International Nuclear Information System (INIS)
Lipkin, H.J.
1983-06-01
The new experimental values of hyperon magnetic moments are compared with sum rules predicted from general quark models. Three difficulties are encountered which are not easily explained by simple models. The isovector contributions of nonstrange quarks to hyperon moments are smaller than the corresponding contribution to nucleon moments, indicating either appreciable configuration mixing present in hyperon wave functions and absent in nucleons or an additional isovector contribution beyond that of valence quarks; e.g. from a pion cloud. The large magnitude of the ω - moment may indicate that the strange quark contribution to the ω moments is considerably larger than the value μ(#betta#) predicted by simple models which have otherwise been very successful. The set of controversial values from different experiments of the μ - moment include a value very close to -(1/2)μ(μ + ) which would indicate that strange quarks do not contribute at all to the μ moments. (author)
International Nuclear Information System (INIS)
Overseth, O.E.
1981-01-01
The Fermilab Neutral Hyperon Beam Collaboration has measured the magnetic moments of Λ 0 , XI-neutral and XI-minus hyperons. With a recently published result for the Σ + hyperon, we now have precision measurements on the magnetic moments of six baryons. This allows a sensitive test of the quark model. The data are in qualitative agreement with the simple additive static quark model. Quantitatively however the data disagree with theoretical predictions by typically 15%. Several theoretical attempts to understand or remedy this discrepancy will be mentioned
International Nuclear Information System (INIS)
Towner, I.S.; Khanna, F.C.
1984-01-01
Consideration of core polarization, isobar currents and meson-exchange processes gives a satisfactory understanding of the ground-state magnetic moments in closed-shell-plus (or minus)-one nuclei, A = 3, 15, 17, 39 and 41. Ever since the earliest days of the nuclear shell model the understanding of magnetic moments of nuclear states of supposedly simple configurations, such as doubly closed LS shells +-1 nucleon, has been a challenge for theorists. The experimental moments, which in most cases are known with extraordinary precision, show a small yet significant departure from the single-particle Schmidt values. The departure, however, is difficult to evaluate precisely since, as will be seen, it results from a sensitive cancellation between several competing corrections each of which can be as large as the observed discrepancy. This, then, is the continuing fascination of magnetic moments. In this contribution, we revisit the subjet principally to identify the role played by isobar currents, which are of much concern at this conference. But in so doing we warn quite strongly of the dangers of considering just isobar currents in isolation; equal consideration must be given to competing processes which in this context are the mundane nuclear structure effects, such as core polarization, and the more popular meson-exchange currents
Heavy quark and magnetic moment
International Nuclear Information System (INIS)
Mubarak, Ahmad; Jallu, M.S.
1979-01-01
The magnetic moments and transition moments of heavy hadrons including the conventional particles are obtained under the SU(5) truth symmetry scheme. To this end state vectors are defined and the quark additivity principle is taken into account. (author)
Variational approach to magnetic moments
Energy Technology Data Exchange (ETDEWEB)
Lipparini, E; Stringari, S; Traini, M [Dipartimento di Matematica e Fisica, Libera Universita di Trento, Italy
1977-11-07
Magnetic moments in nuclei with a spin unsaturated core plus or minus an extra nucleon have been studied using a restricted Hartree-Fock approach. The method yields simple explicit expressions for the deformed ground state and for magnetic moments. Different projection techniques of the HF scheme have been discussed and compared with perturbation theory.
2002-01-01
Experiment IS358 uses the intense and pure beams of copper isotopes provided by the ISOLDE RILIS (resonance ionization laser ion source). The isotopes are implanted and oriented in the low temperature nuclear orientation set-up NICOLE. Magnetic moments are measured by $\\beta$-NMR. Copper (Z=29), with a single proton above the proton-magic nickel isotopes provides an ideal testground for precise shell model calculations of magnetic moments and their experimental verification. In the course of our experiments we already determined the magnetic moments of $^{67}$Ni, $^{67}$Cu, $^{68g}$Cu, $^{69}$Cu and $^{71}$Cu which provide important information on the magicity of the N=40 subshell closure. In 2001 we plan to conclude our systematic investigations by measuring the magnetic moment of the neutron-deficient isotope $^{59}$Cu. This will pave the way for a subsequent study of the magnetic moment of $^{57}$Cu with a complementary method.
On the baryon magnetic moments
International Nuclear Information System (INIS)
Ferreira, P.L.
1976-01-01
In the context of quark confinement ideas, the baryon magnetic moments are calculated by assuming a SU(3) breaking due to the inequalities of the quark masses (m sub(p) different m sub(n) different m lambda ). The modified SU(6) result for the ratio of the magnetic moments of the neutron and proton is obtained. The p-quark is found heavier than the n-quark by circa 15 MeV. and alternative way of evaluating the baryon magnetic moments by means of simple physical considerations based on the properties of the SU(6) baryon S-waves functions is given
International Nuclear Information System (INIS)
Matsuta, K.; Arimura, K.; Nagatomo, T.; Akutsu, K.; Iwakoshi, T.; Kudo, S.; Ogura, M.; Takechi, M.; Tanaka, K.; Sumikama, T.; Minamisono, K.; Miyake, T.; Minamisono, T.; Fukuda, M.; Mihara, M.; Kitagawa, A.; Sasaki, M.; Kanazawa, M.; Torikoshi, M.; Suda, M.; Hirai, M.; Momota, S.; Nojiri, Y.; Sakamoto, A.; Saihara, M.; Ohtsubo, T.; Alonso, J.R.; Krebs, G.F.; Symons, T.J.M.
2004-01-01
The magnetic moment of 33 Cl (Iπ=3/2+, T1/2=2.51s) has been re-measured precisely by β-NMR method. The obtained magnetic moment |μ|=0.7549(3)μN is consistent with the old value 0.7523(16)μN, but is 5 times more accurate. The value is well reproduced by the shell model calculation, μSM=0.70μN. Combined with the magnetic moment of the mirror partner 33 S, the nuclear matrix elements , , , and were derived
Baryon magnetic moments: Symmetries and relations
Energy Technology Data Exchange (ETDEWEB)
Parreno, Assumpta [University of Barcelona; Savage, Martin [Univ. of Washington, Seattle, WA (United States); Tiburzi, Brian [City College of New York, NY (United States); City Univ. (CUNY), NY (United States); Wilhelm, Jonas [Justus-Liebig-Universitat Giessen, Giessen, Germany; Univ. of Washington, Seattle, WA (United States); Chang, Emmanuel [Univ. of Washington, Seattle, WA (United States); Detmold, William [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Orginos, Kostas [College of William and Mary, Williamsburg, VA (United States); Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)
2018-04-01
Magnetic moments of the octet baryons are computed using lattice QCD in background magnetic fields, including the first treatment of the magnetically coupled Σ0- Λ system. Although the computations are performed for relatively large values of the up and down quark masses, we gain new insight into the symmetries and relations between magnetic moments by working at a three-flavor mass-symmetric point. While the spinflavor symmetry in the large Nc limit of QCD is shared by the naïve constituent quark model, we find instances where quark model predictions are considerably favored over those emerging in the large Nc limit. We suggest further calculations that would shed light on the curious patterns of baryon magnetic moments.
Magnetic moment of single layer graphene rings
Margulis, V. A.; Karpunin, V. V.; Mironova, K. I.
2018-01-01
Magnetic moment of single layer graphene rings is investigated. An analytical expression for the magnetic moment as a function of the magnetic field flux through the one-dimensional quantum rings is obtained. This expression has the oscillation character. The oscillation period is equal to one flux quanta.
How to introduce the magnetic dipole moment
International Nuclear Information System (INIS)
Bezerra, M; Kort-Kamp, W J M; Cougo-Pinto, M V; Farina, C
2012-01-01
We show how the concept of the magnetic dipole moment can be introduced in the same way as the concept of the electric dipole moment in introductory courses on electromagnetism. Considering a localized steady current distribution, we make a Taylor expansion directly in the Biot-Savart law to obtain, explicitly, the dominant contribution of the magnetic field at distant points, identifying the magnetic dipole moment of the distribution. We also present a simple but general demonstration of the torque exerted by a uniform magnetic field on a current loop of general form, not necessarily planar. For pedagogical reasons we start by reviewing briefly the concept of the electric dipole moment. (paper)
Effective magnetic moment of neutrinos in strong magnetic fields
International Nuclear Information System (INIS)
Perez M, A.; Perez R, H.; Masood, S.S.; Gaitan, R.; Rodriguez R, S.
2002-01-01
In this paper we compute the effective magnetic moment of neutrinos propagating in dense high magnetized medium. Taking typical values of magnetic field and densities of astrophysical objects (such as the cores of supernovae and neutron stars) we obtain an effective type of dipole magnetic moment in agreement with astrophysical and cosmological bounds. (Author)
Exchange currents for hypernuclear magnetic moments
International Nuclear Information System (INIS)
Saito, K.; Oka, M.; Suzuki, T.
1997-01-01
The meson (K and π) exchange currents for the hypernuclear magnetic moments are calculated using the effective Lagrangian method. The seagull diagram, the mesonic diagram and the Σ 0 -excitation diagram are considered. The Λ-N exchange magnetic moments for 5 Λ He and A=6 hypernuclei are calculated employing the harmonic oscillator shell model. It is found that the two-body correction is about -9% of the single particle value for 5 Λ He. The π exchange current, induced only in the Σ 0 -excitation diagram, is found to give dominant contribution for the isovector magnetic moments of hypernuclei with A=6. (orig.)
Macroscopic quantum tunneling of the magnetic moment
Tejada, J.; Hernandez, J. M.; del Barco, E.
1999-05-01
In this paper we review the work done on magnetic relaxation during the last 10 years on both single-domain particles and magnetic molecules and its contribution to the discovery of quantum tunneling of the magnetic moment (Chudnovsky and Tejada, Macroscopic Quantum tunneling of the Magnetic moment, Cambridge University press, Cambridge, 1998). We present first the theoretical expressions and their connection to quantum relaxation and secondly, we show and discuss the experimental results. Finally, we discuss very recent hysteresis data on Mn 12Ac molecules at extremely large sweeping rate for the external magnetic field which suggest the existence of quantum spin—phonon avalanches.
Theory of nuclear magnetic moments - LT-35
Energy Technology Data Exchange (ETDEWEB)
Kerman, A. K.
1952-09-15
The purpose of these notes is to give an account of some attempts at interpreting the observed values of nuclear magnetic moments. There is no attempt at a complete summary of the field as that would take much more space than is used here. In many cases the arguments are only outlined and references are given for those interested in further details. A discussion of the theory of nuclear magnetic moments necessitates many excursions into the details of the nuclear models because the magnetic moments have a direct bearing on the validity of these models. However the main emphasis here is on those features which tend to explain the magnetic moments and other evidence is not discussed unless it has a direct bearing on the problem. In the first part of the discussion the Shell Model of the nucleus is used, as this model seems to correlate a large body of data relating to the heavier nuclei. Included here are the modifications proposed to explain the fact that the experimental magnetic moments do not fit quantitatively with the exact predictions of the Shell Model. The next sections deal with some of the more drastic modifications introduced to explain the large nuclear quadrupole moments and the effect of these modifications on the magnetic moments. Finally we turn to more detailed investigations of the light nuclei, in particular the - Conjugate nuclei. (author)
Restrictions on the neutrino magnetic dipole moment
International Nuclear Information System (INIS)
Duncan, M.J.; Sankar, S.U.; Grifols, J.A.; Mendez, A.
1987-01-01
We examine mechanisms for producing neutrino magnetic moments from a wide class of particle theories which are extensions of the standard model. We show that it is difficult to naturally obtain a moment greater than ≅ 10 -2 electron Bohr magnetons. Thus models of phenomena requiring moments of order ≅ 10 -10 magnetons, such as those proposed as a resolution to the solar neutrino puzzle, are in conflict with current perceptions in particle physics. (orig.)
Magnetic moment measurement of magnetic nanoparticles using atomic force microscopy
International Nuclear Information System (INIS)
Park, J-W; Lee, E-C; Ju, H; Yoo, I S; Chang, W-S; Chung, B H; Kim, B S
2008-01-01
Magnetic moment per unit mass of magnetic nanoparticles was found by using the atomic force microscope (AFM). The mass of the nanoparticles was acquired from the resonance frequency shift of the particle-attached AFM probe and magnetic force measurement was also carried out with the AFM. Combining with magnetic field strength, the magnetic moment per unit mass of the nanoparticles was determined as a function of magnetic field strength. (technical design note)
6-quark contribution to nuclear magnetic moments
International Nuclear Information System (INIS)
Ito, H.
1985-01-01
The magnetic moments of nuclei with LS closed shell +/-1 particle are calculated. Core polarization and meson exchange current are treated realistically in order to single out the 6-quark contribution. Overall agreement with experimental values is quite good. It is shown that the 6-quark system contributes to the respective iso-vector and iso-scalar moments with reasonable magnitudes
Anomalous magnetic moment with heavy virtual leptons
Energy Technology Data Exchange (ETDEWEB)
Kurz, Alexander [Karlsruher Institut fuer Technologie (Germany). Inst. fuer Theoretische Teilchenphysik; Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Liu, Tao; Steinhauser, Matthias [Karlsruher Institut fuer Technologie (Germany). Inst. fuer Theoretische Teilchenphysik; Marquard, Peter [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany)
2013-11-15
We compute the contributions to the electron and muon anomalous magnetic moment induced by heavy leptons up to four-loop order. Asymptotic expansion is applied to obtain three analytic expansion terms which show rapid convergence.
Energy Technology Data Exchange (ETDEWEB)
Ohtsubo, T., E-mail: tohtsubo@np.gs.niigata-u.ac.jp; Kawamura, Y.; Ohya, S. [Niigata University, Department of Physics (Japan); Izumikawa, T. [Niigata University, Radioisotope Center (Japan); Nishimura, K. [Toyama University, Faculty of Engineering (Japan); Muto, S. [Neutron Science Laboratory, KEK (Japan); Shinozuka, T. [Tohoku University, Cyclotron and Radioisotope Center (Japan)
2007-11-15
Nuclear magnetic resonances were measured for {sup 48}Sc and {sup 44m}Sc oriented at 8 mK in an Fe host metal. The magnetic hyperfine splitting frequencies at an external magnetic field of 0.2 T were determined to be 63.22(11) MHz and 64.81(1) MHz for {sup 48}Sc and {sup 44m}Sc, respectively. With the known magnetic moment of {mu}({sup 44m}Sc)=+3.88 (1) {mu}{sub N}, the magnetic moment of {sup 48}Sc is deduced as {mu}({sup 44}Sc)=+3.785(12) {mu}{sub N}. The measured magnetic moment of {sup 48}Sc is discussed in terms of the shell model using the effective interactions.
Theoretical status of baryon magnetic moments
Franklin, Jerrold
1989-05-01
This talk given at the Eighth International Symposium on High-Energy Spin Physics in Minneapolis, Minnesota (September 12-17, 1988), is a short summary of theoretical results for baryon magnetic moments. Results from the static bag model and pion exchange effects are summarized and compared with experimental data. A list of references for various models and properties effecting the baryon magnetic moments is given at the end of the article. (AIP)
Theoretical status of baryon magnetic moments
International Nuclear Information System (INIS)
Franklin, J.
1989-01-01
This talk given at the Eighth International Symposium on High-Energy Spin Physics in Minneapolis, Minnesota (September 12--17, 1988), is a short summary of theoretical results for baryon magnetic moments. Results from the static bag model and pion exchange effects are summarized and compared with experimental data. A list of references for various models and properties effecting the baryon magnetic moments is given at the end of the article
Magnetic moment densities in selected UTX compounds
Czech Academy of Sciences Publication Activity Database
Javorský, P.; Schweizer, J.; Givord, F.; Boucherle, J.-X.; Andreev, Alexander V.; Diviš, M.; Lelievre-Berna, E.; Sechovský, V.
2004-01-01
Roč. 350, - (2004), e131-e134 ISSN 0921-4526 R&D Projects: GA ČR GA202/03/0550 Institutional research plan: CEZ:AV0Z1010914 Keywords : uranium compound * polarized neutron scattering * magnetic moment Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.679, year: 2004
Magnitude of localized magnetic moments in metals
International Nuclear Information System (INIS)
Kiwi, M.; Pestana, E.; Ramirez, R.
1979-01-01
The magnitude of the localized magnetic moment of a transition or rare earth element impurity in a metal is evaluated within the framework of the Anderson model. Rotational invariance is preserved throughout. Graphs of the magnitude of the magnetization as a function of the relevant parameters of the model are provided and discussed. (author)
Determination of the neutron magnetic moment
International Nuclear Information System (INIS)
Greene, G.L.; Ramsey, N.F.; Mampe, W.; Pendlebury, J.M.; Smith, K.; Dress, W.B.; Miller, P.D.; Perrin, P.
1981-01-01
The neutron magnetic moment has been measured with an improvement of a factor of 100 over the previous best measurement. Using a magnetic resonance spectrometer of the separated oscillatory field type capable of determining a resonance signal for both neutrons and protons (in flowing H 2 O), we find μ/sub n//μ/sub p/ = 0.68497935(17) (0.25 ppM). The neutron magnetic moment can also be expressed without loss of accuracy in a variety of other units
Electric and Magnetic Dipole Moments
CERN. Geneva
2005-01-01
The stringent limit on the electric dipole moment of the neutron forced the issue on the strong CP-problem. The most elegant solution of which is the axion field proposed by Peccei and Quinn. The current limit on the QCD parameter theta coming from the limit on the neutron EDM is of order 10-10. I am going to describe the present status on the neutron EDM searches and further prospects on getting down to theta_qcd sensitivity of 10-13 with the new deuteron EDM in storage rings proposal. For completeness the current status and prospects of the muon g-2 experiment will also be given.
The vector meson with anomalous magnetic moment
International Nuclear Information System (INIS)
Boyarkin, O.M.
1976-01-01
The possibility of introducing an anomalous magnetic moment into the Stuckelberg version of the charged vector meson theory is considered. It is shown that the interference of states with spins equal to one and zero is absent in the presence of an anomalous magnetic moment of a particle. The differential cross section of scattering on the Coulomb field of a nucleus is calculated, and so are the differential and integral cross sections of meson pair production on annihilation of two gamma quanta. The two-photon mechanism of production of a meson pair in colliding electron-positron beams is considered. It is shown that with any value of the anomalous magnetic moment the cross section of the esup(+)esup(-) → esup(+)esup(-)γsup(*)γsup(*) → esup(+)esup(-)Wsup(+)Wsup(-) reaction exceeds that of the esup(+)esup(-) → γsup(*) → Wsup(+)Wsup(-) at sufficiently high energies
The anomalous magnetic moment of the muon
Jegerlehner, Friedrich
2017-01-01
This research monograph covers extensively the theory of the muon anomalous magnetic moment and provides estimates of the theoretical uncertainties. The muon anomalous magnetic moment is one of the most precisely measured quantities in elementary particle physics and provides one of the most stringent tests of relativistic quantum field theory as a fundamental theoretical framework. It allows for an extremely precise check of the standard model of elementary particles and of its limitations. This book reviews the present state of knowledge of the anomalous magnetic moment a=(g-2)/2 of the muon. Recent experiments at the Brookhaven National Laboratory now reach the unbelievable precision of 0.5 parts per million, improving the accuracy of previous g-2 experiments at CERN by a factor of 14. In addition, quantum electrodynamics and electroweak and hadronic effects are reviewed. Since non-perturbative hadronic effects play a key role for the precision test, their evaluation is described in detail. Perspectives fo...
Composite quarks and their magnetic moments
International Nuclear Information System (INIS)
Parthasarathy, R.
1980-08-01
A composite quark model based on the symmetry group SU(10)sub(flavour) x SU(10)sub(colour) with the assumption of mass non-degenerate sub-quarks is considered. Magnetic moments of quarks and sub-quarks are obtained from the observed nucleon magnetic moments. Using these quark and sub-quark magnetic moments, a satisfactory agreement for the radiative decays of vector mesons (rho,ω) is obtained. The ratio of the masses of the sub-quarks constituting the u,d,s quarks are found to be Msub(p)/Msub(n) = 0.3953 and Msub(p)/Msub(lambda) = 0.596, indicating a mass hierarchy Msub(p) < Msub(n) < Msub(lambda) for the sub-quarks. (author)
Relativistic dynamics of point magnetic moment
Rafelski, Johann; Formanek, Martin; Steinmetz, Andrew
2018-01-01
The covariant motion of a classical point particle with magnetic moment in the presence of (external) electromagnetic fields is revisited. We are interested in understanding extensions to the Lorentz force involving point particle magnetic moment (Stern-Gerlach force) and how the spin precession dynamics is modified for consistency. We introduce spin as a classical particle property inherent to Poincaré symmetry of space-time. We propose a covariant formulation of the magnetic force based on a `magnetic' 4-potential and show how the point particle magnetic moment relates to the Amperian (current loop) and Gilbertian (magnetic monopole) descriptions. We show that covariant spin precession lacks a unique form and discuss the connection to g-2 anomaly. We consider the variational action principle and find that a consistent extension of the Lorentz force to include magnetic spin force is not straightforward. We look at non-covariant particle dynamics, and present a short introduction to the dynamics of (neutral) particles hit by a laser pulse of arbitrary shape.
Relativistic dynamics of point magnetic moment
Energy Technology Data Exchange (ETDEWEB)
Rafelski, Johann; Formanek, Martin; Steinmetz, Andrew [The University of Arizona, Department of Physics, Tucson, AZ (United States)
2018-01-15
The covariant motion of a classical point particle with magnetic moment in the presence of (external) electromagnetic fields is revisited. We are interested in understanding extensions to the Lorentz force involving point particle magnetic moment (Stern-Gerlach force) and how the spin precession dynamics is modified for consistency. We introduce spin as a classical particle property inherent to Poincare symmetry of space-time. We propose a covariant formulation of the magnetic force based on a 'magnetic' 4-potential and show how the point particle magnetic moment relates to the Amperian (current loop) and Gilbertian (magnetic monopole) descriptions. We show that covariant spin precession lacks a unique form and discuss the connection to g - 2 anomaly. We consider the variational action principle and find that a consistent extension of the Lorentz force to include magnetic spin force is not straightforward. We look at non-covariant particle dynamics, and present a short introduction to the dynamics of (neutral) particles hit by a laser pulse of arbitrary shape. (orig.)
The muon magnetic moment and new physics
Energy Technology Data Exchange (ETDEWEB)
Stoeckinger, Dominik, E-mail: Dominik.Stoeckinger@tu-dresden.de [Institute for Nuclear and Particle Physics (Germany)
2013-03-15
The impact of the muon magnetic moment measurement on physics beyond the Standard Model is briefly reviewed. Particular emphasis is given on the case of supersymmetry. The sensitivity of g - 2 to supersymmetry parameters and the potential for model discrimination and parameter measurements is described. The interplay between LHC data on the Higgs boson, limits on new particles, and g - 2 is discussed.
Hyperon magnetic moments and total cross sections
International Nuclear Information System (INIS)
Lipkin, H.J.
1982-06-01
The new data on both total cross sections and magnetic moments are simply described by beginning with the additive quark model in an SU(3) limit where all quarks behave like strange quarks and breaking both additivity and SU(3) simultaneously with an additional non-additive mechanism which affects only nonstrange quark contributions. The suggestion that strange quarks behave more simply than nonstrange may provide clues to underlying structure or dynamics. Small discrepancies in the moments are analyzed and shown to provide serious difficulties for most models if they are statistically significant. (author)
Exchange current contributions to isoscalar magnetic moments
International Nuclear Information System (INIS)
Arima, A.; Bentz, W.; Ichii, S.
1986-01-01
In this work the authors have investigated two recent suggestions which indicated appreciable exchange current contributions to isoscalar magnetic moments. On account of gauge invariance the authors found that in both treatments certain important terms seem to be omitted. The authors then performed explicit calculations using a one-boson exchange model for the exchange current operator. The authors found that the results are sensitive to the ratio of coupling constants g/sub σNN///g/sub ωNN/. Due to this fact it is difficult to draw quantitative conclusions. In the present model calculation the authors found that both g/sub s/(0) and g/sub 1//sup 0/ are enhanced by about 3% to 4%, resulting in non-negligible corrections to isoscalar magnetic moments
The Anomalous Magnetic Moment of the Muon
Jegerlehner, Friedrich
2008-01-01
This book reviews the present state of knowledge of the anomalous magnetic moment a=(g-2)/2 of the muon. The muon anomalous magnetic moment amy is one of the most precisely measured quantities in elementary particle physics and provides one of the most stringent tests of relativistic quantum field theory as a fundamental theoretical framework. It allows for an extremely precise check of the standard model of elementary particles and of its limitations. Recent experiments at the Brookhaven National Laboratory now reach the unbelievable precision of 0.5 parts per million, improving the accuracy of previous g-2 experiments at CERN by a factor of 14. A major part of the book is devoted to the theory of the anomalous magnetic moment and to estimates of the theoretical uncertainties. Quantum electrodynamics and electroweak and hadronic effects are reviewed. Since non-perturbative hadronic effects play a key role for the precision test, their evaluation is described in detail. After the overview of theory, the exper...
Magnetic moments and the Skyrme interaction
Energy Technology Data Exchange (ETDEWEB)
Lipparini, E; Stringari, S; Traini, M [Trento Univ. (Italy). Dipartmento di Matematica e Fisica
1977-12-12
The magnetic properties of the Skyrme interaction have been studied by performing a restricted Hartree-Fock calculation in order to evaluate the magnetic polarizability and the corrections to the Schmidt moments in nuclei with closed jj shells plus or minus one nucleon. Different corrections to the Schmidt values have been evaluated and discussed: the M1 core polarization and the renormalization of the gyromagnetic factors due to exchange and spin-orbit forces. Several variants of the Skyrme interaction have been studied and discussed in detail.
Unstable magnetic moments in Ce compounds
International Nuclear Information System (INIS)
Aarts, J.
1984-01-01
The problems which are connected with the appearance or disappearance of local moments in metals are well reflected in the magnetic behaviour of Ce intermetallic compounds. This work describes experiments on two Ce compounds which are typical examples of unstable moment systems. The first of these is CeAl 2 which at low temperatures, shows coexistence of antiferromagnetic order and the Kondo effect. Measurements are presented of the magnetization and the susceptibility in different magnetic field and temperature regions. An analysis of these measurements, using a model for the crystal field effects, shows the agreement between the measurements and the calculations to be reasonably good for CeAl 2 , but this agreement becomes worse upon decreasing Ce concentration. A phenomenological description of the observations is given. The second compound reported on is CeCu 2 Si 2 , the first 'heavy-fermion' superconductor to be investigated. The superconducting state is possibly formed by the quasi-particles of a non-magnetic many body singlet state, and not simply by the (sd) conduction electrons. This being a novel phenomenon, a number of experiments were performed to test this picture and to obtain a detailed description of the behaviour of CeCu 2 Si 2 . Measurements of the Meissner volume, confirmed the superconductivity to be intrinsic. (Auth.)
Can the magnetic moment contribution explain the Ay puzzle?
International Nuclear Information System (INIS)
Stoks, V.G.
1998-01-01
We evaluate the full one-photon-exchange Born amplitude for Nd scattering. We include the contributions due to the magnetic moment of the proton or neutron, and the magnetic moment and quadrupole moment of the deuteron. It is found that the inclusion of the magnetic-moment interaction in the theoretical description of the Nd scattering observables cannot resolve the long-standing A y puzzle. copyright 1998 The American Physical Society
The anomalous magnetic moment of the muon
International Nuclear Information System (INIS)
Farley, F.J.M.
1975-01-01
A historical survey of the measurements of the gyromagnetic ratio g of the muon. A brief introduction is given to the theory of the 'anomalous magnetic moment' a equivalent to 1/2(g-2) and its significance is explained. The main part of the review concerns the successive (g-2) experiments to measure a directly, with gradually increasing accuracy. At present experiment and theory agree to (13+-29) parts in 10 9 in g, and the muon still obeys the rules of quantum electrodynamics for a structureless point charge. (author)
Magnetic resonance signal moment determination using the Earth's magnetic field
Fridjonsson, Einar Orn; Creber, Sarah A.; Vrouwenvelder, Johannes S.; Johns, Michael L.
2015-01-01
We demonstrate a method to manipulate magnetic resonance data such that the moments of the signal spatial distribution are readily accessible. Usually, magnetic resonance imaging relies on data acquired in so-called k-space which is subsequently Fourier transformed to render an image. Here, via analysis of the complex signal in the vicinity of the centre of k-space we are able to access the first three moments of the signal spatial distribution, ultimately in multiple directions. This is demonstrated for biofouling of a reverse osmosis (RO) membrane module, rendering unique information and an early warning of the onset of fouling. The analysis is particularly applicable for the use of mobile magnetic resonance spectrometers; here we demonstrate it using an Earth's magnetic field system.
Magnetic resonance signal moment determination using the Earth's magnetic field
Fridjonsson, Einar Orn
2015-03-01
We demonstrate a method to manipulate magnetic resonance data such that the moments of the signal spatial distribution are readily accessible. Usually, magnetic resonance imaging relies on data acquired in so-called k-space which is subsequently Fourier transformed to render an image. Here, via analysis of the complex signal in the vicinity of the centre of k-space we are able to access the first three moments of the signal spatial distribution, ultimately in multiple directions. This is demonstrated for biofouling of a reverse osmosis (RO) membrane module, rendering unique information and an early warning of the onset of fouling. The analysis is particularly applicable for the use of mobile magnetic resonance spectrometers; here we demonstrate it using an Earth\\'s magnetic field system.
Nucleon magnetic moments and magnetic properties of vacuum in QCD
International Nuclear Information System (INIS)
Ioffe, B.L.; Smilga, A.V.
1983-01-01
Magnetic moments of a proton and a neutron are calculated in the QCD sum rule approach. The substantial role of the external electromagnetic field induced vacuum expectation values, the most important of which is connected with quark condensate magnetic susceptibility, is demonstrated. The results are μsub(p)=3.0, μsub(n)=2.0(+-10%) that is in a perfect agreement with experiment. The invariant amplitudes of Δ→pγ transition are also calculated
Energy of magnetic moment of superconducting current in magnetic field
International Nuclear Information System (INIS)
Gurtovoi, V.L.; Nikulov, A.V.
2015-01-01
Highlights: • Quantization effects observed in superconducting loops are considered. • The energy of magnetic moment in magnetic field can not be deduced from Hamiltonian. • This energy is deduced from a history of the current state in the classical case. • It can not be deduced directly in the quantum case. • Taking this energy into account demolishes agreement between theory and experiment. - Abstract: The energy of magnetic moment of the persistent current circulating in superconducting loop in an externally produced magnetic field is not taken into account in the theory of quantization effects because of identification of the Hamiltonian with the energy. This identification misleads if, in accordance with the conservation law, the energy of a state is the energy expended for its creation. The energy of magnetic moment is deduced from a creation history of the current state in magnetic field both in the classical and quantum case. But taking this energy into account demolishes the agreement between theory and experiment. Impartial consideration of this problem discovers the contradiction both in theory and experiment
Quantum tunneling of the magnetic moment in a free nanoparticle
International Nuclear Information System (INIS)
O'Keeffe, M.F.; Chudnovsky, E.M.; Garanin, D.A.
2012-01-01
We study tunneling of the magnetic moment in a particle that has full rotational freedom. Exact energy levels are obtained and the ground-state magnetic moment is computed for a symmetric rotor. The effect of mechanical freedom on spin tunneling manifests itself in a strong dependence of the magnetic moment on the moments of inertia of the rotor. The energy of the particle exhibits quantum phase transitions between states with different values of the magnetic moment. Particles of various shapes are investigated and the quantum phase diagram is obtained. - Highlights: ► We obtain an exact analytical solution of a tunneling spin in a mechanical rotator. ► The quantum phase diagram shows magnetic moment dependence on rotator shape and size. ► Our work explains magnetic properties of free atomic clusters and magnetic molecules.
Quantum tunneling of the magnetic moment in a free nanoparticle
Energy Technology Data Exchange (ETDEWEB)
O' Keeffe, M.F. [Physics Department, Lehman College, City University of New York, 250 Bedford Park Boulevard West, Bronx, New York, 10468-1589 (United States); Chudnovsky, E.M., E-mail: eugene.chudnovsky@lehman.cuny.edu [Physics Department, Lehman College, City University of New York, 250 Bedford Park Boulevard West, Bronx, New York, 10468-1589 (United States); Garanin, D.A. [Physics Department, Lehman College, City University of New York, 250 Bedford Park Boulevard West, Bronx, New York, 10468-1589 (United States)
2012-09-15
We study tunneling of the magnetic moment in a particle that has full rotational freedom. Exact energy levels are obtained and the ground-state magnetic moment is computed for a symmetric rotor. The effect of mechanical freedom on spin tunneling manifests itself in a strong dependence of the magnetic moment on the moments of inertia of the rotor. The energy of the particle exhibits quantum phase transitions between states with different values of the magnetic moment. Particles of various shapes are investigated and the quantum phase diagram is obtained. - Highlights: Black-Right-Pointing-Pointer We obtain an exact analytical solution of a tunneling spin in a mechanical rotator. Black-Right-Pointing-Pointer The quantum phase diagram shows magnetic moment dependence on rotator shape and size. Black-Right-Pointing-Pointer Our work explains magnetic properties of free atomic clusters and magnetic molecules.
Induced Magnetic Moment in Defected Single-Walled Carbon Nanotubes
International Nuclear Information System (INIS)
Liu Hong
2006-01-01
The existence of a large induced magnetic moment in defect single-walled carbon nanotube(SWNT) is predicted using the Green's function method. Specific to this magnetic moment of defect SWNT is its magnitude which is several orders of magnitude larger than that of perfect SWNT. The induced magnetic moment also shows certain remarkable features. Therefore, we suggest that two pair-defect orientations in SWNT can be distinguished in experiment through the direction of the induced magnetic moment at some Specific energy points
Lattice QCD evaluation of baryon magnetic moment sum rules
International Nuclear Information System (INIS)
Leinweber, D.B.
1991-05-01
Magnetic moment combinations and sum rules are evaluated using recent results for the magnetic moments of octet baryons determined in a numerical simulation of quenched QCD. The model-independent and parameter-free results of the lattice calculations remove some of the confusion and contradiction surrounding past magnetic moment sum rule analyses. The lattice results reveal the underlying quark dynamics investigated by magnetic moment sum rules and indicate the origin of magnetic moment quenching for the non-strange quarks in Σ. In contrast to previous sum rule analyses, the magnetic moments of nonstrange quarks in Ξ are seen to be enhanced in the lattice results. In most cases, the spin-dependent dynamics and center-of-mass effects giving rise to baryon dependence of the quark moments are seen to be sufficient to violate the sum rules in agreement with experimental measurements. In turn, the sum rules are used to further examine the results of the lattice simulation. The Sachs sum rule suggests that quark loop contributions not included in present lattice calculations may play a key role in removing the discrepancies between lattice and experimental ratios of magnetic moments. This is supported by other sum rules sensitive to quark loop contributions. A measure of the isospin symmetry breaking in the effective quark moments due to quark loop contributions is in agreement with model expectations. (Author) 16 refs., 2 figs., 2 tabs
Electric and magnetic dipole moments of the neutron
International Nuclear Information System (INIS)
Ramsey, N.F.
1977-01-01
Experiments to measure the electric and magnetic dipole moments of the neutron are described. The apparatus used in this experiment is one to measure with high precision the precessional frequency of the neutron spin in a weak magnetic field with a neutron beam magnetic resonance apparatus similar to that used for measuring the magnetic moment of the neutron. Results of the measurement are presented. 52 references
Model independent bounds on magnetic moments of Majorana neutrinos
International Nuclear Information System (INIS)
Bell, Nicole F.; Gorchtein, Mikhail; Ramsey-Musolf, Michael J.; Vogel, Petr; Wang, Peng
2006-01-01
We analyze the implications of neutrino masses for the magnitude of neutrino magnetic moments. By considering electroweak radiative corrections to the neutrino mass, we derive model-independent naturalness upper bounds on neutrino magnetic moments, μ ν , generated by physics above the electroweak scale. For Dirac neutrinos, the bound is several orders of magnitude more stringent than present experimental limits. However, for Majorana neutrinos the magnetic moment contribution to the mass is Yukawa suppressed. The bounds we derive for magnetic moments of Majorana neutrinos are weaker than present experimental limits if μ ν is generated by new physics at ∼1 TeV, and surpass current experimental sensitivity only for new physics scales >10-100 TeV. The discovery of a neutrino magnetic moment near present limits would thus signify that neutrinos are Majorana particles
Measurement of the electric dipole moment and magnetic moment anomaly of the muon
Onderwater, CJG
2005-01-01
The experimental precision of the anomalous magnetic moment of the muon has been improved to 0.5 part-per-million by the Brookhaven E821 experiment, similar to the theoretical uncertainty. In the same experiment, a new limit on the electric dipole moment of 2.8 x 10(-19) e-cm (95% CL) was set. The
Magnetic dipole moment of a moving electric dipole
Hnizdo, V.
2012-01-01
The current density of a moving electric dipole is expressed as the sum of polarization and magnetization currents. The magnetic field due to the latter current is that of a magnetic dipole moment that is consistent with the relativistic transformations of the polarization and magnetization of macroscopic electrodynamics.
Fits combining hyperon semileptonic decays and magnetic moments and CVC
International Nuclear Information System (INIS)
Bohm, A.; Kielanowski, P.
1982-10-01
We have performed a test of CVC by determining the baryon charges and magnetic moments from the hyperon semileptonic data. Then CVC was applied in order to make a joint fit of all baryon semileptonic decay data and baryon magnetic moments for the spectrum generating group (SG) model as well as for the conventional (cabibbo and magnetic moments in nuclear magnetons) model. The SG model gives a very good fit with chi 2 /n/sub D/ = 25/20 approximately equals 21% C.L. whereas the conventional model gives a fit with chi 2 /n/sub D/ = 244/20
International Nuclear Information System (INIS)
Sun Jinji; Ren Yuan; Fang Jiancheng
2011-01-01
The paper presents a special configuration of passive axial magnetic bearing with segmented Halbach magnetized array in magnetically suspended control moment gyro (MSCMG). Peculiarity of presented passive axial magnetic bearing is its ability to provide angular stiffness so that it can produce gyro moment when it is used in MSCMG. The MSCMG with this passive axial magnetic bearing can efficiently reduce the power loss when it supplies gyro moment compared with the five degrees of freedom (5-DOF) MSCMG. The characteristics of the suspension force and stiffness of the passive axial magnetic bearing are studied using finite element method (FEM). The performance of the presented passive axial magnetic bearing with Halbach magnetized array is verified by a prototyped MSCMG. - Research highlights: → Passive axial magnetic bearing is used to provide angular stiffness. → Passive axial magnetic bearing is based on repulsion. → Layers Halbach magnetized array realizes higher stiffness per bearing volume. → Passive axial magnetic bearing can provide gyro moment in CMG. → Power loss of MSCMG with PMB does not increase when it provides gyro moment.
Sum rules and systematics for baryon magnetic moments
International Nuclear Information System (INIS)
Lipkin, H.J.
1983-11-01
The new experimental values of hyperon magnetic moments are compared with sum rules predicted from general quark models. Three difficulties encountered are not easily explained by simple models. The isovector contributions of nonstrange quarks to hyperon moments are smaller than the corresponding contribution to nucleon moments, indicating either appreciable configuration mixing in hyperon wave functions and absent in nucleons or an additional isovector contribution beyond that of valence quarks; e.g. from a pion cloud. The large magnitude of the THETA - moment may indicate that the strange quark contribution to the THETA moments is considerably larger than the value μ(Λ) predicted by simple models which have otherwise been very successful. The set of controversial values from different experiments of the Σ - moment include a value very close to -(1/2)μ(Σ + ) which would indicate that strange quarks do not contribute at all to the Σ moments. (author)
Sum rules and systematics for baryon magnetic moments
International Nuclear Information System (INIS)
Lipkin, H.J.
1984-01-01
The new experimental values of hyperon magnetic moments are compared with sum rules predicted from general quark models. Three difficulties encountered are not easily explained by simple models. The isovector contributions of nonstrange quarks to hyperon moments are smaller than the corresponding contribution to nucleon moments, indicating either appreciable configuration mixing in hyperon wave functions and absent in nucleons or an additional isovector contribution beyond that of valence quarks, e.g. from a pion cloud. The large magnitude of the Ψ - moment may indicate that the strange quark contribution to the Ψ moments is considerably larger than the value μ(Λ) predicted by simple models which have otherwise been very successful. The set of controversial values from different experiments of the Σ - moment include a value very close to -1/2μ(Σ + ) which would indicate that strange quarks do not contribute at all to the Σ moments. (orig.)
The relation between anomalous magnetic moment and axial anomaly
International Nuclear Information System (INIS)
Teryaev, O.V.
1990-12-01
The conservation of total angular momentum of spinor particle leads to a simple relation between the famous Schwinger and Adler coefficients determining axial anomaly and anomalous magnetic moment, respectively. (author). 8 refs, 1 fig
Neutrino magnetic moment contribution to the neutrino-deuteron reaction
International Nuclear Information System (INIS)
Tsuji, K.; Nakamura, S.; Sato, T.; Kubodera, K.; Myhrer, F.
2004-01-01
We study the effect of the neutrino magnetic moment on the neutrino-deuteron breakup reaction, using a method called the standard nuclear physics approach, which has already been well tested for several electroweak processes involving the deuteron
Magnetic dipole moments of the heavy tensor mesons in QCD
Energy Technology Data Exchange (ETDEWEB)
Aliev, T. M., E-mail: taliev@metu.edu.tr [Physics Department, Middle East Technical University, 06531, Ankara (Turkey); Institute of Physics, Baku (Azerbaijan); Barakat, T., E-mail: tbarakat@KSU.EDU.SA [Physics Department, Middle East Technical University, 06531, Ankara (Turkey); Physics and Astronomy Department, King Saud University, Riyadh (Saudi Arabia); Savcı, M., E-mail: savci@metu.edu.tr [Physics Department, Middle East Technical University, 06531, Ankara (Turkey)
2015-11-03
The magnetic dipole moments of the D{sub 2}, and D{sub S{sub 2}}, B{sub 2}, and B{sub S{sub 2}} heavy tensor mesons are estimated in framework of the light cone QCD sum rules. It is observed that the magnetic dipole moments for the charged mesons are larger than that of its neutral counterpart. It is found that the SU(3) flavor symmetry violation is about 10 % in both b and c sectors.
Moments of disaster response in the emergency department (ED).
Hammad, Karen S; Arbon, Paul; Gebbie, Kristine; Hutton, Alison
2017-11-01
We experience our lives as a series of memorable moments, some good and some bad. Undoubtedly, the experience of participating in disaster response, is likely to stand out as a memorable moment in a nurses' career. This presentation will describe five distinct moments of nursing in the emergency department (ED) during a disaster response. A Hermeneutic Phenomenological approach informed by van Manen underpins the research process. Thirteen nurses from different countries around the world participated in interviews about their experience of working in the ED during a disaster. Thematic analysis resulted in five moments of disaster response which are common to the collective participant experience. The 5 themes emerge as Notification (as a nurse finds out that the ED will be receiving casualties), Waiting (waiting for the patients to arrive to the ED), Patient Arrival (the arrival of the first patients to the ED), Caring for patients (caring for people affected by the disaster) and Reflection (the moment the disaster response comes to an end). This paper provides an in-depth insight into the experience of nursing in the ED during a disaster response which can help generate awareness and inform future disaster preparedness of emergency nurses. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.
Magnetic moments of composite quarks and leptons: further difficulties
International Nuclear Information System (INIS)
Lipkin, H.J.
1980-05-01
The previously noted difficulty of obtaining Dirac magnetic moments in composite models with two basic building blocks having different charges is combined with the observation by Shaw et al., that a light bound fermion state built from heavy constituents must have the Dirac moment in a renormalizable theory. The new constraint on any model that builds leptons from two fundamental fields bound by non-electromagnetic forces is that the ratio of the magnetic moment to the total charge of the bound state is independent of the values of the charges of the constituents; e.g., such a bound state of a spin-1/2 fermion and a scalar boson will have the same magnetic moment if the fermion is neutral and the boson has charge -e or vice versa
Dynamic interaction between localized magnetic moments in carbon nanotubes
International Nuclear Information System (INIS)
Costa, A T; Muniz, R B; Ferreira, M S
2008-01-01
Magnetic moments dilutely dispersed in a metallic host tend to be coupled through the conduction electrons of the metal. This indirect exchange coupling (IEC), known to occur for a variety of magnetic materials embedded in several different metallic structures, is of rather long range, especially for low-dimensional structures like carbon nanotubes. Motivated by recent claims that the indirect coupling between magnetic moments in precessional motion has a much longer range than its static counterpart, we consider here how magnetic atoms adsorbed to the walls of a metallic nanotube respond to a time-dependent perturbation that induces their magnetic moments to precess. By calculating the frequency-dependent spin susceptibility, we are able to identify resonant peaks whose respective widths provide information about the dynamic aspect of the IEC. We show that by departing from a purely static representation to another in which the moments are allowed to precess, we change from what is already considered a long-range interaction to another whose range is far superior. In other words, localized magnetic moments embedded in a metallic structure can feel each other's presence more easily when they are set in precessional motion. We argue that such an effect can have useful applications leading to large-scale spintronics devices
SNO results and neutrino magnetic moment solution to the solar ...
Indian Academy of Sciences (India)
that the solar neutrino deficit is due to the interaction of neutrino transition magnetic moment with the solar magnetic ... Another new feature in the analysis is that for the global analysis, we have replaced the spectrum by its centroid. ... rise to mean potentials Va for neutrinos which are proportional to the number density of.
Resonances and dipole moments in dielectric, magnetic, and magnetodielectric cylinders
DEFF Research Database (Denmark)
Dirksen, A.; Arslanagic, Samel; Breinbjerg, Olav
2011-01-01
An eigenfunction solution to the problem of plane wave scattering by dielectric, magnetic, and magnetodielectric cylinders is used for a systematic investigation of their resonances. An overview of the resonances with electric and magnetic dipole moments, needed in, e.g., the synthesis...
Determination of the magnetic moment of $^{140}$Pr
Kowalska, M; Kreim, K D; Krieger, A R; Litvinov, Y
We propose to measure the nuclear magnetic moment of the neutron-deficient isotope $^{140}$Pr using collinear laser spectroscopy at the COLLAPS experiment. This nuclide is one of two nuclear systems for which a modulated electron capture decay has been observed in hydrogen-like ions in a storage ring. The firm explanation of the observed phenomenon is still missing but some hypotheses suggest an interaction of the unpaired electron with the surrounding magnetic fields of the ring. In order to verify or discard these hypotheses the magnetic moment of $^{140}$Pr is required since this determines the energy of the 1s hyperfine splitting.
New limits on neutrino magnetic moment through nonvanishing 13-mixing
Guzzo, M. M.; de Holanda, P. C.; Peres, O. L. G.
2018-05-01
The relatively large value of the neutrino mixing angle θ13 set by recent measurements allows us to use solar neutrinos to set a limit on the neutrino magnetic moment involving the second and third flavor families, μ23. The existence of a random magnetic field in the solar convective zone can produce a significant antineutrino flux when a nonvanishing neutrino magnetic moment is assumed. Even if we consider a vanishing neutrino magnetic moment involving the first family, electron antineutrinos are indirectly produced through the mixing between the first and third families and μ23≠0 . Using KamLAND limits on the solar flux of electron antineutrino, we set the limit μ23behavior of solar magnetic fields. This is the first time that a limit on μ23 has been established in the literature directly from neutrino interactions with magnetic fields, and, interestingly enough, is comparable with the limits on the neutrino magnetic moment involving the first family and with the ones coming from modifications to the electroweak cross section.
Analysis of dynamical corrections to baryon magnetic moments
International Nuclear Information System (INIS)
Ha, Phuoc; Durand, Loyal
2003-01-01
We present and analyze QCD corrections to the baryon magnetic moments in terms of the one-, two-, and three-body operators which appear in the effective field theory developed in our recent papers. The main corrections are extended Thomas-type corrections associated with the confining interactions in the baryon. We investigate the contributions of low-lying angular excitations to the baryon magnetic moments quantitatively and show that they are completely negligible. When the QCD corrections are combined with the nonquark model contributions of the meson loops, we obtain a model which describes the baryon magnetic moments within a mean deviation of 0.04 μ N . The nontrivial interplay of the two types of corrections to the quark-model magnetic moments is analyzed in detail, and explains why the quark model is so successful. In the course of these calculations, we parametrize the general spin structure of the j=(1/2) + baryon wave functions in a form which clearly displays the symmetry properties and the internal angular momentum content of the wave functions, and allows us to use spin-trace methods to calculate the many spin matrix elements which appear in the expressions for the baryon magnetic moments. This representation may be useful elsewhere
Magnetotransport in Layered Dirac Fermion System Coupled with Magnetic Moments
Iwasaki, Yoshiki; Morinari, Takao
2018-03-01
We theoretically investigate the magnetotransport of Dirac fermions coupled with localized moments to understand the physical properties of the Dirac material EuMnBi2. Using an interlayer hopping form, which simplifies the complicated interaction between the layers of Dirac fermions and the layers of magnetic moments in EuMnBi2, the theory reproduces most of the features observed in this system. The hysteresis observed in EuMnBi2 can be caused by the valley splitting that is induced by the spin-orbit coupling and the external magnetic field with the molecular field created by localized moments. Our theory suggests that the magnetotransport in EuMnBi2 is due to the interplay among Dirac fermions, localized moments, and spin-orbit coupling.
Anomalous magnetic nucleon moments in a Bethe-Salpeter model
International Nuclear Information System (INIS)
Chak Wing Chan.
1978-01-01
We investigate the anomalous magnetic moment of the nucleon in a field theoretic many-channel model for the electromagnetic form factors of the N anti N, the ππ, the K anti K, the πω and the πrho systems. Propagator self-energy corrections from the Ward idendity and phenomenological strong vertex corrections are both included. The photon is coupled minimally to pions, kaons and nucleons with power multiplicative renormalization. With solutions in the framework of the Bethe-Salpeter equation we obtain a value 1.84 for the isovector moment and a value -0.02 for the isoscalar moment. (orig.)
Magnetic moment of a bound electron
Czarnecki, Andrzej; Mondejar, Jorge; Piclum, Jan H
2010-01-01
Theoretical predictions underlying determinations of the fine structure constant alpha and the electron-to-proton mass ratio m_e/m_p are reviewed, with the emphasis on the bound electron magnetic anomaly g-2. The theory of the interaction of hydrogen-like ions with a magnetic field is discussed. The status of efforts aimed at the determination of O(alpha (Z alpha)^5) and O(alpha^2 (Z alpha)^5) corrections to the g factor is presented. The reevaluation of analogous corrections to the Lamb shift and the hyperfine splitting is summarized.
Fluxonium-Based Artificial Molecule with a Tunable Magnetic Moment
Kou, A.; Smith, W. C.; Vool, U.; Brierley, R. T.; Meier, H.; Frunzio, L.; Girvin, S. M.; Glazman, L. I.; Devoret, M. H.
2017-07-01
Engineered quantum systems allow us to observe phenomena that are not easily accessible naturally. The LEGO®-like nature of superconducting circuits makes them particularly suited for building and coupling artificial atoms. Here, we introduce an artificial molecule, composed of two strongly coupled fluxonium atoms, which possesses a tunable magnetic moment. Using an applied external flux, one can tune the molecule between two regimes: one in which the ground-excited state manifold has a magnetic dipole moment and one in which the ground-excited state manifold has only a magnetic quadrupole moment. By varying the applied external flux, we find the coherence of the molecule to be limited by local flux noise. The ability to engineer and control artificial molecules paves the way for building more complex circuits for quantum simulation and protected qubits.
Magnetic moment investigation by frequency mixing techniques.
Teliban, I; Thede, C; Chemnitz, S; Bechtold, C; Quadakkers, W J; Schütze, M; Quandt, E
2009-11-01
Gas turbines and other large industrial equipment are subjected to high-temperature oxidation and corrosion. Research and development of efficient protective coatings is the main task in the field. Also, knowledge about the depletion state of the coating during the operation time is important. To date, practical nondestructive methods for the measurement of the depletion state do not exist. By integrating magnetic phases into the coating, the condition of the coating can be determined by measuring its magnetic properties. In this paper, a new technique using frequency mixing is proposed to investigate the thickness of the coatings based on their magnetic properties. A sensor system is designed and tested on specific magnetic coatings. New approaches are proposed to overcome the dependency of the measurement on the distance between coil and sample that all noncontact techniques face. The novelty is a low cost sensor with high sensibility and selectivity which can provide very high signal-to-noise ratios. Prospects and limitations are discussed for future use of the sensor in industrial applications.
Effective particle magnetic moment of multi-core particles
International Nuclear Information System (INIS)
Ahrentorp, Fredrik; Astalan, Andrea; Blomgren, Jakob; Jonasson, Christian; Wetterskog, Erik; Svedlindh, Peter; Lak, Aidin; Ludwig, Frank; IJzendoorn, Leo J. van; Westphal, Fritz; Grüttner, Cordula; Gehrke, Nicole; Gustafsson, Stefan; Olsson, Eva; Johansson, Christer
2015-01-01
In this study we investigate the magnetic behavior of magnetic multi-core particles and the differences in the magnetic properties of multi-core and single-core nanoparticles and correlate the results with the nanostructure of the different particles as determined from transmission electron microscopy (TEM). We also investigate how the effective particle magnetic moment is coupled to the individual moments of the single-domain nanocrystals by using different measurement techniques: DC magnetometry, AC susceptometry, dynamic light scattering and TEM. We have studied two magnetic multi-core particle systems – BNF Starch from Micromod with a median particle diameter of 100 nm and FeraSpin R from nanoPET with a median particle diameter of 70 nm – and one single-core particle system – SHP25 from Ocean NanoTech with a median particle core diameter of 25 nm
Effective particle magnetic moment of multi-core particles
Ahrentorp, Fredrik; Astalan, Andrea; Blomgren, Jakob; Jonasson, Christian; Wetterskog, Erik; Svedlindh, Peter; Lak, Aidin; Ludwig, Frank; van IJzendoorn, Leo J.; Westphal, Fritz; Grüttner, Cordula; Gehrke, Nicole; Gustafsson, Stefan; Olsson, Eva; Johansson, Christer
2015-04-01
In this study we investigate the magnetic behavior of magnetic multi-core particles and the differences in the magnetic properties of multi-core and single-core nanoparticles and correlate the results with the nanostructure of the different particles as determined from transmission electron microscopy (TEM). We also investigate how the effective particle magnetic moment is coupled to the individual moments of the single-domain nanocrystals by using different measurement techniques: DC magnetometry, AC susceptometry, dynamic light scattering and TEM. We have studied two magnetic multi-core particle systems - BNF Starch from Micromod with a median particle diameter of 100 nm and FeraSpin R from nanoPET with a median particle diameter of 70 nm - and one single-core particle system - SHP25 from Ocean NanoTech with a median particle core diameter of 25 nm.
Effective particle magnetic moment of multi-core particles
Energy Technology Data Exchange (ETDEWEB)
Ahrentorp, Fredrik; Astalan, Andrea; Blomgren, Jakob; Jonasson, Christian [Acreo Swedish ICT AB, Arvid Hedvalls backe 4, SE-411 33 Göteborg (Sweden); Wetterskog, Erik; Svedlindh, Peter [Department of Engineering Sciences, Uppsala University, Box 534, SE-751 21 Uppsala (Sweden); Lak, Aidin; Ludwig, Frank [Institute of Electrical Measurement and Fundamental Electrical Engineering, TU Braunschweig, D‐38106 Braunschweig Germany (Germany); IJzendoorn, Leo J. van [Department of Applied Physics, Eindhoven University of Technology, 5600 MB Eindhoven (Netherlands); Westphal, Fritz; Grüttner, Cordula [Micromod Partikeltechnologie GmbH, D ‐18119 Rostock (Germany); Gehrke, Nicole [nanoPET Pharma GmbH, D ‐10115 Berlin Germany (Germany); Gustafsson, Stefan; Olsson, Eva [Department of Applied Physics, Chalmers University of Technology, SE-412 96 Göteborg (Sweden); Johansson, Christer, E-mail: christer.johansson@acreo.se [Acreo Swedish ICT AB, Arvid Hedvalls backe 4, SE-411 33 Göteborg (Sweden)
2015-04-15
In this study we investigate the magnetic behavior of magnetic multi-core particles and the differences in the magnetic properties of multi-core and single-core nanoparticles and correlate the results with the nanostructure of the different particles as determined from transmission electron microscopy (TEM). We also investigate how the effective particle magnetic moment is coupled to the individual moments of the single-domain nanocrystals by using different measurement techniques: DC magnetometry, AC susceptometry, dynamic light scattering and TEM. We have studied two magnetic multi-core particle systems – BNF Starch from Micromod with a median particle diameter of 100 nm and FeraSpin R from nanoPET with a median particle diameter of 70 nm – and one single-core particle system – SHP25 from Ocean NanoTech with a median particle core diameter of 25 nm.
Cooper pairs' magnetic moment in MCFL color superconductivity
International Nuclear Information System (INIS)
Feng Bo; Ferrer, Efrain J.; Incera, Vivian de la
2011-01-01
We investigate the effect of the alignment of the magnetic moments of Cooper pairs of charged quarks that form at high density in three-flavor quark matter. The high-density phase of this matter in the presence of a magnetic field is known to be the Magnetic Color-Flavor-Locked (MCFL) phase of color superconductivity. We derive the Fierz identities of the theory and show how the explicit breaking of the rotational symmetry by the uniform magnetic field opens new channels of interactions and allows the formation of a new diquark condensate. The new order parameter is a spin-1 condensate proportional to the component in the field direction of the average magnetic moment of the pairs of charged quarks. The magnitude of the spin-1 condensate becomes comparable to the larger of the two scalar gaps in the region of large fields. The existence of the spin-1 condensate is unavoidable, as in the presence of a magnetic field there is no solution of the gap equations with nonzero scalar gaps and zero magnetic moment condensate. This is consistent with the fact that the extra condensate does not break any symmetry that has not already been broken by the known MCFL gaps. The spin-1 condensate enhances the condensation energy of pairs formed by charged quarks and the magnetization of the system. We discuss the possible consequences of the new order parameter on the issue of the chromomagnetic instability that appears in color superconductivity at moderate density.
