. While the resulting geometry in principle is time dependent, we can choose the reference congruence in such a manner that an embedding of the geometry always looks the same. Relative to the embedded geometry the reference points are then moving. We discuss the motion of photons, inertial forces and gyroscope precession in this framework

  18. Spectral sum rules and magneto-roton as emergent graviton in fractional quantum Hall effect

    Energy Technology Data Exchange (ETDEWEB)

    Golkar, Siavash; Nguyen, Dung X.; Son, Dam T. [Enrico Fermi Institute, James Franck Institute and Department of Physics,University of Chicago, Chicago, Illinois 60637 (United States)

    2016-01-05

    We consider gapped fractional quantum Hall states on the lowest Landau level when the Coulomb energy is much smaller than the cyclotron energy. We introduce two spectral densities, ρ{sub T}(ω) and ρ̄{sub T}(ω), which are proportional to the probabilities of absorption of circularly polarized gravitons by the quantum Hall system. We prove three sum rules relating these spectral densities with the shift S, the q{sup 4} coefficient of the static structure factor S{sub 4}, and the high-frequency shear modulus of the ground state μ{sub ∞}, which is precisely defined. We confirm an inequality, first suggested by Haldane, that S{sub 4} is bounded from below by |S−1|/8. The Laughlin wavefunction saturates this bound, which we argue to imply that systems with ground state wavefunctions close to Laughlin’s absorb gravitons of predominantly one circular polarization. We consider a nonlinear model where the sum rules are saturated by a single magneto-roton mode. In this model, the magneto-roton arises from the mixing between oscillations of an internal metric and the hydrodynamic motion. Implications for experiments are briefly discussed.

  19. Emergence, evolution, and control of multistability in a hybrid topological quantum/classical system.

    Science.gov (United States)

    Wang, Guanglei; Xu, Hongya; Lai, Ying-Cheng

    2018-03-01

    We present a novel class of nonlinear dynamical systems-a hybrid of relativistic quantum and classical systems and demonstrate that multistability is ubiquitous. A representative setting is coupled systems of a topological insulator and an insulating ferromagnet, where the former possesses an insulating bulk with topologically protected, dissipationless, and conducting surface electronic states governed by the relativistic quantum Dirac Hamiltonian and the latter is described by the nonlinear classical evolution of its magnetization vector. The interactions between the two are essentially the spin transfer torque from the topological insulator to the ferromagnet and the local proximity induced exchange coupling in the opposite direction. The hybrid system exhibits a rich variety of nonlinear dynamical phenomena besides multistability such as bifurcations, chaos, and phase synchronization. The degree of multistability can be controlled by an external voltage. In the case of two coexisting states, the system is effectively binary, opening a door to exploitation for developing spintronic memory devices. Because of the dissipationless and spin-momentum locking nature of the surface currents of the topological insulator, little power is needed for generating a significant current, making the system appealing for potential applications in next generation of low power memory devices.

  20. Emergence, evolution, and control of multistability in a hybrid topological quantum/classical system

    Science.gov (United States)

    Wang, Guanglei; Xu, Hongya; Lai, Ying-Cheng

    2018-03-01

    We present a novel class of nonlinear dynamical systems—a hybrid of relativistic quantum and classical systems and demonstrate that multistability is ubiquitous. A representative setting is coupled systems of a topological insulator and an insulating ferromagnet, where the former possesses an insulating bulk with topologically protected, dissipationless, and conducting surface electronic states governed by the relativistic quantum Dirac Hamiltonian and the latter is described by the nonlinear classical evolution of its magnetization vector. The interactions between the two are essentially the spin transfer torque from the topological insulator to the ferromagnet and the local proximity induced exchange coupling in the opposite direction. The hybrid system exhibits a rich variety of nonlinear dynamical phenomena besides multistability such as bifurcations, chaos, and phase synchronization. The degree of multistability can be controlled by an external voltage. In the case of two coexisting states, the system is effectively binary, opening a door to exploitation for developing spintronic memory devices. Because of the dissipationless and spin-momentum locking nature of the surface currents of the topological insulator, little power is needed for generating a significant current, making the system appealing for potential applications in next generation of low power memory devices.

  1. Discrete differential geometry. Consistency as integrability

    OpenAIRE

    Bobenko, Alexander I.; Suris, Yuri B.

    2005-01-01

    A new field of discrete differential geometry is presently emerging on the border between differential and discrete geometry. Whereas classical differential geometry investigates smooth geometric shapes (such as surfaces), and discrete geometry studies geometric shapes with finite number of elements (such as polyhedra), the discrete differential geometry aims at the development of discrete equivalents of notions and methods of smooth surface theory. Current interest in this field derives not ...

  2. Functional integration over geometries

    International Nuclear Information System (INIS)

    Mottola, E.

    1995-01-01

    The geometric construction of the functional integral over coset spaces M/G is reviewed. The inner product on the cotangent space of infinitesimal deformations of M defines an invariant distance and volume form, or functional integration measure on the full configuration space. Then, by a simple change of coordinates parameterizing the gauge fiber G, the functional measure on the coset space M/G is deduced. This change of integration variables leads to a Jacobian which is entirely equivalent to the Faddeev--Popov determinant of the more traditional gauge fixed approach in non-abelian gauge theory. If the general construction is applied to the case where G is the group of coordinate reparameterizations of spacetime, the continuum functional integral over geometries, i.e. metrics modulo coordinate reparameterizations may be defined. The invariant functional integration measure is used to derive the trace anomaly and effective action for the conformal part of the metric in two and four dimensional spacetime. In two dimensions this approach generates the Polyakov--Liouville action of closed bosonic non-critical string theory. In four dimensions the corresponding effective action leads to novel conclusions on the importance of quantum effects in gravity in the far infrared, and in particular, a dramatic modification of the classical Einstein theory at cosmological distance scales, signaled first by the quantum instability of classical de Sitter spacetime. Finite volume scaling relations for the functional integral of quantum gravity in two and four dimensions are derived, and comparison with the discretized dynamical triangulation approach to the integration over geometries are discussed. Outstanding unsolved problems in both the continuum definition and the simplicial approach to the functional integral over geometries are highlighted

  3. Emergent semiclassical time in quantum gravity: II. Full geometrodynamics and minisuperspace examples

    International Nuclear Information System (INIS)

    Anderson, Edward

    2007-01-01

    I apply the preceding paper's emergent semiclassical time approach to geometrodynamics. The analogy between the two papers is useful at the level of the quadratic constraints, while I document the differences between the two due to the underlying differences in their linear constraints. I find that the emergent time-dependent wave equation for the universe in general not a time-dependent Schroedinger equation but rather a more general equation containing second time derivatives, and estimate in which regime this becomes significant. I provide a specific minisuperspace example for my emergent semiclassical time scheme and compare it with the hidden York time scheme. Overall, interesting connections are shown between Newtonian, Leibniz-Mach-Barbour, Wentzel-Kramers-Brillouin (WKB) and cosmic times, while the Euler and York hidden dilational times are argued to be somewhat different from these

  4. Projective Geometry

    Indian Academy of Sciences (India)

    mathematicians are trained to use very precise language, and so find it hard to simplify and state .... thing. If you take a plane on which there are two such triangles which enjoy the above ... within this geometry to simplify things if needed.

  5. Geometry -----------~--------------RESONANCE

    Indian Academy of Sciences (India)

    Parallel: A pair of lines in a plane is said to be parallel if they do not meet. Mathematicians were at war ... Subsequently, Poincare, Klein, Beltrami and others refined non-. Euclidean geometry. ... plane divides the plane into two half planes and.

  6. Torsional heterotic geometries

    International Nuclear Information System (INIS)

    Becker, Katrin; Sethi, Savdeep

    2009-01-01

    We construct new examples of torsional heterotic backgrounds using duality with orientifold flux compactifications. We explain how duality provides a perturbative solution to the type I/heterotic string Bianchi identity. The choice of connection used in the Bianchi identity plays an important role in the construction. We propose the existence of a much larger landscape of compact torsional geometries using string duality. Finally, we present some quantum exact metrics that correspond to NS5-branes placed on an elliptic space. These metrics describe how torus isometries are broken by NS flux.

  7. Matter in toy dynamical geometries

    NARCIS (Netherlands)

    Konopka, T.J.

    2009-01-01

    One of the objectives of theories describing quantum dynamical geometry is to compute expectation values of geometrical observables. The results of such computations can be affected by whether or not matter is taken into account. It is thus important to understand to what extent and to what effect

  8. Discrete and computational geometry

    CERN Document Server

    Devadoss, Satyan L

    2011-01-01

    Discrete geometry is a relatively new development in pure mathematics, while computational geometry is an emerging area in applications-driven computer science. Their intermingling has yielded exciting advances in recent years, yet what has been lacking until now is an undergraduate textbook that bridges the gap between the two. Discrete and Computational Geometry offers a comprehensive yet accessible introduction to this cutting-edge frontier of mathematics and computer science. This book covers traditional topics such as convex hulls, triangulations, and Voronoi diagrams, as well as more recent subjects like pseudotriangulations, curve reconstruction, and locked chains. It also touches on more advanced material, including Dehn invariants, associahedra, quasigeodesics, Morse theory, and the recent resolution of the Poincaré conjecture. Connections to real-world applications are made throughout, and algorithms are presented independently of any programming language. This richly illustrated textbook also fe...

  9. The influence of device geometry on many-body effects in quantum point contacts : Signatures of the 0.7 anomaly, exchange and kondo

    NARCIS (Netherlands)

    Koop, E. J.; Lerescu, A. I.; Liu, J.; van Wees, B. J.; Reuter, D.; Wieck, A. D.; van der Wal, C. H.

    The conductance of a quantum point contact (QPC) shows several features that result from many-body electron interactions. The spin degeneracy in zero magnetic field appears to be spontaneously lifted due to the so-called 0.7 anomaly. Further, the g-factor for electrons in the QPC is enhanced, and a

  10. Theory of the disordered ν =5/2 quantum thermal Hall state: Emergent symmetry and phase diagram

    Science.gov (United States)

    Lian, Biao; Wang, Juven

    2018-04-01

    Fractional quantum Hall (FQH) system at Landau level filling fraction ν =5 /2 has long been suggested to be non-Abelian, either Pfaffian (Pf) or antiPfaffian (APf) states by numerical studies, both with quantized Hall conductance σx y=5 e2/2 h . Thermal Hall conductances of the Pf and APf states are quantized at κx y=7 /2 and κx y=3 /2 , respectively, in a proper unit. However, a recent experiment shows the thermal Hall conductance of ν =5 /2 FQH state is κx y=5 /2 . It has been speculated that the system contains random Pf and APf domains driven by disorders, and the neutral chiral Majorana modes on the domain walls may undergo a percolation transition to a κx y=5 /2 phase. In this paper, we do perturbative and nonperturbative analyses on the domain walls between Pf and APf. We show the domain wall theory possesses an emergent SO(4) symmetry at energy scales below a threshold Λ1, which is lowered to an emergent U (1 )×U (1) symmetry at energy scales between Λ1 and a higher value Λ2, and is finally lowered to the composite fermion parity symmetry Z2F above Λ2. Based on the emergent symmetries, we propose a phase diagram of the disordered ν =5 /2 FQH system and show that a κx y=5 /2 phase arises at disorder energy scales Λ >Λ1 . Furthermore, we show the gapped double-semion sector of ND compact domain walls contributes nonlocal topological degeneracy 2ND-1, causing a low-temperature peak in the heat capacity. We implement a nonperturbative method to bootstrap generic topological 1 +1 D domain walls (two-surface defects) applicable to any 2 +1 D non-Abelian topological order. We also identify potentially relevant spin topological quantum field theories (TQFTs) for various ν =5 /2 FQH states in terms of fermionic version of U (1) ±8 Chern-Simons theory ×Z8 -class TQFTs.

  11. Riemannian geometry

    CERN Document Server

    Petersen, Peter

    2016-01-01

    Intended for a one year course, this text serves as a single source, introducing readers to the important techniques and theorems, while also containing enough background on advanced topics to appeal to those students wishing to specialize in Riemannian geometry. This is one of the few Works to combine both the geometric parts of Riemannian geometry and the analytic aspects of the theory. The book will appeal to a readership that have a basic knowledge of standard manifold theory, including tensors, forms, and Lie groups. Important revisions to the third edition include: a substantial addition of unique and enriching exercises scattered throughout the text; inclusion of an increased number of coordinate calculations of connection and curvature; addition of general formulas for curvature on Lie Groups and submersions; integration of variational calculus into the text allowing for an early treatment of the Sphere theorem using a proof by Berger; incorporation of several recent results about manifolds with posit...

  12. Special geometry

    International Nuclear Information System (INIS)

    Strominger, A.

    1990-01-01

    A special manifold is an allowed target manifold for the vector multiplets of D=4, N=2 supergravity. These manifolds are of interest for string theory because the moduli spaces of Calabi-Yau threefolds and c=9, (2,2) conformal field theories are special. Previous work has given a local, coordinate-dependent characterization of special geometry. A global description of special geometries is given herein, and their properties are studied. A special manifold M of complex dimension n is characterized by the existence of a holomorphic Sp(2n+2,R)xGL(1,C) vector bundle over M with a nowhere-vanishing holomorphic section Ω. The Kaehler potential on M is the logarithm of the Sp(2n+2,R) invariant norm of Ω. (orig.)

  13. The SUSY oscillator from local geometry: Dynamics and coherent states

    International Nuclear Information System (INIS)

    Thienel, H.P.

    1994-01-01

    The choice of a coordinate chart on an analytical R n (R a n ) provides a representation of the n-dimensional SUSY oscillator. The corresponding Hilbert space is Cartan's exterior algebra endowed with a suitable scalar product. The exterior derivative gives rise to the algebra of the n-dimensional SUSY oscillator. Its euclidean dynamics is an inherent consequence of the geometry imposed by the Lie derivative generating the dilations, i.e. evolution of the quantum system corresponds to parametrization of a sequence of charts by euclidean time. Coherent states emerge as a natural structure related to the Lie derivative generating the translations. (orig.)

  14. Surmounting the Cartesian Cut Through Philosophy, Physics, Logic, Cybernetics, and Geometry: Self-reference, Torsion, the Klein Bottle, the Time Operator, Multivalued Logics and Quantum Mechanics

    Science.gov (United States)

    Rapoport, Diego L.

    2011-01-01

    In this transdisciplinary article which stems from philosophical considerations (that depart from phenomenology—after Merleau-Ponty, Heidegger and Rosen—and Hegelian dialectics), we develop a conception based on topological (the Moebius surface and the Klein bottle) and geometrical considerations (based on torsion and non-orientability of manifolds), and multivalued logics which we develop into a unified world conception that surmounts the Cartesian cut and Aristotelian logic. The role of torsion appears in a self-referential construction of space and time, which will be further related to the commutator of the True and False operators of matrix logic, still with a quantum superposed state related to a Moebius surface, and as the physical field at the basis of Spencer-Brown's primitive distinction in the protologic of the calculus of distinction. In this setting, paradox, self-reference, depth, time and space, higher-order non-dual logic, perception, spin and a time operator, the Klein bottle, hypernumbers due to Musès which include non-trivial square roots of ±1 and in particular non-trivial nilpotents, quantum field operators, the transformation of cognition to spin for two-state quantum systems, are found to be keenly interwoven in a world conception compatible with the philosophical approach taken for basis of this article. The Klein bottle is found not only to be the topological in-formation for self-reference and paradox whose logical counterpart in the calculus of indications are the paradoxical imaginary time waves, but also a classical-quantum transformer (Hadamard's gate in quantum computation) which is indispensable to be able to obtain a complete multivalued logical system, and still to generate the matrix extension of classical connective Boolean logic. We further find that the multivalued logic that stems from considering the paradoxical equation in the calculus of distinctions, and in particular, the imaginary solutions to this equation

  15. Poisson geometry from a Dirac perspective

    Science.gov (United States)

    Meinrenken, Eckhard

    2018-03-01

    We present proofs of classical results in Poisson geometry using techniques from Dirac geometry. This article is based on mini-courses at the Poisson summer school in Geneva, June 2016, and at the workshop Quantum Groups and Gravity at the University of Waterloo, April 2016.

  16. General Geometry and Geometry of Electromagnetism

    OpenAIRE

    Shahverdiyev, Shervgi S.

    2002-01-01

    It is shown that Electromagnetism creates geometry different from Riemannian geometry. General geometry including Riemannian geometry as a special case is constructed. It is proven that the most simplest special case of General Geometry is geometry underlying Electromagnetism. Action for electromagnetic field and Maxwell equations are derived from curvature function of geometry underlying Electromagnetism. And it is shown that equation of motion for a particle interacting with electromagnetic...

  17. Design and geometry of hybrid white light-emitted diodes for efficient energy transfer from the quantum well to the nanocrystals

    DEFF Research Database (Denmark)

    Kopylov, Oleksii; Huck, Alexander; Shirazi, Roza

    2013-01-01

    We demonstrate light color conversion in patterned InGaN light-emitting diodes (LEDs), which is enhanced via nonradiative exciton resonant energy transfer (RET) from the electrically driven diode to colloidal semiconductor nanocrystals (NCs). Patterning of the diode is essential for the coupling...... between a quantum well (QW) and NCs, because the distance between the QW and NCs is a main and very critical factor of RET. Moreover, a proper design of the pattern can enhance light extraction....

  18. Differential geometry

    CERN Document Server

    Ciarlet, Philippe G

    2007-01-01

    This book gives the basic notions of differential geometry, such as the metric tensor, the Riemann curvature tensor, the fundamental forms of a surface, covariant derivatives, and the fundamental theorem of surface theory in a selfcontained and accessible manner. Although the field is often considered a classical one, it has recently been rejuvenated, thanks to the manifold applications where it plays an essential role. The book presents some important applications to shells, such as the theory of linearly and nonlinearly elastic shells, the implementation of numerical methods for shells, and

  19. Metrics of quantum states

    International Nuclear Information System (INIS)

    Ma Zhihao; Chen Jingling

    2011-01-01

    In this work we study metrics of quantum states, which are natural generalizations of the usual trace metric and Bures metric. Some useful properties of the metrics are proved, such as the joint convexity and contractivity under quantum operations. Our result has a potential application in studying the geometry of quantum states as well as the entanglement detection.

  20. New 'phase' of quantum gravity.

    Science.gov (United States)

    Wang, Charles H-T

    2006-12-15

    The emergence of loop quantum gravity over the past two decades has stimulated a great resurgence of interest in unifying general relativity and quantum mechanics. Among a number of appealing features of this approach is the intuitive picture of quantum geometry using spin networks and powerful mathematical tools from gauge field theory. However, the present form of loop quantum gravity suffers from a quantum ambiguity, owing to the presence of a free (Barbero-Immirzi) parameter. Following the recent progress on conformal decomposition of gravitational fields, we present a new phase space for general relativity. In addition to spin-gauge symmetry, the new phase space also incorporates conformal symmetry making the description parameter free. The Barbero-Immirzi ambiguity is shown to occur only if the conformal symmetry is gauge fixed prior to quantization. By withholding its full symmetries, the new phase space offers a promising platform for the future development of loop quantum gravity. This paper aims to provide an exposition, at a reduced technical level, of the above theoretical advances and their background developments. Further details are referred to cited references.

  1. Emergence of Landauer transport from quantum dynamics: A model Hamiltonian approach.

    Science.gov (United States)

    Pal, Partha Pratim; Ramakrishna, S; Seideman, Tamar

    2018-04-14

    The Landauer expression for computing current-voltage characteristics in nanoscale devices is efficient but not suited to transient phenomena and a time-dependent current because it is applicable only when the charge carriers transition into a steady flux after an external perturbation. In this article, we construct a very general expression for time-dependent current in an electrode-molecule-electrode arrangement. Utilizing a model Hamiltonian (consisting of the subsystem energy levels and their electronic coupling terms), we propagate the Schrödinger wave function equation to numerically compute the time-dependent population in the individual subsystems. The current in each electrode (defined in terms of the rate of change of the corresponding population) has two components, one due to the charges originating from the same electrode and the other due to the charges initially residing at the other electrode. We derive an analytical expression for the first component and illustrate that it agrees reasonably with its numerical counterpart at early times. Exploiting the unitary evolution of a wavefunction, we construct a more general Landauer style formula and illustrate the emergence of Landauer transport from our simulations without the assumption of time-independent charge flow. Our generalized Landauer formula is valid at all times for models beyond the wide-band limit, non-uniform electrode density of states and for time and energy-dependent electronic coupling between the subsystems. Subsequently, we investigate the ingredients in our model that regulate the onset time scale of this steady state. We compare the performance of our general current expression with the Landauer current for time-dependent electronic coupling. Finally, we comment on the applicability of the Landauer formula to compute hot-electron current arising upon plasmon decoherence.

  2. Complex Quantum Network Manifolds in Dimension d > 2 are Scale-Free

    Science.gov (United States)

    Bianconi, Ginestra; Rahmede, Christoph

    2015-09-01

    In quantum gravity, several approaches have been proposed until now for the quantum description of discrete geometries. These theoretical frameworks include loop quantum gravity, causal dynamical triangulations, causal sets, quantum graphity, and energetic spin networks. Most of these approaches describe discrete spaces as homogeneous network manifolds. Here we define Complex Quantum Network Manifolds (CQNM) describing the evolution of quantum network states, and constructed from growing simplicial complexes of dimension . We show that in d = 2 CQNM are homogeneous networks while for d > 2 they are scale-free i.e. they are characterized by large inhomogeneities of degrees like most complex networks. From the self-organized evolution of CQNM quantum statistics emerge spontaneously. Here we define the generalized degrees associated with the -faces of the -dimensional CQNMs, and we show that the statistics of these generalized degrees can either follow Fermi-Dirac, Boltzmann or Bose-Einstein distributions depending on the dimension of the -faces.

  3. The atomic world spooky? It ain't necessarily so! emergent quantum mechanics, how the classical laws of nature can conspire to cause quantum-like behaviour

    CERN Document Server

    van Holten, Theo

    2017-01-01

    The present book takes the discovery that quantum-like behaviour is not solely reserved to atomic particles one step further. If electrons are modelled as vibrating droplets instead of the usually assumed point objects, and if the classical laws of nature are applied, then exactly the same behaviour as in quantum theory is found, quantitatively correct! The world of atoms is strange and quantum mechanics, the theory of this world, is almost magic. Or is it? Tiny droplets of oil bouncing round on a fluid surface can also mimic the world of quantum mechanics. For the layman - for whom the main part of this book is written - this is good news. If the everyday laws of nature can conspire to show up quantum-like phenomena, there is hope to form mental pictures how the atomic world works. The book is almost formula-free, and explains everything by using many sketches and diagrams. The mathematical derivations underlying the main text are kept separate in a -peer reviewed - appendix. The author, a retired professor ...

