WorldWideScience

Sample records for embryonic antigen-4 epitope

  1. Laminin binding protein, 34/67 laminin receptor, carries stage-specific embryonic antigen-4 epitope defined by monoclonal antibody Raft.2

    International Nuclear Information System (INIS)

    Katagiri, Yohko U.; Kiyokawa, Nobutaka; Nakamura, Kyoko; Takenouchi, Hisami; Taguchi, Tomoko; Okita, Hajime; Umezawa, Akihiro; Fujimoto, Junichiro

    2005-01-01

    We previously produced monoclonal antibodies against the detergent-insoluble microdomain, i.e., the raft microdomain, of the human renal cancer cell line ACHN. Raft.2, one of these monoclonal antibodies, recognizes sialosyl globopentaosylceramide, which has the stage-specific embryonic antigen (SSEA)-4 epitope. Although the mouse embryonal carcinoma (EC) cell line F9 does not express SSEA-4, some F9 cells stained with Raft.2. Western analysis and matrix-assisted laser desorption ionization-time of flight mass spectrometry identified the Raft.2 binding molecule as laminin binding protein (LBP), i.e., 34/67 laminin receptor. Weak acid treatment or digestion with Clostridium perfringens sialidase reduced Raft.2 binding to LBP on nitrocellulose sheets and [ 14 C]galactose was incorporated into LBP, indicating LBP to have a sialylated carbohydrate moiety. Subcellular localization analysis by sucrose density-gradient centrifugation and examination by confocal microscopy revealed LBP to be localized on the outer surface of the plasma membrane. An SSEA-4-positive human EC cell line, NCR-G3 cells, also expressed Raft.2-binding LBP

  2. CD4+ T-cell epitope prediction using antigen processing constraints.

    Science.gov (United States)

    Mettu, Ramgopal R; Charles, Tysheena; Landry, Samuel J

    2016-05-01

    T-cell CD4+ epitopes are important targets of immunity against infectious diseases and cancer. State-of-the-art methods for MHC class II epitope prediction rely on supervised learning methods in which an implicit or explicit model of sequence specificity is constructed using a training set of peptides with experimentally tested MHC class II binding affinity. In this paper we present a novel method for CD4+ T-cell eptitope prediction based on modeling antigen-processing constraints. Previous work indicates that dominant CD4+ T-cell epitopes tend to occur adjacent to sites of initial proteolytic cleavage. Given an antigen with known three-dimensional structure, our algorithm first aggregates four types of conformational stability data in order to construct a profile of stability that allows us to identify regions of the protein that are most accessible to proteolysis. Using this profile, we then construct a profile of epitope likelihood based on the pattern of transitions from unstable to stable regions. We validate our method using 35 datasets of experimentally measured CD4+ T cell responses of mice bearing I-Ab or HLA-DR4 alleles as well as of human subjects. Overall, our results show that antigen processing constraints provide a significant source of predictive power. For epitope prediction in single-allele systems, our approach can be combined with sequence-based methods, or used in instances where little or no training data is available. In multiple-allele systems, sequence-based methods can only be used if the allele distribution of a population is known. In contrast, our approach does not make use of MHC binding prediction, and is thus agnostic to MHC class II genotypes. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Monoclonal antibodies to carcino-embryonic antigen

    International Nuclear Information System (INIS)

    Teh, Jinghee; McKenzie, I.F.C.

    1990-01-01

    With the aim of producing new MoAb to colorectal carcinoma, immunization with cell suspensions of a fresh colonic tumour was performed and MoAb 17C4 was obtained. To produce other MoAb to colon cancer, an immunization protocol using fresh tumour, colonic cell lines and sera from patients with colonic tumours was employed and resulted in MoAb JGT-13, LK-4 and XPX-13. MoAb I-1 and O-1 were raised against sera from patients with colon cancer to produce MoAb directed against circulating tumour associated antigens. The six antibodies gave a range of reactions with normal and malignant tissues, indicating that they most likely reacted with different epitopes. Thus, apart from the reactions of 17C4, LK-4 and XPX-13 with fresh and formalin-fixed granulocytes, none of the antibodies reacted with formalin-fixed normal tissues. Despite the apparent specificity of these MoAb for colon cancer, serum testing using MoAb gave similar results to carcino-embryonic antigen polyclonal antibodies, that is the MoAb gave no obvious advantage. 9 refs., 1 tab., 3 figs

  4. Prediction of antigenic epitopes on protein surfaces by consensus scoring

    Directory of Open Access Journals (Sweden)

    Zhang Chi

    2009-09-01

    Full Text Available Abstract Background Prediction of antigenic epitopes on protein surfaces is important for vaccine design. Most existing epitope prediction methods focus on protein sequences to predict continuous epitopes linear in sequence. Only a few structure-based epitope prediction algorithms are available and they have not yet shown satisfying performance. Results We present a new antigen Epitope Prediction method, which uses ConsEnsus Scoring (EPCES from six different scoring functions - residue epitope propensity, conservation score, side-chain energy score, contact number, surface planarity score, and secondary structure composition. Applied to unbounded antigen structures from an independent test set, EPCES was able to predict antigenic eptitopes with 47.8% sensitivity, 69.5% specificity and an AUC value of 0.632. The performance of the method is statistically similar to other published methods. The AUC value of EPCES is slightly higher compared to the best results of existing algorithms by about 0.034. Conclusion Our work shows consensus scoring of multiple features has a better performance than any single term. The successful prediction is also due to the new score of residue epitope propensity based on atomic solvent accessibility.

  5. Thyroid Autoantibodies Display both “Original Antigenic Sin” and Epitope Spreading

    Directory of Open Access Journals (Sweden)

    Sandra M. McLachlan

    2017-12-01

    Full Text Available Evidence for original antigenic sin in spontaneous thyroid autoimmunity is revealed by autoantibody interactions with immunodominant regions on thyroid autoantigens, thyroglobulin (Tg, thyroid peroxidase (TPO, and the thyrotropin receptor (TSHR A-subunit. In contrast, antibodies induced by immunization of rabbits or mice recognize diverse epitopes. Recognition of immunodominant regions persists despite fluctuations in autoantibody levels following treatment or over time. The enhancement of spontaneously arising pathogenic TSHR antibodies in transgenic human thyrotropin receptor/NOD.H2h4 mice by injecting a non-pathogenic form of TSHR A-subunit protein also provides evidence for original antigenic sin. From other studies, antigen presentation by B cells, not dendritic cells, is likely responsible for original antigenic sin. Recognition of restricted epitopes on the large glycosylated thyroid autoantigens (60-kDa A-subunit, 100-kDa TPO, and 600-kDa Tg facilitates exploring the amino acid locations in the immunodominant regions. Epitope spreading has also been revealed by autoantibodies in thyroid autoimmunity. In humans, and in mice that spontaneously develop autoimmunity to all three thyroid autoantigens, autoantibodies develop first to Tg and later to TPO and the TSHR A-subunit. The pattern of intermolecular epitope spreading is related in part to the thyroidal content of Tg, TPO and TSHR A-subunit and to the molecular sizes of these proteins. Importantly, the epitope spreading pattern provides a rationale for future antigen-specific manipulation to block the development of all thyroid autoantibodies by inducing tolerance to Tg, first in the autoantigen cascade. Because of its abundance, Tg may be the autoantigen of choice to explore antigen-specific treatment, preventing the development of pathogenic TSHR antibodies.

  6. Microbiota epitope similarity either dampens or enhances the immunogenicity of disease-associated antigenic epitopes.

    Directory of Open Access Journals (Sweden)

    Sebastian Carrasco Pro

    Full Text Available The microbiome influences adaptive immunity and molecular mimicry influences T cell reactivity. Here, we evaluated whether the sequence similarity of various antigens to the microbiota dampens or increases immunogenicity of T cell epitopes. Sets of epitopes and control sequences derived from 38 antigenic categories (infectious pathogens, allergens, autoantigens were retrieved from the Immune Epitope Database (IEDB. Their similarity to microbiome sequences was calculated using the BLOSUM62 matrix. We found that sequence similarity was associated with either dampened (tolerogenic; e.g. most allergens or increased (inflammatory; e.g. Dengue and West Nile viruses likelihood of a peptide being immunogenic as a function of epitope source category. Ten-fold cross-validation and validation using sets of manually curated epitopes and non-epitopes derived from allergens were used to confirm these initial observations. Furthermore, the genus from which the microbiome homologous sequences were derived influenced whether a tolerogenic versus inflammatory modulatory effect was observed, with Fusobacterium most associated with inflammatory influences and Bacteroides most associated with tolerogenic influences. We validated these effects using PBMCs stimulated with various sets of microbiome peptides. "Tolerogenic" microbiome peptides elicited IL-10 production, "inflammatory" peptides elicited mixed IL-10/IFNγ production, while microbiome epitopes homologous to self were completely unreactive for both cytokines. We also tested the sequence similarity of cockroach epitopes to specific microbiome sequences derived from households of cockroach allergic individuals and non-allergic controls. Microbiomes from cockroach allergic households were less likely to contain sequences homologous to previously defined cockroach allergens. These results are compatible with the hypothesis that microbiome sequences may contribute to the tolerization of T cells for allergen

  7. Construction, expression, purification and biotin labeling of a single recombinant multi-epitope antigen for double-antigen sandwich ELISA to detect hepatitis C virus antibody.

    Science.gov (United States)

    He, Jing; Xiu, Bingshui; Wang, Guohua; Chen, Kun; Feng, Xiaoyan; Song, Xiaoguo; Zhu, Cuixia; Yang, Xiqin; Bai, Guanzhong; Ling, Shigan; Zhang, Heqiu

    2011-08-01

    Based on B cell epitope predictions, a recombinant antigen with multiple epitopes from four Hepatitis C Virus fragments (C, NS3, NS4 and NS5) were engineered. The recombinant gene was then highly expressed in E. coli. The non-modified and C-terminal-modified recombinant proteins were used for coating and biotin labeling, respectively, to establish the double-antigen sandwich ELISA. Ten positive reference samples confirmed by the CHIRON RIBA HCV 3.0 SIA kit were detected positive, Forty one plasma samples were positive among samples from 441 volunteers, which indicated that the recombinant antigen could readily react well with plasma HCV antibody. As critical reagents of double-antigen sandwich ELISA, the recombinant multi-epitope antigen and the C-terminal-modified and biotin-conjugated antigen show good antigenicity. In this study, we provide a simple approach to produce multiple epitopes within one recombinant protein in order to avoid the costly expression of less-effective pools of multiple proteins, which is the conventional strategy of diagnostic antigen production for HCV antibody detection.

  8. Comparative characteristic of the methods of protein antigens epitope mapping

    Directory of Open Access Journals (Sweden)

    O. Yu. Galkin

    2014-08-01

    Full Text Available Comparative analysis of experimental methods of epitope mapping of protein antigens has been carried out. The vast majority of known techniques are involved in immunochemical study of the interaction of protein molecules or peptides with antibodies of corresponding specifici­ty. The most effective and widely applicable metho­dological techniques are those that use synthetic and genetically engineered peptides. Over the past 30 years, these groups of methods have travelled a notable evolutionary path up to the maximum automation and the detection of antigenic determinants of various types (linear and conformational epitopes, and mimotopes. Most of epitope searching algorithms were integrated into a computer program, which greatly facilitates the analysis of experimental data and makes it possible to create spatial models. It is possible to use comparative epitope mapping for solving the applied problems; this less time-consuming method is based on the analysis of competition between different antibodies interactions with the same antigen. The physical method of antigenic structure study is X-ray analysis of antigen-antibody complexes, which may be applied only to crystallizing­ proteins, and nuclear magnetic resonance.

  9. Docking of B-cell epitope antigen to specific hepatitis B antibody

    Indian Academy of Sciences (India)

    The interaction of pres1 region of hepatitis B virus B-cell epitope antigen with specific hepatitis B neutralizing monoclonal antibody was examined by docking study. We modelled the 3D complex structure of B-cell epitope antigen residues CTTPAQGNSMFPSCCCTKPTDGNCY by homology modelling and docked it with the ...

  10. Identification of a variant antigenic neutralizing epitope in hypervariable region 1 of avian leukosis virus subgroup J.

    Science.gov (United States)

    Hou, Minbo; Zhou, Defang; Li, Gen; Guo, Huijun; Liu, Jianzhu; Wang, Guihua; Zheng, Qiankun; Cheng, Ziqiang

    2016-03-08

    Avian leukosis virus subgroup J (ALV-J) is a hypervariable oncogenic retrovirus that causes great economic loss in poultry. Antigenic variations in the variable regions make the development of an effective vaccine a challenging task. In the present study, we identified a variant antigenic neutralizing epitope using reverse vaccinology methods. First, we predicted the B-cell epitopes in gp85 gene of ALV-J strains by DNAman and bioinformatics. Fourteen candidate epitopes were selected and linked in tandem with glycines or serines as a multi-epitope gene. The expressed protein of multi-epitope gene can induce high-titer antibody that can recognize nature ALV-J and neutralize the infectivity of ALV-J strains. Next, we identified a high effective epitope using eight overlapping fragments of gp85 gene reacting with mAb 2D5 and anti-multi-epitope sera. The identified epitope contained one of the predicted epitopes and localized in hyervariable region 1 (hr1), indicating a variant epitope. To better understand if the variants of the epitope have a good antigenicity, we synthesized four variants to react with mAb 2D5 and anti-ALV-J sera. The result showed that all variants could react with the two kinds of antibodies though they showed different antigenicity, while could not react with ALV-J negative sera. Thus, the variant antigenic neutralizing epitope was determined as 137-LRDFIA/E/TKWKS/GDDL/HLIRPYVNQS-158. The result shows a potential use of this variant epitopes as a novel multi-epitope vaccine against ALV-J in poultry. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Identification of novel rabbit hemorrhagic disease virus B-cell epitopes and their interaction with host histo-blood group antigens.

    Science.gov (United States)

    Song, Yanhua; Wang, Fang; Fan, Zhiyu; Hu, Bo; Liu, Xing; Wei, Houjun; Xue, Jiabin; Xu, Weizhong; Qiu, Rulong

    2016-02-01

    Rabbit haemorrhagic disease, caused by rabbit hemorrhagic disease virus (RHDV), results in the death of millions of adult rabbits worldwide, with a mortality rate that exceeds 90%. The sole capsid protein, VP60, is divided into shell (S) and protruding (P) domains, and the more exposed P domain likely contains determinants for cell attachment and antigenic diversity. Nine mAbs against VP60 were screened and identified. To map antigenic epitopes, a set of partially overlapping and consecutive truncated proteins spanning VP60 were expressed. The minimal determinants of the linear B-cell epitopes of VP60 in the P domain, N(326)PISQV(331), D(338)MSFV(342) and K(562)STLVFNL(569), were recognized by one (5H3), four (1B8, 3D11, 4C2 and 4G2) and four mAbs (1D4, 3F7, 5G2 and 6B2), respectively. Sequence alignment showed epitope D(338)MSFV(342) was conserved among all RHDV isolates. Epitopes N(326)PISQV(331) and K(562)STLVFNL(569) were highly conserved among RHDV G1-G6 and variable in RHDV2 strains. Previous studies demonstrated that native viral particles and virus-like particles (VLPs) of RHDV specifically bound to synthetic blood group H type 2 oligosaccharides. We established an oligosaccharide-based assay to analyse the binding of VP60 and epitopes to histo-blood group antigens (HBGAs). Results showed VP60 and its epitopes (aa 326-331 and 338-342) in the P2 subdomain could significantly bind to blood group H type 2. Furthermore, mAbs 1B8 and 5H3 could block RHDV VLP binding to synthetic H type 2. Collectively, these two epitopes might play a key role in the antigenic structure of VP60 and interaction of RHDV and HBGA.

  12. Viral Escape Mutant Epitope Maintains TCR Affinity for Antigen yet Curtails CD8 T Cell Responses.

    Directory of Open Access Journals (Sweden)

    Shayla K Shorter

    Full Text Available T cells have the remarkable ability to recognize antigen with great specificity and in turn mount an appropriate and robust immune response. Critical to this process is the initial T cell antigen recognition and subsequent signal transduction events. This antigen recognition can be modulated at the site of TCR interaction with peptide:major histocompatibility (pMHC or peptide interaction with the MHC molecule. Both events could have a range of effects on T cell fate. Though responses to antigens that bind sub-optimally to TCR, known as altered peptide ligands (APL, have been studied extensively, the impact of disrupting antigen binding to MHC has been highlighted to a lesser extent and is usually considered to result in complete loss of epitope recognition. Here we present a model of viral evasion from CD8 T cell immuno-surveillance by a lymphocytic choriomeningitis virus (LCMV escape mutant with an epitope for which TCR affinity for pMHC remains high but where the antigenic peptide binds sub optimally to MHC. Despite high TCR affinity for variant epitope, levels of interferon regulatory factor-4 (IRF4 are not sustained in response to the variant indicating differences in perceived TCR signal strength. The CD8+ T cell response to the variant epitope is characterized by early proliferation and up-regulation of activation markers. Interestingly, this response is not maintained and is characterized by a lack in IL-2 and IFNγ production, increased apoptosis and an abrogated glycolytic response. We show that disrupting the stability of peptide in MHC can effectively disrupt TCR signal strength despite unchanged affinity for TCR and can significantly impact the CD8+ T cell response to a viral escape mutant.

  13. Diversity of Francisella tularensis Schu4 antigens recognized by T lymphocytes after natural infections in humans: identification of candidate epitopes for inclusion in a rationally designed tularemia vaccine

    DEFF Research Database (Denmark)

    McMurry, Julie A; Gregory, Stephen H; Moise, Leonard

    2007-01-01

    The T lymphocyte antigens, which may have a role in protection against tularemia, were predicted by immunoinformatics analysis of Francisella tularensis Schu4. Twenty-seven class II putative promiscuous epitopes and 125 putative class I supertype epitopes were chosen for synthesis; peptides were...... responded to pools of 25 A2, A24, and B7 peptides, respectively. These data can aid in the development of novel epitope-based and subunit tularemia vaccines....

  14. Conformational Occlusion of Blockade Antibody Epitopes, a Novel Mechanism of GII.4 Human Norovirus Immune Evasion.

    Science.gov (United States)

    Lindesmith, Lisa C; Mallory, Michael L; Debbink, Kari; Donaldson, Eric F; Brewer-Jensen, Paul D; Swann, Excel W; Sheahan, Timothy P; Graham, Rachel L; Beltramello, Martina; Corti, Davide; Lanzavecchia, Antonio; Baric, Ralph S

    2018-01-01

    Extensive antigenic diversity within the GII.4 genotype of human norovirus is a major driver of pandemic emergence and a significant obstacle to development of cross-protective immunity after natural infection and vaccination. However, human and mouse monoclonal antibody studies indicate that, although rare, antibodies to conserved GII.4 blockade epitopes are generated. The mechanisms by which these epitopes evade immune surveillance are uncertain. Here, we developed a new approach for identifying conserved GII.4 norovirus epitopes. Utilizing a unique set of virus-like particles (VLPs) representing the in vivo -evolved sequence diversity within an immunocompromised person, we identify key residues within epitope F, a conserved GII.4 blockade antibody epitope. The residues critical for antibody binding are proximal to evolving blockade epitope E. Like epitope F, antibody blockade of epitope E was temperature sensitive, indicating that particle conformation regulates antibody access not only to the conserved GII.4 blockade epitope F but also to the evolving epitope E. These data highlight novel GII.4 mechanisms to protect blockade antibody epitopes, map essential residues of a GII.4 conserved epitope, and expand our understanding of how viral particle dynamics may drive antigenicity and antibody-mediated protection by effectively shielding blockade epitopes. Our data support the notion that GII.4 particle breathing may well represent a major mechanism of humoral immune evasion supporting cyclic pandemic virus persistence and spread in human populations. IMPORTANCE In this study, we use norovirus virus-like particles to identify key residues of a conserved GII.4 blockade antibody epitope. Further, we identify an additional GII.4 blockade antibody epitope to be occluded, with antibody access governed by temperature and particle dynamics. These findings provide additional support for particle conformation-based presentation of binding residues mediated by a particle

  15. Carcino-Embryonic Antigen

    International Nuclear Information System (INIS)

    Akute, O.

    1999-02-01

    Tumour marker analysis has increased our understanding of the presence of tumours in the body. Carcino-embryonic antigen, CEA, is one of the best studied tumour markers and has proved an ideal diagnostic adjuvant. It has helped in quantifying the amount of disease present in a patient and thence to make accurate prognosis on the various diagnosed ailments. At UCH, it is observed that there is an increase in cancer related ailments and therefore the need for early diagnosis is more compelling in our environment to mitigate future cost of managing advanced manifestation

  16. Identification of NY-BR-1-specific CD4(+) T cell epitopes using HLA-transgenic mice.

    Science.gov (United States)

    Gardyan, Adriane; Osen, Wolfram; Zörnig, Inka; Podola, Lilli; Agarwal, Maria; Aulmann, Sebastian; Ruggiero, Eliana; Schmidt, Manfred; Halama, Niels; Leuchs, Barbara; von Kalle, Christof; Beckhove, Philipp; Schneeweiss, Andreas; Jäger, Dirk; Eichmüller, Stefan B

    2015-06-01

    Breast cancer represents the second most common cancer type worldwide and has remained the leading cause of cancer-related deaths among women. The differentiation antigen NY-BR-1 appears overexpressed in invasive mammary carcinomas compared to healthy breast tissue, thus representing a promising target antigen for T cell based tumor immunotherapy approaches. Since efficient immune attack of tumors depends on the activity of tumor antigen-specific CD4(+) effector T cells, NY-BR-1 was screened for the presence of HLA-restricted CD4(+) T cell epitopes that could be included in immunological treatment approaches. Upon NY-BR-1-specific DNA immunization of HLA-transgenic mice and functional ex vivo analysis, a panel of NY-BR-1-derived library peptides was determined that specifically stimulated IFNγ secretion among splenocytes of immunized mice. Following in silico analyses, four candidate epitopes were determined which were successfully used for peptide immunization to establish NY-BR-1-specific, HLA-DRB1*0301- or HLA-DRB1*0401-restricted CD4(+) T cell lines from splenocytes of peptide immunized HLA-transgenic mice. Notably, all four CD4(+) T cell lines recognized human HLA-DR-matched dendritic cells (DC) pulsed with lysates of NY-BR-1 expressing human tumor cells, demonstrating natural processing of these epitopes also within the human system. Finally, CD4(+) T cells specific for all four CD4(+) T cell epitopes were detectable among PBMC of breast cancer patients, showing that CD4(+) T cell responses against the new epitopes are not deleted nor inactivated by self-tolerance mechanisms. Our results present the first NY-BR-1-specific HLA-DRB1*0301- and HLA-DRB1*0401-restricted T cell epitopes that could be exploited for therapeutic intervention against breast cancer. © 2014 UICC.

  17. Design, construction and evaluation of multi-epitope antigens for diagnosis of Lyme disease.

    Science.gov (United States)

    Schreterova, Eva; Bhide, Mangesh; Potocnakova, Lenka; Borszekova Pulzova, Lucia

    2017-12-23

    Introduction and objective. Lyme disease (LD) is the most common vector-borne disease in the temperate zone of the Northern Hemisphere. Diagnosis of LD is mainly based on clinical symptoms supported with serology (detection of anti-Borrelia antibodies) and is often misdiagnosed in areas of endemicity. In this study, the chimeric proteins (A/C-2, A/C-4 and A/C-7.1) consisting of B-cell epitopes of outer surface proteins OspA and OspC from Borrelia genospecies prevalent in Eastern Slovakia, were designed, over-expressed in E. coli, and used to detect specific anti-Borrelia antibodies in serologically characterized sera from patients with Lyme-like symptoms to evaluate their diagnostic potential. Results showed that chimeras vary in their immuno-reactivity when tested with human sera. Compared with the results obtained from a two-tier test, the application of recombinant multi-epitope chimeric proteins as diagnosis antigens, produced fair agreement in the case of A/C-2 (0.20<κ<0.40) and good agreement (0.60<κ<0.80) when A/C-7.1 was used as capture antigen. Chimera A/C-4 were excluded from further study due to loss of reactivity with OspA-specific antibodies. The combination of specific B-cell epitopes from OspA and OspC proteins may improve the diagnostic accuracy of serologic assays, but further studies are required to address this hypothesis.

  18. Differential presentation of endogenous and exogenous hepatitis B surface antigens influences priming of CD8(+) T cells in an epitope-specific manner.

    Science.gov (United States)

    Riedl, Petra; Reiser, Michael; Stifter, Katja; Krieger, Jana; Schirmbeck, Reinhold

    2014-07-01

    Little is known about whether presentation of endogenous and exogenous hepatitis B virus (HBV) surface antigens on APCs targeted by vaccination and/or virus-harboring hepatocytes influences de novo priming of CD8(+) T cells. We showed that surface antigen-expressing transfectants exclusively display a K(b) /S190 epitope, whereas cells pulsed with recombinant surface particles (rSPs) exclusively present a K(b) /S208 epitope to CD8(+) T cells. The differential presentation of these epitopes largely reflects the selective, but not exclusive, priming of K(b) /S190- and K(b) /S208-specific T cells in C57BL/6 mice by endogenous/DNA- or exogenous/protein-based vaccines, respectively. Silencing the K(b) /S190 epitope (K(b) /S190V194F ) in antigen-expressing vectors rescued the presentation of the K(b) /S208 epitope in stable transfectants and significantly enhanced priming of K(b) /S208-specific T cells in C57BL/6 mice. A K(b) /S190-mediated immunodominance operating in surface antigen-expressing cells, but not in rSP-pulsed cells, led to an efficient suppression in the presentation of the K(b) /S208 epitope and a consequent decrease in the priming of K(b) /S208-specific T cells. This K(b) /S190-mediated immunodominance also operated in 1.4HBV-S(mut) transgenic (tg) hepatocytes selectively expressing endogenous surface antigens and allowed priming of K(b) /S208- but not K(b) /S190-specific T cells in 1.4HBV-S(mut) tg mice. However, IFN-γ(+) K(b) /S208-specific T cells could not inhibit HBV replication in the liver of 1.4HBV-S(mut) tg mice. These results have practical implications for the design of T-cell-stimulating therapeutic vaccines. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Epitope mapping of the carcinoembryonic antigen by monoclonal antibodies and establishment of a new improved radioimmunoassay system

    International Nuclear Information System (INIS)

    Kuroki, Masahide; Arakawa, Fumiko; Matsunaga, Akira; Okamoto, Naomi; Takakura, Kyoko; Matsuoka, Yuji; Higuchi, Hiroshi.

    1987-01-01

    A comprehensive mapping of epitopes on the carcinoembryonic antigen (CEA) molecule has been achieved by analyses of the specificities of 146 monoclonal antibodies (MAbs) from more than 300 hybridomas established recently. The reactivities of MAbs were analyzed by radio-immunoassays (RIA) with highly purified preparations of CEA and related antigens including normal fecal antigen-1 (NFA-1), NFA-2 in normal adult feces, nonspecific cross-reacting antigen (NCA) in lung and NCA-2 in meconium. The MAbs could be divided into five groups: group I, 23 clones directed to the NCA-common part of the CEA molecule; group II, 31 clones directed to the normal fecal cross-reacting antigen (NFCA)-common part; group III, 46 clones directed to the NFA-1-common part; group IV, 33 clones reactive with the heterogeneous carbohydrate part; and group V, 13 clones directed to the CEA-distinctive part which seemed to be highly specific for CEA. Mutual inhibitions of CEA binding between MAbs of the individual groups revealed that at least 25 different subgroups can be defined i.e., 4, 7, 8, 4, and 2 subgroups in groups I to V, respectively. The epitopes recognized by the group IV MAbs were found to be sensitive to oxidation with periodate, while the epitopes defined by MAbs of the other groups were resistant to this treatment. A solid-phase sandwich-type RIA system for CEA was established by using 2 MAbs from groups II and III as the CEA catcher and an MAb of group V as the tracer. This assay was shown to exhibit improved cancer-specificity and accuracy in the estimation of serum CEA levels. (author)

  20. Computational elucidation of potential antigenic CTL epitopes in Ebola virus.

    Science.gov (United States)

    Dikhit, Manas R; Kumar, Santosh; Vijaymahantesh; Sahoo, Bikash R; Mansuri, Rani; Amit, Ajay; Yousuf Ansari, Md; Sahoo, Ganesh C; Bimal, Sanjiva; Das, Pradeep

    2015-12-01

    Cell-mediated immunity is important for the control of Ebola virus infection. We hypothesized that those HLA A0201 and HLA B40 restricted epitopes derived from Ebola virus proteins, would mount a good antigenic response. Here we employed an immunoinformatics approach to identify specific 9mer amino acid which may be capable of inducing a robust cell-mediated immune response in humans. We identified a set of 28 epitopes that had no homologs in humans. Specifically, the epitopes derived from NP, RdRp, GP and VP40 share population coverage of 93.40%, 84.15%, 74.94% and 77.12%, respectively. Based on the other HLA binding specificity and population coverage, seven novel promiscuous epitopes were identified. These 7 promiscuous epitopes from NP, RdRp and GP were found to have world-wide population coverage of more than 95% indicating their potential significance as useful candidates for vaccine design. Epitope conservancy analysis also suggested that most of the peptides are highly conserved (100%) in other virulent Ebola strain (Mayinga-76, Kikwit-95 and Makona-G3816- 2014) and can therefore be further investigated for their immunological relevance and usefulness as vaccine candidates. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Recognition of oxidized albumin and thyroid antigens by psoriasis autoantibodies. A possible role of reactive-oxygen-species induced epitopes in chronic plaque psoriasis

    Directory of Open Access Journals (Sweden)

    Hani A. Al-Shobaili

    2015-12-01

    Full Text Available Objectives: To investigate the role of reactive-oxygen-species (ROS induced epitopes on human-serum-albumin (HSA and thyroid antigens in psoriasis autoimmunity. Methods: This study was performed in the College of Medicine, Qassim University, Buraidah, Saudi Arabia between May 2014 and February 2015. The study was designed to explore the role of ROS-induced epitopes in psoriasis autoimmunity. Singlet-oxygen (or ROS-induced epitopes on protein (ROS-epitopes-albumin was characterized by in-vitro and in-vivo. Thyroid antigens were prepared from rabbit thyroid, and thyroglobulin was isolated from thyroid extract. Immunocross-reactions of protein-A purified anti-ROS-epitopes-HSA-immunoglobulin G (IgGs with thyroid antigen, thyroglobulin, and their oxidized forms were determined. Binding characteristics of autoantibodies in chronic plaque psoriasis patients (n=26 against ROS-epitopes-HSA and also with native and oxidized thyroid antigens were screened, and the results were compared with age-matched controls (n=22. Results: The anti-ROS-epitopes-HSA-IgGs showed cross-reactions with thyroid antigen, thyroglobulin and with their oxidized forms. High degree of specific binding by psoriasis IgGs to ROS-epitopes-HSA, ROS-thyroid antigen and ROS-thyroglobulin was observed. Immunoglobulin G from normal-human-controls showed negligible binding with all tested antigens. Moreover, sera from psoriasis patients had higher levels of carbonyl contents compared with control sera. Conclusion: Structural alterations in albumin, thyroid antigens by ROS, generate unique neo-epitopes that might be one of the factors for the induction of autoantibodies in psoriasis.

  2. Radioimmunological test for the cancero-embryonal antigen in evaluation of stomach neoplasm treatment efficiency

    International Nuclear Information System (INIS)

    Klimenkov, A.A.; Tkacheva, G.A.; Gladikov, Yu.V.; Blokhina, N.G.; Ozherel'ev, A.V.

    1979-01-01

    The results of a dynamic determination of the level of the cancero-embryonic antigen are analysed in 30 patients with stomach neoplasm of the 1-3 stages subjected to a radical operation and 22 patients with stage 4 given polychemotherapy. It is shown that information on the nature of the change in the level of the cancero-embryonal antigen in the blood serves as an important criterion for evaluation of the completeness of the tumour mass removal, detection of the disease relapse and comparison of the efficiency of various combinations of antitumor drugs

  3. Fine-mapping of immunodominant linear B-cell epitopes of the Staphylococcus aureus SEB antigen using short overlapping peptides.

    Directory of Open Access Journals (Sweden)

    Zhuo Zhao

    Full Text Available Staphylococcal enterotoxin B (SEB is one of the most potent Staphylococcus aureus exotoxins (SEs. Due to its conserved sequence and stable structure, SEB might be a good candidate antigen for MRSA vaccines. Although cellular immune responses to SEB are well-characterized, much less is known regarding SEB-specific humoral immune responses, particularly regarding detailed epitope mapping. In this study, we utilized a recombinant nontoxic mutant of SEB (rSEB and an AlPO4 adjuvant to immunize BALB/c mice and confirmed that rSEB can induce a high antibody level and effective immune protection against MRSA infection. Next, the antisera of immunized mice were collected, and linear B cell epitopes within SEB were finely mapped using a series of overlapping synthetic peptides. Three immunodominant B cell epitopes of SEB were screened by ELISA, including a novel epitope, SEB205-222, and two known epitopes, SEB97-114 and SEB247-261. Using truncated peptides, an ELISA was performed with peptide-KLH antisera, and the core sequence of the three immunodominant B cell epitopes were verified as SEB97-112, SEB207-222, and SEB247-257. In vitro, all of the immunodominant epitope-specific antisera (anti-SEB97-112, anti-SEB207-222 and anti-SEB247-257 were observed to inhibit SEB-induced T cell mitogenesis and cytokine production from splenic lymphocytes of BALB/c mice. The homology analysis indicated that SEB97-112 and SEB207-222 were well-conserved among different Staphylococcus aureus strains. The 3D crystal structure of SEB indicated that SEB97-112 was in the loop region inside SEB, whereas SEB207-222 and SEB247-257 were in the β-slice region outside SEB. In summary, the fine-mapping of linear B-cell epitopes of the SEB antigen in this study will be useful to understand anti-SEB immunity against MRSA infection further and will be helpful to optimize MRSA vaccine designs that are based on the SEB antigen.

  4. Epitope mapping: the first step in developing epitope-based vaccines.

    Science.gov (United States)

    Gershoni, Jonathan M; Roitburd-Berman, Anna; Siman-Tov, Dror D; Tarnovitski Freund, Natalia; Weiss, Yael

    2007-01-01

    Antibodies are an effective line of defense in preventing infectious diseases. Highly potent neutralizing antibodies can intercept a virus before it attaches to its target cell and, thus, inactivate it. This ability is based on the antibodies' specific recognition of epitopes, the sites of the antigen to which antibodies bind. Thus, understanding the antibody/epitope interaction provides a basis for the rational design of preventive vaccines. It is assumed that immunization with the precise epitope, corresponding to an effective neutralizing antibody, would elicit the generation of similarly potent antibodies in the vaccinee. Such a vaccine would be a 'B-cell epitope-based vaccine', the implementation of which requires the ability to backtrack from a desired antibody to its corresponding epitope. In this article we discuss a range of methods that enable epitope discovery based on a specific antibody. Such a reversed immunological approach is the first step in the rational design of an epitope-based vaccine. Undoubtedly, the gold standard for epitope definition is x-ray analyses of crystals of antigen:antibody complexes. This method provides atomic resolution of the epitope; however, it is not readily applicable to many antigens and antibodies, and requires a very high degree of sophistication and expertise. Most other methods rely on the ability to monitor the binding of the antibody to antigen fragments or mutated variations. In mutagenesis of the antigen, loss of binding due to point modification of an amino acid residue is often considered an indication of an epitope component. In addition, computational combinatorial methods for epitope mapping are also useful. These methods rely on the ability of the antibody of interest to affinity isolate specific short peptides from combinatorial phage display peptide libraries. The peptides are then regarded as leads for the definition of the epitope corresponding to the antibody used to screen the peptide library. For

  5. Chagas disease-specific antigens: characterization of epitopes in CRA/FRA by synthetic peptide mapping and evaluation by ELISA-peptide assay.

    Science.gov (United States)

    Bottino, Carolina G; Gomes, Luciano P; Pereira, José B; Coura, José R; Provance, David William; De-Simone, Salvatore G

    2013-12-03

    The identification of epitopes in proteins recognized by medically relevant antibodies is useful for the development of peptide-based diagnostics and vaccines. In this study, epitopes in the cytoplasmic repetitive antigen (CRA) and flagellar repetitive antigen (FRA) proteins from Trypanosoma cruzi were identified using synthetic peptide techniques and pooled sera from Chagasic patients. The epitopes were further assayed with an ELISA assay based on synthetic peptides. Twenty-two overlapping synthetic peptides representing the coding sequence of the T. cruzi CRA and FRA proteins were assessed by a Spot-synthesis array analysis using sera donated by patients with Chagas disease. Shorter peptides were selected that represented the determined epitopes and synthesized by solid phase synthesis to evaluate the patterns of cross-reactivities and discrimination through an ELISA-diagnostic assay. The peptide Spot-synthesis array successfully identified two IgG antigenic determinants in the CRA protein and four in FRA. Bioinformatics suggested that the CRA antigens were unique to T. cruzi while the FRA antigen showed similarity with sequences present within various proteins from Leishmania sp. Subsequently, shorter peptides representing the CRA-1, CRA-2 and FRA-1 epitopes were synthesized by solid phase synthesis and assayed by an ELISA-diagnostic assay. The CRA antigens gave a high discrimination between Chagasic, Leishmaniasis and T. cruzi-uninfected serum. A sensitivity and specificity of 100% was calculated for CRA. While the FRA antigen showed a slightly lower sensitivity (91.6%), its specificity was only 60%. The epitopes recognized by human anti-T. cruzi antibodies have been precisely located in two biomarkers of T. cruzi, CRA and FRA. The results from screening a panel of patient sera through an ELISA assay based on peptides representing these epitopes strongly suggest that the sequences from CRA would be useful for the development of diagnostic reagents that could

  6. 'Multi-epitope-targeted' immune-specific therapy for a multiple sclerosis-like disease via engineered multi-epitope protein is superior to peptides.

    Directory of Open Access Journals (Sweden)

    Nathali Kaushansky

    Full Text Available Antigen-induced peripheral tolerance is potentially one of the most efficient and specific therapeutic approaches for autoimmune diseases. Although highly effective in animal models, antigen-based strategies have not yet been translated into practicable human therapy, and several clinical trials using a single antigen or peptidic-epitope in multiple sclerosis (MS yielded disappointing results. In these clinical trials, however, the apparent complexity and dynamics of the pathogenic autoimmunity associated with MS, which result from the multiplicity of potential target antigens and "epitope spread", have not been sufficiently considered. Thus, targeting pathogenic T-cells reactive against a single antigen/epitope is unlikely to be sufficient; to be effective, immunospecific therapy to MS should logically neutralize concomitantly T-cells reactive against as many major target antigens/epitopes as possible. We investigated such "multi-epitope-targeting" approach in murine experimental autoimmune encephalomyelitis (EAE associated with a single ("classical" or multiple ("complex" anti-myelin autoreactivities, using cocktail of different encephalitogenic peptides vis-a-vis artificial multi-epitope-protein (designated Y-MSPc encompassing rationally selected MS-relevant epitopes of five major myelin antigens, as "multi-epitope-targeting" agents. Y-MSPc was superior to peptide(s in concomitantly downregulating pathogenic T-cells reactive against multiple myelin antigens/epitopes, via inducing more effective, longer lasting peripheral regulatory mechanisms (cytokine shift, anergy, and Foxp3+ CTLA4+ regulatory T-cells. Y-MSPc was also consistently more effective than the disease-inducing single peptide or peptide cocktail, not only in suppressing the development of "classical" or "complex EAE" or ameliorating ongoing disease, but most importantly, in reversing chronic EAE. Overall, our data emphasize that a "multi-epitope-targeting" strategy is required for

  7. Immunogenetic mechanisms driving norovirus GII.4 antigenic variation.

    Directory of Open Access Journals (Sweden)

    Lisa C Lindesmith

    Full Text Available Noroviruses are the principal cause of epidemic gastroenteritis worldwide with GII.4 strains accounting for 80% of infections. The major capsid protein of GII.4 strains is evolving rapidly, resulting in new epidemic strains with altered antigenic potentials. To test if antigenic drift may contribute to GII.4 persistence, human memory B cells were immortalized and the resulting human monoclonal antibodies (mAbs characterized for reactivity to a panel of time-ordered GII.4 virus-like particles (VLPs. Reflecting the complex exposure history of the volunteer, human anti-GII.4 mAbs grouped into three VLP reactivity patterns; ancestral (1987-1997, contemporary (2004-2009, and broad (1987-2009. NVB 114 reacted exclusively to the earliest GII.4 VLPs by EIA and blockade. NVB 97 specifically bound and blocked only contemporary GII.4 VLPs, while NBV 111 and 43.9 exclusively reacted with and blocked variants of the GII.4.2006 Minerva strain. Three mAbs had broad GII.4 reactivity. Two, NVB 37.10 and 61.3, also detected other genogroup II VLPs by EIA but did not block any VLP interactions with carbohydrate ligands. NVB 71.4 cross-neutralized the panel of time-ordered GII.4 VLPs, as measured by VLP-carbohydrate blockade assays. Using mutant VLPs designed to alter predicted antigenic epitopes, two evolving, GII.4-specific, blockade epitopes were mapped. Amino acids 294-298 and 368-372 were required for binding NVB 114, 111 and 43.9 mAbs. Amino acids 393-395 were essential for binding NVB 97, supporting earlier correlations between antibody blockade escape and carbohydrate binding variation. These data inform VLP vaccine design, provide a strategy for expanding the cross-blockade potential of chimeric VLP vaccines, and identify an antibody with broadly neutralizing therapeutic potential for the treatment of human disease. Moreover, these data support the hypothesis that GII.4 norovirus evolution is heavily influenced by antigenic variation of neutralizing

  8. Screening for epitope specificity directly on culture supernatants in the early phase of monoclonal antibody production by an ELISA with biotin-labeled antigen.

    Science.gov (United States)

    Andersen, Ditte C; Jensen, Charlotte H; Gregersen, Annemette; Brandt, Jette; Kliem, Anette; Skjødt, Karsten; Koch, Claus; Teisner, Børge

    2004-01-01

    This report describes an assay for comparison of epitope specificity in groups of monoclonal antibodies against a given antigen. The only prerequisite is the biotin-labeled antigen. One of the monoclonal antibodies is captured onto a plastic surface via a rabbit anti-mouse Ig, and the other preincubated with biotinylated antigen. When the two antibodies react with the same epitope subsequent binding of the biotin-labeled antigen is abolished (inhibition). In the cases where no inhibition was observed, the two antibodies were considered to react with distinct, independent epitopes. The obvious advantages using this assay, are that it can be performed directly on culture supernatants in the early phase of monoclonal antibody production, and also works for antigens with repetitive epitopes. Moreover, the bonus effect, i.e., a signal in excess of the reference signal when sets of monoclonal antibodies with different epitope specificity are compared, gives a relative measure of affinity.

  9. Possible presence of common tyvelose-containing glycans in Trichinella L1 larvae and embryonated eggs of several nematodes

    Directory of Open Access Journals (Sweden)

    Dea-Ayuela M.A.

    2001-06-01

    Full Text Available A monoclonal antibody (mAb US4 recognising an epitope containing tyvelose within the T. spiralis L-1 muscle larvae (TSL-1 antigens was tested in western-blot against various antigenic preparations from different stages of the following nematodes: T. spiralis (L1,adult, T. muris (egg, L1, L3, adult, Ascaris suum (egg, adult, Toxocara canis (egg, adult, Anisakis simplex (L3 and Haemochus contortus (egg. Positive reaction was present in antigen preparations from L1 larvae of T. spiralis and T. muris and from embryonated eggs of T. muris, A. suum, T. canis and H. conlortus.

  10. Screening for epitope specificity directly on culture supernatants in the early phase of monoclonal antibody production by an ELISA with biotin-labeled antigen

    DEFF Research Database (Denmark)

    Andersen, Ditte C; Jensen, Charlotte H; Gregersen, Annemette

    2004-01-01

    This report describes an assay for comparison of epitope specificity in groups of monoclonal antibodies against a given antigen. The only prerequisite is the biotin-labeled antigen. One of the monoclonal antibodies is captured onto a plastic surface via a rabbit anti-mouse Ig, and the other...... preincubated with biotinylated antigen. When the two antibodies react with the same epitope subsequent binding of the biotin-labeled antigen is abolished (inhibition). In the cases where no inhibition was observed, the two antibodies were considered to react with distinct, independent epitopes. The obvious...