Magnetic dipole moments of the heavy tensor mesons in QCD
Energy Technology Data Exchange (ETDEWEB)
Aliev, T.M. [Middle East Technical University, Physics Department, Ankara (Turkey); Institute of Physics, Baku (Azerbaijan); Barakat, T. [Middle East Technical University, Physics Department, Ankara (Turkey); King Saud University, Physics and Astronomy Department, Riyadh (Saudi Arabia); Savci, M. [Middle East Technical University, Physics Department, Ankara (Turkey)
2015-11-15
The magnetic dipole moments of the D{sub 2}, and D{sub S{sub 2}}, B{sub 2}, and B{sub S{sub 2}} heavy tensor mesons are estimated in framework of the light cone QCD sum rules. It is observed that the magnetic dipole moments for the charged mesons are larger than that of its neutral counterpart. It is found that the SU(3) flavor symmetry violation is about 10 % in both b and c sectors. (orig.)
Precise Determination of the Strangeness Magnetic Moment of the Nucleon
Energy Technology Data Exchange (ETDEWEB)
Leinweber, D B; Boinepalli, S; Cloet, I C; Thomas, A W; Williams, A G; Young, R D; Zanotti, J M; Zhang, J B
2005-06-01
By combining the constraints of charge symmetry with new chiral extrapolation techniques and recent low mass lattice QCD simulations of the individual quark contributions to the magnetic moments of the nucleon octet, we obtain a precise determination of the strange magnetic moment of the proton. The result, namely G{sub M}{sup s} = -0.051 +/- 0.021 mu{sub N}, is consistent with the latest experimental measurements but an order of magnitude more precise. This poses a tremendous challenge for future experiments.
The anomalous magnetic moment of the electron
International Nuclear Information System (INIS)
Awobode, A.M.
2002-05-01
The gyromagnetic ratio g of an electron is calculated by taking the non-relativistic limit of a newly proposed extension of the Dirac Hamiltonian coupled to a magnetic field. It is observed that the calculated g is greater than 2; the Dirac theory had predicted that g=2 in sharp contradiction with accurate experimental observations. The additional quantity (g-2)/2≡δ∼(1.6x10 -3 ) is shown here to be due to an extra term which appears in the reduced Hamiltonian, as a consequence of the modification of the rest energy. No divergences are encountered in the calculations described. (author)
Phase formation, thermal stability and magnetic moment of cobalt nitride thin films
Directory of Open Access Journals (Sweden)
Rachana Gupta
2015-09-01
Full Text Available Cobalt nitride (Co-N thin films prepared using a reactive magnetron sputtering process are studied in this work. During the thin film deposition process, the relative nitrogen gas flow (RN2 was varied. As RN2 increases, Co(N, Co4N, Co3N and CoN phases are formed. An incremental increase in RN2, after emergence of Co4N phase at RN2 = 10%, results in a linear increase of the lattice constant (a of Co4N. For RN2 = 30%, a maximizes and becomes comparable to its theoretical value. An expansion in a of Co4N, results in an enhancement of the magnetic moment, to the extent that it becomes even larger than pure Co. Such larger than pure metal magnetic moment for tetra-metal nitrides (M4N have been theoretically predicted. Incorporation of N atoms in M4N configuration results in an expansion of a (relative to pure metal and enhances the itinerary of conduction band electrons leading to larger than pure metal magnetic moment for M4N compounds. Though a higher (than pure Fe magnetic moment for Fe4N thin films has been evidenced experimentally, higher (than pure Co magnetic moment is evidenced in this work.
Magnetic moments of octet baryons in a chiral potential model
Energy Technology Data Exchange (ETDEWEB)
Barik, N; Das, M
1986-12-01
Incorporating the lowest-order pionic correction, the magnetic moments of the nucleon octet have been calculated in a chiral potential model. The potential, representing phenomenologically the nonperturbative gluon self-couplings, is chosen with equally mixed scalar and vector parts in a power-law form. The results are in reasonable agreement with experiment. 32 refs., 2 tables.
Magnetic moments of octet baryons in a chiral potential model
International Nuclear Information System (INIS)
Barik, N.
1986-01-01
Incorporating the lowest-order pionic correction, the magnetic moments of the nucleon octet have been calculated in a chiral potential model. The potential, representing phenomenologically the nonperturbative gluon self-couplings, is chosen with equally mixed scalar and vector parts in a power-law form. The results are in reasonable agreement with experiment. (author)
Neutrino magnetic moment in a theory with lepton flavor symmetry
International Nuclear Information System (INIS)
Stephanov, M.A.
1987-01-01
A model for generating the neutrino magnetic moment of the order of 10 -10 μ B is proposed, which is based on the SU(3) lepton flavor symmetry. In such a way one can avoid the flavor changing processes. The experimental constraints on the constants of the model are considered
Examination of the strangeness contribution to the nucleon magnetic moment
Chen, XS; Timmermans, RGE; Sun, WM; Zong, HS; Wang, F
We examine the nucleon strangeness magnetic moment mu(s) with a lowest order meson cloud model. We observe that (1) strangeness in the nucleon is a natural requirement of the empirical relation mu(p)/mu(n)similar or equal to-3/2, which favors an SU(3) octet meson cloud instead of merely the SU(2)
Electric charge quantization and the muon anomalous magnetic moment
International Nuclear Information System (INIS)
Pires, C.A.S. de; Rodrigues da Silva, P.S.
2002-01-01
We investigate some proposals to solve the electric charge quantization puzzle that simultaneously explain the recent measured deviation on the muon anomalous magnetic moment. For this we assess extensions of the electro-weak standard model spanning modifications on the scalar sector only. It is interesting to verify that one can have modest extensions which easily account for the solution for both problems
E6-lepton mixing and lepton magnetic moment
International Nuclear Information System (INIS)
Vendramin, I.
1988-01-01
The contributions to the lepton magnetic moment due to the E 6 -exotic fermions and an extra vector boson Z' have been considered. Using the experimental limits on the E 6 -lepton mixing angles, these contributions are at least one order of magnitude smaller than the standard-model ones
Magnetic moments of the lowest-lying singly heavy baryons
Yang, Ghil-Seok; Kim, Hyun-Chul
2018-06-01
A light baryon is viewed as Nc valence quarks bound by meson mean fields in the large Nc limit. In much the same way a singly heavy baryon is regarded as Nc - 1 valence quarks bound by the same mean fields, which makes it possible to use the properties of light baryons to investigate those of the heavy baryons. A heavy quark being regarded as a static color source in the limit of the infinitely heavy quark mass, the magnetic moments of the heavy baryon are determined entirely by the chiral soliton consisting of a light-quark pair. The magnetic moments of the baryon sextet are obtained by using the parameters fixed in the light-baryon sector. In this mean-field approach, the numerical results of the magnetic moments of the baryon sextet with spin 3/2 are just 3/2 larger than those with spin 1/2. The magnetic moments of the bottom baryons are the same as those of the corresponding charmed baryons.
Composite scalar contributions to the anomalous magnetic moments
International Nuclear Information System (INIS)
Stremnitzer, H.
1984-01-01
It is shown that the composite scalars recently introduced to explain the high Z 0 → e + e - γ rate contribute too much to the lepton anomalous magnetic moments, unless one uses very accurate chiral symmetry or composite models with two preonic scales. (Author)
Anomalous Magnetic and Electric Dipole Moments of the $\\tau$
Taylor, L
1998-01-01
This paper reviews the theoretical predictions for and the experimental measurements of the anomalous magnetic and electric dipole moments of the tau lepton. In particular, recent analyses of the e/sup +/e/sup -/ to tau /sup +/ tau /sup -/ gamma process from the L3 and OPAL collaborations are described. The most precise results, from L3, for the anomalous magnetic and electric dipole moments respectively are: a/sub tau /=0.004+or-0.027+or-0.023 and d /sub tau /=(0.0+or-1.5+or-1.3)*10/sup -16/ e.cm. (22 refs). This paper reviews the theoretical predictions for and the experimental measurements of the anomalous magnetic and electric dipole moments of the tau lepton. In particular, recent analyses of the $\\eettg$ process from the L3 and OPAL collaborations are described. The most precise results, from L3, for the anomalous magnetic and electric dipole moments respectively are: $\\atau = 0.004 10^{-16}{e{\\cdot}\\mathrm{cm}}$.
Constraining the neutrino magnetic dipole moment from white dwarf pulsations
International Nuclear Information System (INIS)
Córsico, A.H.; Althaus, L.G.; Bertolami, M.M. Miller; Kepler, S.O.; García-Berro, E.
2014-01-01
Pulsating white dwarf stars can be used as astrophysical laboratories to constrain the properties of weakly interacting particles. Comparing the cooling rates of these stars with the expected values from theoretical models allows us to search for additional sources of cooling due to the emission of axions, neutralinos, or neutrinos with magnetic dipole moment. In this work, we derive an upper bound to the neutrino magnetic dipole moment (μ ν ) using an estimate of the rate of period change of the pulsating DB white dwarf star PG 1351+489. We employ state-of-the-art evolutionary and pulsational codes which allow us to perform a detailed asteroseismological period fit based on fully DB white dwarf evolutionary sequences. Plasmon neutrino emission is the dominant cooling mechanism for this class of hot pulsating white dwarfs, and so it is the main contributor to the rate of change of period with time (Pidot) for the DBV class. Thus, the inclusion of an anomalous neutrino emission through a non-vanishing magnetic dipole moment in these sequences notably influences the evolutionary timescales, and also the expected pulsational properties of the DBV stars. By comparing the theoretical Pidot value with the rate of change of period with time of PG 1351+489, we assess the possible existence of additional cooling by neutrinos with magnetic dipole moment. Our models suggest the existence of some additional cooling in this pulsating DB white dwarf, consistent with a non-zero magnetic dipole moment with an upper limit of μ ν ∼< 10 -11 μ B . This bound is somewhat less restrictive than, but still compatible with, other limits inferred from the white dwarf luminosity function or from the color-magnitude diagram of the Globular cluster M5. Further improvements of the measurement of the rate of period change of the dominant pulsation mode of PG 1351+489 will be necessary to confirm our bound
On verifying magnetic dipole moment of a magnetic torquer by experiments
Kuyyakanont, Aekjira; Kuntanapreeda, Suwat; Fuengwarodsakul, Nisai H.
2018-01-01
Magnetic torquers are used for the attitude control of small satellites, such as CubeSats with Low Earth Orbit (LEO). During the design of magnetic torquers, it is necessary to confirm if its magnetic dipole moment is enough to control the satellite attitude. The magnetic dipole moment can affect the detumbling time and the satellite rotation time. In addition, it is also necessary to understand how to design the magnetic torquer for operation in a CubeSat under the space environment at LEO. This paper reports an investigation of the magnetic dipole moment and the magnetic field generated by a circular air-coil magnetic torquer using experimental measurements. The experiment testbed was built on an air-bearing under a magnetic field generated by a Helmholtz coil. This paper also describes the procedure to determine and verify the magnetic dipole moment value of the designed circular air-core magnetic torquer. The experimental results are compared with the design calculations. According to the comparison results, the designed magnetic torquer reaches the required magnetic dipole moment. This designed magnetic torquer will be applied to the attitude control systems of a 1U CubeSat satellite in the project “KNACKSAT.”
Limits on the scaling of nucleon magnetic moments in nuclei
International Nuclear Information System (INIS)
Ericson, T.E.O.; State Univ. of New York, Stony Brook; Richter, A.; State Univ. of New York, Stony Brook
1987-01-01
In view of the suggestion that nucleon magnetic moments inside nuclei may be modified due to a rescaling of the nucleon size, we investigate empirically how large such an effect can be. The method is based on a nearly model-independent scaling relation between the axial vector matrix element and the main part of the corresponding magnetic dipole matrix element supplemented by a small and well understood contribution from the one-pion exchange current. Taking the mass A = 3 and 12 systems as examples the upper limit, for such a change of the nucleon magnetic moment inside nuclei is found to be about 2%, considerably smaller than previous estimates in the literature. (orig.)
Magnetic moment and beta decay of RaE
International Nuclear Information System (INIS)
Morita, Masato; Ohtsubo, Hisao; Arita, Kozo.
1976-01-01
Asymmetry of the beta-ray angular distribution in polarized RaE is evaluated with the numerical values of nuclear matrix elements, i∫r, ∫α and ∫sigma x r, which are derived by the method of the least chi-square fit to the experimental data on the spectral shape, longitudinal polarization and ft value. The magnetic moment of RaE is known to have a negative sign from this calculation, the measured asymmetry in Tokyo and the knowledge about the internal magnetic field at decaying nucleus. A consistent explanation of i∫r, ∫sigma x r and the magnetic moment of RaE is obtained in a shell model, where the tensor forces in the residual interaction and the core polarization are properly taken into account. (auth.)
Gate-dependent orbital magnetic moments in carbon nanotubes
DEFF Research Database (Denmark)
Jespersen, Thomas Sand; Grove-Rasmussen, Kasper; Flensberg, Karsten
2011-01-01
We investigate how the orbital magnetic moments of electron and hole states in a carbon nanotube quantum dot depend on the number of carriers on the dot. Low temperature transport measurements are carried out in a setup where the device can be rotated in an applied magnetic field, thus enabling...... accurate alignment with the nanotube axis. The field dependence of the level structure is measured by excited state spectroscopy and excellent correspondence with a single-particle calculation is found. In agreement with band structure calculations we find a decrease of the orbital magnetic moment...... with increasing electron or hole occupation of the dot, with a scale given by the band gap of the nanotube....
Neutrino magnetic moments and the solar neutrino problem
Energy Technology Data Exchange (ETDEWEB)
Akhmedov, E.Kh. [Washington Univ., Seattle, WA (United States). Inst. for Nuclear Theory]|[Valencia Univ. (Spain). Dept. de Fisica Teorica
1994-08-01
Present status of the neutrino magnetic moment solutions of the solar neutrino problem is reviewed. In particular, we discuss a possibility of reconciling different degrees of suppression and time variation of the signal (or lack of such a variation) observed in different solar neutrino experiments. It is shown that the resonant spin-flavor precession of neutrinos due to the interaction of their transitions magnetic moments with solar magnetic field can account for all the available solar neutrino data. For not too small neutrino mixing angles (sin 2{theta}{sub o} {approx_gt} 0.2 the combined effect of the resonant spin-flavor precession and neutrino oscillations can result in an observable flux of solar {bar {nu}}{sub e}`s.
Neutrino magnetic moments and the solar neutrino problem
International Nuclear Information System (INIS)
Akhmedov, E.Kh.; Valencia Univ.
1994-01-01
Present status of the neutrino magnetic moment solutions of the solar neutrino problem is reviewed. In particular, we discuss a possibility of reconciling different degrees of suppression and time variation of the signal (or lack of such a variation) observed in different solar neutrino experiments. It is shown that the resonant spin-flavor precession of neutrinos due to the interaction of their transitions magnetic moments with solar magnetic field can account for all the available solar neutrino data. For not too small neutrino mixing angles (sin 2θ o approx-gt 0.2 the combined effect of the resonant spin-flavor precession and neutrino oscillations can result in an observable flux of solar bar ν e 's
Top Quark Amplitudes with an Anomolous Magnetic Moment
International Nuclear Information System (INIS)
Larkoski, Andrew
2011-01-01
The anomalous magnetic moment of the top quark may be measured during the first run of the LHC at 7 TeV. For these measurements, it will be useful to have available tree amplitudes with t(bar t) and arbitrarily many photons and gluons, including both QED and color anomalous magnetic moments. In this paper, we present a method for computing these amplitudes using the Britto-Cachazo-Feng-Witten recursion formula. Because we deal with an effective theory with higher-dimension couplings, there are roadblocks to a direct computation with the Britto-Cachazo-Feng-Witten method. We evade these by using an auxiliary scalar theory to compute a subset of the amplitudes.
Top quark amplitudes with an anomalous magnetic moment
International Nuclear Information System (INIS)
Larkoski, Andrew J.; Peskin, Michael E.
2011-01-01
The anomalous magnetic moment of the top quark may be measured during the first run of the LHC at 7 TeV. For these measurements, it will be useful to have available tree amplitudes with tt and arbitrarily many photons and gluons, including both QED and color anomalous magnetic moments. In this paper, we present a method for computing these amplitudes using the Britto-Cachazo-Feng-Witten recursion formula. Because we deal with an effective theory with higher-dimension couplings, there are roadblocks to a direct computation with the Britto-Cachazo-Feng-Witten method. We evade these by using an auxiliary scalar theory to compute a subset of the amplitudes.
The muon magnetic moment in flipped SU(5)
Energy Technology Data Exchange (ETDEWEB)
Abel, S.A.; Cottingham, W.N. (Bristol Univ. (UK). H.H. Wills Physics Lab.); Whittingham, I.B. (James Cook Univ. of North Queensland, Townsville (Australia). Dept. of Physics)
1991-04-25
The magnetic moment of the muon is examined for the no-scale supersymmetric flipped SU(5) theory, and it is found that supersymmetric contributions to (g-2){sub {mu}} are (-7{+-}2)x10{sup -9} and within this range are predominantly dependent on the scale of supersymmetry breaking. It is therefore suggested that experiments to measure this quantity may serve to limit the parameters of this model. (orig.).
Magnetic moments and lifetime measurements with a piezoelectrically driven plunger
International Nuclear Information System (INIS)
Rutten, A.J.
1980-01-01
Experiments are described leading to precise values for magnetic dipole moments of excited nuclear states and their mean lifetimes. A plunger system is described especially developed for g-factor and lifetime measurements with the coincidence time-differential recoil-into-vacuum technique. Measurements of the g-factors and lifetimes for the 2 1 + state of 20 O and the 5/2 1 + state of 13 C are described. (Auth.)
The Equivalence Principle and Anomalous Magnetic Moment Experiments
Alvarez, C.; Mann, R. B.
1995-01-01
We investigate the possibility of testing of the Einstein Equivalence Principle (EEP) using measurements of anomalous magnetic moments of elementary particles. We compute the one loop correction for the $g-2$ anomaly within the class of non metric theories of gravity described by the \\tmu formalism. We find several novel mechanisms for breaking the EEP whose origin is due purely to radiative corrections. We discuss the possibilities of setting new empirical constraints on these effects.
Magnetic moment distribution in Co-V alloys
International Nuclear Information System (INIS)
Cable, J.W.
1982-01-01
Magnetization and neutron scattering measurements were made on Co-V alloys containing 10, 15, and 20 at.% V to determine the local environment effects on the magnetic moment distribution in this system. The magnetization data agree with earlier results and suggest the presence of some hcp phase in the 10% sample. This was confirmed by the neutron data which showed both fcc and hcp phases in an approximate 4:1 volume ratio for this alloy. The other two samples were single phase fcc but the 15% alloy was disordered while the 20% alloy was ordered in the Cu 3 Au-type structure with the maximum order consistent with the concentration. In this ordered alloy, the excess Co occupies the V sites. These ''wrong sited'' Co atoms have 12 Co nearest neighbors and larger magnetic moments than the ''properly sited'' Co atoms which have an average of 8.8 Co nearest neighbors. The average moments associated with these two types of sites were determined from flipping-ratio measurements on the superlattice and fundamental reflections. The values obtained are 0.28 μ/sub B//Co for the proper-site atoms and 1.3 μ/sub B//Co for the wrong-site atoms. Average moments at the Co and V sites were determined from the diffuse scattering for the 10% and 15% alloys. The results are 1.38 μ/sub B//Co and -0.26 μ/sub B//V for the 10% sample and 1.05 μ/sub B//Co and -0.11 μ/sub B//V for the 15% sample
Nuclear magnetic and electric dipole moments of neon-19
International Nuclear Information System (INIS)
MacArthur, D.W.
1983-01-01
This thesis presents a detailed discussion of a series of experiments designed to measure the magnetic and electric dipole moments of the β-emitting nucleus 19 Ne. The 19 Ne is generated in the reaction 19 F(p,n) 19 Ne and is polarized by a ''stern-Gerlach'' magnet in a rare gas atomic beams machine. The atoms are stored in a cell for many seconds without depolarizing. The parity violating asymmetry in the β angular distribution is used to monitor the nuclear polarization. The polarized atoms are stored in a cell in a uniform magnetic field. The β-asymmetry is monitored by a pair of β-detectors located on either side of the cell. Transitions between the M/sub J/ = +1/2 and M/sub J/ = -1/2 spin states are induced by an rf field generated by a small Helmholtz coil pair surrounding the cell. Nuclear magnetic resonance lines are observed and the magnetic moment of 19 Ne measured to be μ( 19 Ne) = -1.88542(8)μ/sub N/. A new magnet, cell and detectors were designed to give narrow resonance lines. The equipment is described in detail and several resonance line shapes are discussed. The narrowest resonance line achieved with this system was 0.043 Hz FWHM. This width is primarily due to the 19 Ne lifetime. Pulsed NMR lineshapes were also observed. The narrow NMR lines observed in the previous experiment were then used as a probe to look for an electric dipole moment (EDM) in 19 Ne. Any shift in the resonance frequency correlated with changes in an externally applied electric field would be evidence for an EDM. The EDM of the 19 Ne atom was measured to (7.2 +/- 6.2 X 10 -22 e-cm. This experiment and possible improvements are discussed in detail
International Nuclear Information System (INIS)
Zhu Zhenghe; Luo Deli; Feng Kaiming
2013-01-01
The present work is to calculate the magnetic thermodynamically functions, i.e. energy, the intensity of magnetization, enthalpy, entropy and Gibbs function for nuclear magnetic moments of T, D and neutron n at 2 T and 1, 50, 100 and 150 K from partition functions. It is shown that magnetic saturation of thermonuclear plasma does not easily occur for nuclear magneton is only of 10 -3 of Bohr magneton. The work done by magnetic field is considerable. (authors)
A moment in time: emergency nurses and the Canterbury earthquakes.
Richardson, S; Ardagh, M; Grainger, P; Robinson, V
2013-06-01
To outline the impact of the Canterbury, New Zealand (NZ) earthquakes on Christchurch Hospital, and the experiences of emergency nurses during this time. NZ has experienced earthquakes and aftershocks centred in the Canterbury region of the South Island. The location of these, around and within the major city of Christchurch, was unexpected and associated with previously unknown fault lines. While the highest magnitude quake occurred in September 2010, registering 7.1 on the Richter scale, it was the magnitude 6.3 event on 22 February 2011 which was associated with the greatest injury burden and loss of life. Staff working in the only emergency department in the city were faced with an external emergency while also being directly affected as part of the disaster. SOURCES OF EVIDENCE: This paper developed following interviews with nurses who worked during this period, and draws on literature related to healthcare responses to earthquakes and natural disasters. The establishment of an injury database allowed for an accurate picture to emerge of the injury burden, and each of the authors was present and worked in a clinical capacity during the earthquake. Nurses played a significant role in the response to the earthquakes and its aftermath. However, little is known regarding the impact of this, either in personal or professional terms. This paper presents an overview of the earthquakes and experiences of nurses working during this time, identifying a range of issues that will benefit from further exploration and research. It seeks to provide a sense of the experiences and the potential meanings that were derived from being part of this 'moment in time'. Examples of innovations in practice emerged during the earthquake response and a number of recommendations for nursing practice are identified. © 2013 The Authors. International Nursing Review © 2013 International Council of Nurses.
International Nuclear Information System (INIS)
Arima, A.; Hyuga, H.
1979-01-01
The authors review systematically several important mechanisms which affect magnetic moments, magnetic dipole transitions and allowed beta-decays. They are first order configuration mixing, second order configuration mixing, the Sachs moment and other exchange magnetic moments, the contribution of the Sachs moment and other exchange magnetic moments with first order configuration mixing. It is shown that first order configuration mixing and the Sachs moment are important for heavy nuclei, and that all the effects except first order mixing are important for light nuclei. (Auth.)
Magnetic dipole moments of deformed odd-A nuclei
Energy Technology Data Exchange (ETDEWEB)
Garg, V P; Sharma, S D; Mahesh, P S [Punjabi Univ., Patiala (India). Dept. of Physics
1976-12-01
Using an extended version of A S Davydov and G F Filippov's model (1958), B E Chi and J P Davidson have calculated magnetic moments of odd-A nuclei in 2s-ld shell, diagonalizing the state matrices for a set of parameters giving the best fit for nuclear spectra (1966). To study the failure of this model in case of nuclear moments, instead of diagonalizing an attempt has been made to simplify the expression for magnetic dipole moment for single nucleonic states without configuration mixing. The model takes care of the proper sign of spin projections. On replacing the total angular momentum j of odd particle (proton or neutron) by its projection ..cap omega.., the expression reduces to that of Mottelson and Nilsson for spin-up nuclei. The Coriolis coupling calculations also have been performed for those odd-A nuclei with K = 1/2. The results are found in better agreement with experimental report in comparison with those of other models.
Baryon magnetic moments in the quark model and pion cloud contributions
International Nuclear Information System (INIS)
Sato, Toshiro; Sawada, Shoji
1981-01-01
Baryon magnetic moment is studied paying attention to the effects of pion cloud which is surrounding the 'bare' baryon whose magnetic moment is given by the quark model with broken SU(6) symmetry. The precisely measured nucleon magnetic moments are reproduced by the pion cloud contributions from the distance larger than 1.4 fm. The effects of pion cloud on the hyperon magnetic moments are also discussed. It is shown that the pion cloud contributions largely reduce the discrepancies between the quark model predictions and the recent accurate experimental data on the hyperon magnetic moments. (author)
Directory of Open Access Journals (Sweden)
A.V. Getman
2013-12-01
Full Text Available Theoretical aspects of an experimental determination method for residual and inductive magnetic moments of a technical object are considered. As input data, the technical object magnetic induction signatures obtained under its linear movement near a pair of three-component sensors are used. A magnetic signature integration technique based on spatial harmonic analysis of the magnetic field represented by twenty-four multipole coefficients is introduced.
Simple optical measurement of the magnetic moment of magnetically labeled objects
Energy Technology Data Exchange (ETDEWEB)
Heidsieck, Alexandra, E-mail: aheidsieck@tum.de [Zentralinstitut für Medizintechnik, Technische Universität München (Germany); Rudigkeit, Sarah [Physics Department, Technische Universität München (Germany); Rümenapp, Christine; Gleich, Bernhard [Zentralinstitut für Medizintechnik, Technische Universität München (Germany)
2017-04-01
The magnetic moment of magnetically labeled cells, microbubbles or microspheres is an important optimization parameter for many targeting, delivery or separation applications. The quantification of this property is often difficult, since it depends not only on the type of incorporated nanoparticle, but also on the intake capabilities, surface properties and internal distribution. We describe a method to determine the magnetic moment of those carriers using a microscopic set-up and an image processing algorithm. In contrast to other works, we measure the diversion of superparamagnetic nanoparticles in a static fluid. The set-up is optimized to achieve a homogeneous movement of the magnetic carriers inside the magnetic field. The evaluation is automated with a customized algorithm, utilizing a set of basic algorithms, including blob recognition, feature-based shape recognition and a graph algorithm. We present example measurements for the characteristic properties of different types of carriers in combination with different types of nanoparticles. Those properties include velocity in the magnetic field as well as the magnetic moment. The investigated carriers are adherent and suspension cells, while the used nanoparticles have different sizes and coatings to obtain varying behavior of the carriers. - Highlights: • Determination of the magnetic moment of magnetic carriers. • optimized set-up achieve a homogeneous movement. • Automated evaluation with a customized algorithm. • example measurements for the properties of nanoparticle-loaded cells.
The magnetic moments of the proton and the antiproton
Ulmer, S.; Blaum, K.; Braeuninger, S.; Franke, K.; Kracke, H.; Leiteritz, C.; Matsuda, Y.; Nagahama, H.; Ospelkaus, C.; Rodegheri, C.C.; Quint, W.; Schneider, G.; Smorra, C.; Van Gorp, S.; Walz, J.; Yamazaki, Y.
2014-01-01
Recent exciting progress in the preparation and manipulation of the motional quantum states of a single trapped proton enabled the first direct detection of the particle's spin state. Based on this success the proton magnetic moment $\\mu_p$ was measured with ppm precision in a Penning trap with a superimposed magnetic field inhomogeneity. An improvement by an additional factor of 1000 in precision is possible by application of the so-called double Penning trap technique. In a recent paper we reported the first demonstration of this method with a single trapped proton, which is a major step towards the first direct high-precision measurement of $\\mu_p$. The techniques required for the proton can be directly applied to measure the antiproton magnetic moment $\\mu_{\\bar{p}}$. An improvement in precision of $\\mu_{\\bar{p}}$ by more than three orders of magnitude becomes possible, which will provide one of the most sensitive tests of CPT invariance. To achieve this research goal we are currently setting up the Baryo...
Magnetic dipole moments of odd-odd lanthanides
International Nuclear Information System (INIS)
Sharma, S.D.; Gandhi, R.
1988-01-01
Magnetic dipole moments of odd-odd lanthanides. Collective model of odd-odd nuclei is applied to predict the magnetic dipole moments, (μ) of odd-odd lanthanides. A simplified version of expression for μ based on diagonalisation of Hamiltonian (subsequent use of eigenvectors to compute μ) is developed for cases of ground state as well as excited states using no configuration mixing and is applied to the cases of odd-odd lanthanides. The formulae applied to the eleven (11) cases of ground states show significant improvement over the results obtained using shell model. Configuration mixing and coriolis coupling is expected to cause further improvement in the results. On comparing the earlier work in this direction the present analysis has clarified that in the expression μ the projection factors have different signs for the case I=Ωp - Ωn and I=Ωn - Ωp, and sign of μ is negative in general in the second case while it is positive in all others of spin projection alignments. Although the general expression holds for excited states as well but in lanthanide region, the experimental reports of magnetic dipole moments of excite states (band heads of higher rational sequences) are not available except in case of five (5) neutron resonance states which cannot be handled on the basis of the present approach with no configuration mixing. Although in the present discussion, the model could not be applied to excited states but the systematics of change in its magnitude with increasing spin at higher rational states is very well understood. The particle part supressed under faster rotation of the nuclear core and thus finally at higher spin I, the value μ is given by μ=g c I (same as in case of even-even nuclei). These systematics are to be verified whenever enough data for higher excited states are available. (author). 11 refs
On a neutral particle with permanent magnetic dipole moment in a magnetic medium
Bakke, K.; Salvador, C.
2018-03-01
We investigate quantum effects that stem from the interaction of a permanent magnetic dipole moment of a neutral particle with an electric field in a magnetic medium. We consider a long non-conductor cylinder that possesses a uniform distribution of electric charges and a non-uniform magnetization. We discuss the possibility of achieving this non-uniform magnetization from the experimental point of view. Besides, due to this non-uniform magnetization, the permanent magnetic dipole moment of the neutral particle also interacts with a non-uniform magnetic field. This interaction gives rise to a linear scalar potential. Then, we show that bound states solutions to the Schrödinger-Pauli equation can be achieved.
Lepton anomalous magnetic moments from twisted mass fermions
International Nuclear Information System (INIS)
Burger, Florian; Hotzel, Grit
2014-11-01
We present our results for the leading-order hadronic quark-connected contributions to the electron, the muon, and the tau anomalous magnetic moments obtained with four dynamical quarks. Performing the continuum limit and an analysis of systematic effects, full agreement with phenomenological results is found. To estimate the impact of omitting the quark-disconnected contributions to the hadronic vacuum polarisation we investigate them on one of the four-flavour ensembles. Additionally, the light quark contributions on the four-flavour sea are compared to the values obtained for N f =2 physically light quarks. In the latter case different methods to fit the hadronic vacuum polarisation function are tested.
Magnetic moments of the baryons: An experimental review
International Nuclear Information System (INIS)
Lach, J.
1990-11-01
Measurements of baryon magnetic moments have provided important insights into the composition of baryons as well as important constraints for model builders. These measurements show that a simple quark model describes most of the salient features. However, the significant discrepancies have raised fundamental questions about baryon structure and produced a steady stream of theoretical papers. I would like to briefly review the technology for making these measurements, the current state of the measurements, and the near term prospects for improvements. 14 refs., 5 figs., 1 tab
Magnetic moment of extremely proton-rich nucleus 23Al
International Nuclear Information System (INIS)
Nagatomo, T; Matsuta, K; Ozawa, A; Nakashima, Y; Matsumiya, R; Mihara, M; Yasuno, T; Chiba, A; Yamada, K; Momota; Ohtsubo, T; Ohta, M; Shinojima, D; Izumikawa, T; Tanaka, H; Yamaguchi, T; Nakajima, S; Maemura, H; Muranaka, K; Kumashiro, S; Fujiwara, H; Yoshida, K; Sumikama, T; Tanaka, K; Ogura, M; Minamisono, K; Fukuda, M; Minamisono, T; Nojiri, Y; Suzuki, T; Tanihata, I; Alonso, J R; Krebs, G F; Symons, T J M
2005-01-01
The g-factor of the extremely proton-rich nucleus 23 Al (T 1/2 = 0.47 s) has been measured by means of the β-NMR method for the first time. The g-factor were determined as |g| = 1.557(88) from the obtained NMR spectra. From the comparison between the experimental value and the shell model calculation, the spin parity of the ground state of 23 Al was determined as I π = 5/2 + . Thus, the magnetic moment of 23 Al was determined as vertical bar μvertical bar = 3.89(22)μ N
Table of Nuclear Magnetic Dipole and Electric Quadrupole Moments
International Nuclear Information System (INIS)
Stone, N.J.
2011-04-01
This Table is a compilation of experimental measurements of static magnetic dipole and electric quadrupole moments of ground states and excited states of atomic nuclei throughout the periodic table. To aid identification of the states, their excitation energy, half-life, spin and parity are given, along with a brief indication of the method and any reference standard used in the particular measurement. The literature search covers the period to late 2010. Many of the entries prior to 1988 follow those in Raghavan P., Atomic and Nuclear Data Tables 42, 189 (1989). (author)
Table of Nuclear Magnetic Dipole and Electric Quadrupole Moments
International Nuclear Information System (INIS)
Stone, N.J.
2014-02-01
This Table is a compilation of experimental measurements of static magnetic dipole and electric quadrupole moments of ground states and excited states of atomic nuclei throughout the periodic table. To aid identification of the states, their excitation energy, half-life, spin and parity are given, along with a brief indication of the method and any reference standard used in the particular measurement. The literature search covers the period to early 2014. Many of the entries prior to 1988 follow those in Raghavan P., Atomic and Nuclear Data Tables 42, 189 (1989). (author)
International Nuclear Information System (INIS)
Dittrich, W.; Bauhoff, W.
1981-01-01
It is re-examined the problem of spontaneous pair creation in an external magnetic field. In contrast to earlier findings, it is shown that pair production does not occur due to the anomalous magnetic moment interaction. However, pairs may be observed in a situation of thermodynamic equilibrium at finite temperatures. (author)
Polarization of spin-1 particles without an anomalous magnetic moment in a uniform magnetic field
Silenko, Alexander J.
2008-01-01
The polarization operator projections onto four directions remain unchanged for spin-1 particles without an anomalous magnetic moment in a uniform magnetic field. The approximate conservation of the polarization operator projections onto the horizontal axes of the cylindrical coordinate system takes place.
Lepton flavour symmetry and the neutrino magnetic moment
International Nuclear Information System (INIS)
Ecker, G.; Grimus, W.
1990-01-01
With the standard model gauge group and the three standard left-handed Weyl neutrinos, two minimal scenarios are investigated where an arbitrary non-abelian lepton flavour symmetry group G H is responsible for a light neutrino with a large magnetic moment. In the first case, with scalar fields carrying lepton flavour, some finetuning is necessary to get a small enough neutrino mass for μ ν = O(10 -11 μ B ). In the second scenario, the introduction of heavy charged gauge singlet fermions with lepton flavour allows for a strictly massless neutrino to one-loop order. In both cases, the interference mechanisms for small m ν and large μ ν is unique, independently of G H . In explicit realizations of the two scenarios, the horizontal groups are found to be non-abelian extensions of a Zeldovich-Konopinski-Mahmoud lepton number symmetry. Only a discrete part of G H is spontaneously broken leading to a light Dirac neutrino with a large magnetic moment. (Authors) 22 refs., 3 figs
Shell structure of potassium isotopes deduced from their magnetic moments
Papuga, J.; Kreim, K; Barbieri, C; Blaum, K; De Rydt, M; Duguet, T; Garcia Ruiz, R F; Heylen, H; Kowalska, M; Neugart, R; Neyens, G; Nortershauser, W; Rajabali, M M; Sanchez, R; Smirnova, N; Soma, V; Yordanov, D T
2014-09-29
$\\textbf{Background:}$ Ground-state spins and magnetic moments are sensitive to the nuclear wave function, thus they are powerful probes to study the nuclear structure of isotopes far from stability. \\\\ \\\\ $\\textbf{Purpose:}$ Extend our knowledge about the evolution of the $1/2^+$ and $3/2^+$ states for K isotopes beyond the $N = 28$ shell gap. \\\\ \\\\ $\\textbf{Method:}$ High-resolution collinear laser spectroscopy on bunched atomic beams. \\\\ \\\\ $\\textbf{Results:}$ From measured hyperfine structure spectra of K isotopes, nuclear spins and magnetic moments of the ground states were obtained for isotopes from $N = 19$ up to $N = 32$. In order to draw conclusions about the composition of the wave functions and the occupation of the levels, the experimental data were compared to shell-model calculations using SDPF-NR and SDPF-U effective interactions. In addition, a detailed discussion about the evolution of the gap between proton $1d_{3/2}$ and $2s_{1/2}$ in the shell model and $\\textit{ab initio}$ framework is al...
International Nuclear Information System (INIS)
Oztekin, E.
2010-01-01
In this study, magnetic multipole moment integrals are calculated by using Slater type orbitals (STOs), Fourier transform and translation formulas. Firstly, multipole moment operators which appear in the three-center magnetic multipole moment integrals are translated to b-center from 0-center. So, three-center magnetic multipole moment integrals have been reduced to the two-center. Then, the obtained analytical expressions have been written in terms of overlap integrals. When the magnetic multipole moment integrals calculated, matrix representations for x-, y- and z-components of multipole moments was composed and every component was separately calculated to analytically. Consequently, magnetic multipole moment integrals are also given in terms of the same and different screening parameters.
The effect of a neutrino magnetic moment on nuclear excitation processes
International Nuclear Information System (INIS)
Dodd, A.C.; Papageorgiu, E.; Ranfone, S.
1991-01-01
We discuss the sensitivity of magnetic transitions in nuclei like 12 C, to a small neutrino magnetic moment, and its implications for current and future experiments. We also point out that coherent neutrino-nuclear elastic scattering in low-temperature detectors, might improve the present laboratory bounds on the neutrino magnetic moment by an order of magnitude. (orig.)
Dynamically fluctuating electric dipole moments in fullerene-based magnets.
Kambe, Takashi; Oshima, Kokichi
2014-09-19
We report here the direct evidence of the existence of a permanent electric dipole moment in both crystal phases of a fullerene-based magnet--the ferromagnetic α-phase and the antiferromagnetic α'-phase of tetra-kis-(dimethylamino)-ethylene-C60 (TDAE-C60)--as determined by dielectric measurements. We propose that the permanent electric dipole originates from the pairing of a TDAE molecule with surrounding C60 molecules. The two polymorphs exhibit clear differences in their dielectric responses at room temperature and during the freezing process with dynamically fluctuating electric dipole moments, although no difference in their room-temperature structures has been previously observed. This result implies that two polymorphs have different local environment around the molecules. In particular, the ferromagnetism of the α-phase is founded on the homogeneous molecule displacement and orientational ordering. The formation of the different phases with respect to the different rotational states in the Jahn-Teller distorted C60s is also discussed.
On the origin of the giant magnetic moment of the Al-Mn quasicrystals
Directory of Open Access Journals (Sweden)
Bocharov P.V.
2011-05-01
Full Text Available Ab initio calculations of magnetic moments for icosahedral clusters contained in crystal structures Al10Mn3, Al5Co2, Al17Mn4 (Al13Cr4Si4-type fulfilled in the framework of Density Functional Theory. The AlMn cluster having the trigonal D3h symmetry with the triangle of Mn ions in the interior has the moment being equal to three magnetic moments of a single manganese ion (4.4 μB, the moment of the tetrahedral Td cluster with the Mn tetrahedron in the interior is equal approximately to twelve magnetic moments of the single manganese ion (15.5 μB. The magnetic moment of icosahedral Al-Co clusters having the same configuration is equal to zero. The magnetic moments of the rod assembled from the icosahedral clusters with the sequence Td D3h - Td was found to be 20.5 μB. This value permits to explain the giant magnetic moment of icosahedral and decagonal Al-Mn quasicrystals and gives the indirect evidence to the hierarchical model of the quasicrystals structure proposed by the authors recently. An arrangement of magnetic moment carriers in the interior of the aluminum shell of icosahedral clusters permits to suggest the interaction between contacting manganese ions as the main origin of the giant magnetic moment of the Al-Mn quasicrystals.
Relativistic correction to the deuteron magnetic moment and angular condition
International Nuclear Information System (INIS)
Kondratyuk, L.A.; Strikman, M.I.
1983-01-01
The relativistic correction (RC) to the deuteron magnetic moment μsub(d) is investigated using the light-cone dynamics. The restrictions imposed by the angular condition on the electromagnetic current operator of deuteron are discussed in detail. It is shown that the additive model for the current operator of interacting consistuencies is consistent with the angular condition only for the two first terms of expansion of the ''good'' electromagnetic current component jsub(+) in powers of the momentum transfer q. The RC into μsub(d) is calculated using the mattix element of the ''good'' component. The account of RC decreases essentially the discrepancy between the theoretical and experimental values. The value of Δsub(μ) is determined for the Hamada-Johnston potential hard core potential (0.93x10 -2 ) for the Reid soft core potential (0.71x10 -2 ) and for the Paris potential (0.63x10 -2 )
Charged point particles with magnetic moment in general relativity
International Nuclear Information System (INIS)
Amorim, R.; Tiomno, J.
1977-01-01
Halbwachs Lagrangean formalism for the theory of charged point particles with spin (g = 2) is generalized and formulated in General Relativity for particles of arbitrary charge and magnetic moment. Equations are obtained, both corresponding to Frenkel's condition Ssub(μν)Xsup(ν) = 0 and to Nakano's condition Ssub(μν)Psup(ν) = 0. With the later condition the exact equations are highly coupled and non linear. When linearized in the electromagnetic and gravitational fields they coincide with de Groot-Suttorp equations for vanishing gravitational fields and with Dixon-Wald equations in the absence of electromagnetic field. The equations corresponding to Frenkel's condition, when linearized in Ssub(μν), coincide with Papapetrou's and Frenkel's equations in the corresponding limits [pt
Lifetimes and magnetic moments in odd-odd 70 As
International Nuclear Information System (INIS)
Pantelica, D.; Negoita, F.; Stanoiu, M.
1998-01-01
The extensive experimental and theoretical work on the structure of N∼Z, A = 60-80 nuclei revealed many interesting features: large prolate deformations (β = 0.4), strong shape variations as a function of particle number, excitation energy, spin and shape coexistence effects. They are related with drastic changes of properties observed in nuclei with Z≥33 when going from spherical nuclei with N = 50 to neutron deficient nuclei with N = 38 or 40. Both the rapid changes in structure and the shape coexistence appear to reflect the competition between the shell gaps which occur at large oblate and prolate deformations near nucleon numbers 36 and 38 for both protons and neutrons. For N∼Z nuclei the same shell gaps appear simultaneously for both protons and neutrons and reinforce each other. The microscopic structure of the nuclei in the mass region A = 60-80 is essentially determined by the 1g 9/2 , 2p 1/2 , 1f 5/2 and 2p 3/2 orbitals. Because no unique interpretation of the unusual features discovered in these nuclei exists, the systematic experimental study of structure of these nuclei is still an interesting subject. As part of a systematic experimental study undertaken to investigate the structure of neutron deficient, odd-odd As nuclei, 68,70,72 As, the level scheme of 70 As was investigated using heavy ion induced reactions and in-beam γ-ray spectroscopy techniques. At energies between 500 and 900 keV a multiplet of negative parity levels has been observed. At higher energies a high-spin positive parity sequence of levels starting with a E x = 1676 keV, J π 8 + level is strongly populated. Additional information is required in order to establish the structure of low and high-spin levels of both parities. The magnetic moments of the 8 + and 9 + levels have been measured using the time-integral perturbed angular distribution technique and the lifetimes of four levels have been determined using the recoil-distance method. From the measured lifetime for the 9
Energy Technology Data Exchange (ETDEWEB)
Ngo, D.-T., E-mail: ndthe82@gmail.com [Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117576 (Singapore); Meng, Z.L. [Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117576 (Singapore); Tahmasebi, T. [Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117576 (Singapore); Data Storage Institute, A-STAR (Agency for Science Technology and Research), 5 Engineering Drive 1, Singapore 117608 (Singapore); Yu, X. [Singapore Synchrotron Light Source, National University of Singapore, 5 Research Link, Singapore 117603 (Singapore); Thoeng, E. [Singapore Synchrotron Light Source, National University of Singapore, 5 Research Link, Singapore 117603 (Singapore); Department of Physics, National University of Singapore, Singapore 117542 (Singapore); Yeo, L.H. [Department of Physics, National University of Singapore, Singapore 117542 (Singapore); Rusydi, A., E-mail: phyandri@nus.edu.sg [Singapore Synchrotron Light Source, National University of Singapore, 5 Research Link, Singapore 117603 (Singapore); Department of Physics, National University of Singapore, Singapore 117542 (Singapore); Han, G.C [Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117576 (Singapore); Teo, K.-L., E-mail: eleteokl@nus.edu.sg [Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117576 (Singapore)
2014-01-15
We report on a strong perpendicular magnetic anisotropy in [CoFe 0.4 nm/Pd t]{sub 6} (t=1.0–2.0 nm) multilayers fabricated by DC sputtering in an ultrahigh vacuum chamber. Saturation magnetization, M{sub s}, and uniaxial anisotropy, K{sub u}, of the multilayers decrease with increasing the spacing thickness; with a M{sub s} of 155 emu/cc and a K{sub u} of 1.14×10{sup 5} J/m{sup 3} at a spacing thickness of t=2 nm. X-ray absorption spectroscopy and X-ray magnetic circular dichroism measurements reveal that spin and orbital magnetic moments of Co and Fe in CoFe film decrease as a function of Pd thickness, indicating the major contribution of surface/interfacial magnetism to the magnetic properties of the film. - Highlights: • Strong perpendicular magnetic anisotropy essentially contributed by interfacial anisotropy. • Controllably magnetic properties with low M{sub s}, high K{sub u}, high P. • Interfacial magnetic moments modified by CoFe/Pd interfaces with strong spin–orbit coupling. • Narrow Bloch walls with Néel caps. • Superior magnetic characteristics for spin-torque applications.
International Nuclear Information System (INIS)
Montero, V.; Cernicchiaro, G.
2008-01-01
In this work we describe experimental results in which a DC SQUID (superconducting quantum interference device) is used as free induction decay detector. Measurements of a solid ammonium perchlorate (NH 4 ClO 4 ) sample were performed, in zero field, at 4.2 K. Unexpected magnetic moment oscillations were detected at 1.5 kHz. The computation of the magnetic fields suggests that the proton nuclear magnetic resonance may explain the measured resonance, considering reorientation of the ammonium group by quantum tunneling of protons and a magnetic proton dipole-dipole intermolecular interaction model
Voltage Control of Rare-Earth Magnetic Moments at the Magnetic-Insulator-Metal Interface
Leon, Alejandro O.; Cahaya, Adam B.; Bauer, Gerrit E. W.
2018-01-01
The large spin-orbit interaction in the lanthanides implies a strong coupling between their internal charge and spin degrees of freedom. We formulate the coupling between the voltage and the local magnetic moments of rare-earth atoms with a partially filled 4 f shell at the interface between an insulator and a metal. The rare-earth-mediated torques allow the power-efficient control of spintronic devices by electric-field-induced ferromagnetic resonance and magnetization switching.
Ultra-high sensitivity moment magnetometry of geological samples using magnetic microscopy
Lima, Eduardo A.; Weiss, Benjamin P.
2016-09-01
Useful paleomagnetic information is expected to be recorded by samples with moments up to three orders of magnitude below the detection limit of standard superconducting rock magnetometers. Such samples are now detectable using recently developed magnetic microscopes, which map the magnetic fields above room-temperature samples with unprecedented spatial resolutions and field sensitivities. However, realizing this potential requires the development of techniques for retrieving sample moments from magnetic microscopy data. With this goal, we developed a technique for uniquely obtaining the net magnetic moment of geological samples from magnetic microscopy maps of unresolved or nearly unresolved magnetization. This technique is particularly powerful for analyzing small, weakly magnetized samples such as meteoritic chondrules and terrestrial silicate crystals like zircons. We validated this technique by applying it to field maps generated from synthetic sources and also to field maps measured using a superconducting quantum interference device (SQUID) microscope above geological samples with moments down to 10-15 Am2. For the most magnetic rock samples, the net moments estimated from the SQUID microscope data are within error of independent moment measurements acquired using lower sensitivity standard rock magnetometers. In addition to its superior moment sensitivity, SQUID microscope net moment magnetometry also enables the identification and isolation of magnetic contamination and background sources, which is critical for improving accuracy in paleomagnetic studies of weakly magnetic samples.
Touchless attitude correction for satellite with constant magnetic moment
Ao, Hou-jun; Yang, Le-ping; Zhu, Yan-wei; Zhang, Yuan-wen; Huang, Huan
2017-09-01
Rescue of satellite with attitude fault is of great value. Satellite with improper injection attitude may lose contact with ground as the antenna points to the wrong direction, or encounter energy problems as solar arrays are not facing the sun. Improper uploaded command may set the attitude out of control, exemplified by Japanese Hitomi spacecraft. In engineering practice, traditional physical contact approaches have been applied, yet with a potential risk of collision and a lack of versatility since the mechanical systems are mission-specific. This paper puts forward a touchless attitude correction approach, in which three satellites are considered, one having constant dipole and two having magnetic coils to control attitude of the first. Particular correction configurations are designed and analyzed to maintain the target's orbit during the attitude correction process. A reference coordinate system is introduced to simplify the control process and avoid the singular value problem of Euler angles. Based on the spherical triangle basic relations, the accurate varying geomagnetic field is considered in the attitude dynamic mode. Sliding mode control method is utilized to design the correction law. Finally, numerical simulation is conducted to verify the theoretical derivation. It can be safely concluded that the no-contact attitude correction approach for the satellite with uniaxial constant magnetic moment is feasible and potentially applicable to on-orbit operations.
Object representation and magnetic moments in thin alkali films
Garrett, Douglas C.
2008-10-01
impurities 1/taus and their magnetic cross section sigmas are calculated. We find that single V surface impurities are magnetic while single Mo and Co impurities are non-magnetic. Co surface clusters are magnetic. In chapter 7, thin films of Na, K, Rb and Cs are quench condensed, then covered with 1/100 of a mono-layer of Ti and finally covered with the original host. The magnetization of the films is measured by means of the anomalous Hall effect. An anomalous Hall resistance RAHE is observed for Ti on the surface of K, Rb and Cs and for Ti inside of Cs. Essentially the RAHE varies linearly with the magnetic field and is inversely proportional to the inverse temperature. A small non-linearity of RAHE suggests a Ti moment of about 1microB.
Two dimensional electron gas confined over a spherical surface: Magnetic moment
International Nuclear Information System (INIS)
Hernando, A; Crespo, P; Garcia, M A
2011-01-01
Magnetism of capped nanoparticles, NPs, of non-magnetic substances as Au and ZnO is briefly reviewed. The source of the magnetization is discussed on the light of recent X-ray magnetic circular dichroism experiments. As magnetic dichroism analysis has pointed out impurity atoms bonded to the surface act as donor or acceptor of electrons that occupy the surface states. It is proposed that mesoscopic collective orbital magnetic moments induced at the surface states can account for the experimental magnetism characteristic of these nanoparticles. The total magnetic moment of the surface originated at the unfilled Fermi level can reach values as large as 10 2 or 10 3 Bohr magnetons.
Non-resonant precession of the neutron magnetic moment in antiferromagnets
International Nuclear Information System (INIS)
Skoblin, A.A.
1995-01-01
It is shown that the magnetic moment of a neutron moving in an antiferromagnet with a spiral-order magnetic field slowly precesses. Precession pitch strongly depends on the value and direction of the neutron velocity. 4 refs
Tang, Cheng; Zhang, Teng; Weiss, David S.
2018-03-01
We explore ways to use the ability to measure the populations of individual magnetic sublevels to improve the sensitivity of magnetic field measurements and measurements of atomic electric dipole moments (EDMs). When atoms are initialized in the m =0 magnetic sublevel, the shot-noise-limited uncertainty of these measurements is 1 /√{2 F (F +1 ) } smaller than that of a Larmor precession measurement. When the populations in the even (or odd) magnetic sublevels are combined, we show that these measurements are independent of the tensor Stark shift and the second order Zeeman shift. We discuss the complicating effect of a transverse magnetic field and show that when the ratio of the tensor Stark shift to the transverse magnetic field is sufficiently large, an EDM measurement with atoms initialized in the superposition of the stretched states can reach the optimal sensitivity.
Determination of localized magnetic moments in Fe-Cr-Al alloys and the electron structure
International Nuclear Information System (INIS)
Blau, W.
1977-01-01
The localized magnetic moments of Fe and Cr are determined by combination of saturation magnetization measurements and magnetic diffuse scattering. Power series characterizing the interactions between the different kinds of atoms in the alloys are chosen to describe the concentration dependence of the magnetic moments. The different terms are discussed on the basis of band structure models valid for dilute alloys taking into account their modification by impurity interactions. (author)
Progress in analytical calculations for the anomalous magnetic moment of the muon
International Nuclear Information System (INIS)
Baikov, P.A.
2013-11-01
We present results for certain classes of diagrams contributing to the anomalous magnetic moment of the muon at five-loop order. Our method is based on first constructing an approximating function for the vacuum polarization function of the photon at four loop order which later can be numerically integrated to obtain the anomalous magnetic moment of the muon.
Correct use of the Gordon decomposition in the calculation of nucleon magnetic dipole moments
International Nuclear Information System (INIS)
Mekhfi, Mustapha
2008-01-01
We perform the calculation of the nucleon dipole magnetic moment in full detail using the Gordon decomposition of the free quark current. This calculation has become necessary because of frequent misuse of the Gordon decomposition by some authors in computing the nucleon dipole magnetic moment
Progress in analytical calculations for the anomalous magnetic moment of the muon
Energy Technology Data Exchange (ETDEWEB)
Baikov, P.A. [Moscow State Univ. (Russian Federation). Skobeltsyn Inst. of Nuclear Physics; Maier, A. [Technische Univ. Muenchen (Germany). Physik Dept. T31; Marquard, P. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany)
2013-11-15
We present results for certain classes of diagrams contributing to the anomalous magnetic moment of the muon at five-loop order. Our method is based on first constructing an approximating function for the vacuum polarization function of the photon at four loop order which later can be numerically integrated to obtain the anomalous magnetic moment of the muon.
The magnetic moment of NiO nanoparticles determined by Moessbauer spectroscopy
International Nuclear Information System (INIS)
Bahl, C R H; Hansen, M F; Pedersen, T; Saadi, S; Nielsen, K H; Lebech, B; Moerup, S
2006-01-01
We have studied the magnetic properties of 57 Fe-doped NiO nanoparticles using Moessbauer spectroscopy and magnetization measurements. Two samples with different degrees of interparticle interaction were studied. In both samples the particles were characterized by high-resolution transmission electron microscopy and x-ray diffraction and found to be plate-shaped. Computer simulations showed that high-field Moessbauer data are very sensitive to the size of the uncompensated magnetic moment. From analyses of the Moessbauer spectra we have estimated that the size of the uncompensated magnetic moment is in accordance with a model based on random occupation of surface sites. The analyses of the magnetization data gave larger magnetic moments, but the difference can be explained by the different sensitivity of the two methods to a particle size distribution and by interactions between the particles, which may have a strong influence on the moments estimated from magnetization data
Measurement of the Magnetic Moment of the Negative Muon Bound in Different Atoms
Mamedov, T N; Gritsaj, K I; Kormann, O; Major, J V; Stoikov, A V; Zimmermann, U
2001-01-01
Theoretical calculations show that the magnetic moment of the electron and the negative muon in a bound state in an atom should be different from the magnetic moment of the free particle due to their relativistic motion. There are also additional radiative corrections to the magnetic moment of a bound electron (muon) due to the presence of the strong Coulomb field of the atomic nucleus. The results of the measurements of the magnetic moment of the negative muon in carbon, oxygen, magnesium, silicon, sulfur, and zinc are presented. The accuracy of the measurements makes it possible to prove the dependence of the relativistic correction to the magnetic moment of a bound muon on Z of the atom.
The muon anomalous magnetic moment and the pion polarizability
Energy Technology Data Exchange (ETDEWEB)
Engel, Kevin T. [University of Maryland, College Park, MD 20742 (United States); Ramsey-Musolf, Michael J. [Physics Department, University of Massachusetts Amherst, Amherst, MA 01003 (United States); Kellogg Radiation Laboratory, California Institute of Technology, Pasadena, CA 91125 (United States)
2014-11-10
We compute the charged pion loop contribution to the muon anomalous magnetic moment a{sub μ}, taking into account the previously omitted effect of the charged pion polarizability, (α{sub 1}−β{sub 1}){sub π{sup +}}. We evaluate this contribution using two different models that are consistent with the requirements of chiral symmetry in the low-momentum regime and perturbative quantum chromodynamics in the asymptotic region. The result may increase the disagreement between the present experimental value for a{sub μ} and the theoretical, Standard Model prediction by as much as ∼60×10{sup −11}, depending on the value of (α{sub 1}−β{sub 1}){sub π{sup +}} and the choice of the model. The planned determination of (α{sub 1}−β{sub 1}){sub π{sup +}} at Jefferson Laboratory will eliminate the dominant parametric error, leaving a theoretical model uncertainty commensurate with the error expected from planned Fermilab measurement of a{sub μ}.