  4. Geometrical aspects of quantum spaces

    International Nuclear Information System (INIS)

    Ho, P.M.

    1996-01-01

    Various geometrical aspects of quantum spaces are presented showing the possibility of building physics on quantum spaces. In the first chapter the authors give the motivations for studying noncommutative geometry and also review the definition of a Hopf algebra and some general features of the differential geometry on quantum groups and quantum planes. In Chapter 2 and Chapter 3 the noncommutative version of differential calculus, integration and complex structure are established for the quantum sphere S 1 2 and the quantum complex projective space CP q (N), on which there are quantum group symmetries that are represented nonlinearly, and are respected by all the aforementioned structures. The braiding of S q 2 and CP q (N) is also described. In Chapter 4 the quantum projective geometry over the quantum projective space CP q (N) is developed. Collinearity conditions, coplanarity conditions, intersections and anharmonic ratios is described. In Chapter 5 an algebraic formulation of Reimannian geometry on quantum spaces is presented where Riemannian metric, distance, Laplacian, connection, and curvature have their quantum counterparts. This attempt is also extended to complex manifolds. Examples include the quantum sphere, the complex quantum projective space and the two-sheeted space. The quantum group of general coordinate transformations on some quantum spaces is also given

  5. Unification of Quantum and Gravity by Non Classical Information Entropy Space

    Directory of Open Access Journals (Sweden)

    Davide Fiscaletti

    2013-09-01

    Full Text Available A quantum entropy space is suggested as the fundamental arena describing the quantum effects. In the quantum regime the entropy is expressed as the superposition of many different Boltzmann entropies that span the space of the entropies before any measure. When a measure is performed the quantum entropy collapses to one component. A suggestive reading of the relational interpretation of quantum mechanics and of Bohm’s quantum potential in terms of the quantum entropy are provided. The space associated with the quantum entropy determines a distortion in the classical space of position, which appears as a Weyl-like gauge potential connected with Fisher information. This Weyl-like gauge potential produces a deformation of the moments which changes the classical action in such a way that Bohm’s quantum potential emerges as consequence of the non classical definition of entropy, in a non-Euclidean information space under the constraint of a minimum condition of Fisher information (Fisher Bohm- entropy. Finally, the possible quantum relativistic extensions of the theory and the connections with the problem of quantum gravity are investigated. The non classical thermodynamic approach to quantum phenomena changes the geometry of the particle phase space. In the light of the representation of gravity in ordinary phase space by torsion in the flat space (Teleparallel gravity, the change of geometry in the phase space introduces quantum phenomena in a natural way. This gives a new force to F. Shojai’s and A. Shojai’s theory where the geometry of space-time is highly coupled with a quantum potential whose origin is not the Schrödinger equation but the non classical entropy of a system of many particles that together change the geometry of the phase space of the positions (entanglement. In this way the non classical thermodynamic changes the classical geodetic as a consequence of the quantum phenomena and quantum and gravity are unified. Quantum

  6. 2 + 1 dimensional de Sitter universe emerging from the gauge structure of a nonlinear quantum system.

    Science.gov (United States)

    Kam, Chon-Fai; Liu, Ren-Bao

    2017-08-29

    Berry phases and gauge structures are fundamental quantum phenomena. In linear quantum mechanics the gauge field in parameter space presents monopole singularities where the energy levels become degenerate. In nonlinear quantum mechanics, which is an effective theory of interacting quantum systems, there can be phase transitions and hence critical surfaces in the parameter space. We find that these critical surfaces result in a new type of gauge field singularity, namely, a conic singularity that resembles the big bang of a 2 + 1 dimensional de Sitter universe, with the fundamental frequency of Bogoliubov excitations acting as the cosmic scale, and mode softening at the critical surface, where the fundamental frequency vanishes, causing a causal singularity. Such conic singularity may be observed in various systems such as Bose-Einstein condensates and molecular magnets. This finding offers a new approach to quantum simulation of fundamental physics.

  7. Quantum Physics Without Quantum Philosophy

    CERN Document Server

    Dürr, Detlef; Zanghì, Nino

    2013-01-01

    It has often been claimed that without drastic conceptual innovations a genuine explanation of quantum interference effects and quantum randomness is impossible. This book concerns Bohmian mechanics, a simple particle theory that is a counterexample to such claims. The gentle introduction and other contributions collected here show how the phenomena of non-relativistic quantum mechanics, from Heisenberg's uncertainty principle to non-commuting observables, emerge from the Bohmian motion of particles, the natural particle motion associated with Schrödinger's equation. This book will be of value to all students and researchers in physics with an interest in the meaning of quantum theory as well as to philosophers of science.

  8. Integrable systems, geometry, and topology

    CERN Document Server

    Terng, Chuu-Lian

    2006-01-01

    The articles in this volume are based on lectures from a program on integrable systems and differential geometry held at Taiwan's National Center for Theoretical Sciences. As is well-known, for many soliton equations, the solutions have interpretations as differential geometric objects, and thereby techniques of soliton equations have been successfully applied to the study of geometric problems. The article by Burstall gives a beautiful exposition on isothermic surfaces and their relations to integrable systems, and the two articles by Guest give an introduction to quantum cohomology, carry out explicit computations of the quantum cohomology of flag manifolds and Hirzebruch surfaces, and give a survey of Givental's quantum differential equations. The article by Heintze, Liu, and Olmos is on the theory of isoparametric submanifolds in an arbitrary Riemannian manifold, which is related to the n-wave equation when the ambient manifold is Euclidean. Mukai-Hidano and Ohnita present a survey on the moduli space of ...

  9. Symplectic and Poisson Geometry in Interaction with Analysis, Algebra and Topology & Symplectic Geometry, Noncommutative Geometry and Physics

    CERN Document Server

    Eliashberg, Yakov; Maeda, Yoshiaki; Symplectic, Poisson, and Noncommutative geometry

    2014-01-01

    Symplectic geometry originated in physics, but it has flourished as an independent subject in mathematics, together with its offspring, symplectic topology. Symplectic methods have even been applied back to mathematical physics. Noncommutative geometry has developed an alternative mathematical quantization scheme based on a geometric approach to operator algebras. Deformation quantization, a blend of symplectic methods and noncommutative geometry, approaches quantum mechanics from a more algebraic viewpoint, as it addresses quantization as a deformation of Poisson structures. This volume contains seven chapters based on lectures given by invited speakers at two May 2010 workshops held at the Mathematical Sciences Research Institute: Symplectic and Poisson Geometry in Interaction with Analysis, Algebra and Topology (honoring Alan Weinstein, one of the key figures in the field) and Symplectic Geometry, Noncommutative Geometry and Physics. The chapters include presentations of previously unpublished results and ...

  10. Emergence of Quantum Phase-Slip Behaviour in Superconducting NbN Nanowires: DC Electrical Transport and Fabrication Technologies

    Directory of Open Access Journals (Sweden)

    Nicolas G. N. Constantino

    2018-06-01

    Full Text Available Superconducting nanowires undergoing quantum phase-slips have potential for impact in electronic devices, with a high-accuracy quantum current standard among a possible toolbox of novel components. A key element of developing such technologies is to understand the requirements for, and control the production of, superconducting nanowires that undergo coherent quantum phase-slips. We present three fabrication technologies, based on using electron-beam lithography or neon focussed ion-beam lithography, for defining narrow superconducting nanowires, and have used these to create nanowires in niobium nitride with widths in the range of 20–250 nm. We present characterisation of the nanowires using DC electrical transport at temperatures down to 300 mK. We demonstrate that a range of different behaviours may be obtained in different nanowires, including bulk-like superconducting properties with critical-current features, the observation of phase-slip centres and the observation of zero conductance below a critical voltage, characteristic of coherent quantum phase-slips. We observe critical voltages up to 5 mV, an order of magnitude larger than other reports to date. The different prominence of quantum phase-slip effects in the various nanowires may be understood as arising from the differing importance of quantum fluctuations. Control of the nanowire properties will pave the way for routine fabrication of coherent quantum phase-slip nanowire devices for technology applications.

  11. Duality constructions from quantum state manifolds

    Science.gov (United States)

    Kriel, J. N.; van Zyl, H. J. R.; Scholtz, F. G.

    2015-11-01

    The formalism of quantum state space geometry on manifolds of generalised coherent states is proposed as a natural setting for the construction of geometric dual descriptions of non-relativistic quantum systems. These state manifolds are equipped with natural Riemannian and symplectic structures derived from the Hilbert space inner product. This approach allows for the systematic construction of geometries which reflect the dynamical symmetries of the quantum system under consideration. We analyse here in detail the two dimensional case and demonstrate how existing results in the AdS 2 /CF T 1 context can be understood within this framework. We show how the radial/bulk coordinate emerges as an energy scale associated with a regularisation procedure and find that, under quite general conditions, these state manifolds are asymptotically anti-de Sitter solutions of a class of classical dilaton gravity models. For the model of conformal quantum mechanics proposed by de Alfaro et al. [1] the corresponding state manifold is seen to be exactly AdS 2 with a scalar curvature determined by the representation of the symmetry algebra. It is also shown that the dilaton field itself is given by the quantum mechanical expectation values of the dynamical symmetry generators and as a result exhibits dynamics equivalent to that of a conformal mechanical system.

  12. Quantum symmetry, the cosmological constant and Planck-scale phenomenology

    International Nuclear Information System (INIS)

    Amelino-Camelia, Giovanni; Smolin, Lee; Starodubtsev, Artem

    2004-01-01

    We present a simple algebraic mechanism for the emergence of deformations of Poincare symmetries in the low-energy limit of quantum theories of gravity. The deformations, called κ-Poincare algebras, are parametrized by a dimensional parameter proportional to the Planck mass, and imply modified energy-momentum relations of a type that may be observable in near future experiments. Our analysis assumes that the low energy limit of a quantum theory of gravity must also involve a limit in which the cosmological constant is taken very small with respect to the Planck scale, and makes use of the fact that in some quantum theories of gravity the cosmological constant results in the (anti)de Sitter symmetry algebra being quantum deformed. We show that deformed Poincare symmetries inevitably emerge in the small-cosmological-constant limit of quantum gravity in 2 + 1 dimensions, where geometry does not have local degrees of freedom. In 3 + 1 dimensions we observe that, besides the quantum deformation of the (anti)de Sitter symmetry algebra, one must also take into account that there are local degrees of freedom leading to a renormalization of the generators for energy and momentum of the excitations. At the present level of development of quantum gravity in 3 + 1 dimensions, it is not yet possible to derive this renormalization from first principles, but we establish the conditions needed for the emergence of a deformed low energy limit symmetry algebra also in the case of 3 + 1 dimensions

  13. Canonical differential geometry of string backgrounds

    International Nuclear Information System (INIS)

    Schuller, Frederic P.; Wohlfarth, Mattias N.R.

    2006-01-01

    String backgrounds and D-branes do not possess the structure of Lorentzian manifolds, but that of manifolds with area metric. Area metric geometry is a true generalization of metric geometry, which in particular may accommodate a B-field. While an area metric does not determine a connection, we identify the appropriate differential geometric structure which is of relevance for the minimal surface equation in such a generalized geometry. In particular the notion of a derivative action of areas on areas emerges naturally. Area metric geometry provides new tools in differential geometry, which promise to play a role in the description of gravitational dynamics on D-branes

  14. Quantum transformations

    International Nuclear Information System (INIS)

    Faraggi, A.E.; Matone, M.

    1998-01-01

    We show that the quantum Hamilton-Jacobi equation can be written in the classical form with the spatial derivative ∂ q replaced by ∂ q with dq = dq/√1-β 2 (q), where β 2 (q) is strictly related to the quantum potential. This can be seen as the opposite of the problem of finding the wave function representation of classical mechanics as formulated by Schiller and Rosen. The structure of the above open-quotes quantum transformationclose quotes, related to the recently formulated equivalence principle, indicates that the potential deforms space geometry. In particular, a result by Flanders implies that both W(q) = V(q) - E and the quantum potential Q are proportional to the curvatures κ W and κ Q which arise as natural invariants in an equivalence problem for curves in the projective line. In this formulation the Schroedinger equation takes the geometrical form (∂ q 2 + κ W )ψ = 0

  15. Complex Structure of the Four-Dimensional Kerr Geometry: Stringy System, Kerr Theorem, and Calabi-Yau Twofold

    Directory of Open Access Journals (Sweden)

    Alexander Burinskii

    2013-01-01

    Full Text Available The 4D Kerr geometry displays many wonderful relations with quantum world and, in particular, with superstring theory. The lightlike structure of fields near the Kerr singular ring is similar to the structure of Sen solution for a closed heterotic string. Another string, open and complex, appears in the complex representation of the Kerr geometry initiated by Newman. Combination of these strings forms a membrane source of the Kerr geometry which is parallel to the structure of M-theory. In this paper we give one more evidence of this relationship, emergence of the Calabi-Yau twofold (K3 surface in twistorial structure of the Kerr geometry as a consequence of the Kerr theorem. Finally, we indicate that the Kerr stringy system may correspond to a complex embedding of the critical N = 2 superstring.

  16. Advances in discrete differential geometry

    CERN Document Server

    2016-01-01

    This is one of the first books on a newly emerging field of discrete differential geometry and an excellent way to access this exciting area. It surveys the fascinating connections between discrete models in differential geometry and complex analysis, integrable systems and applications in computer graphics. The authors take a closer look at discrete models in differential geometry and dynamical systems. Their curves are polygonal, surfaces are made from triangles and quadrilaterals, and time is discrete. Nevertheless, the difference between the corresponding smooth curves, surfaces and classical dynamical systems with continuous time can hardly be seen. This is the paradigm of structure-preserving discretizations. Current advances in this field are stimulated to a large extent by its relevance for computer graphics and mathematical physics. This book is written by specialists working together on a common research project. It is about differential geometry and dynamical systems, smooth and discrete theories, ...

  17. Radar orthogonality and radar length in Finsler and metric spacetime geometry

    Science.gov (United States)

    Pfeifer, Christian

    2014-09-01

    The radar experiment connects the geometry of spacetime with an observers measurement of spatial length. We investigate the radar experiment on Finsler spacetimes which leads to a general definition of radar orthogonality and radar length. The directions radar orthogonal to an observer form the spatial equal time surface an observer experiences and the radar length is the physical length the observer associates to spatial objects. We demonstrate these concepts on a forth order polynomial Finsler spacetime geometry which may emerge from area metric or premetric linear electrodynamics or in quantum gravity phenomenology. In an explicit generalization of Minkowski spacetime geometry we derive the deviation from the Euclidean spatial length measure in an observers rest frame explicitly.

  18. Geometry and quantization of moduli spaces

    CERN Document Server

    Andersen, Jørgen; Riera, Ignasi

    2016-01-01

    This volume is based on four advanced courses held at the Centre de Recerca Matemàtica (CRM), Barcelona. It presents both background information and recent developments on selected topics that are experiencing extraordinary growth within the broad research area of geometry and quantization of moduli spaces. The lectures focus on the geometry of moduli spaces which are mostly associated to compact Riemann surfaces, and are presented from both classical and quantum perspectives.

  19. Quantum Cosmology

    OpenAIRE

    Page, Don N.

    2006-01-01

    A complete model of the universe needs at least three parts: (1) a complete set of physical variables and dynamical laws for them, (2) the correct solution of the dynamical laws, and (3) the connection with conscious experience. In quantum cosmology, item (2) is the quantum state of the cosmos. Hartle and Hawking have made the `no-boundary' proposal, that the wavefunction of the universe is given by a path integral over all compact Euclidean 4-dimensional geometries and matter fields that hav...

  20. Complex analysis and geometry

    CERN Document Server

    Silva, Alessandro

    1993-01-01

    The papers in this wide-ranging collection report on the results of investigations from a number of linked disciplines, including complex algebraic geometry, complex analytic geometry of manifolds and spaces, and complex differential geometry.

  1. Non-Riemannian geometry

    CERN Document Server

    Eisenhart, Luther Pfahler

    2005-01-01

    This concise text by a prominent mathematician deals chiefly with manifolds dominated by the geometry of paths. Topics include asymmetric and symmetric connections, the projective geometry of paths, and the geometry of sub-spaces. 1927 edition.

  2. Geometry of the Universe

    International Nuclear Information System (INIS)

    Gurevich, L.Eh.; Gliner, Eh.B.

    1978-01-01

    Problems of investigating the Universe space-time geometry are described on a popular level. Immediate space-time geometries, corresponding to three cosmologic models are considered. Space-time geometry of a closed model is the spherical Riemann geonetry, of an open model - is the Lobachevskij geometry; and of a plane model - is the Euclidean geometry. The Universe real geometry in the contemporary epoch of development is based on the data testifying to the fact that the Universe is infinitely expanding

  3. Certain integrable system on a space associated with a quantum search algorithm

    International Nuclear Information System (INIS)

    Uwano, Y.; Hino, H.; Ishiwatari, Y.

    2007-01-01

    On thinking up a Grover-type quantum search algorithm for an ordered tuple of multiqubit states, a gradient system associated with the negative von Neumann entropy is studied on the space of regular relative configurations of multiqubit states (SR 2 CMQ). The SR 2 CMQ emerges, through a geometric procedure, from the space of ordered tuples of multiqubit states for the quantum search. The aim of this paper is to give a brief report on the integrability of the gradient dynamical system together with quantum information geometry of the underlying space, SR 2 CMQ, of that system

  4. Casimir forces and geometry

    International Nuclear Information System (INIS)

    Buescher, R.

    2005-01-01

    Casimir interactions are interactions induced by quantum vacuum fluctuations and thermal fluctuations of the electromagnetic field. Using a path integral quantization for the gauge field, an effective Gaussian action will be derived which is the starting point to compute Casimir forces between macroscopic objects analytically and numerically. No assumptions about the independence of the material and shape dependent contributions to the interaction are made. We study the limit of flat surfaces in further detail and obtain a concise derivation of Lifshitz' theory of molecular forces. For the case of ideally conducting boundaries, the Gaussian action will be calculated explicitly. Both limiting cases are also discussed within the framework of a scalar field quantization approach, which is applicable for translationally invariant geometries. We develop a non-perturbative approach to calculate the Casimir interaction from the Gaussian action for periodically deformed and ideally conducting objects numerically. The obtained results reveal two different scaling regimes for the Casimir force as a function of the distance between the objects, their deformation wavelength and -amplitude. The results confirm that the interaction is non-additive, especially in the presence of strong geometric deformations. Furthermore, the numerical approach is extended to calculate lateral Casimir forces. The results are consistent with the results of the proximity-force approximation for large deformation wavelengths. A qualitatively different behaviour between the normal and lateral force is revealed. We also establish a relation between the boundary induced change of the of the density of states for the scalar Helmholtz equation and the Casimir interaction using the path integral method. For statically deformed boundaries, this relation can be expressed as a novel trace formula, which is formally similar to the so-called Krein-Friedel-Lloyd formula. While the latter formula describes the

  5. Information geometry near randomness and near independence

    CERN Document Server

    Arwini, Khadiga A

    2008-01-01

    This volume will be useful to practising scientists and students working in the application of statistical models to real materials or to processes with perturbations of a Poisson process, a uniform process, or a state of independence for a bivariate process. We use information geometry to provide a common differential geometric framework for a wide range of illustrative applications including amino acid sequence spacings in protein chains, cryptology studies, clustering of communications and galaxies, cosmological voids, coupled spatial statistics in stochastic fibre networks and stochastic porous media, quantum chaology. Introduction sections are provided to mathematical statistics, differential geometry and the information geometry of spaces of probability density functions.

  6. Quantum Information Processing

    CERN Document Server

    Leuchs, Gerd

    2005-01-01

    Quantum processing and communication is emerging as a challenging technique at the beginning of the new millennium. This is an up-to-date insight into the current research of quantum superposition, entanglement, and the quantum measurement process - the key ingredients of quantum information processing. The authors further address quantum protocols and algorithms. Complementary to similar programmes in other countries and at the European level, the German Research Foundation (DFG) started a focused research program on quantum information in 1999. The contributions - written by leading experts - bring together the latest results in quantum information as well as addressing all the relevant questions

  7. The photonic nanowire: an emerging platform for highly efficient single-photon sources for quantum information applications

    DEFF Research Database (Denmark)

    Gregersen, Niels; Munsch, Mathieu; Malik, Nitin S.

    2013-01-01

    Efficient coupling between a localized quantum emitter and a well defined optical channel represents a powerful route to realize single-photon sources and spin-photon interfaces. The tailored fiber-like photonic nanowire embedding a single quantum dot has recently demonstrated an appealing...... potential. However, the device requires a delicate, sharp needle-like taper with performance sensitive to minute geometrical details. To overcome this limitation we demonstrate the photonic trumpet, exploiting an opposite tapering strategy. The trumpet features a strongly Gaussian far-field emission...

  8. Implementing quantum Ricci curvature

    Science.gov (United States)

    Klitgaard, N.; Loll, R.

    2018-05-01

    Quantum Ricci curvature has been introduced recently as a new, geometric observable characterizing the curvature properties of metric spaces, without the need for a smooth structure. Besides coordinate invariance, its key features are scalability, computability, and robustness. We demonstrate that these properties continue to hold in the context of nonperturbative quantum gravity, by evaluating the quantum Ricci curvature numerically in two-dimensional Euclidean quantum gravity, defined in terms of dynamical triangulations. Despite the well-known, highly nonclassical properties of the underlying quantum geometry, its Ricci curvature can be matched well to that of a five-dimensional round sphere.

  9. Geometry, topology, and string theory

    Energy Technology Data Exchange (ETDEWEB)

    Varadarajan, Uday [Univ. of California, Berkeley, CA (United States)

    2003-01-01

    A variety of scenarios are considered which shed light upon the uses and limitations of classical geometric and topological notions in string theory. The primary focus is on situations in which D-brane or string probes of a given classical space-time see the geometry quite differently than one might naively expect. In particular, situations in which extra dimensions, non-commutative geometries as well as other non-local structures emerge are explored in detail. Further, a preliminary exploration of such issues in Lorentzian space-times with non-trivial causal structures within string theory is initiated.

  10. Geometry, topology, and string theory

    International Nuclear Information System (INIS)

    Varadarajan, Uday

    2003-01-01

    A variety of scenarios are considered which shed light upon the uses and limitations of classical geometric and topological notions in string theory. The primary focus is on situations in which D-brane or string probes of a given classical space-time see the geometry quite differently than one might naively expect. In particular, situations in which extra dimensions, non-commutative geometries as well as other non-local structures emerge are explored in detail. Further, a preliminary exploration of such issues in Lorentzian space-times with non-trivial causal structures within string theory is initiated

  11. FINAL REPORT: GEOMETRY AND ELEMENTARY PARTICLE PHYSICS

    Energy Technology Data Exchange (ETDEWEB)

    Singer, Isadore M.