  11. Epitope diversification driven by non-tumor epitope-specific Th1 and Th17 mediates potent antitumor reactivity.

    Science.gov (United States)

    Ichikawa, Kosuke; Kagamu, Hiroshi; Koyama, Kenichi; Miyabayashi, Takao; Koshio, Jun; Miura, Satoru; Watanabe, Satoshi; Yoshizawa, Hirohisa; Narita, Ichiei

    2012-09-21

    MHC class I-restricted peptide-based vaccination therapies have been conducted to treat cancer patients, because CD8⁺ CTL can efficiently induce apoptosis of tumor cells in an MHC class I-restricted epitope-specific manner. Interestingly, clinical responders are known to demonstrate reactivity to epitopes other than those used for vaccination; however, the mechanism underlying how antitumor T cells with diverse specificity are induced is unclear. In this study, we demonstrated that dendritic cells (DCs) that engulfed apoptotic tumor cells in the presence of non-tumor MHC class II-restricted epitope peptides, OVA(323-339), efficiently presented tumor-associated antigens upon effector-dominant CD4⁺ T cell balance against regulatory T cells (Treg) for the OVA(323-339) epitope. Th1 and Th17 induced tumor-associated antigens presentation of DC, while Th2 ameliorated tumor-antigen presentation for CD8⁺ T cells. Blocking experiments with anti-IL-23p19 antibody and anti-IL-23 receptor indicated that an autocrine mechanism of IL-23 likely mediated the diverted tumor-associated antigens presentation of DC. Tumor-associated antigens presentation of DC induced by OVA(323-339) epitope-specific CD4⁺ T cells resulted in facilitated antitumor immunity in both priming and effector phase in vivo. Notably, this immunotherapy did not require pretreatment to reduce Treg induced by tumor. This strategy may have clinical implications for designing effective antitumor immunotherapies. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Antigen-specific and non-specific CD4+ T cell recruitment and proliferation during influenza infection

    International Nuclear Information System (INIS)

    Chapman, Timothy J.; Castrucci, Maria R.; Padrick, Ryan C.; Bradley, Linda M.; Topham, David J.

    2005-01-01

    To track epitope-specific CD4 + T cells at a single-cell level during influenza infection, the MHC class II-restricted OVA 323-339 epitope was engineered into the neuraminidase stalk of influenza/A/WSN, creating a surrogate viral antigen. The recombinant virus, influenza A/WSN/OVA II , replicated well, was cleared normally, and stimulated both wild-type and DO11.10 or OT-II TCR transgenic OVA-specific CD4 + T cells. OVA-specific CD4 T cells proliferated during infection only when the OVA epitope was present. However, previously primed (but not naive) transgenic CD4 + T cells were recruited to the infected lung both in the presence and absence of the OVA 323-339 epitope. These data show that, when primed, CD4 + T cells may traffic to the lung in the absence of antigen, but do not proliferate. These results also document a useful tool for the study of CD4 T cells in influenza infection

  13. Homology building as a means to define antigenic epitopes on dihydrofolate reductase (DHFR) from Plasmodium falciparum

    DEFF Research Database (Denmark)

    Alifrangis, Michael; Christensen, Inge T; Jørgensen, Flemming S

    2004-01-01

    in the gene coding for Pf-DHFR. Furthermore, we wanted to study the potential use of homology models in general and of Pf-DHFR in particular in predicting antigenic malarial surface epitopes. METHODS: A homology model of Pf-DHFR domain was employed to define an epitope for the development of site...

  14. Quantification of HLA-DM-Dependent Major Histocompatibility Complex of Class II Immunopeptidomes by the Peptide Landscape Antigenic Epitope Alignment Utility

    Directory of Open Access Journals (Sweden)

    Miguel Álvaro-Benito

    2018-05-01

    Full Text Available The major histocompatibility complex of class II (MHCII immunopeptidome represents the repertoire of antigenic peptides with the potential to activate CD4+ T cells. An understanding of how the relative abundance of specific antigenic epitopes affects the outcome of T cell responses is an important aspect of adaptive immunity and offers a venue to more rationally tailor T cell activation in the context of disease. Recent advances in mass spectrometric instrumentation, computational power, labeling strategies, and software analysis have enabled an increasing number of stratified studies on HLA ligandomes, in the context of both basic and translational research. A key challenge in the case of MHCII immunopeptidomes, often determined for different samples at distinct conditions, is to derive quantitative information on consensus epitopes from antigenic peptides of variable lengths. Here, we present the design and benchmarking of a new algorithm [peptide landscape antigenic epitope alignment utility (PLAtEAU] allowing the identification and label-free quantification (LFQ of shared consensus epitopes arising from series of nested peptides. The algorithm simplifies the complexity of the dataset while allowing the identification of nested peptides within relatively short segments of protein sequences. Moreover, we apply this algorithm to the comparison of the ligandomes of cell lines with two different expression levels of the peptide-exchange catalyst HLA-DM. Direct comparison of LFQ intensities determined at the peptide level is inconclusive, as most of the peptides are not significantly enriched due to poor sampling. Applying the PLAtEAU algorithm for grouping of the peptides into consensus epitopes shows that more than half of the total number of epitopes is preferentially and significantly enriched for each condition. This simplification and deconvolution of the complex and ambiguous peptide-level dataset highlights the value of the PLAt

  15. Conformational occlusion of blockade antibody epitopes, a novel mechanism of GII.4 human norovirus immune evasion

    OpenAIRE

    Lindesmith, Lisa C.; Mallory, Michael L.; Debbink, Kari; Donaldson, Eric F.; Brewer-Jensen, Paul D.; Swann, Excel W.; Sheahan, Timothy P.; Graham, Rachel L.; Beltramello, Martina; Corti, Davide; Lanzavecchia, Antonio; Baric, Ralph S.

    2018-01-01

    ABSTRACT Extensive antigenic diversity within the GII.4 genotype of human norovirus is a major driver of pandemic emergence and a significant obstacle to development of cross-protective immunity after natural infection and vaccination. However, human and mouse monoclonal antibody studies indicate that, although rare, antibodies to conserved GII.4 blockade epitopes are generated. The mechanisms by which these epitopes evade immune surveillance are uncertain. Here, we developed a new approach f...

  16. SVMTriP: a method to predict antigenic epitopes using support vector machine to integrate tri-peptide similarity and propensity.

    Directory of Open Access Journals (Sweden)

    Bo Yao

    Full Text Available Identifying protein surface regions preferentially recognizable by antibodies (antigenic epitopes is at the heart of new immuno-diagnostic reagent discovery and vaccine design, and computational methods for antigenic epitope prediction provide crucial means to serve this purpose. Many linear B-cell epitope prediction methods were developed, such as BepiPred, ABCPred, AAP, BCPred, BayesB, BEOracle/BROracle, and BEST, towards this goal. However, effective immunological research demands more robust performance of the prediction method than what the current algorithms could provide. In this work, a new method to predict linear antigenic epitopes is developed; Support Vector Machine has been utilized by combining the Tri-peptide similarity and Propensity scores (SVMTriP. Applied to non-redundant B-cell linear epitopes extracted from IEDB, SVMTriP achieves a sensitivity of 80.1% and a precision of 55.2% with a five-fold cross-validation. The AUC value is 0.702. The combination of similarity and propensity of tri-peptide subsequences can improve the prediction performance for linear B-cell epitopes. Moreover, SVMTriP is capable of recognizing viral peptides from a human protein sequence background. A web server based on our method is constructed for public use. The server and all datasets used in the current study are available at http://sysbio.unl.edu/SVMTriP.

  17. How the definition of acceptable antigens and epitope analysis can facilitate transplantation of highly sensitized patients with excellent long-term graft survival.

    Science.gov (United States)

    Heidt, Sebastiaan; Haasnoot, Geert W; Claas, Frans H J

    2018-05-24

    Highly sensitized patients awaiting a renal transplant have a low chance of receiving an organ offer. Defining acceptable antigens and using this information for allocation purposes can vastly enhance transplantation of this subgroup of patients, which is the essence of the Eurotransplant Acceptable Mismatch program. Acceptable antigens can be determined by extensive laboratory testing, as well as on basis of human leukocyte antigen (HLA) epitope analyses. Within the Acceptable Mismatch program, there is no effect of HLA mismatches on long-term graft survival. Furthermore, patients transplanted through the Acceptable Mismatch program have similar long-term graft survival to nonsensitized patients transplanted through regular allocation. Although HLA epitope analysis is already being used for defining acceptable HLA antigens for highly sensitized patients in the Acceptable Mismatch program, increasing knowledge on HLA antibody - epitope interactions will pave the way toward the definition of acceptable epitopes for highly sensitized patients in the future. Allocation based on acceptable antigens can facilitate transplantation of highly sensitized patients with excellent long-term graft survival.

  18. A shift in the collagen V antigenic epitope leads to T helper phenotype switch and immune response to self-antigen leading to chronic lung allograft rejection.

    Science.gov (United States)

    Tiriveedhi, V; Angaswamy, N; Brand, D; Weber, J; Gelman, A G; Hachem, R; Trulock, E P; Meyers, B; Patterson, G; Mohanakumar, T

    2012-01-01

    Immune responses to human leucocyte antigen (HLA) and self-antigen collagen V (Col-V) have been proposed in the pathogenesis of chronic rejection (bronchiolitis obliterans syndrome, BOS) following human lung transplantation (LTx). In this study, we defined the role for the shift in immunodominant epitopes of Col-V in inducing T helper phenotype switch leading to immunity to Col-V and BOS. Sera and lavage from BOS(+) LTx recipients with antibodies to Col-V were analysed. Two years prior to BOS, patients developed antibodies to both Col-V,α1(V) and α2(V) chains. However, at clinical diagnosis of BOS, antibodies became restricted to α1(V). Further, lung biopsy from BOS(+) patients bound to antibodies to α1(V), indicating that these epitopes are exposed. Fourteen Col-V peptides [pep1-14, pep1-4 specific to α1(V), pep5-8 to α1,2(V) and pep9-14 to α2(V)] which bind to HLA-DR4 and -DR7, demonstrated that prior to BOS, pep 6, 7, 9, 11 and 14 were immunodominant and induced interleukin (IL)-10. However, at BOS, the response switched to pep1, 4 and 5 and induced interferon (IFN)-γ and IL-17 responses, but not IL-10. The T helper (Th) phenotype switch is accompanied by decreased frequency of regulatory T cells (T(regs) ) in the lavage. LTx recipients with antibodies to α1(V) also demonstrated increased matrix metalloproteinase (MMP) activation with decreased MMP inhibitor, tissue inhibitor of metalloproteinase (TIMP), suggesting that MMP activation may play a role in the exposure of new Col-V antigenic epitopes. We conclude that a shift in immunodominance of self-antigenic determinants of Col-V results in induction of IFN-γ and IL-17 with loss of tolerance leading to autoimmunity to Col-V, which leads to chronic lung allograft rejection. © 2011 The Authors. Clinical and Experimental Immunology © 2011 British Society for Immunology.

  19. The Ia.2 Epitope Defines a Subset of Lipid Raft Resident MHC Class II Molecules Crucial to Effective Antigen Presentation1

    Science.gov (United States)

    Busman-Sahay, Kathleen; Sargent, Elizabeth; Harton, Jonathan A.; Drake, James R.

    2016-01-01

    Previous work has established that binding of the 11-5.2 anti-I-Ak mAb, which recognizes the Ia.2 epitope on I-Ak class II molecules, elicits MHC class II signaling, whereas binding of two other anti-I-Ak mAb that recognize the Ia.17 epitope fail to elicit signaling. Using a biochemical approach, we establish that the Ia.2 epitope recognized by the widely used 11-5.2 mAb defines a subset of cell surface I-Ak molecules predominantly found within membrane lipid rafts. Functional studies demonstrate that the Ia.2 bearing subset of I-Ak class II molecules is critically necessary for effective B cell–T cell interactions especially at low antigen doses, a finding consistent with published studies on the role of raft-resident class II molecules in CD4 T cell activation. Interestingly, B cells expressing recombinant I-Ak class II molecules possessing a β chain-tethered HEL peptide lack the Ia.2 epitope and fail to partition into lipid rafts. Moreover, cells expressing Ia.2 negative tethered peptide-class II molecules are severely impaired in their ability to present both tethered peptide or peptide derived from exogenous antigen to CD4 T cells. These results establish the Ia.2 epitope as defining a lipid raft-resident MHC class II confomer vital to the initiation of MHC class II restricted B cell–T cell interactions. PMID:21543648

  20. The Advantages of Multi-Epitope Tumor Antigens as an Approach to Treating Breast Cancer

    National Research Council Canada - National Science Library

    Kiertscher, Sylvia

    1999-01-01

    .... We hypothesized that the processing and presentation of multiple tumor antigen epitopes by DC is a more efficient and effective way of stimulating T cell responses than current HLA-restricted peptide-based methods...

  1. Tomato bushy stunt virus (TBSV), a versatile platform for polyvalent display of antigenic epitopes and vaccine design

    International Nuclear Information System (INIS)

    Kumar, Shantanu; Ochoa, Wendy; Singh, Pratik; Hsu, Catherine; Schneemann, Anette; Manchester, Marianne; Olson, Mark; Reddy, Vijay

    2009-01-01

    Viruses-like particles (VLPs) are frequently being used as platforms for polyvalent display of foreign epitopes of interest on their capsid surface to improve their presentation enhancing the antigenicity and host immune response. In the present study, we used the VLPs of Tomato bushy stunt virus (TBSV), an icosahedral plant virus, as a platform to display 180 copies of 16 amino acid epitopes of ricin toxin fused to the C-terminal end of a modified TBSV capsid protein (NΔ52). Expression of the chimeric recombinant protein in insect cells resulted in spontaneous assembly of VLPs displaying the ricin epitope. Cryo-electron microscopy and image reconstruction of the chimeric VLPs at 22 A resolution revealed the locations and orientation of the ricin epitope exposed on the TBSV capsid surface. Furthermore, injection of chimeric VLPs into mice generated antisera that detected the native ricin toxin. The ease of fusing of short peptides of 15-20 residues and their ability to form two kinds (T = 1, T = 3) of bio-nanoparticles that result in the display of 60 or 180 copies of less constrained and highly exposed antigenic epitopes makes TBSV an attractive and versatile display platform for vaccine design.

  2. Thyroid Autoantibodies Display both “Original Antigenic Sin” and Epitope Spreading

    OpenAIRE

    McLachlan, Sandra M.; Rapoport, Basil

    2017-01-01

    Evidence for original antigenic sin in spontaneous thyroid autoimmunity is revealed by autoantibody interactions with immunodominant regions on thyroid autoantigens, thyroglobulin (Tg), thyroid peroxidase (TPO), and the thyrotropin receptor (TSHR) A-subunit. In contrast, antibodies induced by immunization of rabbits or mice recognize diverse epitopes. Recognition of immunodominant regions persists despite fluctuations in autoantibody levels following treatment or over time. The enhancement of...

  3. Establishment of HLA-DR4 transgenic mice for the identification of CD4+ T cell epitopes of tumor-associated antigens.

    Directory of Open Access Journals (Sweden)

    Junji Yatsuda

    Full Text Available Reports have shown that activation of tumor-specific CD4(+ helper T (Th cells is crucial for effective anti-tumor immunity and identification of Th-cell epitopes is critical for peptide vaccine-based cancer immunotherapy. Although computer algorithms are available to predict peptides with high binding affinity to a specific HLA class II molecule, the ability of those peptides to induce Th-cell responses must be evaluated. We have established HLA-DR4 (HLA-DRA*01:01/HLA-DRB1*04:05 transgenic mice (Tgm, since this HLA-DR allele is most frequent (13.6% in Japanese population, to evaluate HLA-DR4-restricted Th-cell responses to tumor-associated antigen (TAA-derived peptides predicted to bind to HLA-DR4. To avoid weak binding between mouse CD4 and HLA-DR4, Tgm were designed to express chimeric HLA-DR4/I-E(d, where I-E(d α1 and β1 domains were replaced with those from HLA-DR4. Th cells isolated from Tgm immunized with adjuvant and HLA-DR4-binding cytomegalovirus-derived peptide proliferated when stimulated with peptide-pulsed HLA-DR4-transduced mouse L cells, indicating chimeric HLA-DR4/I-E(d has equivalent antigen presenting capacity to HLA-DR4. Immunization with CDCA155-78 peptide, a computer algorithm-predicted HLA-DR4-binding peptide derived from TAA CDCA1, successfully induced Th-cell responses in Tgm, while immunization of HLA-DR4-binding Wilms' tumor 1 antigen-derived peptide with identical amino acid sequence to mouse ortholog failed. This was overcome by using peptide-pulsed syngeneic bone marrow-derived dendritic cells (BM-DC followed by immunization with peptide/CFA booster. BM-DC-based immunization of KIF20A494-517 peptide from another TAA KIF20A, with an almost identical HLA-binding core amino acid sequence to mouse ortholog, successfully induced Th-cell responses in Tgm. Notably, both CDCA155-78 and KIF20A494-517 peptides induced human Th-cell responses in PBMCs from HLA-DR4-positive donors. Finally, an HLA-DR4 binding DEPDC1191

  4. Definition of natural T cell antigens with mimicry epitopes obtained from dedicated synthetic peptide libraries.

    Science.gov (United States)

    Hiemstra, H S; van Veelen, P A; Schloot, N C; Geluk, A; van Meijgaarden, K E; Willemen, S J; Leunissen, J A; Benckhuijsen, W E; Amons, R; de Vries, R R; Roep, B O; Ottenhoff, T H; Drijfhout, J W

    1998-10-15

    Progress has recently been made in the use of synthetic peptide libraries for the identification of T cell-stimulating ligands. T cell epitopes identified from synthetic libraries are mimics of natural epitopes. Here we show how the mimicry epitopes obtained from synthetic peptide libraries enable unambiguous identification of natural T cell Ags. Synthetic peptide libraries were screened with Mycobacterium tuberculosis-reactive and -autoreactive T cell clones. In two cases, database homology searches with mimicry epitopes isolated from a dedicated synthetic peptide library allowed immediate identification of the natural antigenic protein. In two other cases, an amino acid pattern that reflected the epitope requirements of the T cell was determined by substitution and omission mixture analysis. Subsequently, the natural Ag was identified from databases using this refined pattern. This approach opens new perspectives for rapid and reliable Ag definition, representing a feasible alternative to the biochemical and genetic approaches described thus far.

  5. Computational identification of epitopes in the glycoproteins of novel bunyavirus (SFTS virus) recognized by a human monoclonal antibody (MAb 4-5)

    Science.gov (United States)

    Zhang, Wenshuai; Zeng, Xiaoyan; Zhang, Li; Peng, Haiyan; Jiao, Yongjun; Zeng, Jun; Treutlein, Herbert R.

    2013-06-01

    In this work, we have developed a new approach to predict the epitopes of antigens that are recognized by a specific antibody. Our method is based on the "multiple copy simultaneous search" (MCSS) approach which identifies optimal locations of small chemical functional groups on the surfaces of the antibody, and identifying sequence patterns of peptides that can bind to the surface of the antibody. The identified sequence patterns are then used to search the amino-acid sequence of the antigen protein. The approach was validated by reproducing the binding epitope of HIV gp120 envelop glycoprotein for the human neutralizing antibody as revealed in the available crystal structure. Our method was then applied to predict the epitopes of two glycoproteins of a newly discovered bunyavirus recognized by an antibody named MAb 4-5. These predicted epitopes can be verified by experimental methods. We also discuss the involvement of different amino acids in the antigen-antibody recognition based on the distributions of MCSS minima of different functional groups.

  6. Glycosylation of Recombinant Antigenic Proteins from Mycobacterium tuberculosis: In Silico Prediction of Protein Epitopes and Ex Vivo Biological Evaluation of New Semi-Synthetic Glycoconjugates.

    Science.gov (United States)

    Bavaro, Teodora; Tengattini, Sara; Piubelli, Luciano; Mangione, Francesca; Bernardini, Roberta; Monzillo, Vincenzina; Calarota, Sandra; Marone, Piero; Amicosante, Massimo; Pollegioni, Loredano; Temporini, Caterina; Terreni, Marco

    2017-06-29

    Tuberculosis is still one of the most deadly infectious diseases worldwide, and the use of conjugated antigens, obtained by combining antigenic oligosaccharides, such as the lipoarabinomannane (LAM), with antigenic proteins from Mycobacterium tuberculosis (MTB), has been proposed as a new strategy for developing efficient vaccines. In this work, we investigated the effect of the chemical glycosylation on two recombinant MTB proteins produced in E. coli with an additional seven-amino acid tag (recombinant Ag85B and TB10.4). Different semi-synthetic glycoconjugated derivatives were prepared, starting from mannose and two disaccharide analogs. The glycans were activated at the anomeric position with a thiocyanomethyl group, as required for protein glycosylation by selective reaction with lysines. The glycosylation sites and the ex vivo evaluation of the immunogenic activity of the different neo- glycoproteins were investigated. Glycosylation does not modify the immunological activity of the TB10.4 protein. Similarly, Ag85B maintains its B-cell activity after glycosylation while showing a significant reduction in the T-cell response. The results were correlated with the putative B- and T-cell epitopes, predicted using a combination of in silico systems. In the recombinant TB10.4, the unique lysine is not included in any T-cell epitope. Lys30 of Ag85B, identified as the main glycosylation site, proved to be the most important site involved in the formation of T-cell epitopes, reasonably explaining why its glycosylation strongly influenced the T-cell activity. Furthermore, additional lysines included in different epitopes (Lys103, -123 and -282) are also glycosylated. In contrast, B-cell epitopic lysines of Ag85B were found to be poorly glycosylated and, thus, the antibody interaction of Ag85B was only marginally affected after coupling with mono- or disaccharides.

  7. BepiPred-2.0: improving sequence-based B-cell epitope prediction using conformational epitopes

    DEFF Research Database (Denmark)

    Jespersen, Martin Closter; Peters, Bjoern; Nielsen, Morten

    2017-01-01

    Antibodies have become an indispensable tool for many biotechnological and clinical applications. They bind their molecular target (antigen) by recognizing a portion of its structure (epitope) in a highly specific manner. The ability to predict epitopes from antigen sequences alone is a complex t...

  8. Complex antigen presentation pathway for an HLA-A*0201-restricted epitope from Chikungunya 6K protein.

    Science.gov (United States)

    Lorente, Elena; Barriga, Alejandro; García-Arriaza, Juan; Lemonnier, François A; Esteban, Mariano; López, Daniel

    2017-10-01

    The adaptive cytotoxic T lymphocyte (CTL)-mediated immune response is critical for clearance of many viral infections. These CTL recognize naturally processed short viral antigenic peptides bound to human leukocyte antigen (HLA) class I molecules on the surface of infected cells. This specific recognition allows the killing of virus-infected cells. The T cell immune T cell response to Chikungunya virus (CHIKV), a mosquito-borne Alphavirus of the Togaviridae family responsible for severe musculoskeletal disorders, has not been fully defined; nonetheless, the importance of HLA class I-restricted immune response in this virus has been hypothesized. By infection of HLA-A*0201-transgenic mice with a recombinant vaccinia virus that encodes the CHIKV structural polyprotein (rVACV-CHIKV), we identified the first human T cell epitopes from CHIKV. These three novel 6K transmembrane protein-derived epitopes are presented by the common HLA class I molecule, HLA-A*0201. One of these epitopes is processed and presented via a complex pathway that involves proteases from different subcellular locations. Specific chemical inhibitors blocked these events in rVACV-CHIKV-infected cells. Our data have implications not only for the identification of novel Alphavirus and Togaviridae antiviral CTL responses, but also for analyzing presentation of antigen from viruses of different families and orders that use host proteinases to generate their mature envelope proteins.

  9. Characterization of CD4 T Cell Epitopes of Infliximab and Rituximab Identified from Healthy Donors

    Directory of Open Access Journals (Sweden)

    Moustafa Hamze

    2017-05-01

    Full Text Available The chimeric antibodies anti-CD20 rituximab (Rtx and anti-TNFα infliximab (Ifx induce antidrug antibodies (ADAs in many patients with inflammatory diseases. Because of the key role of CD4 T lymphocytes in the initiation of antibody responses, we localized the CD4 T cell epitopes of Rtx and Ifx. With the perspective to anticipate immunogenicity of therapeutic antibodies, identification of the CD4 T cell epitopes was performed using cells collected in healthy donors. Nine T cell epitopes were identified in the variable chains of both antibodies by deriving CD4 T cell lines raised against either Rtx or Ifx. The T cell epitopes often exhibited a good affinity for human leukocyte antigen (HLA-DR molecules and were part of the peptides identified by MHC-associated peptide proteomics assay from HLA-DR molecules of dendritic cells (DCs loaded with the antibodies. Two-third of the T cell epitopes identified from the healthy donors stimulated peripheral blood mononuclear cells from patients having developed ADAs against Rtx or Ifx and promoted the secretion of a diversity of cytokines. These data emphasize the predictive value of evaluating the T cell repertoire of healthy donors and the composition of peptides bound to HLA-DR of DCs to anticipate and prevent immunogenicity of therapeutic antibodies.

  10. Virus-Like Particles of Chimeric Recombinant Porcine Circovirus Type 2 as Antigen Vehicle Carrying Foreign Epitopes

    Directory of Open Access Journals (Sweden)

    Huawei Zhang

    2014-12-01

    Full Text Available Virus-like particles (VLPs of chimeric porcine circovirus type 2 (PCV2 were generated by replacing the nuclear localization signal (NLS; at 1–39 aa of PCV2 capsid protein (Cap with classical swine fever virus (CSFV T-cell epitope (1446–1460 aa, CSFV B-cell epitope (693–716 aa and CSFV T-cell epitope conjugated with B-cell epitope. The recombinant proteins were expressed using the baculovirus expression system and detected by immunoblotting and indirect immunofluorescence assay. The abilities to form PCV2 VLPs were confirmed by transmission electron microscopy. Immunogenicities of the three recombinant proteins were evaluated in mice. Our Results indicated that Cap protein NLS deletion or substitution with CSFV epitopes did not affect the VLPs assembly. Three chimeric Cap proteins could form VLPs and induce efficient humoral and cellular immunity against PCV2 and CSFV in mice. Results show that PCV2 VLPs can be used as an efficient antigen carrier for delivery of foreign epitopes, and a potential novel vaccine.

  11. Production of IFN-γ and IL-4 Against Intact Catalase and Constructed Catalase Epitopes of Helicobacter pylori From T-Cells.

    Science.gov (United States)

    Ghasemian Safaei, Hajieh; Faghri, Jamshid; Moghim, Sharareh; Nasr Esfahani, Bahram; Fazeli, Hossein; Makvandi, Manoochehr; Adib, Minoo; Rashidi, Niloufar

    2015-12-01

    Helicobacter pylori infection is highly prevalent in the developing countries. It causes gastritis, peptic ulcer disease, and gastrocarcinoma. Treatment with drugs and antibiotics is problematic due to the following reasons: cost, resistance to antibiotics, prolonged treatment and using multiple drugs. Catalase is highly conserved among the Helicobacter species and is important to the survival of the organism. It is expressed in high amounts and is exposed to the surface of this bacterium; therefore it represents a suitable candidate vaccine antigen. A suitable approach in H. pylori vaccinology is the administration of epitope based vaccines. Therefore the responses of T-cells (IFN-γ and IL-4 production) against the catalase of H. pylori were determined. Then the quality of the immune responses against intact catalase and three epitopes of catalase were compared. In this study, a composition of three epitopes of the H. pylori catalase was selected based on Propred software. The effect of catalase epitopes on T-cells were assayed and immune responses identified. The results of IFN-γ, IL-4 production against antigens, epitopes, and recombinant catalase by T-cells were compared for better understanding of epitope efficiency. The current research demonstrated that epitope sequence stimulates cellular immune responses effectively. In addition, increased safety and potency as well as a reduction in time and cost were advantages of this method. Authors are going to use this sequence as a suitable vaccine candidate for further research on animal models and humans in future.

  12. OptMAVEn--a new framework for the de novo design of antibody variable region models targeting specific antigen epitopes.

    Directory of Open Access Journals (Sweden)

    Tong Li

    Full Text Available Antibody-based therapeutics provides novel and efficacious treatments for a number of diseases. Traditional experimental approaches for designing therapeutic antibodies rely on raising antibodies against a target antigen in an immunized animal or directed evolution of antibodies with low affinity for the desired antigen. However, these methods remain time consuming, cannot target a specific epitope and do not lead to broad design principles informing other studies. Computational design methods can overcome some of these limitations by using biophysics models to rationally select antibody parts that maximize affinity for a target antigen epitope. This has been addressed to some extend by OptCDR for the design of complementary determining regions. Here, we extend this earlier contribution by addressing the de novo design of a model of the entire antibody variable region against a given antigen epitope while safeguarding for immunogenicity (Optimal Method for Antibody Variable region Engineering, OptMAVEn. OptMAVEn simulates in silico the in vivo steps of antibody generation and evolution, and is capable of capturing the critical structural features responsible for affinity maturation of antibodies. In addition, a humanization procedure was developed and incorporated into OptMAVEn to minimize the potential immunogenicity of the designed antibody models. As case studies, OptMAVEn was applied to design models of neutralizing antibodies targeting influenza hemagglutinin and HIV gp120. For both HA and gp120, novel computational antibody models with numerous interactions with their target epitopes were generated. The observed rates of mutations and types of amino acid changes during in silico affinity maturation are consistent with what has been observed during in vivo affinity maturation. The results demonstrate that OptMAVEn can efficiently generate diverse computational antibody models with both optimized binding affinity to antigens and reduced

  13. Localization of immunodominant linear B-cell epitopes of Vibrio ...

    African Journals Online (AJOL)

    Outer membrane protein U (OmpU), an adhesion protein of Vibrio mimicus, is a good antigen, but its epitopes are still unclear. In order to locate the epitopes of OmpU protein, epitope prediction was performed using the amino acid sequence of OmpU protein of V. mimicus HX4 strain that was isolated from the diseased ...

  14. Complexity of type-specific 56 kDa antigen CD4 T-cell epitopes of Orientia tsutsugamushi strains causing scrub typhus in India.

    Directory of Open Access Journals (Sweden)

    Arunachalam Ramaiah

    Full Text Available Orientia tsutsugamushi (Ots is an obligate, intracellular, mite-transmitted human pathogen which causes scrub typhus. Understanding the diversity of Ots antigens is essential for designing specific diagnostic assays and efficient vaccines. The protective immunodominant type-specific 56 kDa antigen (TSA of Ots varies locally and across its geographic distribution. TSA contains four hypervariable domains. We bioinformatically analyzed 345 partial sequences of TSA available from India, most of which contain only the three variable domains (VDI-III and three spacer conserved domains (SVDI, SVDII/III, SVDIII. The total number (152 of antigenic types (amino acid variants varied from 14-36 in the six domains of TSA that we studied. Notably, 55% (787/1435 of the predicted CD4 T-cell epitopes (TCEs from all the six domains had high binding affinities (HBA to at least one of the prevalent Indian human leukocyte antigen (HLA alleles. A surprisingly high proportion (61% of such TCEs were from spacer domains; indeed 100% of the CD4 TCEs in the SVDI were HBA. TSA sequences from India had more antigenic types (AT than TSA from Korea. Overall, >90% of predicted CD4 TCEs from spacer domains were predicted to have HBA against one or more prevalent HLA types from Indian, Korean, Asia-Pacific region or global population data sets, while only <50% of CD4 TCEs in variable domains exhibited such HBA. The phylogenetically and immunologically important amino acids in the conserved spacer domains were identified. Our results suggest that the conserved spacer domains are predicted to be functionally more important than previously appreciated in immune responses to Ots infections. Changes occurring at the TCE level of TSA may contribute to the wide range of pathogenicity of Ots in humans and mouse models. CD4 T-cell functional experiments are needed to assess the immunological significance of these HBA spacer domains and their role in clearance of Ots from Indian patients.

  15. Glutamic acid decarboxylase-derived epitopes with specific domains expand CD4(+CD25(+ regulatory T cells.

    Directory of Open Access Journals (Sweden)

    Guojiang Chen

    Full Text Available BACKGROUND: CD4(+CD25(+ regulatory T cell (Treg-based immunotherapy is considered a promising regimen for controlling the progression of autoimmune diabetes. In this study, we tested the hypothesis that the therapeutic effects of Tregs in response to the antigenic epitope stimulation depend on the structural properties of the epitopes used. METHODOLOGY/PRINCIPAL FINDINGS: Splenic lymphocytes from nonobese diabetic (NOD mice were stimulated with different glutamic acid decarboxylase (GAD-derived epitopes for 7-10 days and the frequency and function of Tregs was analyzed. We found that, although all expanded Tregs showed suppressive functions in vitro, only p524 (GAD524-538-expanded CD4(+CD25(+ T cells inhibited diabetes development in the co-transfer models, while p509 (GAD509-528- or p530 (GAD530-543-expanded CD4(+CD25(+ T cells had no such effects. Using computer-guided molecular modeling and docking methods, the differences in structural characteristics of these epitopes and the interaction mode (including binding energy and identified domains in the epitopes between the above-mentioned epitopes and MHC class II I-A(g7 were analyzed. The theoretical results showed that the epitope p524, which induced protective Tregs, possessed negative surface-electrostatic potential and bound two chains of MHC class II I-A(g7, while the epitopes p509 and p530 which had no such ability exhibited positive surface-electrostatic potential and bound one chain of I-A(g7. Furthermore, p524 bound to I-A(g7 more stably than p509 and p530. Of importance, we hypothesized and subsequently confirmed experimentally that the epitope (GAD570-585, p570, which displayed similar characteristics to p524, was a protective epitope by showing that p570-expanded CD4(+CD25(+ T cells suppressed the onset of diabetes in NOD mice. CONCLUSIONS/SIGNIFICANCE: These data suggest that molecular modeling-based structural analysis of epitopes may be an instrumental tool for prediction of

  16. Specific immunotherapy modifies allergen-specific CD4+ T cell responses in an epitope-dependent manner

    Science.gov (United States)

    Wambre, Erik; DeLong, Jonathan H.; James, Eddie A.; Torres-Chinn, Nadia; Pfützner, Wolfgang; Möbs, Christian; Durham, Stephen R.; Till, Stephen J.; Robinson, David; Kwok, William W.

    2014-01-01

    Background Understanding the mechanisms by which the immune system induces and controls allergic inflammation at the T cell epitope level is critical for the design of new allergy vaccine strategies. Objective To characterize allergen-specific T cell responses linked with allergy or peripheral tolerance and to determine how CD4+ T cell responses to individual allergen-derived epitopes change over allergen-specific immunotherapy (ASIT). Methods Timothy grass pollen (TGP) allergy was used as a model for studying grass pollen allergies. The breadth, magnitude, epitope hierarchy and phenotype of the DR04:01-restricted TGP-specific T cell responses in ten grass pollen allergic, five non-atopic and six allergy vaccine-treated individuals was determined using an ex vivo pMHCII-tetramer approach. Results CD4+ T cells in allergic individuals are directed to a broad range of TGP epitopes characterized by defined immunodominance hierarchy patterns and with distinct functional profiles that depend on the epitope recognized. Epitopes that are restricted specifically to either TH2 or TH1/TR1 responses were identified. ASIT was associated with preferential deletion of allergen-specific TH2 cells and without significant change in frequency of TH1/TR1 cells. Conclusions Preferential allergen-specific TH2-cells deletion after repeated high doses antigen stimulation can be another independent mechanism to restore tolerance to allergen during immunotherapy. PMID:24373351

  17. Rapid and sustained CD4(+) T-cell-independent immunity from adenovirus-encoded vaccine antigens

    DEFF Research Database (Denmark)

    Holst, Peter J; Bartholdy, Christina; Buus, Anette Stryhn

    2007-01-01

    -linked lymphocytic choriomeningitis virus (LCMV)-derived epitopes was long-lived and protective. Notably, in contrast to full-length protein, the response elicited with the beta(2)-microglobulin-linked LCMV-derived epitope was CD4(+) T-cell independent. Furthermore, virus-specific CD8(+) T cells primed...... in the absence of CD4(+) T-cell help were sustained in the long term and able to expand and control a secondary challenge with LCMV. Our results demonstrate that modifications to the antigen used in adenovirus vaccines may be used to improve the induced T-cell response. Such a strategy for CD4(+) T-cell...... to that elicited with an adenovirus-encoded minimal epitope covalently linked to beta(2)-microglobulin. We demonstrate that the beta(2)-microglobulin-linked epitope induced an accelerated and augmented CD8(+) T-cell response. Furthermore, the immunity conferred by vaccination with beta(2)-microglobulin...

  18. The link between CD8⁺ T-cell antigen-sensitivity and HIV-suppressive capacity depends on HLA restriction, target epitope and viral isolate.

    Science.gov (United States)

    Lissina, Anna; Fastenackels, Solène; Inglesias, Maria C; Ladell, Kristin; McLaren, James E; Briceño, Olivia; Gostick, Emma; Papagno, Laura; Autran, Brigitte; Sauce, Delphine; Price, David A; Saez-Cirion, Asier; Appay, Victor

    2014-02-20

    Although it is established that CD8 T-cell immunity is critical for the control of HIV replication in vivo, the key factors that determine antiviral efficacy are yet to be fully elucidated. Antigen-sensitivity and T-cell receptor (TCR) avidity have been identified as potential determinants of CD8⁺ T-cell efficacy. However, there is no general consensus in this regard because the relationship between these parameters and the control of HIV infection has been established primarily in the context of immunodominant CD8⁺ T-cell responses against the Gag₂₆₃₋₂₇₂ KK10 epitope restricted by human leukocyte antigen (HLA)-B27. To investigate the relationship between antigen-sensitivity, TCR avidity and HIV-suppressive capacity in vitro across epitope specificities and HLA class I restriction elements, we used a variety of techniques to study CD8⁺ T-cell clones specific for Nef₇₃₋₈₂ QK10 and Gag₂₀₋₂₉ RY10, both restricted by HLA-A3, alongside CD8⁺ T-cell clones specific for Gag₂₆₃₋₂₇₂ KK10. For each targeted epitope, the linked parameters of antigen-sensitivity and TCR avidity correlated directly with antiviral efficacy. However, marked differences in HIV-suppressive capacity were observed between epitope specificities, HLA class I restriction elements and viral isolates. Collectively, these data emphasize the central role of the TCR as a determinant of CD8⁺ T-cell efficacy and demonstrate that the complexities of antigen recognition across epitope and HLA class I boundaries can confound simple relationships between TCR engagement and HIV suppression.

  19. Association analysis of anti-Epstein-Barr nuclear antigen-1 antibodies, anti-cyclic citrullinated peptide antibodies, the shared epitope and smoking status in Brazilian patients with rheumatoid arthritis

    Directory of Open Access Journals (Sweden)

    Michel Alexandre Yazbek

    2011-01-01

    Full Text Available INTRODUCTION: Epstein-Barr virus exposure appears to be an environmental trigger for rheumatoid arthritis that interacts with other risk factors. Relationships among anti-cyclic citrullinated peptide antibodies, the shared epitope, and smoking status have been observed in patients with rheumatoid arthritis from different populations. OBJECTIVE: To perform an association analysis of anti-Epstein-Barr nuclear antigen-1 antibodies, anti-cyclic citrullinated peptide antibodies, the shared epitope, and smoking status in Brazilian patients with rheumatoid arthritis. METHODS: In a case-control study, 140 rheumatoid arthritis patients and 143 healthy volunteers who were matched for age, sex, and ethnicity were recruited. Anti-Epstein-Barr nuclear antigen-1 antibodies and anti-cyclic citrullinated peptide antibodies were examined using an enzyme-linked immunosorbent assay, and shared epitope alleles were identified by genotyping. Smoking information was collected from all subjects. A comparative analysis of anti-Epstein-Barr nuclear antigen-1 antibodies, anti-cyclic citrullinated peptide antibodies, the shared epitope, and smoking status was performed in the patient group. Logistic regression analysis models were used to analyze the risk of rheumatoid arthritis. RESULTS: Anti-Epstein-Barr nuclear antigen-1 antibodies were not associated with anti-cyclic citrullinated peptide antibodies, shared epitope alleles, or smoking status. Anti-cyclic citrullinated peptide antibody positivity was significantly higher in smoking patients with shared epitope alleles (OR = 3.82. In a multivariate logistic regression analysis using stepwise selection, only anti-cyclic citrullinated peptide antibodies were found to be independently associated with rheumatoid arthritis (OR = 247.9. CONCLUSION: Anti-Epstein-Barr nuclear antigen-1 antibodies did not increase the risk of rheumatoid arthritis and were not associated with the rheumatoid arthritis risk factors studied. Smoking

  20. Screening and identification of RhD antigen mimic epitopes from a phage display random peptide library for the serodiagnosis of haemolytic disease of the foetus and newborn.

    Science.gov (United States)

    Wang, Jiao; Song, Jingjing; Zhou, Shuimei; Fu, Yourong; Bailey, Jeffrey A; Shen, Changxin

    2018-01-16

    Identification of RhD antigen epitopes is a key component in understanding the pathogenesis of haemolytic disease of the foetus and newborn. Research has indicated that phage display libraries are useful tools for identifying novel mimic epitopes (mimotopes) which may help to determine antigen specificity. We selected the mimotopes of blood group RhD antigen by affinity panning a phage display library using monoclonal anti-D. After three rounds of biopanning, positive phage clones were identified by enzyme-linked immunosorbent assay (ELISA) and then sent for sequencing and peptides synthesis. Next, competitive ELISA and erythrocyte haemagglutination inhibition tests were carried out to confirm the inhibitory activity of the synthetic peptide. To evaluate the diagnostic performance of the synthetic peptide, a diagnostic ELISA was examined. Fourteen of 35 phage clones that were chosen randomly from the titering plate were considered to be positive. Following DNA sequencing and translation, 11 phage clones were found to represent the same peptide - RMKMLMMLMRRK (P4) - whereas each of the other three clones represented a unique peptide. Through the competitive ELISA and erythrocyte haemagglutination inhibition tests, the peptide (P4) was verified to have the ability to mimic the RhD antigen. The diagnostic ELISA for P4 proved to be sensitive (82.61%) and specific (88.57%). This study reveals that the P4 peptide can mimic RhD antigen and paves the way for the development of promising targeted diagnostic and therapeutic platforms for haemolytic disease of the foetus and newborn.

  1. Public epitopes and the antigenic structure of the HLA molecules.

    Science.gov (United States)

    Rodey, G E; Fuller, T C

    1987-01-01

    Simplified procedures for determining amino acid sequences in proteins and nucleotide sequences in DNA have rapidly expanded the number of MHC molecules for which primary amino acid structure is known. These molecules will be especially valuable as tools to study the structure-function relationships of globular proteins because of the extensive polymorphism of genes coding the MHC genes products. The general three-dimensional structure of class I MHC molecules was recently deduced, but the more subtle topographical microconformations are still undefined. Definition and topographical mapping of epitopes, defined by serological or cellular immune effector products, will be critical probes for these three-dimensional studies. Comparative studies of amino acid sequences among various MHC and molecules have revealed distinct regions of hypervariability in the alpha-1 and -2 domains of class I heavy chains and the alpha-1 and beta-1 domains of most class II molecules. Mutant MHC molecules that differ from each other by no more than one to three amino acids can have structural changes which may result in a loss of the private epitopes that defined the allelic gene product. On the basis of these studies, the private epitopes are thought to be determined by one or more of the hypervariable regions. Similar studies of the relationships between specific regions of the molecule and public epitopes are not fully explored. Because public epitopes are partially conserved structures, one might expect that their structure is not principally determined by hypervariable region. In fact, however, some public epitopes, such as A2/B17 and BW4/Bw6, do map to diversity regions. Epitope mapping as a means of identifying specific topographic sites and relating these sites to specific functional regions of the molecule will be difficult unless the epitopes themselves are better defined. Thus, the capacity to distinguish spatially distinct public epitopes from cross-reactive homologous

  2. Identification of a Novel CD8 T Cell Epitope Derived from Plasmodium berghei Protective Liver-Stage Antigen

    Directory of Open Access Journals (Sweden)

    Alexander Pichugin

    2018-01-01

    Full Text Available We recently identified novel Plasmodium berghei (Pb liver stage (LS genes that as DNA vaccines significantly reduce Pb LS parasite burden (LPB in C57Bl/6 (B6 mice through a mechanism mediated, in part, by CD8 T cells. In this study, we sought to determine fine antigen (Ag specificities of CD8 T cells that target LS malaria parasites. Guided by algorithms for predicting MHC class I-restricted epitopes, we ranked sequences of 32 Pb LS Ags and selected ~400 peptides restricted by mouse H-2Kb and H-2Db alleles for analysis in the high-throughput method of caged MHC class I-tetramer technology. We identified a 9-mer H-2Kb restricted CD8 T cell epitope, Kb-17, which specifically recognized and activated CD8 T cell responses in B6 mice immunized with Pb radiation-attenuated sporozoites (RAS and challenged with infectious sporozoites (spz. The Kb-17 peptide is derived from the recently described novel protective Pb LS Ag, PBANKA_1031000 (MIF4G-like protein. Notably, immunization with the Kb-17 epitope delivered in the form of a minigene in the adenovirus serotype 5 vector reduced LPB in mice infected with spz. On the basis of our results, Kb-17 peptide was available for CD8 T cell activation and recall following immunization with Pb RAS and challenge with infectious spz. The identification of a novel MHC class I-restricted epitope from the protective Pb LS Ag, MIF4G-like protein, is crucial for advancing our understanding of immune responses to Plasmodium and by extension, toward vaccine development against malaria.