Slutsky, S.; Swank, C. M.; Biswas, A.; Carr, R.; Escribano, J.; Filippone, B. W.; Griffith, W. C.; Mendenhall, M.; Nouri, N.; Osthelder, C.; Pérez Galván, A.; Picker, R.; Plaster, B.
2017-08-01
A magnetic coil operated at cryogenic temperatures is used to produce spatial, relative field gradients below 6 ppm/cm, stable for several hours. The apparatus is a prototype of the magnetic components for a neutron electric dipole moment (nEDM) search, which will take place at the Spallation Neutron Source (SNS) at Oak Ridge National Laboratory using ultra-cold neutrons (UCN). That search requires a uniform magnetic field to mitigate systematic effects and obtain long polarization lifetimes for neutron spin precession measurements. This paper details upgrades to a previously described apparatus [1], particularly the introduction of super-conducting magnetic shielding and the associated cryogenic apparatus. The magnetic gradients observed are sufficiently low for the nEDM search at SNS.
Measurement of Short Living Baryon Magnetic Moment using Bent Crystals at SPS and LHC
Burmistrov, L; Ivanov, Yu; Massacrier, L; Robbe, P; Scandale, W; Stocchi, A
2016-01-01
The magnetic moments of baryons containing u,d and s quarks have been extensively studied and measured. The experimental results are all obtained by a well-assessed method that consists in measuring the polarisation vector of the incoming particles and the precession angle when the particle is travelling through an intense magnetic field. The polarization is evaluated by analysing the angular distribution of the decay products. No measurement of magnetic moments of charm or beauty baryons (and τ leptons) has been performed so far. The main reason is the lifetimes of charm/beauty baryons, too short to measure the magnetic moment by standard techniques. Historically, the prediction of baryon magnetic moments was one of the striking successes of the quark model. The importance of the measurement of heavy quark magnetic moment is to test the possibility that the charmed and/or beauty quarks has an anomalous magnetic moment, arising if those quarks are composite objects. Measurements on magnetic moments of heav...
Constraining screened fifth forces with the electron magnetic moment
Brax, Philippe; Davis, Anne-Christine; Elder, Benjamin; Wong, Leong Khim
2018-04-01
Chameleon and symmetron theories serve as archetypal models for how light scalar fields can couple to matter with gravitational strength or greater, yet evade the stringent constraints from classical tests of gravity on Earth and in the Solar System. They do so by employing screening mechanisms that dynamically alter the scalar's properties based on the local environment. Nevertheless, these do not hide the scalar completely, as screening leads to a distinct phenomenology that can be well constrained by looking for specific signatures. In this work, we investigate how a precision measurement of the electron magnetic moment places meaningful constraints on both chameleons and symmetrons. Two effects are identified: First, virtual chameleons and symmetrons run in loops to generate quantum corrections to the intrinsic value of the magnetic moment—a common process widely considered in the literature for many scenarios beyond the Standard Model. A second effect, however, is unique to scalar fields that exhibit screening. A scalar bubblelike profile forms inside the experimental vacuum chamber and exerts a fifth force on the electron, leading to a systematic shift in the experimental measurement. In quantifying this latter effect, we present a novel approach that combines analytic arguments and a small number of numerical simulations to solve for the bubblelike profile quickly for a large range of model parameters. Taken together, both effects yield interesting constraints in complementary regions of parameter space. While the constraints we obtain for the chameleon are largely uncompetitive with those in the existing literature, this still represents the tightest constraint achievable yet from an experiment not originally designed to search for fifth forces. We break more ground with the symmetron, for which our results exclude a large and previously unexplored region of parameter space. Central to this achievement are the quantum correction terms, which are able to
Meson-exchange-current corrections to magnetic moments in quantum hadrodynamics
International Nuclear Information System (INIS)
Morse, T.M.
1990-01-01
Corrections to the magnetic moments of the non-relativistic shell model (Schmidt lines) have a long history. In the early fifties calculations of pion exchange and core polarization contributions to nuclear magnetic moments were initiated. These calculations matured by the early eighties to include other mesons and the delta isobar. Relativistic nuclear shell model calculations are relatively recent. Meson exchange and the delta isobar current contributions to the magnetic moments of the relativistic shell model have remained largely unexplored. The disagreement between the valence values of spherical relativistic mean-field models and experiment was a major problem with early (1975-1985) quantum hydrodynamics (QHD) calculations of magnetic moments. Core polarization calculations (1986-1988) have been found to resolve the large discrepancy, predicting isoscalar magnetic moments to within typically five percent of experiment. The isovector magnetic moments, however, are about twice as far from experiment with an average discrepancy of about ten percent. The pion, being the lightest of the mesons, has historically been expected to dominate isovector corrections. Because this has been found to be true in non-relativistic calculations, the author calculated the pion corrections in the framework of QHD. The seagull and in-flight pion exchange current diagram corrections to the magnetic moments of eight finite nuclei (plus or minus one valence nucleon from the magic A = 16 and A = 40 doubly closed shell systems) are calculated in the framework of QHD, and compared with earlier non-relativistic calculations and experiment
Directory of Open Access Journals (Sweden)
Felix Tobias Kurz
2016-12-01
Full Text Available In biological tissue, an accumulation of similarly shaped objects with a susceptibility difference to the surrounding tissue generates a local distortion of the external magnetic field in magnetic resonance imaging. It induces stochastic field fluctuations that characteristically influence proton spin diffusion in the vicinity of these magnetic perturbers. The magnetic field correlation that is associated with such local magnetic field inhomogeneities can be expressed in the form of a dynamic frequency autocorrelation function that is related to the time evolution of the measured magnetization. Here, an eigenfunction expansion for two simple magnetic perturber shapes, that of spheres and cylinders, is considered for restricted spin diffusion in a simple model geometry. Then, the concept of generalized moment analysis, an approximation technique that is applied in the study of (non-reactive processes that involve Brownian motion, allows to provide analytical expressions for the correlation function for different exponential decay forms. Results for the biexponential decay for both spherical and cylindrical magnetized objects are derived and compared with the frequently used (less accurate monoexponential decay forms. They are in asymptotic agreement with the numerically exact value of the correlation function for long and short times.
One-pion exchange current corrections for nuclear magnetic moments in relativistic mean field theory
International Nuclear Information System (INIS)
Li Jian; Yao, J.M.; Meng Jie; Arima, Akito
2011-01-01
The one-pion exchange current corrections to isoscalar and isovector magnetic moments of double-closed shell nuclei plus and minus one nucleon with A = 15, 17, 39 and 41 have been studied in the relativistic mean field (RMF) theory and compared with previous relativistic and non-relativistic results. It has been found that the one-pion exchange current gives a negligible contribution to the isoscalar magnetic moments but a significant correction to the isovector ones. However, the one-pion exchange current enhances the isovector magnetic moments further and does not improve the corresponding description for the concerned nuclei in the present work. (author)
The effect of a neutrino magnetic moment on nuclear excitation processes
International Nuclear Information System (INIS)
Dodd, A.C.; Papageorgiu, E.; Ranfone, S.
1991-01-01
It is shown that the MeV-range neutrinos with a magnetic moment of ≅ 10 -11 Bohr magnetons would excite nuclei, like 12 C, with cross sections comparable to those obtained in the Standard Model. This implies the possibility of improving the present experimental bounds on the magnetic moment of any flavour of neutrinos by one order of magnitude. Such a magnetic moment would also enhance the coherent neutrino-nuclear scattering in low-temperature detectors, enabling them to set comparable limits. (author)
Field Induced Magnetic Moments in a Metastable Iron-Mercury Alloy
DEFF Research Database (Denmark)
Pedersen, M.S.; Mørup, Steen; Linderoth, Søren
1996-01-01
The magnetic properties of a metastable iron-mercury alloy have been investigated in the temperature range from 5 to 200 K by Mossbauer spectroscopy and magnetization measurements. At low temperature the magnetic moment per iron atom is larger than af alpha-Fe. The effective spontaneous magnetic ....... It was found that the field-induced increase of the magnetic moment in the metastable iron-mecury alloy was about 0.06 Bohr magnetons per iron atom in the temperature range from 5 to 200 K for a field change from 6 to 12 T....
Constraining neutrino magnetic moment with solar and reactor neutrino data
Tortola, M. A.
2004-01-01
We use solar neutrino data to derive stringent bounds on Majorana neutrino transition moments (TMs). Such moments, if present, would contribute to the neutrino-electron scattering cross section and hence alter the signal observed in Super-Kamiokande. Using the latest solar neutrino data, combined with the results of the reactor experiment KamLAND, we perform a simultaneous fit of the oscillation parameters and TMs. Furthermore, we include data from the reactor experiments Rovno, TEXONO and MU...
Frozen moments: flashback memories of critical incidents in emergency personnel.
Kleim, Birgit; Bingisser, Martina-Barbara; Westphal, Maren; Bingisser, Roland
2015-07-01
Emergency Department personnel regularly face highly stressful situations or critical incidents (CIs) that may subsequently be recalled as unbidden intrusive memories. In their most extreme form, such memories are reexperienced as if they were happening again in the present, as flashbacks. This study examined (1) which CIs are associated with flashback memories; (2) candidate person and work-related features that predict flashback memories; and (3) the association between flashback memories and anxiety, depression, and emotional exhaustion. Emergency nurses (N = 91; 80.2% female) were recruited from two urban teaching hospitals and filled in self-report questionnaires. A majority (n = 59, 65%) experienced intrusive memories; almost half of the sample reported that their memories had flashback character. Those involved in resuscitations in the past week were at a fourfold risk for experiencing flashbacks. Having worked more consecutive days without taking time off was associated with a somewhat lower incidence of flashbacks. Moreover, older individuals who reported more work-related conflicts were at greater risk for experiencing flashback memories than their younger colleagues with heightened work conflict and flashback memory scores, respectively. Flashback memories were associated with heightened symptoms of anxiety, depression, and emotional exhaustion. The present findings have implications for evidence-based health promotion in emergency personnel and other individuals regularly exposed to CIs.
Planar Hall ring sensor for ultra-low magnetic moment sensing
DEFF Research Database (Denmark)
Hung, Tran Quang; Terki, Ferial; Kamara, Souleymanne
2015-01-01
The field sensitivity of a planar Hall effect (PHE) micro-ring type biosensor has been investigated as a function of magnetizing angle of the sensor material, for the sensing of low magnetic moment superparamagnetic labels. The field sensitivity is maximal at a magnetizing angle of α = 20°. At th...
Direct evidence of Ni magnetic moment in TbNi{sub 2}Mn—X-ray magnetic circular dichroism
Energy Technology Data Exchange (ETDEWEB)
Yu, D.H., E-mail: dyu@ansto.gov.au [Bragg Institute, Australian Nuclear Science and Technology Organisation, Lucas Heights, Sydney, NSW 2234 (Australia); Huang, Meng-Jie [National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu Science Park, Hsinchu 30076, Taiwan (China); Wang, J.L. [Bragg Institute, Australian Nuclear Science and Technology Organisation, Lucas Heights, Sydney, NSW 2234 (Australia); School of Physical, Environmental and Mathematical Sciences, University of New South Wales, Canberra at the Australian Defense Force Academy, Sydney, ACT 2600 (Australia); Institute for Superconductivity and Electronic Materials, University of Wollongong, Wollongong, NSW 2522 (Australia); Su, Hui-Chia; Lin, Hong-Ji; Chen, Chien-Te [National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu Science Park, Hsinchu 30076, Taiwan (China); Campbell, S.J. [School of Physical, Environmental and Mathematical Sciences, University of New South Wales, Canberra at the Australian Defense Force Academy, Sydney, ACT 2600 (Australia)
2014-12-15
We have investigated the individual magnetic moments of Ni, Mn and Tb atoms in the intermetallic compound TbNi{sub 2}Mn in the Laves phase (magnetic phase transition temperature T{sub C} ∼131 K) by X-ray magnetic circular dichroism (XMCD) studies at 300 K, 80 K and 20 K. Analyses of the experimental results reveal that Ni atoms at 20 K in an applied magnetic field of 1 T carry an intrinsic magnetic moment of spin and orbital magnetic moment contributions 0.53±0.01 μ{sub B} and 0.05±0.01 μ{sub B}, respectively. These moment values are similar to those of the maximum saturated moment of Ni element. A very small magnetic moment of order <0.1 μ{sub B} has been measured for Mn. This suggests that Mn is antiferromagnetically ordered across the two nearly equally occupied sites of 16d and 8a. A magnetic moment of up to ∼0.3 μ{sub B} has been observed for the Tb atoms. Identification of a magnetic moment on the Ni atoms has provided further evidence for the mechanism of enhancement of the magnetic phase transition temperature in TbNi{sub 2}Mn compared with TbNi{sub 2} (T{sub C}∼37.5 K) and TbMn{sub 2} (T{sub C}∼54 K) due to rare earth–transition metal (R–T) and transition metal–transition metal (T–T) interactions. The behaviour of the X-ray magnetic circular dichroism spectra of TbNi{sub 2}Mn at 300 K, 80 K and 20 K – above and below the magnetic ordering temperature T{sub C} ∼131 K – is discussed. - Highlights: • We study the magnetic moment of TbNi{sub 2}Mn with XMCD. • We observe directly the Ni intrinsic magnetic moment in TbNi{sub 2}Mn. • We find that Mn ordered antiferromagnetically across the 16d and 8a sites. • We confirm the mechanism for increasing the magnetic phase transition temperature.
Core Polarization and Tensor Coupling Effects on Magnetic Moments of Hypernuclei
International Nuclear Information System (INIS)
Jiang-Ming, Yao; Jie, Meng; Hong-Feng, Lü; Greg, Hillhouse
2008-01-01
Effects of core polarization and tensor coupling on the magnetic moments in Λ 13 C, Λ 17 O, and Λ 41 Ca Λ-hypernuclei are studied by employing the Dirac equation with scalar, vector and tensor potentials. It is found that the effect of core polarization on the magnetic moments is suppressed by Λ tensor coupling. The Λ tensor potential reduces the spin-orbit splitting of p Λ states considerably. However, almost the same magnetic moments are obtained using the hyperon wavefunction obtained via the Dirac equation either with or without the A tensor potential in the electromagnetic current vertex. The deviations of magnetic moments for p Λ states from the Schmidt values are found to increase with nuclear mass number. (nuclear physics)
First on-line $\\beta$-NMR on oriented nuclei magnetic dipole moments of the $\
Giles, T; Stone, N J; Van Esbroeck, K; White, G; Wöhr, A; Veskovic, M; Towner, I S; Mantica, P F; Prisciandaro, J I; Morrissey, D J; Fedosseev, V; Mishin, V I; Köster, U; Walters, W B
2000-01-01
The first fully on-line use of the angular distribution of $\\beta$ - emission in detection of NMR of nuclei oriented at low temperatures is reported. The magnetic moments of the single valence particle, intermediate mass, isotopes $^{67}$Ni($\
Magnetic dipole moment of the Δ(1232) in chiral perturbation theory
International Nuclear Information System (INIS)
Hacker, C.; Wies, N.; Scherer, S.; Gegelia, J.
2006-01-01
The magnetic dipole moment of the Δ(1232) is calculated in the framework of manifestly Lorentz-invariant baryon chiral perturbation theory in combination with the extended on-mass-shell renormalization scheme. As in the case of the nucleon, at leading order both isoscalar and isovector anomalous magnetic moments are given in terms of two low-energy constants. In contrast to the nucleon case, at next-to-leading order the isoscalar anomalous magnetic moment receives a (real) loop contribution. Moreover, due to the unstable nature of the Δ(1232), at next-to-leading order the isovector anomalous magnetic moment not only receives a real but also an imaginary loop contribution. (orig.)
Calculation of the electron magnetic moment in Fried-Yennie-gauge QED
International Nuclear Information System (INIS)
Adkins, G.S.
1989-01-01
The two-loop contribution to the electron magnetic moment is calculated in the Fried-Yennie gauge. This is the first treatment of the magnetic moment beyond one-loop order in a gauge other than the Feynman gauge. The Fried-Yennie gauge is infrared safe, and the calculation is done without introducing an infrared cutoff or photon mass. The Fried-Yennie-gauge result agrees with the Feynman-gauge result, as expected
Phase analysis of NK-bar scattering and Λ-hyperon magnetic moment
International Nuclear Information System (INIS)
Nikitiu, F.
1987-01-01
The NK-bar-scattering S matrix is suggested to have the P 01 -channel pole which corresponds to Λ-hyperon. The Λ-hyperon magnetic moment is calculated. Its value ''arises'' only due to nucleon magnetic moments and N and K-bar nontrivial relativistic coupling in the P 01 -channel. This is one more method to the quark model methods. The calculations are in agreement with the experimental value of μΛ
On a Neutral Particle with a Magnetic Quadrupole Moment in a Uniform Effective Magnetic Field
International Nuclear Information System (INIS)
Fonseca, I. C.; Bakke, K.
2016-01-01
Quantum effects on a Landau-type system associated with a moving atom with a magnetic quadrupole moment subject to confining potentials are analysed. It is shown that the spectrum of energy of the Landau-type system can be modified, where the degeneracy of the energy levels can be broken. In three particular cases, it is shown that the analogue of the cyclotron frequency is modified, and the possible values of this angular frequency of the system are determined by the quantum numbers associated with the radial modes and the angular momentum and by the parameters associated with confining potentials in order that bound states solutions can be achieved.
Universal Effectiveness of Inducing Magnetic Moments in Graphene by Amino-Type sp3-Defects
Directory of Open Access Journals (Sweden)
Tao Tang
2018-04-01
Full Text Available Inducing magnetic moments in graphene is very important for its potential application in spintronics. Introducing sp3-defects on the graphene basal plane is deemed as the most promising approach to produce magnetic graphene. However, its universal validity has not been very well verified experimentally. By functionalization of approximately pure amino groups on graphene basal plane, a spin-generalization efficiency of ~1 μB/100 NH2 was obtained for the first time, thus providing substantial evidence for the validity of inducing magnetic moments by sp3-defects. As well, amino groups provide another potential sp3-type candidate to prepare magnetic graphene.
Color interaction of quarks and magnetic moments of baryons in the bag model
International Nuclear Information System (INIS)
Krivoruchenko, M.I.
1984-01-01
The purpose of the present study is to saccount for the quark interaction in the bag model by calculating corrections to the baryon magnetic moments related to the colour interaction of quarks. The quark-in-bag wave function to that holds the confinement linear boundary condition has been found in the first order for the external magnetic field. Corrections to the baryon magnetic moments are calculated. They are related to energy variations of colour electric and colour magnetic fields. Numerical data are presented and the structure of corrections in the SU-3 group approximation is discussed. The results are compared with the potential model and the experiment
Energy Technology Data Exchange (ETDEWEB)
Gómez, A. M., E-mail: amgomezl-1@uqvirtual.edu.co [Programa de Física, Universidad del Quindo (Colombia); Torres, D. A., E-mail: datorresg@unal.edu.co [Physics Department, Universidad Nacional de Colombia, Bogotá (Colombia)
2016-07-07
The experimental study of nuclear magnetic moments, using the Transient Field technique, makes use of spin-orbit hyperfine interactions to generate strong magnetic fields, above the kilo-Tesla regime, capable to create a precession of the nuclear spin. A theoretical description of such magnetic fields is still under theoretical research, and the use of parametrizations is still a common way to address the lack of theoretical information. In this contribution, a review of the main parametrizations utilized in the measurements of Nuclear Magnetic Moments will be presented, the challenges to create a theoretical description from first principles will be discussed.
Magnetization, magnetic susceptibility, effective magnetic moment of Fe3+ ions in Bi25FeO39 ferrite
International Nuclear Information System (INIS)
Zatsiupa, A.A.; Bashkirov, L.A.; Troyanchuk, I.O.; Petrov, G.S.; Galyas, A.I.; Lobanovsky, L.S.; Truhanov, S.V.
2014-01-01
Magnetic susceptibility for ferrite Bi 25 FeO 39 is measured at 5–950 K in the magnetic field of 0.86 T. It is shown that Bi 25 FeO 39 is paramagnetic in the temperature range 5−950 K. The saturation magnetization is equal to 5.04μ B per formula unit at 5 K in a magnetic field of 10 T. It is found that at 5−300 K the effective magnetic moment of Fe 3+ ions in Bi 25 FeO 39 is equal to 5.82μ B . - Graphical abstract: The dependence of the magnetization (n, μ B ) on the magnetic field for one formula unit of Bi 25 FeO 39 at 5 K. - Highlights: • Magnetic susceptibility for Bi 25 FeO 39 is measured at 5–950 K in the magnetic field of 0.86 T. • It is shown that Bi 25 FeO 39 is paramagnetic in the temperature range 5−950 K. • The saturation magnetization is equal to 5.04μ B per formula unit at 5 K in a magnetic field of 10 T
Effective particle magnetic moment of multi-core particles
Ahrentorp, F.; Astalan, A.; Blomgren, J.; Jonasson, C.; Wetterskog, E.; Svedlindh, P.; Lak, A.; Ludwig, F.; Van IJzendoorn, L.J.; Westphal, F.; Grüttner, C.; Gehrke, N.; Gustafsson, S.; Olsson, E.; Johansson, C.
2015-01-01
In this study we investigate the magnetic behavior of magnetic multi-core particles and the differences in the magnetic properties of multi-core and single-core nanoparticles and correlate the results with the nanostructure of the different particles as determined from transmission electron
Origin of the net magnetic moment in LaCoO3
Kaminsky, G. M.; Belanger, D. P.; Ye, F.; Fernandez-Baca, J. A.; Wang, J.; Matsuda, M.; Yan, J.-Q.
2018-01-01
We use polarized neutron scattering to characterize the Bragg scattering intensity below TC=89.5 K at the (1,0,0) pseudocubic nuclear Bragg point of LaCoO3. Upon cooling in a field (FC), a net magnetic moment is apparent in Bragg scattering intensity, just as it was in previous magnetization measurements. Critical behavior associated with the net moment near TC upon cooling in small applied fields rapidly rounds with increasing field strength. We show, using a mean-field calculation, that this net moment can develop in a metastable state that forms upon FC, even when all the interactions in the system are antiferromagnetic.
Two dimensional electron gas confined over a spherical surface: Magnetic moment
Energy Technology Data Exchange (ETDEWEB)
Hernando, A; Crespo, P [Instituto de Magnetismo Aplicado, UCM-CSIC-ADIF, Las Rozas. P. O. Box 155, Madrid 28230 (Spain) and Dpto. Fisica de Materiales, Universidad Complutense (Spain); Garcia, M A, E-mail: antonio.hernando@adif.es [Instituto de Ceramica y Vidrio, CSIC c/Kelsen, 5 Madrid 28049 (Spain)
2011-04-01
Magnetism of capped nanoparticles, NPs, of non-magnetic substances as Au and ZnO is briefly reviewed. The source of the magnetization is discussed on the light of recent X-ray magnetic circular dichroism experiments. As magnetic dichroism analysis has pointed out impurity atoms bonded to the surface act as donor or acceptor of electrons that occupy the surface states. It is proposed that mesoscopic collective orbital magnetic moments induced at the surface states can account for the experimental magnetism characteristic of these nanoparticles. The total magnetic moment of the surface originated at the unfilled Fermi level can reach values as large as 10{sup 2} or 10{sup 3} Bohr magnetons.
Light-by-light scattering and muon's anomalous magnetic moment
International Nuclear Information System (INIS)
Pauk, Vladyslav
2014-01-01
phenomenological implications of these results for mesons in both the light-quark sector and the charm-quark sector. In the second part of this thesis we develop the formalism to provide an improved estimate for the hadronic light-by-light (HLbL) correction to the muon's anomalous magnetic moment a μ , by considering single meson contributions beyond the leading pseudo-scalar mesons. This is motivated by the present 3σ deviation between the measurement of a μ and its estimate in the Standard Model. Furthermore, a forthcoming new experiment at Fermilab aims to improve the experimental precision by a factor of 4 which also requires a similar theoretical improvement. We incorporate available experimental input as well as constraints from light-by-light scattering sum rules to estimate the effects of axial-vector, scalar, and tensor mesons. We give numerical evaluations for the HLbL contribution of these states to a μ . The presented formalism allows to further improve on these estimates, once new data for such meson states will become available. In the last part of this work, we present a new dispersion formalism developed for the HLbL contribution to a μ and test the formalism for the case of scalar field theory. The new framework opens a unique possibility for a consistent incorporation of data from e + e - colliders for single- as well as multi-meson contributions. Furthermore, it allows to systematically control the HLbL uncertainty in the a μ which is a crucial step in searches of new physics using this precision quantity.
Antonelli, V; Picariello, M; Pulido, J; Torrente-Lujan, E
2003-01-01
We present here a recopilation of recent results about the possibility of detecting solar electron antineutrinos produced by solar core and convective magnetic fields. These antineutrinos are predicted by spin-flavor oscillations at a significant rate even if this mechanism is not the leading solution to the SNP. Using the recent Kamland results and assuming a concrete model for antineutrino production by spin-flavor precession in the convective zone based on chaotic magnetic fields,we obtain bounds on the flux of solar antineutrinos, on the average conversion neutrino-antineutrino probability and on intrinsic neutrino magnetic moment. In the most conservative case, $\\mu\\lsim 2.5\\times 10^{-11} \\mu_B$ (95% CL). When studying the effects of a core magnetic field, we find in the weak limit a scaling of the antineutrino probability with respect to the magnetic field profile in the sense that the same probability function can be reproduced by any profile with a suitable peak field value. In this way the solar ele...
International Nuclear Information System (INIS)
Gisin, B V
2002-01-01
We consider the anomalous magnetic moment from an 'optical viewpoint' using an analogy between the motion of a particle with a magnetic moment in a magnetic field and the propagation of an optical pulse through an electro-optical crystal in an electric field. We show that an optical experiment similar to electron magnetic resonance is possible in some electro-optical crystals possessing the Faraday effect. This phenomenon is described by an analogue of the Pauli equation extracted from the Maxwell equation in the slowly varied amplitude approximation. In such an experiment the modulation by rotating fields plays a significant role. From the optical viewpoint the modulation assumes introducing the concept of a point rotation frame with the rotation axis at every point originated from the concept of the optical indicatrix (index ellipsoid). We discuss the connection between the non-classical transformation by transition from one such frame to another and an anomalous magnetic moment
High uniformity magnetic coil for search of neutron electric dipole moment
Energy Technology Data Exchange (ETDEWEB)
Perez Galvan, A., E-mail: apg@caltech.edu [W.K. Kellogg Radiation Laboratory, California Institute of Technology, Pasadena, CA, 91125 (United States); Plaster, B. [Department of Physics and Astronomy, University of Kentucky, Lexington, KY, 40506 (United States); Boissevain, J.; Carr, R.; Filippone, B.W.; Mendenhall, M.P.; Schmid, R. [W.K. Kellogg Radiation Laboratory, California Institute of Technology, Pasadena, CA, 91125 (United States); Alarcon, R.; Balascuta, S. [Department of Physics, Arizona State University, Tempe, AZ 85287 (United States)
2011-12-21
We present in this article a prototype magnetic coil that has been developed for a new search for the electric dipole moment of the neutron at the Spallation Neutron Source at Oak Ridge National Laboratory. The gradients of the magnetic field generated by the coil have been optimized to reduce known systematic effects and to yield long polarization lifetimes of the trapped particles sampling the highly uniform magnetic field. Measurements of the field uniformity of this prototype magnetic coil are also presented.
Magnetic moment jumps in flat and nanopatterned Nb thin-walled cylinders
Energy Technology Data Exchange (ETDEWEB)
Tsindlekht, M.I., E-mail: mtsindl@vms.huji.ac.il [The Racah Institute of Physics, The Hebrew University of Jerusalem, 91904 Jerusalem (Israel); Genkin, V.M.; Felner, I.; Zeides, F.; Katz, N. [The Racah Institute of Physics, The Hebrew University of Jerusalem, 91904 Jerusalem (Israel); Gazi, Š.; Chromik, Š. [The Institute of Electrical Engineering SAS, Dúbravská cesta 9, 84104 Bratislava (Slovakia); Dobrovolskiy, O.V. [Physikalisches Institut, Goethe University, 60438 Frankfurt am Main (Germany); Physics Department, V. Karazin Kharkiv National University, 61077 Kharkiv (Ukraine); Sachser, R.; Huth, M. [Physikalisches Institut, Goethe University, 60438 Frankfurt am Main (Germany)
2017-02-15
Highlights: • Magnetization curves of as-prepared and patterned thin-walled cylinders were measured in magnetic fields applied parallel to cylinders axis. • Magnetic moment jumps were observed in magnetic fields lower and above Hc1. • Critical current density in isthmus between two antidots is higher than in a film itself. - Abstract: Penetration of magnetic flux into hollow superconducting cylinders is investigated by magnetic moment measurements. The magnetization curves of a flat and a nanopatterned thin-walled superconducting Nb cylinders with a rectangular cross section are reported for the axial field geometry. In the nanopatterned sample, a row of micron-sized antidots (holes) was milled in the film along the cylinder axis. Magnetic moment jumps are observed for both samples at low temperatures for magnetic fields not only above H{sub c1}, but also in fields lower than H{sub c1}, i. e., in the vortex-free regime. The positions of the jumps are not reproducible and they change from one experiment to another, resembling vortex lattice instabilities usually observed for magnetic fields larger than H{sub c1}. At temperatures above 0.66T{sub c} and 0.78T{sub c} the magnetization curves become smooth for the patterned and the as-prepared sample, respectively. The magnetization curve of a reference flat Nb film in the parallel field geometry does not exhibit jumps in the entire range of accessible temperatures.
Nuclear structure studies by means of magnetic moments of excited states
International Nuclear Information System (INIS)
Kaeubler, L.; Prade, H.; Schneider, L.; Brinckmann, H.F.; Stary, F.
1981-09-01
Experimental arrangements installed at the cyclotron U-120 and the tandem accelerator EGP-10 for the in-beam measurement of magnetic moments of excited nuclear states are discribed. The Perturbed-Angular-Distribution-method (PAD) has been used. A new evaluation method has been developed for the unique determination of the Larmor frequency from spin-procession spectra R(t) with less than half of an oscillation period between consecutive particle pulses. Magnetic moments in transitional nuclei or in nuclei near closed shells ( 103 Pd, 105 Ag, 117 Sb, 117 Te, 121 Te, 121 I, 143 Pm and 207 Bi) were measured. The results are discussed with the aim to get information about the nuclear structure of the corresponding isomeric states in connection with complex spectroscopic investigations. Therefore, the experimental values are compared to the results of model calculations (core-polarization, core-particle-coupling, Nilsson, particle-rotation-coupling or shell-model) or to the estimates on the basis of the additivity of effective magnetic moments. Single-particle aspects are discussed in connection with the magnetic moments of hsub(11/2)-, dsub(5/2)- and gsub(7/2)-neutron (ν) and proton (π) states in the nuclei 103 Pd, 117 Te, 121 Te and 143 Pm, respectively. The configurations of (π) 3 and (π)(ν) 2 -three-particle states in 105 Ag, 117 Sb, 121 I and 207 Bi could be determined using the additivity rule. The experimental magnetic moments of states in 143 Pm agree very well with the results of shell-model calculations, which have firstly been carried out also for negative-parity states in this mass region. Considering magnetic moments in 117 Te and 121 Te we could demonstrate the influence of different nuclear deformations on the magnetic moments in transitional nuclei. (author)
International Nuclear Information System (INIS)
Barut, A.O.; Aydin, Z.Z.
1988-08-01
Some implications of the anomalous magnetic moment a υ of the neutrino are discussed, in particular the differential cross-sections of the electron-neutrino (antineutrino) scattering, (υ e and υ μ ), of the magnetic model is compared with the standard model in order to set better limits on a υ . (author). 18 refs, 2 figs
First observation of magnetic moment precession of channeled particles in bent crystals
International Nuclear Information System (INIS)
Chen, D.; Albuquerque, I.F.; Baublis, V.V.; Bondar, N.F.; Carrigan, R.A. Jr.; Cooper, P.S.; Lisheng, D.; Denisov, A.S.; Dobrovolsky, A.V.; Dubbs, T.; Endler, A.M.F.; Escobar, C.O.; Foucher, M.; Golovtsov, V.L.; Goritchev, P.A.; Gottschalk, H.; Gouffon, P.; Grachev, V.T.; Khanzadeev, A.V.; Kubantsev, M.A.; Kuropatkin, N.P.; Lach, J.; Lang Pengfei; Lebedenko, V.N.; Li Chengze; Li Yunshan; Mahon, J.R.P.; McCliment, E.; Morelos, A.; Newsom, C.; Pommot Maia, M.C.; Samsonov, V.M.; Schegelsky, V.A.; Shi Huanzhang; Smith, V.J.; Sun, C.R.; Tang Fukun; Terentyev, N.K.; Timm, S.; Tkatch, I.I.; Uvarov, L.N.; Vorobyov, A.A.; Yan Jie; Zhao Wenheng; Zheng Shuchen; Zhong Yuanyuan
1992-01-01
Spin precession of channeled particles in bent crystals has been observed for the first time. Polarized Σ + were channeled using bent Si crystals. These crystals provided an effective magnetic field of 45 T which resulted in a measured spin precession of 60±17 degree. This agrees with the prediction of 62±2 degree using the world average of Σ + magnetic moment measurements. This new technique gives a Σ + magnetic moment of (2.40±0.46±0.40)μ N , where the quoted uncertainties are statistical and systematic, respectively. We see no evidence of depolarization in the channeling process
Kopferman, H; Massey, H S W
1958-01-01
Nuclear Moments focuses on the processes, methodologies, reactions, and transformations of molecules and atoms, including magnetic resonance and nuclear moments. The book first offers information on nuclear moments in free atoms and molecules, including theoretical foundations of hyperfine structure, isotope shift, spectra of diatomic molecules, and vector model of molecules. The manuscript then takes a look at nuclear moments in liquids and crystals. Discussions focus on nuclear paramagnetic and magnetic resonance and nuclear quadrupole resonance. The text discusses nuclear moments and nucl
Energy Technology Data Exchange (ETDEWEB)
Silva, Edilberto O. [Universidade Federal do Maranhao, Departamento de Fisica, Sao Luis, MA (Brazil)
2014-10-15
The planar quantum dynamics of a neutral particle with a magnetic dipole moment in the presence of electric and magnetic fields is considered. The criteria to establish the planar dynamics reveal that the resulting nonrelativistic Hamiltonian has a simplified expression without making approximations, and some terms have crucial importance for the system dynamics. (orig.)
EM Induction Experiment to Determine the Moment of a Magnet
Najiya Maryam, K. M.
2014-01-01
If we drop a magnet through a coil, an emf is induced in the coil according to Faraday's law of electromagnetic induction. Here, such an experiment is done using expEYES kit. The plot of emf versus time has a specific shape with two peaks. A theoretical analysis of this graph is discussed here for both short and long cylindrical magnets.…
Meson exchange current corrections to magnetic moments in quantum hadro-dynamics
Energy Technology Data Exchange (ETDEWEB)
Morse, T M; Price, C E; Shepard, J R [Colorado Univ., Boulder (USA). Dept. of Physics
1990-11-15
We have calculated pion exchange current corrections to the magnetic moments of closed shell {plus minus}1 particle nuclei near A=16 and 40 within the framework of quantum hadro-dynamics (QHD). We find that the correction is significant and that, in general, the agreement of the QHD isovector moments with experiment is worsened. Comparisons to previous non-relativistic calculations are also made. (orig.).
Spin magnetic moments from single atoms to small Cr clusters
Energy Technology Data Exchange (ETDEWEB)
Boeglin, C.; Decker, R.; Bulou, H.; Scheurer, F.; Chado, I. [IPCMS-GSI - UMR 7504, 67037 Strasbourg Cedex (France); Ohresser, P. [LURE, 91405 Orsay (France); Dhesi, S.S. [ESRF, BP 220, 38043 Grenoble Cedex (France); Present permanent address: Diamond Light Source, Chilton, Didcot OX11 0QX (United Kingdom); Gaudry, E. [LMCP, 4, place Jussieu, 75252 Paris (France); Lazarovits, B. [CCMS, T.U. Vienna, Gumpendorfstr. 1a, 1060 Wien (Austria)
2005-07-01
Morphology studies at the first stages of the growth of Cr/Au(111) are reported and compared to the magnetic properties of the nanostructures. We analyze by Scanning Tunneling Microscopy and Low Energy Electron Diffraction the Cr clusters growth between 200 K and 300 K. In the early stages of the growth the morphology of the clusters shows monoatomic high islands located at the kinks of the herringbone reconstructed Au(111) surface. By X-ray Magnetic Circular Dichroism performed on the Cr L{sub 2,3} edges it is shown that the temperature dependent morphology strongly influences the magnetic properties of the Cr clusters. We show that in the sub-monolayer regime Cr clusters are antiferromagnetic and paramagnetic when the size reaches the atomic limit. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)
Nuclear structure and magnetic moment of the unstable 12B-12N mirror pair
International Nuclear Information System (INIS)
Zheng Yongnan; Zhou Dongmei; Yuan Daqing; Zuo Yi; Fan Ping; Xu Yongjun; Zhu Jiazheng; Wang Zhiqiang; Luo Hailong; Zhang Xizhen; Zhu Shengyun; Mihara, M.; Matsuta, K.; Fukuda, M.; Minamisono, T.; Suzuki, T.
2010-01-01
Magnetic moments of the A=12 unstable mirror pair nuclides 12 B and 12 N have been measured by the β-NMR technique. The experimentally measured magnetic moments are μ( 12 B)=1.00(17)μ N and μ( 12 N)=0.4571(1)μ N . The improved shell model using an SFO Hamiltonian with enhanced spin-isospin monopole proton-neutron interaction and modified single-particle energies is employed to calculate the magnetic moments of 12 B and 12 N. The calculation yields μ( 12 B)=0.929μ N and μ( 12 N)=0.452μ N and has produced a new magic number 6 for the short-lived unstable mirror pair nuclides 12 B and 12 N. (authors)
Magnetic dipole moments of 58Cu and 59Cu by in-source laser spectroscopy
International Nuclear Information System (INIS)
Stone, N. J.; Koester, U.; Stone, J. Rikovska; Fedorov, D. V.; Fedoseyev, V. N.; Flanagan, K. T.; Hass, M.; Lakshmi, S.
2008-01-01
Online measurements of the magnetic dipole moments and isotope shifts of 58 Cu and 59 Cu by the in-source laser spectroscopy method are reported. The results for the magnetic moments are μ ( 58 Cu) =+0.52(8) μ N ,μ( 59 Cu) =+1.84(3) μ N and for the isotope shifts δν 59,65 =1.72(22) GHz and δν 58,65 =1.99(30) GHz in the transition from the 3d 10 4s 2 S 1/2 ground state to the 3d 10 4p 2 P 1/2 state in Cu I. The magnetic moment of 58 Cu is discussed in the context of the strength of the subshell closure at 56 Ni, additivity rules and large-scale shell model calculations
Unusual temperature dependence of the magnetic moment in URu2Si2
International Nuclear Information System (INIS)
Faak, B.; Flouquet, J.; Lejay, P.
1994-01-01
The influence of the sample quality on the magnetic properties of the heavy-fermion superconductor URu 2 Si 2 has been studied by elastic neutron scattering. Two single crystals prepared under identical conditions received different heat treatments. The as-grown crystal shows an unusual temperature dependence of the magnetic Bragg peak intensity. The annealed sample behaves normally. The low-temperature magnetic moment is identical for the two samples, showing that the small moment of 0.023 (3) μ B is intrinsic. By varying the instrumental resolution, we show that the ordered moment as well as the limited correlation length (200-400 A) are of static origin. The finite correlation length appears related to defects. (author). 9 refs., 1 fig
Magnetic moment of short lived {beta}-emitter {sup 24m}Al
Energy Technology Data Exchange (ETDEWEB)
Nishimura, D., E-mail: daiki@vg.phys.sci.osaka-u.ac.jp; Komurasaki, J.; Matsuta, K.; Mihara, M.; Matsumiya, R. [Osaka University, Department of Physics (Japan); Momota, S. [Kochi University of Technology (Japan); Ohtsubo, T. [Niigata University, Department of Physics (Japan); Izumikawa, T. [Niigata University, RI Center (Japan); Hirano, H. [Niigata University, Department of Physics (Japan); Kitagawa, A.; Kanazawa, M.; Torikoshi, M.; Sato, S. [National Institute of Radiological Sciences (Japan); Fukuda, M.; Ishikawa, D. [Osaka University, Department of Physics (Japan); Minamisono, T. [Fukui University of Technology (Japan); Watanabe, R.; Kubo, T. [Niigata University, Department of Physics (Japan); Nojiri, Y. [Kochi University of Technology (Japan); Alonso, J. R. [Lawrence Berkeley Laboratory (United States)
2007-11-15
The magnetic moment of short lived {beta}-emitter {sup 24m}Al (426 keV, I{sup {pi}} = 1{sup +}, T{sub 1/2} = 131 ms) has been measured by means of {beta}-NMR technique, for the first time. From the {beta}-NMR spectrum, the magnetic moment was determined as |{mu}({sup 24m}Al)|=(2.99{+-}0.09){mu}{sub N}. Combined with the known magnetic moment of the mirror partner {sup 24m}Na, the expectation value of < S{sub z} > is obtained to be (0.08 {+-} 0.12). These values are reproduced well by the shell model calculation.
Theoretical study on the magnetic moments formation in Ta-doped anatase TiO2
Bupu, A.; Majidi, M. A.; Rusydi, A.
2017-04-01
We present a theoretical study on Ti-vacancy induced ferromagnetism in Ta-doped anatase TiO2. Experimental study of Ti1-x Ta x O2 thin film has shown that Ti-vacancies (assisted by Ta doping) induce the formation of localized magnetic moment around it, then, the observed ferromagnetism is caused by the alignment of localized magnetic moments through Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction. In this study, we focus on the formation of the localized magnetic moments in this system. We hypothesize that on a unit cell, Ti-vacancy has caused four electrons from the surrounding oxygen atoms to become unpaired. These unpaired electrons then arrange themselves into a configuration with a non-zero net magnetic moment. To examine our hypothesis, we construct a Hamiltonian of the four unpaired electrons, incorporating the Coulomb intra- and inter-orbital interactions, in matrix form. Using a set of chosen parameter values, we diagonalize the Hamiltonian to get the eigenstates and eigenvalues, then, with the resulting eigenstates, we calculate the magnetic moment, μ, by obtaining the expectation value of the square of total spin operator. Our calculation results show that in the ground state, provided that the ratio of parameters satisfies some criterion, μ ≈ 4μ B , corresponding to the four electron spins being almost perfectly aligned, can be achieved. Further, as long as we keep the Coulomb intra-orbital interaction between 0.5 and 1 eV, we find that μ ≈ 4μ B is robust up to far above room temperature. Our results demonstrate that Ti vacancies in anatase TiO2 can form very stable localized magnetic moments.
Magnetic moment measurement of 140Ba nuclei using transient field technique
International Nuclear Information System (INIS)
Saxena, Mansi; Mandal, S.; Siwal, Davinder; Rainovski, G.; Danchev, M.; Damyanova, A.; Gladnishki, K.; Leske, J.; Bauer, C.; Bloch, T.; John, P.; Pietralla, N.; Wollersheim, H.J.; Kojouharov, I.; Pietri, S.; Schaffner, H.
2011-01-01
Mixed symmetry states have been identified in the neutron proton version of the Interacting Boson Model. The motivation of this experiment is to identify uniquely one phonon mixed symmetry states in 140 Ba nuclei by g factor measurement of the states. Magnetic moments measurements provide substantial information on the microscopic structure of the nuclei as the magnetic moment of a nuclei is described by the wave function of one state only. In this present paper we report the preliminary results of the g factor measurement of the first 2 + state of 140 Ba
Lattice QCD results for the HVP contribution to the anomalous magnetic moments of leptons
Directory of Open Access Journals (Sweden)
Borsanyi Szabolcs
2018-01-01
Full Text Available We present lattice QCD results by the Budapest-Marseille-Wuppertal (BMW Collaboration for the leading-order contribution of the hadron vacuum polarization (LOHVP to the anomalous magnetic moments of all charged leptons. Calculations are performed with u, d, s and c quarks at their physical masses, in volumes of linear extent larger than 6 fm, and at six values of the lattice spacing, allowing for controlled continuum extrapolations. All connected and disconnected contributions are calculated for not only the muon but also the electron and tau anomalous magnetic moments. Systematic uncertainties are thoroughly discussed and comparisons with other calculations and phenomenological estimates are made.
High-energy scattering of particles with anomalous magnetic moments in quantum field theory
International Nuclear Information System (INIS)
Nguen Suan Khan; Pervushin, V.N.
1976-01-01
Eikonal type representations taking into account the anomalous magnetic moments of nucleons are obtained for the amplitude of pion-nucleon and nucleon-nucleon scattering in the asymptotic region s → infinity, (t) (<<) s in the framework of nonrenormalizable quantum field theory. The anomalous magnetic moment leads to additional terms in the amplitude which describe the spin flips in the scattering process. It is shown that the renormalization problem does not arise in the asymptotics s → infinity. As an application the Coulomb interference is considered
Magnetic moments in calcium isotopes via a surface-interaction experiment
International Nuclear Information System (INIS)
Niv, Y.; Hass, M.; Zemel, A.; Goldring, G.
1979-01-01
A rotation of the angular correlation of de-excitation γ-rays from 40 Ca and 44 Ca was observed in a tilted foil geometry. The signs and magnitudes of the magnetic moments of the 2 1 + of 44 Ca and of the 3 1 - level of 40 Ca were determined to be g = -0.28+-0.11 and g = +0.52+-0.18, respectively. This experiment provides further information regarding the polarization of deeply bound electronic configurations produced by a surface-interaction mechanism and demonstrates the feasibility of the present technique for measuring signs and magnitudes of magnetic moments of picosecond nuclear levels. (author)
Lattice QCD results for the HVP contribution to the anomalous magnetic moments of leptons
2018-03-01
We present lattice QCD results by the Budapest-Marseille-Wuppertal (BMW) Collaboration for the leading-order contribution of the hadron vacuum polarization (LOHVP) to the anomalous magnetic moments of all charged leptons. Calculations are performed with u, d, s and c quarks at their physical masses, in volumes of linear extent larger than 6 fm, and at six values of the lattice spacing, allowing for controlled continuum extrapolations. All connected and disconnected contributions are calculated for not only the muon but also the electron and tau anomalous magnetic moments. Systematic uncertainties are thoroughly discussed and comparisons with other calculations and phenomenological estimates are made.
Magnetic moments of light nuclei within the framework of reduced Hamiltonian method
Deveikis, A
1998-01-01
A new procedure for evaluation of magnetic dipole moments of light atomic nuclei has been developed. The procedure presented obeys the principles of antisymmetry and translational invariance and is based on the reduced Hamiltonian method. The theoretical formulation has been illustrated by calculation of magnetic dipole moments for 2 sup H , 3 sup H , 3 sup H e, 4 sup H e, 5 sup H e, 5 sup L i, 11 sup L i, and 6 sup L i nuclei. The calculations were performed in a complete 0(h/2 pi)omega basis. The obtained results are in good agreement with the experimental data. (author)
Light--light scattering tensor and the anomalous magnetic moment of the muon
International Nuclear Information System (INIS)
Kuraev, E.A.; Silagadze, Z.K.; Cheshel', A.A.; Schiller, A.
1989-01-01
A general expression is obtained for the tensor that describes the effect of light--light scattering on the anomalous magnetic moment of leptons. An explicit expression is derived for the electron-loop contribution, for which an analytic evaluation is carried out of the coefficient in front of the logarithm of the ratio of the muon mass to the electron mass in the anomalous magnetic moment of the muon. Logarithmic contributions due to radiative corrections are shown to originate exclusively from the inclusion of the polarization of the vacuum of virtual photons
Energy Technology Data Exchange (ETDEWEB)
Gao, Jian-hua [Shandong Provincial Key Laboratory of Optical Astronomy and Solar-Terrestrial Environment, Institute of Space Sciences, Shandong University, Weihai, Shandong 264209 (China); Wang, Qun, E-mail: qunwang@ustc.edu.cn [Interdisciplinary Center for Theoretical Study and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Physics Department, Brookhaven National Laboratory, Upton, NY 11973-5000 (United States)
2015-10-07
We demonstrate the emergence of the magnetic moment and spin-vorticity coupling of chiral fermions in 4-dimensional Wigner functions. In linear response theory with space–time varying electromagnetic fields, the parity-odd part of the electric conductivity can also be derived which reproduces results of the one-loop and the hard-thermal or hard-dense loop. All these properties show that the 4-dimensional Wigner functions capture comprehensive aspects of physics for chiral fermions in electromagnetic fields.
Directory of Open Access Journals (Sweden)
Jian-hua Gao
2015-10-01
Full Text Available We demonstrate the emergence of the magnetic moment and spin-vorticity coupling of chiral fermions in 4-dimensional Wigner functions. In linear response theory with space–time varying electromagnetic fields, the parity-odd part of the electric conductivity can also be derived which reproduces results of the one-loop and the hard-thermal or hard-dense loop. All these properties show that the 4-dimensional Wigner functions capture comprehensive aspects of physics for chiral fermions in electromagnetic fields.
Energy Technology Data Exchange (ETDEWEB)
Stone, N. J., E-mail: n.stone@physics.ox.ac.uk [Department of Physics and Astronomy, University of Tennessee, Knoxville Tennessee 37996 (United States)
2015-09-15
The most recent tabulations of nuclear magnetic dipole and electric quadrupole moments have been prepared and published by the Nuclear Data Section of the IAEA, Vienna [N. J. Stone, Report No. INDC(NDS)-0650 (2013); Report No. INDC(NDS)-0658 (2014)]. The first of these is a table of recommended quadrupole moments for all isotopes in which all experimental results are made consistent with a limited number of adopted standards for each element; the second is a combined listing of all measurements of both moments. Both tables cover all isotopes and energy levels. In this paper, the considerations relevant to the preparation of both tables are described, together with observations as to the importance and (where appropriate) application of necessary corrections to achieve the “best” values. Some discussion of experimental methods is included with emphasis on their precision. The aim of the published quadrupole moment table is to provide a standard reference in which the value given for each moment is the best available and for which full provenance is given. A table of recommended magnetic dipole moments is in preparation, with the same objective in view.
Magnetic and electric dipole moments of the H 3Δ1 state in ThO
International Nuclear Information System (INIS)
Vutha, A. C.; Kirilov, E.; DeMille, D.; Spaun, B.; Gurevich, Y. V.; Hutzler, N. R.; Doyle, J. M.; Gabrielse, G.
2011-01-01
The metastable H 3 Δ 1 state in the thorium monoxide (ThO) molecule is highly sensitive to the presence of a CP-violating permanent electric dipole moment of the electron (eEDM) [E. R. Meyer and J. L. Bohn, Phys. Rev. A 78, 010502 (2008)]. The magnetic dipole moment μ H and the molecule-fixed electric dipole moment D H of this state are measured in preparation for a search for the eEDM. The small magnetic moment μ H =8.5(5)x10 -3 μ B displays the predicted cancellation of spin and orbital contributions in a 3 Δ 1 paramagnetic molecular state, providing a significant advantage for the suppression of magnetic field noise and related systematic effects in the eEDM search. In addition, the induced electric dipole moment is shown to be fully saturated in very modest electric fields (<10 V/cm). This feature is favorable for the suppression of many other potential systematic errors in the ThO eEDM search experiment.
Magnetic dipole moment of the doubly closed-shell plus one proton nucleus $^{49}$Sc
Gaulard, C V; Walters, W; Nishimura, K; Muto, S; Bingham, C R
It is proposed to measure the magnetic moment of $^{49}$Sc by the Nuclear Magnetic Resonance on Oriented Nuclei (NMR-ON) method using the NICOLE on-line nuclear orientation facility. $^{49}$Sc is the neutron rich, doubly closed-shell, nucleus $^{48}$Ca plus one proton. Results will be used to deduce the effective g-factors in the $^{48}$Ca region with reference to nuclear structure and meson exchange current effects.
Magnetic moments of the nucleon octet in a relativistic quark model with chiral symmetry
International Nuclear Information System (INIS)
Barik, N.; Dash, B.K.
1986-01-01
Incorporating the lowest-order pionic correction, the magnetic moments of the nucleon octet have been calculated in a chiral potential model. The potential, representing phenomenologically the nonperturbative gluon interactions including gluon self-couplings, is chosen with equally mixed scalar and vector parts in harmonic form. The results are in reasonable agreement with experiment
Energy Technology Data Exchange (ETDEWEB)
Kong, Tai [Iowa State Univ., Ames, IA (United States)
2016-12-17
Benefiting from unique properties of 4f electrons, rare earth based compounds are known for offering a versatile playground for condensed matter physics research as well as industrial applications. This thesis focuses on three specific examples that further explore the rare earth local moment magnetism and strongly correlated phenomena in various crystal structures.
Unimodular gravity and the lepton anomalous magnetic moment at one-loop
Energy Technology Data Exchange (ETDEWEB)
Martín, Carmelo P., E-mail: carmelop@fis.ucm.es [Departamento de Física Teórica I, Facultad de Ciencias Físicas, Universidad Complutense de Madrid, 28040 Madrid (Spain)
2017-07-01
We work out the one-loop contribution to the lepton anomalous magnetic moment coming from Unimodular Gravity. We use Dimensional Regularization and Dimensional Reduction to carry out the computations. In either case, we find that Unimodular Gravity gives rise to the same one-loop correction as that of General Relativity.
Quark contributions to baryon magnetic moments in full, quenched, and partially quenched QCD
International Nuclear Information System (INIS)
Leinweber, Derek B.
2004-01-01
The chiral nonanalytic behavior of quark-flavor contributions to the magnetic moments of octet baryons is determined in full, quenched and partially quenched QCD, using an intuitive and efficient diagrammatic formulation of quenched and partially quenched chiral perturbation theory. The technique provides a separation of quark-sector magnetic-moment contributions into direct sea-quark loop, valence-quark, indirect sea-quark loop and quenched valence contributions, the latter being the conventional view of the quenched approximation. Both meson and baryon mass violations of SU(3)-flavor symmetry are accounted for. Following a comprehensive examination of the individual quark-sector contributions to octet baryon magnetic moments, numerous opportunities to observe and test the underlying structure of baryons and the nature of chiral nonanalytic behavior in QCD and its quenched variants are discussed. In particular, the valence u-quark contribution to the proton magnetic moment provides the optimal opportunity to directly view nonanalytic behavior associated with the meson cloud of full QCD and the quenched meson cloud of quenched QCD. The u quark in Σ + provides the best opportunity to display the artifacts of the quenched approximation
A light Zeldovich-Konopinski-Mahmoud neutrino with a large magnetic moment
International Nuclear Information System (INIS)
Ecker, G.; Grimus, W.; Neufeld, H.
1989-08-01
We propose a non-Abelian extension of a Zeldovich-Konopinski-Mahmoud lepton number symmetry which gives rise to a naturally light Dirac neutrino with a magnetic moment of O(10 -11 μ B ). The neutrino mass appears first at the two-loop level and is well below the experimental upper bound. 13 refs., 3.figs. (Authors)
Large anomalous magnetic moment in three-dimensional Dirac and Weyl semimetals
Van Der Wurff, E. C I; Stoof, H. T C
2016-01-01
We investigate the effect of Coulomb interactions on the electromagnetic response of three-dimensional Dirac and Weyl semimetals. In a calculation reminiscent of Schwinger's seminal work on quantum electrodynamics, we find three physically distinct effects for the anomalous magnetic moment of the
Measurement of the negative muon anomalous magnetic moment to 0.7 ppm
Bennett, GW; Bousquet, B; Brown, HN; Bunce, G; Carey, RM; Cushman, P; Danby, GT; Debevec, PT; Deile, M; Deng, H; Dhawan, SK; Druzhinin, VP; Duong, L; Farley, FJM; Fedotovich, GV; Gray, FE; Grigoriev, D; Grosse-Perdekamp, M; Grossmann, A; Hare, MF; Hertzog, DW; Huang, [No Value; Hughes, VW; Iwasaki, M; Jungmann, K; Kawall, D; Khazin, BI; Krienen, F; Kronkvist, [No Value; Lam, A; Larsen, R; Lee, YY; Logashenko, [No Value; McNabb, R; Meng, W; Miller, JP; Morse, WM; Nikas, D; Onderwater, CJG; Orlov, Y; Ozben, CS; Paley, JM; Peng, Q; Polly, CC; Pretz, J; Prigl, R; Putlitz, GZ; Qian, T; Redin, SI; Rind, O; Roberts, BL; Ryskulov, N; Semertzidis, YK; Shagin, P; Shatunov, YM; Sichtermann, EP; Solodov, E; Sossong, M; Sulak, LR; Trofimov, A; von Walter, P; Yamamoto, A; Huang, X; Kronkvist, I.; Logashenko, I.; Özben, C.S.; Polley, C.C.; Shatunov, Yu.M.; von Walter, R.
2004-01-01
The anomalous magnetic moment of the negative muon has been measured to a precision of 0.7 ppm (ppm) at the Brookhaven Alternating Gradient Synchrotron. This result is based on data collected in 2001, and is over an order of magnitude more precise than the previous measurement for the negative muon.
The classical equations of motion for a spinning point particle with charge and magnetic moment
International Nuclear Information System (INIS)
Rowe, E.G.P.; Rowe, G.T.
1987-01-01
The classical, special relativistic equations of motion are derived for a spinning point particle interacting with the electromagnetic field through its charge and magnetic moment. Radiation reaction is included. The energy tensors for the particle and for the field are developed as well-defined distributions; consequently no infinities appear. The magnitude of spin and the rest mass are conserved. (orig.)
Evidence for a magnetic moment at the Lu site of LuFe2
International Nuclear Information System (INIS)
Kasamatsu, Y.; Armitage, J.G.M.; Lord, J.S.; Riedi, P.C.; Fort, D.
