WorldWideScience

Sample records for embryos multi-dimensional multi-spectral

  1. The method of separation for evolutionary spectral density estimation of multi-variate and multi-dimensional non-stationary stochastic processes

    KAUST Repository

    Schillinger, Dominik

    2013-07-01

    The method of separation can be used as a non-parametric estimation technique, especially suitable for evolutionary spectral density functions of uniformly modulated and strongly narrow-band stochastic processes. The paper at hand provides a consistent derivation of method of separation based spectrum estimation for the general multi-variate and multi-dimensional case. The validity of the method is demonstrated by benchmark tests with uniformly modulated spectra, for which convergence to the analytical solution is demonstrated. The key advantage of the method of separation is the minimization of spectral dispersion due to optimum time- or space-frequency localization. This is illustrated by the calibration of multi-dimensional and multi-variate geometric imperfection models from strongly narrow-band measurements in I-beams and cylindrical shells. Finally, the application of the method of separation based estimates for the stochastic buckling analysis of the example structures is briefly discussed. © 2013 Elsevier Ltd.

  2. Spectral analysis of multi-dimensional self-similar Markov processes

    International Nuclear Information System (INIS)

    Modarresi, N; Rezakhah, S

    2010-01-01

    In this paper we consider a discrete scale invariant (DSI) process {X(t), t in R + } with scale l > 1. We consider a fixed number of observations in every scale, say T, and acquire our samples at discrete points α k , k in W, where α is obtained by the equality l = α T and W = {0, 1, ...}. We thus provide a discrete time scale invariant (DT-SI) process X(.) with the parameter space {α k , k in W}. We find the spectral representation of the covariance function of such a DT-SI process. By providing the harmonic-like representation of multi-dimensional self-similar processes, spectral density functions of them are presented. We assume that the process {X(t), t in R + } is also Markov in the wide sense and provide a discrete time scale invariant Markov (DT-SIM) process with the above scheme of sampling. We present an example of the DT-SIM process, simple Brownian motion, by the above sampling scheme and verify our results. Finally, we find the spectral density matrix of such a DT-SIM process and show that its associated T-dimensional self-similar Markov process is fully specified by {R H j (1), R j H (0), j = 0, 1, ..., T - 1}, where R H j (τ) is the covariance function of jth and (j + τ)th observations of the process.

  3. Multi-dimensional Fuzzy Euler Approximation

    Directory of Open Access Journals (Sweden)

    Yangyang Hao

    2017-05-01

    Full Text Available Multi-dimensional Fuzzy differential equations driven by multi-dimen-sional Liu process, have been intensively applied in many fields. However, we can not obtain the analytic solution of every multi-dimensional fuzzy differential equation. Then, it is necessary for us to discuss the numerical results in most situations. This paper focuses on the numerical method of multi-dimensional fuzzy differential equations. The multi-dimensional fuzzy Taylor expansion is given, based on this expansion, a numerical method which is designed for giving the solution of multi-dimensional fuzzy differential equation via multi-dimensional Euler method will be presented, and its local convergence also will be discussed.

  4. A new two dimensional spectral/spatial multi-diagonal code for noncoherent optical code division multiple access (OCDMA) systems

    Science.gov (United States)

    Kadhim, Rasim Azeez; Fadhil, Hilal Adnan; Aljunid, S. A.; Razalli, Mohamad Shahrazel

    2014-10-01

    A new two dimensional codes family, namely two dimensional multi-diagonal (2D-MD) codes, is proposed for spectral/spatial non-coherent OCDMA systems based on the one dimensional MD code. Since the MD code has the property of zero cross correlation, the proposed 2D-MD code also has this property. So that, the multi-access interference (MAI) is fully eliminated and the phase induced intensity noise (PIIN) is suppressed with the proposed code. Code performance is analyzed in terms of bit error rate (BER) while considering the effect of shot noise, PIIN, and thermal noise. The performance of the proposed code is compared with the related MD, modified quadratic congruence (MQC), two dimensional perfect difference (2D-PD) and two dimensional diluted perfect difference (2D-DPD) codes. The analytical and the simulation results reveal that the proposed 2D-MD code outperforms the other codes. Moreover, a large number of simultaneous users can be accommodated at low BER and high data rate.

  5. Online Multi-Spectral Meat Inspection

    DEFF Research Database (Denmark)

    Nielsen, Jannik Boll; Larsen, Anders Boesen Lindbo

    2013-01-01

    We perform an explorative study on multi-spectral image data from a prototype device developed for fast online quality inspection of meat products. Because the camera setup is built for speed, we sacrifice exact pixel correspondences between the different bands of the multi-spectral images. Our...... work is threefold as we 1) investigate the color distributions and construct a model to describe pork loins, 2) classify the different components in pork loins (meat, fat, membrane), and 3) detect foreign objects on the surface of pork loins. Our investigation shows that the color distributions can...

  6. High performance multi-spectral interrogation for surface plasmon resonance imaging sensors.

    Science.gov (United States)

    Sereda, A; Moreau, J; Canva, M; Maillart, E

    2014-04-15

    Surface plasmon resonance (SPR) sensing has proven to be a valuable tool in the field of surface interactions characterization, especially for biomedical applications where label-free techniques are of particular interest. In order to approach the theoretical resolution limit, most SPR-based systems have turned to either angular or spectral interrogation modes, which both offer very accurate real-time measurements, but at the expense of the 2-dimensional imaging capability, therefore decreasing the data throughput. In this article, we show numerically and experimentally how to combine the multi-spectral interrogation technique with 2D-imaging, while finding an optimum in terms of resolution, accuracy, acquisition speed and reduction in data dispersion with respect to the classical reflectivity interrogation mode. This multi-spectral interrogation methodology is based on a robust five parameter fitting of the spectral reflectivity curve which enables monitoring of the reflectivity spectral shift with a resolution of the order of ten picometers, and using only five wavelength measurements per point. In fine, such multi-spectral based plasmonic imaging system allows biomolecular interaction monitoring in a linear regime independently of variations of buffer optical index, which is illustrated on a DNA-DNA model case. © 2013 Elsevier B.V. All rights reserved.

  7. Multi spectral scaling data acquisition system

    International Nuclear Information System (INIS)

    Behere, Anita; Patil, R.D.; Ghodgaonkar, M.D.; Gopalakrishnan, K.R.

    1997-01-01

    In nuclear spectroscopy applications, it is often desired to acquire data at high rate with high resolution. With the availability of low cost computers, it is possible to make a powerful data acquisition system with minimum hardware and software development, by designing a PC plug-in acquisition board. But in using the PC processor for data acquisition, the PC can not be used as a multitasking node. Keeping this in view, PC plug-in acquisition boards with on-board processor find tremendous applications. Transputer based data acquisition board has been designed which can be configured as a high count rate pulse height MCA or as a Multi Spectral Scaler. Multi Spectral Scaling (MSS) is a new technique, in which multiple spectra are acquired in small time frames and are then analyzed. This paper describes the details of this multi spectral scaling data acquisition system. 2 figs

  8. Multi-spectral confocal microendoscope for in-vivo imaging

    Science.gov (United States)

    Rouse, Andrew Robert

    The concept of in-vivo multi-spectral confocal microscopy is introduced. A slit-scanning multi-spectral confocal microendoscope (MCME) was built to demonstrate the technique. The MCME employs a flexible fiber-optic catheter coupled to a custom built slit-scan confocal microscope fitted with a custom built imaging spectrometer. The catheter consists of a fiber-optic imaging bundle linked to a miniature objective and focus assembly. The design and performance of the miniature objective and focus assembly are discussed. The 3mm diameter catheter may be used on its own or routed though the instrument channel of a commercial endoscope. The confocal nature of the system provides optical sectioning with 3mum lateral resolution and 30mum axial resolution. The prism based multi-spectral detection assembly is typically configured to collect 30 spectral samples over the visible chromatic range. The spectral sampling rate varies from 4nm/pixel at 490nm to 8nm/pixel at 660nm and the minimum resolvable wavelength difference varies from 7nm to 18nm over the same spectral range. Each of these characteristics are primarily dictated by the dispersive power of the prism. The MCME is designed to examine cellular structures during optical biopsy and to exploit the diagnostic information contained within the spectral domain. The primary applications for the system include diagnosis of disease in the gastro-intestinal tract and female reproductive system. Recent data from the grayscale imaging mode are presented. Preliminary multi-spectral results from phantoms, cell cultures, and excised human tissue are presented to demonstrate the potential of in-vivo multi-spectral imaging.

  9. Removal of Optically Thick Clouds from Multi-Spectral Satellite Images Using Multi-Frequency SAR Data

    Directory of Open Access Journals (Sweden)

    Robert Eckardt

    2013-06-01

    Full Text Available This study presents a method for the reconstruction of pixels contaminated by optical thick clouds in multi-spectral Landsat images using multi-frequency SAR data. A number of reconstruction techniques have already been proposed in the scientific literature. However, all of the existing techniques have certain limitations. In order to overcome these limitations, we expose the Closest Spectral Fit (CSF method proposed by Meng et al. to a new, synergistic approach using optical and SAR data. Therefore, the term Closest Feature Vector (CFV is introduced. The technique facilitates an elegant way to avoid radiometric distortions in the course of image reconstruction. Furthermore the cloud cover removal is independent from underlying land cover types and assumptions on seasonality, etc. The methodology is applied to mono-temporal, multi-frequency SAR data from TerraSAR-X (X-Band, ERS (C-Band and ALOS Palsar (L-Band. This represents a way of thinking about Radar data not as foreign, but as additional data source in multi-spectral remote sensing. For the assessment of the image restoration performance, an experimental framework is established and a statistical evaluation protocol is designed. The results show the potential of a synergistic usage of multi-spectral and SAR data to overcome the loss of data due to cloud cover.

  10. Multi-Dimensional Path Queries

    DEFF Research Database (Denmark)

    Bækgaard, Lars

    1998-01-01

    to create nested path structures. We present an SQL-like query language that is based on path expressions and we show how to use it to express multi-dimensional path queries that are suited for advanced data analysis in decision support environments like data warehousing environments......We present the path-relationship model that supports multi-dimensional data modeling and querying. A path-relationship database is composed of sets of paths and sets of relationships. A path is a sequence of related elements (atoms, paths, and sets of paths). A relationship is a binary path...

  11. Multi-dimensional imaging

    CERN Document Server

    Javidi, Bahram; Andres, Pedro

    2014-01-01

    Provides a broad overview of advanced multidimensional imaging systems with contributions from leading researchers in the field Multi-dimensional Imaging takes the reader from the introductory concepts through to the latest applications of these techniques. Split into 3 parts covering 3D image capture, processing, visualization and display, using 1) a Multi-View Approach and 2.) a Holographic Approach, followed by a 3rd part addressing other 3D systems approaches, applications and signal processing for advanced 3D imaging. This book describes recent developments, as well as the prospects and

  12. Portable laser synthesizer for high-speed multi-dimensional spectroscopy

    Science.gov (United States)

    Demos, Stavros G [Livermore, CA; Shverdin, Miroslav Y [Sunnyvale, CA; Shirk, Michael D [Brentwood, CA

    2012-05-29

    Portable, field-deployable laser synthesizer devices designed for multi-dimensional spectrometry and time-resolved and/or hyperspectral imaging include a coherent light source which simultaneously produces a very broad, energetic, discrete spectrum spanning through or within the ultraviolet, visible, and near infrared wavelengths. The light output is spectrally resolved and each wavelength is delayed with respect to each other. A probe enables light delivery to a target. For multidimensional spectroscopy applications, the probe can collect the resulting emission and deliver this radiation to a time gated spectrometer for temporal and spectral analysis.

  13. Precise Multi-Spectral Dermatological Imaging

    DEFF Research Database (Denmark)

    Gomez, David Delgado; Carstensen, Jens Michael; Ersbøll, Bjarne Kjær

    2004-01-01

    In this work, an integrated imaging system to obtain accurate and reproducible multi-spectral dermatological images is proposed. The system is made up of an integrating sphere, light emitting diodes and a generic monochromatic camera. The system can collect up to 10 different spectral bands....... These spectral bands vary from ultraviolet to near infrared. The welldefined and diffuse illumination of the optically closed scene aims to avoid shadows and specular reflections. Furthermore, the system has been developed to guarantee the reproducibility of the collected images. This allows for comparative...

  14. Semiconductor Laser Multi-Spectral Sensing and Imaging

    Directory of Open Access Journals (Sweden)

    Han Q. Le

    2010-01-01

    Full Text Available Multi-spectral laser imaging is a technique that can offer a combination of the laser capability of accurate spectral sensing with the desirable features of passive multispectral imaging. The technique can be used for detection, discrimination, and identification of objects by their spectral signature. This article describes and reviews the development and evaluation of semiconductor multi-spectral laser imaging systems. Although the method is certainly not specific to any laser technology, the use of semiconductor lasers is significant with respect to practicality and affordability. More relevantly, semiconductor lasers have their own characteristics; they offer excellent wavelength diversity but usually with modest power. Thus, system design and engineering issues are analyzed for approaches and trade-offs that can make the best use of semiconductor laser capabilities in multispectral imaging. A few systems were developed and the technique was tested and evaluated on a variety of natural and man-made objects. It was shown capable of high spectral resolution imaging which, unlike non-imaging point sensing, allows detecting and discriminating objects of interest even without a priori spectroscopic knowledge of the targets. Examples include material and chemical discrimination. It was also shown capable of dealing with the complexity of interpreting diffuse scattered spectral images and produced results that could otherwise be ambiguous with conventional imaging. Examples with glucose and spectral imaging of drug pills were discussed. Lastly, the technique was shown with conventional laser spectroscopy such as wavelength modulation spectroscopy to image a gas (CO. These results suggest the versatility and power of multi-spectral laser imaging, which can be practical with the use of semiconductor lasers.

  15. Semiconductor laser multi-spectral sensing and imaging.

    Science.gov (United States)

    Le, Han Q; Wang, Yang

    2010-01-01

    Multi-spectral laser imaging is a technique that can offer a combination of the laser capability of accurate spectral sensing with the desirable features of passive multispectral imaging. The technique can be used for detection, discrimination, and identification of objects by their spectral signature. This article describes and reviews the development and evaluation of semiconductor multi-spectral laser imaging systems. Although the method is certainly not specific to any laser technology, the use of semiconductor lasers is significant with respect to practicality and affordability. More relevantly, semiconductor lasers have their own characteristics; they offer excellent wavelength diversity but usually with modest power. Thus, system design and engineering issues are analyzed for approaches and trade-offs that can make the best use of semiconductor laser capabilities in multispectral imaging. A few systems were developed and the technique was tested and evaluated on a variety of natural and man-made objects. It was shown capable of high spectral resolution imaging which, unlike non-imaging point sensing, allows detecting and discriminating objects of interest even without a priori spectroscopic knowledge of the targets. Examples include material and chemical discrimination. It was also shown capable of dealing with the complexity of interpreting diffuse scattered spectral images and produced results that could otherwise be ambiguous with conventional imaging. Examples with glucose and spectral imaging of drug pills were discussed. Lastly, the technique was shown with conventional laser spectroscopy such as wavelength modulation spectroscopy to image a gas (CO). These results suggest the versatility and power of multi-spectral laser imaging, which can be practical with the use of semiconductor lasers.

  16. Exploiting physical constraints for multi-spectral exo-planet detection

    Science.gov (United States)

    Thiébaut, Éric; Devaney, Nicholas; Langlois, Maud; Hanley, Kenneth

    2016-07-01

    We derive a physical model of the on-axis PSF for a high contrast imaging system such as GPI or SPHERE. This model is based on a multi-spectral Taylor series expansion of the diffraction pattern and predicts that the speckles should be a combination of spatial modes with deterministic chromatic magnification and weighting. We propose to remove most of the residuals by fitting this model on a set of images at multiple wavelengths and times. On simulated data, we demonstrate that our approach achieves very good speckle suppression without additional heuristic parameters. The residual speckles1, 2 set the most serious limitation in the detection of exo-planets in high contrast coronographic images provided by instruments such as SPHERE3 at the VLT, GPI4, 5 at Gemini, or SCExAO6 at Subaru. A number of post-processing methods have been proposed to remove as much as possible of the residual speckles while preserving the signal from the planets. These methods exploit the fact that the speckles and the planetary signal have different temporal and spectral behaviors. Some methods like LOCI7 are based on angular differential imaging8 (ADI), spectral differential imaging9, 10 (SDI), or on a combination of ADI and SDI.11 Instead of working on image differences, we propose to tackle the exo-planet detection as an inverse problem where a model of the residual speckles is fit on the set of multi-spectral images and, possibly, multiple exposures. In order to reduce the number of degrees of freedom, we impose specific constraints on the spatio-spectral distribution of stellar speckles. These constraints are deduced from a multi-spectral Taylor series expansion of the diffraction pattern for an on-axis source which implies that the speckles are a combination of spatial modes with deterministic chromatic magnification and weighting. Using simulated data, the efficiency of speckle removal by fitting the proposed multi-spectral model is compared to the result of using an approximation

  17. A Cost Effective Multi-Spectral Scanner for Natural Gas Detection

    Energy Technology Data Exchange (ETDEWEB)

    Yudaya Sivathanu; Jongmook Lim; Vinoo Narayanan; Seonghyeon Park

    2005-12-07

    The objective of this project is to design, fabricate and demonstrate a cost effective, multi-spectral scanner for natural gas leak detection in transmission and distribution pipelines. During the first year of the project, a laboratory version of the multi-spectral scanner was designed, fabricated, and tested at EnUrga Inc. The multi-spectral scanner was also evaluated using a blind Department of Energy study at the Rocky Mountain Oilfield Testing Center. The performance of the scanner was inconsistent during the blind study. However, most of the leaks were outside the view of the multi-spectral scanner that was developed during the first year of the project. Therefore, a definite evaluation of the capability of the scanner was not obtained. Despite the results, sufficient number of plumes was detected fully confirming the feasibility of the multi-spectral scanner. During the second year, the optical design of the scanner was changed to improve the sensitivity of the system. Laboratory tests show that the system can reliably detect small leaks (20 SCFH) at 30 to 50 feet. A prototype scanner was built and evaluated during the second year of the project. Only laboratory evaluations were completed during the second year. The laboratory evaluations show the feasibility of using the scanner to determine natural gas pipeline leaks. Further field evaluations and optimization of the scanner are required before commercialization of the scanner can be initiated.

  18. Multi-spectral endogenous fluorescence imaging for bacterial differentiation

    Science.gov (United States)

    Chernomyrdin, Nikita V.; Babayants, Margarita V.; Korotkov, Oleg V.; Kudrin, Konstantin G.; Rimskaya, Elena N.; Shikunova, Irina A.; Kurlov, Vladimir N.; Cherkasova, Olga P.; Komandin, Gennady A.; Reshetov, Igor V.; Zaytsev, Kirill I.

    2017-07-01

    In this paper, the multi-spectral endogenous fluorescence imaging was implemented for bacterial differentiation. The fluorescence imaging was performed using a digital camera equipped with a set of visual bandpass filters. Narrowband 365 nm ultraviolet radiation passed through a beam homogenizer was used to excite the sample fluorescence. In order to increase a signal-to-noise ratio and suppress a non-fluorescence background in images, the intensity of the UV excitation was modulated using a mechanical chopper. The principal components were introduced for differentiating the samples of bacteria based on the multi-spectral endogenous fluorescence images.

  19. Development of MARS for multi-dimensional and multi-purpose thermal-hydraulic system analysis

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Won Jae; Chung, Bub Dong; Kim, Kyung Doo; Hwang, Moon Kyu; Jeong, Jae Jun; Ha, Kwi Seok; Joo, Han Gyu [Korea Atomic Energy Research Institute, T/H Safety Research Team, Yusung, Daejeon (Korea)

    2000-10-01

    MARS (Multi-dimensional Analysis of Reactor Safety) code is being developed by KAERI for the realistic thermal-hydraulic simulation of light water reactor system transients. MARS 1.4 has been developed as a final version of basic code frame for the multi-dimensional analysis of system thermal-hydraulics. Since MARS 1.3, MARS 1.4 has been improved to have the enhanced code capability and user friendliness through the unification of input/output features, code models and code functions, and through the code modernization. Further improvements of thermal-hydraulic models, numerical method and user friendliness are being carried out for the enhanced code accuracy. As a multi-purpose safety analysis code system, a coupled analysis system, MARS/MASTER/CONTEMPT, has been developed using multiple DLL (Dynamic Link Library) techniques of Windows system. This code system enables the coupled, that is, more realistic analysis of multi-dimensional thermal-hydraulics (MARS 2.0), three-dimensional core kinetics (MASTER) and containment thermal-hydraulics (CONTEMPT). This paper discusses the MARS development program, and the developmental progress of the MARS 1.4 and the MARS/MASTER/CONTEMPT focusing on major features of the codes and their verification. It also discusses thermal hydraulic models and new code features under development. (author)

  20. Development of MARS for multi-dimensional and multi-purpose thermal-hydraulic system analysis

    International Nuclear Information System (INIS)

    Lee, Won Jae; Chung, Bub Dong; Kim, Kyung Doo; Hwang, Moon Kyu; Jeong, Jae Jun; Ha, Kwi Seok; Joo, Han Gyu

    2000-01-01

    MARS (Multi-dimensional Analysis of Reactor Safety) code is being developed by KAERI for the realistic thermal-hydraulic simulation of light water reactor system transients. MARS 1.4 has been developed as a final version of basic code frame for the multi-dimensional analysis of system thermal-hydraulics. Since MARS 1.3, MARS 1.4 has been improved to have the enhanced code capability and user friendliness through the unification of input/output features, code models and code functions, and through the code modernization. Further improvements of thermal-hydraulic models, numerical method and user friendliness are being carried out for the enhanced code accuracy. As a multi-purpose safety analysis code system, a coupled analysis system, MARS/MASTER/CONTEMPT, has been developed using multiple DLL (Dynamic Link Library) techniques of Windows system. This code system enables the coupled, that is, more realistic analysis of multi-dimensional thermal-hydraulics (MARS 2.0), three-dimensional core kinetics (MASTER) and containment thermal-hydraulics (CONTEMPT). This paper discusses the MARS development program, and the developmental progress of the MARS 1.4 and the MARS/MASTER/CONTEMPT focusing on major features of the codes and their verification. It also discusses thermal hydraulic models and new code features under development. (author)

  1. Image matrix processor for fast multi-dimensional computations

    Science.gov (United States)

    Roberson, George P.; Skeate, Michael F.

    1996-01-01

    An apparatus for multi-dimensional computation which comprises a computation engine, including a plurality of processing modules. The processing modules are configured in parallel and compute respective contributions to a computed multi-dimensional image of respective two dimensional data sets. A high-speed, parallel access storage system is provided which stores the multi-dimensional data sets, and a switching circuit routes the data among the processing modules in the computation engine and the storage system. A data acquisition port receives the two dimensional data sets representing projections through an image, for reconstruction algorithms such as encountered in computerized tomography. The processing modules include a programmable local host, by which they may be configured to execute a plurality of different types of multi-dimensional algorithms. The processing modules thus include an image manipulation processor, which includes a source cache, a target cache, a coefficient table, and control software for executing image transformation routines using data in the source cache and the coefficient table and loading resulting data in the target cache. The local host processor operates to load the source cache with a two dimensional data set, loads the coefficient table, and transfers resulting data out of the target cache to the storage system, or to another destination.

  2. Airborne Multi-Spectral Minefield Survey

    Science.gov (United States)

    2005-05-01

    Swedish Defence Research Agency), GEOSPACE (Austria), GTD ( Ingenieria de Sistemas y Software Industrial, Spain), IMEC (Ineruniversity MicroElectronic...RTO-MP-SET-092 18 - 1 UNCLASSIFIED/UNLIMITED UNCLASSIFIED/UNLIMITED Airborne Multi-Spectral Minefield Survey Dirk-Jan de Lange, Eric den...actions is the severe lack of baseline information. To respond to this in a rapid way, cost-efficient data acquisition methods are a key issue. de

  3. Parallel Implementation of the Multi-Dimensional Spectral Code SPECT3D on large 3D grids.

    Science.gov (United States)

    Golovkin, Igor E.; Macfarlane, Joseph J.; Woodruff, Pamela R.; Pereyra, Nicolas A.

    2006-10-01

    The multi-dimensional collisional-radiative, spectral analysis code SPECT3D can be used to study radiation from complex plasmas. SPECT3D can generate instantaneous and time-gated images and spectra, space-resolved and streaked spectra, which makes it a valuable tool for post-processing hydrodynamics calculations and direct comparison between simulations and experimental data. On large three dimensional grids, transporting radiation along lines of sight (LOS) requires substantial memory and CPU resources. Currently, the parallel option in SPECT3D is based on parallelization over photon frequencies and allows for a nearly linear speed-up for a variety of problems. In addition, we are introducing a new parallel mechanism that will greatly reduce memory requirements. In the new implementation, spatial domain decomposition will be utilized allowing transport along a LOS to be performed only on the mesh cells the LOS crosses. The ability to operate on a fraction of the grid is crucial for post-processing the results of large-scale three-dimensional hydrodynamics simulations. We will present a parallel implementation of the code and provide a scalability study performed on a Linux cluster.

  4. Adjoint Methods for Adjusting Three-Dimensional Atmosphere and Surface Properties to Fit Multi-Angle Multi-Pixel Polarimetric Measurements

    Science.gov (United States)

    Martin, William G.; Cairns, Brian; Bal, Guillaume

    2014-01-01

    This paper derives an efficient procedure for using the three-dimensional (3D) vector radiative transfer equation (VRTE) to adjust atmosphere and surface properties and improve their fit with multi-angle/multi-pixel radiometric and polarimetric measurements of scattered sunlight. The proposed adjoint method uses the 3D VRTE to compute the measurement misfit function and the adjoint 3D VRTE to compute its gradient with respect to all unknown parameters. In the remote sensing problems of interest, the scalar-valued misfit function quantifies agreement with data as a function of atmosphere and surface properties, and its gradient guides the search through this parameter space. Remote sensing of the atmosphere and surface in a three-dimensional region may require thousands of unknown parameters and millions of data points. Many approaches would require calls to the 3D VRTE solver in proportion to the number of unknown parameters or measurements. To avoid this issue of scale, we focus on computing the gradient of the misfit function as an alternative to the Jacobian of the measurement operator. The resulting adjoint method provides a way to adjust 3D atmosphere and surface properties with only two calls to the 3D VRTE solver for each spectral channel, regardless of the number of retrieval parameters, measurement view angles or pixels. This gives a procedure for adjusting atmosphere and surface parameters that will scale to the large problems of 3D remote sensing. For certain types of multi-angle/multi-pixel polarimetric measurements, this encourages the development of a new class of three-dimensional retrieval algorithms with more flexible parametrizations of spatial heterogeneity, less reliance on data screening procedures, and improved coverage in terms of the resolved physical processes in the Earth?s atmosphere.

  5. Three-Dimensional Reconstruction from Single Image Base on Combination of CNN and Multi-Spectral Photometric Stereo

    Science.gov (United States)

    Lu, Liang; Qi, Lin; Luo, Yisong; Jiao, Hengchao; Dong, Junyu

    2018-01-01

    Multi-spectral photometric stereo can recover pixel-wise surface normal from a single RGB image. The difficulty lies in that the intensity in each channel is the tangle of illumination, albedo and camera response; thus, an initial estimate of the normal is required in optimization-based solutions. In this paper, we propose to make a rough depth estimation using the deep convolutional neural network (CNN) instead of using depth sensors or binocular stereo devices. Since high-resolution ground-truth data is expensive to obtain, we designed a network and trained it with rendered images of synthetic 3D objects. We use the model to predict initial normal of real-world objects and iteratively optimize the fine-scale geometry in the multi-spectral photometric stereo framework. The experimental results illustrate the improvement of the proposed method compared with existing methods. PMID:29498703

  6. Three-Dimensional Reconstruction from Single Image Base on Combination of CNN and Multi-Spectral Photometric Stereo

    Directory of Open Access Journals (Sweden)

    Liang Lu

    2018-03-01

    Full Text Available Multi-spectral photometric stereo can recover pixel-wise surface normal from a single RGB image. The difficulty lies in that the intensity in each channel is the tangle of illumination, albedo and camera response; thus, an initial estimate of the normal is required in optimization-based solutions. In this paper, we propose to make a rough depth estimation using the deep convolutional neural network (CNN instead of using depth sensors or binocular stereo devices. Since high-resolution ground-truth data is expensive to obtain, we designed a network and trained it with rendered images of synthetic 3D objects. We use the model to predict initial normal of real-world objects and iteratively optimize the fine-scale geometry in the multi-spectral photometric stereo framework. The experimental results illustrate the improvement of the proposed method compared with existing methods.

  7. Multi-Dimensional Aggregation for Temporal Data

    DEFF Research Database (Denmark)

    Böhlen, M. H.; Gamper, J.; Jensen, Christian Søndergaard

    2006-01-01

    Business Intelligence solutions, encompassing technologies such as multi-dimensional data modeling and aggregate query processing, are being applied increasingly to non-traditional data. This paper extends multi-dimensional aggregation to apply to data with associated interval values that capture...... that the data holds for each point in the interval, as well as the case where the data holds only for the entire interval, but must be adjusted to apply to sub-intervals. The paper reports on an implementation of the new operator and on an empirical study that indicates that the operator scales to large data...

  8. Study on the construction of multi-dimensional Remote Sensing feature space for hydrological drought

    International Nuclear Information System (INIS)

    Xiang, Daxiang; Tan, Debao; Wen, Xiongfei; Shen, Shaohong; Li, Zhe; Cui, Yuanlai

    2014-01-01

    Hydrological drought refers to an abnormal water shortage caused by precipitation and surface water shortages or a groundwater imbalance. Hydrological drought is reflected in a drop of surface water, decrease of vegetation productivity, increase of temperature difference between day and night and so on. Remote sensing permits the observation of surface water, vegetation, temperature and other information from a macro perspective. This paper analyzes the correlation relationship and differentiation of both remote sensing and surface measured indicators, after the selection and extraction a series of representative remote sensing characteristic parameters according to the spectral characterization of surface features in remote sensing imagery, such as vegetation index, surface temperature and surface water from HJ-1A/B CCD/IRS data. Finally, multi-dimensional remote sensing features such as hydrological drought are built on a intelligent collaborative model. Further, for the Dong-ting lake area, two drought events are analyzed for verification of multi-dimensional features using remote sensing data with different phases and field observation data. The experiments results proved that multi-dimensional features are a good method for hydrological drought

  9. Multi dimensional analysis of Design Basis Events using MARS-LMR

    International Nuclear Information System (INIS)

    Woo, Seung Min; Chang, Soon Heung

    2012-01-01

    Highlights: ► The one dimensional analyzed sodium hot pool is modified to a three dimensional node system, because the one dimensional analysis cannot represent the phenomena of the inside pool of a big size pool with many compositions. ► The results of the multi-dimensional analysis compared with the one dimensional analysis results in normal operation, TOP (Transient of Over Power), LOF (Loss of Flow), and LOHS (Loss of Heat Sink) conditions. ► The difference of the sodium flow pattern due to structure effect in the hot pool and mass flow rates in the core lead the different sodium temperature and temperature history under transient condition. - Abstract: KALIMER-600 (Korea Advanced Liquid Metal Reactor), which is a pool type SFR (Sodium-cooled Fast Reactor), was developed by KAERI (Korea Atomic Energy Research Institute). DBE (Design Basis Events) for KALIMER-600 has been analyzed in the one dimension. In this study, the one dimensional analyzed sodium hot pool is modified to a three dimensional node system, because the one dimensional analysis cannot represent the phenomena of the inside pool of a big size pool with many compositions, such as UIS (Upper Internal Structure), IHX (Intermediate Heat eXchanger), DHX (Decay Heat eXchanger), and pump. The results of the multi-dimensional analysis compared with the one dimensional analysis results in normal operation, TOP (Transient of Over Power), LOF (Loss of Flow), and LOHS (Loss of Heat Sink) conditions. First, the results in normal operation condition show the good agreement between the one and multi-dimensional analysis. However, according to the sodium temperatures of the core inlet, outlet, the fuel central line, cladding and PDRC (Passive Decay heat Removal Circuit), the temperatures of the one dimensional analysis are generally higher than the multi-dimensional analysis in conditions except the normal operation state, and the PDRC operation time in the one dimensional analysis is generally longer than

  10. Theme section: Multi-dimensional modelling, analysis and visualization

    DEFF Research Database (Denmark)

    Guilbert, Éric; Coltekin, Arzu; Antón Castro, Francesc/François

    2016-01-01

    (Biljecki et al., 2015) as well as the temporal, but also the scale dimension (Van Oosterom and Stoter, 2010) or, as mentioned by(Lu et al., 2016), multi-spectral and multi-sensor data. Such a view provides an organisation of multidimensional data around these different axes and it is time to explore each...

  11. Two multi-dimensional uncertainty relations

    International Nuclear Information System (INIS)

    Skala, L; Kapsa, V

    2008-01-01

    Two multi-dimensional uncertainty relations, one related to the probability density and the other one related to the probability density current, are derived and discussed. Both relations are stronger than the usual uncertainty relations for the coordinates and momentum

  12. Balanced sensitivity functions for tuning multi-dimensional Bayesian network classifiers

    NARCIS (Netherlands)

    Bolt, J.H.; van der Gaag, L.C.

    Multi-dimensional Bayesian network classifiers are Bayesian networks of restricted topological structure, which are tailored to classifying data instances into multiple dimensions. Like more traditional classifiers, multi-dimensional classifiers are typically learned from data and may include

  13. Statistical Projections for Multi-resolution, Multi-dimensional Visual Data Exploration and Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Hoa T. [Univ. of Utah, Salt Lake City, UT (United States); Stone, Daithi [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Bethel, E. Wes [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2016-01-01

    An ongoing challenge in visual exploration and analysis of large, multi-dimensional datasets is how to present useful, concise information to a user for some specific visualization tasks. Typical approaches to this problem have proposed either reduced-resolution versions of data, or projections of data, or both. These approaches still have some limitations such as consuming high computation or suffering from errors. In this work, we explore the use of a statistical metric as the basis for both projections and reduced-resolution versions of data, with a particular focus on preserving one key trait in data, namely variation. We use two different case studies to explore this idea, one that uses a synthetic dataset, and another that uses a large ensemble collection produced by an atmospheric modeling code to study long-term changes in global precipitation. The primary findings of our work are that in terms of preserving the variation signal inherent in data, that using a statistical measure more faithfully preserves this key characteristic across both multi-dimensional projections and multi-resolution representations than a methodology based upon averaging.

  14. A Shell Multi-dimensional Hierarchical Cubing Approach for High-Dimensional Cube

    Science.gov (United States)

    Zou, Shuzhi; Zhao, Li; Hu, Kongfa

    The pre-computation of data cubes is critical for improving the response time of OLAP systems and accelerating data mining tasks in large data warehouses. However, as the sizes of data warehouses grow, the time it takes to perform this pre-computation becomes a significant performance bottleneck. In a high dimensional data warehouse, it might not be practical to build all these cuboids and their indices. In this paper, we propose a shell multi-dimensional hierarchical cubing algorithm, based on an extension of the previous minimal cubing approach. This method partitions the high dimensional data cube into low multi-dimensional hierarchical cube. Experimental results show that the proposed method is significantly more efficient than other existing cubing methods.

  15. Automated road network extraction from high spatial resolution multi-spectral imagery

    Science.gov (United States)

    Zhang, Qiaoping

    For the last three decades, the Geomatics Engineering and Computer Science communities have considered automated road network extraction from remotely-sensed imagery to be a challenging and important research topic. The main objective of this research is to investigate the theory and methodology of automated feature extraction for image-based road database creation, refinement or updating, and to develop a series of algorithms for road network extraction from high resolution multi-spectral imagery. The proposed framework for road network extraction from multi-spectral imagery begins with an image segmentation using the k-means algorithm. This step mainly concerns the exploitation of the spectral information for feature extraction. The road cluster is automatically identified using a fuzzy classifier based on a set of predefined road surface membership functions. These membership functions are established based on the general spectral signature of road pavement materials and the corresponding normalized digital numbers on each multi-spectral band. Shape descriptors of the Angular Texture Signature are defined and used to reduce the misclassifications between roads and other spectrally similar objects (e.g., crop fields, parking lots, and buildings). An iterative and localized Radon transform is developed for the extraction of road centerlines from the classified images. The purpose of the transform is to accurately and completely detect the road centerlines. It is able to find short, long, and even curvilinear lines. The input image is partitioned into a set of subset images called road component images. An iterative Radon transform is locally applied to each road component image. At each iteration, road centerline segments are detected based on an accurate estimation of the line parameters and line widths. Three localization approaches are implemented and compared using qualitative and quantitative methods. Finally, the road centerline segments are grouped into a

  16. A comparison of multi-spectral, multi-angular, and multi-temporal remote sensing datasets for fractional shrub canopy mapping in Arctic Alaska

    Science.gov (United States)

    Selkowitz, D.J.

    2010-01-01

    Shrub cover appears to be increasing across many areas of the Arctic tundra biome, and increasing shrub cover in the Arctic has the potential to significantly impact global carbon budgets and the global climate system. For most of the Arctic, however, there is no existing baseline inventory of shrub canopy cover, as existing maps of Arctic vegetation provide little information about the density of shrub cover at a moderate spatial resolution across the region. Remotely-sensed fractional shrub canopy maps can provide this necessary baseline inventory of shrub cover. In this study, we compare the accuracy of fractional shrub canopy (> 0.5 m tall) maps derived from multi-spectral, multi-angular, and multi-temporal datasets from Landsat imagery at 30 m spatial resolution, Moderate Resolution Imaging SpectroRadiometer (MODIS) imagery at 250 m and 500 m spatial resolution, and MultiAngle Imaging Spectroradiometer (MISR) imagery at 275 m spatial resolution for a 1067 km2 study area in Arctic Alaska. The study area is centered at 69 ??N, ranges in elevation from 130 to 770 m, is composed primarily of rolling topography with gentle slopes less than 10??, and is free of glaciers and perennial snow cover. Shrubs > 0.5 m in height cover 2.9% of the study area and are primarily confined to patches associated with specific landscape features. Reference fractional shrub canopy is determined from in situ shrub canopy measurements and a high spatial resolution IKONOS image swath. Regression tree models are constructed to estimate fractional canopy cover at 250 m using different combinations of input data from Landsat, MODIS, and MISR. Results indicate that multi-spectral data provide substantially more accurate estimates of fractional shrub canopy cover than multi-angular or multi-temporal data. Higher spatial resolution datasets also provide more accurate estimates of fractional shrub canopy cover (aggregated to moderate spatial resolutions) than lower spatial resolution datasets

  17. A multi-dimensional sampling method for locating small scatterers

    International Nuclear Information System (INIS)

    Song, Rencheng; Zhong, Yu; Chen, Xudong

    2012-01-01

    A multiple signal classification (MUSIC)-like multi-dimensional sampling method (MDSM) is introduced to locate small three-dimensional scatterers using electromagnetic waves. The indicator is built with the most stable part of signal subspace of the multi-static response matrix on a set of combinatorial sampling nodes inside the domain of interest. It has two main advantages compared to the conventional MUSIC methods. First, the MDSM is more robust against noise. Second, it can work with a single incidence even for multi-scatterers. Numerical simulations are presented to show the good performance of the proposed method. (paper)

  18. Multi-tissue partial volume quantification in multi-contrast MRI using an optimised spectral unmixing approach.

    Science.gov (United States)

    Collewet, Guylaine; Moussaoui, Saïd; Deligny, Cécile; Lucas, Tiphaine; Idier, Jérôme

    2018-06-01

    Multi-tissue partial volume estimation in MRI images is investigated with a viewpoint related to spectral unmixing as used in hyperspectral imaging. The main contribution of this paper is twofold. It firstly proposes a theoretical analysis of the statistical optimality conditions of the proportion estimation problem, which in the context of multi-contrast MRI data acquisition allows to appropriately set the imaging sequence parameters. Secondly, an efficient proportion quantification algorithm based on the minimisation of a penalised least-square criterion incorporating a regularity constraint on the spatial distribution of the proportions is proposed. Furthermore, the resulting developments are discussed using empirical simulations. The practical usefulness of the spectral unmixing approach for partial volume quantification in MRI is illustrated through an application to food analysis on the proving of a Danish pastry. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. Towards Optimal Multi-Dimensional Query Processing with BitmapIndices

    Energy Technology Data Exchange (ETDEWEB)

    Rotem, Doron; Stockinger, Kurt; Wu, Kesheng

    2005-09-30

    Bitmap indices have been widely used in scientific applications and commercial systems for processing complex, multi-dimensional queries where traditional tree-based indices would not work efficiently. This paper studies strategies for minimizing the access costs for processing multi-dimensional queries using bitmap indices with binning. Innovative features of our algorithm include (a) optimally placing the bin boundaries and (b) dynamically reordering the evaluation of the query terms. In addition, we derive several analytical results concerning optimal bin allocation for a probabilistic query model. Our experimental evaluation with real life data shows an average I/O cost improvement of at least a factor of 10 for multi-dimensional queries on datasets from two different applications. Our experiments also indicate that the speedup increases with the number of query dimensions.

  20. Code Coupling for Multi-Dimensional Core Transient Analysis

    International Nuclear Information System (INIS)

    Park, Jin-Woo; Park, Guen-Tae; Park, Min-Ho; Ryu, Seok-Hee; Um, Kil-Sup; Lee Jae-Il

    2015-01-01

    After the CEA ejection, the nuclear power of the reactor dramatically increases in an exponential behavior until the Doppler effect becomes important and turns the reactivity balance and power down to lower levels. Although this happens in a very short period of time, only few seconds, the energy generated can be very significant and cause fuel failures. The current safety analysis methodology which is based on overly conservative assumptions with the point kinetics model results in quite adverse consequences. Thus, KEPCO Nuclear Fuel(KNF) is developing the multi-dimensional safety analysis methodology to mitigate the consequences of the single CEA ejection accident. For this purpose, three-dimensional core neutron kinetics code ASTRA, sub-channel analysis code THALES, and fuel performance analysis code FROST, which have transient calculation performance, were coupled using message passing interface (MPI). This paper presents the methodology used for code coupling and the preliminary simulation results with the coupled code system (CHASER). Multi-dimensional core transient analysis code system, CHASER, has been developed and it was applied to simulate a single CEA ejection accident. CHASER gave a good prediction of multi-dimensional core transient behaviors during transient. In the near future, the multi-dimension CEA ejection analysis methodology using CHASER is planning to be developed. CHASER is expected to be a useful tool to gain safety margin for reactivity initiated accidents (RIAs), such as a single CEA ejection accident

  1. Code Coupling for Multi-Dimensional Core Transient Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jin-Woo; Park, Guen-Tae; Park, Min-Ho; Ryu, Seok-Hee; Um, Kil-Sup; Lee Jae-Il [KEPCO NF, Daejeon (Korea, Republic of)

    2015-05-15

    After the CEA ejection, the nuclear power of the reactor dramatically increases in an exponential behavior until the Doppler effect becomes important and turns the reactivity balance and power down to lower levels. Although this happens in a very short period of time, only few seconds, the energy generated can be very significant and cause fuel failures. The current safety analysis methodology which is based on overly conservative assumptions with the point kinetics model results in quite adverse consequences. Thus, KEPCO Nuclear Fuel(KNF) is developing the multi-dimensional safety analysis methodology to mitigate the consequences of the single CEA ejection accident. For this purpose, three-dimensional core neutron kinetics code ASTRA, sub-channel analysis code THALES, and fuel performance analysis code FROST, which have transient calculation performance, were coupled using message passing interface (MPI). This paper presents the methodology used for code coupling and the preliminary simulation results with the coupled code system (CHASER). Multi-dimensional core transient analysis code system, CHASER, has been developed and it was applied to simulate a single CEA ejection accident. CHASER gave a good prediction of multi-dimensional core transient behaviors during transient. In the near future, the multi-dimension CEA ejection analysis methodology using CHASER is planning to be developed. CHASER is expected to be a useful tool to gain safety margin for reactivity initiated accidents (RIAs), such as a single CEA ejection accident.

  2. Multi-spectral Image Analysis for Astaxanthin Coating Classification

    DEFF Research Database (Denmark)

    Ljungqvist, Martin Georg; Ersbøll, Bjarne Kjær; Nielsen, Michael Engelbrecht

    2011-01-01

    Industrial quality inspection using image analysis on astaxanthin coating in aquaculture feed pellets is of great importance for automatic production control. In this study multi-spectral image analysis of pellets was performed using LDA, QDA, SNV and PCA on pixel level and mean value of pixels...

  3. Beyond Low-Rank Representations: Orthogonal clustering basis reconstruction with optimized graph structure for multi-view spectral clustering.

    Science.gov (United States)

    Wang, Yang; Wu, Lin

    2018-07-01

    Low-Rank Representation (LRR) is arguably one of the most powerful paradigms for Multi-view spectral clustering, which elegantly encodes the multi-view local graph/manifold structures into an intrinsic low-rank self-expressive data similarity embedded in high-dimensional space, to yield a better graph partition than their single-view counterparts. In this paper we revisit it with a fundamentally different perspective by discovering LRR as essentially a latent clustered orthogonal projection based representation winged with an optimized local graph structure for spectral clustering; each column of the representation is fundamentally a cluster basis orthogonal to others to indicate its members, which intuitively projects the view-specific feature representation to be the one spanned by all orthogonal basis to characterize the cluster structures. Upon this finding, we propose our technique with the following: (1) We decompose LRR into latent clustered orthogonal representation via low-rank matrix factorization, to encode the more flexible cluster structures than LRR over primal data objects; (2) We convert the problem of LRR into that of simultaneously learning orthogonal clustered representation and optimized local graph structure for each view; (3) The learned orthogonal clustered representations and local graph structures enjoy the same magnitude for multi-view, so that the ideal multi-view consensus can be readily achieved. The experiments over multi-view datasets validate its superiority, especially over recent state-of-the-art LRR models. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Multi-dimensional quasitoeplitz Markov chains

    Directory of Open Access Journals (Sweden)

    Alexander N. Dudin

    1999-01-01

    Full Text Available This paper deals with multi-dimensional quasitoeplitz Markov chains. We establish a sufficient equilibrium condition and derive a functional matrix equation for the corresponding vector-generating function, whose solution is given algorithmically. The results are demonstrated in the form of examples and applications in queues with BMAP-input, which operate in synchronous random environment.

  5. Variational Multi-Scale method with spectral approximation of the sub-scales.

    KAUST Repository

    Dia, Ben Mansour; Chá con-Rebollo, Tomas

    2015-01-01

    A variational multi-scale method where the sub-grid scales are computed by spectral approximations is presented. It is based upon an extension of the spectral theorem to non necessarily self-adjoint elliptic operators that have an associated base

  6. Multi-dimensional Laplace transforms and applications

    International Nuclear Information System (INIS)

    Mughrabi, T.A.

    1988-01-01

    In this dissertation we establish new theorems for computing certain types of multidimensional Laplace transform pairs from known one-dimensional Laplace transforms. The theorems are applied to the most commonly used special functions and so we obtain many two and three dimensional Laplace transform pairs. As applications, some boundary value problems involving linear partial differential equations are solved by the use of multi-dimensional Laplace transformation. Also we establish some relations between the Laplace transformation and other integral transformation in two variables

  7. A multi-object spectral imaging instrument

    OpenAIRE

    Gibson, G.M.; Dienerowitz, M.; Kelleher, P.A.; Harvey, A.R.; Padgett, M.J.

    2013-01-01

    We have developed a snapshot spectral imaging system which fits onto the side camera port of a commercial inverted microscope. The system provides spectra, in real time, from multiple points randomly selected on the microscope image. Light from the selected points in the sample is directed from the side port imaging arm using a digital micromirror device to a spectrometer arm based on a dispersing prism and CCD camera. A multi-line laser source is used to calibrate the pixel positions on the ...

  8. Multi-dimensional database design and implementation of dam safety monitoring system

    Directory of Open Access Journals (Sweden)

    Zhao Erfeng

    2008-09-01

    Full Text Available To improve the effectiveness of dam safety monitoring database systems, the development process of a multi-dimensional conceptual data model was analyzed and a logic design was achieved in multi-dimensional database mode. The optimal data model was confirmed by identifying data objects, defining relations and reviewing entities. The conversion of relations among entities to external keys and entities and physical attributes to tables and fields was interpreted completely. On this basis, a multi-dimensional database that reflects the management and analysis of a dam safety monitoring system on monitoring data information has been established, for which factual tables and dimensional tables have been designed. Finally, based on service design and user interface design, the dam safety monitoring system has been developed with Delphi as the development tool. This development project shows that the multi-dimensional database can simplify the development process and minimize hidden dangers in the database structure design. It is superior to other dam safety monitoring system development models and can provide a new research direction for system developers.

  9. A Multi-layer Hybrid Framework for Dimensional Emotion Classification

    NARCIS (Netherlands)

    Nicolaou, Mihalis A.; Gunes, Hatice; Pantic, Maja

    2011-01-01

    This paper investigates dimensional emotion prediction and classification from naturalistic facial expressions. Similarly to many pattern recognition problems, dimensional emotion classification requires generating multi-dimensional outputs. To date, classification for valence and arousal dimensions

  10. Development of multi-dimensional body image scale for malaysian female adolescents.

    Science.gov (United States)

    Chin, Yit Siew; Taib, Mohd Nasir Mohd; Shariff, Zalilah Mohd; Khor, Geok Lin

    2008-01-01

    The present study was conducted to develop a Multi-dimensional Body Image Scale for Malaysian female adolescents. Data were collected among 328 female adolescents from a secondary school in Kuantan district, state of Pahang, Malaysia by using a self-administered questionnaire and anthropometric measurements. The self-administered questionnaire comprised multiple measures of body image, Eating Attitude Test (EAT-26; Garner & Garfinkel, 1979) and Rosenberg Self-esteem Inventory (Rosenberg, 1965). The 152 items from selected multiple measures of body image were examined through factor analysis and for internal consistency. Correlations between Multi-dimensional Body Image Scale and body mass index (BMI), risk of eating disorders and self-esteem were assessed for construct validity. A seven factor model of a 62-item Multi-dimensional Body Image Scale for Malaysian female adolescents with construct validity and good internal consistency was developed. The scale encompasses 1) preoccupation with thinness and dieting behavior, 2) appearance and body satisfaction, 3) body importance, 4) muscle increasing behavior, 5) extreme dieting behavior, 6) appearance importance, and 7) perception of size and shape dimensions. Besides, a multidimensional body image composite score was proposed to screen negative body image risk in female adolescents. The result found body image was correlated with BMI, risk of eating disorders and self-esteem in female adolescents. In short, the present study supports a multi-dimensional concept for body image and provides a new insight into its multi-dimensionality in Malaysian female adolescents with preliminary validity and reliability of the scale. The Multi-dimensional Body Image Scale can be used to identify female adolescents who are potentially at risk of developing body image disturbance through future intervention programs.

  11. Multi-spectral optical scanners for commercial earth observation missions

    Science.gov (United States)

    Schröter, Karin; Engel, Wolfgang; Berndt, Klaus

    2017-11-01

    In recent years, a number of commercial Earth observation missions have been initiated with the aim to gather data in the visible and near-infrared wavelength range. Some of these missions aim at medium resolution (5 to 10 m) multi-spectral imaging with the special background of daily revisiting. Typical applications aim at monitoring of farming area for growth control and harvest prediction, irrigation control, or disaster monitoring such as hail damage in farming, or flood survey. In order to arrive at profitable business plans for such missions, it is mandatory to establish the space segment, i.e. the spacecraft with their opto -electronic payloads, at minimum cost while guaranteeing maximum reliability for mission success. As multiple spacecraft are required for daily revisiting, the solutions are typically based on micro-satellites. This paper presents designs for multi-spectral opto-electric scanners for this type of missions. These designs are drive n by minimum mass and power budgets of microsatellites, and the need for minimum cost. As a consequence, it is mandatory to arrive at thermally robust, compact telescope designs. The paper gives a comparison between refractive, catadioptric, and TMA optics. For mirror designs, aluminium and Zerodur mirror technologies are briefly discussed. State-of-the art focal plane designs are presented. The paper also addresses the choice of detector technologies such as CCDs and CMOS Active Pixel Sensors. The electronics of the multi-spectral scanners represent the main design driver regarding power consumption, reliability, and (most often) cost. It can be subdivided into the detector drive electronics, analog and digital data processing chains, the data mass memory unit, formatting and down - linking units, payload control electronics, and local power supply. The paper gives overviews and trade-offs between data compression strategies and electronics solutions, mass memory unit designs, and data formatting approaches

  12. Multi-dimensional simulations of core-collapse supernova explosions with CHIMERA

    Science.gov (United States)

    Messer, O. E. B.; Harris, J. A.; Hix, W. R.; Lentz, E. J.; Bruenn, S. W.; Mezzacappa, A.

    2018-04-01

    Unraveling the core-collapse supernova (CCSN) mechanism is a problem that remains essentially unsolved despite more than four decades of effort. Spherically symmetric models with otherwise high physical fidelity generally fail to produce explosions, and it is widely accepted that CCSNe are inherently multi-dimensional. Progress in realistic modeling has occurred recently through the availability of petascale platforms and the increasing sophistication of supernova codes. We will discuss our most recent work on understanding neutrino-driven CCSN explosions employing multi-dimensional neutrino-radiation hydrodynamics simulations with the Chimera code. We discuss the inputs and resulting outputs from these simulations, the role of neutrino radiation transport, and the importance of multi-dimensional fluid flows in shaping the explosions. We also highlight the production of 48Ca in long-running Chimera simulations.

  13. Multi-dimensional virtual system introduced to enhance canonical sampling

    Science.gov (United States)

    Higo, Junichi; Kasahara, Kota; Nakamura, Haruki

    2017-10-01

    When an important process of a molecular system occurs via a combination of two or more rare events, which occur almost independently to one another, computational sampling for the important process is difficult. Here, to sample such a process effectively, we developed a new method, named the "multi-dimensional Virtual-system coupled Monte Carlo (multi-dimensional-VcMC)" method, where the system interacts with a virtual system expressed by two or more virtual coordinates. Each virtual coordinate controls sampling along a reaction coordinate. By setting multiple reaction coordinates to be related to the corresponding rare events, sampling of the important process can be enhanced. An advantage of multi-dimensional-VcMC is its simplicity: Namely, the conformation moves widely in the multi-dimensional reaction coordinate space without knowledge of canonical distribution functions of the system. To examine the effectiveness of the algorithm, we introduced a toy model where two molecules (receptor and its ligand) bind and unbind to each other. The receptor has a deep binding pocket, to which the ligand enters for binding. Furthermore, a gate is set at the entrance of the pocket, and the gate is usually closed. Thus, the molecular binding takes place via the two events: ligand approach to the pocket and gate opening. In two-dimensional (2D)-VcMC, the two molecules exhibited repeated binding and unbinding, and an equilibrated distribution was obtained as expected. A conventional canonical simulation, which was 200 times longer than 2D-VcMC, failed in sampling the binding/unbinding effectively. The current method is applicable to various biological systems.

  14. Development and assessment of multi-dimensional flow model in MARS compared with the RPI air-water experiment

    International Nuclear Information System (INIS)

    Lee, Seok Min; Lee, Un Chul; Bae, Sung Won; Chung, Bub Dong

    2004-01-01

    The Multi-Dimensional flow models in system code have been developed during the past many years. RELAP5-3D, CATHARE and TRACE has its specific multi-dimensional flow models and successfully applied it to the system safety analysis. In KAERI, also, MARS(Multi-dimensional Analysis of Reactor Safety) code was developed by integrating RELAP5/MOD3 code and COBRA-TF code. Even though COBRA-TF module can analyze three-dimensional flow models, it has a limitation to apply 3D shear stress dominant phenomena or cylindrical geometry. Therefore, Multi-dimensional analysis models are newly developed by implementing three-dimensional momentum flux and diffusion terms. The multi-dimensional model has been assessed compared with multi-dimensional conceptual problems and CFD code results. Although the assessment results were reasonable, the multi-dimensional model has not been validated to two-phase flow using experimental data. In this paper, the multi-dimensional air-water two-phase flow experiment was simulated and analyzed

  15. Multi-Dimensional Customer Data Analysis in Online Auctions

    Institute of Scientific and Technical Information of China (English)

    LAO Guoling; XIONG Kuan; QIN Zheng

    2007-01-01

    In this paper, we designed a customer-centered data warehouse system with five subjects: listing, bidding, transaction,accounts, and customer contact based on the business process of online auction companies. For each subject, we analyzed its fact indexes and dimensions. Then take transaction subject as example,analyzed the data warehouse model in detail, and got the multi-dimensional analysis structure of transaction subject. At last, using data mining to do customer segmentation, we divided customers into four types: impulse customer, prudent customer, potential customer, and ordinary customer. By the result of multi-dimensional customer data analysis, online auction companies can do more target marketing and increase customer loyalty.

  16. Variational Multi-Scale method with spectral approximation of the sub-scales.

    KAUST Repository

    Dia, Ben Mansour

    2015-01-07

    A variational multi-scale method where the sub-grid scales are computed by spectral approximations is presented. It is based upon an extension of the spectral theorem to non necessarily self-adjoint elliptic operators that have an associated base of eigenfunctions which are orthonormal in weighted L2 spaces. We propose a feasible VMS-spectral method by truncation of this spectral expansion to a nite number of modes.

  17. The 'thousand words' problem: Summarizing multi-dimensional data

    International Nuclear Information System (INIS)

    Scott, David M.

    2011-01-01

    Research highlights: → Sophisticated process sensors produce large multi-dimensional data sets. → Plant control systems cannot handle images or large amounts of data. → Various techniques reduce the dimensionality, extracting information from raw data. → Simple 1D and 2D methods can often be extended to 3D and 4D applications. - Abstract: An inherent difficulty in the application of multi-dimensional sensing to process monitoring and control is the extraction and interpretation of useful information. Ultimately the measured data must be collapsed into a relatively small number of values that capture the salient characteristics of the process. Although multiple dimensions are frequently necessary to isolate a particular physical attribute (such as the distribution of a particular chemical species in a reactor), plant control systems are not equipped to use such data directly. The production of a multi-dimensional data set (often displayed as an image) is not the final step of the measurement process, because information must still be extracted from the raw data. In the metaphor of one picture being equal to a thousand words, the problem becomes one of paraphrasing a lengthy description of the image with one or two well-chosen words. Various approaches to solving this problem are discussed using examples from the fields of particle characterization, image processing, and process tomography.

  18. AMARSI: Aerosol modeling and retrieval from multi-spectral imagers

    NARCIS (Netherlands)

    Leeuw, G. de; Curier, R.L.; Staroverova, A.; Kokhanovsky, A.; Hoyningen-Huene, W. van; Rozanov, V.V.; Burrows, J.P.; Hesselmans, G.; Gale, L.; Bouvet, M.

    2008-01-01

    The AMARSI project aims at the development and validation of aerosol retrieval algorithms over ocean. One algorithm will be developed for application with data from the Multi Spectral Imager (MSI) on EarthCARE. A second algorithm will be developed using the combined information from AATSR and MERIS,

  19. An improved feature extraction algorithm based on KAZE for multi-spectral image

    Science.gov (United States)

    Yang, Jianping; Li, Jun

    2018-02-01

    Multi-spectral image contains abundant spectral information, which is widely used in all fields like resource exploration, meteorological observation and modern military. Image preprocessing, such as image feature extraction and matching, is indispensable while dealing with multi-spectral remote sensing image. Although the feature matching algorithm based on linear scale such as SIFT and SURF performs strong on robustness, the local accuracy cannot be guaranteed. Therefore, this paper proposes an improved KAZE algorithm, which is based on nonlinear scale, to raise the number of feature and to enhance the matching rate by using the adjusted-cosine vector. The experiment result shows that the number of feature and the matching rate of the improved KAZE are remarkably than the original KAZE algorithm.

  20. Multi-dimensional Bin Packing Problems with Guillotine Constraints

    DEFF Research Database (Denmark)

    Amossen, Rasmus Resen; Pisinger, David

    2010-01-01

    The problem addressed in this paper is the decision problem of determining if a set of multi-dimensional rectangular boxes can be orthogonally packed into a rectangular bin while satisfying the requirement that the packing should be guillotine cuttable. That is, there should exist a series of face...... parallel straight cuts that can recursively cut the bin into pieces so that each piece contains a box and no box has been intersected by a cut. The unrestricted problem is known to be NP-hard. In this paper we present a generalization of a constructive algorithm for the multi-dimensional bin packing...... problem, with and without the guillotine constraint, based on constraint programming....

  1. Best-estimated multi-dimensional calculation during LB LOCA for APR1400

    International Nuclear Information System (INIS)

    Oh, D. Y.; Bang, Y. S.; Cheong, A. J.; Woong, S.; Korea, W.

    2010-01-01

    Best-estimated (BE) calculation with uncertainty quantification for the emergency core cooling system (ECCS) performance analysis during Loss of Coolant Accident (LOCA) is more broadly used in nuclear industries and regulations. In Korea, demand on regulatory audit calculation is continuously increasing to support the safety review for life extension, power up-rating and advanced nuclear reactor design. The thermal-hydraulic system code, MARS (Multi-dimensional Analysis of Reactor Safety), with multi-dimensional capability is used for audit calculation. It achieves to describe the complicated phenomena in reactor coolant system by very effectively consolidating the one dimensional RELAP5/MOD3 with the multidimensional COBRA-TF codes. The advanced power reactors (APR1400) to be evaluated has four separated hydraulic trains of the high pressure injection system (HPSI) with direct vessel injection (DVI) which is different from the existing commercial PWRs. Also, the therma-hydraulic behavior of DVI plant would be considerably different from that of a cold-leg safety injection since the low pressure safety injection system are eliminated and the high pressure safety flow are injected into the specific elevation of reactor vessel downcomer. The ECCS bypass induced by the downcomer boiling due to hot wall heating of reactor vessel during reflooding phase is one of the important phenomena which should be considered in DVI plants. Therefore, in this study, BE calculation with one-dimensional (1-D) and multi-dimensional (multi-D) MARS models during LBLOCA are performed for APR1400 plant. In the multi-D evaluation, the reactor vessel is modeled by multi-D components and the specific treatment of flow path inside reactor vessel, e.g., upper guide structure, is essential. The concept of hot zone is adopted to simulate the limiting thermal-hydraulic conditions surrounding hot rod, which is similar to hot channel in 1-D. Also, alternative treatment of the hot rods in multi-D is

  2. Cloud-based processing of multi-spectral imaging data

    Science.gov (United States)

    Bernat, Amir S.; Bolton, Frank J.; Weiser, Reuven; Levitz, David

    2017-03-01

    Multispectral imaging holds great promise as a non-contact tool for the assessment of tissue composition. Performing multi - spectral imaging on a hand held mobile device would allow to bring this technology and with it knowledge to low resource settings to provide a state of the art classification of tissue health. This modality however produces considerably larger data sets than white light imaging and requires preliminary image analysis for it to be used. The data then needs to be analyzed and logged, while not requiring too much of the system resource or a long computation time and battery use by the end point device. Cloud environments were designed to allow offloading of those problems by allowing end point devices (smartphones) to offload computationally hard tasks. For this end we present a method where the a hand held device based around a smartphone captures a multi - spectral dataset in a movie file format (mp4) and compare it to other image format in size, noise and correctness. We present the cloud configuration used for segmenting images to frames where they can later be used for further analysis.

  3. Development and Validation of Multi-Dimensional Personality ...

    African Journals Online (AJOL)

    This study was carried out to establish the scientific processes for the development and validation of Multi-dimensional Personality Inventory (MPI). The process of development and validation occurred in three phases with five components of Agreeableness, Conscientiousness, Emotional stability, Extroversion, and ...

  4. Bandwidth Controllable Tunable Filter for Hyper-/Multi-Spectral Imager, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR Phase I proposal introduces a fast speed bandwidth controllable tunable filter for hyper-/multi-spectral (HS/MS) imagers. It dynamically passes a variable...

  5. Exploiting High Resolution Multi-Seasonal Textural Measures and Spectral Information for Reedbed Mapping

    Directory of Open Access Journals (Sweden)

    Alex Okiemute Onojeghuo

    2016-02-01

    Full Text Available Reedbeds across the UK are amongst the most important habitats for rare and endangered birds, wildlife and organisms. However, over the past century, this valued wetland habitat has experienced a drastic reduction in quality and spatial coverage due to pressures from human related activities. To this end, conservation organisations across the UK have been charged with the task of conserving and expanding this threatened habitat. With this backdrop, the study aimed to develop a methodology for accurate reedbed mapping through the combined use of multi-seasonal texture measures and spectral information contained in high resolution QuickBird satellite imagery. The key objectives were to determine the most effective single-date (autumn or summer and multi-seasonal QuickBird imagery suitable for reedbed mapping over the study area; to evaluate the effectiveness of combining multi-seasonal texture measures and spectral information for reedbed mapping using a variety of combinations; and to evaluate the most suitable classification technique for reedbed mapping from three selected classification techniques, namely maximum likelihood classifier, spectral angular mapper and artificial neural network. Using two selected grey-level co-occurrence textural measures (entropy and angular second moment, a series of experiments were conducted using varied combinations of single-date and multi-seasonal QuickBird imagery. Overall, the results indicate the multi-seasonal pansharpened multispectral bands (eight layers combined with all eight grey level co-occurrence matrix texture measures (entropy and angular second moment computed using windows 3 × 3 and 7 × 7 produced the optimal reedbed (76.5% and overall classification (78.1% accuracies using the maximum likelihood classifier technique. Using the optimal 16 layer multi-seasonal pansharpened multispectral and texture combined image dataset, a total reedbed area of 9.8 hectares was successfully mapped over the

  6. A Lightweight Compact Multi-Spectral Imager Using Novel Computer-Generated Micro-Optics and Spectral-Extraction Algorithms

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of this NASA Early-stage research proposal is to demonstrate an ultra-compact, lightweight broadband hyper- and multi-spectral imaging system that is...

  7. Multi-dimensional analysis of high resolution γ-ray data

    International Nuclear Information System (INIS)

    Flibotte, S.; Huttmeier, U.J.; France, G. de; Haas, B.; Romain, P.; Theisen, Ch.; Vivien, J.P.; Zen, J.; Bednarczyk, P.

    1992-01-01

    High resolution γ-ray multi-detectors capable of measuring high-fold coincidences with a large efficiency are presently under construction (EUROGAM, GASP, GAMMASPHERE). The future experimental progress in our understanding of nuclear structure at high spin critically depends on our ability to analyze the data in a multi-dimensional space and to resolve small photopeaks of interest from the generally large background. Development of programs to process such high-fold events is still in its infancy and only the 3-fold case has been treated so far. As a contribution to the software development associated with the EUROGAM spectrometer, we have written and tested the performances of computer codes designed to select multi-dimensional gates from 3-, 4- and 5-fold coincidence databases. The tests were performed on events generated with a Monte Carlo simulation and also on experimental data (triples) recorded with the 8π spectrometer and with a preliminary version of the EUROGAM array. (author). 7 refs., 3 tabs., 1 fig

  8. Multi-dimensional analysis of high resolution {gamma}-ray data

    Energy Technology Data Exchange (ETDEWEB)

    Flibotte, S; Huttmeier, U J; France, G de; Haas, B; Romain, P; Theisen, Ch; Vivien, J P; Zen, J [Centre National de la Recherche Scientifique (CNRS), 67 - Strasbourg (France); Bednarczyk, P [Institute of Nuclear Physics, Cracow (Poland)

    1992-08-01

    High resolution {gamma}-ray multi-detectors capable of measuring high-fold coincidences with a large efficiency are presently under construction (EUROGAM, GASP, GAMMASPHERE). The future experimental progress in our understanding of nuclear structure at high spin critically depends on our ability to analyze the data in a multi-dimensional space and to resolve small photopeaks of interest from the generally large background. Development of programs to process such high-fold events is still in its infancy and only the 3-fold case has been treated so far. As a contribution to the software development associated with the EUROGAM spectrometer, we have written and tested the performances of computer codes designed to select multi-dimensional gates from 3-, 4- and 5-fold coincidence databases. The tests were performed on events generated with a Monte Carlo simulation and also on experimental data (triples) recorded with the 8{pi} spectrometer and with a preliminary version of the EUROGAM array. (author). 7 refs., 3 tabs., 1 fig.