  3. Immunogenicity and prediction of epitopic region of antigen Ag I/II and glucosyltransferase from Streptococcus mutans.

    Science.gov (United States)

    Cao, Xi-Xi; Fan, Jian; Chen, Jiang; Li, Yu-Hong; Fan, Ming-Wen

    2016-06-01

    The levels of Streptococcus (S.) mutans infections in saliva were evaluated and a comparison for specific antibody levels among children with different levels of S. mutans infection was made. The promising epitopic regions of antigen AgI/II (PAc) and glucosyltransferase (GTF) for potential vaccine targets related to S. mutans adherence were screened. A total of 94 children aged 3-4 years were randomly selected, including 53 caries-negative and 41 caries-positive children. The values of S. mutans and those of salivary total secretory immunoglobulin A (sIgA), anti-PAc and anti-Glucan binding domain (anti-GLU) were compared to determine the correlation among them. It was found the level of s-IgA against specific antigens did not increase with increasing severity of S. mutans infection, and the complete amino acid sequence of PAc and GTFB was analyzed using the DNAStar Protean system for developing specific anti-caries vaccines related to S. mutans adherence. A significantly positive correlation between the amount of S. mutans and children decayed, missing, and filled teeth index was observed. No significant difference was detected in specific sIgA against PAc or GLU between any two groups. No significant correlation was found between such specific sIgA and caries index. A total of 16 peptides from PAc as well as 13 peptides from GTFB were chosen for further investigation. S. mutans colonization contributed to early children caries as an important etiological factor. The level of sIgA against specific antigens did not increase with increasing severity of S. mutans infection in children. The epitopes of PAc and GTF have been screened to develop the peptide-based or protein-based anti-caries vaccines.

  4. Antigenic profile of African horse sickness virus serotype 4 VP5 and identification of a neutralizing epitope shared with bluetongue virus and epizootic hemorrhagic disease virus

    DEFF Research Database (Denmark)

    Martinez-Torrecuadrada, J.L.; Langeveld, J.P.M.; Venteo, A.

    1999-01-01

    African horse sickness virus (AHSV) causes a fatal disease in horses. The virus capsid is composed of a double protein layer, the outermost of which is formed by two proteins: VP2 and VP5. VP2 is known to determine the serotype of the virus and to contain the neutralizing epitopes. The biological...... in a plaque reduction assay were generated. To dissect the antigenic structure of AHSV VP5, the protein was cloned in Escherichia coil using the pET3 system. The immunoreactivity of both MAbs, and horse and rabbit polyclonal antisera, with 17 overlapping fragments from VP5 was analyzed. The most....... Neutralizing epitopes were defined at positions 85-92 (PDPLSPGE) for MAb 10AE12 and at 179-185 (EEDLRTR) for MAb 10AC6. Epitope 10AE12 is highly conserved between the different orbiviruses. MAb 10AE12 was able to recognize bluetongue virus VP5 and epizootic hemorrhagic disease virus VP5 by several techniques...

  5. Diverse Epitope Specificity, Immunodominance Hierarchy, and Functional Avidity of Effector CD4 T Cells Established During Priming Is Maintained in Lung After Influenza A Virus Infection.

    Science.gov (United States)

    Richards, Katherine A; DiPiazza, Anthony T; Rattan, Ajitanuj; Knowlden, Zackery A G; Yang, Hongmei; Sant, Andrea J

    2018-01-01

    One of the major contributions to protective immunity to influenza viruses that is provided by virus-specific CD4 T cells is delivery of effector function to the infected lung. However, there is little known about the selection and breadth of viral epitope-specific CD4 T cells that home to the lung after their initial priming. In this study, using a mouse model of influenza A infection and an unbiased method of epitope identification, the viral epitope-specific CD4 T cells elicited after infection were identified and quantified. We found that a very diverse specificity of CD4 T cells is primed by infection, including epitopes from hemagglutinin, neuraminidase, matrix protein, nucleoprotein, and non-structural protein-1. Using peptide-specific cytokine EliSpots, the diversity and immunodominance hierarchies established in the lung-draining lymph node were compared with specificities of CD4 T cells that home to the lung. Our studies revealed that CD4 T cells of all epitope specificities identified in peripheral lymphoid tissue home back to the lung and that most of these lung-homing cells are localized within the tissue rather than the pulmonary vasculature. There is a striking shift of CD4 T cell functionality that enriches for IFN-γ production as cells are primed in the lymph node, enter the lung vasculature, and finally establish residency in the tissue, but with no apparent shifts in their functional avidity. We conclude that CD4 T cells of broad viral epitope specificity are recruited into the lung after influenza infection, where they then have the opportunity to encounter infected or antigen-bearing antigen-presenting cells.

  6. Identification of DRG-1 As a Melanoma-Associated Antigen Recognized by CD4+ Th1 Cells.

    Directory of Open Access Journals (Sweden)

    Yukiko Kiniwa

    Full Text Available Immunotherapy has emerged as a promising strategy for the treatment of metastatic melanoma. Clinical studies have demonstrated the feasibility of cancer immunotherapy using tumor antigens recognized by CD8(+ T cells. However, the overall immune responses induced by these antigens are too weak and transient to induce tumor regression in the majority of patients who received immunization. A growing body of evidence suggests that CD4(+ T helper (Th cells play an important role in antitumor immunity. Therefore, the identification of MHC class II-restricted tumor antigens capable of stimulating CD4(+ T cells may provide opportunities for developing effective cancer vaccines. To this end, we describe the identification of developmentally regulated GTP-binding protein 1 (DRG-1 as a melanoma-associated antigen recognized by HLA-DR11-restricted CD4(+ Th1 cells. Epitope mapping analysis showed that the DRG1248-268 epitope of DRG-1 was required for T cell recognition. Reverse transcription-polymerase chain reaction revealed that DRG-1 was highly expressed in melanoma cell lines but not in normal tissues. DRG-1 knockdown by lentiviral-based shRNA suppressed melanoma cell proliferation and soft agar colony formation. Taken together, these data suggest that DRG-1 plays an important role in melanoma cell growth and transformation, indicating that DRG1 may represent a novel target for CD4(+ T cell-mediated immunotherapy in melanoma.

  7. Identification of DRG-1 As a Melanoma-Associated Antigen Recognized by CD4+ Th1 Cells.

    Science.gov (United States)

    Kiniwa, Yukiko; Li, Jiang; Wang, Mingjun; Sun, Chuang; Lee, Jeffrey E; Wang, Rong-Fu; Wang, Helen Y

    2015-01-01

    Immunotherapy has emerged as a promising strategy for the treatment of metastatic melanoma. Clinical studies have demonstrated the feasibility of cancer immunotherapy using tumor antigens recognized by CD8(+) T cells. However, the overall immune responses induced by these antigens are too weak and transient to induce tumor regression in the majority of patients who received immunization. A growing body of evidence suggests that CD4(+) T helper (Th) cells play an important role in antitumor immunity. Therefore, the identification of MHC class II-restricted tumor antigens capable of stimulating CD4(+) T cells may provide opportunities for developing effective cancer vaccines. To this end, we describe the identification of developmentally regulated GTP-binding protein 1 (DRG-1) as a melanoma-associated antigen recognized by HLA-DR11-restricted CD4(+) Th1 cells. Epitope mapping analysis showed that the DRG1248-268 epitope of DRG-1 was required for T cell recognition. Reverse transcription-polymerase chain reaction revealed that DRG-1 was highly expressed in melanoma cell lines but not in normal tissues. DRG-1 knockdown by lentiviral-based shRNA suppressed melanoma cell proliferation and soft agar colony formation. Taken together, these data suggest that DRG-1 plays an important role in melanoma cell growth and transformation, indicating that DRG1 may represent a novel target for CD4(+) T cell-mediated immunotherapy in melanoma.

  8. Computational screening of Six Antigens for potential MHC class II restricted epitopes and evaluating its CD4+ T-Cell Responsiveness against Visceral Leishmaniasis

    Directory of Open Access Journals (Sweden)

    Manas Ranjan

    2017-12-01

    Full Text Available Visceral leishmaniasis is one of the most neglected tropical diseases for which no vaccine exists. In spite of extensive efforts, no successful vaccine is available against this dreadful infectious disease. To support the vaccine development, immunoinformatics approach was applied to search for potential MHC-classII restricted epitopes that can activate the immune cells. Initially, a total of 37 epitopes derived from six, stage dependent over expressed antigens were predicted, which were presented by at least 26 diverse MHC class II alleles including: DRB10101, DRB10301, DRB10401, DRB10404, DRB10405, DRB10701, DRB10802, DRB10901, DRB11101, DRB11302, DRB11501, DRB30101, DRB40101, DRB50101, DPA10103-DPB10401, DPA10103-DPB10201, DPA10201-DPB10101, DPA10103-DPB10301_DPB10401, DPA10301-DPB10402, DPA10201-DPB105021, DQA10102-DQB10602, DQA10401-DQB10402, DQA10501-QB10201, DQA10501-DQB10301, DQA10301-DQB10302 and DQA10101-DQB10501. Based on the population coverage analysis and HLA cross presentation ability, six epitopes namely, FDLFLFSNGAVVWWG (P1, YPVYPFLASNAALLN (P2, VYPFLASNAALLNLI (P3, LALLIMLYALIATQF (P4, LIMLYALIATQFSDD (P5, IMLYALIATQFSDDA (P6 were selected for further analysis. Stimulation with synthetic peptide alone or as a cocktail triggered the intracellular IFN-γ production. Moreover, specific IgG class of antibodies was detected in the serum of active VL cases against P1, P4, P and P6 in order to evaluate peptide effect on humoral immune response. Additionally, most of the peptides, except P2, were found to be non-inducer of CD4+ IL-10 against both active VL as well as treated VL subjects. Peptide immunogenicity was validated in BALB/c mice immunized with cocktail of synthetic peptide emulsified in complete Freund’s adjuvant/incomplete Freund’s adjuvant. The immunized splenocytes induced strong spleen cell proliferation upon parasite re-stimulation. Furthermore, an increased IFN-γ, IL-12, IL-17 and IL-22 production augmented with

  9. Some epitopes conservation in non structural 3 protein dengue virus serotype 4

    Directory of Open Access Journals (Sweden)

    Tegar A. P. Siregar

    2016-03-01

    Full Text Available AbstrakLatar belakang: Protein Non Struktural 3 (NS3 virus dengue menginduksi respon antibodi netralisasidan respon sel T CD4+ dan CD8+, serta berperan dalam replikasi virus. Protein NS3 memiliki epitopepitopsel T dan B yang terdapat perbedaan kelestarian pada berbagai strain virus dengue serotipe 4(DENV-4. Penelitian ini bertujuan untuk mengetahui kelestarian epitop sel T dan B pada protein NS3DENV-4 strain-strain dunia dan keempat serotipe virus dengue strain Indonesia.Metode: Penelitian ini dilakukan di Departemen Mikrobiologi Fakultas Kedokteran UI sejak Juni 2013 - April2014. Sekuens asam amino NS3 DENV-4 strain 081 didapatkan setelah produk PCR gen NS3 DENV-4 081disekuensing. Epitop-epitop sel T dan sel B protein NS3 DENV-4 081 dianalisis dan dibandingkan dengansekuens asam amino protein NS3 dari 124 strain DENV-4 di dunia dan keempat serotipe DENV strain Indonesia.Strain-strain dunia merupakan strain yang ada di benua Amerika (Venezuela, Colombia, dll dan Asia (Cina,Singapura, dll. Referensi posisi epitop sel T dan B protein NS3 diperoleh dari laporan penelitian terdahulu.Hasil: Delapan epitop sel T dan 2 epitop sel B dari protein NS3 DENV-4 081 ternyata identik dan lestaripada protein NS3 dari 124 strain DENV-4 dunia. Epitop sel B di posisi asam amino 537-544 pada proteinNS3 DENV-4 081 ternyata identik dan lestari dengan epitop sel B protein NS3 dari keempat serotipeDENV strain Indonesia.Kesimpulan: Kelestarian yang luas dari epitop sel T dan B pada hampir seluruh strain DENV-4 dunia danserotipe-serotipe DENV strain Indonesia. (Health Science Journal of Indonesia 2015;6:126-31Kata kunci: virus dengue, protein NS3, epitop sel T, epitop sel B AbstractBackground: Non Structural 3 (NS3 protein of dengue virus (DENV is known to induce antibody, CD4+and CD8+ T cell responses, and playing role in viral replication. NS3 protein has T and B cell epitopes,which has conservation difference between DENV-4 strains. This study aimed to identify

  10. Computer-Aided Design of an Epitope-Based Vaccine against Epstein-Barr Virus

    Directory of Open Access Journals (Sweden)

    Julio Alonso-Padilla

    2017-01-01

    Full Text Available Epstein-Barr virus is a very common human virus that infects 90% of human adults. EBV replicates in epithelial and B cells and causes infectious mononucleosis. EBV infection is also linked to various cancers, including Burkitt’s lymphoma and nasopharyngeal carcinomas, and autoimmune diseases such as multiple sclerosis. Currently, there are no effective drugs or vaccines to treat or prevent EBV infection. Herein, we applied a computer-aided strategy to design a prophylactic epitope vaccine ensemble from experimentally defined T and B cell epitopes. Such strategy relies on identifying conserved epitopes in conjunction with predictions of HLA presentation for T cell epitope selection and calculations of accessibility and flexibility for B cell epitope selection. The T cell component includes 14 CD8 T cell epitopes from early antigens and 4 CD4 T cell epitopes, targeted during the course of a natural infection and providing a population protection coverage of over 95% and 81.8%, respectively. The B cell component consists of 3 experimentally defined B cell epitopes from gp350 plus 4 predicted B cell epitopes from other EBV envelope glycoproteins, all mapping in flexible and solvent accessible regions. We discuss the rationale for the formulation and possible deployment of this epitope vaccine ensemble.

  11. File list: Oth.EmF.05.Epitope_tags.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.EmF.05.Epitope_tags.AllCell mm9 TFs and others Epitope tags Embryonic fibroblas...RX542102,SRX204644,SRX204643,SRX255462,SRX255460 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.EmF.05.Epitope_tags.AllCell.bed ...

  12. File list: Oth.EmF.50.Epitope_tags.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.EmF.50.Epitope_tags.AllCell mm9 TFs and others Epitope tags Embryonic fibroblas...RX255460,SRX204644,SRX542102,SRX204643,SRX204642 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.EmF.50.Epitope_tags.AllCell.bed ...

  13. Positive-unlabeled learning for the prediction of conformational B-cell epitopes

    Science.gov (United States)

    2015-01-01

    Background The incomplete ground truth of training data of B-cell epitopes is a demanding issue in computational epitope prediction. The challenge is that only a small fraction of the surface residues of an antigen are confirmed as antigenic residues (positive training data); the remaining residues are unlabeled. As some of these uncertain residues can possibly be grouped to form novel but currently unknown epitopes, it is misguided to unanimously classify all the unlabeled residues as negative training data following the traditional supervised learning scheme. Results We propose a positive-unlabeled learning algorithm to address this problem. The key idea is to distinguish between epitope-likely residues and reliable negative residues in unlabeled data. The method has two steps: (1) identify reliable negative residues using a weighted SVM with a high recall; and (2) construct a classification model on the positive residues and the reliable negative residues. Complex-based 10-fold cross-validation was conducted to show that this method outperforms those commonly used predictors DiscoTope 2.0, ElliPro and SEPPA 2.0 in every aspect. We conducted four case studies, in which the approach was tested on antigens of West Nile virus, dihydrofolate reductase, beta-lactamase, and two Ebola antigens whose epitopes are currently unknown. All the results were assessed on a newly-established data set of antigen structures not bound by antibodies, instead of on antibody-bound antigen structures. These bound structures may contain unfair binding information such as bound-state B-factors and protrusion index which could exaggerate the epitope prediction performance. Source codes are available on request. PMID:26681157

  14. Major role for carbohydrate epitopes preferentially recognized by chronically infected mice in the determination of Schistosoma mansoni schistosomulum surface antigenicity

    International Nuclear Information System (INIS)

    Omer-ali, P.; Magee, A.I.; Kelly, C.; Simpson, A.J.G.

    1986-01-01

    A radioimmunoassay that makes use of whole Schistosomula and 125 I-labeled protein A has been used to characterize and to quantify the binding of antisera to the surface of 3 hr mechanically transformed schistosomula of Schistosoma mansoni. This technique facilitates the determination of epitopes on the schistosomula in addition to those detected by surface labeling and immunoprecipitation. By using this technique, it has been demonstrated that there is a much greater binding to the parasite surface of antibodies from chronically infected mice (CMS) than of antibodies from mice infected with highly irradiated cercariae (VMS), and CMS recognizes epitopes that VMS does not. Treatment of the surface of the schistosomula with trifluoromethanesulphonic acid and sodium metaperiodate has suggested that the discrepancy of the binding between the two sera is due to the recognition of a large number of additional epitopes by CMS, which are carbohydrate in nature. Some of the carbohydrate epitopes are expressed on the previously described surface glycoprotein antigens of M/sub r/ 200,000, 38,000, and 17,000

  15. Rapid profiling of the antigen regions recognized by serum antibodies using massively parallel sequencing of antigen-specific libraries.

    KAUST Repository

    Domina, Maria; Lanza Cariccio, Veronica; Benfatto, Salvatore; D'Aliberti, Deborah; Venza, Mario; Borgogni, Erica; Castellino, Flora; Biondo, Carmelo; D'Andrea, Daniel; Grassi, Luigi; Tramontano, Anna; Teti, Giuseppe; Felici, Franco; Beninati, Concetta

    2014-01-01

    There is a need for techniques capable of identifying the antigenic epitopes targeted by polyclonal antibody responses during deliberate or natural immunization. Although successful, traditional phage library screening is laborious and can map only some of the epitopes. To accelerate and improve epitope identification, we have employed massive sequencing of phage-displayed antigen-specific libraries using the Illumina MiSeq platform. This enabled us to precisely identify the regions of a model antigen, the meningococcal NadA virulence factor, targeted by serum antibodies in vaccinated individuals and to rank hundreds of antigenic fragments according to their immunoreactivity. We found that next generation sequencing can significantly empower the analysis of antigen-specific libraries by allowing simultaneous processing of dozens of library/serum combinations in less than two days, including the time required for antibody-mediated library selection. Moreover, compared with traditional plaque picking, the new technology (named Phage-based Representation OF Immuno-Ligand Epitope Repertoire or PROFILER) provides superior resolution in epitope identification. PROFILER seems ideally suited to streamline and guide rational antigen design, adjuvant selection, and quality control of newly produced vaccines. Furthermore, this method is also susceptible to find important applications in other fields covered by traditional quantitative serology.

  16. Rapid profiling of the antigen regions recognized by serum antibodies using massively parallel sequencing of antigen-specific libraries.

    Directory of Open Access Journals (Sweden)

    Maria Domina

    Full Text Available There is a need for techniques capable of identifying the antigenic epitopes targeted by polyclonal antibody responses during deliberate or natural immunization. Although successful, traditional phage library screening is laborious and can map only some of the epitopes. To accelerate and improve epitope identification, we have employed massive sequencing of phage-displayed antigen-specific libraries using the Illumina MiSeq platform. This enabled us to precisely identify the regions of a model antigen, the meningococcal NadA virulence factor, targeted by serum antibodies in vaccinated individuals and to rank hundreds of antigenic fragments according to their immunoreactivity. We found that next generation sequencing can significantly empower the analysis of antigen-specific libraries by allowing simultaneous processing of dozens of library/serum combinations in less than two days, including the time required for antibody-mediated library selection. Moreover, compared with traditional plaque picking, the new technology (named Phage-based Representation OF Immuno-Ligand Epitope Repertoire or PROFILER provides superior resolution in epitope identification. PROFILER seems ideally suited to streamline and guide rational antigen design, adjuvant selection, and quality control of newly produced vaccines. Furthermore, this method is also susceptible to find important applications in other fields covered by traditional quantitative serology.

  17. Rapid profiling of the antigen regions recognized by serum antibodies using massively parallel sequencing of antigen-specific libraries.

    KAUST Repository

    Domina, Maria

    2014-12-04

    There is a need for techniques capable of identifying the antigenic epitopes targeted by polyclonal antibody responses during deliberate or natural immunization. Although successful, traditional phage library screening is laborious and can map only some of the epitopes. To accelerate and improve epitope identification, we have employed massive sequencing of phage-displayed antigen-specific libraries using the Illumina MiSeq platform. This enabled us to precisely identify the regions of a model antigen, the meningococcal NadA virulence factor, targeted by serum antibodies in vaccinated individuals and to rank hundreds of antigenic fragments according to their immunoreactivity. We found that next generation sequencing can significantly empower the analysis of antigen-specific libraries by allowing simultaneous processing of dozens of library/serum combinations in less than two days, including the time required for antibody-mediated library selection. Moreover, compared with traditional plaque picking, the new technology (named Phage-based Representation OF Immuno-Ligand Epitope Repertoire or PROFILER) provides superior resolution in epitope identification. PROFILER seems ideally suited to streamline and guide rational antigen design, adjuvant selection, and quality control of newly produced vaccines. Furthermore, this method is also susceptible to find important applications in other fields covered by traditional quantitative serology.

  18. Advances in alfalfa mosaic virus-mediated expression of anthrax antigen in planta

    International Nuclear Information System (INIS)

    Brodzik, R.; Bandurska, K.; Deka, D.; Golovkin, M.; Koprowski, H.

    2005-01-01

    Plant viruses show great potential for production of pharmaceuticals in plants. Such viruses can harbor a small antigenic peptide(s) as a part of their coat proteins (CP) and elicit an antigen-specific immune response. Here, we report the high yield and consistency in production of recombinant alfalfa mosaic virus (AlMV) particles for specific presentation of the small loop 15 amino acid epitope from domain-4 of the Bacillus anthracis protective antigen (PA-D4s). The epitope was inserted immediately after the first 25 N-terminal amino acids of AlMV CP to retain genome activation and binding of CP to viral RNAs. Recombinant AlMV particles were efficiently produced in tobacco, easily purified for immunological analysis, and exhibited extended stability and systemic proliferation in planta. Intraperitional injections of mice with recombinant plant virus particles harboring the PA-D4s epitope elicited a distinct immune response. Western blotting and ELISA analysis showed that sera from immunized mice recognized both native PA antigen and the AlMV CP

  19. Epitope-Specific Tolerance Modes Differentially Specify Susceptibility to Proteolipid Protein-Induced Experimental Autoimmune Encephalomyelitis

    Directory of Open Access Journals (Sweden)

    Lei Wang

    2017-11-01

    Full Text Available Immunization with myelin components can elicit experimental autoimmune encephalomyelitis (EAE. EAE susceptibility varies between mouse strains, depending on the antigen employed. BL/6 mice are largely resistant to EAE induction with proteolipid protein (PLP, probably a reflection of antigen-specific tolerance. However, the extent and mechanism(s of tolerance to PLP remain unclear. Here, we identified three PLP epitopes in PLP-deficient BL/6 mice. PLP-sufficient mice did not respond against two of these, whereas tolerance was “leaky” for an epitope with weak predicted MHCII binding, and only this epitope was encephalitogenic. In TCR transgenic mice, the “EAE-susceptibility-associated” epitope was “ignored” by specific CD4 T cells, whereas the “resistance-associated” epitope induced clonal deletion and Treg induction in the thymus. Central tolerance was autoimmune regulator dependent and required expression and presentation of PLP by thymic epithelial cells (TECs. TEC-specific ablation of PLP revealed that peripheral tolerance, mediated by dendritic cells through recessive tolerance mechanisms (deletion and anergy, could largely compensate for a lack of central tolerance. However, adoptive EAE was exacerbated in mice lacking PLP in TECs, pointing toward a non-redundant role of the thymus in dominant tolerance to PLP. Our findings reveal multiple layers of tolerance to a central nervous system autoantigen that vary among epitopes and thereby specify disease susceptibility. Understanding how different modalities of tolerance apply to distinct T cell epitopes of a target in autoimmunity has implications for antigen-specific strategies to therapeutically interfere with unwanted immune reactions against self.

  20. In silico and cell-based analyses reveal strong divergence between prediction and observation of T-cell-recognized tumor antigen T-cell epitopes.

    Science.gov (United States)

    Schmidt, Julien; Guillaume, Philippe; Dojcinovic, Danijel; Karbach, Julia; Coukos, George; Luescher, Immanuel

    2017-07-14

    Tumor exomes provide comprehensive information on mutated, overexpressed genes and aberrant splicing, which can be exploited for personalized cancer immunotherapy. Of particular interest are mutated tumor antigen T-cell epitopes, because neoepitope-specific T cells often are tumoricidal. However, identifying tumor-specific T-cell epitopes is a major challenge. A widely used strategy relies on initial prediction of human leukocyte antigen-binding peptides by in silico algorithms, but the predictive power of this approach is unclear. Here, we used the human tumor antigen NY-ESO-1 (ESO) and the human leukocyte antigen variant HLA-A*0201 (A2) as a model and predicted in silico the 41 highest-affinity, A2-binding 8-11-mer peptides and assessed their binding, kinetic complex stability, and immunogenicity in A2-transgenic mice and on peripheral blood mononuclear cells from ESO-vaccinated melanoma patients. We found that 19 of the peptides strongly bound to A2, 10 of which formed stable A2-peptide complexes and induced CD8 + T cells in A2-transgenic mice. However, only 5 of the peptides induced cognate T cells in humans; these peptides exhibited strong binding and complex stability and contained multiple large hydrophobic and aromatic amino acids. These results were not predicted by in silico algorithms and provide new clues to improving T-cell epitope identification. In conclusion, our findings indicate that only a small fraction of in silico -predicted A2-binding ESO peptides are immunogenic in humans, namely those that have high peptide-binding strength and complex stability. This observation highlights the need for improving in silico predictions of peptide immunogenicity. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. Assessment of cancer and virus antigens for cross-reactivity in human tissues.

    Science.gov (United States)

    Jaravine, Victor; Raffegerst, Silke; Schendel, Dolores J; Frishman, Dmitrij

    2017-01-01

    Cross-reactivity (CR) or invocation of autoimmune side effects in various tissues has important safety implications in adoptive immunotherapy directed against selected antigens. The ability to predict CR (on-target and off-target toxicities) may help in the early selection of safer therapeutically relevant target antigens. We developed a methodology for the calculation of quantitative CR for any defined peptide epitope. Using this approach, we performed assessment of 4 groups of 283 currently known human MHC-class-I epitopes including differentiation antigens, overexpressed proteins, cancer-testis antigens and mutations displayed by tumor cells. In addition, 89 epitopes originating from viral sources were investigated. The natural occurrence of these epitopes in human tissues was assessed based on proteomics abundance data, while the probability of their presentation by MHC-class-I molecules was modelled by the method of Keşmir et al. which combines proteasomal cleavage, TAP affinity and MHC-binding predictions. The results of these analyses for many previously defined peptides are presented as CR indices and tissue profiles. The methodology thus allows for quantitative comparisons of epitopes and is suggested to be suited for the assessment of epitopes of candidate antigens in an early stage of development of adoptive immunotherapy. Our method is implemented as a Java program, with curated datasets stored in a MySQL database. It predicts all naturally possible self-antigens for a given sequence of a therapeutic antigen (or epitope) and after filtering for predicted immunogenicity outputs results as an index and profile of CR to the self-antigens in 22 human tissues. The program is implemented as part of the iCrossR webserver, which is publicly available at http://webclu.bio.wzw.tum.de/icrossr/ CONTACT: d.frishman@wzw.tum.deSupplementary information: Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press

  2. Fully human IgG and IgM antibodies directed against the carcinoembryonic antigen (CEA Gold 4 epitope and designed for radioimmunotherapy (RIT of colorectal cancers

    Directory of Open Access Journals (Sweden)

    Pugnière Martine

    2004-10-01

    Full Text Available Abstract Background Human monoclonal antibodies (MAbs are needed for colon cancer radioimmunotherapy (RIT to allow for repeated injections. Carcinoembryonic antigen (CEA being the reference antigen for immunotargeting of these tumors, we developed human anti-CEA MAbs. Methods XenoMouse®-G2 animals were immunized with CEA. Among all the antibodies produced, two of them, VG-IgG2κ and VG-IgM, were selected for characterization in vitro in comparison with the human-mouse chimeric anti-CEA MAb X4 using flow cytometry, surface plasmon resonance, and binding to radiolabeled soluble CEA and in vivo in human colon carcinoma LS174T bearing nude mice. Results Flow cytometry analysis demonstrated binding of MAbs on CEA-expressing cells without any binding on NCA-expressing human granulocytes. In a competitive binding assay using five reference MAbs, directed against the five Gold CEA epitopes, VG-IgG2κ and VG-IgM were shown to be directed against the Gold 4 epitope. The affinities of purified VG-IgG2κ and VG-IgM were determined to be 0.19 ± 0.06 × 108 M-1 and 1.30 ± 0.06 × 108 M-1, respectively, as compared with 0.61 ± 0.05 × 108 M-1 for the reference MAb X4. In a soluble phase assay, the binding capacities of VG-IgG2κ and VG-IgM to soluble CEA were clearly lower than that of the control chimeric MAb X4. A human MAb concentration of about 10-7 M was needed to precipitate approximatively 1 ng 125I-rhCEA as compared with 10-9 M for MAb X4, suggesting a preferential binding of the human MAbs to solid phase CEA. In vivo, 24 h post-injection, 125I-VG-IgG2κ demonstrated a high tumor uptake (25.4 ± 7.3%ID/g, close to that of 131I-X4 (21.7 ± 7.2%ID/g. At 72 h post-injection, 125I-VG-IgG2κ was still concentrated in the tumor (28.4 ± 11.0%ID/g whereas the tumor concentration of 131I-X4 was significantly reduced (12.5 ± 4.8%ID/g. At no time after injection was there any accumulation of the radiolabeled MAbs in normal tissues. A pertinent analysis of

  3. Immune Control of Burkholderia pseudomallei––Common, High-Frequency T-Cell Responses to a Broad Repertoire of Immunoprevalent Epitopes

    Directory of Open Access Journals (Sweden)

    Arnone Nithichanon

    2018-03-01

    findings suggest that a large repertoire of CD4 T cells, high in frequency and with broad coverage of antigens and epitopes, is important in controlling Bp infection. This offers an attractive potential strategy for subunit or epitope-based vaccines.

  4. Strategy for eliciting antigen-specific CD8+ T cell-mediated immune response against a cryptic CTL epitope of merkel cell polyomavirus large T antigen

    Directory of Open Access Journals (Sweden)

    Gomez Bianca P

    2012-10-01

    Full Text Available Abstract Background Merkel cell carcinoma (MCC is a relatively new addition to the expanding category of oncovirus-induced cancers. Although still comparably rare, the number of cases has risen dramatically in recent years. Further complicating this trend is that MCC is an extremely aggressive neoplasm with poor patient prognosis and limited treatment options for advanced disease. The causative agent of MCC has been identified as the merkel cell polyomavirus (MCPyV. The MCPyV-encoded large T (LT antigen is an oncoprotein that is theorized to be essential for virus-mediated tumorigenesis and is therefore, an excellent MCC antigen for the generation of antitumor immune responses. As a foreign antigen, the LT oncoprotein avoids the obstacle of immune tolerance, which normally impedes the development of antitumor immunity. Ergo, it is an excellent target for anti-MCC immunotherapy. Since tumor-specific CD8+ T cells lead to better prognosis for MCC and numerous other cancers, we have generated a DNA vaccine that is capable of eliciting LT-specific CD8+ T cells. The DNA vaccine (pcDNA3-CRT/LT encodes the LT antigen linked to a damage-associated molecular pattern, calreticulin (CRT, as it has been demonstrated that the linkage of CRT to antigens promotes the induction of antigen-specific CD8+ T cells. Results The present study shows that DNA vaccine-induced generation of LT-specific CD8+ T cells is augmented by linking CRT to the LT antigen. This is relevant since the therapeutic effects of the pcDNA3-CRT/LT DNA vaccine is mediated by LT-specific CD8+ T cells. Mice vaccinated with the DNA vaccine produced demonstrably more LT-specific CD8+ T cells. The DNA vaccine was also able to confer LT-specific CD8+ T cell-mediated protective and therapeutic effects to prolong the survival of mice with LT-expressing tumors. In the interest of determining the LT epitope which most MCC-specific CD8+ T cells recognize, we identified the amino acid sequence of the

  5. Identification of antigenic regions on VP2 of African horsesickness virus serotype 3 by using phage-displayed epitope libraries.

    Science.gov (United States)

    Bentley, L; Fehrsen, J; Jordaan, F; Huismans, H; du Plessis, D H

    2000-04-01

    VP2 is an outer capsid protein of African horsesickness virus (AHSV) and is recognized by serotype-discriminatory neutralizing antibodies. With the objective of locating its antigenic regions, a filamentous phage library was constructed that displayed peptides derived from the fragmentation of a cDNA copy of the gene encoding VP2. Peptides ranging in size from approximately 30 to 100 amino acids were fused with pIII, the attachment protein of the display vector, fUSE2. To ensure maximum diversity, the final library consisted of three sub-libraries. The first utilized enzymatically fragmented DNA encoding only the VP2 gene, the second included plasmid sequences, while the third included a PCR step designed to allow different peptide-encoding sequences to recombine before ligation into the vector. The resulting composite library was subjected to immunoaffinity selection with AHSV-specific polyclonal chicken IgY, polyclonal horse immunoglobulins and a monoclonal antibody (MAb) known to neutralize AHSV. Antigenic peptides were located by sequencing the DNA of phages bound by the antibodies. Most antigenic determinants capable of being mapped by this method were located in the N-terminal half of VP2. Important binding areas were mapped with high resolution by identifying the minimum overlapping areas of the selected peptides. The MAb was also used to screen a random 17-mer epitope library. Sequences that may be part of a discontinuous neutralization epitope were identified. The amino acid sequences of the antigenic regions on VP2 of serotype 3 were compared with corresponding regions on three other serotypes, revealing regions with the potential to discriminate AHSV serotypes serologically.

  6. ArrayPitope: Automated Analysis of Amino Acid Substitutions for Peptide Microarray-Based Antibody Epitope Mapping

    DEFF Research Database (Denmark)

    Hansen, Christian Skjødt; Østerbye, Thomas; Marcatili, Paolo

    2017-01-01

    and characterization of linear B cell epitopes. Using exhaustive amino acid substitution analysis of peptides originating from target antigens, these microarrays can be used to address the specificity of polyclonal antibodies raised against such antigens containing hundreds of epitopes. However, the interpretation....... The application takes as input quantitative peptide data of fully or partially substituted overlapping peptides from a given antigen sequence and identifies epitope residues (residues that are significantly affected by substitutions) and visualize the selectivity towards each residue by sequence logo plots...

  7. A novel multi-variant epitope ensemble vaccine against avian leukosis virus subgroup J.

    Science.gov (United States)

    Wang, Xiaoyu; Zhou, Defang; Wang, Guihua; Huang, Libo; Zheng, Qiankun; Li, Chengui; Cheng, Ziqiang

    2017-12-04

    The hypervariable antigenicity and immunosuppressive features of avian leukosis virus subgroup J (ALV-J) has led to great challenges to develop effective vaccines. Epitope vaccine will be a perspective trend. Previously, we identified a variant antigenic neutralizing epitope in hypervariable region 1 (hr1) of ALV-J, N-LRDFIA/E/TKWKS/GDDL/HLIRPYVNQS-C. BLAST analysis showed that the mutation of A, E, T and H in this epitope cover 79% of all ALV-J strains. Base on this data, we designed a multi-variant epitope ensemble vaccine comprising the four mutation variants linked with glycine and serine. The recombinant multi-variant epitope gene was expressed in Escherichia coli BL21. The expressed protein of the variant multi-variant epitope gene can react with positive sera and monoclonal antibodies of ALV-J, while cannot react with ALV-J negative sera. The multi-variant epitope vaccine that conjugated Freund's adjuvant complete/incomplete showed high immunogenicity that reached the titer of 1:64,000 at 42 days post immunization and maintained the immune period for at least 126 days in SPF chickens. Further, we demonstrated that the antibody induced by the variant multi-variant ensemble epitope vaccine recognized and neutralized different ALV-J strains (NX0101, TA1, WS1, BZ1224 and BZ4). Protection experiment that was evaluated by clinical symptom, viral shedding, weight gain, gross and histopathology showed 100% chickens that inoculated the multi-epitope vaccine were well protected against ALV-J challenge. The result shows a promising multi-variant epitope ensemble vaccine against hypervariable viruses in animals. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. The simultaneous ex vivo detection of low-frequency antigen-specific CD4+ and CD8+ T-cell responses using overlapping peptide pools.

    Science.gov (United States)

    Singh, Satwinder Kaur; Meyering, Maaike; Ramwadhdoebe, Tamara H; Stynenbosch, Linda F M; Redeker, Anke; Kuppen, Peter J K; Melief, Cornelis J M; Welters, Marij J P; van der Burg, Sjoerd H

    2012-11-01

    The ability to measure antigen-specific T cells at the single-cell level by intracellular cytokine staining (ICS) is a promising immunomonitoring tool and is extensively applied in the evaluation of immunotherapy of cancer. The protocols used to detect antigen-specific CD8+ T-cell responses generally work for the detection of antigen-specific T cells in samples that have undergone at least one round of in vitro pre-stimulation. Application of a common protocol but now using long peptides as antigens was not suitable to simultaneously detect antigen-specific CD8+ and CD4+ T cells directly ex vivo in cryopreserved samples. CD8 T-cell reactivity to monocytes pulsed with long peptides as antigens ranged between 5 and 25 % of that observed against monocytes pulsed with a direct HLA class I fitting minimal CTL peptide epitope. Therefore, we adapted our ICS protocol and show that the use of tenfold higher concentration of long peptides to load APC, the use of IFN-α and poly(I:C) to promote antigen processing and improve T-cell stimulation, does allow for the ex vivo detection of low-frequency antigen-specific CD8+ and CD4+ T cells in an HLA-independent setting. While most of the improvements were related to increasing the ability to measure CD8+ T-cell reactivity following stimulation with long peptides to at least 50 % of the response detected when using a minimal peptide epitope, the final analysis of blood samples from vaccinated patients successfully showed that the adapted ICS protocol also increases the ability to ex vivo detect low-frequency p53-specific CD4+ T-cell responses in cryopreserved PBMC samples.

  9. Antigen-specific murine T cell clones produce soluble interleukin 2 receptor on stimulation with specific antigens

    International Nuclear Information System (INIS)

    Wagner, D.K.; York-Jolley, J.; Malek, T.R.; Berzofsky, J.A.; Nelson, D.L.

    1986-01-01

    In this study, monoclonal antibodies were used to the murine IL 2 receptor (IL 2R) termed 3C7 and 7D4, which bind to different epitopes on the murine IL 2R, to develop an ELISA to measure soluble murine IL 2R. Surprisingly, stimulated murine spleen cells not only expressed cell-associated IL 2R, but also produced a considerable level of cellfree IL 2R in the culture supernatant fluid. To assess the fine specificity of this response, myoglobin-immune murine T cell clones were stimulated with appropriate or inappropriate antigen and syngeneic or allogeneic presenting cells. Proliferation, measured by [ 3 H] thymidine incorporation, and levels of soluble IL 2R were determined at day 4. The production of soluble IL2R displayed the same epitope fine specificity, genetic restriction, and antigen dose-response as the proliferative response. Indeed, in some cases there was sharper discrimination of epitope specificity and genetic restriction with the soluble IL 2R levels. There was also reproducible clone-to-clone variation in the amount of soluble receptor produced in response to antigen among 12 T cell clones and lines tested. In time course experiments, proliferation was greatest at day 3, whereas soluble IL 2R levels continued to rise in subsequent days. To the authors' knowledge, this is the first demonstration of release of secretion of soluble IL 2R by murine T cells, and the first demonstration of the fine specificity and genetic restriction of the induction of soluble IL 2R by specific antigen

  10. Expression cloning of camelid nanobodies specific for Xenopus embryonic antigens.

    Directory of Open Access Journals (Sweden)

    Keiji Itoh

    Full Text Available Developmental biology relies heavily on the use of conventional antibodies, but their production and maintenance involves significant effort. Here we use an expression cloning approach to identify variable regions of llama single domain antibodies (known as nanobodies, which recognize specific embryonic antigens. A nanobody cDNA library was prepared from lymphocytes of a llama immunized with Xenopus embryo lysates. Pools of bacterially expressed cDNAs were sib-selected for the ability to produce specific staining patterns in gastrula embryos. Three different nanobodies were isolated: NbP1 and NbP3 stained yolk granules, while the reactivity of NbP7 was predominantly restricted to the cytoplasm and the cortex. The isolated nanobodies recognized specific protein bands in immunoblot analysis. A reverse proteomic approach identified NbP1 target antigen as EP45/Seryp, a serine protease inhibitor. Given the unique stability of nanobodies and the ease of their expression in diverse systems, we propose that nanobody cDNA libraries represent a promising resource for molecular markers for developmental biology.

  11. Melanoma inhibitor of apoptosis protein (ML-IAP) specific cytotoxic T lymphocytes cross-react with an epitope from the auto-antigen SS56

    DEFF Research Database (Denmark)

    Baek Sørensen, Rikke; Faurschou, Mikkel; Troelsen, Lone

    2009-01-01

    A large proportion of melanoma patients host a spontaneous T-cell response specifically against ML-IAP-derived peptides. In this study, we describe that some ML-IAP-specific cytotoxic T cells isolated from melanoma patients cross react with an epitope from the auto-antigen SS56. SS56 is a recentl...

  12. Epitope mapping of the domains of human angiotensin converting enzyme.

    Science.gov (United States)

    Kugaevskaya, Elena V; Kolesanova, Ekaterina F; Kozin, Sergey A; Veselovsky, Alexander V; Dedinsky, Ilya R; Elisseeva, Yulia E

    2006-06-01

    Somatic angiotensin converting enzyme (sACE), contains in its single chain two homologous domains (called N- and C-domains), each bearing a functional zinc-dependent active site. The present study aims to define the differences between two sACE domains and to localize experimentally revealed antigenic determinants (B-epitopes) in the recently determined three-dimensional structure of testicular tACE. The predicted linear antigenic determinants of human sACE were determined by peptide scanning ("PEPSCAN") approach. Essential difference was demonstrated between locations of the epitopes in the N- and C-domains. Comparison of arrangement of epitopes in the human domains with the corresponding sequences of some mammalian sACEs enabled to classify the revealed antigenic determinants as variable or conserved areas. The location of antigenic determinants with respect to various structural elements and to functionally important sites of the human sACE C-domain was estimated. The majority of antigenic sites of the C-domain were located at the irregular elements and at the boundaries of secondary structure elements. The data show structural differences between the sACE domains. The experimentally revealed antigenic determinants were in agreement with the recently determined crystal tACE structure. New potential applications are open to successfully produce mono-specific and group-specific antipeptide antibodies.

  13. Human leukocyte antigen (HLA class I restricted epitope discovery in yellow fewer and dengue viruses: importance of HLA binding strength.

    Directory of Open Access Journals (Sweden)

    Ole Lund

    Full Text Available Epitopes from all available full-length sequences of yellow fever virus (YFV and dengue fever virus (DENV restricted by Human Leukocyte Antigen class I (HLA-I alleles covering 12 HLA-I supertypes were predicted using the NetCTL algorithm. A subset of 179 predicted YFV and 158 predicted DENV epitopes were selected using the EpiSelect algorithm to allow for optimal coverage of viral strains. The selected predicted epitopes were synthesized and approximately 75% were found to bind the predicted restricting HLA molecule with an affinity, K(D, stronger than 500 nM. The immunogenicity of 25 HLA-A*02:01, 28 HLA-A*24:02 and 28 HLA-B*07:02 binding peptides was tested in three HLA-transgenic mice models and led to the identification of 17 HLA-A*02:01, 4 HLA-A*2402 and 4 HLA-B*07:02 immunogenic peptides. The immunogenic peptides bound HLA significantly stronger than the non-immunogenic peptides. All except one of the immunogenic peptides had K(D below 100 nM and the peptides with K(D below 5 nM were more likely to be immunogenic. In addition, all the immunogenic peptides that were identified as having a high functional avidity had K(D below 20 nM. A*02:01 transgenic mice were also inoculated twice with the 17DD YFV vaccine strain. Three of the YFV A*02:01 restricted peptides activated T-cells from the infected mice in vitro. All three peptides that elicited responses had an HLA binding affinity of 2 nM or less. The results indicate the importance of the strength of HLA binding in shaping the immune response.