1995-01-01
High pressure 175 Lu NMR measurements of LuFe 2 at 4.2 K suggest that Lu, like Y and Zr, carries a negative magnetic moment, in agreement with self-consistent energy band calculations. The observed spectrum is more complicated than would be expected for a Laves phase compound. ((orig.))
Classical relativistic spinning particle with anomalous magnetic moment: The precession of spin
International Nuclear Information System (INIS)
Barut, A.O.; Cruz, M.G.
1993-05-01
The theory of classical relativistic spinning particles with c-number internal spinor variables, modelling accurately the Dirac electron, is generalized to particles with anomalous magnetic moments. The equations of motion are derived and the problem of spin precession is discussed and compared with other theories of spin. (author). 32 refs
Leading-order hadronic contributions to the electron and tau anomalous magnetic moments
International Nuclear Information System (INIS)
Burger, Florian; Hotzel, Grit
2015-01-01
The leading hadronic contributions to the anomalous magnetic moments of the electron and the τ-lepton are determined by a four-flavour lattice QCD computation with twisted mass fermions. The continuum limit is taken and systematic uncertainties are quantified. Full agreement with results obtained by phenomenological analyses is found.
Unusually large magnetic moments in the normal state and superconducting state of Sn nanoparticles
Energy Technology Data Exchange (ETDEWEB)
Hung, Chi-Hang; Lee, Chi-Hung; Hsu, Chien-Kang; Li, Chi-Yen; Karna, Sunil K.; Wang, Chin-Wei; Wu, Chun-Ming; Li, Wen-Hsien, E-mail: whli@phy.ncu.edu.tw [National Central University, Department of Physics and Center for Neutron Beam Applications (China)
2013-09-15
We report on the observations of spontaneous magnetic moments in the normal as well as in the superconducting states of a 9 nm Sn nanoparticle assembly, through X-ray diffraction, magnetization, ac magnetic susceptibility, and neutron diffraction measurements. The saturation magnetization reaches an unexpectedly large value of 1.04 emu/g at 5 K, with a temperature profile that can be described by Bloch's law with an exponent of b = 1.8. A magnetic moment of Left-Pointing-Angle-Bracket {mu}{sub Z} Right-Pointing-Angle-Bracket = 0.38 {mu}{sub B} develops after cooling from 260 to 4 K. Superconductivity develops below T{sub C} = 3.98 K, which is 7 % higher than the T{sub C} = 3.72 K of bulk Sn. Surprisingly, an addition magnetic moment of Left-Pointing-Angle-Bracket {mu}{sub Z} Right-Pointing-Angle-Bracket = 0.05 {mu}{sub B} develops upon entering the superconducting state.
Electromagnetic Currents and Magnetic Moments in $\\chi$EFT
Energy Technology Data Exchange (ETDEWEB)
Saori Pastore, Luca Girlanda, Rocco Schiavilla, Michele Viviani, Robert Wiringa
2009-09-01
A two-nucleon potential and consistent electromagnetic currents are derived in chiral effective field theory ($\\chi$EFT) at, respectively, $Q^{\\, 2}$ (or N$^2$LO) and $e\\, Q$ (or N$^3$LO), where $Q$ generically denotes the low-momentum scale and $e$ is the electric charge. Dimensional regularization is used to renormalize the pion-loop corrections. A simple expression is derived for the magnetic dipole ($M1$) operator associated with pion loops, consisting of two terms, one of which is determined, uniquely, by the isospin-dependent part of the two-pion-exchange potential. This decomposition is also carried out for the $M1$ operator arising from contact currents, in which the unique term is determined by the contact potential. Finally, the low-energy constants (LEC's) entering the N$^2$LO potential are fixed by fits to the $np$ S- and P-wave phase shifts up to 100 MeV lab energies. Three additional LEC's are needed to completely specify the $M1$ operator at N$^3$L
Energy Technology Data Exchange (ETDEWEB)
Aguirre, R.M.; Paoli, A.L. de [Universidad Nacional de La Plata, and IFLP, Departamento de Fisica, Facultad de Ciencias Exactas, La Plata (Argentina)
2016-11-15
We obtain the covariant propagator at finite temperature for interacting baryons immersed in a strong magnetic field. The effect of the intrinsic magnetic moments on the Green function are fully taken into account. We make an expansion in terms of eigenfunctions of a Dirac field, which leads us to a compact form of its propagator. We present some simple applications of these propagators, where the statistical averages of nuclear currents and energy density are evaluated. (orig.)
Vingerhoets, P; Avgoulea, M; Billowes, J; Bissell, M L; Blaum, K; Brown, B A; Cheal, B; De Rydt, M; Forest, D H; Geppert, Ch; Honma, M; Kowalska, M; Kramer, J; Krieger, A; Mane, E; Neugart, R; Neyens, G; Nortershauser, W; Otsuka, T; Schug, M; Stroke, H H; Tungate, G; Yordanov, D T
2010-01-01
Measurements of the ground-state nuclear spins, magnetic and quadrupole moments of the copper isotopes from 61Cu up to 75Cu are reported. The experiments were performed at the ISOLDE facility, using the technique of collinear laser spectroscopy. The trend in the magnetic moments between the N=28 and N=50 shell closures is reasonably reproduced by large-scale shell-model calculations starting from a 56Ni core. The quadrupole moments reveal a strong polarization of the underlying Ni core when the neutron shell is opened, which is however strongly reduced at N=40 due to the parity change between the $pf$ and $g$ orbits. No enhanced core polarization is seen beyond N=40. Deviations between measured and calculated moments are attributed to the softness of the 56Ni core and weakening of the Z=28 and N=28 shell gaps.
International Nuclear Information System (INIS)
Morris, D.A.
1988-01-01
We examine contributions to the anomalous magnetic moment of the muon from weak-isosinglet squarks found in E 6 superstring models. We find that such contributions are up to 2 orders of magnitude larger than those previously calculated and correspondingly require smaller Yukawa couplings in order to maintain agreement with the measured muon anomalous magnetic moment
Magnetic dipole moments of deformed odd-odd nuclei in 2s-1d and 2p-1f shells
Energy Technology Data Exchange (ETDEWEB)
Verma, A K; Garg, V P; Sharma, S D [Punjabi Univ., Patiala (India). Dept. of Physics
1979-01-01
A simple expression is derived for the computation of the magnetic moments of odd-odd nuclei. The computation of magnetic dipole moments is done with and without quenching factors for the last proton and neutron. The results are found to improve for /sup 22/Na, /sup 24/Na, sup(82m)Rb, /sup 14/N, /sup 68/Gd, /sup 54/Mn and /sup 86/Rb with extreme coupling of angular moments.
A Bayesian Approach to Magnetic Moment Determination Using μSR
Blundell, S. J.; Steele, A. J.; Lancaster, T.; Wright, J. D.; Pratt, F. L.
A significant challenge in zero-field μSR experiments arises from the uncertainty in the muon site. It is possible to calculate the dipole field (and hence precession frequency v) at any particular site given the magnetic moment μ and magnetic structure. One can also evaluate f(v), the probability distribution function of v assuming that the muon site can be anywhere within the unit cell with equal probability, excluding physically forbidden sites. Since v is obtained from experiment, what we would like to know is g(μjv), the probability density function of μ given the observed v. This can be obtained from our calculated f(v/μ) using Bayes' theorem. We describe an approach to this problem which we have used to extract information about real systems including a low-moment osmate compound, a family of molecular magnets, and an iron-arsenide compound.
Puzzle of magnetic moments of Ni clusters revisited using quantum Monte Carlo method.
Lee, Hung-Wen; Chang, Chun-Ming; Hsing, Cheng-Rong
2017-02-28
The puzzle of the magnetic moments of small nickel clusters arises from the discrepancy between values predicted using density functional theory (DFT) and experimental measurements. Traditional DFT approaches underestimate the magnetic moments of nickel clusters. Two fundamental problems are associated with this puzzle, namely, calculating the exchange-correlation interaction accurately and determining the global minimum structures of the clusters. Theoretically, the two problems can be solved using quantum Monte Carlo (QMC) calculations and the ab initio random structure searching (AIRSS) method correspondingly. Therefore, we combined the fixed-moment AIRSS and QMC methods to investigate the magnetic properties of Ni n (n = 5-9) clusters. The spin moments of the diffusion Monte Carlo (DMC) ground states are higher than those of the Perdew-Burke-Ernzerhof ground states and, in the case of Ni 8-9 , two new ground-state structures have been discovered using the DMC calculations. The predicted results are closer to the experimental findings, unlike the results predicted in previous standard DFT studies.
Sea quarks contribution to the nucleon magnetic moment and charge radius at the physical point
Sufian, Raza Sabbir; Yang, Yi-Bo; Liang, Jian; Draper, Terrence; Liu, Keh-Fei; χ QCD Collaboration
2017-12-01
We report a comprehensive analysis of the light and strange disconnected-sea quarks contribution to the nucleon magnetic moment, charge radius, and the electric and magnetic form factors. The lattice QCD calculation includes ensembles across several lattice volumes and lattice spacings with one of the ensembles at the physical pion mass. We adopt a model-independent extrapolation of the nucleon magnetic moment and the charge radius. We have performed a simultaneous chiral, infinite volume, and continuum extrapolation in a global fit to calculate results in the continuum limit. We find that the combined light and strange disconnected-sea quarks contribution to the nucleon magnetic moment is μM(DI )=-0.022 (11 )(09 ) μN and to the nucleon mean square charge radius is ⟨r2⟩E(DI ) =-0.019 (05 )(05 ) fm2 which is about 1 /3 of the difference between the ⟨rp2⟩E of electron-proton scattering and that of a muonic atom and so cannot be ignored in obtaining the proton charge radius in the lattice QCD calculation. The most important outcome of this lattice QCD calculation is that while the combined light-sea and strange quarks contribution to the nucleon magnetic moment is small at about 1%, a negative 2.5(9)% contribution to the proton mean square charge radius and a relatively larger positive 16.3(6.1)% contribution to the neutron mean square charge radius come from the sea quarks in the nucleon. For the first time, by performing global fits, we also give predictions of the light and strange disconnected-sea quarks contributions to the nucleon electric and magnetic form factors at the physical point and in the continuum and infinite volume limits in the momentum transfer range of 0 ≤Q2≤0.5 GeV2 .
The QED vacuum polarization function at four loops and the anomalous magnetic moment at five loops
International Nuclear Information System (INIS)
Baikov, P.
2013-07-01
The anomalous moment of the muon is one of the most fundamental observables. It has been measured experimentally with a very high precision and on theory side the contributions from perturbative QED have been calculated up to five-loop level by numerical methods. Contributions to the muon anomalous magnetic moment from certain diagram classes are also accessible by alternative methods. In this paper we present the evaluation of contributions to the QCD corrections due to insertions of the vacuum polarization function at five-loop level.
Nuclear orientation experiments on the magnetic moments of europium and gadolinium nuclei
International Nuclear Information System (INIS)
Berg, F.G. van den.
1984-01-01
In this thesis, experimental results on the ground state nuclear magnetic moments of europium and gadolinium isotopes are presented. The nuclear orientation experiments were performed on europium and gadolinium nuclei embedded in several host lattices. Attention is paid to the hyperfine interactions of the ions. Nuclear moments are discussed in the context of nuclear shell model. The theoretical framework is described for nuclear structure and low temperature nuclear orientation. Furthermore, the experimental techniques, the technical arrangement of the orientation apparatus, the methods for radiative detection and the use of nuclear orientation thermometry are described. (Auth.)
Weak electric and magnetic dipole moments of the τ lepton from azimuthal asymmetries
International Nuclear Information System (INIS)
Sanchez Alvaro, E.
1997-01-01
Measurements of the weak electric dipole moment d τ w and, for the first time, the weak magnetic dipole moment a τ w of the τ lepton using L3 detector at LEP are presented. Azimuthal asymmetries for τ→πν and τ→ρν are used to obtain these measurements. Observed asymmetries are consistent with zero, and the limits set on d τ w and a τ w are vertical stroke d τ w vertical stroke -17 e.cm and vertical stroke a τ w vertical stroke <0.014 at 95% C.L. (orig.)
The QED vacuum polarization function at four loops and the anomalous magnetic moment at five loops
Energy Technology Data Exchange (ETDEWEB)
Baikov, P. [Moscow State Univ. (Russian Federation). D.V. Skobeltsyn Inst. of Nuclear Physics; Maier, A. [Technische Univ. Muenchen, Garching (Germany). Physics Dept. T31; Marquard, P. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany)
2013-07-15
The anomalous moment of the muon is one of the most fundamental observables. It has been measured experimentally with a very high precision and on theory side the contributions from perturbative QED have been calculated up to five-loop level by numerical methods. Contributions to the muon anomalous magnetic moment from certain diagram classes are also accessible by alternative methods. In this paper we present the evaluation of contributions to the QCD corrections due to insertions of the vacuum polarization function at five-loop level.
Directory of Open Access Journals (Sweden)
Tetsuro Ueno
2017-05-01
Full Text Available We demonstrate the quantitative mapping of magnetic moments in a permanent-magnet material by X-ray magnetic circular dichroism nano-spectroscopy. An SmCo5 specimen was prepared from the bulk material by using a micro-fabrication technique. Scanning transmission X-ray microscopy images were obtained around the Sm M4,5 absorption edges. By applying the magneto-optical sum rules to these images, we obtained quantitative maps of the orbital and spin magnetic moments as well as their ratio. We found that the magnitudes of the orbital and spin magnetic moments and their ratio do not depend on thickness of the specimen.
Inamori, Takaya; Sako, Nobutada; Nakasuka, Shinichi
2011-06-01
Nano-satellites provide space access to broader range of satellite developers and attract interests as an application of the space developments. These days several new nano-satellite missions are proposed with sophisticated objectives such as remote-sensing and observation of astronomical objects. In these advanced missions, some nano-satellites must meet strict attitude requirements for obtaining scientific data or images. For LEO nano-satellite, a magnetic attitude disturbance dominates over other environmental disturbances as a result of small moment of inertia, and this effect should be cancelled for a precise attitude control. This research focuses on how to cancel the magnetic disturbance in orbit. This paper presents a unique method to estimate and compensate the residual magnetic moment, which interacts with the geomagnetic field and causes the magnetic disturbance. An extended Kalman filter is used to estimate the magnetic disturbance. For more practical considerations of the magnetic disturbance compensation, this method has been examined in the PRISM (Pico-satellite for Remote-sensing and Innovative Space Missions). This method will be also used for a nano-astrometry satellite mission. This paper concludes that use of the magnetic disturbance estimation and compensation are useful for nano-satellites missions which require a high accurate attitude control.
Energy Technology Data Exchange (ETDEWEB)
Hernando, Antonio; Crespo, Patricia [Instituto de Magnetismo Aplicado, UCM-CSIC-ADIF, Las Rozas. P.O. Box 155, 28230 Madrid (Spain); Dept. Fisica de Materiales, Universidad Complutense, Madrid (Spain); Garcia, Miguel Angel [Instituto de Ceramica y Vidrio, CSIC, C/ Kelsen, 5, Madrid 28049 (Spain); Coey, Michael [Trinity College Dublin, Dublin (Ireland); Ayuela, Andres; Echenique, Pedro Miguel [Centro de Fisica de Materiales, CFM-MPC CSIC-UPV/EHU, Donostia International Physics Center (DIPC), 20018 San Sebastian (Spain); Departamento de Fisica de Materiales, Fac. de Quimicas, Universidad del Pais Vasco UPV-EHU, 20018 San Sebastian (Spain)
2011-10-15
In this article we review the exotic magnetism of nanoparticles (NPs) formed by substances that are not magnetic in bulk as described with generality in Section 1. In particular, the intrinsic character of the magnetism observed on capped Au and ZnO NPs is analysed. X-ray magnetic circular dichroism (XMCD) analysis has shown that the magnetic moments are intrinsic and lie in the Au and Zn atoms, respectively, as analysed in Section 2, where the general theoretical ideas are also revisited. Since impurity atoms bonded to the surface act as donor or acceptor of electrons that occupy the surface states, the anomalous magnetic response is analysed in terms of the surface band in Section 3. Finally, Section 4 summarizes our last theoretical proposal. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Chiral-model of weak-interaction form factors and magnetic moments of octet baryons
International Nuclear Information System (INIS)
Kubodera, K.; Kohyama, Y.; Tsushima, K.; Yamaguchi, T.
1989-01-01
For baryon spectroscopy, magnetic moments and weak interaction form factors provide valuable information, and the impressive amount of available experimental data on these quantities for the octet baryons invites detailed investigations. The authors of this paper have made extensive studies of the weak-interaction form factors and magnetic moments of the octet baryons within the framework of the volume-type cloudy-bag model (v-type CBM). The clouds of all octet mesons have been included. Furthermore, we have taken into account in a unified framework various effects that were so far only individually discussed in the literature. Thus, the gluonic effects, center-of-mass (CM0 corrections, and recoil corrections have been included). In this talk, after giving a brief summary of some salient features of the results, we discuss a very interesting application of our model to the problem of the spin content of nucleons
High-Precision Measurements of the Bound Electron’s Magnetic Moment
Directory of Open Access Journals (Sweden)
Sven Sturm
2017-01-01
Full Text Available Highly charged ions represent environments that allow to study precisely one or more bound electrons subjected to unsurpassed electromagnetic fields. Under such conditions, the magnetic moment (g-factor of a bound electron changes significantly, to a large extent due to contributions from quantum electrodynamics. We present three Penning-trap experiments, which allow to measure magnetic moments with ppb precision and better, serving as stringent tests of corresponding calculations, and also yielding access to fundamental quantities like the fine structure constant α and the atomic mass of the electron. Additionally, the bound electrons can be used as sensitive probes for properties of the ionic nuclei. We summarize the measurements performed so far, discuss their significance, and give a detailed account of the experimental setups, procedures and the foreseen measurements.
Description of magnetic moments of long isotopic chains within the FFS theory
Energy Technology Data Exchange (ETDEWEB)
Borzov, I.N. [IPPE, Obninsk (Russian Federation); Saperstein, E.E.; Tolokonnikov, S.V. [Kurchatov Institute, Moscow (Russian Federation); Neyens, G.; Severijns, N. [Katholieke Universiteit Leuven, Instituut voor Kern- en Stralingsfysica, Leuven (Belgium)
2010-08-15
Dipole magnetic moments of several long isotopic chains are analyzed within the self-consistent finite Fermi system theory with exact account for the pairing and quasiparticle continuum. The momentum dependence of the spin-isospin Landau-Migdal amplitude g' is taken into account. This dependence was introduced previously to describe high-energy electron magnetic scattering. New moment data for nuclei far from the {beta} -stability valley are included in the analysis. For a number of semi-magic isotopes of the tin and lead chains a good description of the data is obtained, with an accuracy of 0.1- 0.2{mu}{sub N}. A chain of non-magic isotopes of copper is also analyzed in detail. (orig.)
Three types magnetic moment distribution of nonlinear excitations in a Heisenberg helimagnet
Energy Technology Data Exchange (ETDEWEB)
Qi, Jian-Wen [School of Physics, Northwest University, Xi' an 710069 (China); Shaanxi Key Laboratory for Theoretical Physics Frontiers, Xi' an 710069 (China); Li, Zai-Dong [Department of Applied Physics, Hebei University of Technology, Tianjin 300401 (China); Yang, Zhan-Ying, E-mail: zyyang@nwu.edu.cn [School of Physics, Northwest University, Xi' an 710069 (China); Shaanxi Key Laboratory for Theoretical Physics Frontiers, Xi' an 710069 (China); Yang, Wen-Li [Shaanxi Key Laboratory for Theoretical Physics Frontiers, Xi' an 710069 (China); Institute of Modern Physics, Northwest University, Xi' an 710069 (China)
2017-06-15
Highlights: • Three different types of soliton excitations under the spin-wave background are demonstrated in spin chain system. • The magnetic moment distributions corresponding to these solitons are characterized in detail. • The formation mechanisms of those excitations are explained by the magnon density distribution. - Abstract: We study the nonlinear spin dynamics of an anisotropic Heisenberg helimagnet in a fourth-order integrable nonlinear Schrödinger equation. We demonstrate that there are three types of nonlinear spin excitations on a spin-wave background in the Heisenberg helimagnet, notably including anti-dark soliton, W-shaped soliton, and multi-peak soliton. The magnetic moment distribution that corresponds to each of these are characterized in detail. Additionally, the formation mechanism is clarified by the magnon density distribution.
Coherent states of a particle in a magnetic field and the Stieltjes moment problem
International Nuclear Information System (INIS)
Gazeau, J.P.; Baldiotti, M.C.; Gitman, D.M.
2009-01-01
A solution to a version of the Stieltjes moment problem is presented. Using this solution, we construct a family of coherent states of a charged particle in a uniform magnetic field. We prove that these states form an overcomplete set that is normalized and resolves the unity. By the help of these coherent states we construct the Fock-Bergmann representation related to the particle quantization. This quantization procedure takes into account a circle topology of the classical motion.
Coherent states of a particle in a magnetic field and the Stieltjes moment problem
Energy Technology Data Exchange (ETDEWEB)
Gazeau, J.P. [Instituto de Fisica, Universidade de Sao Paulo, Caixa Postal 66318-CEP, 05315-970 Sao Paulo, S.P. (Brazil)], E-mail: gazeau@apc.univ-paris7.fr; Baldiotti, M.C. [Instituto de Fisica, Universidade de Sao Paulo, Caixa Postal 66318-CEP, 05315-970 Sao Paulo, S.P. (Brazil)], E-mail: baldiott@fma.if.usp.br; Gitman, D.M. [Instituto de Fisica, Universidade de Sao Paulo, Caixa Postal 66318-CEP, 05315-970 Sao Paulo, S.P. (Brazil)], E-mail: gitman@dfn.if.usp.br
2009-05-11
A solution to a version of the Stieltjes moment problem is presented. Using this solution, we construct a family of coherent states of a charged particle in a uniform magnetic field. We prove that these states form an overcomplete set that is normalized and resolves the unity. By the help of these coherent states we construct the Fock-Bergmann representation related to the particle quantization. This quantization procedure takes into account a circle topology of the classical motion.
Magnetic moments in present relativistic nuclear theories: a mean-field problem
International Nuclear Information System (INIS)
Desplanques, B.
1986-07-01
We show that the magnetic moments of LS closed shell nuclei plus or minus one nucleon derived from non-relativistic Hartree-Fock mean-fields are as bad as those obtained in relativistic approaches of nuclear structure. Deviations with respect to more complete results in both cases are ascribed to the mean-field approximation which neglects some degrees of freedom in the nucleus description. 18 refs
Leading-order hadronic contributions to the electron and tau anomalous magnetic moments
Energy Technology Data Exchange (ETDEWEB)
Burger, Florian; Pientka, Grit [Humboldt-Universitaet zu Berlin, Institut fuer Physik, Berlin (Germany); Jansen, Karl [NIC, DESY, Zeuthen (Germany); Petschlies, Marcus [The Cyprus Institute, P.O.Box 27456, Nicosia (Cyprus); Rheinische Friedrich-Wilhelms-Universitaet Bonn, Institut fuer Strahlen- und Kernphysik, Bonn (Germany)
2016-08-15
The leading hadronic contributions to the anomalous magnetic moments of the electron and the τ-lepton are determined by a four-flavour lattice QCD computation with twisted mass fermions. The results presented are based on the quark-connected contribution to the hadronic vacuum polarisation function. The continuum limit is taken and systematic uncertainties are quantified. Full agreement with results obtained by phenomenological analyses is found. (orig.)
N=2-Maxwell-Chern-Simons model with anomalous magnetic moment coupling via dimensional reduction
International Nuclear Information System (INIS)
Christiansen, H.R.; Cunha, M.S.; Helayel Neto, Jose A.; Manssur, L.R.U; Nogueira, A.L.M.A.
1998-02-01
An N=1-supersymmetric version of the Cremmer-Scherk-Kalb-Ramond model with non-minimal coupling to matter is built up both in terms of superfields and in a component field formalism. By adopting a dimensional reduction procedure, the N=2-D=3 counterpart of the model comes out, with two main features: a genuine (diagonal) Chern-Simons term and an anomalous magnetic moment coupling between matter and the gauge potential. (author)
Relativistic two-fermion equations with form factors and anomalous magnetic moment interactions
International Nuclear Information System (INIS)
Ahmed, S.
1977-04-01
Relativistic equations for two-fermion systems are derived from quantum field theory taking into account the form factors of the particles. When the q 2 dependence of the form factors is disregarded, in the static approximation, the two-fermion equations with Coulomb and anomalous magnetic moment interactions are obtained. Separating the angular variables, a sixteen-component relativistic radial equation are finally given
Magnetic moments of ns-isomers in 105Ag and 103Pd
International Nuclear Information System (INIS)
Schneider, L.; Kaeubler, L.; Prade, H.; Hagemann, U.; Story, F.
1979-01-01
In recent years a considerable amount of experimental work has been done in order to study the structure of odd-A transitional nuclei around Z=50. In order to obtain additional experimental information on excited states in 105 Ag and 103 Pd the magnetic moments of the 15/2 + isomer in 105 Ag and the 11/2 - isomer in 103 Pd were determined. (author)
Rotating effects on the Landau quantization for an atom with a magnetic quadrupole moment
Energy Technology Data Exchange (ETDEWEB)
Fonseca, I. C.; Bakke, K., E-mail: kbakke@fisica.ufpb.br [Departamento de Física, Universidade Federal da Paraíba, Caixa Postal 5008, João Pessoa, PB 58051-970 (Brazil)
2016-01-07
Based on the single particle approximation [Dmitriev et al., Phys. Rev. C 50, 2358 (1994) and C.-C. Chen, Phys. Rev. A 51, 2611 (1995)], the Landau quantization associated with an atom with a magnetic quadrupole moment is introduced, and then, rotating effects on this analogue of the Landau quantization is investigated. It is shown that rotating effects can modify the cyclotron frequency and breaks the degeneracy of the analogue of the Landau levels.
Magnetic moment of a two-particle bound state in quantum electrodynamics
International Nuclear Information System (INIS)
Martynenko, A.P.; Faustov, R.N.
2002-01-01
A quasipotential method for calculating relativistic and radiative corrections to the magnetic moment of a two-particle bound state is formulated for particles of arbitrary spin. It is shown that the expression for the g factors of bound particles involve O(α 2 ) terms depending on the particle spin. Numerical values are obtained for the g factors of the electron in the hydrogen atom and in deuterium
Majorana neutrino transition magnetic moment in a variant of Zee model with horizontal symmetry
International Nuclear Information System (INIS)
Dhar, Jyoti; Dev, S.
1992-01-01
A SU(2) H symmetric variant of Zee model of lepton flavour violation is presented and is shown to lead to neutrino transition magnetic moment of the order required to explain the solar neutrino deficit and the possible anticorrelation of solar neutrino flux with sunspot activity via VVO mechanism. The use of horizontal symmetry leads to totally degenerate neutrino states which may be combined to form a ZKM Dirac neutrino with naturally small mass. (author). 22 refs., 1 fig
Rotating effects on the Landau quantization for an atom with a magnetic quadrupole moment
Fonseca, I. C.; Bakke, K.
2016-01-01
Based on the single particle approximation [Dmitriev et al., Phys. Rev. C 50, 2358 (1994) and C.-C. Chen, Phys. Rev. A 51, 2611 (1995)], the Landau quantization associated with an atom with a magnetic quadrupole moment is introduced, and then, rotating effects on this analogue of the Landau quantization is investigated. It is shown that rotating effects can modify the cyclotron frequency and breaks the degeneracy of the analogue of the Landau levels.
Rotating effects on the Landau quantization for an atom with a magnetic quadrupole moment
International Nuclear Information System (INIS)
Fonseca, I. C.; Bakke, K.
2016-01-01
Based on the single particle approximation [Dmitriev et al., Phys. Rev. C 50, 2358 (1994) and C.-C. Chen, Phys. Rev. A 51, 2611 (1995)], the Landau quantization associated with an atom with a magnetic quadrupole moment is introduced, and then, rotating effects on this analogue of the Landau quantization is investigated. It is shown that rotating effects can modify the cyclotron frequency and breaks the degeneracy of the analogue of the Landau levels
A parts-per-billion measurement of the antiproton magnetic moment.
Smorra, C; Sellner, S; Borchert, M J; Harrington, J A; Higuchi, T; Nagahama, H; Tanaka, T; Mooser, A; Schneider, G; Bohman, M; Blaum, K; Matsuda, Y; Ospelkaus, C; Quint, W; Walz, J; Yamazaki, Y; Ulmer, S
2017-10-18
Precise comparisons of the fundamental properties of matter-antimatter conjugates provide sensitive tests of charge-parity-time (CPT) invariance, which is an important symmetry that rests on basic assumptions of the standard model of particle physics. Experiments on mesons, leptons and baryons have compared different properties of matter-antimatter conjugates with fractional uncertainties at the parts-per-billion level or better. One specific quantity, however, has so far only been known to a fractional uncertainty at the parts-per-million level: the magnetic moment of the antiproton, . The extraordinary difficulty in measuring with high precision is caused by its intrinsic smallness; for example, it is 660 times smaller than the magnetic moment of the positron. Here we report a high-precision measurement of in units of the nuclear magneton μ N with a fractional precision of 1.5 parts per billion (68% confidence level). We use a two-particle spectroscopy method in an advanced cryogenic multi-Penning trap system. Our result = -2.7928473441(42)μ N (where the number in parentheses represents the 68% confidence interval on the last digits of the value) improves the precision of the previous best measurement by a factor of approximately 350. The measured value is consistent with the proton magnetic moment, μ p = 2.792847350(9)μ N , and is in agreement with CPT invariance. Consequently, this measurement constrains the magnitude of certain CPT-violating effects to below 1.8 × 10 -24 gigaelectronvolts, and a possible splitting of the proton-antiproton magnetic moments by CPT-odd dimension-five interactions to below 6 × 10 -12 Bohr magnetons.
Liu, Haiyi; Sun, Jianfei; Wang, Haoyao; Wang, Peng; Song, Lina; Li, Yang; Chen, Bo; Zhang, Yu; Gu, Ning
2015-06-08
A kinetics-based method is proposed to quantitatively characterize the collective magnetization of colloidal magnetic nanoparticles. The method is based on the relationship between the magnetic force on a colloidal droplet and the movement of the droplet under a gradient magnetic field. Through computational analysis of the kinetic parameters, such as displacement, velocity, and acceleration, the magnetization of colloidal magnetic nanoparticles can be calculated. In our experiments, the values measured by using our method exhibited a better linear correlation with magnetothermal heating, than those obtained by using a vibrating sample magnetometer and magnetic balance. This finding indicates that this method may be more suitable to evaluate the collective magnetism of colloidal magnetic nanoparticles under low magnetic fields than the commonly used methods. Accurate evaluation of the magnetic properties of colloidal nanoparticles is of great importance for the standardization of magnetic nanomaterials and for their practical application in biomedicine. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Precise determination of the magnetic moment of helium in its 23S1 metastable state
International Nuclear Information System (INIS)
Zundell, B.E.
1976-01-01
The electronic magnetic moment of helium was measured by the atomic beam magnetic resonance method using separated oscillating fields. Actually, the magnetic moment of helium relative to that of rubidium was measured. The result was combined with the ratio g/sub J/(Rb)/g/sub J/(H) to get R = g/sub J/(He, 2 3 S 1 )/g/sub J/(H, 2 S/sub 1/2/) = 1 - (23.19 +- 0.1) x 10 -6 . The motivation for this Zeeman measurement was to provide as sensitive a test of the theory of atomic magnetism for a multielectron atom as possible. In particular, the experiment provides a test of the relativistic corrections to the Zeeman effect. The experiment also tests the additivity of the radiative corrections to the magnetic moments of the two electrons. Another motivation concerns the determination of the fine structure constant α from measurements of the 2 3 P fine structure intervals of 4 He; namely, the understanding of the 2 3 S states contributes to the knowledge of the theoretical expressions for the 2 3 P intervals. For the chosen magnetic field of 9.5 kG, the helium resonance frequency was 26.8 GHz, the rubidium frequency, 26.4 GHz. The linewidth associated with the microwave double loop was 25 KHz. Thus it was necessary to pick the resonance line centers to only 1 part in 10 to achieve a 0.1 ppM accuracy. This result is in excellent agreement with the latest theoretical value, R = 1 - 23.21 x 10 -6 ; and with earlier, less precise atomic beam measurements; and with the latest, comparably accurate optical pumping value. Many possible sources of error were investigated. The quoted error is based on analysis of residual systematic effects
Solar and atmospheric neutrinos in three generations with a magnetic moment
International Nuclear Information System (INIS)
Pulido, J.; Tao, Z.
1995-01-01
A solution to the solar and atomospheric neutrino problems in three generations in the joint context of matter oscillations and the magnetic moment is investigated. An appropriate rotation of the evolution Hamiltonian reduces the three generation case to a two generation one. A convenient background for such a scenario with small neutrino masses and large magnetic moments is given by the Zee-type models, in which the mass generation mechanism leads to a pair of separate orders of magnitude for the mass square differences between neutrino species. We obtain a ratio var-epsilon congruent 10 -2 --10 -3 between these orders of magnitude, so that one of them [(0.3--3)x10 -2 eV 2 ] is suitable for the atmospheric neutrino solution and the other (∼10 -5 eV 2 ) for the solar neutrino solution. The magnetic moment leads to a decrease of the survival probability with solar neutrino energy. Such a decrease is consistent with the experimental situation
Strange Quark Magnetic Moment of the Nucleon at the Physical Point.
Sufian, Raza Sabbir; Yang, Yi-Bo; Alexandru, Andrei; Draper, Terrence; Liang, Jian; Liu, Keh-Fei
2017-01-27
We report a lattice QCD calculation of the strange quark contribution to the nucleon's magnetic moment and charge radius. This analysis presents the first direct determination of strange electromagnetic form factors including at the physical pion mass. We perform a model-independent extraction of the strange magnetic moment and the strange charge radius from the electromagnetic form factors in the momentum transfer range of 0.051 GeV^{2}≲Q^{2}≲1.31 GeV^{2}. The finite lattice spacing and finite volume corrections are included in a global fit with 24 valence quark masses on four lattices with different lattice spacings, different volumes, and four sea quark masses including one at the physical pion mass. We obtain the strange magnetic moment G_{M}^{s}(0)=-0.064(14)(09)μ_{N}. The four-sigma precision in statistics is achieved partly due to low-mode averaging of the quark loop and low-mode substitution to improve the statistics of the nucleon propagator. We also obtain the strange charge radius ⟨r_{s}^{2}⟩_{E}=-0.0043(16)(14) fm^{2}.
Magnetic dipole moments of High-K isomeric states in Hf isotopes
Walters, W; Nishimura, K; Bingham, C R
2007-01-01
It is proposed to make precision measurements of the magnetic moments of 5 multi-quasi-particle K-isomers in Hf nuclei by the Nuclear Magnetic Resonance of Oriented Nuclei (NMR/ON) technique using the NICOLE on-line nuclear orientation facility and exploiting the unique HfF$_{3}$ beams recently available at ISOLDE. Results will be used to extract single-particle and collective g-factors of the isomeric states and their excitations and to shed new light on their structure.
Magnetic moment of inertia within the torque-torque correlation model.
Thonig, Danny; Eriksson, Olle; Pereiro, Manuel
2017-04-19
An essential property of magnetic devices is the relaxation rate in magnetic switching which strongly depends on the energy dissipation. This is described by the Landau-Lifshitz-Gilbert equation and the well known damping parameter, which has been shown to be reproduced from quantum mechanical calculations. Recently the importance of inertia phenomena have been discussed for magnetisation dynamics. This magnetic counterpart to the well-known inertia of Newtonian mechanics, represents a research field that so far has received only limited attention. We present and elaborate here on a theoretical model for calculating the magnetic moment of inertia based on the torque-torque correlation model. Particularly, the method has been applied to bulk itinerant magnets and we show that numerical values are comparable with recent experimental measurements. The theoretical analysis shows that even though the moment of inertia and damping are produced by the spin-orbit coupling, and the expression for them have common features, they are caused by very different electronic structure mechanisms. We propose ways to utilise this in order to tune the inertia experimentally, and to find materials with significant inertia dynamics.
The ground state magnetic moment and susceptibility of a two electron Gaussian quantum dot
Boda, Aalu; Chatterjee, Ashok
2018-04-01
The problem of two interacting electrons moving in a two-dimensional semiconductor quantum dot with Gaussian confinement under the influence of an external magnetic field is studied by using a method of numerical diagonalization of the Hamiltonian matrix with in the effective-mass approximation. The energy spectrum is calculated as a function of the magnetic field. We find the ground state magnetic moment and the magnetic susceptibility show zero temperature diamagnetic peaks due to exchange induced singlet-triplet oscillations. The position and the number of these peaks depend on the size of the quantum dot and also strength of the electro-electron interaction. The theory is applied to a GaAs quantum dot.
Lifting particle coordinate changes of magnetic moment type to Vlasov-Maxwell Hamiltonian dynamics
International Nuclear Information System (INIS)
Morrison, P. J.; Vittot, M.; Guillebon, L. de
2013-01-01
Techniques for coordinate changes that depend on both dependent and independent variables are developed and applied to the Maxwell-Vlasov Hamiltonian theory. Particle coordinate changes with a new velocity variable dependent on the magnetic field, with spatial coordinates unchanged, are lifted to the field theoretic level, by transforming the noncanonical Poisson bracket and Hamiltonian structure of the Vlasov-Maxwell dynamics. Several examples are given including magnetic coordinates, where the velocity is decomposed into components parallel and perpendicular to the local magnetic field, and the case of spherical velocity coordinates. An example of the lifting procedure is performed to obtain a simplified version of gyrokinetics, where the magnetic moment is used as a coordinate and the dynamics is reduced by elimination of the electric field energy in the Hamiltonian.
Rollins, Nancy K.; Liang, Hui; Park, Yong Jong
2015-01-01
Purpose: Most orthodontic appliances are made of stainless steel materials and induce severe magnetic susceptibility artifacts in brain MRI. In an effort for correcting these artifacts, it is important to know the value of induced magnetic moments in all parts of orthodontic appliances. In this study, the induced magnetic moment of stainless steel orthodontic brackets, molar bands, and arch-wires from several vendors is measured. Methods: Individual stainless steel brackets, molar bands, and short segments of arch-wire were positioned in the center of spherical flask filled with water through a thin plastic rod. The induced magnetic moment at 1.5 T was determined by fitting the B0 map to the z-component of the magnetic dipole field using a computer routine. Results: The induced magnetic moment at 1.5 T was dominated by the longitudinal component mz, with a small contribution from the transverse components. The mz was insensitive to the orientation of the metal parts. The orthodontic brackets collectively dominated the magnetic dipole moment in orthodontic appliances. In brackets from six vendors, the total induced mz from 20 brackets for nonmolar teeth ranged from 0.108 to 0.158 (median 0.122) A ⋅ m2. The mz in eight molar bands with bracket attachment from two vendors ranged from 0.0004 to 0.0166 (median 0.0035) A ⋅ m2. Several full length arch wires had induced magnetic moment in the range of 0.006–0.025 (median 0.015) A ⋅ m2. Conclusions: Orthodontic brackets collectively contributed most to the total magnetic moment. Different types of brackets, molar bands, and arch wires all exhibit substantial variability in the induced magnetic moment. PMID:26429261
Local moments, exchange interactions, and magnetic order in Mn-doped LaFe2Si2 alloys
International Nuclear Information System (INIS)
Turek, I.; Divis, M.; Niznansky, D.; Vejpravova, J.
2007-01-01
Formation of local magnetic moments in the intermetallic compound LaFe 2 Si 2 due to doping by a few at% of Mn has been investigated by theoretical and experimental tools. While a number of low-temperature experiments prove appearance of non-zero magnetic moments due to the Mn doping, the measured 57 Fe Moessbauer spectra rule out sizable local moments of Fe atoms. This conclusion is in agreement with results of first-principles electronic structure calculations that yield non-vanishing moments only on Mn atoms. The calculated Mn-Mn exchange interactions are of both signs which indicate a magnetically frustrated ground state, probably with a spin-glass-like arrangement of the Mn moments
van Rijssel, Jozef; Kuipers, Bonny W M; Erne, Ben
2015-01-01
High-frequency applications of magnetic nanoparticles, such as therapeutic hyperthermia and magnetic particle imaging, are sensitive to nanoparticle size and dipole moment. Usually, it is assumed that magnetic nanoparticles with a log-normal distribution of the physical size also have a log-normal
Spin, quadrupole moment, and deformation of the magnetic-rotational band head in Pb193
Balabanski, D. L.; Ionescu-Bujor, M.; Iordachescu, A.; Bazzacco, D.; Brandolini, F.; Bucurescu, D.; Chmel, S.; Danchev, M.; de Poli, M.; Georgiev, G.; Haas, H.; Hübel, H.; Marginean, N.; Menegazzo, R.; Neyens, G.; Pavan, P.; Rossi Alvarez, C.; Ur, C. A.; Vyvey, K.; Frauendorf, S.
2011-01-01
The spectroscopic quadrupole moment of the T1/2=9.4(5) ns isomer in Pb193 at an excitation energy Eex=(2585+x) keV is measured by the time-differential perturbed angular distribution method as |Qs|=2.6(3) e b. Spin and parity Iπ=27/2- are assigned to it based on angular distribution measurements. This state is the band head of a magnetic-rotational band, described by the 1i13/2 subshell with the (3s1/2-21h9/21i13/2)11- proton excitation. The pairing-plus-quadrupole tilted-axis cranking calculations reproduce the measured quadrupole moment with a moderate oblate deformation ɛ2=-0.11, similar to that of the 11-proton intruder states, which nuclei in the region. This is the first direct measurement of a quadrupole moment and thus of the deformation of a magnetic-rotational band head.
Spin, quadrupole moment, and deformation of the magnetic-rotational band head in (193)Pb
Balabanski, D L; Iordachescu, A; Bazzacco, D; Brandolini, F; Bucurescu, D; Chmel, S; Danchev, M; De Poli, M; Georgiev, G; Haas, H; Hubel, H; Marginean, N; Menegazzo, R; Neyens, G; Pavan, P; Rossi Alvarez, C; Ur, C A; Vyvey, K; Frauendorf, S
2011-01-01
The spectroscopic quadrupole moment of the T(1/2) = 9.4(5) ns isomer in (193)Pb at an excitation energy E(ex) = (2585 + x) keV is measured by the time-differential perturbed angular distribution method as vertical bar Q(s)vertical bar = 2.6(3) e b. Spin and parity I(pi) = 27/2(-) are assigned to it based on angular distribution measurements. This state is the band head of a magnetic-rotational band, described by the coupling of a neutron hole in the 1i(13/2) subshell with the (3s(1/2)(-2)1h(9/2)1i(13/2))(11-) proton excitation. The pairing-plus-quadrupole tilted-axis cranking calculations reproduce the measured quadrupole moment with a moderate oblate deformation epsilon(2) = -0.11, similar to that of the 11(-)proton intruder states, which occur in the even-even Pb nuclei in the region. This is the first direct measurement of a quadrupole moment and thus of the deformation of a magnetic-rotational band head.
Magnetic moments, coupling, and interface interdiffusion in Fe/V(001) superlattices
Schwickert, M. M.; Coehoorn, R.; Tomaz, M. A.; Mayo, E.; Lederman, D.; O'brien, W. L.; Lin, Tao; Harp, G. R.
1998-06-01
Epitaxial Fe/V(001) multilayers are studied both experimentally and by theoretical calculations. Sputter-deposited epitaxial films are characterized by x-ray diffraction, magneto-optical Kerr effect, and x-ray magnetic circular dichroism. These results are compared with first-principles calculations modeling different amounts of interface interdiffusion. The exchange coupling across the V layers is observed to oscillate, with antiferromagnetic peaks near the V layer thicknesses tV~22, 32, and 42 Å. For all films including superlattices and alloys, the average V magnetic moment is antiparallel to that of Fe. The average V moment increases slightly with increasing interdiffusion at the Fe/V interface. Calculations modeling mixed interface layers and measurements indicate that all V atoms are aligned with one another for tV<~15 Å, although the magnitude of the V moment decays toward the center of the layer. This ``transient ferromagnetic'' state arises from direct (d-d) exchange coupling between V atoms in the layer. It is argued that the transient ferromagnetism suppresses the first antiferromagnetic coupling peak between Fe layers, expected to occur at tV~12 Å.
Mosichkin, A. F.
2017-11-01
The process of radiative decay of the neutrino with a magnetic moment in a strong magnetic field with consideration of positronium influence on photon dispersion has been studied. Positronium contribution to the photon polarization operator induces significant modifications of the photon dispersion law and neutrino radiative decay amplitude. It has been shown that the mean energy loss of a neutrino with magnetic a moment significantly increases, when the positronium contribution to photon dispersion is taken into account.
International Nuclear Information System (INIS)
Rijssel, Jos van; Kuipers, Bonny W.M.; Erné, Ben H.
2015-01-01
High-frequency applications of magnetic nanoparticles, such as therapeutic hyperthermia and magnetic particle imaging, are sensitive to nanoparticle size and dipole moment. Usually, it is assumed that magnetic nanoparticles with a log-normal distribution of the physical size also have a log-normal distribution of the magnetic dipole moment. Here, we test this assumption for different types of superparamagnetic iron oxide nanoparticles in the 5–20 nm range, by multimodal fitting of magnetization curves using the MINORIM inversion method. The particles are studied while in dilute colloidal dispersion in a liquid, thereby preventing hysteresis and diminishing the effects of magnetic anisotropy on the interpretation of the magnetization curves. For two different types of well crystallized particles, the magnetic distribution is indeed log-normal, as expected from the physical size distribution. However, two other types of particles, with twinning defects or inhomogeneous oxide phases, are found to have a bimodal magnetic distribution. Our qualitative explanation is that relatively low fields are sufficient to begin aligning the particles in the liquid on the basis of their net dipole moment, whereas higher fields are required to align the smaller domains or less magnetic phases inside the particles. - Highlights: • Multimodal fits of dilute ferrofluids reveal when the particles are multidomain. • No a priori shape of the distribution is assumed by the MINORIM inversion method. • Well crystallized particles have log-normal TEM and magnetic size distributions. • Defective particles can combine a monomodal size and a bimodal dipole moment
International Nuclear Information System (INIS)
Hegstrom, R.A.; Lhuillier, C.
1977-01-01
Starting from a classical covariant equation of motion for the spin of a particle moving in a homogeneous electromagnetic field (the Bargmann-Michel-Telegdi equation), we show that the ''relativistic mass'' correction to the electron spin magnetic moment, which has been obtained previously from relativistic quantum-mechanical treatments of the Zeeman effect, may be reinterpreted as the combination of three classical effects: (i) the difference in time scales in the electron rest frame vis-a-vis the lab frame, (ii) the Lorentz transformation of the magnetic field between the two frames, and (iii) the Thomas precession of the electron spin due to the acceleration of the electron produced by the magnetic field
Realizing high magnetic moments in fcc Fe nanoparticles through atomic structure stretch
International Nuclear Information System (INIS)
Baker, S H; Roy, M; Thornton, S C; Binns, C
2012-01-01
We describe the realization of a high moment state in fcc Fe nanoparticles through a controlled change in their atomic structure. Embedding Fe nanoparticles in a Cu 1-x Au x matrix causes their atomic structure to switch from bcc to fcc. Extended x-ray absorption fine structure (EXAFS) measurements show that the structure in both the matrix and the Fe nanoparticles expands as the amount of Au in the matrix is increased, with the data indicating a tetragonal stretch in the Fe nanoparticles. The samples were prepared directly from the gas phase by co-deposition, using a gas aggregation source and MBE-type sources respectively for the nanoparticle and matrix materials. The structure change in the Fe nanoparticles is accompanied by a sharp increase in atomic magnetic moment, ultimately to values of ∼2.5 ± 0.3 μ B /atom. (paper)
Temperature dependence of spin and orbital magnetic moments of Sm 4f electrons in (Sm, Gd)Al2
International Nuclear Information System (INIS)
Qiao, S.; Kimura, A.; Adachi, H.; Iori, K.; Miyamoto, K.; Xie, T.; Namatame, H.; Taniguchi, M.; Tanaka, A.; Muro, T.; Imada, S.; Suga, S.
2005-01-01
X-ray magnetic circular dichroism studies were carried out on (Sm, Gd)Al 2 , a ferromagnet without net magnetization at a certain compensation temperature. For Sm 4f electrons, the following understandings were obtained: the magnitude of expectation value of orbital magnetic moment (m L Sm ) is always larger than that of spin one (m S Sm ), so the cancellation of total spin and orbital magnetic moments cannot be achieved only by Sm 4f electrons and the contributions from Gd ions and conduction electrons are important; when the temperature decreases, the magnitude of both m L Sm and m S Sm increases and the gross magnetic moment due to the Sm 4f electrons monotonically deviates from zero. These results tell us that the temperature dependence of magnetic moments related with the electrons other than Sm 4f ones may play important roles in the subtle adjustment of the total spin and orbital magnetic moments to the zero magnetization at the compensation temperature
Determination of Local Magnetic Dipole Moment of the Plasma at the PUPR Cusp-Mirror Machine
International Nuclear Information System (INIS)
Leal-Quiros, Edbertho; Prelas, Mark
2006-01-01
A novel diagnostic that allows measurement of the magnetic moment μ has been designed. The μ-Analyzer consists of a Directional Energy Analyzer and a Magnetic Hall Probe in the same detector miniature case. The Directional Energy Analyzer measures the ion temperature in the perpendicular direction to the magnetic field. On the other side, the Hall Probe measures the magnetic field. The μ-Analyzer is a miniature analyzer to avoid plasma perturbation. This allows the measurement of the ion temperature and the local magnetic field at the same point at the same time, therefore μ, the first adiabatic invariant is found. From the above parameters, the local Larmor radius also will be calculated. From the analysis of the data simultaneously in time and space, the μ of the Local Plasma has been determined. This result is a very important quantity, among other properties that permit one to know the stability of the magnetic confinement device using the MHD Stability Criterium, and also very important in Space Plasma Research. In addition to the above, a direct measurement of the Larmor radius of each position is also possible. The experiments have been made in a Cusp/Mirror Plasma Machine where plasma parameters such as Density and Temperature are relatively easy to change in a very wide range
New Nuclear Magnetic Moment of 209Bi: Resolving the Bismuth Hyperfine Puzzle
Skripnikov, Leonid V.; Schmidt, Stefan; Ullmann, Johannes; Geppert, Christopher; Kraus, Florian; Kresse, Benjamin; Nörtershäuser, Wilfried; Privalov, Alexei F.; Scheibe, Benjamin; Shabaev, Vladimir M.; Vogel, Michael; Volotka, Andrey V.
2018-03-01
A recent measurement of the hyperfine splitting in the ground state of Li-like 80+208Bi has established a "hyperfine puzzle"—the experimental result exhibits a 7 σ deviation from the theoretical prediction [J. Ullmann et al., Nat. Commun. 8, 15484 (2017), 10.1038/ncomms15484; J. P. Karr, Nat. Phys. 13, 533 (2017), 10.1038/nphys4159]. We provide evidence that the discrepancy is caused by an inaccurate value of the tabulated nuclear magnetic moment (μI) of 209Bi. We perform relativistic density functional theory and relativistic coupled cluster calculations of the shielding constant that should be used to extract the value of μI(209ipts>) and combine it with nuclear magnetic resonance measurements of Bi (NO3 )3 in nitric acid solutions and of the hexafluoridobismuthate(V) BiF6- ion in acetonitrile. The result clearly reveals that μI(209Bi) is much smaller than the tabulated value used previously. Applying the new magnetic moment shifts the theoretical prediction into agreement with experiment and resolves the hyperfine puzzle.
Tilted-foil polarisation and magnetic moments of mirror nuclei at ISOLDE
Bordeanu, C; Thundiyamkulathu Baby, L; Lindroos, M
2002-01-01
We report here on the first measurement in an experimental program initiated at the ISOLDE facility at CERN for the measurement of magnetic moments of short-lived radionuclides. The 60~keV ISOLDE beam from the GPS separator is boosted in energy by a 200~kV high-voltage platform, on which the whole experiment is mounted, in order to achieve sufficiently high energy for transmission through the foils of a tilted-foil setup. The 520~keV $^{23}$Mg(2$^+$) nuclei are polarized by the tilted foil technique and the resulting 0$^o$ - 180$^o$ $\\beta$- asymmetry is monitored as a function of the frequency of an rf-applied perturbing magnetic field in an NMR setup.\\\\ In this experiment, earlier asymmetry measurements were confirmed and an NMR resonance was observed, corresponding to a preliminary value of the magnetic moment of 0.533(6) n.m., in agreement with a previous measurement. The measured asymmetry as function of NMR frequency and the fitted resonance curve are presented in the figure. During the e...
New Nuclear Magnetic Moment of ^{209}Bi: Resolving the Bismuth Hyperfine Puzzle.
Skripnikov, Leonid V; Schmidt, Stefan; Ullmann, Johannes; Geppert, Christopher; Kraus, Florian; Kresse, Benjamin; Nörtershäuser, Wilfried; Privalov, Alexei F; Scheibe, Benjamin; Shabaev, Vladimir M; Vogel, Michael; Volotka, Andrey V
2018-03-02
A recent measurement of the hyperfine splitting in the ground state of Li-like ^{208}Bi^{80+} has established a "hyperfine puzzle"-the experimental result exhibits a 7σ deviation from the theoretical prediction [J. Ullmann et al., Nat. Commun. 8, 15484 (2017)NCAOBW2041-172310.1038/ncomms15484; J. P. Karr, Nat. Phys. 13, 533 (2017)NPAHAX1745-247310.1038/nphys4159]. We provide evidence that the discrepancy is caused by an inaccurate value of the tabulated nuclear magnetic moment (μ_{I}) of ^{209}Bi. We perform relativistic density functional theory and relativistic coupled cluster calculations of the shielding constant that should be used to extract the value of μ_{I}(^{209}Bi) and combine it with nuclear magnetic resonance measurements of Bi(NO_{3})_{3} in nitric acid solutions and of the hexafluoridobismuthate(V) BiF_{6}^{-} ion in acetonitrile. The result clearly reveals that μ_{I}(^{209}Bi) is much smaller than the tabulated value used previously. Applying the new magnetic moment shifts the theoretical prediction into agreement with experiment and resolves the hyperfine puzzle.
Blum, T.; Izubuchi, T.; Jin, L.; Jüttner, A.; Lehner, C.; Maltman, K.; Marinkovic, M.; Portelli, A.; Spraggs, M.
2016-01-01
We report the first lattice QCD calculation of the hadronic vacuum polarization disconnected contribution to the muon anomalous magnetic moment at physical pion mass. The calculation uses a refined noise-reduction technique which enabled the control of statistical uncertainties at the desired level with modest computational effort. Measurements were performed on the $48^3 \\times 96$ physical-pion-mass lattice generated by the RBC and UKQCD collaborations. We find $a_\\mu^{\\rm HVP~(LO)~DISC} = -9.6(3.3)(2.3)\\times 10^{-10}$, where the first error is statistical and the second systematic.
Development of low background germanium spectrometer for measurement of neutrino magnetic moment
Beda, A G; Starostin, A S
2000-01-01
The prospects for a search for neutrino magnetic moment down to (3-5)centre dot 10 sup - sup 1 sup 1 of the Bohr magneton with the use of low background Ge-NaI spectrometer built in ITEP are discussed. The lowest level of background for shallow setups was achieved in the preliminary test measurements of background. This result and estimations of additional sources of the background in a reactor experiment testify that using the low background Ge-NaI spectrometer with mass of Ge-crystal of 2 kg it is possible to achieve above objective, that will be one order of magnitude better than the present experimental limit.
Weak correction to the muon magnetic moment in a gauge model
International Nuclear Information System (INIS)
Darby, D.; Grammer, G. Jr.
1976-01-01
The weak correction, asub(μ)sup(W), to the anomalous magnetic moment of the muon is calculated in an SU(2) x U(1) x U(1) gauge model of weak and electromagnetic interactions. The Rsub(xi) gauge is used and Ward-Takahashi identities are utilized in eliminating all xi-dependence before the loop integration is performed. asub(μ)sup(W,expt) places no constraint on the mass of one of the neutral vector mesons, which may be arbitrarily small. (Auth.)
Blum, T; Boyle, P A; Izubuchi, T; Jin, L; Jüttner, A; Lehner, C; Maltman, K; Marinkovic, M; Portelli, A; Spraggs, M
2016-06-10
We report the first lattice QCD calculation of the hadronic vacuum polarization (HVP) disconnected contribution to the muon anomalous magnetic moment at physical pion mass. The calculation uses a refined noise-reduction technique that enables the control of statistical uncertainties at the desired level with modest computational effort. Measurements were performed on the 48^{3}×96 physical-pion-mass lattice generated by the RBC and UKQCD Collaborations. We find the leading-order hadronic vacuum polarization a_{μ}^{HVP(LO)disc}=-9.6(3.3)(2.3)×10^{-10}, where the first error is statistical and the second systematic.
Blum, T.; Boyle, P. A.; Izubuchi, T.; Jin, L.; Jüttner, A.; Lehner, C.; Maltman, K.; Marinkovic, M.; Portelli, A.; Spraggs, M.; Rbc; Ukqcd Collaborations
2016-06-01
We report the first lattice QCD calculation of the hadronic vacuum polarization (HVP) disconnected contribution to the muon anomalous magnetic moment at physical pion mass. The calculation uses a refined noise-reduction technique that enables the control of statistical uncertainties at the desired level with modest computational effort. Measurements were performed on the 483×96 physical-pion-mass lattice generated by the RBC and UKQCD Collaborations. We find the leading-order hadronic vacuum polarization aμHVP (LO )disc=-9.6 (3.3 )(2.3 )×10-10 , where the first error is statistical and the second systematic.
Leading SU(3)-breaking corrections to the baryon magnetic moments in chiral perturbation theory.