  9. Stable multi-domain spectral penalty methods for fractional partial differential equations

    Science.gov (United States)

    Xu, Qinwu; Hesthaven, Jan S.

    2014-01-01

    We propose stable multi-domain spectral penalty methods suitable for solving fractional partial differential equations with fractional derivatives of any order. First, a high order discretization is proposed to approximate fractional derivatives of any order on any given grids based on orthogonal polynomials. The approximation order is analyzed and verified through numerical examples. Based on the discrete fractional derivative, we introduce stable multi-domain spectral penalty methods for solving fractional advection and diffusion equations. The equations are discretized in each sub-domain separately and the global schemes are obtained by weakly imposed boundary and interface conditions through a penalty term. Stability of the schemes are analyzed and numerical examples based on both uniform and nonuniform grids are considered to highlight the flexibility and high accuracy of the proposed schemes.

  10. Multi-dimensional, fully-implicit, spectral method for the Vlasov-Maxwell equations with exact conservation laws in discrete form

    Science.gov (United States)

    Delzanno, G. L.

    2015-11-01

    A spectral method for the numerical solution of the multi-dimensional Vlasov-Maxwell equations is presented. The plasma distribution function is expanded in Fourier (for the spatial part) and Hermite (for the velocity part) basis functions, leading to a truncated system of ordinary differential equations for the expansion coefficients (moments) that is discretized with an implicit, second order accurate Crank-Nicolson time discretization. The discrete non-linear system is solved with a preconditioned Jacobian-Free Newton-Krylov method. It is shown analytically that the Fourier-Hermite method features exact conservation laws for total mass, momentum and energy in discrete form. Standard tests involving plasma waves and the whistler instability confirm the validity of the conservation laws numerically. The whistler instability test also shows that we can step over the fastest time scale in the system without incurring in numerical instabilities. Some preconditioning strategies are presented, showing that the number of linear iterations of the Krylov solver can be drastically reduced and a significant gain in performance can be obtained.

  11. Decay rate in a multi-dimensional fission problem

    Energy Technology Data Exchange (ETDEWEB)

    Brink, D M; Canto, L F

    1986-06-01

    The multi-dimensional diffusion approach of Zhang Jing Shang and Weidenmueller (1983 Phys. Rev. C28, 2190) is used to study a simplified model for induced fission. In this model it is shown that the coupling of the fission coordinate to the intrinsic degrees of freedom is equivalent to an extra friction and a mass correction in the corresponding one-dimensional problem.

  12. Uncertainty Evaluation with Multi-Dimensional Model of LBLOCA in OPR1000 Plant

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jieun; Oh, Deog Yeon; Seul, Kwang-Won; Lee, Jin Ho [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2016-10-15

    KINS has used KINS-REM (KINS-Realistic Evaluation Methodology) which developed for Best- Estimate (BE) calculation and uncertainty quantification for regulatory audit. This methodology has been improved continuously by numerous studies, such as uncertainty parameters and uncertainty ranges. In this study, to evaluate the applicability of improved KINS-REM for OPR1000 plant, uncertainty evaluation with multi-dimensional model for confirming multi-dimensional phenomena was conducted with MARS-KS code. In this study, the uncertainty evaluation with multi- dimensional model of OPR1000 plant was conducted for confirming the applicability of improved KINS- REM The reactor vessel modeled using MULTID component of MARS-KS code, and total 29 uncertainty parameters were considered by 124 sampled calculations. Through 124 calculations using Mosaique program with MARS-KS code, peak cladding temperature was calculated and final PCT was determined by the 3rd order Wilks' formula. The uncertainty parameters which has strong influence were investigated by Pearson coefficient analysis. They were mostly related with plant operation and fuel material properties. Evaluation results through the 124 calculations and sensitivity analysis show that improved KINS-REM could be reasonably applicable for uncertainty evaluation with multi-dimensional model calculations of OPR1000 plants.

  13. Analyticity of event horizons of five-dimensional multi-black holes with nontrivial asymptotic structure

    International Nuclear Information System (INIS)

    Kimura, Masashi

    2008-01-01

    We show that there exist five-dimensional multi-black hole solutions which have analytic event horizons when the space-time has nontrivial asymptotic structure, unlike the case of five-dimensional multi-black hole solutions in asymptotically flat space-time.

  14. Radical advancement in multi-spectral imaging for autonomous vehicles (UAVs, UGVs, and UUVs) using active compensation.

    Energy Technology Data Exchange (ETDEWEB)

    Clark, Brian F.; Bagwell, Brett E.; Wick, David Victor

    2007-01-01

    The purpose of this LDRD was to demonstrate a compact, multi-spectral, refractive imaging systems using active optical compensation. Compared to a comparable, conventional lens system, our system has an increased operational bandwidth, provides for spectral selectivity and, non-mechanically corrects aberrations induced by the wavelength dependent properties of a passive refractive optical element (i.e. lens). The compact nature and low power requirements of the system lends itself to small platforms such as autonomous vehicles. In addition, the broad spectral bandwidth of our system would allow optimized performance for both day/night use, and the multi-spectral capability allows for spectral discrimination and signature identification.

  15. Transport stochastic multi-dimensional media

    International Nuclear Information System (INIS)

    Haran, O.; Shvarts, D.

    1996-01-01

    Many physical phenomena evolve according to known deterministic rules, but in a stochastic media in which the composition changes in space and time. Examples to such phenomena are heat transfer in turbulent atmosphere with non uniform diffraction coefficients, neutron transfer in boiling coolant of a nuclear reactor and radiation transfer through concrete shields. The results of measurements conducted upon such a media are stochastic by nature, and depend on the specific realization of the media. In the last decade there has been a considerable efforts to describe linear particle transport in one dimensional stochastic media composed of several immiscible materials. However, transport in two or three dimensional stochastic media has been rarely addressed. The important effect in multi-dimensional transport that does not appear in one dimension is the ability to bypass obstacles. The current work is an attempt to quantify this effect. (authors)

  16. Transport stochastic multi-dimensional media

    Energy Technology Data Exchange (ETDEWEB)

    Haran, O; Shvarts, D [Israel Atomic Energy Commission, Beersheba (Israel). Nuclear Research Center-Negev; Thiberger, R [Ben-Gurion Univ. of the Negev, Beersheba (Israel)

    1996-12-01

    Many physical phenomena evolve according to known deterministic rules, but in a stochastic media in which the composition changes in space and time. Examples to such phenomena are heat transfer in turbulent atmosphere with non uniform diffraction coefficients, neutron transfer in boiling coolant of a nuclear reactor and radiation transfer through concrete shields. The results of measurements conducted upon such a media are stochastic by nature, and depend on the specific realization of the media. In the last decade there has been a considerable efforts to describe linear particle transport in one dimensional stochastic media composed of several immiscible materials. However, transport in two or three dimensional stochastic media has been rarely addressed. The important effect in multi-dimensional transport that does not appear in one dimension is the ability to bypass obstacles. The current work is an attempt to quantify this effect. (authors).

  17. MULTI-TEMPORAL ASSESSMENT OF LYCHEE TREE CROP STRUCTURE USING MULTI-SPECTRAL RPAS IMAGERY

    Directory of Open Access Journals (Sweden)

    K. Johansen

    2017-08-01

    Full Text Available The lychee tree is native to China and produce small fleshy fruit up to 5 cm in diameter. Lychee production in Australia is worth > $20 million annually. Pruning of trees encourages new growth, has a positive effect on fruiting of lychee, makes fruit-picking easier, and may increase yield, as it increases light interception and tree crown surface area. The objective of this research was to assess changes in tree structure, i.e. tree crown circumference, width, height and Plant Projective Cover (PPC using multi-spectral Remotely Piloted Aircraft System (RPAS imagery collected before and after pruning of a lychee plantation. A secondary objective was to assess any variations in the results as a function of various flying heights (30, 50 and 70 m. Pre- and post-pruning results showed significant differences in all measured tree structural parameters, including an average decrease in: tree crown circumference of 1.94 m; tree crown width of 0.57 m; tree crown height of 0.62 m; and PPC of 14.8 %. The different flying heights produced similar measurements of tree crown width and PPC, whereas tree crown circumference and height measurements decreased with increasing flying height. These results show that multi-spectral RPAS imagery can provide a suitable means of assessing pruning efforts undertaken by contractors based on changes in tree structure of lychee plantations and that it is important to collect imagery in a consistent manner, as varying flying heights may cause changes to tree structural measurements.

  18. TWO-DIMENSIONAL CORE-COLLAPSE SUPERNOVA MODELS WITH MULTI-DIMENSIONAL TRANSPORT

    International Nuclear Information System (INIS)

    Dolence, Joshua C.; Burrows, Adam; Zhang, Weiqun

    2015-01-01

    We present new two-dimensional (2D) axisymmetric neutrino radiation/hydrodynamic models of core-collapse supernova (CCSN) cores. We use the CASTRO code, which incorporates truly multi-dimensional, multi-group, flux-limited diffusion (MGFLD) neutrino transport, including all relevant O(v/c) terms. Our main motivation for carrying out this study is to compare with recent 2D models produced by other groups who have obtained explosions for some progenitor stars and with recent 2D VULCAN results that did not incorporate O(v/c) terms. We follow the evolution of 12, 15, 20, and 25 solar-mass progenitors to approximately 600 ms after bounce and do not obtain an explosion in any of these models. Though the reason for the qualitative disagreement among the groups engaged in CCSN modeling remains unclear, we speculate that the simplifying ''ray-by-ray'' approach employed by all other groups may be compromising their results. We show that ''ray-by-ray'' calculations greatly exaggerate the angular and temporal variations of the neutrino fluxes, which we argue are better captured by our multi-dimensional MGFLD approach. On the other hand, our 2D models also make approximations, making it difficult to draw definitive conclusions concerning the root of the differences between groups. We discuss some of the diagnostics often employed in the analyses of CCSN simulations and highlight the intimate relationship between the various explosion conditions that have been proposed. Finally, we explore the ingredients that may be missing in current calculations that may be important in reproducing the properties of the average CCSNe, should the delayed neutrino-heating mechanism be the correct mechanism of explosion

  19. Assessment of wall friction model in multi-dimensional component of MARS with air–water cross flow experiment

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Jin-Hwa [Nuclear Thermal-Hydraulic Engineering Laboratory, Seoul National University, Gwanak 599, Gwanak-ro, Gwanak-gu, Seoul 151-742 (Korea, Republic of); Korea Atomic Energy Research Institute, 989-111, Daedeok-daero, Yuseong-gu, Daejeon 305-600 (Korea, Republic of); Choi, Chi-Jin [Nuclear Thermal-Hydraulic Engineering Laboratory, Seoul National University, Gwanak 599, Gwanak-ro, Gwanak-gu, Seoul 151-742 (Korea, Republic of); Cho, Hyoung-Kyu, E-mail: chohk@snu.ac.kr [Nuclear Thermal-Hydraulic Engineering Laboratory, Seoul National University, Gwanak 599, Gwanak-ro, Gwanak-gu, Seoul 151-742 (Korea, Republic of); Euh, Dong-Jin [Korea Atomic Energy Research Institute, 989-111, Daedeok-daero, Yuseong-gu, Daejeon 305-600 (Korea, Republic of); Park, Goon-Cherl [Nuclear Thermal-Hydraulic Engineering Laboratory, Seoul National University, Gwanak 599, Gwanak-ro, Gwanak-gu, Seoul 151-742 (Korea, Republic of)

    2017-02-15

    Recently, high precision and high accuracy analysis on multi-dimensional thermal hydraulic phenomena in a nuclear power plant has been considered as state-of-the-art issues. System analysis code, MARS, also adopted a multi-dimensional module to simulate them more accurately. Even though it was applied to represent the multi-dimensional phenomena, but implemented models and correlations in that are one-dimensional empirical ones based on one-dimensional pipe experimental results. Prior to the application of the multi-dimensional simulation tools, however, the constitutive models for a two-phase flow need to be carefully validated, such as the wall friction model. Especially, in a Direct Vessel Injection (DVI) system, the injected emergency core coolant (ECC) on the upper part of the downcomer interacts with the lateral steam flow during the reflood phase in the Large-Break Loss-Of-Coolant-Accident (LBLOCA). The interaction between the falling film and lateral steam flow induces a multi-dimensional two-phase flow. The prediction of ECC flow behavior plays a key role in determining the amount of coolant that can be used as core cooling. Therefore, the wall friction model which is implemented to simulate the multi-dimensional phenomena should be assessed by multidimensional experimental results. In this paper, the air–water cross film flow experiments simulating the multi-dimensional phenomenon in upper part of downcomer as a conceptual problem will be introduced. The two-dimensional local liquid film velocity and thickness data were used as benchmark data for code assessment. And then the previous wall friction model of the MARS-MultiD in the annular flow regime was modified. As a result, the modified MARS-MultiD produced improved calculation result than previous one.

  20. An Overview of Multi-Dimensional Models of the Sacramento–San Joaquin Delta

    Directory of Open Access Journals (Sweden)

    Michael L. MacWilliams

    2016-12-01

    Full Text Available doi: https://doi.org/10.15447/sfews.2016v14iss4art2Over the past 15 years, the development and application of multi-dimensional hydrodynamic models in San Francisco Bay and the Sacramento–San Joaquin Delta has transformed our ability to analyze and understand the underlying physics of the system. Initial applications of three-dimensional models focused primarily on salt intrusion, and provided a valuable resource for investigating how sea level rise and levee failures in the Delta could influence water quality in the Delta under future conditions. However, multi-dimensional models have also provided significant insights into some of the fundamental biological relationships that have shaped our thinking about the system by exploring the relationship among X2, flow, fish abundance, and the low salinity zone. Through the coupling of multi-dimensional models with wind wave and sediment transport models, it has been possible to move beyond salinity to understand how large-scale changes to the system are likely to affect sediment dynamics, and to assess the potential effects on species that rely on turbidity for habitat. Lastly, the coupling of multi-dimensional hydrodynamic models with particle tracking models has led to advances in our thinking about residence time, the retention of food organisms in the estuary, the effect of south Delta exports on larval entrainment, and the pathways and behaviors of salmonids that travel through the Delta. This paper provides an overview of these recent advances and how they have increased our understanding of the distribution and movement of fish and food organisms. The applications presented serve as a guide to the current state of the science of Delta modeling and provide examples of how we can use multi-dimensional models to predict how future Delta conditions will affect both fish and water supply.

  1. Low-diffusion rotated upwind schemes, multigrid and defect correction for steady, multi-dimensional Euler flows

    NARCIS (Netherlands)

    Koren, B.; Hackbusch, W.; Trottenberg, U.

    1991-01-01

    Two simple, multi-dimensional upwind discretizations for the steady Euler equations are derived, with the emphasis Iying on bath a good accuracy and a good solvability. The multi-dimensional upwinding consists of applying a one-dimensional Riemann solver with a locally rotated left and right state,

  2. Multi scales based sparse matrix spectral clustering image segmentation

    Science.gov (United States)

    Liu, Zhongmin; Chen, Zhicai; Li, Zhanming; Hu, Wenjin

    2018-04-01

    In image segmentation, spectral clustering algorithms have to adopt the appropriate scaling parameter to calculate the similarity matrix between the pixels, which may have a great impact on the clustering result. Moreover, when the number of data instance is large, computational complexity and memory use of the algorithm will greatly increase. To solve these two problems, we proposed a new spectral clustering image segmentation algorithm based on multi scales and sparse matrix. We devised a new feature extraction method at first, then extracted the features of image on different scales, at last, using the feature information to construct sparse similarity matrix which can improve the operation efficiency. Compared with traditional spectral clustering algorithm, image segmentation experimental results show our algorithm have better degree of accuracy and robustness.

  3. Multi-spectral and fluorescence diffuse optical tomography of breast cancer

    Science.gov (United States)

    Corlu, Alper

    Multi-spectral and fluorescence diffuse optical tomography (DOT) techniques are explored and applied to image human breast cancer in vivo. Image reconstruction algorithms that utilize first and second order gradient information are described in detail. Breast DOT requires large computational memory and long run times. To this end, parallel computation techniques were developed appropriate to each reconstruction algorithm. A parallel plate DOT instrument developed for breast cancer imaging is described. The system relies heavily on continuous-wave (CW) transmission measurements and utilizes frequency domain (FD) measurements on the reemission side. However, traditional DOT image reconstruction methods based on CW measurements fail to separate tissue absorption and scattering uniquely. In this manuscript, multi-spectral DOT is shown to be capable of minimizing cross-talk and retrieving spectral parameters almost uniquely when the measurement wavelengths are optimized. A theoretical framework to select optimum wavelengths is provided, and tested with computer simulations. Results from phantom spectroscopy experiments and in vivo patient measurements support the notion that multi-spectral methods are superior to traditional DOT image reconstruction schemes. The same breast DOT instrument is improved and utilized to obtain the first in vivo images of human breast cancer based on fluorescence DOT (FDOT). To this end the fluorophore Indocyanine Green (ICG) is injected intravenously and fluorescence excitation and detection are accomplished in the soft-compression, parallel-plane, transmission geometry using laser sources at 786 nm and spectrally filtered CCD detection. Careful phantom and in vivo measurements are carried on to assure that the signals are due to ICG fluorescence, rather than tissue autofluorescence and excitation light leakage. An in vivo measurement protocol is designed to maximize the ICG contrast by acquiring full fluorescence tomographic scan during

  4. Multi-GPU hybrid programming accelerated three-dimensional phase-field model in binary alloy

    Directory of Open Access Journals (Sweden)

    Changsheng Zhu

    2018-03-01

    Full Text Available In the process of dendritic growth simulation, the computational efficiency and the problem scales have extremely important influence on simulation efficiency of three-dimensional phase-field model. Thus, seeking for high performance calculation method to improve the computational efficiency and to expand the problem scales has a great significance to the research of microstructure of the material. A high performance calculation method based on MPI+CUDA hybrid programming model is introduced. Multi-GPU is used to implement quantitative numerical simulations of three-dimensional phase-field model in binary alloy under the condition of multi-physical processes coupling. The acceleration effect of different GPU nodes on different calculation scales is explored. On the foundation of multi-GPU calculation model that has been introduced, two optimization schemes, Non-blocking communication optimization and overlap of MPI and GPU computing optimization, are proposed. The results of two optimization schemes and basic multi-GPU model are compared. The calculation results show that the use of multi-GPU calculation model can improve the computational efficiency of three-dimensional phase-field obviously, which is 13 times to single GPU, and the problem scales have been expanded to 8193. The feasibility of two optimization schemes is shown, and the overlap of MPI and GPU computing optimization has better performance, which is 1.7 times to basic multi-GPU model, when 21 GPUs are used.

  5. Anonymous voting for multi-dimensional CV quantum system

    International Nuclear Information System (INIS)

    Shi Rong-Hua; Xiao Yi; Shi Jin-Jing; Guo Ying; Lee, Moon-Ho

    2016-01-01

    We investigate the design of anonymous voting protocols, CV-based binary-valued ballot and CV-based multi-valued ballot with continuous variables (CV) in a multi-dimensional quantum cryptosystem to ensure the security of voting procedure and data privacy. The quantum entangled states are employed in the continuous variable quantum system to carry the voting information and assist information transmission, which takes the advantage of the GHZ-like states in terms of improving the utilization of quantum states by decreasing the number of required quantum states. It provides a potential approach to achieve the efficient quantum anonymous voting with high transmission security, especially in large-scale votes. (paper)

  6. Multi-dimensional Code Development for Safety Analysis of LMR

    International Nuclear Information System (INIS)

    Ha, K. S.; Jeong, H. Y.; Kwon, Y. M.; Lee, Y. B.

    2006-08-01

    A liquid metal reactor loaded a metallic fuel has the inherent safety mechanism due to the several negative reactivity feedback. Although this feature demonstrated through experiments in the EBR-II, any of the computer programs until now did not exactly analyze it because of the complexity of the reactivity feedback mechanism. A multi-dimensional detail program was developed through the International Nuclear Energy Research Initiative(INERI) from 2003 to 2005. This report includes the numerical coupling the multi-dimensional program and SSC-K code which is used to the safety analysis of liquid metal reactors in KAERI. The coupled code has been proved by comparing the analysis results using the code with the results using SAS-SASSYS code of ANL for the UTOP, ULOF, and ULOHS applied to the safety analysis for KALIMER-150

  7. Toxicity of multi-walled carbon nanotubes, graphene oxide, and reduced graphene oxide to zebrafish embryos.

    Science.gov (United States)

    Liu, Xiao Tong; Mu, Xi Yan; Wu, Xiao Li; Meng, Li Xuan; Guan, Wen Bi; Ma, Yong Qiang; Sun, Hua; Wang, Cheng Ju; Li, Xue Feng

    2014-09-01

    This study was aimed to investigate the toxic effects of 3 nanomaterials, i.e. multi-walled carbon nanotubes (MWCNTs), graphene oxide (GO), and reduced graphene oxide (RGO), on zebrafish embryos. The 2-h post-fertilization (hpf) zebrafish embryos were exposed to MWCNTs, GO, and RGO at different concentrations (1, 5, 10, 50, 100 mg/L) for 96 h. Afterwards, the effects of the 3 nanomateria on spontaneous movement, heart rate, hatching rate, length of larvae, mortality, and malformations ls were evaluated. Statistical analysis indicated that RGO significantly inhibited the hatching of zebrafish embryos. Furthermore, RGO and MWCNTs decreased the length of the hatched larvae at 96 hpf. No obvious morphological malformation or mortality was observed in the zebrafish embryos after exposure to the three nanomaterials. MWCNTs, GO, and RGO were all toxic to zebrafish embryos to influence embryos hatching and larvae length. Although no obvious morphological malformation and mortality were observed in exposed zebrafish embryos, further studies on the toxicity of the three nanomaterials are still needed. Copyright © 2014 The Editorial Board of Biomedical and Environmental Sciences. Published by China CDC. All rights reserved.

  8. Scattering and absorption measurements of cervical tissues measures using low cost multi-spectral imaging

    Science.gov (United States)

    Bernat, Amir S.; Bar-Am, Kfir; Cataldo, Leigh; Bolton, Frank J.; Kahn, Bruce S.; Levitz, David

    2018-02-01

    Cervical cancer is a leading cause of death for women in low resource settings. In order to better detect cervical dysplasia, a low cost multi-spectral colposcope was developed utilizing low costs LEDs and an area scan camera. The device is capable of both traditional colposcopic imaging and multi-spectral image capture. Following initial bench testing, the device was deployed to a gynecology clinic where it was used to image patients in a colposcopy setting. Both traditional colposcopic images and spectral data from patients were uploaded to a cloud server for remote analysis. Multi-spectral imaging ( 30 second capture) took place before any clinical procedure; the standard of care was followed thereafter. If acetic acid was used in the standard of care, a post-acetowhitening colposcopic image was also captured. In analyzing the data, normal and abnormal regions were identified in the colposcopic images by an expert clinician. Spectral data were fit to a theoretical model based on diffusion theory, yielding information on scattering and absorption parameters. Data were grouped according to clinician labeling of the tissue, as well as any additional clinical test results available (Pap, HPV, biopsy). Altogether, N=20 patients were imaged in this study, with 9 of them abnormal. In comparing normal and abnormal regions of interest from patients, substantial differences were measured in blood content, while differences in oxygen saturation parameters were more subtle. These results suggest that optical measurements made using low cost spectral imaging systems can distinguish between normal and pathological tissues.

  9. Distant Determination of Bilirubin Distribution in Skin by Multi-Spectral Imaging

    Science.gov (United States)

    Saknite, I.; Jakovels, D.; Spigulis, J.

    2011-01-01

    For mapping the bilirubin distribution in bruised skin the multi-spectral imaging technique was employed, which made it possible to observe temporal changes of the bilirubin content in skin photo-types II and III. The obtained results confirm the clinical potential of this technique for skin bilirubin diagnostics.

  10. Histopathology in 3D: From three-dimensional reconstruction to multi-stain and multi-modal analysis

    Directory of Open Access Journals (Sweden)

    Derek Magee

    2015-01-01

    Full Text Available Light microscopy applied to the domain of histopathology has traditionally been a two-dimensional imaging modality. Several authors, including the authors of this work, have extended the use of digital microscopy to three dimensions by stacking digital images of serial sections using image-based registration. In this paper, we give an overview of our approach, and of extensions to the approach to register multi-modal data sets such as sets of interleaved histopathology sections with different stains, and sets of histopathology images to radiology volumes with very different appearance. Our approach involves transforming dissimilar images into a multi-channel representation derived from co-occurrence statistics between roughly aligned images.

  11. Optical smoothing of laser imprinting in planar-target experiments on OMEGA EP using multi-FM 1-D smoothing by spectral dispersion

    Energy Technology Data Exchange (ETDEWEB)

    Hohenberger, M., E-mail: mhoh@lle.rochester.edu; Shvydky, A.; Marozas, J. A.; Bonino, M. J.; Canning, D.; Collins, T. J. B.; Dorrer, C.; Kessler, T. J.; Kruschwitz, B. E.; McKenty, P. W.; Regan, S. P.; Sangster, T. C.; Zuegel, J. D. [Laboratory for Laser Energetics, University of Rochester, 250 East River Road Rochester, Rochester, New York 14623 (United States); Fiksel, G. [Nuclear Engineering and Radiological Sciences (NERS), University of Michigan, Ann Arbor, Michigan 48109 (United States); Meyerhofer, D. D. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    2016-09-15

    Direct-drive ignition on the National Ignition Facility (NIF) requires single-beam smoothing to minimize imprinting of laser nonuniformities that can negatively affect implosion performance. One-dimensional, multi-FM smoothing by spectral dispersion (SSD) has been proposed to provide the required smoothing [Marozas et al., Bull. Am. Phys. Soc. 55, 294 (2010)]. A prototype multi-FM SSD system has been integrated into the NIF-like beamline of the OMEGA EP Laser System. Experiments have been performed to verify the smoothing performance by measuring Rayleigh–Taylor growth rates in planar targets of laser-imprinted and preimposed surface modulations. Multi-FM 1-D SSD has been observed to reduce imprint levels by ∼50% compared to the nominal OMEGA EP SSD system. The experimental results are in agreement with 2-D DRACO simulations using realistic, time-dependent far-field spot-intensity calculations that emulate the effect of SSD.

  12. Multi-Scale Factor Analysis of High-Dimensional Brain Signals

    KAUST Repository

    Ting, Chee-Ming; Ombao, Hernando; Salleh, Sh-Hussain

    2017-01-01

    In this paper, we develop an approach to modeling high-dimensional networks with a large number of nodes arranged in a hierarchical and modular structure. We propose a novel multi-scale factor analysis (MSFA) model which partitions the massive

  13. Multi-stage decoding of multi-level modulation codes

    Science.gov (United States)

    Lin, Shu; Kasami, Tadao; Costello, Daniel J., Jr.

    1991-01-01

    Various types of multi-stage decoding for multi-level modulation codes are investigated. It is shown that if the component codes of a multi-level modulation code and types of decoding at various stages are chosen properly, high spectral efficiency and large coding gain can be achieved with reduced decoding complexity. Particularly, it is shown that the difference in performance between the suboptimum multi-stage soft-decision maximum likelihood decoding of a modulation code and the single-stage optimum soft-decision decoding of the code is very small, only a fraction of dB loss in signal to noise ratio at a bit error rate (BER) of 10(exp -6).

  14. Multi-dimensional medical images compressed and filtered with wavelets

    International Nuclear Information System (INIS)

    Boyen, H.; Reeth, F. van; Flerackers, E.

    2002-01-01

    Full text: Using the standard wavelet decomposition methods, multi-dimensional medical images can be compressed and filtered by repeating the wavelet-algorithm on 1D-signals in an extra loop per extra dimension. In the non-standard decomposition for multi-dimensional images the areas that must be zero-filled in case of band- or notch-filters are more complex than geometric areas such as rectangles or cubes. Adding an additional dimension in this algorithm until 4D (e.g. a 3D beating heart) increases the geometric complexity of those areas even more. The aim of our study was to calculate the boundaries of the formed complex geometric areas, so we can use the faster non-standard decomposition to compress and filter multi-dimensional medical images. Because a lot of 3D medical images taken by PET- or SPECT-cameras have only a few layers in the Z-dimension and compressing images in a dimension with a few voxels is usually not worthwhile, we provided a solution in which one can choose which dimensions will be compressed or filtered. With the proposal of non-standard decomposition on Daubechies' wavelets D2 to D20 by Steven Gollmer in 1992, 1D data can be compressed and filtered. Each additional level works only on the smoothed data, so the transformation-time halves per extra level. Zero-filling a well-defined area alter the wavelet-transform and then performing the inverse transform will do the filtering. To be capable to compress and filter up to 4D-Images with the faster non-standard wavelet decomposition method, we have investigated a new method for calculating the boundaries of the areas which must be zero-filled in case of filtering. This is especially true for band- and notch filtering. Contrary to the standard decomposition method, the areas are no longer rectangles in 2D or cubes in 3D or a row of cubes in 4D: they are rectangles expanded with a half-sized rectangle in the other direction for 2D, cubes expanded with half cubes in one and quarter cubes in the

  15. Five-dimensional Lattice Gauge Theory as Multi-Layer World

    OpenAIRE

    Murata, Michika; So, Hiroto

    2003-01-01

    A five-dimensional lattice space can be decomposed into a number of four-dimens ional lattices called as layers. The five-dimensional gauge theory on the lattice can be interpreted as four-dimensional gauge theories on the multi-layer with interactions between neighboring layers. In the theory, there exist two independent coupling constants; $\\beta_4$ controls the dynamics inside a layer and $\\beta_5$ does the strength of the inter-layer interaction.We propose the new possibility to realize t...

  16. The source of multi spectral energy of solar energetic electron

    Energy Technology Data Exchange (ETDEWEB)

    Herdiwijaya, Dhani [Astronomy Division and Bosscha Observatory, Faculty Mathematics and Natural Sciences, Intitute Technology of Bandung, Ganesha 10, Bandung, Indonesia 40132 dhani@as.itb.ac.id (Indonesia)

    2015-04-16

    We study the solar energetic electron distribution obtained from ACE and GOES satellites which have different altitudes and electron spectral energy during the year 1997 to 2011. The electron spectral energies were 0.038–0.315 MeV from EPAM instrument onboard ACE satellite and >2 MeV from GOES satellite. We found that the low electron energy has no correlation with high energy. In spite of we have corrected to the altitude differences. It implied that they originated from time dependent events with different sources and physical processes at the solar atmosphere. The sources of multi spectral energetic electron were related to flare and CME phenomena. However, we also found that high energetic electron comes from coronal hole.

  17. Multi-Temporal vs. Hyper-Spectral Imaging for Future Land Imaging at 30 m

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to determine the information content of multi-temporal land imaging in discrete Landsat-like spectral bands at 30 m with a 360 km swath width and compare...

  18. Skip-webs: Efficient distributed data structures for multi-dimensional data sets

    DEFF Research Database (Denmark)

    Arge, Lars; Eppstein, David; Goodrich, Michael T.

    2005-01-01

    querying scenarios, which include linear (one-dimensional) data, such as sorted sets, as well as multi-dimensional data, such as d-dimensional octrees and digital tries of character strings defined over a fixed alphabet. We show how to perform a query over such a set of n items spread among n hosts using O...

  19. The MIND PALACE: A Multi-Spectral Imaging and Spectroscopy Database for Planetary Science

    Science.gov (United States)

    Eshelman, E.; Doloboff, I.; Hara, E. K.; Uckert, K.; Sapers, H. M.; Abbey, W.; Beegle, L. W.; Bhartia, R.

    2017-12-01

    The Multi-Instrument Database (MIND) is the web-based home to a well-characterized set of analytical data collected by a suite of deep-UV fluorescence/Raman instruments built at the Jet Propulsion Laboratory (JPL). Samples derive from a growing body of planetary surface analogs, mineral and microbial standards, meteorites, spacecraft materials, and other astrobiologically relevant materials. In addition to deep-UV spectroscopy, datasets stored in MIND are obtained from a variety of analytical techniques obtained over multiple spatial and spectral scales including electron microscopy, optical microscopy, infrared spectroscopy, X-ray fluorescence, and direct fluorescence imaging. Multivariate statistical analysis techniques, primarily Principal Component Analysis (PCA), are used to guide interpretation of these large multi-analytical spectral datasets. Spatial co-referencing of integrated spectral/visual maps is performed using QGIS (geographic information system software). Georeferencing techniques transform individual instrument data maps into a layered co-registered data cube for analysis across spectral and spatial scales. The body of data in MIND is intended to serve as a permanent, reliable, and expanding database of deep-UV spectroscopy datasets generated by this unique suite of JPL-based instruments on samples of broad planetary science interest.

  20. Multi-view Multi-sparsity Kernel Reconstruction for Multi-class Image Classification

    KAUST Repository

    Zhu, Xiaofeng

    2015-05-28

    This paper addresses the problem of multi-class image classification by proposing a novel multi-view multi-sparsity kernel reconstruction (MMKR for short) model. Given images (including test images and training images) representing with multiple visual features, the MMKR first maps them into a high-dimensional space, e.g., a reproducing kernel Hilbert space (RKHS), where test images are then linearly reconstructed by some representative training images, rather than all of them. Furthermore a classification rule is proposed to classify test images. Experimental results on real datasets show the effectiveness of the proposed MMKR while comparing to state-of-the-art algorithms.

  1. High-frequency stock linkage and multi-dimensional stationary processes

    Science.gov (United States)

    Wang, Xi; Bao, Si; Chen, Jingchao

    2017-02-01

    In recent years, China's stock market has experienced dramatic fluctuations; in particular, in the second half of 2014 and 2015, the market rose sharply and fell quickly. Many classical financial phenomena, such as stock plate linkage, appeared repeatedly during this period. In general, these phenomena have usually been studied using daily-level data or minute-level data. Our paper focuses on the linkage phenomenon in Chinese stock 5-second-level data during this extremely volatile period. The method used to select the linkage points and the arbitrage strategy are both based on multi-dimensional stationary processes. A new program method for testing the multi-dimensional stationary process is proposed in our paper, and the detailed program is presented in the paper's appendix. Because of the existence of the stationary process, the strategy's logarithmic cumulative average return will converge under the condition of the strong ergodic theorem, and this ensures the effectiveness of the stocks' linkage points and the more stable statistical arbitrage strategy.

  2. Fast multi-dimensional NMR by minimal sampling

    Science.gov (United States)

    Kupče, Ēriks; Freeman, Ray

    2008-03-01

    A new scheme is proposed for very fast acquisition of three-dimensional NMR spectra based on minimal sampling, instead of the customary step-wise exploration of all of evolution space. The method relies on prior experiments to determine accurate values for the evolving frequencies and intensities from the two-dimensional 'first planes' recorded by setting t1 = 0 or t2 = 0. With this prior knowledge, the entire three-dimensional spectrum can be reconstructed by an additional measurement of the response at a single location (t1∗,t2∗) where t1∗ and t2∗ are fixed values of the evolution times. A key feature is the ability to resolve problems of overlap in the acquisition dimension. Applied to a small protein, agitoxin, the three-dimensional HNCO spectrum is obtained 35 times faster than systematic Cartesian sampling of the evolution domain. The extension to multi-dimensional spectroscopy is outlined.

  3. Quantitative functional optical imaging of the human skin using multi-spectral imaging

    International Nuclear Information System (INIS)

    Kainerstorfer, J. M.

    2010-01-01

    Light tissue interactions can be described by the physical principles of absorption and scattering. Based on those parameters, different tissue types and analytes can be distinguished. Extracting blood volume and oxygenation is of particular interest in clinical routines for tumor diagnostics and treatment follow up, since they are parameters of angiogenic processes. The quantification of those analytes in tissue can be done by physical modeling of light tissue interaction. The physical model used here is the random walk theory. However, for quantification and clinical usefulness, one has to account for multiple challenges. First, one must consider the effect of topology of the sample on measured physical parameters. Second, diffusion of light inside the tissue is dependent on the structure of the sample imaged. Thus, the structural conformation has to be taken into account. Third, clinical translation of imaging modalities is often hindered due to the complicated post-processing of data, not providing results in real-time. In this thesis, two imaging modalities are being utilized, where the first one, diffuse multi-spectral imaging, is based on absorption contrast and spectral characteristics and the second one, Optical Coherence Tomography (OCT), is based on scattering changes within the tissue. Multi-spectral imaging can provide spatial distributions of blood volume and blood oxygenation and OCT yields 3D structural images with micrometer resolution. In order to address the challenges mentioned above, a curvature correction algorithm for taking the topology into account was developed. Without taking curvature of the object into account, reconstruction of optical properties is not accurate. The method developed removes this artifact and recovers the underlying data, without the necessity of measuring the object's shape. The next step was to recover blood volume and oxygenation values in real time. Principal Component Analysis (PCA) on multi spectral images is

  4. The application of a multi-dimensional assessment approach to talent identification in Australian football.

    Science.gov (United States)

    Woods, Carl T; Raynor, Annette J; Bruce, Lyndell; McDonald, Zane; Robertson, Sam

    2016-07-01

    This study investigated whether a multi-dimensional assessment could assist with talent identification in junior Australian football (AF). Participants were recruited from an elite under 18 (U18) AF competition and classified into two groups; talent identified (State U18 Academy representatives; n = 42; 17.6 ± 0.4 y) and non-talent identified (non-State U18 Academy representatives; n = 42; 17.4 ± 0.5 y). Both groups completed a multi-dimensional assessment, which consisted of physical (standing height, dynamic vertical jump height and 20 m multistage fitness test), technical (kicking and handballing tests) and perceptual-cognitive (video decision-making task) performance outcome tests. A multivariate analysis of variance tested the main effect of status on the test criterions, whilst a receiver operating characteristic curve assessed the discrimination provided from the full assessment. The talent identified players outperformed their non-talent identified peers in each test (P talent identified and non-talent identified participants, respectively. When compared to single assessment approaches, this multi-dimensional assessment reflects a more comprehensive means of talent identification in AF. This study further highlights the importance of assessing multi-dimensional performance qualities when identifying talented team sports.

  5. Peer Pressure in Multi-Dimensional Work Tasks

    OpenAIRE

    Felix Ebeling; Gerlinde Fellner; Johannes Wahlig

    2012-01-01

    We study the influence of peer pressure in multi-dimensional work tasks theoretically and in a controlled laboratory experiment. Thereby, workers face peer pressure in only one work dimension. We find that effort provision increases in the dimension where peer pressure is introduced. However, not all of this increase translates into a productivity gain, since the effect is partly offset by a decrease of effort in the work dimension without peer pressure. Furthermore, this tradeoff is stronger...

  6. Experimental observation of a multi-dimensional mixing behavior of steam-water flow in the MIDAS test facility

    International Nuclear Information System (INIS)

    Kweon, T. S.; Yun, B. J.; Ah, D. J.; Ju, I. C.; Song, C. H.; Park, J. K.

    2001-01-01

    Multi-dimensional thermal-hydraulic hehavior, such as ECC (Emergency Core Cooling) bypass, ECC penetration, steam-water condensation and accumulated water level, in an annular downcomer of a PWR (Pressurized Water Reactor) reactor vessel with a DVI(Direct Vessel Injection) injection mode is presented based on the experimental observations in the MIDAS (Multi-dimensional Investigation in Downcomer Annulus Simulation) steam-water facility. From the steady-state tests to similate a late reflood phase of LBLOCA (Large Break Loss-of-Coolant Accidents), major thermal-hydraulic phenomena in the downcomer are quantified under a wide range of test conditions. Especially, isothermal lines show well multi-dimensional phenomena of phase interaction between steam and water in the annulus downcomer. Overall test results show that multi-dimensional thermal-hydraulic behaviors occur in the downcomer annulus region as expected. The MIDAS test facility is a steam-water separate effect test facility, which is 1/4.93 linearly scaled-down of a 1400 MWe PWR type of nuclear reactor, with focusing on understanding multi-dimensional thermal-hydraulic phenomena in annulus downcomer with various types of safety injection location during refill or reflood phase of a LBLOCA in PWR

  7. Multi-GPU accelerated three-dimensional FDTD method for electromagnetic simulation.

    Science.gov (United States)

    Nagaoka, Tomoaki; Watanabe, Soichi

    2011-01-01

    Numerical simulation with a numerical human model using the finite-difference time domain (FDTD) method has recently been performed in a number of fields in biomedical engineering. To improve the method's calculation speed and realize large-scale computing with the numerical human model, we adapt three-dimensional FDTD code to a multi-GPU environment using Compute Unified Device Architecture (CUDA). In this study, we used NVIDIA Tesla C2070 as GPGPU boards. The performance of multi-GPU is evaluated in comparison with that of a single GPU and vector supercomputer. The calculation speed with four GPUs was approximately 3.5 times faster than with a single GPU, and was slightly (approx. 1.3 times) slower than with the supercomputer. Calculation speed of the three-dimensional FDTD method using GPUs can significantly improve with an expanding number of GPUs.

  8. A multi-domain spectral method for time-fractional differential equations

    Science.gov (United States)

    Chen, Feng; Xu, Qinwu; Hesthaven, Jan S.

    2015-07-01

    This paper proposes an approach for high-order time integration within a multi-domain setting for time-fractional differential equations. Since the kernel is singular or nearly singular, two main difficulties arise after the domain decomposition: how to properly account for the history/memory part and how to perform the integration accurately. To address these issues, we propose a novel hybrid approach for the numerical integration based on the combination of three-term-recurrence relations of Jacobi polynomials and high-order Gauss quadrature. The different approximations used in the hybrid approach are justified theoretically and through numerical examples. Based on this, we propose a new multi-domain spectral method for high-order accurate time integrations and study its stability properties by identifying the method as a generalized linear method. Numerical experiments confirm hp-convergence for both time-fractional differential equations and time-fractional partial differential equations.

  9. Hybrid Image Fusion for Sharpness Enhancement of Multi-Spectral Lunar Images

    Science.gov (United States)

    Awumah, Anna; Mahanti, Prasun; Robinson, Mark

    2016-10-01

    Image fusion enhances the sharpness of a multi-spectral (MS) image by incorporating spatial details from a higher-resolution panchromatic (Pan) image [1,2]. Known applications of image fusion for planetary images are rare, although image fusion is well-known for its applications to Earth-based remote sensing. In a recent work [3], six different image fusion algorithms were implemented and their performances were verified with images from the Lunar Reconnaissance Orbiter (LRO) Camera. The image fusion procedure obtained a high-resolution multi-spectral (HRMS) product from the LRO Narrow Angle Camera (used as Pan) and LRO Wide Angle Camera (used as MS) images. The results showed that the Intensity-Hue-Saturation (IHS) algorithm results in a high-spatial quality product while the Wavelet-based image fusion algorithm best preserves spectral quality among all the algorithms. In this work we show the results of a hybrid IHS-Wavelet image fusion algorithm when applied to LROC MS images. The hybrid method provides the best HRMS product - both in terms of spatial resolution and preservation of spectral details. Results from hybrid image fusion can enable new science and increase the science return from existing LROC images.[1] Pohl, Cle, and John L. Van Genderen. "Review article multisensor image fusion in remote sensing: concepts, methods and applications." International journal of remote sensing 19.5 (1998): 823-854.[2] Zhang, Yun. "Understanding image fusion." Photogramm. Eng. Remote Sens 70.6 (2004): 657-661.[3] Mahanti, Prasun et al. "Enhancement of spatial resolution of the LROC Wide Angle Camera images." Archives, XXIII ISPRS Congress Archives (2016).

  10. Using Non-Invasive Multi-Spectral Imaging to Quantitatively Assess Tissue Vasculature

    Energy Technology Data Exchange (ETDEWEB)

    Vogel, A; Chernomordik, V; Riley, J; Hassan, M; Amyot, F; Dasgeb, B; Demos, S G; Pursley, R; Little, R; Yarchoan, R; Tao, Y; Gandjbakhche, A H

    2007-10-04

    This research describes a non-invasive, non-contact method used to quantitatively analyze the functional characteristics of tissue. Multi-spectral images collected at several near-infrared wavelengths are input into a mathematical optical skin model that considers the contributions from different analytes in the epidermis and dermis skin layers. Through a reconstruction algorithm, we can quantify the percent of blood in a given area of tissue and the fraction of that blood that is oxygenated. Imaging normal tissue confirms previously reported values for the percent of blood in tissue and the percent of blood that is oxygenated in tissue and surrounding vasculature, for the normal state and when ischemia is induced. This methodology has been applied to assess vascular Kaposi's sarcoma lesions and the surrounding tissue before and during experimental therapies. The multi-spectral imaging technique has been combined with laser Doppler imaging to gain additional information. Results indicate that these techniques are able to provide quantitative and functional information about tissue changes during experimental drug therapy and investigate progression of disease before changes are visibly apparent, suggesting a potential for them to be used as complementary imaging techniques to clinical assessment.

  11. Multi-dimensional two-fluid flow computation. An overview

    International Nuclear Information System (INIS)

    Carver, M.B.

    1992-01-01

    This paper discusses a repertoire of three-dimensional computer programs developed to perform critical analysis of single-phase, two-phase and multi-fluid flow in reactor components. The basic numerical approach to solving the governing equations common to all the codes is presented and the additional constitutive relationships required for closure are discussed. Particular applications are presented for a number of computer codes. (author). 12 refs

  12. Multi-dimensional Analysis for SLB Transient in ATLAS Facility as Activity of DSP (Domestic Standard Problem)

    International Nuclear Information System (INIS)

    Bae, B. U.; Park, Y. S.; Kim, J. R.; Kang, K. H.; Choi, K. Y.; Sung, H. J.; Hwang, M. J.; Kang, D. H.; Lim, S. G.; Jun, S. S.

    2015-01-01

    Participants of DSP-03 were divided in three groups and each group has focused on the specific subject related to the enhancement of the code analysis. The group A tried to investigate scaling capability of ATLAS test data by comparing to the code analysis for a prototype, and the group C studied to investigate effect of various models in the one-dimensional codes. This paper briefly summarizes the code analysis result from the group B participants in the DSP-03 of the ATLAS test facility. The code analysis by Group B focuses highly on investigating the multi-dimensional thermal hydraulic phenomena in the ATLAS facility during the SLB transient. Even though the one-dimensional system analysis code cannot simulate the whole system of the ATLAS facility with a nodalization of the CFD (Computational Fluid Dynamics) scale, a reactor pressure vessel can be considered with multi-dimensional components to reflect the thermal mixing phenomena inside a downcomer and a core. Also, the CFD could give useful information for understanding complex phenomena in specific components such as the reactor pressure vessel. From the analysis activity of Group B in ATLAS DSP-03, participants adopted a multi-dimensional approach to the code analysis for the SLB transient in the ATLAS test facility. The main purpose of the analysis was to investigate prediction capability of multi-dimensional analysis tools for the SLB experiment result. In particular, the asymmetric cooling and thermal mixing phenomena in the reactor pressure vessel could be significantly focused for modeling the multi-dimensional components

  13. Fluorescence spectral studies of Gum Arabic: Multi-emission of Gum Arabic in aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Dhenadhayalan, Namasivayam, E-mail: ndhena@gmail.com [Department of Chemistry, National Taiwan University, Taipei, Taiwan (China); Mythily, Rajan, E-mail: rajanmythily@gmail.com [Department of Chemistry, Dwaraka Doss Goverdhan Doss Vaishnav College (Autonomous), 833, Gokul Bagh, E.V.R. Periyar Road, Arumbakkam, Chennai 600 106 (India); Kumaran, Rajendran, E-mail: kumaranwau@rediffmail.com [Department of Chemistry, Dwaraka Doss Goverdhan Doss Vaishnav College (Autonomous), 833, Gokul Bagh, E.V.R. Periyar Road, Arumbakkam, Chennai 600 106 (India)

    2014-11-15

    Gum Arabic (GA), a food hydrocolloid is a natural composite obtained from the stems and branches of Acacia Senegal and Acacia Seyal trees. GA structure is made up of highly branched arabinogalactan polysaccharides. Steady-state absorption, fluorescence, and time-resolved fluorescence spectral studies of acid hydrolyzed GA solutions were carried out at various pH conditions. The fluorescence in GA is predominantly attributed to the presence of tyrosine and phenylalanine amino acids. The presence of multi-emissive peaks at different pH condition is attributed to the exposure of the fluorescing amino acids to the aqueous phase, which contains several sugar units, hydrophilic and hydrophobic moieties. Time-resolved fluorescence studies of GA exhibits a multi-exponential decay with different fluorescence lifetime of varying amplitude which confirms that tyrosine is confined to a heterogeneous microenvironment. The existence of multi-emissive peaks with large variation in the fluorescence intensities were established by 3D emission contour spectral studies. The probable location of the fluorophore in a heterogeneous environment was further ascertained by constructing a time-resolved emission spectrum (TRES) and time-resolved area normalized emission spectrum (TRANES) plots. Fluorescence spectral technique is used as an analytical tool in understanding the photophysical properties of a water soluble complex food hydrocolloid containing an intrinsic fluorophore located in a multiple environment is illustrated. - Highlights: • The Manuscript deals with the steady state absorption, emission, fluorescence lifetime and time-resolved emission spectrum studies of Gum Arabic in aqueous medium at various pH conditions. • The fluorescence emanates from the tyrosine amino acid present in GA. • Change in pH results in marked variation in the fluorescence spectral properties of tyrosine. • Fluorescence spectral techniques are employed as a tool in establishing the

  14. A multi-object spectral imaging instrument

    International Nuclear Information System (INIS)

    Gibson, G M; Dienerowitz, M; Kelleher, P A; Harvey, A R; Padgett, M J

    2013-01-01

    We have developed a snapshot spectral imaging system which fits onto the side camera port of a commercial inverted microscope. The system provides spectra, in real time, from multiple points randomly selected on the microscope image. Light from the selected points in the sample is directed from the side port imaging arm using a digital micromirror device to a spectrometer arm based on a dispersing prism and CCD camera. A multi-line laser source is used to calibrate the pixel positions on the CCD for wavelength. A CMOS camera on the front port of the microscope allows the full image of the sample to be displayed and can also be used for particle tracking, providing spectra of multiple particles moving in the sample. We demonstrate the system by recording the spectra of multiple fluorescent beads in aqueous solution and from multiple points along a microscope sample channel containing a mixture of red and blue dye. (paper)

  15. Multi-spectral imager

    CSIR Research Space (South Africa)

    Stolper, R

    2006-02-01

    Full Text Available channel are boresighted with two beamsplitter windows; and • The IR system is boresighted. APPLICATION High-voltage environment • Detecting loose strands, bolts and nuts; • Detecting Corona discharges on insulator discs; • Detecting... and locating spark gaps; • Detecting and locating RIV sources; • Audit sub-stations and transmission lines for audio noise and Corona activities. RECORDINGS / APPLICATIONS REPORTING TOOL: MultiSOFT • Image handling software for grabbing, processing...

  16. AN EFFECTIVE MULTI-CLUSTERING ANONYMIZATION APPROACH USING DISCRETE COMPONENT TASK FOR NON-BINARY HIGH DIMENSIONAL DATA SPACES

    Directory of Open Access Journals (Sweden)

    L.V. Arun Shalin

    2016-01-01

    Full Text Available Clustering is a process of grouping elements together, designed in such a way that the elements assigned to similar data points in a cluster are more comparable to each other than the remaining data points in a cluster. During clustering certain difficulties related when dealing with high dimensional data are ubiquitous and abundant. Works concentrated using anonymization method for high dimensional data spaces failed to address the problem related to dimensionality reduction during the inclusion of non-binary databases. In this work we study methods for dimensionality reduction for non-binary database. By analyzing the behavior of dimensionality reduction for non-binary database, results in performance improvement with the help of tag based feature. An effective multi-clustering anonymization approach called Discrete Component Task Specific Multi-Clustering (DCTSM is presented for dimensionality reduction on non-binary database. To start with we present the analysis of attribute in the non-binary database and cluster projection identifies the sparseness degree of dimensions. Additionally with the quantum distribution on multi-cluster dimension, the solution for relevancy of attribute and redundancy on non-binary data spaces is provided resulting in performance improvement on the basis of tag based feature. Multi-clustering tag based feature reduction extracts individual features and are correspondingly replaced by the equivalent feature clusters (i.e. tag clusters. During training, the DCTSM approach uses multi-clusters instead of individual tag features and then during decoding individual features is replaced by corresponding multi-clusters. To measure the effectiveness of the method, experiments are conducted on existing anonymization method for high dimensional data spaces and compared with the DCTSM approach using Statlog German Credit Data Set. Improved tag feature extraction and minimum error rate compared to conventional anonymization

  17. Device for multi-dimensional γ-γ-coincidence study

    International Nuclear Information System (INIS)

    Gruzinova, T.M.; Erokhina, K.I.; Kutuzov, V.I.; Lemberg, I.Kh.; Petrov, S.A.; Revenko, V.S.; Senin, A.T.; Chugunov, I.N.; Shishlinov, V.M.

    1977-01-01

    A device for studying multi-dimensional γ-γ coincidences is described which operates on-line with the BESM-4 computer. The device comprises Ge(Li) detectors, analog-to-digital converters, shaper discriminators and fast amplifiers. To control the device operation as a whole and to elaborate necessary commands, an information distributor has been developed. The following specific features of the device operation are noted: the device may operate both in the regime of recording spectra of direct γ radiation in the block memory of multi-channel analyzer, and in the regime of data transfer to the computer memory; the device performs registration of coincidences; it transfers information to the computer which has a channel of direct access to the memory. The procedure of data processing is considered, the data being recorded on a magnetic tape. Partial spectra obtained are in a good agreement with data obtained elsewhere

  18. Development and assessment of Multi-dimensional flow models in the thermal-hydraulic system analysis code MARS

    Energy Technology Data Exchange (ETDEWEB)

    Chung, B. D.; Bae, S. W.; Jeong, J. J.; Lee, S. M

    2005-04-15

    A new multi-dimensional component has been developed to allow for more flexible 3D capabilities in the system code, MARS. This component can be applied in the Cartesian and cylindrical coordinates. For the development of this model, the 3D convection and diffusion terms are implemented in the momentum and energy equation. And a simple Prandtl's mixing length model is applied for the turbulent viscosity. The developed multi-dimensional component was assessed against five conceptual problems with analytic solution. And some SETs are calculated and compared with experimental data. With this newly developed multi-dimensional flow module, the MARS code can realistic calculate the flow fields in pools such as those occurring in the core, steam generators and IRWST.

  19. Development and assessment of Multi-dimensional flow models in the thermal-hydraulic system analysis code MARS

    International Nuclear Information System (INIS)

    Chung, B. D.; Bae, S. W.; Jeong, J. J.; Lee, S. M.

    2005-04-01

    A new multi-dimensional component has been developed to allow for more flexible 3D capabilities in the system code, MARS. This component can be applied in the Cartesian and cylindrical coordinates. For the development of this model, the 3D convection and diffusion terms are implemented in the momentum and energy equation. And a simple Prandtl's mixing length model is applied for the turbulent viscosity. The developed multi-dimensional component was assessed against five conceptual problems with analytic solution. And some SETs are calculated and compared with experimental data. With this newly developed multi-dimensional flow module, the MARS code can realistic calculate the flow fields in pools such as those occurring in the core, steam generators and IRWST

  20. Multi-dimensional technology-enabled social learning approach

    DEFF Research Database (Denmark)

    Petreski, Hristijan; Tsekeridou, Sofia; Prasad, Neeli R.

    2013-01-01

    ’t respond to this systemic and structural changes and/or challenges and retains its status quo than it is jeopardizing its own existence or the existence of the education, as we know it. This paper aims to precede one step further by proposing a multi-dimensional approach for technology-enabled social...... in learning while socializing within their learning communities. However, their “educational” usage is still limited to facilitation of online learning communities and to collaborative authoring of learning material complementary to existing formal (e-) learning services. If the educational system doesn...

  1. Control method for multi-input multi-output non-Gaussian random vibration test with cross spectra consideration

    Directory of Open Access Journals (Sweden)

    Ronghui ZHENG

    2017-12-01

    Full Text Available A control method for Multi-Input Multi-Output (MIMO non-Gaussian random vibration test with cross spectra consideration is proposed in the paper. The aim of the proposed control method is to replicate the specified references composed of auto spectral densities, cross spectral densities and kurtoses on the test article in the laboratory. It is found that the cross spectral densities will bring intractable coupling problems and induce difficulty for the control of the multi-output kurtoses. Hence, a sequential phase modification method is put forward to solve the coupling problems in multi-input multi-output non-Gaussian random vibration test. To achieve the specified responses, an improved zero memory nonlinear transformation is utilized first to modify the Fourier phases of the signals with sequential phase modification method to obtain one frame reference response signals which satisfy the reference spectra and reference kurtoses. Then, an inverse system method is used in frequency domain to obtain the continuous stationary drive signals. At the same time, the matrix power control algorithm is utilized to control the spectra and kurtoses of the response signals further. At the end of the paper, a simulation example with a cantilever beam and a vibration shaker test are implemented and the results support the proposed method very well. Keywords: Cross spectra, Kurtosis control, Multi-input multi-output, Non-Gaussian, Random vibration test

  2. Multi-channel polarized thermal emitter

    Science.gov (United States)

    Lee, Jae-Hwang; Ho, Kai-Ming; Constant, Kristen P

    2013-07-16

    A multi-channel polarized thermal emitter (PTE) is presented. The multi-channel PTE can emit polarized thermal radiation without using a polarizer at normal emergence. The multi-channel PTE consists of two layers of metallic gratings on a monolithic and homogeneous metallic plate. It can be fabricated by a low-cost soft lithography technique called two-polymer microtransfer molding. The spectral positions of the mid-infrared (MIR) radiation peaks can be tuned by changing the periodicity of the gratings and the spectral separation between peaks are tuned by changing the mutual angle between the orientations of the two gratings.

  3. Multi-spectral CCD camera system for ocean water color and seacoast observation

    Science.gov (United States)

    Zhu, Min; Chen, Shiping; Wu, Yanlin; Huang, Qiaolin; Jin, Weiqi

    2001-10-01

    One of the earth observing instruments on HY-1 Satellite which will be launched in 2001, the multi-spectral CCD camera system, is developed by Beijing Institute of Space Mechanics & Electricity (BISME), Chinese Academy of Space Technology (CAST). In 798 km orbit, the system can provide images with 250 m ground resolution and a swath of 500 km. It is mainly used for coast zone dynamic mapping and oceanic watercolor monitoring, which include the pollution of offshore and coast zone, plant cover, watercolor, ice, terrain underwater, suspended sediment, mudflat, soil and vapor gross. The multi- spectral camera system is composed of four monocolor CCD cameras, which are line array-based, 'push-broom' scanning cameras, and responding for four spectral bands. The camera system adapts view field registration; that is, each camera scans the same region at the same moment. Each of them contains optics, focal plane assembly, electrical circuit, installation structure, calibration system, thermal control and so on. The primary features on the camera system are: (1) Offset of the central wavelength is better than 5 nm; (2) Degree of polarization is less than 0.5%; (3) Signal-to-noise ratio is about 1000; (4) Dynamic range is better than 2000:1; (5) Registration precision is better than 0.3 pixel; (6) Quantization value is 12 bit.

  4. Minimizing I/O Costs of Multi-Dimensional Queries with BitmapIndices

    Energy Technology Data Exchange (ETDEWEB)

    Rotem, Doron; Stockinger, Kurt; Wu, Kesheng

    2006-03-30

    Bitmap indices have been widely used in scientific applications and commercial systems for processing complex,multi-dimensional queries where traditional tree-based indices would not work efficiently. A common approach for reducing the size of a bitmap index for high cardinality attributes is to group ranges of values of an attribute into bins and then build a bitmap for each bin rather than a bitmap for each value of the attribute. Binning reduces storage costs,however, results of queries based on bins often require additional filtering for discarding it false positives, i.e., records in the result that do not satisfy the query constraints. This additional filtering,also known as ''candidate checking,'' requires access to the base data on disk and involves significant I/O costs. This paper studies strategies for minimizing the I/O costs for ''candidate checking'' for multi-dimensional queries. This is done by determining the number of bins allocated for each dimension and then placing bin boundaries in optimal locations. Our algorithms use knowledge of data distribution and query workload. We derive several analytical results concerning optimal bin allocation for a probabilistic query model. Our experimental evaluation with real life data shows an average I/O cost improvement of at least a factor of 10 for multi-dimensional queries on datasets from two different applications. Our experiments also indicate that the speedup increases with the number of query dimensions.

  5. An Integrated “Multi-Omics” Comparison of Embryo and Endosperm Tissue-Specific Features and Their Impact on Rice Seed Quality

    Directory of Open Access Journals (Sweden)

    Marc Galland

    2017-11-01

    Full Text Available Although rice is a key crop species, few studies have addressed both rice seed physiological and nutritional quality, especially at the tissue level. In this study, an exhaustive “multi-omics” dataset on the mature rice seed was obtained by combining transcriptomics, label-free shotgun proteomics and metabolomics from embryo and endosperm, independently. These high-throughput analyses provide a new insight on the tissue-specificity related to rice seed quality. Foremost, we pinpointed that extensive post-transcriptional regulations occur at the end of rice seed development such that the embryo proteome becomes much more diversified than the endosperm proteome. Secondly, we observed that survival in the dry state in each seed compartment depends on contrasted metabolic and enzymatic apparatus in the embryo and the endosperm, respectively. Thirdly, it was remarkable to identify two different sets of starch biosynthesis enzymes as well as seed storage proteins (glutelins in both embryo and endosperm consistently with the supernumerary embryo hypothesis origin of the endosperm. The presence of a putative new glutelin with a possible embryonic favored abundance is described here for the first time. Finally, we quantified the rate of mRNA translation into proteins. Consistently, the embryonic panel of protein translation initiation factors is much more diverse than that of the endosperm. This work emphasizes the value of tissue-specificity-centered “multi-omics” study in the seed to highlight new features even from well-characterized pathways. It paves the way for future studies of critical genetic determinants of rice seed physiological and nutritional quality.

  6. [A cloud detection algorithm for MODIS images combining Kmeans clustering and multi-spectral threshold method].

    Science.gov (United States)

    Wang, Wei; Song, Wei-Guo; Liu, Shi-Xing; Zhang, Yong-Ming; Zheng, Hong-Yang; Tian, Wei

    2011-04-01

    An improved method for detecting cloud combining Kmeans clustering and the multi-spectral threshold approach is described. On the basis of landmark spectrum analysis, MODIS data is categorized into two major types initially by Kmeans method. The first class includes clouds, smoke and snow, and the second class includes vegetation, water and land. Then a multi-spectral threshold detection is applied to eliminate interference such as smoke and snow for the first class. The method is tested with MODIS data at different time under different underlying surface conditions. By visual method to test the performance of the algorithm, it was found that the algorithm can effectively detect smaller area of cloud pixels and exclude the interference of underlying surface, which provides a good foundation for the next fire detection approach.

  7. Terahertz detectors for long wavelength multi-spectral imaging.

    Energy Technology Data Exchange (ETDEWEB)

    Lyo, Sungkwun Kenneth; Wanke, Michael Clement; Reno, John Louis; Shaner, Eric Arthur; Grine, Albert D.

    2007-10-01

    The purpose of this work was to develop a wavelength tunable detector for Terahertz spectroscopy and imaging. Our approach was to utilize plasmons in the channel of a specially designed field-effect transistor called the grating-gate detector. Grating-gate detectors exhibit narrow-linewidth, broad spectral tunability through application of a gate bias, and no angular dependence in their photoresponse. As such, if suitable sensitivity can be attained, they are viable candidates for Terahertz multi-spectral focal plane arrays. When this work began, grating-gate gate detectors, while having many promising characteristics, had a noise-equivalent power (NEP) of only 10{sup -5} W/{radical}Hz. Over the duration of this project, we have obtained a true NEP of 10{sup -8} W/{radical}Hz and a scaled NEP of 10{sup -9}W/{radical}Hz. The ultimate goal for these detectors is to reach a NEP in the 10{sup -9{yields}-10}W/{radical}Hz range; we have not yet seen a roadblock to continued improvement.

  8. Pedagogical Factors Stimulating the Self-Development of Students' Multi-Dimensional Thinking in Terms of Subject-Oriented Teaching

    Science.gov (United States)

    Andreev, Valentin I.

    2014-01-01

    The main aim of this research is to disclose the essence of students' multi-dimensional thinking, also to reveal the rating of factors which stimulate the raising of effectiveness of self-development of students' multi-dimensional thinking in terms of subject-oriented teaching. Subject-oriented learning is characterized as a type of learning where…

  9. Multi-SOM: an Algorithm for High-Dimensional, Small Size Datasets

    Directory of Open Access Journals (Sweden)

    Shen Lu

    2013-04-01

    Full Text Available Since it takes time to do experiments in bioinformatics, biological datasets are sometimes small but with high dimensionality. From probability theory, in order to discover knowledge from a set of data, we have to have a sufficient number of samples. Otherwise, the error bounds can become too large to be useful. For the SOM (Self- Organizing Map algorithm, the initial map is based on the training data. In order to avoid the bias caused by the insufficient training data, in this paper we present an algorithm, called Multi-SOM. Multi-SOM builds a number of small self-organizing maps, instead of just one big map. Bayesian decision theory is used to make the final decision among similar neurons on different maps. In this way, we can better ensure that we can get a real random initial weight vector set, the map size is less of consideration and errors tend to average out. In our experiments as applied to microarray datasets which are highly intense data composed of genetic related information, the precision of Multi-SOMs is 10.58% greater than SOMs, and its recall is 11.07% greater than SOMs. Thus, the Multi-SOMs algorithm is practical.

  10. Scientific Visualization and Simulation for Multi-dimensional Marine Environment Data

    Science.gov (United States)

    Su, T.; Liu, H.; Wang, W.; Song, Z.; Jia, Z.