  14. Quantitative and qualitative characterization of human cancer-associated serum glycoprotein antigens expressing epitopes consisting of sialyl or sialyl-fucosyl type 1 chain.

    Science.gov (United States)

    Kannagi, R; Kitahara, A; Itai, S; Zenita, K; Shigeta, K; Tachikawa, T; Noda, A; Hirano, H; Abe, M; Shin, S

    1988-07-01

    The levels of carbohydrate antigens having epitopes consisting of type 1 chain (R----Gal beta 1----GlcNAc beta 1----3Gal beta 1----R) in the sera of patients with various malignant and nonmalignant disorders have been investigated with the use of three monoclonal antibodies, N-19-9, FH-7, and FH-9. Serum levels of 2----3 sialylated Lea antigen and 2----6 sialylated Lea antigen, defined respectively by antibodies N-19-9 and FH-7, were found to be frequently high in patients with cancer of the digestive system, particularly pancreatic cancer. High levels of 2----3,2----6 disialylated Lc4 antigen, defined by antibody FH-9, were less frequent in cancer patients when compared with the other two antigens. In patients with nonmalignant disorders, especially renal and autoimmune diseases, serum levels of the two type 1 chain antigens defined by FH-7 and FH-9 were more frequently high than that defined by N-19-9. Molecular weights and other general biochemical characteristics of serum mucin carrying the type 1 chain determinants were not significantly different in cancer patients as compared with patients with nonmalignant disorders. However, the degree of glycosylation of the antigen, as assessed by its solubility in perchloric acid, showed significant differences; i.e., the mucin antigen carrying 2----6 sialylated Lea determinant in the sera of patients with nonmalignant disorders had the highest carbohydrate/protein ratio, followed by the mucin carrying the same determinant in the sera of cancer patients. Mucin antigen carrying 2----3 sialylated Lea antigen or 2----3, 2----6 disialylated Lc4 antigen in cancer patients had the lowest carbohydrate/protein ratio among the four groups tested. Thus, the carbohydrate/protein ratio in the type 1 chain mucin antigens in sera of normal subjects is higher than that in sera of cancer patients (P less than 0.05). This finding is in contrast to previous findings on the mucin antigens carrying the type 2 chain determinant (R. Kannagi

  15. Identification and fine mapping of a linear B cell epitope of human vimentin

    DEFF Research Database (Denmark)

    Dam, Catharina Essendrup; Houen, Gunnar; Hansen, Paul R.

    2014-01-01

    Knowledge about antibody-antigen interactions is important for the understanding of the immune system mechanisms and for supporting development of drugs and biomarkers. A tool for identification of these antigenic epitopes of specific antibodies is epitope mapping. In this study, a modified enzyme......-linked immunosorbent assay was applied for epitope mapping of a mouse monoclonal vimentin antibody using overlapping resin-bound peptides covering the entire vimentin protein. The minimal epitope required for binding was identified as the LDSLPLVD sequence using N- and C-terminally truncated peptides. The peptide...... sequence LDSLPLVDTH was identified as the complete epitope, corresponding to amino acids 428-437 in the C-terminal end of the human vimentin protein. Alanine scanning and functionality scanning applying substituted peptides were used to identify amino acids essential for antibody reactivity. In particular...

  16. Bioinformatics Tools for the Prediction of T-Cell Epitopes

    DEFF Research Database (Denmark)

    Andreatta, Massimo; Nielsen, Morten

    2018-01-01

    T-cell responses are activated by specific peptides, called epitopes, presented on the cell surface by MHC molecules. Binding of peptides to the MHC is the most selective step in T-cell antigen presentation and therefore an essential factor in the selection of potential epitopes. Several in-vitro...

  17. Selection of SARS-Coronavirus-specific B cell epitopes by phage peptide library screening and evaluation of the immunological effect of epitope-based peptides on mice

    International Nuclear Information System (INIS)

    Yu Hua; Jiang Lifang; Fang Danyun; Yan Huijun; Zhou Jingjiao; Zhou Junmei; Liang Yu; Gao Yang; Zhao, Wei; Long Beiguo

    2007-01-01

    Antibodies to SARS-Coronavirus (SARS-CoV)-specific B cell epitopes might recognize the pathogen and interrupt its adherence to and penetration of host cells. Hence, these epitopes could be useful for diagnosis and as vaccine constituents. Using the phage-displayed peptide library screening method and purified Fab fragments of immunoglobulin G (IgG Fab) from normal human sera and convalescent sera from SARS-CoV-infected patients as targets, 11 B cell epitopes of SARS-CoV spike glycoprotein (S protein) and membrane protein (M protein) were screened. After a bioinformatics tool was used to analyze these epitopes, four epitope-based S protein dodecapeptides corresponding to the predominant epitopes were chosen for synthesis. Their antigenic specificities and immunogenicities were studied in vitro and in vivo. Flow cytometry and ELISPOT analysis of lymphocytes as well as a serologic analysis of antibody showed that these peptides could trigger a rapid, highly effective, and relatively safe immune response in BALB/c mice. These findings might aid development of SARS diagnostics and vaccines. Moreover, the role of S and M proteins as important surface antigens is confirmed

  18. Automated identification of complementarity determining regions (CDRs) reveals peculiar characteristics of CDRs and B cell epitopes.

    Science.gov (United States)

    Ofran, Yanay; Schlessinger, Avner; Rost, Burkhard

    2008-11-01

    Exact identification of complementarity determining regions (CDRs) is crucial for understanding and manipulating antigenic interactions. One way to do this is by marking residues on the antibody that interact with B cell epitopes on the antigen. This, of course, requires identification of B cell epitopes, which could be done by marking residues on the antigen that bind to CDRs, thus requiring identification of CDRs. To circumvent this vicious circle, existing tools for identifying CDRs are based on sequence analysis or general biophysical principles. Often, these tools, which are based on partial data, fail to agree on the boundaries of the CDRs. Herein we present an automated procedure for identifying CDRs and B cell epitopes using consensus structural regions that interact with the antigens in all known antibody-protein complexes. Consequently, we provide the first comprehensive analysis of all CDR-epitope complexes of known three-dimensional structure. The CDRs we identify only partially overlap with the regions suggested by existing methods. We found that the general physicochemical properties of both CDRs and B cell epitopes are rather peculiar. In particular, only four amino acids account for most of the sequence of CDRs, and several types of amino acids almost never appear in them. The secondary structure content and the conservation of B cell epitopes are found to be different than previously thought. These characteristics of CDRs and epitopes may be instrumental in choosing which residues to mutate in experimental search for epitopes. They may also assist in computational design of antibodies and in predicting B cell epitopes.

  19. Antibody specific epitope prediction-emergence of a new paradigm.

    Science.gov (United States)

    Sela-Culang, Inbal; Ofran, Yanay; Peters, Bjoern

    2015-04-01

    The development of accurate tools for predicting B-cell epitopes is important but difficult. Traditional methods have examined which regions in an antigen are likely binding sites of an antibody. However, it is becoming increasingly clear that most antigen surface residues will be able to bind one or more of the myriad of possible antibodies. In recent years, new approaches have emerged for predicting an epitope for a specific antibody, utilizing information encoded in antibody sequence or structure. Applying such antibody-specific predictions to groups of antibodies in combination with easily obtainable experimental data improves the performance of epitope predictions. We expect that further advances of such tools will be possible with the integration of immunoglobulin repertoire sequencing data. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. High Throughput T Epitope Mapping and Vaccine Development

    Directory of Open Access Journals (Sweden)

    Giuseppina Li Pira

    2010-01-01

    Full Text Available Mapping of antigenic peptide sequences from proteins of relevant pathogens recognized by T helper (Th and by cytolytic T lymphocytes (CTL is crucial for vaccine development. In fact, mapping of T-cell epitopes provides useful information for the design of peptide-based vaccines and of peptide libraries to monitor specific cellular immunity in protected individuals, patients and vaccinees. Nevertheless, epitope mapping is a challenging task. In fact, large panels of overlapping peptides need to be tested with lymphocytes to identify the sequences that induce a T-cell response. Since numerous peptide panels from antigenic proteins are to be screened, lymphocytes available from human subjects are a limiting factor. To overcome this limitation, high throughput (HTP approaches based on miniaturization and automation of T-cell assays are needed. Here we consider the most recent applications of the HTP approach to T epitope mapping. The alternative or complementary use of in silico prediction and experimental epitope definition is discussed in the context of the recent literature. The currently used methods are described with special reference to the possibility of applying the HTP concept to make epitope mapping an easier procedure in terms of time, workload, reagents, cells and overall cost.

  1. Isolation of monoclonal antibodies with predetermined conformational epitope specificity.

    Directory of Open Access Journals (Sweden)

    Anton M Sholukh

    Full Text Available Existing technologies allow isolating antigen-specific monoclonal antibodies (mAbs from B cells. We devised a direct approach to isolate mAbs with predetermined conformational epitope specificity, using epitope mimetics (mimotopes that reflect the three-dimensional structure of given antigen subdomains. We performed differential biopanning using bacteriophages encoding random peptide libraries and polyclonal antibodies (Abs that had been affinity-purified with either native or denatured antigen. This strategy yielded conformational mimotopes. We then generated mimotope-fluorescent protein fusions, which were used as baits to isolate single memory B cells from rhesus monkeys (RMs. To amplify RM immunoglobulin variable regions, we developed RM-specific PCR primers and generated chimeric simian-human mAbs with predicted epitope specificity. We established proof-of-concept of our strategy by isolating mAbs targeting the conformational V3 loop crown of HIV Env; the new mAbs cross-neutralized viruses of different clades. The novel technology allows isolating mAbs from RMs or other hosts given experimental immunogens or infectious agents.

  2. Isotypes and antigenic profiles of pemphigus foliaceus and pemphigus vulgaris autoantibodies.

    Science.gov (United States)

    Hacker, Mary K; Janson, Marleen; Fairley, Janet A; Lin, Mong-Shang

    2002-10-01

    In this study we systematically characterized isotype profiles and antigenic and tissue specificity of antidesmoglein autoantibodies from patients with pemphigus foliaceus (PF) and pemphigus vulgaris (PV) using enzyme-linked immunoabsorbent assays (ELISA), indirect immunofluorescence (IIF) staining, and immunoblotting (IB). In PF, we found that IgG1 antidesmoglein-1 (Dsg1) reacts with a linear epitope(s) on the ectodomain of Dsg1, while its IgG4 counterpart recognizes a conformational epitope(s). These two subclasses of anti-Dsg1 are both capable of recognizing tissues from monkey esophagus and adult human skin, but IgG1 is not able to react with mouse skin, which may explain why this isotype of anti-Dsg1 failed to induce PF-like lesions in the passive transfer animal model. In mucosal PV patients, we found that both IgG1 and IgG4 only recognized monkey esophagus tissue by IIF, except in one patient, indicating that these antibodies react with a unique conformational epitope(s) that is present in mucosal but not skin tissue. In generalized PV, IgG1 anti-Dsg3 autoantibodies appeared to recognize a linear epitope(s) on the Dsg3 ectodomain. In contrast, IgG4 anti-Dsg3 antibodies recognized both linear and conformational epitopes on the Dsg3 molecule. Interestingly, the IgG1 anti-Dsg3 antibodies failed to react with human and mouse skin tissues, suggesting that this subclass of autoantibodies may not play an essential role in the development of PV suprabasilar lesions. In summary, we conclude that this study further elucidates the pathological mechanisms of PF and PV autoantibodies by revealing their distinct isotype and antigenic profiles. This information may help us to better understand the autoimmune mechanisms underlying the development of pemphigus.

  3. Epitope Identification and Application for Diagnosis of Duck Tembusu Virus Infections in Ducks

    Directory of Open Access Journals (Sweden)

    Chenxi Li

    2016-11-01

    Full Text Available Duck Tembusu virus (DTMUV causes substantial egg drop disease. DTMUV was first identified in China and rapidly spread to Malaysia and Thailand. The antigenicity of the DTMUV E protein has not yet been characterized. Here, we investigated antigenic sites on the E protein using the non-neutralizing monoclonal antibodies (mAbs 1F3 and 1A5. Two minimal epitopes were mapped to 221LD/NLPW225 and 87YAEYI91 by using phage display and mutagenesis. DTMUV-positive duck sera reacted with the epitopes, thus indicating the importance of the minimal amino acids of the epitopes for antibody-epitope binding. The performance of the dot blotting assay with the corresponding positive sera indicated that YAEYI was DTMUV type-specific, whereas 221LD/NLPW225 was a cross-reactive epitope for West Nile virus (WNV, dengue virus (DENV, and Japanese encephalitis virus (JEV and corresponded to conserved and variable amino acid sequences among these strains. The structure model of the E protein revealed that YAEYI and LD/NLPW were located on domain (D II, which confirmed that DII might contain a type-specific non-neutralizing epitope. The YAEYI epitope-based antigen demonstrated its diagnostic potential by reacting with high specificity to serum samples obtained from DTMUV-infected ducks. Based on these observations, a YAEYI-based serological test could be used for DTMUV surveillance and could differentiate DTMUV infections from JEV or WNV infections. These findings provide new insights into the organization of epitopes on flavivirus E proteins that might be valuable for the development of epitope-based serological diagnostic tests for DTMUV.

  4. Use of two predictive algorithms of the world wide web for the identification of tumor-reactive T-cell epitopes.

    Science.gov (United States)

    Lu, J; Celis, E

    2000-09-15

    Tumor cells can be effectively recognized and eliminated by CTLs. One approach for the development of CTL-based cancer immunotherapy for solid tumors requires the use of the appropriate immunogenic peptide epitopes that are derived from defined tumor-associated antigens. Because CTL peptide epitopes are restricted to specific MHC alleles, to design immune therapies for the general population it is necessary to identify epitopes for the most commonly found human MHC alleles. The identification of such epitopes has been based on MHC-peptide-binding assays that are costly and labor-intensive. We report here the use of two computer-based prediction algorithms, which are readily available in the public domain (Internet), to identify HL4-B7-restricted CTL epitopes for carcinoembryonic antigen (CEA). These algorithms identified three candidate peptides that we studied for their capacity to induce CTL responses in vitro using lymphocytes from HLA-B7+ normal blood donors. The results show that one of these peptides, CEA9(632) (IPQQHTQVL) was efficient in the induction of primary CTL responses when dendritic cells were used as antigen-presenting cells. These CTLs were efficient in killing tumor cells that express HLA-B7 and produce CEA. The identification of this HLA-B7-restricted CTL epitope will be useful for the design of ethnically unbiased, widely applicable immunotherapies for common solid epithelial tumors expressing CEA. Moreover, our strategy of identifying MHC class I-restricted CTL epitopes without the need of peptide/HLA-binding assays provides a convenient and cost-saving alternative approach to previous methods.

  5. File list: ALL.Emb.05.AllAg.Embryonic_heart [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Emb.05.AllAg.Embryonic_heart mm9 All antigens Embryo Embryonic heart SRX967652,...4,SRX1437348,SRX377683,SRX377685,SRX377687,SRX190172,SRX244285,SRX1100405,SRX337963 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Emb.05.AllAg.Embryonic_heart.bed ...

  6. Humoral immune responses of dengue fever patients using epitope-specific serotype-2 virus-like particle antigens.

    Directory of Open Access Journals (Sweden)

    Wayne D Crill

    Full Text Available Dengue virus (DENV is a serious mosquito-borne pathogen causing significant global disease burden, either as classic dengue fever (DF or in its most severe manifestation dengue hemorrhagic fever (DHF. Nearly half of the world's population is at risk of dengue disease and there are estimated to be millions of infections annually; a situation which will continue to worsen with increasing expansion of the mosquito vectors and epidemic DF/DHF. Currently there are no available licensed vaccines or antivirals for dengue, although significant effort has been directed toward the development of safe and efficacious dengue vaccines for over 30 years. Promising vaccine candidates are in development and testing phases, but a better understanding of immune responses to DENV infection and vaccination is needed. Humoral immune responses to DENV infection are complex and may exacerbate pathogenicity, yet are essential for immune protection. In this report, we develop DENV-2 envelope (E protein epitope-specific antigens and measure immunoglobulin responses to three distinct epitopes in DENV-2 infected human serum samples. Immunoglobulin responses to DENV-2 infection exhibited significant levels of individual variation. Antibody populations targeting broadly cross-reactive epitopes centered on the fusion peptide in structural domain II were large, highly variable, and greater in primary than in secondary DENV-2 infected sera. E protein domain III cross-reactive immunoglobulin populations were similarly variable and much larger in IgM than in IgG. DENV-2 specific domain III IgG formed a very small proportion of the antibody response yet was significantly correlated with DENV-2 neutralization, suggesting that the highly protective IgG recognizing this epitope in murine studies plays a role in humans as well. This report begins to tease apart complex humoral immune responses to DENV infection and is thus important for improving our understanding of dengue disease

  7. EPMLR: sequence-based linear B-cell epitope prediction method using multiple linear regression.

    Science.gov (United States)

    Lian, Yao; Ge, Meng; Pan, Xian-Ming

    2014-12-19

    B-cell epitopes have been studied extensively due to their immunological applications, such as peptide-based vaccine development, antibody production, and disease diagnosis and therapy. Despite several decades of research, the accurate prediction of linear B-cell epitopes has remained a challenging task. In this work, based on the antigen's primary sequence information, a novel linear B-cell epitope prediction model was developed using the multiple linear regression (MLR). A 10-fold cross-validation test on a large non-redundant dataset was performed to evaluate the performance of our model. To alleviate the problem caused by the noise of negative dataset, 300 experiments utilizing 300 sub-datasets were performed. We achieved overall sensitivity of 81.8%, precision of 64.1% and area under the receiver operating characteristic curve (AUC) of 0.728. We have presented a reliable method for the identification of linear B cell epitope using antigen's primary sequence information. Moreover, a web server EPMLR has been developed for linear B-cell epitope prediction: http://www.bioinfo.tsinghua.edu.cn/epitope/EPMLR/ .

  8. Proof of principle for epitope-focused vaccine design

    Science.gov (United States)

    Correia, Bruno E.; Bates, John T.; Loomis, Rebecca J.; Baneyx, Gretchen; Carrico, Chris; Jardine, Joseph G.; Rupert, Peter; Correnti, Colin; Kalyuzhniy, Oleksandr; Vittal, Vinayak; Connell, Mary J.; Stevens, Eric; Schroeter, Alexandria; Chen, Man; MacPherson, Skye; Serra, Andreia M.; Adachi, Yumiko; Holmes, Margaret A.; Li, Yuxing; Klevit, Rachel E.; Graham, Barney S.; Wyatt, Richard T.; Baker, David; Strong, Roland K.; Crowe, James E.; Johnson, Philip R.; Schief, William R.

    2014-03-01

    Vaccines prevent infectious disease largely by inducing protective neutralizing antibodies against vulnerable epitopes. Several major pathogens have resisted traditional vaccine development, although vulnerable epitopes targeted by neutralizing antibodies have been identified for several such cases. Hence, new vaccine design methods to induce epitope-specific neutralizing antibodies are needed. Here we show, with a neutralization epitope from respiratory syncytial virus, that computational protein design can generate small, thermally and conformationally stable protein scaffolds that accurately mimic the viral epitope structure and induce potent neutralizing antibodies. These scaffolds represent promising leads for the research and development of a human respiratory syncytial virus vaccine needed to protect infants, young children and the elderly. More generally, the results provide proof of principle for epitope-focused and scaffold-based vaccine design, and encourage the evaluation and further development of these strategies for a variety of other vaccine targets, including antigenically highly variable pathogens such as human immunodeficiency virus and influenza.

  9. A vaccine encoding conserved promiscuous HIV CD4 epitopes induces broad T cell responses in mice transgenic to multiple common HLA class II molecules.

    Directory of Open Access Journals (Sweden)

    Susan Pereira Ribeiro

    Full Text Available Current HIV vaccine approaches are focused on immunogens encoding whole HIV antigenic proteins that mainly elicit cytotoxic CD8+ responses. Mounting evidence points toward a critical role for CD4+ T cells in the control of immunodeficiency virus replication, probably due to cognate help. Vaccine-induced CD4+ T cell responses might, therefore, have a protective effect in HIV replication. In addition, successful vaccines may have to elicit responses to multiple epitopes in a high proportion of vaccinees, to match the highly variable circulating strains of HIV. Using rational vaccine design, we developed a DNA vaccine encoding 18 algorithm-selected conserved, "promiscuous" (multiple HLA-DR-binding B-subtype HIV CD4 epitopes - previously found to be frequently recognized by HIV-infected patients. We assessed the ability of the vaccine to induce broad T cell responses in the context of multiple HLA class II molecules using different strains of HLA class II- transgenic mice (-DR2, -DR4, -DQ6 and -DQ8. Mice displayed CD4+ and CD8+ T cell responses of significant breadth and magnitude, and 16 out of the 18 encoded epitopes were recognized. By virtue of inducing broad responses against conserved CD4+ T cell epitopes that can be recognized in the context of widely diverse, common HLA class II alleles, this vaccine concept may cope both with HIV genetic variability and increased population coverage. The vaccine may thus be a source of cognate help for HIV-specific CD8+ T cells elicited by conventional immunogens, in a wide proportion of vaccinees.

  10. Expression of goose parvovirus whole VP3 protein and its epitopes in Escherichia coli cells.

    Science.gov (United States)

    Tarasiuk, K; Woźniakowski, G; Holec-Gąsior, L

    2015-01-01

    The aim of this study was the expression of goose parvovirus capsid protein (VP3) and its epitopes in Escherichia coli cells. Expression of the whole VP3 protein provided an insufficient amount of protein. In contrast, the expression of two VP3 epitopes (VP3ep4, VP3ep6) in E. coli, resulted in very high expression levels. This may suggest that smaller parts of the GPV antigenic determinants are more efficiently expressed than the complete VP3 gene.

  11. Designing and overproducing a tandem epitope of gp350/220 that shows a potential to become an EBV vaccine

    Directory of Open Access Journals (Sweden)

    Widodo

    2018-03-01

    Full Text Available Background: Epstein-Barr virus (EBV can cause cancer in people from around the world. There is no EBV vaccine available for use on a global scale. However, emerging evidence suggests that the epitope on the gp350/220 capsid protein may be developed into an EBV vaccine. Nevertheless, the production of small, single epitope is challenging of stability issues and possible alteration of peptide structure. In this study, a tandem epitope was developed consisting of three single epitopes, aimed to improve stability, antigenicity and preserve epitope structure. Materials and methods: A tandem epitope was designed using bioinformatics based on the epitope structure of the gp350/220 protein. The tandem epitope structure was analyzed using a protein folding method with Abalone software, which was further refined via YASARA force field and molecular repairing using a FoldX method. Immunogenicity was examined with Epitopia software, whereas allergen properties were tested using AlgPred. The pattern of the tandem epitope binding with anti-gp350/220 antibodies was performed using Z-dock and snugDock. The tandem epitope was then overproduced in E. coli strain BL21 as a host cell. Result: Our model demonstrated a successfully designed and overproduced tandem epitope. The tandem epitope demonstrated a similar structure compared with the epitope of whole protein gp350/220. Our epitope also demonstrated non-allergen and antigenicity properties, and possessed antibody binding patterns consistent with whole protein gp350/220. Conclusion and recommendation: These data suggest a novel tandem epitope composed of three similar epitopes demonstrates antigenicity, structure, and binding properties consistent with whole protein gp350/220. We also demonstrate successful production of the tandem epitope using E. coli strain BL21 as a host. Future in vivo experimental animal research is necessary to test the ability of this tandem epitope to stimulate antibody production

  12. High epitope expression levels increase competition between T cells.

    Directory of Open Access Journals (Sweden)

    Almut Scherer

    2006-08-01

    Full Text Available Both theoretical predictions and experimental findings suggest that T cell populations can compete with each other. There is some debate on whether T cells compete for aspecific stimuli, such as access to the surface on antigen-presenting cells (APCs or for specific stimuli, such as their cognate epitope ligand. We have developed an individual-based computer simulation model to study T cell competition. Our model shows that the expression level of foreign epitopes per APC determines whether T cell competition is mainly for specific or aspecific stimuli. Under low epitope expression, competition is mainly for the specific epitope stimuli, and, hence, different epitope-specific T cell populations coexist readily. However, if epitope expression levels are high, aspecific competition becomes more important. Such between-specificity competition can lead to competitive exclusion between different epitope-specific T cell populations. Our model allows us to delineate the circumstances that facilitate coexistence of T cells of different epitope specificity. Understanding mechanisms of T cell coexistence has important practical implications for immune therapies that require a broad immune response.

  13. Characterization and specificity of the linear epitope of the enterovirus 71 VP2 protein

    Directory of Open Access Journals (Sweden)

    Kiener Tanja K

    2012-02-01

    Full Text Available Abstract Background Enterovirus 71 (EV71 has emerged as a major causative agent of hand, foot and mouth disease in the Asia-Pacific region over the last decade. Hand, foot and mouth disease can be caused by different etiological agents from the enterovirus family, mainly EV71 and coxsackieviruses, which are genetically closely related. Nevertheless, infection with EV71 may occasionally lead to high fever, neurologic complications and the emergence of a rapidly fatal syndrome of pulmonary edema associated with brainstem encephalitis. The rapid progression and high mortality of severe EV71 infection has highlighted the need for EV71-specific diagnostic and therapeutic tools. Monoclonal antibodies are urgently needed to specifically detect EV71 antigens from patient specimens early in the infection process. Furthermore, the elucidation of viral epitopes will contribute to the development of targeted therapeutics and vaccines. Results We have identified the monoclonal antibody 7C7 from a screen of hybridoma cells derived from mice immunized with the EV71-B5 strain. The linear epitope of 7C7 was mapped to amino acids 142-146 (EDSHP of the VP2 capsid protein and was characterized in detail. Mutational analysis of the epitope showed that the aspartic acid to asparagine mutation of the EV71 subgenogroup A (BrCr strain did not interfere with antibody recognition. In contrast, the serine to threonine mutation at position 144 of VP2, present in recently emerged EV71-C4 China strains, abolished antigenicity. Mice injected with this virus strain did not produce any antibodies against the VP2 protein. Immunofluorescence and Western blotting confirmed that 7C7 specifically recognized EV71 subgenogroups and did not cross-react to Coxsackieviruses 4, 6, 10, and 16. 7C7 was successfully used as a detection antibody in an antigen-capture ELISA assay. Conclusions Detailed mapping showed that the VP2 protein of Enterovirus 71 contains a single, linear, non

  14. Original antigenic sin: A comprehensive review.

    Science.gov (United States)

    Vatti, Anup; Monsalve, Diana M; Pacheco, Yovana; Chang, Christopher; Anaya, Juan-Manuel; Gershwin, M Eric

    2017-09-01

    The concept of "original antigenic sin" was first proposed by Thomas Francis, Jr. in 1960. This phenomenon has the potential to rewrite what we understand about how the immune system responds to infections and its mechanistic implications on how vaccines should be designed. Antigenic sin has been demonstrated to occur in several infectious diseases in both animals and humans, including human influenza infection and dengue fever. The basis of "original antigenic sin" requires immunological memory, and our immune system ability to autocorrect. In the context of viral infections, it is expected that if we are exposed to a native strain of a pathogen, we should be able to mount a secondary immune response on subsequent exposure to the same pathogen. "Original antigenic sin" will not contradict this well-established immunological process, as long as the subsequent infectious antigen is identical to the original one. But "original antigenic sin" implies that when the epitope varies slightly, then the immune system relies on memory of the earlier infection, rather than mount another primary or secondary response to the new epitope which would allow faster and stronger responses. The result is that the immunological response may be inadequate against the new strain, because the immune system does not adapt and instead relies on its memory to mount a response. In the case of vaccines, if we only immunize to a single strain or epitope, and if that strain/epitope changes over time, then the immune system is unable to mount an accurate secondary response. In addition, depending of the first viral exposure the secondary immune response can result in an antibody-dependent enhancement of the disease or at the opposite, it could induce anergy. Both of them triggering loss of pathogen control and inducing aberrant clinical consequences. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Epitope discovery with phylogenetic hidden Markov models.

    LENUS (Irish Health Repository)

    Lacerda, Miguel

    2010-05-01

    Existing methods for the prediction of immunologically active T-cell epitopes are based on the amino acid sequence or structure of pathogen proteins. Additional information regarding the locations of epitopes may be acquired by considering the evolution of viruses in hosts with different immune backgrounds. In particular, immune-dependent evolutionary patterns at sites within or near T-cell epitopes can be used to enhance epitope identification. We have developed a mutation-selection model of T-cell epitope evolution that allows the human leukocyte antigen (HLA) genotype of the host to influence the evolutionary process. This is one of the first examples of the incorporation of environmental parameters into a phylogenetic model and has many other potential applications where the selection pressures exerted on an organism can be related directly to environmental factors. We combine this novel evolutionary model with a hidden Markov model to identify contiguous amino acid positions that appear to evolve under immune pressure in the presence of specific host immune alleles and that therefore represent potential epitopes. This phylogenetic hidden Markov model provides a rigorous probabilistic framework that can be combined with sequence or structural information to improve epitope prediction. As a demonstration, we apply the model to a data set of HIV-1 protein-coding sequences and host HLA genotypes.

  16. CD4+ T cells targeting dominant and cryptic epitopes from Bacillus anthracis Lethal Factor

    Directory of Open Access Journals (Sweden)

    Stephanie eAscough

    2016-01-01

    Full Text Available Anthrax is an endemic infection in many countries, particularly in the developing world. The causative agent, Bacillus anthracis, mediates disease through the secretion of binary exotoxins. Until recently, research into adaptive immunity targeting this bacterial pathogen has largely focused on the humoral response to these toxins. There is, however, growing recognition that cellular immune responses involving IFNγ producing CD4+ T cells also contribute significantly to a protective memory response. An established concept in adaptive immunity to infection is that during infection of host cells, new microbial epitopes may be revealed, leading to immune recognition of so called ‘cryptic’ or ‘subdominant’ epitopes. We analysed the response to both cryptic and immunodominant T cell epitopes derived from the toxin component lethal factor and presented by a range of HLA-DR alleles. Using IFNγ-ELISPOT assays we characterised epitopes that elicited a response following immunisation with synthetic peptide and the whole protein and tested their capacities to bind purified HLA-DR molecules in vitro. We found that DR1 transgenics demonstrated T cell responses to a greater number of domain III cryptic epitopes than other HLA-DR transgenics, and that this pattern was repeated with the immunodominant epitopes, a greater proportion of these epitopes induced a T cell response when presented within the context of the whole protein. Immunodominant epitopes LF457-476 and LF467-487 were found to induce a T cell response to the peptide, as well as to the whole native LF protein in DR1 and DR15, but not in DR4 trangenics. The analysis of Domain I revealed the presence of several unique cryptic epitopes all of which showed a strong to moderate relative binding affinity to HLA-DR4 molecules. However, none of the cryptic epitopes from either domain III or I displayed notably high binding affinities across all HLA-DR alleles assayed. These responses were

  17. Chimeric peptide containing both B and T cells epitope of tumor-associated antigen L6 enhances anti-tumor effects in HLA-A2 transgenic mice.

    Science.gov (United States)

    Lin, Su-I; Huang, Ming-Hsi; Chang, Yu-Wen; Chen, I-Hua; Roffler, Steve; Chen, Bing-Mae; Sher, Yuh-Pyng; Liu, Shih-Jen

    2016-07-28

    Synthetic peptides are attractive for cancer immunotherapy because of their safety and flexibility. In this report, we identified a new B cell epitope of tumor-associated antigen L6 (TAL6) that could induce antibody-dependent cellular cytotoxicity (ADCC) in vivo. We incorporated the B cell epitope with a cytotoxic T lymphocyte (CTL) and a helper T (Th) epitope to form a chimeric long peptide. We formulated the chimeric peptide with different adjuvants to immunize HLA-A2 transgenic mice and evaluate their immunogenicity. The chimeric peptide formulated with an emulsion type nanoparticle (PELC) adjuvant and a toll-like receptor 9 agonist (CpG ODN) (PELC/CpG) induced the greatest ADCC and CTL responses. The induced anti-tumor immunity inhibited the growth of TAL6-positive cancer cells. Moreover, we observed that immunization with the chimeric peptide inhibited cancer cell migration in vitro and metastasis in vivo. These data suggest that a chimeric peptide containing both B and T cell epitopes of TAL6 formulated with PELC/CpG adjuvant is feasible for cancer immunotherapy. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  18. 3-O-sulfated heparan sulfate recognized by the antibody HS4C3 contributes [corrected] to the differentiation of mouse embryonic stem cells via fas signaling.

    Directory of Open Access Journals (Sweden)

    Kazumi Hirano

    Full Text Available Maintenance of self-renewal and pluripotency in mouse embryonic stem cells (mESCs is regulated by the balance between several extrinsic signaling pathways. Recently, we demonstrated that heparan sulfate (HS chains play important roles in the maintenance and differentiation of mESCs by regulating extrinsic signaling. Sulfated HS structures are modified by various sulfotransferases during development. However, the significance of specific HS structures during development remains unclear. Here, we show that 3-O-sulfated HS structures synthesized by HS 3-O-sulfotransferases (3OSTs and recognized by the antibody HS4C3 increase during differentiation of mESCs. Furthermore, expression of Fas on the cell surface of the differentiated cells also increased. Overexpression of the HS4C3-binding epitope in mESCs induced apoptosis and spontaneous differentiation even in the presence of LIF and serum. These data showed that the HS4C3-binding epitope was required for differentiation of mESCs. Up-regulation of the HS4C3-binding epitope resulted in the recruitment of Fas from the cytoplasm to lipid rafts on the cell surface followed by activation of Fas signaling. Indeed, the HS4C3-binding epitope interacted with a region that included the heparin-binding domain (KLRRRVH of Fas. Reduced self-renewal capability in cells overexpressing 3OST resulted from the degradation of Nanog by activated caspase-3, which is downstream of Fas signaling, and was rescued by the inhibition of Fas signaling. We also found that knockdown of 3OST and inhibition of Fas signaling reduced the potential for differentiation into the three germ layers during embryoid body formation. This is the first demonstration that activation of Fas signaling is mediated by an increase in the HS4C3-binding epitope and indicates a novel signaling pathway for differentiation in mESCs.

  19. 3-O-sulfated heparan sulfate recognized by the antibody HS4C3 contributes [corrected] to the differentiation of mouse embryonic stem cells via fas signaling.

    Science.gov (United States)

    Hirano, Kazumi; Sasaki, Norihiko; Ichimiya, Tomomi; Miura, Taichi; Van Kuppevelt, Toin H; Nishihara, Shoko

    2012-01-01

    Maintenance of self-renewal and pluripotency in mouse embryonic stem cells (mESCs) is regulated by the balance between several extrinsic signaling pathways. Recently, we demonstrated that heparan sulfate (HS) chains play important roles in the maintenance and differentiation of mESCs by regulating extrinsic signaling. Sulfated HS structures are modified by various sulfotransferases during development. However, the significance of specific HS structures during development remains unclear. Here, we show that 3-O-sulfated HS structures synthesized by HS 3-O-sulfotransferases (3OSTs) and recognized by the antibody HS4C3 increase during differentiation of mESCs. Furthermore, expression of Fas on the cell surface of the differentiated cells also increased. Overexpression of the HS4C3-binding epitope in mESCs induced apoptosis and spontaneous differentiation even in the presence of LIF and serum. These data showed that the HS4C3-binding epitope was required for differentiation of mESCs. Up-regulation of the HS4C3-binding epitope resulted in the recruitment of Fas from the cytoplasm to lipid rafts on the cell surface followed by activation of Fas signaling. Indeed, the HS4C3-binding epitope interacted with a region that included the heparin-binding domain (KLRRRVH) of Fas. Reduced self-renewal capability in cells overexpressing 3OST resulted from the degradation of Nanog by activated caspase-3, which is downstream of Fas signaling, and was rescued by the inhibition of Fas signaling. We also found that knockdown of 3OST and inhibition of Fas signaling reduced the potential for differentiation into the three germ layers during embryoid body formation. This is the first demonstration that activation of Fas signaling is mediated by an increase in the HS4C3-binding epitope and indicates a novel signaling pathway for differentiation in mESCs.

  20. A Conserved Epitope Mapped with a Monoclonal Antibody against the VP3 Protein of Goose Parvovirus by Using Peptide Screening and Phage Display Approaches.

    Science.gov (United States)

    Li, Chenxi; Liu, Hongyu; Li, Jinzhe; Liu, Dafei; Meng, Runze; Zhang, Qingshan; Shaozhou, Wulin; Bai, Xiaofei; Zhang, Tingting; Liu, Ming; Zhang, Yun

    2016-01-01

    Waterfowl parvovirus (WPV) infection causes high mortality and morbidity in both geese (Anser anser) and Muscovy ducks (Cairina moschata), resulting in significant losses to the waterfowl industries. The VP3 protein of WPV is a major structural protein that induces neutralizing antibodies in the waterfowl. However, B-cell epitopes on the VP3 protein of WPV have not been characterized. To understand the antigenic determinants of the VP3 protein, we used the monoclonal antibody (mAb) 4A6 to screen a set of eight partially expressed overlapping peptides spanning VP3. Using western blotting and an enzyme-linked immunosorbent assay (ELISA), we localized the VP3 epitope between amino acids (aa) 57 and 112. To identify the essential epitope residues, a phage library displaying 12-mer random peptides was screened with mAb 4A6. Phage clone peptides displayed a consensus sequence of YxRFHxH that mimicked the sequence 82Y/FNRFHCH88, which corresponded to amino acid residues 82 to 88 of VP3 protein of WPVs. mAb 4A6 binding to biotinylated fragments corresponding to amino acid residues 82 to 88 of the VP3 protein verified that the 82FxRFHxH88 was the VP3 epitope and that amino acids 82F is necessary to retain maximal binding to mAb 4A6. Parvovirus-positive goose and duck sera reacted with the epitope peptide by dot blotting assay, revealing the importance of these amino acids of the epitope in antibody-epitope binding reactivity. We identified the motif FxRFHxH as a VP3-specific B-cell epitope that is recognized by the neutralizing mAb 4A6. This finding might be valuable in understanding of the antigenic topology of VP3 of WPV.

  1. A Simple Proteomics-Based Approach to Identification of Immunodominant Antigens from a Complex Pathogen: Application to the CD4 T Cell Response against Human Herpesvirus 6B.

    Directory of Open Access Journals (Sweden)

    Aniuska Becerra-Artiles

    Full Text Available Most of humanity is chronically infected with human herpesvirus 6 (HHV-6, with viral replication controlled at least in part by a poorly characterized CD4 T cell response. Identification of viral epitopes recognized by CD4 T cells is complicated by the large size of the herpesvirus genome and a low frequency of circulating T cells responding to the virus. Here, we present an alternative to classical epitope mapping approaches used to identify major targets of the T cell response to a complex pathogen like HHV-6B. In the approach presented here, extracellular virus preparations or virus-infected cells are fractionated by SDS-PAGE, and eluted fractions are used as source of antigens to study cytokine responses in direct ex vivo T cell activation studies. Fractions inducing significant cytokine responses are analyzed by mass spectrometry to identify viral proteins, and a subset of peptides from these proteins corresponding to predicted HLA-DR binders is tested for IFN-γ production in seropositive donors with diverse HLA haplotypes. Ten HHV-6B viral proteins were identified as immunodominant antigens. The epitope-specific response to HHV-6B virus was complex and variable between individuals. We identified 107 peptides, each recognized by at least one donor, with each donor having a distinctive footprint. Fourteen peptides showed responses in the majority of donors. Responses to these epitopes were validated using in vitro expanded cells and naturally expressed viral proteins. Predicted peptide binding affinities for the eight HLA-DRB1 alleles investigated here correlated only modestly with the observed CD4 T cell responses. Overall, the response to the virus was dominated by peptides from the major capsid protein U57 and major antigenic protein U11, but responses to other proteins including glycoprotein H (U48 and tegument proteins U54 and U14 also were observed. These results provide a means to follow and potentially modulate the CD4 T-cell immune

  2. Zinc oxide nanoparticle-enhanced ultrasensitive chemiluminescence immunoassay for the carcinoma embryonic antigen

    International Nuclear Information System (INIS)

    Pal, Souvik; Bhand, Sunil

    2015-01-01

    An ultrasensitive enzyme-linked immunosorbent assay (ELISA) is reported for the determination of carcinoma embryonic antigen (CEA) in human serum. It was realized using a microplate reader using a 384-well plate. Monoclonal antibody (Ab) against CEA (1° Ab) acting as the capture probe was immobilized on zinc oxide nanoparticles (ZnO-NPs) in the form of self-assembled monolayers (SAMs). CEA captured by 1° Ab was quantified using a sandwich ELISA wherein a polyclonal second antibody against CEA (2° Ab) was used for detection and quantified using an HRP-labeled secondary antibody (3° Ab). The ZnO-NPs-CEA capture probe was deposited on the bottom of the wells in order to enhance capture of CEA. A 3-fold enhancement in the chemiluminescence (CL) signal of luminol is found (compared to a conventional ELISA). CEA can be quantified by this method in concentrations as low as 1 pg · mL −1 . The upper limit of detection is 20 ng · mL −1 . The use of ZnO-NPs also imparts improved thermal stability. When stored at 4 °C in phosphate-buffered saline of pH 7.4, the probe displays stability of up to 30 days. (author)

  3. Ab-initio conformational epitope structure prediction using genetic algorithm and SVM for vaccine design.

    Science.gov (United States)

    Moghram, Basem Ameen; Nabil, Emad; Badr, Amr

    2018-01-01

    T-cell epitope structure identification is a significant challenging immunoinformatic problem within epitope-based vaccine design. Epitopes or antigenic peptides are a set of amino acids that bind with the Major Histocompatibility Complex (MHC) molecules. The aim of this process is presented by Antigen Presenting Cells to be inspected by T-cells. MHC-molecule-binding epitopes are responsible for triggering the immune response to antigens. The epitope's three-dimensional (3D) molecular structure (i.e., tertiary structure) reflects its proper function. Therefore, the identification of MHC class-II epitopes structure is a significant step towards epitope-based vaccine design and understanding of the immune system. In this paper, we propose a new technique using a Genetic Algorithm for Predicting the Epitope Structure (GAPES), to predict the structure of MHC class-II epitopes based on their sequence. The proposed Elitist-based genetic algorithm for predicting the epitope's tertiary structure is based on Ab-Initio Empirical Conformational Energy Program for Peptides (ECEPP) Force Field Model. The developed secondary structure prediction technique relies on Ramachandran Plot. We used two alignment algorithms: the ROSS alignment and TM-Score alignment. We applied four different alignment approaches to calculate the similarity scores of the dataset under test. We utilized the support vector machine (SVM) classifier as an evaluation of the prediction performance. The prediction accuracy and the Area Under Receiver Operating Characteristic (ROC) Curve (AUC) were calculated as measures of performance. The calculations are performed on twelve similarity-reduced datasets of the Immune Epitope Data Base (IEDB) and a large dataset of peptide-binding affinities to HLA-DRB1*0101. The results showed that GAPES was reliable and very accurate. We achieved an average prediction accuracy of 93.50% and an average AUC of 0.974 in the IEDB dataset. Also, we achieved an accuracy of 95

  4. Conservation and diversity of influenza A H1N1 HLA-restricted T cell epitope candidates for epitope-based vaccines.

    Directory of Open Access Journals (Sweden)

    Paul Thiamjoo Tan

    2010-01-01

    Full Text Available The immune-related evolution of influenza viruses is exceedingly complex and current vaccines against influenza must be reformulated for each influenza season because of the high degree of antigenic drift among circulating influenza strains. Delay in vaccine production is a serious problem in responding to a pandemic situation, such as that of the current H1N1 strain. Immune escape is generally attributed to reduced antibody recognition of the viral hemagglutinin and neuraminidase proteins whose rate of mutation is much greater than that of the internal non-structural proteins. As a possible alternative, vaccines directed at T cell epitope domains of internal influenza proteins, that are less susceptible to antigenic variation, have been investigated.HLA transgenic mouse strains expressing HLA class I A*0201, A*2402, and B*0702, and class II DRB1*1501, DRB1*0301 and DRB1*0401 were immunized with 196 influenza H1N1 peptides that contained residues of highly conserved proteome sequences of the human H1N1, H3N2, H1N2, H5N1, and avian influenza A strains. Fifty-four (54 peptides that elicited 63 HLA-restricted peptide-specific T cell epitope responses were identified by IFN-gamma ELISpot assay. The 54 peptides were compared to the 2007-2009 human H1N1 sequences for selection of sequences in the design of a new candidate H1N1 vaccine, specifically targeted to highly-conserved HLA-restricted T cell epitopes.Seventeen (17 T cell epitopes in PB1, PB2, and M1 were selected as vaccine targets based on sequence conservation over the past 30 years, high functional avidity, non-identity to human peptides, clustered localization, and promiscuity to multiple HLA alleles. These candidate vaccine antigen sequences may be applicable to any avian or human influenza A virus.