Geng, L S; Camalich, J Martin; Alvarez-Ruso, L; Vacas, M J Vicente
2008-11-28
We calculate the baryon magnetic moments using covariant chiral perturbation theory (chiPT) within the extended-on-mass-shell renormalization scheme. By fitting the two available low-energy constants, we improve the Coleman-Glashow description of the data when we include the leading SU(3)-breaking effects coming from the lowest-order loops. This success is in dramatic contrast with previous attempts at the same order using heavy-baryon chiPT and covariant infrared chiPT. We also analyze the source of this improvement with particular attention to the comparison between the covariant results.
Measurements of lifetimes and magnetic moments in A∼90 nuclei with EUROBALL Cluster detectors
International Nuclear Information System (INIS)
Jungclaus, A.; Fischer, V.; Kast, D.
1998-01-01
Mass A∼90 nuclei with several valence nucleons outside the doubly-magic 100 Sn core are an ideal testing ground for the validity of the spherical shell model. Electromagnetic decay properties as well as magnetic dipole moments of excited states are the key quantities revealing the structure of the wave functions and the mechanisms responsible for strong dipole sequences. The present article discusses by means of two examples the advantages of employing the most recent developments both concerning detector technology and experimental methods
Higher-order hadronic and heavy-lepton contributions to the anomalous magnetic moment
International Nuclear Information System (INIS)
Kurz, Alexander; Liu, Tao; Steinhauser, Matthias
2014-07-01
We report about recent results obtained for the muon anomalous magnetic moment. Three-loop kernel functions have been computed to obtain the next-to-next-to-leading-order hadronic vacuum polarization contributions. The numerical result, a μ had,NNLO = 1.24 ± 0.01 x 10 -10 , is of the same order of magnitude as the current uncertainty from the hadronic contributions. For heavy-lepton corrections, analytical results are obtained at four-loop order and compared with the known results.
International Nuclear Information System (INIS)
Wang, Liang; Germaschewski, K.; Hakim, Ammar H.; Bhattacharjee, A.
2015-01-01
We introduce an extensible multi-fluid moment model in the context of collisionless magnetic reconnection. This model evolves full Maxwell equations and simultaneously moments of the Vlasov-Maxwell equation for each species in the plasma. Effects like electron inertia and pressure gradient are self-consistently embedded in the resulting multi-fluid moment equations, without the need to explicitly solving a generalized Ohm's law. Two limits of the multi-fluid moment model are discussed, namely, the five-moment limit that evolves a scalar pressures for each species and the ten-moment limit that evolves the full anisotropic, non-gyrotropic pressure tensor for each species. We first demonstrate analytically and numerically that the five-moment model reduces to the widely used Hall magnetohydrodynamics (Hall MHD) model under the assumptions of vanishing electron inertia, infinite speed of light, and quasi-neutrality. Then, we compare ten-moment and fully kinetic particle-in-cell (PIC) simulations of a large scale Harris sheet reconnection problem, where the ten-moment equations are closed with a local linear collisionless approximation for the heat flux. The ten-moment simulation gives reasonable agreement with the PIC results regarding the structures and magnitudes of the electron flows, the polarities and magnitudes of elements of the electron pressure tensor, and the decomposition of the generalized Ohm's law. Possible ways to improve the simple local closure towards a nonlocal fully three-dimensional closure are also discussed
de Melo, Roger Duarte; Acosta-Avalos, Daniel
2017-09-01
Magnetotactic microorganisms are characterized by swimming in the direction of an applied magnetic field. In nature, two types of swimming polarity have been observed: north-seeking microorganisms that swim in the same direction as the magnetic field, and south-seeking microorganisms that swim in the opposite direction. The present work studies the reversal in the swimming polarity of the multicellular magnetotactic prokaryote Candidatus Magnetoglobus multicellularis following an isolation process using high magnetic fields from magnets. The proportion of north- and south-seeking organisms was counted as a function of the magnetic field intensity used during the isolation of the organisms from sediment. It was observed that the proportion of north-seeking organisms increased when the magnetic field was increased. The magnetic moment for north- and south-seeking populations was estimated using the U-turn method. The average magnetic moment was higher for north- than south-seeking organisms. The results suggest that the reversal of swimming polarity must occur during the isolation process in the presence of high magnetic fields and magnetic field gradients. It is shown for the first time that the swimming polarity reversal depends on the magnetic moment intensity of multicellular magnetotactic prokaryotes, and new studies must be undertaken to understand the role of magnetic moment polarity and oxygen gradients in determination of swimming polarity.
Influence of magnetic moment formation on the conductance of coupled quantum wires
International Nuclear Information System (INIS)
Puller, V I; Mourokh, L G; Bird, J P; Ochiai, Y
2005-01-01
In this paper, we develop a model for the resonant interaction between a pair of coupled quantum wires, under conditions where self-consistent effects lead to the formation of a local magnetic moment in one of the wires. Our analysis is motivated by the experimental results of Morimoto et al (2003 Appl. Phys. Lett. 82 3952), who showed that the conductance of one of the quantum wires exhibits a resonant peak at low temperatures, whenever the other wire is swept into the regime where local-moment formation is expected. In order to account for these observations, we develop a theoretical model for the inter-wire interaction that calculated the transmission properties of one (the fixed) wire when the device potential is modified by the presence of an extra scattering term, arising from the presence of the local moment in the swept wire. To determine the transmission coefficients in this system, we derive equations describing the dynamics of electrons in the swept and fixed wires of the coupled-wire geometry. Our analysis clearly shows that the observation of a resonant peak in the conductance of the fixed wire is correlated to the appearance of additional structure (near 0.75 x 2e 2 /h or 0.25 x 2e 2 /h) in the conductance of the swept wire, in agreement with the experimental results of Morimoto et al
Measurement of dipole-moment in atomic transitions under strong external magnetic field
International Nuclear Information System (INIS)
Nittoh, Koichi; Kuwako, Akira; Ikehara, Tadashi; Yoshida, Tadashi; Watanabe, Takasi; Yoguchi, Itaru; Suzuki, Kazuhiro.
1996-01-01
Obtaining an accurate value of the electric dipole moment μ is essential in the fields of laser application technologies. A direct way of measuring the electric dipole moment μ is to observe the Rabi-oscillation which manifests itself in the coherent photo-excitation behavior of atoms. In the case of the elements which have large angular momenta, identifying the Rabi-oscillation in their excitation behavior becomes rather difficult. We proposed an accurate and straightforward method of determining the electric-dipole moment μ between multi-fold degenerate levels. The point is to remove the degeneracy by applying an external magnetic field with the aid of the Zeeman effect and, then, to realize a degeneration free coherent excitation. As a result, we can observe the Rabi-oscillations explicitly in the excitation υs. laser-fluence curves. The present method provides a reliable basis of experimental determination of μ. As an example, we applied the present method to a transition to 0-17,362 cm -1 level in uranium and obtained the value μ=0.86±0.06 (Debye). (author)
Hyperfine structure, nuclear spins and magnetic moments of some cesium isotopes
International Nuclear Information System (INIS)
Ekstroem, C.; Ingelman, S.; Wannberg, G.
1977-03-01
Using an atomic-beam magnetic resonance apparatus connected on-line with the ISOLDE isotope separator, CERN, hyperfine structure measurements have been performed in the 2 Ssub(1/2) electronic ground state of some cesium isotopes. An on-line oven system which efficiently converts a mass separated ion-beam of alkali isotopes to an atomic beam is described in some detail. Experimentally determined nuclear spins of sup(120, 121, 121m, 122, 122m, 123, 124, 126, 128, 130m, 135m)Cs and magnetic moments of sup(122, 123, 124, 126, 128, 130)Cs are reported and discussed in terms of different nuclear models. The experimental data indicate deformed nuclear shapes of the lightest cesium isotopes. (Auth.)
Electron contribution to the muon anomalous magnetic moment at four loops
International Nuclear Information System (INIS)
Kurz, Alexander; Liu, Tao; Smirnov, Alexander V.; Smirnov, Vladimir A.; Humboldt-Universitaet, Berlin; Humboldt-Universitaet, Berlin; Steinhauser, Matthias
2016-02-01
We present results for the QED contributions to the anomalous magnetic moment of the muon containing closed electron loops. The main focus is on perturbative corrections at four-loop order where the external photon couples to the external muon. Furthermore, all four-loop contributions involving simultaneously a closed electron and tau loop are computed. In combination with our recent results on the light-by-light-type corrections the complete four-loop electron-loop contribution to the anomalous magnetic moment of the muon has been obtained with an independent calculation. Our calculation is based on an asymptotic expansion in the ratio of the electron and the muon mass and shows the importance of higher order terms in this ratio. We perform a detailed comparison with results available in the literature and find good numerical agreement. As a by-product we present analytic results for the on-shell muon mass and wave function renormalization constants at three-loop order including massive closed electron and tau loops, which we also calculated using the method of asymptotic expansion.
A parts-per-billion measurement of the antiproton magnetic moment
Smorra, C; Borchert, M J; Harrington, J A; Higuchi, T; Nagahama, H; Tanaka, T; Mooser, A; Schneider, G; Blaum, K; Matsuda, Y; Ospelkaus, C; Quint, W; Walz, J; Yamazaki, Y; Ulmer, S
2017-01-01
Precise comparisons of the fundamental properties of matter–antimatter conjugates provide sensitive tests of charge–parity–time (CPT) invariance1, which is an important symmetry that rests on basic assumptions of the standard model of particle physics. Experiments on mesons2, leptons3, 4 and baryons5, 6 have compared different properties of matter–antimatter conjugates with fractional uncertainties at the parts-per-billion level or better. One specific quantity, however, has so far only been known to a fractional uncertainty at the parts-per-million level7, 8: the magnetic moment of the antiproton, . The extraordinary difficulty in measuring with high precision is caused by its intrinsic smallness; for example, it is 660 times smaller than the magnetic moment of the positron3. Here we report a high-precision measurement of in units of the nuclear magneton μN with a fractional precision of 1.5 parts per billion (68% confidence level). We use a two-particle spectroscopy method in an advanced cryogenic ...
Application of transient magnetic field to the measurement of nuclear magnetic moments
International Nuclear Information System (INIS)
Ribas, R.V.
1987-01-01
A review on: the mechanism for producing transient magnetic field; techniques for measuring nuclear gyromagnetic factor; and some examples of recent measurements using this technique is presented. (M.C.K.) [pt
[Multiple coil pulsed magnetic resonance method to measure the SSC bending magnet multipole moments
International Nuclear Information System (INIS)
Clark, W.G.
1990-01-01
The main emphasis has been to continue development of the high frequency (to 300 MHz) instrumentation, to test the system on a prototype bending magnet, construct the high frequency 32-channel electronics and probes, to seek industrial partners for technology transfer and commercial exploitation, and to do computer simulations for optimizing design parameters. Experience gained from tests made on a dipole magnet at Lawrence Berkeley Laboratory was extremely valuable and has resulted in substantial modifications to the original design
Energy Technology Data Exchange (ETDEWEB)
Arroyo-Urena, M.A.; Tavares-Velasco, G. [Benemerita Universidad Autonoma de Puebla, Facultad de Ciencias Fisico-Matematicas, Puebla, PUE (Mexico); Hernandez-Tome, G. [Benemerita Universidad Autonoma de Puebla, Facultad de Ciencias Fisico-Matematicas, Puebla, PUE (Mexico); Centro de Investigacion y de Estudios Avanzados del Instituto Politecnico Nacional, Departamento de Fisica, Mexico City (Mexico)
2017-04-15
We obtain analytical expressions, both in terms of parametric integrals and Passarino-Veltman scalar functions, for the one-loop contributions to the anomalous weak magnetic dipole moment (AWMDM) of a charged lepton in the framework of the simplest little Higgs model (SLHM). Our results are general and can be useful to compute the weak properties of a charged lepton in other extensions of the standard model (SM). As a by-product we obtain generic contributions to the anomalous magnetic dipole moment (AMDM), which agree with previous results. We then study numerically the potential contributions from this model to the τ lepton AMDM and AWMDM for values of the parameter space consistent with current experimental data. It is found that they depend mainly on the energy scale f at which the global symmetry is broken and the t{sub β} parameter, whereas there is little sensitivity to a mild change in the values of other parameters of the model. While the τ AMDM is of the order of 10{sup -9}, the real (imaginary) part of its AWMDM is of the order of 10{sup -9} (10{sup -10}). These values seem to be out of the reach of the expected experimental sensitivity of future experiments. (orig.)
Haldar, Soumyajyoti
2014-05-09
In this work, we have studied the chemical and magnetic interactions of Fen (n=1–6) clusters with vacancy defects (monovacancy to correlated vacancies with six missing C atoms) in a graphene sheet by ab initio density functional calculations combined with Hubbard U corrections for correlated Fe-d electrons. It is found that the vacancy formation energies are lowered in the presence of Fe, indicating an easier destruction of the graphene sheet. Due to strong chemical interactions between Fe clusters and vacancies, a complex distribution of magnetic moments appear on the distorted Fe clusters which results in reduced averaged magnetic moments compared to the free clusters. In addition to that, we have calculated spin-dipole moments and magnetic anisotropy energies. The calculated spin-dipole moments arising from anisotropic spin density distributions vary between positive and negative values, yielding increased or decreased effective moments. Depending on the cluster geometry, the easy axis of magnetization of the Fe clusters shows in-plane or out-of-plane behavior.
International Nuclear Information System (INIS)
Artru, X.; Fayolle, D.
2001-01-01
For a monopole, the analogue of the Lorentz equation in matter is shown to be f = g (H-v centre dot D). Dual-symmetric Maxwell equations, for matter containing hidden magnetic charge in addition to electric ones, are given. They apply as well to ordinary matter if the particles possess T-violating electric dipole moments. Two schemes of experiments for the detection of such moments in macroscopic pieces of matter are proposed
Fradin, Cécile
2013-01-01
Magnetotactic bacteria possess organelles called magnetosomes that confer a magnetic moment on the cells, resulting in their partial alignment with external magnetic fields. Here we show that analysis of the trajectories of cells exposed to an external magnetic field can be used to measure the average magnetic dipole moment of a cell population in at least five different ways. We apply this analysis to movies of Magnetospirillum magneticum AMB-1 cells, and compare the values of the magnetic moment obtained in this way to that obtained by direct measurements of magnetosome dimension from electron micrographs. We find that methods relying on the viscous relaxation of the cell orientation give results comparable to that obtained by magnetosome measurements, whereas methods relying on statistical mechanics assumptions give systematically lower values of the magnetic moment. Since the observed distribution of magnetic moments in the population is not sufficient to explain this discrepancy, our results suggest that non-thermal random noise is present in the system, implying that a magnetotactic bacterial population should not be considered as similar to a paramagnetic material. PMID:24349185
Relativistic energy correction of the hydrogen atom with an anomalous magnetic moment
International Nuclear Information System (INIS)
Ambogo, David Otieno
2015-07-01
The electron is known to possess an anomalous magnetic moment, which interacts with the gradient of the electric field. This makes it necessary to compute its effects on the energy spectrum. Even though the Coulomb Dirac equation can be solved in closed form, this is no longer possible when the anomalous magnetic moment is included. In fact the interaction due to this term is so strong that it changes the domain of the Hamiltonian. From a differential equation point of view, the anomalous magnetic moment term is strongly singular near the origin. As usual, one has to resort to perturbation theory. This, however, only makes sense if the eigenvalues are stable. To prove stability is therefore a challenge one has to face before actually computing the energy shifts. The first stability results in this line were shown by Behncke for angular momenta κ≥3, because the eigenfunctions of the unperturbed Hamiltonian decay fast enough near the origin. He achieved this by decoupling the system and then using the techniques available for second order differential equations. Later, Kalf and Schmidt extended Behncke's results basing their analysis on the Pruefer angle technique and a comparison result for first order differential equations. The Pruefer angle method is particularly useful because it shows a better stability and because it obeys a first order differential equation. Nonetheless, Kalf and Schmidt had to exclude some coupling constants for κ>0. This I believe is an artefact of their method. In this study, I make increasing use of asymptotic integration, a method which is rather well adapted to perturbation theory and is known to give stability results to any level of accuracy. Together with the Pruefer angle technique, this lead to a more general stability result and even allows for an energy shifts estimate. Hamiltonians traditionally treated in physics to describe the spin-orbit effect are not self adjoint i.e. they are not proper observables in quantum
Relativistic energy correction of the hydrogen atom with an anomalous magnetic moment
Energy Technology Data Exchange (ETDEWEB)
Ambogo, David Otieno
2015-07-15
The electron is known to possess an anomalous magnetic moment, which interacts with the gradient of the electric field. This makes it necessary to compute its effects on the energy spectrum. Even though the Coulomb Dirac equation can be solved in closed form, this is no longer possible when the anomalous magnetic moment is included. In fact the interaction due to this term is so strong that it changes the domain of the Hamiltonian. From a differential equation point of view, the anomalous magnetic moment term is strongly singular near the origin. As usual, one has to resort to perturbation theory. This, however, only makes sense if the eigenvalues are stable. To prove stability is therefore a challenge one has to face before actually computing the energy shifts. The first stability results in this line were shown by Behncke for angular momenta κ≥3, because the eigenfunctions of the unperturbed Hamiltonian decay fast enough near the origin. He achieved this by decoupling the system and then using the techniques available for second order differential equations. Later, Kalf and Schmidt extended Behncke's results basing their analysis on the Pruefer angle technique and a comparison result for first order differential equations. The Pruefer angle method is particularly useful because it shows a better stability and because it obeys a first order differential equation. Nonetheless, Kalf and Schmidt had to exclude some coupling constants for κ>0. This I believe is an artefact of their method. In this study, I make increasing use of asymptotic integration, a method which is rather well adapted to perturbation theory and is known to give stability results to any level of accuracy. Together with the Pruefer angle technique, this lead to a more general stability result and even allows for an energy shifts estimate. Hamiltonians traditionally treated in physics to describe the spin-orbit effect are not self adjoint i.e. they are not proper observables in quantum
Multiple coil pulsed magnetic resonance method to measure the SSC bending magnet multipole moments
International Nuclear Information System (INIS)
Clark, W.G.
1990-01-01
This document describes the technical progress made during the current contract period (4-1-89 to 3-31-90) of US DOE Contract AC02-87ER40350. The main emphasis of the current contract year has been to continue development of the high frequency (to 300 MHz) instrumentation, to test the system on a prototype bending magnet, to construct the high frequency 32-channel electronics and probes, and to do computer simulations for optimizing design parameters. Experience gained from tests made on a dipole magnet at Lawrence Berkeley Laboratory was extremely valuable and has resulted in substantial modifications to the original designs. These, and other items are discussed in this paper
Nuclear magnetic moment of 69As from on-line β-NMR on oriented nuclei
International Nuclear Information System (INIS)
Golovko, V.V.; Kraev, I.S.; Phalet, T.; Severijns, N.; Delaure, B.; Beck, M.; Kozlov, V.Yu.; Lindroth, A.; Coeck, S.; Zakoucky, D.; Venos, D.; Srnka, D.; Honusek, M.; Herzog, P.; Tramm, C.; Koester, U.
2005-01-01
A precise value for the magnetic moment of the 69 As 5/2 - ground state has been obtained from nuclear magnetic resonance on oriented nuclei (NMR/ON) using the NICOLE 3 He- 4 He dilution refrigerator setup at ISOLDE/CERN. The NMR/ON signal was observed by monitoring the anisotropy of the 69 As β particles. The center frequency ν[B ext =0.0994(10)T]=169.98(9) MHz corresponds to μ[ 69 As]=+1.6229(16)μ N . This result differs considerably from the πf 5/2 single-particle value obtained with g factors for a free proton but is in reasonable agreement with the value obtained with effective g factors and with values from a core polarization calculation and from calculations in the framework of the interacting boson-fermion model. Assuming a single exponential spin-lattice relaxation behavior a relaxation time T 1 ' =10(25) s was observed for 69 AsFe -bar at a temperature of about 20 mK in a magnetic field B=0.1 T
Dynamics of magnetic moments in high-Tc superconductors. Final report
International Nuclear Information System (INIS)
Holland-Moritz, E.; Jostarndt, H.D.
1992-01-01
The central topic of this research project was the question why PrBa 2 Cu 3 O 7 does not become superconducting. For this purpose, Pr specimens were investigated as well as for comparison purposes, specimens of the neighbouring rare earth Nd, by means of inelastic magnetic neutron scattering as a function of temperature and the pulse transmission. As the reason for the suppression of superconductivity, an anomalously large hybridization of 4f electrons of Pr with the p-electrons of oxygen was observed, which causes the magnetic atomic temperatures, which are abnormally high in comparison with other rare earth 1:2:3 systems. The present it is not known whether superconductivity is suppressed spatial correlations of the magnetic 4f-moments. In addition, in this project could be proven successfully for the first time, the high-energy crystal field stimulations in PrBa 2 Cu 3 O 7 as well as in PrBa 2 Cu 3 O 6 . The temperature dependence of the quasielastic line width in NdBa 2 Cu 3 O 7-δ shows a distinctive anomaly at 100 K, which means approximately near to the superconducting transition temperature of the O 7 -systems. It is remarkable that this anomaly occurs in the non-superconducting O 6 -systems as well. This behaviour is not yet completely understood. (orig./UU) [de
Magnetic moments of high spin rotational states in 158Dy and 164Dy+
International Nuclear Information System (INIS)
Seiler-Clark, G.
1983-09-01
For the study of their magnetic moments yrast states in 158 Dy and 164 Dy were excited via the multiple-Coulomb excitation by a 4.7 MeV/u 208 Pb beam. Hereby especially the question was of interest, how the one-particle effects in the nuclear structure in the region of the backbending anomaly in 158 Dy take effects on the g-factors of the high spin states in this region. The particle-γ angular correlations perturbed in the transient magnetic field during the passing of the excited Dy ions through a thin magnetized iron foil were measured. By the selective position-sensitive detection of Dy recoil ions and Pb projectiles under forward angles it was possible to determine additionally to the g-factors in the backbending region also g-factors in the spin region I 158 Dy and 164 Dy by detection of the particle-γ correlations precessing in the static hyperfine field after implantation in iron. The static hyperfine field was at the 4 + state in 164 Dy determined to B (Dy,Fe) = 245+-25 T. The g-factors were determined by comparison of the experimental results with calculations of the perturbed angular correlations by time-differential regarding of the population and de-excitation of the yrast states as well as by precession and hyperfine-relaxation effects during the flight of the Dy ions in the vacuum. (orig./HSI) [de
International Nuclear Information System (INIS)
Stone, N.J.; Rikovska, J.
1988-01-01
The introduction very briefly outlines the basic idea and experimental evidence to suggest that quarks may behave differently in nuclei and in individual nucleons, with possible consequences for the calculation of nuclear magnetic dipole moments. After description of a calculation of moments made using the extreme model of total quark deconfinement (the MIT bag model) attention is focussed on experimental tests and the state of current evidence for more partial quark deconfinement. The arguments of Yamazaki which give an experimental basis for distinguishing quark deconfinement effects from, specifically, effects caused by pion exchange currents, are given in more detail. The reasons underlying choice of nuclei in which meaningful tests may be possible are given. Early claims by Karl et al. to have demonstrated the existence of quark deconfinement in mass 3 nuclei are discussed. The current status of evidence for deconfinement based on orbital g-factor measurements in heavier nuclei is also summarised. Finally some examples are given of possible experiments using recently developed on-line facilities which may provide further tests of these ideas. (orig.)
Fe magnetic moment formation and exchange interaction in Fe{sub 2}P: A first-principles study
Energy Technology Data Exchange (ETDEWEB)
Liu, X.B., E-mail: liuxubo@uta.edu [Department of Physics, University of Texas at Arlington, Arlington, TX 76019 (United States); Ping Liu, J.; Zhang, Qiming [Department of Physics, University of Texas at Arlington, Arlington, TX 76019 (United States); Altounian, Z. [Center for the Physics of Materials and Department of Physics, McGill University, 3600 University Street, Montreal, Quebec, H3A 2T8 (Canada)
2013-03-15
Electronic structure and magnetic properties of Fe{sub 2}P have been studied by a first-principles density functional theory calculation. The ground state is ferromagnetic and the calculated magnetic moments for Fe{sub 1} (3f) and Fe{sub 2} (3g) are 0.83 and 2.30μ{sub B}, respectively. The nearest neighbor inter-site magnetic exchange coupling parameter at the Fe{sub 1} layer (0.02 mRy) is much smaller than that at the Fe{sub 2} layer (1.29 mRy). The Fe moment at the 3f site is metastable and sensitive to the inter-site exchange interaction with its magnetic neighbors, which is responsible for the first order magnetic transition and large magneto-caloric effect around T{sub C}.
The muon magnetic moment in the 2HDM: complete two-loop result
International Nuclear Information System (INIS)
Cherchiglia, Adriano; Kneschke, Patrick; Stöckinger, Dominik; Stöckinger-Kim, Hyejung
2017-01-01
We study the 2HDM contribution to the muon anomalous magnetic moment a μ and present the complete two-loop result, particularly for the bosonic contribution. We focus on the Aligned 2HDM, which has general Yukawa couplings and contains the type I, II, X, Y models as special cases. The result is expressed with physical parameters: three Higgs boson masses, Yukawa couplings, two mixing angles, and one quartic potential parameter. We show that the result can be split into several parts, each of which has a simple parameter dependence, and we document their general behavior. Taking into account constraints on parameters, we find that the full 2HDM contribution to a μ can accommodate the current experimental value, and the complete two-loop bosonic contribution can amount to (2⋯4)×10 −10 , more than the future experimental uncertainty.
USING MAGNETIC MOMENTS TO UNVEIL THE NUCLEAR STRUCTURE OF LOW-SPIN NUCLEAR STATES
Directory of Open Access Journals (Sweden)
Diego A. Torres
2011-07-01
Full Text Available The experimental study of magnetic moments for nuclear states near the ground state, I ≤ 2, provides a powerful tool to test nuclear structure models. Traditionally, the use of Coulomb excitation reactions has been used to study low spin states, mostly I = 2. The use of alternative reaction channels, such as α transfer, for the production of radioactive species that, otherwise, will be only produced in future radioactive beam facilities has proved to be an alternative to measure not only excited states with I > 2, but to populate and study long-live radioactive nuclei. This contribution will present the experimental tools and challenges for the use of the transient field technique for the measurement of g factors in nuclear states with I ≤ 2, using Coulomb excitation and α-transfer reactions. Recent examples of experimental results near the N = 50 shell closure, and the experimental challenges for future implementations with radioactive beams, will be discussed.
Four-flavour leading hadronic contribution to the muon anomalous magnetic moment
International Nuclear Information System (INIS)
Burger, Florian; Hotzel, Grit; Jansen, Karl; Renner, Dru B.
2013-11-01
We present a four-flavour lattice calculation of the leading-order hadronic vacuum polarisation contribution to the anomalous magnetic moment of the muon, a hvp μ , arising from quark-connected Feynman graphs. It is based on ensembles featuring N f =2+1+1 dynamical twisted mass fermions generated by the European Twisted Mass Collaboration (ETMC). Several light quark masses are used in order to yield a controlled extrapolation to the physical pion mass. We employ three lattice spacings to examine lattice artefacts and several different volumes to check for finite-size effects. Including the complete first two generations of quarks allows for a direct comparison with phenomenological determinations of a hvp μ . Our final result involving an estimate of the systematic uncertainty a hvp μ =6.74(21)(18) x 10 -8 shows a good overall agreement with these computations.
Four-flavour leading-order hadronic contribution to the muon anomalous magnetic moment
Energy Technology Data Exchange (ETDEWEB)
Burger, Florian [Humboldt-Universität zu Berlin, Institut für Physik,Newtonstr. 15, D-12489 Berlin (Germany); Feng, Xu [High Energy Accelerator Research Organization (KEK),Tsukuba 305-0801 (Japan); Hotzel, Grit [Humboldt-Universität zu Berlin, Institut für Physik,Newtonstr. 15, D-12489 Berlin (Germany); Jansen, Karl [NIC, DESY,Platanenallee 6, D-15738 Zeuthen (Germany); Department of Physics, University of Cyprus,P.O.Box 20537, 1678 Nicosia (Cyprus); Petschlies, Marcus [The Cyprus Institute,P.O.Box 27456, 1645 Nicosia (Cyprus); Renner, Dru B. [Jefferson Lab,12000 Jefferson Avenue, Newport News, VA 23606 (United States); Collaboration: The ETM Collaboration
2014-02-24
We present a four-flavour lattice calculation of the leading-order hadronic vacuum polarisation contribution to the anomalous magnetic moment of the muon, a{sub μ}{sup hvp}, arising from quark-connected Feynman graphs. It is based on ensembles featuring N{sub f}=2+1+1 dynamical twisted mass fermions generated by the European Twisted Mass Collaboration (ETMC). Several light quark masses are used in order to yield a controlled extrapolation to the physical pion mass. We employ three lattice spacings to examine lattice artefacts and several different volumes to check for finite-size effects. Incorporating the complete first two generations of quarks allows for a direct comparison with phenomenological determinations of a{sub μ}{sup hvp}. Our final result including an estimate of the systematic uncertainty a{sub μ}{sup hvp}=6.74(21)(18)⋅10{sup −8} shows a good overall agreement with these computations.
Four-flavour leading-order hadronic contribution to the muon anomalous magnetic moment
International Nuclear Information System (INIS)
Burger, Florian; Feng, Xu; Hotzel, Grit; Jansen, Karl; Petschlies, Marcus; Renner, Dru B.
2014-01-01
We present a four-flavour lattice calculation of the leading-order hadronic vacuum polarisation contribution to the anomalous magnetic moment of the muon, a μ hvp , arising from quark-connected Feynman graphs. It is based on ensembles featuring N f =2+1+1 dynamical twisted mass fermions generated by the European Twisted Mass Collaboration (ETMC). Several light quark masses are used in order to yield a controlled extrapolation to the physical pion mass. We employ three lattice spacings to examine lattice artefacts and several different volumes to check for finite-size effects. Incorporating the complete first two generations of quarks allows for a direct comparison with phenomenological determinations of a μ hvp . Our final result including an estimate of the systematic uncertainty a μ hvp =6.74(21)(18)⋅10 −8 shows a good overall agreement with these computations
Concentric transmon qubit featuring fast tunability and an anisotropic magnetic dipole moment
Energy Technology Data Exchange (ETDEWEB)
Braumueller, Jochen; Schneider, Andre; Schloer, Steffen; Gruenhaupt, Lukas; Rotzinger, Hannes; Marthaler, Michael; Lukashenko, Alexander; Dieter, Amadeus [Karlsruhe Institute of Technology, 76131 Karlsruhe (Germany); Sandberg, Martin; Vissers, Michael R.; Pappas, David P. [National Institute of Standards and Technology, Boulder, Colorado 80305 (United States); Ustinov, Alexey V. [Karlsruhe Institute of Technology, 76131 Karlsruhe (Germany); National University of Science and Technology MISIS, Moscow 119049 (Russian Federation); Weides, Martin [Karlsruhe Institute of Technology, 76131 Karlsruhe (Germany); Johannes Gutenberg University, Mainz, 55128 Mainz (Germany)
2016-07-01
We present a planar qubit design based on a superconducting circuit that we call concentric transmon. While employing a straightforward fabrication process using Al evaporation and lift-off lithography, we observe qubit lifetimes and coherence times in the order of 10 μs. We systematically characterize loss channels such as incoherent dielectric loss, Purcell decay and radiative losses. The implementation of a gradiometric SQUID loop allows for a fast tuning of the qubit transition frequency and therefore for full tomographic control of the quantum circuit. Due to the large loop size, the presented qubit architecture features a strongly increased magnetic dipole moment as compared to conventional transmon designs. This renders the concentric transmon a promising candidate to establish a site-selective passive direct Z coupling between neighboring qubits, being a pending quest in the field of quantum simulation.
Concentric transmon qubit featuring fast tunability and an anisotropic magnetic dipole moment
Braumüller, Jochen; Sandberg, Martin; Vissers, Michael R.; Schneider, Andre; Schlör, Steffen; Grünhaupt, Lukas; Rotzinger, Hannes; Marthaler, Michael; Lukashenko, Alexander; Dieter, Amadeus; Ustinov, Alexey V.; Weides, Martin; Pappas, David P.
2016-01-01
We present a planar qubit design based on a superconducting circuit that we call concentric transmon. While employing a straightforward fabrication process using Al evaporation and lift-off lithography, we observe qubit lifetimes and coherence times in the order of 10 μ s . We systematically characterize loss channels such as incoherent dielectric loss, Purcell decay and radiative losses. The implementation of a gradiometric SQUID loop allows for a fast tuning of the qubit transition frequency and therefore for full tomographic control of the quantum circuit. Due to the large loop size, the presented qubit architecture features a strongly increased magnetic dipole moment as compared to conventional transmon designs. This renders the concentric transmon a promising candidate to establish a site-selective passive direct Z ̂ coupling between neighboring qubits, being a pending quest in the field of quantum simulation.
The dependence of magnetosphere-ionosphere system on the Earth's magnetic dipole moment
Ngwira, C. M.; Pulkkinen, A. A.; Sibeck, D. G.; Rastaetter, L.
2017-12-01
Space weather is increasingly recognized as an international problem affecting several different man-made technologies. The ability to understand, monitor and forecast Earth-directed space weather is of paramount importance for our highly technology-dependent society and for the current rapid developments in awareness and exploration within the heliosphere. It is well known that the strength of the Earth's magnetic field changes over long time scales. We use physics-based simulations with the University of Michigan Space Weather Modeling Framework (SWMF) to examine how the magnetosphere, ionosphere, and ground geomagnetic field perturbations respond as the geomagnetic dipole moment changes. We discuss the implication of these results for our community and the end-users of space weather information.
Hadronic part of the muon anomalous magnetic moment: an improved evaluation
International Nuclear Information System (INIS)
Martinovic, L.; Dubnicka, S.
1989-01-01
A new evaluation of the lowest-order hadronic vacuum-polarization contribution a μ vac to the anomalous magnetic moment of the muon with the result a μ vac =(7058±68)x10 -11 is calculated. The total error is reduced almost twice in comparison with the previous most precise evaluation. The improvement comes from the use of global analytic models of the pion and kaon form factors for the two-pion and two-kaon contributions as well as from the new experimental information mainly for the three-pion channel. The high-energy contribution to a μ vac calculated from the QCD expression for R=σ(e + e - →hadrons)/σ(e + e - →μ + μ - ) is found to be consistent with the calculation based on the experimental data only after the inclusion of the third-order correction for R. 26 refs.; 1 fig.; 2 tabs
Fits of the baryon magnetic moments to the quark model and spectrum-generating SU(3)
International Nuclear Information System (INIS)
Bohm, A.; Teese, R.B.
1982-01-01
We show that for theoretical as well as phenomenological reasons the baryon magnetic moments that fulfill simple group transformation properties should be taken in intrinsic rather than nuclear magnetons. A fit of the recent experimental data to the reduced matrix elements of the usual octet electromagnetic current is still not good, and in order to obtain acceptable agreement, one has to add correction terms to the octet current. We have texted two kinds of corrections: U-spin-scalar terms, which are singles out by the model-independent algebraic properties of the hadron electromagnetic current, and octet U-spin vectors, which could come from quark-mass breaking in a nonrelativistic quark model. We find that the U-spin-scalar terms are more important than the U-spin vectors for various levels of demanded theoretical accuracy
Four-flavour leading hadronic contribution to the muon anomalous magnetic moment
Energy Technology Data Exchange (ETDEWEB)
Burger, Florian; Hotzel, Grit [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik; Feng, Xu [KEK National High Energy Physics, Tsukuba (Japan); Jansen, Karl [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Cyprus Univ. Nicosia (Cyprus). Dept. of Physics; Petschlies, Marcus [The Cyprus Institute, Nicosia (Cyprus); Renner, Dru B. [Jefferson Lab, Newport News, VA (United States)
2013-11-15
We present a four-flavour lattice calculation of the leading-order hadronic vacuum polarisation contribution to the anomalous magnetic moment of the muon, a{sup hvp}{sub {mu}}, arising from quark-connected Feynman graphs. It is based on ensembles featuring N{sub f}=2+1+1 dynamical twisted mass fermions generated by the European Twisted Mass Collaboration (ETMC). Several light quark masses are used in order to yield a controlled extrapolation to the physical pion mass. We employ three lattice spacings to examine lattice artefacts and several different volumes to check for finite-size effects. Including the complete first two generations of quarks allows for a direct comparison with phenomenological determinations of a{sup hvp}{sub {mu}}. Our final result involving an estimate of the systematic uncertainty a{sup hvp}{sub {mu}}=6.74(21)(18) x 10{sup -8} shows a good overall agreement with these computations.
Kumar, Ashok; Scott, J F; Katiyar, R S
2011-08-08
Here, we report the tuning of room-temperature magnon frequencies from 473 GHz to 402 GHz (14%) and magnetic moment from 4 to 18 emu∕cm(3) at 100 Oe under the application of external electric fields (E) across interdigital electrodes in BiFeO(3) (BFO) thin films. A decrease in magnon frequencies and increase in phonon frequencies were observed with Magnon and phonon Raman intensities are asymmetric with polarity, decreasing with positive E (+E) and increasing with negative E (-E) where polarity is with respect to in-plane polarization P. The magnetoelectric coupling (α) is proved to be linear and a rather isotropic α = 8.5 × 10(-12) sm(-1).
International Nuclear Information System (INIS)
Aistov, A.V.; Gavrilenko, V.G.
1996-01-01
The normal incidence of a small-amplitude electromagnetic wave upon a semi-infinite turbulent collisional plasm with an oblique external magnetic field is considered. Within a small-angle-scattering approximation of the radiative transport theory, a system of differential equations is derived for statistical moments of the angular power spectrum of radiation. The dependences of the spectrum centroid, dispersion, and asymmetry on the depth of penetration are studied numerically. The nonmonotonic behavior of the dispersion is revealed, and an increase in the spectrum width with absorption anisotropy is found within some depth interval. It is shown that, at large depths, the direction of the displacement of the spectrum centroid, does not always coincide with the direction of minimum absorption
Magnetic dipole moments of deformed odd-odd nuclei up to 2p-1f shells
Energy Technology Data Exchange (ETDEWEB)
Garg, V P; Verma, A K; Gandhi, R; Sharma, S D [Punjabi Univ., Patiala (India). Dept. of Physics
1981-02-01
The expression for magnetic moments for the states comprising ground state configurations of odd-odd nuclei has been simplified by excluding mixing of other nucleonic configurations. This is contrary to Sharma's and Davidson's results which had been obtained by diagonalizing state matrices for a set of parameters using Davidov and Filippov's non-axial rotor model. According to the relative directions of spins of unpaired odd nucleons, the nuclei have been classified under four categories-an exercise not attempted till now. The calculations have been done with various quenching factors depending upon the relative spin orientations of odd nucleons. For most of the nuclei, the results show considerable improvement over those of Gallagher and Moszkowski and of Sharma.
Magnetic moment of $^{17}$Ne using beta -NMR and tilted foil polarization
Baby, L T; Hass, M; Haas, H; Weissman, L; Brown, B A
2004-01-01
We report on the measurement of the magnetic moment of the ground state of /sup 17/Ne. Radioactive /sup 17/Ne nuclei were delivered from the high resolution mass separator at ISOLDE onto a high voltage platform at -200 kV and were polarized using the tilted foil polarization method. The polarized nuclei were implanted into a Pt stopper situated in a liquid-helium cooled beta -NMR apparatus and the asymmetry destruction of the ensuing beta rays was monitored as a function of the rf frequency applied to the polarized nuclei. The measured value of mu = 0.74 +or- 0.03 affirms the nu p/sub 1/2//sup - / nature of the ground state of /sup 17/Ne and is compared to shell model calculations. (10 refs).
Ionospheric plasma escape by high-altitude electric fields: Magnetic moment ''pumping''
International Nuclear Information System (INIS)
Lundin, R.; Hultqvist, B.
1989-01-01
Measurements of electric fields and the composition of upward flowing ionospheric ions by the Viking spacecraft have provided further insight into the mass dependent plasma escape process taking place in the upper ionosphere. The Viking results of the temperature and mass-composition of individual ion beams suggest that upward flowing ion beams can be generated by a magnetic moment ''pumping'' mechanism caused by low-frequency transverse electric field fluctuations, in addition to a field aligned ''quasi-electrostatic'' acceleration process. Magnetic moment ''pumping'' within transverse electric field gradients can be described as a conversion of electric drift velocity to cyclotron velocity by the inertial drift in time-dependent electric field. This gives an equal cyclotron velocity gain for all plasma species, irrespective of mass. Oxygen ions thus gain 16 times as much transverse energy as protons. In addition to a transverse energy gain above the escape energy, a field-aligned quasi-electrostatic acceleration is considered primarily responsible for the collimated upward flow of ions. The field-aligned acceleration adds a constant parallel energy to escaping ionospheric ions. Thus, ion beams at high altitudes can be explained by a bimodal acceleration from both a transverse (equal velocity) and a parallel (equal energy) acceleration process. The Viking observations also show that the thermal energy of ion beams, and the ion beam width are mass dependent. The average O + /H + ''temperature ratio has been found to be 4.0 from the Viking observations. This is less than the factor of 16 anticipated from a coherent transverse electric field acceleration but greater than the factor of 1 (or even less than 1) expected from a turbulent acceleration process. copyright American Geophysical Union 1989
Magnetic moments of the spin-(3)/(2) doubly heavy baryons
Energy Technology Data Exchange (ETDEWEB)
Meng, Lu; Li, Hao-Song [Peking University, School of Physics and State Key Laboratory of Nuclear Physics and Technology, Beijing (China); Liu, Zhan-Wei [Lanzhou University, School of Physical Science and Technology, Lanzhou (China); Zhu, Shi-Lin [Peking University, School of Physics and State Key Laboratory of Nuclear Physics and Technology, Beijing (China); Collaborative Innovation Center of Quantum Matter, Beijing (China)
2017-12-15
In this work, we investigate the chiral corrections to the magnetic moments of the spin-(3)/(2) doubly charmed baryons systematically up to next-to-next-to-leading order with the heavy baryon chiral perturbation theory. The numerical results are given up to next-to-leading order: μ{sub Ξ}{sup {sub *}{sub +}{sub +{sub c{sub c}}}} = 2.61μ{sub N}, μ{sub Ξ}{sup {sub *}{sub +{sub c{sub c}}}} = -0.18μ{sub N}, μ{sub Ω}{sup {sub *}{sub +{sub c{sub c}}}} = 0.17μ{sub N}. As a by-product, we have also calculated the magnetic moments of the spin-(3)/(2) doubly bottom baryons and charmed bottom baryons: μ{sub Ξ}{sup {sub *}{sub 0{sub b{sub b}}}} = 2.83μ{sub N}, μ{sub Ξ}{sup {sub *}{sub -{sub b{sub b}}}} = -1.33μ{sub N}, μ{sub Ω}{sup {sub *}{sub -{sub b{sub b}}}} = -1.54μ{sub N}, μ{sub Ξ}{sup {sub *}{sub +{sub b{sub c}}}} = 3.22μ{sub N}, μ{sub Ξ}{sup {sub *}{sub 0{sub b{sub c}}}} = -0.84μ{sub N}, μ{sub Ω}{sup {sub *}{sub 0{sub b{sub c}}}} = -1.09μ{sub N}. (orig.)
Kuiper, Pieter; Searle, Barry G.; Rudolf, Petra; Tjeng, L.H.; Chen, C.T.
1993-01-01
We report strong magnetic linear dichroism at the Fe L2,3 edge of the antiferromagnet Fe2O3 (hematite). The relative difference in absorption for light polarized parallel and perpendicular to the magnetic moment is as high as 40% at the Fe L2 edge. The spectra are in excellent agreement with
International Nuclear Information System (INIS)
Yukhimchuk, A.A.; Vinogradov, Yu.I.; Golubkov, A.N.; Grishechkin, S.K.; Il'kaev, R.I.; Kuryakin, A.V.; Lebedev, B.L.; Lobanov, V.N.; Mikhailov, V.N.; Tumkin, D.P.; Bogdanova, L.N.
2005-01-01
For the experiment on the measurement of the electron antineutrino magnetic moment we suggest a new approach to the tritium source design, namely, a configuration of annular cells filled with TiT 2 that are stacked into a hollow cylinder. Detectors are mounted in the hole inside.We present results of the optimization of geometrical and physical parameters of the source with respect to its experimental effectiveness and safety guaranty at all stages of its lifecycle. We discuss the choice of the construction materials and specify technological issues relevant to radiation purity of the source, being of the special concern in the experiment on the electron antineutrino magnetic moment measurement
International Nuclear Information System (INIS)
Cameron, P.R.; Luccio, A.U.; Shea, T.J.; Tsoupas, N.; Goldberg, D.A.
1997-01-01
Effective polarimetry at high energies in hadron and lepton synchrotrons has been a long-standing and difficult problem. In synchrotrons with polarized beams it is possible to cause the direction of the polarization vector of a given bunch to alternate at a frequency which is some subharmonic of the rotation frequency. This can result in the presence of lines in the beam spectrum which are due only to the magnetic moment of the beam and which are well removed from the various lines due to the charge of the beam. The magnitude of these lines can be calculated from first principles. They are many orders of magnitude weaker than the Schottky signals. Measurement of the magnitude of one of these lines would be an absolute measurement of beam polarization. For measuring magnetic field, the Superconducting Quantum Interference Device, or squid, is about five orders of magnitude more sensitive than any other transducer. Using a squid, such a measurement might be accomplished with the proper combination of shielding, pickup loop design, and filtering. The resulting instrument would be fast, non-destructive, and comparatively cheap. In addition, techniques developed in the creation of such an instrument could be used to measure the Schottky spectrum in unprecedented detail. We present specifics of a polarimeter design for the Relativistic Heavy Ion Collider (RHIC) and briefly discuss the possibility of using this technique to measure polarization at high-energy electron machines like LEP and HERA. copyright 1997 American Institute of Physics
Magnetic moment and magnetocrystalline anisotropy of 3d-ion subsystem in R2T14B
International Nuclear Information System (INIS)
Bartashevich, M.I.; Kudrevatykh, N.V.; Andreev, A.V.; Rejmer, V.A.
1990-01-01
The effect of substituting cobalt for iron on the magnetic moment, magneto-crystalline anisotropy and thermal expansion of R 2 (Fe 1-x Co x ) 14 B single crystals (R=Y, Gd, 0≤x≤0.3) is investigated. The uniaxial magnetic anisotropy constant K 1 for the 3d-subsystem passes through a maximum at T=4.2 K with increasing Co concentration. For T c the temperature dependence of K 1 does not possess a positive slope. The magnetic moment of the 3d-subsystem at 4.2 K does not exhibit the maximum at intermediate concentrations observed for most R(Fe, Co)-intermetallics. An explanation is presented of the changes in the magnetic properties. It is shown that the variation of the interatomic distances on thermal expansion should not affect the magnitude of the anisotropy constant of the 3d- and R-subsystems
International Nuclear Information System (INIS)
Pulido, J.
1993-01-01
The results reported by the four solar neutrino experiments (Homestake, Kamiokande, SAGE, Gallex) are analyzed from the point of view of the magnetic moment solution to the solar neutrino problem. The neutrino deficit reported by the gallium experiments (SAGE, Gallex) is apparently not as large as the one reported by Homestake and Kamiokande, a phenomenon suggesting a greater suppression in the large energy solar neutrino sector but also consistent with a uniform suppression for all neutrinos. Both uniform and nonuniform suppressions are examined for three different variants of the solar magnetic field and the possible parameter ranges for Δ 2 m 21 and μ ν are investigated. Massless neutrinos are not excluded and in all cases Δ 2 m 21 -5 eV 2 . The anticorrelation of the neutrino flux with sunspot activity is possible in any of the experiments but is in no way implied by a sizable magnetic moment and magnetic field
The effect of ions on the magnetic moment of vacancy for ion-implanted 4H-SiC
Peng, B.; Zhang, Y. M.; Dong, L. P.; Wang, Y. T.; Jia, R. X.
2017-04-01
The structural properties and the spin states of vacancies in ion implanted silicon carbide samples are analyzed by experimental measurements along with first-principles calculations. Different types and dosages of ions (N+, O+, and B+) were implanted in the 4H-silicon carbide single crystal. The Raman spectra, positron annihilation spectroscopy, and magnetization-magnetic field curves of the implanted samples were measured. The fitting results of magnetization-magnetic field curves reveal that samples implanted with 1 × 1016 cm-2 N+ and O+ ions generate paramagnetic centers with various spin states of J = 1 and J = 0.7, respectively. While for other implanted specimens, the spin states of the paramagnetic centers remain unchanged compared with the pristine sample. According to the positron annihilation spectroscopy and first-principles calculations, the change in spin states originates from the silicon vacancy carrying a magnetic moment of 3.0 μB in the high dosage N-implanted system and 2.0 μB in the O-doped system. In addition, the ratio of the concentration of implanted N ions and silicon vacancies will affect the magnetic moment of VSi. The formation of carbon vacancy which does not carry a local magnetic moment in B-implanted SiC can explain the invariability in the spin states of the paramagnetic centers. These results will help to understand the magnetic moments of vacancies in ion implanted 4H-SiC and provide a possible routine to induce vacancies with high spin states in SiC for the application in quantum technologies and spintronics.
Meyer, Harvey B.
2017-09-01
We present a Lorentz-covariant, Euclidean coordinate-space expression for the hadronic vacuum polarisation, the Adler function and the leading hadronic contribution to the anomalous magnetic moment of the muon. The representation offers a high degree of flexibility for an implementation in lattice QCD. We expect it to be particularly helpful for the quark-line disconnected contributions.
International Nuclear Information System (INIS)
Khare, A.
1975-01-01
We show that Adler's sum rule for neutrino scattering and Bjorken's inequality for electron-proton scattering are modified if quark has finite anomalous magnetic moment ksub(q). We also show that if ksub(q) is nonzero, there exist fixed poles in spin-flip Compton scattering as well as in charged pion photoproduction. (auth.)
Energy Technology Data Exchange (ETDEWEB)
Meyer, Harvey B. [Mainz Univ., PRISMA Cluster of Excellence, Inst. fuer Kernphysik und Helmholtz Institut Mainz (Germany)
2017-09-15
We present a Lorentz-covariant, Euclidean coordinate-space expression for the hadronic vacuum polarisation, the Adler function and the leading hadronic contribution to the anomalous magnetic moment of the muon. The representation offers a high degree of flexibility for an implementation in lattice QCD. We expect it to be particularly helpful for the quark-line disconnected contributions. (orig.)
International Nuclear Information System (INIS)
Scheunert, G; Ward, C; Hendren, W R; Bowman, R M; Lapicki, A A; Hardeman, R; Mooney, M; Gubbins, M
2014-01-01
Despite being the most suitable candidates for solenoid pole pieces in state-of-the-art superconductor-based electromagnets, the intrinsic magnetic properties of heavy rare earth metals and their alloys have gained comparatively little attention. With the potential of integration in micro and nanoscale devices, thin films of Gd, Dy, Tb, DyGd and DyTb were plasma-sputtered and investigated for their in-plane magnetic properties, with an emphasis on magnetization versus temperature profiles. Based on crystal structure analysis of the polycrystalline rare earth films, which consist of a low magnetic moment fcc layer at the seed interface topped with a higher moment hcp layer, an experimental protocol is introduced which allows the direct magnetic analysis of the individual layers. In line with the general trend of heavy lanthanides, the saturation magnetization was found to drop with increasing unit cell size. In situ annealed rare earth films exceeded the saturation magnetization of a high-moment Fe 65 Co 35 reference film in the cryogenic temperature regime, proving their potential for pole piece applications; however as-deposited rare earth films were found completely unsuitable. In agreement with theoretical predictions, sufficiently strained crystal phases of Tb and Dy did not exhibit an incommensurate magnetic order, unlike their single-crystal counterparts which have a helical phase. DyGd and DyTb alloys followed the trends of the elemental rare earth metals in terms of crystal structure and magnetic properties. Inter-rare-earth alloys hence present a desirable blend of saturation magnetization and operating temperature. (paper)
Cross sectional moments and portfolio returns: Evidence for select emerging markets
Directory of Open Access Journals (Sweden)
Sanjay Sehgal
2016-09-01
Full Text Available Research does not indicate a consensus on the relationship between idiosyncratic volatility and asset returns. Moreover, the role of cross sectional higher order moments in predicting market returns is relatively unexplored. We show that the cross sectional volatility measure suggested by Garcia et al. is highly correlated with alternative measures of idiosyncratic volatility constructed as variance of errors from the capital asset pricing model and the Fama French model. We find that cross sectional moments help in predicting aggregate market returns in some sample countries and also provide information for portfolio formation, which is more consistent for portfolios sorted on sensitivity to cross sectional skewness.
International Nuclear Information System (INIS)
Kondratyuk, L.A.; Krivoruchenko, M.I.; Shchepkin, M.G.
1986-01-01
The magnetic moment of the six-quark bag with the deuteron quantum numbers is calculated in the chiral bag model taking into account the gluonic and the pionic corrections. For the six-quark bag radius R 6q =1.18-1.38 fm (corresponding to the nucleon bag radius R 3q =0.8-1.0 fm) the magnetic moment equals m D 6q =1.17-1.23 nuclear magnetons. This result together with the deuteron magnetic momentum data provides a restraint upon the six-quark bag admixture in the deuteron P B < or approx. 3%. This value is a few times lower than the probability that two nucleons are in the range r < 1.4 fm. Therefore, it may be interpreted as an evidence for a considerable difference between the properties of the effective bag in the deuteron and of the MIT bag
Phase-Transition and Magnetic Moment of the Gd3+ Ion in the Gd2Fe17 Compound
Institute of Scientific and Technical Information of China (English)
HAO Yan-Ming; FU Bin; ZHOU Yan; ZHAO Miao
2009-01-01
The structure and magnetic phase transitions of the Gd2Fe17 compound are investigated by using a differential thermal/thermogravimetric analyzer, x-ray diffraction, and magnetization measurements. The result shows that there are two phase structures for the Gd2Fe17 compound: the hexagonal Th2Ni17-type structure at high tem-peratures (above 1243℃), and the rhombohedrai Th2Zn17-type structure, respectively. A method to measure the magnetic moments of the Gd-sublattice and the Fe-sublattice in the Gd2Fe17 compound is presented. The moments of the Gd-sublattice and the Fe-sublattice in the Gd2Fe17 compound from 77 to 500 K are measured in this way with a vibrating sample magnetometer. A detailed discussion is presented.
Postma, H; Heyde, K; Walker, P; Grant, I; Veskovic, M; Stone, N; Stone, J
2002-01-01
% IS301 \\\\ \\\\ Low temperature nuclear orientation of isotope-separator implanted short-lived radio-isotopes makes possible the measurements of nuclear magnetic dipole moments of oriented ground and excited states with half-lives longer than a few seconds. Coupling schemes characterizing the odd nucleons and ground-state deformations can be extracted from the nuclear moments. \\\\ We thus propose to measure the magnetic dipole moments of $^{127-133}$Sb to high precision using NMR/ON at the NICOLE facility. With (double magic +1) $^{133}$Sb as the reference, the main aim of this experiment is to examine whether the collective component in the 7/2$^+$ Sb ground state magnetic dipole moment varies as expected according to particle-core coupling calculations carried out for the Sb (Z=51) isotopes. Comparison of the 1-proton-particle excitations in Sb to 1-proton-hole states in In nuclei will shed light on differences between particle and hole excitations as understood within the present model. Comparison of ...
Macroscopic kinematics of the Hall electric field under influence of carrier magnetic moments
International Nuclear Information System (INIS)
Sakai, Masamichi
2016-01-01
The relativistic effect on electromagnetic forces yields two types of forces which depend on the velocity of the relevant particles: (i) the usual Lorentz force exerted on a moving charged particle and (ii) the apparent Lorentz force exerted on a moving magnetic moment. In sharp contrast with type (i), the type (ii) force originates due to the transverse field induced by the Hall effect (HE). This study incorporates both forces into a Drude-type equation with a fully spin-polarized condition to investigate the effects of self-consistency of the source and the resultant fields on the HE. We also examine the self-consistency of the carrier kinematics and electromagnetic dynamics by simultaneously considering the Drude type equation and Maxwell equations at low frequencies. Thus, our approach can predict both the dc and ac characteristics of the HE, demonstrating that the dc current condition solely yields the ordinary HE, while the ac current condition yields generation of both fundamental and second harmonic modes of the HE field. When the magnetostatic field is absent, the simultaneous presence of dc and ac longitudinal currents generates the ac HE that has both fundamental frequency and second harmonic.
Vališka, Michal; Klicpera, Milan; Doležal, Petr; Fabelo, Oscar; Stunault, Anne; Diviš, Martin; Sechovský, Vladimír
2018-03-01
In a cubic ferromagnet, small spontaneous lattice distortions are expected below the Curie temperature, but the phenomenon is usually neglected. This study focuses on such an effect in the U4Ru7Ge6 compound. Based on DFT calculations, we propose a lattice distortion from the cubic I m -3 m space group to a lower, rhombohedral, symmetry described by the R -3 m space group. The strong spin-orbit coupling of the uranium ions plays an essential role in lowering the symmetry, giving rise to two different U sites (U1 and U2). Using polarized neutron diffraction in applied magnetic fields of 1 and 9 T in the ordered state (1.9 K ) and in the paramagnetic state (20 K ), we bring convincing experimental evidence of this splitting of the U sites, with different magnetic moments. The data have been analyzed both by maximum entropy calculations and by a direct fit in the dipolar approximation. In the ordered phase, the μL/μS ratio of the orbital and spin moments on the U2 site is remarkably lower than for the free U3 + or U4 + ion, which points to a strong hybridization of the U 5 f wave functions with the 4 d wave functions of the surrounding Ru. On the U1 site, the μL/μS ratio exhibits an unexpectedly low value: the orbital moment is almost quenched, like in metallic α -uranium. As a further evidence of the 5 f -4 d hybridization in the U4Ru7Ge6 system, we observe the absence of a magnetic moment on the Ru1 site, but a rather large induced moment on the Ru2 site, which is in closer coordination with both U positions. Very similar results are obtained at 20 K in the ferromagnetic regime induced by the magnetic field of 9 T . This shows that applying a strong magnetic field above the Curie temperature also leads to the splitting of the uranium sites, which further demonstrates the intimate coupling of the magnetic ordering and structural distortion. We propose that the difference between the magnetic moment on the U1 and U2 sites results from the strong spin
International Nuclear Information System (INIS)
Mohanta, S.K.; Mishra, S.N.; Srivastava, S.K.