    2017-12-01

    As higher attention on the ocean and rapid development of marine detection, there are increasingly demands for realistic simulation and interactive visualization of marine environment in real time. Based on advanced technology such as GPU rendering, CUDA parallel computing and rapid grid oriented strategy, a series of efficient and high-quality visualization methods, which can deal with large-scale and multi-dimensional marine data in different environmental circumstances, has been proposed in this paper. Firstly, a high-quality seawater simulation is realized by FFT algorithm, bump mapping and texture animation technology. Secondly, large-scale multi-dimensional marine hydrological environmental data is virtualized by 3d interactive technologies and volume rendering techniques. Thirdly, seabed terrain data is simulated with improved Delaunay algorithm, surface reconstruction algorithm, dynamic LOD algorithm and GPU programming techniques. Fourthly, seamless modelling in real time for both ocean and land based on digital globe is achieved by the WebGL technique to meet the requirement of web-based application. The experiments suggest that these methods can not only have a satisfying marine environment simulation effect, but also meet the rendering requirements of global multi-dimension marine data. Additionally, a simulation system for underwater oil spill is established by OSG 3D-rendering engine. It is integrated with the marine visualization method mentioned above, which shows movement processes, physical parameters, current velocity and direction for different types of deep water oil spill particle (oil spill particles, hydrates particles, gas particles, etc.) dynamically and simultaneously in multi-dimension. With such application, valuable reference and decision-making information can be provided for understanding the progress of oil spill in deep water, which is helpful for ocean disaster forecasting, warning and emergency response.

  11. ℓ0 -based sparse hyperspectral unmixing using spectral information and a multi-objectives formulation

    Science.gov (United States)

    Xu, Xia; Shi, Zhenwei; Pan, Bin

    2018-07-01

    Sparse unmixing aims at recovering pure materials from hyperpspectral images and estimating their abundance fractions. Sparse unmixing is actually ℓ0 problem which is NP-h ard, and a relaxation is often used. In this paper, we attempt to deal with ℓ0 problem directly via a multi-objective based method, which is a non-convex manner. The characteristics of hyperspectral images are integrated into the proposed method, which leads to a new spectra and multi-objective based sparse unmixing method (SMoSU). In order to solve the ℓ0 norm optimization problem, the spectral library is encoded in a binary vector, and a bit-wise flipping strategy is used to generate new individuals in the evolution process. However, a multi-objective method usually produces a number of non-dominated solutions, while sparse unmixing requires a single solution. How to make the final decision for sparse unmixing is challenging. To handle this problem, we integrate the spectral characteristic of hyperspectral images into SMoSU. By considering the spectral correlation in hyperspectral data, we improve the Tchebycheff decomposition function in SMoSU via a new regularization item. This regularization item is able to enforce the individual divergence in the evolution process of SMoSU. In this way, the diversity and convergence of population is further balanced, which is beneficial to the concentration of individuals. In the experiments part, three synthetic datasets and one real-world data are used to analyse the effectiveness of SMoSU, and several state-of-art sparse unmixing algorithms are compared.

  12. Analysis of Phenix End-of-Life asymmetry test with multi-dimensional pool modeling of MARS-LMR code

    International Nuclear Information System (INIS)

    Jeong, H.-Y.; Ha, K.-S.; Choi, C.-W.; Park, M.-G.

    2015-01-01

    Highlights: • Pool behaviors under asymmetrical condition in an SFR were evaluated with MARS-LMR. • The Phenix asymmetry test was analyzed one-dimensionally and multi-dimensionally. • One-dimensional modeling has limitation to predict the cold pool temperature. • Multi-dimensional modeling shows improved prediction of stratification and mixing. - Abstract: The understanding of complicated pool behaviors and its modeling is essential for the design and safety analysis of a pool-type Sodium-cooled Fast Reactor. One of the remarkable recent efforts on the study of pool thermal–hydraulic behaviors is the asymmetrical test performed as a part of Phenix End-of-Life tests by the CEA. To evaluate the performance of MARS-LMR code, which is a key system analysis tool for the design of an SFR in Korea, in the prediction of thermal hydraulic behaviors during an asymmetrical condition, the Phenix asymmetry test is analyzed with MARS-LMR in the present study. Pool regions are modeled with two different approaches, one-dimensional modeling and multi-dimensional one, and the prediction results are analyzed to identify the appropriateness of each modeling method. The prediction with one-dimensional pool modeling shows a large deviation from the measured data at the early stage of the test, which suggests limitations to describe the complicated thermal–hydraulic phenomena. When the pool regions are modeled multi-dimensionally, the prediction gives improved results quite a bit. This improvement is explained by the enhanced modeling of pool mixing with the multi-dimensional modeling. On the basis of the results from the present study, it is concluded that an accurate modeling of pool thermal–hydraulics is a prerequisite for the evaluation of design performance and safety margin quantification in the future SFR developments

  13. Multi-dimensional instability of electrostatic solitary structures in magnetized nonthermal dusty plasmas

    International Nuclear Information System (INIS)

    Mamun, A.A.; Russel, S.M.; Mendoza-Briceno, C.A.; Alam, M.N.; Datta, T.K.; Das, A.K.

    1999-05-01

    A rigorous theoretical investigation has been made of multi-dimensional instability of obliquely propagating electrostatic solitary structures in a hot magnetized nonthermal dusty plasma which consists of a negatively charged hot dust fluid, Boltzmann distributed electrons, and nonthermally distributed ions. The Zakharov-Kuznetsov equation for the electrostatic solitary structures that exist in such a dusty plasma system is derived by the reductive perturbation method. The multi-dimensional instability of these solitary waves is also studied by the small-k (long wavelength plane wave) perturbation expansion method. The nature of these solitary structures, the instability criterion, and their growth rate depending on dust-temperature, external magnetic field, and obliqueness are discussed. The implications of these results to some space and astrophysical dusty plasma situations are briefly mentioned. (author)

  14. Multi-stage decoding for multi-level block modulation codes

    Science.gov (United States)

    Lin, Shu

    1991-01-01

    In this paper, we investigate various types of multi-stage decoding for multi-level block modulation codes, in which the decoding of a component code at each stage can be either soft-decision or hard-decision, maximum likelihood or bounded-distance. Error performance of codes is analyzed for a memoryless additive channel based on various types of multi-stage decoding, and upper bounds on the probability of an incorrect decoding are derived. Based on our study and computation results, we find that, if component codes of a multi-level modulation code and types of decoding at various stages are chosen properly, high spectral efficiency and large coding gain can be achieved with reduced decoding complexity. In particular, we find that the difference in performance between the suboptimum multi-stage soft-decision maximum likelihood decoding of a modulation code and the single-stage optimum decoding of the overall code is very small: only a fraction of dB loss in SNR at the probability of an incorrect decoding for a block of 10(exp -6). Multi-stage decoding of multi-level modulation codes really offers a way to achieve the best of three worlds, bandwidth efficiency, coding gain, and decoding complexity.

  15. A study on the multi-dimensional spectral analysis for response of a piping model with two-seismic inputs

    International Nuclear Information System (INIS)

    Suzuki, K.; Sato, H.

    1975-01-01

    The power and the cross power spectrum analysis by which the vibration characteristic of structures, such as natural frequency, mode of vibration and damping ratio, can be identified would be effective for the confirmation of the characteristics after the construction is completed by using the response for small earthquakes or the micro-tremor under the operating condition. This method of analysis previously utilized only from the view point of systems with single input so far, is extensively applied for the analysis of a medium scale model of a piping system subjected to two seismic inputs. The piping system attached to a three storied concrete structure model which is constructed on a shaking table was excited due to earthquake motions. The inputs to the piping system were recorded at the second floor and the ceiling of the third floor where the system was attached to. The output, the response of the piping system, was instrumented at a middle point on the system. As a result, the multi-dimensional power spectrum analysis is effective for a more reliable identification of the vibration characteristics of the multi-input structure system

  16. A Concept of Multi-Mode High Spectral Resolution Lidar Using Mach-Zehnder Interferometer

    Directory of Open Access Journals (Sweden)

    Jin Yoshitaka

    2016-01-01

    Full Text Available In this paper, we present the design of a High Spectral Resolution Lidar (HSRL using a laser that oscillates in a multi-longitudinal mode. Rayleigh and Mie scattering components are separated using a Mach-Zehnder Interferometer (MZI with the same free spectral range (FSR as the transmitted laser. The transmitted laser light is measured as a reference signal with the same MZI. By scanning the MZI periodically with a scanning range equal to the mode spacing, we can identify the maximum Mie and the maximum Rayleigh signals using the reference signal. The cross talk due to the spectral width of each laser mode can also be estimated.

  17. Multi-layer imager design for mega-voltage spectral imaging

    Science.gov (United States)

    Myronakis, Marios; Hu, Yue-Houng; Fueglistaller, Rony; Wang, Adam; Baturin, Paul; Huber, Pascal; Morf, Daniel; Star-Lack, Josh; Berbeco, Ross

    2018-05-01

    The architecture of multi-layer imagers (MLIs) can be exploited to provide megavoltage spectral imaging (MVSPI) for specific imaging tasks. In the current work, we investigated bone suppression and gold fiducial contrast enhancement as two clinical tasks which could be improved with spectral imaging. A method based on analytical calculations that enables rapid investigation of MLI component materials and thicknesses was developed and validated against Monte Carlo computations. The figure of merit for task-specific imaging performance was the contrast-to-noise ratio (CNR) of the gold fiducial when the CNR of bone was equal to zero after a weighted subtraction of the signals obtained from each MLI layer. Results demonstrated a sharp increase in the CNR of gold when the build-up component or scintillation materials and thicknesses were modified. The potential for low-cost, prompt implementation of specific modifications (e.g. composition of the build-up component) could accelerate clinical translation of MVSPI.

  18. Multi-dimensional beam emittance and β-functions

    International Nuclear Information System (INIS)

    Buon, J.

    1993-05-01

    The concept of r.m.s. emittance is extended to the case of several degrees of freedom that are coupled. That multi-dimensional emittance is lower than the product of the emittances attached to each degree of freedom, but is conserved in a linear motion. An envelope-hyperellipsoid is introduced to define the β-functions of the beam envelope. On the contrary of an one-degree of freedom motion, it is emphasized that these envelope functions differ from the amplitude functions of the normal modes of motion as a result of the difference between the Liouville and Lagrange invariants. (author) 4 refs

  19. POLARIZED LINE FORMATION IN MULTI-DIMENSIONAL MEDIA. III. HANLE EFFECT WITH PARTIAL FREQUENCY REDISTRIBUTION

    International Nuclear Information System (INIS)

    Anusha, L. S.; Nagendra, K. N.

    2011-01-01

    In two previous papers, we solved the polarized radiative transfer (RT) equation in multi-dimensional (multi-D) geometries with partial frequency redistribution as the scattering mechanism. We assumed Rayleigh scattering as the only source of linear polarization (Q/I, U/I) in both these papers. In this paper, we extend these previous works to include the effect of weak oriented magnetic fields (Hanle effect) on line scattering. We generalize the technique of Stokes vector decomposition in terms of the irreducible spherical tensors T K Q , developed by Anusha and Nagendra, to the case of RT with Hanle effect. A fast iterative method of solution (based on the Stabilized Preconditioned Bi-Conjugate-Gradient technique), developed by Anusha et al., is now generalized to the case of RT in magnetized three-dimensional media. We use the efficient short-characteristics formal solution method for multi-D media, generalized appropriately to the present context. The main results of this paper are the following: (1) a comparison of emergent (I, Q/I, U/I) profiles formed in one-dimensional (1D) media, with the corresponding emergent, spatially averaged profiles formed in multi-D media, shows that in the spatially resolved structures, the assumption of 1D may lead to large errors in linear polarization, especially in the line wings. (2) The multi-D RT in semi-infinite non-magnetic media causes a strong spatial variation of the emergent (Q/I, U/I) profiles, which is more pronounced in the line wings. (3) The presence of a weak magnetic field modifies the spatial variation of the emergent (Q/I, U/I) profiles in the line core, by producing significant changes in their magnitudes.

  20. Multi-dimensional analysis of the ECC behavior in the UPI plant Kori Unit 1

    International Nuclear Information System (INIS)

    Bae, Sungwon; Chung, Bub-Dong; Bang, Young Seok

    2008-01-01

    A multi-dimensional transient analysis during the LBLOCA of the Kori Unit 1 has been performed by using the MARS code. Based on 1-D nodalization of the Kori Unit 1, the reactor vessel nodalizations have been replaced by the multi-dimensional component. The multi-dimensional component for the reactor vessel is designed as 5 radial, 8 peripheral, and 21 vertical grids. It is assumed that the fuel assemblies are homogeneously distributed in inner 3 radial grids. The outer 1 radial grid region is modeled as the core bypass. The outer-model 1 radial grid is used for the downcomer region. The corresponding heat structures and fuels are modified to fit for the multi-dimensional reactor vessel model. The form drag coefficients for the upper plenum and the core have been designated as 0.6 and 9.39, respectively. The form drag coefficients for the radial and peripheral directions are assigned to the same on the assumption of homogeneous distribution of the flow obstacles. After obtaining the 102% power steady operation condition, cold leg LOCA simulation is performed during 400 second period. The multi-dimensional steady run results show no severe differences compared to the traditional 1-D nodalization results. After the ECC injection starts, a liquid pool is maintained at the upper plenum because the ECCS water can not overcome the upward gas flow that comes from the reactor core through the upper tie plate. The depth of ECCS water pool is predicted as about 20% of the total height from the upper tie plate and the center line of the hot leg pipe. At the vicinity region of the active ECCS show higher depth of liquid pool. The accumulated water flow rate passing the upper tie plate is calculated by the transient result. Much downward water flow is obtained at the outer-most region of upper plenum space. The downward flow dominant region is about 32.3% of the total upper tie plate area. The accumulated ECCS bypass ratio is predicted as 27.64% at 300 second. It is calculated

  1. Identifying associations between pig pathologies using a multi-dimensional machine learning methodology.

    Science.gov (United States)

    Sanchez-Vazquez, Manuel J; Nielen, Mirjam; Edwards, Sandra A; Gunn, George J; Lewis, Fraser I

    2012-08-31

    Abattoir detected pathologies are of crucial importance to both pig production and food safety. Usually, more than one pathology coexist in a pig herd although it often remains unknown how these different pathologies interrelate to each other. Identification of the associations between different pathologies may facilitate an improved understanding of their underlying biological linkage, and support the veterinarians in encouraging control strategies aimed at reducing the prevalence of not just one, but two or more conditions simultaneously. Multi-dimensional machine learning methodology was used to identify associations between ten typical pathologies in 6485 batches of slaughtered finishing pigs, assisting the comprehension of their biological association. Pathologies potentially associated with septicaemia (e.g. pericarditis, peritonitis) appear interrelated, suggesting on-going bacterial challenges by pathogens such as Haemophilus parasuis and Streptococcus suis. Furthermore, hepatic scarring appears interrelated with both milk spot livers (Ascaris suum) and bacteria-related pathologies, suggesting a potential multi-pathogen nature for this pathology. The application of novel multi-dimensional machine learning methodology provided new insights into how typical pig pathologies are potentially interrelated at batch level. The methodology presented is a powerful exploratory tool to generate hypotheses, applicable to a wide range of studies in veterinary research.

  2. On mixed derivatives type high dimensional multi-term fractional partial differential equations approximate solutions

    Science.gov (United States)

    Talib, Imran; Belgacem, Fethi Bin Muhammad; Asif, Naseer Ahmad; Khalil, Hammad

    2017-01-01

    In this research article, we derive and analyze an efficient spectral method based on the operational matrices of three dimensional orthogonal Jacobi polynomials to solve numerically the mixed partial derivatives type multi-terms high dimensions generalized class of fractional order partial differential equations. We transform the considered fractional order problem to an easily solvable algebraic equations with the aid of the operational matrices. Being easily solvable, the associated algebraic system leads to finding the solution of the problem. Some test problems are considered to confirm the accuracy and validity of the proposed numerical method. The convergence of the method is ensured by comparing our Matlab software simulations based obtained results with the exact solutions in the literature, yielding negligible errors. Moreover, comparative results discussed in the literature are extended and improved in this study.

  3. Composite multi-lobe descriptor for cross spectral face recognition: matching active IR to visible light images

    Science.gov (United States)

    Cao, Zhicheng; Schmid, Natalia A.

    2015-05-01

    Matching facial images across electromagnetic spectrum presents a challenging problem in the field of biometrics and identity management. An example of this problem includes cross spectral matching of active infrared (IR) face images or thermal IR face images against a dataset of visible light images. This paper describes a new operator named Composite Multi-Lobe Descriptor (CMLD) for facial feature extraction in cross spectral matching of near-infrared (NIR) or short-wave infrared (SWIR) against visible light images. The new operator is inspired by the design of ordinal measures. The operator combines Gaussian-based multi-lobe kernel functions, Local Binary Pattern (LBP), generalized LBP (GLBP) and Weber Local Descriptor (WLD) and modifies them into multi-lobe functions with smoothed neighborhoods. The new operator encodes both the magnitude and phase responses of Gabor filters. The combining of LBP and WLD utilizes both the orientation and intensity information of edges. Introduction of multi-lobe functions with smoothed neighborhoods further makes the proposed operator robust against noise and poor image quality. Output templates are transformed into histograms and then compared by means of a symmetric Kullback-Leibler metric resulting in a matching score. The performance of the multi-lobe descriptor is compared with that of other operators such as LBP, Histogram of Oriented Gradients (HOG), ordinal measures, and their combinations. The experimental results show that in many cases the proposed method, CMLD, outperforms the other operators and their combinations. In addition to different infrared spectra, various standoff distances from close-up (1.5 m) to intermediate (50 m) and long (106 m) are also investigated in this paper. Performance of CMLD is evaluated for of each of the three cases of distances.

  4. Multi-dimensional cubic interpolation for ICF hydrodynamics simulation

    International Nuclear Information System (INIS)

    Aoki, Takayuki; Yabe, Takashi.

    1991-04-01

    A new interpolation method is proposed to solve the multi-dimensional hyperbolic equations which appear in describing the hydrodynamics of inertial confinement fusion (ICF) implosion. The advection phase of the cubic-interpolated pseudo-particle (CIP) is greatly improved, by assuming the continuities of the second and the third spatial derivatives in addition to the physical value and the first derivative. These derivatives are derived from the given physical equation. In order to evaluate the new method, Zalesak's example is tested, and we obtain successfully good results. (author)

  5. Contrast-enhanced spectral mammography vs. mammography and MRI - clinical performance in a multi-reader evaluation

    NARCIS (Netherlands)

    Fallenberg, E.M.; Schmitzberger, F.F.; Amer, H.; Ingold-Heppner, B.; Balleyguier, C.; Diekmann, F.; Engelken, F.; Mann, R.M.; Renz, D.M.; Bick, U.; Hamm, B.; Dromain, C.

    2017-01-01

    OBJECTIVES: To compare the diagnostic performance of contrast-enhanced spectral mammography (CESM) to digital mammography (MG) and magnetic resonance imaging (MRI) in a prospective two-centre, multi-reader study. METHODS: One hundred seventy-eight women (mean age 53 years) with invasive breast

  6. Deblurring sequential ocular images from multi-spectral imaging (MSI) via mutual information.

    Science.gov (United States)

    Lian, Jian; Zheng, Yuanjie; Jiao, Wanzhen; Yan, Fang; Zhao, Bojun

    2018-06-01

    Multi-spectral imaging (MSI) produces a sequence of spectral images to capture the inner structure of different species, which was recently introduced into ocular disease diagnosis. However, the quality of MSI images can be significantly degraded by motion blur caused by the inevitable saccades and exposure time required for maintaining a sufficiently high signal-to-noise ratio. This degradation may confuse an ophthalmologist, reduce the examination quality, or defeat various image analysis algorithms. We propose an early work specially on deblurring sequential MSI images, which is distinguished from many of the current image deblurring techniques by resolving the blur kernel simultaneously for all the images in an MSI sequence. It is accomplished by incorporating several a priori constraints including the sharpness of the latent clear image, the spatial and temporal smoothness of the blur kernel and the similarity between temporally-neighboring images in MSI sequence. Specifically, we model the similarity between MSI images with mutual information considering the different wavelengths used for capturing different images in MSI sequence. The optimization of the proposed approach is based on a multi-scale framework and stepwise optimization strategy. Experimental results from 22 MSI sequences validate that our approach outperforms several state-of-the-art techniques in natural image deblurring.

  7. Multi-Scale Factor Analysis of High-Dimensional Brain Signals

    KAUST Repository

    Ting, Chee-Ming

    2017-05-18

    In this paper, we develop an approach to modeling high-dimensional networks with a large number of nodes arranged in a hierarchical and modular structure. We propose a novel multi-scale factor analysis (MSFA) model which partitions the massive spatio-temporal data defined over the complex networks into a finite set of regional clusters. To achieve further dimension reduction, we represent the signals in each cluster by a small number of latent factors. The correlation matrix for all nodes in the network are approximated by lower-dimensional sub-structures derived from the cluster-specific factors. To estimate regional connectivity between numerous nodes (within each cluster), we apply principal components analysis (PCA) to produce factors which are derived as the optimal reconstruction of the observed signals under the squared loss. Then, we estimate global connectivity (between clusters or sub-networks) based on the factors across regions using the RV-coefficient as the cross-dependence measure. This gives a reliable and computationally efficient multi-scale analysis of both regional and global dependencies of the large networks. The proposed novel approach is applied to estimate brain connectivity networks using functional magnetic resonance imaging (fMRI) data. Results on resting-state fMRI reveal interesting modular and hierarchical organization of human brain networks during rest.

  8. On multi-spectral quantitative photoacoustic tomography in diffusive regime

    International Nuclear Information System (INIS)

    Bal, Guillaume; Ren, Kui

    2012-01-01

    The objective of quantitative photoacoustic tomography (qPAT) is to reconstruct the diffusion, absorption and Grüneisen thermodynamic coefficients of heterogeneous media from knowledge of the interior absorbed radiation. It has been shown in Bal and Ren (2011 Inverse Problems 27 075003), based on diffusion theory, that with data acquired at one given wavelength, all three coefficients cannot be reconstructed uniquely. In this work, we study the multi-spectral qPAT problem and show that when multiple wavelength data are available, all coefficients can be reconstructed simultaneously under minor prior assumptions. Moreover, the reconstructions are shown to be very stable. We present some numerical simulations that support the theoretical results. (paper)

  9. Influence of multi-exciton correlations on nonlinear polariton dynamics in semiconductor microcavities

    International Nuclear Information System (INIS)

    Wen, P; Nelson, Keith A; Christmann, G; Baumberg, J J

    2013-01-01

    Using two-dimensional spectroscopy, we resolve multi-polariton coherences in quantum wells embedded inside a semiconductor microcavity and elucidate how multi-exciton correlations mediate polariton nonlinear dynamics. We find that polariton correlation strengths depend on spectral overlap with the biexciton resonance and that up to at least four polaritons can be correlated, a higher-order correlation than observed to date among excitons in bare quantum wells. The high-order correlations can be attributed to coupling through the cavity mode, although the role of high-order Coulomb correlations cannot be excluded. (paper)

  10. Exact asymptotic expansions for solutions of multi-dimensional renewal equations

    International Nuclear Information System (INIS)

    Sgibnev, M S

    2006-01-01

    We derive expansions with exact asymptotic expressions for the remainders for solutions of multi-dimensional renewal equations. The effect of the roots of the characteristic equation on the asymptotic representation of solutions is taken into account. The resulting formulae are used to investigate the asymptotic behaviour of the average number of particles in age-dependent branching processes having several types of particles

  11. Multi-dimensional information diffusion and balancing market supply: an agent-based approach

    NARCIS (Netherlands)

    Osinga, S.A.; Kramer, M.R.; Hofstede, G.J.; Beulens, A.J.M.

    2013-01-01

    This agent-based information management model is designed to explore how multi-dimensional information, spreading through a population of agents (for example farmers) affects market supply. Farmers make quality decisions that must be aligned with available markets. Markets distinguish themselves by

  12. Development and empirical validation of symmetric component measures of multi-dimensional constructs

    DEFF Research Database (Denmark)

    Sørensen, Hans Eibe; Slater, Stanley F.

    2008-01-01

    Atheoretical measure purification may lead to construct deficient measures. The purpose of this paper is to provide a theoretically driven procedure for the development and empirical validation of symmetric component measures of multi-dimensional constructs. We place particular emphasis on establ...

  13. Shroud leakage flow models and a multi-dimensional coupling CFD (computational fluid dynamics) method for shrouded turbines

    International Nuclear Information System (INIS)

    Zou, Zhengping; Liu, Jingyuan; Zhang, Weihao; Wang, Peng

    2016-01-01

    Multi-dimensional coupling simulation is an effective approach for evaluating the flow and aero-thermal performance of shrouded turbines, which can balance the simulation accuracy and computing cost effectively. In this paper, 1D leakage models are proposed based on classical jet theories and dynamics equations, which can be used to evaluate most of the main features of shroud leakage flow, including the mass flow rate, radial and circumferential momentum, temperature and the jet width. Then, the 1D models are expanded to 2D distributions on the interface by using a multi-dimensional scaling method. Based on the models and multi-dimensional scaling, a multi-dimensional coupling simulation method for shrouded turbines is developed, in which, some boundary source and sink are set on the interface between the shroud and the main flow passage. To verify the precision, some simulations on the design point and off design points of a 1.5 stage turbine are conducted. It is indicated that the models and methods can give predictions with sufficient accuracy for most of the flow field features and will contribute to pursue deeper understanding and better design methods of shrouded axial turbines, which are the important devices in energy engineering. - Highlights: • Free and wall attached jet theories are used to model the leakage flow in shrouds. • Leakage flow rate is modeled by virtual labyrinth number and residual-energy factor. • A scaling method is applied to 1D model to obtain 2D distributions on interfaces. • A multi-dimensional coupling CFD method for shrouded turbines is proposed. • The proposed coupling method can give accurate predictions with low computing cost.

  14. Identifying associations between pig pathologies using a multi-dimensional machine learning methodology

    Directory of Open Access Journals (Sweden)

    Sanchez-Vazquez Manuel J

    2012-08-01

    Full Text Available Abstract Background Abattoir detected pathologies are of crucial importance to both pig production and food safety. Usually, more than one pathology coexist in a pig herd although it often remains unknown how these different pathologies interrelate to each other. Identification of the associations between different pathologies may facilitate an improved understanding of their underlying biological linkage, and support the veterinarians in encouraging control strategies aimed at reducing the prevalence of not just one, but two or more conditions simultaneously. Results Multi-dimensional machine learning methodology was used to identify associations between ten typical pathologies in 6485 batches of slaughtered finishing pigs, assisting the comprehension of their biological association. Pathologies potentially associated with septicaemia (e.g. pericarditis, peritonitis appear interrelated, suggesting on-going bacterial challenges by pathogens such as Haemophilus parasuis and Streptococcus suis. Furthermore, hepatic scarring appears interrelated with both milk spot livers (Ascaris suum and bacteria-related pathologies, suggesting a potential multi-pathogen nature for this pathology. Conclusions The application of novel multi-dimensional machine learning methodology provided new insights into how typical pig pathologies are potentially interrelated at batch level. The methodology presented is a powerful exploratory tool to generate hypotheses, applicable to a wide range of studies in veterinary research.

  15. Multi-band morpho-Spectral Component Analysis Deblending Tool (MuSCADeT): Deblending colourful objects

    Science.gov (United States)

    Joseph, R.; Courbin, F.; Starck, J.-L.

    2016-05-01

    We introduce a new algorithm for colour separation and deblending of multi-band astronomical images called MuSCADeT which is based on Morpho-spectral Component Analysis of multi-band images. The MuSCADeT algorithm takes advantage of the sparsity of astronomical objects in morphological dictionaries such as wavelets and their differences in spectral energy distribution (SED) across multi-band observations. This allows us to devise a model independent and automated approach to separate objects with different colours. We show with simulations that we are able to separate highly blended objects and that our algorithm is robust against SED variations of objects across the field of view. To confront our algorithm with real data, we use HST images of the strong lensing galaxy cluster MACS J1149+2223 and we show that MuSCADeT performs better than traditional profile-fitting techniques in deblending the foreground lensing galaxies from background lensed galaxies. Although the main driver for our work is the deblending of strong gravitational lenses, our method is fit to be used for any purpose related to deblending of objects in astronomical images. An example of such an application is the separation of the red and blue stellar populations of a spiral galaxy in the galaxy cluster Abell 2744. We provide a python package along with all simulations and routines used in this paper to contribute to reproducible research efforts. Codes can be found at http://lastro.epfl.ch/page-126973.html

  16. The discharge behavior of lithium-ion batteries using the Dual-Potential Multi-Scale Multi-Dimensional (MSMD) Battery Model

    DEFF Research Database (Denmark)

    Saeed Madani, Seyed; Swierczynski, Maciej Jozef; Kær, Søren Knudsen

    2017-01-01

    This paper gives insight into the discharge behavior of lithium-ion batteries based on the investigations, which have been done by the researchers [1– 19]. In this article, the battery's discharge behaviour at various discharge rates is studied and surface monitor, discharge curve, volume monitor...... to analysis the discharge behaviour of lithium-ion batteries. The results show that surface monitor plot of discharge curve at 1 C has a decreasing trend and volume monitor plot of maximum temperature in the domain has slightly increasing pattern over the simulation time. For the curves of discharge...... plot of maximum temperature in the domain and maximum temperature in the area are illustrated. Additionally, an external and internal short-circuit treatment for three cases have been studied. The Dual-Potential Multi-Scale Multi-Dimensional (MSMD) Battery Model (BM) was used by ANSYS FLUENT software...

  17. Approximate series solution of multi-dimensional, time fractional-order (heat-like) diffusion equations using FRDTM.

    Science.gov (United States)

    Singh, Brajesh K; Srivastava, Vineet K

    2015-04-01

    The main goal of this paper is to present a new approximate series solution of the multi-dimensional (heat-like) diffusion equation with time-fractional derivative in Caputo form using a semi-analytical approach: fractional-order reduced differential transform method (FRDTM). The efficiency of FRDTM is confirmed by considering four test problems of the multi-dimensional time fractional-order diffusion equation. FRDTM is a very efficient, effective and powerful mathematical tool which provides exact or very close approximate solutions for a wide range of real-world problems arising in engineering and natural sciences, modelled in terms of differential equations.

  18. The design and application of a multi-band IR imager

    Science.gov (United States)

    Li, Lijuan

    2018-02-01

    Multi-band IR imaging system has many applications in security, national defense, petroleum and gas industry, etc. So the relevant technologies are getting more and more attention in rent years. As we know, when used in missile warning and missile seeker systems, multi-band IR imaging technology has the advantage of high target recognition capability and low false alarm rate if suitable spectral bands are selected. Compared with traditional single band IR imager, multi-band IR imager can make use of spectral features in addition to space and time domain features to discriminate target from background clutters and decoys. So, one of the key work is to select the right spectral bands in which the feature difference between target and false target is evident and is well utilized. Multi-band IR imager is a useful instrument to collect multi-band IR images of target, backgrounds and decoys for spectral band selection study at low cost and with adjustable parameters and property compared with commercial imaging spectrometer. In this paper, a multi-band IR imaging system is developed which is suitable to collect 4 spectral band images of various scenes at every turn and can be expanded to other short-wave and mid-wave IR spectral bands combination by changing filter groups. The multi-band IR imaging system consists of a broad band optical system, a cryogenic InSb large array detector, a spinning filter wheel and electronic processing system. The multi-band IR imaging system's performance is tested in real data collection experiments.

  19. Mutual information registration of multi-spectral and multi-resolution images of DigitalGlobe's WorldView-3 imaging satellite

    Science.gov (United States)

    Miecznik, Grzegorz; Shafer, Jeff; Baugh, William M.; Bader, Brett; Karspeck, Milan; Pacifici, Fabio

    2017-05-01

    WorldView-3 (WV-3) is a DigitalGlobe commercial, high resolution, push-broom imaging satellite with three instruments: visible and near-infrared VNIR consisting of panchromatic (0.3m nadir GSD) plus multi-spectral (1.2m), short-wave infrared SWIR (3.7m), and multi-spectral CAVIS (30m). Nine VNIR bands, which are on one instrument, are nearly perfectly registered to each other, whereas eight SWIR bands, belonging to the second instrument, are misaligned with respect to VNIR and to each other. Geometric calibration and ortho-rectification results in a VNIR/SWIR alignment which is accurate to approximately 0.75 SWIR pixel at 3.7m GSD, whereas inter-SWIR, band to band registration is 0.3 SWIR pixel. Numerous high resolution, spectral applications, such as object classification and material identification, require more accurate registration, which can be achieved by utilizing image processing algorithms, for example Mutual Information (MI). Although MI-based co-registration algorithms are highly accurate, implementation details for automated processing can be challenging. One particular challenge is how to compute bin widths of intensity histograms, which are fundamental building blocks of MI. We solve this problem by making the bin widths proportional to instrument shot noise. Next, we show how to take advantage of multiple VNIR bands, and improve registration sensitivity to image alignment. To meet this goal, we employ Canonical Correlation Analysis, which maximizes VNIR/SWIR correlation through an optimal linear combination of VNIR bands. Finally we explore how to register images corresponding to different spatial resolutions. We show that MI computed at a low-resolution grid is more sensitive to alignment parameters than MI computed at a high-resolution grid. The proposed modifications allow us to improve VNIR/SWIR registration to better than ¼ of a SWIR pixel, as long as terrain elevation is properly accounted for, and clouds and water are masked out.

  20. A Replication Study on the Multi-Dimensionality of Online Social Presence

    Science.gov (United States)

    Mykota, David B.

    2015-01-01

    The purpose of the present study is to conduct an external replication into the multi-dimensionality of social presence as measured by the Computer-Mediated Communication Questionnaire (Tu, 2005). Online social presence is one of the more important constructs for determining the level of interaction and effectiveness of learning in an online…

  1. Fast data reconstructed method of Fourier transform imaging spectrometer based on multi-core CPU

    Science.gov (United States)

    Yu, Chunchao; Du, Debiao; Xia, Zongze; Song, Li; Zheng, Weijian; Yan, Min; Lei, Zhenggang

    2017-10-01

    Imaging spectrometer can gain two-dimensional space image and one-dimensional spectrum at the same time, which shows high utility in color and spectral measurements, the true color image synthesis, military reconnaissance and so on. In order to realize the fast reconstructed processing of the Fourier transform imaging spectrometer data, the paper designed the optimization reconstructed algorithm with OpenMP parallel calculating technology, which was further used for the optimization process for the HyperSpectral Imager of `HJ-1' Chinese satellite. The results show that the method based on multi-core parallel computing technology can control the multi-core CPU hardware resources competently and significantly enhance the calculation of the spectrum reconstruction processing efficiency. If the technology is applied to more cores workstation in parallel computing, it will be possible to complete Fourier transform imaging spectrometer real-time data processing with a single computer.

  2. METHOD FOR OPTIMAL RESOLUTION OF MULTI-AIRCRAFT CONFLICTS IN THREE-DIMENSIONAL SPACE

    Directory of Open Access Journals (Sweden)

    Denys Vasyliev

    2017-03-01

    Full Text Available Purpose: The risk of critical proximities of several aircraft and appearance of multi-aircraft conflicts increases under current conditions of high dynamics and density of air traffic. The actual problem is a development of methods for optimal multi-aircraft conflicts resolution that should provide the synthesis of conflict-free trajectories in three-dimensional space. Methods: The method for optimal resolution of multi-aircraft conflicts using heading, speed and altitude change maneuvers has been developed. Optimality criteria are flight regularity, flight economy and the complexity of maneuvering. Method provides the sequential synthesis of the Pareto-optimal set of combinations of conflict-free flight trajectories using multi-objective dynamic programming and selection of optimal combination using the convolution of optimality criteria. Within described method the following are defined: the procedure for determination of combinations of aircraft conflict-free states that define the combinations of Pareto-optimal trajectories; the limitations on discretization of conflict resolution process for ensuring the absence of unobservable separation violations. Results: The analysis of the proposed method is performed using computer simulation which results show that synthesized combination of conflict-free trajectories ensures the multi-aircraft conflict avoidance and complies with defined optimality criteria. Discussion: Proposed method can be used for development of new automated air traffic control systems, airborne collision avoidance systems, intelligent air traffic control simulators and for research activities.

  3. Finite element method for radiation heat transfer in multi-dimensional graded index medium

    International Nuclear Information System (INIS)

    Liu, L.H.; Zhang, L.; Tan, H.P.

    2006-01-01

    In graded index medium, ray goes along a curved path determined by Fermat principle, and curved ray-tracing is very difficult and complex. To avoid the complicated and time-consuming computation of curved ray trajectories, a finite element method based on discrete ordinate equation is developed to solve the radiative transfer problem in a multi-dimensional semitransparent graded index medium. Two particular test problems of radiative transfer are taken as examples to verify this finite element method. The predicted dimensionless net radiative heat fluxes are determined by the proposed method and compared with the results obtained by finite volume method. The results show that the finite element method presented in this paper has a good accuracy in solving the multi-dimensional radiative transfer problem in semitransparent graded index medium

  4. An improved three-dimensional two-temperature model for multi-pulse femtosecond laser ablation of aluminum

    International Nuclear Information System (INIS)

    Zhang, Jinping; Chen, Yuping; Hu, Mengning; Chen, Xianfeng

    2015-01-01

    In this paper, an improved three-dimensional two-temperature model for multi-pulse femtosecond laser ablation of aluminum was proposed and proved in our experiment. Aiming to achieve hole-drilling with a high ratio of depth/entrance diameter in vacuum, this model can predict the depth and radius of the drilled holes precisely when employing different laser parameters. Additionally, for multi-pulse laser ablation, we found that the laser fluence and number of pulses are the dominant parameters and the multi-pulse ablation threshold is much lower than the single-pulse one, which will help to obtain high-quality holes

  5. An improved three-dimensional two-temperature model for multi-pulse femtosecond laser ablation of aluminum

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jinping; Chen, Yuping, E-mail: ypchen@sjtu.edu.cn; Hu, Mengning; Chen, Xianfeng [State Key Laboratory of Advanced Optical Communication Systems and Networks, Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2015-02-14

    In this paper, an improved three-dimensional two-temperature model for multi-pulse femtosecond laser ablation of aluminum was proposed and proved in our experiment. Aiming to achieve hole-drilling with a high ratio of depth/entrance diameter in vacuum, this model can predict the depth and radius of the drilled holes precisely when employing different laser parameters. Additionally, for multi-pulse laser ablation, we found that the laser fluence and number of pulses are the dominant parameters and the multi-pulse ablation threshold is much lower than the single-pulse one, which will help to obtain high-quality holes.

  6. Pareto-optimal multi-objective dimensionality reduction deep auto-encoder for mammography classification.

    Science.gov (United States)

    Taghanaki, Saeid Asgari; Kawahara, Jeremy; Miles, Brandon; Hamarneh, Ghassan

    2017-07-01

    Feature reduction is an essential stage in computer aided breast cancer diagnosis systems. Multilayer neural networks can be trained to extract relevant features by encoding high-dimensional data into low-dimensional codes. Optimizing traditional auto-encoders works well only if the initial weights are close to a proper solution. They are also trained to only reduce the mean squared reconstruction error (MRE) between the encoder inputs and the decoder outputs, but do not address the classification error. The goal of the current work is to test the hypothesis that extending traditional auto-encoders (which only minimize reconstruction error) to multi-objective optimization for finding Pareto-optimal solutions provides more discriminative features that will improve classification performance when compared to single-objective and other multi-objective approaches (i.e. scalarized and sequential). In this paper, we introduce a novel multi-objective optimization of deep auto-encoder networks, in which the auto-encoder optimizes two objectives: MRE and mean classification error (MCE) for Pareto-optimal solutions, rather than just MRE. These two objectives are optimized simultaneously by a non-dominated sorting genetic algorithm. We tested our method on 949 X-ray mammograms categorized into 12 classes. The results show that the features identified by the proposed algorithm allow a classification accuracy of up to 98.45%, demonstrating favourable accuracy over the results of state-of-the-art methods reported in the literature. We conclude that adding the classification objective to the traditional auto-encoder objective and optimizing for finding Pareto-optimal solutions, using evolutionary multi-objective optimization, results in producing more discriminative features. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. [Study on spectral gain characterization of FWM processes with multi-frequency pumps in photonic crystal fiber].

    Science.gov (United States)

    Hui, Zhan-Qiang

    2011-10-01

    Spectral gain induced by four-wave-mixing with multi-frequency pump was investigated by exploiting the data signal and continue lights co-propagation in dispersion flattened high nonlinear photonic crystal fiber (PCF). The effects of wavelength drift of pump lights, polarization state of orthogonal or parallel of pump lights, polarization mismatch of signal light versus orthogonal pump lights, total power of signal and probe light on the spectrum gain were analyzed. The results show that good FWM gain effects with multi-frequency pump can be obtained in 36.4 nm wavelength range when power ratio of pump to probe light is appropriate and with identical polarization. Furthermore, the gain of FWM with multi-frequency pump is very sensitive to polarization fluctuation and the different idle waves obtain different gain with the variation in signal polarization state. Moreover, the impact of pump numbers was investigated. The obtained results would be helpful for further research on ultrahigh-speed all optical signal processing devices exploiting the FWM with multi-frequency pump in PCF for future photonics network.

  8. Multi-band transmission color filters for multi-color white LEDs based visible light communication

    Science.gov (United States)

    Wang, Qixia; Zhu, Zhendong; Gu, Huarong; Chen, Mengzhu; Tan, Qiaofeng

    2017-11-01

    Light-emitting diodes (LEDs) based visible light communication (VLC) can provide license-free bands, high data rates, and high security levels, which is a promising technique that will be extensively applied in future. Multi-band transmission color filters with enough peak transmittance and suitable bandwidth play a pivotal role for boosting signal-noise-ratio in VLC systems. In this paper, multi-band transmission color filters with bandwidth of dozens nanometers are designed by a simple analytical method. Experiment results of one-dimensional (1D) and two-dimensional (2D) tri-band color filters demonstrate the effectiveness of the multi-band transmission color filters and the corresponding analytical method.

  9. Fluorescence Intrinsic Characterization of Excitation-Emission Matrix Using Multi-Dimensional Ensemble Empirical Mode Decomposition

    Directory of Open Access Journals (Sweden)

    Tzu-Chien Hsiao

    2013-11-01

    Full Text Available Excitation-emission matrix (EEM fluorescence spectroscopy is a noninvasive method for tissue diagnosis and has become important in clinical use. However, the intrinsic characterization of EEM fluorescence remains unclear. Photobleaching and the complexity of the chemical compounds make it difficult to distinguish individual compounds due to overlapping features. Conventional studies use principal component analysis (PCA for EEM fluorescence analysis, and the relationship between the EEM features extracted by PCA and diseases has been examined. The spectral features of different tissue constituents are not fully separable or clearly defined. Recently, a non-stationary method called multi-dimensional ensemble empirical mode decomposition (MEEMD was introduced; this method can extract the intrinsic oscillations on multiple spatial scales without loss of information. The aim of this study was to propose a fluorescence spectroscopy system for EEM measurements and to describe a method for extracting the intrinsic characteristics of EEM by MEEMD. The results indicate that, although PCA provides the principal factor for the spectral features associated with chemical compounds, MEEMD can provide additional intrinsic features with more reliable mapping of the chemical compounds. MEEMD has the potential to extract intrinsic fluorescence features and improve the detection of biochemical changes.

  10. Drosophila embryos as model to assess cellular and developmental toxicity of multi-walled carbon nanotubes (MWCNT in living organisms.

    Directory of Open Access Journals (Sweden)

    Boyin Liu

    Full Text Available Different toxicity tests for carbon nanotubes (CNT have been developed to assess their impact on human health and on aquatic and terrestrial animal and plant life. We present a new model, the fruit fly Drosophila embryo offering the opportunity for rapid, inexpensive and detailed analysis of CNTs toxicity during embryonic development. We show that injected DiI labelled multi-walled carbon nanotubes (MWCNTs become incorporated into cells in early Drosophila embryos, allowing the study of the consequences of cellular uptake of CNTs on cell communication, tissue and organ formation in living embryos. Fluorescently labelled subcellular structures showed that MWCNTs remained cytoplasmic and were excluded from the nucleus. Analysis of developing ectodermal and neural stem cells in MWCNTs injected embryos revealed normal division patterns and differentiation capacity. However, an increase in cell death of ectodermal but not of neural stem cells was observed, indicating stem cell-specific vulnerability to MWCNT exposure. The ease of CNT embryo injections, the possibility of detailed morphological and genomic analysis and the low costs make Drosophila embryos a system of choice to assess potential developmental and cellular effects of CNTs and test their use in future CNT based new therapies including drug delivery.

  11. Development of Multi-Dimensional RELAP5 with Conservative Momentum Flux

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Hyung Wook; Lee, Sang Yong [KINGS, Ulsan (Korea, Republic of)

    2016-10-15

    The non-conservative form of the momentum equations are used in many codes. It tells us that using the non-conservative form in the non-porous or open body problem may not be good. In this paper, two aspects concerning the multi-dimensional codes will be discussed. Once the validity of the modified code is confirmed, it is applied to the analysis of the large break LOCA for APR-1400. One of them is the properness of the type of the momentum equations. The other discussion will be the implementation of the conservative momentum flux term in RELAP5. From the present study and former, it is shown that the RELAP5 Multi-D with conservative convective terms is applicable to LOCA analysis. And the implementation of the conservative convective terms in RELAP5 seems to be successful. Further efforts have to be made on making it more robust.

  12. Comparisons of angularly and spectrally resolved Bremsstrahlung measurements to two-dimensional multi-stage simulations of short-pulse laser-plasma interactions

    Energy Technology Data Exchange (ETDEWEB)

    Chen, C. D.; Kemp, A. J.; Pérez, F.; Link, A.; Key, M. H.; McLean, H.; Ping, Y.; Patel, P. K. [Lawrence Livermore National Laboratory (United States); Beg, F. N.; Chawla, S.; Sorokovikova, A.; Westover, B. [University of California, San Diego (United States); Morace, A. [University of Milan (Italy); Stephens, R. B. [General Atomics (United States); Streeter, M. [Imperial College London (United Kingdom)

    2013-05-15

    A 2-D multi-stage simulation model incorporating realistic laser conditions and a fully resolved electron distribution handoff has been developed and compared to angularly and spectrally resolved Bremsstrahlung measurements from high-Z planar targets. For near-normal incidence and 0.5-1 × 10{sup 20} W/cm{sup 2} intensity, particle-in-cell (PIC) simulations predict the existence of a high energy electron component consistently directed away from the laser axis, in contrast with previous expectations for oblique irradiation. Measurements of the angular distribution are consistent with a high energy component when directed along the PIC predicted direction, as opposed to between the target normal and laser axis as previously measured.

  13. Euclidean supergravity and multi-centered solutions

    Directory of Open Access Journals (Sweden)

    W.A. Sabra

    2017-04-01

    Full Text Available In ungauged supergravity theories, the no-force condition for BPS states implies the existence of stable static multi-centered solutions. The first solutions to Einstein–Maxwell theory with a positive cosmological constant describing an arbitrary number of charged black holes were found by Kastor and Traschen. Generalisations to five and higher dimensional theories were obtained by London. Multi-centered solutions in gauged supergravity, even with time-dependence allowed, have yet to be constructed. In this letter we construct supersymmetry-preserving multi-centered solutions for the case of D=5, N=2 Euclidean gauged supergravity coupled to an arbitrary number of vector multiplets. Higher dimensional Einstein–Maxwell multi-centered solutions are also presented.

  14. Rarefaction and shock waves for multi-dimensional hyperbolic conservation laws

    International Nuclear Information System (INIS)

    Dening, Li

    1991-01-01

    In this paper, the author wants to show the local existence of a solution of combination of shock and rarefaction waves for the multi-dimensional hyperbolic system of conservation laws. The typical example he has in mind is the Euler equations for compressible fluid. More generally, he studies the hyperbolic system of conservation laws ∂ t F 0 (u) + Σ j=1 n ∂ x j F j (u)=0 where u=(u 1 ....,u m ) and F j (u), j=0,...,n are m-dimensional vector-valued functions. He'll impose some conditions in the following on the systems (1.2). All these conditions are satisfied by the Euler equations

  15. Multi-Band Light Curves from Two-Dimensional Simulations of Gamma-Ray Burst Afterglows

    Science.gov (United States)

    MacFadyen, Andrew

    2010-01-01

    The dynamics of gamma-ray burst outflows is inherently multi-dimensional. 1.) We present high resolution two-dimensional relativistic hydrodynamics simulations of GRBs in the afterglow phase using adaptive mesh refinement (AMR). Using standard synchrotron radiation models, we compute multi-band light curves, from the radio to X-ray, directly from the 2D hydrodynamics simulation data. We will present on-axis light curves for both constant density and wind media. We will also present off-axis light curves relevant for searches for orphan afterglows. We find that jet breaks are smoothed due to both off-axis viewing and wind media effects. 2.) Non-thermal radiation mechanisms in GRB afterglows require substantial magnetic field strengths. In turbulence driven by shear instabilities in relativistic magnetized gas, we demonstrate that magnetic field is naturally amplified to half a percent of the total energy (epsilon B = 0.005). We will show high resolution three dimensional relativistic MHD simulations of this process as well as particle in cell (PIC) simulations of mildly relativistic collisionless shocks.

  16. Spectral tuning via multi-phonon-assisted stokes and anti-stokes excitations in LaF{sub 3}: Tm{sup 3+} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Dangli, E-mail: gaodangli@163.com [School of Materials & Mineral Resources, Xi' an University of Architecture and Technology, Xi' an, Shaanxi 710055 (China); College of Science, Xi' an University of Architecture and Technology, Xi' an, Shaanxi 710055 (China); Shaanxi Key Laboratory of Nano Materials and Technology, Xi' an, Shaanxi 710055 (China); Tian, Dongping, E-mail: dptian@xauat.edu.cn [School of Materials & Mineral Resources, Xi' an University of Architecture and Technology, Xi' an, Shaanxi 710055 (China); College of Science, Xi' an University of Architecture and Technology, Xi' an, Shaanxi 710055 (China); Chong, Bo; Li, Long [College of Science, Xi' an University of Architecture and Technology, Xi' an, Shaanxi 710055 (China); Zhang, Xiangyu [College of Science, Chang' an University, Xi' an, Shaanxi 710064 (China)

    2016-09-05

    We present a facile and highly effective method to tailor upconversion (UC) emission from LaF{sub 3}: Tm{sup 3+} nanoparticles (NPs) by adjusting ambient temperature from 20 K to 400 K accompanied with the pulse laser excitation. Spectral tuning mechanism controlled by ambient temperature at pulse laser excitation is revealed, and a mechanism based on the modification on multi-phonon relaxation rates for the rapid population of intermediate level {sup 3}H{sub 4} and multi-phonon-assisted excited state absorption is proposed. Based on multi-phonon relaxation theory and time-resolved photoluminescence studies, it is reasonable that UC luminescence under short-pulse laser excitation mainly originates from the ions at/near the surface of NPs. These exciting findings in ambient temperature accompanied with the short-pulse excitation dependent UC selectivity offer a general approach to tailoring lanthanide related UC emissions, which will benefit multicolor displays and imaging. - Graphical abstract: An effective method to tailor upconversion from LaF{sub 3}: Tm{sup 3+} nanoparticles by adjusting ambient temperature accompanied with the short-pulse laser excitation is presented and the spectral tuning mechanism based the modification on multi-phonon relaxation rate and multi-phonon-assisted excited state absorption is also revealed. - Highlights: • The luminescence switching is controlled by temperature and pulse duration. • The mechanism based on the multi-phonon-assisted excitations is proposed. • Blue luminescence under short-pulse excitation originates from the surface ions. • Temperature has a big effect on luminescence color output.

  17. A Distributed Multi-dimensional SOLAP Model of Remote Sensing Data and Its Application in Drought Analysis

    Directory of Open Access Journals (Sweden)

    LI Jiyuan

    2014-06-01

    Full Text Available SOLAP (Spatial On-Line Analytical Processing has been applied to multi-dimensional analysis of remote sensing data recently. However, its computation performance faces a considerable challenge from the large-scale dataset. A geo-raster cube model extended by Map-Reduce is proposed, which refers to the application of Map-Reduce (a data-intensive computing paradigm in the OLAP field. In this model, the existing methods are modified to adapt to distributed environment based on the multi-level raster tiles. Then the multi-dimensional map algebra is introduced to decompose the SOLAP computation into multiple distributed parallel map algebra functions on tiles under the support of Map-Reduce. The drought monitoring by remote sensing data is employed as a case study to illustrate the model construction and application. The prototype is also implemented, and the performance testing shows the efficiency and scalability of this model.

  18. Multi-Dimensional Optimization for Cloud Based Multi-Tier Applications

    Science.gov (United States)

    Jung, Gueyoung

    2010-01-01

    Emerging trends toward cloud computing and virtualization have been opening new avenues to meet enormous demands of space, resource utilization, and energy efficiency in modern data centers. By being allowed to host many multi-tier applications in consolidated environments, cloud infrastructure providers enable resources to be shared among these…

  19. Optical perception for detection of cutaneous T-cell lymphoma by multi-spectral imaging

    International Nuclear Information System (INIS)

    Hsiao, Yu-Ping; Wang, Hsiang-Chen; Chen, Shih-Hua; Tsai, Chung-Hung; Yang, Jen-Hung

    2014-01-01

    In this study, the spectrum of each picture element of the patient’s skin image was obtained by multi-spectral imaging technology. Spectra of normal or pathological skin were collected from 15 patients. Principal component analysis and principal component scores of skin spectra were employed to distinguish the spectral characteristics with different diseases. Finally, skin regions with suspected cutaneous T-cell lymphoma (CTCL) lesions were successfully predicted by evaluation and classification of the spectra of pathological skin. The sensitivity and specificity of this technique were 89.65% and 95.18% after the analysis of about 109 patients. The probability of atopic dermatitis and psoriasis patients misinterpreted as CTCL were 5.56% and 4.54%, respectively. (paper)

  20. Interpolation between multi-dimensional histograms using a new non-linear moment morphing method

    NARCIS (Netherlands)

    Baak, M.; Gadatsch, S.; Harrington, R.; Verkerke, W.

    2015-01-01

    A prescription is presented for the interpolation between multi-dimensional distribution templates based on one or multiple model parameters. The technique uses a linear combination of templates, each created using fixed values of the model׳s parameters and transformed according to a specific

  1. A Novel Spectrally Efficient Asynchronous Multi-Channel MAC Using a Half-Duplex Transceiver for Wireless Networks

    Directory of Open Access Journals (Sweden)

    Abdullah Devendiran

    2018-01-01

    Full Text Available Multi-channel medium access control (MAC protocols maximize network performance by enabling concurrent wireless transmissions over non-interfering channels. Despite physical layer advancements, the underlying IEEE 802.11 MAC standard cannot fully exploit features and support high-performance applications. In this work, we propose the novel spectrally efficient asynchronous multi-channel MAC (SA-MMAC protocol for wireless networks using a single half-duplex transceiver. A full-duplex mode of operation on data channels reduces the signaling overhead and boosts the spectrum efficiency. A revamped contention mechanism of IEEE 802.11 addresses the multi-channel hidden terminal problem, and a jamming signal from the receiver addresses the collisions in control signals. Furthermore, the control channel is used for data transmissions to increase the bandwidth utilization but under a restricted half-duplex mode to avoid causing a bottleneck situation. The simulator is tested for correctness. The results suggest that the protocol can work well on 3, 4, or 12 concurrent channels with high node density, providing about 12.5 times more throughput than IEEE 802.11 and 18% to 95% more throughput than its multi-channel variants under saturated traffic conditions.

  2. The Impact of Quantitative Data Provided by a Multi-spectral Digital Skin Lesion Analysis Device on Dermatologists'Decisions to Biopsy Pigmented Lesions.

    Science.gov (United States)

    Farberg, Aaron S; Winkelmann, Richard R; Tucker, Natalie; White, Richard; Rigel, Darrell S

    2017-09-01

    BACKGROUND: Early diagnosis of melanoma is critical to survival. New technologies, such as a multi-spectral digital skin lesion analysis (MSDSLA) device [MelaFind, STRATA Skin Sciences, Horsham, Pennsylvania] may be useful to enhance clinician evaluation of concerning pigmented skin lesions. Previous studies evaluated the effect of only the binary output. OBJECTIVE: The objective of this study was to determine how decisions dermatologists make regarding pigmented lesion biopsies are impacted by providing both the underlying classifier score (CS) and associated probability risk provided by multi-spectral digital skin lesion analysis. This outcome was also compared against the improvement reported with the provision of only the binary output. METHODS: Dermatologists attending an educational conference evaluated 50 pigmented lesions (25 melanomas and 25 benign lesions). Participants were asked if they would biopsy the lesion based on clinical images, and were asked this question again after being shown multi-spectral digital skin lesion analysis data that included the probability graphs and classifier score. RESULTS: Data were analyzed from a total of 160 United States board-certified dermatologists. Biopsy sensitivity for melanoma improved from 76 percent following clinical evaluation to 92 percent after quantitative multi-spectral digital skin lesion analysis information was provided ( p quantitative data were provided. Negative predictive value also increased (68% vs. 91%, panalysis (64% vs. 86%, p data into physician evaluation of pigmented lesions led to both increased sensitivity and specificity, thereby resulting in more accurate biopsy decisions.

  3. A multi-dimensional assessment of urban vulnerability to climate change in Sub-Saharan Africa

    DEFF Research Database (Denmark)

    Herslund, Lise Byskov; Jalyer, Fatameh; Jean-Baptiste, Nathalie

    2016-01-01

    In this paper, we develop and apply a multi-dimensional vulnerability assessment framework for understanding the impacts of climate change-induced hazards in Sub- Saharan African cities. The research was carried out within the European/African FP7 project CLimate change and Urban Vulnerability...... in Africa, which investigated climate change-induced risks, assessed vulnerability and proposed policy initiatives in five African cities. Dar es Salaam (Tanzania) was used as a main case with a particular focus on urban flooding. The multi-dimensional assessment covered the physical, institutional...... encroachment on green and flood-prone land). Scenario modeling suggests that vulnerability will continue to increase strongly due to the expected loss of agricultural land at the urban fringes and loss of green space within the city. However, weak institutional commitment and capacity limit the potential...

  4. Radar Precoder Design for Spectral Coexistence with Coordinated Multi-point (CoMP) System

    OpenAIRE

    Mahal, Jasmin A.; Khawar, Awais; Abdelhadi, Ahmed; Clancy, T. Charles

    2015-01-01

    This paper details the design of precoders for a MIMO radar spectrally coexistent with a MIMO cellular network. We focus on a coordinated multi-point (CoMP) system where a cluster of base stations (BSs) coordinate their transmissions to the intended user. The radar operates in two modes, interference-mitigation mode when it avoids interference with the CoMP system and cooperation mode when it exchanges information with it. Using either the conventional Switched Null Space Projection (SNSP) or...

  5. Interconnected Levels of Multi-Stage Marketing

    DEFF Research Database (Denmark)

    Vedel, Mette; Geersbro, Jens; Ritter, Thomas

    2012-01-01

    different levels of multi-stage marketing and illustrates these stages with a case study. In addition, a triadic perspective is introduced as an analytical tool for multi-stage marketing research. The results from the case study indicate that multi-stage marketing exists on different levels. Thus, managers...... must not only decide in general on the merits of multi-stage marketing for their firm, but must also decide on which level they will engage in multi-stage marketing. The triadic perspective enables a rich and multi-dimensional understanding of how different business relationships influence each other...... in a multi-stage marketing context. This understanding assists managers in assessing and balancing different aspects of multi- stage marketing. The triadic perspective also offers avenues for further research....

  6. Bi-directional Multi Dimension CAP Transmission for Smart Grid Communication Services

    DEFF Research Database (Denmark)

    Zhang, Xu; Binti Othman, Maisara; Pang, Xiaodan

    2012-01-01

    We experimentally demonstrate bi-directional multi dimension carrierless amplitude and phase (CAP) transmission for smart grid communication services based on optical fiber networks. The proposed system is able to support multi-Gb/s transmission with high spectral efficiency.......We experimentally demonstrate bi-directional multi dimension carrierless amplitude and phase (CAP) transmission for smart grid communication services based on optical fiber networks. The proposed system is able to support multi-Gb/s transmission with high spectral efficiency....

  7. Spectral collocation method with a flexible angular discretization scheme for radiative transfer in multi-layer graded index medium

    Science.gov (United States)

    Wei, Linyang; Qi, Hong; Sun, Jianping; Ren, Yatao; Ruan, Liming

    2017-05-01

    The spectral collocation method (SCM) is employed to solve the radiative transfer in multi-layer semitransparent medium with graded index. A new flexible angular discretization scheme is employed to discretize the solid angle domain freely to overcome the limit of the number of discrete radiative direction when adopting traditional SN discrete ordinate scheme. Three radial basis function interpolation approaches, named as multi-quadric (MQ), inverse multi-quadric (IMQ) and inverse quadratic (IQ) interpolation, are employed to couple the radiative intensity at the interface between two adjacent layers and numerical experiments show that MQ interpolation has the highest accuracy and best stability. Variable radiative transfer problems in double-layer semitransparent media with different thermophysical properties are investigated and the influence of these thermophysical properties on the radiative transfer procedure in double-layer semitransparent media is also analyzed. All the simulated results show that the present SCM with the new angular discretization scheme can predict the radiative transfer in multi-layer semitransparent medium with graded index efficiently and accurately.

  8. Challenges in Constructing a Multi-dimensional European Job Quality Index

    DEFF Research Database (Denmark)

    Leschke, Janine; Watt, Andrew

    2014-01-01

    quality performances and the outcomes in six sub-dimensions of job quality and compare them with each other, across gender and over time. At the same time, the limitations of such a composite index need to be borne in mind. The most important challenges are the availability (over time), timeliness......There are few attempts to benchmark job quality in a multi-dimensional perspective across Europe. Against this background, we have created a synthetic job quality index (JQI) for the EU27 countries in an attempt to shed light on the question of how European countries compare with each other and how...... they are developing over time in terms of job quality. Taking account of the multi-faceted nature of job quality, the JQI is compiled on the basis of six sub-indices which cover the most important dimensions of job quality as identified in the literature. The paper addresses the methods used to construct the JQI...

  9. Integrative Multi-Spectral Sensor Device for Far-Infrared and Visible Light Fusion

    Science.gov (United States)

    Qiao, Tiezhu; Chen, Lulu; Pang, Yusong; Yan, Gaowei

    2018-06-01

    Infrared and visible light image fusion technology is a hot spot in the research of multi-sensor fusion technology in recent years. Existing infrared and visible light fusion technologies need to register before fusion because of using two cameras. However, the application effect of the registration technology has yet to be improved. Hence, a novel integrative multi-spectral sensor device is proposed for infrared and visible light fusion, and by using the beam splitter prism, the coaxial light incident from the same lens is projected to the infrared charge coupled device (CCD) and visible light CCD, respectively. In this paper, the imaging mechanism of the proposed sensor device is studied with the process of the signals acquisition and fusion. The simulation experiment, which involves the entire process of the optic system, signal acquisition, and signal fusion, is constructed based on imaging effect model. Additionally, the quality evaluation index is adopted to analyze the simulation result. The experimental results demonstrate that the proposed sensor device is effective and feasible.

  10. Multi-time Lagrangian 1-forms for families of Bäcklund transformations. Relativistic Toda-type systems

    International Nuclear Information System (INIS)

    Boll, Raphael; Petrera, Matteo; Suris, Yuri B

    2015-01-01

    We establish the pluri-Lagrangian structure for families of Bäcklund transformations of relativistic Toda-type systems. The key idea is a novel embedding of these discrete-time (one-dimensional) systems into certain two-dimensional (2D) pluri-Lagrangian lattice systems. This embedding allows us to identify the corner equations (which are the main building blocks of the multi-time Euler–Lagrange equations) with local superposition formulae for Bäcklund transformations. These superposition formulae, in turn, are key ingredients necessary to understand and to prove commutativity of the multi-valued Bäcklund transformations. Furthermore, we discover a 2D generalization of the spectrality property known for families of Bäcklund transformations. This result produces a family of local conservations laws for 2D pluri-Lagrangian lattice systems, with densities being derivatives of the discrete 2-form with respect to the Bäcklund (spectral) parameter. Thus, a relation of the pluri-Lagrangian structure with more traditional integrability notions is established. (paper)

  11. Multi-dimensional microanalysis of masklessly implanted atoms using focused heavy ion beam

    International Nuclear Information System (INIS)

    Mokuno, Yoshiaki; Iiorino, Yuji; Chayahara, Akiyoshi; Kiuchi, Masato; Fujii, Kanenaga; Satou, Mamoru

    1992-01-01

    Multi-dimensional structure fabricated by maskless MeV gold implantation in silicon wafer was analyzed by 3 MeV carbon ion microprobe using a microbeam line developed at GIRIO. The minimum line width of the implanted region was estimated to be about 5 μm. The advantages of heavy ions for microanalysis were demonstrated. (author)

  12. Developing a Multi-Dimensional Evaluation Framework for Faculty Teaching and Service Performance

    Science.gov (United States)

    Baker, Diane F.; Neely, Walter P.; Prenshaw, Penelope J.; Taylor, Patrick A.

    2015-01-01

    A task force was created in a small, AACSB-accredited business school to develop a more comprehensive set of standards for faculty performance. The task force relied heavily on faculty input to identify and describe key dimensions that capture effective teaching and service performance. The result is a multi-dimensional framework that will be used…

  13. Generalized multi-dimensional adaptive filtering for conventional and spiral single-slice, multi-slice, and cone-beam CT

    International Nuclear Information System (INIS)

    Kachelriess, Marc; Watzke, Oliver; Kalender, Willi A.

    2001-01-01

    In modern computed tomography (CT) there is a strong desire to reduce patient dose and/or to improve image quality by increasing spatial resolution and decreasing image noise. These are conflicting demands since increasing resolution at a constant noise level or decreasing noise at a constant resolution level implies a higher demand on x-ray power and an increase of patient dose. X-ray tube power is limited due to technical reasons. We therefore developed a generalized multi-dimensional adaptive filtering approach that applies nonlinear filters in up to three dimensions in the raw data domain. This new method differs from approaches in the literature since our nonlinear filters are applied not only in the detector row direction but also in the view and in the z-direction. This true three-dimensional filtering improves the quantum statistics of a measured projection value proportional to the third power of the filter size. Resolution tradeoffs are shared among these three dimensions and thus are considerably smaller as compared to one-dimensional smoothing approaches. Patient data of spiral and sequential single- and multi-slice CT scans as well as simulated spiral cone-beam data were processed to evaluate these new approaches. Image quality was assessed by evaluation of difference images, by measuring the image noise and the noise reduction, and by calculating the image resolution using point spread functions. The use of generalized adaptive filters helps to reduce image noise or, alternatively, patient dose. Image noise structures, typically along the direction of the highest attenuation, are effectively reduced. Noise reduction values of typically 30%-60% can be achieved in noncylindrical body regions like the shoulder. The loss in image resolution remains below 5% for all cases. In addition, the new method has a great potential to reduce metal artifacts, e.g., in the hip region

  14. SVM-Based Spectral Analysis for Heart Rate from Multi-Channel WPPG Sensor Signals.

    Science.gov (United States)

    Xiong, Jiping; Cai, Lisang; Wang, Fei; He, Xiaowei

    2017-03-03

    Although wrist-type photoplethysmographic (hereafter referred to as WPPG) sensor signals can measure heart rate quite conveniently, the subjects' hand movements can cause strong motion artifacts, and then the motion artifacts will heavily contaminate WPPG signals. Hence, it is challenging for us to accurately estimate heart rate from WPPG signals during intense physical activities. The WWPG method has attracted more attention thanks to the popularity of wrist-worn wearable devices. In this paper, a mixed approach called Mix-SVM is proposed, it can use multi-channel WPPG sensor signals and simultaneous acceleration signals to measurement heart rate. Firstly, we combine the principle component analysis and adaptive filter to remove a part of the motion artifacts. Due to the strong relativity between motion artifacts and acceleration signals, the further denoising problem is regarded as a sparse signals reconstruction problem. Then, we use a spectrum subtraction method to eliminate motion artifacts effectively. Finally, the spectral peak corresponding to heart rate is sought by an SVM-based spectral analysis method. Through the public PPG database in the 2015 IEEE Signal Processing Cup, we acquire the experimental results, i.e., the average absolute error was 1.01 beat per minute, and the Pearson correlation was 0.9972. These results also confirm that the proposed Mix-SVM approach has potential for multi-channel WPPG-based heart rate estimation in the presence of intense physical exercise.