    2008-03-04

    The effect on mathematics of collaborations between high-energy theoretical physics and modern mathematics has been remarkable. Mirror symmetry has revolutionized enumerative geometry, and Seiberg-Witten invariants have greatly simplified the study of four manifolds. And because of their application to string theory, physicists now need to know cohomology theory, characteristic classes, index theory, K-theory, algebraic geometry, differential geometry, and non-commutative geometry. Much more is coming. We are experiencing a deeper contact between the two sciences, which will stimulate new mathematics essential to the physicists’ quest for the unification of quantum mechanics and relativity. Our grant, supported by the Department of Energy for twelve years, has been instrumental in promoting an effective interaction between geometry and string theory, by supporting the Mathematical Physics seminar, postdoc research, collaborations, graduate students and several research papers.

  12. Final Report: Geometry And Elementary Particle Physics

    International Nuclear Information System (INIS)

    Singer, Isadore M.

    2008-01-01

    The effect on mathematics of collaborations between high-energy theoretical physics and modern mathematics has been remarkable. Mirror symmetry has revolutionized enumerative geometry, and Seiberg-Witten invariants have greatly simplified the study of four manifolds. And because of their application to string theory, physicists now need to know cohomology theory, characteristic classes, index theory, K-theory, algebraic geometry, differential geometry, and non-commutative geometry. Much more is coming. We are experiencing a deeper contact between the two sciences, which will stimulate new mathematics essential to the physicists quest for the unification of quantum mechanics and relativity. Our grant, supported by the Department of Energy for twelve years, has been instrumental in promoting an effective interaction between geometry and string theory, by supporting the Mathematical Physics seminar, postdoc research, collaborations, graduate students and several research papers.

  13. Quantum set theory and applications

    International Nuclear Information System (INIS)

    Rodriguez, E.

    1984-01-01

    The work of von Neumann tells us that the logic of quantum mechanics is not Boolenan. This suggests the formulation of a quantum theory of sets based on quantum logic much as modern set theory is based on Boolean logic. In the first part of this dissertation such a quantum set theory is developed. In the second part, quantum set theory is proposed as a universal language for physics. A quantum topology and the beginnings of a quantum geometry are developed in this language. Finally, a toy model is studied. It gives indications of possible lines for progress in this program

  14. Hyperunified field theory and gravitational gauge-geometry duality

    International Nuclear Information System (INIS)

    Wu, Yue-Liang

    2018-01-01

    A hyperunified field theory is built in detail based on the postulates of gauge invariance and coordinate independence along with the conformal scaling symmetry. All elementary particles are merged into a single hyper-spinor field and all basic forces are unified into a fundamental interaction governed by the hyper-spin gauge symmetry SP(1, D h - 1). The dimension D h of hyper-spacetime is conjectured to have a physical origin in correlation with the hyper-spin charge of elementary particles. The hyper-gravifield fiber bundle structure of biframe hyper-spacetime appears naturally with the globally flat Minkowski hyper-spacetime as a base spacetime and the locally flat hyper-gravifield spacetime as a fiber that is viewed as a dynamically emerged hyper-spacetime characterized by a non-commutative geometry. The gravitational origin of gauge symmetry is revealed with the hyper-gravifield that plays an essential role as a Goldstone-like field. The gauge-gravity and gravity-geometry correspondences bring about the gravitational gauge-geometry duality. The basic properties of hyperunified field theory and the issue on the fundamental scale are analyzed within the framework of quantum field theory, which allows us to describe the laws of nature in deriving the gauge gravitational equation with the conserved current and the geometric gravitational equations of Einstein-like type and beyond. (orig.)

  15. Hyperunified field theory and gravitational gauge-geometry duality

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Yue-Liang [International Centre for Theoretical Physics Asia-Pacific (ICTP-AP), Beijing (China); Chinese Academy of Sciences, Institute of Theoretical Physics, Beijing (China); University of Chinese Academy of Sciences (UCAS), Beijing (China)

    2018-01-15

    A hyperunified field theory is built in detail based on the postulates of gauge invariance and coordinate independence along with the conformal scaling symmetry. All elementary particles are merged into a single hyper-spinor field and all basic forces are unified into a fundamental interaction governed by the hyper-spin gauge symmetry SP(1, D{sub h} - 1). The dimension D{sub h} of hyper-spacetime is conjectured to have a physical origin in correlation with the hyper-spin charge of elementary particles. The hyper-gravifield fiber bundle structure of biframe hyper-spacetime appears naturally with the globally flat Minkowski hyper-spacetime as a base spacetime and the locally flat hyper-gravifield spacetime as a fiber that is viewed as a dynamically emerged hyper-spacetime characterized by a non-commutative geometry. The gravitational origin of gauge symmetry is revealed with the hyper-gravifield that plays an essential role as a Goldstone-like field. The gauge-gravity and gravity-geometry correspondences bring about the gravitational gauge-geometry duality. The basic properties of hyperunified field theory and the issue on the fundamental scale are analyzed within the framework of quantum field theory, which allows us to describe the laws of nature in deriving the gauge gravitational equation with the conserved current and the geometric gravitational equations of Einstein-like type and beyond. (orig.)

  16. Interplay between geometry and temperature in the Casimir effect

    Energy Technology Data Exchange (ETDEWEB)

    Weber, Alexej

    2010-06-23

    In this thesis, we investigate the interplay between geometry and temperature in the Casimir effect for the inclined-plates, sphere-plate and cylinder-plate configurations. We use the worldline approach, which combines the string-inspired quantum field theoretical formalism with Monte Carlo techniques. The approach allows the precise computation of Casimir energies in arbitrary geometries. We analyze the dependence of the Casimir energy, force and torque on the separation parameter and temperature T, and find Casimir phenomena which are dominated by long-range fluctuations. We demonstrate that for open geometries, thermal energy densities are typically distributed on scales of thermal wavelengths. As an important consequence, approximation methods for thermal corrections based on local energy-density estimates, such as the proximity-force approximation, are found to become unreliable even at small surface-separations. Whereas the hightemperature behavior is always found to be linear in T, richer power-law behaviors at small temperatures emerge. In particular, thermal forces can develop a non-monotonic behavior. Many novel numerical as well as analytical results are presented. (orig.)

  17. Interplay between geometry and temperature in the Casimir effect

    International Nuclear Information System (INIS)

    Weber, Alexej

    2010-01-01

    In this thesis, we investigate the interplay between geometry and temperature in the Casimir effect for the inclined-plates, sphere-plate and cylinder-plate configurations. We use the worldline approach, which combines the string-inspired quantum field theoretical formalism with Monte Carlo techniques. The approach allows the precise computation of Casimir energies in arbitrary geometries. We analyze the dependence of the Casimir energy, force and torque on the separation parameter and temperature T, and find Casimir phenomena which are dominated by long-range fluctuations. We demonstrate that for open geometries, thermal energy densities are typically distributed on scales of thermal wavelengths. As an important consequence, approximation methods for thermal corrections based on local energy-density estimates, such as the proximity-force approximation, are found to become unreliable even at small surface-separations. Whereas the hightemperature behavior is always found to be linear in T, richer power-law behaviors at small temperatures emerge. In particular, thermal forces can develop a non-monotonic behavior. Many novel numerical as well as analytical results are presented. (orig.)

  18. Hyperunified field theory and gravitational gauge-geometry duality

    Science.gov (United States)

    Wu, Yue-Liang

    2018-01-01

    A hyperunified field theory is built in detail based on the postulates of gauge invariance and coordinate independence along with the conformal scaling symmetry. All elementary particles are merged into a single hyper-spinor field and all basic forces are unified into a fundamental interaction governed by the hyper-spin gauge symmetry SP(1, D_h-1). The dimension D_h of hyper-spacetime is conjectured to have a physical origin in correlation with the hyper-spin charge of elementary particles. The hyper-gravifield fiber bundle structure of biframe hyper-spacetime appears naturally with the globally flat Minkowski hyper-spacetime as a base spacetime and the locally flat hyper-gravifield spacetime as a fiber that is viewed as a dynamically emerged hyper-spacetime characterized by a non-commutative geometry. The gravitational origin of gauge symmetry is revealed with the hyper-gravifield that plays an essential role as a Goldstone-like field. The gauge-gravity and gravity-geometry correspondences bring about the gravitational gauge-geometry duality. The basic properties of hyperunified field theory and the issue on the fundamental scale are analyzed within the framework of quantum field theory, which allows us to describe the laws of nature in deriving the gauge gravitational equation with the conserved current and the geometric gravitational equations of Einstein-like type and beyond.

  19. Grassmannian geometry of scattering amplitudes

    CERN Document Server

    Arkani-Hamed, Nima; Cachazo, Freddy; Goncharov, Alexander; Postnikov, Alexander; Trnka, Jaroslav

    2016-01-01

    Outlining a revolutionary reformulation of the foundations of perturbative quantum field theory, this book is a self-contained and authoritative analysis of the application of this new formulation to the case of planar, maximally supersymmetric Yang–Mills theory. The book begins by deriving connections between scattering amplitudes and Grassmannian geometry from first principles before introducing novel physical and mathematical ideas in a systematic manner accessible to both physicists and mathematicians. The principle players in this process are on-shell functions which are closely related to certain sub-strata of Grassmannian manifolds called positroids - in terms of which the classification of on-shell functions and their relations becomes combinatorially manifest. This is an essential introduction to the geometry and combinatorics of the positroid stratification of the Grassmannian and an ideal text for advanced students and researchers working in the areas of field theory, high energy physics, and the...

  20. An invitation to noncommutative geometry

    CERN Document Server

    Marcolli, Matilde

    2008-01-01

    This is the first existing volume that collects lectures on this important and fast developing subject in mathematics. The lectures are given by leading experts in the field and the range of topics is kept as broad as possible by including both the algebraic and the differential aspects of noncommutative geometry as well as recent applications to theoretical physics and number theory. Sample Chapter(s). A Walk in the Noncommutative Garden (1,639 KB). Contents: A Walk in the Noncommutative Garden (A Connes & M Marcolli); Renormalization of Noncommutative Quantum Field Theory (H Grosse & R Wulke

  1. On relational nature of geometry of microphysics

    International Nuclear Information System (INIS)

    Chylinski, Z.

    1985-11-01

    A relativity principle and a curiosity of Galilei space-time is described. An internal space-time of R 4 relation is presented. Lorentz limit of R 4 geometry and a field theory is given. The sources of the effects of R 4 hypothesis are characterized. The completeness of quantum description is discussed. 32 refs. (A.S.)

  2. Structural invariance of the Schroedinger equation and chronoprojective geometry

    International Nuclear Information System (INIS)

    Burdet, G.; Perrin, M.

    1983-07-01

    We describe an extension of the chronoprojective geometry and show how its automorphisms are related to the invariance properties of the Schroedinger equation describing a quantum test particle in any Newton-Cartan structure

  3. Minimal length uncertainty and generalized non-commutative geometry

    International Nuclear Information System (INIS)

    Farmany, A.; Abbasi, S.; Darvishi, M.T.; Khani, F.; Naghipour, A.

    2009-01-01

    A generalized formulation of non-commutative geometry for the Bargmann-Fock space of quantum field theory is presented. The analysis is related to the symmetry of the simplistic space and a minimal length uncertainty.

  4. Quantum waveguides

    CERN Document Server

    Exner, Pavel

    2015-01-01

    This monograph explains the theory of quantum waveguides, that is, dynamics of quantum particles confined to regions in the form of tubes, layers, networks, etc. The focus is on relations between the confinement geometry on the one hand and the spectral and scattering properties of the corresponding quantum Hamiltonians on the other. Perturbations of such operators, in particular, by external fields are also considered. The volume provides a unique summary of twenty five years of research activity in this area and indicates ways in which the theory can develop further. The book is fairly self-contained. While it requires some broader mathematical physics background, all the basic concepts are properly explained and proofs of most theorems are given in detail, so there is no need for additional sources. Without a parallel in the literature, the monograph by Exner and Kovarik guides the reader through this new and exciting field.

  5. Phase space quantum mechanics and maximal acceleration

    International Nuclear Information System (INIS)

    Caianiello, E.

    1989-01-01

    My presentation is a synopsis of work done since 1979 in search of connections among information theory, systems theory, quantum mechanics and other matters. The aim was 'to extract geometry from quantum mechanics'. (orig./HSI)

  6. Geodesic paths and topological charges in quantum systems

    Science.gov (United States)

    Grangeiro Souza Barbosa Lima, Tiago Aecio

    This dissertation focuses on one question: how should one drive an experimentally prepared state of a generic quantum system into a different target-state, simultaneously minimizing energy dissipation and maximizing the fidelity between the target and evolved-states? We develop optimal adiabatic driving protocols for general quantum systems, and show that these are geodesic paths. Geometric ideas have always played a fundamental role in the understanding and unification of physical phenomena, and the recent discovery of topological insulators has drawn great interest to topology from the field of condensed matter physics. Here, we discuss the quantum geometric tensor, a mathematical object that encodes geometrical and topological properties of a quantum system. It is related to the fidelity susceptibility (an important quantity regarding quantum phase transitions) and to the Berry curvature, which enables topological characterization through Berry phases. A refined understanding of the interplay between geometry and topology in quantum mechanics is of direct relevance to several emergent technologies, such as quantum computers, quantum cryptography, and quantum sensors. As a demonstration of how powerful geometric and topological ideas can become when combined, we present the results of an experiment that we recently proposed. This experimental work was done at the Google Quantum Lab, where researchers were able to visualize the topological nature of a two-qubit system in sharp detail, a startling contrast with earlier methods. To achieve this feat, the optimal protocols described in this dissertation were used, allowing for a great improvement on the experimental apparatus, without the need for technical engineering advances. Expanding the existing literature on the quantum geometric tensor using notions from differential geometry and topology, we build on the subject nowadays known as quantum geometry. We discuss how slowly changing a parameter of a quantum

  7. Quantum geometry of the Dirac fermions

    International Nuclear Information System (INIS)

    Korchemskij, G.P.

    1989-01-01

    The bosonic path integral formalism is developed for Dirac fermions interacting with a nonabelian gauge field in the D-dimensional Euclidean space-time. The representation for the effective action and correlation functions of interacting fermions as sums over all bosonic paths on the complex projective space CP 2d-1 , (2d=2 [ D 2] is derived where all the spinor structure is absorbed by the one-dimensional Wess-Zumino term. It is the Wess-Zumino term that ensures all necessary properties of Dirac fermions under quantization. i.e., quantized values of the spin, Dirac equation, Fermi statistics. 19 refs

  8. Quantum Geometry of Refined Topological Strings

    NARCIS (Netherlands)

    Aganagic, M.; Cheng, M.C.N.; Dijkgraaf, R.; Kreft, D.; Vafa, C.

    2012-01-01

    We consider branes in refined topological strings. We argue that their wavefunctions satisfy a Schrödinger equation depending on multiple times and prove this in the case where the topological string has a dual matrix model description. Furthermore, in the limit where one of the equivariant

  9. Twistor Cosmology and Quantum Space-Time

    International Nuclear Information System (INIS)

    Brody, D.C.; Hughston, L.P.

    2005-01-01

    The purpose of this paper is to present a model of a 'quantum space-time' in which the global symmetries of space-time are unified in a coherent manner with the internal symmetries associated with the state space of quantum-mechanics. If we take into account the fact that these distinct families of symmetries should in some sense merge and become essentially indistinguishable in the unified regime, our framework may provide an approximate description of or elementary model for the structure of the universe at early times. The quantum elements employed in our characterisation of the geometry of space-time imply that the pseudo-Riemannian structure commonly regarded as an essential feature in relativistic theories must be dispensed with. Nevertheless, the causal structure and the physical kinematics of quantum space-time are shown to persist in a manner that remains highly analogous to the corresponding features of the classical theory. In the case of the simplest conformally flat cosmological models arising in this framework, the twistorial description of quantum space-time is shown to be effective in characterising the various physical and geometrical properties of the theory. As an example, a sixteen-dimensional analogue of the Friedmann-Robertson-Walker cosmologies is constructed, and its chronological development is analysed in some detail. More generally, whenever the dimension of a quantum space-time is an even perfect square, there exists a canonical way of breaking the global quantum space-time symmetry so that a generic point of quantum space-time can be consistently interpreted as a quantum operator taking values in Minkowski space. In this scenario, the breakdown of the fundamental symmetry of the theory is due to a loss of quantum entanglement between space-time and internal quantum degrees of freedom. It is thus possible to show in a certain specific sense that the classical space-time description is an emergent feature arising as a consequence of a

  10. Atomic quantum simulation of the lattice gauge-Higgs model: Higgs couplings and emergence of exact local gauge symmetry.

    Science.gov (United States)

    Kasamatsu, Kenichi; Ichinose, Ikuo; Matsui, Tetsuo

    2013-09-13

    Recently, the possibility of quantum simulation of dynamical gauge fields was pointed out by using a system of cold atoms trapped on each link in an optical lattice. However, to implement exact local gauge invariance, fine-tuning the interaction parameters among atoms is necessary. In the present Letter, we study the effect of violation of the U(1) local gauge invariance by relaxing the fine-tuning of the parameters and showing that a wide variety of cold atoms is still a faithful quantum simulator for a U(1) gauge-Higgs model containing a Higgs field sitting on sites. The clarification of the dynamics of this gauge-Higgs model sheds some light upon various unsolved problems, including the inflation process of the early Universe. We study the phase structure of this model by Monte Carlo simulation and also discuss the atomic characteristics of the Higgs phase in each simulator.

  11. Quantum theory in real Hilbert space: How the complex Hilbert space structure emerges from Poincaré symmetry

    Science.gov (United States)

    Moretti, Valter; Oppio, Marco

    As earlier conjectured by several authors and much later established by Solèr (relying on partial results by Piron, Maeda-Maeda and other authors), from the lattice theory point of view, Quantum Mechanics may be formulated in real, complex or quaternionic Hilbert spaces only. Stückelberg provided some physical, but not mathematically rigorous, reasons for ruling out the real Hilbert space formulation, assuming that any formulation should encompass a statement of Heisenberg principle. Focusing on this issue from another — in our opinion, deeper — viewpoint, we argue that there is a general fundamental reason why elementary quantum systems are not described in real Hilbert spaces. It is their basic symmetry group. In the first part of the paper, we consider an elementary relativistic system within Wigner’s approach defined as a locally-faithful irreducible strongly-continuous unitary representation of the Poincaré group in a real Hilbert space. We prove that, if the squared-mass operator is non-negative, the system admits a natural, Poincaré invariant and unique up to sign, complex structure which commutes with the whole algebra of observables generated by the representation itself. This complex structure leads to a physically equivalent reformulation of the theory in a complex Hilbert space. Within this complex formulation, differently from what happens in the real one, all selfadjoint operators represent observables in accordance with Solèr’s thesis, and the standard quantum version of Noether theorem may be formulated. In the second part of this work, we focus on the physical hypotheses adopted to define a quantum elementary relativistic system relaxing them on the one hand, and making our model physically more general on the other hand. We use a physically more accurate notion of irreducibility regarding the algebra of observables only, we describe the symmetries in terms of automorphisms of the restricted lattice of elementary propositions of the

  12. What is quantum in quantum randomness?

    Science.gov (United States)

    Grangier, P; Auffèves, A

    2018-07-13

    It is often said that quantum and classical randomness are of different nature, the former being ontological and the latter epistemological. However, so far the question of 'What is quantum in quantum randomness?', i.e. what is the impact of quantization and discreteness on the nature of randomness, remains to be answered. In a first part, we make explicit the differences between quantum and classical randomness within a recently proposed ontology for quantum mechanics based on contextual objectivity. In this view, quantum randomness is the result of contextuality and quantization. We show that this approach strongly impacts the purposes of quantum theory as well as its areas of application. In particular, it challenges current programmes inspired by classical reductionism, aiming at the emergence of the classical world from a large number of quantum systems. In a second part, we analyse quantum physics and thermodynamics as theories of randomness, unveiling their mutual influences. We finally consider new technological applications of quantum randomness that have opened up in the emerging field of quantum thermodynamics.This article is part of a discussion meeting issue 'Foundations of quantum mechanics and their impact on contemporary society'. © 2018 The Author(s).

  13. Research progress on quantum informatics and quantum computation

    Science.gov (United States)

    Zhao, Yusheng

    2018-03-01

    Quantum informatics is an emerging interdisciplinary subject developed by the combination of quantum mechanics, information science, and computer science in the 1980s. The birth and development of quantum information science has far-reaching significance in science and technology. At present, the application of quantum information technology has become the direction of people’s efforts. The preparation, storage, purification and regulation, transmission, quantum coding and decoding of quantum state have become the hotspot of scientists and technicians, which have a profound impact on the national economy and the people’s livelihood, technology and defense technology. This paper first summarizes the background of quantum information science and quantum computer and the current situation of domestic and foreign research, and then introduces the basic knowledge and basic concepts of quantum computing. Finally, several quantum algorithms are introduced in detail, including Quantum Fourier transform, Deutsch-Jozsa algorithm, Shor’s quantum algorithm, quantum phase estimation.

  14. A Geometry in which all Triangles are Isosceles

    Indian Academy of Sciences (India)

    The real number line has a geometry which is Euclidean. Imagine a small pygmy tortoise trying to travel along a very long path; assume that its destination is at a very ..... are: geometry of space-time at small distances; classi- cal and quantum ...

  15. Towards a quantum internet

    Science.gov (United States)

    Dür, Wolfgang; Lamprecht, Raphael; Heusler, Stefan

    2017-07-01

    A long-range quantum communication network is among the most promising applications of emerging quantum technologies. We discuss the potential of such a quantum internet for the secure transmission of classical and quantum information, as well as theoretical and experimental approaches and recent advances to realize them. We illustrate the involved concepts such as error correction, teleportation or quantum repeaters and consider an approach to this topic based on catchy visualizations as a context-based, modern treatment of quantum theory at high school.

  16. Nonperturbative quantum gravity

    International Nuclear Information System (INIS)

    Ambjørn, J.; Görlich, A.; Jurkiewicz, J.; Loll, R.