  5. Immunotherapy for Alzheimer's disease: DNA- and protein-based epitope vaccines.

    Science.gov (United States)

    Davtyan, Hayk; Petrushina, Irina; Ghochikyan, Anahit

    2014-01-01

    Active immunotherapy for Alzheimer's disease (AD) is aimed to induce antibodies specific to amyloid-beta (Aβ) that are capable to reduce the level of Aβ in the CNS of Alzheimer's disease patients. First clinical trial AN-1792 that was based on vaccination with full-length Aβ42 showed that safe and effective AD vaccine should induce high titers of anti-Aβ antibodies without activation of harmful autoreactive T cells. Replacement of self-T cell epitope with foreign epitope, keeping self-B cell epitope intact, may allow to induce high titers of anti-Aβ antibodies while avoiding the activation of T cells specific to Aβ. Here we describe the protocols for evaluation of AD DNA- or multiple antigenic peptide (MAP)-based epitope vaccines composed of Aβ(1-11) B cell epitope fused to synthetic T cell epitope PADRE (Aβ(1-11)-PADRE). All protocols could be used for testing any epitope vaccine constructed in your lab and composed of other T cell epitopes using the appropriate peptides in tests for evaluation of humoral and cellular immune responses.

  6. Identification of murine T-cell epitopes in Ebola virus nucleoprotein

    International Nuclear Information System (INIS)

    Simmons, Graham; Lee, Anee; Rennekamp, Andrew J.; Fan Xin; Bates, Paul; Shen Hao

    2004-01-01

    CD8 T cells play an important role in controlling Ebola infection and in mediating vaccine-induced protective immunity, yet little is known about antigenic targets in Ebola that are recognized by CD8 T cells. Overlapping peptides were used to identify major histocompatibility complex class I-restricted epitopes in mice immunized with vectors encoding Ebola nucleoprotein (NP). CD8 T-cell responses were mapped to a H-2 d -restricted epitope (NP279-288) and two H-2 b -restricted epitopes (NP44-52 and NP288-296). The identification of these epitopes will facilitate studies of immune correlates of protection and the evaluation of vaccine strategies in murine models of Ebola infection

  7. Excavating the surface-associated and secretory proteome of Mycobacterium leprae for identifying vaccines and diagnostic markers relevant immunodominant epitopes.

    Science.gov (United States)

    Rana, Aarti; Thakur, Shweta; Bhardwaj, Nupur; Kumar, Devender; Akhter, Yusuf

    2016-12-01

    For centuries, Mycobacterium leprae, etiological agent of leprosy, has been afflicting mankind regardless of extensive use of live-attenuated vaccines and antibiotics. Surface-associated and secretory proteins (SASPs) are attractive targets against bacteria. We have integrated biological knowledge with computational approaches and present a proteome-wide identification of SASPs. We also performed computational assignment of immunodominant epitopes as coordinates of prospective antigenic candidates in most important class of SASPs, the outer membrane proteins (OMPs). Exploiting the known protein sequence and structural characteristics shared by the SASPs from bacteria, 17 lipoproteins, 11 secretory and 19 novel OMPs (including 4 essential proteins) were identified in M. leprae As OMPs represent the most exposed antigens on the cell surface, their immunoinformatics analysis showed that the identified 19 OMPs harbor T-cell MHC class I epitopes and class II epitopes against HLA-DR alleles (54), while 15 OMPs present potential T-cell class II epitopes against HLA-DQ alleles (6) and 7 OMPs possess T-cell class II epitopes against HLA-DP alleles (5) of humans. Additionally, 11 M. leprae OMPs were found to have B-cell epitopes and these may be considered as prime candidates for the development of new immunotherapeutics against M. leprae. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  8. Dengue virus-like particles mimic the antigenic properties of the infectious dengue virus envelope.

    Science.gov (United States)

    Metz, Stefan W; Thomas, Ashlie; White, Laura; Stoops, Mark; Corten, Markus; Hannemann, Holger; de Silva, Aravinda M

    2018-04-02

    The 4 dengue serotypes (DENV) are mosquito-borne pathogens that are associated with severe hemorrhagic disease. DENV particles have a lipid bilayer envelope that anchors two membrane glycoproteins prM and E. Two E-protein monomers form head-to-tail homodimers and three E-dimers align to form "rafts" that cover the viral surface. Some human antibodies that strongly neutralize DENV bind to quaternary structure epitopes displayed on E protein dimers or higher order structures forming the infectious virus. Expression of prM and E in cell culture leads to the formation of DENV virus-like particles (VLPs) which are smaller than wildtype virus particles and replication defective due to the absence of a viral genome. There is no data available that describes the antigenic landscape on the surface of flavivirus VLPs in comparison to the better studied infectious virion. A large panel of well characterized antibodies that recognize epitope of ranging complexity were used in biochemical analytics to obtain a comparative antigenic surface view of VLPs in respect to virus particles. DENV patient serum depletions were performed the show the potential of VLPs in serological diagnostics. VLPs were confirmed to be heterogeneous in size morphology and maturation state. Yet, we show that many highly conformational and quaternary structure-dependent antibody epitopes found on virus particles are efficiently displayed on DENV1-4 VLP surfaces as well. Additionally, DENV VLPs can efficiently be used as antigens to deplete DENV patient sera from serotype specific antibody populations. This study aids in further understanding epitopic landscape of DENV VLPs and presents a comparative antigenic surface view of VLPs in respect to virus particles. We propose the use VLPs as a safe and practical alternative to infectious virus as a vaccine and diagnostic antigen.

  9. PepMapper: a collaborative web tool for mapping epitopes from affinity-selected peptides.

    Directory of Open Access Journals (Sweden)

    Wenhan Chen

    Full Text Available Epitope mapping from affinity-selected peptides has become popular in epitope prediction, and correspondingly many Web-based tools have been developed in recent years. However, the performance of these tools varies in different circumstances. To address this problem, we employed an ensemble approach to incorporate two popular Web tools, MimoPro and Pep-3D-Search, together for taking advantages offered by both methods so as to give users more options for their specific purposes of epitope-peptide mapping. The combined operation of Union finds as many associated peptides as possible from both methods, which increases sensitivity in finding potential epitopic regions on a given antigen surface. The combined operation of Intersection achieves to some extent the mutual verification by the two methods and hence increases the likelihood of locating the genuine epitopic region on a given antigen in relation to the interacting peptides. The Consistency between Intersection and Union is an indirect sufficient condition to assess the likelihood of successful peptide-epitope mapping. On average from 27 tests, the combined operations of PepMapper outperformed either MimoPro or Pep-3D-Search alone. Therefore, PepMapper is another multipurpose mapping tool for epitope prediction from affinity-selected peptides. The Web server can be freely accessed at: http://informatics.nenu.edu.cn/PepMapper/

  10. RB4CD12 epitope expression and heparan sulfate disaccharide composition in brain vasculature.

    Science.gov (United States)

    Hosono-Fukao, Tomomi; Ohtake-Niimi, Shiori; Nishitsuji, Kazuchika; Hossain, Md Motarab; van Kuppevelt, Toin H; Michikawa, Makoto; Uchimura, Kenji

    2011-11-01

    RB4CD12 is a phage display antibody that recognizes a heparan sulfate (HS) glycosaminoglycan epitope. The epitope structure is proposed to contain a trisulfated disaccharide, [-IdoA(2-OSO(3))-GlcNSO(3) (6-OSO(3))-], which supports HS binding to various macromolecules such as growth factors and cytokines in central nervous tissues. Chemically modified heparins that lack the trisulfated disaccharides failed to inhibit the RB4CD12 recognition of HS chains. To determine the localization of the RB4CD12 anti-HS epitope in the brain, we performed an immunohistochemical analysis for cryocut sections of mouse brain. The RB4CD12 staining signals were colocalized with laminin and were detected abundantly in the vascular basement membrane. Bacterial heparinases eliminated the RB4CD12 staining signals. The RB4CD12 epitope localization was confirmed by immunoelectron microscopy. Western blotting analysis revealed that the size of a major RB4CD12-positive molecule is ∼460 kDa in a vessel-enriched fraction of the mouse brain. Disaccharide analysis with reversed-phase ion-pair HPLC showed that [-IdoA(2-OSO(3))-GlcNSO(3) (6-OSO(3))-] trisulfated disaccharide residues are present in HS purified from the vessel-enriched brain fraction. These results indicated that the RB4CD12 anti-HS epitope exists in large quantities in the brain vascular basement membrane. Copyright © 2011 Wiley-Liss, Inc.

  11. Identification of immediate early gene products of bovine herpes virus 1 (BHV-1) as dominant antigens recognized by CD8 T cells in immune cattle

    DEFF Research Database (Denmark)

    Hart, Jane; MacHugh, Niall D.; Sheldrake, Tara

    2017-01-01

    candidate viral gene products with CD8 T-cell lines from 3 BHV-1-immune cattle of defined MHC genotypes identified 4 antigens, including 3 immediate early (IE) gene products (ICP4, ICP22 and Circ) and a tegument protein (UL49). Identification of the MHC restriction specificities revealed that the antigens...... cases refined, the identity of the epitopes. Analyses of the epitope specificity of the CD8 T-cell lines showed that a large component of the response is directed against these IE epitopes. The results indicate that these IE gene products are dominant targets of the CD8 T-cell response in BHV...

  12. Overlapping CD8+ and CD4+ T-cell epitopes identification for the progression of epitope-based peptide vaccine from nucleocapsid and glycoprotein of emerging Rift Valley fever virus using immunoinformatics approach.

    Science.gov (United States)

    Adhikari, Utpal Kumar; Rahman, M Mizanur

    2017-12-01

    Rift Valley fever virus (RVFV) is an emergent arthropod-borne zoonotic infectious viral pathogen which causes fatal diseases in the humans and ruminants. Currently, no effective and licensed vaccine is available for the prevention of RVFV infection in endemic as well as in non-endemic regions. So, an immunoinformatics-driven genome-wide screening approach was performed for the identification of overlapping CD8+ and CD4+ T-cell epitopes and also linear B-cell epitopes from the conserved sequences of the nucleocapsid (N) and glycoprotein (G) of RVFV. We identified overlapping 99.39% conserved 1 CD8+ T-cell epitope (MMHPSFAGM) from N protein and 100% conserved 7 epitopes (AVFALAPVV, LAVFALAPV, FALAPVVFA, VFALAPVVF, IAMTVLPAL, FFDWFSGLM, and FLLIYLGRT) from G protein and also identified IL-4 and IFN-γ induced (99.39% conserved) 1 N protein CD4+ T-cell epitope (HMMHPSFAGMVDPSL) and 100% conserved 5 G protein CD4+ T-cell epitopes (LPALAVFALAPVVFA, PALAVFALAPVVFAE, GIAMTVLPALAVFAL, GSWNFFDWFSGLMSW, and FFLLIYLGRTGLSKM). The overlapping CD8+ and CD4+ T-cell epitopes were bound with most conserved HLA-C*12:03 and HLA-DRB1*01:01, respectively with the high binding affinity (kcal/mol). The combined population coverage analysis revealed that the allele frequencies of these epitopes are high in endemic and non-endemic regions. Besides, we found 100% conserved and non-allergenic 2 decamer B-cell epitopes, GVCEVGVQAL and RVFNCIDWVH of G protein had the sequence similarity with the nonamer CD8+ T-cell epitopes, VCEVGVQAL and RVFNCIDWV, respectively. Consequently, these epitopes may be used for the development of epitope-based peptide vaccine against emerging RVFV. However, in vivo and in vitro experiments are required for their efficient use as a vaccine. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Evaluation of recombinant multi-epitope proteins for diagnosis of goat schistosomiasis by enzyme-linked immunosorbent assay.

    Science.gov (United States)

    Lv, Chao; Hong, Yang; Fu, Zhiqiang; Lu, Ke; Cao, Xiaodan; Wang, Tao; Zhu, Chuangang; Li, Hao; Xu, Rui; Jia, Bingguang; Han, Qian; Dou, Xuefeng; Shen, Yuanxi; Zhang, Zuhang; Zai, Jinli; Feng, Jintao; Lin, Jiaojiao

    2016-03-09

    Schistosomiasis is a huge threat to human and animal health. Apart from bovines, goats play an important role in the transmission of schistosomiasis in some endemic areas of China. An accessible, quality-assured goat schistosomiasis diagnostic technique is needed. Recently, our laboratory identified two recombinant diagnostic antigens, SjPGM and SjRAD23 via an immuno-proteomic method. The application of these two recombinant antigens to develop a higher sensitivity and specificity technique for the sheep schistosomiasis diagnosis is urgently needed. Epitopes of SjPGM and SjRAD23 were predicted and three polypeptides, two from SjRAD23 and one from SjPGM, were selected. Recombinant plasmids containing two to three DNA sequences encoding predicted polypeptides or large hydrophilic region of Sj23 (LHD-Sj23) were constructed and expressed. Eight recombinant schistosome antigens including four multi-epitope proteins and four recombinant single-molecule antigens as well as SEA, were assessed by ELISA in 91 sera from schistosome-infected goats, 44 sera from non-infected goats, 37 sera from Orientobilharzia-infected goats, and 12 from Haemonchus contortus-infected goats. ELISA tests showed that three multi-epitope proteins had higher sensitivity than the four single-molecule antigens (rSjRAD23, rSjPGM, rBSjRAD23-1, rBSj23) and the multi-epitope protein rBSjPGM-BSjRAD23-1-BSj23 had the highest sensitivity (97.8 %, 89/91) and maintained good specificity (100 %, 44/44) as well as low cross-reactivity with haemonchosis (8.33 %, 3/12) and orientobilharziasis (13.51 %, 5/37) in the diagnosis of goat schistosomiasis. In contrast, when SEA was applied as a diagnosis antigen, it had 100 % (91/91) sensitivity, 75 % (33/44) specificity, 25 and 83.78 % cross-reactivity with haemonchosis (3/12) and orientobilharziasis (31/37), respectively. The application of recombinant multi-epitope proteins may increase the sensitivity of diagnosis technique and retain high specificity of single

  14. Development of a multi-epitope peptide vaccine inducing robust T cell responses against brucellosis using immunoinformatics based approaches.

    Science.gov (United States)

    Saadi, Mahdiye; Karkhah, Ahmad; Nouri, Hamid Reza

    2017-07-01

    Current investigations have demonstrated that a multi-epitope peptide vaccine targeting multiple antigens could be considered as an ideal approach for prevention and treatment of brucellosis. According to the latest findings, the most effective immunogenic antigens of brucella to induce immune responses are included Omp31, BP26, BLS, DnaK and L7-L12. Therefore, in the present study, an in silico approach was used to design a novel multi-epitope vaccine to elicit a desirable immune response against brucellosis. First, five novel T-cell epitopes were selected from Omp31, BP26, BLS, DnaK and L7-L12 proteins using different servers. In addition, helper epitopes selected from Tetanus toxin fragment C (TTFrC) were applied to induce CD4+ helper T lymphocytes (HTLs) responses. Selected epitopes were fused together by GPGPG linkers to facilitate the immune processing and epitope presentation. Moreover, cholera toxin B (CTB) was linked to N terminal of vaccine construct as an adjuvant by using EAAAK linker. A multi-epitope vaccine was designed based on predicted epitopes which was 377 amino acid residues in length. Then, the physico-chemical properties, secondary and tertiary structures, stability, intrinsic protein disorder, solubility and allergenicity of this multi-epitope vaccine were assessed using immunoinformatics tools and servers. Based on obtained results, a soluble, and non-allergic protein with 40.59kDa molecular weight was constructed. Expasy ProtParam classified this chimeric protein as a stable protein and also 89.8% residues of constructed vaccine were located in favored regions of the Ramachandran plot. Furthermore, this multi-epitope peptide vaccine was able to strongly induce T cell and B-cell mediated immune responses. In conclusion, immunoinformatics analysis indicated that this multi-epitope peptide vaccine can be effectively expressed and potentially be used for prophylactic or therapeutic usages against brucellosis. Copyright © 2017 Elsevier B.V. All

  15. IgE vs IgG4 epitopes of the peanut allergen Ara h 1 in patients with severe allergy

    DEFF Research Database (Denmark)

    Bøgh, Katrine Lindholm; Nielsen, H.; Eiwegger, T.

    2013-01-01

    to the allergen. However, recent studies have demonstrated the very importance of the IgG4-epitope affinity for the blocking ability. Studies comparing IgE and IgG4 binding epitopes mainly focus on the identification of linear epitopes. Peanut allergy is one of the most severe and persistent forms of food allergy....... The importance of conformational epitopes, of the major peanut allergen Ara h 1, has been demonstrated. The aim of this study was to compare Ara h 1-specific epitope patterns for IgE and IgG4 in patients with severe peanut allergy applying a method suitable to identify both linear and conformational epitopes....... Methods: Ara h 1-specific IgE and IgG4 epitope patterns were examined by competitive immunoscreening of a phage-displayed random 7-mer peptide library using polyclonal IgE and IgG4 from three individual patients suffering from severe peanut allergy. The resulting peptide sequences were mapped...

  16. Lym-1 Chimeric Antigen Receptor T Cells Exhibit Potent Anti-Tumor Effects against B-Cell Lymphoma

    Directory of Open Access Journals (Sweden)

    Long Zheng

    2017-12-01

    Full Text Available T cells expressing chimeric antigen receptors (CARs recognizing CD19 epitopes have produced remarkable anti-tumor effects in patients with B-cell malignancies. However, cancer cells lacking recognized epitopes can emerge, leading to relapse and death. Thus, CAR T cells targeting different epitopes on different antigens could improve immunotherapy. The Lym-1 antibody targets a conformational epitope of Human Leukocyte Antigen-antigen D Related (HLA-DR on the surface of human B-cell lymphomas. Lym-1 CAR T cells were thus generated for evaluation of cytotoxic activity towards lymphoma cells in vitro and in vivo. Human T cells from healthy donors were transduced to express a Lym-1 CAR, and assessed for epitope-driven function in culture and towards Raji xenografts in NOD-scidIL2Rgammanull (NSG mice. Lym-1 CAR T cells exhibited epitope-driven activation and lytic function against human B-cell lymphoma cell lines in culture and mediated complete regression of Raji/Luciferase-Green fluorescent protein (Raji/Luc-GFP in NSG mice with similar or better reactivity than CD19 CAR T cells. Lym-1 CAR transduction of T cells is a promising immunotherapy for patients with Lym-1 epitope positive B-cell malignancies.

  17. Adjuvant-Mediated Epitope Specificity and Enhanced Neutralizing Activity of Antibodies Targeting Dengue Virus Envelope Protein

    Directory of Open Access Journals (Sweden)

    Denicar Lina Nascimento Fabris Maeda

    2017-09-01

    Full Text Available The heat-labile toxins (LT produced by enterotoxigenic Escherichia coli display adjuvant effects to coadministered antigens, leading to enhanced production of serum antibodies. Despite extensive knowledge of the adjuvant properties of LT derivatives, including in vitro-generated non-toxic mutant forms, little is known about the capacity of these adjuvants to modulate the epitope specificity of antibodies directed against antigens. This study characterizes the role of LT and its non-toxic B subunit (LTB in the modulation of antibody responses to a coadministered antigen, the dengue virus (DENV envelope glycoprotein domain III (EDIII, which binds to surface receptors and mediates virus entry into host cells. In contrast to non-adjuvanted or alum-adjuvanted formulations, antibodies induced in mice immunized with LT or LTB showed enhanced virus-neutralization effects that were not ascribed to a subclass shift or antigen affinity. Nonetheless, immunosignature analyses revealed that purified LT-adjuvanted EDIII-specific antibodies display distinct epitope-binding patterns with regard to antibodies raised in mice immunized with EDIII or the alum-adjuvanted vaccine. Notably, the analyses led to the identification of a specific EDIII epitope located in the EF to FG loop, which is involved in the entry of DENV into eukaryotic cells. The present results demonstrate that LT and LTB modulate the epitope specificity of antibodies generated after immunization with coadministered antigens that, in the case of EDIII, was associated with the induction of neutralizing antibody responses. These results open perspectives for the more rational development of vaccines with enhanced protective effects against DENV infections.

  18. Characterization of highly frequent epitope-specific CD45RA+/CCR7+/- T lymphocyte responses against p53-binding domains of the human polyomavirus BK large tumor antigen in HLA-A*0201+ BKV-seropositive donors

    Directory of Open Access Journals (Sweden)

    Zajac Paul

    2006-11-01

    Full Text Available Abstract Human polyomavirus BK (BKV has been implicated in oncogenic transformation. Its ability to replicate is determined by the binding of its large tumor antigen (LTag to products of tumor-suppressor genes regulating cell cycle, as specifically p53. We investigated CD8+ T immune responses to BKV LTag portions involved in p53 binding in HLA-A*0201+ BKV LTag experienced individuals. Peptides selected from either p53-binding region (LTag351–450 and LTag533–626 by current algorithms and capacity to bind HLA-A*0201 molecule were used to stimulate CD8+ T responses, as assessed by IFN-γ gene expression ex vivo and detected by cytotoxicity assays following in vitro culture. We observed epitope-specific immune responses in all HLA-A*0201+ BKV LTag experienced individuals tested. At least one epitope, LTag579–587; LLLIWFRPV, was naturally processed in non professional antigen presenting cells and induced cytotoxic responses with CTL precursor frequencies in the order of 1/20'000. Antigen specific CD8+ T cells were only detectable in the CD45RA+ subset, in both CCR7+ and CCR7- subpopulations. These data indicate that widespread cellular immune responses against epitopes within BKV LTag-p53 binding regions exist and question their roles in immunosurveillance against tumors possibly associated with BKV infection.

  19. Emulsified phosphatidylserine, simple and effective peptide carrier for induction of potent epitope-specific T cell responses.

    Science.gov (United States)

    Ichihashi, Toru; Satoh, Toshifumi; Sugimoto, Chihiro; Kajino, Kiichi

    2013-01-01

    To induce potent epitope-specific T cell immunity by a peptide-based vaccine, epitope peptides must be delivered efficiently to antigen-presenting cells (APCs) in vivo. Therefore, selecting an appropriate peptide carrier is crucial for the development of an effective peptide vaccine. In this study, we explored new peptide carriers which show enhancement in cytotoxic T lymphocyte (CTL) induction capability. Data from an epitope-specific in vivo CTL assay revealed that phosphatidylserine (PS) has a potent adjuvant effect among candidate materials tested. Further analyses showed that PS-conjugated antigens were preferentially and efficiently captured by professional APCs, in particular, by CD11c(+)CD11b(+)MHCII(+) conventional dendritic cells (cDCs) compared to multilamellar liposome-conjugates or unconjugated antigens. In addition, PS demonstrated the stimulatory capacity of peptide-specific helper T cells in vivo. This work indicates that PS is the easily preparable efficient carrier with a simple structure that delivers antigen to professional APCs effectively and induce both helper and cytotoxic T cell responses in vivo. Therefore, PS is a promising novel adjuvant for T cell-inducing peptide vaccines.

  20. Human leukemia antigen-A*0201-restricted epitopes of human endogenous retrovirus W family envelope (HERV-W env) induce strong cytotoxic T lymphocyte responses.

    Science.gov (United States)

    Tu, Xiaoning; Li, Shan; Zhao, Lijuan; Xiao, Ran; Wang, Xiuling; Zhu, Fan

    2017-08-01

    Human endogenous retrovirus W family (HERV-W) envelope (env) has been reported to be related to several human diseases, including autoimmune disorders, and it could activate innate immunity. However, there are no reports investigating whether human leukemia antigen (HLA)-A*0201 + restriction is involved in the immune response caused by HERV-W env in neuropsychiatric diseases. In the present study, HERV-W env-derived epitopes presented by HLA-A*0201 are described with the potential for use in adoptive immunotherapy. Five peptides displaying HLA-A*0201-binding motifs were predicted using SYFEPITHI and BIMAS, and synthesized. A CCK-8 assay showed peptides W, Q and T promoted lymphocyte proliferation. Stimulation of peripheral blood mononuclear cells from HLA-A*0201 + donors with each of these peptides induced peptide-specific CD8 + T cells. High numbers of IFN-γ-secreting T cells were also detectable after several weekly stimulations with W, Q and T. Besides lysis of HERV-W env-loaded target cells, specific apoptosis was also observed. These data demonstrate that human T cells can be sensitized toward HERV-W env peptides (W, Q and T) and, moreover, pose a high killing potential toward HERV-W env-expressing U251 cells. In conclusion, peptides W Q and T, which are HERV-W env antigenic epitopes, have both antigenicity and immunogenicity, and can cause strong T cell immune responses. Our data strengthen the view that HERV-W env should be considered as an autoantigen that can induce autoimmunity in neuropsychiatric diseases, such as multiple sclerosis and schizophrenia. These data might provide an experimental foundation for a HERV-W env peptide vaccine and new insight into the treatment of neuropsychiatric diseases.

  1. Expression of human apolipoprotein A-I epitopes in high density lipoproteins and in serum

    International Nuclear Information System (INIS)

    Marcel, Y.L.; Jewer, D.; Vezina, C.; Milthorp, P.; Weech, P.K.

    1987-01-01

    The expression and immunoreactivity of apolipoprotein (apo) A-I epitopes in high density lipoproteins (HDL) and serum has been investigated using two series of monoclonal antibodies (Mabs) which have been described elsewhere. Series 1 Mabs, identified as 3D4, 6B8, and 5G6, were obtained by immunization and screening with apoA-I, and series 2 Mabs, identified as 2F1, 4H1, 3G10, 4F7, and 5F6, were obtained by immunization and screening with HDL. These Mabs were characterized with respect to their binding to HDL particles in solution. In series 2 Mabs, 2F1, 3G10, and 4F7, which react with apoA-I CNBr-fragments 1 and 2, could precipitate 100% of 125 I-labeled HDL, while 4H1 and 5F6, which react with CNBr fragments 1 and 3, precipitated 90 and 60% of 125 I-labeled HDL, respectively. Therefore, three distinct epitopes mapped to CNBr fragments 1 and 2 have been identified which are expressed on all HDL particles, indicating that several antigenic do mains exist on apoA-I which have the same conformation on all apoA-I-containing lipoproteins. The Mabs reacting at these sites have significantly higher affinity constants for 125 I-labeled HDL than those that failed to precipitate 100% of HDL. This suggests that the high affinity Mabs react with apoA-I epitopes that are both expressed on all lipoproteins and located in thermo-dynamically stable regions of the molecules. All Mabs from series 1 precipitated 35% or less of 125 I-labeled HDL prepared from freshly collected serum, but the proportion of HDL particles expressing the epitopes for these Mabs doubled or more upon serum storage at 4 degrees C. The time course of the alteration of apoA-I antigen in vitro was measured in three normolipemic donors

  2. In Silico Perspectives on the Prediction of the PLP's Epitopes involved in Multiple Sclerosis.

    Science.gov (United States)

    Zamanzadeh, Zahra; Ataei, Mitra; Nabavi, Seyed Massood; Ahangari, Ghasem; Sadeghi, Mehdi; Sanati, Mohammad Hosein

    2017-03-01

    Multiple sclerosis (MS) is the most common autoimmune disease of the central nervous system (CNS). The main cause of the MS is yet to be revealed, but the most probable theory is based on the molecular mimicry that concludes some infections in the activation of T cells against brain auto-antigens that initiate the disease cascade. The Purpose of this research is the prediction of the auto-antigen potency of the myelin proteolipid protein (PLP) in multiple sclerosis. As there wasn't any tertiary structure of PLP available in the Protein Data Bank (PDB) and in order to characterize the structural properties of the protein, we modeled this protein using prediction servers. Meta prediction method, as a new perspective in silico , was performed to fi nd PLPs epitopes. For this purpose, several T cell epitope prediction web servers were used to predict PLPs epitopes against Human Leukocyte Antigens (HLA). The overlap regions, as were predicted by most web servers were selected as immunogenic epitopes and were subjected to the BLASTP against microorganisms. Three common regions, AA 58-74 , AA 161-177 , and AA 238-254 were detected as immunodominant regions through meta-prediction. Investigating peptides with more than 50% similarity to that of candidate epitope AA 58-74 in bacteria showed a similar peptide in bacteria (mainly consistent with that of clostridium and mycobacterium) and spike protein of Alphacoronavirus 1, Canine coronavirus, and Feline coronavirus. These results suggest that cross reaction of the immune system to PLP may have originated from a bacteria or viral infection, and therefore molecular mimicry might have an important role in the progression of MS. Through reliable and accurate prediction of the consensus epitopes, it is not necessary to synthesize all PLP fragments and examine their immunogenicity experimentally ( in vitro ). In this study, the best encephalitogenic antigens were predicted based on bioinformatics tools that may provide reliable

  3. Cell surface carbohydrate changes during embryonic and fetal skin development

    DEFF Research Database (Denmark)

    Dabelsteen, Erik; Holbrook, K; Clausen, H

    1986-01-01

    Monoclonal antibodies to four type 2 chain carbohydrate antigens were used for immunohistochemical studies of embryonic and fetal skin. The antibodies detected N-acetyllactosamine and 3 fucosyl substitutes of this, blood group antigen H, Lex, and Ley. Periderm consistently stained for N-acetyllac......Monoclonal antibodies to four type 2 chain carbohydrate antigens were used for immunohistochemical studies of embryonic and fetal skin. The antibodies detected N-acetyllactosamine and 3 fucosyl substitutes of this, blood group antigen H, Lex, and Ley. Periderm consistently stained for N...

  4. A dominant EV71-specific CD4+ T cell epitope is highly conserved among human enteroviruses.

    Directory of Open Access Journals (Sweden)

    Ruicheng Wei

    Full Text Available CD4+ T cell-mediated immunity plays a central role in determining the immunopathogenesis of viral infections. However, the role of CD4+ T cells in EV71 infection, which causes hand, foot and mouth disease (HFMD, has yet to be elucidated. We applied a sophisticated method to identify promiscuous CD4+ T cell epitopes contained within the sequence of the EV71 polyprotein. Fifteen epitopes were identified, and three of them are dominant ones. The most dominant epitope is highly conserved among enterovirus species, including HFMD-related coxsackieviruses, HFMD-unrelated echoviruses and polioviruses. Furthermore, the CD4+ T cells specific to the epitope indeed cross-reacted with the homolog of poliovirus 3 Sabin. Our findings imply that CD4+ T cell responses to poliovirus following vaccination, or to other enteroviruses to which individuals may be exposed in early childhood, may have a modulating effect on subsequent CD4+ T cell response to EV71 infection or vaccine.

  5. Identifikasi epitop dari Streptococcus mutans terhadap sekretori Imunoglobulin A saliva (The identification of Streptococcus mutans epitopes to secretory Immunoglobulin A saliva

    Directory of Open Access Journals (Sweden)

    Anita Yuliati

    2005-09-01

    Full Text Available S. mutans is one of the etiology agent of dental caries, these bacteria have a surface protein of about 185 kDa named Ag I/II. The secretory of sIgA saliva to Ag I/II of S.mutans has shown to be able to prevent colonization in human oral cavity. Peptides derived from the 824 to 853 residues of the P region of antigen I/II S. mutans related to the pathogenesis of dental caries. The aim of this study was to identify the overlapping sequence of amino acids (epitope derived from the 624 to 853 residues of P of antigen I/II S. mutans to sIgA saliva on caries and caries-free subject in a observational cross sectional study. The P region of antigen I/II S.mutans was cut into 22 peptides of 9 mer sequences with an overlapping of 8 mer and an offset of 1 mer, synthesized on polyethylene pins and tested for the reactivity with an ELISA indirect method to sIgA saliva on caries and caries-free subject. The results of this study showed that amino acid sequences with TPPVKP (832–837 and TAPTKPTY (838–845 were reactive to sIgA saliva on caries and caries-free subject. The conclusion of this study was that the overlapping common sequence of amino acid (epitopes corresponding to TPPVKP (832–837 and TAPTKPTY (838–845 was identified as caries marker epitopes in human.

  6. A Novel Multi-Epitope Vaccine For Cross Protection Against Hepatitis C Virus (HCV: An Immunoinformatics Approach

    Directory of Open Access Journals (Sweden)

    Mokhtar Nosrati

    2017-02-01

    Full Text Available Background: Hepatitis C virus (HCV causes acute and chronic human hepatitis infections. Due to the high genetic diversity and high rates of mutations in the genetic material so far there is no approved vaccine against HCV. Materials and Methods: The aim of this study was to determination B and T cell conserved epitopes of E1 and E2 proteins from HCV and construction of a chimeric peptide as a novel epitope based vaccine for cross-protection against the virus. For this, one B and T-cell epitope from both E1 and E2 which was predicted by EPMLR and Propred-1 server and had the highest score and antigenicity in VaxiJen 2.0 and PAP servers were selected for construction of chimeric protein as a multi-epitope vaccine. Results: The results of this study showed that the chimeric peptide had high antigenicity score and stability.Results also showed that most epitopes of E1 were located in two spectra consist of (45-65,88-107 and 148-182 while the results about B-cell epitopes of E2 showed that this protein had much less epitope than E1. The most epitope predicted for E2 were located in (12-24 and 35-54 spectra Conclusion:  In conclusion, epitope based vaccine which was designed by immunoinformatics methods could be considered as a novel and effective vaccine for cross-protection against HCV infection.

  7. Systematic screening for novel, serologically reactive Hepatitis E Virus epitopes

    Directory of Open Access Journals (Sweden)

    Osterman Andreas

    2012-01-01

    Full Text Available Abstract Background The National Institutes of Health classified Hepatitis E as an emerging disease since Hepatitis E Virus (HEV is the major cause of acute hepatitis in developing countries. Interestingly, an increasing number of sporadic cases of HEV infections are described in industrialized countries as zoonosis from domestic livestock. Despite the increasing relevance of this pathogen in clinical virology, commercial antibody assays are mainly based on fragments of HEV open reading frame (ORF 2 and ORF3. The largest ORF1 (poly-protein, however, is not part of current testing formats. Methods From a synthesized full length HEV genotype 1 cDNA-bank we constructed a complete HEV gene library consisting of 15 respective HEV ORF domains. After bacterial expression and purification of nine recombinant HEV proteins under denaturating conditions serum profiling experiments using 55 sera from patients with known infection status were performed in microarray format. SPSS software assessed the antigenic potential of these nine ORF domains in comparison to seven commercial HEV antigens (genotype 1 and 3 by performing receiver operator characteristics, logistic regression and correlation analysis. Results HEV antigens produced with our method for serum profiling experiments exhibit the same quality and characteristics as commercial antigens. Serum profiling experiments detected Y, V and X domains as ORF1-antigens with potentially comparable diagnostic significance as the well established epitopes of ORF2 and ORF3. However no obvious additional increase in sensitivity or specificity was achieved in diagnostic testing as revealed by bioinformatic analysis. Additionally we found that the C-terminal domain of the potential transmembrane protein ORF3 is responsible for IgG and IgM seroreactivity. Data suggest that there might be a genotype specific seroreactivity of homologous ORF2-antigens. Conclusions The diagnostic value of identified ORF1 epitopes might

  8. Synthetic B-Cell Epitopes Eliciting Cross-Neutralizing Antibodies: Strategies for Future Dengue Vaccine.

    Directory of Open Access Journals (Sweden)

    Babu Ramanathan

    Full Text Available Dengue virus (DENV is a major public health threat worldwide. A key element in protection from dengue fever is the neutralising antibody response. Anti-dengue IgG purified from DENV-2 infected human sera showed reactivity against several peptides when evaluated by ELISA and epitope extraction techniques. A multi-step computational approach predicted six antigenic regions within the E protein of DENV-2 that concur with the 6 epitopes identified by the combined ELISA and epitope extraction approach. The selected peptides representing B-cell epitopes were attached to a known dengue T-helper epitope and evaluated for their vaccine potency. Immunization of mice revealed two novel synthetic vaccine constructs that elicited good humoral immune responses and produced cross-reactive neutralising antibodies against DENV-1, 2 and 3. The findings indicate new directions for epitope mapping and contribute towards the future development of multi-epitope based synthetic peptide vaccine.

  9. Cytomegalovirus (CMV) Epitope-Specific CD4+ T Cells Are Inflated in HIV+ CMV+ Subjects.

    Science.gov (United States)

    Abana, Chike O; Pilkinton, Mark A; Gaudieri, Silvana; Chopra, Abha; McDonnell, Wyatt J; Wanjalla, Celestine; Barnett, Louise; Gangula, Rama; Hager, Cindy; Jung, Dae K; Engelhardt, Brian G; Jagasia, Madan H; Klenerman, Paul; Phillips, Elizabeth J; Koelle, David M; Kalams, Spyros A; Mallal, Simon A

    2017-11-01

    Select CMV epitopes drive life-long CD8 + T cell memory inflation, but the extent of CD4 memory inflation is poorly studied. CD4 + T cells specific for human CMV (HCMV) are elevated in HIV + HCMV + subjects. To determine whether HCMV epitope-specific CD4 + T cell memory inflation occurs during HIV infection, we used HLA-DR7 (DRB1*07:01) tetramers loaded with the glycoprotein B DYSNTHSTRYV (DYS) epitope to characterize circulating CD4 + T cells in coinfected HLA-DR7 + long-term nonprogressor HIV subjects with undetectable HCMV plasma viremia. DYS-specific CD4 + T cells were inflated among these HIV + subjects compared with those from an HIV - HCMV + HLA-DR7 + cohort or with HLA-DR7-restricted CD4 + T cells from the HIV-coinfected cohort that were specific for epitopes of HCMV phosphoprotein-65, tetanus toxoid precursor, EBV nuclear Ag 2, or HIV gag protein. Inflated DYS-specific CD4 + T cells consisted of effector memory or effector memory-RA + subsets with restricted TCRβ usage and nearly monoclonal CDR3 containing novel conserved amino acids. Expression of this near-monoclonal TCR in a Jurkat cell-transfection system validated fine DYS specificity. Inflated cells were polyfunctional, not senescent, and displayed high ex vivo levels of granzyme B, CX 3 CR1, CD38, or HLA-DR but less often coexpressed CD38 + and HLA-DR + The inflation mechanism did not involve apoptosis suppression, increased proliferation, or HIV gag cross-reactivity. Instead, the findings suggest that intermittent or chronic expression of epitopes, such as DYS, drive inflation of activated CD4 + T cells that home to endothelial cells and have the potential to mediate cytotoxicity and vascular disease. Copyright © 2017 by The American Association of Immunologists, Inc.

  10. Epitope mapping of the major allergen from Atlantic cod in Spanish population reveals different IgE-binding patterns.

    Science.gov (United States)

    Perez-Gordo, Marina; Pastor-Vargas, Carlos; Lin, Jing; Bardina, Ludmilla; Cases, Barbara; Ibáñez, Maria Dolores; Vivanco, Fernando; Cuesta-Herranz, Javier; Sampson, Hugh A

    2013-07-01

    IgE-epitope mapping of allergens reveal important information about antigen components involved in allergic reactions. The peptide-based microarray immunoassay has been used to map epitopes of some food allergens. We developed a peptide microarray immunoassay to map allergenic epitopes in parvalbumin from Atlantic cod (Gad m 1), the most consumed cod species in Spain. Sera from 13 fish-allergic patients with specific IgE to cod parvalbumin were used. A library of overlapping peptides was synthesized, representing the primary sequence of Gad m 1. Peptides were used to analyze allergen-specific IgE antibodies in patient sera. 100% of the patients recognized one antigenic region of 15 amino acids in length in Gad m 1. This region only partially correlated with one of the three antigenic determinants of Gad c 1 (Allergen M), parvalbumin from Baltic cod (Gadus callarias). In the 3D model of the protein, this region was located on the surface of the protein. We have identified a relevant antigenic region in Gad m 1. This epitope could be considered as a severity marker and provides additional information to improve fish allergy diagnosis and the design of safe immunotherapeutic tools. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Ex vivo screening for immunodominant viral epitopes by quantitative real time polymerase chain reaction (qRT-PCR

    Directory of Open Access Journals (Sweden)

    Nagorsen Dirk

    2003-12-01

    Full Text Available Abstract The identification and characterization of viral epitopes across the Human Leukocyte Antigen (HLA polymorphism is critical for the development of actives-specific or adoptive immunotherapy of virally-mediated diseases. This work investigates whether cytokine mRNA transcripts could be used to identify epitope-specific HLA-restricted memory T lymphocytes reactivity directly in fresh peripheral blood mononuclear cells (PBMCs from viral-seropositive individuals in response to ex vivo antigen recall. PBMCs from HLA-A*0201 healthy donors, seropositive for Cytomegalovirus (CMV and Influenza (Flu, were exposed for different periods and at different cell concentrations to the HLA-A*0201-restricted viral FluM158–66 and CMVpp65495–503 peptides. Quantitative real time PCR (qRT-PCR was employed to evaluate memory T lymphocyte immune reactivation by measuring the production of mRNA encoding four cytokines: Interferon-γ (IFN-γ, Interleukin-2 (IL-2, Interleukin-4 (IL-4, and Interleukin-10 (IL-10. We could characterize cytokine expression kinetics that illustrated how cytokine mRNA levels could be used as ex vivo indicators of T cell reactivity. Particularly, IFN-γ mRNA transcripts could be consistently detected within 3 to 12 hours of short-term stimulation in levels sufficient to screen for HLA-restricted viral immune responses in seropositive subjects. This strategy will enhance the efficiency of the identification of viral epitopes independently of the individual HLA phenotype and could be used to follow the intensity of immune responses during disease progression or in response to in vivo antigen-specific immunization.

  12. Ex vivo screening for immunodominant viral epitopes by quantitative real time polymerase chain reaction (qRT-PCR)

    Science.gov (United States)

    Provenzano, Maurizio; Mocellin, Simone; Bonginelli, Paola; Nagorsen, Dirk; Kwon, Seog-Woon; Stroncek, David

    2003-01-01

    The identification and characterization of viral epitopes across the Human Leukocyte Antigen (HLA) polymorphism is critical for the development of actives-specific or adoptive immunotherapy of virally-mediated diseases. This work investigates whether cytokine mRNA transcripts could be used to identify epitope-specific HLA-restricted memory T lymphocytes reactivity directly in fresh peripheral blood mononuclear cells (PBMCs) from viral-seropositive individuals in response to ex vivo antigen recall. PBMCs from HLA-A*0201 healthy donors, seropositive for Cytomegalovirus (CMV) and Influenza (Flu), were exposed for different periods and at different cell concentrations to the HLA-A*0201-restricted viral FluM158–66 and CMVpp65495–503 peptides. Quantitative real time PCR (qRT-PCR) was employed to evaluate memory T lymphocyte immune reactivation by measuring the production of mRNA encoding four cytokines: Interferon-γ (IFN-γ), Interleukin-2 (IL-2), Interleukin-4 (IL-4), and Interleukin-10 (IL-10). We could characterize cytokine expression kinetics that illustrated how cytokine mRNA levels could be used as ex vivo indicators of T cell reactivity. Particularly, IFN-γ mRNA transcripts could be consistently detected within 3 to 12 hours of short-term stimulation in levels sufficient to screen for HLA-restricted viral immune responses in seropositive subjects. This strategy will enhance the efficiency of the identification of viral epitopes independently of the individual HLA phenotype and could be used to follow the intensity of immune responses during disease progression or in response to in vivo antigen-specific immunization. PMID:14675481

  13. The nature and combination of subunits used in epitope-based Schistosoma japonicum vaccine formulations affect their efficacy

    Directory of Open Access Journals (Sweden)

    Liu Feng

    2010-11-01

    Full Text Available Abstract Background Schistosomiasis remains a major public health problem in endemic countries and is caused by infections with any one of three primary schistosome species. Although there are no vaccines available to date, this strategy appears feasible since natural immunity develops in individuals suffering from repeated infection during a lifetime. Since vaccinations resulting in both Th1- and Th2-type responses have been shown to contribute to protective immunity, a vaccine formulation with the capacity for stimulating multiple arms of the immune response will likely be the most effective. Previously we developed partially protective, single Th- and B cell-epitope-based peptide-DNA dual vaccines (PDDV (T3-PDDV and B3-PDDV, respectively capable of eliciting immune responses against the Schistosoma japonicum 22.6 kDa tegument antigen (Sj22.6 and a 62 kDa fragment of myosin (Sj62, respectively. Results In this study, we developed PDDV cocktails containing multiple epitopes of S. japonicum from Sj22.6, Sj62 and Sj97 antigens by predicting cytotoxic, helper, and B-cell epitopes, and evaluated vaccine potential in vivo. Results showed that mice immunized with a single-epitope PDDV elicited either Tc, Th, or B cell responses, respectively, and mice immunized with either the T3- or B3- single-epitope PDDV formulation were partially protected against infection. However, mice immunized with a multicomponent (3 PDDV components formulation elicited variable immune responses that were less immunoprotective than single-epitope PDDV formulations. Conclusions Our data show that combining these different antigens did not result in a more effective vaccine formulation when compared to each component administered individually, and further suggest that immune interference resulting from immunizations with antigenically distinct vaccine targets may be an important consideration in the development of multicomponent vaccine preparations.