  15. Multi-dimensional two-phase flow measurements in a large-diameter pipe using wire-mesh sensor

    International Nuclear Information System (INIS)

    Kanai, Taizo; Furuya, Masahiro; Arai, Takahiro; Shirakawa, Kenetsu; Nishi, Yoshihisa; Ueda, Nobuyuki

    2011-01-01

    The authors developed a method of measurement to determine the multi-dimensionality of two phase flow. A wire-mesh sensor (WMS) can acquire a void fraction distribution at a high temporal and spatial resolution and also estimate the velocity of a vertical rising flow by investigating the signal time-delay of the upstream WMS relative to downstream. Previously, one-dimensional velocity was estimated by using the same point of each WMS at a temporal resolution of 1.0 - 5.0 s. The authors propose to extend this time series analysis to estimate the multi-dimensional velocity profile via cross-correlation analysis between a point of upstream WMS and multiple points downstream. Bubbles behave in various ways according to size, which is used to classify them into certain groups via wavelet analysis before cross-correlation analysis. This method was verified by air-water straight and swirl flows within a large-diameter vertical pipe. A high-speed camera is used to set the parameter of cross-correlation analysis. The results revealed that for the rising straight and swirl flows, large scale bubbles tend to move to the center, while the small bubble is pushed to the outside or sucked into the space where the large bubbles existed. Moreover, it is found that this method can estimate the rotational component of velocity of the swirl flow as well as measuring the multi-dimensional velocity vector at high temporal resolutions of 0.2 s. (author)

  16. Multi Dimensional Honey Bee Foraging Algorithm Based on Optimal Energy Consumption

    Science.gov (United States)

    Saritha, R.; Vinod Chandra, S. S.

    2017-10-01

    In this paper a new nature inspired algorithm is proposed based on natural foraging behavior of multi-dimensional honey bee colonies. This method handles issues that arise when food is shared from multiple sources by multiple swarms at multiple destinations. The self organizing nature of natural honey bee swarms in multiple colonies is based on the principle of energy consumption. Swarms of multiple colonies select a food source to optimally fulfill the requirements of its colonies. This is based on the energy requirement for transporting food between a source and destination. Minimum use of energy leads to maximizing profit in each colony. The mathematical model proposed here is based on this principle. This has been successfully evaluated by applying it on multi-objective transportation problem for optimizing cost and time. The algorithm optimizes the needs at each destination in linear time.

  17. Multi-dimensional conversion to the ion-hybrid mode

    International Nuclear Information System (INIS)

    Tracy, E.R.; Kaufman, A.N.; Brizard, A.J.; Morehead, J.J.

    1996-01-01

    We first demonstrate that the dispersion matrix for linear conversion of a magnetosonic wave to an ion-hybrid wave (as in a D-T plasma) can be congruently transformed to Friedland's normal form. As a result, this conversion can be represented as a two-step process of successive linear conversions in phase space. We then proceed to study the multi-dimensional case of tokamak geometry. After fourier transforming the toroidal dependence, we deal with the two-dimensional poloidal xy-plane and the two-dimensional k x k y -plane, forming a four-dimensional phase space. The dispersion manifolds for the magnetosonic wave [D M (x, k) = 0] and the ion-hybrid wave [D H (x, k) = 0] are each three-dimensional. (Their intersection, on which mode conversion occurs, is two-dimensional.) The incident magnetosonic wave (radiated by an antenna) is a two-dimensional set of rays (a lagrangian manifold): k(x) = ∇θ(x), with θ(x) the phase of the magnetosonic wave. When these rays pierce the ion-hybrid dispersion manifold, they convert to a set of ion-hybrid rays. Then, when those rays intersect the magnetosonic dispersion manifold, they convert to a set of open-quotes reflectedclose quotes magnetosonic rays. This set of rays is distinct from the set of incident rays that have been reflected by the inner surface of the tokamak plasma. As a result, the total destructive interference that can occur in the one-dimensional case may become only partial. We explore the implications of this startling phenomenon both analytically and geometrically

  18. Low-dimensional and Data Fusion Techniques Applied to a Rectangular Supersonic Multi-stream Jet

    Science.gov (United States)

    Berry, Matthew; Stack, Cory; Magstadt, Andrew; Ali, Mohd; Gaitonde, Datta; Glauser, Mark

    2017-11-01

    Low-dimensional models of experimental and simulation data for a complex supersonic jet were fused to reconstruct time-dependent proper orthogonal decomposition (POD) coefficients. The jet consists of a multi-stream rectangular single expansion ramp nozzle, containing a core stream operating at Mj , 1 = 1.6 , and bypass stream at Mj , 3 = 1.0 with an underlying deck. POD was applied to schlieren and PIV data to acquire the spatial basis functions. These eigenfunctions were projected onto their corresponding time-dependent large eddy simulation (LES) fields to reconstruct the temporal POD coefficients. This reconstruction was able to resolve spectral peaks that were previously aliased due to the slower sampling rates of the experiments. Additionally, dynamic mode decomposition (DMD) was applied to the experimental and LES datasets, and the spatio-temporal characteristics were compared to POD. The authors would like to acknowledge AFOSR, program manager Dr. Doug Smith, for funding this research, Grant No. FA9550-15-1-0435.

  19. The multi-spectral line-polarization MSE system on Alcator C-Mod

    Energy Technology Data Exchange (ETDEWEB)

    Mumgaard, R. T., E-mail: mumgaard@psfc.mit.edu; Khoury, M. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Scott, S. D. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08540 (United States)

    2016-11-15

    A multi-spectral line-polarization motional Stark effect (MSE-MSLP) diagnostic has been developed for the Alcator C-Mod tokamak wherein the Stokes vector is measured in multiple wavelength bands simultaneously on the same sightline to enable better polarized background subtraction. A ten-sightline, four wavelength MSE-MSLP detector system was designed, constructed, and qualified. This system consists of a high-throughput polychromator for each sightline designed to provide large étendue and precise spectral filtering in a cost-effective manner. Each polychromator utilizes four narrow bandpass interference filters and four custom large diameter avalanche photodiode detectors. Two filters collect light to the red and blue of the MSE emission spectrum while the remaining two filters collect the beam pi and sigma emission generated at the same viewing volume. The filter wavelengths are temperature tuned using custom ovens in an automated manner. All system functions are remote controllable and the system can be easily retrofitted to existing single-wavelength line-polarization MSE systems.

  20. The multi-spectral line-polarization MSE system on Alcator C-Mod

    International Nuclear Information System (INIS)

    Mumgaard, R. T.; Khoury, M.; Scott, S. D.

    2016-01-01

    A multi-spectral line-polarization motional Stark effect (MSE-MSLP) diagnostic has been developed for the Alcator C-Mod tokamak wherein the Stokes vector is measured in multiple wavelength bands simultaneously on the same sightline to enable better polarized background subtraction. A ten-sightline, four wavelength MSE-MSLP detector system was designed, constructed, and qualified. This system consists of a high-throughput polychromator for each sightline designed to provide large étendue and precise spectral filtering in a cost-effective manner. Each polychromator utilizes four narrow bandpass interference filters and four custom large diameter avalanche photodiode detectors. Two filters collect light to the red and blue of the MSE emission spectrum while the remaining two filters collect the beam pi and sigma emission generated at the same viewing volume. The filter wavelengths are temperature tuned using custom ovens in an automated manner. All system functions are remote controllable and the system can be easily retrofitted to existing single-wavelength line-polarization MSE systems.

  1. Meta-modelling, visualization and emulation of multi-dimensional data for virtual production intelligence

    Science.gov (United States)

    Schulz, Wolfgang; Hermanns, Torsten; Al Khawli, Toufik

    2017-07-01

    Decision making for competitive production in high-wage countries is a daily challenge where rational and irrational methods are used. The design of decision making processes is an intriguing, discipline spanning science. However, there are gaps in understanding the impact of the known mathematical and procedural methods on the usage of rational choice theory. Following Benjamin Franklin's rule for decision making formulated in London 1772, he called "Prudential Algebra" with the meaning of prudential reasons, one of the major ingredients of Meta-Modelling can be identified finally leading to one algebraic value labelling the results (criteria settings) of alternative decisions (parameter settings). This work describes the advances in Meta-Modelling techniques applied to multi-dimensional and multi-criterial optimization by identifying the persistence level of the corresponding Morse-Smale Complex. Implementations for laser cutting and laser drilling are presented, including the generation of fast and frugal Meta-Models with controlled error based on mathematical model reduction Reduced Models are derived to avoid any unnecessary complexity. Both, model reduction and analysis of multi-dimensional parameter space are used to enable interactive communication between Discovery Finders and Invention Makers. Emulators and visualizations of a metamodel are introduced as components of Virtual Production Intelligence making applicable the methods of Scientific Design Thinking and getting the developer as well as the operator more skilled.

  2. Grammar-Based Multi-Frontal Solver for One Dimensional Isogeometric Analysis with Multiple Right-Hand-Sides

    KAUST Repository

    Kuźnik, Krzysztof

    2013-06-01

    This paper introduces a grammar-based model for developing a multi-thread multi-frontal parallel direct solver for one- dimensional isogeometric finite element method. The model includes the integration of B-splines for construction of the element local matrices and the multi-frontal solver algorithm. The integration and the solver algorithm are partitioned into basic indivisible tasks, namely the grammar productions, that can be executed squentially. The partial order of execution of the basic tasks is analyzed to provide the scheduling for the execution of the concurrent integration and multi-frontal solver algo- rithm. This graph grammar analysis allows for optimal concurrent execution of all tasks. The model has been implemented and tested on NVIDIA CUDA GPU, delivering logarithmic execution time for linear, quadratic, cubic and higher order B-splines. Thus, the CUDA implementation delivers the optimal performance predicted by our graph grammar analysis. We utilize the solver for multiple right hand sides related to the solution of non-stationary or inverse problems.

  3. Multi-layer composite structure covered polytetrafluoroethylene for visible-infrared-radar spectral Compatibility

    Science.gov (United States)

    Qi, Dong; Cheng, Yongzhi; Wang, Xian; Wang, Fang; Li, Bowen; Gong, Rongzhou

    2017-12-01

    In this paper, a polytetrafluoroethylene (PTFE) top-covered multi-layer composite structure PTFE/H s/(Ge/ZnS)3 (H s represents the surface layer ZnS with various thicknesses) for spectral compatibility is proposed and investigated theoretically and experimentally. A substantial decline of glossiness from over 200 Gs to 74.2 Gs could be realized, due to high roughness and interface reflection of the 800 nm PTFE protection layer. In addition, similar to the structure of H s/(Ge/ZnS)3, the designed structure with a certain color exhibits ultra-low emissivity of average 0.196 at 8-14 µm and highly transparent performance of 96.45% in the radar frequency range of 2-18 GHz. Our design will provide an important reference for the practical applications of the spectral compatible multilayer films.

  4. Improvement of multi-dimensional realistic thermal-hydraulic system analysis code, MARS 1.3

    International Nuclear Information System (INIS)

    Lee, Won Jae; Chung, Bub Dong; Jeong, Jae Jun; Ha, Kwi Seok

    1998-09-01

    The MARS (Multi-dimensional Analysis of Reactor Safety) code is a multi-dimensional, best-estimate thermal-hydraulic system analysis code. This report describes the new features that have been improved in the MARS 1.3 code since the release of MARS 1.3 in July 1998. The new features include: - implementation of point kinetics model into the 3D module - unification of the heat structure model - extension of the control function to the 3D module variables - improvement of the 3D module input check function. Each of the items has been implemented in the developmental version of the MARS 1.3.1 code and, then, independently verified and assessed. The effectiveness of the new features is well verified and it is shown that these improvements greatly extend the code capability and enhance the user friendliness. Relevant input data changes are also described. In addition to the improvements, this report briefly summarizes the future code developmental activities that are being carried out or planned, such as coupling of MARS 1.3 with the containment code CONTEMPT and the three-dimensional reactor kinetics code MASTER 2.0. (author). 8 refs

  5. Improvement of multi-dimensional realistic thermal-hydraulic system analysis code, MARS 1.3

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Won Jae; Chung, Bub Dong; Jeong, Jae Jun; Ha, Kwi Seok

    1998-09-01

    The MARS (Multi-dimensional Analysis of Reactor Safety) code is a multi-dimensional, best-estimate thermal-hydraulic system analysis code. This report describes the new features that have been improved in the MARS 1.3 code since the release of MARS 1.3 in July 1998. The new features include: - implementation of point kinetics model into the 3D module - unification of the heat structure model - extension of the control function to the 3D module variables - improvement of the 3D module input check function. Each of the items has been implemented in the developmental version of the MARS 1.3.1 code and, then, independently verified and assessed. The effectiveness of the new features is well verified and it is shown that these improvements greatly extend the code capability and enhance the user friendliness. Relevant input data changes are also described. In addition to the improvements, this report briefly summarizes the future code developmental activities that are being carried out or planned, such as coupling of MARS 1.3 with the containment code CONTEMPT and the three-dimensional reactor kinetics code MASTER 2.0. (author). 8 refs.

  6. Development of multi-dimensional body image scale for malaysian female adolescents

    OpenAIRE

    Chin, Yit Siew; Taib, Mohd Nasir Mohd; Shariff, Zalilah Mohd; Khor, Geok Lin

    2008-01-01

    The present study was conducted to develop a Multi-dimensional Body Image Scale for Malaysian female adolescents. Data were collected among 328 female adolescents from a secondary school in Kuantan district, state of Pahang, Malaysia by using a self-administered questionnaire and anthropometric measurements. The self-administered questionnaire comprised multiple measures of body image, Eating Attitude Test (EAT-26; Garner & Garfinkel, 1979) and Rosenberg Self-esteem Inventory (Rosenberg, 1965...

  7. Multi-energy spectral CT: adding value in emergency body imaging.

    Science.gov (United States)

    Punjabi, Gopal V

    2018-04-01

    Most vendors offer scanners capable of dual- or multi-energy computed tomography (CT) imaging. Advantages of multi-energy CT scanning include superior tissue characterization, detection of subtle iodine uptake differences, and opportunities to reduce contrast dose. However, utilization of this technology in the emergency department (ED) remains low. The purpose of this pictorial essay is to illustrate the value of multi-energy CT scanning in emergency body imaging.

  8. Using RPAS Multi-Spectral Imagery to Characterise Vigour, Leaf Development, Yield Components and Berry Composition Variability within a Vineyard

    Directory of Open Access Journals (Sweden)

    Clara Rey-Caramés

    2015-10-01

    Full Text Available Implementation of precision viticulture techniques requires the use of emerging sensing technologies to assess the vineyard spatial variability. This work shows the capability of multispectral imagery acquired from a remotely piloted aerial system (RPAS, and the derived spectral indices to assess the vegetative, productive, and berry composition spatial variability within a vineyard (Vitis vinifera L.. Multi-spectral imagery of 17 cm spatial resolution was acquired using a RPAS. Classical vegetation spectral indices and two newly defined normalised indices, NVI1 = (R802 − R531/(R802 + R531 and NVI2 = (R802 − R570/(R802 + R570, were computed. Their spatial distribution and relationships with grapevine vegetative, yield, and berry composition parameters were studied. Most of the spectral indices and field data varied spatially within the vineyard, as showed through the variogram parameters. While the correlations were significant but moderate among the spectral indices and the field variables, the kappa index showed that the spatial pattern of the spectral indices agreed with that of the vegetative variables (0.38–0.70 and mean cluster weight (0.40. These results proved the utility of the multi-spectral imagery acquired from a RPAS to delineate homogeneous zones within the vineyard, allowing the grapegrower to carry out a specific management of each subarea.

  9. Reduction of multi-dimensional laboratory data to a two-dimensional plot: a novel technique for the identification of laboratory error.

    Science.gov (United States)

    Kazmierczak, Steven C; Leen, Todd K; Erdogmus, Deniz; Carreira-Perpinan, Miguel A

    2007-01-01

    The clinical laboratory generates large amounts of patient-specific data. Detection of errors that arise during pre-analytical, analytical, and post-analytical processes is difficult. We performed a pilot study, utilizing a multidimensional data reduction technique, to assess the utility of this method for identifying errors in laboratory data. We evaluated 13,670 individual patient records collected over a 2-month period from hospital inpatients and outpatients. We utilized those patient records that contained a complete set of 14 different biochemical analytes. We used two-dimensional generative topographic mapping to project the 14-dimensional record to a two-dimensional space. The use of a two-dimensional generative topographic mapping technique to plot multi-analyte patient data as a two-dimensional graph allows for the rapid identification of potentially anomalous data. Although we performed a retrospective analysis, this technique has the benefit of being able to assess laboratory-generated data in real time, allowing for the rapid identification and correction of anomalous data before they are released to the physician. In addition, serial laboratory multi-analyte data for an individual patient can also be plotted as a two-dimensional plot. This tool might also be useful for assessing patient wellbeing and prognosis.

  10. Effect of a Multi-Dimensional and Inter-Sectoral Intervention on the Adherence of Psychiatric Patients.

    Directory of Open Access Journals (Sweden)

    Anne Pauly

    Full Text Available In psychiatry, hospital stays and transitions to the ambulatory sector are susceptible to major changes in drug therapy that lead to complex medication regimens and common non-adherence among psychiatric patients. A multi-dimensional and inter-sectoral intervention is hypothesized to improve the adherence of psychiatric patients to their pharmacotherapy.269 patients from a German university hospital were included in a prospective, open, clinical trial with consecutive control and intervention groups. Control patients (09/2012-03/2013 received usual care, whereas intervention patients (05/2013-12/2013 underwent a program to enhance adherence during their stay and up to three months after discharge. The program consisted of therapy simplification and individualized patient education (multi-dimensional component during the stay and at discharge, as well as subsequent phone calls after discharge (inter-sectoral component. Adherence was measured by the "Medication Adherence Report Scale" (MARS and the "Drug Attitude Inventory" (DAI.The improvement in the MARS score between admission and three months after discharge was 1.33 points (95% CI: 0.73-1.93 higher in the intervention group compared to controls. In addition, the DAI score improved 1.93 points (95% CI: 1.15-2.72 more for intervention patients.These two findings indicate significantly higher medication adherence following the investigated multi-dimensional and inter-sectoral program.German Clinical Trials Register DRKS00006358.

  11. Multi-spectral optical absorption in substrate-free nanowire arrays

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Junpeng; Chia, Andrew; Boulanger, Jonathan; LaPierre, Ray, E-mail: lapierr@mcmaster.ca [Department of Engineering Physics, McMaster University, 1280 Main St. West, Hamilton, Ontario L8S 4L7 (Canada); Dhindsa, Navneet; Khodadad, Iman; Saini, Simarjeet [Department of Electrical and Computer Engineering, University of Waterloo, 200 University Ave West, Waterloo, Ontario N2L 3G1 (Canada); Waterloo Institute of Nanotechnology, University of Waterloo, 200 University Ave West, Waterloo, Ontario N2L 3G1 (Canada)

    2014-09-22

    A method is presented of fabricating gallium arsenide (GaAs) nanowire arrays of controlled diameter and period by reactive ion etching of a GaAs substrate containing an indium gallium arsenide (InGaP) etch stop layer, allowing the precise nanowire length to be controlled. The substrate is subsequently removed by selective etching, using the same InGaP etch stop layer, to create a substrate-free GaAs nanowire array. The optical absorptance of the nanowire array was then directly measured without absorption from a substrate. We directly observe absorptance spectra that can be tuned by the nanowire diameter, as explained with rigorous coupled wave analysis. These results illustrate strong optical absorption suitable for nanowire-based solar cells and multi-spectral absorption for wavelength discriminating photodetectors. The solar-weighted absorptance above the bandgap of GaAs was 94% for a nanowire surface coverage of only 15%.

  12. Multi-dimensional fiber-optic radiation sensor for ocular proton therapy dosimetry

    International Nuclear Information System (INIS)

    Jang, K.W.; Yoo, W.J.; Moon, J.; Han, K.T.; Park, B.G.; Shin, D.; Park, S-Y.; Lee, B.

    2012-01-01

    In this study, we fabricated a multi-dimensional fiber-optic radiation sensor, which consists of organic scintillators, plastic optical fibers and a water phantom with a polymethyl methacrylate structure for the ocular proton therapy dosimetry. For the purpose of sensor characterization, we measured the spread out Bragg-peak of 120 MeV proton beam using a one-dimensional sensor array, which has 30 fiber-optic radiation sensors with a 1.5 mm interval. A uniform region of spread out Bragg-peak using the one-dimensional fiber-optic radiation sensor was obtained from 20 to 25 mm depth of a phantom. In addition, the Bragg-peak of 109 MeV proton beam was measured at the depth of 11.5 mm of a phantom using a two-dimensional sensor array, which has 10×3 sensor array with a 0.5 mm interval.

  13. Numerical solution of multi group-Two dimensional- Adjoint equation with finite element method

    International Nuclear Information System (INIS)

    Poursalehi, N.; Khalafi, H.; Shahriari, M.; Minoochehr

    2008-01-01

    Adjoint equation is used for perturbation theory in nuclear reactor design. For numerical solution of adjoint equation, usually two methods are applied. These are Finite Element and Finite Difference procedures. Usually Finite Element Procedure is chosen for solving of adjoint equation, because it is more use able in variety of geometries. In this article, Galerkin Finite Element method is discussed. This method is applied for numerical solving multi group, multi region and two dimensional (X, Y) adjoint equation. Typical reactor geometry is partitioned with triangular meshes and boundary condition for adjoint flux is considered zero. Finally, for a case of defined parameters, Finite Element Code was applied and results were compared with Citation Code

  14. Algorithm development and verification of UASCM for multi-dimension and multi-group neutron kinetics model

    International Nuclear Information System (INIS)

    Si, S.

    2012-01-01

    The Universal Algorithm of Stiffness Confinement Method (UASCM) for neutron kinetics model of multi-dimensional and multi-group transport equations or diffusion equations has been developed. The numerical experiments based on transport theory code MGSNM and diffusion theory code MGNEM have demonstrated that the algorithm has sufficient accuracy and stability. (authors)

  15. SVM-Based Spectral Analysis for Heart Rate from Multi-Channel WPPG Sensor Signals

    Directory of Open Access Journals (Sweden)

    Jiping Xiong

    2017-03-01

    Full Text Available Although wrist-type photoplethysmographic (hereafter referred to as WPPG sensor signals can measure heart rate quite conveniently, the subjects’ hand movements can cause strong motion artifacts, and then the motion artifacts will heavily contaminate WPPG signals. Hence, it is challenging for us to accurately estimate heart rate from WPPG signals during intense physical activities. The WWPG method has attracted more attention thanks to the popularity of wrist-worn wearable devices. In this paper, a mixed approach called Mix-SVM is proposed, it can use multi-channel WPPG sensor signals and simultaneous acceleration signals to measurement heart rate. Firstly, we combine the principle component analysis and adaptive filter to remove a part of the motion artifacts. Due to the strong relativity between motion artifacts and acceleration signals, the further denoising problem is regarded as a sparse signals reconstruction problem. Then, we use a spectrum subtraction method to eliminate motion artifacts effectively. Finally, the spectral peak corresponding to heart rate is sought by an SVM-based spectral analysis method. Through the public PPG database in the 2015 IEEE Signal Processing Cup, we acquire the experimental results, i.e., the average absolute error was 1.01 beat per minute, and the Pearson correlation was 0.9972. These results also confirm that the proposed Mix-SVM approach has potential for multi-channel WPPG-based heart rate estimation in the presence of intense physical exercise.

  16. Comparative study of the two-fluid momentum equations for multi-dimensional bubbly flows: Modification of Reynolds stress

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seung Jun; Park, Ik Kyu; Yoon, Han Young [Thermal-Hydraulic Safety Research Division, Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Jae, Byoung [School of Mechanical Engineering, Chungnam National University, Daejeon (Korea, Republic of)

    2017-01-15

    Two-fluid equations are widely used to obtain averaged behaviors of two-phase flows. This study addresses a problem that may arise when the two-fluid equations are used for multi-dimensional bubbly flows. If steady drag is the only accounted force for the interfacial momentum transfer, the disperse-phase velocity would be the same as the continuous-phase velocity when the flow is fully developed without gravity. However, existing momentum equations may show unphysical results in estimating the relative velocity of the disperse phase against the continuous-phase. First, we examine two types of existing momentum equations. One is the standard two-fluid momentum equation in which the disperse-phase is treated as a continuum. The other is the averaged momentum equation derived from a solid/ fluid particle motion. We show that the existing equations are not proper for multi-dimensional bubbly flows. To resolve the problem mentioned above, we modify the form of the Reynolds stress terms in the averaged momentum equation based on the solid/fluid particle motion. The proposed equation shows physically correct results for both multi-dimensional laminar and turbulent flows.

  17. A multi-band, multi-level, multi-electron model for efficient FDTD simulations of electromagnetic interactions with semiconductor quantum wells

    Science.gov (United States)

    Ravi, Koustuban; Wang, Qian; Ho, Seng-Tiong

    2015-08-01

    We report a new computational model for simulations of electromagnetic interactions with semiconductor quantum well(s) (SQW) in complex electromagnetic geometries using the finite-difference time-domain method. The presented model is based on an approach of spanning a large number of electron transverse momentum states in each SQW sub-band (multi-band) with a small number of discrete multi-electron states (multi-level, multi-electron). This enables accurate and efficient two-dimensional (2-D) and three-dimensional (3-D) simulations of nanophotonic devices with SQW active media. The model includes the following features: (1) Optically induced interband transitions between various SQW conduction and heavy-hole or light-hole sub-bands are considered. (2) Novel intra sub-band and inter sub-band transition terms are derived to thermalize the electron and hole occupational distributions to the correct Fermi-Dirac distributions. (3) The terms in (2) result in an explicit update scheme which circumvents numerically cumbersome iterative procedures. This significantly augments computational efficiency. (4) Explicit update terms to account for carrier leakage to unconfined states are derived, which thermalize the bulk and SQW populations to a common quasi-equilibrium Fermi-Dirac distribution. (5) Auger recombination and intervalence band absorption are included. The model is validated by comparisons to analytic band-filling calculations, simulations of SQW optical gain spectra, and photonic crystal lasers.

  18. A linear model to predict with a multi-spectral radiometer the amount of nitrogen in winter wheat

    NARCIS (Netherlands)

    Reyniers, M.; Walvoort, D.J.J.; Baardemaaker, De J.

    2006-01-01

    The objective was to develop an optimal vegetation index (VIopt) to predict with a multi-spectral radiometer nitrogen in wheat crop (kg[N] ha-1). Optimality means that nitrogen in the crop can be measured accurately in the field during the growing season. It also means that the measurements are

  19. Structural damage detection-oriented multi-type sensor placement with multi-objective optimization

    Science.gov (United States)

    Lin, Jian-Fu; Xu, You-Lin; Law, Siu-Seong

    2018-05-01

    A structural damage detection-oriented multi-type sensor placement method with multi-objective optimization is developed in this study. The multi-type response covariance sensitivity-based damage detection method is first introduced. Two objective functions for optimal sensor placement are then introduced in terms of the response covariance sensitivity and the response independence. The multi-objective optimization problem is formed by using the two objective functions, and the non-dominated sorting genetic algorithm (NSGA)-II is adopted to find the solution for the optimal multi-type sensor placement to achieve the best structural damage detection. The proposed method is finally applied to a nine-bay three-dimensional frame structure. Numerical results show that the optimal multi-type sensor placement determined by the proposed method can avoid redundant sensors and provide satisfactory results for structural damage detection. The restriction on the number of each type of sensors in the optimization can reduce the searching space in the optimization to make the proposed method more effective. Moreover, how to select a most optimal sensor placement from the Pareto solutions via the utility function and the knee point method is demonstrated in the case study.

  20. Multi-spectral quantitative phase imaging based on filtration of light via ultrasonic wave

    Science.gov (United States)

    Machikhin, A. S.; Polschikova, O. V.; Ramazanova, A. G.; Pozhar, V. E.

    2017-07-01

    A new digital holographic microscopy scheme for multi-spectral quantitative phase imaging is proposed and implemented. It is based on acousto-optic filtration of wide-band low-coherence light at the entrance of a Mach-Zehnder interferometer, recording and digital processing of interferograms. The key requirements for the acousto-optic filter are discussed. The effectiveness of the technique is demonstrated by calculating the phase maps of human red blood cells at multiple wavelengths in the range 770-810 nm. The scheme can be used for the measurement of dispersion of thin films and biological samples.

  1. Spectral response of multi-element silicon detectors

    Energy Technology Data Exchange (ETDEWEB)

    Ludewigt, B.A.; Rossington, C.S.; Chapman, K. [Univ. of California, Berkeley, CA (United States)

    1997-04-01

    Multi-element silicon strip detectors, in conjunction with integrated circuit pulse-processing electronics, offer an attractive alternative to conventional lithium-drifted silicon Si(Li) and high purity germanium detectors (HPGe) for high count rate, low noise synchrotron x-ray fluorescence applications. One of the major differences between the segmented Si detectors and the commercially available single-element Si(Li) or HPGe detectors is that hundreds of elements can be fabricated on a single Si substrate using standard silicon processing technologies. The segmentation of the detector substrate into many small elements results in very low noise performance at or near, room temperature, and the count rate of the detector is increased many-fold due to the multiplication in the total number of detectors. Traditionally, a single channel of detector with electronics can handle {approximately}100 kHz count rates while maintaining good energy resolution; the segmented detectors can operate at greater than MHz count rates merely due to the multiplication in the number of channels. One of the most critical aspects in the development of the segmented detectors is characterizing the charge sharing and charge loss that occur between the individual detector strips, and determining how these affect the spectral response of the detectors.

  2. Aerodynamic Analysis and Three-Dimensional Redesign of a Multi-Stage Axial Flow Compressor

    Directory of Open Access Journals (Sweden)

    Tao Ning

    2016-04-01

    Full Text Available This paper describes the introduction of three-dimension (3-D blade designs into a 5-stage axial compressor with multi-stage computational fluid dynamic (CFD methods. Prior to a redesign, a validation study is conducted for the overall performance and flow details based on full-scale test data, proving that the multi-stage CFD applied is a relatively reliable tool for the analysis of the follow-up redesign. Furthermore, at the near stall point, the aerodynamic analysis demonstrates that significant separation exists in the last stator, leading to the aerodynamic redesign, which is the focus of the last stator. Multi-stage CFD methods are applied throughout the three-dimensional redesign process for the last stator to explore their aerodynamic improvement potential. An unconventional asymmetric bow configuration incorporated with leading edge re-camber and re-solidity is employed to reduce the high loss region dominated by the mainstream. The final redesigned version produces a 13% increase in the stall margin while maintaining the efficiency at the design point.

  3. Graph Grammar-Based Multi-Frontal Parallel Direct Solver for Two-Dimensional Isogeometric Analysis

    KAUST Repository

    Kuźnik, Krzysztof

    2012-06-02

    This paper introduces the graph grammar based model for developing multi-thread multi-frontal parallel direct solver for two dimensional isogeometric finite element method. Execution of the solver algorithm has been expressed as the sequence of graph grammar productions. At the beginning productions construct the elimination tree with leaves corresponding to finite elements. Following sequence of graph grammar productions generates element frontal matri-ces at leaf nodes, merges matrices at parent nodes and eliminates rows corresponding to fully assembled degrees of freedom. Finally, there are graph grammar productions responsible for root problem solution and recursive backward substitutions. Expressing the solver algorithm by graph grammar productions allows us to explore the concurrency of the algorithm. The graph grammar productions are grouped into sets of independent tasks that can be executed concurrently. The resulting concurrent multi-frontal solver algorithm is implemented and tested on NVIDIA GPU, providing O(NlogN) execution time complexity where N is the number of degrees of freedom. We have confirmed this complexity by solving up to 1 million of degrees of freedom with 448 cores GPU.

  4. Adherence is a multi-dimensional construct in the POUNDS LOST trial

    Science.gov (United States)

    Williamson, Donald A.; Anton, Stephen D.; Han, Hongmei; Champagne, Catherine M.; Allen, Ray; LeBlanc, Eric; Ryan, Donna H.; McManus, Katherine; Laranjo, Nancy; Carey, Vincent J.; Loria, Catherine M.; Bray, George A.; Sacks, Frank M.

    2011-01-01

    Research on the conceptualization of adherence to treatment has not addressed a key question: Is adherence best defined as being a uni-dimensional or multi-dimensional behavioral construct? The primary aim of this study was to test which of these conceptual models best described adherence to a weight management program. This ancillary study was conducted as a part of the POUNDS LOST trial that tested the efficacy of four dietary macro-nutrient compositions for promoting weight loss. A sample of 811 overweight/obese adults was recruited across two clinical sites, and each participant was randomly assigned to one of four macronutrient prescriptions: (1) Low fat (20% of energy), average protein (15% of energy); (2) High fat (40%), average protein (15%); (3) Low fat (20%), high protein (25%); (4) High fat (40%), high protein (25%). Throughout the first 6 months of the study, a computer tracking system collected data on eight indicators of adherence. Computer tracking data from the initial 6 months of the intervention were analyzed using exploratory and confirmatory analyses. Two factors (accounting for 66% of the variance) were identified and confirmed: (1) behavioral adherence and (2) dietary adherence. Behavioral adherence did not differ across the four interventions, but prescription of a high fat diet (vs. a low fat diet) was found to be associated with higher levels of dietary adherence. The findings of this study indicated that adherence to a weight management program was best conceptualized as being multi-dimensional, with two dimensions: behavioral and dietary adherence. PMID:19856202

  5. Multi-spectral pyrometer for gas turbine blade temperature measurement

    Science.gov (United States)

    Gao, Shan; Wang, Lixin; Feng, Chi

    2014-09-01

    To achieve the highest possible turbine inlet temperature requires to accurately measuring the turbine blade temperature. If the temperature of blade frequent beyond the design limits, it will seriously reduce the service life. The problem for the accuracy of the temperature measurement includes the value of the target surface emissivity is unknown and the emissivity model is variability and the thermal radiation of the high temperature environment. In this paper, the multi-spectral pyrometer is designed provided mainly for range 500-1000°, and present a model corrected in terms of the error due to the reflected radiation only base on the turbine geometry and the physical properties of the material. Under different working conditions, the method can reduce the measurement error from the reflect radiation of vanes, make measurement closer to the actual temperature of the blade and calculating the corresponding model through genetic algorithm. The experiment shows that this method has higher accuracy measurements.

  6. Multi-dimensional analysis of high resolution {gamma}-ray data

    Energy Technology Data Exchange (ETDEWEB)

    Flibotte, S.; Huettmeier, U.J.; France, G. de; Haas, B.; Romain, P.; Theisen, Ch.; Vivien, J.P.; Zen, J. [Strasbourg-1 Univ., 67 (France). Centre de Recherches Nucleaires

    1992-12-31

    A new generation of high resolution {gamma}-ray spectrometers capable of recording high-fold coincidence events with a large efficiency will soon be available. Algorithms are developed to analyze high-fold {gamma}-ray coincidences. As a contribution to the software development associated with the EUROGAM spectrometer, the performances of computer codes designed to select multi-dimensional gates from 3-, 4- and 5-fold coincidence databases were tested. The tests were performed on events generated with a Monte Carlo simulation and also on real experimental triple data recorded with the 8{pi} spectrometer and with a preliminary version of the EUROGAM array. (R.P.) 14 refs.; 3 figs.; 3 tabs.

  7. Multi-dimensional analysis of high resolution γ-ray data

    International Nuclear Information System (INIS)

    Flibotte, S.; Huettmeier, U.J.; France, G. de; Haas, B.; Romain, P.; Theisen, Ch.; Vivien, J.P.; Zen, J.

    1992-01-01

    A new generation of high resolution γ-ray spectrometers capable of recording high-fold coincidence events with a large efficiency will soon be available. Algorithms are developed to analyze high-fold γ-ray coincidences. As a contribution to the software development associated with the EUROGAM spectrometer, the performances of computer codes designed to select multi-dimensional gates from 3-, 4- and 5-fold coincidence databases were tested. The tests were performed on events generated with a Monte Carlo simulation and also on real experimental triple data recorded with the 8π spectrometer and with a preliminary version of the EUROGAM array. (R.P.) 14 refs.; 3 figs.; 3 tabs

  8. Benchmarking multi-dimensional large strain consolidation analyses

    International Nuclear Information System (INIS)

    Priestley, D.; Fredlund, M.D.; Van Zyl, D.

    2010-01-01

    Analyzing the consolidation of tailings slurries and dredged fills requires a more extensive formulation than is used for common (small strain) consolidation problems. Large strain consolidation theories have traditionally been limited to 1-D formulations. SoilVision Systems has developed the capacity to analyze large strain consolidation problems in 2 and 3-D. The benchmarking of such formulations is not a trivial task. This paper presents several examples of modeling large strain consolidation in the beta versions of the new software. These examples were taken from the literature and were used to benchmark the large strain formulation used by the new software. The benchmarks reported here are: a comparison to the consolidation software application CONDES0, Townsend's Scenario B and a multi-dimensional analysis of long-term column tests performed on oil sands tailings. All three of these benchmarks were attained using the SVOffice suite. (author)

  9. Molecular cytogenetic analysis of human blastocysts andcytotrophoblasts by multi-color FISH and Spectra Imaging analyses

    Energy Technology Data Exchange (ETDEWEB)

    Weier, Jingly F.; Ferlatte, Christy; Baumgartner, Adolf; Jung,Christine J.; Nguyen, Ha-Nam; Chu, Lisa W.; Pedersen, Roger A.; Fisher,Susan J.; Weier, Heinz-Ulrich G.

    2006-02-08

    Numerical chromosome aberrations in gametes typically lead to failed fertilization, spontaneous abortion or a chromosomally abnormal fetus. By means of preimplantation genetic diagnosis (PGD), we now can screen human embryos in vitro for aneuploidy before transferring the embryos to the uterus. PGD allows us to select unaffected embryos for transfer and increases the implantation rate in in vitro fertilization programs. Molecular cytogenetic analyses using multi-color fluorescence in situ hybridization (FISH) of blastomeres have become the major tool for preimplantation genetic screening of aneuploidy. However, current FISH technology can test for only a small number of chromosome abnormalities and hitherto failed to increase the pregnancy rates as expected. We are in the process of developing technologies to score all 24 chromosomes in single cells within a 3 day time limit, which we believe is vital to the clinical setting. Also, human placental cytotrophoblasts (CTBs) at the fetal-maternal interface acquire aneuploidies as they differentiate to an invasive phenotype. About 20-50% of invasive CTB cells from uncomplicated pregnancies were found aneuploidy, suggesting that the acquisition of aneuploidy is an important component of normal placentation, perhaps limiting the proliferative and invasive potential of CTBs. Since most invasive CTBs are interphase cells and possess extreme heterogeneity, we applied multi-color FISH and repeated hybridizations to investigate individual CTBs. In summary, this study demonstrates the strength of Spectral Imaging analysis and repeated hybridizations, which provides a basis for full karyotype analysis of single interphase cells.

  10. A NEW MULTI-SPECTRAL THRESHOLD NORMALIZED DIFFERENCE WATER INDEX (MST-NDWI WATER EXTRACTION METHOD – A CASE STUDY IN YANHE WATERSHED

    Directory of Open Access Journals (Sweden)

    Y. Zhou

    2018-05-01

    Full Text Available Accurate remote sensing water extraction is one of the primary tasks of watershed ecological environment study. Since the Yanhe water system has typical characteristics of a small water volume and narrow river channel, which leads to the difficulty for conventional water extraction methods such as Normalized Difference Water Index (NDWI. A new Multi-Spectral Threshold segmentation of the NDWI (MST-NDWI water extraction method is proposed to achieve the accurate water extraction in Yanhe watershed. In the MST-NDWI method, the spectral characteristics of water bodies and typical backgrounds on the Landsat/TM images have been evaluated in Yanhe watershed. The multi-spectral thresholds (TM1, TM4, TM5 based on maximum-likelihood have been utilized before NDWI water extraction to realize segmentation for a division of built-up lands and small linear rivers. With the proposed method, a water map is extracted from the Landsat/TM images in 2010 in China. An accuracy assessment is conducted to compare the proposed method with the conventional water indexes such as NDWI, Modified NDWI (MNDWI, Enhanced Water Index (EWI, and Automated Water Extraction Index (AWEI. The result shows that the MST-NDWI method generates better water extraction accuracy in Yanhe watershed and can effectively diminish the confusing background objects compared to the conventional water indexes. The MST-NDWI method integrates NDWI and Multi-Spectral Threshold segmentation algorithms, with richer valuable information and remarkable results in accurate water extraction in Yanhe watershed.

  11. TeraSCREEN: multi-frequency multi-mode Terahertz screening for border checks

    Science.gov (United States)

    Alexander, Naomi E.; Alderman, Byron; Allona, Fernando; Frijlink, Peter; Gonzalo, Ramón; Hägelen, Manfred; Ibáñez, Asier; Krozer, Viktor; Langford, Marian L.; Limiti, Ernesto; Platt, Duncan; Schikora, Marek; Wang, Hui; Weber, Marc Andree

    2014-06-01

    The challenge for any security screening system is to identify potentially harmful objects such as weapons and explosives concealed under clothing. Classical border and security checkpoints are no longer capable of fulfilling the demands of today's ever growing security requirements, especially with respect to the high throughput generally required which entails a high detection rate of threat material and a low false alarm rate. TeraSCREEN proposes to develop an innovative concept of multi-frequency multi-mode Terahertz and millimeter-wave detection with new automatic detection and classification functionalities. The system developed will demonstrate, at a live control point, the safe automatic detection and classification of objects concealed under clothing, whilst respecting privacy and increasing current throughput rates. This innovative screening system will combine multi-frequency, multi-mode images taken by passive and active subsystems which will scan the subjects and obtain complementary spatial and spectral information, thus allowing for automatic threat recognition. The TeraSCREEN project, which will run from 2013 to 2016, has received funding from the European Union's Seventh Framework Programme under the Security Call. This paper will describe the project objectives and approach.

  12. Multi-perspective views of students’ difficulties with one-dimensional vector and two-dimensional vector

    Science.gov (United States)

    Fauzi, Ahmad; Ratna Kawuri, Kunthi; Pratiwi, Retno

    2017-01-01

    Researchers of students’ conceptual change usually collects data from written tests and interviews. Moreover, reports of conceptual change often simply refer to changes in concepts, such as on a test, without any identification of the learning processes that have taken place. Research has shown that students have difficulties with vectors in university introductory physics courses and high school physics courses. In this study, we intended to explore students’ understanding of one-dimensional and two-dimensional vector in multi perspective views. In this research, we explore students’ understanding through test perspective and interviews perspective. Our research study adopted the mixed-methodology design. The participants of this research were sixty students of third semester of physics education department. The data of this research were collected by testand interviews. In this study, we divided the students’ understanding of one-dimensional vector and two-dimensional vector in two categories, namely vector skills of the addition of one-dimensionaland two-dimensional vector and the relation between vector skills and conceptual understanding. From the investigation, only 44% of students provided correct answer for vector skills of the addition of one-dimensional and two-dimensional vector and only 27% students provided correct answer for the relation between vector skills and conceptual understanding.

  13. Principle component analysis and linear discriminant analysis of multi-spectral autofluorescence imaging data for differentiating basal cell carcinoma and healthy skin

    Science.gov (United States)

    Chernomyrdin, Nikita V.; Zaytsev, Kirill I.; Lesnichaya, Anastasiya D.; Kudrin, Konstantin G.; Cherkasova, Olga P.; Kurlov, Vladimir N.; Shikunova, Irina A.; Perchik, Alexei V.; Yurchenko, Stanislav O.; Reshetov, Igor V.

    2016-09-01

    In present paper, an ability to differentiate basal cell carcinoma (BCC) and healthy skin by combining multi-spectral autofluorescence imaging, principle component analysis (PCA), and linear discriminant analysis (LDA) has been demonstrated. For this purpose, the experimental setup, which includes excitation and detection branches, has been assembled. The excitation branch utilizes a mercury arc lamp equipped with a 365-nm narrow-linewidth excitation filter, a beam homogenizer, and a mechanical chopper. The detection branch employs a set of bandpass filters with the central wavelength of spectral transparency of λ = 400, 450, 500, and 550 nm, and a digital camera. The setup has been used to study three samples of freshly excised BCC. PCA and LDA have been implemented to analyze the data of multi-spectral fluorescence imaging. Observed results of this pilot study highlight the advantages of proposed imaging technique for skin cancer diagnosis.

  14. Multi-Dimensional Auction Mechanisms for Crowdsourced Mobile Video Streaming

    OpenAIRE

    Tang, Ming; Pang, Haitian; Wang, Shou; Gao, Lin; Huang, Jianwei; Sun, Lifeng

    2017-01-01

    Crowdsourced mobile video streaming enables nearby mobile video users to aggregate network resources to improve their video streaming performances. However, users are often selfish and may not be willing to cooperate without proper incentives. Designing an incentive mechanism for such a scenario is challenging due to the users' asynchronous downloading behaviors and their private valuations for multi-bitrate coded videos. In this work, we propose both single-object and multi-object multi-dime...

  15. Estimate of pulse-sequence data acquisition system for multi-dimensional measurement

    Energy Technology Data Exchange (ETDEWEB)

    Kitamura, Yasunori; Sakae, Takeji; Nohtomi, Akihiro; Matoba, Masaru [Kyushu Univ., Fukuoka (Japan). Faculty of Engineering; Matsumoto, Yuzuru

    1996-07-01

    A pulse-sequence data acquisition system has been newly designed and estimated for the measurement of one- or multi-dimensional pulse train coming from radiation detectors. In this system, in order to realize the pulse-sequence data acquisition, the arrival time of each pulse is recorded to a memory of a personal computer (PC). For the multi-dimensional data acquisition with several input channels, each arrival-time data is tagged with a `flag` which indicates the input channel of arriving pulse. Counting losses due to the existence of processing time of the PC are expected to be reduced by using a First-In-First-Out (FIFO) memory unit. In order to verify this system, a computer simulation was performed, Various sets of random pulse trains with different mean pulse rate (1-600 kcps) were generated by using Monte Carlo simulation technique. Those pulse trains were dealt with another code which simulates the newly-designed data acquisition system including a FIFO memory unit; the memory size was assumed to be 0-100 words. And the recorded pulse trains on the PC with the various FIFO memory sizes have been observed. From the result of the simulation, it appears that the system with 3 words FIFO memory unit works successfully up to the pulse rate of 10 kcps without any severe counting losses. (author)

  16. Estimate of pulse-sequence data acquisition system for multi-dimensional measurement

    International Nuclear Information System (INIS)

    Kitamura, Yasunori; Sakae, Takeji; Nohtomi, Akihiro; Matoba, Masaru; Matsumoto, Yuzuru.

    1996-01-01

    A pulse-sequence data acquisition system has been newly designed and estimated for the measurement of one- or multi-dimensional pulse train coming from radiation detectors. In this system, in order to realize the pulse-sequence data acquisition, the arrival time of each pulse is recorded to a memory of a personal computer (PC). For the multi-dimensional data acquisition with several input channels, each arrival-time data is tagged with a 'flag' which indicates the input channel of arriving pulse. Counting losses due to the existence of processing time of the PC are expected to be reduced by using a First-In-First-Out (FIFO) memory unit. In order to verify this system, a computer simulation was performed, Various sets of random pulse trains with different mean pulse rate (1-600 kcps) were generated by using Monte Carlo simulation technique. Those pulse trains were dealt with another code which simulates the newly-designed data acquisition system including a FIFO memory unit; the memory size was assumed to be 0-100 words. And the recorded pulse trains on the PC with the various FIFO memory sizes have been observed. From the result of the simulation, it appears that the system with 3 words FIFO memory unit works successfully up to the pulse rate of 10 kcps without any severe counting losses. (author)

  17. Information Retrieval from SAGE II and MFRSR Multi-Spectral Extinction Measurements

    Science.gov (United States)

    Lacis, Andrew A.; Hansen, James E. (Technical Monitor)

    2001-01-01

    Direct beam spectral extinction measurements of solar radiation contain important information on atmospheric composition in a form that is essentially free from multiple scattering contributions that otherwise tend to complicate the data analysis and information retrieval. Such direct beam extinction measurements are available from the solar occultation satellite-based measurements made by the Stratospheric and Aerosol Gas Experiment (SAGE II) instrument and by ground-based Multi-Filter Shadowband Radiometers (MFRSRs). The SAGE II data provide cross-sectional slices of the atmosphere twice per orbit at seven wavelengths between 385 and 1020 nm with approximately 1 km vertical resolution, while the MFRSR data provide atmospheric column measurements at six wavelengths between 415 and 940 nm but at one minute time intervals. We apply the same retrieval technique of simultaneous least-squares fit to the observed spectral extinctions to retrieve aerosol optical depth, effective radius and variance, and ozone, nitrogen dioxide, and water vapor amounts from the SAGE II and MFRSR measurements. The retrieval technique utilizes a physical model approach based on laboratory measurements of ozone and nitrogen dioxide extinction, line-by-line and numerical k-distribution calculations for water vapor absorption, and Mie scattering constraints on aerosol spectral extinction properties. The SAGE II measurements have the advantage of being self-calibrating in that deep space provides an effective zero point for the relative spectral extinctions. The MFRSR measurements require periodic clear-day Langley regression calibration events to maintain accurate knowledge of instrument calibration.

  18. Devaney chaos, Li-Yorke chaos, and multi-dimensional Li-Yorke chaos for topological dynamics

    Science.gov (United States)

    Dai, Xiongping; Tang, Xinjia

    2017-11-01

    Let π : T × X → X, written T↷π X, be a topological semiflow/flow on a uniform space X with T a multiplicative topological semigroup/group not necessarily discrete. We then prove: If T↷π X is non-minimal topologically transitive with dense almost periodic points, then it is sensitive to initial conditions. As a result of this, Devaney chaos ⇒ Sensitivity to initial conditions, for this very general setting. Let R+↷π X be a C0-semiflow on a Polish space; then we show: If R+↷π X is topologically transitive with at least one periodic point p and there is a dense orbit with no nonempty interior, then it is multi-dimensional Li-Yorke chaotic; that is, there is a uncountable set Θ ⊆ X such that for any k ≥ 2 and any distinct points x1 , … ,xk ∈ Θ, one can find two time sequences sn → ∞ ,tn → ∞ with Moreover, let X be a non-singleton Polish space; then we prove: Any weakly-mixing C0-semiflow R+↷π X is densely multi-dimensional Li-Yorke chaotic. Any minimal weakly-mixing topological flow T↷π X with T abelian is densely multi-dimensional Li-Yorke chaotic. Any weakly-mixing topological flow T↷π X is densely Li-Yorke chaotic. We in addition construct a completely Li-Yorke chaotic minimal SL (2 , R)-acting flow on the compact metric space R ∪ { ∞ }. Our various chaotic dynamics are sensitive to the choices of the topology of the phase semigroup/group T.

  19. One-, two- and three-dimensional transport codes using multi-group double-differential form cross sections

    International Nuclear Information System (INIS)

    Mori, Takamasa; Nakagawa, Masayuki; Sasaki, Makoto.

    1988-11-01

    We have developed a group of computer codes to realize the accurate transport calculation by using the multi-group double-differential form cross section. This type of cross section can correctly take account of the energy-angle correlated reaction kinematics. Accordingly, the transport phenomena in materials with highly anisotropic scattering are accurately calculated by using this cross section. They include the following four codes or code systems: PROF-DD : a code system to generate the multi-group double-differential form cross section library by processing basic nuclear data file compiled in the ENDF / B-IV or -V format, ANISN-DD : a one-dimensional transport code based on the discrete ordinate method, DOT-DD : a two-dimensional transport code based on the discrete ordinate method, MORSE-DD : a three-dimensional transport code based on the Monte Carlo method. In addition to these codes, several auxiliary codes have been developed to process calculated results. This report describes the calculation algorithm employed in these codes and how to use them. (author)

  20. Ionizing Shocks in Argon. Part 2: Transient and Multi-Dimensional Effects (Preprint)

    Science.gov (United States)

    2010-09-09

    stability in ionizing monatomic gases. Part 1. Argon ,” J. Fluid Mech., 84, 55 (1978). 2M. P. F. Bristow and I. I. Glass, “ Polarizability of singly...Article 3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Ionizing Shocks in Argon . Part 2: Transient...Physics. 14. ABSTRACT We extend the computations of ionizing shocks in argon to unsteady and multi-dimensional, using a collisional-radiative

  1. High-performance blob-based iterative three-dimensional reconstruction in electron tomography using multi-GPUs

    Directory of Open Access Journals (Sweden)

    Wan Xiaohua

    2012-06-01

    Full Text Available Abstract Background Three-dimensional (3D reconstruction in electron tomography (ET has emerged as a leading technique to elucidate the molecular structures of complex biological specimens. Blob-based iterative methods are advantageous reconstruction methods for 3D reconstruction in ET, but demand huge computational costs. Multiple graphic processing units (multi-GPUs offer an affordable platform to meet these demands. However, a synchronous communication scheme between multi-GPUs leads to idle GPU time, and a weighted matrix involved in iterative methods cannot be loaded into GPUs especially for large images due to the limited available memory of GPUs. Results In this paper we propose a multilevel parallel strategy combined with an asynchronous communication scheme and a blob-ELLR data structure to efficiently perform blob-based iterative reconstructions on multi-GPUs. The asynchronous communication scheme is used to minimize the idle GPU time so as to asynchronously overlap communications with computations. The blob-ELLR data structure only needs nearly 1/16 of the storage space in comparison with ELLPACK-R (ELLR data structure and yields significant acceleration. Conclusions Experimental results indicate that the multilevel parallel scheme combined with the asynchronous communication scheme and the blob-ELLR data structure allows efficient implementations of 3D reconstruction in ET on multi-GPUs.

  2. Multi-dimensional photonic states from a quantum dot

    Science.gov (United States)

    Lee, J. P.; Bennett, A. J.; Stevenson, R. M.; Ellis, D. J. P.; Farrer, I.; Ritchie, D. A.; Shields, A. J.

    2018-04-01

    Quantum states superposed across multiple particles or degrees of freedom offer an advantage in the development of quantum technologies. Creating these states deterministically and with high efficiency is an ongoing challenge. A promising approach is the repeated excitation of multi-level quantum emitters, which have been shown to naturally generate light with quantum statistics. Here we describe how to create one class of higher dimensional quantum state, a so called W-state, which is superposed across multiple time bins. We do this by repeated Raman scattering of photons from a charged quantum dot in a pillar microcavity. We show this method can be scaled to larger dimensions with no reduction in coherence or single-photon character. We explain how to extend this work to enable the deterministic creation of arbitrary time-bin encoded qudits.

  3. Developing Multi-Dimensional Evaluation Criteria for English Learning Websites with University Students and Professors

    Science.gov (United States)

    Liu, Gi-Zen; Liu, Zih-Hui; Hwang, Gwo-Jen

    2011-01-01

    Many English learning websites have been developed worldwide, but little research has been conducted concerning the development of comprehensive evaluation criteria. The main purpose of this study is thus to construct a multi-dimensional set of criteria to help learners and teachers evaluate the quality of English learning websites. These…

  4. Development and application of a living probabilistic safety assessment tool: Multi-objective multi-dimensional optimization of surveillance requirements in NPPs considering their ageing

    International Nuclear Information System (INIS)

    Kančev, Duško; Čepin, Marko; Gjorgiev, Blaže

    2014-01-01

    The benefits of utilizing the probabilistic safety assessment towards improvement of nuclear power plant safety are presented in this paper. Namely, a nuclear power plant risk reduction can be achieved by risk-informed optimization of the deterministically-determined surveillance requirements. A living probabilistic safety assessment tool for time-dependent risk analysis on component, system and plant level is developed. The study herein focuses on the application of this living probabilistic safety assessment tool as a computer platform for multi-objective multi-dimensional optimization of the surveillance requirements of selected safety equipment seen from the aspect of the risk-informed reasoning. The living probabilistic safety assessment tool is based on a newly developed model for calculating time-dependent unavailability of ageing safety equipment within nuclear power plants. By coupling the time-dependent unavailability model with a commercial software used for probabilistic safety assessment modelling on plant level, the frames of the new platform i.e. the living probabilistic safety assessment tool are established. In such way, the time-dependent core damage frequency is obtained and is further on utilized as first objective function within a multi-objective multi-dimensional optimization case study presented within this paper. The test and maintenance costs are designated as the second and the incurred dose due to performing the test and maintenance activities as the third objective function. The obtained results underline, in general, the usefulness and importance of a living probabilistic safety assessment, seen as a dynamic probabilistic safety assessment tool opposing the conventional, time-averaged unavailability-based, probabilistic safety assessment. The results of the optimization, in particular, indicate that test intervals derived as optimal differ from the deterministically-determined ones defined within the existing technical specifications

  5. A Dimensionality Reduction-Based Multi-Step Clustering Method for Robust Vessel Trajectory Analysis

    Directory of Open Access Journals (Sweden)

    Huanhuan Li

    2017-08-01

    Full Text Available The Shipboard Automatic Identification System (AIS is crucial for navigation safety and maritime surveillance, data mining and pattern analysis of AIS information have attracted considerable attention in terms of both basic research and practical applications. Clustering of spatio-temporal AIS trajectories can be used to identify abnormal patterns and mine customary route data for transportation safety. Thus, the capacities of navigation safety and maritime traffic monitoring could be enhanced correspondingly. However, trajectory clustering is often sensitive to undesirable outliers and is essentially more complex compared with traditional point clustering. To overcome this limitation, a multi-step trajectory clustering method is proposed in this paper for robust AIS trajectory clustering. In particular, the Dynamic Time Warping (DTW, a similarity measurement method, is introduced in the first step to measure the distances between different trajectories. The calculated distances, inversely proportional to the similarities, constitute a distance matrix in the second step. Furthermore, as a widely-used dimensional reduction method, Principal Component Analysis (PCA is exploited to decompose the obtained distance matrix. In particular, the top k principal components with above 95% accumulative contribution rate are extracted by PCA, and the number of the centers k is chosen. The k centers are found by the improved center automatically selection algorithm. In the last step, the improved center clustering algorithm with k clusters is implemented on the distance matrix to achieve the final AIS trajectory clustering results. In order to improve the accuracy of the proposed multi-step clustering algorithm, an automatic algorithm for choosing the k clusters is developed according to the similarity distance. Numerous experiments on realistic AIS trajectory datasets in the bridge area waterway and Mississippi River have been implemented to compare our

  6. A Dimensionality Reduction-Based Multi-Step Clustering Method for Robust Vessel Trajectory Analysis.

    Science.gov (United States)

    Li, Huanhuan; Liu, Jingxian; Liu, Ryan Wen; Xiong, Naixue; Wu, Kefeng; Kim, Tai-Hoon

    2017-08-04

    The Shipboard Automatic Identification System (AIS) is crucial for navigation safety and maritime surveillance, data mining and pattern analysis of AIS information have attracted considerable attention in terms of both basic research and practical applications. Clustering of spatio-temporal AIS trajectories can be used to identify abnormal patterns and mine customary route data for transportation safety. Thus, the capacities of navigation safety and maritime traffic monitoring could be enhanced correspondingly. However, trajectory clustering is often sensitive to undesirable outliers and is essentially more complex compared with traditional point clustering. To overcome this limitation, a multi-step trajectory clustering method is proposed in this paper for robust AIS trajectory clustering. In particular, the Dynamic Time Warping (DTW), a similarity measurement method, is introduced in the first step to measure the distances between different trajectories. The calculated distances, inversely proportional to the similarities, constitute a distance matrix in the second step. Furthermore, as a widely-used dimensional reduction method, Principal Component Analysis (PCA) is exploited to decompose the obtained distance matrix. In particular, the top k principal components with above 95% accumulative contribution rate are extracted by PCA, and the number of the centers k is chosen. The k centers are found by the improved center automatically selection algorithm. In the last step, the improved center clustering algorithm with k clusters is implemented on the distance matrix to achieve the final AIS trajectory clustering results. In order to improve the accuracy of the proposed multi-step clustering algorithm, an automatic algorithm for choosing the k clusters is developed according to the similarity distance. Numerous experiments on realistic AIS trajectory datasets in the bridge area waterway and Mississippi River have been implemented to compare our proposed method with

  7. Investigation of multi-dimensional computational models for calculating pollutant transport

    International Nuclear Information System (INIS)

    Pepper, D.W.; Cooper, R.E.; Baker, A.J.

    1980-01-01

    A performance study of five numerical solution algorithms for multi-dimensional advection-diffusion prediction on mesoscale grids was made. Test problems include transport of point and distributed sources, and a simulation of a continuous source. In all cases, analytical solutions are available to assess relative accuracy. The particle-in-cell and second-moment algorithms, both of which employ sub-grid resolution coupled with Lagrangian advection, exhibit superior accuracy in modeling a point source release. For modeling of a distributed source, algorithms based upon the pseudospectral and finite element interpolation concepts, exhibit improved accuracy on practical discretizations

  8. A Multi-Dimensional Classification Model for Scientific Workflow Characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Ramakrishnan, Lavanya; Plale, Beth

    2010-04-05

    Workflows have been used to model repeatable tasks or operations in manufacturing, business process, and software. In recent years, workflows are increasingly used for orchestration of science discovery tasks that use distributed resources and web services environments through resource models such as grid and cloud computing. Workflows have disparate re uirements and constraints that affects how they might be managed in distributed environments. In this paper, we present a multi-dimensional classification model illustrated by workflow examples obtained through a survey of scientists from different domains including bioinformatics and biomedical, weather and ocean modeling, astronomy detailing their data and computational requirements. The survey results and classification model contribute to the high level understandingof scientific workflows.

  9. Frequency position modulation using multi-spectral projections

    Science.gov (United States)

    Goodman, Joel; Bertoncini, Crystal; Moore, Michael; Nousain, Bryan; Cowart, Gregory

    2012-10-01

    In this paper we present an approach to harness multi-spectral projections (MSPs) to carefully shape and locate tones in the spectrum, enabling a new and robust modulation in which a signal's discrete frequency support is used to represent symbols. This method, called Frequency Position Modulation (FPM), is an innovative extension to MT-FSK and OFDM and can be non-uniformly spread over many GHz of instantaneous bandwidth (IBW), resulting in a communications system that is difficult to intercept and jam. The FPM symbols are recovered using adaptive projections that in part employ an analog polynomial nonlinearity paired with an analog-to-digital converter (ADC) sampling at a rate at that is only a fraction of the IBW of the signal. MSPs also facilitate using commercial of-the-shelf (COTS) ADCs with uniform-sampling, standing in sharp contrast to random linear projections by random sampling, which requires a full Nyquist rate sample-and-hold. Our novel communication system concept provides an order of magnitude improvement in processing gain over conventional LPI/LPD communications (e.g., FH- or DS-CDMA) and facilitates the ability to operate in interference laden environments where conventional compressed sensing receivers would fail. We quantitatively analyze the bit error rate (BER) and processing gain (PG) for a maximum likelihood based FPM demodulator and demonstrate its performance in interference laden conditions.

  10. Multi-octave spectral beam combiner on ultra-broadband photonic integrated circuit platform.

    Science.gov (United States)

    Stanton, Eric J; Heck, Martijn J R; Bovington, Jock; Spott, Alexander; Bowers, John E

    2015-05-04

    We present the design of a novel platform that is able to combine optical frequency bands spanning 4.2 octaves from ultraviolet to mid-wave infrared into a single, low M2 output waveguide. We present the design and realization of a key component in this platform that combines the wavelength bands of 350 nm - 1500 nm and 1500 nm - 6500 nm with demonstrated efficiency greater than 90% in near-infrared and mid-wave infrared. The multi-octave spectral beam combiner concept is realized using an integrated platform with silicon nitride waveguides and silicon waveguides. Simulated bandwidth is shown to be over four octaves, and measured bandwidth is shown over two octaves, limited by the availability of sources.

  11. ANALISIS POSITIONING KERIPIK KENTANG DENGAN PENDEKATAN METODE MULTI DIMENSIONAL SCALLING DI KOTA BATU

    Directory of Open Access Journals (Sweden)

    Siti Asmaul Mustaniroh

    2016-11-01

    Full Text Available Potato chips are one of the main products of Batu city. Based on data from Batu government’s  in 2002, there are only 2 selling units. In 2008, amount of potato chips   and another selling unit, so the research on positioning of potato chips in Batu city is important to do. The purpose of this research are to understand which attributes which influence custumer consideration to buy and to consume potato chips, and to analyze positioning which is formed between four potato chips brand (Cita Mandiri, Gizi Food, Leo, Rimbaku based on costumer perception in Batu city by using Multi Dimensional Scaling method. Attributes that influence costumer to buy and to consume potato chips are product (taste and crunchy level, price (product price compare with quality, and considerable price products, distribution (the local stock of the products or how strategic is the selling location, promotion (the using of advertising or promotion media (such as internet, radio, or brochure. Based on the Multi Dimensional Scaling Method, positioning follow this structure are Gizi Food as market leader, Leo as market challenger, and Rimbaku and Cita Mandiri as market follower.

  12. 50th Anniversary Celebration: 46th Sagamore Army Materials Research Conference on Advances and Needs in Multi-Spectral Transparent Materials Technology

    National Research Council Canada - National Science Library

    Sands, James M; McCauley, James W

    2008-01-01

    ... technology issues of critical importance to the U.S. Army community. The 46th Sagamore Army Materials Research Conference continued this tradition with a focus on Advances and Needs in Multi-Spectral Transparent Materials Technology...

  13. Dynameomics: a multi-dimensional analysis-optimized database for dynamic protein data.

    Science.gov (United States)

    Kehl, Catherine; Simms, Andrew M; Toofanny, Rudesh D; Daggett, Valerie

    2008-06-01

    The Dynameomics project is our effort to characterize the native-state dynamics and folding/unfolding pathways of representatives of all known protein folds by way of molecular dynamics simulations, as described by Beck et al. (in Protein Eng. Des. Select., the first paper in this series). The data produced by these simulations are highly multidimensional in structure and multi-terabytes in size. Both of these features present significant challenges for storage, retrieval and analysis. For optimal data modeling and flexibility, we needed a platform that supported both multidimensional indices and hierarchical relationships between related types of data and that could be integrated within our data warehouse, as described in the accompanying paper directly preceding this one. For these reasons, we have chosen On-line Analytical Processing (OLAP), a multi-dimensional analysis optimized database, as an analytical platform for these data. OLAP is a mature technology in the financial sector, but it has not been used extensively for scientific analysis. Our project is further more unusual for its focus on the multidimensional and analytical capabilities of OLAP rather than its aggregation capacities. The dimensional data model and hierarchies are very flexible. The query language is concise for complex analysis and rapid data retrieval. OLAP shows great promise for the dynamic protein analysis for bioengineering and biomedical applications. In addition, OLAP may have similar potential for other scientific and engineering applications involving large and complex datasets.