    2012-01-01

    Asymptotic safety describes a scenario in which general relativity can be quantized as a conventional field theory, despite being nonrenormalizable when expanding it around a fixed background geometry. It is formulated in the framework of the Wilsonian renormalization group and relies crucially on the existence of an ultraviolet fixed point, for which evidence has been found using renormalization group equations in the continuum. “Causal Dynamical Triangulations” (CDT) is a concrete research program to obtain a nonperturbative quantum field theory of gravity via a lattice regularization, and represented as a sum over spacetime histories. In the Wilsonian spirit one can use this formulation to try to locate fixed points of the lattice theory and thereby provide independent, nonperturbative evidence for the existence of a UV fixed point. We describe the formalism of CDT, its phase diagram, possible fixed points and the “quantum geometries” which emerge in the different phases. We also argue that the formalism may be able to describe a more general class of Hořava–Lifshitz gravitational models.

  17. Geometry and its applications

    CERN Document Server

    Meyer, Walter J

    2006-01-01

    Meyer''s Geometry and Its Applications, Second Edition, combines traditional geometry with current ideas to present a modern approach that is grounded in real-world applications. It balances the deductive approach with discovery learning, and introduces axiomatic, Euclidean geometry, non-Euclidean geometry, and transformational geometry. The text integrates applications and examples throughout and includes historical notes in many chapters. The Second Edition of Geometry and Its Applications is a significant text for any college or university that focuses on geometry''s usefulness in other disciplines. It is especially appropriate for engineering and science majors, as well as future mathematics teachers.* Realistic applications integrated throughout the text, including (but not limited to): - Symmetries of artistic patterns- Physics- Robotics- Computer vision- Computer graphics- Stability of architectural structures- Molecular biology- Medicine- Pattern recognition* Historical notes included in many chapters...

  18. Algebraic geometry in India

    Indian Academy of Sciences (India)

    algebraic geometry but also in related fields like number theory. ... every vector bundle on the affine space is trivial. (equivalently ... les on a compact Riemann surface to unitary rep- ... tial geometry and topology and was generalised in.

  19. Spinorial Geometry and Branes

    International Nuclear Information System (INIS)

    Sloane, Peter

    2007-01-01

    We adapt the spinorial geometry method introduced in [J. Gillard, U. Gran and G. Papadopoulos, 'The spinorial geometry of supersymmetric backgrounds,' Class. Quant. Grav. 22 (2005) 1033 [ (arXiv:hep-th/0410155)

  20. Spinorial Geometry and Branes

    Energy Technology Data Exchange (ETDEWEB)

    Sloane, Peter [Department of Mathematics, King' s College, University of London, Strand, London WC2R 2LS (United Kingdom)

    2007-09-15

    We adapt the spinorial geometry method introduced in [J. Gillard, U. Gran and G. Papadopoulos, 'The spinorial geometry of supersymmetric backgrounds,' Class. Quant. Grav. 22 (2005) 1033 [ (arXiv:hep-th/0410155)

  1. Role of space--time topology in quantum phenomena: Superselection of charge and emergence of nontrivial vacua

    International Nuclear Information System (INIS)

    Ashtekar, A.; Sen, A.

    1980-01-01

    Schwarzschild--Kruskal space--time admits a two-parameter family of everywhere regular, static, source-free Maxwell fields. It is shown that there exists a corresponding two-parameter family of unitarily inequivalent representations of the canonical commutation relations. Elements of the underlying Hilbert space may be interpreted as ''quantum fluctuations of the Maxwell field off nontrivial classical vacua.'' The representation corresponding to the ''trivial'' sector: i.e., the zero classical solution: is the usual Fock representation. All others are ''non-Fock.'' In particular, in all other sectors, the Maxwell field develops a nonzero vacuum expectation value. The parameters labelling the family can be interpreted as electric and magnetic charges. Therefore, unitary inequivalence naturally leads to superselection rules for these charges. These features arise in spite of the linearity of field equations only because the space--time topology is ''nontrivial.'' Also, because of linearity, an exact analysis is possible at the quantum level; recourse to perturbation theory is unnecessary

  2. Riemannian geometry and geometric analysis

    CERN Document Server

    Jost, Jürgen

    2017-01-01

    This established reference work continues to provide its readers with a gateway to some of the most interesting developments in contemporary geometry. It offers insight into a wide range of topics, including fundamental concepts of Riemannian geometry, such as geodesics, connections and curvature; the basic models and tools of geometric analysis, such as harmonic functions, forms, mappings, eigenvalues, the Dirac operator and the heat flow method; as well as the most important variational principles of theoretical physics, such as Yang-Mills, Ginzburg-Landau or the nonlinear sigma model of quantum field theory. The present volume connects all these topics in a systematic geometric framework. At the same time, it equips the reader with the working tools of the field and enables her or him to delve into geometric research.  The 7th edition has been systematically reorganized and updated. Almost no page has been left unchanged. It also includes new material, for instance on symplectic geometry, as well as the B...

  3. Quantum information and coherence

    CERN Document Server

    Öhberg, Patrik

    2014-01-01

    This book offers an introduction to ten key topics in quantum information science and quantum coherent phenomena, aimed at graduate-student level. The chapters cover some of the most recent developments in this dynamic research field where theoretical and experimental physics, combined with computer science, provide a fascinating arena for groundbreaking new concepts in information processing. The book addresses both the theoretical and experimental aspects of the subject, and clearly demonstrates how progress in experimental techniques has stimulated a great deal of theoretical effort and vice versa. Experiments are shifting from simply preparing and measuring quantum states to controlling and manipulating them, and the book outlines how the first real applications, notably quantum key distribution for secure communication, are starting to emerge. The chapters cover quantum retrodiction, ultracold quantum gases in optical lattices, optomechanics, quantum algorithms, quantum key distribution, quantum cont...

  4. Geometry essentials for dummies

    CERN Document Server

    Ryan, Mark

    2011-01-01

    Just the critical concepts you need to score high in geometry This practical, friendly guide focuses on critical concepts taught in a typical geometry course, from the properties of triangles, parallelograms, circles, and cylinders, to the skills and strategies you need to write geometry proofs. Geometry Essentials For Dummies is perfect for cramming or doing homework, or as a reference for parents helping kids study for exams. Get down to the basics - get a handle on the basics of geometry, from lines, segments, and angles, to vertices, altitudes, and diagonals Conque

  5. Arithmetic noncommutative geometry

    CERN Document Server

    Marcolli, Matilde

    2005-01-01

    Arithmetic noncommutative geometry denotes the use of ideas and tools from the field of noncommutative geometry, to address questions and reinterpret in a new perspective results and constructions from number theory and arithmetic algebraic geometry. This general philosophy is applied to the geometry and arithmetic of modular curves and to the fibers at archimedean places of arithmetic surfaces and varieties. The main reason why noncommutative geometry can be expected to say something about topics of arithmetic interest lies in the fact that it provides the right framework in which the tools of geometry continue to make sense on spaces that are very singular and apparently very far from the world of algebraic varieties. This provides a way of refining the boundary structure of certain classes of spaces that arise in the context of arithmetic geometry, such as moduli spaces (of which modular curves are the simplest case) or arithmetic varieties (completed by suitable "fibers at infinity"), by adding boundaries...

  6. The Quantum Focussing Conjecture and Quantum Null Energy Condition

    Science.gov (United States)

    Koeller, Jason

    Evidence has been gathering over the decades that spacetime and gravity are best understood as emergent phenomenon, especially in the context of a unified description of quantum mechanics and gravity. The Quantum Focussing Conjecture (QFC) and Quantum Null Energy Condition (QNEC) are two recently-proposed relationships between entropy and geometry, and energy and entropy, respectively, which further strengthen this idea. In this thesis, we study the QFC and the QNEC. We prove the QNEC in a variety of contexts, including free field theories on Killing horizons, holographic theories on Killing horizons, and in more general curved spacetimes. We also consider the implications of the QFC and QNEC in asymptotically flat space, where they constrain the information content of gravitational radiation arriving at null infinity, and in AdS/CFT, where they are related to other semiclassical inequalities and properties of boundary-anchored extremal area surfaces. It is shown that the assumption of validity and vacuum-state saturation of the QNEC for regions of flat space defined by smooth cuts of null planes implies a local formula for the modular Hamiltonian of these regions. We also demonstrate that the QFC as originally conjectured can be violated in generic theories in d ≥ 5, which led the way to an improved formulation subsequently suggested by Stefan Leichenauer.

  7. Introduction to topological quantum matter & quantum computation

    CERN Document Server

    Stanescu, Tudor D

    2017-01-01

    What is -topological- about topological quantum states? How many types of topological quantum phases are there? What is a zero-energy Majorana mode, how can it be realized in a solid state system, and how can it be used as a platform for topological quantum computation? What is quantum computation and what makes it different from classical computation? Addressing these and other related questions, Introduction to Topological Quantum Matter & Quantum Computation provides an introduction to and a synthesis of a fascinating and rapidly expanding research field emerging at the crossroads of condensed matter physics, mathematics, and computer science. Providing the big picture, this book is ideal for graduate students and researchers entering this field as it allows for the fruitful transfer of paradigms and ideas amongst different areas, and includes many specific examples to help the reader understand abstract and sometimes challenging concepts. It explores the topological quantum world beyond the well-know...

  8. The geometry of elementary particles

    International Nuclear Information System (INIS)

    Lov, T.R.

    1987-01-01

    A new model of elementary particles based on the geometry of Quantum deSitter space QdS = SU (3,2)/(SU(3,1) x U(1)) is introduced and studied. QdS is a complexification of quantization of anti-de Sitter space, AdS = SO(3,2)/SO(3,1), which in recent years had played a pivotal role in supergravity. The nontrival principle fiber bundle has total space SU(3,2), fiber SU(3,1) x U(1) and base QdS. In this setting, the standard recipes for Yang-Mills fields don't work. These require connections and the associated covariant derivatives. Here it is shown that the Lie derivatives, not the covariant derivatives are important in quantization. In this setting, the no-go theorems are not valid. This new quantum mechanics leads to a model of elementary particles as vertical vector fields in the bundle with interaction via the Lie bracket. There are five physical interactions modelled by the bracket interaction. The quantum numbers are identified as the roots of su(3,2) and are preserved under the bracket interaction. The model explains conservation of charge, baryon number, lepton number, parity and the heirarchy problem. Since the bracket is the curvature of a homogeneous space, particles are then the curvature of QdS. This model for particles is consistent with the requirements of General Relativity. Furthermore, since the curvature tensor is built from the quantized wave functions, the curvature tensor is quantized and this is quantum theory of gravity

  9. Cartan calculus on quantum Lie algebras

    International Nuclear Information System (INIS)

    Schupp, P.; Watts, P.; Zumino, B.

    1993-01-01

    A generalization of the differential geometry of forms and vector fields to the case of quantum Lie algebras is given. In an abstract formulation that incorporates many existing examples of differential geometry on quantum spaces we combine an exterior derivative, inner derivations, Lie derivatives, forms and functions au into one big algebra, the ''Cartan Calculus.''

  10. The Geometry Conference

    CERN Document Server

    Bárány, Imre; Vilcu, Costin

    2016-01-01

    This volume presents easy-to-understand yet surprising properties obtained using topological, geometric and graph theoretic tools in the areas covered by the Geometry Conference that took place in Mulhouse, France from September 7–11, 2014 in honour of Tudor Zamfirescu on the occasion of his 70th anniversary. The contributions address subjects in convexity and discrete geometry, in distance geometry or with geometrical flavor in combinatorics, graph theory or non-linear analysis. Written by top experts, these papers highlight the close connections between these fields, as well as ties to other domains of geometry and their reciprocal influence. They offer an overview on recent developments in geometry and its border with discrete mathematics, and provide answers to several open questions. The volume addresses a large audience in mathematics, including researchers and graduate students interested in geometry and geometrical problems.

  11. Cavity quantum electrodynamics using a near-resonance two-level system: Emergence of the Glauber state

    Energy Technology Data Exchange (ETDEWEB)

    Sarabi, B.; Ramanayaka, A. N. [Laboratory for Physical Sciences, College Park, Maryland 20740 (United States); Department of Physics, University of Maryland, College Park, Maryland 20742 (United States); Burin, A. L. [Department of Chemistry, Tulane University, New Orleans, Louisiana 70118 (United States); Wellstood, F. C. [Department of Physics, University of Maryland, College Park, Maryland 20742 (United States); Joint Quantum Institute, University of Maryland, College Park, Maryland 20742 (United States); Osborn, K. D. [Laboratory for Physical Sciences, College Park, Maryland 20740 (United States); Joint Quantum Institute, University of Maryland, College Park, Maryland 20742 (United States)

    2015-04-27

    Random tunneling two-level systems (TLSs) in dielectrics have been of interest recently because they adversely affect the performance of superconducting qubits. The coupling of TLSs to qubits has allowed individual TLS characterization, which has previously been limited to TLSs within (thin) Josephson tunneling barriers made from aluminum oxide. Here, we report on the measurement of an individual TLS within the capacitor of a lumped-element LC microwave resonator, which forms a cavity quantum electrodynamics (CQED) system and allows for individual TLS characterization in a different structure and material than demonstrated with qubits. Due to the reduced volume of the dielectric (80 μm{sup 3}), even with a moderate dielectric thickness (250 nm), we achieve the strong coupling regime as evidenced by the vacuum Rabi splitting observed in the cavity spectrum. A TLS with a coherence time of 3.2 μs was observed in a film of silicon nitride as analyzed with a Jaynes-Cummings spectral model, which is larger than seen from superconducting qubits. As the drive power is increased, we observe an unusual but explicable set of continuous and discrete crossovers from the vacuum Rabi split transitions to the Glauber (coherent) state.

  12. Quantum optics

    National Research Council Canada - National Science Library

    Agarwal, G. S

    2013-01-01

    .... Focusing on applications of quantum optics, the textbook covers recent developments such as engineering of quantum states, quantum optics on a chip, nano-mechanical mirrors, quantum entanglement...

  13. Quantum communication with photons

    International Nuclear Information System (INIS)

    Tittel, W.

    2005-01-01

    Full text: The discovery that transmission of information encoded into single quantum systems enables new forms of communication let to the emergence of the domain of quantum communication. During the last ten years, various key experiments based on photons as carrier of the quantum information have been realized. Today, quantum cryptography systems based on faint laser pulses can be purchased commercially, bi-partite entanglement has been distributed over long distances and has been used for quantum key distribution, and quantum purification, teleportation and entanglement swapping have been demonstrated. I will give a general introduction into this fascinating field and will review experimental achievements in the domain of quantum communication with discrete two-level quantum systems (qubits) encoded into photons. (author)

  14. Algorithms in Algebraic Geometry

    CERN Document Server

    Dickenstein, Alicia; Sommese, Andrew J

    2008-01-01

    In the last decade, there has been a burgeoning of activity in the design and implementation of algorithms for algebraic geometric computation. Some of these algorithms were originally designed for abstract algebraic geometry, but now are of interest for use in applications and some of these algorithms were originally designed for applications, but now are of interest for use in abstract algebraic geometry. The workshop on Algorithms in Algebraic Geometry that was held in the framework of the IMA Annual Program Year in Applications of Algebraic Geometry by the Institute for Mathematics and Its

  15. Revolutions of Geometry

    CERN Document Server

    O'Leary, Michael

    2010-01-01

    Guides readers through the development of geometry and basic proof writing using a historical approach to the topic. In an effort to fully appreciate the logic and structure of geometric proofs, Revolutions of Geometry places proofs into the context of geometry's history, helping readers to understand that proof writing is crucial to the job of a mathematician. Written for students and educators of mathematics alike, the book guides readers through the rich history and influential works, from ancient times to the present, behind the development of geometry. As a result, readers are successfull

  16. Fundamental concepts of geometry

    CERN Document Server

    Meserve, Bruce E

    1983-01-01

    Demonstrates relationships between different types of geometry. Provides excellent overview of the foundations and historical evolution of geometrical concepts. Exercises (no solutions). Includes 98 illustrations.

  17. Developments in special geometry

    International Nuclear Information System (INIS)

    Mohaupt, Thomas; Vaughan, Owen

    2012-01-01

    We review the special geometry of N = 2 supersymmetric vector and hypermultiplets with emphasis on recent developments and applications. A new formulation of the local c-map based on the Hesse potential and special real coordinates is presented. Other recent developments include the Euclidean version of special geometry, and generalizations of special geometry to non-supersymmetric theories. As applications we discuss the proof that the local r-map and c-map preserve geodesic completeness, and the construction of four- and five-dimensional static solutions through dimensional reduction over time. The shared features of the real, complex and quaternionic version of special geometry are stressed throughout.

  18. Geometry and physics of branes

    International Nuclear Information System (INIS)

    Gal'tsov, D V

    2003-01-01

    The book brings together the contents of lecture courses delivered at the school 'Geometry and Physics of Branes' which took place at the Center 'Alessandro Volta' (Como, Italy) in the spring of 2001. The purpose of the school was to provide an introduction to some lines of research, related to the notion of branes in superstring theory, which are in the focus of attention both in the physical and mathematical communities. The book is structured into three parts: the first contains an elementary introduction to branes, the second is devoted to physical aspects (conformal field theory on open and unoriented surfaces and topics in string tachyon dynamics), and the last contains some more formal mathematical developments. An introduction to branes is given in a remarkably lucid contribution by A Lerda. It opens with a construction of p-brane solutions in classical IIA and IIB supergravities with particular emphasis on the 'fundamental string' solution, the NS5-brane and the D3-brane. Then, the quantum description of D-branes is discussed in terms of boundary states of the closed superstring, which is an alternative to the more common description in terms of open strings with Dirichlet boundary conditions in the transverse to the brane directions. When a constant gauge field is present in the D-brane worldvolume, the boundary states are coherent states of the string oscillators depending on the field strength tensor. The couplings of the brane to the bulk fields - the graviton, the dilaton, and the Kalb-Ramond fields - are then extracted and shown to be precisely the ones that are produced by the Dirac-Born-Infeld action governing the low-energy dynamics of the D-brane derived using the open strings formalism. It is also shown that in the classical limit, the boundary states correctly reproduce the parameters of the corresponding classical solutions. The second part of the book starts with a contribution by Y S Stanev devoted to the two-dimensional conformal field

  19. Hopf algebras in noncommutative geometry

    International Nuclear Information System (INIS)

    Varilly, Joseph C.

    2001-10-01

    We give an introductory survey to the use of Hopf algebras in several problems of non- commutative geometry. The main example, the Hopf algebra of rooted trees, is a graded, connected Hopf algebra arising from a universal construction. We show its relation to the algebra of transverse differential operators introduced by Connes and Moscovici in order to compute a local index formula in cyclic cohomology, and to the several Hopf algebras defined by Connes and Kreimer to simplify the combinatorics of perturbative renormalization. We explain how characteristic classes for a Hopf module algebra can be obtained from the cyclic cohomology of the Hopf algebra which acts on it. Finally, we discuss the theory of non- commutative spherical manifolds and show how they arise as homogeneous spaces of certain compact quantum groups. (author)

  20. The essentials of quantum mechanics

    International Nuclear Information System (INIS)

    Omnes, R.

    2006-09-01

    This book is an introduction to quantum mechanics, the author explains the foundation, interpretation and today limits of this science. The consequences of quantum concepts are reviewed through the lens of recent experimental data. In that way, issues like wave-particle duality, uncertainty principle, decoherence, relationship with classical mechanics or the unicity of reality, issues that were difficult to grasp before, appear now clearer. The book has been divided into 8 chapters: 1) possibility and chance, 2) quantum formalism, 3) fundamental quantum concepts, 4) how to deal with quantum mechanics, 5) decoherence theory, 6) the quantum logic system, 7) the emergence of classical physics, and 8) quantum measurements. (A.C.)

  1. Geometry of multihadron production

    Energy Technology Data Exchange (ETDEWEB)

    Bjorken, J.D.

    1994-10-01

    This summary talk only reviews a small sample of topics featured at this symposium: Introduction; The Geometry and Geography of Phase space; Space-Time Geometry and HBT; Multiplicities, Intermittency, Correlations; Disoriented Chiral Condensate; Deep Inelastic Scattering at HERA; and Other Contributions.

  2. Designs and finite geometries

    CERN Document Server

    1996-01-01

    Designs and Finite Geometries brings together in one place important contributions and up-to-date research results in this important area of mathematics. Designs and Finite Geometries serves as an excellent reference, providing insight into some of the most important research issues in the field.

  3. Geometry of multihadron production

    International Nuclear Information System (INIS)

    Bjorken, J.D.

    1994-10-01

    This summary talk only reviews a small sample of topics featured at this symposium: Introduction; The Geometry and Geography of Phase space; Space-Time Geometry and HBT; Multiplicities, Intermittency, Correlations; Disoriented Chiral Condensate; Deep Inelastic Scattering at HERA; and Other Contributions

  4. The Beauty of Geometry

    Science.gov (United States)

    Morris, Barbara H.

    2004-01-01

    This article describes a geometry project that used the beauty of stained-glass-window designs to teach middle school students about geometric figures and concepts. Three honors prealgebra teachers and a middle school mathematics gifted intervention specialist created a geometry project that covered the curriculum and also assessed students'…

  5. Quantum spacetime operationally based on propagators for extended test particles

    International Nuclear Information System (INIS)

    Prugovecki, E.

    1981-01-01

    By taking into account the quantum aspects intrinsic to any operational definition of spatio-temporal relationships, a stochastic concept of spacetime emerges. In relation to its classical counterpart is realized as a stochastic mean around which quantum fluctuations become negligible only in the limit of macroscopic spacetime intervals. The test-particle propagators used in the proposed quantum concept of spacetime are derived by solving in a consistent manner the localizability problem for relativistic particles. This is achieved in the framework of the stochastic phase space formulation of quantum mechanics, which in the nonrelativistic context is shown to result from systems of imprimitivity related to phase space conserved probability currents derivable from bona fide convariant probability densities in stochastic phase spaces of one particle systems, which can be interpreted as due to measurements performed with extended rather than pointlike test particles. The associated particle propagators can be therefore consistently related to coordinate probability densities measurable by the exchange of photons in between test particles from a chosen standard. Quantum spacetime is defined as the family of propagators corresponding to all conceivable coherent flows of test particles. This family of free-fall propagators has to satisfy certain self-consistency conditions as well as consistent laws of motion which inplicitly determine the stochastic geometro-dynamics of quantum space-time. Field theory on quantum spacetime retains many of the formal features of conventional quantum field theory. On a fundamental epistemological level stochastic geometries emerge as essential prerequisites in the construction of spacetime models that would be operationally based and yet consistent with the relativity principle as well as with the uncertinty principle

  6. Covariant differential calculus on the quantum hyperplane

    International Nuclear Information System (INIS)

    Wess, J.

    1991-01-01

    We develop a differential calculus on the quantum hyperplane covariant with respect to the action of the quantum group GL q (n). This is a concrete example of noncommutative differential geometry. We describe the general constraints for a noncommutative differential calculus and verify that the example given here satisfies all these constraints. We also discuss briefly the integration over the quantum plane. (orig.)