  14. Human Leukocyte Antigen (HLA) Class I Restricted Epitope Discovery in Yellow Fewer and Dengue Viruses: Importance of HLA Binding Strength

    DEFF Research Database (Denmark)

    Lund, Ole; Nascimento, Eduardo J. M.; Maciel, Milton, Jr

    2011-01-01

    Epitopes from all available full-length sequences of yellow fever virus (YFV) and dengue fever virus (DENV) restricted by Human Leukocyte Antigen class I (HLA-I) alleles covering 12 HLA-I supertypes were predicted using the NetCTL algorithm. A subset of 179 predicted YFV and 158 predicted DENV...... inoculated twice with the 17DD YFV vaccine strain. Three of the YFV A*02:01 restricted peptides activated T-cells from the infected mice in vitro. All three peptides that elicited responses had an HLA binding affinity of 2 nM or less. The results indicate the importance of the strength of HLA binding...

  15. IgE versus IgG4 epitopes of the peanut allergen Ara h 1 in patients with severe allergy

    DEFF Research Database (Denmark)

    Bøgh, Katrine Lindholm; Nielsen, H.; Eiwegger, T.

    2014-01-01

    epitopes. Objective: The aim of this study was to compare Ara h 1-specific IgE and IgG4 epitope recognition patterns in patients with severe peanut allergy, applying a method allowing for identification of both linear and conformational epitopes. Methods: Polyclonal sera from three individual patients......, suffering from severe allergic reaction to peanuts, including anaphylaxis, were used to analyse the IgE and IgG4 epitope recognition patterns of the major peanut allergen Ara h 1. Epitope identification was conducted by competitive immuno-screening of a phage-displayed random heptamer peptide library...

  16. EpiJen: a server for multistep T cell epitope prediction

    Directory of Open Access Journals (Sweden)

    Guan Pingping

    2006-03-01

    Full Text Available Abstract Background The main processing pathway for MHC class I ligands involves degradation of proteins by the proteasome, followed by transport of products by the transporter associated with antigen processing (TAP to the endoplasmic reticulum (ER, where peptides are bound by MHC class I molecules, and then presented on the cell surface by MHCs. The whole process is modeled here using an integrated approach, which we call EpiJen. EpiJen is based on quantitative matrices, derived by the additive method, and applied successively to select epitopes. EpiJen is available free online. Results To identify epitopes, a source protein is passed through four steps: proteasome cleavage, TAP transport, MHC binding and epitope selection. At each stage, different proportions of non-epitopes are eliminated. The final set of peptides represents no more than 5% of the whole protein sequence and will contain 85% of the true epitopes, as indicated by external validation. Compared to other integrated methods (NetCTL, WAPP and SMM, EpiJen performs best, predicting 61 of the 99 HIV epitopes used in this study. Conclusion EpiJen is a reliable multi-step algorithm for T cell epitope prediction, which belongs to the next generation of in silico T cell epitope identification methods. These methods aim to reduce subsequent experimental work by improving the success rate of epitope prediction.

  17. Enterovirus 71 viral capsid protein linear epitopes: Identification and characterization

    Directory of Open Access Journals (Sweden)

    Gao Fan

    2012-01-01

    Full Text Available Abstract Background To characterize the human humoral immune response against enterovirus 71 (EV71 infection and map human epitopes on the viral capsid proteins. Methods A series of 256 peptides spanning the capsid proteins (VP1, VP2, VP3 of BJ08 strain (genomic C4 were synthesized. An indirect enzyme-linked immunosorbent assay (ELISA was carried out to detect anti-EV71 IgM and IgG in sera of infected children in acute or recovery phase. The partially overlapped peptides contained 12 amino acids and were coated in the plate as antigen (0.1 μg/μl. Sera from rabbits immunized with inactivated BJ08 virus were also used to screen the peptide panel. Results A total of 10 human anti-EV71 IgM epitopes (vp1-14 in VP1; vp2-6, 21, 40 and 50 in VP2 and vp3-10, 12, 15, 24 and 75 in VP3 were identified in acute phase sera. In contrast, only one anti-EV71 IgG epitope in VP1 (vp1-15 was identified in sera of recovery stage. Four rabbit anti-EV71 IgG epitopes (vp1-14, 31, 54 and 71 were identified and mapped to VP1. Conclusion These data suggested that human IgM epitopes were mainly mapped to VP2 and VP3 with multi-epitope responses occurred at acute infection, while the only IgG epitope located on protein VP1 was activated in recovery phase sera. The dynamic changes of humoral immune response at different stages of infection may have public health significance in evaluation of EV71 vaccine immunogenicity and the clinical application of diagnostic reagents.

  18. Structural and Dynamic Insight into Hirudin Epitopes-HLA- DRB1 ...

    African Journals Online (AJOL)

    It is produced in the salivary glands of the leech Hirudo .... for epitope selection has a specific algorithm and was developed in ..... from Plasmodium falciparum pre-erythrocytic-stage antigens ... Comar M. Identification of a vaccine against.

  19. Emulsified phosphatidylserine, simple and effective peptide carrier for induction of potent epitope-specific T cell responses.

    Directory of Open Access Journals (Sweden)

    Toru Ichihashi

    Full Text Available BACKGROUND: To induce potent epitope-specific T cell immunity by a peptide-based vaccine, epitope peptides must be delivered efficiently to antigen-presenting cells (APCs in vivo. Therefore, selecting an appropriate peptide carrier is crucial for the development of an effective peptide vaccine. In this study, we explored new peptide carriers which show enhancement in cytotoxic T lymphocyte (CTL induction capability. METHODOLOGY/PRINCIPAL FINDINGS: Data from an epitope-specific in vivo CTL assay revealed that phosphatidylserine (PS has a potent adjuvant effect among candidate materials tested. Further analyses showed that PS-conjugated antigens were preferentially and efficiently captured by professional APCs, in particular, by CD11c(+CD11b(+MHCII(+ conventional dendritic cells (cDCs compared to multilamellar liposome-conjugates or unconjugated antigens. In addition, PS demonstrated the stimulatory capacity of peptide-specific helper T cells in vivo. CONCLUSIONS/SIGNIFICANCE: This work indicates that PS is the easily preparable efficient carrier with a simple structure that delivers antigen to professional APCs effectively and induce both helper and cytotoxic T cell responses in vivo. Therefore, PS is a promising novel adjuvant for T cell-inducing peptide vaccines.

  20. Co-administration of α-GalCer analog and TLR4 agonist induces robust CD8+ T-cell responses to PyCS protein and WT-1 antigen and activates memory-like effector NKT cells

    OpenAIRE

    Coelho-dos-Reis, Jordana G.; Huang, Jing; Tsao, Tiffany; Pereira, Felipe V.; Funakoshi, Ryota; Nakajima, Hiroko; Sugiyama, Haruo; Tsuji, Moriya

    2016-01-01

    In the present study, the combined adjuvant effect of 7DW8-5, a potent α-GalCer-analog, and monophosphoryl lipid A (MPLA), a TLR4 agonist, on the induction of vaccine-induced CD8+ T-cell responses and protective immunity was evaluated. Mice were immunized with peptides corresponding to the CD8+ T-cell epitopes of a malaria antigen, a circumsporozoite protein of Plasmodium yoelii, and a tumor antigen, a Wilms Tumor antigen-1 (WT-1), together with 7DW8-5 and MPLA, as an adjuvant. These immuniza...

  1. Specificity Characterization of SLA Class I Molecules Binding to Swine-Origin Viral Cytotoxic T Lymphocyte Epitope Peptides in Vitro

    Directory of Open Access Journals (Sweden)

    Caixia Gao

    2017-12-01

    Full Text Available Swine leukocyte antigen (SLA class I molecules play a crucial role in generating specific cellular immune responses against viruses and other intracellular pathogens. They mainly bind and present antigens of intracellular origin to circulating MHC I-restricted cytotoxic T lymphocytes (CTLs. Binding of an appropriate epitope to an SLA class I molecule is the single most selective event in antigen presentation and the first step in the killing of infected cells by CD8+ CTLs. Moreover, the antigen epitopes are strictly restricted to specific SLA molecules. In this study, we constructed SLA class I complexes in vitro comprising viral epitope peptides, the extracellular region of the SLA-1 molecules, and β2-microglobulin (β2m using splicing overlap extension polymerase chain reaction (SOE-PCR. The protein complexes were induced and expressed in an Escherichia coli prokaryotic expression system and subsequently purified and refolded. Specific binding of seven SLA-1 proteins to one classical swine fever virus (CSFV and four porcine reproductive and respiratory syndrome virus (PRRSV epitope peptides was detected by enzyme-linked immunosorbent assay (ELISA-based method. The SLA-1∗13:01, SLA-1∗11:10, and SLA-1∗11:01:02 proteins were able to bind specifically to different CTL epitopes of CSFV and PRRSV and the MHC restrictions of the five epitopes were identified. The fixed combination of Asn151Val152 residues was identified as the potentially key amino acid residues influencing the binding of viral several CTL epitope peptides to SLA-1∗13:01 and SLA-1∗04:01:01 proteins. The more flexible pocket E in the SLA-1∗13:01 protein might have fewer steric limitations and therefore be able to accommodate more residues of viral CTL epitope peptides, and may thus play a critical biochemical role in determining the peptide-binding motif of SLA-1∗13:01. Characterization of the binding specificity of peptides to SLA class I molecules provides an

  2. Analysis of Conformational B-Cell Epitopes in the Antibody-Antigen Complex Using the Depth Function and the Convex Hull.

    Directory of Open Access Journals (Sweden)

    Wei Zheng

    Full Text Available The prediction of conformational b-cell epitopes plays an important role in immunoinformatics. Several computational methods are proposed on the basis of discrimination determined by the solvent-accessible surface between epitopes and non-epitopes, but the performance of existing methods is far from satisfying. In this paper, depth functions and the k-th surface convex hull are used to analyze epitopes and exposed non-epitopes. On each layer of the protein, we compute relative solvent accessibility and four different types of depth functions, i.e., Chakravarty depth, DPX, half-sphere exposure and half space depth, to analyze the location of epitopes on different layers of the proteins. We found that conformational b-cell epitopes are rich in charged residues Asp, Glu, Lys, Arg, His; aliphatic residues Gly, Pro; non-charged residues Asn, Gln; and aromatic residue Tyr. Conformational b-cell epitopes are rich in coils. Conservation of epitopes is not significantly lower than that of exposed non-epitopes. The average depths (obtained by four methods for epitopes are significantly lower than that of non-epitopes on the surface using the Wilcoxon rank sum test. Epitopes are more likely to be located in the outer layer of the convex hull of a protein. On the benchmark dataset, the cumulate 10th convex hull covers 84.6% of exposed residues on the protein surface area, and nearly 95% of epitope sites. These findings may be helpful in building a predictor for epitopes.

  3. Intensified follow-up in colorectal cancer patients using frequent Carcino-Embryonic Antigen (CEA) measurements and CEA-triggered imaging : Results of the randomized "CEAwatch" trial

    NARCIS (Netherlands)

    Verberne, C. J.; Zhan, Z.; van den Heuvel, E.; Grossmann, I.; Doornbos, P. M.; Havenga, K.; Manusama, E.; Klaase, J.; van der Mijle, H. C. J.; Lamme, B.; Bosscha, K.; Baas, P.; van Ooijen, B.; Nieuwenhuijzen, G.; Marinelli, A.; van der Zaag, E.; Wasowicz, D.; de Bock, G. H.; Wiggers, T.

    Aim: The value of frequent Carcino-Embryonic Antigen (CEA) measurements and CEA-triggered imaging for detecting recurrent disease in colorectal cancer (CRC) patients was investigated in search for an evidence-based follow-up protocol. Methods: This is a randomized-controlled multicenter prospective

  4. HLA-A2–Restricted Cytotoxic T Lymphocyte Epitopes from Human Heparanase as Novel Targets for Broad-Spectrum Tumor Immunotherapy

    Directory of Open Access Journals (Sweden)

    Ting Chen

    2008-09-01

    Full Text Available Peptide vaccination for cancer immunotherapy requires identification of peptide epitopes derived from antigenic proteins associated with tumors. Heparanase (Hpa is broadly expressed in various advanced tumors and seems to be an attractive new tumor-associated antigen. The present study was designed to predict and identify HLA-A2– restricted cytotoxic T lymphocyte (CTL epitopes in the protein of human Hpa. For this purpose, HLA-A2–restricted CTL epitopes were identified using the following four-step procedure: 1 a computer-based epitope prediction from the amino acid sequence of human Hpa, 2 a peptide-binding assay to determine the affinity of the predicted protein with the HLA-A2 molecule, 3 stimulation of the primary T-cell response against the predicted peptides in vitro, and 4 testing of the induced CTLs toward different kinds of carcinoma cells expressing Hpa antigens and/or HLA-A2. The results demonstrated that, of the tested peptides, effectors induced by peptides of human Hpa containing residues 525-533 (PAFSYSFFV, Hpa525, 277-285 (KMLKSFLKA, Hpa277, and 405-413 (WLSLLFKKL, Hpa405 could effectively lyse various tumor cell lines that were Hpa-positive and HLA-A2-matched. We also found that these peptide-specific CTLs could not lyse autologous lymphocytes with low Hpa activity. Further study revealed that Hpa525, Hpa277, and Hpa405 peptides increased the frequency of IFN-γ–producing T cells compared to a negative peptide. Our results suggest that Hpa525, Hpa277, and Hpa405 peptides are new HLA-A2–restricted CTL epitopes capable of inducing Hpa-specific CTLs in vitro. Because Hpa is expressed in most advanced malignant tumors, Hpa525, Hpa277, and Hpa405 peptide–based vaccines may be useful for the immunotherapy for patients with advanced tumors.

  5. Antigenic determinants of prostate-specific antigen (PSA) and development of assays specific for different forms of PSA.

    OpenAIRE

    Nilsson, O.; Peter, A.; Andersson, I.; Nilsson, K.; Grundstr?m, B.; Karlsson, B.

    1997-01-01

    Monoclonal antibodies were raised against prostate-specific antigen (PSA) by immunization with purified free PSA, i.e. not in complex with any protease inhibitor (F-PSA) and PSA in complex with alpha1-anti-chymotrypsin (PSA-ACT). Epitope mapping of PSA using the established monoclonal antibody revealed a complex pattern of independent and partly overlapping antigenic domains in the PSA molecule. Four independent antigenic domains and at least three partly overlapping domains were exposed both...

  6. Lectin binding profiles of SSEA-4 enriched, pluripotent human embryonic stem cell surfaces

    Science.gov (United States)

    Venable, Alison; Mitalipova, Maisam; Lyons, Ian; Jones, Karen; Shin, Soojung; Pierce, Michael; Stice, Steven

    2005-01-01

    Background Pluripotent human embryonic stem cells (hESCs) have the potential to form every cell type in the body. These cells must be appropriately characterized prior to differentiation studies or when defining characteristics of the pluripotent state. Some developmentally regulated cell surface antigens identified by monoclonal antibodies in a variety of species and stem cell types have proven to be side chains of membrane glycolipids and glycoproteins. Therefore, to examine hESC surfaces for other potential pluripotent markers, we used a panel of 14 lectins, which were chosen based on their specificity for a variety of carbohydrates and carbohydrate linkages, along with stage specific embryonic antigen-4 (SSEA-4), to determine binding quantitation by flow cytometry and binding localization in adherent colonies by immunocytochemistry. Results Enriching cells for SSEA-4 expression increased the percentage of SSEA-4 positive cells to 98–99%. Using enriched high SSEA-4-expressing hESCs, we then analyzed the binding percentages of selected lectins and found a large variation in binding percentages ranging from 4% to 99% binding. Lycopersicon (tomato)esculetum lectin (TL), Ricinus communis agglutinin (RCA), and Concanavalin A (Con A) bound to SSEA-4 positive regions of hESCs and with similar binding percentages as SSEA-4. In contrast, we found Dolichos biflorus agglutinin (DBA) and Lotus tetragonolobus lectin (LTL) did not bind to hESCs while Phaseolus vulgaris leuco-agglutinin (PHA-L), Vicia villosa agglutinin (VVA), Ulex europaeus agglutinin (UEA), Phaseolus vulgaris erythro-agglutinin (PHA-E), and Maackia amurensis agglutinin (MAA) bound partially to hESCs. These binding percentages correlated well with immunocytochemistry results. Conclusion Our results provide information about types of carbohydrates and carbohydrate linkages found on pluripotent hESC surfaces. We propose that TL, RCA and Con A may be used as markers that are associated with the pluripotent

  7. Lectin binding profiles of SSEA-4 enriched, pluripotent human embryonic stem cell surfaces

    Directory of Open Access Journals (Sweden)

    Shin Soojung

    2005-07-01

    Full Text Available Abstract Background Pluripotent human embryonic stem cells (hESCs have the potential to form every cell type in the body. These cells must be appropriately characterized prior to differentiation studies or when defining characteristics of the pluripotent state. Some developmentally regulated cell surface antigens identified by monoclonal antibodies in a variety of species and stem cell types have proven to be side chains of membrane glycolipids and glycoproteins. Therefore, to examine hESC surfaces for other potential pluripotent markers, we used a panel of 14 lectins, which were chosen based on their specificity for a variety of carbohydrates and carbohydrate linkages, along with stage specific embryonic antigen-4 (SSEA-4, to determine binding quantitation by flow cytometry and binding localization in adherent colonies by immunocytochemistry. Results Enriching cells for SSEA-4 expression increased the percentage of SSEA-4 positive cells to 98–99%. Using enriched high SSEA-4-expressing hESCs, we then analyzed the binding percentages of selected lectins and found a large variation in binding percentages ranging from 4% to 99% binding. Lycopersicon (tomatoesculetum lectin (TL, Ricinus communis agglutinin (RCA, and Concanavalin A (Con A bound to SSEA-4 positive regions of hESCs and with similar binding percentages as SSEA-4. In contrast, we found Dolichos biflorus agglutinin (DBA and Lotus tetragonolobus lectin (LTL did not bind to hESCs while Phaseolus vulgaris leuco-agglutinin (PHA-L, Vicia villosa agglutinin (VVA, Ulex europaeus agglutinin (UEA, Phaseolus vulgaris erythro-agglutinin (PHA-E, and Maackia amurensis agglutinin (MAA bound partially to hESCs. These binding percentages correlated well with immunocytochemistry results. Conclusion Our results provide information about types of carbohydrates and carbohydrate linkages found on pluripotent hESC surfaces. We propose that TL, RCA and Con A may be used as markers that are associated with the

  8. Measles Virus Hemagglutinin epitopes immunogenic in natural infection and vaccination are targeted by broad or genotype-specific neutralizing monoclonal antibodies.

    Science.gov (United States)

    Muñoz-Alía, Miguel Angel; Casasnovas, José M; Celma, María Luisa; Carabaña, Juan; Liton, Paloma B; Fernandez-Muñoz, Rafael

    2017-05-15

    Measles virus (MV) remains a leading cause of vaccine-preventable deaths in children. Protection against MV is associated with neutralizing antibodies that preferentially recognize the viral hemagglutinin (MV-H), and to a lesser extent, the fusion protein (MV-F). Although MV is serologically monotypic, 24 genotypes have been identified. Here we report three neutralization epitopes conserved in the more prevalent circulating MV genotypes, two located in the MV-H receptor binding site (RBS) (antigenic site III) and a third in MV-H/MV-F interphase (antigenic site Ia) which are essential for MV multiplication. In contrast, two MV-H neutralization epitopes, showed a genotype-specific neutralization escape due to a single amino acid change, that we mapped in the "noose" antigenic site, or an enhanced neutralization epitope (antigenic site IIa). The monoclonal antibody (mAb) neutralization potency correlated with its binding affinity and was mainly driven by kinetic dissociation rate (k off ). We developed an immunoassay for mAb binding to MV-H in its native hetero-oligomeric structure with MV-F on the surface of a MV productive steady-state persistently infected (p.i.) human cell lines, and a competitive-binding assay with serum from individuals with past infection by different MV genotypes. Binding assays revealed that a broad neutralization epitope, in RBS antigenic site, a genotype specific neutralization epitopes, in noose and IIa sites, were immunogenic in natural infection and vaccination and may elicit long-lasting humoral immunity that might contribute to explain MV immunogenic stability. These results support the design of improved measles vaccines, broad-spectrum prophylactic or therapeutic antibodies and MV-used in oncolytic therapies. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Dendritic cell mediated delivery of plasmid DNA encoding LAMP/HIV-1 Gag fusion immunogen enhances T cell epitope responses in HLA DR4 transgenic mice.

    Directory of Open Access Journals (Sweden)

    Gregory G Simon

    2010-01-01

    Full Text Available This report describes the identification and bioinformatics analysis of HLA-DR4-restricted HIV-1 Gag epitope peptides, and the application of dendritic cell mediated immunization of DNA plasmid constructs. BALB/c (H-2d and HLA-DR4 (DRA1*0101, DRB1*0401 transgenic mice were immunized with immature dendritic cells transfected by a recombinant DNA plasmid encoding the lysosome-associated membrane protein-1/HIV-1 Gag (pLAMP/gag chimera antigen. Three immunization protocols were compared: 1 primary subcutaneous immunization with 1x10(5 immature dendritic cells transfected by electroporation with the pLAMP/gag DNA plasmid, and a second subcutaneous immunization with the naked pLAMP/gag DNA plasmid; 2 primary immunization as above, and a second subcutaneous immunization with a pool of overlapping peptides spanning the HIV-1 Gag sequence; and 3 immunization twice by subcutaneous injection of the pLAMP/gag DNA plasmid. Primary immunization with pLAMP/gag-transfected dendritic cells elicited the greatest number of peptide specific T-cell responses, as measured by ex vivo IFN-gamma ELISpot assay, both in BALB/c and HLA-DR4 transgenic mice. The pLAMP/gag-transfected dendritic cells prime and naked DNA boost immunization protocol also resulted in an increased apparent avidity of peptide in the ELISpot assay. Strikingly, 20 of 25 peptide-specific T-cell responses in the HLA-DR4 transgenic mice contained sequences that corresponded, entirely or partially to 18 of the 19 human HLA-DR4 epitopes listed in the HIV molecular immunology database. Selection of the most conserved epitope peptides as vaccine targets was facilitated by analysis of their representation and variability in all reported sequences. These data provide a model system that demonstrates a the superiority of immunization with dendritic cells transfected with LAMP/gag plasmid DNA, as compared to naked DNA, b the value of HLA transgenic mice as a model system for the identification and evaluation

  10. Fasciola spp: Mapping of the MF6 epitope and antigenic analysis of the MF6p/HDM family of heme-binding proteins.

    Directory of Open Access Journals (Sweden)

    Victoria Martínez-Sernández

    Full Text Available MF6p/FhHDM-1 is a small cationic heme-binding protein which is recognized by the monoclonal antibody (mAb MF6, and abundantly present in parenchymal cells and secreted antigens of Fasciola hepatica. Orthologs of this protein (MF6p/HDMs also exist in other causal agents of important foodborne trematodiasis, such as Clonorchis sinensis, Opisthorchis viverrini and Paragonimus westermani. Considering that MF6p/FhHDM-1 is relevant for heme homeostasis in Fasciola and was reported to have immunomodulatory properties, this protein is expected to be a useful target for vaccination. Thus, in this study we mapped the epitope recognized by mAb MF6 and evaluated its antigenicity in sheep. The sequence of the MF6p/FhHDM-1 ortholog from F. gigantica (MF6p/FgHDM-1 was also reported. By means of ELISA inhibitions with overlapping synthetic peptides, we determined that the epitope recognized by mAb MF6 is located within the C-terminal moiety of MF6p/FhHDM-1, which is the most conserved region of MF6p/HDMs. By immunoblotting analysis of parasite extracts and ELISA inhibitions with synthetic peptides we also determined that mAb MF6 reacted with the same intensity with F. hepatica and F. gigantica, and in decreasing order of intensity with C. sinensis, O.viverrini and P. westermani orthologs. On the contrary, mAb MF6 showed no reactivity against Dicrocoelium dendriticum and Schistosoma mansoni. The study of the recognition of peptides covering different regions of MF6p/FhHDM-1 by sera from immunized sheep revealed that the C-terminal moiety is the most antigenic, thus being of potential interest for vaccination. We also demonstrated that the production of antibodies to MF6p/FhHDM-1 in sheep infected by F. hepatica occurs relatively early and follows the same pattern as those produced against L-cathepsins.

  11. Endoplasmic reticulum targeting sequence enhances HBV-specific cytotoxic T lymphocytes induced by a CTL epitope-based DNA vaccine

    International Nuclear Information System (INIS)

    Xu Wei; Chu Yiwei; Zhang Ruihua; Xu Huanbin; Wang Ying; Xiong Sidong

    2005-01-01

    CD8 + T cells play a critical role in protective immunity against Hepatitis B Virus (HBV). Epitope-based DNA vaccines expressing HBV-dominant CTL epitopes can be used as candidate vaccines capable of inducing cytotoxic T Lymphocytes (CTL) responses. A plasmid DNA encoding a CTL epitope of HBV core antigen, HBc 18-27 , was constructed. Intramuscular immunization of C57BL/6 mice with this DNA vaccine resulted in successful induction of HBV-specific CTL responses. In order to promote transportation of the peptide into endoplasmic reticulum (ER) to bind to MHC class I molecules for optimal class I antigen presentation, an ER targeting sequence (ERTS) was fused with the C 18-27 encoding gene. ERTS fusion significantly enhanced specific CD8 + T cell responses in terms of CTL cytolysis as well as IFN-γ secretion. This enhancement was correlated with promoted epitope presentation on target cell surface. We report here an enhanced immunogenicity of an epitope-based DNA vaccine using an ER targeting signal sequence, which has significant implications for future design of therapeutic HBV vaccine

  12. Prediction and characterization of novel epitopes of serotype A foot-and-mouth disease viruses circulating in East Africa using site-directed mutagenesis

    Science.gov (United States)

    Bari, Fufa Dawo; Parida, Satya; Asfor, Amin S.; Haydon, Daniel T.; Reeve, Richard; Paton, David J.

    2015-01-01

    Epitopes on the surface of the foot-and-mouth disease virus (FMDV) capsid have been identified by monoclonal antibody (mAb) escape mutant studies leading to the designation of four antigenic sites in serotype A FMDV. Previous work focused on viruses isolated mainly from Asia, Europe and Latin America. In this study we report on the prediction of epitopes in African serotype A FMDVs and testing of selected epitopes using reverse genetics. Twenty-four capsid amino acid residues were predicted to be of antigenic significance by analysing the capsid sequences (n = 56) using in silico methods, and six residues by correlating capsid sequence with serum–virus neutralization data. The predicted residues were distributed on the surface-exposed capsid regions, VP1–VP3. The significance of residue changes at eight of the predicted epitopes was tested by site-directed mutagenesis using a cDNA clone resulting in the generation of 12 mutant viruses involving seven sites. The effect of the amino acid substitutions on the antigenic nature of the virus was assessed by virus neutralization (VN) test. Mutations at four different positions, namely VP1-43, VP1-45, VP2-191 and VP3-132, led to significant reduction in VN titre (P value = 0.05, 0.05, 0.001 and 0.05, respectively). This is the first time, to our knowledge, that the antigenic regions encompassing amino acids VP1-43 to -45 (equivalent to antigenic site 3 in serotype O), VP2-191 and VP3-132 have been predicted as epitopes and evaluated serologically for serotype A FMDVs. This identifies novel capsid epitopes of recently circulating serotype A FMDVs in East Africa. PMID:25614587

  13. Synthetic Long Peptide Influenza Vaccine Containing Conserved T and B Cell Epitopes Reduces Viral Load in Lungs of Mice and Ferrets.

    Directory of Open Access Journals (Sweden)

    S K Rosendahl Huber

    Full Text Available Currently licensed influenza vaccines mainly induce antibodies against highly variable epitopes. Due to antigenic drift, protection is subtype or strain-specific and regular vaccine updates are required. In case of antigenic shifts, which have caused several pandemics in the past, completely new vaccines need to be developed. We set out to develop a vaccine that provides protection against a broad range of influenza viruses. Therefore, highly conserved parts of the influenza A virus (IAV were selected of which we constructed antibody and T cell inducing peptide-based vaccines. The B epitope vaccine consists of the highly conserved HA2 fusion peptide and M2e peptide coupled to a CD4 helper epitope. The T epitope vaccine comprises 25 overlapping synthetic long peptides of 26-34 amino acids, thereby avoiding restriction for a certain MHC haplotype. These peptides are derived from nucleoprotein (NP, polymerase basic protein 1 (PB1 and matrix protein 1 (M1. C57BL/6 mice, BALB/c mice, and ferrets were vaccinated with the B epitopes, 25 SLP or a combination of both. Vaccine-specific antibodies were detected in sera of mice and ferrets and vaccine-specific cellular responses were measured in mice. Following challenge, both mice and ferrets showed a reduction of virus titers in the lungs in response to vaccination. Summarizing, a peptide-based vaccine directed against conserved parts of influenza virus containing B and T cell epitopes shows promising results for further development. Such a vaccine may reduce disease burden and virus transmission during pandemic outbreaks.

  14. An MHC-restricted antibody-based chimeric antigen receptor requires TCR-like affinity to maintain antigen specificity

    Directory of Open Access Journals (Sweden)

    Marcela V Maus

    2016-01-01

    Full Text Available Chimeric antigen receptors (CARs are synthetic receptors that usually redirect T cells to surface antigens independent of human leukocyte antigen (HLA. Here, we investigated a T cell receptor-like CAR based on an antibody that recognizes HLA-A*0201 presenting a peptide epitope derived from the cancer-testis antigen NY-ESO-1. We hypothesized that this CAR would efficiently redirect transduced T cells in an HLA-restricted, antigen-specific manner. However, we found that despite the specificity of the soluble Fab, the same antibody in the form of a CAR caused moderate lysis of HLA-A2 expressing targets independent of antigen owing to T cell avidity. We hypothesized that lowering the affinity of the CAR for HLA-A2 would improve its specificity. We undertook a rational approach of mutating residues that, in the crystal structure, were predicted to stabilize binding to HLA-A2. We found that one mutation (DN lowered the affinity of the Fab to T cell receptor-range and restored the epitope specificity of the CAR. DN CAR T cells lysed native tumor targets in vitro, and, in a xenogeneic mouse model implanted with two human melanoma lines (A2+/NYESO+ and A2+/NYESO−, DN CAR T cells specifically migrated to, and delayed progression of, only the HLA-A2+/NY-ESO-1+ melanoma. Thus, although maintaining MHC-restricted antigen specificity required T cell receptor-like affinity that decreased potency, there is exciting potential for CARs to expand their repertoire to include a broad range of intracellular antigens.

  15. HLA-A*0201-restricted CTL epitope of a novel osteosarcoma antigen, papillomavirus binding factor

    Directory of Open Access Journals (Sweden)

    Tsukahara Tomohide

    2009-06-01

    Full Text Available Abstract Background To develop peptide-based immunotherapy for osteosarcoma, we previously identified papillomavirus binding factor (PBF as a CTL-defined osteosarcoma antigen in the context of HLA-B55. However, clinical application of PBF-based immunotherapy requires identification of naturally presented CTL epitopes in osteosarcoma cells in the context of more common HLA molecules such as HLA-A2. Methods Ten peptides with the HLA-A*0201 binding motif were synthesized from the amino acid sequence of PBF according to the BIMAS score and screened with an HLA class I stabilization assay. The frequency of CTLs recognizing the selected PBF-derived peptide was determined in peripheral blood of five HLA-A*0201+ patients with osteosarcoma using limiting dilution (LD/mixed lymphocyte peptide culture (MLPC followed by tetramer-based frequency analysis. Attempts were made to establish PBF-specific CTL clones from the tetramer-positive CTL pool by a combination of limiting dilution and single-cell sorting. The cytotoxicity of CTLs was assessed by 51Cr release assay. Results Peptide PBF A2.2 showed the highest affinity to HLA-A*0201. CD8+ T cells reacting with the PBF A2.2 peptide were detected in three of five patients at frequencies from 2 × 10-7 to 5 × 10-6. A tetramer-positive PBF A2.2-specific CTL line, 5A9, specifically lysed allogeneic osteosarcoma cell lines that expressed both PBF and either HLA-A*0201 or HLA-A*0206, autologous tumor cells, and T2 pulsed with PBF A2.2. Five of 12 tetramer-positive CTL clones also lysed allogeneic osteosarcoma cell lines expressing both PBF and either HLA-A*0201 or HLA-A*0206 and T2 pulsed with PBF A2.2. Conclusion These findings indicate that PBF A2.2 serves as a CTL epitope on osteosarcoma cells in the context of HLA-A*0201, and potentially, HLA-A*0206. This extends the availability of PBF-derived therapeutic peptide vaccines for patients with osteosarcoma.

  16. Designing Probes for Immunodiagnostics: Structural Insights into an Epitope Targeting Burkholderia Infections.

    Science.gov (United States)

    Capelli, Riccardo; Matterazzo, Elena; Amabili, Marco; Peri, Claudio; Gori, Alessandro; Gagni, Paola; Chiari, Marcella; Lertmemongkolchai, Ganjana; Cretich, Marina; Bolognesi, Martino; Colombo, Giorgio; Gourlay, Louise J

    2017-10-13

    Structure-based epitope prediction drives the design of diagnostic peptidic probes to reveal specific antibodies elicited in response to infections. We previously identified a highly immunoreactive epitope from the peptidoglycan-associated lipoprotein (Pal) antigen from Burkholderia pseudomallei, which could also diagnose Burkholderia cepacia infections. Here, considering the high phylogenetic conservation within Burkholderia species, we ask whether cross-reactivity can be reciprocally displayed by the synthetic epitope from B. cenocepacia. We perform comparative analyses of the conformational preferences and diagnostic performances of the corresponding epitopes from the two Burkholderia species when presented in the context of the full-length proteins or as isolated peptides. The effects of conformation on the diagnostic potential and cross-reactivity of Pal peptide epitopes are rationalized on the basis of the 1.8 Å crystal structure of B. cenocepacia Pal and through computational analyses. Our results are discussed in the context of designing new diagnostic molecules for the early detection of infectious diseases.

  17. Dynamic expression of a native chondroitin sulfate epitope reveals microheterogeneity of extracellular matrix organization in the embryonic chick heart.

    Science.gov (United States)

    Capehart, A A; Mjaatvedt, C H; Hoffman, S; Krug, E L

    1999-02-01

    TC2 is a novel monoclonal antibody produced by in vitro immunization of splenocytes with a peanut agglutinin-positive fraction from extracts of prechondrogenic micromass cultures of chick limb mesenchyme. ELISA results demonstrated TC2 reactivity with a native epitope on a glycosaminoglycan (GAG) enriched in chondroitin-4-sulfate and with multiple intact proteoglycans, but not with other GAGs tested. TC2 immunohistochemical reactivity was abolished by pretreatment of sections with chondroitinase AC or preadsorption with chondroitin-4-sulfate GAG. Strong TC2 localization occurred throughout the developing heart at stage 9. As looping ensued, a graded reactivity was observed from lowest in the atrium to highest in the conotruncus that correlated well with versican localization. The superior atrioventricular cushion stained preferentially with TC2 as compared to the inferior cushion at stages 16-18. At these later stages TC2 patterns did not agree completely with anti-versican reactivity. By stage 23 there was a marked reduction in TC2 localization in the heart, however, strong reactivity remained at certain sites, including the conotruncus and in subcompartments of both atrioventricular cushions. A heterogeneous distribution of other native chondroitin sulfate glycosaminoglycan epitopes recognized by monoclonal antibodies d1C4 and CS-56 was observed as well. The distribution of the TC2 epitope usually did not overlap with d1C4 or CS-56 localization at the stages examined. Overall, the spatiotemporal characteristics of TC2 reactivity in the developing chick heart appear to correlate with subdomains of the endocardial cushions as well as with trabecular and atrial septal formation.

  18. Specific T-cell epitopes for immunoassay-based diagnosis of Mycobacterium tuberculosis infection

    DEFF Research Database (Denmark)

    Brock, I; Weldingh, K; Leyten, EM

    2004-01-01

    Specific T-cell epitopes for immunoassay-based diagnosis of Mycobacterium tuberculosis infection.Brock I, Weldingh K, Leyten EM, Arend SM, Ravn P, Andersen P. Department of Infectious Disease Immunology, Statens Serum Institute, Artillerivej 5, DK-2300 Copenhagen S, Denmark. The currently used...... method for immunological detection of tuberculosis infection, the tuberculin skin test, has low specificity. Antigens specific for Mycobacterium tuberculosis to replace purified protein derivative are therefore urgently needed. We have performed a rigorous assessment of the diagnostic potential of four...... recently identified antigens (Rv2653, Rv2654, Rv3873, and Rv3878) from genomic regions that are lacking from the Mycobacterium bovis bacillus Calmette-Guerin (BCG) vaccine strains as well as from the most common nontuberculous mycobacteria. The fine specificity of potential epitopes in these molecules...

  19. Evaluation and use of in-silico structure-based epitope prediction with foot-and-mouth disease virus.

    Directory of Open Access Journals (Sweden)

    Daryl W Borley

    Full Text Available Understanding virus antigenicity is of fundamental importance for the development of better, more cross-reactive vaccines. However, as far as we are aware, no systematic work has yet been conducted using the 3D structure of a virus to identify novel epitopes. Therefore we have extended several existing structural prediction algorithms to build a method for identifying epitopes on the appropriate outer surface of intact virus capsids (which are structurally different from globular proteins in both shape and arrangement of multiple repeated elements and applied it here as a proof of principle concept to the capsid of foot-and-mouth disease virus (FMDV. We have analysed how reliably several freely available structure-based B cell epitope prediction programs can identify already known viral epitopes of FMDV in the context of the viral capsid. To do this we constructed a simple objective metric to measure the sensitivity and discrimination of such algorithms. After optimising the parameters for five methods using an independent training set we used this measure to evaluate the methods. Individually any one algorithm performed rather poorly (three performing better than the other two suggesting that there may be value in developing virus-specific software. Taking a very conservative approach requiring a consensus between all three top methods predicts a number of previously described antigenic residues as potential epitopes on more than one serotype of FMDV, consistent with experimental results. The consensus results identified novel residues as potential epitopes on more than one serotype. These include residues 190-192 of VP2 (not previously determined to be antigenic, residues 69-71 and 193-197 of VP3 spanning the pentamer-pentamer interface, and another region incorporating residues 83, 84 and 169-174 of VP1 (all only previously experimentally defined on serotype A. The computer programs needed to create a semi-automated procedure for carrying out

  20. Characterization of ELISA Antibody-Antigen Interaction using Footprinting-Mass Spectrometry and Negative Staining Transmission Electron Microscopy

    Science.gov (United States)

    Lin, Margaret; Krawitz, Denise; Callahan, Matthew D.; Deperalta, Galahad; Wecksler, Aaron T.

    2018-05-01

    We describe epitope mapping data using multiple covalent labeling footprinting-mass spectrometry (MS) techniques coupled with negative stain transmission electron microscopy (TEM) data to analyze the antibody-antigen interactions in a sandwich enzyme-linked immunosorbant assay (ELISA). Our hydroxyl radical footprinting-MS data using fast photochemical oxidation of proteins (FPOP) indicates suppression of labeling across the antigen upon binding either of the monoclonal antibodies (mAbs) utilized in the ELISA. Combining these data with Western blot analysis enabled the identification of the putative epitopes that appeared to span regions containing N-linked glycans. An additional structural mapping technique, carboxyl group footprinting-mass spectrometry using glycine ethyl ester (GEE) labeling, was used to confirm the epitopes. Deglycosylation of the antigen resulted in loss of potency in the ELISA, supporting the FPOP and GEE labeling data by indicating N-linked glycans are necessary for antigen binding. Finally, mapping of the epitopes onto the antigen crystal structure revealed an approximate 90° relative spatial orientation, optimal for a noncompetitive binding ELISA. TEM data shows both linear and diamond antibody-antigen complexes with a similar binding orientation as predicted from the two footprinting-MS techniques. This study is the first of its kind to utilize multiple bottom-up footprinting-MS techniques and TEM visualization to characterize the monoclonal antibody-antigen binding interactions of critical reagents used in a quality control (QC) lot-release ELISA. [Figure not available: see fulltext.

  1. Characterization of ELISA Antibody-Antigen Interaction using Footprinting-Mass Spectrometry and Negative Staining Transmission Electron Microscopy

    Science.gov (United States)

    Lin, Margaret; Krawitz, Denise; Callahan, Matthew D.; Deperalta, Galahad; Wecksler, Aaron T.

    2018-03-01

    We describe epitope mapping data using multiple covalent labeling footprinting-mass spectrometry (MS) techniques coupled with negative stain transmission electron microscopy (TEM) data to analyze the antibody-antigen interactions in a sandwich enzyme-linked immunosorbant assay (ELISA). Our hydroxyl radical footprinting-MS data using fast photochemical oxidation of proteins (FPOP) indicates suppression of labeling across the antigen upon binding either of the monoclonal antibodies (mAbs) utilized in the ELISA. Combining these data with Western blot analysis enabled the identification of the putative epitopes that appeared to span regions containing N-linked glycans. An additional structural mapping technique, carboxyl group footprinting-mass spectrometry using glycine ethyl ester (GEE) labeling, was used to confirm the epitopes. Deglycosylation of the antigen resulted in loss of potency in the ELISA, supporting the FPOP and GEE labeling data by indicating N-linked glycans are necessary for antigen binding. Finally, mapping of the epitopes onto the antigen crystal structure revealed an approximate 90° relative spatial orientation, optimal for a noncompetitive binding ELISA. TEM data shows both linear and diamond antibody-antigen complexes with a similar binding orientation as predicted from the two footprinting-MS techniques. This study is the first of its kind to utilize multiple bottom-up footprinting-MS techniques and TEM visualization to characterize the monoclonal antibody-antigen binding interactions of critical reagents used in a quality control (QC) lot-release ELISA. [Figure not available: see fulltext.

  2. Clinical Control of HIV-1 by Cytotoxic T Cells Specific for Multiple Conserved Epitopes.

    Science.gov (United States)

    Murakoshi, Hayato; Akahoshi, Tomohiro; Koyanagi, Madoka; Chikata, Takayuki; Naruto, Takuya; Maruyama, Rie; Tamura, Yoshiko; Ishizuka, Naoki; Gatanaga, Hiroyuki; Oka, Shinichi; Takiguchi, Masafumi

    2015-05-01

    Identification and characterization of CD8(+) T cells effectively controlling HIV-1 variants are necessary for the development of AIDS vaccines and for studies of AIDS pathogenesis, although such CD8(+) T cells have been only partially identified. In this study, we sought to identify CD8(+) T cells controlling HIV-1 variants in 401 Japanese individuals chronically infected with HIV-1 subtype B, in which protective alleles HLA-B*57 and HLA-B*27 are very rare, by using comprehensive and exhaustive methods. We identified 13 epitope-specific CD8(+) T cells controlling HIV-1 in Japanese individuals, though 9 of these epitopes were not previously reported. The breadths of the T cell responses to the 13 epitopes were inversely associated with plasma viral load (P = 2.2 × 10(-11)) and positively associated with CD4 count (P = 1.2 × 10(-11)), indicating strong synergistic effects of these T cells on HIV-1 control in vivo. Nine of these epitopes were conserved among HIV-1 subtype B-infected individuals, whereas three out of four nonconserved epitopes were cross-recognized by the specific T cells. These findings indicate that these 12 epitopes are strong candidates for antigens for an AIDS vaccine. The present study highlighted a strategy to identify CD8(+) T cells controlling HIV-1 and demonstrated effective control of HIV-1 by those specific for 12 conserved or cross-reactive epitopes. HLA-B*27-restricted and HLA-B*57-restricted cytotoxic T lymphocytes (CTLs) play a key role in controlling HIV-1 in Caucasians and Africans, whereas it is unclear which CTLs control HIV-1 in Asian countries, where HLA-B*57 and HLA-B*27 are very rare. A recent study showed that HLA-B*67:01 and HLA-B*52:01-C*12:02 haplotypes were protective alleles in Japanese individuals, but it is unknown whether CTLs restricted by these alleles control HIV-1. In this study, we identified 13 CTLs controlling HIV-1 in Japan by using comprehensive and exhaustive methods. They included 5 HLA-B*52:01-restricted

  3. T-cell recognition is shaped by epitope sequence conservation in the host proteome and microbiome

    DEFF Research Database (Denmark)

    Bresciani, Anne Gøther; Paul, Sinu; Schommer, Nina

    2016-01-01

    or allergen with the conservation of its sequence in the human proteome or the healthy human microbiome. Indeed, performing such comparisons on large sets of validated T-cell epitopes, we found that epitopes that are similar with self-antigens above a certain threshold showed lower immunogenicity, presumably...... as a result of negative selection of T cells capable of recognizing such peptides. Moreover, we also found a reduced level of immune recognition for epitopes conserved in the commensal microbiome, presumably as a result of peripheral tolerance. These findings indicate that the existence (and potentially...