  14. Multi-dimensional self-esteem and magnitude of change in the treatment of anorexia nervosa.

    Science.gov (United States)

    Collin, Paula; Karatzias, Thanos; Power, Kevin; Howard, Ruth; Grierson, David; Yellowlees, Alex

    2016-03-30

    Self-esteem improvement is one of the main targets of inpatient eating disorder programmes. The present study sought to examine multi-dimensional self-esteem and magnitude of change in eating psychopathology among adults participating in a specialist inpatient treatment programme for anorexia nervosa. A standardised assessment battery, including multi-dimensional measures of eating psychopathology and self-esteem, was completed pre- and post-treatment for 60 participants (all white Scottish female, mean age=25.63 years). Statistical analyses indicated that self-esteem improved with eating psychopathology and weight over the course of treatment, but that improvements were domain-specific and small in size. Global self-esteem was not predictive of treatment outcome. Dimensions of self-esteem at baseline (Lovability and Moral Self-approval), however, were predictive of magnitude of change in dimensions of eating psychopathology (Shape and Weight Concern). Magnitude of change in Self-Control and Lovability dimensions were predictive of magnitude of change in eating psychopathology (Global, Dietary Restraint, and Shape Concern). The results of this study demonstrate that the relationship between self-esteem and eating disorder is far from straightforward, and suggest that future research and interventions should focus less exclusively on self-esteem as a uni-dimensional psychological construct. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  15. MEASURING PERFORMANCE IN ORGANIZATIONS FROM MULTI-DIMENSIONAL PERSPECTIVE

    Directory of Open Access Journals (Sweden)

    ȘTEFĂNESCU CRISTIAN

    2017-08-01

    Full Text Available In turbulent financial and economic present conditions a major challenge for the general management of organizations and in particular for the strategic human resources management is to establish a clear, coherent and consistent framework in terms of measuring organizational performance and economic efficiency. This paper aims to conduct an exploratory research of literature concerning measuring organizational performance. Based on the results of research the paper proposes a multi-dimensional model for measuring organizational performance providing a mechanism that will allow quantification of performance based on selected criteria. The model will attempt to eliminate inconsistencies and incongruities of organizational effectiveness models developed by specialists from organization theory area, performance measurement models developed by specialists from accounting management area and models of measuring the efficiency and effectiveness developed by specialists from strategic management and entrepreneurship areas.

  16. Multi-stage En/decoders integrated in low loss Si3N4-SiO2 for incoherent spectral amplitude OCDMA on PON

    NARCIS (Netherlands)

    Huiszoon, B.; Leinse, Arne; Geuzebroek, D.H.; Augustin, L.M.; Klein, E.J.; de Waardt, H.; Khoe, G.D.; Koonen, A.M.J.; Emplit, Ph.; Delqué, M.; Gorza, S.-P.; Kockaert, P.; Leijtens, X

    2007-01-01

    In this paper, we show and analyze, for the first time, the static performance of integrated multi-stage cascade and tree spectral amplitude OCDMA en/decoders (E/Ds) which are fabricated in the low loss Si3N4–SiO2 material system. Combined with incoherent broad spectral sources these E/Ds enable

  17. Multi-robot task allocation based on two dimensional artificial fish swarm algorithm

    Science.gov (United States)

    Zheng, Taixiong; Li, Xueqin; Yang, Liangyi

    2007-12-01

    The problem of task allocation for multiple robots is to allocate more relative-tasks to less relative-robots so as to minimize the processing time of these tasks. In order to get optimal multi-robot task allocation scheme, a twodimensional artificial swarm algorithm based approach is proposed in this paper. In this approach, the normal artificial fish is extended to be two dimension artificial fish. In the two dimension artificial fish, each vector of primary artificial fish is extended to be an m-dimensional vector. Thus, each vector can express a group of tasks. By redefining the distance between artificial fish and the center of artificial fish, the behavior of two dimension fish is designed and the task allocation algorithm based on two dimension artificial swarm algorithm is put forward. At last, the proposed algorithm is applied to the problem of multi-robot task allocation and comparer with GA and SA based algorithm is done. Simulation and compare result shows the proposed algorithm is effective.

  18. Angular difference feature extraction for urban scene classification using ZY-3 multi-angle high-resolution satellite imagery

    Science.gov (United States)

    Huang, Xin; Chen, Huijun; Gong, Jianya

    2018-01-01

    Spaceborne multi-angle images with a high-resolution are capable of simultaneously providing spatial details and three-dimensional (3D) information to support detailed and accurate classification of complex urban scenes. In recent years, satellite-derived digital surface models (DSMs) have been increasingly utilized to provide height information to complement spectral properties for urban classification. However, in such a way, the multi-angle information is not effectively exploited, which is mainly due to the errors and difficulties of the multi-view image matching and the inaccuracy of the generated DSM over complex and dense urban scenes. Therefore, it is still a challenging task to effectively exploit the available angular information from high-resolution multi-angle images. In this paper, we investigate the potential for classifying urban scenes based on local angular properties characterized from high-resolution ZY-3 multi-view images. Specifically, three categories of angular difference features (ADFs) are proposed to describe the angular information at three levels (i.e., pixel, feature, and label levels): (1) ADF-pixel: the angular information is directly extrapolated by pixel comparison between the multi-angle images; (2) ADF-feature: the angular differences are described in the feature domains by comparing the differences between the multi-angle spatial features (e.g., morphological attribute profiles (APs)). (3) ADF-label: label-level angular features are proposed based on a group of urban primitives (e.g., buildings and shadows), in order to describe the specific angular information related to the types of primitive classes. In addition, we utilize spatial-contextual information to refine the multi-level ADF features using superpixel segmentation, for the purpose of alleviating the effects of salt-and-pepper noise and representing the main angular characteristics within a local area. The experiments on ZY-3 multi-angle images confirm that the proposed

  19. Quantification of source impact to PM using three-dimensional weighted factor model analysis on multi-site data

    Science.gov (United States)

    Shi, Guoliang; Peng, Xing; Huangfu, Yanqi; Wang, Wei; Xu, Jiao; Tian, Yingze; Feng, Yinchang; Ivey, Cesunica E.; Russell, Armistead G.

    2017-07-01

    Source apportionment technologies are used to understand the impacts of important sources of particulate matter (PM) air quality, and are widely used for both scientific studies and air quality management. Generally, receptor models apportion speciated PM data from a single sampling site. With the development of large scale monitoring networks, PM speciation are observed at multiple sites in an urban area. For these situations, the models should account for three factors, or dimensions, of the PM, including the chemical species concentrations, sampling periods and sampling site information, suggesting the potential power of a three-dimensional source apportionment approach. However, the principle of three-dimensional Parallel Factor Analysis (Ordinary PARAFAC) model does not always work well in real environmental situations for multi-site receptor datasets. In this work, a new three-way receptor model, called "multi-site three way factor analysis" model is proposed to deal with the multi-site receptor datasets. Synthetic datasets were developed and introduced into the new model to test its performance. Average absolute error (AAE, between estimated and true contributions) for extracted sources were all less than 50%. Additionally, three-dimensional ambient datasets from a Chinese mega-city, Chengdu, were analyzed using this new model to assess the application. Four factors are extracted by the multi-site WFA3 model: secondary source have the highest contributions (64.73 and 56.24 μg/m3), followed by vehicular exhaust (30.13 and 33.60 μg/m3), crustal dust (26.12 and 29.99 μg/m3) and coal combustion (10.73 and 14.83 μg/m3). The model was also compared to PMF, with general agreement, though PMF suggested a lower crustal contribution.

  20. Three-dimensional multi-terminal superconductive integrated circuit inductance extraction

    International Nuclear Information System (INIS)

    Fourie, Coenrad J; Wetzstein, Olaf; Kunert, Jürgen; Ortlepp, Thomas

    2011-01-01

    Accurate inductance calculations are critical for the design of both digital and analogue superconductive integrated circuits, and three-dimensional calculations are gaining importance with the advent of inductive biasing, inductive coupling and sky plane shielding for RSFQ cells. InductEx, an extraction programme based on the three-dimensional calculation software FastHenry, was proposed earlier. InductEx uses segmentation techniques designed to accurately model the geometries of superconductive integrated circuit structures. Inductance extraction for complex multi-terminal three-dimensional structures from current distributions calculated by FastHenry is discussed. Results for both a reflection plane modelling an infinite ground plane and a finite segmented ground plane that allows inductive elements to extend over holes in the ground plane are shown. Several SQUIDs were designed for and fabricated with IPHT's 1 kA cm −2 RSFQ1D niobium process. These SQUIDs implement a number of loop structures that span different layers, include vias, inductively coupled control lines and ground plane holes. We measured the loop inductance of these SQUIDs and show how the results are used to calibrate the layer parameters in InductEx and verify the extraction accuracy. We also show that, with proper modelling, FastHenry can be fast enough to be used for the extraction of typical RSFQ cell inductances.

  1. Determining fast orientation changes of multi-spectral line cameras from the primary images

    Science.gov (United States)

    Wohlfeil, Jürgen

    2012-01-01

    Fast orientation changes of airborne and spaceborne line cameras cannot always be avoided. In such cases it is essential to measure them with high accuracy to ensure a good quality of the resulting imagery products. Several approaches exist to support the orientation measurement by using optical information received through the main objective/telescope. In this article an approach is proposed that allows the determination of non-systematic orientation changes between every captured line. It does not require any additional camera hardware or onboard processing capabilities but the payload images and a rough estimate of the camera's trajectory. The approach takes advantage of the typical geometry of multi-spectral line cameras with a set of linear sensor arrays for different spectral bands on the focal plane. First, homologous points are detected within the heavily distorted images of different spectral bands. With their help a connected network of geometrical correspondences can be built up. This network is used to calculate the orientation changes of the camera with the temporal and angular resolution of the camera. The approach was tested with an extensive set of aerial surveys covering a wide range of different conditions and achieved precise and reliable results.

  2. Multiple resonant absorber with prism-incorporated graphene and one-dimensional photonic crystals in the visible and near-infrared spectral range

    Science.gov (United States)

    Zou, X. J.; Zheng, G. G.; Chen, Y. Y.; Xu, L. H.; Lai, M.

    2018-04-01

    A multi-band absorber constructed from prism-incorporated one-dimensional photonic crystal (1D-PhC) containing graphene defects is achieved theoretically in the visible and near-infrared (vis-NIR) spectral range. By means of the transfer matrix method (TMM), the effect of structural parameters on the optical response of the structure has been investigated. It is possible to achieve multi-peak and complete optical absorption. The simulations reveal that the light intensity is enhanced at the graphene plane, and the resonant wavelength and the absorption intensity can also be tuned by tilting the incidence angle of the impinging light. In particular, multiple graphene sheets are embedded in the arrays, without any demand of manufacture process to cut them into periodic patterns. The proposed concept can be extended to other two-dimensional (2D) materials and engineered for promising applications, including selective or multiplex filters, multiple channel sensors, and photodetectors.

  3. Retrieval of Cloud Properties from the Multi-spectral, Multi-viewing and Polarized Measurements of the Airborne Polarimeter OSIRIS

    Science.gov (United States)

    Matar, C.; Cornet, C.; Parol, F.; C-Labonnote, L.; Auriol, F.; Nicolas, J. M.

    2017-12-01

    Clouds are recognized as a major source of uncertainty in forecasting the evolution of climate change. One way to improve our knowledge is to obtain accurate cloud properties and variabilities at high spatial resolution. Airborne remote sensing measurements are very suitable to achieve these targets with a tens of meters resolution. In this context, we exploit multi-viewing measurements of the new airborne radiometer OSIRIS (Observing System Including Polarization in the Solar Infrared Spectrum), developed in the Laboratoire d'Optique Atmosphérique (LOA). It is based on POLDER concept as a prototype of the future spacecraft 3MI (Multi-Viewing Multi-Channel Multi-Polarisation Imaging Mission) that will be part of the EPS-SG Eumetsat-ESA mission. Currently, most operational remote sensing algorithms used to retrieve cloud properties from passive measurements, are based on the construction of pre-calculated Look-Up Tables (LUT) under the hypothesis of a single plane-parallel cloud layer. This assumption leads to certain limitations and possible large errors.We developed an optimal estimation method to retrieve cloud optical thickness and effective radius of cloud droplets. This inversion method is more flexible than the LUT method and allows to take into account uncertainties on both observations and the physical model leading to a direct estimation of the retrievals uncertainties in a well-established formalism. For example, we include uncertainties on retrieved cloud parameters due to an incorrect estimation of the ocean surface winds speed, the cloud vertical profiles and the 3D radiative transfer effects.OSIRIS has two separate optical sensors, one for the visible and near infrared range and the other one for the shortwave infrared (SWIR). Consequently, the developed algorithms are based on two different types of information: (1) the total and polarized multi-viewing reflectances from the visible range and (2) the multi-viewing total reflectances from two SWIR

  4. On generalized de Rham-Hodge complexes, the related characteristic Chern classes and some applications to integrable multi-dimensional differential systems on Riemannian manifolds

    International Nuclear Information System (INIS)

    Bogolubov, Nikolai N. Jr.; Prykarpatsky, Anatoliy K.

    2006-12-01

    The differential-geometric aspects of generalized de Rham-Hodge complexes naturally related with integrable multi-dimensional differential systems of M. Gromov type, as well as the geometric structure of Chern characteristic classes are studied. Special differential invariants of the Chern type are constructed, their importance for the integrability of multi-dimensional nonlinear differential systems on Riemannian manifolds is discussed. An example of the three-dimensional Davey-Stewartson type nonlinear strongly integrable differential system is considered, its Cartan type connection mapping and related Chern type differential invariants are analyzed. (author)

  5. Multi-dimensional design window search system using neural networks in reactor core design

    International Nuclear Information System (INIS)

    Kugo, Teruhiko; Nakagawa, Masayuki

    2000-02-01

    In the reactor core design, many parametric survey calculations should be carried out to decide an optimal set of basic design parameter values. They consume a large amount of computation time and labor in the conventional way. To support directly design work, we investigate a procedure to search efficiently a design window, which is defined as feasible design parameter ranges satisfying design criteria and requirements, in a multi-dimensional space composed of several basic design parameters. We apply the present method to the neutronics and thermal hydraulics fields and develop the multi-dimensional design window search system using it. The principle of the present method is to construct the multilayer neural network to simulate quickly a response of an analysis code through a training process, and to reduce computation time using the neural network without parametric study using analysis codes. The system works on an engineering workstation (EWS) with efficient man-machine interface for pre- and post-processing. This report describes the principle of the present method, the structure of the system, the guidance of the usages of the system, the guideline for the efficient training of neural networks, the instructions of the input data for analysis calculation and so on. (author)

  6. Effects of bathymetric lidar errors on flow properties predicted with a multi-dimensional hydraulic model

    Science.gov (United States)

    J. McKean; D. Tonina; C. Bohn; C. W. Wright

    2014-01-01

    New remote sensing technologies and improved computer performance now allow numerical flow modeling over large stream domains. However, there has been limited testing of whether channel topography can be remotely mapped with accuracy necessary for such modeling. We assessed the ability of the Experimental Advanced Airborne Research Lidar, to support a multi-dimensional...

  7. Optimal sensor configuration for flexible structures with multi-dimensional mode shapes

    International Nuclear Information System (INIS)

    Chang, Minwoo; Pakzad, Shamim N

    2015-01-01

    A framework for deciding the optimal sensor configuration is implemented for civil structures with multi-dimensional mode shapes, which enhances the applicability of structural health monitoring for existing structures. Optimal sensor placement (OSP) algorithms are used to determine the best sensor configuration for structures with a priori knowledge of modal information. The signal strength at each node is evaluated by effective independence and modified variance methods. Euclidean norm of signal strength indices associated with each node is used to expand OSP applicability into flexible structures. The number of sensors for each method is determined using the threshold for modal assurance criterion (MAC) between estimated (from a set of observations) and target mode shapes. Kriging is utilized to infer the modal estimates for unobserved locations with a weighted sum of known neighbors. A Kriging model can be expressed as a sum of linear regression and random error which is assumed as the realization of a stochastic process. This study presents the effects of Kriging parameters for the accurate estimation of mode shapes and the minimum number of sensors. The feasible ranges to satisfy MAC criteria are investigated and used to suggest the adequate searching bounds for associated parameters. The finite element model of a tall building is used to demonstrate the application of optimal sensor configuration. The dynamic modes of flexible structure at centroid are appropriately interpreted into the outermost sensor locations when OSP methods are implemented. Kriging is successfully used to interpolate the mode shapes from a set of sensors and to monitor structures associated with multi-dimensional mode shapes. (paper)

  8. Multi Spectral Fluorescence Imager (MSFI)

    Science.gov (United States)

    Caron, Allison

    2016-01-01

    Genetic transformation with in vivo reporter genes for fluorescent proteins can be performed on a variety of organisms to address fundamental biological questions. Model organisms that may utilize an ISS imager include unicellular organisms (Saccharomyces cerevisiae), plants (Arabidopsis thaliana), and invertebrates (Caenorhabditis elegans). The multispectral fluorescence imager (MSFI) will have the capability to accommodate 10 cm x 10 cm Petri plates, various sized multi-well culture plates, and other custom culture containers. Features will include programmable temperature and light cycles, ethylene scrubbing (less than 25 ppb), CO2 control (between 400 ppm and ISS-ambient levels in units of 100 ppm) and sufficient airflow to prevent condensation that would interfere with imaging.

  9. Software Defined Networking (SDN) controlled all optical switching networks with multi-dimensional switching architecture

    Science.gov (United States)

    Zhao, Yongli; Ji, Yuefeng; Zhang, Jie; Li, Hui; Xiong, Qianjin; Qiu, Shaofeng

    2014-08-01

    Ultrahigh throughout capacity requirement is challenging the current optical switching nodes with the fast development of data center networks. Pbit/s level all optical switching networks need to be deployed soon, which will cause the high complexity of node architecture. How to control the future network and node equipment together will become a new problem. An enhanced Software Defined Networking (eSDN) control architecture is proposed in the paper, which consists of Provider NOX (P-NOX) and Node NOX (N-NOX). With the cooperation of P-NOX and N-NOX, the flexible control of the entire network can be achieved. All optical switching network testbed has been experimentally demonstrated with efficient control of enhanced Software Defined Networking (eSDN). Pbit/s level all optical switching nodes in the testbed are implemented based on multi-dimensional switching architecture, i.e. multi-level and multi-planar. Due to the space and cost limitation, each optical switching node is only equipped with four input line boxes and four output line boxes respectively. Experimental results are given to verify the performance of our proposed control and switching architecture.

  10. 3D Convolutional Neural Networks for Crop Classification with Multi-Temporal Remote Sensing Images

    Directory of Open Access Journals (Sweden)

    Shunping Ji

    2018-01-01

    Full Text Available This study describes a novel three-dimensional (3D convolutional neural networks (CNN based method that automatically classifies crops from spatio-temporal remote sensing images. First, 3D kernel is designed according to the structure of multi-spectral multi-temporal remote sensing data. Secondly, the 3D CNN framework with fine-tuned parameters is designed for training 3D crop samples and learning spatio-temporal discriminative representations, with the full crop growth cycles being preserved. In addition, we introduce an active learning strategy to the CNN model to improve labelling accuracy up to a required threshold with the most efficiency. Finally, experiments are carried out to test the advantage of the 3D CNN, in comparison to the two-dimensional (2D CNN and other conventional methods. Our experiments show that the 3D CNN is especially suitable in characterizing the dynamics of crop growth and outperformed the other mainstream methods.

  11. Stochastic volatility and multi-dimensional modeling in the European energy market

    Energy Technology Data Exchange (ETDEWEB)

    Vos, Linda

    2012-07-01

    In energy prices there is evidence for stochastic volatility. Stochastic volatility has effect on the price of path-dependent options and therefore has to be modeled properly. We introduced a multi-dimensional non-Gaussian stochastic volatility model with leverage which can be used in energy pricing. It captures special features of energy prices like price spikes, mean-reversion, stochastic volatility and inverse leverage. Moreover it allows modeling dependencies between different commodities.The derived forward price dynamics based on this multi-variate spot price model, provides a very flexible structure. It includes cotango, backwardation and hump shape forward curves.Alternatively energy prices could be modeled by a 2-factor model consisting of a non-Gaussian stable CARMA process and a non-stationary trend models by a Levy process. Also this model is able to capture special features like price spikes, mean reversion and the low frequency dynamics in the market. An robust L1-filter is introduced to filter out the states of the CARMA process. When applying to German electricity EEX exchange data an overall negative risk-premium is found. However close to delivery a positive risk-premium is observed.(Author)

  12. Vibration and acoustic frequency spectra for industrial process modeling using selective fusion multi-condition samples and multi-source features

    Science.gov (United States)

    Tang, Jian; Qiao, Junfei; Wu, ZhiWei; Chai, Tianyou; Zhang, Jian; Yu, Wen

    2018-01-01

    Frequency spectral data of mechanical vibration and acoustic signals relate to difficult-to-measure production quality and quantity parameters of complex industrial processes. A selective ensemble (SEN) algorithm can be used to build a soft sensor model of these process parameters by fusing valued information selectively from different perspectives. However, a combination of several optimized ensemble sub-models with SEN cannot guarantee the best prediction model. In this study, we use several techniques to construct mechanical vibration and acoustic frequency spectra of a data-driven industrial process parameter model based on selective fusion multi-condition samples and multi-source features. Multi-layer SEN (MLSEN) strategy is used to simulate the domain expert cognitive process. Genetic algorithm and kernel partial least squares are used to construct the inside-layer SEN sub-model based on each mechanical vibration and acoustic frequency spectral feature subset. Branch-and-bound and adaptive weighted fusion algorithms are integrated to select and combine outputs of the inside-layer SEN sub-models. Then, the outside-layer SEN is constructed. Thus, "sub-sampling training examples"-based and "manipulating input features"-based ensemble construction methods are integrated, thereby realizing the selective information fusion process based on multi-condition history samples and multi-source input features. This novel approach is applied to a laboratory-scale ball mill grinding process. A comparison with other methods indicates that the proposed MLSEN approach effectively models mechanical vibration and acoustic signals.

  13. Functional consequences of trust in the construction supply chain: a multi-dimensional view

    OpenAIRE

    Manu, E; Ankrah, N; Chinyio, EA; Proverbs, D

    2016-01-01

    Trust is often linked to the emergence of cooperative behaviours that contribute to successful project outcomes. However, some have questioned the functional relevance of trust in contractual relations, arguing that control-induced cooperation can emerge from enforcement of contracts. These mixed views are further complicated by the multi-dimensional nature of trust, as different trust dimensions could have varying functional consequences. The aim of this study was to provide some clarity on ...

  14. Goodness-of-fit tests for multi-dimensional copulas: Expanding application to historical drought data

    Directory of Open Access Journals (Sweden)

    Ming-wei Ma

    2013-01-01

    Full Text Available The question of how to choose a copula model that best fits a given dataset is a predominant limitation of the copula approach, and the present study aims to investigate the techniques of goodness-of-fit tests for multi-dimensional copulas. A goodness-of-fit test based on Rosenblatt's transformation was mathematically expanded from two dimensions to three dimensions and procedures of a bootstrap version of the test were provided. Through stochastic copula simulation, an empirical application of historical drought data at the Lintong Gauge Station shows that the goodness-of-fit tests perform well, revealing that both trivariate Gaussian and Student t copulas are acceptable for modeling the dependence structures of the observed drought duration, severity, and peak. The goodness-of-fit tests for multi-dimensional copulas can provide further support and help a lot in the potential applications of a wider range of copulas to describe the associations of correlated hydrological variables. However, for the application of copulas with the number of dimensions larger than three, more complicated computational efforts as well as exploration and parameterization of corresponding copulas are required.

  15. Electro-optic tunable multi-channel filter in two-dimensional ferroelectric photonic crystals

    International Nuclear Information System (INIS)

    Fu, Yulan; Zhang, Jiaxiang; Hu, Xiaoyong; Gong, Qihuang

    2010-01-01

    An electro-optic tunable multi-channel filter is presented, which is based on a two-dimensional ferroelectric photonic crystal made of barium titanate. The filtering properties of the photonic crystal filter can be tuned by an applied voltage or by adjusting the structural parameters. The channel shifts about 30 nm under excitation of an applied voltage of 54.8 V. The influences of the structural disorders caused by the perturbations in the radius or the position of air holes on the filtering properties are also analyzed

  16. The SiC hardware of the Sentinel-2 multi spectral instrument

    Science.gov (United States)

    Bougoin, Michel; Lavenac, Jérôme

    2017-11-01

    The Sentinel-2 mission is a major part of the GMES (Global Monitoring for Environment and Security) program which has been set up by the European Union, on a joint initiative with the European Space Agency. A pair of identical satellites will observe the earth from a sun-synchronous orbit at 786 km altitude. Astrium is the prime contractor of the satellites and their payload. The MultiSpectral Instrument features a "all-SiC" TMA (Three Mirror Anastygmat) telescope. MSI will provide optical images in 13 spectral bands, in the visible and also the near infra-red range, with a 10 to 60 m resolution and a 290 km wide swath. The Boostec® SiC material is used mainly for its high specific stiffness (Youngs modulus / density) and its high thermal stability (thermal conductivity / coefficient of thermal expansion) which allow to reduce the distortions induced by thermo-elastic stresses. Its high mechanical properties as well as the relevant technology enable to make not only the mirrors but also the structure which holds them and the elements of the focal plane (including some detectors packaging). Due to the required large size, accuracy and shape complexity, developing and manufacturing some of these SiC parts required innovative manufacturing approach. It is reviewed in the present paper.

  17. Probing temporal aspects of high-order harmonic pulses via multi-colour, multi-photon ionization processes

    Energy Technology Data Exchange (ETDEWEB)

    Mauritsson, J [Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803-4001 (United States); Johnsson, P [Department of Physics, Lund Institute of Technology, PO Box 118, SE-22100 Lund (Sweden); Lopez-Martens, R [Department of Physics, Lund Institute of Technology, PO Box 118, SE-22100 Lund (Sweden); Varju, K [Department of Physics, Lund Institute of Technology, PO Box 118, SE-22100 Lund (Sweden); L' Huillier, A [Department of Physics, Lund Institute of Technology, PO Box 118, SE-22100 Lund (Sweden); Gaarde, M B [Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803-4001 (United States); Schafer, K J [Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803-4001 (United States)

    2005-07-14

    High-order harmonics generated through the interaction of atoms and strong laser fields are a versatile, laboratory-scale source of extreme ultraviolet (XUV) radiation on a femtosecond or even attosecond time-scale. In order to be a useful experimental tool, however, this radiation has to be well characterized, both temporally and spectrally. In this paper we discuss how multi-photon, multi-colour ionization processes can be used to completely characterize either individual harmonics or attosecond pulse trains. In particular, we discuss the influence of the intensity and duration of the probe laser, and how these parameters effect the accuracy of the XUV characterization.

  18. Probing temporal aspects of high-order harmonic pulses via multi-colour, multi-photon ionization processes

    International Nuclear Information System (INIS)

    Mauritsson, J; Johnsson, P; Lopez-Martens, R; Varju, K; L'Huillier, A; Gaarde, M B; Schafer, K J

    2005-01-01

    High-order harmonics generated through the interaction of atoms and strong laser fields are a versatile, laboratory-scale source of extreme ultraviolet (XUV) radiation on a femtosecond or even attosecond time-scale. In order to be a useful experimental tool, however, this radiation has to be well characterized, both temporally and spectrally. In this paper we discuss how multi-photon, multi-colour ionization processes can be used to completely characterize either individual harmonics or attosecond pulse trains. In particular, we discuss the influence of the intensity and duration of the probe laser, and how these parameters effect the accuracy of the XUV characterization

  19. Multi-scale computational model of three-dimensional hemodynamics within a deformable full-body arterial network

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Nan [Department of Bioengineering, Stanford University, Stanford, CA 94305 (United States); Department of Biomedical Engineering, King’s College London, London SE1 7EH (United Kingdom); Humphrey, Jay D. [Department of Biomedical Engineering, Yale University, New Haven, CT 06520 (United States); Figueroa, C. Alberto, E-mail: alberto.figueroa@kcl.ac.uk [Department of Biomedical Engineering, King’s College London, London SE1 7EH (United Kingdom)

    2013-07-01

    In this article, we present a computational multi-scale model of fully three-dimensional and unsteady hemodynamics within the primary large arteries in the human. Computed tomography image data from two different patients were used to reconstruct a nearly complete network of the major arteries from head to foot. A linearized coupled-momentum method for fluid–structure-interaction was used to describe vessel wall deformability and a multi-domain method for outflow boundary condition specification was used to account for the distal circulation. We demonstrated that physiologically realistic results can be obtained from the model by comparing simulated quantities such as regional blood flow, pressure and flow waveforms, and pulse wave velocities to known values in the literature. We also simulated the impact of age-related arterial stiffening on wave propagation phenomena by progressively increasing the stiffness of the central arteries and found that the predicted effects on pressure amplification and pulse wave velocity are in agreement with findings in the clinical literature. This work demonstrates the feasibility of three-dimensional techniques for simulating hemodynamics in a full-body compliant arterial network.

  20. Hierarchies of multi-component mKP equations and theirs integrable couplings

    International Nuclear Information System (INIS)

    Ji Jie; Yao Yuqin; Zhu Fubo; Chen Dengyuan

    2008-01-01

    First, a new multi-component modified Kadomtsev-Petviashvill (mKP) spectral problem is constructed by k-constraint imposed on a general pseudo-differential operator. Then, two hierarchies of multi-component mKP equations are derived, including positive non-isospectral mKP hierarchy and negative non-isospectral mKP hierarchy. Moreover, new integrable couplings of the resulting mKP soliton hierarchies are constructed by enlarging the associated matrix spectral problem

  1. Multi-view Multi-sparsity Kernel Reconstruction for Multi-class Image Classification

    KAUST Repository

    Zhu, Xiaofeng; Xie, Qing; Zhu, Yonghua; Liu, Xingyi; Zhang, Shichao

    2015-01-01

    This paper addresses the problem of multi-class image classification by proposing a novel multi-view multi-sparsity kernel reconstruction (MMKR for short) model. Given images (including test images and training images) representing with multiple

  2. CHANGE DETECTION OF CROPPING PATTERN IN PADDY FIELD USING MULTI SPECTRAL SATELLITE DATA FOR ESTIMATING IRRIGATION WATER NEEDS

    Directory of Open Access Journals (Sweden)

    Rizatus Shofiyati1

    2012-10-01

    Full Text Available This paper investigates the use of multi spectral satellite data for cropping pattern monitoring in paddy field. The southern coastal of Citarum watershed, West Java Province was selected as study sites. The analysis used in this study is identifying crop pattern based on growth stages of wetland paddy and other crops by investi-gating the characteristic of Normalized Differen-ce Vegetation Indices (NDVI and Wetness of Tasseled Cap Transformation (TCT derived from 14 scenes of Landsat TM date 1988 to 2001. In general, the phenological of growth stages of wetland paddy can be used to distinguish with other seasonal crops. The research results indicate that multi spectral satellite data has a great potential for identi-fication and monitoring cropping pattern in paddy field. Specific character of NDVI and Wetness can also produce a map of cropping pattern in paddy field that is useful to monitor agricultural land condition. The cropping pattern can also be used to estimate irrigation water needed of paddy field in the area. Expected implication of the information obtained from this analysis is useful for guiding more appropriate planning and better agricultural management.

  3. towards a theory-based multi-dimensional framework for assessment in mathematics: The "SEA" framework

    Science.gov (United States)

    Anku, Sitsofe E.

    1997-09-01

    Using the reform documents of the National Council of Teachers of Mathematics (NCTM) (NCTM, 1989, 1991, 1995), a theory-based multi-dimensional assessment framework (the "SEA" framework) which should help expand the scope of assessment in mathematics is proposed. This framework uses a context based on mathematical reasoning and has components that comprise mathematical concepts, mathematical procedures, mathematical communication, mathematical problem solving, and mathematical disposition.

  4. Multi-energy CT based on a prior rank, intensity and sparsity model (PRISM)

    International Nuclear Information System (INIS)

    Gao, Hao; Osher, Stanley; Yu, Hengyong; Wang, Ge

    2011-01-01

    We propose a compressive sensing approach for multi-energy computed tomography (CT), namely the prior rank, intensity and sparsity model (PRISM). To further compress the multi-energy image for allowing the reconstruction with fewer CT data and less radiation dose, the PRISM models a multi-energy image as the superposition of a low-rank matrix and a sparse matrix (with row dimension in space and column dimension in energy), where the low-rank matrix corresponds to the stationary background over energy that has a low matrix rank, and the sparse matrix represents the rest of distinct spectral features that are often sparse. Distinct from previous methods, the PRISM utilizes the generalized rank, e.g., the matrix rank of tight-frame transform of a multi-energy image, which offers a way to characterize the multi-level and multi-filtered image coherence across the energy spectrum. Besides, the energy-dependent intensity information can be incorporated into the PRISM in terms of the spectral curves for base materials, with which the restoration of the multi-energy image becomes the reconstruction of the energy-independent material composition matrix. In other words, the PRISM utilizes prior knowledge on the generalized rank and sparsity of a multi-energy image, and intensity/spectral characteristics of base materials. Furthermore, we develop an accurate and fast split Bregman method for the PRISM and demonstrate the superior performance of the PRISM relative to several competing methods in simulations. (papers)

  5. Effect of multi-dimensional ultraviolet light exposure on the growth of pentacene film and application to organic field-effect transistors.

    Science.gov (United States)

    Bae, Jin-Hyuk; Lee, Sin-Doo; Choi, Jong Sun; Park, Jaehoon

    2012-05-01

    We report on the multi-dimensional alignment of pentacene molecules on a poly(methyl methacrylate)-based photosensitive polymer (PMMA-polymer) and its effect on the electrical performance of the pentacene-based field-effect transistor (FET). Pentacene molecules are shown to be preferentially aligned on the linearly polarized ultraviolet (LPUV)-exposed PMMA-polymer layer, which is contrast to an isotropic alignment on the bare PMMA-polymer layer. Multi-dimensional alignment of pentacene molecules in the film could be achieved by adjusting the direction of LPUV exposed to the PMMA-polymer. The control of pentacene molecular alignment is found to be promising for the field-effect mobility enhancement in the pentacene FET.

  6. Continuous Energy, Multi-Dimensional Transport Calculations for Problem Dependent Resonance Self-Shielding

    International Nuclear Information System (INIS)

    Downar, T.

    2009-01-01

    The overall objective of the work here has been to eliminate the approximations used in current resonance treatments by developing continuous energy multi-dimensional transport calculations for problem dependent self-shielding calculations. The work here builds on the existing resonance treatment capabilities in the ORNL SCALE code system. The overall objective of the work here has been to eliminate the approximations used in current resonance treatments by developing continuous energy multidimensional transport calculations for problem dependent self-shielding calculations. The work here builds on the existing resonance treatment capabilities in the ORNL SCALE code system. Specifically, the methods here utilize the existing continuous energy SCALE5 module, CENTRM, and the multi-dimensional discrete ordinates solver, NEWT to develop a new code, CENTRM( ) NEWT. The work here addresses specific theoretical limitations in existing CENTRM resonance treatment, as well as investigates advanced numerical and parallel computing algorithms for CENTRM and NEWT in order to reduce the computational burden. The result of the work here will be a new computer code capable of performing problem dependent self-shielding analysis for both existing and proposed GENIV fuel designs. The objective of the work was to have an immediate impact on the safety analysis of existing reactors through improvements in the calculation of fuel temperature effects, as well as on the analysis of more sophisticated GENIV/NGNP systems through improvements in the depletion/transmutation of actinides for Advanced Fuel Cycle Initiatives.

  7. Two-dimensional simulations of multi-hollow VHF SiH4/H2 plasma

    Directory of Open Access Journals (Sweden)

    Li-Wen Su

    2018-02-01

    Full Text Available A triode multi-hollow VHF SiH4/H2 plasma (60 MHz was examined at a pressure of 20 Pa by two-dimensional simulations using the fluid model. In this study, we considered the effect of the rate constant of reaction, SiH3 + SiH3→SiH2 + SiH4, on the plasma characteristics. A typical VHF plasma of a high-electron density with a low-electron temperature was obtained between two discharge electrodes. Spatial profiles of SiH3+, SiH2+, SiH3- and SiH3 densities were similar to that of the electron density while the electron temperature had a maximum value near the two discharge electrodes. It was found that the SiH3 radical density did not decrease rapidly near the substrate and the electron temperature was lower than 1 eV, suggesting that the triode multi-hollow plasma source can provide high quality amorphous silicon with a high deposition rate.

  8. Multi-dimensional discovery of biomarker and phenotype complexes

    Directory of Open Access Journals (Sweden)

    Huang Kun

    2010-10-01

    Full Text Available Abstract Background Given the rapid growth of translational research and personalized healthcare paradigms, the ability to relate and reason upon networks of bio-molecular and phenotypic variables at various levels of granularity in order to diagnose, stage and plan treatments for disease states is highly desirable. Numerous techniques exist that can be used to develop networks of co-expressed or otherwise related genes and clinical features. Such techniques can also be used to create formalized knowledge collections based upon the information incumbent to ontologies and domain literature. However, reports of integrative approaches that bridge such networks to create systems-level models of disease or wellness are notably lacking in the contemporary literature. Results In response to the preceding gap in knowledge and practice, we report upon a prototypical series of experiments that utilize multi-modal approaches to network induction. These experiments are intended to elicit meaningful and significant biomarker-phenotype complexes spanning multiple levels of granularity. This work has been performed in the experimental context of a large-scale clinical and basic science data repository maintained by the National Cancer Institute (NCI funded Chronic Lymphocytic Leukemia Research Consortium. Conclusions Our results indicate that it is computationally tractable to link orthogonal networks of genes, clinical features, and conceptual knowledge to create multi-dimensional models of interrelated biomarkers and phenotypes. Further, our results indicate that such systems-level models contain interrelated bio-molecular and clinical markers capable of supporting hypothesis discovery and testing. Based on such findings, we propose a conceptual model intended to inform the cross-linkage of the results of such methods. This model has as its aim the identification of novel and knowledge-anchored biomarker-phenotype complexes.

  9. Induction machine bearing faults detection based on a multi-dimensional MUSIC algorithm and maximum likelihood estimation.

    Science.gov (United States)

    Elbouchikhi, Elhoussin; Choqueuse, Vincent; Benbouzid, Mohamed

    2016-07-01

    Condition monitoring of electric drives is of paramount importance since it contributes to enhance the system reliability and availability. Moreover, the knowledge about the fault mode behavior is extremely important in order to improve system protection and fault-tolerant control. Fault detection and diagnosis in squirrel cage induction machines based on motor current signature analysis (MCSA) has been widely investigated. Several high resolution spectral estimation techniques have been developed and used to detect induction machine abnormal operating conditions. This paper focuses on the application of MCSA for the detection of abnormal mechanical conditions that may lead to induction machines failure. In fact, this paper is devoted to the detection of single-point defects in bearings based on parametric spectral estimation. A multi-dimensional MUSIC (MD MUSIC) algorithm has been developed for bearing faults detection based on bearing faults characteristic frequencies. This method has been used to estimate the fundamental frequency and the fault related frequency. Then, an amplitude estimator of the fault characteristic frequencies has been proposed and fault indicator has been derived for fault severity measurement. The proposed bearing faults detection approach is assessed using simulated stator currents data, issued from a coupled electromagnetic circuits approach for air-gap eccentricity emulating bearing faults. Then, experimental data are used for validation purposes. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  10. Multi-wavelength Ocean Profiling and Atmospheric Lidar

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to build and demonstrate the world's first multi-wavelength ocean-profiling high spectral resolution lidar (HSRL). The lidar will provide profiles of...

  11. Multi-energy x-ray detectors to improve air-cargo security

    Science.gov (United States)

    Paulus, Caroline; Moulin, Vincent; Perion, Didier; Radisson, Patrick; Verger, Loïck

    2017-05-01

    X-ray based systems have been used for decades to screen luggage or cargo to detect illicit material. The advent of energy-sensitive photon-counting x-ray detectors mainly based on Cd(Zn)Te semi-conductor technology enables to improve discrimination between materials compared to single or dual energy technology. The presented work is part of the EUROSKY European project to develop a Single European Secure Air-Cargo Space. "Cargo" context implies the presence of relatively heavy objects and with potentially high atomic number. All the study is conducted on simulations with three different detectors: a typical dual energy sandwich detector, a realistic model of the commercial ME100 multi-energy detector marketed by MULTIX, and a ME100 "Cargo": a not yet existing modified multi-energy version of the ME100 more suited to air freight cargo inspection. Firstly, a comparison on simulated measurements shows the performances improvement of the new multi-energy detectors compared to the current dual-energy one. The relative performances are evaluated according to different criteria of separability or contrast-to-noise ratio and the impact of different parameters is studied (influence of channel number, type of materials and tube voltage). Secondly, performances of multi-energy detectors for overlaps processing in a dual-view system is accessed: the case of orthogonal projections has been studied, one giving dimensional values, the other one providing spectral data to assess effective atomic number. A method of overlap correction has been proposed and extended to multi-layer objects case. Therefore, Calibration and processing based on bi-material decomposition have been adapted for this purpose.

  12. Combustion Dynamics in Multi-Nozzle Combustors Operating on High-Hydrogen Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Santavicca, Dom; Lieuwen, Tim

    2013-09-30

    Actual gas turbine combustors for power generation applications employ multi-nozzle combustor configurations. Researchers at Penn State and Georgia Tech have extended previous work on the flame response in single-nozzle combustors to the more realistic case of multi-nozzle combustors. Research at Georgia Tech has shown that asymmetry of both the flow field and the acoustic forcing can have a significant effect on flame response and that such behavior is important in multi-flame configurations. As a result, the structure of the flame and its response to forcing is three-dimensional. Research at Penn State has led to the development of a three-dimensional chemiluminescence flame imaging technique that can be used to characterize the unforced (steady) and forced (unsteady) flame structure of multi-nozzle combustors. Important aspects of the flame response in multi-nozzle combustors which are being studied include flame-flame and flame-wall interactions. Research at Penn State using the recently developed three-dimensional flame imaging technique has shown that spatial variations in local flame confinement must be accounted for to accurately predict global flame response in a multi-nozzle can combustor.

  13. Smart multi-channel two-dimensional micro-gas chromatography for rapid workplace hazardous volatile organic compounds measurement.

    Science.gov (United States)

    Liu, Jing; Seo, Jung Hwan; Li, Yubo; Chen, Di; Kurabayashi, Katsuo; Fan, Xudong

    2013-03-07

    We developed a novel smart multi-channel two-dimensional (2-D) micro-gas chromatography (μGC) architecture that shows promise to significantly improve 2-D μGC performance. In the smart μGC design, a non-destructive on-column gas detector and a flow routing system are installed between the first dimensional separation column and multiple second dimensional separation columns. The effluent from the first dimensional column is monitored in real-time and decision is then made to route the effluent to one of the second dimensional columns for further separation. As compared to the conventional 2-D μGC, the greatest benefit of the smart multi-channel 2-D μGC architecture is the enhanced separation capability of the second dimensional column and hence the overall 2-D GC performance. All the second dimensional columns are independent of each other, and their coating, length, flow rate and temperature can be customized for best separation results. In particular, there is no more constraint on the upper limit of the second dimensional column length and separation time in our architecture. Such flexibility is critical when long second dimensional separation is needed for optimal gas analysis. In addition, the smart μGC is advantageous in terms of elimination of the power intensive thermal modulator, higher peak amplitude enhancement, simplified 2-D chromatogram re-construction and potential scalability to higher dimensional separation. In this paper, we first constructed a complete smart 1 × 2 channel 2-D μGC system, along with an algorithm for automated control/operation of the system. We then characterized and optimized this μGC system, and finally employed it in two important applications that highlight its uniqueness and advantages, i.e., analysis of 31 workplace hazardous volatile organic compounds, and rapid detection and identification of target gas analytes from interference background.

  14. Racial-ethnic self-schemas: Multi-dimensional identity-based motivation

    Science.gov (United States)

    Oyserman, Daphna

    2008-01-01

    Prior self-schema research focuses on benefits of being schematic vs. aschematic in stereotyped domains. The current studies build on this work, examining racial-ethnic self-schemas as multi-dimensional, containing multiple, conflicting, and non-integrated images. A multidimensional perspective captures complexity; examining net effects of dimensions predicts within-group differences in academic engagement and well-being. When racial-ethnicity self-schemas focus attention on membership in both in-group and broader society, engagement with school should increase since school is not seen as out-group defining. When racial-ethnicity self-schemas focus attention on inclusion (not obstacles to inclusion) in broader society, risk of depressive symptoms should decrease. Support for these hypotheses was found in two separate samples (8th graders, n = 213, 9th graders followed to 12th grade n = 141). PMID:19122837

  15. Series expansion solutions for the multi-term time and space fractional partial differential equations in two- and three-dimensions

    Science.gov (United States)

    Ye, H.; Liu, F.; Turner, I.; Anh, V.; Burrage, K.

    2013-09-01

    Fractional partial differential equations with more than one fractional derivative in time describe some important physical phenomena, such as the telegraph equation, the power law wave equation, or the Szabo wave equation. In this paper, we consider two- and three-dimensional multi-term time and space fractional partial differential equations. The multi-term time-fractional derivative is defined in the Caputo sense, whose order belongs to the interval (1,2],(2,3],(3,4] or (0, m], and the space-fractional derivative is referred to as the fractional Laplacian form. We derive series expansion solutions based on a spectral representation of the Laplacian operator on a bounded region. Some applications are given for the two- and three-dimensional telegraph equation, power law wave equation and Szabo wave equation.

  16. Development of a multi-dimensional realistic thermal-hydraulic system analysis code, MARS 1.3 and its verification

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Won Jae; Chung, Bub Dong; Jeong, Jae Jun; Ha, Kwi Seok [Korea Atomic Energy Research Institute, Taejon (Korea)

    1998-06-01

    A multi-dimensional realistic thermal-hydraulic system analysis code, MARS version 1.3 has been developed. Main purpose of MARS 1.3 development is to have the realistic analysis capability of transient two-phase thermal-hydraulics of Pressurized Water Reactors (PWRs) especially during Large Break Loss of Coolant Accidents (LBLOCAs) where the multi-dimensional phenomena domain the transients. MARS code is a unified version of USNRC developed COBRA-TF, domain the transients. MARS code is a unified version of USNRC developed COBRA-TF, three-dimensional (3D) reactor vessel analysis code, and RELAP5/MOD3.2.1.2, one-dimensional (1D) reactor system analysis code., Developmental requirements for MARS are chosen not only to best utilize the existing capability of the codes but also to have the enhanced capability in code maintenance, user accessibility, user friendliness, code portability, code readability, and code flexibility. For the maintenance of existing codes capability and the enhancement of code maintenance capability, user accessibility and user friendliness, MARS has been unified to be a single code consisting of 1D module (RELAP5) and 3D module (COBRA-TF). This is realized by implicitly integrating the system pressure matrix equations of hydrodynamic models and solving them simultaneously, by modifying the 1D/3D calculation sequence operable under a single Central Processor Unit (CPU) and by unifying the input structure and the light water property routines of both modules. In addition, the code structure of 1D module is completely restructured using the modular data structure of standard FORTRAN 90, which greatly improves the code maintenance capability, readability and portability. For the code flexibility, a dynamic memory management scheme is applied in both modules. MARS 1.3 now runs on PC/Windows and HP/UNIX platforms having a single CPU, and users have the options to select the 3D module to model the 3D thermal-hydraulics in the reactor vessel or other

  17. Development of a multi-grid FDTD code for three-dimensional simulation of large microwave sintering experiments

    Energy Technology Data Exchange (ETDEWEB)

    White, M.J.; Iskander, M.F. [Univ. of Utah, Salt Lake City, UT (United States). Electrical Engineering Dept.; Kimrey, H.D. [Oak Ridge National Lab., TN (United States)

    1996-12-31

    The Finite-Difference Time-Domain (FDTD) code available at the University of Utah has been used to simulate sintering of ceramics in single and multimode cavities, and many useful results have been reported in literature. More detailed and accurate results, specifically around and including the ceramic sample, are often desired to help evaluate the adequacy of the heating procedure. In electrically large multimode cavities, however, computer memory requirements limit the number of the mathematical cells, and the desired resolution is impractical to achieve due to limited computer resources. Therefore, an FDTD algorithm which incorporates multiple-grid regions with variable-grid sizes is required to adequately perform the desired simulations. In this paper the authors describe the development of a three-dimensional multi-grid FDTD code to help focus a large number of cells around the desired region. Test geometries were solved using a uniform-grid and the developed multi-grid code to help validate the results from the developed code. Results from these comparisons, as well as the results of comparisons between the developed FDTD code and other available variable-grid codes are presented. In addition, results from the simulation of realistic microwave sintering experiments showed improved resolution in critical sites inside the three-dimensional sintering cavity. With the validation of the FDTD code, simulations were performed for electrically large, multimode, microwave sintering cavities to fully demonstrate the advantages of the developed multi-grid FDTD code.

  18. Multi-dimensional Mixing Behavior of Steam-Water Flow in a Downcomer Annulus during LBLOCA Reflood Phase with a DVI Injection Mode

    International Nuclear Information System (INIS)

    Kwon, T.S.; Yun, B.J.; Euh, D.J.; Chu, I.C.; Song, C.H.

    2002-01-01

    Multi-dimensional thermal-hydraulic behavior in the downcomer annulus of a pressurized water reactor vessel with a Direct Vessel Injection (DVI) mode is presented based on the experimental observation in the MIDAS (Multi-dimensional Investigation in Downcomer Annulus Simulation) steam-water test facility. From the steady-state test results to simulate the late reflood phase of a Large Break Loss-of-Coolant Accidents(LBLOCA), isothermal lines show the multidimensional phenomena of a phasic interaction between steam and water in the downcomer annulus very well. MIDAS is a steam-water separate effect test facility, which is 1/4.93 linearly scaled-down of 1400 MWe PWR type of a nuclear reactor, focused on understanding multi-dimensional thermalhydraulic phenomena in downcomer annulus with various types of safety injection during the refill or reflood phase of a LBLOCA. The initial and the boundary conditions are scaled from the pre-test analysis based on the preliminary calculation using the TRAC code. The superheated steam with a superheating degree of 80 K at a given downcomer pressure of 180 kPa is injected equally through three intact cold legs into the downcomer. (authors)

  19. Validation of spectral methods for the seismic analysis of multi-supported structures

    International Nuclear Information System (INIS)

    Viola, B.

    1999-01-01

    There are many methodologies for the seismic analysis of buildings. When a seism occurs, structures such piping systems in nuclear power plants are subjected to motions that may be different at each support point. Therefore it is necessary to develop methods that take into account the multi-supported effect. In a first time, a bibliography analysis on the different methods that exist has been carried out. The aim was to find a particular method applicable to the study of piping systems. The second step of this work consisted in developing a program that may be used to test and make comparisons on different selected methods. So spectral methods have the advantage to give an estimation of the maximum values for strain in the structure, in reduced calculation time. The time history analysis is used as the reference for the tests. (author)

  20. Multi-waveband Behavior of Blazars

    Directory of Open Access Journals (Sweden)

    Marscher Alan P.

    2013-12-01

    Full Text Available The author reviews recent progress toward understanding blazars that multi-waveband monitoring observations have advanced. The primary techniques include the compilation of multi-waveband light curves, multi-epoch VLBI images at radio wavelengths, plots of linear polarization vs. time at radio through optical wavelengths, and spectral energy distributions (SEDs. Correlations and the coincidence or lag of events across wavebands and in the images indicate where the events take place relative to the “core” that lies ≳ 0.5 pc from the central engine. Rotations of the polarization electric vector suggest a helical geometry of the magnetic field upstream of the millimeter-wave core, while rapid fluctuations in degree and position angle of polarization imply that the jet plasma is turbulent in and downstream of the core. The author is developing a numerical model that simulates the emission from such turbulence as it interacts with a conical standing shock in the core region.

  1. A multi-dimensional approach to talent: An empirical analysis of the definition of talent in Dutch academia

    NARCIS (Netherlands)

    Thunissen, M.; Arensbergen, P. van

    2015-01-01

    - Purpose – The purpose of this paper is to contribute to the development of a broader, multi-dimensional approach to talent that helps scholars and practitioners to fully understand the nuances and complexity of talent in the organizational context. - Design/methodology/approach – The data were

  2. A variational multi-scale method with spectral approximation of the sub-scales: Application to the 1D advection-diffusion equations

    KAUST Repository

    Chacó n Rebollo, Tomá s; Dia, Ben Mansour

    2015-01-01

    This paper introduces a variational multi-scale method where the sub-grid scales are computed by spectral approximations. It is based upon an extension of the spectral theorem to non necessarily self-adjoint elliptic operators that have an associated base of eigenfunctions which are orthonormal in weighted L2 spaces. This allows to element-wise calculate the sub-grid scales by means of the associated spectral expansion. We propose a feasible VMS-spectral method by truncation of this spectral expansion to a finite number of modes. We apply this general framework to the convection-diffusion equation, by analytically computing the family of eigenfunctions. We perform a convergence and error analysis. We also present some numerical tests that show the stability of the method for an odd number of spectral modes, and an improvement of accuracy in the large resolved scales, due to the adding of the sub-grid spectral scales.

  3. A variational multi-scale method with spectral approximation of the sub-scales: Application to the 1D advection-diffusion equations

    KAUST Repository

    Chacón Rebollo, Tomás

    2015-03-01

    This paper introduces a variational multi-scale method where the sub-grid scales are computed by spectral approximations. It is based upon an extension of the spectral theorem to non necessarily self-adjoint elliptic operators that have an associated base of eigenfunctions which are orthonormal in weighted L2 spaces. This allows to element-wise calculate the sub-grid scales by means of the associated spectral expansion. We propose a feasible VMS-spectral method by truncation of this spectral expansion to a finite number of modes. We apply this general framework to the convection-diffusion equation, by analytically computing the family of eigenfunctions. We perform a convergence and error analysis. We also present some numerical tests that show the stability of the method for an odd number of spectral modes, and an improvement of accuracy in the large resolved scales, due to the adding of the sub-grid spectral scales.

  4. Multi-floor cascading ferroelectric nanostructures: multiple data writing-based multi-level non-volatile memory devices

    Science.gov (United States)

    Hyun, Seung; Kwon, Owoong; Lee, Bom-Yi; Seol, Daehee; Park, Beomjin; Lee, Jae Yong; Lee, Ju Hyun; Kim, Yunseok; Kim, Jin Kon

    2016-01-01

    Multiple data writing-based multi-level non-volatile memory has gained strong attention for next-generation memory devices to quickly accommodate an extremely large number of data bits because it is capable of storing multiple data bits in a single memory cell at once. However, all previously reported devices have failed to store a large number of data bits due to the macroscale cell size and have not allowed fast access to the stored data due to slow single data writing. Here, we introduce a novel three-dimensional multi-floor cascading polymeric ferroelectric nanostructure, successfully operating as an individual cell. In one cell, each floor has its own piezoresponse and the piezoresponse of one floor can be modulated by the bias voltage applied to the other floor, which means simultaneously written data bits in both floors can be identified. This could achieve multi-level memory through a multiple data writing process.Multiple data writing-based multi-level non-volatile memory has gained strong attention for next-generation memory devices to quickly accommodate an extremely large number of data bits because it is capable of storing multiple data bits in a single memory cell at once. However, all previously reported devices have failed to store a large number of data bits due to the macroscale cell size and have not allowed fast access to the stored data due to slow single data writing. Here, we introduce a novel three-dimensional multi-floor cascading polymeric ferroelectric nanostructure, successfully operating as an individual cell. In one cell, each floor has its own piezoresponse and the piezoresponse of one floor can be modulated by the bias voltage applied to the other floor, which means simultaneously written data bits in both floors can be identified. This could achieve multi-level memory through a multiple data writing process. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr07377d

  5. Interconnected levels of Multi-Stage Marketing – A Triadic approach

    DEFF Research Database (Denmark)

    Vedel, Mette; Geersbro, Jens; Ritter, Thomas

    2012-01-01

    must not only decide in general on the merits of multi-stage marketing for their firm, but must also decide on which level they will engage in multi-stage marketing. The triadic perspective enables a rich and multi-dimensional understanding of how different business relationships influence each other......Multi-stage marketing gains increasing attention as knowledge of and influence on the customer's customer become more critical for the firm's success. Despite this increasing managerial relevance, systematic approaches for analyzing multi-stage marketing are still missing. This paper conceptualizes...... different levels of multi-stage marketing and illustrates these stages with a case study. In addition, a triadic perspective is introduced as an analytical tool for multi-stage marketing research. The results from the case study indicate that multi-stage marketing exists on different levels. Thus, managers...

  6. A multi-level surface rebalancing approach for efficient convergence acceleration of 3D full core multi-group fine grid nodal diffusion iterations

    International Nuclear Information System (INIS)

    Geemert, René van

    2014-01-01

    Highlights: • New type of multi-level rebalancing approach for nodal transport. • Generally improved and more mesh-independent convergence behavior. • Importance for intended regime of 3D pin-by-pin core computations. - Abstract: A new multi-level surface rebalancing (MLSR) approach has been developed, aimed at enabling an improved non-linear acceleration of nodal flux iteration convergence in 3D steady-state and transient reactor simulation. This development is meant specifically for anticipating computational needs for solving envisaged multi-group diffusion-like SP N calculations with enhanced mesh resolution (i.e. 3D multi-box up to 3D pin-by-pin grid). For the latter grid refinement regime, the previously available multi-level coarse mesh rebalancing (MLCMR) strategy has been observed to become increasingly inefficient with increasing 3D mesh resolution. Furthermore, for very fine 3D grids that feature a very fine axial mesh as well, non-convergence phenomena have been observed to emerge. In the verifications pursued up to now, these problems have been resolved by the new approach. The novelty arises from taking the interface current balance equations defined over all Cartesian box edges, instead of the nodal volume-integrated process-rate balance equation, as an appropriate restriction basis for setting up multi-level acceleration of fine grid interface current iterations. The new restriction strategy calls for the use of a newly derived set of adjoint spectral equations that are needed for computing a limited set of spectral response vectors per node. This enables a straightforward determination of group-condensed interface current spectral coupling operators that are of crucial relevance in the new rebalancing setup. Another novelty in the approach is a new variational method for computing the neutronic eigenvalue. Within this context, the latter is treated as a control parameter for driving another, newly defined and numerically more fundamental

  7. Assessment of multi-dimensional analysis cacpacity of the MARS using the OECD-SETH PANDA tests

    International Nuclear Information System (INIS)

    Bae, S. W.; Jung, J. J.; Jung, B. D.

    2004-01-01

    The objectives of OECD/NEA-PANDA tests are to validate and assess computer codes that analyze the non-condensable gas concentrations and mixing phenomena in a reactor containment building. Especially, the main issue is multi-dimensional analysis capability which is involved in the mixing of non-condensable gases, i. e. hydrogen. The main tests consist of a superheated steam flow injection into a large vessel initially filled with air or air/helium mixtures. Then the temperature and concentration of noncondensable gases are measured. A pre-calculation has been performed with the MARS about PANDA Tests even though MARS is not a containment analysis code. Three cases among 25 PANDA Tests are selected and are modeled to simulate the jet plumes and air mixing in a large vessel. The dimensions of large vessel are 4 m diameter and 8 m height. For the conclusion of calculation, the cylindrical vessel which dimensions are 4 m diameter and 8 m height was simplified as rectangular geometry. It is revealed that the MARS code has the capability to distinguish the multi-dimensional distribution of the velocity and the temperature fields

  8. Computational Analysis of Multi-Rotor Flows

    Science.gov (United States)

    Yoon, Seokkwan; Lee, Henry C.; Pulliam, Thomas H.

    2016-01-01

    Interactional aerodynamics of multi-rotor flows has been studied for a quadcopter representing a generic quad tilt-rotor aircraft in hover. The objective of the present study is to investigate the effects of the separation distances between rotors, and also fuselage and wings on the performance and efficiency of multirotor systems. Three-dimensional unsteady Navier-Stokes equations are solved using a spatially 5th order accurate scheme, dual-time stepping, and the Detached Eddy Simulation turbulence model. The results show that the separation distances as well as the wings have significant effects on the vertical forces of quadroror systems in hover. Understanding interactions in multi-rotor flows would help improve the design of next generation multi-rotor drones.

  9. Stochastic multi-period multi-product multi-objective Aggregate Production Planning model in multi-echelon supply chain

    Directory of Open Access Journals (Sweden)

    Kaveh Khalili-Damghani

    2017-07-01

    Full Text Available In this paper a multi-period multi-product multi-objective aggregate production planning (APP model is proposed for an uncertain multi-echelon supply chain considering financial risk, customer satisfaction, and human resource training. Three conflictive objective functions and several sets of real constraints are considered concurrently in the proposed APP model. Some parameters of the proposed model are assumed to be uncertain and handled through a two-stage stochastic programming (TSSP approach. The proposed TSSP is solved using three multi-objective solution procedures, i.e., the goal attainment technique, the modified ε-constraint method, and STEM method. The whole procedure is applied in an automotive resin and oil supply chain as a real case study wherein the efficacy and applicability of the proposed approaches are illustrated in comparison with existing experimental production planning method.

  10. Multi-kW high-brightness fiber coupled diode laser based on two dimensional stacked tailored diode bars

    Science.gov (United States)

    Bayer, Andreas; Unger, Andreas; Köhler, Bernd; Küster, Matthias; Dürsch, Sascha; Kissel, Heiko; Irwin, David A.; Bodem, Christian; Plappert, Nora; Kersten, Maik; Biesenbach, Jens

    2016-03-01

    The demand for high brightness fiber coupled diode laser devices in the multi kW power region is mainly driven by industrial applications for materials processing, like brazing, cladding and metal welding, which require a beam quality better than 30 mm x mrad and power levels above 3kW. Reliability, modularity, and cost effectiveness are key factors for success in the market. We have developed a scalable and modular diode laser architecture that fulfills these requirements through use of a simple beam shaping concept based on two dimensional stacking of tailored diode bars mounted on specially designed, tap water cooled heat sinks. The base element of the concept is a tailored diode laser bar with an epitaxial and lateral structure designed such that the desired beam quality in slow-axis direction can be realized without using sophisticated beam shaping optics. The optical design concept is based on fast-axis collimator (FAC) and slow-axis collimator (SAC) lenses followed by only one additional focusing optic for efficient coupling into a 400 μm fiber with a numerical aperture (NA) of 0.12. To fulfill the requirements of scalability and modularity, four tailored bars are populated on a reduced size, tap water cooled heat sink. The diodes on these building blocks are collimated simply via FAC and SAC. The building blocks can be stacked vertically resulting in a two-dimensional diode stack, which enables a compact design of the laser source with minimum beam path length. For a single wavelength, up to eight of these building blocks, implying a total of 32 tailored bars, can be stacked into a submodule, polarization multiplexed, and coupled into a 400 μm, 0.12NA fiber. Scalability into the multi kW region is realized by wavelength combining of replaceable submodules in the spectral range from 900 - 1100 nm. We present results of a laser source based on this architecture with an output power of more than 4 kW and a beam quality of 25 mm x mrad.

  11. Advanced concepts in multi-dimensional radiation detection and imaging

    International Nuclear Information System (INIS)

    Vetter, Kai; Barnowski, Ross; Pavlovsky, Ryan; Haefner, Andy; Torii, Tatsuo; Shikaze, Yoshiaki; Sanada, Yukihisa

    2016-01-01

    Recent developments in the detector fabrication, signal readout, and data processing enable new concepts in radiation detection that are relevant for applications ranging from fundamental physics to medicine as well as nuclear security and safety. We present recent progress in multi-dimensional radiation detection and imaging in the Berkeley Applied Nuclear Physics program. It is based on the ability to reconstruct scenes in three dimensions and fuse it with gamma-ray image information. We are using the High-Efficiency Multimode Imager HEMI in its Compton imaging mode and combining it with contextual sensors such as the Microsoft Kinect or visual cameras. This new concept of volumetric imaging or scene data fusion provides unprecedented capabilities in radiation detection and imaging relevant for the detection and mapping of radiological and nuclear materials. This concept brings us one step closer to the seeing the world with gamma-ray eyes. (author)

  12. MINIMUM ENTROPY DECONVOLUTION OF ONE-AND MULTI-DIMENSIONAL NON-GAUSSIAN LINEAR RANDOM PROCESSES

    Institute of Scientific and Technical Information of China (English)

    程乾生

    1990-01-01

    The minimum entropy deconvolution is considered as one of the methods for decomposing non-Gaussian linear processes. The concept of peakedness of a system response sequence is presented and its properties are studied. With the aid of the peakedness, the convergence theory of the minimum entropy deconvolution is established. The problem of the minimum entropy deconvolution of multi-dimensional non-Gaussian linear random processes is first investigated and the corresponding theory is given. In addition, the relation between the minimum entropy deconvolution and parameter method is discussed.

  13. Industrial applications of multi-functional, multi-phase reactors

    NARCIS (Netherlands)

    Harmsen, G.J.; Chewter, L.A.

    1999-01-01

    To reveal trends in the design and operation of multi-functional, multi-phase reactors, this paper describes, in historical sequence, three industrial applications of multi-functional, multi-phase reactors developed and operated by Shell Chemicals during the last five decades. For each case, we

  14. Confirmatory factor analysis of the Multi-dimensional Emotional Empathy Scale in the South African context

    Directory of Open Access Journals (Sweden)

    Chantal Olckers

    2010-11-01

    Full Text Available Orientation: Empathy is a core competency in aiding individuals to address the challenges of social living. An indicator of emotional intelligence, it is useful in a globalising and cosmopolitan world. Moreover, managing staff, stakeholders and conflict in many social settings relies on communicative skills, of which empathy forms a large part. Empathy plays a pivotal role in negotiating, persuading and influencing behaviour. The skill of being able to empathise thus enables the possessor to attune to the needs of clients and employees and provides opportunities to become responsive to these needs. Research purpose: This study attempted to determine the construct validity of the Multi-dimensional Emotional Empathy Scale within the South African context. Motivation for the study: In South Africa, a large number of psychometrical instruments have been adopted directly from abroad. Studies determining the construct validity of several of these imported instruments, however, have shown that these instruments are not suited for use in the South African context. Research design, approach and method: The study was based on a quantitative research method with a survey design. A convenience sample of 212 respondents completed the Multi-dimensional Emotional Empathy Scale. The constructs explored were Suffering, Positive Sharing, Responsive Crying, Emotional Attention, a Feel for Others and Emotional Contagion. The statistical procedure used was a confirmatory factor analysis. Main findings: The study showed that, from a South African perspective, the Multi-dimensional Emotional Empathy Scale lacks sufficient construct validity. Practical/managerial implications: Further refinement of the model would provide valuable information that would aid people to be more appreciative of individual contributions, to meet client needs and to understand the motivations of others. Contribution/value-add: From a South African perspective, the findings of this study are

  15. Multi-element probabilistic collocation method in high dimensions

    International Nuclear Information System (INIS)

    Foo, Jasmine; Karniadakis, George Em

    2010-01-01

    We combine multi-element polynomial chaos with analysis of variance (ANOVA) functional decomposition to enhance the convergence rate of polynomial chaos in high dimensions and in problems with low stochastic regularity. Specifically, we employ the multi-element probabilistic collocation method MEPCM and so we refer to the new method as MEPCM-A. We investigate the dependence of the convergence of MEPCM-A on two decomposition parameters, the polynomial order μ and the effective dimension ν, with ν<< N, and N the nominal dimension. Numerical tests for multi-dimensional integration and for stochastic elliptic problems suggest that ν≥μ for monotonic convergence of the method. We also employ MEPCM-A to obtain error bars for the piezometric head at the Hanford nuclear waste site under stochastic hydraulic conductivity conditions. Finally, we compare the cost of MEPCM-A against Monte Carlo in several hundred dimensions, and we find MEPCM-A to be more efficient for up to 600 dimensions for a specific multi-dimensional integration problem involving a discontinuous function.