  7. Geometry on the space of geometries

    International Nuclear Information System (INIS)

    Christodoulakis, T.; Zanelli, J.

    1988-06-01

    We discuss the geometric structure of the configuration space of pure gravity. This is an infinite dimensional manifold, M, where each point represents one spatial geometry g ij (x). The metric on M is dictated by geometrodynamics, and from it, the Christoffel symbols and Riemann tensor can be found. A ''free geometry'' tracing a geodesic on the manifold describes the time evolution of space in the strong gravity limit. In a regularization previously introduced by the authors, it is found that M does not have the same dimensionality, D, everywhere, and that D is not a scalar, although it is covariantly constant. In this regularization, it is seen that the path integral measure can be absorbed in a renormalization of the cosmological constant. (author). 19 refs

  8. Signature change events: a challenge for quantum gravity?

    International Nuclear Information System (INIS)

    White, Angela; Weinfurtner, Silke; Visser, Matt

    2010-01-01

    Within the framework of either Euclidean (functional integral) quantum gravity or canonical general relativity the signature of the manifold is a priori unconstrained. Furthermore, recent developments in the emergent spacetime programme have led to a physically feasible implementation of (analogue) signature change events. This suggests that it is time to revisit the sometimes controversial topic of signature change in general relativity. Specifically, we shall focus on the behaviour of a quantum field defined on a manifold containing regions of different signature. We emphasize that regardless of the underlying classical theory, there are severe problems associated with any quantum field theory residing on a signature-changing background. (Such as the production of what is naively an infinite number of particles, with an infinite energy density.) We show how the problem of quantum fields exposed to finite regions of Euclidean-signature (Riemannian) geometry has similarities with the quantum barrier penetration problem. Finally we raise the question as to whether signature change transitions could be fully understood and dynamically generated within (modified) classical general relativity, or whether they require the knowledge of a theory of quantum gravity.

  9. A strongly interacting polaritonic quantum dot

    Science.gov (United States)

    Jia, Ningyuan; Schine, Nathan; Georgakopoulos, Alexandros; Ryou, Albert; Clark, Logan W.; Sommer, Ariel; Simon, Jonathan

    2018-06-01

    Polaritons are promising constituents of both synthetic quantum matter1 and quantum information processors2, whose properties emerge from their components: from light, polaritons draw fast dynamics and ease of transport; from matter, they inherit the ability to collide with one another. Cavity polaritons are particularly promising as they may be confined and subjected to synthetic magnetic fields controlled by cavity geometry3, and furthermore they benefit from increased robustness due to the cavity enhancement in light-matter coupling. Nonetheless, until now, cavity polaritons have operated only in a weakly interacting mean-field regime4,5. Here we demonstrate strong interactions between individual cavity polaritons enabled by employing highly excited Rydberg atoms as the matter component of the polaritons. We assemble a quantum dot composed of approximately 150 strongly interacting Rydberg-dressed 87Rb atoms in a cavity, and observe blockaded transport of photons through it. We further observe coherent photon tunnelling oscillations, demonstrating that the dot is zero-dimensional. This work establishes the cavity Rydberg polariton as a candidate qubit in a photonic information processor and, by employing multiple resonator modes as the spatial degrees of freedom of a photonic particle, the primary ingredient to form photonic quantum matter6.

  10. Simple expression for the quantum Fisher information matrix

    Science.gov (United States)

    Šafránek, Dominik

    2018-04-01

    Quantum Fisher information matrix (QFIM) is a cornerstone of modern quantum metrology and quantum information geometry. Apart from optimal estimation, it finds applications in description of quantum speed limits, quantum criticality, quantum phase transitions, coherence, entanglement, and irreversibility. We derive a surprisingly simple formula for this quantity, which, unlike previously known general expression, does not require diagonalization of the density matrix, and is provably at least as efficient. With a minor modification, this formula can be used to compute QFIM for any finite-dimensional density matrix. Because of its simplicity, it could also shed more light on the quantum information geometry in general.

  11. Quantum Machine Learning

    OpenAIRE

    Romero García, Cristian

    2017-01-01

    [EN] In a world in which accessible information grows exponentially, the selection of the appropriate information turns out to be an extremely relevant problem. In this context, the idea of Machine Learning (ML), a subfield of Artificial Intelligence, emerged to face problems in data mining, pattern recognition, automatic prediction, among others. Quantum Machine Learning is an interdisciplinary research area combining quantum mechanics with methods of ML, in which quantum properties allow fo...

  12. F-Theory - From Geometry to Physics and Back

    CERN Multimedia

    CERN. Geneva

    2017-01-01

    Compactifications of string theory have the potential to form a bridge between what we believe is a consistent quantum theory of gravity in 10 spacetime dimensions and observed physics in four dimensions. At the same time, beautiful results from mathematics, especially algebraic geometry, are directly linked to some of the key concepts in modern particle and quantum field theory. This theory colloquium will illustrate some of these ideas in the context of F-theory, which provides a non-perturbative formulation of a class of string compactifications in their geometric regime. Recent applications of F-theory range from very concrete suggestions to address known challenges in physics beyond the Standard Model to the 'physicalization of geometry' to the construction and investigations of strongly coupled quantum field theories in various dimensions. After reviewing examples of such applications we will conclude by demonstrating the close links between geometry and physics in F-theory via some new results on the r...

  13. Tensor analysis and elementary differential geometry for physicists and engineers

    CERN Document Server

    Nguyen-Schäfer, Hung

    2017-01-01

    This book comprehensively presents topics, such as Dirac notation, tensor analysis, elementary differential geometry of moving surfaces, and k-differential forms. Additionally, two new chapters of Cartan differential forms and Dirac and tensor notations in quantum mechanics are added to this second edition. The reader is provided with hands-on calculations and worked-out examples at which he will learn how to handle the bra-ket notation, tensors, differential geometry, and differential forms; and to apply them to the physical and engineering world. Many methods and applications are given in CFD, continuum mechanics, electrodynamics in special relativity, cosmology in the Minkowski four-dimensional spacetime, and relativistic and non-relativistic quantum mechanics. Tensors, differential geometry, differential forms, and Dirac notation are very useful advanced mathematical tools in many fields of modern physics and computational engineering. They are involved in special and general relativity physics, quantum m...

  14. Probing 2D black phosphorus by quantum capacitance measurements

    International Nuclear Information System (INIS)

    Kuiri, Manabendra; Kumar, Chandan; Chakraborty, Biswanath; Gupta, Satyendra N; Naik, Mit H; Jain, Manish; Sood, A K; Das, Anindya

    2015-01-01

    Two-dimensional materials and their heterostructures have emerged as a new class of materials, not only for fundamental physics but also for electronic and optoelectronic applications. Black phosphorus (BP) is a relatively new addition to this class of materials. Its strong in-plane anisotropy makes BP a unique material for making conceptually new types of electronic devices. However, the global density of states (DOS) of BP in device geometry has not been measured experimentally. Here, we report the quantum capacitance measurements together with the conductance measurements on an hBN-protected few-layer BP (∼six layers) in a dual-gated field effect transistor (FET) geometry. The measured DOS from our quantum capacitance is compared with density functional theory (DFT). Our results reveal that the transport gap for quantum capacitance is smaller than that in conductance measurements due to the presence of localized states near the band edge. The presence of localized states is confirmed by the variable range hopping seen in our temperature dependence conductivity. A large asymmetry is observed between the electron and hole side. This asymmetric nature is attributed to the anisotropic band dispersion of BP. Our measurements establish the uniqueness of quantum capacitance in probing the localized states near the band edge, hitherto not seen in conductance measurements. (paper)

  15. Revealing novel quantum phases in quantum antiferromagnets on random lattices

    Directory of Open Access Journals (Sweden)

    R. Yu

    2009-01-01

    Full Text Available Quantum magnets represent an ideal playground for the controlled realization of novel quantum phases and of quantum phase transitions. The Hamiltonian of the system can be indeed manipulated by applying a magnetic field or pressure on the sample. When doping the system with non-magnetic impurities, novel inhomogeneous phases emerge from the interplay between geometric randomness and quantum fluctuations. In this paper we review our recent work on quantum phase transitions and novel quantum phases realized in disordered quantum magnets. The system inhomogeneity is found to strongly affect phase transitions by changing their universality class, giving the transition a novel, quantum percolative nature. Such transitions connect conventionally ordered phases to unconventional, quantum disordered ones - quantum Griffiths phases, magnetic Bose glass phases - exhibiting gapless spectra associated with low-energy localized excitations.

  16. Complex and symplectic geometry

    CERN Document Server

    Medori, Costantino; Tomassini, Adriano

    2017-01-01

    This book arises from the INdAM Meeting "Complex and Symplectic Geometry", which was held in Cortona in June 2016. Several leading specialists, including young researchers, in the field of complex and symplectic geometry, present the state of the art of their research on topics such as the cohomology of complex manifolds; analytic techniques in Kähler and non-Kähler geometry; almost-complex and symplectic structures; special structures on complex manifolds; and deformations of complex objects. The work is intended for researchers in these areas.

  17. Non-Euclidean geometry

    CERN Document Server

    Kulczycki, Stefan

    2008-01-01

    This accessible approach features two varieties of proofs: stereometric and planimetric, as well as elementary proofs that employ only the simplest properties of the plane. A short history of geometry precedes a systematic exposition of the principles of non-Euclidean geometry.Starting with fundamental assumptions, the author examines the theorems of Hjelmslev, mapping a plane into a circle, the angle of parallelism and area of a polygon, regular polygons, straight lines and planes in space, and the horosphere. Further development of the theory covers hyperbolic functions, the geometry of suff

  18. Representation Theory of Algebraic Groups and Quantum Groups

    CERN Document Server

    Gyoja, A; Shinoda, K-I; Shoji, T; Tanisaki, Toshiyuki

    2010-01-01

    Invited articles by top notch expertsFocus is on topics in representation theory of algebraic groups and quantum groupsOf interest to graduate students and researchers in representation theory, group theory, algebraic geometry, quantum theory and math physics

  19. Further Evidence in Support of the Universal Nilpotent Grammatical Computational Paradigm of Quantum Physics

    International Nuclear Information System (INIS)

    Marcer, Peter J.; Rowlands, Peter

    2010-01-01

    Further evidence is presented in favour of the computational paradigm, conceived and constructed by Rowlands and Diaz, as detailed in Rowlands' book Zero to Infinity (2007), and in particular the authors' paper 'The Grammatical Universe: the Laws of Thermodynamics and Quantum Entanglement'. The paradigm, which has isomorphic group and algebraic quantum mechanical language interpretations, not only predicts the well-established facts of quantum physics, the periodic table, chemistry / valence and of molecular biology, whose understanding it extends; it also provides an elegant, simple solution to the unresolved quantum measurement problem. In this fundamental paradigm, all the computational constructs / predictions that emerge, follow from the simple fact, that, as in quantum mechanics, the wave function is defined only up to an arbitrary fixed phase. This fixed phase provides a simple physical understanding of the quantum vacuum in quantum field theory, where only relative phases, known to be able to encode 3+1 relativistic space-time geometries, can be measured. It is the arbitrary fixed measurement standard, against which everything that follows is to be measured, even though the standard itself cannot be, since nothing exists against which to measure it. The standard, as an arbitrary fixed reference phase, functions as the holographic basis for a self-organized universal quantum process of emergent novel fermion states of matter where, following each emergence, the arbitrary standard is re-fixed anew so as to provide a complete history / holographic record or hologram of the current fixed past, advancing an unending irreversible evolution, such as is the evidence of our senses. The fermion states, in accord with the Pauli exclusion principle, each correspond to a unique nilpotent symbol in the infinite alphabet (which specifies the grammar in this nilpotent universal computational rewrite system (NUCRS) paradigm); and the alphabet, as Hill and Rowlands

  20. Low Complexity Connectivity Driven Dynamic Geometry Compression for 3D Tele-Immersion

    NARCIS (Netherlands)

    R.N. Mekuria (Rufael); D.C.A. Bulterman (Dick); P.S. Cesar Garcia (Pablo Santiago)

    2014-01-01

    htmlabstractGeometry based 3D Tele-Immersion is a novel emerging media application that involves on the fly reconstructed 3D mesh geometry. To enable real-time communication of such live reconstructed mesh geometry over a bandwidth limited link, fast dynamic geometry compression is needed. However,

  1. Geometry and physics of branes

    Energy Technology Data Exchange (ETDEWEB)

    Gal' tsov, D V

    2003-03-21

    The book brings together the contents of lecture courses delivered at the school 'Geometry and Physics of Branes' which took place at the Center 'Alessandro Volta' (Como, Italy) in the spring of 2001. The purpose of the school was to provide an introduction to some lines of research, related to the notion of branes in superstring theory, which are in the focus of attention both in the physical and mathematical communities. The book is structured into three parts: the first contains an elementary introduction to branes, the second is devoted to physical aspects (conformal field theory on open and unoriented surfaces and topics in string tachyon dynamics), and the last contains some more formal mathematical developments. An introduction to branes is given in a remarkably lucid contribution by A Lerda. It opens with a construction of p-brane solutions in classical IIA and IIB supergravities with particular emphasis on the 'fundamental string' solution, the NS5-brane and the D3-brane. Then, the quantum description of D-branes is discussed in terms of boundary states of the closed superstring, which is an alternative to the more common description in terms of open strings with Dirichlet boundary conditions in the transverse to the brane directions. When a constant gauge field is present in the D-brane worldvolume, the boundary states are coherent states of the string oscillators depending on the field strength tensor. The couplings of the brane to the bulk fields - the graviton, the dilaton, and the Kalb-Ramond fields - are then extracted and shown to be precisely the ones that are produced by the Dirac-Born-Infeld action governing the low-energy dynamics of the D-brane derived using the open strings formalism. It is also shown that in the classical limit, the boundary states correctly reproduce the parameters of the corresponding classical solutions. The second part of the book starts with a contribution by Y S Stanev devoted to the two

  2. Quantum Erasure: Quantum Interference Revisited

    OpenAIRE

    Walborn, Stephen P.; Cunha, Marcelo O. Terra; Pádua, Sebastião; Monken, Carlos H.

    2005-01-01

    Recent experiments in quantum optics have shed light on the foundations of quantum physics. Quantum erasers - modified quantum interference experiments - show that quantum entanglement is responsible for the complementarity principle.

  3. Lectures on coarse geometry

    CERN Document Server

    Roe, John

    2003-01-01

    Coarse geometry is the study of spaces (particularly metric spaces) from a 'large scale' point of view, so that two spaces that look the same from a great distance are actually equivalent. This point of view is effective because it is often true that the relevant geometric properties of metric spaces are determined by their coarse geometry. Two examples of important uses of coarse geometry are Gromov's beautiful notion of a hyperbolic group and Mostow's proof of his famous rigidity theorem. The first few chapters of the book provide a general perspective on coarse structures. Even when only metric coarse structures are in view, the abstract framework brings the same simplification as does the passage from epsilons and deltas to open sets when speaking of continuity. The middle section reviews notions of negative curvature and rigidity. Modern interest in large scale geometry derives in large part from Mostow's rigidity theorem and from Gromov's subsequent 'large scale' rendition of the crucial properties of n...

  4. Lectures on Symplectic Geometry

    CERN Document Server

    Silva, Ana Cannas

    2001-01-01

    The goal of these notes is to provide a fast introduction to symplectic geometry for graduate students with some knowledge of differential geometry, de Rham theory and classical Lie groups. This text addresses symplectomorphisms, local forms, contact manifolds, compatible almost complex structures, Kaehler manifolds, hamiltonian mechanics, moment maps, symplectic reduction and symplectic toric manifolds. It contains guided problems, called homework, designed to complement the exposition or extend the reader's understanding. There are by now excellent references on symplectic geometry, a subset of which is in the bibliography of this book. However, the most efficient introduction to a subject is often a short elementary treatment, and these notes attempt to serve that purpose. This text provides a taste of areas of current research and will prepare the reader to explore recent papers and extensive books on symplectic geometry where the pace is much faster. For this reprint numerous corrections and cl...

  5. Complex algebraic geometry

    CERN Document Server

    Kollár, János

    1997-01-01

    This volume contains the lectures presented at the third Regional Geometry Institute at Park City in 1993. The lectures provide an introduction to the subject, complex algebraic geometry, making the book suitable as a text for second- and third-year graduate students. The book deals with topics in algebraic geometry where one can reach the level of current research while starting with the basics. Topics covered include the theory of surfaces from the viewpoint of recent higher-dimensional developments, providing an excellent introduction to more advanced topics such as the minimal model program. Also included is an introduction to Hodge theory and intersection homology based on the simple topological ideas of Lefschetz and an overview of the recent interactions between algebraic geometry and theoretical physics, which involve mirror symmetry and string theory.

  6. Geometry and Combinatorics

    DEFF Research Database (Denmark)

    Kokkendorff, Simon Lyngby

    2002-01-01

    The subject of this Ph.D.-thesis is somewhere in between continuous and discrete geometry. Chapter 2 treats the geometry of finite point sets in semi-Riemannian hyperquadrics,using a matrix whose entries are a trigonometric function of relative distances in a given point set. The distance...... to the geometry of a simplex in a semi-Riemannian hyperquadric. In chapter 3 we study which finite metric spaces that are realizable in a hyperbolic space in the limit where curvature goes to -∞. We show that such spaces are the so called leaf spaces, the set of degree 1 vertices of weighted trees. We also...... establish results on the limiting geometry of such an isometrically realized leaf space simplex in hyperbolic space, when curvature goes to -∞. Chapter 4 discusses negative type of metric spaces. We give a measure theoretic treatment of this concept and related invariants. The theory developed...

  7. The geometry of geodesics

    CERN Document Server

    Busemann, Herbert

    2005-01-01

    A comprehensive approach to qualitative problems in intrinsic differential geometry, this text examines Desarguesian spaces, perpendiculars and parallels, covering spaces, the influence of the sign of the curvature on geodesics, more. 1955 edition. Includes 66 figures.

  8. Geometry and billiards

    CERN Document Server

    Tabachnikov, Serge

    2005-01-01

    Mathematical billiards describe the motion of a mass point in a domain with elastic reflections off the boundary or, equivalently, the behavior of rays of light in a domain with ideally reflecting boundary. From the point of view of differential geometry, the billiard flow is the geodesic flow on a manifold with boundary. This book is devoted to billiards in their relation with differential geometry, classical mechanics, and geometrical optics. The topics covered include variational principles of billiard motion, symplectic geometry of rays of light and integral geometry, existence and nonexistence of caustics, optical properties of conics and quadrics and completely integrable billiards, periodic billiard trajectories, polygonal billiards, mechanisms of chaos in billiard dynamics, and the lesser-known subject of dual (or outer) billiards. The book is based on an advanced undergraduate topics course (but contains more material than can be realistically taught in one semester). Although the minimum prerequisit...

  9. Introduction to tropical geometry

    CERN Document Server

    Maclagan, Diane

    2015-01-01

    Tropical geometry is a combinatorial shadow of algebraic geometry, offering new polyhedral tools to compute invariants of algebraic varieties. It is based on tropical algebra, where the sum of two numbers is their minimum and the product is their sum. This turns polynomials into piecewise-linear functions, and their zero sets into polyhedral complexes. These tropical varieties retain a surprising amount of information about their classical counterparts. Tropical geometry is a young subject that has undergone a rapid development since the beginning of the 21st century. While establishing itself as an area in its own right, deep connections have been made to many branches of pure and applied mathematics. This book offers a self-contained introduction to tropical geometry, suitable as a course text for beginning graduate students. Proofs are provided for the main results, such as the Fundamental Theorem and the Structure Theorem. Numerous examples and explicit computations illustrate the main concepts. Each of t...

  10. Rudiments of algebraic geometry

    CERN Document Server

    Jenner, WE

    2017-01-01

    Aimed at advanced undergraduate students of mathematics, this concise text covers the basics of algebraic geometry. Topics include affine spaces, projective spaces, rational curves, algebraic sets with group structure, more. 1963 edition.

  11. Architectural Geometry and Fabrication-Aware Design

    KAUST Repository

    Pottmann, Helmut

    2013-01-01

    . This is the source of numerous research problems many of which fall into the area of Geometric Computing and form part of a recently emerging research area, called "Architectural Geometry". The present paper provides a short survey of research in Architectural

  12. Implosions and hypertoric geometry

    DEFF Research Database (Denmark)

    Dancer, A.; Kirwan, F.; Swann, A.

    2013-01-01

    The geometry of the universal hyperkahler implosion for SU (n) is explored. In particular, we show that the universal hyperkahler implosion naturally contains a hypertoric variety described in terms of quivers. Furthermore, we discuss a gauge theoretic approach to hyperkahler implosion.......The geometry of the universal hyperkahler implosion for SU (n) is explored. In particular, we show that the universal hyperkahler implosion naturally contains a hypertoric variety described in terms of quivers. Furthermore, we discuss a gauge theoretic approach to hyperkahler implosion....

  13. Intermediate algebra & analytic geometry

    CERN Document Server

    Gondin, William R

    1967-01-01

    Intermediate Algebra & Analytic Geometry Made Simple focuses on the principles, processes, calculations, and methodologies involved in intermediate algebra and analytic geometry. The publication first offers information on linear equations in two unknowns and variables, functions, and graphs. Discussions focus on graphic interpretations, explicit and implicit functions, first quadrant graphs, variables and functions, determinate and indeterminate systems, independent and dependent equations, and defective and redundant systems. The text then examines quadratic equations in one variable, system

  14. d-geometries revisited

    CERN Document Server

    Ceresole, Anna; Gnecchi, Alessandra; Marrani, Alessio

    2013-01-01

    We analyze some properties of the four dimensional supergravity theories which originate from five dimensions upon reduction. They generalize to N>2 extended supersymmetries the d-geometries with cubic prepotentials, familiar from N=2 special K\\"ahler geometry. We emphasize the role of a suitable parametrization of the scalar fields and the corresponding triangular symplectic basis. We also consider applications to the first order flow equations for non-BPS extremal black holes.