  4. Differential Antibody Responses to Conserved HIV-1 Neutralizing Epitopes in the Context of Multivalent Scaffolds and Native-Like gp140 Trimers.

    Science.gov (United States)

    Morris, Charles D; Azadnia, Parisa; de Val, Natalia; Vora, Nemil; Honda, Andrew; Giang, Erick; Saye-Francisco, Karen; Cheng, Yushao; Lin, Xiaohe; Mann, Colin J; Tang, Jeffrey; Sok, Devin; Burton, Dennis R; Law, Mansun; Ward, Andrew B; He, Linling; Zhu, Jiang

    2017-02-28

    Broadly neutralizing antibodies (bNAbs) have provided valuable insights into the humoral immune response to HIV-1. While rationally designed epitope scaffolds and well-folded gp140 trimers have been proposed as vaccine antigens, a comparative understanding of their antibody responses has not yet been established. In this study, we probed antibody responses to the N332 supersite and the membrane-proximal external region (MPER) in the context of heterologous protein scaffolds and native-like gp140 trimers. Ferritin nanoparticles and fragment crystallizable (Fc) regions were utilized as multivalent carriers to display scaffold antigens with grafted N332 and MPER epitopes, respectively. Trimeric scaffolds were also identified to stabilize the MPER-containing BG505 gp140.681 trimer in a native-like conformation. Following structural and antigenic evaluation, a subset of scaffold and trimer antigens was selected for immunization in BALB/c mice. Serum binding revealed distinct patterns of antibody responses to these two bNAb targets presented in different structural contexts. For example, the N332 nanoparticles elicited glycan epitope-specific antibody responses that could also recognize the native trimer, while a scaffolded BG505 gp140.681 trimer generated a stronger and more rapid antibody response to the trimer apex than its parent gp140.664 trimer. Furthermore, next-generation sequencing (NGS) of mouse splenic B cells revealed expansion of antibody lineages with long heavy-chain complementarity-determining region 3 (HCDR3) loops upon activation by MPER scaffolds, in contrast to the steady repertoires primed by N332 nanoparticles and a soluble gp140.664 trimer. These findings will facilitate the future development of a coherent vaccination strategy that combines both epitope-focused and trimer-based approaches. IMPORTANCE Both epitope-focused and trimer-based strategies are currently being explored in HIV-1 vaccine development, which aims to elicit broadly neutralizing

  5. File list: ALL.Emb.05.AllAg.Embryonic_palates [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Emb.05.AllAg.Embryonic_palates mm9 All antigens Embryo Embryonic palates ERX650...310 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Emb.05.AllAg.Embryonic_palates.bed ...

  6. File list: ALL.Emb.20.AllAg.Embryonic_palates [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Emb.20.AllAg.Embryonic_palates mm9 All antigens Embryo Embryonic palates ERX650...310 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Emb.20.AllAg.Embryonic_palates.bed ...

  7. File list: ALL.Emb.50.AllAg.Embryonic_palates [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Emb.50.AllAg.Embryonic_palates mm9 All antigens Embryo Embryonic palates ERX650...310 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Emb.50.AllAg.Embryonic_palates.bed ...

  8. Promiscuous prediction and conservancy analysis of CTL binding epitopes of HCV 3a viral proteome from Punjab Pakistan: an In Silico Approach

    Directory of Open Access Journals (Sweden)

    Idrees Muhammad

    2011-02-01

    Full Text Available Abstract Background HCV is a positive sense RNA virus affecting approximately 180 million people world wide and about 10 million Pakistani populations. HCV genotype 3a is the major cause of infection in Pakistani population. One of the major problems of HCV infection especially in the developing countries that limits the limits the antiviral therapy is the long term treatment, high dosage and side effects. Studies of antigenic epitopes of viral sequences of a specific origin can provide an effective way to overcome the mutation rate and to determine the promiscuous binders to be used for epitope based subunit vaccine design. An in silico approach was applied for the analysis of entire HCV proteome of Pakistani origin, aimed to identify the viral epitopes and their conservancy in HCV genotypes 1, 2 and 3 of diverse origin. Results Immunoinformatic tools were applied for the predictive analysis of HCV 3a antigenic epitopes of Pakistani origin. All the predicted epitopes were then subjected for their conservancy analysis in HCV genotypes 1, 2 and 3 of diverse origin (worldwide. Using freely available web servers, 150 MHC II epitopes were predicted as promiscuous binders against 51 subjected alleles. E2 protein represented the 20% of all the predicted MHC II epitopes. 75.33% of the predicted MHC II epitopes were (77-100% conserve in genotype 3; 47.33% and 40.66% in genotype 1 and 2 respectively. 69 MHC I epitopes were predicted as promiscuous binders against 47 subjected alleles. NS4b represented 26% of all the MHC I predicted epitopes. Significantly higher epitope conservancy was represented by genotype 3 i.e. 78.26% and 21.05% for genotype 1 and 2. Conclusions The study revealed comprehensive catalogue of potential HCV derived CTL epitopes from viral proteome of Pakistan origin. A considerable number of predicted epitopes were found to be conserved in different HCV genotype. However, the number of conserved epitopes in HCV genotype 3 was

  9. Peptide mimotopes of malondialdehyde epitopes for clinical applications in cardiovascular disease

    DEFF Research Database (Denmark)

    Amir, Shahzada; Hartvigsen, Karsten; Gonen, Ayelet

    2012-01-01

    -LDL-specific IgM monoclonal Ab LRO4, and the specificity and antigenic properties of MDA mimotopes were assessed in vitro and in vivo. We identified one 12-mer linear (P1) and one 7-mer cyclic (P2) peptide carrying a consensus sequence, which bound specifically to murine and human anti-MDA monoclonal Abs....... Furthermore, MDA mimotopes were found to mimic MDA epitopes on the surface of apoptotic cells. Immunization of mice with P2 resulted in the induction of MDA-LDL-specific Abs, which strongly immunostained human atherosclerotic lesions. We detected IgG and IgM autoAbs to both MDA mimotopes in sera of healthy....... These mimotopes can serve as standardized and reproducible antigens that will be useful for diagnostic and therapeutic applications in cardiovascular disease....

  10. Analysis of pectic epitopes recognised by hybridoma and phage display monoclonal antibodies using defined oligosaccharides, polysaccharides, and enzymatic degradation

    DEFF Research Database (Denmark)

    Willats, William George Tycho; Limberg, G.; Buchholt, H.C.

    2000-01-01

    occurs where specific but undefined methyl-esterification patterns are present on HG domains, although fully de-esterified HG samples contain sub-optimal JIM5 epitopes. The persistence of mAb binding to epitopes in pectic antigens, with 41% blockwise esterification (P41) and 43% random esterification (F...

  11. From Viral genome to specific peptide epitopes - Methods for identifying porcine T cell epitopes based on in silico predictions, in vitro identification and ex vivo verification

    DEFF Research Database (Denmark)

    Pedersen, Lasse Eggers; Rasmussen, Michael; Harndahl, Mikkel

    The affinity for and stability of peptides bound by major histocompatibility complex (MHC) class I molecules are instrumental factors in presentation of viral epitopes to cytotoxic T lymphocytes (CTLs). In swine, such peptide presentations by swine leukocyte antigens (SLA) are crucial for swine i...

  12. Identification and validation of a linear protective neutralizing epitope in the β-pore domain of alpha toxin.

    Science.gov (United States)

    Oscherwitz, Jon; Cease, Kemp B

    2015-01-01

    The plethora of virulence factors associated with Staphylococcus aureus make this bacterium an attractive candidate for a molecularly-designed epitope-focused vaccine. This approach, which necessitates the identification of neutralizing epitopes for incorporation into a vaccine construct, is being evaluated for pathogens where conventional approaches have failed to elicit protective humoral responses, like HIV-1 and malaria, but may also hold promise for pathogens like S. aureus, where the elicitation of humoral immunity against multiple virulence factors may be required for development of an effective vaccine. Among the virulence factors employed by S. aureus, animal model and epidemiological data suggest that alpha toxin, a multimeric β-pore forming toxin like protective antigen from Bacillus anthracis, is particularly critical, yet no candidate neutralizing epitopes have been delineated in alpha toxin to date. We have previously shown that a linear determinant in the 2β2-2β3 loop of the pore forming domain of B. anthracis protective antigen is a linear neutralizing epitope. Antibody against this site is highly potent for neutralizing anthrax lethal toxin in vitro and for protection of rabbits in vivo from virulent B. anthracis. We hypothesized that sequences in the β-pore of S. aureus alpha toxin that share structural and functional homology to β-pore sequences in protective antigen would contain a similarly critical neutralizing epitope. Using an in vivo mapping strategy employing peptide immunogens, an optimized in vitro toxin neutralization assay, and an in vivo dermonecrosis model, we have now confirmed the presence of this epitope in alpha toxin, termed the pore neutralizing determinant. Antibody specific for this determinant neutralizes alpha toxin in vitro, and is highly effective for mitigating dermonecrosis and bacterial growth in a mouse model of S. aureus USA300 skin infection. The delineation of this linear neutralizing determinant in alpha

  13. Identification and validation of a linear protective neutralizing epitope in the β-pore domain of alpha toxin.

    Directory of Open Access Journals (Sweden)

    Jon Oscherwitz

    Full Text Available The plethora of virulence factors associated with Staphylococcus aureus make this bacterium an attractive candidate for a molecularly-designed epitope-focused vaccine. This approach, which necessitates the identification of neutralizing epitopes for incorporation into a vaccine construct, is being evaluated for pathogens where conventional approaches have failed to elicit protective humoral responses, like HIV-1 and malaria, but may also hold promise for pathogens like S. aureus, where the elicitation of humoral immunity against multiple virulence factors may be required for development of an effective vaccine. Among the virulence factors employed by S. aureus, animal model and epidemiological data suggest that alpha toxin, a multimeric β-pore forming toxin like protective antigen from Bacillus anthracis, is particularly critical, yet no candidate neutralizing epitopes have been delineated in alpha toxin to date. We have previously shown that a linear determinant in the 2β2-2β3 loop of the pore forming domain of B. anthracis protective antigen is a linear neutralizing epitope. Antibody against this site is highly potent for neutralizing anthrax lethal toxin in vitro and for protection of rabbits in vivo from virulent B. anthracis. We hypothesized that sequences in the β-pore of S. aureus alpha toxin that share structural and functional homology to β-pore sequences in protective antigen would contain a similarly critical neutralizing epitope. Using an in vivo mapping strategy employing peptide immunogens, an optimized in vitro toxin neutralization assay, and an in vivo dermonecrosis model, we have now confirmed the presence of this epitope in alpha toxin, termed the pore neutralizing determinant. Antibody specific for this determinant neutralizes alpha toxin in vitro, and is highly effective for mitigating dermonecrosis and bacterial growth in a mouse model of S. aureus USA300 skin infection. The delineation of this linear neutralizing

  14. Interdisciplinary Evaluation of Broadly-Reactive HLA Class II Restricted Epitopes Eliciting HIV-Specific CD4+T Cell Responses

    DEFF Research Database (Denmark)

    Buggert, M.; Norström, M.; Lundegaard, Claus

    2011-01-01

    , the functional and immunodominant discrepancies of CD4+ T cell responses targeting promiscuous MHC II restricted HIV epitopes remains poorly defined. Thus, utilization of interdisciplinary approaches might aid revealing broadly- reactive peptides eliciting CD4 + T cell responses. Methods: We utilized the novel...... bioinformatic prediction program NetMHCIIpan to select 64 optimized MHC II restricted epitopes located in the HIV Gag, Pol, Env, Nef and Tat regions. The epitopes were selected to cover the global diversity of the virus (multiple subtypes) and the human immune system(diverse MHC II types). Optimized...

  15. Multiple epitopes in a dodecapeptide of myelin basic protein determined bymonoclonal antibodies

    International Nuclear Information System (INIS)

    Price, J.O.; Whitaker, J.N.; Vasu, R.I.; Metzger, D.W.

    1986-01-01

    Three custom synthesized myelin basic protein (MBP) peptides, bovine peptide 79-88, human peptide 80-89, and human peptide 82-91, were used to produce four murine monoclonal antibodies (MAb) that were selected on the basis of reaction in a solid phase radioimmunoassay (SRIA) with human MBP. The MAb were compared with respect to antigen specificity against intact MBP and 10 overlapping MBP peptides. One MAb recognized an epitope near the amino-terminus of bovine MBP peptide 79-88. A second MAb was directed towards an epitope that is more reactive in human MBP peptide 45-89 than in intact MBP, but is not recognized in any of the small MBP peptides examined. The third MAb detected an epitope near the middle of human MBP peptide 80-89, whereas the fourth MAb reacted with the carboxyl-terminal portion of human MBP peptide 82-91. Epitopes recognized in SRIA were sometimes not detected by the same MAb in a fluid phase double antibody radioimmunoassay. These results demonstrate the multiplicity of potential epitopes in a dodecapeptide of MBP and do not support the concept of a single, dominant epitope in the region of MBP peptide 80-89

  16. Carcino-embryonic antigen in monitoring the growth of human colon adenocarcinoma tumour cells SK-CO-1 and HT-29 in vitro and in nude mice

    DEFF Research Database (Denmark)

    Sölétormos, G; Fogh, J M; Sehested-Hansen, B

    1997-01-01

    A set of experimental model systems were designed to investigate (a) the inter-relationship between growth of two human cancer cell lines (SK-CO-1, HT-29) and carcino-embryonic antigen (CEA) kinetics; and (b) whether neoplastic growth or CEA concentration is modulated by human growth hormone (hGH...

  17. HIV p24 as scaffold for presenting conformational HIV Env antigens.

    Directory of Open Access Journals (Sweden)

    Maria Tagliamonte

    Full Text Available Heterologous protein scaffolds engrafted with structurally defined HIV Env epitopes recognized by broadly neutralizing monoclonal antibodies (MAbs represent a promising strategy to elicit broad neutralizing antibodies. In such regards, a protein scaffold based on the HIV p24 CA protein is a highly attractive approach, providing also Gag epitopes for eliciting HIV non-neutralizing protective antibodies and specific CD4(+ and CD8(+ T cell responses. In the present study, computational techniques were employed to verify the presence of acceptor sites for conformational HIV Env epitopes and, as proof of concept, the analysis of HIV p24 CA-based scaffolds using a complete V3 loop in a MAb-bound conformation is presented. The V3-p24 epitope-scaffold proteins show the formation of capsomers made of hexamers similarly to the p24 wild type protein. Moreover, the conformational V3 loop presented on p24 scaffold is recognized by a panel of anti-V3 MAbs. The results suggest that HIV p24 CA protein has suitable acceptor sites for engrafting foreign epitopes, without disrupting the formation of capsomer hexamer structures, and that the V3 epitope does retain its antibody-bound conformation. This strongly support the feasibility of developing a scaffolding strategy based on p24 CA proteins displaying conformational minimal structural, antigenic HIV Env epitopes.

  18. Isolation of a primate embryonic stem cell line.

    OpenAIRE

    Thomson, J A; Kalishman, J; Golos, T G; Durning, M; Harris, C P; Becker, R A; Hearn, J P

    1995-01-01

    Embryonic stem cells have the ability to remain undifferentiated and proliferate indefinitely in vitro while maintaining the potential to differentiate into derivatives of all three embryonic germ layers. Here we report the derivation of a cloned cell line (R278.5) from a rhesus monkey blastocyst that remains undifferentiated in continuous passage for > 1 year, maintains a normal XY karyotype, and expresses the cell surface markers (alkaline phosphatase, stage-specific embryonic antigen 3, st...

  19. Molecular mimics of the tumour antigen MUC1.

    Directory of Open Access Journals (Sweden)

    Tharappel C James

    Full Text Available A key requirement for the development of cancer immunotherapy is the identification of tumour-associated antigens that are differentially or exclusively expressed on the tumour and recognized by the host immune system. However, immune responses to such antigens are often muted or lacking due to the antigens being recognized as "self", and further complicated by the tumour environment and regulation of immune cells within. In an effort to circumvent the lack of immune responses to tumour antigens, we have devised a strategy to develop potential synthetic immunogens. The strategy, termed mirror image phage display, is based on the concept of molecular mimicry as demonstrated by the idiotype/anti-idiotype paradigm in the immune system. Here as 'proof of principle' we have selected molecular mimics of the well-characterised tumour associated antigen, the human mucin1 protein (MUC1 from two different peptide phage display libraries. The putative mimics were compared in structure and function to that of the native antigen. Our results demonstrate that several of the mimic peptides display T-cell stimulation activity in vitro when presented by matured dendritic cells. The mimic peptides and the native MUC1 antigenic epitopes can cross-stimulate T-cells. The data also indicate that sequence homology and/or chemical properties to the original epitope are not the sole determining factors for the observed immunostimulatory activity of the mimic peptides.

  20. Allergen and Epitope Targets of Mouse-Specific T Cell Responses in Allergy and Asthma

    Directory of Open Access Journals (Sweden)

    Véronique Schulten

    2018-02-01

    Full Text Available Mouse allergy has become increasingly common, mainly affecting laboratory workers and inner-city households. To date, only one major allergen, namely Mus m 1, has been described. We sought to identify T cell targets in mouse allergic patients. PBMC from allergic donors were expanded with either murine urine or epithelial extract and subsequently screened for cytokine production (IL-5 and IFNγ in response to overlapping peptides spanning the entire Mus m 1 sequence, peptides from various Mus m 1 isoforms [major urinary proteins (MUPs], peptides from mouse orthologs of known allergens from other mammalian species and peptides from proteins identified by immunoproteomic analysis of IgE/IgG immunoblots of mouse urine and epithelial extracts. This approach let to the identification of 106 non-redundant T cell epitopes derived from 35 antigens. Three major T cell-activating regions were defined in Mus m 1 alone. Moreover, our data show that immunodominant epitopes were largely shared between Mus m 1 and other MUPs even from different species, suggesting that sequence conservation in different allergens is a determinant for immunodominance. We further identified several novel mouse T cell antigens based on their homology to known mammalian allergens. Analysis of cohort-specific T cell responses revealed that rhinitis and asthmatic patients recognized different epitope repertoires. Epitopes defined herein can be formulated into an epitope “megapool” used to diagnose mouse allergy and study mouse-specific T cell responses directly ex vivo. This analysis of T cell epitopes provides a good basis for future studies to increase our understanding of the immunopathology associated with MO-allergy and asthma.

  1. Variable epitope libraries: new vaccine immunogens capable of inducing broad human immunodeficiency virus type 1-neutralizing antibody response.

    Science.gov (United States)

    Charles-Niño, Claudia; Pedroza-Roldan, Cesar; Viveros, Monica; Gevorkian, Goar; Manoutcharian, Karen

    2011-07-18

    The extreme antigenic variability of human immunodeficiency virus (HIV) leads to immune escape of the virus, representing a major challenge in the design of effective vaccine. We have developed a novel concept for immunogen construction based on introduction of massive mutations within the epitopes targeting antigenically variable pathogens and diseases. Previously, we showed that these immunogens carrying large combinatorial libraries of mutated epitope variants, termed as variable epitope libraries (VELs), induce potent, broad and long lasting CD8+IFN-γ+ T-cell response. Moreover, we demonstrated that these T cells recognize more than 50% of heavily mutated variants (5 out of 10 amino acid positions were mutated in each epitope variant) of HIV-1 gp120 V3 loop-derived cytotoxic T lymphocyte epitope (RGPGRAFVTI) in mice. The constructed VELs had complexities of 10000 and 12500 individual members, generated as plasmid DNA or as M13 phage display combinatorial libraries, respectively, and with structural composition RGPGXAXXXX or XGXGXAXVXI, where X is any of 20 natural amino acids. Here, we demonstrated that sera from mice immunized with these VELs are capable of neutralizing 5 out of 10 viral isolates from Tier 2 reference panel of subtype B envelope clones, including HIV-1 isolates which are known to be resistant to neutralization by several potent monoclonal antibodies, described previously. These data indicate the feasibility of the application of immunogens based on VEL concept as an alternative approach for the development of molecular vaccines against antigenically variable pathogens. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Molecular modeling and in-silico engineering of Cardamom mosaic virus coat protein for the presentation of immunogenic epitopes of Leptospira LipL32.

    Science.gov (United States)

    Kumar, Vikram; Damodharan, S; Pandaranayaka, Eswari P J; Madathiparambil, Madanan G; Tennyson, Jebasingh

    2016-01-01

    Expression of Cardamom mosaic virus (CdMV) coat protein (CP) in E. coli forms virus-like particles. In this study, the structure of CdMV CP was predicted and used as a platform to display epitopes of the most abundant surface-associated protein, LipL32 of Leptospira at C, N, and both the termini of CdMV CP. In silico, we have mapped sequential and conformational B-cell epitopes from the crystal structure of LipL32 of Leptospira interrogans serovar Copenhageni str. Fiocruz L1-130 using IEDB Elipro, ABCpred, BCPRED, and VaxiJen servers. Our results show that the epitopes displayed at the N-terminus of CdMV CP are promising vaccine candidates as compared to those displayed at the C-terminus or at both the termini. LipL32 epitopes, EP2, EP3, EP4, and EP6 are found to be promising B-cell epitopes for vaccine development. Based on the type of amino acids, length, surface accessibility, and docking energy with CdMV CP model, the order of antigenicity of the LipL32 epitopes was found to be EP4 > EP3 > EP2 > EP6.

  3. Purification and characterization of a 36 kDa antigen of Mycobacterium leprae

    NARCIS (Netherlands)

    de Wit, M. Y.; Klatser, P. R.

    1988-01-01

    A 36 kDa antigen of Mycobacterium leprae was purified by phenol biphasic partition followed by preparative SDS-PAGE. The purified antigen appeared as a single band in SDS-PAGE and eluted as a single peak in ion-exchange chromatography. The antigen comprised epitopes which were cross-reactive with M.

  4. CD4 T Cell Epitope Specificity and Cytokine Potential Are Preserved as Cells Transition from the Lung Vasculature to Lung Tissue following Influenza Virus Infection.

    Science.gov (United States)

    DiPiazza, Anthony; Laniewski, Nathan; Rattan, Ajitanuj; Topham, David J; Miller, Jim; Sant, Andrea J

    2018-07-01

    they establish residence in the lung. However, this transition does not edit CD4 T cell epitope specificity or the cytokine potential of the CD4 T cells. Thus, CD4 T cells that enter the infected lung can convey diverse functions and have a sufficiently broad viral antigen specificity to detect the complex array of infected cells within the infected tissue, offering the potential for more effective protective function. Copyright © 2018 American Society for Microbiology.

  5. Expitope: a web server for epitope expression.

    Science.gov (United States)

    Haase, Kerstin; Raffegerst, Silke; Schendel, Dolores J; Frishman, Dmitrij

    2015-06-01

    Adoptive T cell therapies based on introduction of new T cell receptors (TCRs) into patient recipient T cells is a promising new treatment for various kinds of cancers. A major challenge, however, is the choice of target antigens. If an engineered TCR can cross-react with self-antigens in healthy tissue, the side-effects can be devastating. We present the first web server for assessing epitope sharing when designing new potential lead targets. We enable the users to find all known proteins containing their peptide of interest. The web server returns not only exact matches, but also approximate ones, allowing a number of mismatches of the users choice. For the identified candidate proteins the expression values in various healthy tissues, representing all vital human organs, are extracted from RNA Sequencing (RNA-Seq) data as well as from some cancer tissues as control. All results are returned to the user sorted by a score, which is calculated using well-established methods and tools for immunological predictions. It depends on the probability that the epitope is created by proteasomal cleavage and its affinities to the transporter associated with antigen processing and the major histocompatibility complex class I alleles. With this framework, we hope to provide a helpful tool to exclude potential cross-reactivity in the early stage of TCR selection for use in design of adoptive T cell immunotherapy. The Expitope web server can be accessed via http://webclu.bio.wzw.tum.de/expitope. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. Mycobacterium tuberculosis epitope-specific interferon-g production in healthy Brazilians reactive and non-reactive to tuberculin skin test

    Directory of Open Access Journals (Sweden)

    Bosco Christiano Maciel da Silva

    2014-12-01

    Full Text Available The interferon (IFN-γ response to peptides can be a useful diagnostic marker of Mycobacterium tuberculosis (MTB latent infection. We identified promiscuous and potentially protective CD4+ T-cell epitopes from the most conserved regions of MTB antigenic proteins by scanning the MTB antigenic proteins GroEL2, phosphate-binding protein 1 precursor and 19 kDa antigen with the TEPITOPE algorithm. Seven peptide sequences predicted to bind to multiple human leukocyte antigen (HLA-DR molecules were synthesised and tested with IFN-γ enzyme-linked immunospot (ELISPOT assays using peripheral blood mononuclear cells (PBMCs from 16 Mantoux tuberculin skin test (TST-positive and 16 TST-negative healthy donors. Eighty-eight percent of TST-positive donors responded to at least one of the peptides, compared to 25% of TST-negative donors. Each individual peptide induced IFN-γ production by PBMCs from at least 31% of the TST-positive donors. The magnitude of the response against all peptides was 182 ± 230 x 106 IFN-γ spot forming cells (SFC among TST-positive donors and 36 ± 62 x 106 SFC among TST-negative donors (p = 0.007. The response to GroEL2 (463-477 was only observed in the TST-positive group. This combination of novel MTB CD4 T-cell epitopes should be tested in a larger cohort of individuals with latent tuberculosis (TB to evaluate its potential to diagnose latent TB and it may be included in ELISPOT-based IFN-γ assays to identify individuals with this condition.

  7. Extra-epitopic hepatitis C virus polymorphisms confer resistance to broadly neutralizing antibodies by modulating binding to scavenger receptor B1.

    Science.gov (United States)

    El-Diwany, Ramy; Cohen, Valerie J; Mankowski, Madeleine C; Wasilewski, Lisa N; Brady, Jillian K; Snider, Anna E; Osburn, William O; Murrell, Ben; Ray, Stuart C; Bailey, Justin R

    2017-02-01

    Broadly-neutralizing monoclonal antibodies (bNAbs) may guide vaccine development for highly variable viruses including hepatitis C virus (HCV), since they target conserved viral epitopes that could serve as vaccine antigens. However, HCV resistance to bNAbs could reduce the efficacy of a vaccine. HC33.4 and AR4A are two of the most potent anti-HCV human bNAbs characterized to date, binding to highly conserved epitopes near the amino- and carboxy-terminus of HCV envelope (E2) protein, respectively. Given their distinct epitopes, it was surprising that these bNAbs showed similar neutralization profiles across a panel of natural HCV isolates, suggesting that some viral polymorphisms may confer resistance to both bNAbs. To investigate this resistance, we developed a large, diverse panel of natural HCV envelope variants and a novel computational method to identify bNAb resistance polymorphisms in envelope proteins (E1 and E2). By measuring neutralization of a panel of HCV pseudoparticles by 10 μg/mL of each bNAb, we identified E1E2 variants with resistance to one or both bNAbs, despite 100% conservation of the AR4A binding epitope across the panel. We discovered polymorphisms outside of either binding epitope that modulate resistance to both bNAbs by altering E2 binding to the HCV co-receptor, scavenger receptor B1 (SR-B1). This study is focused on a mode of neutralization escape not addressed by conventional analysis of epitope conservation, highlighting the contribution of extra-epitopic polymorphisms to bNAb resistance and presenting a novel mechanism by which HCV might persist even in the face of an antibody response targeting multiple conserved epitopes.

  8. Protein profile of basal prostate epithelial progenitor cells--stage-specific embryonal antigen 4 expressing cells have enhanced regenerative potential in vivo.

    Science.gov (United States)

    Höfner, Thomas; Klein, Corinna; Eisen, Christian; Rigo-Watermeier, Teresa; Haferkamp, Axel; Sprick, Martin R

    2016-04-01

    The long-term propagation of basal prostate progenitor cells ex vivo has been very difficult in the past. The development of novel methods to expand prostate progenitor cells in vitro allows determining their cell surface phenotype in greater detail. Mouse (Lin(-)Sca-1(+) CD49f(+) Trop2(high)-phenotype) and human (Lin(-) CD49f(+) TROP2(high)) basal prostate progenitor cells were expanded in vitro. Human and mouse cells were screened using 242 anti-human or 176 antimouse monoclonal antibodies recognizing the cell surface protein profile. Quantitative expression was evaluated at the single-cell level using flow cytometry. Differentially expressed cell surface proteins were evaluated in conjunction with the known CD49f(+)/TROP2(high) phenotype of basal prostate progenitor cells and characterized by in vivo sandwich-transplantation experiments using nude mice. The phenotype of basal prostate progenitor cells was determined as CD9(+)/CD24(+)/CD29(+)/CD44(+)/CD47(+)/CD49f(+)/CD104(+)/CD147(+)/CD326(+)/Trop2(high) of mouse as well as human origin. Our analysis revealed several proteins, such as CD13, Syndecan-1 and stage-specific embryonal antigens (SSEAs), as being differentially expressed on murine and human CD49f(+) TROP2(+) basal prostate progenitor cells. Transplantation experiments suggest that CD49f(+) TROP2(high) SSEA-4(high) human prostate basal progenitor cells to be more potent to regenerate prostate tubules in vivo as compared with CD49f(+) TROP2(high) or CD49f(+) TROP2(high) SSEA-4(low) cells. Determination of the cell surface protein profile of functionally defined murine and human basal prostate progenitor cells reveals differentially expressed proteins that may change the potency and regenerative function of epithelial progenitor cells within the prostate. SSEA-4 is a candidate cell surface marker that putatively enables a more accurate identification of the basal PESC lineage. © 2016 The Authors. Journal of Cellular and Molecular Medicine published by

  9. CD4+ T cell-mediated rejection of MHC class II-positive tumor cells is dependent on antigen secretion and indirect presentation on host APCs.

    Science.gov (United States)

    Haabeth, Ole Audun Werner; Fauskanger, Marte; Manzke, Melanie; Lundin, Katrin U; Corthay, Alexandre; Bogen, Bjarne; Tveita, Anders Aune

    2018-05-11

    Tumor-specific CD4+ T cells have been shown to mediate efficient anti-tumor immune responses against cancer. Such responses can occur through direct binding to MHC class II (MHC II)-expressing tumor cells or indirectly via activation of professional antigen-presenting cells (APC) that take up and present the tumor antigen. We have previously shown that CD4+ T cells reactive against an epitope within the Ig light chain variable region of a murine B cell lymphoma can reject established tumors. Given the presence of MHC II molecules at the surface of lymphoma cells, we investigated whether MHC II-restricted antigen presentation on tumor cells alone was required for rejection. Variants of the A20 B lymphoma cell line that either secreted or intracellularly retained different versions of the tumor-specific antigen revealed that antigen secretion by the MHC II-expressing tumor cells was essential both for the priming and effector phase of CD4+ T cell-driven anti-tumor immune responses. Consistent with this, genetic ablation of MHC II in tumor cells, both in the case of B lymphoma and B16 melanoma, did not preclude rejection of tumors by tumor antigen-specific CD4+ T cells in vivo. These findings demonstrate that MHC class II expression on tumor cells themselves is not required for CD4+ T cell-mediated rejection, and that indirect display on host APC is sufficient for effective tumor elimination. These results support the importance of tumor-infiltrating APC as mediators of tumor cell killing by CD4+ T cells. Copyright ©2018, American Association for Cancer Research.

  10. Anti-soluble liver antigen (SLA) antibodies in chronic HCV infection.

    Science.gov (United States)

    Vitozzi, Susana; Lapierre, Pascal; Djilali-Saiah, Idriss; Marceau, Gabriel; Beland, Kathie; Alvarez, Fernando

    2004-05-01

    Hepatitis C infection is associated with autoimmune disorders, such as the production of autoantibodies. Anti-LKM1 and anti-LC1, immunomarkers of type 2 autoimmune hepatitis, have been previously associated with a HCV infection. Anti-Soluble-Liver-Antigen autoantibodies (SLA) are specifically associated with type 1 and type 2 autoimmune hepatitis and more closely related to patients who relapse after steroid therapy. The recent molecular cloning of the soluble liver antigen provides the opportunity to develop more specific tests for the detection of antibodies against it. The aim of this work is to characterize anti-soluble-liver autoantibodies in sera from patients chronically infected by HCV. A recombinant cDNA from activated Jurkat cells coding for the full length tRNP(Ser)Sec/SLA antigen was obtained. ELISA, Western Blot and immunoprecipitation tests were developed and used to search for linear and conformational epitopes recognized by anti-SLA antibodies in sera from patients chronically infected by HCV. Anti-soluble liver antigen antibodies were found in sera from 10.4% of HCV-infected patients. The prevalence was significantly increased to 27% when anti-LKM1 was also present. Most anti-SLA reactivity was directed against conformational epitopes on the antigen. The means titers by ELISA were lower than those obtained in type 2 AIH. The result of autoantibody isotyping showed a subclass restriction to IgG1 and also IgG4. This study shows the presence of anti-SLA antibodies in approximately 10% of HCV infected patients. The prevalence of SLA autoantibodies in HCV infected patients increases when LKM1 autoantibodies are also present. The relationship between the prevalence of this characteristic autoimmune hepatitis autoantibody and the implication of an autoimmune phenomenon in the liver injury of patients chronically infected by HCV needs further investigation.

  11. Anaplasma marginale major surface protein 2 CD4+-T-cell epitopes are evenly distributed in conserved and hypervariable regions (HVR), whereas linear B-cell epitopes are predominantly located in the HVR.

    Science.gov (United States)

    Abbott, Jeffrey R; Palmer, Guy H; Howard, Chris J; Hope, Jayne C; Brown, Wendy C

    2004-12-01

    Organisms in the genus Anaplasma express an immunodominant major surface protein 2 (MSP2), composed of a central hypervariable region (HVR) flanked by highly conserved regions. Throughout Anaplasma marginale infection, recombination results in the sequential appearance of novel MSP2 variants and subsequent control of rickettsemia by the immune response, leading to persistent infection. To determine whether immune evasion and selection for variant organisms is associated with a predominant response against HVR epitopes, T-cell and linear B-cell epitopes were localized by measuring peripheral blood gamma interferon-secreting cells, proliferation, and antibody binding to 27 overlapping peptides spanning MSP2 in 16 cattle. Similar numbers of MSP2-specific CD4(+) T-cell epitopes eliciting responses of similar magnitude were found in conserved and hypervariable regions. T-cell epitope clusters recognized by the majority of animals were identified in the HVR (amino acids [aa] 171 to 229) and conserved regions (aa 101 to 170 and 272 to 361). In contrast, linear B-cell epitopes were concentrated in the HVR, residing within hydrophilic sequences. The pattern of recognition of epitope clusters by T cells and of HVR epitopes by B cells is consistent with the influence of protein structure on epitope recognition.

  12. File list: ALL.Emb.20.AllAg.Embryonic_pancreas [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Emb.20.AllAg.Embryonic_pancreas mm9 All antigens Embryo Embryonic pancreas SRX2...87023,SRX287022,SRX287021,SRX287020,SRX287016,SRX287026,SRX287017 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Emb.20.AllAg.Embryonic_pancreas.bed ...

  13. File list: ALL.Emb.50.AllAg.Embryonic_pancreas [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Emb.50.AllAg.Embryonic_pancreas mm9 All antigens Embryo Embryonic pancreas SRX2...87021,SRX287020,SRX287023,SRX287016,SRX287022,SRX287026,SRX287017 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Emb.50.AllAg.Embryonic_pancreas.bed ...

  14. File list: ALL.Emb.10.AllAg.Embryonic_pancreas [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Emb.10.AllAg.Embryonic_pancreas mm9 All antigens Embryo Embryonic pancreas SRX2...87023,SRX287022,SRX287020,SRX287021,SRX287016,SRX287017,SRX287026 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Emb.10.AllAg.Embryonic_pancreas.bed ...

  15. File list: ALL.Emb.05.AllAg.Embryonic_pancreas [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Emb.05.AllAg.Embryonic_pancreas mm9 All antigens Embryo Embryonic pancreas SRX2...87017,SRX287023,SRX287022,SRX287021,SRX287026,SRX287020,SRX287016 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Emb.05.AllAg.Embryonic_pancreas.bed ...

  16. CELLULAR VACCINES IN LISTERIOSIS: ROLE OF THE LISTERIA ANTIGEN GAPDH.

    Directory of Open Access Journals (Sweden)

    Ricardo eCalderon-Gonzalez

    2014-02-01

    Full Text Available The use of live Listeria-based vaccines carries serious difficulties when administrated to immunocompromised individuals. However, cellular carriers have the advantage of inducing multivalent innate immunity as well as cell-mediated immune responses, constituting novel and secure vaccine strategies in listeriosis. Here, we compare the protective efficacy of dendritic cells (DCs and macrophages and their safety. We examined the immune response of these vaccine vectors using two Listeria antigens, listeriolysin O (LLO and glyceraldehyde-3-phosphate-dehydrogenase (GAPDH, and several epitopes such as the LLO peptides, LLO189–201 and LLO91–99 and the GAPDH peptide, GAPDH1–22. We discarded macrophages as safe vaccine vectors because they show anti-Listeria protection but also high cytotoxicity. DCs loaded with GAPDH1–22 peptide conferred higher protection and security against listeriosis than the widely explored LLO91–99 peptide. Anti-Listeria protection was related to the changes in DC maturation caused by these epitopes, with high production of interleukin-12 as well as significant levels of other Th1 cytokines such as monocyte chemotactic protein-1, tumor necrosis factor-α, and interferon-γ, and with the induction of GAPDH1–22-specific CD4+ and CD8+ immune responses. This is believed to be the first study to explore the use of a novel GAPDH antigen as a potential DC-based vaccine candidate for listeriosis, whose efficiency appears to highlight the relevance of vaccine designs containing multiple CD4+ and CD8+ epitopes.

  17. Cellular vaccines in listeriosis: role of the Listeria antigen GAPDH

    Science.gov (United States)

    Calderón-González, Ricardo; Frande-Cabanes, Elisabet; Bronchalo-Vicente, Lucía; Lecea-Cuello, M. Jesús; Pareja, Eduardo; Bosch-Martínez, Alexandre; Fanarraga, Mónica L.; Yañez-Díaz, Sonsoles; Carrasco-Marín, Eugenio; Álvarez-Domínguez, Carmen

    2014-01-01

    The use of live Listeria-based vaccines carries serious difficulties when administrated to immunocompromised individuals. However, cellular carriers have the advantage of inducing multivalent innate immunity as well as cell-mediated immune responses, constituting novel and secure vaccine strategies in listeriosis. Here, we compare the protective efficacy of dendritic cells (DCs) and macrophages and their safety. We examined the immune response of these vaccine vectors using two Listeria antigens, listeriolysin O (LLO) and glyceraldehyde-3-phosphate-dehydrogenase (GAPDH), and several epitopes such as the LLO peptides, LLO189−201 and LLO91−99 and the GAPDH peptide, GAPDH1−22. We discarded macrophages as safe vaccine vectors because they show anti-Listeria protection but also high cytotoxicity. DCs loaded with GAPDH1−22 peptide conferred higher protection and security against listeriosis than the widely explored LLO91−99 peptide. Anti-Listeria protection was related to the changes in DC maturation caused by these epitopes, with high production of interleukin-12 as well as significant levels of other Th1 cytokines such as monocyte chemotactic protein-1, tumor necrosis factor-α, and interferon-γ, and with the induction of GAPDH1−22-specific CD4+ and CD8+ immune responses. This is believed to be the first study to explore the use of a novel GAPDH antigen as a potential DC-based vaccine candidate for listeriosis, whose efficiency appears to highlight the relevance of vaccine designs containing multiple CD4+ and CD8+ epitopes. PMID:24600592

  18. Prediction of CD8+ Epitopes in Leishmania braziliensis Proteins Using EPIBOT: In Silico Search and In Vivo Validation.

    Directory of Open Access Journals (Sweden)

    Angelo Duarte

    Full Text Available Leishmaniasis is caused by intracellular Leishmania parasites that induce a T-cell mediated response associated with recognition of CD4+ and CD8+ T cell Line 1Lineepitopes. Identification of CD8+ antigenic determinants is crucial for vaccine and therapy development. Herein, we developed an open-source software dedicated to search and compile data obtained from currently available on line prediction algorithms.We developed a two-phase algorithm and implemented in an open source software called EPIBOT, that consolidates the results obtained with single prediction algorithms, generating a final output in which epitopes are ranked. EPIBOT was initially trained using a set of 831 known epitopes from 397 proteins from IEDB. We then screened 63 Leishmania braziliensis vaccine candidates with the EPIBOT trained tool to search for CD8+ T cell epitopes. A proof-of-concept experiment was conducted with the top eight CD8+ epitopes, elected by EPIBOT. To do this, the elected peptides were synthesized and validated for their in vivo cytotoxicity. Among the tested epitopes, three were able to induce lysis of pulsed-target cells.Our results show that EPIBOT can successfully search across existing prediction tools, generating a compiled list of candidate CD8+ epitopes. This software is fast and a simple search engine that can be customized to search over different MHC alleles or HLA haplotypes.

  19. Induction of protective immunity against Eimeria tenella, Eimeria necatrix, Eimeria maxima and Eimeria acervulina infections using multivalent epitope DNA vaccines.

    Science.gov (United States)

    Song, Xiaokai; Ren, Zhe; Yan, Ruofeng; Xu, Lixin; Li, Xiangrui

    2015-06-04

    Avian coccidiosis is mostly caused by mixed infection of several Eimeria species under natural conditions and immunity to avian coccidiosis is largely dependent on T-cell immune response. In this study, 14 T-cell epitope fragments from eight antigens of Eimeria tenella (E. tenella), Eimeria necatrix (E. necatrix), Eimeria maxima (E. maxima) and Eimeria acervulina (E. acervulina) were ligated with pVAX1 producing 14 monovalent DNA vaccines, respectively. Protective immunity of the monovalent DNA vaccines was assessed by in vivo challenge experiments and then four most protective fragments of each species were chosen to construct multivalent epitope DNA vaccines with or without chicken IL-2 as genetic adjuvant. Protective efficacies of the epitope DNA vaccines on chickens against E. tenella, E. necatrix, E. maxima and E. acervulina were evaluated. The results showed that the constructed multivalent epitope DNA vaccines significantly increased body weight gain, alleviated enteric lesions and reduced oocyst output of the infected birds. Especially, the multivalent epitope DNA vaccines of pVAX1-NA4-1-TA4-1-LDH-2-EMCDPK-1 and pVAX1-NA4-1-TA4-1-LDH-2-EMCDPK-1-IL-2 not only significantly increased body weight gain, alleviated enteric lesions and reduced oocyst output of the infected birds, but also resulted in anti-coccidial index (ACI) more than 170 against E. tenella, E. necatrix, E. maxima and E. acervulina, which indicated they could induce protective immunity against E. tenella, E. necatrix, E. maxima and E. acervulina. Our findings suggest the constructed multivalent epitope DNA vaccines are the potential candidate multivalent vaccines against mixed infection of Eimeria. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Determining the binding affinity of therapeutic monoclonal antibodies towards their native unpurified antigens in human serum.

    Directory of Open Access Journals (Sweden)

    Christine Bee

    Full Text Available Monoclonal antibodies (mAbs are a growing segment of therapeutics, yet their in vitro characterization remains challenging. While it is essential that a therapeutic mAb recognizes the native, physiologically occurring epitope, the generation and selection of mAbs often rely on the use of purified recombinant versions of the antigen that may display non-native epitopes. Here, we present a method to measure both, the binding affinity of a therapeutic mAb towards its native unpurified antigen in human serum, and the antigen's endogenous concentration, by combining the kinetic exclusion assay and Biacore's calibration free concentration analysis. To illustrate the broad utility of our method, we studied a panel of mAbs raised against three disparate soluble antigens that are abundant in the serum of healthy donors: proprotein convertase subtilisin/kexin type 9 (PCSK9, progranulin (PGRN, and fatty acid binding protein (FABP4. We also determined the affinity of each mAb towards its purified recombinant antigen and assessed whether the interactions were pH-dependent. Of the six mAbs studied, three did not appear to discriminate between the serum and recombinant forms of the antigen; one mAb bound serum antigen with a higher affinity than recombinant antigen; and two mAbs displayed a different affinity for serum antigen that could be explained by a pH-dependent interaction. Our results highlight the importance of taking pH into account when measuring the affinities of mAbs towards their serum antigens, since the pH of serum samples becomes increasingly alkaline upon aerobic handling.