  16. Multi-way Communications: An Information Theoretic Perspective

    KAUST Repository

    Chaaban, Anas; Sezgin, Aydin

    2015-01-01

    Multi-way communication is a means to significantly improve the spectral efficiency of wireless networks. For instance, in a bi-directional (or two-way) communication channel, two users can simultaneously use the transmission medium to exchange

  17. Visual perception enhancement for detection of cancerous oral tissue by multi-spectral imaging

    International Nuclear Information System (INIS)

    Wang, Hsiang-Chen; Tsai, Meng-Tsan; Chiang, Chun-Ping

    2013-01-01

    Color reproduction systems based on the multi-spectral imaging technique (MSI) for both directly estimating reflection spectra and direct visualization of oral tissues using various light sources are proposed. Images from three oral cancer patients were taken as the experimental samples, and spectral differences between pre-cancerous and normal oral mucosal tissues were calculated at three time points during 5-aminolevulinic acid photodynamic therapy (ALA-PDT) to analyze whether they were consistent with disease processes. To check the successful treatment of oral cancer with ALA-PDT, oral cavity images by swept source optical coherence tomography (SS-OCT) are demonstrated. This system can also reproduce images under different light sources. For pre-cancerous detection, the oral images after the second ALA-PDT are assigned as the target samples. By using RGB LEDs with various correlated color temperatures (CCTs) for color difference comparison, the light source with a CCT of about 4500 K was found to have the best ability to enhance the color difference between pre-cancerous and normal oral mucosal tissues in the oral cavity. Compared with the fluorescent lighting commonly used today, the color difference can be improved by 39.2% from 16.5270 to 23.0023. Hence, this light source and spectral analysis increase the efficiency of the medical diagnosis of oral cancer and aid patients in receiving early treatment. (paper)

  18. Visual perception enhancement for detection of cancerous oral tissue by multi-spectral imaging

    Science.gov (United States)

    Wang, Hsiang-Chen; Tsai, Meng-Tsan; Chiang, Chun-Ping

    2013-05-01

    Color reproduction systems based on the multi-spectral imaging technique (MSI) for both directly estimating reflection spectra and direct visualization of oral tissues using various light sources are proposed. Images from three oral cancer patients were taken as the experimental samples, and spectral differences between pre-cancerous and normal oral mucosal tissues were calculated at three time points during 5-aminolevulinic acid photodynamic therapy (ALA-PDT) to analyze whether they were consistent with disease processes. To check the successful treatment of oral cancer with ALA-PDT, oral cavity images by swept source optical coherence tomography (SS-OCT) are demonstrated. This system can also reproduce images under different light sources. For pre-cancerous detection, the oral images after the second ALA-PDT are assigned as the target samples. By using RGB LEDs with various correlated color temperatures (CCTs) for color difference comparison, the light source with a CCT of about 4500 K was found to have the best ability to enhance the color difference between pre-cancerous and normal oral mucosal tissues in the oral cavity. Compared with the fluorescent lighting commonly used today, the color difference can be improved by 39.2% from 16.5270 to 23.0023. Hence, this light source and spectral analysis increase the efficiency of the medical diagnosis of oral cancer and aid patients in receiving early treatment.

  19. Three dimensional multi perspective imaging with randomly distributed sensors

    International Nuclear Information System (INIS)

    DaneshPanah, Mehdi; Javidi, Bahrain

    2008-01-01

    In this paper, we review a three dimensional (3D) passive imaging system that exploits the visual information captured from the scene from multiple perspectives to reconstruct the scene voxel by voxel in 3D space. The primary contribution of this work is to provide a computational reconstruction scheme based on randomly distributed sensor locations in space. In virtually all of multi perspective techniques (e.g. integral imaging, synthetic aperture integral imaging, etc), there is an implicit assumption that the sensors lie on a simple, regular pickup grid. Here, we relax this assumption and suggest a computational reconstruction framework that unifies the available methods as its special cases. The importance of this work is that it enables three dimensional imaging technology to be implemented in a multitude of novel application domains such as 3D aerial imaging, collaborative imaging, long range 3D imaging and etc, where sustaining a regular pickup grid is not possible and/or the parallax requirements call for a irregular or sparse synthetic aperture mode. Although the sensors can be distributed in any random arrangement, we assume that the pickup position is measured at the time of capture of each elemental image. We demonstrate the feasibility of the methods proposed here by experimental results.

  20. Multi-state supernetworks: recent progress and prospects

    Directory of Open Access Journals (Sweden)

    Feixiong Liao

    2014-02-01

    Full Text Available Supernetworks have long been adopted to address multi-dimensional choice problems, which are thorny to solve for classic singular networks. Originated from combining transport mode and route choice into a multi-modal network, supernetworks have been extended into multi-state networks to include activity-travel scheduling, centered around activity-based models of travel demand. A key feature of the network extensions is that multiple choice facets pertaining to conducting a full activity program can be modeled in a consistent and integrative fashion. Thus, interdependencies and constraints between related choice facets can be readily captured. Given this advantage of integrity, the modeling of supernetwork has become an emerging topic in transportation research. This paper summarizes the recent progress in modeling multi-state supernetworks and discusses future prospects.

  1. Three-dimensional cell manipulation and patterning using dielectrophoresis via a multi-layer scaffold structure.

    Science.gov (United States)

    Chu, H K; Huan, Z; Mills, J K; Yang, J; Sun, D

    2015-02-07

    Cell manipulation is imperative to the areas of cellular biology and tissue engineering, providing them a useful tool for patterning cells into cellular patterns for different analyses and applications. This paper presents a novel approach to perform three-dimensional (3D) cell manipulation and patterning with a multi-layer engineered scaffold. This scaffold structure employed dielectrophoresis as the non-contact mechanism to manipulate cells in the 3D domain. Through establishing electric fields via this multi-layer structure, the cells in the medium became polarized and were attracted towards the interior part of the structure, forming 3D cellular patterns. Experiments were conducted to evaluate the manipulation and the patterning processes with the proposed structure. Results show that with the presence of a voltage input, this multi-layer structure was capable of manipulating different types of biological cells examined through dielectrophoresis, enabling automatic cell patterning in the time-scale of minutes. The effects of the voltage input on the resultant cellular pattern were examined and discussed. Viability test was performed after the patterning operation and the results confirmed that majority of the cells remained viable. After 7 days of culture, 3D cellular patterns were observed through SEM. The results suggest that this scaffold and its automated dielectrophoresis-based patterning mechanism can be used to construct artificial tissues for various tissue engineering applications.

  2. Who multi-tasks and why? Multi-tasking ability, perceived multi-tasking ability, impulsivity, and sensation seeking.

    Science.gov (United States)

    Sanbonmatsu, David M; Strayer, David L; Medeiros-Ward, Nathan; Watson, Jason M

    2013-01-01

    The present study examined the relationship between personality and individual differences in multi-tasking ability. Participants enrolled at the University of Utah completed measures of multi-tasking activity, perceived multi-tasking ability, impulsivity, and sensation seeking. In addition, they performed the Operation Span in order to assess their executive control and actual multi-tasking ability. The findings indicate that the persons who are most capable of multi-tasking effectively are not the persons who are most likely to engage in multiple tasks simultaneously. To the contrary, multi-tasking activity as measured by the Media Multitasking Inventory and self-reported cell phone usage while driving were negatively correlated with actual multi-tasking ability. Multi-tasking was positively correlated with participants' perceived ability to multi-task ability which was found to be significantly inflated. Participants with a strong approach orientation and a weak avoidance orientation--high levels of impulsivity and sensation seeking--reported greater multi-tasking behavior. Finally, the findings suggest that people often engage in multi-tasking because they are less able to block out distractions and focus on a singular task. Participants with less executive control--low scorers on the Operation Span task and persons high in impulsivity--tended to report higher levels of multi-tasking activity.

  3. Who multi-tasks and why? Multi-tasking ability, perceived multi-tasking ability, impulsivity, and sensation seeking.

    Directory of Open Access Journals (Sweden)

    David M Sanbonmatsu

    Full Text Available The present study examined the relationship between personality and individual differences in multi-tasking ability. Participants enrolled at the University of Utah completed measures of multi-tasking activity, perceived multi-tasking ability, impulsivity, and sensation seeking. In addition, they performed the Operation Span in order to assess their executive control and actual multi-tasking ability. The findings indicate that the persons who are most capable of multi-tasking effectively are not the persons who are most likely to engage in multiple tasks simultaneously. To the contrary, multi-tasking activity as measured by the Media Multitasking Inventory and self-reported cell phone usage while driving were negatively correlated with actual multi-tasking ability. Multi-tasking was positively correlated with participants' perceived ability to multi-task ability which was found to be significantly inflated. Participants with a strong approach orientation and a weak avoidance orientation--high levels of impulsivity and sensation seeking--reported greater multi-tasking behavior. Finally, the findings suggest that people often engage in multi-tasking because they are less able to block out distractions and focus on a singular task. Participants with less executive control--low scorers on the Operation Span task and persons high in impulsivity--tended to report higher levels of multi-tasking activity.

  4. Who Multi-Tasks and Why? Multi-Tasking Ability, Perceived Multi-Tasking Ability, Impulsivity, and Sensation Seeking

    Science.gov (United States)

    Sanbonmatsu, David M.; Strayer, David L.; Medeiros-Ward, Nathan; Watson, Jason M.

    2013-01-01

    The present study examined the relationship between personality and individual differences in multi-tasking ability. Participants enrolled at the University of Utah completed measures of multi-tasking activity, perceived multi-tasking ability, impulsivity, and sensation seeking. In addition, they performed the Operation Span in order to assess their executive control and actual multi-tasking ability. The findings indicate that the persons who are most capable of multi-tasking effectively are not the persons who are most likely to engage in multiple tasks simultaneously. To the contrary, multi-tasking activity as measured by the Media Multitasking Inventory and self-reported cell phone usage while driving were negatively correlated with actual multi-tasking ability. Multi-tasking was positively correlated with participants’ perceived ability to multi-task ability which was found to be significantly inflated. Participants with a strong approach orientation and a weak avoidance orientation – high levels of impulsivity and sensation seeking – reported greater multi-tasking behavior. Finally, the findings suggest that people often engage in multi-tasking because they are less able to block out distractions and focus on a singular task. Participants with less executive control - low scorers on the Operation Span task and persons high in impulsivity - tended to report higher levels of multi-tasking activity. PMID:23372720

  5. Effects of spectral variation on the device performance of copper indium diselenide and multi-crystalline silicon photovoltaic modules

    Energy Technology Data Exchange (ETDEWEB)

    Okullo, W.; Munji, M.K.; Vorster, F.J.; van Dyk, E.E. [Department of Physics, Nelson Mandela Metropolitan University, Box 77000, Port Elizabeth (South Africa)

    2011-02-15

    We present results of an experimental investigation of the effects of the daily spectral variation on the device performance of copper indium diselenide and multi-crystalline silicon photovoltaic modules. Such investigations are of importance in characterization of photovoltaic devices. The investigation centres on the analysis of outdoor solar spectral measurements carried out at 10 min intervals on clear-sky days. We have shown that the shift in the solar spectrum towards infrared has a negative impact on the device performance of both modules. The spectral bands in the visible region contribute more to the short circuit current than the bands in the infrared region while the ultraviolet region contributes least. The quantitative effects of the spectral variation on the performance of the two photovoltaic modules are reflected on their respective device performance parameters. The decrease in the visible and the increase in infrared of the late afternoon spectra in each case account for the decreased current collection and hence power and efficiency of both modules. (author)

  6. Bimanual Interaction with Interscopic Multi-Touch Surfaces

    Science.gov (United States)

    Schöning, Johannes; Steinicke, Frank; Krüger, Antonio; Hinrichs, Klaus; Valkov, Dimitar

    Multi-touch interaction has received considerable attention in the last few years, in particular for natural two-dimensional (2D) interaction. However, many application areas deal with three-dimensional (3D) data and require intuitive 3D interaction techniques therefore. Indeed, virtual reality (VR) systems provide sophisticated 3D user interface, but then lack efficient 2D interaction, and are therefore rarely adopted by ordinary users or even by experts. Since multi-touch interfaces represent a good trade-off between intuitive, constrained interaction on a touch surface providing tangible feedback, and unrestricted natural interaction without any instrumentation, they have the potential to form the foundation of the next generation user interface for 2D as well as 3D interaction. In particular, stereoscopic display of 3D data provides an additional depth cue, but until now the challenges and limitations for multi-touch interaction in this context have not been considered. In this paper we present new multi-touch paradigms and interactions that combine both traditional 2D interaction and novel 3D interaction on a touch surface to form a new class of multi-touch systems, which we refer to as interscopic multi-touch surfaces (iMUTS). We discuss iMUTS-based user interfaces that support interaction with 2D content displayed in monoscopic mode and 3D content usually displayed stereoscopically. In order to underline the potential of the proposed iMUTS setup, we have developed and evaluated two example interaction metaphors for different domains. First, we present intuitive navigation techniques for virtual 3D city models, and then we describe a natural metaphor for deforming volumetric datasets in a medical context.

  7. A Multi-Physics simulation of the Reactor Core using CUPID/MASTER

    International Nuclear Information System (INIS)

    Lee, Jae Ryong; Cho, Hyoung Kyu; Yoon, Han Young; Cho, Jin Young; Jeong, Jae Jun

    2011-01-01

    KAERI has been developing a component-scale thermal hydraulics code, CUPID. The aim of the code is for multi-dimensional, multi-physics and multi-scale thermal hydraulics analysis. In our previous papers, the CUPID code has proved to be able to reproduce multidimensional thermal hydraulic analysis by validated with various conceptual problems and experimental data. For the numerical closure, it adopts a three dimensional, transient, two-phase and three-field model, and includes physical models and correlations of the interfacial mass, momentum, and energy transfer. For the multi-scale analysis, the CUPID is on progress to merge into system-scale thermal hydraulic code, MARS. In the present paper, a multi-physics simulation was performed by coupling the CUPID with three dimensional neutron kinetics code, MASTER. The MASTER is merged into the CUPID as a dynamic link library (DLL). The APR1400 reactor core during control rod drop/ejection accident was simulated as an example by adopting a porous media approach to employ fuel assembly. The following sections present the numerical modeling for the reactor core, coupling of the kinetics code, and the simulation results

  8. The Multi-Dimensional Blood/Injury Phobia Inventory : Its psychometric properties and relationship with disgust propensity and disgust sensitivity

    NARCIS (Netherlands)

    van Overveld, Mark; de Jong, Peter J.; Peters, Madelon L.

    The Multi-Dimensional Blood Phobia Inventory (MBPI: Wenzel & Holt, 2003) is the only instrument available that assesses both disgust and anxiety for blood-phobic stimuli. As inflated levels of disgust propensity (i.e., tendency to experience disgust more readily) are often observed in blood phobia,

  9. Structural diversity: a multi-dimensional approach to assess recreational services in urban parks.

    Science.gov (United States)

    Voigt, Annette; Kabisch, Nadja; Wurster, Daniel; Haase, Dagmar; Breuste, Jürgen

    2014-05-01

    Urban green spaces provide important recreational services for urban residents. In general, when park visitors enjoy "the green," they are in actuality appreciating a mix of biotic, abiotic, and man-made park infrastructure elements and qualities. We argue that these three dimensions of structural diversity have an influence on how people use and value urban parks. We present a straightforward approach for assessing urban parks that combines multi-dimensional landscape mapping and questionnaire surveys. We discuss the method as well the results from its application to differently sized parks in Berlin and Salzburg.

  10. The design of multi-core DSP parallel model based on message passing and multi-level pipeline

    Science.gov (United States)

    Niu, Jingyu; Hu, Jian; He, Wenjing; Meng, Fanrong; Li, Chuanrong

    2017-10-01

    Currently, the design of embedded signal processing system is often based on a specific application, but this idea is not conducive to the rapid development of signal processing technology. In this paper, a parallel processing model architecture based on multi-core DSP platform is designed, and it is mainly suitable for the complex algorithms which are composed of different modules. This model combines the ideas of multi-level pipeline parallelism and message passing, and summarizes the advantages of the mainstream model of multi-core DSP (the Master-Slave model and the Data Flow model), so that it has better performance. This paper uses three-dimensional image generation algorithm to validate the efficiency of the proposed model by comparing with the effectiveness of the Master-Slave and the Data Flow model.

  11. Calculation of multi-dimensional dose distribution in medium due to proton beam incidence

    International Nuclear Information System (INIS)

    Kawachi, Kiyomitsu; Inada, Tetsuo

    1978-01-01

    The method of analyzing the multi-dimensional dose distribution in a medium due to proton beam incidence is presented to obtain the reliable and simplified method from clinical viewpoint, especially for the medical treatment of cancer. The heavy ion beam being taken out of an accelerator has to be adjusted to fit cancer location and size, utilizing a modified range modulator, a ridge filter, a bolus and a special scanning apparatus. The precise calculation of multi-dimensional dose distribution of proton beam is needed to fit treatment to a limit part. The analytical formulas consist of those for the fluence distribution in a medium, the divergence of flying range, the energy distribution itself, the dose distribution in side direction and the two-dimensional dose distribution. The fluence distribution in polystyrene in case of the protons with incident energy of 40 and 60 MeV, the energy distribution of protons at the position of a Bragg peak for various values of incident energy, the depth dose distribution in polystyrene in case of the protons with incident energy of 40 and 60 MeV and average energy of 100 MeV, the proton fluence and dose distribution as functions of depth for the incident average energy of 250 MeV, the statistically estimated percentage errors in the proton fluence and dose distribution, the estimated minimum detectable tumor thickness as a function of the number of incident protons for the different incident spectra with average energy of 250 MeV, the isodose distribution in a plane containing the central axis in case of the incident proton beam of 3 mm diameter and 40 MeV and so on are presented as the analytical results, and they are evaluated. (Nakai, Y.)

  12. Multi-layer Lanczos iteration approach to calculations of vibrational energies and dipole transition intensities for polyatomic molecules

    International Nuclear Information System (INIS)

    Yu, Hua-Gen

    2015-01-01

    We report a rigorous full dimensional quantum dynamics algorithm, the multi-layer Lanczos method, for computing vibrational energies and dipole transition intensities of polyatomic molecules without any dynamics approximation. The multi-layer Lanczos method is developed by using a few advanced techniques including the guided spectral transform Lanczos method, multi-layer Lanczos iteration approach, recursive residue generation method, and dipole-wavefunction contraction. The quantum molecular Hamiltonian at the total angular momentum J = 0 is represented in a set of orthogonal polyspherical coordinates so that the large amplitude motions of vibrations are naturally described. In particular, the algorithm is general and problem-independent. An application is illustrated by calculating the infrared vibrational dipole transition spectrum of CH based on the ab initio T8 potential energy surface of Schwenke and Partridge and the low-order truncated ab initio dipole moment surfaces of Yurchenko and co-workers. A comparison with experiments is made. The algorithm is also applicable for Raman polarizability active spectra

  13. Factorization of the six-particle multi-Regge amplitude

    International Nuclear Information System (INIS)

    Moen, I.O.

    1975-01-01

    It is shown that factorization of the multi-Regge contribution to the six-particle amplitude follows from the complex-helicity-plane structure, the Steinmann relations, and extended unitarity. The six-particle multi-Regge amplitude also satisfies some new discontinuity relations which are interpreted as resulting from the interplay of singularities required by the Gram-determinant constraint in four-dimensional space-time

  14. Multi-stage classification method oriented to aerial image based on low-rank recovery and multi-feature fusion sparse representation.

    Science.gov (United States)

    Ma, Xu; Cheng, Yongmei; Hao, Shuai

    2016-12-10

    Automatic classification of terrain surfaces from an aerial image is essential for an autonomous unmanned aerial vehicle (UAV) landing at an unprepared site by using vision. Diverse terrain surfaces may show similar spectral properties due to the illumination and noise that easily cause poor classification performance. To address this issue, a multi-stage classification algorithm based on low-rank recovery and multi-feature fusion sparse representation is proposed. First, color moments and Gabor texture feature are extracted from training data and stacked as column vectors of a dictionary. Then we perform low-rank matrix recovery for the dictionary by using augmented Lagrange multipliers and construct a multi-stage terrain classifier. Experimental results on an aerial map database that we prepared verify the classification accuracy and robustness of the proposed method.

  15. Multi-dimension feature fusion for action recognition

    Science.gov (United States)

    Dong, Pei; Li, Jie; Dong, Junyu; Qi, Lin

    2018-04-01

    Typical human actions last several seconds and exhibit characteristic spatio-temporal structure. The challenge for action recognition is to capture and fuse the multi-dimension information in video data. In order to take into account these characteristics simultaneously, we present a novel method that fuses multiple dimensional features, such as chromatic images, depth and optical flow fields. We built our model based on the multi-stream deep convolutional networks with the help of temporal segment networks and extract discriminative spatial and temporal features by fusing ConvNets towers multi-dimension, in which different feature weights are assigned in order to take full advantage of this multi-dimension information. Our architecture is trained and evaluated on the currently largest and most challenging benchmark NTU RGB-D dataset. The experiments demonstrate that the performance of our method outperforms the state-of-the-art methods.

  16. Development of an Aerosol Opacity Retrieval Algorithm for Use with Multi-Angle Land Surface Images

    Science.gov (United States)

    Diner, D.; Paradise, S.; Martonchik, J.

    1994-01-01

    In 1998, the Multi-angle Imaging SpectroRadiometer (MISR) will fly aboard the EOS-AM1 spacecraft. MISR will enable unique methods for retrieving the properties of atmospheric aerosols, by providing global imagery of the Earth at nine viewing angles in four visible and near-IR spectral bands. As part of the MISR algorithm development, theoretical methods of analyzing multi-angle, multi-spectral data are being tested using images acquired by the airborne Advanced Solid-State Array Spectroradiometer (ASAS). In this paper we derive a method to be used over land surfaces for retrieving the change in opacity between spectral bands, which can then be used in conjunction with an aerosol model to derive a bound on absolute opacity.

  17. An integrative multi-dimensional genetic and epigenetic strategy to identify aberrant genes and pathways in cancer

    Directory of Open Access Journals (Sweden)

    Lockwood William W

    2010-05-01

    Full Text Available Abstract Background Genomics has substantially changed our approach to cancer research. Gene expression profiling, for example, has been utilized to delineate subtypes of cancer, and facilitated derivation of predictive and prognostic signatures. The emergence of technologies for the high resolution and genome-wide description of genetic and epigenetic features has enabled the identification of a multitude of causal DNA events in tumors. This has afforded the potential for large scale integration of genome and transcriptome data generated from a variety of technology platforms to acquire a better understanding of cancer. Results Here we show how multi-dimensional genomics data analysis would enable the deciphering of mechanisms that disrupt regulatory/signaling cascades and downstream effects. Since not all gene expression changes observed in a tumor are causal to cancer development, we demonstrate an approach based on multiple concerted disruption (MCD analysis of genes that facilitates the rational deduction of aberrant genes and pathways, which otherwise would be overlooked in single genomic dimension investigations. Conclusions Notably, this is the first comprehensive study of breast cancer cells by parallel integrative genome wide analyses of DNA copy number, LOH, and DNA methylation status to interpret changes in gene expression pattern. Our findings demonstrate the power of a multi-dimensional approach to elucidate events which would escape conventional single dimensional analysis and as such, reduce the cohort sample size for cancer gene discovery.

  18. Simultaneous identification of optical constants and PSD of spherical particles by multi-wavelength scattering-transmittance measurement

    Science.gov (United States)

    Zhang, Jun-You; Qi, Hong; Ren, Ya-Tao; Ruan, Li-Ming

    2018-04-01

    An accurate and stable identification technique is developed to retrieve the optical constants and particle size distributions (PSDs) of particle system simultaneously from the multi-wavelength scattering-transmittance signals by using the improved quantum particle swarm optimization algorithm. The Mie theory are selected to calculate the directional laser intensity scattered by particles and the spectral collimated transmittance. The sensitivity and objective function distribution analysis were conducted to evaluate the mathematical properties (i.e. ill-posedness and multimodality) of the inverse problems under three different optical signals combinations (i.e. the single-wavelength multi-angle light scattering signal, the single-wavelength multi-angle light scattering and spectral transmittance signal, and the multi-angle light scattering and spectral transmittance signal). It was found the best global convergence performance can be obtained by using the multi-wavelength scattering-transmittance signals. Meanwhile, the present technique have been tested under different Gaussian measurement noise to prove its feasibility in a large solution space. All the results show that the inverse technique by using multi-wavelength scattering-transmittance signals is effective and suitable for retrieving the optical complex refractive indices and PSD of particle system simultaneously.

  19. Multi-dimensional optimization of a terawatt seeded tapered Free Electron Laser with a Multi-Objective Genetic Algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Juhao, E-mail: jhwu@SLAC.Stanford.EDU [SLAC National Accelerator Laboratory, Menlo Park, CA 94025 (United States); Hu, Newman [Valley Christian High School, 100 Skyway Drive, San Jose, CA 95111 (United States); Setiawan, Hananiel [The Facility for Rare Isotope Beams, Michigan State University, East Lansing, MI 48824 (United States); Huang, Xiaobiao; Raubenheimer, Tor O. [SLAC National Accelerator Laboratory, Menlo Park, CA 94025 (United States); Jiao, Yi [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Yu, George [Columbia University, New York, NY 10027 (United States); Mandlekar, Ajay [California Institute of Technology, Pasadena, CA 91125 (United States); Spampinati, Simone [Sincrotrone Trieste S.C.p.A. di interesse nazionale, Strada Statale 14-km 163,5 in AREA Science Park, 34149 Basovizza, Trieste (Italy); Fang, Kun [SLAC National Accelerator Laboratory, Menlo Park, CA 94025 (United States); Chu, Chungming [The Facility for Rare Isotope Beams, Michigan State University, East Lansing, MI 48824 (United States); Qiang, Ji [Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720 (United States)

    2017-02-21

    There is a great interest in generating high-power hard X-ray Free Electron Laser (FEL) in the terawatt (TW) level that can enable coherent diffraction imaging of complex molecules like proteins and probe fundamental high-field physics. A feasibility study of producing such X-ray pulses was carried out employing a configuration beginning with a Self-Amplified Spontaneous Emission FEL, followed by a “self-seeding” crystal monochromator generating a fully coherent seed, and finishing with a long tapered undulator where the coherent seed recombines with the electron bunch and is amplified to high power. The undulator tapering profile, the phase advance in the undulator break sections, the quadrupole focusing strength, etc. are parameters to be optimized. A Genetic Algorithm (GA) is adopted for this multi-dimensional optimization. Concrete examples are given for LINAC Coherent Light Source (LCLS) and LCLS-II-type systems. Analytical estimate is also developed to cross check the simulation and optimization results as a quick and complimentary tool.

  20. An introduction to the analysis of multi-cavity prestressed concrete pressure vessels

    International Nuclear Information System (INIS)

    Silva, M.C.A.T. da.

    1986-01-01

    The present work is a study of multi-cavity prestressed concrete pressure vessels (PCRV) for nuclear reactors. A review is made of the designs, analises and models of multi-cavity concrete pressure vessels. A preliminary evaluation of the NONSAP program for applications in complex three-dimensional structures such as a multi-cavity pressure vessel is also made. A model of a PCRV of a 1000 MW(e) high-temperature gas cooled reactor was selected for a three-dimensional analysis with the NONSAP program. The results obtained are compared with experimental data. (Author) [pt

  1. Multi-mode-multi-state quantum dynamics of key five-membered heterocycles: spectroscopy and ultrafast internal conversion

    International Nuclear Information System (INIS)

    Koeppel, H.; Gromov, E.V.; Trofimov, A.B.

    2004-01-01

    The multi-mode and multi-state vibronic interactions in the heterocyclic molecules furan, pyrrole, thiophene and their radical cations are investigated theoretically, employing a linear vibronic coupling scheme. The underlying system parameters are determined from large-scale ab initio computations. Previous time-independent dynamical calculations on the radical cations are extended by wave-packet propagations (using the MCTDH method) confirming the strong nonadiabatic coupling effects. For the singlet excited states of furan and thiophene quantum dynamical calculations are presented which go beyond the two-state approximation frequently applied in the literature. The characteristic spectral structures are well reproduced, especially in the case of furan. The implications of these results on the photochemical reaction dynamics of these species are discussed

  2. Who Multi-Tasks and Why? Multi-Tasking Ability, Perceived Multi-Tasking Ability, Impulsivity, and Sensation Seeking

    OpenAIRE

    Sanbonmatsu, David M.; Strayer, David L.; Medeiros-Ward, Nathan; Watson, Jason M.

    2013-01-01

    The present study examined the relationship between personality and individual differences in multi-tasking ability. Participants enrolled at the University of Utah completed measures of multi-tasking activity, perceived multi-tasking ability, impulsivity, and sensation seeking. In addition, they performed the Operation Span in order to assess their executive control and actual multi-tasking ability. The findings indicate that the persons who are most capable of multi-tasking effectively are ...

  3. Multi-layer Far-Infrared Component Technology, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This Phase I SBIR will demonstrate the feasibility of a process to create multi-layer thin-film optics for the far-infrared/sub-millimeter wave spectral region. The...

  4. Fractional governing equations of transient groundwater flow in confined aquifers with multi-fractional dimensions in fractional time

    OpenAIRE

    M. L. Kavvas; T. Tu; A. Ercan; J. Polsinelli

    2017-01-01

    Using fractional calculus, a dimensionally consistent governing equation of transient, saturated groundwater flow in fractional time in a multi-fractional confined aquifer is developed. First, a dimensionally consistent continuity equation for transient saturated groundwater flow in fractional time and in a multi-fractional, multidimensional confined aquifer is developed. For the equation of water flux within a multi-fractional multidimensional confined aquifer, a dimensionally...

  5. Multi-damping earthquake design spectra-compatible motion histories

    International Nuclear Information System (INIS)

    Choi, Dong-Ho; Lee, Sang-Hoon

    2003-01-01

    Two iterative methods of developing time histories compatible with multi-damping spectra are presented. The common method of forcing agreement among design and calculated spectral values at several frequencies and multiple damping values may give poor, even meaningless results. The two simple iterative techniques presented here use acceleration impulse functions for 'correcting' the time histories. In the first method the correction is calculated separately for each frequency and damping value and the maximum corresponding coefficient is used to correct the time history for the iteration. In the second method the solution is further improved by introducing a scale factor at each iteration. The effectiveness of the proposed techniques is illustrated by a comparison of a set of six multi-damping design spectra with spectral responses of a time history

  6. Verification of a three-dimensional neutronics model based on multi-point kinetics equations for transient problems

    Energy Technology Data Exchange (ETDEWEB)

    Park, Kyung Seok; Kim, Hyun Dae; Yeom, Choong Sub [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-07-01

    A computer code for solving the three-dimensional reactor neutronic transient problems utilizing multi-point reactor kinetics equations recently developed has been developed. For evaluating its applicability, the code has been tested with typical 3-D LWR and CANDU reactor transient problems. The performance of the method and code has been compared with the results by fine and coarse meshes computer codes employing the direct methods.

  7. A Two-Temperature Open-Source CFD Model for Hypersonic Reacting Flows, Part Two: Multi-Dimensional Analysis †

    OpenAIRE

    Vincent Casseau; Daniel E. R. Espinoza; Thomas J. Scanlon; Richard E. Brown

    2016-01-01

    hy2Foam is a newly-coded open-source two-temperature computational fluid dynamics (CFD) solver that has previously been validated for zero-dimensional test cases. It aims at (1) giving open-source access to a state-of-the-art hypersonic CFD solver to students and researchers; and (2) providing a foundation for a future hybrid CFD-DSMC (direct simulation Monte Carlo) code within the OpenFOAM framework. This paper focuses on the multi-dimensional verification of hy2Foam and firstly describes th...

  8. Predicting respiratory tumor motion with multi-dimensional adaptive filters and support vector regression

    International Nuclear Information System (INIS)

    Riaz, Nadeem; Wiersma, Rodney; Mao Weihua; Xing Lei; Shanker, Piyush; Gudmundsson, Olafur; Widrow, Bernard

    2009-01-01

    Intra-fraction tumor tracking methods can improve radiation delivery during radiotherapy sessions. Image acquisition for tumor tracking and subsequent adjustment of the treatment beam with gating or beam tracking introduces time latency and necessitates predicting the future position of the tumor. This study evaluates the use of multi-dimensional linear adaptive filters and support vector regression to predict the motion of lung tumors tracked at 30 Hz. We expand on the prior work of other groups who have looked at adaptive filters by using a general framework of a multiple-input single-output (MISO) adaptive system that uses multiple correlated signals to predict the motion of a tumor. We compare the performance of these two novel methods to conventional methods like linear regression and single-input, single-output adaptive filters. At 400 ms latency the average root-mean-square-errors (RMSEs) for the 14 treatment sessions studied using no prediction, linear regression, single-output adaptive filter, MISO and support vector regression are 2.58, 1.60, 1.58, 1.71 and 1.26 mm, respectively. At 1 s, the RMSEs are 4.40, 2.61, 3.34, 2.66 and 1.93 mm, respectively. We find that support vector regression most accurately predicts the future tumor position of the methods studied and can provide a RMSE of less than 2 mm at 1 s latency. Also, a multi-dimensional adaptive filter framework provides improved performance over single-dimension adaptive filters. Work is underway to combine these two frameworks to improve performance.

  9. Separability Analysis of Sentinel-2A Multi-Spectral Instrument (MSI Data for Burned Area Discrimination

    Directory of Open Access Journals (Sweden)

    Haiyan Huang

    2016-10-01

    Full Text Available Biomass burning is a global phenomenon and systematic burned area mapping is of increasing importance for science and applications. With high spatial resolution and novelty in band design, the recently launched Sentinel-2A satellite provides a new opportunity for moderate spatial resolution burned area mapping. This study examines the performance of the Sentinel-2A Multi Spectral Instrument (MSI bands and derived spectral indices to differentiate between unburned and burned areas. For this purpose, five pairs of pre-fire and post-fire top of atmosphere (TOA reflectance and atmospherically corrected (surface reflectance images were studied. The pixel values of locations that were unburned in the first image and burned in the second image, as well as the values of locations that were unburned in both images which served as a control, were compared and the discrimination of individual bands and spectral indices were evaluated using parametric (transformed divergence and non-parametric (decision tree approaches. Based on the results, the most suitable MSI bands to detect burned areas are the 20 m near-infrared, short wave infrared and red-edge bands, while the performance of the spectral indices varied with location. The atmospheric correction only significantly influenced the separability of the visible wavelength bands. The results provide insights that are useful for developing Sentinel-2 burned area mapping algorithms.

  10. An investment plan for preventing child injuries using risk priority number of failure mode and effects analysis methodology and a multi-objective, multi-dimensional mixed 0-1 knapsack model

    International Nuclear Information System (INIS)

    Bas, Esra

    2011-01-01

    In this paper, a general framework for child injury prevention and a multi-objective, multi-dimensional mixed 0-1 knapsack model were developed to determine the optimal time to introduce preventive measures against child injuries. Furthermore, the model maximises the prevention of injuries with the highest risks for each age period by combining preventive measures and supervision as well as satisfying budget limits and supervision time constraints. The risk factors for each injury, variable, and time period were based on risk priority numbers (RPNs) obtained from failure mode and effects analysis (FMEA) methodology, and these risk factors were incorporated into the model as objective function parameters. A numerical experiment based on several different situations was conducted, revealing that the model provided optimal timing of preventive measures for child injuries based on variables considered.

  11. Multi-material decomposition of spectral CT images

    Science.gov (United States)

    Mendonça, Paulo R. S.; Bhotika, Rahul; Maddah, Mahnaz; Thomsen, Brian; Dutta, Sandeep; Licato, Paul E.; Joshi, Mukta C.

    2010-04-01

    Spectral Computed Tomography (Spectral CT), and in particular fast kVp switching dual-energy computed tomography, is an imaging modality that extends the capabilities of conventional computed tomography (CT). Spectral CT enables the estimation of the full linear attenuation curve of the imaged subject at each voxel in the CT volume, instead of a scalar image in Hounsfield units. Because the space of linear attenuation curves in the energy ranges of medical applications can be accurately described through a two-dimensional manifold, this decomposition procedure would be, in principle, limited to two materials. This paper describes an algorithm that overcomes this limitation, allowing for the estimation of N-tuples of material-decomposed images. The algorithm works by assuming that the mixing of substances and tissue types in the human body has the physicochemical properties of an ideal solution, which yields a model for the density of the imaged material mix. Under this model the mass attenuation curve of each voxel in the image can be estimated, immediately resulting in a material-decomposed image triplet. Decomposition into an arbitrary number of pre-selected materials can be achieved by automatically selecting adequate triplets from an application-specific material library. The decomposition is expressed in terms of the volume fractions of each constituent material in the mix; this provides for a straightforward, physically meaningful interpretation of the data. One important application of this technique is in the digital removal of contrast agent from a dual-energy exam, producing a virtual nonenhanced image, as well as in the quantification of the concentration of contrast observed in a targeted region, thus providing an accurate measure of tissue perfusion.

  12. Advanced multi-dimensional imaging of gamma-ray radiation

    International Nuclear Information System (INIS)

    Woodring, Mitchell; Beddingfield, David; Souza, David; Entine, Gerald; Squillante, Michael; Christian, James; Kogan, Alex

    2003-01-01

    The tracking of radiation contamination and distribution has become a high-priority US DOE task. To support DOE needs, Radiation Monitoring Devices Inc. has been actively carrying out research and development on a gamma-radiation imager, RadCam 2000 TM . The imager is based upon a position-sensitive PMT coupled to a scintillator near a MURA coded aperture. The modulated gamma flux detected by the PSPMT is mathematically decoded to produce images that are computer displayed in near real time. Additionally, we have developed a data-manipulation scheme which allows a multi-dimensional data array, comprised of x position, y position, and energy, to be used in the imaging process. In the imager software a gate can be set on a specific isotope energy to reveal where in the field of view the gated data lies or, conversely, a gate can be set on an area in the field of view to examine what isotopes are present in that area. This process is complicated by the FFT decoding process used with the coded aperture; however, we have achieved excellent performance and results are presented here

  13. Three-dimensional multi-relaxation-time lattice Boltzmann front-tracking method for two-phase flow

    International Nuclear Information System (INIS)

    Xie Hai-Qiong; Zeng Zhong; Zhang Liang-Qi

    2016-01-01

    We developed a three-dimensional multi-relaxation-time lattice Boltzmann method for incompressible and immiscible two-phase flow by coupling with a front-tracking technique. The flow field was simulated by using an Eulerian grid, an adaptive unstructured triangular Lagrangian grid was applied to track explicitly the motion of the two-fluid interface, and an indicator function was introduced to update accurately the fluid properties. The surface tension was computed directly on a triangular Lagrangian grid, and then the surface tension was distributed to the background Eulerian grid. Three benchmarks of two-phase flow, including the Laplace law for a stationary drop, the oscillation of a three-dimensional ellipsoidal drop, and the drop deformation in a shear flow, were simulated to validate the present model. (paper)

  14. The fabrication of a multi-spectral lens array and its application in assisting color blindness

    Science.gov (United States)

    Di, Si; Jin, Jian; Tang, Guanrong; Chen, Xianshuai; Du, Ruxu

    2016-01-01

    This article presents a compact multi-spectral lens array and describes its application in assisting color-blindness. The lens array consists of 9 microlens, and each microlens is coated with a different color filter. Thus, it can capture different light bands, including red, orange, yellow, green, cyan, blue, violet, near-infrared, and the entire visible band. First, the fabrication process is described in detail. Second, an imaging system is setup and a color blindness testing card is selected as the sample. By the system, the vision results of normal people and color blindness can be captured simultaneously. Based on the imaging results, it is possible to be used for helping color-blindness to recover normal vision.

  15. Interpolation between multi-dimensional histograms using a new non-linear moment morphing method

    Energy Technology Data Exchange (ETDEWEB)

    Baak, M., E-mail: max.baak@cern.ch [CERN, CH-1211 Geneva 23 (Switzerland); Gadatsch, S., E-mail: stefan.gadatsch@nikhef.nl [Nikhef, PO Box 41882, 1009 DB Amsterdam (Netherlands); Harrington, R. [School of Physics and Astronomy, University of Edinburgh, Mayfield Road, Edinburgh, EH9 3JZ, Scotland (United Kingdom); Verkerke, W. [Nikhef, PO Box 41882, 1009 DB Amsterdam (Netherlands)

    2015-01-21

    A prescription is presented for the interpolation between multi-dimensional distribution templates based on one or multiple model parameters. The technique uses a linear combination of templates, each created using fixed values of the model's parameters and transformed according to a specific procedure, to model a non-linear dependency on model parameters and the dependency between them. By construction the technique scales well with the number of input templates used, which is a useful feature in modern day particle physics, where a large number of templates are often required to model the impact of systematic uncertainties.

  16. Interpolation between multi-dimensional histograms using a new non-linear moment morphing method

    International Nuclear Information System (INIS)

    Baak, M.; Gadatsch, S.; Harrington, R.; Verkerke, W.

    2015-01-01

    A prescription is presented for the interpolation between multi-dimensional distribution templates based on one or multiple model parameters. The technique uses a linear combination of templates, each created using fixed values of the model's parameters and transformed according to a specific procedure, to model a non-linear dependency on model parameters and the dependency between them. By construction the technique scales well with the number of input templates used, which is a useful feature in modern day particle physics, where a large number of templates are often required to model the impact of systematic uncertainties

  17. Interpolation between multi-dimensional histograms using a new non-linear moment morphing method

    CERN Document Server

    Baak, Max; Harrington, Robert; Verkerke, Wouter

    2014-01-01

    A prescription is presented for the interpolation between multi-dimensional distribution templates based on one or multiple model parameters. The technique uses a linear combination of templates, each created using fixed values of the model's parameters and transformed according to a specific procedure, to model a non-linear dependency on model parameters and the dependency between them. By construction the technique scales well with the number of input templates used, which is a useful feature in modern day particle physics, where a large number of templates is often required to model the impact of systematic uncertainties.

  18. Interpolation between multi-dimensional histograms using a new non-linear moment morphing method

    CERN Document Server

    Baak, Max; Harrington, Robert; Verkerke, Wouter

    2015-01-01

    A prescription is presented for the interpolation between multi-dimensional distribution templates based on one or multiple model parameters. The technique uses a linear combination of templates, each created using fixed values of the model's parameters and transformed according to a specific procedure, to model a non-linear dependency on model parameters and the dependency between them. By construction the technique scales well with the number of input templates used, which is a useful feature in modern day particle physics, where a large number of templates is often required to model the impact of systematic uncertainties.

  19. MXA: a customizable HDF5-based data format for multi-dimensional data sets

    International Nuclear Information System (INIS)

    Jackson, M; Simmons, J P; De Graef, M

    2010-01-01

    A new digital file format is proposed for the long-term archival storage of experimental data sets generated by serial sectioning instruments. The format is known as the multi-dimensional eXtensible Archive (MXA) format and is based on the public domain Hierarchical Data Format (HDF5). The MXA data model, its description by means of an eXtensible Markup Language (XML) file with associated Document Type Definition (DTD) are described in detail. The public domain MXA package is available through a dedicated web site (mxa.web.cmu.edu), along with implementation details and example data files

  20. Coupling Visualization and Data Analysis for Knowledge Discovery from Multi-dimensional Scientific Data

    International Nuclear Information System (INIS)

    Rubel, Oliver; Ahern, Sean; Bethel, E. Wes; Biggin, Mark D.; Childs, Hank; Cormier-Michel, Estelle; DePace, Angela; Eisen, Michael B.; Fowlkes, Charless C.; Geddes, Cameron G.R.; Hagen, Hans; Hamann, Bernd; Huang, Min-Yu; Keranen, Soile V.E.; Knowles, David W.; Hendriks, Chris L. Luengo; Malik, Jitendra; Meredith, Jeremy; Messmer, Peter; Prabhat; Ushizima, Daniela; Weber, Gunther H.; Wu, Kesheng

    2010-01-01

    Knowledge discovery from large and complex scientific data is a challenging task. With the ability to measure and simulate more processes at increasingly finer spatial and temporal scales, the growing number of data dimensions and data objects presents tremendous challenges for effective data analysis and data exploration methods and tools. The combination and close integration of methods from scientific visualization, information visualization, automated data analysis, and other enabling technologies 'such as efficient data management' supports knowledge discovery from multi-dimensional scientific data. This paper surveys two distinct applications in developmental biology and accelerator physics, illustrating the effectiveness of the described approach.

  1. Large Break LOCA Analysis with New downcomer Nodalizaion and Multi-Dimensional Model and Effect of Cross flow option in MARS code

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Hyung-wook; Lee, Sang-yong; Oh, Seung-jong; Kim, Woong-bae [KEPCO International Nuclear Graduate School, Ulsan (Korea, Republic of)

    2016-10-15

    The phenomena of LOCA have been investigated for long time. The most extensive research project for LOCA was the 2D/3D program experiments. The results of the 2D/3D experiments show flow conditions in the downcomer during end-of-blowdown were highly multi-dimensional at full-scale. In this paper, the authors modified the nodalization of MARS code LBLOCA input deck and performed LBLOCA analysis with new input deck. An LBLOCA analysis for APR1400 with new downcomer input deck was conducted using KREM with MARS-KS 1.4 Version code. Analysis was processed under LBCOCA of 100% break size of cold leg case. The authors developed input deck with new downcomer nodalizaion and Multi-Dimensional downcomer model, then implemented LOCA analysis with new input decks and compared with existing analysis results. PCT from new input and multi-dimensional input deck shows similar PCT trend from original input deck. There occurred more rapid drop of PCT from new and multidimensional input deck than original input deck. PCT from new and multidimensional input deck are satisfied with PCT design limit. It can be concluded that there occurs no acceptance criteria issue even though new and multidimensional input deck are applied to LBLOCA analysis. In future study, comparative analysis with experiment results will be implemented.

  2. Multi-task Vector Field Learning.

    Science.gov (United States)

    Lin, Binbin; Yang, Sen; Zhang, Chiyuan; Ye, Jieping; He, Xiaofei

    2012-01-01

    Multi-task learning (MTL) aims to improve generalization performance by learning multiple related tasks simultaneously and identifying the shared information among tasks. Most of existing MTL methods focus on learning linear models under the supervised setting. We propose a novel semi-supervised and nonlinear approach for MTL using vector fields. A vector field is a smooth mapping from the manifold to the tangent spaces which can be viewed as a directional derivative of functions on the manifold. We argue that vector fields provide a natural way to exploit the geometric structure of data as well as the shared differential structure of tasks, both of which are crucial for semi-supervised multi-task learning. In this paper, we develop multi-task vector field learning (MTVFL) which learns the predictor functions and the vector fields simultaneously. MTVFL has the following key properties. (1) The vector fields MTVFL learns are close to the gradient fields of the predictor functions. (2) Within each task, the vector field is required to be as parallel as possible which is expected to span a low dimensional subspace. (3) The vector fields from all tasks share a low dimensional subspace. We formalize our idea in a regularization framework and also provide a convex relaxation method to solve the original non-convex problem. The experimental results on synthetic and real data demonstrate the effectiveness of our proposed approach.

  3. Lithium Depletion in Solar-like Stars: Effect of Overshooting Based on Realistic Multi-dimensional Simulations

    Science.gov (United States)

    Baraffe, I.; Pratt, J.; Goffrey, T.; Constantino, T.; Folini, D.; Popov, M. V.; Walder, R.; Viallet, M.

    2017-08-01

    We study lithium depletion in low-mass and solar-like stars as a function of time, using a new diffusion coefficient describing extra-mixing taking place at the bottom of a convective envelope. This new form is motivated by multi-dimensional fully compressible, time-implicit hydrodynamic simulations performed with the MUSIC code. Intermittent convective mixing at the convective boundary in a star can be modeled using extreme value theory, a statistical analysis frequently used for finance, meteorology, and environmental science. In this Letter, we implement this statistical diffusion coefficient in a one-dimensional stellar evolution code, using parameters calibrated from multi-dimensional hydrodynamic simulations of a young low-mass star. We propose a new scenario that can explain observations of the surface abundance of lithium in the Sun and in clusters covering a wide range of ages, from ˜50 Myr to ˜4 Gyr. Because it relies on our physical model of convective penetration, this scenario has a limited number of assumptions. It can explain the observed trend between rotation and depletion, based on a single additional assumption, namely, that rotation affects the mixing efficiency at the convective boundary. We suggest the existence of a threshold in stellar rotation rate above which rotation strongly prevents the vertical penetration of plumes and below which rotation has small effects. In addition to providing a possible explanation for the long-standing problem of lithium depletion in pre-main-sequence and main-sequence stars, the strength of our scenario is that its basic assumptions can be tested by future hydrodynamic simulations.

  4. Lithium Depletion in Solar-like Stars: Effect of Overshooting Based on Realistic Multi-dimensional Simulations

    International Nuclear Information System (INIS)

    Baraffe, I.; Pratt, J.; Goffrey, T.; Constantino, T.; Viallet, M.; Folini, D.; Popov, M. V.; Walder, R.

    2017-01-01

    We study lithium depletion in low-mass and solar-like stars as a function of time, using a new diffusion coefficient describing extra-mixing taking place at the bottom of a convective envelope. This new form is motivated by multi-dimensional fully compressible, time-implicit hydrodynamic simulations performed with the MUSIC code. Intermittent convective mixing at the convective boundary in a star can be modeled using extreme value theory, a statistical analysis frequently used for finance, meteorology, and environmental science. In this Letter, we implement this statistical diffusion coefficient in a one-dimensional stellar evolution code, using parameters calibrated from multi-dimensional hydrodynamic simulations of a young low-mass star. We propose a new scenario that can explain observations of the surface abundance of lithium in the Sun and in clusters covering a wide range of ages, from ∼50 Myr to ∼4 Gyr. Because it relies on our physical model of convective penetration, this scenario has a limited number of assumptions. It can explain the observed trend between rotation and depletion, based on a single additional assumption, namely, that rotation affects the mixing efficiency at the convective boundary. We suggest the existence of a threshold in stellar rotation rate above which rotation strongly prevents the vertical penetration of plumes and below which rotation has small effects. In addition to providing a possible explanation for the long-standing problem of lithium depletion in pre-main-sequence and main-sequence stars, the strength of our scenario is that its basic assumptions can be tested by future hydrodynamic simulations.

  5. Lithium Depletion in Solar-like Stars: Effect of Overshooting Based on Realistic Multi-dimensional Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Baraffe, I.; Pratt, J.; Goffrey, T.; Constantino, T.; Viallet, M. [Astrophysics Group, University of Exeter, Exeter EX4 4QL (United Kingdom); Folini, D.; Popov, M. V.; Walder, R., E-mail: i.baraffe@ex.ac.uk [Ecole Normale Supérieure de Lyon, CRAL, UMR CNRS 5574, F-69364 Lyon Cedex 07 (France)

    2017-08-10

    We study lithium depletion in low-mass and solar-like stars as a function of time, using a new diffusion coefficient describing extra-mixing taking place at the bottom of a convective envelope. This new form is motivated by multi-dimensional fully compressible, time-implicit hydrodynamic simulations performed with the MUSIC code. Intermittent convective mixing at the convective boundary in a star can be modeled using extreme value theory, a statistical analysis frequently used for finance, meteorology, and environmental science. In this Letter, we implement this statistical diffusion coefficient in a one-dimensional stellar evolution code, using parameters calibrated from multi-dimensional hydrodynamic simulations of a young low-mass star. We propose a new scenario that can explain observations of the surface abundance of lithium in the Sun and in clusters covering a wide range of ages, from ∼50 Myr to ∼4 Gyr. Because it relies on our physical model of convective penetration, this scenario has a limited number of assumptions. It can explain the observed trend between rotation and depletion, based on a single additional assumption, namely, that rotation affects the mixing efficiency at the convective boundary. We suggest the existence of a threshold in stellar rotation rate above which rotation strongly prevents the vertical penetration of plumes and below which rotation has small effects. In addition to providing a possible explanation for the long-standing problem of lithium depletion in pre-main-sequence and main-sequence stars, the strength of our scenario is that its basic assumptions can be tested by future hydrodynamic simulations.

  6. Three dimensional multi-pass repair weld simulations

    International Nuclear Information System (INIS)

    Elcoate, C.D.; Dennis, R.J.; Bouchard, P.J.; Smith, M.C.

    2005-01-01

    Full 3-dimensional (3-D) simulation of multi-pass weld repairs is now feasible and practical given the development of improved analysis tools and significantly greater computer power. This paper presents residual stress results from 3-D finite element (FE) analyses simulating a long (arc length of 62 deg. ) and a short (arc length of 20 deg. ) repair to a girth weld in a 19.6 mm thick, 432 mm outer diameter cylindrical test component. Sensitivity studies are used to illustrate the importance of weld bead inter-pass temperature assumptions and to show where model symmetry can be used to reduce the analysis size. The predicted residual stress results are compared with measured axial, hoop and radial through-wall profiles in the heat affected zone of the test component repairs. A good overall agreement is achieved between neutron diffraction and deep hole drilling measurements and the prediction at the mid-length position of the short repair. These results demonstrate that a coarse 3-D FE model, using a 'block-dumped' weld bead deposition approach (rather than progressively depositing weld metal), can accurately capture the important components of a short repair weld residual stress field. However, comparisons of measured with predicted residual stress at mid-length and stop-end positions in the long repair are less satisfactory implying some shortcomings in the FE modelling approach that warrant further investigation

  7. Identification of a murine erythroblast subpopulation enriched in enucleating events by multi-spectral imaging flow cytometry.

    Science.gov (United States)

    Konstantinidis, Diamantis G; Pushkaran, Suvarnamala; Giger, Katie; Manganaris, Stefanos; Zheng, Yi; Kalfa, Theodosia A

    2014-06-06

    Erythropoiesis in mammals concludes with the dramatic process of enucleation that results in reticulocyte formation. The mechanism of enucleation has not yet been fully elucidated. A common problem encountered when studying the localization of key proteins and structures within enucleating erythroblasts by microscopy is the difficulty to observe a sufficient number of cells undergoing enucleation. We have developed a novel analysis protocol using multiparameter high-speed cell imaging in flow (Multi-Spectral Imaging Flow Cytometry), a method that combines immunofluorescent microscopy with flow cytometry, in order to identify efficiently a significant number of enucleating events, that allows to obtain measurements and perform statistical analysis. We first describe here two in vitro erythropoiesis culture methods used in order to synchronize murine erythroblasts and increase the probability of capturing enucleation at the time of evaluation. Then, we describe in detail the staining of erythroblasts after fixation and permeabilization in order to study the localization of intracellular proteins or lipid rafts during enucleation by multi-spectral imaging flow cytometry. Along with size and DNA/Ter119 staining which are used to identify the orthochromatic erythroblasts, we utilize the parameters "aspect ratio" of a cell in the bright-field channel that aids in the recognition of elongated cells and "delta centroid XY Ter119/Draq5" that allows the identification of cellular events in which the center of Ter119 staining (nascent reticulocyte) is far apart from the center of Draq5 staining (nucleus undergoing extrusion), thus indicating a cell about to enucleate. The subset of the orthochromatic erythroblast population with high delta centroid and low aspect ratio is highly enriched in enucleating cells.

  8. AN INTEGRATED PERFORMANCE MANAGEMENT FRAMEWORK FOR A MULTI-BUSINESS COMPANY

    Directory of Open Access Journals (Sweden)

    H.M. Aburas

    2012-01-01

    Full Text Available

    ENGLISH ABSTRACT: A multi-business company is a complex entity. Evaluating corporate performance of such an organisation is even more challenging. Corporate performance is inherently multidimensional in nature, is viewed from various perspectives, and has to satisfy multiple objectives. It is multi-dimensional in the sense of being a function of many variables that drive firm performance; multi-perspectival, from various stakeholders’ standpoints; and multi-objectives are to be optimised. So there is no single corporate performance evaluation tool that can be prescribed as a stand-alone gauge; however, a unified and holistic corporate performance management system can be developed from multiple tools. This paper attempts to bring together a variety of performance management tools that have evolved and developed in theory, and have been tested and applied in practice. In developing this convergence, first a set of criteria that answers the multi-dimensional, multi-perspectival, and multi-objective requirements of a firm’s performance will be identified and weighted. Second, management tools that have been used either singly or in combination by multi-business companies are reviewed and ranked against the chosen criteria. Finally, an integrated model or framework that brings together and unifies the elements of these ranked performance management tools is proposed.

    AFRIKAANSE OPSOMMING: D‘n Multi-maatskappy-onderneming is ‘n komplekse entiteit. Die evaluasie van maatskappyprestasie van so ‘n onderneming is self meer van ‘n uitdaging. Maatskappyprestasie is inherent multidimensioneel, word uit verskeie perspektiewe beskou en moet veelvuldige doelwitte bevredig. Geen enkele maatstaf is beskikbaar om hierdie fasette van maatskappyprestasie te evalueer, alhoewel ‘n holistiese prestasiebestuurstelsel ontwikkel kan word gebaseer op verskillende maatstawwe. Hierdie artikel bring verskillende metodologieë byeen vir die meting van

  9. Multi-Language and Multi-Purpose Educational Tool for Kids

    DEFF Research Database (Denmark)

    Holmen, Hee; Valente, Andrea; Marchetti, E.

    2005-01-01

    ‘Crazipes’ is one of the prototype games within SMAALL, a multi-language and multi-purpose games project for young kids of age 3-5 years old. The main goal of SMAALL is to expose young learners in multi-purpose and multi-module games. In the prototype of Crazipes, the game is designed to teach fo...

  10. Application of neural network to multi-dimensional design window search

    International Nuclear Information System (INIS)

    Kugo, T.; Nakagawa, M.

    1996-01-01

    In the reactor core design, many parametric survey calculations should be carried out to decide an optimal set of basic design parameter values. They consume a large amount of computation time and labor in the conventional way. To support directly such a work, we investigate a procedure to search efficiently a design window, which is defined as feasible design parameter ranges satisfying design criteria and requirements, in a multi-dimensional space composed of several basic design parameters. A principle of the present method is to construct the multilayer neural network to simulate quickly a response of an analysis code through a training process, and to reduce computation time using the neural network as a substitute of an analysis code. We apply the present method to a fuel pin design of high conversion light water reactors for the neutronics and thermal hydraulics fields to demonstrate performances of the method. (author)

  11. Multi-target consensus circle pursuit for multi-agent systems via a distributed multi-flocking method

    Science.gov (United States)

    Pei, Huiqin; Chen, Shiming; Lai, Qiang

    2016-12-01

    This paper studies the multi-target consensus pursuit problem of multi-agent systems. For solving the problem, a distributed multi-flocking method is designed based on the partial information exchange, which is employed to realise the pursuit of multi-target and the uniform distribution of the number of pursuing agents with the dynamic target. Combining with the proposed circle formation control strategy, agents can adaptively choose the target to form the different circle formation groups accomplishing a multi-target pursuit. The speed state of pursuing agents in each group converges to the same value. A Lyapunov approach is utilised to analyse the stability of multi-agent systems. In addition, a sufficient condition is given for achieving the dynamic target consensus pursuit, and which is then analysed. Finally, simulation results verify the effectiveness of the proposed approaches.

  12. Multi-Color QWIP FPAs for Hyperspectral Thermal Emission Instruments

    Science.gov (United States)

    Soibel, Alexander; Luong, Ed; Mumolo, Jason M.; Liu, John; Rafol, Sir B.; Keo, Sam A.; Johnson, William; Willson, Dan; Hill, Cory J.; Ting, David Z.-Y.; hide

    2012-01-01

    Infrared focal plane arrays (FPAs) covering broad mid- and long-IR spectral ranges are the central parts of the spectroscopic and imaging instruments in several Earth and planetary science missions. To be implemented in the space instrument these FPAs need to be large-format, uniform, reproducible, low-cost, low 1/f noise, and radiation hard. Quantum Well Infrared Photodetectors (QWIPs), which possess all needed characteristics, have a great potential for implementation in the space instruments. However a standard QWIP has only a relatively narrow spectral coverage. A multi-color QWIP, which is compromised of two or more detector stacks, can to be used to cover the broad spectral range of interest. We will discuss our recent work on development of multi-color QWIP for Hyperspectral Thermal Emission Spectrometer instruments. We developed QWIP compromising of two stacks centered at 9 and 10.5 ?m, and featuring 9 grating regions optimized to maximize the responsivity in the individual subbands across the 7.5-12 ?m spectral range. The demonstrated 1024x1024 QWIP FPA exhibited excellent performance with operability exceeding 99% and noise equivalent differential temperature of less than 15 mK across the entire 7.5-12 ?m spectral range.

  13. Interaction of the minocycline with extracelluar protein and intracellular protein by multi-spectral techniques and molecular docking

    Science.gov (United States)

    Fang, Qing; Wang, Yirun; Hu, Taoying; Liu, Ying

    2017-02-01

    The interaction of minocyeline (MNC) with extracelluar protein (lysozyme, LYSO) or intracellular protein (bovine hemoglobin, BHb) was investigated using multi-spectral techniques and molecular docking in vitro. Fluorescence studies suggested that MNC quenched LYSO/BHb fluorescence in a static mode with binding constants of 2.01 and 0.26 × 104 L•mol-1 at 298 K, respectively. The LYZO-MNC system was more easily influenced by temperature (298 and 310 K) than the BHb-MNC system. The thermodynamic parameters demonstrated that hydrogen bonds and van der Waals forces played the major role in the binding process. Based on the Förster theory of nonradiative energy transfer, the binding distances between MNC and the inner tryptophan residues of LYSO and BHb were calculated to be 4.34 and 3.49 nm, respectively. Furthermore, circular dichroism spectra (CD), Fourier transforms infrared (FTIR), UV-vis, and three-dimensional fluorescence spectra results indicated the secondary structures of LYSO and BHb were partially destroyed by MNC with the α-helix percentage of LYZO-MNC increased (17.8-28.6%) while that of BHb-MNC was decreased (41.6-39.6%). UV-vis spectral results showed these binding interactions could cause conformational and some micro-environmental changes of LYSO and BHb. In accordance with the results of molecular docking, In LYZO-MNC system, MNC was mainly bound in the active site hinge region where Trp-62 and Trp-63 are located, and in MNC-BHb system, MNC was close to the subunit α 1 of BHb, molecular docking analysis supported the thermodynamic results well. The work contributes to clarify the mechanism of MNC with two proteins at molecular level.

  14. Multi sensor satellite imagers for commercial remote sensing

    Science.gov (United States)

    Cronje, T.; Burger, H.; Du Plessis, J.; Du Toit, J. F.; Marais, L.; Strumpfer, F.

    2005-10-01

    This paper will discuss and compare recent refractive and catodioptric imager designs developed and manufactured at SunSpace for Multi Sensor Satellite Imagers with Panchromatic, Multi-spectral, Area and Hyperspectral sensors on a single Focal Plane Array (FPA). These satellite optical systems were designed with applications to monitor food supplies, crop yield and disaster monitoring in mind. The aim of these imagers is to achieve medium to high resolution (2.5m to 15m) spatial sampling, wide swaths (up to 45km) and noise equivalent reflectance (NER) values of less than 0.5%. State-of-the-art FPA designs are discussed and address the choice of detectors to achieve these performances. Special attention is given to thermal robustness and compactness, the use of folding prisms to place multiple detectors in a large FPA and a specially developed process to customize the spectral selection with the need to minimize mass, power and cost. A refractive imager with up to 6 spectral bands (6.25m GSD) and a catodioptric imager with panchromatic (2.7m GSD), multi-spectral (6 bands, 4.6m GSD), hyperspectral (400nm to 2.35μm, 200 bands, 15m GSD) sensors on the same FPA will be discussed. Both of these imagers are also equipped with real time video view finding capabilities. The electronic units could be subdivided into the Front-End Electronics and Control Electronics with analogue and digital signal processing. A dedicated Analogue Front-End is used for Correlated Double Sampling (CDS), black level correction, variable gain and up to 12-bit digitizing and high speed LVDS data link to a mass memory unit.

  15. Analytic Approximations to the Free Boundary and Multi-dimensional Problems in Financial Derivatives Pricing

    Science.gov (United States)

    Lau, Chun Sing

    This thesis studies two types of problems in financial derivatives pricing. The first type is the free boundary problem, which can be formulated as a partial differential equation (PDE) subject to a set of free boundary condition. Although the functional form of the free boundary condition is given explicitly, the location of the free boundary is unknown and can only be determined implicitly by imposing continuity conditions on the solution. Two specific problems are studied in details, namely the valuation of fixed-rate mortgages and CEV American options. The second type is the multi-dimensional problem, which involves multiple correlated stochastic variables and their governing PDE. One typical problem we focus on is the valuation of basket-spread options, whose underlying asset prices are driven by correlated geometric Brownian motions (GBMs). Analytic approximate solutions are derived for each of these three problems. For each of the two free boundary problems, we propose a parametric moving boundary to approximate the unknown free boundary, so that the original problem transforms into a moving boundary problem which can be solved analytically. The governing parameter of the moving boundary is determined by imposing the first derivative continuity condition on the solution. The analytic form of the solution allows the price and the hedging parameters to be computed very efficiently. When compared against the benchmark finite-difference method, the computational time is significantly reduced without compromising the accuracy. The multi-stage scheme further allows the approximate results to systematically converge to the benchmark results as one recasts the moving boundary into a piecewise smooth continuous function. For the multi-dimensional problem, we generalize the Kirk (1995) approximate two-asset spread option formula to the case of multi-asset basket-spread option. Since the final formula is in closed form, all the hedging parameters can also be derived in

  16. Computational analyses of spectral trees from electrospray multi-stage mass spectrometry to aid metabolite identification.

    Science.gov (United States)

    Cao, Mingshu; Fraser, Karl; Rasmussen, Susanne

    2013-10-31

    Mass spectrometry coupled with chromatography has become the major technical platform in metabolomics. Aided by peak detection algorithms, the detected signals are characterized by mass-over-charge ratio (m/z) and retention time. Chemical identities often remain elusive for the majority of the signals. Multi-stage mass spectrometry based on electrospray ionization (ESI) allows collision-induced dissociation (CID) fragmentation of selected precursor ions. These fragment ions can assist in structural inference for metabolites of low molecular weight. Computational investigations of fragmentation spectra have increasingly received attention in metabolomics and various public databases house such data. We have developed an R package "iontree" that can capture, store and analyze MS2 and MS3 mass spectral data from high throughput metabolomics experiments. The package includes functions for ion tree construction, an algorithm (distMS2) for MS2 spectral comparison, and tools for building platform-independent ion tree (MS2/MS3) libraries. We have demonstrated the utilization of the package for the systematic analysis and annotation of fragmentation spectra collected in various metabolomics platforms, including direct infusion mass spectrometry, and liquid chromatography coupled with either low resolution or high resolution mass spectrometry. Assisted by the developed computational tools, we have demonstrated that spectral trees can provide informative evidence complementary to retention time and accurate mass to aid with annotating unknown peaks. These experimental spectral trees once subjected to a quality control process, can be used for querying public MS2 databases or de novo interpretation. The putatively annotated spectral trees can be readily incorporated into reference libraries for routine identification of metabolites.