  15. Are Quantum Models for Order Effects Quantum?

    Science.gov (United States)

    Moreira, Catarina; Wichert, Andreas

    2017-12-01

    The application of principles of Quantum Mechanics in areas outside of physics has been getting increasing attention in the scientific community in an emergent disciplined called Quantum Cognition. These principles have been applied to explain paradoxical situations that cannot be easily explained through classical theory. In quantum probability, events are characterised by a superposition state, which is represented by a state vector in a N-dimensional vector space. The probability of an event is given by the squared magnitude of the projection of this superposition state into the desired subspace. This geometric approach is very useful to explain paradoxical findings that involve order effects, but do we really need quantum principles for models that only involve projections? This work has two main goals. First, it is still not clear in the literature if a quantum projection model has any advantage towards a classical projection. We compared both models and concluded that the Quantum Projection model achieves the same results as its classical counterpart, because the quantum interference effects play no role in the computation of the probabilities. Second, it intends to propose an alternative relativistic interpretation for rotation parameters that are involved in both classical and quantum models. In the end, instead of interpreting these parameters as a similarity measure between questions, we propose that they emerge due to the lack of knowledge concerned with a personal basis state and also due to uncertainties towards the state of world and towards the context of the questions.

  16. CMS geometry through 2020

    International Nuclear Information System (INIS)

    Osborne, I; Brownson, E; Eulisse, G; Jones, C D; Sexton-Kennedy, E; Lange, D J

    2014-01-01

    CMS faces real challenges with upgrade of the CMS detector through 2020 and beyond. One of the challenges, from the software point of view, is managing upgrade simulations with the same software release as the 2013 scenario. We present the CMS geometry description software model, its integration with the CMS event setup and core software. The CMS geometry configuration and selection is implemented in Python. The tools collect the Python configuration fragments into a script used in CMS workflow. This flexible and automated geometry configuration allows choosing either transient or persistent version of the same scenario and specific version of the same scenario. We describe how the geometries are integrated and validated, and how we define and handle different geometry scenarios in simulation and reconstruction. We discuss how to transparently manage multiple incompatible geometries in the same software release. Several examples are shown based on current implementation assuring consistent choice of scenario conditions. The consequences and implications for multiple/different code algorithms are discussed.

  17. Software Geometry in Simulations

    Science.gov (United States)

    Alion, Tyler; Viren, Brett; Junk, Tom

    2015-04-01

    The Long Baseline Neutrino Experiment (LBNE) involves many detectors. The experiment's near detector (ND) facility, may ultimately involve several detectors. The far detector (FD) will be significantly larger than any other Liquid Argon (LAr) detector yet constructed; many prototype detectors are being constructed and studied to motivate a plethora of proposed FD designs. Whether it be a constructed prototype or a proposed ND/FD design, every design must be simulated and analyzed. This presents a considerable challenge to LBNE software experts; each detector geometry must be described to the simulation software in an efficient way which allows for multiple authors to easily collaborate. Furthermore, different geometry versions must be tracked throughout their use. We present a framework called General Geometry Description (GGD), written and developed by LBNE software collaborators for managing software to generate geometries. Though GGD is flexible enough to be used by any experiment working with detectors, we present it's first use in generating Geometry Description Markup Language (GDML) files to interface with LArSoft, a framework of detector simulations, event reconstruction, and data analyses written for all LAr technology users at Fermilab. Brett is the other of the framework discussed here, the General Geometry Description (GGD).

  18. Introduction to combinatorial geometry

    International Nuclear Information System (INIS)

    Gabriel, T.A.; Emmett, M.B.

    1985-01-01

    The combinatorial geometry package as used in many three-dimensional multimedia Monte Carlo radiation transport codes, such as HETC, MORSE, and EGS, is becoming the preferred way to describe simple and complicated systems. Just about any system can be modeled using the package with relatively few input statements. This can be contrasted against the older style geometry packages in which the required input statements could be large even for relatively simple systems. However, with advancements come some difficulties. The users of combinatorial geometry must be able to visualize more, and, in some instances, all of the system at a time. Errors can be introduced into the modeling which, though slight, and at times hard to detect, can have devastating effects on the calculated results. As with all modeling packages, the best way to learn the combinatorial geometry is to use it, first on a simple system then on more complicated systems. The basic technique for the description of the geometry consists of defining the location and shape of the various zones in terms of the intersections and unions of geometric bodies. The geometric bodies which are generally included in most combinatorial geometry packages are: (1) box, (2) right parallelepiped, (3) sphere, (4) right circular cylinder, (5) right elliptic cylinder, (6) ellipsoid, (7) truncated right cone, (8) right angle wedge, and (9) arbitrary polyhedron. The data necessary to describe each of these bodies are given. As can be easily noted, there are some subsets included for simplicity

  19. Virial theorem and hypervirial theorem in a spherical geometry

    International Nuclear Information System (INIS)

    Li Yan; Chen Jingling; Zhang Fulin

    2011-01-01

    The virial theorem in the one- and two-dimensional spherical geometry are presented in both classical and quantum mechanics. Choosing a special class of hypervirial operators, the quantum hypervirial relations in the spherical spaces are obtained. With the aid of the Hellmann-Feynman theorem, these relations can be used to formulate a perturbation theorem without wavefunctions, corresponding to the hypervirial-Hellmann-Feynman theorem perturbation theorem of Euclidean geometry. The one-dimensional harmonic oscillator and two-dimensional Coulomb system in the spherical spaces are given as two sample examples to illustrate the perturbation method. (paper)

  20. Simplicial quantum gravity

    International Nuclear Information System (INIS)

    Hartle, J.B.

    1985-01-01

    Simplicial approximation and the ideas associated with the Regge calculus provide a concrete way of implementing a sum over histories formulation of quantum gravity. A simplicial geometry is made up of flat simplices joined together in a prescribed way together with an assignment of lengths to their edges. A sum over simplicial geometries is a sum over the different ways the simplices can be joined together with an integral over their edge lengths. The construction of the simplicial Euclidean action for this approach to quantum general relativity is illustrated. The recovery of the diffeomorphism group in the continuum limit is discussed. Some possible classes of simplicial complexes with which to define a sum over topologies are described. In two dimensional quantum gravity it is argued that a reasonable class is the class of pseudomanifolds

  1. Global aspects of complex geometry

    CERN Document Server

    Catanese, Fabrizio; Huckleberry, Alan T

    2006-01-01

    Present an overview of developments in Complex Geometry. This book covers topics that range from curve and surface theory through special varieties in higher dimensions, moduli theory, Kahler geometry, and group actions to Hodge theory and characteristic p-geometry.

  2. The Quantum Effect on Friedmann Equation in FRW Universe

    Directory of Open Access Journals (Sweden)

    Wei Zhang

    2018-01-01

    Full Text Available We study the modified Friedmann equation in the Friedmann-Robertson-Walker universe with quantum effect. Our modified results mainly stem from the new entropy-area relation and the novel idea of Padmanabhan, who considers the cosmic space to be emerging as the cosmic time progresses, so that the expansion rate of the universe is determined by the difference of degrees of freedom between the holographic surface and the bulk inside. We also discuss the possibility of having bounce cosmological solution from the modified Friedmann equation in spatially flat geometry.

  3. Transformation & uncertainty : some thoughts on quantum probability theory, quantum statistics, and natural bundles

    NARCIS (Netherlands)

    Janssens, B.

    2010-01-01

    This PHD thesis is concerned partly with uncertainty relations in quantum probability theory, partly with state estimation in quantum stochastics, and partly with natural bundles in differential geometry. The laws of quantum mechanics impose severe restrictions on the performance of measurement.

  4. Modern Canonical Quantum General Relativity;

    International Nuclear Information System (INIS)

    Kiefer, Claus

    2008-01-01

    The open problem of constructing a consistent and experimentally tested quantum theory of the gravitational field has its place at the heart of fundamental physics. The main approaches can be roughly divided into two classes: either one seeks a unified quantum framework of all interactions or one starts with a direct quantization of general relativity. In the first class, string theory (M-theory) is the only known example. In the second class, one can make an additional methodological distinction: while covariant approaches such as path-integral quantization use the four-dimensional metric as an essential ingredient of their formalism, canonical approaches start with a foliation of spacetime into spacelike hypersurfaces in order to arrive at a Hamiltonian formulation. The present book is devoted to one of the canonical approaches-loop quantum gravity. It is named modern canonical quantum general relativity by the author because it uses connections and holonomies as central variables, which are analogous to the variables used in Yang-Mills theories. In fact, the canonically conjugate variables are a holonomy of a connection and the flux of a non-Abelian electric field. This has to be contrasted with the older geometrodynamical approach in which the metric of three-dimensional space and the second fundamental form are the fundamental entities, an approach which is still actively being pursued. It is the author's ambition to present loop quantum gravity in a way in which every step is formulated in a mathematically rigorous form. The formal Leitmotiv of loop quantum gravity is background independence. Non-gravitational theories are usually quantized on a given non-dynamical background. In contrast, due to the geometrical nature of gravity, no such background exists in quantum gravity. Instead, the notion of a background is supposed to emerge a posteriori as an approximate notion from quantum states of geometry. As a consequence, the standard ultraviolet divergences of

  5. THE COMMON EVOLUTION OF GEOMETRY AND ARCHITECTURE FROM A GEODETIC POINT OF VIEW

    Directory of Open Access Journals (Sweden)

    T. Bellone

    2017-05-01

    Full Text Available Throughout history the link between geometry and architecture has been strong and while architects have used mathematics to construct their buildings, geometry has always been the essential tool allowing them to choose spatial shapes which are aesthetically appropriate. Sometimes it is geometry which drives architectural choices, but at other times it is architectural innovation which facilitates the emergence of new ideas in geometry. Among the best known types of geometry (Euclidean, projective, analytical, Topology, descriptive, fractal,… those most frequently employed in architectural design are: – Euclidean Geometry – Projective Geometry – The non-Euclidean geometries. Entire architectural periods are linked to specific types of geometry. Euclidean geometry, for example, was the basis for architectural styles from Antiquity through to the Romanesque period. Perspective and Projective geometry, for their part, were important from the Gothic period through the Renaissance and into the Baroque and Neo-classical eras, while non-Euclidean geometries characterize modern architecture.

  6. The Common Evolution of Geometry and Architecture from a Geodetic Point of View

    Science.gov (United States)

    Bellone, T.; Fiermonte, F.; Mussio, L.

    2017-05-01

    Throughout history the link between geometry and architecture has been strong and while architects have used mathematics to construct their buildings, geometry has always been the essential tool allowing them to choose spatial shapes which are aesthetically appropriate. Sometimes it is geometry which drives architectural choices, but at other times it is architectural innovation which facilitates the emergence of new ideas in geometry. Among the best known types of geometry (Euclidean, projective, analytical, Topology, descriptive, fractal,…) those most frequently employed in architectural design are: - Euclidean Geometry - Projective Geometry - The non-Euclidean geometries. Entire architectural periods are linked to specific types of geometry. Euclidean geometry, for example, was the basis for architectural styles from Antiquity through to the Romanesque period. Perspective and Projective geometry, for their part, were important from the Gothic period through the Renaissance and into the Baroque and Neo-classical eras, while non-Euclidean geometries characterize modern architecture.

  7. Sources of hyperbolic geometry

    CERN Document Server

    Stillwell, John

    1996-01-01

    This book presents, for the first time in English, the papers of Beltrami, Klein, and Poincaré that brought hyperbolic geometry into the mainstream of mathematics. A recognition of Beltrami comparable to that given the pioneering works of Bolyai and Lobachevsky seems long overdue-not only because Beltrami rescued hyperbolic geometry from oblivion by proving it to be logically consistent, but because he gave it a concrete meaning (a model) that made hyperbolic geometry part of ordinary mathematics. The models subsequently discovered by Klein and Poincaré brought hyperbolic geometry even further down to earth and paved the way for the current explosion of activity in low-dimensional geometry and topology. By placing the works of these three mathematicians side by side and providing commentaries, this book gives the student, historian, or professional geometer a bird's-eye view of one of the great episodes in mathematics. The unified setting and historical context reveal the insights of Beltrami, Klein, and Po...

  8. Bosonization in a two-dimensional Riemann Cartan geometry

    International Nuclear Information System (INIS)

    Denardo, G.; Spallucci, E.

    1987-01-01

    We study the vacuum functional for a Dirac field in a two dimensional Riemann-Cartan geometry. Torsion is treated as a quantum variable while the metric is considered as a classical background field. Decoupling spinors from the non-Riemannian part of the geometry introduces a chiral Jacobian into the vacuum generating functional. We compute this functional Jacobian determinant by means of the Alvarez method. Finally, we show that the effective action for the background geometry is of the Liouville type and does not preserve any memory of the initial torsion field. (author)

  9. Quantum solitons

    Energy Technology Data Exchange (ETDEWEB)

    Abram, I [Centre National d' Etudes des Telecommunications (CNET), 196 Avenue Henri Ravera, F-92220 Bagneux (France)

    1999-02-01

    results in an improvement in the bit-error rate of the transmission. The fact that squeezing does not survive attenuation does not matter in this case, since it is alive during the nonlinear interaction when it is needed. Another possible application of squeezed solitons would be in switching devices and logic gates based on soliton interactions, such as the fibre-end devices for signal processing in telecommunications developed by Mohamed Islam at AT and T in the US in the early 1990s. The use of number-squeezing would allow collisions between solitons to be controlled to high precision, thus significantly reducing the error rate of these devices. Solitons and quantum information It might also be possible to use solitons in the processing of quantum information. Quantum information is an emerging field of physics that takes advantage of phenomena that are particular to quantum mechanics such as uncertainty, superposition and entanglement to code, transmit or process information (see Physics World March 1998). Recent highlights in this field include quantum cryptography (which can be used to achieve unconditionally secure key distribution) and quantum computing, which considerably speeds up the solution of problems that are exponentially difficult. These problems include the factorization of large numbers and searches of large databases. Although most proposals for processing quantum information to date concentrate on single-photon or single-spin implementations, optical solitons may offer an alternative that is easier to handle experimentally, yet still provides many of the basic quantum features that are displayed by single quanta. This could lead to new paradigms for computation and communications. In particular, the existence of quantum correlations in the fluctuations of the spectral and temporal sidebands of the solitons turns them into macroscopic quantum objects with internal entanglement. If these internal quantum correlations can be tailored into prescribed

  10. Computational synthetic geometry

    CERN Document Server

    Bokowski, Jürgen

    1989-01-01

    Computational synthetic geometry deals with methods for realizing abstract geometric objects in concrete vector spaces. This research monograph considers a large class of problems from convexity and discrete geometry including constructing convex polytopes from simplicial complexes, vector geometries from incidence structures and hyperplane arrangements from oriented matroids. It turns out that algorithms for these constructions exist if and only if arbitrary polynomial equations are decidable with respect to the underlying field. Besides such complexity theorems a variety of symbolic algorithms are discussed, and the methods are applied to obtain new mathematical results on convex polytopes, projective configurations and the combinatorics of Grassmann varieties. Finally algebraic varieties characterizing matroids and oriented matroids are introduced providing a new basis for applying computer algebra methods in this field. The necessary background knowledge is reviewed briefly. The text is accessible to stud...

  11. Geometry and Cloaking Devices

    Science.gov (United States)

    Ochiai, T.; Nacher, J. C.

    2011-09-01

    Recently, the application of geometry and conformal mappings to artificial materials (metamaterials) has attracted the attention in various research communities. These materials, characterized by a unique man-made structure, have unusual optical properties, which materials found in nature do not exhibit. By applying the geometry and conformal mappings theory to metamaterial science, it may be possible to realize so-called "Harry Potter cloaking device". Although such a device is still in the science fiction realm, several works have shown that by using such metamaterials it may be possible to control the direction of the electromagnetic field at will. We could then make an object hidden inside of a cloaking device. Here, we will explain how to design invisibility device using differential geometry and conformal mappings.

  12. Lectures on discrete geometry

    CERN Document Server

    2002-01-01

    Discrete geometry investigates combinatorial properties of configurations of geometric objects. To a working mathematician or computer scientist, it offers sophisticated results and techniques of great diversity and it is a foundation for fields such as computational geometry or combinatorial optimization. This book is primarily a textbook introduction to various areas of discrete geometry. In each area, it explains several key results and methods, in an accessible and concrete manner. It also contains more advanced material in separate sections and thus it can serve as a collection of surveys in several narrower subfields. The main topics include: basics on convex sets, convex polytopes, and hyperplane arrangements; combinatorial complexity of geometric configurations; intersection patterns and transversals of convex sets; geometric Ramsey-type results; polyhedral combinatorics and high-dimensional convexity; and lastly, embeddings of finite metric spaces into normed spaces. Jiri Matousek is Professor of Com...

  13. Complex differential geometry

    CERN Document Server

    Zheng, Fangyang

    2002-01-01

    The theory of complex manifolds overlaps with several branches of mathematics, including differential geometry, algebraic geometry, several complex variables, global analysis, topology, algebraic number theory, and mathematical physics. Complex manifolds provide a rich class of geometric objects, for example the (common) zero locus of any generic set of complex polynomials is always a complex manifold. Yet complex manifolds behave differently than generic smooth manifolds; they are more coherent and fragile. The rich yet restrictive character of complex manifolds makes them a special and interesting object of study. This book is a self-contained graduate textbook that discusses the differential geometric aspects of complex manifolds. The first part contains standard materials from general topology, differentiable manifolds, and basic Riemannian geometry. The second part discusses complex manifolds and analytic varieties, sheaves and holomorphic vector bundles, and gives a brief account of the surface classifi...

  14. Newtonian cosmology with a quantum bounce

    Energy Technology Data Exchange (ETDEWEB)

    Bargueno, P.; Bravo Medina, S.; Nowakowski, M. [Universidad de los Andes, Departamento de Fisica, Bogota (Colombia); Batic, D. [University of West Indies, Department of Mathematics, Kingston 6 (Jamaica)

    2016-10-15

    It has been known for some time that the cosmological Friedmann equation deduced from general relativity can also be obtained within the Newtonian framework under certain assumptions. We use this result together with quantum corrections to the Newtonian potentials to derive a set a of quantum corrected Friedmann equations. We examine the behavior of the solutions of these modified cosmological equations paying special attention to the sign of the quantum corrections. We find different quantum effects crucially depending on this sign. One such a solution displays a qualitative resemblance to other quantum models like Loop quantum gravity or non-commutative geometry. (orig.)

  15. Architectural Geometry and Fabrication-Aware Design

    KAUST Repository

    Pottmann, Helmut

    2013-04-27

    Freeform shapes and structures with a high geometric complexity play an increasingly important role in contemporary architecture. While digital models are easily created, the actual fabrication and construction remains a challenge. This is the source of numerous research problems many of which fall into the area of Geometric Computing and form part of a recently emerging research area, called "Architectural Geometry". The present paper provides a short survey of research in Architectural Geometry and shows how this field moves towards a new direction in Geometric Modeling which aims at combining shape design with important aspects of function and fabrication. © 2013 Kim Williams Books, Turin.

  16. Thermal geometry from CFT at finite temperature

    Directory of Open Access Journals (Sweden)

    Wen-Cong Gan

    2016-09-01

    Full Text Available We present how the thermal geometry emerges from CFT at finite temperature by using the truncated entanglement renormalization network, the cMERA. For the case of 2d CFT, the reduced geometry is the BTZ black hole or the thermal AdS as expectation. In order to determine which spacetimes prefer to form, we propose a cMERA description of the Hawking–Page phase transition. Our proposal is in agreement with the picture of the recent proposed surface/state correspondence.

  17. Thermal geometry from CFT at finite temperature

    Energy Technology Data Exchange (ETDEWEB)

    Gan, Wen-Cong, E-mail: ganwencong@gmail.com [Department of Physics, Nanchang University, Nanchang 330031 (China); Center for Relativistic Astrophysics and High Energy Physics, Nanchang University, Nanchang 330031 (China); Shu, Fu-Wen, E-mail: shufuwen@ncu.edu.cn [Department of Physics, Nanchang University, Nanchang 330031 (China); Center for Relativistic Astrophysics and High Energy Physics, Nanchang University, Nanchang 330031 (China); Wu, Meng-He, E-mail: menghewu.physik@gmail.com [Department of Physics, Nanchang University, Nanchang 330031 (China); Center for Relativistic Astrophysics and High Energy Physics, Nanchang University, Nanchang 330031 (China)

    2016-09-10

    We present how the thermal geometry emerges from CFT at finite temperature by using the truncated entanglement renormalization network, the cMERA. For the case of 2d CFT, the reduced geometry is the BTZ black hole or the thermal AdS as expectation. In order to determine which spacetimes prefer to form, we propose a cMERA description of the Hawking–Page phase transition. Our proposal is in agreement with the picture of the recent proposed surface/state correspondence.

  18. Geometry and symmetry

    CERN Document Server

    Yale, Paul B

    2012-01-01

    This book is an introduction to the geometry of Euclidean, affine, and projective spaces with special emphasis on the important groups of symmetries of these spaces. The two major objectives of the text are to introduce the main ideas of affine and projective spaces and to develop facility in handling transformations and groups of transformations. Since there are many good texts on affine and projective planes, the author has concentrated on the n-dimensional cases.Designed to be used in advanced undergraduate mathematics or physics courses, the book focuses on ""practical geometry,"" emphasi

  19. Quantum optics

    National Research Council Canada - National Science Library

    Agarwal, G. S

    2013-01-01

    ..., quantum metrology, spin squeezing, control of decoherence and many other key topics. Readers are guided through the principles of quantum optics and their uses in a wide variety of areas including quantum information science and quantum mechanics...

  20. Computational geometry algorithms and applications

    CERN Document Server

    de Berg, Mark; Overmars, Mark; Schwarzkopf, Otfried

    1997-01-01

    Computational geometry emerged from the field of algorithms design and anal­ ysis in the late 1970s. It has grown into a recognized discipline with its own journals, conferences, and a large community of active researchers. The suc­ cess of the field as a research discipline can on the one hand be explained from the beauty of the problems studied and the solutions obtained, and, on the other hand, by the many application domains--computer graphics, geographic in­ formation systems (GIS), robotics, and others-in which geometric algorithms play a fundamental role. For many geometric problems the early algorithmic solutions were either slow or difficult to understand and implement. In recent years a number of new algorithmic techniques have been developed that improved and simplified many of the previous approaches. In this textbook we have tried to make these modem algorithmic solutions accessible to a large audience. The book has been written as a textbook for a course in computational geometry, but it can ...

  1. Dynamical quantum Hall effect in the parameter space.

    Science.gov (United States)

    Gritsev, V; Polkovnikov, A

    2012-04-24

    Geometric phases in quantum mechanics play an extraordinary role in broadening our understanding of fundamental significance of geometry in nature. One of the best known examples is the Berry phase [M.V. Berry (1984), Proc. Royal. Soc. London A, 392:45], which naturally emerges in quantum adiabatic evolution. So far the applicability and measurements of the Berry phase were mostly limited to systems of weakly interacting quasi-particles, where interference experiments are feasible. Here we show how one can go beyond this limitation and observe the Berry curvature, and hence the Berry phase, in generic systems as a nonadiabatic response of physical observables to the rate of change of an external parameter. These results can be interpreted as a dynamical quantum Hall effect in a parameter space. The conventional quantum Hall effect is a particular example of the general relation if one views the electric field as a rate of change of the vector potential. We illustrate our findings by analyzing the response of interacting spin chains to a rotating magnetic field. We observe the quantization of this response, which we term the rotational quantum Hall effect.