2014-01-01
We present first principles calculations of electronic structure and magnetic properties of dilute transition metal (3d, 4d and 5d) impurities in a Gd host. The calculations have been performed within the density functional theory using the full potential linearized augmented plane wave technique and the GGA+U method. The spin and orbital contributions to the magnetic moment and the hyperfine fields have been computed. We find large magnetic moments for 3d (Ti–Co), 4d (Nb–Ru) and 5d (Ta–Os) impurities with magnitudes significantly different from the values estimated from earlier mean field calculation [J. Magn. Magn. Mater. 320 (2008) e446–e449]. The exchange interaction between the impurity and host Gd moments is found to be positive for early 3d elements (Sc–V) while in all other cases an anti-ferromagnetic coupling is observed. The trends for the magnetic moment and hyperfine field of d-impurities in Gd show qualitative difference with respect to their behavior in Fe, Co and Ni. The calculated total hyperfine field, in most cases, shows excellent agreement with the experimental results. A detailed analysis of the Fermi contact hyperfine field has been made, revealing striking differences for impurities having less or more than half filled d-shell. The impurity induced perturbations in host moments and the change in the global magnetization of the unit cell have also been computed. The variation within each of the d-series is found to correlate with the d–d hybridization strength between the impurity and host atoms. - Highlights: • Detailed study of transition metal impurities in ferromagnetic Gd has been carried out. • The trends in impurity magnetic moment are qualitatively different from Fe, Co and Ni. • The variation within each of the d-series is found to correlate with the d–d hybridization strength between the impurity and host atoms. • Experimental trend in a hyperfine field has been reproduced successfully
International Nuclear Information System (INIS)
Chen, Zhi-Yuan; Xu, Bin; Gao, G.Y.
2013-01-01
The structural, electronic and magnetic properties of zinc-blende TiBi are investigated by using the first-principles full-potential linearized augmented plane-wave method. It is found that zinc-blende TiBi exhibits half-metallic ferromagnetism with the energy gap of 1.39 eV in the minority-spin channel. The calculated total magnetic moment of 1.00 µ B per formula unit mainly originates from the Ti atom. We also show that the half-metallicity of zinc-blende TiBi can be maintained up to 3% compression and 5% expansion of lattice constant with respect to the equilibrium lattice, and zinc-blende TiBi is still half-metallic when the spin–orbit coupling is considered. The robust half-metallicity and low magnetic moment make zinc-blende TiBi a potential candidate for spintronic applications. - Highlights: • Half-metallic ferromagnetism in zinc-blende TiBi. • Zinc-blende TiBi has low magnetic moment of 1.00 µ B /f.u. • Spin–orbit coupling does not destroy the half-metallicity of zinc-blende TiBi
International Nuclear Information System (INIS)
Ling Langsheng; Zhang Lei; Tong Wei; Qu Zhe; Pi Li; Zhang Yuheng
2012-01-01
The substitution of Ga for Mn in manganite Nd 0.6 Dy 0.1 Sr 0.3 MnO 3 with a ferromagnetic (FM) ground state has been performed to study the influence of the Mn-sublattice magnetic ordering on the magnetic rare-earth sublattice. It is found that the substitution of Mn 3+ with Ga 3+ ions results in a sharp decrease of T C , reflecting the reduction of the double-exchange interactions strength J Mn–Mn . At the same time, a depinning effect of the rare-earth magnetic moment has been observed. This behavior unambiguously proves that the exchange interaction between Mn and rare-earth ions J Mn–R strongly influences the rare-earth magnetic ordering at temperatures below T C and stabilizes the rare-earth magnetic ground state.
Ando, Shin'ichiro; Sato, Katsuhiko
2003-01-01
We investigate resonant spin-flavor (RSF) conversions of supernova neutrinos which are induced by the interaction of neutrino magnetic moment and supernova magnetic fields. From the formulation which includes all three-flavor neutrinos and antineutrinos, we give a new crossing diagram that includes not only ordinary Mikheyev-Smirnov-Wolfenstein (MSW) resonance but also a magnetically induced RSF effect. With the diagram, it is found that four conversions occur in supernovae: two are induced by the RSF effect and two by the pure MSW effect. We also numerically calculate neutrino conversions in supernova matter, using neutrino mixing parameters inferred from recent experimental results and a realistic supernova progenitor model. The results indicate that until 0.5 sec after the core bounce, the RSF-induced ν¯e↔ντ transition occurs efficiently (adiabatic resonance), when μν≳10- 12μB(B0/5×109 G)-1, where B0 is the strength of the magnetic field at the surface of iron core. We also evaluate the energy spectrum as a function of μνB0 at the super-Kamiokande detector and the Sudbury Neutrino Observatory using the calculated conversion probabilities, and find that the spectral deformation might have the possibility to provide useful information on the neutrino magnetic moment as well as the magnetic field strength in supernovae.
International Nuclear Information System (INIS)
Barik, N.; Das, M.
1983-01-01
The effect of confinement on the magnetic moment of a quark has been studied in a simple independent-quark model based on the Dirac equation with a power-law potential. The magnetic moments so obtained for the constituent quarks, which are found to be significantly different from their corresponding Dirac moments, are used in predicting the magnetic moments of baryons in the nucleon octet as well as those in the charmed and b-flavored sectors. We not only get an improved result for the proton magnetic moment, but the calculation for the rest of the nucleon octet also turns out to be in reasonable agreement with experiment. The overall predictions for the charmed and b-flavored baryons are also comparable with other model predictions
Assembling Transgender Moments
Greteman, Adam J.
2017-01-01
In this article, the author seeks to assemble moments--scholarly, popular, and aesthetic--in order to explore the possibilities that emerge as moments collect in education's encounters with the needs, struggles, and possibilities of transgender lives and practices. Assembling moments, the author argues, illustrates the value of "moments"…
A call for new physics: The muon anomalous magnetic moment and lepton flavor violation
Lindner, Manfred; Platscher, Moritz; Queiroz, Farinaldo S.
2018-02-01
We review how the muon anomalous magnetic moment (g - 2) and the quest for lepton flavor violation are intimately correlated. Indeed the decay μ → eγ is induced by the same amplitude for different choices of in- and outgoing leptons. In this work, we try to address some intriguing questions such as: Which hierarchy in the charged lepton sector one should have in order to reconcile possible signals coming simultaneously from g - 2and lepton flavor violation? What can we learn if the g - 2anomaly is confirmed by the upcoming flagship experiments at FERMILAB and J-PARC, and no signal is seen in the decay μ → eγin the foreseeable future? On the other hand, if the μ → eγdecay is seen in the upcoming years, do we need to necessarily observe a signal also in g - 2?. In this attempt, we generally study the correlation between these observables in a detailed analysis of simplified models. We derive master integrals and fully analytical and exact expressions for both phenomena, and address other flavor violating signals. We investigate under which conditions the observations can be made compatible and discuss their implications. Lastly, we discuss in this context several extensions of the SM, such as the Minimal Supersymmetric Standard Model, Left-Right symmetric model, B- L model, scotogenic model, two Higgs doublet model, Zee-Babu model, 331 model, and Lμ -Lτ, dark photon, seesaw models type I, II and III, and also address the interplay with μ → eee decay and μ- e conversion.
Double-trap measurement of the proton magnetic moment at 0.3 parts per billion precision.
Schneider, Georg; Mooser, Andreas; Bohman, Matthew; Schön, Natalie; Harrington, James; Higuchi, Takashi; Nagahama, Hiroki; Sellner, Stefan; Smorra, Christian; Blaum, Klaus; Matsuda, Yasuyuki; Quint, Wolfgang; Walz, Jochen; Ulmer, Stefan
2017-11-24
Precise knowledge of the fundamental properties of the proton is essential for our understanding of atomic structure as well as for precise tests of fundamental symmetries. We report on a direct high-precision measurement of the magnetic moment μ p of the proton in units of the nuclear magneton μ N The result, μ p = 2.79284734462 (±0.00000000082) μ N , has a fractional precision of 0.3 parts per billion, improves the previous best measurement by a factor of 11, and is consistent with the currently accepted value. This was achieved with the use of an optimized double-Penning trap technique. Provided a similar measurement of the antiproton magnetic moment can be performed, this result will enable a test of the fundamental symmetry between matter and antimatter in the baryonic sector at the 10 -10 level. Copyright © 2017, American Association for the Advancement of Science.
Energy Technology Data Exchange (ETDEWEB)
Feng, Xu [DESY, Zeuthen (Germany). NIC; Muenster Univ. (Germany). Inst. fuer Theoretische Physik; Jansen, Karl; Renner, Dru B. [DESY, Zeuthen (Germany). NIC; Petschlies, Marcus [Humboldt Univ. Berlin (Germany). Inst. fuer Physik
2011-03-15
We present a reliable nonperturbative calculation of the QCD correction, at leading-order in the electromagnetic coupling, to the anomalous magnetic moment of the electron, muon and tau leptons using two-flavor lattice QCD. We use multiple lattice spacings, multiple volumes and a broad range of quark masses to control the continuum, in nite-volume and chiral limits. We examine the impact of the commonly ignored disconnected diagrams and introduce a modi cation to the previously used method that results in a well-controlled lattice calculation. We obtain 1.513(43).10{sup -12}, 5.72(16).10{sup -8} and 2.650(54).10{sup -6} for the leading-order QCD correction to the anomalous magnetic moment of the electron, muon and tau respectively, each accurate to better than 3%. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Dru Renner, Xu Feng, Karl Jansen, Marcus Petschlies
2011-08-01
We present a reliable nonperturbative calculation of the QCD correction, at leading-order in the electromagnetic coupling, to the anomalous magnetic moment of the electron, muon and tau leptons using two-flavor lattice QCD. We use multiple lattice spacings, multiple volumes and a broad range of quark masses to control the continuum, infinite-volume and chiral limits. We examine the impact of the commonly ignored disconnected diagrams and introduce a modification to the previously used method that results in a well-controlled lattice calculation. We obtain 1.513 (43) 10^-12, 5.72 (16) 10^-8 and 2.650 (54) 10^-6 for the leading-order QCD correction to the anomalous magnetic moment of the electron, muon and tau respectively, each accurate to better than 3%.
International Nuclear Information System (INIS)
Cabral-Rosetti, L.G.; Bernabeu, J.; Vidal, J.
2000-01-01
We present a computation of the charge and the magnetic moment of the neutrino in the recently developed electro-weak background field method and in the linear R ξ L gauge. First, we deduce a formal Ward-Takahashi identity which implies the immediate cancellation of the neutrino electric charge. This Ward-Takahashi identity is as simple as that for QED. The computation of the (proper and improper) one loop vertex diagrams contributing to the neutrino electric charge is also presented in an arbitrary gauge, checking in this way the Ward-Takahashi identity previously obtained. Finally, the calculation of the magnetic moment of the neutrino, in the minimal extension of the standard model with massive Dirac neutrinos, is presented, showing its gauge parameter and gauge structure independence explicitly. (orig.)
Tuning emergent magnetism in a Hund's impurity
Czech Academy of Sciences Publication Activity Database
Khajetoorians, A.A.; Valentyuk, M.; Steinbrecher, M.; Schlenk, T.; Shick, Alexander; Kolorenč, Jindřich; Lichtenstein, A.I.; Wehling, T.O.; Wiesendanger, R.; Wiebe, J.
2015-01-01
Roč. 10, č. 11 (2015), s. 958-U195 ISSN 1748-3387 R&D Projects: GA ČR GC15-05872J Institutional support: RVO:68378271 Keywords : magnetic anisotropy * Kondo effect * strong electron correlations * scanning tunnelling microscopy Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 35.267, year: 2015
Initiation of CMEs by Magnetic Flux Emergence
Indian Academy of Sciences (India)
The initiation of solar Coronal Mass Ejections (CMEs) is studied in the framework of numerical magnetohydrodynamics (MHD). The initial CME model includes a magnetic flux rope in spherical, axisymmetric geometry. The initial configuration consists of a magnetic flux rope embedded in a gravitationally stratified solar ...
Energy Technology Data Exchange (ETDEWEB)
Silenko, Alexander J. [Belarusian State University, Research Institute for Nuclear Problems, Minsk (Belarus); Joint Institute for Nuclear Research, Bogoliubov Laboratory of Theoretical Physics, Dubna (Russian Federation)
2017-05-15
A general theoretical description of a magnetic resonance is presented. This description is necessary for a detailed analysis of spin dynamics in electric-dipole-moment experiments in storage rings. General formulas describing a behavior of all components of the polarization vector at the magnetic resonance are obtained for an arbitrary initial polarization. These formulas are exact on condition that the nonresonance rotating field is neglected. The spin dynamics is also calculated at frequencies far from resonance with allowance for both rotating fields. A general quantum-mechanical analysis of the spin evolution at the magnetic resonance is fulfilled and the full agreement between the classical and quantum-mechanical approaches is shown. Quasimagnetic resonances for particles and nuclei moving in noncontinuous perturbing fields of accelerators and storage rings are considered. Distinguishing features of quasimagnetic resonances in storage ring electric-dipole-moment experiments are investigated in detail. The exact formulas for the effect caused by the electric dipole moment are derived. The difference between the resonance effects conditioned by the rf electric-field flipper and the rf Wien filter is found and is calculated for the first time. The existence of this difference is crucial for the establishment of a consent between analytical derivations and computer simulations and for checking spin tracking programs. The main systematical errors are considered. (orig.)
International Nuclear Information System (INIS)
Casperson, D.E.; Crane, T.W.; Denison, A.B.; Egan, P.O.; Hughes, V.W.; Mariam, F.G.; Orth, H.; Reist, H.W.; Souder, P.A.; Stambaugh, R.D.; Thompson, P.A.; zu Putlitz, G.
1977-01-01
Measurements of Zeeman transitions in the ground state of muonium at strong magnetic field have yielded values for the hfs interval, Δν = 4463 302.35(52) kHz (0.12 ppm) and for the muon magnetic moment, μ/sub μ//μ/sub p/ = 3.183 3403(44) (1.4 ppm), fo considerably higher precision than previous results. The theoretical expression for Δν, including our measured value of μ/sub μ//μ/sub p/, disagrees with the experimental value by 2.5 standard deviations. The electronic g/sub J/ density shift for muonium in Kr has been measured
Shao, Yangfan; Pang, Rui; Pan, Hui; Shi, Xingqiang
2018-03-01
The interfaces between organic molecules and magnetic metals have gained increasing interest for both fundamental reasons and applications. Among them, the C60/layered antiferromagnetic (AFM) interfaces have been studied only for C60 bonded to the outermost ferromagnetic layer [S. L. Kawahara et al., Nano Lett. 12, 4558 (2012) and D. Li et al., Phys. Rev. B 93, 085425 (2016)]. Here, via density functional theory calculations combined with evidence from the literature, we demonstrate that C60 adsorption can reconstruct the layered-AFM Cr(001) surface at elevated annealing temperatures so that C60 bonds to both the outermost and the subsurface Cr layers in opposite spin directions. Surface reconstruction drastically changes the adsorbed molecule spintronic properties: (1) the spin-split p-d hybridization involves multi-orbitals of C60 and top two layers of Cr with opposite spin-polarization, (2) the subsurface Cr atom dominates the C60 electronic properties, and (3) the reconstruction induces a large magnetic moment of 0.58 μB in C60 as a synergistic effect of the top two Cr layers. The induced magnetic moment in C60 can be explained by the magnetic direct-exchange mechanism, which can be generalized to other C60/magnetic metal systems. Understanding these complex hybridization behaviors is a crucial step for molecular spintronic applications.
Energy Technology Data Exchange (ETDEWEB)
Silenko, Alexander J. [Belarusian State University, Research Institute for Nuclear Problems, Minsk (Belarus); Joint Institute for Nuclear Research, Bogoliubov Laboratory of Theoretical Physics, Dubna (Russian Federation)
2017-10-15
We calculate the corrections for constant radial magnetic field in muon g - 2 and electric-dipole-moment experiments in storage rings. While the correction is negligible for the current generation of g - 2 experiments, it affects the upcoming muon electric-dipole-moment experiment at Fermilab. (orig.)
Silenko, Alexander J.
2017-10-01
We calculate the corrections for constant radial magnetic field in muon {g}-2 and electric-dipole-moment experiments in storage rings. While the correction is negligible for the current generation of {g}-2 experiments, it affects the upcoming muon electric-dipole-moment experiment at Fermilab.
Energy Technology Data Exchange (ETDEWEB)
Afach, S.; Fertl, M.; Franke, B., E-mail: beatrice.franke@psi.ch, E-mail: bernhard.lauss@psi.ch; Kirch, K. [Paul Scherrer Institute, Villigen (Switzerland); Institute for Particle Physics, Eidgenössische Technische Hochschule, Zürich (Switzerland); Bison, G.; Burri, F.; Chowdhuri, Z.; Daum, M.; Henneck, R.; Lauss, B., E-mail: beatrice.franke@psi.ch, E-mail: bernhard.lauss@psi.ch; Meier, M.; Schmidt-Wellenburg, P.; Zsigmond, G. [Paul Scherrer Institute, Villigen (Switzerland); Bodek, K.; Zejma, J. [Jagellonian University, Cracow (Poland); Grujic, Z.; Kasprzak, M.; Weis, A. [University of Fribourg (Switzerland); Hélaine, V. [Laboratoire de Physique Corpusculaire, Caen (France); Paul Scherrer Institute, Villigen (Switzerland); Koch, H.-C. [Institut für Physik, Johannes-Gutenberg-Universität, Mainz (Germany); University of Fribourg (Switzerland); and others
2014-08-28
The Surrounding Field Compensation (SFC) system described in this work is installed around the four-layer Mu-metal magnetic shield of the neutron electric dipole moment spectrometer located at the Paul Scherrer Institute. The SFC system reduces the DC component of the external magnetic field by a factor of about 20. Within a control volume of approximately 2.5 m × 2.5 m × 3 m, disturbances of the magnetic field are attenuated by factors of 5–50 at a bandwidth from 10{sup −3} Hz up to 0.5 Hz, which corresponds to integration times longer than several hundreds of seconds and represent the important timescale for the neutron electric dipole moment measurement. These shielding factors apply to random environmental noise from arbitrary sources. This is achieved via a proportional-integral feedback stabilization system that includes a regularized pseudoinverse matrix of proportionality factors which correlates magnetic field changes at all sensor positions to current changes in the SFC coils.
AUTHOR|(CDS)2085887; Heylen, Hanne
In this work, the odd-even $^{51–63}$Mn isotopes have been analyzed using collinear laser spectroscopy, from which the magnetic dipole moment and the change in change in mean square charge radius can be determined. The magnetic moment is very sensitive to the composition of the total nuclear wave function, while the charge radius gives information about the relative size and degree of deformation of the nucleus. An additional advantage of collinear laser spectroscopy is the possibility of direct measurement of the nuclear spin. The main motivation behind the study of these isotopes is to investigate the change in nuclear structure when approaching neutron number N = 40. This region is of interest due to the apparent doubly magic nature of $^{68}$Ni , which is not seen in the N = 40 isotopes of $^{26}$Fe and $^{24}$Cr. Mn, situated between these elements, offers another perspective due to its uncoupled proton. Based on the observed spectra and extracted moments, spins were assigned to $^{59,61,63}$Mn. The ex...
International Nuclear Information System (INIS)
Orgassa, D.; Fujiwara, H.; Schulthess, T. C.; Butler, W. H.
2000-01-01
Using half-metallic ferromagnets in spin-dependent devices, like spin valves and ferromagnetic tunnel junctions, is expected to increase the device performance. However, using the half-metallic ferromagnet NiMnSb in such devices led to much less than ideal results. One of the possible sources for this behavior is atomic disorder. First-principles calculations of the influence of atomic disorder on the electronic structure of NiMnSb underline the sensitivity of half-metallic properties in NiMnSb to atomic disorder. In this article, we report on the disorder dependence of the total magnetic moment calculated by applying the layer Korringa-Kohn-Rostoker method in conjunction with the coherent potential approximation. We consider the following types of disorder: (1) intermixing of Ni and Mn, (2) partial occupancy of a normally vacant lattice site by Ni and Mn, and (3) partial occupancy of this site by Mn and Sb. In all cases the composition is kept stoichiometric. All three types of disorder decrease the moment monotonically with increasing disorder levels. For the experimentally seen disorder of 5% Mn and 5% Sb on the normally vacant lattice site, the total moment is decreased by 4.1%. The results suggest that precise measurement of the saturation magnetization of NiMnSb thin films can give information on the disorder. (c) 2000 American Institute of Physics
The emergence of complex behaviours in molecular magnetic materials.
Goss, Karin; Gatteschi, Dante; Bogani, Lapo
2014-09-14
Molecular magnetism is considered an area where magnetic phenomena that are usually difficult to demonstrate can emerge with particular clarity. Over the years, however, less understandable systems have appeared in the literature of molecular magnetic materials, in some cases showing features that hint at the spontaneous emergence of global structures out of local interactions. This ingredient is typical of a wider class of problems, called complex behaviours, where the theory of complexity is currently being developed. In this perspective we wish to focus our attention on these systems and the underlying problematic that they highlight. We particularly highlight the emergence of the signatures of complexity in several molecular magnetic systems, which may provide unexplored opportunities for physical and chemical investigations.
An experimentally derived magnetic moment for the f7/2 proton in trans-lead nuclei
International Nuclear Information System (INIS)
Stuchbery, A.E.; Byrne, A.P.; Dracoulis, G.D.
1992-12-01
An experimental value for the g-factor of the 1f 7/2 proton is derived from the measured magnetic moment of the 14 + 1 state in 214 Ra using the multiparticle octupole coupling model. The result, g(f 7/2 ) = 1.41(2), is smaller than anticipated by theories which assume first order core polarization corrections to the proton spin g-factor together with an anomalous orbital magnetism of about 0.12. The experimental value suggests the proton spin g-factor g s may be quenched, in this orbital, to about half the bare-nucleon value, similar to that found for the 0h 9/2 and 0i 13/2 protons, or, alternatively, that the anomalous orbital magnetism is much reduced for the 1f 7/2 orbital. 15 refs., 2 tabs
Magnetic Fixed Points and Emergent Supersymmetry
DEFF Research Database (Denmark)
Antipin, Oleg; Mojaza, Matin; Pica, Claudio
2013-01-01
We establish in perturbation theory the existence of fixed points along the renormalization group flow for QCD with an adjoint Weyl fermion and scalar matter reminiscent of magnetic duals of QCD [1-3]. We classify the fixed points by analyzing their basin of attraction. We discover that among...
Emergent Trust and Work Life Relationships: How to Approach the Relational Moment of Trust
Directory of Open Access Journals (Sweden)
Tone Bergljot Eikeland
2015-10-01
Full Text Available How do we trust? What does the basic mechanism of trust look like? These questions define the starting point for a comparison of the classic ideas of how trust works by Mayer et al. (1995, Möllering’s (2006 re-adaption of Giddens’, Simmel’s, and James’ classic ideas of trust, and a phenomenological approach focusing on “emergent trust.” Introducing the concept of emergent trust, the idea is to suggest a phenomenological approach to studies of trust in work-life relationships in professional organizations, as an alternative to trust as a cognitive attitude, where trust becomes a stable, individual possession. The term “emergent” demonstrates a trust that emerges in meetings between persons, it has an immediate, unconditional quality, and shows itself in situations of life where there is a potential for trust to appear. Trust’s basic relationality makes the person morally responsible for the other. Trust appears between persons, as an event, constituting risk and uncertainty as a natural and positive part of our lives. Still, in larger social settings, the responsibility of trust also disperses on to the work itself, and our wider social networks.
Energy Technology Data Exchange (ETDEWEB)
Ouedraogo, Serge Aristide [Louisiana State Univ., Baton Rouge, LA (United States)
2008-12-01
A search for the muon neutrino magnetic moment was conducted using the Mini-BooNE low energy neutrino data. The analysis was performed by analyzing the elastic scattering interactions of muon neutrinos on electrons. The analysis looked for an excess of elastic scattering events above the Standard Model prediction from which a limit on the neutrino magnetic could be set. In this thesis, we report an excess of 15.3 ± 6.6(stat)±4.1(syst) v_{μ}e events above the expected background. At 90% C.L., we derived a limit on the muon neutrino magnetic moment of 12.7 x 10^{-10} μ_{B}. The other analysis reported in this thesis is a measurement of charged current single pion production (CCπ^{+}) to charged current quasi elastic (CCQE) interactions cross sections ratio. This measurement was performed with two different fitting algorithms and the results from both fitters are consistent with each other.
Manz, Thomas A; Sholl, David S
2011-12-13
The partitioning of electron spin density among atoms in a material gives atomic spin moments (ASMs), which are important for understanding magnetic properties. We compare ASMs computed using different population analysis methods and introduce a method for computing density derived electrostatic and chemical (DDEC) ASMs. Bader and DDEC ASMs can be computed for periodic and nonperiodic materials with either collinear or noncollinear magnetism, while natural population analysis (NPA) ASMs can be computed for nonperiodic materials with collinear magnetism. Our results show Bader, DDEC, and (where applicable) NPA methods give similar ASMs, but different net atomic charges. Because they are optimized to reproduce both the magnetic field and the chemical states of atoms in a material, DDEC ASMs are especially suitable for constructing interaction potentials for atomistic simulations. We describe the computation of accurate ASMs for (a) a variety of systems using collinear and noncollinear spin DFT, (b) highly correlated materials (e.g., magnetite) using DFT+U, and (c) various spin states of ozone using coupled cluster expansions. The computed ASMs are in good agreement with available experimental results for a variety of periodic and nonperiodic materials. Examples considered include the antiferromagnetic metal organic framework Cu3(BTC)2, several ozone spin states, mono- and binuclear transition metal complexes, ferri- and ferro-magnetic solids (e.g., Fe3O4, Fe3Si), and simple molecular systems. We briefly discuss the theory of exchange-correlation functionals for studying noncollinear magnetism. A method for finding the ground state of systems with highly noncollinear magnetism is introduced. We use these methods to study the spin-orbit coupling potential energy surface of the single molecule magnet Fe4C40H52N4O12, which has highly noncollinear magnetism, and find that it contains unusual features that give a new interpretation to experimental data.
Light-by-light scattering and muon's anomalous magnetic moment
Energy Technology Data Exchange (ETDEWEB)
Pauk, Vladyslav
2014-07-01
mesons. We discuss the phenomenological implications of these results for mesons in both the light-quark sector and the charm-quark sector. In the second part of this thesis we develop the formalism to provide an improved estimate for the hadronic light-by-light (HLbL) correction to the muon's anomalous magnetic moment a{sub μ}, by considering single meson contributions beyond the leading pseudo-scalar mesons. This is motivated by the present 3σ deviation between the measurement of a{sub μ} and its estimate in the Standard Model. Furthermore, a forthcoming new experiment at Fermilab aims to improve the experimental precision by a factor of 4 which also requires a similar theoretical improvement. We incorporate available experimental input as well as constraints from light-by-light scattering sum rules to estimate the effects of axial-vector, scalar, and tensor mesons. We give numerical evaluations for the HLbL contribution of these states to a{sub μ}. The presented formalism allows to further improve on these estimates, once new data for such meson states will become available. In the last part of this work, we present a new dispersion formalism developed for the HLbL contribution to a{sub μ} and test the formalism for the case of scalar field theory. The new framework opens a unique possibility for a consistent incorporation of data from e{sup +}e{sup -} colliders for single- as well as multi-meson contributions. Furthermore, it allows to systematically control the HLbL uncertainty in the a{sub μ} which is a crucial step in searches of new physics using this precision quantity.
International Nuclear Information System (INIS)
Burgov, N.A.
1986-01-01
Problem of measuring magnetic momenta of short-living nuclear states is discussed. Different methods for measuring magnetic momenta using interionic and transient magnetic fields were considered. Possibility for determining a value g by means of measuring correlation attenuation is investigated as well as measuring magnetic momenta by means of inclined foils. At present 2 + level magnetic momenta for many odd-odd nuclei have been determined by means of the above methods. The methods are only ones for determining magnetic momenta of nuclear levels with small lifetimes up to tenth and hundredth of shares of picoseconds
International Nuclear Information System (INIS)
Alexander, P.
1993-01-01
A hydromagnetic equation system for the interplanetary collisionless solar wind is used to derive a set of conservation laws for that medium. It is found that every equation of the original system, including the closure relation, is related to one conservation law. The set that has been derived does not only include the traditional laws, but also a new one for the magnetic moment of the electrons. The conservation set is then used to obtain the space constants for the solar coronal expansion. The new law yields a constant that has not been predicted by other models
The magnetic moment of the Z_c(3900) as an axialvector tetraquark state with QCD sum rules
Wang, Zhi-Gang
2018-04-01
In this article, we assign the Z_c^± (3900) to be the diquark-antidiquark type axialvector tetraquark state, study its magnetic moment with the QCD sum rules in the external weak electromagnetic field by carrying out the operator product expansion up to the vacuum condensates of dimension 8. We pay special attention to matching the hadron side with the QCD side of the correlation function to obtain solid duality, the routine can be applied to study other electromagnetic properties of the exotic particles.
Light-by-light-type corrections to the muon anomalous magnetic moment at four-loop order
International Nuclear Information System (INIS)
Kurz, Alexander; Smirnov, Alexander V.; Smirnov, Vladimir A.
2015-08-01
The numerically dominant QED contributions to the anomalous magnetic moment of the muon stem from Feynman diagrams with internal electron loops. We consider such corrections and present a calculation of the four-loop light-by-light-type corrections where the external photon couples to a closed electron or muon loop. We perform an asymptotic expansion in the ratio of electron and muon mass and reduce the resulting integrals to master integrals which we evaluate using analytical and numerical methods. We confirm the results present in the literature which are based on different computational methods.
International Nuclear Information System (INIS)
Lamoreaux, S.K.
1999-01-01
A simple formulation for calculating the magnetic field external to an extended nonpermeable conducting body due to thermal current fluctuations within the body is developed, and is applied to a recent experimental search for the atomic electric-dipole moment (EDM) of 199 Hg. It is shown that the thermal fluctuation field is only slightly smaller in magnitude than other noise sources in that experiment. The formulation is extended to permeable bodies, and the implications for general EDM experiments are discussed. copyright 1999 The American Physical Society
Chakraborty, B.; Davies, C. T. H.; Detar, C.; El-Khadra, A. X.; Gámiz, E.; Gottlieb, Steven; Hatton, D.; Koponen, J.; Kronfeld, A. S.; Laiho, J.; Lepage, G. P.; Liu, Yuzhi; MacKenzie, P. B.; McNeile, C.; Neil, E. T.; Simone, J. N.; Sugar, R.; Toussaint, D.; van de Water, R. S.; Vaquero, A.; Fermilab Lattice, Hpqcd,; Milc Collaborations
2018-04-01
All lattice-QCD calculations of the hadronic-vacuum-polarization contribution to the muon's anomalous magnetic moment to date have been performed with degenerate up- and down-quark masses. Here we calculate directly the strong-isospin-breaking correction to aμHVP for the first time with physical values of mu and md and dynamical u , d , s , and c quarks, thereby removing this important source of systematic uncertainty. We obtain a relative shift to be applied to lattice-QCD results obtained with degenerate light-quark masses of δ aμHVP ,mu≠md=+1.5 (7 )% , in agreement with estimates from phenomenology.
Effects of a non-standard W± magnetic moment in W± production via deep inelastic e-P scattering
International Nuclear Information System (INIS)
Boehm, M.; Rosado, A.
1989-01-01
We calculate the production of charged bosons in deep inelastic e - P scattering in the context of an electroweak model in which the vector boson self interactions may be different from those prescribed by the electroweak standard model. We present results which show the dependence of the cross section on the anomalous magnetic dipole moment κ of the W ± . We find for energies available at HERA that even small deviations from the standard model value of κ imply observable deviations in the W ± production rates. We also show that the contributions from heavy boson exchange diagrams are very important. (orig.)
Magnetic moment for the negative parity Λ→Σ0 transition in light cone QCD sum rules
Directory of Open Access Journals (Sweden)
T.M. Aliev
2016-07-01
Full Text Available The magnetic moment of the Λ→Σ0 transition between negative parity baryons is calculated in framework of the QCD sum rules approach by using the general form of the interpolating currents. The pollution arising from the positive-to-positive, and positive-to-negative parity baryons is eliminated by constructing the sum rules for different Lorentz structures. A comparison of our result with the predictions of the results of other approaches for the positive parity baryons is presented.
Magnetic resonance image examinations in emergency medical care
International Nuclear Information System (INIS)
Yamashiro, Takanobu; Yoshizumi, Tohru; Ogura, Akio; Hongou, Takaharu; Kikumoto, Rikiya
2006-01-01
There is a growing consensus in terms of the need for effective use of magnetic resonance imaging (MRI) diagnostic devices in emergency medical care. However, a thorough assessment of risk management in emergency medical care is required because of the high magnetic field in the MRI room. To understand the conditions required for the execution of emergency MRI examinations in individual medical facilities, and to prepare guidelines for emergency MRI examinations, we carried out a questionnaire survey concerning emergency MRI examinations. We obtained responses from 71% of 230 medical facilities and used this information in considering a system of emergency MRI examinations. Moreover, some difficulties were experienced in half of the facilities where emergency MRI examinations had been enacted, the main cause of which was the medics. Based on the results of the questionnaire, guidelines are necessary to maintain an urgent system for MRI examinations. Moreover, we were able to comprehend the current state of emergency MRI examinations in other medical facilities through this investigation, and we are preparing a system for the implementation of emergency MRI examinations. (author)
Directory of Open Access Journals (Sweden)
Baoyu Zong
2008-01-01
Full Text Available A methodology to fabricate ultrasoft CoFe nano-/microfilms directly via electrodeposition from a semineutral iron sulfate solution is demonstrated. Using boron-reducer as the additive, the CoFe films become very soft with high magnetic moment. Typically, the film coercivity in the easy and hard axes is 6.5 and 2.5 Oersted, respectively, with a saturation polarization up to an average of 2.45 Tesla. Despite the softness, these shining and smooth films still display a high-anisotropic field of ~45 Oersted with permeability up to 104. This kind of films can potentially be used in current and future magnetic recording systems as well as microelectronic and biotechnological devices.
Magnetic Reconnection at the Earliest Stage of Solar Flux Emergence
Tian, Hui; Zhu, Xiaoshuai; Peter, Hardi; Zhao, Jie; Samanta, Tanmoy; Chen, Yajie
2018-02-01
On 2016 September 20, the Interface Region Imaging Spectrograph observed an active region during its earliest emerging phase for almost 7 hr. The Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory observed continuous emergence of small-scale magnetic bipoles with a rate of ∼1016 Mx s‑1. The emergence of magnetic fluxes and interactions between different polarities lead to the frequent occurrence of ultraviolet (UV) bursts, which exhibit as intense transient brightenings in the 1400 Å images. In the meantime, discrete small patches with the same magnetic polarity tend to move together and merge, leading to the enhancement of the magnetic fields and thus the formation of pores (small sunspots) at some locations. The spectra of these UV bursts are characterized by the superposition of several chromospheric absorption lines on the greatly broadened profiles of some emission lines formed at typical transition region temperatures, suggesting heating of the local materials to a few tens of thousands of kelvin in the lower atmosphere by magnetic reconnection. Some bursts reveal blue- and redshifts of ∼100 km s‑1 at neighboring pixels, indicating the spatially resolved bidirectional reconnection outflows. Many such bursts appear to be associated with the cancellation of magnetic fluxes with a rate of the order of ∼1015 Mx s‑1. We also investigate the three-dimensional magnetic field topology through a magnetohydrostatic model and find that a small fraction of the bursts are associated with bald patches (magnetic dips). Finally, we find that almost all bursts are located in regions of large squashing factor at the height of ∼1 Mm, reinforcing our conclusion that these bursts are produced through reconnection in the lower atmosphere.
Magnetic moments of J{sup P} = (3)/(2){sup +} decuplet baryons using the statistical model
Energy Technology Data Exchange (ETDEWEB)
Kaur, Amanpreet; Upadhyay, Alka [Thapar University, School of Physics and Materials Science, Patiala (India)
2016-04-15
A suitable wave function for the baryon decuplet is framed with the inclusion of the sea containing quark-gluon Fock states. Relevant operator formalism is applied to calculate the magnetic moments of J{sup P} = (3)/(2){sup +} baryon decuplet. The statistical model assumes the decomposition of the baryonic state in various quark-gluon Fock states and is used in combination with the detailed balance principle to find the relative probabilities of these Fock states in flavor, spin and color space. The upper limit to the gluon is restricted to three with the possibility of emission of quark-antiquark pairs. We study the importance of strangeness in the sea (scalar, vector and tensor) and its contribution to the magnetic moments. Our approach has confirmed the scalar-tensor sea dominancy over the vector sea. Various modifications in the model are used to check the validity of the statistical approach. The results are matched with the available theoretical data. A good consistency with the experimental data has been achieved for Δ{sup ++}, Δ{sup +} and Ω{sup -}. (orig.)
Magnetic moment of the 9/2[sup +] 96. 4 keV state in [sup 79] Rb
Energy Technology Data Exchange (ETDEWEB)
Dumitru, M; Ionescu-Bujor, M; Iordachescu, A; Ivan, A; Ivanov, E A; Pascovici, G; Plostinaru, D [Institute of Atomic Physics, Institute of Physics and Nuclear Engineering, R-76900 Bucharest, P.O.Box MG-6, (Romania)
1992-01-01
The region of nuclei with A [approx equal] 80 is presently of considerable interest as it exhibits a rich variety of phenomena. In the present work, part of a programme of structure investigation in this region through electromagnetic moment measurements, we have determined the magnetic moment of the 9/2[sup +] 96.4 keV state in [sup 79] Rb. The state has been excited by the [sup 79] Br ([sup 3] He , 3 n) reaction on a K Br target with cubic structure, using a 30 MeV pulsed beam of [sup 3] He provided by a U-120 cyclotron. The measurements have been performed by the TDPAD method at several different values of the external magnetic field. From our investigations the half-life T[sub 1/2] = 18.5(5) ns and the gyromagnetic ratio g = +1.12(5) have been established for the 9/2[sup +] 96.4 keV state. The band properties of the odd Rb nuclei indicated a gradual change of the structure along the isotopes, the [sup 79] Rb nucleus being characterized by a deformation significantly larger than that of heavier once. This change in structure is also reflected in the g factor values of the low-lying 9/2[sup +] states, which show a monotonic decrease from [sup 85] Rb to [sup 79] Rb. (Author).
The magnetic moment of NiO nanoparticles determined by Mössbauer spectroscopy
DEFF Research Database (Denmark)
Bahl, Christian Robert Haffenden; Hansen, Mikkel Fougt; Pedersen, Thomas
2006-01-01
We have studied the magnetic properties of 57Fe-doped NiO nanoparticles using Mössbauer spectroscopy and magnetization measurements. Two samples with different degrees of interparticle interaction were studied. In both samples the particles were characterized by high-resolution transmission...
Influence of temperature on the systematics of magnetic moments of free Fe clusters
Czech Academy of Sciences Publication Activity Database
Šipr, Ondřej; Polesya, S.; Minár, J.; Ebert, H.
2007-01-01
Roč. 19, - (2007), 446205/1-446205/10 ISSN 0953-8984 Institutional research plan: CEZ:AV0Z10100521 Keywords : magnet ism * temperature * exchange coupling * clusters Subject RIV: BM - Solid Matter Physics ; Magnet ism Impact factor: 1.886, year: 2007
Anisotropy of Magnetic Moments and Energy in Tetragonal Fe-Co Alloys from First Principles
Czech Academy of Sciences Publication Activity Database
Turek, Ilja; Kudrnovský, Josef; Carva, K.
2013-01-01
Roč. 26, č. 5 (2013), s. 1581-1584 ISSN 1557-1939 R&D Projects: GA ČR(CZ) GAP204/11/1228 Institutional support: RVO:68081723 ; RVO:68378271 Keywords : density functional theory * magnetic anisotropy Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.930, year: 2013
Spin-glass-like ordering of the magnetic moments of interacting nanosized maghemite particles
DEFF Research Database (Denmark)
Mørup, Steen; Bødker, Franz; Hendriksen, Peter Vang
1995-01-01
Samples of interacting nanosized maghemite particles have been studied by Mössbauer spectroscopy and magnetization measurements. The apparent blocking temperatures obtained from Mössbauer spectroscopy and zero-field-cooled magnetization curves are nearly identical, but the values obtained from...
Small-scale Magnetic Flux Emergence in the Quiet Sun
Moreno-Insertis, F.; Martinez-Sykora, J.; Hansteen, V. H.; Muñoz, D.
2018-06-01
Small bipolar magnetic features are observed to appear in the interior of individual granules in the quiet Sun, signaling the emergence of tiny magnetic loops from the solar interior. We study the origin of those features as part of the magnetoconvection process in the top layers of the convection zone. Two quiet-Sun magnetoconvection models, calculated with the radiation-magnetohydrodynamic (MHD) Bifrost code and with domain stretching from the top layers of the convection zone to the corona, are analyzed. Using 3D visualization as well as a posteriori spectral synthesis of Stokes parameters, we detect the repeated emergence of small magnetic elements in the interior of granules, as in the observations. Additionally, we identify the formation of organized horizontal magnetic sheets covering whole granules. Our approach is twofold, calculating statistical properties of the system, like joint probability density functions (JPDFs), and pursuing individual events via visualization tools. We conclude that the small magnetic loops surfacing within individual granules in the observations may originate from sites at or near the downflows in the granular and mesogranular levels, probably in the first 1 or 1.5 Mm below the surface. We also document the creation of granule-covering magnetic sheet-like structures through the sideways expansion of a small subphotospheric magnetic concentration picked up and pulled out of the interior by a nascent granule. The sheet-like structures that we found in the models may match the recent observations of Centeno et al.
Annealing influence on the atomic ordering and magnetic moment in a Ni-Mn-Ga alloy
International Nuclear Information System (INIS)
Gutierrez, J.; Lazpita, P.; Barandiaran, J.M.; Fdez-Gubieda, M.L.; Chaboy, J.; Kawamura, N.
2007-01-01
We have studied an alloy of composition Ni 51 Mn 28 Ga 21 prepared by rapid quenching in the form of a ribbon, with transformation temperature T M =337 K below the magnetic-order temperature, T C =344 K. Annealing of the samples was performed at 600 K for different times. From magnetic characterization a clear increase of the saturation magnetization accompanied with an increase of T C (up to 20 K) and T M (about 10 K) has been observed. XMCD measurements of both as-quenched and annealed samples have revealed great changes for the Mn and also the existence of a strong Ni signal. These results point out a possible non-negligible role of Ni, through the polarization of the conduction band, into driving the interplay between annealing and the magnetic properties in these materials
Anomalous magnetoresistance effect in sputtered TbFeCo relating to dispersed magnetic moment
International Nuclear Information System (INIS)
Yumoto, S.; Toki, K.; Okada, O.; Gokan, H.
1988-01-01
The electric resistance is sputtered TbFeCo has been measured at room temperature as a function of magnetic field perpendicular to the film plane. Two kinds of anomalous magnetoresistance have been observed. One is a magnetoresistance peak in the magnetization reversal region. The other is reversible change proportional to the applied magnetic field, appearing in the other region. The magnetoresistance peak agrees well with a curve calculated from experimental Hall loop, using a phenomenological relation between anomalous magnetoresistance and anomalous Hall voltage. The magnetoresistance peak is found to originate from magnetic domain walls. The linear magnetoresistance change for TM dominant samples appears in a direction opposite to that for RE dominant samples. The linear change can't be derived from Hall loop
Size effect on local magnetic moments in ferrimagnetic molecular complexes: an XMCD investigation
International Nuclear Information System (INIS)
Champion, G.; Villain, F.; Cartier dit Moulin, C.; Arrio, M.-A.; Sainctavit, P.; Zacchigna, M.; Zangrando, M.; Finazzi, M.; Parmigiani, F.; Mathoniere, C.
2003-01-01
Molecular chemistry allows to synthesize new magnetic systems with controlled properties such as size, magnetization or anisotropy. The theoretical study of the magnetic properties of small molecules (from 2 to 10 metallic cations per molecule) predicts that the magnetization at saturation of each ion does not reach the expected value for uncoupled ions when the magnetic interaction is antiferromagnetic. The quantum origin of this effect is due to the linear combination of several spin states building the wave function of the ground state and clusters of finite size and of finite spin value exhibit this property. When single crystals are available, spin densities on each atom can be experimentally given by polarized neutron diffraction (PND) experiments. In the case of bimetallic MnCu powdered samples, we will show that x-ray magnetic circular dichroism (XMCD) spectroscopy can be used to follow the evolution of the spin distribution on the Mn II and Cu II sites when passing from a dinuclear MnCu unit to a one dimensional (MnCu) n compound. (author)
Quadrupolar order, hidden octupolar order and tiny magnetic moment in URu2Si2
International Nuclear Information System (INIS)
Tsuruta, Atsushi; Matsuura, Tamifusa; Kuroda, Yoshihiro
2000-01-01
Possible orders in URu 2 Si 2 are investigated using a two-channel degenerate Anderson model. The ground state of uranium ions is the non-Kramers quadrupolar doublet Γ 5 with (5f) 2 , and its relevant excited state is the Kramers dipolar doublet Γ 7 with (5f) 1 . These states mix with each other via conduction electrons. At low temperatures, the system forms renormalized bands with both quadrupole and dipole degrees of freedom due to the quadrupolar Kondo effect which slightly mixes quadrupolar Γ 5 , a primary state of uranium ions, with dipolar Γ 7 . At a certain low temperature, conduction electrons in the renormalized bands undergo quadrupolar ordering with a large quadrupolar moment. At a further lower temperature, octupolar ordering occurs, accompanied by a tiny dipolar moment which is attributed to the property of the renormalized bands with primarily the Γ 5 -character slightly mixed with the Γ 7 -character. These phenomena are well described by the 1/N-expansion method with pseudo-fermions for the non-Kramers doublet Γ 5 and slave bosons for the Kramers doublet Γ 7 . (author)
Emergent rotational symmetries in disordered magnetic domain patterns.
Su, Run; Seu, Keoki A; Parks, Daniel; Kan, Jimmy J; Fullerton, Eric E; Roy, Sujoy; Kevan, Stephen D
2011-12-16
Uniaxial systems often form labyrinthine domains that exhibit short-range order but are macroscopically isotropic and would not be expected to exhibit precise symmetries. However, their underlying frustration results in a multitude of metastable configurations of comparable energy, and driving such a system externally might lead to pattern formation. We find that soft x-ray speckle diffraction patterns of the labyrinthine domains in CoPd/IrMn heterostructures reveal a diverse array of hidden rotational symmetries about the magnetization axis, thereby suggesting an unusual form of emergent order in an otherwise disordered system. These symmetries depend on applied magnetic field, magnetization history, and scattering wave vector. Maps of rotational symmetry exhibit intriguing structures that can be controlled by manipulating the applied magnetic field in concert with the exchange bias condition. © 2011 American Physical Society
Magnetic moment of the fragmentation-aligned F61e (9/2+) isomer
International Nuclear Information System (INIS)
Matea, I.; Georgiev, G.; Lewitowicz, M.; Santos, F. de Oliveira; Daugas, J.M.; Belier, G.; Goutte, H.; Meot, V.; Roig, O.; Hass, M.; Baby, L.T.; Goldring, G.; Neyens, G.; Borremans, D.; Himpe, P.; Astabatyan, R.; Lukyanov, S.; Penionzhkevich, Yu.E.; Balabanski, D.L.; Sawicka, M.
2004-01-01
We report on the g factor measurement of an isomer in the neutron-rich F 26 61 e (E * =861 keV and T 1/2 =239(5) ns). The isomer was produced and spin aligned via a projectile-fragmentation reaction at intermediate energy, the time dependent perturbed angular distribution method being used for the measurement of the g factor. For the first time, due to significant improvements of the experimental technique, an appreciable residual alignment of the nuclear spin ensemble has been observed, allowing a precise determination of its g factor, including the sign: g=-0.229(2). In this way we open the possibility to study moments of very neutron-rich short-lived isomers, not accessible via other production and spin-orientation methods
The measurement of magnetic moments of nuclear states of high angular momentum
International Nuclear Information System (INIS)
Goldring, G.
1978-01-01
Two problems related to the measurement of the g-factor of relevant nuclear levels and their circumvention are discussed: a) the very high magnetic fields required for the measurements, available only as a hyperfine field of electrons or other charged particles moving very close to the nucleus; b) the large angular momentum of those nuclear states. The nuclei considered are those recoiling from a nuclear reaction at high speeds in either vacuum or gas. The environment of these nuclei are the isolated ions with which they are associated. The hyperfine interaction with such ions is primarily magnetic. (B.G.)
Energy Technology Data Exchange (ETDEWEB)
Henry, S., E-mail: s.henry@physics.ox.ac.uk; Pipe, M.; Cottle, A.; Clarke, C.; Divakar, U.; Lynch, A.
2014-11-01
The cryoEDM neutron electric dipole moment experiment requires a SQUID magnetometry system with pick-up loops inside a magnetically shielded volume connected to SQUID sensors by long (up to 2 m) twisted-wire pairs (TWPs). These wires run outside the main shield, and therefore must run through superconducting capillaries to screen unwanted magnetic pick-up. We show that the average measured transverse magnetic pick-up of a set of lengths of TWPs is equivalent to a loop area of 5.0×10{sup −6} m{sup 2}/m, or 14 twists per metre. From this we set the requirement that the magnetic shielding factor of the superconducting capillaries used in the cryoEDM system must be greater than 8.0×10{sup 4}. The shielding factor—the ratio of the signal picked-up by an unshielded TWP to that induced in a shielded TWP—was measured for a selection of superconducting capillaries made from solder wire. We conclude the transverse shielding factor of a uniform capillary is greater than 10{sup 7}. The measured pick-up was equal to, or less than that due to direct coupling to the SQUID sensor (measured without any TWP attached). We show that discontinuities in the capillaries substantially impair the magnetic shielding, yet if suitably repaired, this can be restored to the shielding factor of an unbroken capillary. We have constructed shielding assemblies for cryoEDM made from lengths of single core and triple core solder capillaries, joined by a shielded Pb cylinder, incorporating a heater to heat the wires above the superconducting transition as required.
Marciano, William J
2010-01-01
This book provides a self-contained description of the measurements of the magnetic dipole moments of the electron and muon, along with a discussion of the measurements of the fine structure constant, and the theory associated with magnetic and electric dipole moments. Also included are the searches for a permanent electric dipole moment of the electron, muon, neutron and atomic nuclei. The related topic of the transition moment for lepton flavor violating processes, such as neutrinoless muon or tauon decays, and the search for such processes are included as well. The papers, written by many o
CLASSIFICATION FOR ANGLE-DEPENDENT POLARIZED PHOTOEMISSION SPECTRA USING MAGNETIC-MOMENTS ANALYSIS
VANDERLAAN, G; THOLE, BT
The angular distribution of photoelectrons from a core level or localized valence level excited with circularly or linearly polarized Xrays is shown to contain the complete one-electron information of the ground state of a magnetic polarized atom. We generalize the definition of the fundamental
Energy Moment Method Applied to Nuclear Quadrupole Splitting of Nuclear Magnetic Resonance Lines
DEFF Research Database (Denmark)
Frank, V
1962-01-01
Expressions giving the sum of the energy values, raised to the second and third power, for a nucleus interacting with a static magnetic field and a static electric field gradient are derived. Several applications of this method for obtaining the values of the components of the electric field...
Magnetic moment formation due to arsenic vacancies in LaFeAsO-derived superconductors
Czech Academy of Sciences Publication Activity Database
Kikoin, K.; Drechsler, S.L.; Koepernik, K.; Málek, Jiří; van den Brink, J.
2015-01-01
Roč. 5, Jul (2015), s. 11280 ISSN 2045-2322 Institutional support: RVO:68378271 Keywords : high-temperature superconductivity, transition metal impurities * iron-based superconductors * pnictides Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 5.228, year: 2015
Energy Technology Data Exchange (ETDEWEB)
Vogel, J
2006-03-15
In this document, I use some results of my research activities of the last ten years to show the power of x-ray magnetic dichroism for determining magnetic properties of thin layers, multilayers and nano-structures. The use of sum rules for x-ray dichroism allows a quantitative determination of the spin and orbital contributions to the magnetic moment, for each element of a heterogeneous material separately. Used in a qualitative way, x-ray dichroism allows monitoring the magnetization of the different layers in a multilayer material as a function of applied field. In combination with the temporal structure of synchrotron radiation, it is possible to study fast magnetization reversal with element selectivity, which is important for devices like spin valves and magnetic tunnel junctions. Adding the spatial resolution of a photoelectron emission microscope (PEEM), it becomes possible to study all the details of the fast magnetization reversal in complex magnetic systems. (author)
Energy Technology Data Exchange (ETDEWEB)
D' yachkov, A.B.; Firsov, V.A.; Gorkunov, A.A.; Labozin, A.V.; Mironov, S.M.; Saperstein, E.E.; Tolokonnikov, S.V.; Tsvetkov, G.O.; Panchenko, V.Y. [National Research Center ' ' Kurchatov Institute' ' , Moscow (Russian Federation)
2017-01-15
Laser resonant photoionization spectroscopy was used to study the hyperfine structure of the optical 3d{sup 8}4s{sup 2} {sup 3}F{sub 4} → 3d{sup 8}4s4p {sup 3}G{sup o}{sub 3} and 3d{sup 9}4s {sup 3}D{sub 3} → 3d{sup 8}4s4p {sup 3}G{sup o}{sub 3} transitions of {sup 63}Ni and {sup 61}Ni isotopes. Experimental spectra allowed us to derive hyperfine interaction constants and determine the magnetic dipole moment of the nuclear ground state of {sup 63}Ni for the first time: μ = +0.496(5)μ{sub N}. The value obtained agrees well with the prediction of the self-consistent theory of finite Fermi systems. (orig.)
Volkov, Sergey
2017-11-01
This paper presents a new method of numerical computation of the mass-independent QED contributions to the electron anomalous magnetic moment which arise from Feynman graphs without closed electron loops. The method is based on a forestlike subtraction formula that removes all ultraviolet and infrared divergences in each Feynman graph before integration in Feynman-parametric space. The integration is performed by an importance sampling Monte-Carlo algorithm with the probability density function that is constructed for each Feynman graph individually. The method is fully automated at any order of the perturbation series. The results of applying the method to 2-loop, 3-loop, 4-loop Feynman graphs, and to some individual 5-loop graphs are presented, as well as the comparison of this method with other ones with respect to Monte Carlo convergence speed.
Energy Technology Data Exchange (ETDEWEB)
Mamyrin, B.A.; Aruev, N.N.; Alekseenko, S.A.
1983-06-01
In connection with the revision of the table values of the atomic masses and the forthcoming coordination of the values of the fundamental physical constants, the result of measurement of the proton magnetic moment in nuclear Magnetons obtained in 1971 is re-examined by taking into account recent data. With the atomic masses recognized in 1982 the proton magnetic moment expressed in nuclear magnetons without a correction for diamagnetic screening of the proton in a water molecule is found to be ..mu..sub(p)'/..mu..sub(n)=2.7927729+-0.0000012 (4.3x10/sup -5/%).
International Nuclear Information System (INIS)
Souza, P E N de; Oliveira, L M de; Ortiz, W A; Camargo, P C de; Oliveira, A J A de
2005-01-01
In this work we present magnetic susceptibility results for Cr-x at.% Nb alloys (x = 0.2, 0.6, 0.7, 1.4, and 2.0), showing that a local short-range order spin-density wave (L-SDW) appears at a characteristic temperature (T loc ) above the Neel temperature. The evidence for L-SDW is based on a Curie-Weiss-like behaviour, which is suppressed when large magnetic fields are applied or for alloys with Nb concentration above x = 2.0 at.%
Magnetic nanowires (Fe, Fe-Co, Fe-Ni – magnetic moment reorientation in respect of wires composition
Directory of Open Access Journals (Sweden)
Kalska-Szostko Beata
2015-03-01
Full Text Available Magnetic nanowires of Fe, Fe-Co, and Fe-Ni alloy and layered structure were prepared by electrochemical alternating current (AC deposition method. The morphology of the nanowires in and without the matrix was studied by energy dispersive X-ray spectroscopy (EDX, scanning electron microscopy (SEM, and X-ray diffraction (XRD, respectively. The wires either show strong dependence on the combination of elements deposition (alloy or layered or chemical composition (Co or Ni. The magnetic properties of the nanostructures were determined on the basis of Mössbauer spectroscopy (MS.
Moment problems in Hilbert space with applications to magnetic resonance imaging
International Nuclear Information System (INIS)
Zwaan, Marcel.
1991-01-01
This thesis is concerned with the mathematical and computational aspects of reconstruction techniques by means of magnetic resonance imaging, in particular for the time-dependent case, referred to as dynamic MRI. The main subjects are: a mathematical framework for dynamic MRI reconstruction; analytic solutions, numerical algorithms and development of reconstruction techniques; stability analysis of the reconstruction algorithms; comparison between these algorithms. (author). 63 refs.; 38 figs.; 5 tabs
Orbital magnetic moment and extrinsic spin Hall effect for iron impurities in gold
Czech Academy of Sciences Publication Activity Database
Shick, Alexander; Kolorenč, Jindřich; Janiš, Václav; Lichtenstein, A.I.