  17. Three-Dimensional Model Retrieval Using Dynamic Multi-Descriptor Fusion

    Institute of Scientific and Technical Information of China (English)

    Jau-Ling Shi; Chang-Hsing Lee; Yao-Wen Hou; Po-Ting Yeh

    2017-01-01

    In this paper, we propose a dynamic multi-descriptor fusion (DMDF) approach to improving the retrieval accuracy of 3-dimensional (3D) model retrieval systems. First, an independent retrieval list is generated by using each individual descriptor. Second, we propose an automatic relevant/irrelevant models selection (ARMS) approach to selecting the relevant and irrelevant 3D models automatically without any user interaction. A weighted distance, in which the weight associated with each individual descriptor is learnt by using the selected relevant and irrelevant models, is used to measure the similarity between two 3D models. Furthermore, a descriptor-dependent adaptive query point movement (AQPM) approach is employed to update every feature vector. This set of new feature vectors is used to index 3D models in the next search process. Four 3D model databases are used to compare the retrieval accuracy of our proposed DMDF approach with several descriptors as well as some well-known information fusion methods. Experimental results have shown that our proposed DMDF approach provides a promising retrieval result and always yields the best retrieval accuracy.

  18. MULTI-DIMENSIONAL PATTERN DISCOVERY OF TRAJECTORIES USING CONTEXTUAL INFORMATION

    Directory of Open Access Journals (Sweden)

    M. Sharif

    2017-10-01

    Full Text Available Movement of point objects are highly sensitive to the underlying situations and conditions during the movement, which are known as contexts. Analyzing movement patterns, while accounting the contextual information, helps to better understand how point objects behave in various contexts and how contexts affect their trajectories. One potential solution for discovering moving objects patterns is analyzing the similarities of their trajectories. This article, therefore, contextualizes the similarity measure of trajectories by not only their spatial footprints but also a notion of internal and external contexts. The dynamic time warping (DTW method is employed to assess the multi-dimensional similarities of trajectories. Then, the results of similarity searches are utilized in discovering the relative movement patterns of the moving point objects. Several experiments are conducted on real datasets that were obtained from commercial airplanes and the weather information during the flights. The results yielded the robustness of DTW method in quantifying the commonalities of trajectories and discovering movement patterns with 80 % accuracy. Moreover, the results revealed the importance of exploiting contextual information because it can enhance and restrict movements.

  19. Multi-Dimensional Pattern Discovery of Trajectories Using Contextual Information

    Science.gov (United States)

    Sharif, M.; Alesheikh, A. A.

    2017-10-01

    Movement of point objects are highly sensitive to the underlying situations and conditions during the movement, which are known as contexts. Analyzing movement patterns, while accounting the contextual information, helps to better understand how point objects behave in various contexts and how contexts affect their trajectories. One potential solution for discovering moving objects patterns is analyzing the similarities of their trajectories. This article, therefore, contextualizes the similarity measure of trajectories by not only their spatial footprints but also a notion of internal and external contexts. The dynamic time warping (DTW) method is employed to assess the multi-dimensional similarities of trajectories. Then, the results of similarity searches are utilized in discovering the relative movement patterns of the moving point objects. Several experiments are conducted on real datasets that were obtained from commercial airplanes and the weather information during the flights. The results yielded the robustness of DTW method in quantifying the commonalities of trajectories and discovering movement patterns with 80 % accuracy. Moreover, the results revealed the importance of exploiting contextual information because it can enhance and restrict movements.

  20. A comparison of dimension reduction methods with application to multi-spectral images of sand used in concrete

    DEFF Research Database (Denmark)

    Clemmensen, Line Katrine Harder; Hansen, M. E.; Ersbøll, Bjarne Kjær

    2010-01-01

    This paper presents a comparison of dimension reduction methods based on a novel machine vision application for estimating moisture content in sand used to make concrete. For the application in question it is very important to know the moisture content of the sand so as to ensure good-quality...... sand types were examined with 20-60 images for each type. To reduce the amount of data, features were extracted from the multi-spectral images; the features were summary statistics on single bands and pairs of bands as well as morphological summaries. The number of features (2,016) is high in relation...

  1. Psychometric evaluation of a multi-dimensional measure of satisfaction with behavioral interventions.

    Science.gov (United States)

    Sidani, Souraya; Epstein, Dana R; Fox, Mary

    2017-10-01

    Treatment satisfaction is recognized as an essential aspect in the evaluation of an intervention's effectiveness, but there is no measure that provides for its comprehensive assessment with regard to behavioral interventions. Informed by a conceptualization generated from a literature review, we developed a measure that covers several domains of satisfaction with behavioral interventions. In this paper, we briefly review its conceptualization and describe the Multi-Dimensional Treatment Satisfaction Measure (MDTSM) subscales. Satisfaction refers to the appraisal of the treatment's process and outcome attributes. The MDTSM has 11 subscales assessing treatment process and outcome attributes: treatment components' suitability and utility, attitude toward treatment, desire for continued treatment use, therapist competence and interpersonal style, format and dose, perceived benefits of the health problem and everyday functioning, discomfort, and attribution of outcomes to treatment. The MDTSM was completed by persons (N = 213) in the intervention group in a large trial of a multi-component behavioral intervention for insomnia within 1 week following treatment completion. The MDTSM's subscales demonstrated internal consistency reliability (α: .65 - .93) and validity (correlated with self-reported adherence and perceived insomnia severity at post-test). The MDTSM subscales can be used to assess satisfaction with behavioral interventions and point to aspects of treatments that are viewed favorably or unfavorably. © 2017 Wiley Periodicals, Inc.

  2. The electronic structure of quasi-one-dimensional disordered systems with parallel multi-chains

    International Nuclear Information System (INIS)

    Liu Xiaoliang; Xu Hui; Deng Chaosheng; Ma Songshan

    2006-01-01

    For the quasi-one-dimensional disordered systems with parallel multi-chains, taking a special method to code the sites and just considering the nearest-neighbor hopping integral, we write the systems' Hamiltonians as precisely symmetric matrixes, which can be transformed into three diagonally symmetric matrixes by using the Householder transformation. The densities of states, the localization lengths and the conductance of the systems are calculated numerically using the minus eigenvalue theory and the transfer matrix method. From the results of quasi-one-dimensional disordered systems with varied chains, we find, the energy band of the systems extends slightly, the energy gaps are observed and the distribution of the density of states changes obviously with the increase of the dimensionality. Especially, for the systems with four, five or six chains, at the energy band center, there exist extended states whose localization lengths are greater than the size of the systems, accordingly, there having great conductance. With the increasing of the number of the chains, the correlated ranges expand and the systems present the similar behavior to that with off-diagonal long-range correlation

  3. Analysis of variability in multi-day GPS imputed activity-travel diaries using multi-dimensional sequence alignment and panel effects regression models

    NARCIS (Netherlands)

    Xianyu, J.; Rasouli, S.; Timmermans, H.J.P.

    The use of GPS devices and smartphones has made feasible the collection of multi-day activity-travel diaries. In turn, the availability of multi-day travel diary data opens up new avenues for analyzing dynamics of individual travel behavior. This paper addresses the issue of day-to-day variability

  4. An integrated approach for the knowledge discovery in computer simulation models with a multi-dimensional parameter space

    Energy Technology Data Exchange (ETDEWEB)

    Khawli, Toufik Al; Eppelt, Urs; Hermanns, Torsten [RWTH Aachen University, Chair for Nonlinear Dynamics, Steinbachstr. 15, 52047 Aachen (Germany); Gebhardt, Sascha [RWTH Aachen University, Virtual Reality Group, IT Center, Seffenter Weg 23, 52074 Aachen (Germany); Kuhlen, Torsten [Forschungszentrum Jülich GmbH, Institute for Advanced Simulation (IAS), Jülich Supercomputing Centre (JSC), Wilhelm-Johnen-Straße, 52425 Jülich (Germany); Schulz, Wolfgang [Fraunhofer, ILT Laser Technology, Steinbachstr. 15, 52047 Aachen (Germany)

    2016-06-08

    In production industries, parameter identification, sensitivity analysis and multi-dimensional visualization are vital steps in the planning process for achieving optimal designs and gaining valuable information. Sensitivity analysis and visualization can help in identifying the most-influential parameters and quantify their contribution to the model output, reduce the model complexity, and enhance the understanding of the model behavior. Typically, this requires a large number of simulations, which can be both very expensive and time consuming when the simulation models are numerically complex and the number of parameter inputs increases. There are three main constituent parts in this work. The first part is to substitute the numerical, physical model by an accurate surrogate model, the so-called metamodel. The second part includes a multi-dimensional visualization approach for the visual exploration of metamodels. In the third part, the metamodel is used to provide the two global sensitivity measures: i) the Elementary Effect for screening the parameters, and ii) the variance decomposition method for calculating the Sobol indices that quantify both the main and interaction effects. The application of the proposed approach is illustrated with an industrial application with the goal of optimizing a drilling process using a Gaussian laser beam.

  5. Relating system-to-CFD coupled code analyses to theoretical framework of a multi-scale method

    International Nuclear Information System (INIS)

    Cadinu, F.; Kozlowski, T.; Dinh, T.N.

    2007-01-01

    Over past decades, analyses of transient processes and accidents in a nuclear power plant have been performed, to a significant extent and with a great success, by means of so called system codes, e.g. RELAP5, CATHARE, ATHLET codes. These computer codes, based on a multi-fluid model of two-phase flow, provide an effective, one-dimensional description of the coolant thermal-hydraulics in the reactor system. For some components in the system, wherever needed, the effect of multi-dimensional flow is accounted for through approximate models. The later are derived from scaled experiments conducted for selected accident scenarios. Increasingly, however, we have to deal with newer and ever more complex accident scenarios. In some such cases the system codes fail to serve as simulation vehicle, largely due to its deficient treatment of multi-dimensional flow (in e.g. downcomer, lower plenum). A possible way of improvement is to use the techniques of Computational Fluid Dynamics (CFD). Based on solving Navier-Stokes equations, CFD codes have been developed and used, broadly, to perform analysis of multi-dimensional flow, dominantly in non-nuclear industry and for single-phase flow applications. It is clear that CFD simulations can not substitute system codes but just complement them. Given the intrinsic multi-scale nature of this problem, we propose to relate it to the more general field of research on multi-scale simulations. Even though multi-scale methods are developed on case-by-case basis, the need for a unified framework brought to the development of the heterogeneous multi-scale method (HMM)

  6. Semi-Supervised Multi-View Ensemble Learning Based On Extracting Cross-View Correlation

    Directory of Open Access Journals (Sweden)

    ZALL, R.

    2016-05-01

    Full Text Available Correlated information between different views incorporate useful for learning in multi view data. Canonical correlation analysis (CCA plays important role to extract these information. However, CCA only extracts the correlated information between paired data and cannot preserve correlated information between within-class samples. In this paper, we propose a two-view semi-supervised learning method called semi-supervised random correlation ensemble base on spectral clustering (SS_RCE. SS_RCE uses a multi-view method based on spectral clustering which takes advantage of discriminative information in multiple views to estimate labeling information of unlabeled samples. In order to enhance discriminative power of CCA features, we incorporate the labeling information of both unlabeled and labeled samples into CCA. Then, we use random correlation between within-class samples from cross view to extract diverse correlated features for training component classifiers. Furthermore, we extend a general model namely SSMV_RCE to construct ensemble method to tackle semi-supervised learning in the presence of multiple views. Finally, we compare the proposed methods with existing multi-view feature extraction methods using multi-view semi-supervised ensembles. Experimental results on various multi-view data sets are presented to demonstrate the effectiveness of the proposed methods.

  7. The development of a collapsing method for the mixed group and point cross sections and its application on multi-dimensional deep penetration calculations

    International Nuclear Information System (INIS)

    Bor-Jing Chang; Yen-Wan H. Liu

    1992-01-01

    The HYBRID, or mixed group and point, method was developed to solve the neutron transport equation deterministically using detailed treatment at cross section minima for deep penetration calculations. Its application so far is limited to one-dimensional calculations due to the enormous computing time involved in multi-dimensional calculations. In this article, a collapsing method is developed for the mixed group and point cross section sets to provide a more direct and practical way of using the HYBRID method in the multi-dimensional calculations. A testing problem is run. The method is then applied to the calculation of a deep penetration benchmark experiment. It is observed that half of the window effect is smeared in the collapsing treatment, but it still provide a better cross section set than the VITAMIN-C cross sections for the deep penetrating calculations

  8. Multi-way Communications: An Information Theoretic Perspective

    KAUST Repository

    Chaaban, Anas

    2015-09-15

    Multi-way communication is a means to significantly improve the spectral efficiency of wireless networks. For instance, in a bi-directional (or two-way) communication channel, two users can simultaneously use the transmission medium to exchange information, thus achieving up to twice the rate that would be achieved had each user transmitted separately. Multi-way communications provides an overview on the developments in this research area since it has been initiated by Shannon. The basic two-way communication channel is considered first, followed by the two-way relay channel obtained by the deployment of an additional cooperative relay node to improve the overall communication performance. This basic setup is then extended to multi-user systems. For all these setups, fundamental limits on the achievable rates are reviewed, thereby making use of a linear high-SNR deterministic channel model to provide valuable insights which are helpful when discussing the coding schemes for Gaussian channel models in detail. Several tools and communication strategies are used in the process, including (but not limited to) computation, signal-space alignment, and nested-lattice codes. Finally, extensions of multi-way communication channels to multiple antenna settings are discussed. © 2015 A. Chaaban and A. Sezgin.

  9. Multi-dimensional relativistic simulations of core-collapse supernovae with energy-dependent neutrino transport

    International Nuclear Information System (INIS)

    Mueller, Bernhard

    2009-01-01

    In this thesis, we have presented the first multi-dimensional models of core-collapse supernovae that combine a detailed, up-to-date treatment of neutrino transport, the equation of state, and - in particular - general relativistic gravity. Building on the well-tested neutrino transport code VERTEX and the GR hydrodynamics code CoCoNuT, we developed and implemented a relativistic generalization of a ray-by-ray-plus method for energy-dependent neutrino transport. The result of these effort, the VERTEX-CoCoNuT code, also incorporates a number of improved numerical techniques that have not been used in the code components VERTEX and CoCoNuT before. In order to validate the VERTEX-CoCoNuT code, we conducted several test simulations in spherical symmetry, most notably a comparison with the one-dimensional relativistic supernova code AGILE-BOLTZTRAN and the Newtonian PROMETHEUSVERTEX code. (orig.)

  10. Multi-dimensional relativistic simulations of core-collapse supernovae with energy-dependent neutrino transport

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, Bernhard

    2009-05-07

    In this thesis, we have presented the first multi-dimensional models of core-collapse supernovae that combine a detailed, up-to-date treatment of neutrino transport, the equation of state, and - in particular - general relativistic gravity. Building on the well-tested neutrino transport code VERTEX and the GR hydrodynamics code CoCoNuT, we developed and implemented a relativistic generalization of a ray-by-ray-plus method for energy-dependent neutrino transport. The result of these effort, the VERTEX-CoCoNuT code, also incorporates a number of improved numerical techniques that have not been used in the code components VERTEX and CoCoNuT before. In order to validate the VERTEX-CoCoNuT code, we conducted several test simulations in spherical symmetry, most notably a comparison with the one-dimensional relativistic supernova code AGILE-BOLTZTRAN and the Newtonian PROMETHEUSVERTEX code. (orig.)

  11. Multi-View Multi-Instance Learning Based on Joint Sparse Representation and Multi-View Dictionary Learning.

    Science.gov (United States)

    Li, Bing; Yuan, Chunfeng; Xiong, Weihua; Hu, Weiming; Peng, Houwen; Ding, Xinmiao; Maybank, Steve

    2017-12-01

    In multi-instance learning (MIL), the relations among instances in a bag convey important contextual information in many applications. Previous studies on MIL either ignore such relations or simply model them with a fixed graph structure so that the overall performance inevitably degrades in complex environments. To address this problem, this paper proposes a novel multi-view multi-instance learning algorithm (MIL) that combines multiple context structures in a bag into a unified framework. The novel aspects are: (i) we propose a sparse -graph model that can generate different graphs with different parameters to represent various context relations in a bag, (ii) we propose a multi-view joint sparse representation that integrates these graphs into a unified framework for bag classification, and (iii) we propose a multi-view dictionary learning algorithm to obtain a multi-view graph dictionary that considers cues from all views simultaneously to improve the discrimination of the MIL. Experiments and analyses in many practical applications prove the effectiveness of the M IL.

  12. Theoretical background and implementation of the finite element method for multi-dimensional Fokker-Planck equation analysis

    Czech Academy of Sciences Publication Activity Database

    Král, Radomil; Náprstek, Jiří

    2017-01-01

    Roč. 113, November (2017), s. 54-75 ISSN 0965-9978 R&D Projects: GA ČR(CZ) GP14-34467P; GA ČR(CZ) GA15-01035S Institutional support: RVO:68378297 Keywords : Fokker-Planck equation * finite element method * simplex element * multi-dimensional problem * non-symmetric operator Subject RIV: JM - Building Engineering OBOR OECD: Mechanical engineering Impact factor: 3.000, year: 2016 https://www.sciencedirect.com/science/ article /pii/S0965997817301904

  13. The Perron-Frobenius theorem for multi-homogeneous mappings

    OpenAIRE

    Gautier, Antoine; Tudisco, Francesco; Hein, Matthias

    2018-01-01

    The Perron-Frobenius theory for nonnegative matrices has been generalized to order-preserving homogeneous mappings on a cone and more recently to nonnegative multilinear forms. We unify both approaches by introducing the concept of order-preserving multi-homogeneous mappings, their associated nonlinear spectral problems and spectral radii. We show several Perron-Frobenius type results for these mappings addressing existence, uniqueness and maximality of nonnegative and positive eigenpairs. We...

  14. Multi-dimensional single-spin nano-optomechanics with a levitated nanodiamond

    Science.gov (United States)

    Neukirch, Levi P.; von Haartman, Eva; Rosenholm, Jessica M.; Nick Vamivakas, A.

    2015-10-01

    Considerable advances made in the development of nanomechanical and nano-optomechanical devices have enabled the observation of quantum effects, improved sensitivity to minute forces, and provided avenues to probe fundamental physics at the nanoscale. Concurrently, solid-state quantum emitters with optically accessible spin degrees of freedom have been pursued in applications ranging from quantum information science to nanoscale sensing. Here, we demonstrate a hybrid nano-optomechanical system composed of a nanodiamond (containing a single nitrogen-vacancy centre) that is levitated in an optical dipole trap. The mechanical state of the diamond is controlled by modulation of the optical trapping potential. We demonstrate the ability to imprint the multi-dimensional mechanical motion of the cavity-free mechanical oscillator into the nitrogen-vacancy centre fluorescence and manipulate the mechanical system's intrinsic spin. This result represents the first step towards a hybrid quantum system based on levitating nanoparticles that simultaneously engages optical, phononic and spin degrees of freedom.

  15. Multi-criteria objective based climate change impact assessment for multi-purpose multi-reservoir systems

    Science.gov (United States)

    Müller, Ruben; Schütze, Niels

    2014-05-01

    Water resources systems with reservoirs are expected to be sensitive to climate change. Assessment studies that analyze the impact of climate change on the performance of reservoirs can be divided in two groups: (1) Studies that simulate the operation under projected inflows with the current set of operational rules. Due to non adapted operational rules the future performance of these reservoirs can be underestimated and the impact overestimated. (2) Studies that optimize the operational rules for best adaption of the system to the projected conditions before the assessment of the impact. The latter allows for estimating more realistically future performance and adaption strategies based on new operation rules are available if required. Multi-purpose reservoirs serve various, often conflicting functions. If all functions cannot be served simultaneously at a maximum level, an effective compromise between multiple objectives of the reservoir operation has to be provided. Yet under climate change the historically preferenced compromise may no longer be the most suitable compromise in the future. Therefore a multi-objective based climate change impact assessment approach for multi-purpose multi-reservoir systems is proposed in the study. Projected inflows are provided in a first step using a physically based rainfall-runoff model. In a second step, a time series model is applied to generate long-term inflow time series. Finally, the long-term inflow series are used as driving variables for a simulation-based multi-objective optimization of the reservoir system in order to derive optimal operation rules. As a result, the adapted Pareto-optimal set of diverse best compromise solutions can be presented to the decision maker in order to assist him in assessing climate change adaption measures with respect to the future performance of the multi-purpose reservoir system. The approach is tested on a multi-purpose multi-reservoir system in a mountainous catchment in Germany. A

  16. A multi-step electrochemical etching process for a three-dimensional micro probe array

    International Nuclear Information System (INIS)

    Kim, Yoonji; Youn, Sechan; Cho, Young-Ho; Park, HoJoon; Chang, Byeung Gyu; Oh, Yong Soo

    2011-01-01

    We present a simple, fast, and cost-effective process for three-dimensional (3D) micro probe array fabrication using multi-step electrochemical metal foil etching. Compared to the previous electroplating (add-on) process, the present electrochemical (subtractive) process results in well-controlled material properties of the metallic microstructures. In the experimental study, we describe the single-step and multi-step electrochemical aluminum foil etching processes. In the single-step process, the depth etch rate and the bias etch rate of an aluminum foil have been measured as 1.50 ± 0.10 and 0.77 ± 0.03 µm min −1 , respectively. On the basis of the single-step process results, we have designed and performed the two-step electrochemical etching process for the 3D micro probe array fabrication. The fabricated 3D micro probe array shows the vertical and lateral fabrication errors of 15.5 ± 5.8% and 3.3 ± 0.9%, respectively, with the surface roughness of 37.4 ± 9.6 nm. The contact force and the contact resistance of the 3D micro probe array have been measured to be 24.30 ± 0.98 mN and 2.27 ± 0.11 Ω, respectively, for an overdrive of 49.12 ± 1.25 µm.

  17. Magnetic quantum tunneling: key insights from multi-dimensional high-field EPR.

    Science.gov (United States)

    Lawrence, J; Yang, E-C; Hendrickson, D N; Hill, S

    2009-08-21

    Multi-dimensional high-field/frequency electron paramagnetic resonance (HFEPR) spectroscopy is performed on single-crystals of the high-symmetry spin S = 4 tetranuclear single-molecule magnet (SMM) [Ni(hmp)(dmb)Cl](4), where hmp(-) is the anion of 2-hydroxymethylpyridine and dmb is 3,3-dimethyl-1-butanol. Measurements performed as a function of the applied magnetic field strength and its orientation within the hard-plane reveal the four-fold behavior associated with the fourth order transverse zero-field splitting (ZFS) interaction, (1/2)B(S + S), within the framework of a rigid spin approximation (with S = 4). This ZFS interaction mixes the m(s) = +/-4 ground states in second order of perturbation, generating a sizeable (12 MHz) tunnel splitting, which explains the fast magnetic quantum tunneling in this SMM. Meanwhile, multi-frequency measurements performed with the field parallel to the easy-axis reveal HFEPR transitions associated with excited spin multiplets (S spin s = 1 Ni(II) ions within the cluster, as well as a characterization of the ZFS within excited states. The combined experimental studies support recent work indicating that the fourth order anisotropy associated with the S = 4 state originates from second order ZFS interactions associated with the individual Ni(II) centers, but only as a result of higher-order processes that occur via S-mixing between the ground state and higher-lying (S spin multiplets. We argue that this S-mixing plays an important role in the low-temperature quantum dynamics associated with many other well known SMMs.

  18. Secondary Channel Bifurcation Geometry: A Multi-dimensional Problem

    Science.gov (United States)

    Gaeuman, D.; Stewart, R. L.

    2017-12-01

    The construction of secondary channels (or side channels) is a popular strategy for increasing aquatic habitat complexity in managed rivers. Such channels, however, frequently experience aggradation that prevents surface water from entering the side channels near their bifurcation points during periods of relatively low discharge. This failure to maintain an uninterrupted surface water connection with the main channel can reduce the habitat value of side channels for fish species that prefer lotic conditions. Various factors have been proposed as potential controls on the fate of side channels, including water surface slope differences between the main and secondary channels, the presence of main channel secondary circulation, transverse bed slopes, and bifurcation angle. A quantitative assessment of more than 50 natural and constructed secondary channels in the Trinity River of northern California indicates that bifurcations can assume a variety of configurations that are formed by different processes and whose longevity is governed by different sets of factors. Moreover, factors such as bifurcation angle and water surface slope vary with discharge level and are continuously distributed in space, such that they must be viewed as a multi-dimensional field rather than a single-valued attribute that can be assigned to a particular bifurcation.

  19. The multi-dimensional roles of astrocytes in ALS.

    Science.gov (United States)

    Yamanaka, Koji; Komine, Okiru

    2018-01-01

    Despite significant progress in understanding the molecular and genetic aspects of amyotrophic lateral sclerosis (ALS), a fatal neurodegenerative disease characterized by the progressive loss of motor neurons, the precise and comprehensive pathomechanisms remain largely unknown. In addition to motor neuron involvement, recent studies using cellular and animal models of ALS indicate that there is a complex interplay between motor neurons and neighboring non-neuronal cells, such as astrocytes, in non-cell autonomous neurodegeneration. Astrocytes are key homeostatic cells that play numerous supportive roles in maintaining the brain environment. In neurodegenerative diseases such as ALS, astrocytes change their shape and molecular expression patterns and are referred to as reactive or activated astrocytes. Reactive astrocytes in ALS lose their beneficial functions and gain detrimental roles. In addition, interactions between motor neurons and astrocytes are impaired in ALS. In this review, we summarize growing evidence that astrocytes are critically involved in the survival and demise of motor neurons through several key molecules and cascades in astrocytes in both sporadic and inherited ALS. These observations strongly suggest that astrocytes have multi-dimensional roles in disease and are a viable therapeutic target for ALS. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  20. Analytical modeling for fractional multi-dimensional diffusion equations by using Laplace transform

    Directory of Open Access Journals (Sweden)

    Devendra Kumar

    2015-01-01

    Full Text Available In this paper, we propose a simple numerical algorithm for solving multi-dimensional diffusion equations of fractional order which describes density dynamics in a material undergoing diffusion by using homotopy analysis transform method. The fractional derivative is described in the Caputo sense. This homotopy analysis transform method is an innovative adjustment in Laplace transform method and makes the calculation much simpler. The technique is not limited to the small parameter, such as in the classical perturbation method. The scheme gives an analytical solution in the form of a convergent series with easily computable components, requiring no linearization or small perturbation. The numerical solutions obtained by the proposed method indicate that the approach is easy to implement and computationally very attractive.

  1. Timing system for multi-bunch/multi-train operation at ATF

    International Nuclear Information System (INIS)

    Naito, T.; Hayano, H.; Urakawa, J.; Imai, T.

    2000-01-01

    A timing system has been constructed for multi-bunch/multi-train operation at KEK-ATF. The linac accelerates 20 bunches of multi-bunch with 2.8 ns spacing. The Damping Ring stores up to 5 trains of multi-bunch. The timing system is required to provide flexible operation mode and bucket selection. A personal computer is used for manipulating the timing. The performance of kicker magnets at the injection/extruction is key issue for multi-train operation. The hardware and the test results are presented. (author)

  2. Three-dimensional ground penetrating radar imaging using multi-frequency diffraction tomography

    Energy Technology Data Exchange (ETDEWEB)

    Mast, J.E.; Johansson, E.M. [Lawrence Livermore National Lab., CA (United States)

    1994-11-15

    In this talk we present results from a three-dimensional image reconstruction algorithm for impulse radar operating in monostatic pule-echo mode. The application of interest to us is the nondestructive evaluation of civil structures such as bridge decks. We use a multi-frequency diffraction tomography imaging technique in which coherent backward propagations of the received reflected wavefield form a spatial image of the scattering interfaces within the region of interest. This imaging technique provides high-resolution range and azimuthal visualization of the subsurface region. We incorporate the ability to image in planarly layered conductive media and apply the algorithm to experimental data from an offset radar system in which the radar antenna is not directly coupled to the surface of the region. We present a rendering in three-dimensions of the resulting image data which provides high-detail visualization.

  3. Study of land surface temperature and spectral emissivity using multi ...

    Indian Academy of Sciences (India)

    tral emissivities over a hard rock terrain using multi-sensor satellite data. The study area, of .... Georeferenced MODIS level 1B data (bands 31 and. 32) and Landsat ETM+ data .... the optical properties of the atmosphere. In the present study ...

  4. Multi-fluid CFD analysis in Process Engineering

    Science.gov (United States)

    Hjertager, B. H.

    2017-12-01

    An overview of modelling and simulation of flow processes in gas/particle and gas/liquid systems are presented. Particular emphasis is given to computational fluid dynamics (CFD) models that use the multi-dimensional multi-fluid techniques. Turbulence modelling strategies for gas/particle flows based on the kinetic theory for granular flows are given. Sub models for the interfacial transfer processes and chemical kinetics modelling are presented. Examples are shown for some gas/particle systems including flow and chemical reaction in risers as well as gas/liquid systems including bubble columns and stirred tanks.

  5. Crop status sensing system by multi-spectral imaging sensor, 1: Image processing and paddy field sensing

    International Nuclear Information System (INIS)

    Ishii, K.; Sugiura, R.; Fukagawa, T.; Noguchi, N.; Shibata, Y.

    2006-01-01

    The objective of the study is to construct a sensing system for precision farming. A Multi-Spectral Imaging Sensor (MSIS), which can obtain three images (G. R and NIR) simultaneously, was used for detecting growth status of plants. The sensor was mounted on an unmanned helicopter. An image processing method for acquiring information of crop status with high accuracy was developed. Crop parameters that were measured include SPAD, leaf height, and stems number. Both direct seeding variety and transplant variety of paddy rice were adopted in the research. The result of a field test showed that crop status of both varieties could be detected with sufficient accuracy to apply to precision farming

  6. Multi-channel imaging cytometry with a single detector

    Science.gov (United States)

    Locknar, Sarah; Barton, John; Entwistle, Mark; Carver, Gary; Johnson, Robert

    2018-02-01

    Multi-channel microscopy and multi-channel flow cytometry generate high bit data streams. Multiple channels (both spectral and spatial) are important in diagnosing diseased tissue and identifying individual cells. Omega Optical has developed techniques for mapping multiple channels into the time domain for detection by a single high gain, high bandwidth detector. This approach is based on pulsed laser excitation and a serial array of optical fibers coated with spectral reflectors such that up to 15 wavelength bins are sequentially detected by a single-element detector within 2.5 μs. Our multichannel microscopy system uses firmware running on dedicated DSP and FPGA chips to synchronize the laser, scanning mirrors, and sampling clock. The signals are digitized by an NI board into 14 bits at 60MHz - allowing for 232 by 174 pixel fields in up to 15 channels with 10x over sampling. Our multi-channel imaging cytometry design adds channels for forward scattering and back scattering to the fluorescence spectral channels. All channels are detected within the 2.5 μs - which is compatible with fast cytometry. Going forward, we plan to digitize at 16 bits with an A-toD chip attached to a custom board. Processing these digital signals in custom firmware would allow an on-board graphics processing unit to display imaging flow cytometry data over configurable scanning line lengths. The scatter channels can be used to trigger data buffering when a cell is present in the beam. This approach enables a low cost mechanically robust imaging cytometer.

  7. MUSE: the Multi-Slit Solar Explorer

    Science.gov (United States)

    Tarbell, Theodore D.; De Pontieu, Bart

    2017-08-01

    The Multi-Slit Solar Explorer is a proposed Small Explorer mission for studying the dynamics of the corona and transition region using both conventional and novel spectral imaging techniques. The physical processes that heat the multi-million degree solar corona, accelerate the solar wind and drive solar activity (CMEs and flares) remain poorly known. A breakthrough in these areas can only come from radically innovative instrumentation and state-of-the-art numerical modeling and will lead to better understanding of space weather origins. MUSE’s multi-slit coronal spectroscopy will use a 100x improvement in spectral raster cadence to fill a crucial gap in our knowledge of Sun-Earth connections; it will reveal temperatures, velocities and non-thermal processes over a wide temperature range to diagnose physical processes that remain invisible to current or planned instruments. MUSE will contain two instruments: an EUV spectrograph (SG) and EUV context imager (CI). Both have similar spatial resolution and leverage extensive heritage from previous high-resolution instruments such as IRIS and the HiC rocket payload. The MUSE investigation will build on the success of IRIS by combining numerical modeling with a uniquely capable observatory: MUSE will obtain EUV spectra and images with the highest resolution in space (1/3 arcsec) and time (1-4 s) ever achieved for the transition region and corona, along 35 slits and a large context FOV simultaneously. The MUSE consortium includes LMSAL, SAO, Stanford, ARC, HAO, GSFC, MSFC, MSU, ITA Oslo and other institutions.

  8. High-resolution wave number spectrum using multi-point measurements in space – the Multi-point Signal Resonator (MSR technique

    Directory of Open Access Journals (Sweden)

    Y. Narita

    2011-02-01

    Full Text Available A new analysis method is presented that provides a high-resolution power spectrum in a broad wave number domain based on multi-point measurements. The analysis technique is referred to as the Multi-point Signal Resonator (MSR and it benefits from Capon's minimum variance method for obtaining the proper power spectral density of the signal as well as the MUSIC algorithm (Multiple Signal Classification for considerably reducing the noise part in the spectrum. The mathematical foundation of the analysis method is presented and it is applied to synthetic data as well as Cluster observations of the interplanetary magnetic field. Using the MSR technique for Cluster data we find a wave in the solar wind propagating parallel to the mean magnetic field with relatively small amplitude, which is not identified by the Capon spectrum. The Cluster data analysis shows the potential of the MSR technique for studying waves and turbulence using multi-point measurements.

  9. The application of the Chebyshev-spectral method in transport phenomena

    CERN Document Server

    Guo, Weidong; Narayanan, Ranga

    2012-01-01

    Transport phenomena problems that occur in engineering and physics are often multi-dimensional and multi-phase in character.  When taking recourse to numerical methods the spectral method is particularly useful and efficient. The book is meant principally to train students and non-specialists  to use the spectral method for solving problems that model fluid flow in closed geometries with heat or mass transfer.  To this aim the reader should bring a working knowledge of fluid mechanics and heat transfer and should be readily conversant with simple concepts of linear algebra including spectral decomposition of matrices as well as solvability conditions for inhomogeneous problems.  The book is neither meant to supply a ready-to-use program that is all-purpose nor to go through all manners of mathematical proofs.  The focus in this tutorial is on the use of the spectral methods for space discretization, because this is where most of the difficulty lies. While time dependent problems are also of great interes...

  10. A new analytical method to solve the heat equation for a multi-dimensional composite slab

    International Nuclear Information System (INIS)

    Lu, X; Tervola, P; Viljanen, M

    2005-01-01

    A novel analytical approach has been developed for heat conduction in a multi-dimensional composite slab subject to time-dependent boundary changes of the first kind. Boundary temperatures are represented as Fourier series. Taking advantage of the periodic properties of boundary changes, the analytical solution is obtained and expressed explicitly. Nearly all the published works necessitate searching for associated eigenvalues in solving such a problem even for a one-dimensional composite slab. In this paper, the proposed method involves no iterative computation such as numerically searching for eigenvalues and no residue evaluation. The adopted method is simple which represents an extension of the novel analytical approach derived for the one-dimensional composite slab. Moreover, the method of 'separation of variables' employed in this paper is new. The mathematical formula for solutions is concise and straightforward. The physical parameters are clearly shown in the formula. Further comparison with numerical calculations is presented

  11. An enhanced data visualization method for diesel engine malfunction classification using multi-sensor signals.

    Science.gov (United States)

    Li, Yiqing; Wang, Yu; Zi, Yanyang; Zhang, Mingquan

    2015-10-21

    The various multi-sensor signal features from a diesel engine constitute a complex high-dimensional dataset. The non-linear dimensionality reduction method, t-distributed stochastic neighbor embedding (t-SNE), provides an effective way to implement data visualization for complex high-dimensional data. However, irrelevant features can deteriorate the performance of data visualization, and thus, should be eliminated a priori. This paper proposes a feature subset score based t-SNE (FSS-t-SNE) data visualization method to deal with the high-dimensional data that are collected from multi-sensor signals. In this method, the optimal feature subset is constructed by a feature subset score criterion. Then the high-dimensional data are visualized in 2-dimension space. According to the UCI dataset test, FSS-t-SNE can effectively improve the classification accuracy. An experiment was performed with a large power marine diesel engine to validate the proposed method for diesel engine malfunction classification. Multi-sensor signals were collected by a cylinder vibration sensor and a cylinder pressure sensor. Compared with other conventional data visualization methods, the proposed method shows good visualization performance and high classification accuracy in multi-malfunction classification of a diesel engine.

  12. Frequency locking of a field-widened Michelson interferometer based on optimal multi-harmonics heterodyning.

    Science.gov (United States)

    Cheng, Zhongtao; Liu, Dong; Zhou, Yudi; Yang, Yongying; Luo, Jing; Zhang, Yupeng; Shen, Yibing; Liu, Chong; Bai, Jian; Wang, Kaiwei; Su, Lin; Yang, Liming

    2016-09-01

    A general resonant frequency locking scheme for a field-widened Michelson interferometer (FWMI), which is intended as a spectral discriminator in a high-spectral-resolution lidar, is proposed based on optimal multi-harmonics heterodyning. By transferring the energy of a reference laser to multi-harmonics of different orders generated by optimal electro-optic phase modulation, the heterodyne signal of these multi-harmonics through the FWMI can reveal the resonant frequency drift of the interferometer very sensitively within a large frequency range. This approach can overcome the locking difficulty induced by the low finesse of the FWMI, thus contributing to excellent locking accuracy and lock acquisition range without any constraint on the interferometer itself. The theoretical and experimental results are presented to verify the performance of this scheme.

  13. Deep multi-scale convolutional neural network for hyperspectral image classification

    Science.gov (United States)

    Zhang, Feng-zhe; Yang, Xia

    2018-04-01

    In this paper, we proposed a multi-scale convolutional neural network for hyperspectral image classification task. Firstly, compared with conventional convolution, we utilize multi-scale convolutions, which possess larger respective fields, to extract spectral features of hyperspectral image. We design a deep neural network with a multi-scale convolution layer which contains 3 different convolution kernel sizes. Secondly, to avoid overfitting of deep neural network, dropout is utilized, which randomly sleeps neurons, contributing to improve the classification accuracy a bit. In addition, new skills like ReLU in deep learning is utilized in this paper. We conduct experiments on University of Pavia and Salinas datasets, and obtained better classification accuracy compared with other methods.

  14. Primer on Use of Multi-Spectral and Infra Red Imaging for On-Site Inspections

    Energy Technology Data Exchange (ETDEWEB)

    Henderson, J R

    2010-10-26

    The purpose of an On-Site Inspection (OSI) is to determine whether a nuclear explosion has occurred in violation of the Comprehensive Nuclear Test Ban Treaty (CTBT), and to gather information which might assist in identifying the violator (CTBT, Article IV, Paragraph 35) Multi-Spectral and Infra Red Imaging (MSIR) is allowed by the treaty to detect observables which might help reduce the search area and thus expedite an OSI and make it more effective. MSIR is permitted from airborne measurements, and at and below the surface to search for anomalies and artifacts (CTBT, Protocol, Part II, Paragraph 69b). The three broad types of anomalies and artifacts MSIR is expected to be capable of observing are surface disturbances (disturbed earth, plant stress or anomalous surface materials), human artifacts (man-made roads, buildings and features), and thermal anomalies. The purpose of this Primer is to provide technical information on MSIR relevant to its use for OSI. It is expected that this information may be used for general background information, to inform decisions about the selection and testing of MSIR equipment, to develop operational guidance for MSIR use during an OSI, and to support the development of a training program for OSI Inspectors. References are provided so readers can pursue a topic in more detail than the summary information provided here. The following chapters will provide more information on how MSIR can support an OSI (Section 2), a short summary what Multi-Spectral Imaging and Infra Red Imaging is (Section 3), guidance from the CTBT regarding the use of MSIR (Section 4), and a description of several nuclear explosion scenarios (Section 5) and consequent observables (Section 6). The remaining sections focus on practical aspects of using MSIR for an OSI, such as specification and selection of MSIR equipment, operational considerations for deployment of MISR equipment from an aircraft, and the conduct of field exercises to mature MSIR for an OSI

  15. Kite aerial photography for low-cost, ultra-high spatial resolution multi-spectral mapping of intertidal landscapes.

    Directory of Open Access Journals (Sweden)

    Mitch Bryson

    Full Text Available Intertidal ecosystems have primarily been studied using field-based sampling; remote sensing offers the ability to collect data over large areas in a snapshot of time that could complement field-based sampling methods by extrapolating them into the wider spatial and temporal context. Conventional remote sensing tools (such as satellite and aircraft imaging provide data at limited spatial and temporal resolutions and relatively high costs for small-scale environmental science and ecologically-focussed studies. In this paper, we describe a low-cost, kite-based imaging system and photogrammetric/mapping procedure that was developed for constructing high-resolution, three-dimensional, multi-spectral terrain models of intertidal rocky shores. The processing procedure uses automatic image feature detection and matching, structure-from-motion and photo-textured terrain surface reconstruction algorithms that require minimal human input and only a small number of ground control points and allow the use of cheap, consumer-grade digital cameras. The resulting maps combine imagery at visible and near-infrared wavelengths and topographic information at sub-centimeter resolutions over an intertidal shoreline 200 m long, thus enabling spatial properties of the intertidal environment to be determined across a hierarchy of spatial scales. Results of the system are presented for an intertidal rocky shore at Jervis Bay, New South Wales, Australia. Potential uses of this technique include mapping of plant (micro- and macro-algae and animal (e.g. gastropods assemblages at multiple spatial and temporal scales.

  16. Kite aerial photography for low-cost, ultra-high spatial resolution multi-spectral mapping of intertidal landscapes.

    Science.gov (United States)

    Bryson, Mitch; Johnson-Roberson, Matthew; Murphy, Richard J; Bongiorno, Daniel

    2013-01-01

    Intertidal ecosystems have primarily been studied using field-based sampling; remote sensing offers the ability to collect data over large areas in a snapshot of time that could complement field-based sampling methods by extrapolating them into the wider spatial and temporal context. Conventional remote sensing tools (such as satellite and aircraft imaging) provide data at limited spatial and temporal resolutions and relatively high costs for small-scale environmental science and ecologically-focussed studies. In this paper, we describe a low-cost, kite-based imaging system and photogrammetric/mapping procedure that was developed for constructing high-resolution, three-dimensional, multi-spectral terrain models of intertidal rocky shores. The processing procedure uses automatic image feature detection and matching, structure-from-motion and photo-textured terrain surface reconstruction algorithms that require minimal human input and only a small number of ground control points and allow the use of cheap, consumer-grade digital cameras. The resulting maps combine imagery at visible and near-infrared wavelengths and topographic information at sub-centimeter resolutions over an intertidal shoreline 200 m long, thus enabling spatial properties of the intertidal environment to be determined across a hierarchy of spatial scales. Results of the system are presented for an intertidal rocky shore at Jervis Bay, New South Wales, Australia. Potential uses of this technique include mapping of plant (micro- and macro-algae) and animal (e.g. gastropods) assemblages at multiple spatial and temporal scales.

  17. Using Multi-Spectral UAV Imagery to Extract Tree Crop Structural Properties and Assess Pruning Effects

    Directory of Open Access Journals (Sweden)

    Kasper Johansen

    2018-06-01

    Full Text Available Unmanned aerial vehicles (UAV provide an unprecedented capacity to monitor the development and dynamics of tree growth and structure through time. It is generally thought that the pruning of tree crops encourages new growth, has a positive effect on fruiting, makes fruit-picking easier, and may increase yield, as it increases light interception and tree crown surface area. To establish the response of pruning in an orchard of lychee trees, an assessment of changes in tree structure, i.e., tree crown perimeter, width, height, area and Plant Projective Cover (PPC, was undertaken using multi-spectral UAV imagery collected before and after a pruning event. While tree crown perimeter, width and area could be derived directly from the delineated tree crowns, height was estimated from a produced canopy height model and PPC was most accurately predicted based on the NIR band. Pre- and post-pruning results showed significant differences in all measured tree structural parameters, including an average decrease in tree crown perimeter of 1.94 m, tree crown width of 0.57 m, tree crown height of 0.62 m, tree crown area of 3.5 m2, and PPC of 14.8%. In order to provide guidance on data collection protocols for orchard management, the impact of flying height variations was also examined, offering some insight into the influence of scale and the scalability of this UAV-based approach for larger orchards. The different flying heights (i.e., 30, 50 and 70 m produced similar measurements of tree crown width and PPC, while tree crown perimeter, area and height measurements decreased with increasing flying height. Overall, these results illustrate that routine collection of multi-spectral UAV imagery can provide a means of assessing pruning effects on changes in tree structure in commercial orchards, and highlight the importance of collecting imagery with consistent flight configurations, as varying flying heights may cause changes to tree structural measurements.

  18. Using Multi-Spectral UAV Imagery to Extract Tree Crop Structural Properties and Assess Pruning Effects

    KAUST Repository

    Johansen, Kasper

    2018-04-18

    Unmanned aerial vehicles (UAV) provide an unprecedented capacity to monitor the development and dynamics of tree growth and structure through time. It is generally thought that the pruning of tree crops encourages new growth, has a positive effect on fruiting, makes fruit-picking easier, and may increase yield, as it increases light interception and tree crown surface area. To establish the response of pruning in an orchard of lychee trees, an assessment of changes in tree structure, i.e. tree crown perimeter, width, height, area and Plant Projective Cover (PPC), was undertaken using multi-spectral UAV imagery collected before and after a pruning event. While tree crown perimeter, width and area could be derived directly from the delineated tree crowns, height was estimated from a produced canopy height model and PPC was most accurately predicted based on the NIR band. Pre- and post-pruning results showed significant differences in all measured tree structural parameters, including an average decrease in tree crown perimeter of 1.94 m, tree crown width of 0.57 m, tree crown height of 0.62 m, tree crown area of 3.5 m2, and PPC of 14.8%. In order to provide guidance on data collection protocols for orchard management, the impact of flying height variations was also examined, offering some insight into the influence of scale and the scalability of this UAV based approach for larger orchards. The different flying heights (i.e. 30, 50 and 70 m) produced similar measurements of tree crown width and PPC, while tree crown perimeter, area and height measurements decreased with increasing flying height. Overall, these results illustrate that routine collection of multi-spectral UAV imagery can provide a means of assessing pruning effects on changes in tree structure in commercial orchards, and highlight the importance of collecting imagery with consistent flight configurations, as varying flying heights may cause changes to tree structural measurements.

  19. Mixture distribution in a multi-valve twin-spark ignition engine equipped with high-pressure multi-hole injectors

    International Nuclear Information System (INIS)

    Mitroglou, N; Arcoumanis, C; Mori, K; Motoyama, Y

    2006-01-01

    Laser-induced fluorescence has been mainly used to characterise the two-dimensional fuel vapour concentration inside the cylinder of a multi-valve twin-spark ignition engine equipped with high-pressure multi-hole injectors. The effects of injection timing, in-cylinder charge motion and injector tip layout have been quantified. The flexibility in nozzle design of the multi-hole injectors has proven to be a powerful tool in terms of matching overall spray cone angle and number of holes to specific engine configurations. Injection timing was found to control spray impingement on the piston and cylinder wall, thus contributing to quick and efficient fuel evaporation. It was confirmed that in-cylinder charge motion plays a major role in engine's stable operation by assisting in the transportation of the air-fuel mixture towards the ignition locations (i.e. spark-plugs) in the way of a uniformly distributed charge or by preserving stratification of the charge depending on operating mode of the engine

  20. Young’s modulus of multi-layer microcantilevers

    Directory of Open Access Journals (Sweden)

    Zhikang Deng

    2017-12-01

    Full Text Available A theoretical model for calculating the Young’s modulus of multi-layer microcantilevers with a coating is proposed, and validated by a three-dimensional (3D finite element (FE model using ANSYS parametric design language (APDL and atomic force microscopy (AFM characterization. Compared with typical theoretical models (Rayleigh-Ritz model, Euler-Bernoulli (E-B beam model and spring mass model, the proposed theoretical model can obtain Young’s modulus of multi-layer microcantilevers more precisely. Also, the influences of coating’s geometric dimensions on Young’s modulus and resonant frequency of microcantilevers are discussed. The thickness of coating has a great influence on Young’s modulus and resonant frequency of multi-layer microcantilevers, and the coating should be considered to calculate Young’s modulus more precisely, especially when fairly thicker coating is employed.

  1. A nodal collocation approximation for the multi-dimensional PL equations - 2D applications

    International Nuclear Information System (INIS)

    Capilla, M.; Talavera, C.F.; Ginestar, D.; Verdu, G.

    2008-01-01

    A classical approach to solve the neutron transport equation is to apply the spherical harmonics method obtaining a finite approximation known as the P L equations. In this work, the derivation of the P L equations for multi-dimensional geometries is reviewed and a nodal collocation method is developed to discretize these equations on a rectangular mesh based on the expansion of the neutronic fluxes in terms of orthogonal Legendre polynomials. The performance of the method and the dominant transport Lambda Modes are obtained for a homogeneous 2D problem, a heterogeneous 2D anisotropic scattering problem, a heterogeneous 2D problem and a benchmark problem corresponding to a MOX fuel reactor core

  2. The development of a multi-dimensional gambling accessibility scale.

    Science.gov (United States)

    Hing, Nerilee; Haw, John

    2009-12-01

    The aim of the current study was to develop a scale of gambling accessibility that would have theoretical significance to exposure theory and also serve to highlight the accessibility risk factors for problem gambling. Scale items were generated from the Productivity Commission's (Australia's Gambling Industries: Report No. 10. AusInfo, Canberra, 1999) recommendations and tested on a group with high exposure to the gambling environment. In total, 533 gaming venue employees (aged 18-70 years; 67% women) completed a questionnaire that included six 13-item scales measuring accessibility across a range of gambling forms (gaming machines, keno, casino table games, lotteries, horse and dog racing, sports betting). Also included in the questionnaire was the Problem Gambling Severity Index (PGSI) along with measures of gambling frequency and expenditure. Principal components analysis indicated that a common three factor structure existed across all forms of gambling and these were labelled social accessibility, physical accessibility and cognitive accessibility. However, convergent validity was not demonstrated with inconsistent correlations between each subscale and measures of gambling behaviour. These results are discussed in light of exposure theory and the further development of a multi-dimensional measure of gambling accessibility.

  3. Three-dimensional multi-physics model of the European sodium fast reactor design applied to DBA analysis - 15293

    International Nuclear Information System (INIS)

    Lazaro, A.; Ordonez, J.; Martorell, S.; Przemyslaw, S.; Ammirabile, L.; Tsige-Tamirat, H.

    2015-01-01

    The sodium cooled fast reactor (SFR) is one of the reactor types selected by the Generation IV International Forum. SFR stand out due to its remarkable past operational experience in related projects and its potential to achieve the ambitious goals laid for the new generation of nuclear reactors. Regardless its operational experience, there is a need to apply computational tools able to simulate the system behaviour under conditions that may overtake the reactor safety limits from the early stages of the design process, including the three-dimensional phenomena that may arise in these transients. This paper presents the different steps followed towards the development of a multi-physics platform with capabilities to simulate complex phenomena using a coupled neutronic-thermal-hydraulic scheme. The development started with a one-dimensional thermal-hydraulic model of the European Sodium Fast Reactor (ESFR) design with point kinetic neutronic feedback benchmarked with its peers in the framework of the FP7-CP-ESFR project using the state-of-the-art thermal-hydraulic system code TRACE. The model was successively extended into a three-dimensional model coupled with the spatial kinetic neutronic code PARCS able to simulate three-dimensional multi-physic phenomena along with the comparison of the results for symmetric cases. The last part of the paper shows the application of the developed tool to the analysis of transients involving asymmetrical effects, such as the coast-down of a primary and secondary pump or the withdrawal of a peripheral control rod bank, demonstrating the unique capability of the code to simulate such transients and the capability of the design to withstand them under design basis

  4. Clinical application of multi-shot diffusion EPI in neurological disease

    International Nuclear Information System (INIS)

    Ishihara, Tetsuya; Hirata, Koichi; Kubo, Jin; Yamazaki, Kaoru; Sato, Toshihiko

    1998-01-01

    Using the multi-shot EPI method we investigated the clinical application of diffusion weighted imaging (DWI) in the diagnosis of neurological disease. The multi-shot method provided better susceptibility artifact-free DWI than the single-shot method particularly in the region of the posterior cranial fossa. DWI using the multi-shot EPI method readily shows the pyramidal tract extending from the internal capsule to the brainstems which is inaccessible by the conventional single-shot EPI method, and providing three-dimensional and distinct images of pyramidal tract changes in amyotrophic lateral sclerosis or cerebral infarction with pyramidal tract disturbance. Our findings suggest that the use of DWI with the multi-shot EPI method would provide a technique for the easy diagnosis and evaluation of various neurological diseases. (author)

  5. Clinical application of multi-shot diffusion EPI in neurological disease

    Energy Technology Data Exchange (ETDEWEB)

    Ishihara, Tetsuya; Hirata, Koichi; Kubo, Jin; Yamazaki, Kaoru [Dokkyo Univ., Mibu, Tochigi (Japan). School of Medicine; Sato, Toshihiko

    1998-05-01

    Using the multi-shot EPI method we investigated the clinical application of diffusion weighted imaging (DWI) in the diagnosis of neurological disease. The multi-shot method provided better susceptibility artifact-free DWI than the single-shot method particularly in the region of the posterior cranial fossa. DWI using the multi-shot EPI method readily shows the pyramidal tract extending from the internal capsule to the brainstems which is inaccessible by the conventional single-shot EPI method, and providing three-dimensional and distinct images of pyramidal tract changes in amyotrophic lateral sclerosis or cerebral infarction with pyramidal tract disturbance. Our findings suggest that the use of DWI with the multi-shot EPI method would provide a technique for the easy diagnosis and evaluation of various neurological diseases. (author)

  6. Analysis and synthesis of multi-qubit, multi-mode quantum devices

    Energy Technology Data Exchange (ETDEWEB)

    Solgun, Firat

    2015-03-27

    In this thesis we propose new methods in multi-qubit multi-mode circuit quantum electrodynamics (circuit-QED) architectures. First we describe a direct parity measurement method for three qubits, which can be realized in 2D circuit-QED with a possible extension to four qubits in a 3D circuit-QED setup for the implementation of the surface code. In Chapter 3 we show how to derive Hamiltonians and compute relaxation rates of the multi-mode superconducting microwave circuits consisting of single Josephson junctions using an exact impedance synthesis technique (the Brune synthesis) and applying previous formalisms for lumped element circuit quantization. In the rest of the thesis we extend our method to multi-junction (multi-qubit) multi-mode circuits through the use of state-space descriptions which allows us to quantize any multiport microwave superconducting circuit with a reciprocal lossy impedance response.

  7. Project overview of OPTIMOS-EVE: the fibre-fed multi-object spectrograph for the E-ELT

    NARCIS (Netherlands)

    Navarro, R.; Chemla, F.; Bonifacio, P.; Flores, H.; Guinouard, I.; Huet, J.-M.; Puech, M.; Royer, F.; Pragt, J.H.; Wulterkens, G.; Sawyer, E.C.; Caldwell, M.E.; Tosh, I.A.J.; Whalley, M.S.; Woodhouse, G.F.W.; Spanò, P.; Di Marcantonio, P.; Andersen, M.I.; Dalton, G.B.; Kaper, L.; Hammer, F.

    2010-01-01

    OPTIMOS-EVE (OPTical Infrared Multi Object Spectrograph - Extreme Visual Explorer) is the fibre fed multi object spectrograph proposed for the European Extremely Large Telescope (E-ELT), planned to be operational in 2018 at Cerro Armazones (Chile). It is designed to provide a spectral resolution of

  8. Energy method for multi-dimensional balance laws with non-local dissipation

    KAUST Repository

    Duan, Renjun

    2010-06-01

    In this paper, we are concerned with a class of multi-dimensional balance laws with a non-local dissipative source which arise as simplified models for the hydrodynamics of radiating gases. At first we introduce the energy method in the setting of smooth perturbations and study the stability of constants states. Precisely, we use Fourier space analysis to quantify the energy dissipation rate and recover the optimal time-decay estimates for perturbed solutions via an interpolation inequality in Fourier space. As application, the developed energy method is used to prove stability of smooth planar waves in all dimensions n2, and also to show existence and stability of time-periodic solutions in the presence of the time-periodic source. Optimal rates of convergence of solutions towards the planar waves or time-periodic states are also shown provided initially L1-perturbations. © 2009 Elsevier Masson SAS.

  9. Energy method for multi-dimensional balance laws with non-local dissipation

    KAUST Repository

    Duan, Renjun; Fellner, Klemens; Zhu, Changjiang

    2010-01-01

    In this paper, we are concerned with a class of multi-dimensional balance laws with a non-local dissipative source which arise as simplified models for the hydrodynamics of radiating gases. At first we introduce the energy method in the setting of smooth perturbations and study the stability of constants states. Precisely, we use Fourier space analysis to quantify the energy dissipation rate and recover the optimal time-decay estimates for perturbed solutions via an interpolation inequality in Fourier space. As application, the developed energy method is used to prove stability of smooth planar waves in all dimensions n2, and also to show existence and stability of time-periodic solutions in the presence of the time-periodic source. Optimal rates of convergence of solutions towards the planar waves or time-periodic states are also shown provided initially L1-perturbations. © 2009 Elsevier Masson SAS.

  10. Multi-view clustering via multi-manifold regularized non-negative matrix factorization.

    Science.gov (United States)

    Zong, Linlin; Zhang, Xianchao; Zhao, Long; Yu, Hong; Zhao, Qianli

    2017-04-01

    Non-negative matrix factorization based multi-view clustering algorithms have shown their competitiveness among different multi-view clustering algorithms. However, non-negative matrix factorization fails to preserve the locally geometrical structure of the data space. In this paper, we propose a multi-manifold regularized non-negative matrix factorization framework (MMNMF) which can preserve the locally geometrical structure of the manifolds for multi-view clustering. MMNMF incorporates consensus manifold and consensus coefficient matrix with multi-manifold regularization to preserve the locally geometrical structure of the multi-view data space. We use two methods to construct the consensus manifold and two methods to find the consensus coefficient matrix, which leads to four instances of the framework. Experimental results show that the proposed algorithms outperform existing non-negative matrix factorization based algorithms for multi-view clustering. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Membership determination of open clusters based on a spectral clustering method

    Science.gov (United States)

    Gao, Xin-Hua

    2018-06-01

    We present a spectral clustering (SC) method aimed at segregating reliable members of open clusters in multi-dimensional space. The SC method is a non-parametric clustering technique that performs cluster division using eigenvectors of the similarity matrix; no prior knowledge of the clusters is required. This method is more flexible in dealing with multi-dimensional data compared to other methods of membership determination. We use this method to segregate the cluster members of five open clusters (Hyades, Coma Ber, Pleiades, Praesepe, and NGC 188) in five-dimensional space; fairly clean cluster members are obtained. We find that the SC method can capture a small number of cluster members (weak signal) from a large number of field stars (heavy noise). Based on these cluster members, we compute the mean proper motions and distances for the Hyades, Coma Ber, Pleiades, and Praesepe clusters, and our results are in general quite consistent with the results derived by other authors. The test results indicate that the SC method is highly suitable for segregating cluster members of open clusters based on high-precision multi-dimensional astrometric data such as Gaia data.

  12. Testing the multi-configuration time-dependent Hartree-Fock method

    International Nuclear Information System (INIS)

    Zanghellini, Juergen; Kitzler, Markus; Brabec, Thomas; Scrinzi, Armin

    2004-01-01

    We test the multi-configuration time-dependent Hartree-Fock method as a new approach towards the numerical calculation of dynamical processes in multi-electron systems using the harmonic quantum dot and one-dimensional helium in strong laser pulses as models. We find rapid convergence for quantities such as ground-state population, correlation coefficient and single ionization towards the exact results. The method converges, where the time-dependent Hartree-Fock method fails qualitatively

  13. CT Performance Evaluation Using Multi Material Assemblies

    DEFF Research Database (Denmark)

    Stolfi, Alessandro; De Chiffre, Leonardo

    2015-01-01

    This paper concerns an investigation of the accuracy of Computed Tomography measurements using multi-material assemblies. In this study, assemblies involving similar densities for elementary parts were considered. The investigation includes dimensional and geometrical measurements of two 10 mm high...

  14. Re-weighted Discriminatively Embedded K-Means for Multi-view Clustering.

    Science.gov (United States)

    Xu, Jinglin; Han, Junwei; Nie, Feiping; Li, Xuelong

    2017-02-08

    Recent years, more and more multi-view data are widely used in many real world applications. This kind of data (such as image data) are high dimensional and obtained from different feature extractors, which represents distinct perspectives of the data. How to cluster such data efficiently is a challenge. In this paper, we propose a novel multi-view clustering framework, called Re-weighted Discriminatively Embedded KMeans (RDEKM), for this task. The proposed method is a multiview least-absolute residual model which induces robustness to efficiently mitigates the influence of outliers and realizes dimension reduction during multi-view clustering. Specifically, the proposed model is an unsupervised optimization scheme which utilizes Iterative Re-weighted Least Squares to solve leastabsolute residual and adaptively controls the distribution of multiple weights in a re-weighted manner only based on its own low-dimensional subspaces and a common clustering indicator matrix. Furthermore, theoretical analysis (including optimality and convergence analysis) and the optimization algorithm are also presented. Compared to several state-of-the-art multi-view clustering methods, the proposed method substantially improves the accuracy of the clustering results on widely used benchmark datasets, which demonstrates the superiority of the proposed work.

  15. Multi-component bi-Hamiltonian Dirac integrable equations

    Energy Technology Data Exchange (ETDEWEB)

    Ma Wenxiu [Department of Mathematics and Statistics, University of South Florida, Tampa, FL 33620-5700 (United States)], E-mail: mawx@math.usf.edu

    2009-01-15

    A specific matrix iso-spectral problem of arbitrary order is introduced and an associated hierarchy of multi-component Dirac integrable equations is constructed within the framework of zero curvature equations. The bi-Hamiltonian structure of the obtained Dirac hierarchy is presented be means of the variational trace identity. Two examples in the cases of lower order are computed.

  16. Multi-Gas Sensor

    Science.gov (United States)

    Sachse, Glenn W. (Inventor); Wang, Liang-Guo (Inventor); LeBel, Peter J. (Inventor); Steele, Tommy C. (Inventor); Rana, Mauro (Inventor)

    1999-01-01

    A multi-gas sensor is provided which modulates a polarized light beam over a broadband of wavelengths between two alternating orthogonal polarization components. The two orthogonal polarization components of the polarization modulated beam are directed along two distinct optical paths. At least one optical path contains one or more spectral discrimination element, with each spectral discrimination element having spectral absorption features of one or more gases of interest being measured. The two optical paths then intersect, and one orthogonal component of the intersected components is transmitted and the other orthogonal component is reflected. The combined polarization modulated beam is partitioned into one or more smaller spectral regions of interest where one or more gases of interest has an absorption band. The difference in intensity between the two orthogonal polarization components is then determined in each partitioned spectral region of interest as an indication of the spectral emission/absorption of the light beam by the gases of interest in the measurement path. The spectral emission/absorption is indicative of the concentration of the one or more gases of interest in the measurement path. More specifically, one embodiment of the present invention is a gas filter correlation radiometer which comprises a polarizer, a polarization modulator, a polarization beam splitter, a beam combiner, wavelength partitioning element, and detection element. The gases of interest are measured simultaneously and, further, can be measured independently or non-independently. Furthermore, optical or electronic element are provided to balance optical intensities between the two optical paths.

  17. A Generic multi-dimensional feature extraction method using multiobjective genetic programming.

    Science.gov (United States)

    Zhang, Yang; Rockett, Peter I

    2009-01-01

    In this paper, we present a generic feature extraction method for pattern classification using multiobjective genetic programming. This not only evolves the (near-)optimal set of mappings from a pattern space to a multi-dimensional decision space, but also simultaneously optimizes the dimensionality of that decision space. The presented framework evolves vector-to-vector feature extractors that maximize class separability. We demonstrate the efficacy of our approach by making statistically-founded comparisons with a wide variety of established classifier paradigms over a range of datasets and find that for most of the pairwise comparisons, our evolutionary method delivers statistically smaller misclassification errors. At very worst, our method displays no statistical difference in a few pairwise comparisons with established classifier/dataset combinations; crucially, none of the misclassification results produced by our method is worse than any comparator classifier. Although principally focused on feature extraction, feature selection is also performed as an implicit side effect; we show that both feature extraction and selection are important to the success of our technique. The presented method has the practical consequence of obviating the need to exhaustively evaluate a large family of conventional classifiers when faced with a new pattern recognition problem in order to attain a good classification accuracy.

  18. Simulation-optimization framework for multi-site multi-season hybrid stochastic streamflow modeling

    Science.gov (United States)

    Srivastav, Roshan; Srinivasan, K.; Sudheer, K. P.

    2016-11-01

    A simulation-optimization (S-O) framework is developed for the hybrid stochastic modeling of multi-site multi-season streamflows. The multi-objective optimization model formulated is the driver and the multi-site, multi-season hybrid matched block bootstrap model (MHMABB) is the simulation engine within this framework. The multi-site multi-season simulation model is the extension of the existing single-site multi-season simulation model. A robust and efficient evolutionary search based technique, namely, non-dominated sorting based genetic algorithm (NSGA - II) is employed as the solution technique for the multi-objective optimization within the S-O framework. The objective functions employed are related to the preservation of the multi-site critical deficit run sum and the constraints introduced are concerned with the hybrid model parameter space, and the preservation of certain statistics (such as inter-annual dependence and/or skewness of aggregated annual flows). The efficacy of the proposed S-O framework is brought out through a case example from the Colorado River basin. The proposed multi-site multi-season model AMHMABB (whose parameters are obtained from the proposed S-O framework) preserves the temporal as well as the spatial statistics of the historical flows. Also, the other multi-site deficit run characteristics namely, the number of runs, the maximum run length, the mean run sum and the mean run length are well preserved by the AMHMABB model. Overall, the proposed AMHMABB model is able to show better streamflow modeling performance when compared with the simulation based SMHMABB model, plausibly due to the significant role played by: (i) the objective functions related to the preservation of multi-site critical deficit run sum; (ii) the huge hybrid model parameter space available for the evolutionary search and (iii) the constraint on the preservation of the inter-annual dependence. Split-sample validation results indicate that the AMHMABB model is

  19. On efficiently computing multigroup multi-layer neutron reflection and transmission conditions

    International Nuclear Information System (INIS)

    Abreu, Marcos P. de

    2007-01-01

    In this article, we present an algorithm for efficient computation of multigroup discrete ordinates neutron reflection and transmission conditions, which replace a multi-layered boundary region in neutron multiplication eigenvalue computations with no spatial truncation error. In contrast to the independent layer-by-layer algorithm considered thus far in our computations, the algorithm here is based on an inductive approach developed by the present author for deriving neutron reflection and transmission conditions for a nonactive boundary region with an arbitrary number of arbitrarily thick layers. With this new algorithm, we were able to increase significantly the computational efficiency of our spectral diamond-spectral Green's function method for solving multigroup neutron multiplication eigenvalue problems with multi-layered boundary regions. We provide comparative results for a two-group reactor core model to illustrate the increased efficiency of our spectral method, and we conclude this article with a number of general remarks. (author)

  20. Absorption spectroscopy and multi-angle scattering measurements in the visible spectral range for the geographic classification of Italian exravirgin olive oils

    Science.gov (United States)

    Mignani, Anna G.; Ciaccheri, Leonardo; Cimato, Antonio; Sani, Graziano; Smith, Peter R.