  2. Quantization of the Schwarzschild geometry

    International Nuclear Information System (INIS)

    Melas, Evangelos

    2013-01-01

    The conditional symmetries of the reduced Einstein-Hilbert action emerging from a static, spherically symmetric geometry are used as supplementary conditions on the wave function. Based on their integrability conditions, only one of the three existing symmetries can be consistently imposed, while the unique Casimir invariant, being the product of the remaining two symmetries, is calculated as the only possible second condition on the wave function. This quadratic integral of motion is identified with the reparametrization generator, as an implication of the uniqueness of the dynamical evolution, by fixing a suitable parametrization of the r-lapse function. In this parametrization, the determinant of the supermetric plays the role of the mesure. The combined Wheeler – DeWitt and linear conditional symmetry equations are analytically solved. The solutions obtained depend on the product of the two ''scale factors''.

  3. From quantum dots to quantum circuits

    International Nuclear Information System (INIS)

    Ensslin, K.

    2008-01-01

    Full text: Quantum dots, or artificial atoms, confine charge carriers in three-dimensional islands in a semiconductor environment. Detailed understanding and exquisite control of the charge and spin state of the electrically tunable charge occupancy have been demonstrated over the years. Quantum dots with best quality for transport experiments are usually realized in n-type AlGaAs/GaAs heterostructures. Novel material systems, such as graphene, nanowires and p-type heterostructures offer unexplored parameter regimes in view of spin-orbit interactions, carrier-carrier interactions and hyperfine coupling between electron and nuclear spins, which might be relevant for future spin qubits realized in quantum dots. With more sophisticated nanotechnology it has become possible to fabricate coupled quantum systems where classical and quantum mechanical coupling and back action is experimentally investigated. A narrow constriction, or quantum point contact, in vicinity to a quantum dot has been shown to serve as a minimally invasive sensor of the charge state of the dot. If charge transport through the quantum dot is slow enough (kHz), the charge sensor allows the detection of time-resolved transport through quantum-confined structures. This has allowed us to measure extremely small currents not detectable with conventional electronics. In addition the full statistics of current fluctuations becomes experimentally accessible. This way correlations between electrons which influence the current flow can be analyzed by measuring the noise and higher moments of the distribution of current fluctuations. Mesoscopic conductors driven out of equilibrium can emit photons which may be detected by another nearby quantum system with suitably tuned energy levels. This way an on-chip microwave single photon detector has been realized. In a ring geometry containing a tunable double quantum dot it has been possible to measure the self-interference of individual electrons as they traverse

  4. Multiplicity in difference geometry

    OpenAIRE

    Tomasic, Ivan

    2011-01-01

    We prove a first principle of preservation of multiplicity in difference geometry, paving the way for the development of a more general intersection theory. In particular, the fibres of a \\sigma-finite morphism between difference curves are all of the same size, when counted with correct multiplicities.

  5. Spacetime and Euclidean geometry

    Science.gov (United States)

    Brill, Dieter; Jacobson, Ted

    2006-04-01

    Using only the principle of relativity and Euclidean geometry we show in this pedagogical article that the square of proper time or length in a two-dimensional spacetime diagram is proportional to the Euclidean area of the corresponding causal domain. We use this relation to derive the Minkowski line element by two geometric proofs of the spacetime Pythagoras theorem.

  6. Physics and geometry

    International Nuclear Information System (INIS)

    Konopleva, N.P.

    2009-01-01

    The basic ideas of description methods of physical fields and elementary particle interactions are discussed. One of such ideas is the conception of space-time geometry. In this connection experimental measurement methods are analyzed. It is shown that measure procedures are the origin of geometrical axioms. The connection between space symmetry properties and the conservation laws is considered

  7. Origami, Geometry and Art

    Science.gov (United States)

    Wares, Arsalan; Elstak, Iwan

    2017-01-01

    The purpose of this paper is to describe the mathematics that emanates from the construction of an origami box. We first construct a simple origami box from a rectangular sheet and then discuss some of the mathematical questions that arise in the context of geometry and algebra. The activity can be used as a context for illustrating how algebra…

  8. Gravity is Geometry.

    Science.gov (United States)

    MacKeown, P. K.

    1984-01-01

    Clarifies two concepts of gravity--those of a fictitious force and those of how space and time may have geometry. Reviews the position of Newton's theory of gravity in the context of special relativity and considers why gravity (as distinct from electromagnetics) lends itself to Einstein's revolutionary interpretation. (JN)

  9. Towards a Nano Geometry?

    DEFF Research Database (Denmark)

    Booss-Bavnbek, Bernhelm

    2011-01-01

    This paper applies I.M. Gelfand's distinction between adequate and non-adequate use of mathematical language in different contexts to the newly opened window of model-based measurements of intracellular dynamics. The specifics of geometry and dynamics on the mesoscale of cell physiology are elabo...

  10. Diophantine geometry an introduction

    CERN Document Server

    Hindry, Marc

    2000-01-01

    This is an introduction to diophantine geometry at the advanced graduate level. The book contains a proof of the Mordell conjecture which will make it quite attractive to graduate students and professional mathematicians. In each part of the book, the reader will find numerous exercises.

  11. Sliding vane geometry turbines

    Science.gov (United States)

    Sun, Harold Huimin; Zhang, Jizhong; Hu, Liangjun; Hanna, Dave R

    2014-12-30

    Various systems and methods are described for a variable geometry turbine. In one example, a turbine nozzle comprises a central axis and a nozzle vane. The nozzle vane includes a stationary vane and a sliding vane. The sliding vane is positioned to slide in a direction substantially tangent to an inner circumference of the turbine nozzle and in contact with the stationary vane.

  12. History of analytic geometry

    CERN Document Server

    Boyer, Carl B

    2012-01-01

    Designed as an integrated survey of the development of analytic geometry, this study presents the concepts and contributions from before the Alexandrian Age through the eras of the great French mathematicians Fermat and Descartes, and on through Newton and Euler to the "Golden Age," from 1789 to 1850.

  13. Non-euclidean geometry

    CERN Document Server

    Coxeter, HSM

    1965-01-01

    This textbook introduces non-Euclidean geometry, and the third edition adds a new chapter, including a description of the two families of 'mid-lines' between two given lines and an elementary derivation of the basic formulae of spherical trigonometry and hyperbolic trigonometry, and other new material.

  14. Topics in Riemannian geometry

    International Nuclear Information System (INIS)

    Ezin, J.P.

    1988-08-01

    The lectures given at the ''5th Symposium of Mathematics in Abidjan: Differential Geometry and Mechanics'' are presented. They are divided into four chapters: Riemannian metric on a differential manifold, curvature tensor fields on a Riemannian manifold, some classical functionals on Riemannian manifolds and questions. 11 refs

  15. Geometry Euclid and beyond

    CERN Document Server

    Hartshorne, Robin

    2000-01-01

    In recent years, I have been teaching a junior-senior-level course on the classi­ cal geometries. This book has grown out of that teaching experience. I assume only high-school geometry and some abstract algebra. The course begins in Chapter 1 with a critical examination of Euclid's Elements. Students are expected to read concurrently Books I-IV of Euclid's text, which must be obtained sepa­ rately. The remainder of the book is an exploration of questions that arise natu­ rally from this reading, together with their modern answers. To shore up the foundations we use Hilbert's axioms. The Cartesian plane over a field provides an analytic model of the theory, and conversely, we see that one can introduce coordinates into an abstract geometry. The theory of area is analyzed by cutting figures into triangles. The algebra of field extensions provides a method for deciding which geometrical constructions are possible. The investigation of the parallel postulate leads to the various non-Euclidean geometries. And ...

  16. Foundations of quantum gravity

    CERN Document Server

    Lindesay, James

    2013-01-01

    Exploring how the subtleties of quantum coherence can be consistently incorporated into Einstein’s theory of gravitation, this book is ideal for researchers interested in the foundations of relativity and quantum physics. The book examines those properties of coherent gravitating systems that are most closely connected to experimental observations. Examples of consistent co-gravitating quantum systems whose overall effects upon the geometry are independent of the coherence state of each constituent are provided, and the properties of the trapping regions of non-singular black objects, black holes, and a dynamic de Sitter cosmology are discussed analytically, numerically, and diagrammatically. The extensive use of diagrams to summarise the results of the mathematics enables readers to bypass the need for a detailed understanding of the steps involved. Assuming some knowledge of quantum physics and relativity, the book provides textboxes featuring supplementary information for readers particularly interested ...

  17. Topics in Cubic Special Geometry

    CERN Document Server

    Bellucci, Stefano; Roychowdhury, Raju

    2011-01-01

    We reconsider the sub-leading quantum perturbative corrections to N=2 cubic special Kaehler geometries. Imposing the invariance under axion-shifts, all such corrections (but the imaginary constant one) can be introduced or removed through suitable, lower unitriangular symplectic transformations, dubbed Peccei-Quinn (PQ) transformations. Since PQ transformations do not belong to the d=4 U-duality group G4, in symmetric cases they generally have a non-trivial action on the unique quartic invariant polynomial I4 of the charge representation R of G4. This leads to interesting phenomena in relation to theory of extremal black hole attractors; namely, the possibility to make transitions between different charge orbits of R, with corresponding change of the supersymmetry properties of the supported attractor solutions. Furthermore, a suitable action of PQ transformations can also set I4 to zero, or vice versa it can generate a non-vanishing I4: this corresponds to transitions between "large" and "small" charge orbit...

  18. Geometry in the large and hyperbolic chaos

    Energy Technology Data Exchange (ETDEWEB)

    Hasslacher, B.; Mainieri, R.

    1998-11-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The authors calculated observables in strongly chaotic systems. This is difficult to do because of a lack of a workable orbit classification for such systems. This is due to global geometrical information from the original dynamical system being entangled in an unknown way throughout the orbit sequence. They used geometrical methods from modern mathematics and recent connections between global geometry and modern quantum field theory to study the natural geometrical objects belonging to hard chaos-hyperbolic manifolds.

  19. Particle Creation in Oscillating Cavities with Cubic and Cylindrical Geometry

    Science.gov (United States)

    Setare, M. R.; Dinani, H. T.

    2008-04-01

    In the present paper we study the creation of massless scalar particles from the quantum vacuum due to the dynamical Casimir effect by oscillating cavities with cubic and cylindrical geometry. To the first order of the amplitude we derive the expressions for the number of the created particles.

  20. Braided affine geometry and q-analogs of wave operators

    International Nuclear Information System (INIS)

    Gurevich, Dimitri; Saponov, Pavel

    2009-01-01

    The main goal of this review is to compare different approaches to constructing the geometry associated with a Hecke type braiding (in particular, with that related to the quantum group U q (sl(n))). We place emphasis on the affine braided geometry related to the so-called reflection equation algebra (REA). All objects of such a type of geometry are defined in the spirit of affine algebraic geometry via polynomial relations on generators. We begin by comparing the Poisson counterparts of 'quantum varieties' and describe different approaches to their quantization. Also, we exhibit two approaches to introducing q-analogs of vector bundles and defining the Chern-Connes index for them on quantum spheres. In accordance with the Serre-Swan approach, the q-vector bundles are treated as finitely generated projective modules over the corresponding quantum algebras. Besides, we describe the basic properties of the REA used in this construction and compare different ways of defining q-analogs of partial derivatives and differentials on the REA and algebras close to them. In particular, we present a way of introducing a q-differential calculus via Koszul type complexes. The elements of the q-calculus are applied to defining q-analogs of some relativistic wave operators. (topical review)

  1. Stochastic quantum mechanics and quantum spacetime

    International Nuclear Information System (INIS)

    Prugovecki, E.

    1984-01-01

    This monograph's principal intent is to provide a systematic and self-contained introduction to an alternative unification of relativity with quantum theory based on stochastic phase spaces and stochastic geometries, and presented at a level accessible to graduate students in theoretical and mathematical physics as well as to professional physicists and mathematicians. The proposed framework for unification embraces classical as well as quantum theories by implementing an epistemic idea first put forth by M. Born, namely that all physical theories should be formulated in terms of stochastic rather than deterministic values for measurable quantities. The framework gives rise to a whole range of yet unresearched problems, whose solutions are bound to shed some light on the relationship between relativity and quantum theories of the most fundamental physical and mathematical levels. (Auth.)

  2. Quantum Instantons and Quantum Chaos

    OpenAIRE

    Jirari, H.; Kröger, H.; Luo, X. Q.; Moriarty, K. J. M.; Rubin, S. G.

    1999-01-01

    Based on a closed form expression for the path integral of quantum transition amplitudes, we suggest rigorous definitions of both, quantum instantons and quantum chaos. As an example we compute the quantum instanton of the double well potential.

  3. Sums over geometries and improvements on the mean field approximation

    International Nuclear Information System (INIS)

    Sacksteder, Vincent E. IV

    2007-01-01

    The saddle points of a Lagrangian due to Efetov are analyzed. This Lagrangian was originally proposed as a tool for calculating systematic corrections to the Bethe approximation, a mean-field approximation which is important in statistical mechanics, glasses, coding theory, and combinatorial optimization. Detailed analysis shows that the trivial saddle point generates a sum over geometries reminiscent of dynamically triangulated quantum gravity, which suggests new possibilities to design sums over geometries for the specific purpose of obtaining improved mean-field approximations to D-dimensional theories. In the case of the Efetov theory, the dominant geometries are locally treelike, and the sum over geometries diverges in a way that is similar to quantum gravity's divergence when all topologies are included. Expertise from the field of dynamically triangulated quantum gravity about sums over geometries may be able to remedy these defects and fulfill the Efetov theory's original promise. The other saddle points of the Efetov Lagrangian are also analyzed; the Hessian at these points is nonnormal and pseudo-Hermitian, which is unusual for bosonic theories. The standard formula for Gaussian integrals is generalized to nonnormal kernels

  4. Quantum metrology

    International Nuclear Information System (INIS)

    Xiang Guo-Yong; Guo Guang-Can

    2013-01-01

    The statistical error is ineluctable in any measurement. Quantum techniques, especially with the development of quantum information, can help us squeeze the statistical error and enhance the precision of measurement. In a quantum system, there are some quantum parameters, such as the quantum state, quantum operator, and quantum dimension, which have no classical counterparts. So quantum metrology deals with not only the traditional parameters, but also the quantum parameters. Quantum metrology includes two important parts: measuring the physical parameters with a precision beating the classical physics limit and measuring the quantum parameters precisely. In this review, we will introduce how quantum characters (e.g., squeezed state and quantum entanglement) yield a higher precision, what the research areas are scientists most interesting in, and what the development status of quantum metrology and its perspectives are. (topical review - quantum information)

  5. Quantum Distinction: Quantum Distinctiones!

    OpenAIRE

    Zeps, Dainis

    2009-01-01

    10 pages; How many distinctions, in Latin, quantum distinctiones. We suggest approach of anthropic principle based on anthropic reference system which should be applied equally both in theoretical physics and in mathematics. We come to principle that within reference system of life subject of mathematics (that of thinking) should be equated with subject of physics (that of nature). For this reason we enter notions of series of distinctions, quantum distinction, and argue that quantum distinct...

  6. A 'general boundary' formulation for quantum mechanics and quantum gravity

    International Nuclear Information System (INIS)

    Oeckl, Robert

    2003-01-01

    I propose to formalize quantum theories as topological quantum field theories in a generalized sense, associating state spaces with boundaries of arbitrary (and possibly finite) regions of space-time. I further propose to obtain such 'general boundary' quantum theories through a generalized path integral quantization. I show how both, non-relativistic quantum mechanics and quantum field theory can be given a 'general boundary' formulation. Surprisingly, even in the non-relativistic case, features normally associated with quantum field theory emerge from consistency conditions. This includes states with arbitrary particle number and pair creation. I also note how three-dimensional quantum gravity is an example for a realization of both proposals and suggest to apply them to four-dimensional quantum gravity

  7. Donor impurity-related linear and nonlinear optical absorption coefficients in GaAs/Ga{sub 1−x}Al{sub x}As concentric double quantum rings: Effects of geometry, hydrostatic pressure, and aluminum concentration

    Energy Technology Data Exchange (ETDEWEB)

    Baghramyan, H.M.; Barseghyan, M.G.; Kirakosyan, A.A. [Department of Solid State Physics, Yerevan State University, Al. Manookian 1, 0025 Yerevan (Armenia); Restrepo, R.L. [Física Teórica y Aplicada, Escuela de Ingeniería de Antioquia, AA 7516, Medellín (Colombia); Grupo de Materia Condensada-UdeA, Instituto de Física, Facultadde Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21,Medellín (Colombia); Mora-Ramos, M.E. [Grupo de Materia Condensada-UdeA, Instituto de Física, Facultadde Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21,Medellín (Colombia); Facultad de Ciencias, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, CP 62209, Cuernavaca, Morelos (Mexico); Duque, C.A., E-mail: cduque@fisica.udea.edu.co [Grupo de Materia Condensada-UdeA, Instituto de Física, Facultadde Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21,Medellín (Colombia)

    2014-01-15

    The linear and nonlinear optical absorption associated with the transition between 1s and 2s states corresponding to the electron-donor-impurity complex in GaAs/Ga{sub 1−x}Al{sub x}As three-dimensional concentric double quantum rings are investigated. Taking into account the combined effects of hydrostatic pressure and the variation of the aluminum concentration, the energies of the ground and first excited s-like states of a donor impurity in such a system have been calculated using the effective mass approximation and a variational method. The energies of these states and the corresponding threshold energy of the optical transitions are examined as functions of hydrostatic pressure, aluminum concentration, radial impurity position, as well as the geometrical dimensions of the structure. The dependencies of the linear, nonlinear and total optical absorption coefficients as functions of the incident photon energy are investigated for different values of those mentioned parameters. It is found that the influences mentioned above lead to either redshifts or blueshifts of the resonant peaks of the optical absorption spectrum. It is particularly discussed the unusual property exhibited by the third-order nonlinear of becoming positive for photon energies below the resonant transition one. It is shown that this phenomenon is associated with the particular features of the system under study, which determine the values of the electric dipole moment matrix elements. -- Highlights: • Intra-band optical absorption associated to impurity states in double quantum rings. • Combined effects of hydrostatic pressure and aluminum concentration are studied. • The influences mentioned above lead to shifts of resonant peaks. • It is discussed an unusual property exhibited by the third-order nonlinear absorption.

  8. Donor impurity-related linear and nonlinear optical absorption coefficients in GaAs/Ga1−xAlxAs concentric double quantum rings: Effects of geometry, hydrostatic pressure, and aluminum concentration

    International Nuclear Information System (INIS)

    Baghramyan, H.M.; Barseghyan, M.G.; Kirakosyan, A.A.; Restrepo, R.L.; Mora-Ramos, M.E.; Duque, C.A.

    2014-01-01

    The linear and nonlinear optical absorption associated with the transition between 1s and 2s states corresponding to the electron-donor-impurity complex in GaAs/Ga 1−x Al x As three-dimensional concentric double quantum rings are investigated. Taking into account the combined effects of hydrostatic pressure and the variation of the aluminum concentration, the energies of the ground and first excited s-like states of a donor impurity in such a system have been calculated using the effective mass approximation and a variational method. The energies of these states and the corresponding threshold energy of the optical transitions are examined as functions of hydrostatic pressure, aluminum concentration, radial impurity position, as well as the geometrical dimensions of the structure. The dependencies of the linear, nonlinear and total optical absorption coefficients as functions of the incident photon energy are investigated for different values of those mentioned parameters. It is found that the influences mentioned above lead to either redshifts or blueshifts of the resonant peaks of the optical absorption spectrum. It is particularly discussed the unusual property exhibited by the third-order nonlinear of becoming positive for photon energies below the resonant transition one. It is shown that this phenomenon is associated with the particular features of the system under study, which determine the values of the electric dipole moment matrix elements. -- Highlights: • Intra-band optical absorption associated to impurity states in double quantum rings. • Combined effects of hydrostatic pressure and aluminum concentration are studied. • The influences mentioned above lead to shifts of resonant peaks. • It is discussed an unusual property exhibited by the third-order nonlinear absorption

  9. Multivariate calculus and geometry

    CERN Document Server

    Dineen, Seán

    2014-01-01

    Multivariate calculus can be understood best by combining geometric insight, intuitive arguments, detailed explanations and mathematical reasoning. This textbook has successfully followed this programme. It additionally provides a solid description of the basic concepts, via familiar examples, which are then tested in technically demanding situations. In this new edition the introductory chapter and two of the chapters on the geometry of surfaces have been revised. Some exercises have been replaced and others provided with expanded solutions. Familiarity with partial derivatives and a course in linear algebra are essential prerequisites for readers of this book. Multivariate Calculus and Geometry is aimed primarily at higher level undergraduates in the mathematical sciences. The inclusion of many practical examples involving problems of several variables will appeal to mathematics, science and engineering students.

  10. Transformational plane geometry

    CERN Document Server

    Umble, Ronald N

    2014-01-01

    Axioms of Euclidean Plane Geometry The Existence and Incidence Postulates The Distance and Ruler Postulates The Plane Separation Postulate The Protractor Postulate The Side-Angle-Side Postulate and the Euclidean Parallel Postulate Theorems of Euclidean Plane Geometry The Exterior Angle Theorem Triangle Congruence Theorems The Alternate Interior Angles Theorem and the Angle Sum Theorem Similar Triangles Introduction to Transformations, Isometries, and Similarities Transformations Isometries and SimilaritiesAppendix: Proof of Surjectivity Translations, Rotations, and Reflections Translations Rotations Reflections Appendix: Geometer's Sketchpad Commands Required by Exploratory Activities Compositions of Translations, Rotations, and Reflections The Three Points Theorem Rotations as Compositions of Two Reflections Translations as Compositions of Two Halfturns or Two Reflections The Angle Addition Theorem Glide Reflections Classification of Isometries The Fundamental Theorem and Congruence Classification of Isometr...

  11. Multilevel geometry optimization

    Science.gov (United States)

    Rodgers, Jocelyn M.; Fast, Patton L.; Truhlar, Donald G.