2011-01-01
Roč. 84, č. 11 (2011), "113112-1"-"113112-4" ISSN 1098-0121 R&D Projects: GA ČR(CZ) GAP204/10/0330; GA AV ČR IAA100100912 Institutional research plan: CEZ:AV0Z10100520 Keywords : spin Hall effect * XMCD Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.691, year: 2011 http://prb.aps.org/abstract/PRB/v84/i11/e113112
Energy Technology Data Exchange (ETDEWEB)
Yang, Xiaoyu, E-mail: xiaoyu.yang@wdc.com; Chen, Lifan; Han, Hongmei; Fu, Lianfeng; Sun, Ming; Liu, Feng; Zhang, Jinqiu [Western Digital Corporation, 44100 Osgood Road, Fremont, California 94539 (United States)
2014-05-07
The impact of the fluorine-based reactive ion etch (RIE) process on the structural, electrical, and magnetic properties of NiFe and CoNiFe-plated materials was investigated. Several techniques, including X-ray fluorescence, 4-point-probe, BH looper, transmission electron microscopy (TEM), and electron energy loss spectroscopy (EELS), were utilized to characterize both bulk film properties such as thickness, average composition, Rs, ρ, Bs, Ms, and surface magnetic “dead” layers' properties such as thickness and element concentration. Experimental data showed that the majority of Rs and Bs changes of these bulk films were due to thickness reduction during exposure to the RIE process. ρ and Ms change after taking thickness reduction into account were negligible. The composition of the bulk films, which were not sensitive to surface magnetic dead layers with nano-meter scale, showed minimum change as well. It was found by TEM and EELS analysis that although both before and after RIE there were magnetic dead layers on the top surface of these materials, the thickness and element concentration of the layers were quite different. Prior to RIE, dead layer was actually native oxidation layers (about 2 nm thick), while after RIE dead layer consisted of two sub-layers that were about 6 nm thick in total. Sub-layer on the top was native oxidation layer, while the bottom layer was RIE “damaged” layer with very high fluorine concentration. Two in-situ RIE approaches were also proposed and tested to remove such damaged sub-layers.
A study of nanosized magnesium ferrite particles with high magnetic moment
Energy Technology Data Exchange (ETDEWEB)
Sumangala, T.P.; Mahender, C.; Venkataramani, N. [Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, Powai, 400076 Mumbai (India); Prasad, Shiva, E-mail: shiva.pd@gmail.com [Department of Physics, Indian Institute of Technology Bombay, Powai, 400076 Mumbai (India)
2015-05-15
Nano-sized magnesium ferrite particles were prepared by sol gel combustion synthesis and were either furnace cooled or quenched after calcining at various temperatures ranging from 300 to 800 °C. A magnetisation value of 61 emu/g was obtained at 5 K for sample calcined at 800 °C and quenched in liquid nitrogen temperature. This is one of the highest reported values of magnetisation obtained from quenching at such a lower temperature. An estimate of the number of Fe{sup 3+} ions on A and B sites was made after applying Néel Model on the magnetisation values measured at 5 K. It was estimated that Fe{sup 3+} ions segregates out from both sites disproportionately so as to cause a net decrease in the overall moment. The resultant cation distribution is found to be consistent with the coercivity data. - Highlights: • Highest magnetisation (M) among nano sized magnesium ferrite particles was obtained. • The obtained magnetisation was nearly double of furnace cooled bulk sample. • Coercivity (H{sub c}) is anti correlated to M for samples with different heat treatment. • Coefficient of non saturation of magnetisation in M–H loop (a), is correlated with H{sub c}. • H{sub c}, M and a are explained in terms of cation distribution obtained using NNéel model.
Petrushin, A.; Shevkunova, A.
2018-02-01
The article deals with the investigation concentrated to optimizing the active part of the switched-reluctance motor with the aim of increasing the value of the average electromagnetic torque. Susceptibility of the average value of the electromagnetic torque to changes of the geometric dimensions of the magnetic system found in the optimization process was set.
Relaxation of the Shallow Acceptor Center Magnetic Moment in a Highly Doped Silicon
Mamedov, T N; Herlach, D; Gorelkin, V N; Gritsaj, K I; Duginov, V N; Kormann, O; Major, J V; Stoikov, A V; Zimmermann, U
2001-01-01
Results on the temperature dependence of the residual polarization of negative muons in crystalline silicon with germanium, boron and phosphorus impurities are presented. The measurements were carried out in a magnetic field of 0.1 T transverse to the direction of the muon spin in the temperature range 4.2-300 K. It is found that in a silicon sample with a high concentration of germanium impurity (9\\cdot 10^{19} cm^{-3}), as in the samples of n- and p-type silicon with impurity concentrations up to \\sim 10^{17} cm^{-3}, the relaxation rate \
Emergent magnetism at transition-metal–nanocarbon interfaces
Al Ma’Mari, Fatma; Rogers, Matthew; Alghamdi, Shoug; Moorsom, Timothy; Lee, Stephen; Prokscha, Thomas; Luetkens, Hubertus; Valvidares, Manuel; Flokstra, Machiel; Stewart, Rhea; Ali, Mannan; Burnell, Gavin; Hickey, B. J.
2017-01-01
Charge transfer at metallo–molecular interfaces may be used to design multifunctional hybrids with an emergent magnetization that may offer an eco-friendly and tunable alternative to conventional magnets and devices. Here, we investigate the origin of the magnetism arising at these interfaces by using different techniques to probe 3d and 5d metal films such as Sc, Mn, Cu, and Pt in contact with fullerenes and rf-sputtered carbon layers. These systems exhibit small anisotropy and coercivity together with a high Curie point. Low-energy muon spin spectroscopy in Cu and Sc–C60 multilayers show a quick spin depolarization and oscillations attributed to nonuniform local magnetic fields close to the metallo–carbon interface. The hybridization state of the carbon layers plays a crucial role, and we observe an increased magnetization as sp3 orbitals are annealed into sp2−π graphitic states in sputtered carbon/copper multilayers. X-ray magnetic circular dichroism (XMCD) measurements at the carbon K edge of C60 layers in contact with Sc films show spin polarization in the lowest unoccupied molecular orbital (LUMO) and higher π*-molecular levels, whereas the dichroism in the σ*-resonances is small or nonexistent. These results support the idea of an interaction mediated via charge transfer from the metal and dz–π hybridization. Thin-film carbon-based magnets may allow for the manipulation of spin ordering at metallic surfaces using electrooptical signals, with potential applications in computing, sensors, and other multifunctional magnetic devices. PMID:28507160
Emergent magnetism at transition-metal-nanocarbon interfaces.
Al Ma'Mari, Fatma; Rogers, Matthew; Alghamdi, Shoug; Moorsom, Timothy; Lee, Stephen; Prokscha, Thomas; Luetkens, Hubertus; Valvidares, Manuel; Teobaldi, Gilberto; Flokstra, Machiel; Stewart, Rhea; Gargiani, Pierluigi; Ali, Mannan; Burnell, Gavin; Hickey, B J; Cespedes, Oscar
2017-05-30
Charge transfer at metallo-molecular interfaces may be used to design multifunctional hybrids with an emergent magnetization that may offer an eco-friendly and tunable alternative to conventional magnets and devices. Here, we investigate the origin of the magnetism arising at these interfaces by using different techniques to probe 3d and 5d metal films such as Sc, Mn, Cu, and Pt in contact with fullerenes and rf-sputtered carbon layers. These systems exhibit small anisotropy and coercivity together with a high Curie point. Low-energy muon spin spectroscopy in Cu and Sc-C 60 multilayers show a quick spin depolarization and oscillations attributed to nonuniform local magnetic fields close to the metallo-carbon interface. The hybridization state of the carbon layers plays a crucial role, and we observe an increased magnetization as sp 3 orbitals are annealed into sp 2 -π graphitic states in sputtered carbon/copper multilayers. X-ray magnetic circular dichroism (XMCD) measurements at the carbon K edge of C 60 layers in contact with Sc films show spin polarization in the lowest unoccupied molecular orbital (LUMO) and higher π*-molecular levels, whereas the dichroism in the σ*-resonances is small or nonexistent. These results support the idea of an interaction mediated via charge transfer from the metal and dz -π hybridization. Thin-film carbon-based magnets may allow for the manipulation of spin ordering at metallic surfaces using electrooptical signals, with potential applications in computing, sensors, and other multifunctional magnetic devices.
Tolerance of topological surface state towards adsorbed magnetic moments: Fe on Bi{sub 2}Te{sub 3}
Energy Technology Data Exchange (ETDEWEB)
Scholz, Markus; Marchenko, Dmitry; Sanchez-Barriga, Jaime; Varykhalov, Andrei; Rader, Oliver [Helmholtz-Zentrum fuer Materialien und Energie, Berlin (Germany); Volykhov, Andrei; Yashina, Lada [Moscow State University, Moskau, Russland (Russian Federation)
2011-07-01
Topological surface states on Bi{sub 2}Se{sub 3} and Bi{sub 2}Te{sub 3} are protected by time reversal symmetry. Magnetic fields break time-reversal symmetry, and they have been used in two-dimensional spin quantum-Hall systems to destroy the topological edge states. Another possibility is to introduce magnetic moments. This has been done by substitution of Mn and Fe into the bulk. For Fe a small gap of 44meV was created, however, at very large amounts (12%). In this work, we deposit Fe directly onto the surface where the topological surface state is localized. We show for coverages of 0.25 and 1 ML Fe that the Dirac point remains intact and no gap appears. Core level spectroscopy of Bi and Te states gives insight into the interaction between substrate and adatoms. In addition, extra surface states appear at the Fermi energy which show a large Rashba-type spin-orbit splitting. The orientation of the spin of both, the topological as well as the Rashba-type split surface states is analysed.
Energy Technology Data Exchange (ETDEWEB)
Pilo, J. [Escuela Superior de Ingeniería Mecánica y Eléctrica-Culhuacán, Instituto Politécnico Nacional Av. Santa Ana 1000, México, D. F., C. P. 04430, México (Mexico); Carvajal, E., E-mail: ecarvajalq@ipn.mx [Escuela Superior de Ingeniería Mecánica y Eléctrica-Culhuacán, Instituto Politécnico Nacional Av. Santa Ana 1000, México, D. F., C. P. 04430, México (Mexico); Oviedo-Roa, R. [Programa de Investigación en Ingeniería Molecular, Instituto Mexicano del Petróleo Eje Central Lázaro Cárdenas Norte 152, México, D. F., C. P. 07730, México (Mexico); Cruz-Irisson, M. [Escuela Superior de Ingeniería Mecánica y Eléctrica-Culhuacán, Instituto Politécnico Nacional Av. Santa Ana 1000, México, D. F., C. P. 04430, México (Mexico); Navarro, O. [Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México A.P. 70-360, México, D. F., C. P. 04510, México (Mexico)
2014-12-15
It is well known that every double perovskite shows a characteristic magnetic behavior, as a consequence of the interactions among the magnetic moments associated with the atoms in their cells; at the same time, the electric and magnetic properties of the bulk double perovskite Sr{sub 2}FeMoO{sub 6} are well characterized. In this work we studied the iron rich compounds Sr{sub 2}Fe{sub 1+x}Mo{sub 1−x}O{sub 6}, using a supercell to model such concentrations that made Fe richer perovskites by ±66.6% and ±200%. Starting from the stoichiometric double perovskite, and modifying the Fe/Mo ratio in the compound, the study of these materials were based on the calculation of the magnetic moment at each atom, as well as the partial density of states.
Interactions among magnetic moments in the double perovskites Sr2Fe1+xMo1−xO6
International Nuclear Information System (INIS)
Pilo, J.; Carvajal, E.; Oviedo-Roa, R.; Cruz-Irisson, M.; Navarro, O.
2014-01-01
It is well known that every double perovskite shows a characteristic magnetic behavior, as a consequence of the interactions among the magnetic moments associated with the atoms in their cells; at the same time, the electric and magnetic properties of the bulk double perovskite Sr 2 FeMoO 6 are well characterized. In this work we studied the iron rich compounds Sr 2 Fe 1+x Mo 1−x O 6 , using a supercell to model such concentrations that made Fe richer perovskites by ±66.6% and ±200%. Starting from the stoichiometric double perovskite, and modifying the Fe/Mo ratio in the compound, the study of these materials were based on the calculation of the magnetic moment at each atom, as well as the partial density of states
An upper limit on the anomalous magnetic moment of the $\\tau$ lepton
Ackerstaff, K.; Allison, John; Altekamp, N.; Anderson, K.J.; Anderson, S.; Arcelli, S.; Asai, S.; Ashby, S.F.; Axen, D.; Azuelos, G.; Ball, A.H.; Barberio, E.; Barlow, Roger J.; Bartoldus, R.; Batley, J.R.; Baumann, S.; Bechtluft, J.; Behnke, T.; Bell, Kenneth Watson; Bella, G.; Bentvelsen, S.; Bethke, S.; Betts, S.; Biebel, O.; Biguzzi, A.; Bird, S.D.; Blobel, V.; Bloodworth, I.J.; Bobinski, M.; Bock, P.; Bonacorsi, D.; Boutemeur, M.; Braibant, S.; Brigliadori, L.; Brown, Robert M.; Burckhart, H.J.; Burgard, C.; Burgin, R.; Capiluppi, P.; Carnegie, R.K.; Carter, A.A.; Carter, J.R.; Chang, C.Y.; Charlton, David G.; Chrisman, D.; Clarke, P.E.L.; Cohen, I.; Conboy, J.E.; Cooke, O.C.; Couyoumtzelis, C.; Coxe, R.L.; Cuffiani, M.; Dado, S.; Dallapiccola, C.; Dallavalle, G.Marco; Davis, R.; De Jong, S.; del Pozo, L.A.; de Roeck, A.; Desch, K.; Dienes, B.; Dixit, M.S.; Doucet, M.; Duchovni, E.; Duckeck, G.; Duerdoth, I.P.; Eatough, D.; Estabrooks, P.G.; Etzion, E.; Evans, H.G.; Evans, M.; Fabbri, F.; Fanfani, A.; Fanti, M.; Faust, A.A.; Feld, L.; Fiedler, F.; Fierro, M.; Fischer, H.M.; Fleck, I.; Folman, R.; Fong, D.G.; Foucher, M.; Furtjes, A.; Futyan, D.I.; Gagnon, P.; Gary, J.W.; Gascon, J.; Gascon-Shotkin, S.M.; Geddes, N.I.; Geich-Gimbel, C.; Geralis, T.; Giacomelli, G.; Giacomelli, P.; Giacomelli, R.; Gibson, V.; Gibson, W.R.; Gingrich, D.M.; Glenzinski, D.; Goldberg, J.; Goodrick, M.J.; Gorn, W.; Grandi, C.; Gross, E.; Grunhaus, J.; Gruwe, M.; Hajdu, C.; Hanson, G.G.; Hansroul, M.; Hapke, M.; Hargrove, C.K.; Hart, P.A.; Hartmann, C.; Hauschild, M.; Hawkes, C.M.; Hawkings, R.; Hemingway, R.J.; Herndon, M.; Herten, G.; Heuer, R.D.; Hildreth, M.D.; Hill, J.C.; Hillier, S.J.; Hobson, P.R.; Hocker, James Andrew; Homer, R.J.; Honma, A.K.; Horvath, D.; Hossain, K.R.; Howard, R.; Huntemeyer, P.; Hutchcroft, D.E.; Igo-Kemenes, P.; Imrie, D.C.; Ishii, K.; Jawahery, A.; Jeffreys, P.W.; Jeremie, H.; Jimack, M.; Joly, A.; Jones, C.R.; Jones, M.; Jost, U.; Jovanovic, P.; Junk, T.R.; Kanzaki, J.; Karlen, D.; Kartvelishvili, V.; Kawagoe, K.; Kawamoto, T.; Kayal, P.I.; Keeler, R.K.; Kellogg, R.G.; Kennedy, B.W.; Kirk, J.; Klier, A.; Kluth, S.; Kobayashi, T.; Kobel, M.; Koetke, D.S.; Kokott, T.P.; Kolrep, M.; Komamiya, S.; Kowalewski, Robert V.; Kress, T.; Krieger, P.; von Krogh, J.; Kyberd, P.; Lafferty, G.D.; Lahmann, R.; Lai, W.P.; Lanske, D.; Lauber, J.; Lautenschlager, S.R.; Lawson, I.; Layter, J.G.; Lazic, D.; Lee, A.M.; Lefebvre, E.; Lellouch, D.; Letts, J.; Levinson, L.; List, B.; Lloyd, S.L.; Loebinger, F.K.; Long, G.D.; Losty, M.J.; Ludwig, J.; Lui, D.; Macchiolo, A.; Macpherson, A.; Mannelli, M.; Marcellini, S.; Markopoulos, C.; Markus, C.; Martin, A.J.; Martin, J.P.; Martinez, G.; Mashimo, T.; Mattig, Peter; McDonald, W.John; McKenna, J.; Mckigney, E.A.; McMahon, T.J.; McPherson, R.A.; Meijers, F.; Menke, S.; Merritt, F.S.; Mes, H.; Meyer, J.; Michelini, A.; Mihara, S.; Mikenberg, G.; Miller, D.J.; Mincer, A.; Mir, R.; Mohr, W.; Montanari, A.; Mori, T.; Nagai, K.; Nakamura, I.; Neal, H.A.; Nellen, B.; Nisius, R.; O'Neale, S.W.; Oakham, F.G.; Odorici, F.; Ogren, H.O.; Oh, A.; Oldershaw, N.J.; Oreglia, M.J.; Orito, S.; Palinkas, J.; Pasztor, G.; Pater, J.R.; Patrick, G.N.; Patt, J.; Perez-Ochoa, R.; Petzold, S.; Pfeifenschneider, P.; Pilcher, J.E.; Pinfold, J.; Plane, David E.; Poffenberger, P.; Poli, B.; Posthaus, A.; Rembser, C.; Robertson, S.; Robins, S.A.; Rodning, N.; Roney, J.M.; Rooke, A.; Rossi, A.M.; Routenburg, P.; Rozen, Y.; Runge, K.; Runolfsson, O.; Ruppel, U.; Rust, D.R.; Sachs, K.; Saeki, T.; Sahr, O.; Sang, W.M.; Sarkisian, E.K.G.; Sbarra, C.; Schaile, A.D.; Schaile, O.; Scharf, F.; Scharff-Hansen, P.; Schieck, J.; Schleper, P.; Schmitt, B.; Schmitt, S.; Schoning, A.; Schroder, Matthias; Schumacher, M.; Schwick, C.; Scott, W.G.; Shears, T.G.; Shen, B.C.; Shepherd-Themistocleous, C.H.; Sherwood, P.; Siroli, G.P.; Sittler, A.; Skillman, A.; Skuja, A.; Smith, A.M.; Snow, G.A.; Sobie, R.; Soldner-Rembold, S.; Springer, Robert Wayne; Sproston, M.; Stephens, K.; Steuerer, J.; Stockhausen, B.; Stoll, K.; Strom, David M.; Strohmer, R.; Szymanski, P.; Tafirout, R.; Talbot, S.D.; Taras, P.; Tarem, S.; Teuscher, R.; Thiergen, M.; Thomson, M.A.; von Torne, E.; Torrence, E.; Towers, S.; Trigger, I.; Trocsanyi, Z.; Tsur, E.; Turcot, A.S.; Turner-Watson, M.F.; Ueda, I.; Utzat, P.; Van Kooten, Rick J.; Vannerem, P.; Verzocchi, M.; Vikas, P.; Vokurka, E.H.; Voss, H.; Wackerle, F.; Wagner, A.; Ward, C.P.; Ward, D.R.; Watkins, P.M.; Watson, A.T.; Watson, N.K.; Wells, P.S.; Wermes, N.; White, J.S.; Wilson, G.W.; Wilson, J.A.; Wyatt, T.R.; Yamashita, S.; Yekutieli, G.; Zacek, V.; Zer-Zion, D.
1998-01-01
Using radiative Z^0 -> \\tau^+ \\tau^- \\gamma events collected with the OPAL detector at LEP at \\sqrt{s}=M_Z during 1990-95, a direct study of the electromagnetic current at the \\tau\\gamma vertex has been performed in terms of the anomalous magnetic form factor F_2 of the \\tau lepton. The analysis is based on a data sample of 1429 e^+ e^- -> \\tau^+ \\tau^- \\gamma events which are examined for a deviation from the expectation with F_2 = 0. From the non-observation of anomalous \\tau^+ \\tau^- \\gamma production a limit of -0.068 < F_2 < 0.065 is obtained. This can also be interpreted as a limit on the electric dipole form factor F_3 as -3.8 x 10^-16 e-cm < eF_3 < 3.6 x 10^-16 e-cm. The above ranges are valid at the 95% confidence level.
Determination of spin, magnetic moment and isotopic shift of neutron rich 205Hg by optical pumping
International Nuclear Information System (INIS)
Rodriguez, J.; Bonn, J.; Huber, G.; Kluge, H.J.; Otten, E.W.; European Organisation for Nuclear Research, Geneva
1975-01-01
Neutron rich 205 Hg(Tsub(1/2) = 5.2 min) was produced and on-line mass separated at the ISOLDE facility at CERN. The polarization achieved by optical pumping via the atomic line (6s 21 S 0 - 6s6p 3 P 1 , lambda = 2,537 A) was monitored by the β decay asymmetry. Hyperfine structure and isotopic shift of the 205 Hg absorption line was determined by Zeeman scanning. In addition a magnetic resoncance was performed on the polarized 205 Hg nuclei in the atomic ground state. The results are: I( 205 Hg) = 1/2 (confirmed); μ(I, 205 Hg) = 0.5915(1)μ(N) (uncorrected for diamagnetism); isotopic shift deltaν(204/205) = ν( 205 Hg) - ν( 204 Hg) = -1.8(1)GHz. μ(I) and IS are discussed briefly in the frame of current literature. (orig.) [de
International Nuclear Information System (INIS)
Nguen Suan Khan; Pervushin, V.N.
1975-01-01
An eikonal representation has been obtained for the amplitude of the πN-scattering in the asymptotic form into account the anomalous nucleon magnetic moment leads to the introduction of the additive term in to the eikonal phase which is responsible for the spin flip in the scattering process. The Coulomb interference is considered
International Nuclear Information System (INIS)
Svirskii, M.S.
1985-01-01
Oscillations with a period equal to the normal or superconducting flux quantum occur in the current density and the orbital parts of the energy and the magnetic moment in cyclic systems. Transitions between these regimes can be induced by changing the number of electrons or by switching between states with different energies
Kroell, T; Leske, J
2002-01-01
Magnetic moments are an indispensable source of information on the microscopic structure of atomic nuclei. It results from the fundamental difference of the spin $g$ factors of protons and neutrons, in $sign$ and $magnitude$, $\\textit{g}_{s}(\\pi)$ = +5.586 and $g_s(\
International Nuclear Information System (INIS)
Shimomura, K.
1988-01-01
Significant nuclear polarization of unstable 170 Tm in Tm 2+ :SrF 2 was for the first time achieved with β-ray radiation detected optical pumping in solids, providing a new powerful method to measure magnetic moments of unstable nuclei. (author)
Energy Technology Data Exchange (ETDEWEB)
Sosa-Hernandez, E.M. [Departamento de Matematicas Aplicadas, Facultad de Contaduria y Administration, Universidad Autonoma de San Luis Potosi, Alvaro Obregon 64, 78000 San Luis Potosi, S.L.P. (Mexico); Alvarado-Leyva, P.G. [Departamento de Fisica, Facultad de Ciencias, Universidad Autonoma de San Luis Potosi Alvaro Obregon 64, 78000 San Luis Potosi, S.L.P. (Mexico)]. E-mail: pal@galia.fc.uaslp.mx
2006-11-09
The magnetic behavior of clusters V{sub 6}-V{sub 9} in bulk Fe is determined by using an electronic Hamiltonian which includes s, p and d electrons. The spin density distribution is calculated self-consistenly in the unrestricted Hartree-Fock approximation. The local magnetic moments are obtained at V and Fe atoms; the magnetic coupling between Fe and V atoms is antiferromagnetic-like. We consider two cases, the first case correspond to non-interacting clusters, the distance between them is infinity, and the another case, when the clusters are interacting, the separation between them is finite; in the first case, the magnetic order in V{sub 6} is ferromagnetic-like whereas for V{sub 9} the magnetic order is antiferromagnetic-like, in the second case we have found that the magnetic order is not well stablished in V{sub 6}. We have found that the magnetic order in the matrix is not broken by the presence of the V atoms, although the local magnetic moments of Fe atoms at the interface cluster-matrix, are reduced respect to Fe bulk magnetization (2.22{mu} {sub B}) [e.g. {mu} {sub Fe}(5) = 1.98{mu} {sub B} in V{sub 6}; {mu} {sub Fe}(3) 1.89{mu} {sub B} in V{sub 9}].
Magnetic Moments in the Past: developing archaeomagnetic dating in the UK
Outram, Zoe; Batt, Catherine M.; Linford, Paul
2010-05-01
Magnetic studies of archaeological materials have a long history of development in the UK and the data produced by these studies is a key component of global models of the geomagnetic field. However, archaeomagnetic dating is not a widely used dating technique in UK archaeology, despite the potential to produce archaeologically significant information that directly relates to human activity. This often means that opportunities to improve our understanding of the past geomagnetic field are lost, because archaeologists are unaware of the potential of the method. This presentation discusses a project by the University of Bradford, UK and English Heritage to demonstrate and communicate the potential of archaeomagnetic dating of archaeological materials for routine use within the UK. The aims of the project were achieved through the production of a website and a database for all current and past archaeomagnetic studies carried out in the UK. The website provides archaeologists with the information required to consider the use of archaeomagnetic dating; including a general introduction to the technique, the features that can be sampled, the precision that can be expected from the dates and how much it costs. In addition, all archaeomagnetic studies carried out in the UK have been collated into a database, allowing similar studies to be identified on the basis of the location of the sites, the archaeological period and type of feature sampled. This clearly demonstrates how effective archaeomagnetic dating has been in different archaeological situations. The locations of the sites have been mapped using Google Earth so that studies carried out in a particular region, or from a specific time period can be easily identified. The database supports the continued development of archaeomagnetic dating in the UK, as the data required to construct the secular variation curves can be extracted easily. This allows the curves to be regularly updated following the production of new
International Nuclear Information System (INIS)
Aoyama, Tatsumi; Hayakawa, Masashi; Kinoshita, Toichiro; Nio, Makiko
2011-01-01
This paper reports the values of contributions to the electron g-2 from 300 Feynman diagrams of the gauge-invariant Set III(a) and 450 Feynman diagrams of the gauge-invariant Set III(b). The evaluation is carried out in two versions. Version A is to start from the sixth-order magnetic anomaly M 6 obtained in the previous work. The mass-independent contributions of Set III(a) and Set III(b) are 2.1275(2) and 3.3271(6) in units of (α/π) 5 , respectively. Version B is based on the recently developed automatic code generation scheme. This method yields 2.1271(3) and 3.3271(8) in units of (α/π) 5 , respectively. They are in excellent agreement with the results of the first method within the uncertainties of numerical integration. Combining these results as statistically independent we obtain the best values, 2.1273(2), and 3.3271(5) times (α/π) 5 , for the mass-independent contributions of the Set III(a) and Set III(b), respectively. We have also evaluated mass-dependent contributions of diagrams containing muon and/or tau-particle loop. Including them the total contribution of Set III(a) is 2.1349(2) and that of Set III(b) is 3.3299(5) in units of (α/π) 5 . The total contributions to the muon g-2 of various leptonic vacuum-polarization loops of Set III(a) and Set III(b) are 112.418(32) and 15.407(5) in units of (α/π) 5 , respectively.
International Nuclear Information System (INIS)
Ioffe, B. L.
2009-01-01
A short review is presented of the spontaneous violation of chiral symmetry in QCD vacuum. It is demonstrated that this phenomenon is the origin of baryon masses in QCD. The value of nucleon mass is calculated, as well as the masses of hyperons and some baryonic resonances, and expressed mainly through the values of quark condensates - , q = u, d, s,-the vacuum expectation values (v.e.v.) of quark field. The concept of v.e.v. induced by external fields is introduced. It is demonstrated that such v.e.v. induced by static electromagnetic field results in quark condensate magnetic susceptibility, which plays the main role in determination of baryon magnetic moments. The magnetic moments of proton, neutron, and hyperons are calculated. The results of calculation of baryon octet β-decay constants are also presented.
Zhang, Yue; Gilmore, Mark; Hsu, Scott C.; Fisher, Dustin M.; Lynn, Alan G.
2017-11-01
We report experimental results on the injection of a magnetized plasma jet into a transverse background magnetic field in the HelCat linear plasma device at the University of New Mexico [M. Gilmore et al., J. Plasma Phys. 81(1), 345810104 (2015)]. After the plasma jet leaves the plasma-gun muzzle, a tension force arising from an increasing curvature of the background magnetic field induces in the jet a sheared axial-flow gradient above the theoretical kink-stabilization threshold. We observe that this emergent sheared axial flow stabilizes the n = 1 kink mode in the jet, whereas a kink instability is observed in the jet when there is no background magnetic field present.
International Nuclear Information System (INIS)
Lieu, R.; Quenby, J.J.
1990-01-01
Computational and analytical methods have been used in a study of particle acceleration by MHD shocks. Numerical simulations of single-particle trajectories indicate that magnetic moment is conserved quite accurately for an encounter with a near-perpendicular shock, and for all pitch angles except the very small ones. Acceleration is most effective for particles which are reflected by the shock at small pitch angles. If future encounters with the shock are possible, large acceleration will be repeated only for relativistic plasma flow velocities. Results for the pure MHD shock are then considered within the context of a diffusion model (hence a diffusive MHD shock). The microscopic approach is employed whereby one follows the history of a test particle and explicitly takes into account the possibility of reflection by the shock. Exact analytical solutions are currently available to order V/c, where V is the plasma flow speed, and are found to be in complete agreement with diffusion theory. More specifically, the presence of electromagnetic effects leads to a shortening of acceleration time scale but does not change the steady state spectrum of energetic particles. 7 refs
Yang, X.F.; Xie, L.; Babcock, C.; Billowes, J.; Bissell, M.L.; Blaum, K.; Cheal, B.; Flanagan, K.T.; Garcia Ruiz, R. F.; Gins, W.; Gorges, C.; Grob, L.K.; Heylen, H.; Kaufmann, S.; Kowalska, M.; Kraemer, J.; Malbrunot-Ettenauer, S.; Neugart, R.; Neyens, G.; Nörtershäuser, W.; Papuga, J.; Sánchez, R.; Yordanov, D.T.
2016-01-01
Collinear laser spectroscopy has been performed on the $^{79}_{30}$Zn$_{49}$ isotope at ISOLDE-CERN. The existence of a long-lived isomer with a few hundred milliseconds half-life was confirmed, and the nuclear spins and moments of the ground and isomeric states in $^{79}$Zn as well as the isomer shift were measured. From the observed hyperfine structures, spins $I = 9/2$ and $I = 1/2$ are firmly assigned to the ground and isomeric states. The magnetic moment $\\mu$ ($^{79}$Zn) = $-$1.1866(10) $\\mu_{\\rm{N}}$, confirms the spin-parity $9/2^{+}$ with a $\
Ward, Thomas
2013-10-01
A new electromagnetic neutral-current quark mixing matrix, analog to the well-known Cabibbo-Kobayashi-Maskawa (CKM) weak charge-current matrix, is proposed to account for the strange quark content of the neutron and proton and part of the anomalous axial vector magnetic moments. The EM-CKM matrix is shown to be equivalent to the weak-CKM matrix following an EM to weak gauge symmetry transformation, demonstrating the universality of the Standard Model (SM) CKM quark mixing matrix. The electric and magnetic form factors are reformulated using a new QCD three quark nucleon gyromagnetic factor, Dirac and Pauli form factors and anomalous kappa factors. The old 1943 Jauch form factors which have been systematically used and developed for many years is shown to be in stark disagreement with the new global set of experimental polarized electron-proton scattering data whereas the reformulated SM parameter set of this study is shown to agree very well, lending strong support for this new EM SM approach.
International Nuclear Information System (INIS)
Bhattacharya, Somesh Kr; Tanaka, Shingo; Kohyama, Masanori; Shiihara, Yoshinori
2013-01-01
We present first-principle calculations on symmetric tilt grain boundaries (GBs) in bcc Fe. Using density functional theory (DFT), we studied the structural, electronic and magnetic properties of Σ3(111) and Σ11(332) GBs formed by rotation around the [110] axis. The optimized structures, GB energies and GB excess free volumes are consistent with previous DFT and classical simulation studies. The GB configurations can be interpreted by the structural unit model as given by Nakashima and Takeuchi (2000 ISIJ 86 357). Both the GBs are composed of similar structural units of three- and five-membered rings with different densities at the interface according to the rotation angle. The interface atoms with larger atomic volumes reveal higher magnetic moments than the bulk value, while the interface atoms with shorter bond lengths have reduced magnetic moments in each GB. The charge density and local density of states reveal that the interface bonds with short bond lengths have more covalent nature, where minority-spin electrons play a dominant role as the typical nature of ferromagnetic Fe. In order to understand the structural stability of these GBs, we calculated the local energy and local stress for each atomic region using the scheme of Shiihara et al (2010 Phys. Rev. B 81 075441). In each GB, the interface atoms with larger atomic volumes and enhanced magnetic moments reveal larger local energy increase and tensile stress. The interface atoms constituting more covalent-like bonds with reduced magnetic moments have lower local energy increase, contributing to the stabilization, while compressive stress is generated at these atoms. The relative stability between the two GBs can be understood by the local energies at the structural units. The local energy and local stress analysis is a powerful tool to investigate the structural properties of GBs based on the behavior of valence electrons. (paper)
International Nuclear Information System (INIS)
LeBlanc, M.A.R.; LeBlanc, D.; Cameron, D.S.M.; Celebi, S.
2000-01-01
We report on measurements of the evolution of the magnetization upon warming from T 0 (4.2 or 77 K) to T c for type II superconductors with the locus of initially situated along bridges between the envelopes of the major hysteresis curves. Strongly hysteretic and semi-reversible specimens of low and high T c type II superconductors have been studied (Nb 3 Zr, VTi, YBCO, Nb and BiSCCO). Concentric, oppositely directed magnetic moments coexist in the specimens when lies along the bridges. We focused on the cases where =0, hence, before warming, the constituent moments cancel each other exactly. Since they diminish in magnitude at different rates as T is increased to T c , their sequential 'release' leads to a rich variety of phenomena. A simple model exploiting the critical state, an equilibrium Meissner current and conservation of flux accounts for all the intricate behaviour encountered. (author)
International Nuclear Information System (INIS)
Bayegan, S.; Sadeghi, H.
2004-01-01
In big-bang nucleosynthesis, processes relevant ti increasing of nucleon density are more important. One of the theories that its solutions more accurately explain the experimental works is Effective Field Theory in this paper. Magnetic moment (χM1) for radiative capture of protons by deuterons p + d → 3 He+γ process is calculated using Effective Field Theory. The calculation includes coulomb interaction up to next-to -next-leading order (N 2 LO)
DEFF Research Database (Denmark)
Boseggia, S.; Walker, H. C.; Vale, J.
2013-01-01
Sr2IrO4 is a prototype of the class of Mott insulators in the strong spin–orbit interaction (SOI) limit described by a Jeff = 1/2 ground state. In Sr2IrO4, the strong SOI is predicted to manifest itself in the locking of the canting of the magnetic moments to the correlated rotation by 11.8(1)° o...
International Nuclear Information System (INIS)
Antony, M.S.; Britz, J.
1986-01-01
A compilation of experimental root-mean square radii, isotope shifts, ground-state magnetic dipole and electric quadrupole moments of nuclei 1≤A≤239 is presented. Shell, sub-subshell closures and changes in nuclear deformations discernible from data are displayed graphically. The nuclear charge distribution, for 1≤A≤ 239 nuclei deduced from Coulomb displacement energies is shown for comparison
International Nuclear Information System (INIS)
Greedan, J.E.; MacLean, D.A.
1978-01-01
The rare-earth orthotitanites, RTi0 3 are a relatively new series of materials with properties which are strongly dependent on the identity of the rare-earth ion. Low-temperature magnetization studies on the system Lasub(x)Ysub(1-x)Ti0 3 and the compound GdTi0 3 indicate that the magnitude of the Ti 3+ spontaneous moment depends on the average size of the rare-earth ion and on its magnetic moment. For most of the phases studied except GdTi0 3 the Ti 3+ moment is very much smaller than the 'spin only' value and is non-integral, yet semiconducting behaviour is simultaneously observed. (author)
Kim, Tae-Young; Hong, Nguyen Hoa; Sugawara, T; Raghavender, A T; Kurisu, M
2013-05-22
Thin films of rare earth (RE)-doped BiFeO3 (where RE=Sm, Ho, Pr and Nd) were grown on LaAlO3 substrates by using the pulsed laser deposition technique. All the films show a single phase of rhombohedral structure with space group R3c. The saturated magnetization in the Ho- and Sm-doped films is much larger than the values reported in the literature, and is observed at quite a low field of 0.2 T. For Ho and Sm doping, the magnetization increases as the film becomes thinner, suggesting that the observed magnetism is mostly due to a surface effect. In the case of Nd doping, even though the thin film has a large magnetic moment, the mechanism seems to be different.
Energy Technology Data Exchange (ETDEWEB)
Gold, S.
2005-07-01
The aim of this work was to examine, by use of XMCD-effect and additional measurements with SQUID-magnetometer, spin moments and hysteresis loops, but also to clarify the intrinsic properties like magnetocrystalline anisotropy, magnetic dipole term, and the nearly quenched orbital moment. The XMCD-measurements were done at the Cr L{sub 2,3}- and the O K-edge. The results for CrO{sub 2} show a strong dependence of the orbital, the sum of spin moment and magnetic dipole term, and the magnetocrystalline anisotropy energy from the angle between rutile a- and c-axis. Even more than the complete orbital moment, two separable and different spectral features show strong alterations of the different orbital moments. In a second part of this work the temperature dependence was investigated. The aim was to clarify the origin of the orbital moment, dipole term, and MAE in dependence of the spin moment and compare the results to different theoretical models. The extracted orbital moments and the magnetic dipole term show the same temperature dependence as the spin moment. In the following a dependence of the squared measured spin moment could be found for the MAE. For the first time the magnetic dipole term could be identified as the reason of the magnetocrystalline anisotropy energy. A strong Cr-O hybridisation was found, which shows in a similar structure and temperature dependence of the orbital moments for Cr L{sub 2,3} and the XMCD effect at O-K edge. (orig.)
International Nuclear Information System (INIS)
Glendening, E.D.; Feller, D.; Peterson, K.A.; McCullough, E.A. Jr.; Miller, R.J.
1995-01-01
The dipole moment and magnetic hyperfine properties of the A 2 Σ + Rydberg state of nitric oxide have been evaluated at a variety of levels of theory with extended correlation consistent basis sets. Using the finite field approach to compute the dipole moment, restricted coupled cluster RCCSD(T) and complete active space-configuration interaction CAS-CI+Q methods yield values (1.09--1.12 D) that are essentially identical to experiment. In contrast, dipole moments computed as an expectation value of the dipole moment operator typically differ from experiment by 0.1--0.6 D. The rather unfavorable comparisons with experiment reported in previous theoretical studies may stem, in part, from the method chosen to evaluate the dipole moment. Magnetic hyperfine properties were evaluated using a variety of unrestricted and restricted open-shell Hartree--Fock-based methods. We estimated the full CI limiting properties by exploiting the convergence behavior of a sequence of MRCI wave functions. The isotropic component A iso ( 14 N) of 39±1 MHz evaluated in this fashion is in excellent accord with the experimental value of 41.4±1.7 MHz. Highly correlated UHF-based methods [e.g., CCSD(T) and QCISD(T)] yield comparable values of 40--41 MHz that are in good agreement with both experiment and the apparent full CI limit. However, for A iso ( 17 O), the full CI limit (-97±2 MHz) and the UHF-based results (ca.-118 MHz) differ by roughly 20 MHz. It remains unclear how to reconcile this large discrepancy. copyright 1995 American Institute of Physics
Energy Technology Data Exchange (ETDEWEB)
Carey, R. M.; Lynch, K. R.; Miller, J. P.; Roberts, B. L.; Morse, W. M.; Semertzides, Y. K.; Druzhinin, V. P.; Khazin, B. I.; Koop, I. A.; Logashenko, I. [et al.; Redin, S. I.
2009-02-01
We propose to measure the muon anomalous magnetic moment, a{sub {mu}}, to 0.14 ppm-a fourfold improvement over the 0.54 ppm precision obtained in the BNL experiment E821. The muon anomaly is a fundamental quantity and its precise determination will have lasting value. The current measurement was statistics limited, suggesting that greater precision can be obtained in a higher-rate, next-generation experiment. We outline a plan to use the unique FNAL complex of proton accelerators and rings to produce high-intensity bunches of muons, which will be directed into the relocated BNL muon storage ring. The physics goal of our experiment is a precision on the muon anomaly of 16 x 10{sup -11}, which will require 21 times the statistics of the BNL measurement, as well a factor of 3 reduction in the overall systematic error. Our goal is well matched to anticipated advances in the worldwide effort to determine the standard model (SM) value of the anomaly. The present comparison, {Delta}a{sub {mu}} (Expt: -SM) = (295 {+-} 81) x 10{sup -11}, is already suggestive of possible new physics contributions to the muon anomaly. Assuming that the current theory error of 51 x 10{sup -11} is reduced to 30 x 10{sup -11} on the time scale of the completion of our experiment, a future {Delta}a{sub {mu}} comparison would have a combined uncertainty of {approx} 34 x 10{sup -11}, which will be a sensitive and complementary benchmark for proposed standard model extensions. The experimental data will also be used to improve the muon EDM limit by up to a factor of 100 and make a higher-precision test of Lorentz and CPT violation. We describe in this Proposal why the FNAL complex provides a uniquely ideal facility for a next-generation (g-2) experiment. The experiment is compatible with the fixed-target neutrino program; indeed, it requires only the unused Booster batch cycles and can acquire the desired statistics in less than two years of running. The proton beam preparations are largely aligned
Brown, P J; Neumann, K U; Smith, J G; Ziebeck, K R A
1997-01-01
The antiferromagnetic structure of the intermetallic compound U sub 1 sub 4 Au sub 5 sub 1 has been determined from neutron polarimetric measurements and refined by combining these data with integrated intensity measurements. The structure was found to be non-collinear with the U moments confined to the a-b plane. The moments of U atoms in each of the two sets of sixfold sites are arranged hexagonally with rotations of 60 deg. between them and the two sets are rotated with respect to one another by 50 deg. The third (twofold) set of U atoms has no ordered moment. These conclusions are in disagreement with a previous determination of the structure from powder data which gave a collinear structure with moments parallel to the c axis. Magnetization measurements made on single crystals in the temperature range 300-2 K can be understood in terms of a transition to a non-collinear easy plane antiferromagnetic structure stable below 22 K. Polarized neutron measurements have been used to determine the contribution of...
Wu, Xuehang; Chen, Wen; Wu, Wenwei; Wu, Juan; Wang, Qing
2018-05-01
Four types of Ni-Zn based ferrites materials having the general formula Ni0.5Zn0.5NdxFe2-xO4 (0.0 ≤ x ≤ 0.12) have been successfully synthesized by calcining oxalates in air and the influence of Nd content on the structure and magnetic properties of Ni0.5Zn0.5NdxFe2-xO4 is studied. X-ray diffraction examination confirms that a high-crystallized Ni0.5Zn0.5NdxFe2-xO4 with cubic spinel structure is obtained when the precursor is calcined at 1000 °C in air for 2 h. The substitutions of Nd3+ ions for partial Fe3+ ions do not change the spinel crystalline structure of MFe2O4. The incorporation of Nd3+ ions in place of Fe3+ ions in Ni-Zn ferrites increases the average crystallite size. Specific saturation magnetization decreases with increase in Nd content. This is because Nd3+ ions with smaller magnetic moment preferentially fill the octahedral sites. In addition, antiferromagnetic FeNdO3 increases with increase in Nd content. In this study, Ni0.5Zn0.5Nd0.08Fe1.92O4, calcined at 1000 °C, exhibits the highest magnetic moment (4.2954 μB) and the lowest coercivity (28.82 Oe).
Computed tomography and magnetic resonance imaging in vascular surgical emergencies
International Nuclear Information System (INIS)
Vogelzang, R.L.; Fisher, M.R.
1987-01-01
Computed tomography (CT) scanning is now universally accepted as an extremely useful tool in the investigation of disease throughout the body. CT has revolutionized the practice of medicine in virtually every specialty. In vascular surgery the routine use of CT in a variety of problems has changed the way diagnoses are made. It allows prompt recognition of conditions that were difficult if not impossible to diagnose using older techniques. Nowhere is this concept better epitomized than in the realm of vascular surgical emergencies. In these cases, life or limb threatening conditions such as hemorrhage, prosthetic graft infection, or vascular occlusion exist as the result of aneurysm, trauma, dissection, tumor, or previous arterial surgery. Prompt and appropriate diagnosis of the immediate problem and its cause is afforded by the use of contrast enhanced CT. This frequently obviates the need for angiography and eliminates less accurate tests such as plain films, barium studies, nuclear medicine scans, and/or ultrasound. In the past several years magnetic resonance imaging (MRI) of the body has become a practical reality. The technique offers promise in the imaging of many disease processes. In the neural axis it has become a preferred modality due to inherently higher contrast resolution and freedom from artifacts. Progress in body imaging has been slower due to problems with motion artifact but early results in cardiovascular imaging demonstrate that MRI offers theoretical advantages over CT that may make it the imaging test of choice in vascular disease. This paper identifies those vascular surgical emergencies in which CT and MRI are most useful and clarifies and illustrates the diagnostic features of the various conditions encountered
The emerging magnetic flux and the elementary eruptive phenomenon
International Nuclear Information System (INIS)
Mouradian, Z.; Martres, M.J.; Soru-Escaut, I.
1983-01-01
Observational studies before and during the flare start were made in Hα(3-lambda heliograph at Meudon Observatory) on a large sample of ''elementary'' flares, both on the disk and along the limb of the Sun. The concept of elementary eruptive phenomenon (EEP) is proposed to describe these observational data. The EEP may be considered as the basic element of complex flares which, then, are built up by the juxtaposition of several EEP. In the inferred scenario, the chromospheric eruptive phenomenon consists of two systems of loops: one cold - the surging arch - Tapprox.=10 4 K, the other hot - the flaring arch -, covering a temperature range up to 10 7 K. The footpoints of the two systems remain differentiated until extinction of the phenomenon; their behaviour over time differs also. The surging arch (the magnetic flux emergence) rises first progressively in the solar atmosphere and the upper part of the loop is heated to coronal temperatures. The classical surge which is observed in the center of the Hα line, after the flash phase of the flare, is only the late development of the surging arch. The flaring arch originates from a pre-existing low loop, which is also to rise in the solar atmosphere. These two systems coexist and may combine to form such physical characteristics as mass motion, expansion and post-flash phase. (orig.)
DEFF Research Database (Denmark)
Juul-Kristensen, B.; Bojsen-Møller, Finn; Holst, E.
2000-01-01
Anatomy, biomechanics, cross-section, magnetic resonance imaging, method comparison, rotator cuff muscles, ultrasound......Anatomy, biomechanics, cross-section, magnetic resonance imaging, method comparison, rotator cuff muscles, ultrasound...
Energy Technology Data Exchange (ETDEWEB)
Gravador, E.; Yoshiki, Hajime; Feizeng, H. [Ibaraki Univ., Mito (Japan)
1996-08-01
A superthermal UCN edm measuring machine is currently under construction at KEK. It utilizes a magnetically shielded superconducting solenoid at liquid helium temperature to generate a stable and homogeneous magnetic field at 10 milligauss. The design of the magnetic shield and solenoid and preliminary evaluation of shielding effectiveness is presented. (author)
Energy Technology Data Exchange (ETDEWEB)
Zhang, Wenxu, E-mail: xwzhang@uestc.edu.cn; Zhang, Wanli
2016-04-15
The electronic structures of four Laves phase iron compounds (e.g. YFe{sub 2}, ZrFe{sub 2}, LuFe{sub 2} and HfFe{sub 2}) have been calculated with a state-of-the-art full potential electronic structure code. Our theoretical work predicted that the magnetic moments collapse under hydrostatic pressure. This feature is found to be universal in these materials. Its electronic origin is provided by the sharp peaks in the density of states near the Fermi level. It is shown that a first order quantum phase transition can be expected under pressure in Y(Zr, or Lu)Fe{sub 2}, while a second order one in HfFe{sub 2}. The bonding characteristics are discussed to elucidate the equilibrium lattice constant variation. The large spontaneous volume magnetostriction gives one of the most important characteristics of these compounds. Invar anomalies in these compounds can be partly explained by the current work when the fast continuous magnetic moment decrease with the decrease of the lattice constant was properly considered. This work may be as a first insight into the rich world of quantum phase transition and Invar mechanism in these Laves phase compounds. - Highlights: • Magnetic moment of YFe{sub 2}, ZrFe{sub 2}, LuFe{sub 2} and HfFe{sub 2} collapses under pressure. • The transition in Y(Zr or Lu) Fe{sub 2} under pressure is first order. • The transition in HfFe{sub 2} under pressure is second order. • The Invar effects in the compounds can be put into the magnetostriction model.
Energy Technology Data Exchange (ETDEWEB)
Burger, Florian [Humboldt U. Berlin; Feng, Xu [KEK; Hotzel, Grit [Humboldt U. Berlin; Jansen, Karl [DESY; Petschlies, Marcus [The Cyprus Institute; Renner, Dru B. [JLAB
2013-11-01
We present results for the leading order QCD correction to the anomalous magnetic moment of the muon including the first two generations of quarks as dynamical degrees of freedom. Several light quark masses are examined in order to yield a controlled extrapolation to the physical pion mass. We analyse ensembles for three different lattice spacings and several volumes in order to investigate lattice artefacts and finite-size effects, respectively. We also provide preliminary results for this quantity for two flavours of mass-degenerate quarks at the physical value of the pion mass.
Energy Technology Data Exchange (ETDEWEB)
Burger, Florian; Hotzel, Grit [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik; Feng, Xu [High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki (Japan); Jansen, Karl [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Petschlies, Marcus [The Cyprus Institute, Nicosia (Cyprus); Renner, Dru B. [Jefferson Lab, Newport News, VA (United States)
2013-12-15
We present results for the leading order QCD correction to the anomalous magnetic moment of the muon including the first two generations of quarks as dynamical degrees of freedom. Several light quark masses are examined in order to yield a controlled extrapolation to the physical pion mass. We analyse ensembles for three different lattice spacings and several volumes in order to investigate lattice artefacts and finite-size effects, respectively. We also provide preliminary results for this quantity for two flavours of mass-degenerate quarks at the physical value of the pion mass.
International Nuclear Information System (INIS)
Hocquet, T.; Jardin, J.P.; Germain, P.; Labbe, J.
1994-01-01
We calculate the band structure of the antiferromagnetic phase of La 2-x Sr x CuO 4 in a bidimensional itinerant electron model. Then, we discuss the stability of the antiferromagnetic phase and we calculate the size of the atomic magnetic moments with respect to the temperature and the doping ratio x. We show that the antiferromagnetic solution is in any case much more stable than the ferromagnetic one. Finally, we give a description of the antiferromagnetic fluctuations from which merges an explicit physical meaning of the pseudo-gap found in the electronic density of states. Implications for superconductivity are proposed. (orig.)
Choi, E. S.; Graf, D.; Tokumoto, T.; Brooks, J. S.; Yamada, Jun-Ichi
2007-03-01
We have investigated transport and magnetization properties of β-(BDA-TTP)2MX4 (M=Fe, Ga and X=Cl, Br) as a function of pressure, temperature and magnetic field. The title material undergoes metal-insulator transitions above 100 K at ambient pressure. The insulating phase is suppressed with pressure and superconductivity eventually appears above Pc= 4.5 kbar (X=Cl) and 13 kbar (X=Br). The general temperature-pressure (TP) phase diagram is similar each other, while higher pressure is required for X=Br compounds to suppress the insulating state and induce the superconductivity. Pressure dependent DC magnetization studies on β-(BDA-TTP)2FeCl4 compound revealed that the AFM ordering persist well above Pc. In spite of similarity of phase diagram between M=Fe and M=Ga compounds, magnetoresistance results show distinct behaviors, which indicates the magnetic interaction with the conduction electrons are still effective. The comparison between X=Cl and X=Br compounds suggests the anion-size effect rather than the existence of localized magnetic moments plays more important role in determining the ground state.
Progress toward measuring the 6S1/2 5D3/2 magnetic-dipole transition moment in Ba+
Williams, Spencer; Jayakumar, Anupriya; Hoffman, Matthew; Blinov, Boris; Fortson, Norval
2015-05-01
We report the latest results from our effort to measure the magnetic-dipole transition moment (M1) between the 6S1 / 2 and 5D3 / 2 manifolds in Ba+. We describe a new technique for calibrating view-port birefringence and how we will use it to enhance the M1 signal. To access the transition moment we use a variation of a previously proposed technique that allows us to isolate the magnetic-dipole coupling from the much larger electric-quadrupole coupling in the transition rates between particular Zeeman sub-levels. Knowledge of M1 is crucial for a parity-nonconservation experiment in the ion where M1 will be a leading source of systematic errors. No measurement of this M1 has been made in Ba+, however, there are three calculations that predict it to be 80 ×10-5μB, 22 ×10-5μB, and 17 ×10-5μB. A precise measurement may help resolve this theoretical discrepancy which originates from their different estimations of many-body effects. Supported by NSF Grant No. 09-06494F.
International Nuclear Information System (INIS)
Li, Zhi; Zhao, Zhen
2017-01-01
The geometries, electronic properties, magnetic moments and growth strategies of the Fe_nN (n = 1–7) clusters are investigated using all-electron density functional theory. The results show that N doping significantly distorts the Fe_n clusters. Fe_4N and Fe_6N clusters are more stable structures than other considered Fe_nN clusters. Local peaks of HOMO-LUMO gap curve are found at n = 3, 7, implying that the chemical stability of the Fe_3N and Fe_7N clusters is higher. Fe_2N, Fe_4N and Fe_6N clusters have larger magnetic moments compared to other considered Fe_nN (n = 1–7) clusters. It can be seen that the Fe_5 clusters are easier to adsorb a Fe atom while the Fe_4 clusters are easier to adsorb a N atom. The considered Fe_mN clusters prefer to adsorb a Fe atom and larger Fe_mN clusters are easier to grow. - Highlights: • The structural stability of the Fe_4N and Fe_6N clusters is higher. • The chemical stability of the Fe_3N and Fe_7N clusters is higher. • Fe_5 clusters are easier to adsorb a Fe atom while Fe_4 clusters are easier to adsorb a N atom. • Fe_nN clusters prefer to adsorb a Fe atom.
International Nuclear Information System (INIS)
Fiori, E.
2010-12-01
Magnetic moments can provide deep insight for nuclear structure and of the wave function composition, particularly when the single particle character of the nucleus is dominating. For this reason, the magnetic moment of the first excited state of the radioactive neutron-rich 72 Zn was measured at the GANIL facility (Caen, France). The result of the experiment confirmed the trend predicted by the shell model calculations, even if the error on the measurement did not allow for a rigorous constraint of the theories. The measurement was performed using the transient field (TF) technique and the nuclei of interest were produced in a fragmentation reaction. Before this experiment, the high-velocity TF (HVTF) technique had been used only with projectile up to Z = 24. It was the first time that a magnetic moment of an heavy ion with Z > 24 was measured in the high velocity regime. To further develop the technique and to gather information about the hyperfine interaction between the polarized electrons and the nucleons, two experiments were performed at LNS (Catania, Italy). In this thesis the development of the high-velocity TF technique for the experiments on g(2 + ; 72 Zn) and field strength B TF (Kr, Ge) is presented. The analysis of the results and their interpretation is then discussed. It was demonstrated that the HVTF technique, combined with Coulomb excitation, can be used for the measurement of g-factors of very short-lived states, with lifetimes of the order of tens of ps and lower, of heavy ions (A ∼ 80) traveling with intermediate relativistic speeds, β ∼ 0.25. The standard TF technique at low velocities (a few percent of the speed of light) has been used for a long time to provide the strong magnetic field necessary for the measurement of g-factors of very short-lived states. The breakthrough of the present development is the different velocity regime of the higher mass projectile under which the experiment is carried out
Exotic chemical arrangements and magnetic moment evolution of NixPt1-x (0 ≤x≤ 1) nanoparticles
Mokkath, Junais Habeeb
2018-06-01
We present a systematic study on the chemical ordering pattern and the magnetic properties of NixPt1-x (0 ⩽ x≤ 1) nanoparticles having a size of 1.5 nm by means of an approach which combines basin hopping structure sampling technique and spin-polarized density functional theory. We found exotic chemical ordering patterns for different Ni/Pt ratios. In addition, we observed a sharp phase transition from non-magnetic to ferromagnetic behaviour around x = 67%. We show that this is a direct consequence of a unique atomic arrangement on the surface in which Ni atoms club together causing the strong Ni-Ni magnetic interaction. The observed magnetic properties are correlated to the electronic density of states.
Haldar, Soumyajyoti; Pujari, Bhalchandra S.; Bhandary, Sumanta; Cossu, Fabrizio; Eriksson, Olle; Kanhere, Dilip G.; Sanyal, Biplab
2014-01-01
In this work, we have studied the chemical and magnetic interactions of Fen (n=1–6) clusters with vacancy defects (monovacancy to correlated vacancies with six missing C atoms) in a graphene sheet by ab initio density functional calculations
Initiation of CMEs by Magnetic Flux Emergence Govind Dubey , Bart ...
Indian Academy of Sciences (India)
tinguished two types of models, viz., directly driven models and storage and release .... We have taken into account the effect of gravity in our model. ... phase the kinetic energy of the system and the changes in density and magnetic fields.
Noncommutative QED and anomalous dipole moments
International Nuclear Information System (INIS)
Riad, I.F.; Sheikh-Jabbari, M.M.
2000-09-01
We study QED on noncommutative spaces, NCQED. In particular we present the detailed calculation for the noncommutative electron-photon vertex and show that the Ward identity is satisfied. We discuss that in the noncommutative case moving electron will show electric dipole effects. In addition, we work out the electric and magnetic dipole moments up to one loop level. For the magnetic moment we show that noncommutative electron has an intrinsic (spin independent) magnetic moment. (author)
International Nuclear Information System (INIS)
Jurco, B.; Tolar, J.