    2004-03-01

    Absorption spectroscopy and multi-angle scattering measurements in the visible spectral range are innovately used to analyze samples of extra virgin olive oils coming from selected areas of Tuscany, a famous Italian region for the production of extra virgin olive oil. The measured spectra are processed by means of the Principal Component Analysis method, so as to create a 3D map capable of clustering the Tuscan oils within the wider area of Italian extra virgin olive oils.

  1. Moving toward multi-dimensional radiotherapy and the role of radiobiology

    International Nuclear Information System (INIS)

    Oita, Masataka; Uto, Yoshihiro; Aoyama, Hideki

    2014-01-01

    Recent radiotherapy for cancer treatment enable the high-precision irradiation to the target under the computed image guidance. Developments of such radiotherapy has played large role in the improved strategy of cancer treatments. In addition, the molecular mechanistic studies related to proliferations of cancer cell contribute the multidisciplinary fields of clinical radiotherapies. Therefore, the combination of the image guidance and molecular targeting of cancer cells make it possible for individualized cancer treatment. Especially, the use of particle beam or boron neutron capture therapy (BNCT) has been spotlighted, and installations of such devices are planned widely. As the progress and collaborations of radiation biology and engineering physics, establishment of a new style of radiotherapy becomes available in post-genome era. In 2010s, the hi-tech machines controlling the spaciotemporal radiotherapy become in practice. Although, there still remains to be improved, e.g., more precise prediction of radiosensitivity or growth of individual tumors, and adverse outcomes after treatments, multi-dimensional optimizations of the individualized irradiations based on the molecular radiation biologies and medical physics are important for further development of radiotherapy. (author)

  2. Refining the Concept of Combining Hyperspectral and Multi-Angle Sensors for Land Surface Applications

    Science.gov (United States)

    Simic, Anita

    Assessment of leaf and canopy chlorophyll content provides information on plant physiological status; it is related to nitrogen content and hence, photosynthesis process, net primary productivity and carbon budget. In this study, a method is developed for the retrieval of total chlorophyll content (Chlorophyll a+b) per unit leaf and per unit ground area based on improved vegetation structural parameters which are derived using multispectral multi-angle remote sensing data. Structural characteristics such as clumping and gaps within a canopy affect its solar radiation absorption and distribution and impact its reflected radiance acquired by a sensor. One of the main challenges for the remote sensing community is to accurately estimate vegetation structural parameters, which inevitably influence the retrieval of leaf chlorophyll content. Multi-angle optical measurements provide a means to characterize the anisotropy of surface reflectance, which has been shown to contain information on vegetation structural characteristics. Hyperspectral optical measurements, on the other hand, provide a fine spectral resolution at the red-edge, a narrow spectral range between the red and near infra-red spectra, which is particularly useful for retrieving chlorophyll content. This study explores a new refined measurement concept of combining multi-angle and hyperspectral remote sensing that employs hyperspectral signals only in the vertical (nadir) direction and multispectral measurements in two additional (off-nadir) directions within two spectral bands, red and near infra-red (NIR). The refinement has been proposed in order to reduce the redundancy of hyperspectral data at more than one angle and to better retrieve the three-dimensional vegetation structural information by choosing the two most useful angles of measurements. To illustrate that hyperspectral data acquired at multiple angles exhibit redundancy, a radiative transfer model was used to generate off-nadir hyperspectral

  3. Quantifying multi-dimensional attributes of human activities at various geographic scales based on smartphone tracking.

    Science.gov (United States)

    Zhou, Xiaolu; Li, Dongying

    2018-05-09

    Advancement in location-aware technologies, and information and communication technology in the past decades has furthered our knowledge of the interaction between human activities and the built environment. An increasing number of studies have collected data regarding individual activities to better understand how the environment shapes human behavior. Despite this growing interest, some challenges exist in collecting and processing individual's activity data, e.g., capturing people's precise environmental contexts and analyzing data at multiple spatial scales. In this study, we propose and implement an innovative system that integrates smartphone-based step tracking with an app and the sequential tile scan techniques to collect and process activity data. We apply the OpenStreetMap tile system to aggregate positioning points at various scales. We also propose duration, step and probability surfaces to quantify the multi-dimensional attributes of activities. Results show that, by running the app in the background, smartphones can measure multi-dimensional attributes of human activities, including space, duration, step, and location uncertainty at various spatial scales. By coordinating Global Positioning System (GPS) sensor with accelerometer sensor, this app can save battery which otherwise would be drained by GPS sensor quickly. Based on a test dataset, we were able to detect the recreational center and sports center as the space where the user was most active, among other places visited. The methods provide techniques to address key issues in analyzing human activity data. The system can support future studies on behavioral and health consequences related to individual's environmental exposure.

  4. High-order multi-implicit spectral deferred correction methods for problems of reactive flow

    International Nuclear Information System (INIS)

    Bourlioux, Anne; Layton, Anita T.; Minion, Michael L.

    2003-01-01

    Models for reacting flow are typically based on advection-diffusion-reaction (A-D-R) partial differential equations. Many practical cases correspond to situations where the relevant time scales associated with each of the three sub-processes can be widely different, leading to disparate time-step requirements for robust and accurate time-integration. In particular, interesting regimes in combustion correspond to systems in which diffusion and reaction are much faster processes than advection. The numerical strategy introduced in this paper is a general procedure to account for this time-scale disparity. The proposed methods are high-order multi-implicit generalizations of spectral deferred correction methods (MISDC methods), constructed for the temporal integration of A-D-R equations. Spectral deferred correction methods compute a high-order approximation to the solution of a differential equation by using a simple, low-order numerical method to solve a series of correction equations, each of which increases the order of accuracy of the approximation. The key feature of MISDC methods is their flexibility in handling several sub-processes implicitly but independently, while avoiding the splitting errors present in traditional operator-splitting methods and also allowing for different time steps for each process. The stability, accuracy, and efficiency of MISDC methods are first analyzed using a linear model problem and the results are compared to semi-implicit spectral deferred correction methods. Furthermore, numerical tests on simplified reacting flows demonstrate the expected convergence rates for MISDC methods of orders three, four, and five. The gain in efficiency by independently controlling the sub-process time steps is illustrated for nonlinear problems, where reaction and diffusion are much stiffer than advection. Although the paper focuses on this specific time-scales ordering, the generalization to any ordering combination is straightforward

  5. Spectral multi-energy CT texture analysis with machine learning for tissue classification: an investigation using classification of benign parotid tumours as a testing paradigm.

    Science.gov (United States)

    Al Ajmi, Eiman; Forghani, Behzad; Reinhold, Caroline; Bayat, Maryam; Forghani, Reza

    2018-06-01

    There is a rich amount of quantitative information in spectral datasets generated from dual-energy CT (DECT). In this study, we compare the performance of texture analysis performed on multi-energy datasets to that of virtual monochromatic images (VMIs) at 65 keV only, using classification of the two most common benign parotid neoplasms as a testing paradigm. Forty-two patients with pathologically proven Warthin tumour (n = 25) or pleomorphic adenoma (n = 17) were evaluated. Texture analysis was performed on VMIs ranging from 40 to 140 keV in 5-keV increments (multi-energy analysis) or 65-keV VMIs only, which is typically considered equivalent to single-energy CT. Random forest (RF) models were constructed for outcome prediction using separate randomly selected training and testing sets or the entire patient set. Using multi-energy texture analysis, tumour classification in the independent testing set had accuracy, sensitivity, specificity, positive predictive value, and negative predictive value of 92%, 86%, 100%, 100%, and 83%, compared to 75%, 57%, 100%, 100%, and 63%, respectively, for single-energy analysis. Multi-energy texture analysis demonstrates superior performance compared to single-energy texture analysis of VMIs at 65 keV for classification of benign parotid tumours. • We present and validate a paradigm for texture analysis of DECT scans. • Multi-energy dataset texture analysis is superior to single-energy dataset texture analysis. • DECT texture analysis has high accura\\cy for diagnosis of benign parotid tumours. • DECT texture analysis with machine learning can enhance non-invasive diagnostic tumour evaluation.

  6. EXPANDA-75: one-dimensional diffusion code for multi-region plate lattice heterogeneous system

    International Nuclear Information System (INIS)

    Kikuchi, Yasuyuki; Katsuragi, Satoru; Suzuki, Tomoo; Ogitsu, Makoto.

    1975-08-01

    An advanced treatment has been developed for analyzing a multi-region plate lattice heterogeneous system using the coarse group constants set provided for a homogeneous system. The essential points of this treatment are modification of effective admixture cross sections and improvement of effective elastic removal cross sections. By this treatment the heterogeneity effects for flux distributions and effective cross sections in the unit cell can be reproduced accurately in comparison with the ultra fine group treatment which consumes huge amounts of computing time. Based on the present treatment and using the JAERI-Fast set, a one-dimensional diffusion code, EXPANDA-75, was developed for extensive use for analyses of fast critical experiments. The user's guide is also presented in this report. (auth.)

  7. Fuzzy Regression Prediction and Application Based on Multi-Dimensional Factors of Freight Volume

    Science.gov (United States)

    Xiao, Mengting; Li, Cheng

    2018-01-01

    Based on the reality of the development of air cargo, the multi-dimensional fuzzy regression method is used to determine the influencing factors, and the three most important influencing factors of GDP, total fixed assets investment and regular flight route mileage are determined. The system’s viewpoints and analogy methods, the use of fuzzy numbers and multiple regression methods to predict the civil aviation cargo volume. In comparison with the 13th Five-Year Plan for China’s Civil Aviation Development (2016-2020), it is proved that this method can effectively improve the accuracy of forecasting and reduce the risk of forecasting. It is proved that this model predicts civil aviation freight volume of the feasibility, has a high practical significance and practical operation.

  8. On the use of multi-dimensional scaling and electromagnetic tracking in high dose rate brachytherapy

    Science.gov (United States)

    Götz, Th I.; Ermer, M.; Salas-González, D.; Kellermeier, M.; Strnad, V.; Bert, Ch; Hensel, B.; Tomé, A. M.; Lang, E. W.

    2017-10-01

    High dose rate brachytherapy affords a frequent reassurance of the precise dwell positions of the radiation source. The current investigation proposes a multi-dimensional scaling transformation of both data sets to estimate dwell positions without any external reference. Furthermore, the related distributions of dwell positions are characterized by uni—or bi—modal heavy—tailed distributions. The latter are well represented by α—stable distributions. The newly proposed data analysis provides dwell position deviations with high accuracy, and, furthermore, offers a convenient visualization of the actual shapes of the catheters which guide the radiation source during the treatment.

  9. Development of multi-dimensional analysis method for porous blockage in fuel subassembly. Numerical simulation for 4 subchannel geometry water test

    International Nuclear Information System (INIS)

    Tanaka, Masa-aki; Kamide, Hideki

    2001-02-01

    This investigation deals with the porous blockage in a wire spacer type fuel subassembly in Fast Breeder Reactors (FBR's). Multi-dimensional analysis method for a porous blockage in a fuel subassembly is developed using the standard k-ε turbulence model with the typical correlations in handbooks. The purpose of this analysis method is to evaluate the position and the magnitude of the maximum temperature, and to investigate the thermo-hydraulic phenomena in the porous blockage. Verification of this analysis method was conducted based on the results of 4-subchannel geometry water test. It was revealed that the evaluation of the porosity distribution and the particle diameter in a porous blockage was important to predict the temperature distribution. This analysis method could simulate the spatial characteristic of velocity and temperature distributions in the blockage and evaluate the pin surface temperature inside the porous blockage. Through the verification of this analysis method, it is shown that this multi-dimensional analysis method is useful to predict the thermo-hydraulic field and the highest temperature in a porous blockage. (author)

  10. Fractional governing equations of transient groundwater flow in confined aquifers with multi-fractional dimensions in fractional time

    Directory of Open Access Journals (Sweden)

    M. L. Kavvas

    2017-10-01

    Full Text Available Using fractional calculus, a dimensionally consistent governing equation of transient, saturated groundwater flow in fractional time in a multi-fractional confined aquifer is developed. First, a dimensionally consistent continuity equation for transient saturated groundwater flow in fractional time and in a multi-fractional, multidimensional confined aquifer is developed. For the equation of water flux within a multi-fractional multidimensional confined aquifer, a dimensionally consistent equation is also developed. The governing equation of transient saturated groundwater flow in a multi-fractional, multidimensional confined aquifer in fractional time is then obtained by combining the fractional continuity and water flux equations. To illustrate the capability of the proposed governing equation of groundwater flow in a confined aquifer, a numerical application of the fractional governing equation to a confined aquifer groundwater flow problem was also performed.

  11. Multi-view L2-SVM and its multi-view core vector machine.

    Science.gov (United States)

    Huang, Chengquan; Chung, Fu-lai; Wang, Shitong

    2016-03-01

    In this paper, a novel L2-SVM based classifier Multi-view L2-SVM is proposed to address multi-view classification tasks. The proposed Multi-view L2-SVM classifier does not have any bias in its objective function and hence has the flexibility like μ-SVC in the sense that the number of the yielded support vectors can be controlled by a pre-specified parameter. The proposed Multi-view L2-SVM classifier can make full use of the coherence and the difference of different views through imposing the consensus among multiple views to improve the overall classification performance. Besides, based on the generalized core vector machine GCVM, the proposed Multi-view L2-SVM classifier is extended into its GCVM version MvCVM which can realize its fast training on large scale multi-view datasets, with its asymptotic linear time complexity with the sample size and its space complexity independent of the sample size. Our experimental results demonstrated the effectiveness of the proposed Multi-view L2-SVM classifier for small scale multi-view datasets and the proposed MvCVM classifier for large scale multi-view datasets. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Performance of the Multi-Spectral Solar Telescope Array. III - Optical characteristics of the Ritchey-Chretien and Cassegrain telescopes

    Science.gov (United States)

    Hoover, Richard B.; Baker, Phillip C.; Hadaway, James B.; Johnson, R. B.; Peterson, Cynthia; Gabardi, David R.; Walker, Arthur B., Jr.; Lindblom, J. F.; Deforest, Craig; O'Neal, R. H.

    1991-12-01

    The Multi-Spectral Solar Telescope Array (MSSTA), which is a sounding-rocket-borne observatory for investigating the sun in the soft X-ray/EUV and FUV regimes of the electromagnetic spectrum, utilizes single reflection multilayer coated Herschelian telescopes for wavelengths below 100 A, and five doubly reflecting multilayer coated Ritchey-Chretien and two Cassegrain telescopes for selected wavelengths in the EUV region between 100 and 1000 A. The paper discusses the interferometric alignment, testing, focusing, visible light testing, and optical performance characteristics of the Ritchey-Chretien and Cassegrain telescopes of MSSTA. A schematic diagram of the MSSTA Ritchey-Chretien telescope is presented together with diagrams of the system autocollimation testing.

  13. A Complete Video Coding Chain Based on Multi-Dimensional Discrete Cosine Transform

    Directory of Open Access Journals (Sweden)

    T. Fryza

    2010-09-01

    Full Text Available The paper deals with a video compression method based on the multi-dimensional discrete cosine transform. In the text, the encoder and decoder architectures including the definitions of all mathematical operations like the forward and inverse 3-D DCT, quantization and thresholding are presented. According to the particular number of currently processed pictures, the new quantization tables and entropy code dictionaries are proposed in the paper. The practical properties of the 3-D DCT coding chain compared with the modern video compression methods (such as H.264 and WebM and the computing complexity are presented as well. It will be proved the best compress properties could be achieved by complex H.264 codec. On the other hand the computing complexity - especially on the encoding side - is lower for the 3-D DCT method.

  14. Automatic Multi-Level Thresholding Segmentation Based on Multi-Objective Optimization

    Directory of Open Access Journals (Sweden)

    L. DJEROU,

    2012-01-01

    Full Text Available In this paper, we present a new multi-level image thresholding technique, called Automatic Threshold based on Multi-objective Optimization "ATMO" that combines the flexibility of multi-objective fitness functions with the power of a Binary Particle Swarm Optimization algorithm "BPSO", for searching the "optimum" number of the thresholds and simultaneously the optimal thresholds of three criteria: the between-class variances criterion, the minimum error criterion and the entropy criterion. Some examples of test images are presented to compare our segmentation method, based on the multi-objective optimization approach with Otsu’s, Kapur’s and Kittler’s methods. Our experimental results show that the thresholding method based on multi-objective optimization is more efficient than the classical Otsu’s, Kapur’s and Kittler’s methods.

  15. MULTI-WAVELENGTH POLARIMETRY AND SPECTRAL STUDY OF THE M87 JET DURING 2002–2008

    Energy Technology Data Exchange (ETDEWEB)

    Avachat, Sayali S.; Perlman, Eric S. [Department of Physics and Space Sciences, 150 W. University Boulevard, Florida Institute of Technology, Melbourne, FL 32901 (United States); Adams, Steven C. [Department of Physics and Astronomy, University of Georgia, Athens, GA, 30605 (United States); Cara, Mihai; Sparks, William B. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Owen, Frazer [National Radio Astronomy Observatory, Array Operations Center, P.O. Box O, 1003 Lopezville Road, Socorro, NM 87801-0387 (United States); Georganopoulos, Markos [Department of Physics, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250 (United States)

    2016-11-20

    We present a multi-wavelength polarimetric and spectral study of the M87 jet obtained at sub-arcsecond resolution between 2002 and 2008. The observations include multi-band archival VLA polarimetry data sets along with Hubble Space Telescope ( HST ) imaging polarimetry. These observations have better angular resolution than previous work by factors of 2–3 and in addition, allow us to explore the time domain. These observations envelop the huge flare in HST-1 located 0.″86 from the nucleus. The increased resolution enables us to view more structure in each knot, showing several resolved sub-components. We also see apparent helical structure in the polarization vectors in several knots, with polarization vectors turning either clockwise or counterclockwise near the flux maxima in various places as well as showing filamentary undulations. Some of these characteristics are correlated with flux and polarization maxima while others are not. We also examine the total flux and fractional polarization and look for changes in both radio and optical since the observations of Perlman et al. (1999) and test them against various models based on shocks and instabilities in the jet. Our results are broadly consistent with previous spine-sheath models and recollimation shock models; however, they require additional combinations of features to explain the observed complexity, e.g., shearing of magnetic field lines near the jet surface and compression of the toroidal component near shocks. In particular, in many regions we find apparently helical features both in total flux and polarization. We discuss the physical interpretation of these features.

  16. Multi-Hop Link Capacity of Multi-Route Multi-Hop MRC Diversity for a Virtual Cellular Network

    Science.gov (United States)

    Daou, Imane; Kudoh, Eisuke; Adachi, Fumiyuki

    In virtual cellular network (VCN), proposed for high-speed mobile communications, the signal transmitted from a mobile terminal is received by some wireless ports distributed in each virtual cell and relayed to the central port that acts as a gateway to the core network. In this paper, we apply the multi-route MHMRC diversity in order to decrease the transmit power and increase the multi-hop link capacity. The transmit power, the interference power and the link capacity are evaluated for DS-CDMA multi-hop VCN by computer simulation. The multi-route MHMRC diversity can be applied to not only DS-CDMA but also other access schemes (i. e. MC-CDMA, OFDM, etc.).

  17. Making ceramics used for compound environment into multi-composite and evaluation of their multi-dimensional system

    International Nuclear Information System (INIS)

    Mitsuhashi, Takefumi

    1996-01-01

    In order to advance current nuclear power technology greatly, the development of the boundary materials suitable to between the environments with largely different properties is indispensable. In the research of first period, the ceramic having the corrosion resistance in liquid sodium which is far superior to metals was found. As boundary material, in addition, thermal, mechanical and radiation resistant properties are required. In the project of second period, it is aimed at to establish the basic technology for the synthesis techniques for multi-composite materials that possess the combination of the excellent characteristics of individual monolithic system ceramics. The liquid sodium immersion test of various ceramics in the research of first period is reported. The diffusion of sodium in ceramics was also examined. As the simplified quick evaluation technique, the corrosion test in KOH solution was carried out. As for ceramic multi-composites, Y ions were implanted in the surface of alumina, and the changes of structure and corrosion resistance were examined. The surface condition of ceramics and the adsorption of alkali metals were investigated. (K.I.)

  18. Evaluation of Hyperspectral Multi-Band Indices to Estimate Chlorophyll-A Concentration Using Field Spectral Measurements and Satellite Data in Dianshan Lake, China

    Directory of Open Access Journals (Sweden)

    Linna Li

    2013-04-01

    Full Text Available Chlorophyll-a (Chl-a concentration is considered as a key indicator of the eutrophic status of inland water bodies. Various algorithms have been developed for estimating Chl-a in order to improve the accuracy of predictive models. The objective of this study is to assess the potential of hyperspectral multi-band indices to estimate the Chl-a concentration in Dianshan Lake, which is the largest lake in Shanghai, an international metropolis of China. Based on field spectral measurements and in-situ Chl-a concentration collected on 7–8 September 2010, hyperspectral multi-band indices were calibrated to estimate the Chl-a concentration with optimal wavelengths selected by model tuning. A three-band index accounts for 87.36% (R2 = 0.8736 of the Chl-a variation. A four-band index, which adds a wavelength in the near infrared (NIR region, results in a higher R2 (0.8997 by removing the absorption and backscattering effects of suspended solids. To test the applicability of the proposed indices for routinely monitoring of Chl-a in inland lakes, simulated Hyperion and real HJ-1A satellite data were selected to estimate the Chl-a concentration. The results show that the explanatory powers of these satellite hyperspectral multi-band indices are relatively high with R2 = 0.8559, 0.8945, 0.7969, and 0.8241 for simulated Hyperion and real HJ-1A satellite data, respectively. All of the results provide strong evidence that hyperspectral multi-band indices are promising and applicable to estimate Chl-a in eutrophic inland lakes.

  19. Multi-Dimensional Bitmap Indices for Optimising Data Access within Object Oriented Databases at CERN

    CERN Document Server

    Stockinger, K

    2001-01-01

    Efficient query processing in high-dimensional search spaces is an important requirement for many analysis tools. In the literature on index data structures one can find a wide range of methods for optimising database access. In particular, bitmap indices have recently gained substantial popularity in data warehouse applications with large amounts of read mostly data. Bitmap indices are implemented in various commercial database products and are used for querying typical business applications. However, scientific data that is mostly characterised by non-discrete attribute values cannot be queried efficiently by the techniques currently supported. In this thesis we propose a novel access method based on bitmap indices that efficiently handles multi-dimensional queries against typical scientific data. The algorithm is called GenericRangeEval and is an extension of a bitmap index for discrete attribute values. By means of a cost model we study the performance of queries with various selectivities against uniform...

  20. Two hierarchies of multi-component Kaup-Newell equations and theirs integrable couplings

    International Nuclear Information System (INIS)

    Zhu Fubo; Ji Jie; Zhang Jianbin

    2008-01-01

    Two hierarchies of multi-component Kaup-Newell equations are derived from an arbitrary order matrix spectral problem, including positive non-isospectral Kaup-Newell hierarchy and negative non-isospectral Kaup-Newell hierarchy. Moreover, new integrable couplings of the resulting Kaup-Newell soliton hierarchies are constructed by enlarging the associated matrix spectral problem

  1. Modeling duration choice in space–time multi-state supernetworks for individual activity-travel scheduling

    NARCIS (Netherlands)

    Liao, F.

    2016-01-01

    Multi-state supernetworks have been advanced recently for modeling individual activity-travel scheduling decisions. The main advantage is that multi-dimensional choice facets are modeled simultaneously within an integral framework, supporting systematic assessments of a large spectrum of policies

  2. Land cover mapping at Alkali Flat and Lake Lucero, White Sands, New Mexico, USA using multi-temporal and multi-spectral remote sensing data

    Science.gov (United States)

    Ghrefat, Habes A.; Goodell, Philip C.

    2011-08-01

    The goal of this research is to map land cover patterns and to detect changes that occurred at Alkali Flat and Lake Lucero, White Sands using multispectral Landsat 7 Enhanced Thematic Mapper Plus (ETM+), Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), Advanced Land Imager (ALI), and hyperspectral Hyperion and Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data. The other objectives of this study were: (1) to evaluate the information dimensionality limits of Landsat 7 ETM+, ASTER, ALI, Hyperion, and AVIRIS data with respect to signal-to-noise and spectral resolution, (2) to determine the spatial distribution and fractional abundances of land cover endmembers, and (3) to check ground correspondence with satellite data. A better understanding of the spatial and spectral resolution of these sensors, optimum spectral bands and their information contents, appropriate image processing methods, spectral signatures of land cover classes, and atmospheric effects are needed to our ability to detect and map minerals from space. Image spectra were validated using samples collected from various localities across Alkali Flat and Lake Lucero. These samples were measured in the laboratory using VNIR-SWIR (0.4-2.5 μm) spectra and X-ray Diffraction (XRD) method. Dry gypsum deposits, wet gypsum deposits, standing water, green vegetation, and clastic alluvial sediments dominated by mixtures of ferric iron (ferricrete) and calcite were identified in the study area using Minimum Noise Fraction (MNF), Pixel Purity Index (PPI), and n-D Visualization. The results of MNF confirm that AVIRIS and Hyperion data have higher information dimensionality thresholds exceeding the number of available bands of Landsat 7 ETM+, ASTER, and ALI data. ASTER and ALI data can be a reasonable alternative to AVIRIS and Hyperion data for the purpose of monitoring land cover, hydrology and sedimentation in the basin. The spectral unmixing analysis and dimensionality eigen

  3. Multi(scale)gravity: a telescope for the micro-world

    International Nuclear Information System (INIS)

    Kogan, I.I.

    2001-01-01

    A short review of modern status of multi-gravity, i.e. modification of gravity at both short and large distances is given. Usually embedding of standard model and general relativity into any multidimensional construction gives rise to all possible sorts of new effects in a micro-world but we can also get a very drastic modification of these laws of gravity at ultra-large scale. One of the reason why multi-gravity can modify CMB (cosmic microwave background) is that it leads to a large distance modification of the curvature. One of very striking features of multi-gravity is that it gives us a some sort of a dark matter whose origin is that it is just matter from other branes. The author shows that on a 5-dimensional case and at large distances, multi-gravity opens a window in extra dimensions and gravitationally matter which is localized on other branes can be felt. (A.C.)

  4. From supramolecular polymers to multi-component biomaterials.

    Science.gov (United States)

    Goor, Olga J G M; Hendrikse, Simone I S; Dankers, Patricia Y W; Meijer, E W

    2017-10-30

    The most striking and general property of the biological fibrous architectures in the extracellular matrix (ECM) is the strong and directional interaction between biologically active protein subunits. These fibers display rich dynamic behavior without losing their architectural integrity. The complexity of the ECM taking care of many essential properties has inspired synthetic chemists to mimic these properties in artificial one-dimensional fibrous structures with the aim to arrive at multi-component biomaterials. Due to the dynamic character required for interaction with natural tissue, supramolecular biomaterials are promising candidates for regenerative medicine. Depending on the application area, and thereby the design criteria of these multi-component fibrous biomaterials, they are used as elastomeric materials or hydrogel systems. Elastomeric materials are designed to have load bearing properties whereas hydrogels are proposed to support in vitro cell culture. Although the chemical structures and systems designed and studied today are rather simple compared to the complexity of the ECM, the first examples of these functional supramolecular biomaterials reaching the clinic have been reported. The basic concept of many of these supramolecular biomaterials is based on their ability to adapt to cell behavior as a result of dynamic non-covalent interactions. In this review, we show the translation of one-dimensional supramolecular polymers into multi-component functional biomaterials for regenerative medicine applications.

  5. Box-Particle Cardinality Balanced Multi-Target Multi-Bernoulli Filter

    OpenAIRE

    L. Song; X. Zhao

    2014-01-01

    As a generalized particle filtering, the box-particle filter (Box-PF) has a potential to process the measurements affected by bounded error of unknown distributions and biases. Inspired by the Box-PF, a novel implementation for multi-target tracking, called box-particle cardinality balanced multi-target multi-Bernoulli (Box-CBMeMBer) filter is presented in this paper. More important, to eliminate the negative effect of clutters in the estimation of the numbers of targets, an improved generali...

  6. Multi-wavelength and multi-colour temporal and spatial optical solitons

    DEFF Research Database (Denmark)

    Kivshar, Y. S.; Sukhorukov, A. A.; Ostrovskaya, E. A.

    2000-01-01

    We present an overview of several novel types of multi- component envelope solitary waves that appear in fiber and waveguide nonlinear optics. In particular, we describe multi-channel solitary waves in bit-parallel-wavelength fiber transmission systems for high performance computer networks, multi......-color parametric spatial solitary waves due to cascaded nonlinearities of quadratic materials, and quasiperiodic envelope solitons in Fibonacci optical superlattices....

  7. Cellular Automaton Modeling of Dendritic Growth Using a Multi-grid Method

    International Nuclear Information System (INIS)

    Natsume, Y; Ohsasa, K

    2015-01-01

    A two-dimensional cellular automaton model with a multi-grid method was developed to simulate dendritic growth. In the present model, we used a triple-grid system for temperature, solute concentration and solid fraction fields as a new approach of the multi-grid method. In order to evaluate the validity of the present model, we carried out simulations of single dendritic growth, secondary dendrite arm growth, multi-columnar dendritic growth and multi-equiaxed dendritic growth. From the results of the grid dependency from the simulation of single dendritic growth, we confirmed that the larger grid can be used in the simulation and that the computational time can be reduced dramatically. In the simulation of secondary dendrite arm growth, the results from the present model were in good agreement with the experimental data and the simulated results from a phase-field model. Thus, the present model can quantitatively simulate dendritic growth. From the simulated results of multi-columnar and multi-equiaxed dendrites, we confirmed that the present model can perform simulations under practical solidification conditions. (paper)

  8. Multi-scale and multi-orientation medical image analysis

    NARCIS (Netherlands)

    Haar Romenij, ter B.M.; Deserno, T.M.

    2011-01-01

    Inspired by multi-scale and multi-orientation mechanisms recognized in the first stages of our visual system, this chapter gives a tutorial overview of the basic principles. Images are discrete, measured data. The optimal aperture for an observation with as little artefacts as possible, is derived

  9. Multi-level trellis coded modulation and multi-stage decoding

    Science.gov (United States)

    Costello, Daniel J., Jr.; Wu, Jiantian; Lin, Shu

    1990-01-01

    Several constructions for multi-level trellis codes are presented and many codes with better performance than previously known codes are found. These codes provide a flexible trade-off between coding gain, decoding complexity, and decoding delay. New multi-level trellis coded modulation schemes using generalized set partitioning methods are developed for Quadrature Amplitude Modulation (QAM) and Phase Shift Keying (PSK) signal sets. New rotationally invariant multi-level trellis codes which can be combined with differential encoding to resolve phase ambiguity are presented.

  10. Multi-objective optimization of linear multi-state multiple sliding window system

    International Nuclear Information System (INIS)

    Konak, Abdullah; Kulturel-Konak, Sadan; Levitin, Gregory

    2012-01-01

    This paper considers the optimal element sequencing in a linear multi-state multiple sliding window system that consists of n linearly ordered multi-state elements. Each multi-state element can have different states: from complete failure up to perfect functioning. A performance rate is associated with each state. The failure of type i in the system occurs if for any i (1≤i≤I) the cumulative performance of any r i consecutive elements is lower than w i . The element sequence strongly affects the probability of any type of system failure. The sequence that minimizes the probability of certain type of failure can provide high probability of other types of failures. Therefore the optimization problem for the multiple sliding window system is essentially multi-objective. The paper formulates and solves the multi-objective optimization problem for the multiple sliding window systems. A multi-objective Genetic Algorithm is used as the optimization engine. Illustrative examples are presented.

  11. PMHT Approach for Multi-Target Multi-Sensor Sonar Tracking in Clutter.

    Science.gov (United States)

    Li, Xiaohua; Li, Yaan; Yu, Jing; Chen, Xiao; Dai, Miao

    2015-11-06

    Multi-sensor sonar tracking has many advantages, such as the potential to reduce the overall measurement uncertainty and the possibility to hide the receiver. However, the use of multi-target multi-sensor sonar tracking is challenging because of the complexity of the underwater environment, especially the low target detection probability and extremely large number of false alarms caused by reverberation. In this work, to solve the problem of multi-target multi-sensor sonar tracking in the presence of clutter, a novel probabilistic multi-hypothesis tracker (PMHT) approach based on the extended Kalman filter (EKF) and unscented Kalman filter (UKF) is proposed. The PMHT can efficiently handle the unknown measurements-to-targets and measurements-to-transmitters data association ambiguity. The EKF and UKF are used to deal with the high degree of nonlinearity in the measurement model. The simulation results show that the proposed algorithm can improve the target tracking performance in a cluttered environment greatly, and its computational load is low.

  12. Application of multi-scale wavelet entropy and multi-resolution Volterra models for climatic downscaling

    Science.gov (United States)

    Sehgal, V.; Lakhanpal, A.; Maheswaran, R.; Khosa, R.; Sridhar, Venkataramana

    2018-01-01

    This study proposes a wavelet-based multi-resolution modeling approach for statistical downscaling of GCM variables to mean monthly precipitation for five locations at Krishna Basin, India. Climatic dataset from NCEP is used for training the proposed models (Jan.'69 to Dec.'94) and are applied to corresponding CanCM4 GCM variables to simulate precipitation for the validation (Jan.'95-Dec.'05) and forecast (Jan.'06-Dec.'35) periods. The observed precipitation data is obtained from the India Meteorological Department (IMD) gridded precipitation product at 0.25 degree spatial resolution. This paper proposes a novel Multi-Scale Wavelet Entropy (MWE) based approach for clustering climatic variables into suitable clusters using k-means methodology. Principal Component Analysis (PCA) is used to obtain the representative Principal Components (PC) explaining 90-95% variance for each cluster. A multi-resolution non-linear approach combining Discrete Wavelet Transform (DWT) and Second Order Volterra (SoV) is used to model the representative PCs to obtain the downscaled precipitation for each downscaling location (W-P-SoV model). The results establish that wavelet-based multi-resolution SoV models perform significantly better compared to the traditional Multiple Linear Regression (MLR) and Artificial Neural Networks (ANN) based frameworks. It is observed that the proposed MWE-based clustering and subsequent PCA, helps reduce the dimensionality of the input climatic variables, while capturing more variability compared to stand-alone k-means (no MWE). The proposed models perform better in estimating the number of precipitation events during the non-monsoon periods whereas the models with clustering without MWE over-estimate the rainfall during the dry season.

  13. Analytic multi-Regge theory and the pomeron in QCD. 1

    International Nuclear Information System (INIS)

    White, A.R.

    1991-01-01

    This paper reports on the formalism of analytic multi-Regge theory developed as a basis for the study of abstract critical and super-critical pomeron high-energy behavior and for related studies of the Regge behavior of spontaneously broken gauge theories and the pomeron in QCD. Asymptotic domains of analyticity for multiparticle amplitudes are shown to follow from properties of field theory and S-matrix theory. General asymptotic dispersion relations are then derived for such amplitudes in which the spectral components are described by the graphical formalism of hexagraphs. Further consequences are distinct Sommerfeld-Watson representations for each hexagraph spectral component, together with a complete set of angular momentum plane unitarity equations which control the form of all multi-Regge amplitudes. Because of this constraint of reggeon unitarity the critical pomeron solution of the reggeon field theory gives the only known non-trivial unitary high-energy S-matrix. By exploiting the full structure of multi-Regge amplitudes as the pomeron becomes super-critical, one can study the simultaneous modification of hadrons and the pomeron. The result is a completely consistent description of the super-critical pomeron appearing in hadron scattering. Reggeon unitarity is satisfied in the super-critical phase by the appearance of a massive gluon (Reggeized vector particle) coupling pair-wise to the pomeron

  14. Multi-dimensional diagnostics of high power ion beams by Arrayed Pinhole Camera System

    International Nuclear Information System (INIS)

    Yasuike, K.; Miyamoto, S.; Shirai, N.; Akiba, T.; Nakai, S.; Imasaki, K.; Yamanaka, C.

    1993-01-01

    The authors developed multi-dimensional beam diagnostics system (with spatially and time resolution). They used newly developed Arrayed Pinhole Camera (APC) for this diagnosis. The APC can get spatial distribution of divergence and flux density. They use two types of particle detectors in this study. The one is CR-39 can get time integrated images. The other one is gated Micro-Channel-Plate (MCP) with CCD camera. It enables time resolving diagnostics. The diagnostics systems have resolution better than 10mrad divergence, 0.5mm spatial resolution on the objects respectively. The time resolving system has 10ns time resolution. The experiments are performed on Reiden-IV and Reiden-SHVS induction linac. The authors get time integrated divergence distributions on Reiden-IV proton beam. They also get time resolved image on Reiden-SHVS

  15. Exploiting the capabilities of the Sentinel-2 multi spectral instrument for predicting growing stock volume in forest ecosystems

    Science.gov (United States)

    Mura, Matteo; Bottalico, Francesca; Giannetti, Francesca; Bertani, Remo; Giannini, Raffaello; Mancini, Marco; Orlandini, Simone; Travaglini, Davide; Chirici, Gherardo

    2018-04-01

    The spatial prediction of growing stock volume is one of the most frequent application of remote sensing for supporting the sustainable management of forest ecosystems. For such a purpose data from active or passive sensors are used as predictor variables in combination with measures taken in the field in sampling plots. The Sentinel-2 (S2) satellites are equipped with a Multi Spectral Instrument (MSI) capable of acquiring 13 bands in the visible and infrared domains with a spatial resolution varying between 10 and 60 m. The present study aimed at evaluating the performance of the S2-MSI imagery for estimating the growing stock volume of forest ecosystems. To do so we used 240 plots measured in two study areas in Italy. The imputation was carried out with eight k-Nearest Neighbours (k-NN) methods available in the open source YaImpute R package. In order to evaluate the S2-MSI performance we repeated the experimental protocol also with two other sets of images acquired by two well-known satellites equipped with multi spectral instruments: Landsat 8 OLI and RapidEye scanner. We found that S2 worked better than Landsat in 37.5% of the cases and in 62.5% of the cases better than RapidEye. In one study area the best performance was obtained with Landsat OLI (RMSD = 6.84%) and in the other with S2 (RMSD = 22.94%), both with the k-NN system based on a distance matrix calculated with the Random Forest algorithm. The results confirmed that S2 images are suitable for predicting growing stock volume obtaining good performances (average RMSD for both the test areas of less than 19%).

  16. Connected Component Model for Multi-Object Tracking.

    Science.gov (United States)

    He, Zhenyu; Li, Xin; You, Xinge; Tao, Dacheng; Tang, Yuan Yan

    2016-08-01

    In multi-object tracking, it is critical to explore the data associations by exploiting the temporal information from a sequence of frames rather than the information from the adjacent two frames. Since straightforwardly obtaining data associations from multi-frames is an NP-hard multi-dimensional assignment (MDA) problem, most existing methods solve this MDA problem by either developing complicated approximate algorithms, or simplifying MDA as a 2D assignment problem based upon the information extracted only from adjacent frames. In this paper, we show that the relation between associations of two observations is the equivalence relation in the data association problem, based on the spatial-temporal constraint that the trajectories of different objects must be disjoint. Therefore, the MDA problem can be equivalently divided into independent subproblems by equivalence partitioning. In contrast to existing works for solving the MDA problem, we develop a connected component model (CCM) by exploiting the constraints of the data association and the equivalence relation on the constraints. Based upon CCM, we can efficiently obtain the global solution of the MDA problem for multi-object tracking by optimizing a sequence of independent data association subproblems. Experiments on challenging public data sets demonstrate that our algorithm outperforms the state-of-the-art approaches.

  17. Multi-attribute risk assessment for risk ranking of natural gas pipelines

    International Nuclear Information System (INIS)

    Brito, A.J.; Almeida, A.T. de

    2009-01-01

    The paper presents a decision model for risk assessment and for risk ranking of sections of natural gas pipelines based on multi-attribute utility theory. Pipeline hazard scenarios are surveyed and the reasons for a risk assessment model based on a multi-attribute approach are presented. Three dimensions of impact and the need to translate decision-makers' preferences into risk management decisions are highlighted. The model approaches these factors by using a multi-attribute utility function, in order to produce multi-dimensional risk measurements. By using decision analysis concepts, this model quantitatively incorporates the decision-maker's preferences and behavior regarding risk within clear and consistent risk measurements. In order to support the prioritizing of critical sections of pipeline in natural gas companies, this multi-attribute model also allows sections of pipeline to be ranked into a risk hierarchy. A numerical application based on a real case study was undertaken so that the effectiveness of the decision model could be verified

  18. Landsat sattelite multi-spectral image classification of land cover and land use changes for GIS-based urbanization analysis in irrigation districts of lower Rio Grande Valley of Texas

    Science.gov (United States)

    The Lower Rio Grande Valley in the south of Texas is experiencing rapid increase of population to bring up urban growth that continues influencing on the irrigation districts in the region. This study evaluated the Landsat satellite multi-spectral imagery to provide information for GIS-based urbaniz...

  19. Generalized modeling of multi-component vaporization/condensation phenomena for multi-phase-flow analysis

    International Nuclear Information System (INIS)

    Morita, K.; Fukuda, K.; Tobita, Y.; Kondo, Sa.; Suzuki, T.; Maschek, W.

    2003-01-01

    A new multi-component vaporization/condensation (V/C) model was developed to provide a generalized model for safety analysis codes of liquid metal cooled reactors (LMRs). These codes simulate thermal-hydraulic phenomena of multi-phase, multi-component flows, which is essential to investigate core disruptive accidents of LMRs such as fast breeder reactors and accelerator driven systems. The developed model characterizes the V/C processes associated with phase transition by employing heat transfer and mass-diffusion limited models for analyses of relatively short-time-scale multi-phase, multi-component hydraulic problems, among which vaporization and condensation, or simultaneous heat and mass transfer, play an important role. The heat transfer limited model describes the non-equilibrium phase transition processes occurring at interfaces, while the mass-diffusion limited model is employed to represent effects of non-condensable gases and multi-component mixture on V/C processes. Verification of the model and method employed in the multi-component V/C model of a multi-phase flow code was performed successfully by analyzing a series of multi-bubble condensation experiments. The applicability of the model to the accident analysis of LMRs is also discussed by comparison between steam and metallic vapor systems. (orig.)

  20. The INTERGROWTH-21st Project Neurodevelopment Package: a novel method for the multi-dimensional assessment of neurodevelopment in pre-school age children.

    Directory of Open Access Journals (Sweden)

    Michelle Fernandes

    Full Text Available BACKGROUND: The International Fetal and Newborn Growth Consortium for the 21st Century (INTERGROWTH-21st Project is a population-based, longitudinal study describing early growth and development in an optimally healthy cohort of 4607 mothers and newborns. At 24 months, children are assessed for neurodevelopmental outcomes with the INTERGROWTH-21st Neurodevelopment Package. This paper describes neurodevelopment tools for preschoolers and the systematic approach leading to the development of the Package. METHODS: An advisory panel shortlisted project-specific criteria (such as multi-dimensional assessments and suitability for international populations to be fulfilled by a neurodevelopment instrument. A literature review of well-established tools for preschoolers revealed 47 candidates, none of which fulfilled all the project's criteria. A multi-dimensional assessment was, therefore, compiled using a package-based approach by: (i categorizing desired outcomes into domains, (ii devising domain-specific criteria for tool selection, and (iii selecting the most appropriate measure for each domain. RESULTS: The Package measures vision (Cardiff tests; cortical auditory processing (auditory evoked potentials to a novelty oddball paradigm; and cognition, language skills, behavior, motor skills and attention (the INTERGROWTH-21st Neurodevelopment Assessment in 35-45 minutes. Sleep-wake patterns (actigraphy are also assessed. Tablet-based applications with integrated quality checks and automated, wireless electroencephalography make the Package easy to administer in the field by non-specialist staff. The Package is in use in Brazil, India, Italy, Kenya and the United Kingdom. CONCLUSIONS: The INTERGROWTH-21st Neurodevelopment Package is a multi-dimensional instrument measuring early child development (ECD. Its developmental approach may be useful to those involved in large-scale ECD research and surveillance efforts.

  1. Recent developments in multi-parametric three-dimensional stress field representation in plates weakened by cracks and notches

    Directory of Open Access Journals (Sweden)

    P. Lazzarin

    2013-07-01

    Full Text Available The paper deals with the three-dimensional nature and the multi-parametric representation of the stress field ahead of cracks and notches of different shape. Finite thickness plates are considered, under different loading conditions. Under certain hypotheses, the three-dimensional governing equations of elasticity can be reduced to a system where a bi-harmonic equation and a harmonic equation have to be simultaneously satisfied. The former provides the solution of the corresponding plane notch problem, the latter provides the solution of the corresponding out-of-plane shear notch problem. The analytical frame is applied to some notched and cracked geometries and its degree of accuracy is discussed comparing theoretical results and numerical data from 3D FE models.

  2. Psychometric Properties of Multi-Dimensional Scale of Perceived Social Support in Chinese Parents of Children with Cerebral Palsy

    Directory of Open Access Journals (Sweden)

    Yongli Wang

    2017-11-01

    Full Text Available The Multi-dimensional Scale of Perceived Social Support (MSPSS is one of the most extensively used instruments to assess social support. The purpose of this research was to test the reliability, factorial validity, concurrent validity and measurement invariance across gender groups of the MSPSS in Chinese parents of children with cerebral palsy. A total of 487 participants aged 21–55 years were recruited to complete the Chinese MSPSS and Parenting Stress Index-Short Form (PSI-SF. Composite reliability was calculated as the internal consistency of the Chinese MSPSS and a (multi-group confirmatory factor analysis (CFA was conducted to test the factorial validity and measurement invariance across gender. And Pearson correlations were calculated to test the relationships between MSPSS and PSI-SF. The Chinese MSPSS had satisfactory internal reliability with composite reliability values of more than 0.7. The CFA indicated that the original three-factor model was replicated in this specific population. Importantly, the results of the multi-group CFA demonstrated that configural, metric, and scalar invariance across gender groups was supported. In addition, all the three subscales of MSPSS were significant related with PSI-SF. These findings suggest that the Chinese MSPSS is a reliable and valid tool for assessing social support and can generally be utilized across sex in the parents of children with cerebral palsy.

  3. Performance analysis of three-dimensional-triple-level cell and two-dimensional-multi-level cell NAND flash hybrid solid-state drives

    Science.gov (United States)

    Sakaki, Yukiya; Yamada, Tomoaki; Matsui, Chihiro; Yamaga, Yusuke; Takeuchi, Ken

    2018-04-01

    In order to improve performance of solid-state drives (SSDs), hybrid SSDs have been proposed. Hybrid SSDs consist of more than two types of NAND flash memories or NAND flash memories and storage-class memories (SCMs). However, the cost of hybrid SSDs adopting SCMs is more expensive than that of NAND flash only SSDs because of the high bit cost of SCMs. This paper proposes unique hybrid SSDs with two-dimensional (2D) horizontal multi-level cell (MLC)/three-dimensional (3D) vertical triple-level cell (TLC) NAND flash memories to achieve higher cost-performance. The 2D-MLC/3D-TLC hybrid SSD achieves up to 31% higher performance than the conventional 2D-MLC/2D-TLC hybrid SSD. The factors of different performance between the proposed hybrid SSD and the conventional hybrid SSD are analyzed by changing its block size, read/write/erase latencies, and write unit of 3D-TLC NAND flash memory, by means of a transaction-level modeling simulator.

  4. Multi-parameter sensor based on random fiber lasers

    Directory of Open Access Journals (Sweden)

    Yanping Xu

    2016-09-01

    Full Text Available We demonstrate a concept of utilizing random fiber lasers to achieve multi-parameter sensing. The proposed random fiber ring laser consists of an erbium-doped fiber as the gain medium and a random fiber grating as the feedback. The random feedback is effectively realized by a large number of reflections from around 50000 femtosecond laser induced refractive index modulation regions over a 10cm standard single mode fiber. Numerous polarization-dependent spectral filters are formed and superimposed to provide multiple lasing lines with high signal-to-noise ratio up to 40dB, which gives an access for a high-fidelity multi-parameter sensing scheme. The number of sensing parameters can be controlled by the number of the lasing lines via input polarizations and wavelength shifts of each peak can be explored for the simultaneous multi-parameter sensing with one sensing probe. In addition, the random grating induced coupling between core and cladding modes can be potentially used for liquid medical sample sensing in medical diagnostics, biology and remote sensing in hostile environments.

  5. Estimation of canopy carotenoid content of winter wheat using multi-angle hyperspectral data

    Science.gov (United States)

    Kong, Weiping; Huang, Wenjiang; Liu, Jiangui; Chen, Pengfei; Qin, Qiming; Ye, Huichun; Peng, Dailiang; Dong, Yingying; Mortimer, A. Hugh

    2017-11-01

    Precise estimation of carotenoid (Car) content in crops, using remote sensing data, could be helpful for agricultural resources management. Conventional methods for Car content estimation were mostly based on reflectance data acquired from nadir direction. However, reflectance acquired at this direction is highly influenced by canopy structure and soil background reflectance. Off-nadir observation is less impacted, and multi-angle viewing data are proven to contain additional information rarely exploited for crop Car content estimation. The objective of this study was to explore the potential of multi-angle observation data for winter wheat canopy Car content estimation. Canopy spectral reflectance was measured from nadir as well as from a series of off-nadir directions during different growing stages of winter wheat, with concurrent canopy Car content measurements. Correlation analyses were performed between Car content and the original and continuum removed spectral reflectance. Spectral features and previously published indices were derived from data obtained at different viewing angles and were tested for Car content estimation. Results showed that spectral features and indices obtained from backscattering directions between 20° and 40° view zenith angle had a stronger correlation with Car content than that from the nadir direction, and the strongest correlation was observed from about 30° backscattering direction. Spectral absorption depth at 500 nm derived from spectral data obtained from 30° backscattering direction was found to reduce the difference induced by plant cultivars greatly. It was the most suitable for winter wheat canopy Car estimation, with a coefficient of determination 0.79 and a root mean square error of 19.03 mg/m2. This work indicates the importance of taking viewing geometry effect into account when using spectral features/indices and provides new insight in the application of multi-angle remote sensing for the estimation of crop

  6. Generation of tunable chain of three-dimensional optical bottle beams via focused multi-ring hollow Gaussian beam.

    Science.gov (United States)

    Philip, Geo M; Viswanathan, Nirmal K

    2010-11-01

    We report here the generation of a chain of three-dimensional (3-D) optical bottle beams by focusing a π-phase shifted multi-ring hollow Gaussian beam (HGB) using a lens with spherical aberration. The rings of the HGB of suitable radial (k(r)) and axial (k(z)) wave vectors are generated using a double-negative axicon chemically etched in the optical fiber tips. Moving the lens position with respect to the fiber tip results in variation of the semi-angle of the cones of wave vectors of the HGBs and their diameter, using which we demonstrate tunability in the size and the periodicity of the 3-D optical bottle beams over a wide range, from micrometers to millimeters. The propagation characteristics of the beams resulting from focusing of single- and multi-ring HGBs and resulting in a quasi-non-diffracting beam and a chain of 3-D optical bottle beams, respectively, are simulated using only the input beam parameters and are found to agree well with experimental results.

  7. Topological characteristics of multi-valued maps and Lipschitzian functionals

    International Nuclear Information System (INIS)

    Klimov, V S

    2008-01-01

    This paper deals with the operator inclusion O element of F(x)+N Q (x), where F is a multi-valued map of monotonic type from a reflexive space V to its conjugate V * and N Q is the cone normal to the closed set Q, which, generally speaking, is not convex. To estimate the number of solutions of this inclusion we introduce topological characteristics of multi-valued maps and Lipschitzian functionals that have the properties of additivity and homotopy invariance. We prove some infinite-dimensional versions of the Poincare-Hopf theorem

  8. Mathematical and numerical analysis of a multi-velocity multi-fluid model for interpenetration of miscible fluids

    International Nuclear Information System (INIS)

    Enaux, C.

    2007-11-01

    The simulation of indirect laser implosion requires an accurate knowledge of the inter-penetration of the laser target materials turned into plasma. This work is devoted to the study of a multi-velocity multi-fluid model recently proposed by Scannapieco and Cheng (SC) to describe the inter-penetration of miscible fluids. In this document, we begin with presenting the SC model in the context of miscible fluids flow modelling. Afterwards, the mathematical analysis of the model is carried out (study of the hyperbolicity, existence of a strictly convex mathematical entropy, asymptotic analysis and diffusion limit). As a conclusion the problem is well set. Then, we focus on the problem of numerical resolution of systems of conservation laws with a relaxation source term, because SC model belongs to this class. The main difficulty of this task is to capture on a coarse grid the asymptotic behaviour of the system when the source term is stiff. The main contribution of this work lies in the proposition of a new technique, allowing us to construct a Lagrangian numerical flux taking into account the presence of the source term. This technique is applied first on the model-problem of a one-dimensional Euler system with friction, and then on the multi-fluid SC model. In both cases, we prove that the new scheme is asymptotic-preserving and entropic under a CFL-like condition. The two-dimensional extension of the scheme is done by using a standard alternate directions method. Some numerical results highlight the contribution of the new flux, compared with a standard Lagrange plus Remap scheme where the source term is processed using an operator splitting. (author)

  9. MULTI-TEMPORAL REMOTE SENSING IMAGE CLASSIFICATION - A MULTI-VIEW APPROACH

    Data.gov (United States)

    National Aeronautics and Space Administration — MULTI-TEMPORAL REMOTE SENSING IMAGE CLASSIFICATION - A MULTI-VIEW APPROACH VARUN CHANDOLA AND RANGA RAJU VATSAVAI Abstract. Multispectral remote sensing images have...

  10. Deposition dynamics of multi-solvent bioinks

    Science.gov (United States)

    Kaneelil, Paul; Pack, Min; Cui, Chunxiao; Han, Li-Hsin; Sun, Ying

    2017-11-01

    Inkjet printing cellular scaffolds using bioinks is gaining popularity due to the advancement of printing technology as well as the growing demands of regenerative medicine. Numerous studies have been conducted on printing scaffolds of biomimetic structures that support the cell production of human tissues. However, the underlying physics of the deposition dynamics of bioinks remains elusive. Of particular interest is the unclear deposition dynamics of multi-solvent bioinks, which is often used to tune the micro-architecture formation. Here we systematically studied the effects of jetting frequency, solvent properties, substrate wettability, and temperature on the three-dimensional deposition patterns of bioinks made of Methacrylated Gelatin and Carboxylated Gelatin. The microflows inside the inkjet-printed picolitre drops were visualized using fluorescence tracer particles to decipher the complex processes of multi-solvent evaporation and solute self-assembly. The evolution of droplet shape was observed using interferometry. With the integrated techniques, the interplay of solvent evaporation, biopolymer deposition, and multi-drop interactions were directly observed for various ink and substrate properties, and printing conditions. Such knowledge enables the design and fabrication of a variety of tissue engineering scaffolds for potential use in regenerative medicine.

  11. Assessment of MARS for downcomer multi-dimensional thermal hydraulics during LBLOCA reflood using KAERI air-water direct vessel injection tests

    Energy Technology Data Exchange (ETDEWEB)

    Won-Jae, Lee; Kwi-Seok, Ha; Chul-Hwa, Song [Korea Atomic Energy Research Inst., Daejeon (Korea, Republic of)

    2001-07-01

    The MARS code has been assessed for the downcomer multi-dimensional thermal hydraulics during a large break loss-of-coolant accident (LBLOCA) reflood of Korean Next Generation Reactor (KNGR) that adopted an upper direct vessel injection (DVI) design. Direct DVI bypass and downcomer level sweep-out tests carried out at 1/50-scale air-water DVI test facility are simulated to examine the capability of MARS. Test conditions are selected such that they represent typical reflood conditions of KNGR, that is, DVI injection velocities of 1.0 {approx} 1.6 m/sec and air injection velocities of 18.0 {approx} 35.0 m/sec, for single and double DVI configurations. MARS calculation is first adjusted to the experimental DVI film distribution that largely affects air-water interaction in a scaled-down downcomer, then, the code is assessed for the selected test matrix. With some improvements of MARS thermal-hydraulic (T/H) models, it has been demonstrated that the MARS code is capable of simulating the direct DVI bypass and downcomer level sweep-out as well as the multi-dimensional thermal hydraulics in downcomer, where condensation effect is excluded. (authors)

  12. Urban air quality forecasting based on multi-dimensional collaborative Support Vector Regression (SVR): A case study of Beijing-Tianjin-Shijiazhuang.

    Science.gov (United States)

    Liu, Bing-Chun; Binaykia, Arihant; Chang, Pei-Chann; Tiwari, Manoj Kumar; Tsao, Cheng-Chin

    2017-01-01

    Today, China is facing a very serious issue of Air Pollution due to its dreadful impact on the human health as well as the environment. The urban cities in China are the most affected due to their rapid industrial and economic growth. Therefore, it is of extreme importance to come up with new, better and more reliable forecasting models to accurately predict the air quality. This paper selected Beijing, Tianjin and Shijiazhuang as three cities from the Jingjinji Region for the study to come up with a new model of collaborative forecasting using Support Vector Regression (SVR) for Urban Air Quality Index (AQI) prediction in China. The present study is aimed to improve the forecasting results by minimizing the prediction error of present machine learning algorithms by taking into account multiple city multi-dimensional air quality information and weather conditions as input. The results show that there is a decrease in MAPE in case of multiple city multi-dimensional regression when there is a strong interaction and correlation of the air quality characteristic attributes with AQI. Also, the geographical location is found to play a significant role in Beijing, Tianjin and Shijiazhuang AQI prediction.

  13. Multi-population genomic prediction using a multi-task Bayesian learning model.

    Science.gov (United States)

    Chen, Liuhong; Li, Changxi; Miller, Stephen; Schenkel, Flavio

    2014-05-03

    Genomic prediction in multiple populations can be viewed as a multi-task learning problem where tasks are to derive prediction equations for each population and multi-task learning property can be improved by sharing information across populations. The goal of this study was to develop a multi-task Bayesian learning model for multi-population genomic prediction with a strategy to effectively share information across populations. Simulation studies and real data from Holstein and Ayrshire dairy breeds with phenotypes on five milk production traits were used to evaluate the proposed multi-task Bayesian learning model and compare with a single-task model and a simple data pooling method. A multi-task Bayesian learning model was proposed for multi-population genomic prediction. Information was shared across populations through a common set of latent indicator variables while SNP effects were allowed to vary in different populations. Both simulation studies and real data analysis showed the effectiveness of the multi-task model in improving genomic prediction accuracy for the smaller Ayshire breed. Simulation studies suggested that the multi-task model was most effective when the number of QTL was small (n = 20), with an increase of accuracy by up to 0.09 when QTL effects were lowly correlated between two populations (ρ = 0.2), and up to 0.16 when QTL effects were highly correlated (ρ = 0.8). When QTL genotypes were included for training and validation, the improvements were 0.16 and 0.22, respectively, for scenarios of the low and high correlation of QTL effects between two populations. When the number of QTL was large (n = 200), improvement was small with a maximum of 0.02 when QTL genotypes were not included for genomic prediction. Reduction in accuracy was observed for the simple pooling method when the number of QTL was small and correlation of QTL effects between the two populations was low. For the real data, the multi-task model achieved an

  14. An axiomatic approach to the estimation of interval-valued preferences in multi-criteria decision modeling

    DEFF Research Database (Denmark)

    Franco de los Ríos, Camilo; Hougaard, Jens Leth; Nielsen, Kurt

    In this paper we explore multi-dimensional preference estimation from imprecise (interval) data. Focusing on different multi-criteria decision models, such as PROMETHEE, ELECTRE, TOPSIS or VIKOR, and their extensions dealing with imprecise data, preference modeling is examined with respect...

  15. The value of unenhanced multi-detector computed tomography ...

    African Journals Online (AJOL)

    Introduction: Unenhanced computed tomography (CT) is used to detect urinary tract calculi with high accuracy. The development of multi-detector CT (MDCT) allows reconstructions in coronal, sagittal and oblique directions. Objective: To compare MDCT with three-dimensional (3D) ultrasound (US) imaging in evaluating ...

  16. Multi-armed spirals and multi-pairs antispirals in spatial rock–paper–scissors games

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Luo-Luo, E-mail: jiangluoluo@gmail.com [College of Physics and Electronic Information Engineering, Wenzhou University, Wenzhou 325035 (China); College of Physics and Technology, Guangxi Normal University, Guilin, Guangxi 541004 (China); Wang, Wen-Xu [School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, AZ 85287 (United States); Department of Physics, Beijing Normal University, Beijing 100875 (China); Lai, Ying-Cheng [School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, AZ 85287 (United States); Department of Physics, Arizona State University, Tempe, AZ 85287 (United States); Ni, Xuan [School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, AZ 85287 (United States)

    2012-07-09

    We study the formation of multi-armed spirals and multi-pairs antispirals in spatial rock–paper–scissors games with mobile individuals. We discover a set of seed distributions of species, which is able to produce multi-armed spirals and multi-pairs antispirals with a finite number of arms and pairs based on stochastic processes. The joint spiral waves are also predicted by a theoretical model based on partial differential equations associated with specific initial conditions. The spatial entropy of patterns is introduced to differentiate the multi-armed spirals and multi-pairs antispirals. For the given mobility, the spatial entropy of multi-armed spirals is higher than that of single armed spirals. The stability of the waves is explored with respect to individual mobility. Particularly, we find that both two armed spirals and one pair antispirals transform to the single armed spirals. Furthermore, multi-armed spirals and multi-pairs antispirals are relatively stable for intermediate mobility. The joint spirals with lower numbers of arms and pairs are relatively more stable than those with higher numbers of arms and pairs. In addition, comparing to large amount of previous work, we employ the no flux boundary conditions which enables quantitative studies of pattern formation and stability in the system of stochastic interactions in the absence of excitable media. -- Highlights: ► Multi-armed spirals and multi-pairs antispirals are observed. ► Patterns are predicted by computer simulations and partial differential equations. ► The spatial entropy of patterns is introduced. ► Patterns are relatively stable for intermediate mobility. ► The joint spirals with lower numbers of arms and pairs are relatively more stable.

  17. Multi-armed spirals and multi-pairs antispirals in spatial rock–paper–scissors games

    International Nuclear Information System (INIS)

    Jiang, Luo-Luo; Wang, Wen-Xu; Lai, Ying-Cheng; Ni, Xuan

    2012-01-01

    We study the formation of multi-armed spirals and multi-pairs antispirals in spatial rock–paper–scissors games with mobile individuals. We discover a set of seed distributions of species, which is able to produce multi-armed spirals and multi-pairs antispirals with a finite number of arms and pairs based on stochastic processes. The joint spiral waves are also predicted by a theoretical model based on partial differential equations associated with specific initial conditions. The spatial entropy of patterns is introduced to differentiate the multi-armed spirals and multi-pairs antispirals. For the given mobility, the spatial entropy of multi-armed spirals is higher than that of single armed spirals. The stability of the waves is explored with respect to individual mobility. Particularly, we find that both two armed spirals and one pair antispirals transform to the single armed spirals. Furthermore, multi-armed spirals and multi-pairs antispirals are relatively stable for intermediate mobility. The joint spirals with lower numbers of arms and pairs are relatively more stable than those with higher numbers of arms and pairs. In addition, comparing to large amount of previous work, we employ the no flux boundary conditions which enables quantitative studies of pattern formation and stability in the system of stochastic interactions in the absence of excitable media. -- Highlights: ► Multi-armed spirals and multi-pairs antispirals are observed. ► Patterns are predicted by computer simulations and partial differential equations. ► The spatial entropy of patterns is introduced. ► Patterns are relatively stable for intermediate mobility. ► The joint spirals with lower numbers of arms and pairs are relatively more stable.

  18. Installation of aerosol behavior model into multi-dimensional thermal hydraulic analysis code AQUA

    International Nuclear Information System (INIS)

    Kisohara, Naoyuki; Yamaguchi, Akira

    1997-12-01

    The safety analysis of FBR plant system for sodium leak phenomena needs to evaluate the deposition of the aerosol particle to the components in the plant, the chemical reaction of aerosol to humidity in the air and the effect of the combustion heat through aerosol to the structural component. For this purpose, ABC-INTG (Aerosol Behavior in Containment-INTeGrated Version) code has been developed and used until now. This code calculates aerosol behavior in the gas area of uniform temperature and pressure by 1 cell-model. Later, however, more detailed calculation of aerosol behavior requires the installation of aerosol model into multi-cell thermal hydraulic analysis code AQUA. AQUA can calculate the carrier gas flow, temperature and the distribution of the aerosol spatial concentration. On the other hand, ABC-INTG can calculate the generation, deposition to the wall and flower, agglomeration of aerosol particle and figure out the distribution of the aerosol particle size. Thus, the combination of these two codes enables to deal with aerosol model coupling the distribution of the aerosol spatial concentration and that of the aerosol particle size. This report describes aerosol behavior model, how to install the aerosol model to AQUA and new subroutine equipped to the code. Furthermore, the test calculations of the simple structural model were executed by this code, appropriate results were obtained. Thus, this code has prospect to predict aerosol behavior by the introduction of coupling analysis with multi-dimensional gas thermo-dynamics for sodium combustion evaluation. (J.P.N.)

  19. Multi-segmental movement patterns reflect juggling complexity and skill level.

    Science.gov (United States)

    Zago, Matteo; Pacifici, Ilaria; Lovecchio, Nicola; Galli, Manuela; Federolf, Peter Andreas; Sforza, Chiarella

    2017-08-01

    The juggling action of six experts and six intermediates jugglers was recorded with a motion capture system and decomposed into its fundamental components through Principal Component Analysis. The aim was to quantify trends in movement dimensionality, multi-segmental patterns and rhythmicity as a function of proficiency level and task complexity. Dimensionality was quantified in terms of Residual Variance, while the Relative Amplitude was introduced to account for individual differences in movement components. We observed that: experience-related modifications in multi-segmental actions exist, such as the progressive reduction of error-correction movements, especially in complex task condition. The systematic identification of motor patterns sensitive to the acquisition of specific experience could accelerate the learning process. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. MultiWaveLink: An interactive data base for the coordination of multiwavelength and multifacility observations

    Science.gov (United States)

    Cordova, F. A.

    1993-01-01

    MultiWaveLink is an interactive, computerized data base that was developed to facilitate a multi-wavelength approach to studying astrophysical sources. It can be used to access information about multiwavelenth resources (observers, telescopes, data bases and analysis facilities) or to organize observing campaigns that require either many telescopes operating in different spectral regimes or a network of similar telescopes circumspanning the Earth.