    2000-02-01

    Geometry optimization has been carried out for three test molecules using six multilevel electronic structure methods, in particular Gaussian-2, Gaussian-3, multicoefficient G2, multicoefficient G3, and two multicoefficient correlation methods based on correlation-consistent basis sets. In the Gaussian-2 and Gaussian-3 methods, various levels are added and subtracted with unit coefficients, whereas the multicoefficient Gaussian-x methods involve noninteger parameters as coefficients. The multilevel optimizations drop the average error in the geometry (averaged over the 18 cases) by a factor of about two when compared to the single most expensive component of a given multilevel calculation, and in all 18 cases the accuracy of the atomization energy for the three test molecules improves; with an average improvement of 16.7 kcal/mol.

  12. Multilevel geometry optimization

    Energy Technology Data Exchange (ETDEWEB)

    Rodgers, Jocelyn M. [Department of Chemistry and Supercomputer Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431 (United States); Fast, Patton L. [Department of Chemistry and Supercomputer Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431 (United States); Truhlar, Donald G. [Department of Chemistry and Supercomputer Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431 (United States)

    2000-02-15

    Geometry optimization has been carried out for three test molecules using six multilevel electronic structure methods, in particular Gaussian-2, Gaussian-3, multicoefficient G2, multicoefficient G3, and two multicoefficient correlation methods based on correlation-consistent basis sets. In the Gaussian-2 and Gaussian-3 methods, various levels are added and subtracted with unit coefficients, whereas the multicoefficient Gaussian-x methods involve noninteger parameters as coefficients. The multilevel optimizations drop the average error in the geometry (averaged over the 18 cases) by a factor of about two when compared to the single most expensive component of a given multilevel calculation, and in all 18 cases the accuracy of the atomization energy for the three test molecules improves; with an average improvement of 16.7 kcal/mol. (c) 2000 American Institute of Physics.

  13. The DSR-deformed relativistic symmetries and the relative locality of 3D quantum gravity

    International Nuclear Information System (INIS)

    Amelino-Camelia, Giovanni; Arzano, Michele; Bianco, Stefano; Buonocore, Riccardo J

    2013-01-01

    Over the last decade there were significant advances in the understanding of quantum gravity coupled to point particles in 3D ((2+1)-dimensional) spacetime. Most notably it is emerging that the theory can be effectively described as a theory of free particles on a momentum space with anti-deSitter geometry and with noncommutative spacetime coordinates of the type [x μ , x ν ] = iℏℓε μν ρ x ρ . We here show that the recently proposed relative-locality curved-momentum-space framework is ideally suited for accommodating these structures' characteristics of 3D quantum gravity. Through this we obtain an intuitive characterization of the DSR-deformed Poincaré symmetries of 3D quantum gravity, and find that the associated relative spacetime locality is of the type producing dual-gravity lensing. (paper)

  14. Quantum machine learning what quantum computing means to data mining

    CERN Document Server

    Wittek, Peter

    2014-01-01

    Quantum Machine Learning bridges the gap between abstract developments in quantum computing and the applied research on machine learning. Paring down the complexity of the disciplines involved, it focuses on providing a synthesis that explains the most important machine learning algorithms in a quantum framework. Theoretical advances in quantum computing are hard to follow for computer scientists, and sometimes even for researchers involved in the field. The lack of a step-by-step guide hampers the broader understanding of this emergent interdisciplinary body of research. Quantum Machine L

  15. Applications of quantum information theory to quantum gravity

    International Nuclear Information System (INIS)

    Smolin, L.

    2005-01-01

    Full text: I describe work by and with Fotini Markopoulou and Olaf Dreyeron the application of quantum information theory to quantum gravity. A particular application to black hole physics is described, which treats the black hole horizon as an open system, in interaction with an environment, which are the degrees of freedom in the bulk spacetime. This allows us to elucidate which quantum states of a general horizon contribute to the entropy of a Schwarzchild black hole. This case serves as an example of how methods from quantum information theory may help to elucidate how the classical limit emerges from a background independent quantum theory of gravity. (author)

  16. Geometry and Destiny

    OpenAIRE

    Krauss, Lawrence M.; Turner, Michael S.

    1999-01-01

    The recognition that the cosmological constant may be non-zero forces us to re-evaluate standard notions about the connection between geometry and the fate of our Universe. An open Universe can recollapse, and a closed Universe can expand forever. As a corollary, we point out that there is no set of cosmological observations we can perform that will unambiguously allow us to determine what the ultimate destiny of the Universe will be.

  17. Complex geometries in wood

    DEFF Research Database (Denmark)

    Tamke, Martin; Ramsgaard Thomsen, Mette; Riiber Nielsen, Jacob

    2009-01-01

    The versatility of wood constructions and traditional wood joints for the production of non standard elements was in focus of a design based research. Herein we established a seamless process from digital design to fabrication. A first research phase centered on the development of a robust...... parametric model and a generic design language a later explored the possibilities to construct complex shaped geometries with self registering joints on modern wood crafting machines. The research was carried out as collaboration with industrial partners....

  18. Electroweak vacuum geometry

    International Nuclear Information System (INIS)

    Lepora, N.; Kibble, T.

    1999-01-01

    We analyse symmetry breaking in the Weinberg-Salam model paying particular attention to the underlying geometry of the theory. In this context we find two natural metrics upon the vacuum manifold: an isotropic metric associated with the scalar sector, and a squashed metric associated with the gauge sector. Physically, the interplay between these metrics gives rise to many of the non-perturbative features of Weinberg-Salam theory. (author)

  19. Hexagonal graphene quantum dots

    KAUST Repository

    Ghosh, Sumit; Schwingenschlö gl, Udo

    2016-01-01

    We study hexagonal graphene quantum dots, using density functional theory, to obtain a quantitative description of the electronic properties and their size dependence, considering disk and ring geometries with both armchair and zigzag edges. We show that the electronic properties of quantum dots with armchair edges are more sensitive to structural details than those with zigzag edges. As functions of the inner and outer radii, we find in the case of armchair edges that the size of the band gap follows distinct branches, while in the case of zigzag edges it changes monotonically. This behaviour is further analyzed by studying the ground state wave function and explained in terms of its localisation.

  20. Hexagonal graphene quantum dots

    KAUST Repository

    Ghosh, Sumit

    2016-12-05

    We study hexagonal graphene quantum dots, using density functional theory, to obtain a quantitative description of the electronic properties and their size dependence, considering disk and ring geometries with both armchair and zigzag edges. We show that the electronic properties of quantum dots with armchair edges are more sensitive to structural details than those with zigzag edges. As functions of the inner and outer radii, we find in the case of armchair edges that the size of the band gap follows distinct branches, while in the case of zigzag edges it changes monotonically. This behaviour is further analyzed by studying the ground state wave function and explained in terms of its localisation.

  1. W-geometry

    International Nuclear Information System (INIS)

    Hull, C.M.

    1993-01-01

    The geometric structure of theories with gauge fields of spins two and higher should involve a higher spin generalisation of Riemannian geometry. Such geometries are discussed and the case of W ∝ -gravity is analysed in detail. While the gauge group for gravity in d dimensions is the diffeomorphism group of the space-time, the gauge group for a certain W-gravity theory (which is W ∝ -gravity in the case d=2) is the group of symplectic diffeomorphisms of the cotangent bundle of the space-time. Gauge transformations for W-gravity gauge fields are given by requiring the invariance of a generalised line element. Densities exist and can be constructed from the line element (generalising √detg μν ) only if d=1 or d=2, so that only for d=1,2 can actions be constructed. These two cases and the corresponding W-gravity actions are considered in detail. In d=2, the gauge group is effectively only a subgroup of the symplectic diffeomorphisms group. Some of the constraints that arise for d=2 are similar to equations arising in the study of self-dual four-dimensional geometries and can be analysed using twistor methods, allowing contact to be made with other formulations of W-gravity. While the twistor transform for self-dual spaces with one Killing vector reduces to a Legendre transform, that for two Killing vectors gives a generalisation of the Legendre transform. (orig.)

  2. Integral geometry and valuations

    CERN Document Server

    Solanes, Gil

    2014-01-01

    Valuations are finitely additive functionals on the space of convex bodies. Their study has become a central subject in convexity theory, with fundamental applications to integral geometry. In the last years there has been significant progress in the theory of valuations, which in turn has led to important achievements in integral geometry. This book originated from two courses delivered by the authors at the CRM and provides a self-contained introduction to these topics, covering most of the recent advances. The first part, by Semyon Alesker, is devoted to the theory of convex valuations, with emphasis on the latest developments. A special focus is put on the new fundamental structures of the space of valuations discovered after Alesker's irreducibility theorem. Moreover, the author describes the newly developed theory of valuations on manifolds. In the second part, Joseph H. G. Fu gives a modern introduction to integral geometry in the sense of Blaschke and Santaló, based on the notions and tools presented...

  3. CBM RICH geometry optimization

    Energy Technology Data Exchange (ETDEWEB)

    Mahmoud, Tariq; Hoehne, Claudia [II. Physikalisches Institut, Giessen Univ. (Germany); Collaboration: CBM-Collaboration

    2016-07-01

    The Compressed Baryonic Matter (CBM) experiment at the future FAIR complex will investigate the phase diagram of strongly interacting matter at high baryon density and moderate temperatures in A+A collisions from 2-11 AGeV (SIS100) beam energy. The main electron identification detector in the CBM experiment will be a RICH detector with a CO{sub 2} gaseous-radiator, focusing spherical glass mirrors, and MAPMT photo-detectors being placed on a PMT-plane. The RICH detector is located directly behind the CBM dipole magnet. As the final magnet geometry is now available, some changes in the RICH geometry become necessary. In order to guarantee a magnetic field of 1 mT at maximum in the PMT plane for effective operation of the MAPMTs, two measures have to be taken: The PMT plane is moved outwards of the stray field by tilting the mirrors by 10 degrees and shielding boxes have been designed. In this contribution the results of the geometry optimization procedure are presented.

  4. Introducing geometry concept based on history of Islamic geometry

    Science.gov (United States)

    Maarif, S.; Wahyudin; Raditya, A.; Perbowo, K. S.

    2018-01-01

    Geometry is one of the areas of mathematics interesting to discuss. Geometry also has a long history in mathematical developments. Therefore, it is important integrated historical development of geometry in the classroom to increase’ knowledge of how mathematicians earlier finding and constructing a geometric concept. Introduction geometrical concept can be started by introducing the Muslim mathematician who invented these concepts so that students can understand in detail how a concept of geometry can be found. However, the history of mathematics development, especially history of Islamic geometry today is less popular in the world of education in Indonesia. There are several concepts discovered by Muslim mathematicians that should be appreciated by the students in learning geometry. Great ideas of mathematicians Muslim can be used as study materials to supplement religious character values taught by Muslim mathematicians. Additionally, by integrating the history of geometry in teaching geometry are expected to improve motivation and geometrical understanding concept.

  5. Quantum gravity at a Lifshitz point

    International Nuclear Information System (INIS)

    Horava, Petr

    2009-01-01

    We present a candidate quantum field theory of gravity with dynamical critical exponent equal to z=3 in the UV. (As in condensed-matter systems, z measures the degree of anisotropy between space and time.) This theory, which at short distances describes interacting nonrelativistic gravitons, is power-counting renormalizable in 3+1 dimensions. When restricted to satisfy the condition of detailed balance, this theory is intimately related to topologically massive gravity in three dimensions, and the geometry of the Cotton tensor. At long distances, this theory flows naturally to the relativistic value z=1, and could therefore serve as a possible candidate for a UV completion of Einstein's general relativity or an infrared modification thereof. The effective speed of light, the Newton constant and the cosmological constant all emerge from relevant deformations of the deeply nonrelativistic z=3 theory at short distances.

  6. Collision models in quantum optics

    Science.gov (United States)

    Ciccarello, Francesco

    2017-12-01

    Quantum collision models (CMs) provide advantageous case studies for investigating major issues in open quantum systems theory, and especially quantum non-Markovianity. After reviewing their general definition and distinctive features, we illustrate the emergence of a CM in a familiar quantum optics scenario. This task is carried out by highlighting the close connection between the well-known input-output formalism and CMs. Within this quantum optics framework, usual assumptions in the CMs' literature - such as considering a bath of noninteracting yet initially correlated ancillas - have a clear physical origin.

  7. Two lectures on D-geometry and noncommutative geometry

    International Nuclear Information System (INIS)

    Douglas, M.R.

    1999-01-01

    This is a write-up of lectures given at the 1998 Spring School at the Abdus Salam ICTP. We give a conceptual introduction to D-geometry, the study of geometry as seen by D-branes in string theory, and to noncommutative geometry as it has appeared in D-brane and Matrix theory physics. (author)

  8. Differential Calculus on Quantum Spheres

    OpenAIRE

    Welk, Martin

    1998-01-01

    We study covariant differential calculus on the quantum spheres S_q^2N-1. Two classification results for covariant first order differential calculi are proved. As an important step towards a description of the noncommutative geometry of the quantum spheres, a framework of covariant differential calculus is established, including a particular first order calculus obtained by factorization, higher order calculi and a symmetry concept.

  9. Spectroscopic (FT-IR, FT-Raman, NMR and UV-Visible) and quantum chemical studies of molecular geometry, Frontier molecular orbital, NLO, NBO and thermodynamic properties of salicylic acid.

    Science.gov (United States)

    Suresh, S; Gunasekaran, S; Srinivasan, S

    2014-11-11

    The solid phase FT-IR and FT-Raman spectra of 2-hydroxybenzoic acid (salicylic acid) have been recorded in the region 4000-400 and 4000-100 cm(-1) respectively. The optimized molecular geometry and fundamental vibrational frequencies are interpreted with the aid of structure optimizations and normal coordinate force field calculations based on density functional theory (DFT) method and a comparative study between Hartree Fork (HF) method at 6-311++G(d,p) level basis set. The calculated harmonic vibrational frequencies are scaled and they are compared with experimentally obtained FT-IR and FT-Raman spectra. A detailed interpretation of the vibrational spectra of this compound has been made on the basis of the calculated potential energy distribution (PED). The time dependent DFT method is employed to predict its absorption energy and oscillator strength. The linear polarizability (α) and the first order hyper polarizability (β) values of the investigated molecule have been computed. The electronic properties, such as HOMO and LUMO energies, molecular electrostatic potential (MEP) are also performed. Stability of the molecule arising from hyper conjugative interaction, charge delocalization has been analyzed using natural bond orbital (NBO) analysis. Published by Elsevier B.V.

  10. Fractional quantum mechanics

    CERN Document Server

    Laskin, Nick

    2018-01-01

    Fractional quantum mechanics is a recently emerged and rapidly developing field of quantum physics. This is the first monograph on fundamentals and physical applications of fractional quantum mechanics, written by its founder. The fractional Schrödinger equation and the fractional path integral are new fundamental physical concepts introduced and elaborated in the book. The fractional Schrödinger equation is a manifestation of fractional quantum mechanics. The fractional path integral is a new mathematical tool based on integration over Lévy flights. The fractional path integral method enhances the well-known Feynman path integral framework. Related topics covered in the text include time fractional quantum mechanics, fractional statistical mechanics, fractional classical mechanics and the α-stable Lévy random process. The book is well-suited for theorists, pure and applied mathematicians, solid-state physicists, chemists, and others working with the Schrödinger equation, the path integral technique...

  11. Quantum walks, quantum gates, and quantum computers

    International Nuclear Information System (INIS)

    Hines, Andrew P.; Stamp, P. C. E.

    2007-01-01

    The physics of quantum walks on graphs is formulated in Hamiltonian language, both for simple quantum walks and for composite walks, where extra discrete degrees of freedom live at each node of the graph. It is shown how to map between quantum walk Hamiltonians and Hamiltonians for qubit systems and quantum circuits; this is done for both single-excitation and multiexcitation encodings. Specific examples of spin chains, as well as static and dynamic systems of qubits, are mapped to quantum walks, and walks on hyperlattices and hypercubes are mapped to various gate systems. We also show how to map a quantum circuit performing the quantum Fourier transform, the key element of Shor's algorithm, to a quantum walk system doing the same. The results herein are an essential preliminary to a Hamiltonian formulation of quantum walks in which coupling to a dynamic quantum environment is included

  12. Spectroscopic (FT-IR, FT-Raman, and UV-visible) and quantum chemical studies on molecular geometry, Frontier molecular orbitals, NBO, NLO and thermodynamic properties of 1-acetylindole.

    Science.gov (United States)

    Shukla, Vikas K; Al-Abdullah, Ebtehal S; El-Emam, Ali A; Sachan, Alok K; Pathak, Shilendra K; Kumar, Amarendra; Prasad, Onkar; Bishnoi, Abha; Sinha, Leena

    2014-12-10

    Quantum chemical calculations of ground state energy, geometrical structure and vibrational wavenumbers of 1-acetylindole were carried out using density functional (DFT/B3LYP) method with 6-311++G(d,p) basis set. The FT-IR and FT-Raman spectra were recorded in the condensed state. The fundamental vibrational wavenumbers were calculated and a good correlation between experimental and scaled calculated wavenumbers has been accomplished. Electric dipole moment, polarizability and first static hyperpolarizability values of 1-acetylindole have been calculated at the same level of theory and basis set. The results show that the 1-acetylindole molecule possesses nonlinear optical (NLO) behavior with non-zero values. Stability of the molecule arising from hyper-conjugative interactions and charge delocalization has been analyzed using natural bond orbital (NBO) analysis. UV-Visible spectrum of the molecule was recorded in the region 200-500nm and the electronic properties like HOMO and LUMO energies and composition were obtained using TD-DFT method. The calculated energies and oscillator strengths are in good correspondence with the experimental data. The thermodynamic properties of the compound under investigation were calculated at different temperatures. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. C*-algebras of holonomy-diffeomorphisms and quantum gravity: I

    International Nuclear Information System (INIS)

    Aastrup, Johannes; Grimstrup, Jesper Møller

    2013-01-01

    A new approach to a unified theory of quantum gravity based on noncommutative geometry and canonical quantum gravity is presented. The approach is built around a *-algebra generated by local holonomy-diffeomorphisms on a 3-manifold and a quantized Dirac-type operator, the two capturing the kinematics of quantum gravity formulated in terms of Ashtekar variables. We prove that the separable part of the spectrum of the algebra is contained in the space of measurable connections modulo gauge transformations and we give limitations to the non-separable part. The construction of the Dirac-type operator—and thus the application of noncommutative geometry—is motivated by the requirement of diffeomorphism invariance. We conjecture that a semi-finite spectral triple, which is invariant under volume-preserving diffeomorphisms, arises from a GNS construction of a semi-classical state. Key elements of quantum field theory emerge from the construction in a semi-classical limit, as does an almost commutative algebra. Finally, we note that the spectrum of loop quantum gravity emerges from a discretization of our construction. Certain convergence issues are left unresolved. This paper is the first of two where the second paper [1] is concerned with mathematical details and proofs concerning the spectrum of the holonomy-diffeomorphism algebra. (paper)

  14. Quantum aspects of black hole entropy

    Indian Academy of Sciences (India)

    Quantum corrections to the semiclassical Bekenstein–Hawking area law for black hole entropy, obtained within the quantum geometry framework, are treated in some detail. Their ramification for the holographic entropy bound for bounded stationary spacetimes is discussed. Four dimensional supersymmetric extremal black ...

  15. Computational geometry lectures at the morningside center of mathematics

    CERN Document Server

    Wang, Ren-Hong

    2003-01-01

    Computational geometry is a borderline subject related to pure and applied mathematics, computer science, and engineering. The book contains articles on various topics in computational geometry, which are based on invited lectures and some contributed papers presented by researchers working during the program on Computational Geometry at the Morningside Center of Mathematics of the Chinese Academy of Science. The opening article by R.-H. Wang gives a nice survey of various aspects of computational geometry, many of which are discussed in more detail in other papers in the volume. The topics include problems of optimal triangulation, splines, data interpolation, problems of curve and surface design, problems of shape control, quantum teleportation, and others.

  16. Kinematic geometry of gearing

    CERN Document Server

    Dooner, David B

    2012-01-01

    Building on the first edition published in 1995 this new edition of Kinematic Geometry of Gearing has been extensively revised and updated with new and original material. This includes the methodology for general tooth forms, radius of torsure', cylinder of osculation, and cylindroid of torsure; the author has also completely reworked the '3 laws of gearing', the first law re-written to better parallel the existing 'Law of Gearing" as pioneered by Leonard Euler, expanded from Euler's original law to encompass non-circular gears and hypoid gears, the 2nd law of gearing describing a unique relat

  17. From geometry to topology

    CERN Document Server

    Flegg, H Graham

    2001-01-01

    This excellent introduction to topology eases first-year math students and general readers into the subject by surveying its concepts in a descriptive and intuitive way, attempting to build a bridge from the familiar concepts of geometry to the formalized study of topology. The first three chapters focus on congruence classes defined by transformations in real Euclidean space. As the number of permitted transformations increases, these classes become larger, and their common topological properties become intuitively clear. Chapters 4-12 give a largely intuitive presentation of selected topics.

  18. Geometrie verstehen: statisch - kinematisch

    Science.gov (United States)

    Kroll, Ekkehard

    Dem Allgemeinen steht begrifflich das Besondere gegenüber. In diesem Sinne sind allgemeine Überlegungen zum Verstehen von Mathematik zu ergänzen durch Untersuchungen hinsichtlich des Verstehens der einzelnen mathematischen Disziplinen, insbesondere der Geometrie. Hier haben viele Schülerinnen und Schüler Probleme. Diese rühren hauptsächlich daher, dass eine fertige geometrische Konstruktion in ihrer statischen Präsentation auf Papier nicht mehr die einzelnen Konstruktionsschritte erkennen lässt; zum Nachvollzug müssen sie daher ergänzend in einer Konstruktionsbeschreibung festgehalten werden.

  19. Elementary algebraic geometry

    CERN Document Server

    Kendig, Keith

    2015-01-01

    Designed to make learning introductory algebraic geometry as easy as possible, this text is intended for advanced undergraduates and graduate students who have taken a one-year course in algebra and are familiar with complex analysis. This newly updated second edition enhances the original treatment's extensive use of concrete examples and exercises with numerous figures that have been specially redrawn in Adobe Illustrator. An introductory chapter that focuses on examples of curves is followed by a more rigorous and careful look at plane curves. Subsequent chapters explore commutative ring th

  20. Local analytic geometry

    CERN Document Server

    Abhyankar, Shreeram Shankar

    1964-01-01

    This book provides, for use in a graduate course or for self-study by graduate students, a well-motivated treatment of several topics, especially the following: (1) algebraic treatment of several complex variables; (2) geometric approach to algebraic geometry via analytic sets; (3) survey of local algebra; (4) survey of sheaf theory. The book has been written in the spirit of Weierstrass. Power series play the dominant role. The treatment, being algebraic, is not restricted to complex numbers, but remains valid over any complete-valued field. This makes it applicable to situations arising from