1983-01-01
The exact experimental measurement of the gyromagnetic factor of the electron and the muon also represent an exact test of the validity of the special relativity theory. The gyromagnetic factor may be measured in two ways: in the magnetic field the resonance frequency is measured for transitions between the Rabi-Landau levels with the opposite spin orientation or precession is observed of the spin of a lepton flying in the magnetic field. The latter method is theoretically analyzed in great detail and described by equations. The measured values are given according to foreign experiments with an accuracy of 1 per mille. (M.D.)
Energy Technology Data Exchange (ETDEWEB)
Jurco, B.; Tolar, J. (Ceske Vysoke Uceni Technicke, Prague (Czechoslovakia). Fakulta Jaderna a Fysikalne Inzenyrska)
1983-04-01
The exact experimental measurement of the gyromagnetic factor of the electron and the muon also represent an exact test of the validity of the special relativity theory. The gyromagnetic factor may be measured in two ways: in the magnetic field the resonance frequency is measured for transitions between the Rabi-Landau levels with the opposite spin orientation or precession is observed of the spin of a lepton flying in the magnetic field. The latter method is theoretically analyzed in great detail and described by equations. The measured values are given according to foreign experiments with an accuracy of 1 per mille.
Czech Academy of Sciences Publication Activity Database
Rusz, Ján; Lidbaum, H.; Rubino, S.; Hjörvarsson, B.; Oppeneer, P.M.; Eriksson, O.; Leifer, K.
2011-01-01
Roč. 83, č. 13 (2011), "132402-1"-"132402-4" ISSN 1098-0121 Institutional research plan: CEZ:AV0Z10100521 Keywords : EMCD experiments Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.691, year: 2011
International Nuclear Information System (INIS)
Elhandi, S.; Taj, S.; Attaourti, Y.; Manaut, B.; Oufni, L.
2010-01-01
The effect of the electron's anomalous magnetic moment on the relativistic electronic dressing for the process of electron-hydrogen atom elastic collisions is investigated. We consider a laser field with circular polarization and various electric field strengths. The Dirac-Volkov states taking into account this anomaly are used to describe the process in the first order of perturbation theory. The correlation between the terms coming from this anomaly and the electric field strength gives rise to the strong dependence of the spinor part of the differential cross section (DCS) with respect to these terms. A detailed study has been devoted to the nonrelativistic regime as well as the moderate relativistic regime. Some aspects of this dependence as well as the dynamical behavior of the DCS in the relativistic regime have been addressed.
Energy Technology Data Exchange (ETDEWEB)
Porter, Frank C. [Caltech, Pasadena, CA (United States). Physics Dept.
2015-04-29
The BABAR collaboration has an extensive program of studying hadronic cross sections in low-energy e^{+}e^{-} collisions, accessible via initial-state radiation. Our measurements allow significant improvements in the precision of the predicted value of the muon anomalous magnetic moment. These improvements are necessary for illuminating the current 3.6 sigma difference between the predicted and the experimental values. We have published results on a number of processes with two to six hadrons in the final state. We report here the results of recent studies with final states that constitute the main contribution to the hadronic cross section in the energy region between 1 and 3 GeV, as e^{+}e^{-} → K^{+}K^{-}, π^{+}π^{-}, and e^{+}e^{-} → 4 hadrons
Spectropolarimetric Evidence for a Siphon Flow along an Emerging Magnetic Flux Tube
Energy Technology Data Exchange (ETDEWEB)
Requerey, Iker S.; Cobo, B. Ruiz [Instituto de Astrofísica de Canarias, Vía Láctea s/n, E-38205 La Laguna, Tenerife (Spain); Iniesta, J. C. Del Toro; Suárez, D. Orozco [Instituto de Astrofísica de Andalucía (CSIC), Apdo. de Correos 3004, E-18080 Granada (Spain); Rodríguez, J. Blanco [Grupo de Astronomía y Ciencias del Espacio, Universidad de Valencia, E-46980 Paterna, Valencia (Spain); Solanki, S. K.; Barthol, P.; Gandorfer, A.; Gizon, L.; Hirzberger, J.; Riethmüller, T. L.; Noort, M. van [Max-Planck-Institut für Sonnensystemforschung, Justus-von-Liebig-Weg 3, D-37077 Göttingen (Germany); Schmidt, W. [Kiepenheuer-Institut für Sonnenphysik, Schöneckstr. 6, D-79104 Freiburg (Germany); Pillet, V. Martínez [National Solar Observatory, 3665 Discovery Drive, Boulder, CO 80303 (United States); Knölker, M., E-mail: iker@iac.es [High Altitude Observatory, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307-3000 (United States)
2017-03-01
We study the dynamics and topology of an emerging magnetic flux concentration using high spatial resolution spectropolarimetric data acquired with the Imaging Magnetograph eXperiment on board the sunrise balloon-borne solar observatory. We obtain the full vector magnetic field and the line of sight (LOS) velocity through inversions of the Fe i line at 525.02 nm with the SPINOR code. The derived vector magnetic field is used to trace magnetic field lines. Two magnetic flux concentrations with different polarities and LOS velocities are found to be connected by a group of arch-shaped magnetic field lines. The positive polarity footpoint is weaker (1100 G) and displays an upflow, while the negative polarity footpoint is stronger (2200 G) and shows a downflow. This configuration is naturally interpreted as a siphon flow along an arched magnetic flux tube.
Magnetic Energy and Helicity in Two Emerging Active Regions in the Sun
Liu, Y.; Schuck, P. W.
2012-01-01
The magnetic energy and relative magnetic helicity in two emerging solar active regions, AR 11072 and AR 11158,are studied. They are computed by integrating over time the energy and relative helicity fluxes across the photosphere. The fluxes consist of two components: one from photospheric tangential flows that shear and braid field lines (shear term), the other from normal flows that advect magnetic flux into the corona (emergence term). For these active regions: (1) relative magnetic helicity in the active-region corona is mainly contributed by the shear term,(2) helicity fluxes from the emergence and the shear terms have the same sign, (3) magnetic energy in the corona (including both potential energy and free energy) is mainly contributed by the emergence term, and(4) energy fluxes from the emergence term and the shear term evolved consistently in phase during the entire flux emergence course.We also examine the apparent tangential velocity derived by tracking field-line footpoints using a simple tracking method. It is found that this velocity is more consistent with tangential plasma velocity than with the flux transport velocity, which agrees with the conclusion by Schuck.
Energy Technology Data Exchange (ETDEWEB)
Li, Zhi, E-mail: lizhi81723700@163.com [School of Materials and Metallurgy, University of Science and Technology Liaoning, Anshan, 114051 (China); Zhao, Zhen [School of Chemistry and Life Science, Anshan Normal University, Anshan, 114007 (China)
2017-02-01
The geometries, electronic properties, magnetic moments and growth strategies of the Fe{sub n}N (n = 1–7) clusters are investigated using all-electron density functional theory. The results show that N doping significantly distorts the Fe{sub n} clusters. Fe{sub 4}N and Fe{sub 6}N clusters are more stable structures than other considered Fe{sub n}N clusters. Local peaks of HOMO-LUMO gap curve are found at n = 3, 7, implying that the chemical stability of the Fe{sub 3}N and Fe{sub 7}N clusters is higher. Fe{sub 2}N, Fe{sub 4}N and Fe{sub 6}N clusters have larger magnetic moments compared to other considered Fe{sub n}N (n = 1–7) clusters. It can be seen that the Fe{sub 5} clusters are easier to adsorb a Fe atom while the Fe{sub 4} clusters are easier to adsorb a N atom. The considered Fe{sub m}N clusters prefer to adsorb a Fe atom and larger Fe{sub m}N clusters are easier to grow. - Highlights: • The structural stability of the Fe{sub 4}N and Fe{sub 6}N clusters is higher. • The chemical stability of the Fe{sub 3}N and Fe{sub 7}N clusters is higher. • Fe{sub 5} clusters are easier to adsorb a Fe atom while Fe{sub 4} clusters are easier to adsorb a N atom. • Fe{sub n}N clusters prefer to adsorb a Fe atom.
Nanotechnology : emerging applications of cellulose-based green magnetic nanocomposites
Tao Wang; Zhiyong Cai; Lei Liu; Ilker S. Bayer; Abhijit Biswas
2010-01-01
In recent years, a new type of nanocomposite â cellulose based hybrid nanocomposites, which adopts cellulose nanofibers as matrices, has been intensively developed. Among these materials, hybrid nanocomposites consisting of cellulosic fibers and magnetic nanoparticles have recently attracted much attention due to their potential novel applications in biomedicine,...
Increase in pediatric magnet-related foreign bodies requiring emergency care.
Silverman, Jonathan A; Brown, Julie C; Willis, Margaret M; Ebel, Beth E
2013-12-01
We describe magnetic foreign body injuries among children and obtain national estimates of magnetic foreign body injury incidence over time. We searched the National Electronic Injury Surveillance System for cases of magnetic foreign bodies in children younger than 21 years in the United States, from 2002 to 2011. Cases were analyzed by location: alimentary or respiratory tract, nasal cavity, ear canal, or genital area. We identified 893 cases of magnetic foreign bodies, corresponding to 22,581 magnetic foreign body cases during a 10-year period (95% confidence interval [CI] 17,694 to 27,469). Most magnetic foreign bodies were ingested (74%) or intranasal (21%). Mean age was 5.2 years for ingested magnetic foreign bodies and 10.1 years for nasal magnetic foreign bodies (difference 4.9; 95% CI 4.1 to 5.6), suggesting different circumstances of injury. The incidence of pediatric magnet ingestions increased from 2002 to 2003 from 0.57 cases per 100,000 children per year (95% CI 0.22 to 0.92) to a peak in 2010 to 2011 of 3.06 cases per 100,000 children per year (95% CI 2.16 to 3.96). Most ingested magnetic foreign bodies (73%) and multiple magnet ingestions (91%) occurred in 2007 or later. Patients were admitted in 15.7% of multiple magnet ingestions versus 2.3% of single magnet ingestions (difference 13.4%; 95% CI 2.8% to 24.0%). Magnet-related injuries are an increasing public health problem for young children, as well for older children who may use magnets for play or to imitate piercings. Education and improved magnet safety standards may decrease the risk small magnets pose to children. Copyright © 2013 American College of Emergency Physicians. Published by Mosby, Inc. All rights reserved.
DEFF Research Database (Denmark)
Szpunar, B.; Kozarzewski, B.
1977-01-01
with a narrow d-band is considered. The magnetic moment of the alloy at zero temperature is calculated within the molecular field and Hartree-Fock approximations. Disorder is treated in the coherent potential approximation. Results are in good agreement with the experimental data obtained for the crystalline......Calculations are made of the mean magnetic moment per atom of the transition metal and the rare-earth metal in the intermetallic compounds, Gd1-x,Nix, Gd1-x Fex, Gd1-x Cox, and Y1-x Cox. A simple model of the disordered alloy consisting of spins localized on the rare-earth atoms and interacting...
Emergence of Twisted Magnetic Flux Related Sigmoidal Brightening ...
Indian Academy of Sciences (India)
tribpo
We have examined the morphological properties of a sigmoid associated with an SXR. (soft X ray) flare. The sigmoid is cospatial with the EUV (extreme ultra violet) images and in the optical part lies along an S shaped Hα filament. The photoheliogram shows flux emergence within an existing δ type sunspot which has.
Klein, R.; Gravier, E.; Morel, P.; Besse, N.; Bertrand, P.
2009-08-01
Describing turbulent transport in fusion plasmas is a major concern in magnetic confinement fusion. It is now widely known that kinetic and fluid descriptions can lead to significantly different properties. Although more accurate, the kinetic calculation of turbulent transport is much more demanding of computer resources than fluid simulations. An alternative approach is based on a water-bag representation of the distribution function that is not an approximation but rather a special class of initial conditions, allowing one to reduce the full kinetic Vlasov equation into a set of hydrodynamics equations while keeping its kinetic character [P. Morel, E. Gravier, N. Besse et al., Phys. Plasmas 14, 112109 (2007)]. In this paper, the water-bag concept is used in a gyrokinetic context to study finite Larmor radius effects with the possibility of using the full Larmor radius distribution instead of an averaged Larmor radius. The resulting model is used to study the ion temperature gradient (ITG) instability.
Filament Activation in Response to Magnetic Flux Emergence and Cancellation in Filament Channels
Li, Ting; Zhang, Jun; Ji, Haisheng
2015-06-01
We conducted a comparative analysis of two filaments that showed a quite different activation in response to the flux emergence within the filament channels. The observations from the Solar Dynamics Observatory (SDO) and Global Oscillation Network Group (GONG) were made to analyze the two filaments on 2013 August 17 - 20 (SOL2013-08-17) and September 29 (SOL2013-09-29). The first event showed that the main body of the filament was separated into two parts when an active region (AR) emerged with a maximum magnetic flux of about 6.4×1021 Mx underlying the filament. The close neighborhood and common direction of the bright threads in the filament and the open AR fan loops suggest a similar magnetic connectivity of these two flux systems. The equilibrium of the filament was not destroyed three days after the start of the emergence of the AR. To our knowledge, similar observations have never been reported before. In the second event, the emerging flux occurred nearby a barb of the filament with a maximum magnetic flux of 4.2×1020 Mx, about one order of magnitude lower than that of the first event. Two patches of parasitic polarity in the vicinity of the barb merged, then cancelled with nearby network fields. About 20 hours after the onset of the emergence, the filament erupted. Our findings imply that the location of emerging flux within the filament channel is probably crucial to filament evolution. If the flux emergence appears nearby the barbs, it is highly likely that the emerging flux and the filament magnetic fields will cancel, which may lead to the eruption of the filament. The comparison of the two events shows that the emergence of a small AR may still not be enough to disrupt the stability of a filament system, and the actual eruption only occurs after the flux cancellation sets in.
Czech Academy of Sciences Publication Activity Database
Gorbunov, Denis; Henriques, Margarida Isabel Sousa; Andreev, Alexander V.; Eigner, Václav; Gukasov, A.; Fabrèges, X.; Skourski, Y.; Petříček, Václav; Wosnitza, J.
2016-01-01
Roč. 93, č. 2 (2016), 1-11, č. článku 024407. ISSN 1098-0121 R&D Projects: GA ČR GA16-03593S; GA ČR GA15-12653S; GA MŠk LO1603 EU Projects: European Commission(XE) CZ.2.16/3.1.00/24510 Institutional support: RVO:68378271 Keywords : rare- earth intermetallics * ferromagnetism * magnetic anisotropy * neutron diffraction Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.736, year: 2014
Deenergizing method of superconducting magnets for Maglev in an emergency
Energy Technology Data Exchange (ETDEWEB)
Kishikawa, Akihiko [Railway Technical Research Inst., Tokyo (Japan); Nemoto, Kaoru [Railway Technical Research Inst., Tokyo (Japan)
1996-12-31
The running stability of the superconducting magnets (SCMs) mounted on the JR Maglev vehicle has been confirmed through many researches and actual running tests. So we could confirm that the high performance of our SCMs during the last few years, but we must bear in mind that the SCM which consists of the superconducting wire has the possibility of changing into normal resistive state from superconducting state. If one of the pair SCMs normalizes, a huge lateral force on one side of a bogie will occur suddenly and push the vehicle toward the sidewall of the guideway. This paper describes the method that reduces this huge force acting on one side of a bogie in an SCM accident. (orig.)
The emerging role of magnetic resonance imaging in rheumatology
Energy Technology Data Exchange (ETDEWEB)
Munk, P L; Vellet, A D; Romano, C; Levin, M F; Harth, M F; Bell, D A [University of Western Ontario, London, ON (Canada)
1994-08-01
The current applications of magnetic resonance imaging (MRI) were reviewed, with special emphasis on rheumatoid practice. MRI was found to be the most powerful tool currently available for detecting avascular necrosis at a stage when the condition might still be reversible, especially for hip cases. MRI can also be used to visualize abnormal synovial tissue, effusion, and loose bodies and debris within the joint. Tendonitis and tendosynovitis are other applications for MRI because of the sensitivity of MRI to changes in free water content. Interest has recently increased in the use of MRI in the assessment of neuromuscular disorders, for example dermatomyositis. The fact that MRI is non-invasive makes it particularly suitable for the assessment of a large variety of other immunologic and musculoskeletal conditions. 5 figs., 44 refs., 1 tab.
Functional valve assessment: the emerging role of cardiovascular magnetic resonance.
Shah, Dipan J
2010-01-01
The prevalence of valvular heart disease is increasing along with the life span of the population. In assessing individuals with valve disease, echocardiography is the primary imaging modality used by clinicians both for initial assessment and for longitudinal evaluation. Information regarding valve morphology and function, cardiac chamber size, wall thickness, ventricular function, and estimates of pulmonary artery pressures can be readily obtained and integrated to formulate an assessment of valve disease severity. In some instances, body habitus or the presence of coexisting lung disease may result in suboptimal acoustic windows on echocardiography, which may lead to technically difficult studies. Additionally, in some patients, information from clinical history and physical examination or other diagnostic tests may be discordant with echocardiographic findings. In these instances, there is a significant clinical role for cardiovascular magnetic resonance (CMR). The diagnostic capabilities of CMR have increased substantially over the past 20 years due to hardware and software advances. Today, CMR has a number of unique advantages over other imaging modalities - primarily, it provides a view of the entire heart without limitations from inadequate imaging windows or body habitus. Furthermore, CMR can obtain imaging data in any imaging plane prescribed by the scan operator, which makes it ideal for accurate investigation of all cardiac valves - aortic, mitral, pulmonic, and tricuspid. In addition, CMR for valve assessment is noninvasive, free of ionizing radiation, and in most instances does not require contrast administration. Since a comprehensive review of the role of CMR in all valve lesions is beyond the scope of this article, we will focus on the most common valvular indication for performance of clinical CMR techniques and an overview of selected validation and reproducibility studies. The objectives of a comprehensive CMR study for evaluating mitral
The nuclear magnetic moment of 208Bi and its relevance for a test of bound-state strong-field QED
Schmidt, S.; Billowes, J.; Bissell, M. L.; Blaum, K.; Garcia Ruiz, R. F.; Heylen, H.; Malbrunot-Ettenauer, S.; Neyens, G.; Nörtershäuser, W.; Plunien, G.; Sailer, S.; Shabaev, V. M.; Skripnikov, L. V.; Tupitsyn, I. I.; Volotka, A. V.; Yang, X. F.
2018-04-01
The hyperfine structure splitting in the 6p3 3/2 4S → 6p2 7 s 1/2 4P transition at 307 nm in atomic 208Bi was measured with collinear laser spectroscopy at ISOLDE, CERN. The hyperfine A and B factors of both states were determined with an order of magnitude improved accuracy. Based on these measurements, theoretical input for the hyperfine structure anomaly, and results from hyperfine measurements on hydrogen-like and lithium-like 209Bi80+,82+, the nuclear magnetic moment of 208Bi has been determined to μ (208Bi) = + 4.570 (10)μN. Using this value, the transition energy of the ground-state hyperfine splitting in hydrogen-like and lithium-like 208Bi80+,82+ and their specific difference of -67.491(5)(148) meV are predicted. This provides a means for an experimental confirmation of the cancellation of nuclear structure effects in the specific difference in order to exclude such contributions as the cause of the hyperfine puzzle, the recently reported 7-σ discrepancy between experiment and bound-state strong-field QED calculations of the specific difference in the hyperfine structure splitting of 209Bi80+,82+.
Bao, Yuping; Wen, Tianlong; Samia, Anna Cristina S.; Khandhar, Amit; Krishnan, Kannan M.
2015-01-01
We present an interdisciplinary overview of material engineering and emerging applications of iron oxide nanoparticles. We discuss material engineering of nanoparticles in the broadest sense, emphasizing size and shape control, large-area self-assembly, composite/hybrid structures, and surface engineering. This is followed by a discussion of several non-traditional, emerging applications of iron oxide nanoparticles, including nanoparticle lithography, magnetic particle imaging, magnetic guided drug delivery, and positive contrast agents for magnetic resonance imaging. We conclude with a succinct discussion of the pharmacokinetics pathways of iron oxide nanoparticles in the human body –– an important and required practical consideration for any in vivo biomedical application, followed by a brief outlook of the field. PMID:26586919
Non-stochastic switching and emergence of magnetic vortices in artificial quasicrystal spin ice
Energy Technology Data Exchange (ETDEWEB)
Bhat, V.S., E-mail: vinayak.bhat@uky.edu [Department of Physics and Astronomy, University of Kentucky, Lexington, KY 40506-0055 (United States); Farmer, B.; Smith, N.; Teipel, E.; Woods, J. [Department of Physics and Astronomy, University of Kentucky, Lexington, KY 40506-0055 (United States); Sklenar, J.; Ketterson, J.B. [Department of Physics and Astronomy, Northwestern University, Evanston, IL 60208-3112 (United States); Hastings, J.T. [Department of Electrical and Computer Engineering, University of Kentucky, Lexington, KY 40506-0055 (United States); De Long, L.E. [Department of Physics and Astronomy, University of Kentucky, Lexington, KY 40506-0055 (United States)
2014-08-15
Highlights: • We studied magnetic reversal in a fivefold rotational symmetric artificial quasicrystal spin ice. • Our experiments and simulations suggest the presence of non-stochastic switching in the quasicrystal. • Simulations reveal a strong connection between FM reversal and formation of vortex loops in the quasicrystal. • Our study shows that the magnetic reversal in the artificial quasicrystal is a collective phenomenon. - Abstract: Previous studies of artificial spin ice have been largely restricted to periodic dot lattices. Ferromagnetic switching of segments in an applied magnetic field is stochastic in periodic spin ice systems, which makes emergent phenomena, such as the formation of vortex loops, hard to control or predict. We fabricated finite, aperiodic Penrose P2 tilings as antidot lattices with fivefold rotational symmetry in permalloy thin films. Measurements of the field dependence of the static magnetization reveal reproducible knee anomalies whose number and form are temperature dependent, which suggests they mark cooperative rearrangements of the tiling magnetic texture. Our micromagnetic simulations of the P2 tiling are in good agreement with experimental magnetization data and exhibit non-stochastic magnetic switching of segments in applied field, and vortex loops that are stable over an extended field interval during magnetic reversal.
Paul Callaghan luminous moments
Callaghan, Paul
2013-01-01
Acknowledged internationally for his ground-breaking scientific research in the field of magnetic resonance, Sir Paul Callaghan was a scientist and visionary with a rare gift for promoting science to a wide audience. He was named New Zealander of the Year in 2011. His death in early 2012 robbed New Zealand of an inspirational leader. Paul Callaghan: Luminous Moments brings together some of his most significant writing. Whether he describes his childhood in Wanganui, reflects on discovering the beauty of science, sets out New Zealand's future potential or discusses the experience of fa
ON THE MAGNETIC AND ENERGY CHARACTERISTICS OF RECURRENT HOMOLOGOUS JETS FROM AN EMERGING FLUX
Energy Technology Data Exchange (ETDEWEB)
Liu, Jiajia; Wang, Yuming; Liu, Rui; Gou, Tingyu; Chen, Jun; Liu, Kai; Liu, Lijuan; Pan, Zonghao [CAS Key Laboratory of Geospace Environment, Department of Geophysics and Planetary Sciences, University of Science and Technology of China, Hefei 230026 (China); Erdélyi, Robertus [Solar Physics and Space Plasma Research Center (SP2RC), School of Mathematics and Statistics, University of Sheffield, Sheffield S3 7RH (United Kingdom); McIntosh, Scott W., E-mail: ljj128@ustc.edu.cn [High Altitude Observatory, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307 (United States)
2016-12-20
In this paper, we present the detailed analysis of recurrent homologous jets originating from an emerging negative magnetic flux at the edge of an active region. The observed jets show multithermal features. Their evolution shows high consistence with the characteristic parameters of the emerging flux, suggesting that with more free magnetic energy, the eruptions tend to be more violent, frequent, and blowout-like. The average temperature, average electron number density, and axial speed are found to be similar for different jets, indicating that they should have been formed by plasmas from similar origins. Statistical analysis of the jets and their footpoint region conditions reveals a strong positive relationship between the footpoint region total 131 Å intensity enhancement and jets’ length/width. Stronger linearly positive relationships also exist between the total intensity enhancement/thermal energy of the footpoint regions and jets’ mass/kinetic/thermal energy, with higher cross-correlation coefficients. All the above results together confirm the direct relationship between the magnetic reconnection and the jets and validate the important role of magnetic reconnection in transporting large amounts of free magnetic energy into jets. It is also suggested that there should be more free energy released during the magnetic reconnection of blowout than of standard jet events.
Local moment formation in Dirac electrons
International Nuclear Information System (INIS)
Mashkoori, M; Mahyaeh, I; Jafari, S A
2015-01-01
Elemental bismuth and its compounds host strong spin-orbit interaction which is at the heart of topologically non-trivial alloys based on bismuth. These class of materials are described in terms of 4x4 matrices at each v point where spin and orbital labels of the underlying electrons are mixed. In this work we investigate the single impurity Anderson model (SIAM) within a mean field approximation to address the nature of local magnetic moment formation in a generic Dirac Hamiltonian. Despite the spin-mixing in the Hamiltonian, within the Hartree approximation it turns out that the impuritys Green function is diagonal in spin label. In the three dimensional Dirac materials defined over a bandwidth D and spin-orbit parameter γ, that hybridizes with impurity through V, a natural dimensionless parameter V 2 D/2πγ 3 emerges. So neither the hybridization strength, V, nor the spin-orbit coupling γ, but a combination thereof governs the phase diagram. By tuning chemical potential and the impurity level, we present phase diagram for various values of Hubbard U. Numerical results suggest that strong spin-orbit coupling enhances the local moment formation both in terms of its strength and the area of the local moment region. In the case that we tune the chemical potential in a similar way as normal metal we find that magnetic region is confined to μ ≥ ε 0 , in sharp contrast to 2D Dirac fermions. If one fixes the chemical potential and tunes the impurity level, phase diagram has two magnetic regions which corresponds to hybridization of impurity level with lower and upper bands. (paper)
Magnet ingestions in children presenting to US emergency departments, 2002-2011.
Abbas, Mazen I; Oliva-Hemker, Maria; Choi, Joon; Lustik, Michael; Gilger, Mark A; Noel, R Adam; Schwarz, Kathleen; Nylund, Cade M
2013-07-01
In the last 10 years, there have been an increasing number of case reports concerning gastrointestinal injury related to magnet ingestions; however, the magnitude of the problem remains to be clearly defined. The aim of the study was to examine the epidemiology of magnet ingestion-related emergency department (ED) visits among children in the United States. We performed a trend analysis using a nationally representative sample from the US Consumer Product Safety Commission, National Electronic Injury Surveillance System (NEISS) database for ED visits involving magnet ingestion in children younger than 18 years from 2002 to 2011. A national estimate of 16,386 (95% CI 12,175-20,598) children younger than 18 years presented to EDs in the United States during the 10-year study period with possible magnet ingestion. The incidence of visits increased 8.5-fold (from 0.45/100,000 to 3.75/100,000) from 2002 to 2011 with a 75% average annual increase per year. The majority of patients reported to have ingested magnets were younger than 5 years (54.7%). From 2009 to 2011 there was an increase in older children ingesting multiple small and/or round magnets, with a mean average age of 7.1 ± 0.56 years during the study period. There has been an alarming increase in ED visits for magnet ingestion in children. Increased public education and prevention efforts are needed.
Midhunlal, P. V.; Arout Chelvane, J.; Arjun Krishnan, U. M.; Prabhu, D.; Gopalan, R.; Kumar, N. Harish
2018-02-01
Mn2V1-x Co x Z (Z = Ga,Al and x = 0, 0.25, 0.5, 0.75, 1) Heusler alloys have been synthesized to investigate the effect of Co substitution at the V site on the magnetic moment and Curie temperature of half-metallic ferrimagnets Mn2VGa and Mn2VAl. Near total magnetic moment compensation was achieved with high Curie temperature for x = 0.5 composition. The Co substituted alloys show a non linear decrease in lattice parameter without altering the crystal structure of the parent alloys. The end members Mn2VGa and Mn2CoGa have the saturation magnetization of 1.80 µ B/f.u. and 2.05 µ B/f.u. respectively whereas for the Mn2V0.5Co0.5Ga alloy, a near total magnetic moment compensation (0.10 µ B/f.u.) was observed due to the ferrimagnetic coupling of Mn with parallelly aligned V and Co. The Co substituted Mn2VAl has also shown a similar trend with compensated magnetic moment value of 0.06 µ B/f.u. for x = 0.5. The Curie temperatures of the alloys including the x = 0.5 composition are well above the room temperature (more than 650 K) which is in sharp contrast to the earlier reported values of 171 K for the (MnCo)VGa and 105 K for the (MnCo)VAl (substitution at the Mn site). The observed T C values are highest among the Mn2V based fully compensated ferrimagnets. The magnetic moment compensation without significant reduction in T C indicates that the V site substitution of Co does not weaken the magnetic interaction in Mn2VZ (Z = Ga,Al) alloys which is contrary to the earlier experimental reports on Mn site substitution.
Energy Technology Data Exchange (ETDEWEB)
Santos, C.A.M. dos
2005-06-24
This thesis focuses on the theoretical investigation of the temperature dependent electronic and magnetic properties of metallic 4f-systems with localized magnetic moments. The presented theory is based on the Kondo-lattice model, which describes the interaction between a system of 4f-localized magnetic moments and the itinerant conduction band electrons. This interaction is responsible for a remarkable temperature dependence of the electronic structure mainly induced by the subsystem of 4f-localized moments. The many-body problem provoked by the Kondo-lattice model is solved by using a moment conserving Green function technique, which takes care of several special limiting cases. This method reproduces the T=0-exact solvable limiting case of the ferromagnetically saturated semiconductor. The temperature dependent magnetic properties of the 4f-localized subsystem are evaluated by means of a modified Rudermann-Kittel-Kasuya-Yosida (RKKY) type procedure, which together with the solution of the electronic part allows for a self-consistent calculation of all the electronic and magnetic properties of the model. Results of model calculations allow to deduce the conditions for ferromagnetism in dependence of the electron density n, exchange coupling J and temperature T. The self-consistently calculated Curie temperature T{sub C} is presented and discussed in dependence of relevant parameters (J, n, and W) of the model. The second part of the thesis is concerned with the investigation of the temperature dependence of the electronic and magnetic properties of the rare-earth metal Gadolinium (Gd). The original Kondo-lattice model is extended to a multi-band Kondo-lattice model and combined with an ab-initio band structure calculation to take into account for the multi-bands in real systems. The single-particle energies of the model are taken from an augmented spherical wave (ASW) band structure calculation. The proposed method avoids the double counting of relevant
Redefining the political moment
Directory of Open Access Journals (Sweden)
James Arvanitakis
2011-07-01
Full Text Available On 16 February 2003, more than half a million people gathered in Sydney, Australia, as part of a global anti-war protest aimed at stopping the impending invasion of Iraq by the then US Administration. It is difficult to estimate how many millions marched on the coordinated protest, but it was by far the largest mobilization of a generation. Walking and chanting on the streets of Sydney that day, it seemed that a political moment was upon us. In a culture that rarely embraces large scale activism, millions around Australian demanded to be heard. The message was clear: if you do not hear us, we would be willing to bring down a government. The invasion went ahead, however, with the then Australian government, under the leadership of John Howard, being one of the loudest and staunchest supporters of the Bush Administrations drive to war. Within 18 months, anti-war activists struggled to have a few hundred participants take part in anti-Iraq war rallies, and the Howard Government was comfortably re-elected for another term. The political moment had come and gone, with both social commentators and many members of the public looking for a reason. While the conservative media was often the focus of analysis, this paper argues that in a time of late capitalism, the political moment is hollowed out by ‘Politics’ itself. That is to say, that formal political processes (or ‘Politics’ undermine the political practices that people participate in everyday (or ‘politics’. Drawing on an ongoing research project focusing on democracy and young people, I discuss how the concept of ’politics‘ has been destabilised and subsequently, the political moment has been displaced. This displacement has led to a re-definition of ‘political action’ and, I argue, the emergence of a different type of everyday politics.
Baryshevsky, V.G.
2015-01-01
We study the phenomena of spin rotation and depolarization of high-energy particles in crystals in the range of high energies that will be available at Hadron Collider (LHC) and Future Circular Collider (FCC). It is shown that these phenomena can be used to measure the anomalous magnetic moments of short-lived particles in this range of energies. We also demonstrate that the phenomenon of particle spin depolarization in crystals provides a unique possibility of measuring the anomalous magnetic moment of negatively-charged particles (e.g., beauty baryons), for which the channeling effect is hampered due to far more rapid dechanneling as compared to that for positively-charged particles. Channeling of particles in either straight or bent crystals with polarized nuclei could be used for polarization and the analysis thereof of high-energy particles.
Energy Technology Data Exchange (ETDEWEB)
Tatara, Gen, E-mail: gen.tatara@riken.jp [RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako, Saitama 351-0198 Japan (Japan); Nakabayashi, Noriyuki [RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako, Saitama 351-0198 Japan (Japan); Graduate School of Science and Engineering, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397 Japan (Japan)
2014-05-07
Emergent electromagnetic field which couples to electron's spin in ferromagnetic metals is theoretically studied. Rashba spin-orbit interaction induces spin electromagnetic field which is in the linear order in gradient of magnetization texture. The Rashba-induced effective electric and magnetic fields satisfy in the absence of spin relaxation the Maxwell's equations as in the charge-based electromagnetism. When spin relaxation is taken into account besides spin dynamics, a monopole current emerges generating spin motive force via the Faraday's induction law. The monopole is expected to play an important role in spin-charge conversion and in the integration of spintronics into electronics.
Energy Technology Data Exchange (ETDEWEB)
Ortiz, Ada; Hansteen, Viggo H.; Van der Voort, Luc Rouppe [Institute of Theoretical Astrophysics, University of Oslo, P.O. Box 1029 Blindern, N-0315 Oslo (Norway); Bellot Rubio, Luis R. [Instituto de Astrofísica de Andalucía (CSIC), Apdo. 3040, E-18080 Granada (Spain); De la Cruz Rodríguez, Jaime, E-mail: ada@astro.uio.no [Department of Physics and Astronomy, Uppsala University, Box 516, SE-75120 Uppsala (Sweden)
2014-02-01
We study a granular-sized magnetic flux emergence event that occurred in NOAA 11024 in 2009 July. The observations were made with the CRISP spectropolarimeter at the Swedish 1 m Solar Telescope achieving a spatial resolution of 0.''14. Simultaneous full Stokes observations of the two photospheric Fe I lines at 630.2 nm and the chromospheric Ca II 854.2 nm line allow us to describe in detail the emergence process across the solar atmosphere. We report here on three-dimensional (3D) semi-spherical bubble events, where instead of simple magnetic footpoints, we observe complex semi-circular feet straddling a few granules. Several phenomena occur simultaneously, namely, abnormal granulation, separation of opposite-polarity legs, and brightenings at chromospheric heights. However, the most characteristic signature in these events is the observation of a dark bubble in filtergrams taken in the wings of the Ca II 854.2 nm line. There is a clear coincidence between the emergence of horizontal magnetic field patches and the formation of the dark bubble. We can infer how the bubble rises through the solar atmosphere as we see it progressing from the wings to the core of Ca II 854.2 nm. In the photosphere, the magnetic bubble shows mean upward Doppler velocities of 2 km s{sup –1} and expands at a horizontal speed of 4 km s{sup –1}. In about 3.5 minutes it travels some 1100 km to reach the mid chromosphere, implying an average ascent speed of 5.2 km s{sup –1}. The maximum separation attained by the magnetic legs is 6.''6. From an inversion of the observed Stokes spectra with the SIR code, we find maximum photospheric field strengths of 480 G and inclinations of nearly 90° in the magnetic bubble interior, along with temperature deficits of up to 250 K at log τ = –2 and above. To aid the interpretation of the observations, we carry out 3D numerical simulations of the evolution of a horizontal, untwisted magnetic flux sheet injected in the convection
Quiet Moment around the Campfire
Centers for Disease Control (CDC) Podcasts
2014-06-18
Byron Breedlove reads his essay, "Quiet Moment around the Campfire," about the art of Frederic Remington and the transmission of pathogens as frontiers expand. Created: 6/18/2014 by National Center for Emerging and Zoonotic Infectious Diseases (NCEZID). Date Released: 6/19/2014.
International Nuclear Information System (INIS)
Williams, J.M.; Adetunji, J.; Gregori, M.
2000-01-01
We report the distribution of magnetic moments of Fe 3+ and Co 2+ in Co 2+ -, Ti 4+ -substituted M-type barium hexaferrite, Ba(Co,Ti) x Fe (12-2x) O 19 , as a function of doping rate, x. The substitution, x, for iron has been varied with x=0, 0.25, 0.50, 0.70 and 0.85. The magnetic moments of Fe 3+ and Co 2+ were calculated from the combined results of Moessbauer measurements for Fe 3+ ions in the sublattices and neutron diffraction data for the total moments of Fe 3+ and Co 2+ . A comparison of the signs of the magnetic moments of Fe 3+ and Co 2+ ions enabled us to attribute spin directions of the Co 2+ ions in the sublattices of the substituted ferrite samples. The spin directions of Co 2+ are opposite to those of Fe 3+ in the 4f 2 and 2b sublattices. They are reversed from the original directions in the 4f 1 and 12K sublattices when the value of x≥0.70. A quantitative analysis shows that Co 2+ and Ti 4+ ions are preferably substituted into 4f 2 and 12K sublattices, respectively. In addition, while the hyperfine field of Fe 3+ in the 2b sublattice gives rise to the 2b-4f 2 interaction it is the partially substituted Co 2+ ions in the 4f 1 and 12K sublattices that contribute to the near neighbour 2a-4f 1 and 2b-12K types of interaction
Guglielmino, Salvo L.; Zuccarello, Francesca; Young, Peter R.; Murabito, Mariarita; Romano, Paolo
2018-04-01
We report multiwavelength ultraviolet observations taken with the IRIS satellite, concerning the emergence phase in the upper chromosphere and transition region of an emerging flux region (EFR) embedded in the preexisting field of active region NOAA 12529 in the Sun. IRIS data are complemented by full-disk observations of the Solar Dynamics Observatory satellite, relevant to the photosphere and the corona. The photospheric configuration of the EFR is also analyzed by measurements taken with the spectropolarimeter on board the Hinode satellite, when the EFR was fully developed. Recurrent intense brightenings that resemble UV bursts, with counterparts in all coronal passbands, are identified at the edges of the EFR. Jet activity is also observed at chromospheric and coronal levels, near the observed brightenings. The analysis of the IRIS line profiles reveals the heating of dense plasma in the low solar atmosphere and the driving of bidirectional high-velocity flows with speed up to 100 km s‑1 at the same locations. Compared with previous observations and numerical models, these signatures suggest evidence of several long-lasting, small-scale magnetic reconnection episodes between the emerging bipole and the ambient field. This process leads to the cancellation of a preexisting photospheric flux concentration and appears to occur higher in the atmosphere than usually found in UV bursts, explaining the observed coronal counterparts.
CSIR Research Space (South Africa)
Srinivasu, VV
2009-01-01
Full Text Available With a strategy to establish and embrace the emerging nano particle incorporated superconductivity technology (based on the HTS materials and nano magnetic particles) in South Africa, the author has initiated the following research activity in South...
Directory of Open Access Journals (Sweden)
Youhei Yamaji
2014-05-01
Full Text Available Topological insulators, in contrast to ordinary semiconductors, accompany protected metallic surfaces described by Dirac-type fermions. Here, we theoretically show that another emergent two-dimensional metal embedded in the bulk insulator is realized at a magnetic domain wall. The domain wall has long been studied as an ingredient of both old-fashioned and leading-edge spintronics. The domain wall here, as an interface of seemingly trivial antiferromagnetic insulators, emergently realizes a functional interface preserved by zero modes with robust two-dimensional Fermi surfaces, where pyrochlore iridium oxides proposed to host the condensed-matter realization of Weyl fermions offer such examples at low temperatures. The existence of in-gap states that are pinned at domain walls, theoretically resembling spin or charge solitons in polyacetylene, and protected as the edges of hidden one-dimensional weak Chern insulators characterized by a zero-dimensional class-A topological invariant, solves experimental puzzles observed in R_{2}Ir_{2}O_{7} with rare-earth elements R. The domain wall realizes a novel quantum confinement of electrons and embosses a net uniform magnetization that enables magnetic control of electronic interface transports beyond the semiconductor paradigm.
Emergence and frustration of magnetism with variable-range interactions in a quantum simulator.
Islam, R; Senko, C; Campbell, W C; Korenblit, S; Smith, J; Lee, A; Edwards, E E; Wang, C-C J; Freericks, J K; Monroe, C
2013-05-03
Frustration, or the competition between interacting components of a network, is often responsible for the emergent complexity of many-body systems. For instance, frustrated magnetism is a hallmark of poorly understood systems such as quantum spin liquids, spin glasses, and spin ices, whose ground states can be massively degenerate and carry high degrees of quantum entanglement. Here, we engineer frustrated antiferromagnetic interactions between spins stored in a crystal of up to 16 trapped (171)Yb(+) atoms. We control the amount of frustration by continuously tuning the range of interaction and directly measure spin correlation functions and their coherent dynamics. This prototypical quantum simulation points the way toward a new probe of frustrated quantum magnetism and perhaps the design of new quantum materials.
Sudden venting test of an emergency bearing for the magnet bearing type compound molecular pump
International Nuclear Information System (INIS)
Hiroki, Seiji; Abe, Tetsuya; Murakami, Yoshio; Okamoto, Masatomo; Iguchi, Masashi; Nakamura, Jyunichi; Nakazeki, Tsugito.
1995-01-01
The vacuum evacuation system for nuclear fusion reactors bears the role of exhausting hydrogen isotopes in large quantity together with helium continuously for long hours, and as the high vacuum pumps for this purpose, the mechanical pumps which can do continuous evacuation and decrease the quantity of staying radioactive tritium, such as turbo molecular pumps and compound molecular pumps, are promising. Because of the compatibility with tritium, oil lubrication is not desirable, accordingly, the pumps with ceramic rotating vanes and magnetic bearings are demanded. As a part of the development of a magnetic bearing type mechanical pump which can be used for nuclear fusion reactors, the compound molecular pump, in which emergency bearings were incorporated, was made for trial, and the test of sudden air intrusion was carried out, as the results, various knowledges were obtained. The constitution of the testing setup, and the test results are reported. When air was injected at the pressure rise of 3.3x10 4 Pa/s from exhaust port side, after about 2.5 s, the maximum lift of 4.2x10 3 N arose. When air was injected at the pressure rise of 2.7x10 5 Pa/s from the suction part side, after about 0.4s, the maximum lift of 6.9x10 3 N arose. In the air injection alternately from the suction port and exhaust port sides, the emergency bearings functioned normally in 10 times of the test. (K.I.)
Emergence of nonwhite noise in Langevin dynamics with magnetic Lorentz force
Chun, Hyun-Myung; Durang, Xavier; Noh, Jae Dong
2018-03-01
We investigate the low mass limit of Langevin dynamics for a charged Brownian particle driven by a magnetic Lorentz force. In the low mass limit, velocity variables relaxing quickly are coarse-grained out to yield effective dynamics for position variables. Without the Lorentz force, the low mass limit is equivalent to the high friction limit. Both cases share the same Langevin equation that is obtained by setting the mass to zero. The equivalence breaks down in the presence of the Lorentz force. The low mass limit cannot be achieved by setting the mass to zero. The limit is also distinct from the large friction limit. We derive the effective equations of motion in the low mass limit. The resulting stochastic differential equation involves a nonwhite noise whose correlation matrix has antisymmetric components. We demonstrate the importance of the nonwhite noise by investigating the heat dissipation by a driven Brownian particle, where the emergent nonwhite noise has a physically measurable effect.
Tuček, Jiří; Błoński, Piotr; Ugolotti, Juri; Swain, Akshaya Kumar; Enoki, Toshiaki; Zbořil, Radek
2018-03-26
Graphene, a single two-dimensional sheet of carbon atoms with an arrangement mimicking the honeycomb hexagonal architecture, has captured immense interest of the scientific community since its isolation in 2004. Besides its extraordinarily high electrical conductivity and surface area, graphene shows a long spin lifetime and limited hyperfine interactions, which favors its potential exploitation in spintronic and biomedical applications, provided it can be made magnetic. However, pristine graphene is diamagnetic in nature due to solely sp2 hybridization. Thus, various attempts have been proposed to imprint magnetic features into graphene. The present review focuses on a systematic classification and physicochemical description of approaches leading to equip graphene with magnetic properties. These include introduction of point and line defects into graphene lattices, spatial confinement and edge engineering, doping of graphene lattice with foreign atoms, and sp3 functionalization. Each magnetism-imprinting strategy is discussed in detail including identification of roles of various internal and external parameters in the induced magnetic regimes, with assessment of their robustness. Moreover, emergence of magnetism in graphene analogues and related 2D materials such as transition metal dichalcogenides, metal halides, metal dinitrides, MXenes, hexagonal boron nitride, and other organic compounds is also reviewed. Since the magnetic features of graphene can be readily masked by the presence of magnetic residues from synthesis itself or sample handling, the issue of magnetic impurities and correct data interpretations is also addressed. Finally, current problems and challenges in magnetism of graphene and related 2D materials and future potential applications are also highlighted.
Moment analysis of hadronic vacuum polarization
Directory of Open Access Journals (Sweden)
Eduardo de Rafael
2014-09-01
Full Text Available I suggest a new approach to the determination of the hadronic vacuum polarization (HVP contribution to the anomalous magnetic moment of the muon aμHVP in lattice QCD. It is based on properties of the Mellin transform of the hadronic spectral function and their relation to the HVP self-energy in the Euclidean. I show how aμHVP is very well approximated by a few moments associated to this Mellin transform and how these moments can be evaluated in lattice QCD, providing thus a series of tests when compared with the corresponding determinations using experimental data.
Moment analysis of hadronic vacuum polarization
International Nuclear Information System (INIS)
Rafael, Eduardo de
2014-01-01
I suggest a new approach to the determination of the hadronic vacuum polarization (HVP) contribution to the anomalous magnetic moment of the muon a μ HVP in lattice QCD. It is based on properties of the Mellin transform of the hadronic spectral function and their relation to the HVP self-energy in the Euclidean. I show how a μ HVP is very well approximated by a few moments associated to this Mellin transform and how these moments can be evaluated in lattice QCD, providing thus a series of tests when compared with the corresponding determinations using experimental data
Moment analysis of hadronic vacuum polarization
Energy Technology Data Exchange (ETDEWEB)
Rafael, Eduardo de
2014-09-07
I suggest a new approach to the determination of the hadronic vacuum polarization (HVP) contribution to the anomalous magnetic moment of the muon a{sub μ}{sup HVP} in lattice QCD. It is based on properties of the Mellin transform of the hadronic spectral function and their relation to the HVP self-energy in the Euclidean. I show how a{sub μ}{sup HVP} is very well approximated by a few moments associated to this Mellin transform and how these moments can be evaluated in lattice QCD, providing thus a series of tests when compared with the corresponding determinations using experimental data.
Dipole moments of the rho meson
International Nuclear Information System (INIS)
Hecht, M.B.; McKellar, B.H.P.
1997-04-01
The electric and magnetic dipole moments (EDM) of the rho meson are calculated using the propagators and vertices derived from the quantum chromodynamics Dyson-Schwinger equations. Results obtained from using the Bethe-Salpeter amplitude studied by Chappell, Mitchell et. al., and Pichowsky and Lee, are compared. The rho meson EDM is generated through the inclusion of a quark electric dipole moment, which is left as a free variable. These results are compared to the perturbative results to obtain a measure of the effects of quark interactions and confinement. The two dipole moments are also calculated using the phenomenological MIT bag model to provide a further basis for comparison
Moments method in the theory of accelerators
International Nuclear Information System (INIS)
Perel'shtejn, Eh.A.
1984-01-01
The moments method is widely used for solution of different physical and calculation problems in the theory of accelerators, magnetic optics and dynamics of high-current beams. Techniques using moments of the second order-mean squape characteristics of charged particle beams is shown to be most developed. The moments method is suitable and sometimes even the only technique applicable for solution of computerized problems on optimization of accelerating structures, beam transport channels, matching and other systems with accout of a beam space charge
2006-01-01
One of the first events reconstructed in the Muon Drift Tubes, the Hadron Calorimeter and elements of the Silicon Tracker (TK) at 3 Tesla. The atmosphere in the CMS control rooms was electric. Everbody was at the helm for the first full-scale testing of the experiment. This was a crunch moment for the entire collaboration. On Tuesday, 22 August the magnet attained almost its nominal power of 4 Tesla! At the same moment, in a tiny improvised control room, the physicists were keyed up to test the entire detector system for the first time. The first cosmic ray tracks appeared on their screens in the week of 15 August. The tests are set to continue for several weeks more until the first CMS components are lowered into their final positions in the cavern.
HELIOSEISMIC INVESTIGATION OF EMERGING MAGNETIC FLUX IN THE SOLAR CONVECTION ZONE
Energy Technology Data Exchange (ETDEWEB)
Ilonidis, Stathis; Zhao, Junwei; Hartlep, Thomas, E-mail: ilonidis@stanford.edu [W. W. Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94305-4085 (United States)
2013-11-10
Helioseismology is capable of detecting signatures of emerging sunspot regions in the solar interior before they appear at the surface. Here we present measurements that show the rising motion of the acoustic travel-time perturbation signatures in the deep convection zone, and study the possible physical origin of these signatures using observational and numerical simulation data. Our results show that the detected signatures first appear at deeper layers and then rise, with velocities of up to 1 km s{sup –1}, to shallower regions. We find evidences that these signatures may not be caused by subsurface flows or wave-speed perturbations, but are associated with acoustic power variations and frequency shifts of the cross-covariance function measured in the emerging-flux region. We also confirm with the use of numerical simulation data that phase travel-time shifts can be associated with frequency shifts related to acoustic power variations. The results of this work reveal the rising motion of magnetic flux in the deep convection zone and explain the large amplitude of the detected perturbation signatures.
HELIOSEISMIC INVESTIGATION OF EMERGING MAGNETIC FLUX IN THE SOLAR CONVECTION ZONE
International Nuclear Information System (INIS)
Ilonidis, Stathis; Zhao, Junwei; Hartlep, Thomas
2013-01-01
Helioseismology is capable of detecting signatures of emerging sunspot regions in the solar interior before they appear at the surface. Here we present measurements that show the rising motion of the acoustic travel-time perturbation signatures in the deep convection zone, and study the possible physical origin of these signatures using observational and numerical simulation data. Our results show that the detected signatures first appear at deeper layers and then rise, with velocities of up to 1 km s –1 , to shallower regions. We find evidences that these signatures may not be caused by subsurface flows or wave-speed perturbations, but are associated with acoustic power variations and frequency shifts of the cross-covariance function measured in the emerging-flux region. We also confirm with the use of numerical simulation data that phase travel-time shifts can be associated with frequency shifts related to acoustic power variations. The results of this work reveal the rising motion of magnetic flux in the deep convection zone and explain the large amplitude of the detected perturbation signatures
Shu, G. J.; Tian, J. C.; Lin, C. K.; Hayashi, M.; Liou, S. C.; Chen, W. T.; Wong, Deniz P.; Liou, H. L.; Chou, F. C.
2018-05-01
In this reply to the comment on ‘Oxygen vacancy-induced magnetic moment in edge-sharing CuO2 chains of {{{Li}}}2{{{CuO}}}2-δ ’ (2017 New Journal of Physics 19 023206), we have clarified several key questions and conflicting results regarding the size of the intra-chain nearest neighbor coupling J 1 and the sign of the Weiss temperature Θ defined in the Curie–Weiss law of χ(T) = χ ◦ + C/(T ‑ Θ). Additional data analysis is conducted to verify the validity of the Curie–Weiss law fitting protocol, including the negative sign and size of Θ based on the high-temperature linear temperature dependence of 1/χ(T) for T > J 1 and \\tfrac{g{μ }B{SH}}{{k}BT}\\ll 1. The consistency between the magnetic antiferromagnetic (AF) ground state below T N and the negative sign of Θ in the high-temperature paramagnetic (PM) state is explained via the reduction of thermal fluctuation for a temperature-independent local field due to magnetic interaction of quantum nature. A magnetic dipole–dipole (MDD)-type interaction among FM chains is identified and proposed to be necessary for the 3D AF magnetic ground state formation, i.e., the Heisenberg model of an exchange-type interaction alone is not sufficient to fully describe the quasi-1D spin chain system of {{{Li}}}2{{{CuO}}}2. Several typical quasi-1D spin chain compounds, including {{{Li}}}2{{{CuO}}}2,{{{CuAs}}}2{{{O}}}4,{{{Sr}}}3{{{Fe}}}2{{{O}}}5, and CuGeO3, are compared to show why different magnetic ground states are achieved from the chemical bond perspective.
International Nuclear Information System (INIS)
Gerstenkorn, S.
1962-01-01
The study of the hyperfine structure and isotope shift enabled the positions of the first five levels of the multiplet 7 F 0-6 belonging to the fundamental configuration 5f 6 7s 2 to be determined. The classification of the arc spectrum begun in this way led to 25 odd levels, the number of classified lines (70) representing about 30 p. 100 of the light emitted by this hollow cathode in the visible. In addition, the isotope shifts of many lines and the data given by the King furnace show that the first levels of the configuration 5f 5 6d7s 2 are also low less than 8000 cm -1 above the fundamental level 7 F 0 . The proximity of the configuration f 6 s 2 and f 5 ds 2 shows that the bonding energies of the 5f and 6d electrons are of the same order of magnitude and this fact must be responsible for the multiple valences belonging to plutonium. From the hyperfine structure of spark lines (Pu II) the interval factor a 7 for the electron was deduced giving for the calculated nuclear moment of 239 Pu a value of +0.21 ±0.06 μ N . The position of the hyperfine components show that the nuclear moment is positive, although the theoretical value given by B. R. Mottelson and S. Nillson is negative and equal to -0.1 μ N . (author) [fr
International Nuclear Information System (INIS)
Lamoreaux, S.K.; Golub, R.
2005-01-01
The search for particle electric dipole moments (EDM's) is one of the best places to look for physics beyond the standard model of electroweak interaction because the size of time reversal violation predicted by the standard model is incompatible with present ideas concerning the creation of the baryon-antibaryon asymmetry. As the sensitivity of these EDM searches increases more subtle systematic effects become important. We develop a general analytical approach to describe a systematic effect recently observed in an electric dipole moment experiment using stored particles [J. M. Pendlebury et al., Phys. Rev. A 70, 032102 (2004)]. Our approach is based on the relationship between the systematic frequency shift and the velocity autocorrelation function of the resonating particles. Our results, when applied to well-known limiting forms of the correlation function, are in good agreement with both the limiting cases studied in recent work that employed a numerical and heuristic analysis. Our general approach explains some of the surprising results observed in that work and displays the rich behavior of the shift for intermediate frequencies, which has not been studied previously
Noncollinear magnetic ordering in a frustrated magnet: Metallic regime and the role of frustration
Shahzad, Munir; Sengupta, Pinaki
2017-12-01
We explore the magnetic phases in a Kondo lattice model on the geometrically frustrated Shastry-Sutherland lattice at metallic electron densities, searching for noncollinear and noncoplanar spin textures. Motivated by experimental observations in many rare-earth-based frustrated metallic magnets, we treat the local moments as classical spins and set the coupling between the itinerant electrons and local moments as the largest energy scale in the problem. Our results show that a noncollinear flux state is stabilized over an extended range of Hamiltonian parameters. These spin states can be quenched efficiently by external fields like temperature and magnetic field as well as by varying the degree of frustration in the electronic itinerancy and exchange coupling between local moments. Interestingly, unlike insulating electron densities that we discussed in paper I of this sequence, a Dzyaloshinskii-Moriya interaction between the local moments is not essential for the emergence of their noncollinear ordering.
Electric dipole moments reconsidered
International Nuclear Information System (INIS)
Rupertsberger, H.
1989-01-01
The electric dipole moments of elementary particles, atoms, molecules and their connection to the electric susceptibility are discussed for stationary states. Assuming rotational invariance it is emphasized that for such states only in the case of a parity and time reversal violating interaction the considered particles can obtain a nonvanishing expectation value for the electric dipole moment. 1 fig., 13 refs. (Author)
DEFF Research Database (Denmark)
Swann, Andrew Francis; Madsen, Thomas Bruun
2012-01-01
We introduce a notion of moment map adapted to actions of Lie groups that preserve a closed three-form. We show existence of our multi-moment maps in many circumstances, including mild topological assumptions on the underlying manifold. Such maps are also shown to exist for all groups whose second...
Energy Technology Data Exchange (ETDEWEB)
Michael Ramsey-Musolf; Wick Haxton; Ching-Pang Liu
2002-03-29
Nuclear anapole moments are parity-odd, time-reversal-even E1 moments of the electromagnetic current operator. Although the existence of this moment was recognized theoretically soon after the discovery of parity nonconservation (PNC), its experimental isolation was achieved only recently, when a new level of precision was reached in a measurement of the hyperfine dependence of atomic PNC in 133Cs. An important anapole moment bound in 205Tl also exists. In this paper, we present the details of the first calculation of these anapole moments in the framework commonly used in other studies of hadronic PNC, a meson exchange potential that includes long-range pion exchange and enough degrees of freedom to describe the five independent S-P amplitudes induced by short-range interactions. The resulting contributions of pi-, rho-, and omega-exchange to the single-nucleon anapole moment, to parity admixtures in the nuclear ground state, and to PNC exchange currents are evaluated, using configuration-mixed shell-model wave functions. The experimental anapole moment constraints on the PNC meson-nucleon coupling constants are derived and compared with those from other tests of the hadronic weak interaction. While the bounds obtained from the anapole moment results are consistent with the broad ''reasonable ranges'' defined by theory, they are not in good agreement with the constraints from the other experiments. We explore possible explanations for the discrepancy and comment on the potential importance of new experiments.