  1. Clostridium difficile 027/BI/NAP1 encodes a hypertoxic and antigenically variable form of TcdB.

    Directory of Open Access Journals (Sweden)

    Jordi M Lanis

    Full Text Available The Clostridium difficile exotoxin, TcdB, which is a major virulence factor, varies between strains of this pathogen. Herein, we show that TcdB from the epidemic BI/NAP1/027 strain of C. difficile is more lethal, causes more extensive brain hemorrhage, and is antigenically variable from TcdB produced by previously studied strains of this pathogen (TcdB003. In mouse intoxication assays, TcdB from a ribotype 027 strain (TcdB027 was at least four fold more lethal than TcdB003. TcdB027 caused a previously undescribed brain hemorrhage in mice and this correlated with a heightened sensitivity of brain microvascular endothelial cells to the toxin. TcdB003 and TcdB027 also differed in their antigenic profiles and did not share cross-neutralizing epitopes in a major immunogenic region of the protein. Solid phase humoral mapping of epitopes in the carboxy-terminal domains (CTD of TcdB027 and TcdB003 identified 11 reactive epitopes that varied between the two forms of TcdB, and 13 epitopes that were shared or overlapping. Despite the epitope differences and absence of neutralizing epitopes in the CTD of TcdB027, a toxoid form of this toxin primed a strong protective response. These findings indicate TcdB027 is a more potent toxin than TcdB003 as measured by lethality assays and pathology, moreover the sequence differences between the two forms of TcdB alter antigenic epitopes and reduce cross-neutralization by antibodies targeting the CTD.

  2. The design and implementation of the immune epitope database and analysis resource

    DEFF Research Database (Denmark)

    Peters, B.; Sidney, J.; Bourne, P.

    2005-01-01

    Epitopes are defined as parts of antigens interacting with receptors of the immune system. Knowledge about their intrinsic structure and how they affect the immune response is required to continue development of techniques that detect, monitor, and fight diseases. Their scientific importance is r...

  3. File list: ALL.Emb.20.AllAg.Embryonic_testis [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Emb.20.AllAg.Embryonic_testis mm9 All antigens Embryo Embryonic testis SRX14917...57137,SRX1156635,SRX149168,SRX149172,SRX1175150,SRX149166,SRX149170,SRX1175149 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Emb.20.AllAg.Embryonic_testis.bed ...

  4. File list: ALL.Emb.10.AllAg.Embryonic_testis [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Emb.10.AllAg.Embryonic_testis mm9 All antigens Embryo Embryonic testis SRX14917...9169,SRX149166,SRX1175147,SRX957137,SRX1175148,SRX149170,SRX1175150,SRX1175149 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Emb.10.AllAg.Embryonic_testis.bed ...

  5. File list: ALL.Emb.50.AllAg.embryonic_skin [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Emb.50.AllAg.embryonic_skin mm9 All antigens Embryo embryonic skin SRX1062969,S...RX1062968,SRX1062966,SRX1062967,SRX1062972,SRX1062971,SRX1062970,SRX1062965 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Emb.50.AllAg.embryonic_skin.bed ...

  6. File list: ALL.Emb.20.AllAg.embryonic_skin [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Emb.20.AllAg.embryonic_skin mm9 All antigens Embryo embryonic skin SRX1062969,S...RX1062968,SRX1062966,SRX1062971,SRX1062967,SRX1062972,SRX1062965,SRX1062970 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Emb.20.AllAg.embryonic_skin.bed ...

  7. File list: ALL.Emb.10.AllAg.embryonic_skin [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Emb.10.AllAg.embryonic_skin mm9 All antigens Embryo embryonic skin SRX1062972,S...RX1062971,SRX1062966,SRX1062969,SRX1062968,SRX1062965,SRX1062967,SRX1062970 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Emb.10.AllAg.embryonic_skin.bed ...

  8. Delivery of a MalE CD4+-T-Cell Epitope into the Major Histocompatibility Complex Class II Antigen Presentation Pathway by Bordetella pertussis Adenylate Cyclase ral NPKSupply

    Czech Academy of Sciences Publication Activity Database

    Loucká, Jiřina; Schlecht, G.; Vojtová, Jana; Leclerc, C.; Šebo, Peter

    2002-01-01

    Roč. 70, č. 2 (2002), s. 1002-1005 ISSN 0019-9567 R&D Projects: GA ČR GA310/01/0934; GA AV ČR IAA5020907; GA MŠk ME 167 Grant - others:QLK2-CT(US) 00556 Institutional research plan: CEZ:AV0Z5020903 Keywords : delivery * epitope * complex Subject RIV: EE - Microbiology, Virology Impact factor: 4.039, year: 2002

  9. Exosomes derived from tumor cells genetically modified to express Mycobacterium tuberculosis antigen: a novel vaccine for cancer therapy.

    Science.gov (United States)

    Koyama, Yoshiyuki; Ito, Tomoko; Hasegawa, Aya; Eriguchi, Masazumi; Inaba, Toshio; Ushigusa, Takahiro; Sugiura, Kikuya

    2016-11-01

    To examine the potential of exosomes derived from the tumor cells, which had been genetically modified to express a Mycobacterium tuberculosis antigen, as a cancer vaccine aimed at overcoming the weak immunogenicity of tumor antigens. We transfected B16 melanoma cells with a plasmid encoding the M. tuberculosis antigen, early secretory antigenic target-6 (ESAT-6). The secreted exosomes bearing both tumor-associated antigens and the pathogenic antigen (or their epitopes) were collected. When the exosomes were injected into foot pads of mice, they significantly (p exosomes significantly suppressed (p exosomes derived from the non-transfected B16 cells showed no effect on tumor growth, although both exosomes should have similar tumor antigens. Exosomes bearing both tumor antigens and the M. tuberculosis antigen (or their epitopes) have a high potential as a candidate for cancer vaccine to overcome the immune escape by tumor cells.

  10. File list: ALL.Emb.20.AllAg.Embryonic_heart [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Emb.20.AllAg.Embryonic_heart mm9 All antigens Embryo Embryonic heart SRX112938,...7,SRX967654,SRX967653,SRX1100404,SRX244285,SRX112936,SRX1100405,SRX022494,SRX337963 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Emb.20.AllAg.Embryonic_heart.bed ...

  11. File list: ALL.Emb.50.AllAg.Embryonic_heart [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Emb.50.AllAg.Embryonic_heart mm9 All antigens Embryo Embryonic heart SRX112938,...52,SRX967653,SRX112936,SRX1100405,SRX112937,SRX185857,SRX244285,SRX022494,SRX337963 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Emb.50.AllAg.Embryonic_heart.bed ...

  12. File list: ALL.Emb.10.AllAg.Embryonic_heart [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Emb.10.AllAg.Embryonic_heart mm9 All antigens Embryo Embryonic heart SRX1437350...RX1437340,SRX1437357,SRX1437344,SRX1437336,SRX1437356,SRX377685,SRX022494,SRX337963 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Emb.10.AllAg.Embryonic_heart.bed ...

  13. [Proliferative capacity of mesenchymal stem cells from human fetal bone marrow and their ability to differentiate into the derivative cell types of three embryonic germ layers].

    Science.gov (United States)

    Wang, Yue-Chun; Zhang, Yuan

    2008-06-25

    Strong proliferative capacity and the ability to differentiate into the derivative cell types of three embryonic germ layers are the two important characteristics of embryonic stem cells. To study whether the mesenchymal stem cells from human fetal bone marrow (hfBM-MSCs) possess these embryonic stem cell-like biological characteristics, hfBM-MSCs were isolated from bone barrows and further purified according to the different adherence of different kinds of cells to the wall of culture flask. The cell cycle of hfBM-MSCs and MSC-specific surface markers such as CD29, CD44, etc were identified using flow cytometry. The expressions of human telomerase reverse transcriptase (hTERT), the embryonic stem cell-specific antigens, such as Oct4 and SSEA-4 were detected with immunocytochemistry at the protein level and were also tested by RT-PCR at the mRNA level. Then, hfBM-MSCs were induced to differentiate toward neuron cells, adipose cells, and islet B cells under certain conditions. It was found that 92.3% passage-4 hfBM-MSCs and 96.1% passage-5 hfBM-MSCs were at G(0)/G(1) phase respectively. hfBM-MSCs expressed CD44, CD106 and adhesion molecule CD29, but not antigens of hematopoietic cells CD34 and CD45, and almost not antigens related to graft-versus-host disease (GVHD), such as HLA-DR, CD40 and CD80. hfBM-MSCs expressed the embryonic stem cell-specific antigens such as Oct4, SSEA-4, and also hTERT. Exposure of these cells to various inductive agents resulted in morphological changes towards neuron-like cells, adipose-like cells, and islet B-like cells and they were tested to be positive for related characteristic markers. These results suggest that there are plenty of MSCs in human fetal bone marrow, and hfBM-MSCs possess the embryonic stem cell-like biological characteristics, moreover, they have a lower immunogenic nature. Thus, hfBM-MSCs provide an ideal source for tissue engineering and cellular therapeutics.

  14. State of the art and challenges in sequence based T-cell epitope prediction

    DEFF Research Database (Denmark)

    Lundegaard, Claus; Hoof, Ilka; Lund, Ole

    2010-01-01

    Sequence based T-cell epitope predictions have improved immensely in the last decade. From predictions of peptide binding to major histocompatibility complex molecules with moderate accuracy, limited allele coverage, and no good estimates of the other events in the antigen-processing pathway, the...

  15. Characterizing complex polysera produced by antigen-specific immunization through the use of affinity-selected mimotopes.

    Directory of Open Access Journals (Sweden)

    Galina Denisova

    Full Text Available BACKGROUND: Antigen-based (as opposed to whole organism vaccines are actively being pursued for numerous indications. Even though different formulations may produce similar levels of total antigen-specific antibody, the composition of the antibody response can be quite distinct resulting in different levels of therapeutic activity. METHODOLOGY/PRINCIPAL FINDINGS: Using plasmid-based immunization against the proto-oncogene HER-2 as a model, we have demonstrated that affinity-selected epitope mimetics (mimotopes can provide a defined signature of a polyclonal antibody response. Further, using novel computer algorithms that we have developed, these mimotopes can be used to predict epitope targets. CONCLUSIONS/SIGNIFICANCE: By combining our novel strategy with existing methods of epitope prediction based on physical properties of an individual protein, we believe that this method offers a robust method for characterizing the breadth of epitope-specificity within a specific polyserum. This strategy is useful as a tool for monitoring immunity following vaccination and can also be used to define relevant epitopes for the creation of novel vaccines.

  16. Effects of Pulsed Electromagnetic Field on Differentiation of HUES-17 Human Embryonic Stem Cell Line

    Directory of Open Access Journals (Sweden)

    Yi-Lin Wu

    2014-08-01

    Full Text Available Electromagnetic fields are considered to potentially affect embryonic development, but the mechanism is still unknown. In this study, human embryonic stem cell (hESC line HUES-17 was applied to explore the mechanism of exposure on embryonic development to pulsed electromagnetic field (PEMF for 400 pulses at different electric field intensities and the differentiation of HUES-17 cells was observed after PEMF exposure. The expression of alkaline phosphatase (AP, stage-specific embryonic antigen-3 (SSEA-3, SSEA-4 and the mRNA level and protein level of Oct4, Sox2 and Nanog in HUES-17 cells remained unchanged after PEMF exposure at the electric field intensities of 50, 100, 200 or 400 kV/m. Four hundred pulses PEMF exposure at the electric field intensities of 50, 100, 200 or 400 kV/m did not affect the differentiation of HUES-17 cells. The reason why electromagnetic fields affect embryonic development may be due to other mechanisms rather than affecting the differentiation of embryonic stem cells.

  17. [Immunoreactivity of chimeric proteins carrying poliovirus epitopes on the VP6 of rotavirus as a vector].

    Science.gov (United States)

    Pan, X-X; Zhao, B-X; Teng, Y-M; Xia, W-Y; Wang, J; Li, X-F; Liao, G-Y; Yang, С; Chen, Y-D

    2016-01-01

    Rotavirus and poliovirus continue to present significant risks and burden of disease to children in developing countries. Developing a combined vaccine may effectively prevent both illnesses and may be advantageous in terms of maximizing compliance and vaccine coverage at the same visit. Recently, we sought to generate a vaccine vector by incorporating multiple epitopes into the rotavirus group antigenic protein, VP6. In the present study, a foreign epitope presenting a system using VP6 as a vector was created with six sites on the outer surface of the vector that could be used for insertion of foreign epitopes, and three VP6-based PV1 epitope chimeric proteins were constructed. The chimeric proteins were confirmed by immunoblot, immunofluorescence assay, and injected into guinea pigs to analyze the epitope-specific humoral response. Results showed that these chimeric proteins reacted with anti-VP6F and -PV1 antibodies, and elicited antibodies against both proteins in guinea pigs. Antibodies against the chimeric proteins carrying PV1 epitopes neutralized rotavirus Wa and PV1 infection in vitro. Our study contributes to a better understanding of the use of VP6-based vectors as multiple-epitope delivery vehicles and the epitopes displayed in this form could be considered for development of epitope-based vaccines against rotavirus and poliovirus.

  18. Noncanonical Expression of a Murine Cytomegalovirus Early Protein CD8 T-Cell Epitope as an Immediate Early Epitope Based on Transcription from an Upstream Gene

    Directory of Open Access Journals (Sweden)

    Annette Fink

    2014-02-01

    Full Text Available Viral CD8 T-cell epitopes, represented by viral peptides bound to major histocompatibility complex class-I (MHC-I glycoproteins, are often identified by “reverse immunology”, a strategy not requiring biochemical and structural knowledge of the actual viral protein from which they are derived by antigen processing. Instead, bioinformatic algorithms predicting the probability of C-terminal cleavage in the proteasome, as well as binding affinity to the presenting MHC-I molecules, are applied to amino acid sequences deduced from predicted open reading frames (ORFs based on the genomic sequence. If the protein corresponding to an antigenic ORF is known, it is usually inferred that the kinetic class of the protein also defines the phase in the viral replicative cycle during which the respective antigenic peptide is presented for recognition by CD8 T cells. We have previously identified a nonapeptide from the predicted ORFm164 of murine cytomegalovirus that is presented by the MHC-I allomorph H-2 Dd and that is immunodominant in BALB/c (H-2d haplotype mice. Surprisingly, although the ORFm164 protein gp36.5 is expressed as an Early (E phase protein, the m164 epitope is presented already during the Immediate Early (IE phase, based on the expression of an upstream mRNA starting within ORFm167 and encompassing ORFm164.

  19. Identifying Patient-Specific Epstein-Barr Nuclear Antigen-1 Genetic Variation and Potential Autoreactive Targets Relevant to Multiple Sclerosis Pathogenesis.

    Directory of Open Access Journals (Sweden)

    Monika Tschochner

    Full Text Available Epstein-Barr virus (EBV infection represents a major environmental risk factor for multiple sclerosis (MS, with evidence of selective expansion of Epstein-Barr Nuclear Antigen-1 (EBNA1-specific CD4+ T cells that cross-recognize MS-associated myelin antigens in MS patients. HLA-DRB1*15-restricted antigen presentation also appears to determine susceptibility given its role as a dominant risk allele. In this study, we have utilised standard and next-generation sequencing techniques to investigate EBNA-1 sequence variation and its relationship to HLA-DR15 binding affinity, as well as examining potential cross-reactive immune targets within the central nervous system proteome.Sanger sequencing was performed on DNA isolated from peripheral blood samples from 73 Western Australian MS cases, without requirement for primary culture, with additional FLX 454 Roche sequencing in 23 samples to identify low-frequency variants. Patient-derived viral sequences were used to predict HLA-DRB1*1501 epitopes (NetMHCII, NetMHCIIpan and candidates were evaluated for cross recognition with human brain proteins.EBNA-1 sequence variation was limited, with no evidence of multiple viral strains and only low levels of variation identified by FLX technology (8.3% nucleotide positions at a 1% cut-off. In silico epitope mapping revealed two known HLA-DRB1*1501-restricted epitopes ('AEG': aa 481-496 and 'MVF': aa 562-577, and two putative epitopes between positions 502-543. We identified potential cross-reactive targets involving a number of major myelin antigens including experimentally confirmed HLA-DRB1*15-restricted epitopes as well as novel candidate antigens within myelin and paranodal assembly proteins that may be relevant to MS pathogenesis.This study demonstrates the feasibility of obtaining autologous EBNA-1 sequences directly from buffy coat samples, and confirms divergence of these sequences from standard laboratory strains. This approach has identified a number of

  20. Vaccine-induced antibodies to herpes simplex virus glycoprotein D epitopes involved in virus entry and cell-to-cell spread correlate with protection against genital disease in guinea pigs.

    Science.gov (United States)

    Hook, Lauren M; Cairns, Tina M; Awasthi, Sita; Brooks, Benjamin D; Ditto, Noah T; Eisenberg, Roselyn J; Cohen, Gary H; Friedman, Harvey M

    2018-05-01

    Herpes simplex virus type 2 (HSV-2) glycoprotein D (gD2) subunit antigen is included in many preclinical candidate vaccines. The rationale for including gD2 is to produce antibodies that block crucial gD2 epitopes involved in virus entry and cell-to-cell spread. HSV-2 gD2 was the only antigen in the Herpevac Trial for Women that protected against HSV-1 genital infection but not HSV-2. In that trial, a correlation was detected between gD2 ELISA titers and protection against HSV-1, supporting the importance of antibodies. A possible explanation for the lack of protection against HSV-2 was that HSV-2 neutralization titers were low, four-fold lower than to HSV-1. Here, we evaluated neutralization titers and epitope-specific antibody responses to crucial gD2 epitopes involved in virus entry and cell-to-cell spread as correlates of immune protection against genital lesions in immunized guinea pigs. We detected a strong correlation between neutralizing antibodies and protection against genital disease. We used a high throughput biosensor competition assay to measure epitope-specific responses to seven crucial gD2 linear and conformational epitopes involved in virus entry and spread. Some animals produced antibodies to most crucial epitopes while others produced antibodies to few. The number of epitopes recognized by guinea pig immune serum correlated with protection against genital lesions. We confirmed the importance of antibodies to each crucial epitope using monoclonal antibody passive transfer that improved survival and reduced genital disease in mice after HSV-2 genital challenge. We re-evaluated our prior study of epitope-specific antibody responses in women in the Herpevac Trial. Humans produced antibodies that blocked significantly fewer crucial gD2 epitopes than guinea pigs, and antibody responses in humans to some linear epitopes were virtually absent. Neutralizing antibody titers and epitope-specific antibody responses are important immune parameters to

  1. Distinct Escape Pathway by Hepatitis C Virus Genotype 1a from a Dominant CD8+ T Cell Response by Selection of Altered Epitope Processing.

    Science.gov (United States)

    Walker, Andreas; Skibbe, Kathrin; Steinmann, Eike; Pfaender, Stephanie; Kuntzen, Thomas; Megger, Dominik A; Groten, Svenja; Sitek, Barbara; Lauer, Georg M; Kim, Arthur Y; Pietschmann, Thomas; Allen, Todd M; Timm, Joerg

    2016-01-01

    epitope underlines that efficient antigen presentation strongly depends on its larger sequence context and that blocking of the multistep process of antigen processing by mutation is exploited also by HCV. The pathways to mutational escape of HCV are to some extent predictable but are distinct in different genotypes. Importantly, the selected escape pathway of HCV may have consequences for the destiny of antigen-specific CD8(+) T cells. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  2. Tissue distribution of histo-blood group antigens

    DEFF Research Database (Denmark)

    Ravn, V; Dabelsteen, Erik

    2000-01-01

    carrier carbohydrate chains. Histo-blood group antigens are found in most epithelial tissues. Meanwhile, several factors influence the type, the amount, and the histological distribution of histoblood group antigens, i.e. the ABO, Lewis, and saliva-secretor type of the individual, and the cell- and tissue......The introduction of immunohistochemical techniques and monoclonal antibodies to specific carbohydrate epitopes has made it possible to study in detail the tissue distribution of histo-blood group antigens and related carbohydrate structures. The present paper summarizes the available data...... concerning the histological distribution of histo-blood group antigens and their precursor structures in normal human tissues. Studies performed have concentrated on carbohydrate antigens related to the ABO, Lewis, and TTn blood group systems, i.e. histo-blood group antigens carried by type 1, 2, and 3 chain...

  3. Multi-epitope Models Explain How Pre-existing Antibodies Affect the Generation of Broadly Protective Responses to Influenza.

    Directory of Open Access Journals (Sweden)

    Veronika I Zarnitsyna

    2016-06-01

    Full Text Available The development of next-generation influenza vaccines that elicit strain-transcendent immunity against both seasonal and pandemic viruses is a key public health goal. Targeting the evolutionarily conserved epitopes on the stem of influenza's major surface molecule, hemagglutinin, is an appealing prospect, and novel vaccine formulations show promising results in animal model systems. However, studies in humans indicate that natural infection and vaccination result in limited boosting of antibodies to the stem of HA, and the level of stem-specific antibody elicited is insufficient to provide broad strain-transcendent immunity. Here, we use mathematical models of the humoral immune response to explore how pre-existing immunity affects the ability of vaccines to boost antibodies to the head and stem of HA in humans, and, in particular, how it leads to the apparent lack of boosting of broadly cross-reactive antibodies to the stem epitopes. We consider hypotheses where binding of antibody to an epitope: (i results in more rapid clearance of the antigen; (ii leads to the formation of antigen-antibody complexes which inhibit B cell activation through Fcγ receptor-mediated mechanism; and (iii masks the epitope and prevents the stimulation and proliferation of specific B cells. We find that only epitope masking but not the former two mechanisms to be key in recapitulating patterns in data. We discuss the ramifications of our findings for the development of vaccines against both seasonal and pandemic influenza.

  4. Vaccination with lipid core peptides fails to induce epitope-specific T cell responses but confers non-specific protective immunity in a malaria model.

    Directory of Open Access Journals (Sweden)

    Simon H Apte

    Full Text Available Vaccines against many pathogens for which conventional approaches have failed remain an unmet public health priority. Synthetic peptide-based vaccines offer an attractive alternative to whole protein and whole organism vaccines, particularly for complex pathogens that cause chronic infection. Previously, we have reported a promising lipid core peptide (LCP vaccine delivery system that incorporates the antigen, carrier, and adjuvant in a single molecular entity. LCP vaccines have been used to deliver several peptide subunit-based vaccine candidates and induced high titre functional antibodies and protected against Group A streptococcus in mice. Herein, we have evaluated whether LCP constructs incorporating defined CD4(+ and/or CD8(+ T cell epitopes could induce epitope-specific T cell responses and protect against pathogen challenge in a rodent malaria model. We show that LCP vaccines failed to induce an expansion of antigen-specific CD8(+ T cells following primary immunization or by boosting. We further demonstrated that the LCP vaccines induced a non-specific type 2 polarized cytokine response, rather than an epitope-specific canonical CD8(+ T cell type 1 response. Cytotoxic responses of unknown specificity were also induced. These non-specific responses were able to protect against parasite challenge. These data demonstrate that vaccination with lipid core peptides fails to induce canonical epitope-specific T cell responses, at least in our rodent model, but can nonetheless confer non-specific protective immunity against Plasmodium parasite challenge.

  5. Effects of different feeder layers on culture of bovine embryonic stem cell-like cells in vitro.

    Science.gov (United States)

    Cong, Shan; Cao, Guifang; Liu, Dongjun

    2014-12-01

    To find a suitable feeder layer is important for successful culture conditions of bovine embryonic stem cell-like cells. In this study, expression of pluripotency-related genes OCT4, SOX2 and NANOG in bovine embryonic stem cell-like cells on mouse embryonic fibroblast feeder layers at 1-5 passages were monitored in order to identify the possible reason that bovine embryonic stem cell-like cells could not continue growth and passage. Here, we developed two novel feeder layers, mixed embryonic fibroblast feeder layers of mouse and bovine embryonic fibroblast at different ratios and sources including mouse fibroblast cell lines. The bovine embryonic stem cell-like cells generated in our study displayed typical stem cell morphology and expressed specific markers such as OCT4, stage-specific embryonic antigen 1 and 4, alkaline phosphatase, SOX2, and NANOG mRNA levels. When feeder layers and cell growth factors were removed, the bovine embryonic stem cell-like cells formed embryoid bodies in a suspension culture. Furthermore, we compared the expression of the pluripotent markers during bovine embryonic stem cell-like cell in culture on mixed embryonic fibroblast feeder layers, including mouse fibroblast cell lines feeder layers and mouse embryonic fibroblast feeder layers by real-time quantitative polymerase chain reaction. Results suggested that mixed embryonic fibroblast and sources including mouse fibroblast cell lines feeder layers were more suitable for long-term culture and growth of bovine embryonic stem cell-like cells than mouse embryonic fibroblast feeder layers. The findings may provide useful experimental data for the establishment of an appropriate culture system for bovine embryonic stem cell lines.

  6. Generation of hematopoietic lineage cells from embryonic like cells

    Directory of Open Access Journals (Sweden)

    Gholam Reza Khamisipour

    2014-10-01

    Full Text Available Background: Epigenetic reprogramming of somatic cells into embryonic stem cells has attracted much attention, because of the potential for stem cell transplantation and compatibility with recipient. However, the therapeutic application of either nuclear transfer or nuclear fusion of somatic cell has been hindered by technical complications as well as ethical objections. Recently, a new method is reported whereby ectopic expression of embryonic specific transcription factors was shown to induce fibroblasts to become embryonic like SCs (induced pluripotent stem cells. A major limitation of this method is the use of potentially harmful genome integrating viruses such as reto- or lentivirus. The main aim of this investigation was generation of human hematopoietic stem cells from induced fibroblasts by safe adenovectors carrying embryonically active genes. Material and Methods: Isolated fibroblasts from foreskin were expanded and recombinant adenoviruses carrying human Sox2, Oct4, Klf4, cMyc genes were added to culture. After formation of embryonic like colonies and cell expansion, they were transferred to embryonic media without bFGF, and embryoid bodies were cultured on stromal and non-stromal differentiation media for 14 days. Results: Expression of CD34 gene and antigenic markers, CD34, CD38 & CD133 in stromal culture showed significant difference with non-differentiation and non-stromal media. Conclusion: These findings show high hematopoietic differentiation rate of Adeno-iPS cells in stromal culture and no need to use growth factors. While, there was no difference between non-differentiation and non-stromal media.

  7. Comprehensive mapping of common immunodominant epitopes in the West Nile virus nonstructural protein 1 recognized by avian antibody responses.

    Directory of Open Access Journals (Sweden)

    Encheng Sun

    Full Text Available West Nile virus (WNV is a mosquito-borne flavivirus that primarily infects birds but occasionally infects humans and horses. Certain species of birds, including crows, house sparrows, geese, blue jays and ravens, are considered highly susceptible hosts to WNV. The nonstructural protein 1 (NS1 of WNV can elicit protective immune responses, including NS1-reactive antibodies, during infection of animals. The antigenicity of NS1 suggests that NS1-reactive antibodies could provide a basis for serological diagnostic reagents. To further define serological reagents for diagnostic use, the antigenic sites in NS1 that are targeted by host immune responses need to be identified and the potential diagnostic value of individual antigenic sites also needs to be defined. The present study describes comprehensive mapping of common immunodominant linear B-cell epitopes in the WNV NS1 using avian WNV NS1 antisera. We screened antisera from chickens, ducks and geese immunized with purified NS1 for reactivity against 35 partially overlapping peptides covering the entire WNV NS1. This study identified twelve, nine and six peptide epitopes recognized by chicken, duck and goose antibody responses, respectively. Three epitopes (NS1-3, 14 and 24 were recognized by antibodies elicited by immunization in all three avian species tested. We also found that NS1-3 and 24 were WNV-specific epitopes, whereas the NS1-14 epitope was conserved among the Japanese encephalitis virus (JEV serocomplex viruses based on the reactivity of avian WNV NS1 antisera against polypeptides derived from the NS1 sequences of viruses of the JEV serocomplex. Further analysis showed that the three common polypeptide epitopes were not recognized by antibodies in Avian Influenza Virus (AIV, Newcastle Disease Virus (NDV, Duck Plague Virus (DPV and Goose Parvovirus (GPV antisera. The knowledge and reagents generated in this study have potential applications in differential diagnostic approaches and

  8. Mapping of Minimal Motifs of B-Cell Epitopes on Human Zona Pellucida Glycoprotein-3

    Directory of Open Access Journals (Sweden)

    Wan-Xiang Xu

    2012-01-01

    Full Text Available The human zona pellucida glycoprotein-3 (hZP3 by virtue of its critical role during fertilization has been proposed as a promising candidate antigen to develop a contraceptive vaccine. In this direction, it is imperative to map minimal motifs of the B cell epitopes (BCEs so as to avoid ZP-specific oophoritogenic T cell epitopes (TCEs in the ZP3-based immunogens. In this study, based on known results of mapping marmoset and bonnet monkey ZP3 (mstZP3 and bmZP3, two predictable epitopes23–30  and  301–320 on hZP3 were first confirmed and five minimal motifs within four epitopes on hZP3 were defined using serum to recombinant hZP3a22–176 or hZP3b177–348 as well as a biosynthetic peptide strategy. These defined minimal motifs were QPLWLL23–28 for hZP323–30, MQVTDD103–108 for hZP393–110, EENW178–181 for hZP3172–190, as well as SNSWF306–310 and EGP313–315 for hZP3301–320, respectively. Furthermore, the antigenicity of two peptides for hZP3172–187 and hZP3301–315 and specificity of the antibody response to these peptides were also evaluated, which produced high-titer antibodies in immunized animals that were capable of reacting to ZP on human oocytes, r-hZP3b177–348 protein, as well as r-hZP3172–190, r-hZP3303–310, and r-hZP3313–320 epitope peptides fused with truncated GST188 protein.

  9. IgE and allergen-specific immunotherapy-induced IgG4 recognize similar epitopes of Bet v 1, the major allergen of birch pollen.

    Science.gov (United States)

    Groh, N; von Loetzen, C S; Subbarayal, B; Möbs, C; Vogel, L; Hoffmann, A; Fötisch, K; Koutsouridou, A; Randow, S; Völker, E; Seutter von Loetzen, A; Rösch, P; Vieths, S; Pfützner, W; Bohle, B; Schiller, D

    2017-05-01

    Allergen-specific immunotherapy (AIT) with birch pollen generates Bet v 1-specific immunoglobulin (Ig)G 4 which blocks IgE-mediated hypersensitivity mechanisms. Whether IgG 4 specific for Bet v 1a competes with IgE for identical epitopes or whether novel epitope specificities of IgG 4 antibodies are developed is under debate. We sought to analyze the epitope specificities of IgE and IgG 4 antibodies from sera of patients who received AIT. 15 sera of patients (13/15 received AIT) with Bet v 1a-specific IgE and IgG 4 were analyzed. The structural arrangements of recombinant (r)Bet v 1a and rBet v 1a _11x , modified in five potential epitopes, were analyzed by circular dichroism and nuclear magnetic resonance spectroscopy. IgE binding to Bet v 1 was assessed by ELISA and mediator release assays. Competitive binding of monoclonal antibodies specific for Bet v 1a and serum IgE/IgG 4 to rBet v 1a and serum antibody binding to a non-allergenic Bet v 1-type model protein presenting an individual epitope for IgE was analyzed in ELISA and western blot. rBet v 1a _11x had a Bet v 1a - similar secondary and tertiary structure. Monomeric dispersion of rBet v 1a _11x was concentration and buffer-dependent. Up to 1500-fold increase in the EC 50 for IgE-mediated mediator release induced by rBet v 1a _11x was determined. The reduction of IgE and IgG 4 binding to rBet v 1a _11x was comparable in 67% (10/15) of sera. Bet v 1a-specific monoclonal antibodies inhibited binding of serum IgE and IgG 4 to 66.1% and 64.9%, respectively. Serum IgE and IgG 4 bound specifically to an individual epitope presented by our model protein in 33% (5/15) of sera. Patients receiving AIT develop Bet v 1a-specific IgG 4 which competes with IgE for partly identical or largely overlapping epitopes. The similarities of epitopes for IgE and IgG 4 might stimulate the development of epitope-specific diagnostics and therapeutics. © 2016 John Wiley & Sons Ltd.

  10. Screening and identification of T helper 1 and linear immunodominant antibody-binding epitopes in spike 1 domain and membrane protein of feline infectious peritonitis virus.

    Science.gov (United States)

    Takano, Tomomi; Morioka, Hiroyuki; Gomi, Kohji; Tomizawa, Keisuke; Doki, Tomoyoshi; Hohdatsu, Tsutomu

    2014-04-01

    Feline infectious peritonitis virus (FIP virus: FIPV) causes a fatal disease in wild and domestic cats. The development of an FIP-preventive vaccine requires an antigen that does not induce antibody-dependent enhancement, and T helper (Th)1 activity plays an important role in protect against FIPV infection. In the present study, we identified synthetic peptides including Th1 and a linear immunodominant antibody-binding epitope in the S1 domain and M protein of FIPV. We also identified peptides that strongly induce Th1 activity from those derived from the structural proteins (S, M, and N proteins) of FIPV based on this and previous studies (Satoh et al. [19]). No Th1 epitope-containing peptide was identified in the peptides derived from the S1 domain of type I FIPV. In contrast, 7 Th1 epitope-containing peptides were identified in the S1 domain of type II FIPV, and no linear immunodominant antibody-binding epitope was contained in any of these peptides. Eleven Th1 epitope-containing peptides common to each serotype were identified in the M protein-derived peptides, and 2 peptides (M-11 and M-12) contained the linear immunodominant antibody-binding epitope. Of the peptides derived from the S, M, and N proteins of FIPV, those that induced significantly stronger Th1 activity than that of the FIPV antigen were rescreened, and 4 peptides were identified. When 3 of these peptides (M-9, I-S2-15, and II-S1-24) were selected and administered with CpG-ODNs to SPF cats, M-9 and II-S1-24 induced Th1 activity. Our results may provide important information for the development of a peptide-based vaccine against FIPV infection. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Native Mass Spectrometry, Ion mobility, and Collision-Induced Unfolding Categorize Malaria Antigen/Antibody Binding

    Science.gov (United States)

    Huang, Yining; Salinas, Nichole D.; Chen, Edwin; Tolia, Niraj H.; Gross, Michael L.

    2017-09-01

    Plasmodium vivax Duffy Binding Protein (PvDBP) is a promising vaccine candidate for P. vivax malaria. Recently, we reported the epitopes on PvDBP region II (PvDBP-II) for three inhibitory monoclonal antibodies (2D10, 2H2, and 2C6). In this communication, we describe the combination of native mass spectrometry and ion mobility (IM) with collision induced unfolding (CIU) to study the conformation and stabilities of three malarial antigen-antibody complexes. These complexes, when collisionally activated, undergo conformational changes that depend on the location of the epitope. CIU patterns for PvDBP-II in complex with antibody 2D10 and 2H2 are highly similar, indicating comparable binding topology and stability. A different CIU fingerprint is observed for PvDBP-II/2C6, indicating that 2C6 binds to PvDBP-II on an epitope different from 2D10 and 2H2. This work supports the use of CIU as a means of classifying antigen-antibody complexes by their epitope maps in a high throughput screening workflow. [Figure not available: see fulltext.

  12. Computational Identification and Characterization of a Promiscuous T-Cell Epitope on the Extracellular Protein 85B of Mycobacterium spp. for Peptide-Based Subunit Vaccine Design

    Directory of Open Access Journals (Sweden)

    Md. Saddam Hossain

    2017-01-01

    Full Text Available Tuberculosis (TB is a reemerging disease that remains as a leading cause of morbidity and mortality in humans. To identify and characterize a T-cell epitope suitable for vaccine design, we have utilized the Vaxign server to assess all antigenic proteins of Mycobacterium spp. recorded to date in the Protegen database. We found that the extracellular protein 85B displayed the most robust antigenicity among the proteins identified. Computational tools for identifying T-cell epitopes predicted an epitope, 181-QQFIYAGSLSALLDP-195, that could bind to at least 13 major histocompatibility complexes, revealing the promiscuous nature of the epitope. Molecular docking simulation demonstrated that the epitope could bind to the binding groove of MHC II and MHC I molecules by several hydrogen bonds. Molecular docking analysis further revealed that the epitope had a distinctive binding pattern to all DRB1 and A and B series of MHC molecules and presented almost no polymorphism in its binding site. Moreover, using “Allele Frequency Database,” we checked the frequency of HLA alleles in the worldwide population and found a higher frequency of both class I and II HLA alleles in individuals living in TB-endemic regions. Our results indicate that the identified peptide might be a universal candidate to produce an efficient epitope-based vaccine for TB.

  13. Substantial gaps in knowledge of Bordetella pertussis antibody and T cell epitopes relevant for natural immunity and vaccine efficacy

    Science.gov (United States)

    Vaughan, Kerrie; Seymour, Emily; Peters, Bjoern; Sette, Alessandro

    2016-01-01

    The recent increase in whooping cough in vaccinated populations has been attributed to waning immunity associated with the acellular vaccine. The Immune Epitope Database (IEDB) is a repository of immune epitope data from the published literature and includes T cell and antibody epitopes for human pathogens. The IEDB conducted a review of the epitope literature, which revealed 300 Bordetella pertussis-related epitopes from 39 references. Epitope data are currently available for six virulence factors of B. pertussis: pertussis toxin, pertactin, fimbrial 2, fimbrial 3, adenylate cyclase and filamentous hemagglutinin. The majority of epitopes were defined for antibody reactivity; fewer T cell determinants were reported. Analysis of available protective correlates data revealed a number of candidate epitopes; however few are defined in humans and few have been shown to be protective. Moreover, there are a limited number of studies defining epitopes from natural infection versus whole cell or acellular/subunit vaccines. The relationship between epitope location and structural features, as well as antigenic drift (SNP analysis) was also investigated. We conclude that the cumulative data is yet insufficient to address many fundamental questions related to vaccine failure and this underscores the need for further investigation of B. pertussis immunity at the molecular level. PMID:24530743

  14. Oral Immunization with a Multivalent Epitope-Based Vaccine, Based on NAP, Urease, HSP60, and HpaA, Provides Therapeutic Effect on H. pylori Infection in Mongolian gerbils.

    Science.gov (United States)

    Guo, Le; Yang, Hua; Tang, Feng; Yin, Runting; Liu, Hongpeng; Gong, Xiaojuan; Wei, Jun; Zhang, Ying; Xu, Guangxian; Liu, Kunmei

    2017-01-01

    Epitope-based vaccine is a promising strategy for therapeutic vaccination against Helicobacter pylori ( H. pylori ) infection. A multivalent subunit vaccine containing various antigens from H. pylori is superior to a univalent subunit vaccine. However, whether a multivalent epitope-based vaccine is superior to a univalent epitope-based vaccine in therapeutic vaccination against H. pylori , remains unclear. In this study, a multivalent epitope-based vaccine named CWAE against H. pylori urease, neutrophil-activating protein (NAP), heat shock protein 60 (HSP60) and H. pylori adhesin A (HpaA) was constructed based on mucosal adjuvant cholera toxin B subunit (CTB), Th1-type adjuvant NAP, multiple copies of selected B and Th cell epitopes (UreA 27-53 , UreA 183-203 , HpaA 132-141 , and HSP60 189-203 ), and also the epitope-rich regions of urease B subunit (UreB 158-251 and UreB 321-385 ) predicted by bioinformatics. Immunological properties of CWAE vaccine were characterized in BALB/c mice model. Its therapeutic effect was evaluated in H. pylori -infected Mongolian gerbil model by comparing with a univalent epitope-based vaccine CTB-UE against H. pylori urease that was constructed in our previous studies. Both CWAE and CTB-UE could induce similar levels of specific antibodies against H. pylori urease, and had similar inhibition effect of H. pylori urease activity. However, only CWAE could induce high levels of specific antibodies to NAP, HSP60, HpaA, and also the synthetic peptides epitopes (UreB 158-172 , UreB 181-195 , UreB 211-225 , UreB 349-363 , HpaA 132-141 , and HSP60 189-203 ). In addition, oral therapeutic immunization with CWAE significantly reduced the number of H. pylori colonies in the stomach of Mongolian gerbils, compared with oral immunization using CTB-UE or H. pylori urease. The protection of CWAE was associated with higher levels of mixed CD4 + T cell (Th cell) response, IgG, and secretory IgA (sIgA) antibodies to H. pylori . These results indic ate

  15. Oral Immunization with a Multivalent Epitope-Based Vaccine, Based on NAP, Urease, HSP60, and HpaA, Provides Therapeutic Effect on H. pylori Infection in Mongolian gerbils

    Directory of Open Access Journals (Sweden)

    Le Guo

    2017-08-01

    Full Text Available Epitope-based vaccine is a promising strategy for therapeutic vaccination against Helicobacter pylori (H. pylori infection. A multivalent subunit vaccine containing various antigens from H. pylori is superior to a univalent subunit vaccine. However, whether a multivalent epitope-based vaccine is superior to a univalent epitope-based vaccine in therapeutic vaccination against H. pylori, remains unclear. In this study, a multivalent epitope-based vaccine named CWAE against H. pylori urease, neutrophil-activating protein (NAP, heat shock protein 60 (HSP60 and H. pylori adhesin A (HpaA was constructed based on mucosal adjuvant cholera toxin B subunit (CTB, Th1-type adjuvant NAP, multiple copies of selected B and Th cell epitopes (UreA27–53, UreA183–203, HpaA132–141, and HSP60189–203, and also the epitope-rich regions of urease B subunit (UreB158–251 and UreB321–385 predicted by bioinformatics. Immunological properties of CWAE vaccine were characterized in BALB/c mice model. Its therapeutic effect was evaluated in H. pylori-infected Mongolian gerbil model by comparing with a univalent epitope-based vaccine CTB-UE against H. pylori urease that was constructed in our previous studies. Both CWAE and CTB-UE could induce similar levels of specific antibodies against H. pylori urease, and had similar inhibition effect of H. pylori urease activity. However, only CWAE could induce high levels of specific antibodies to NAP, HSP60, HpaA, and also the synthetic peptides epitopes (UreB158–172, UreB181–195, UreB211–225, UreB349–363, HpaA132–141, and HSP60189–203. In addition, oral therapeutic immunization with CWAE significantly reduced the number of H. pylori colonies in the stomach of Mongolian gerbils, compared with oral immunization using CTB-UE or H. pylori urease. The protection of CWAE was associated with higher levels of mixed CD4+ T cell (Th cell response, IgG, and secretory IgA (sIgA antibodies to H. pylori. These results indic

  16. An Approach for a Synthetic CTL Vaccine Design against Zika Flavivirus Using Class I and Class II Epitopes Identified by Computer Modeling

    Directory of Open Access Journals (Sweden)

    Edecio Cunha-Neto

    2017-06-01

    Full Text Available The threat posed by severe congenital abnormalities related to Zika virus (ZKV infection during pregnancy has turned development of a ZKV vaccine into an emergency. Recent work suggests that the cytotoxic T lymphocyte (CTL response to infection is an important defense mechanism in response to ZKV. Here, we develop the rationale and strategy for a new approach to developing cytotoxic T lymphocyte (CTL vaccines for ZKV flavivirus infection. The proposed approach is based on recent studies using a protein structure computer model for HIV epitope selection designed to select epitopes for CTL attack optimized for viruses that exhibit antigenic drift. Because naturally processed and presented human ZKV T cell epitopes have not yet been described, we identified predicted class I peptide sequences on ZKV matching previously identified DNV (Dengue class I epitopes and by using a Major Histocompatibility Complex (MHC binding prediction tool. A subset of those met the criteria for optimal CD8+ attack based on physical chemistry parameters determined by analysis of the ZKV protein structure encoded in open source Protein Data File (PDB format files. We also identified candidate ZKV epitopes predicted to bind promiscuously to multiple HLA class II molecules that could provide help to the CTL responses. This work suggests that a CTL vaccine for ZKV may be possible even if ZKV exhibits significant antigenic drift. We have previously described a microsphere-based CTL vaccine platform capable of eliciting an immune response for class I epitopes in mice and are currently working toward in vivo testing of class I and class II epitope delivery directed against ZKV epitopes using the same microsphere-based vaccine.

  17. The Cancer Exome Generated by Alternative mRNA Splicing Dilutes Predicted HLA Class I Epitope Density

    DEFF Research Database (Denmark)

    Stranzl, Thomas; Larsen, Mette Voldby; Lund, Ole

    2012-01-01

    Several studies have shown that cancers actively regulate alternative splicing. Altered splicing mechanisms in cancer lead to cancer-specific transcripts different from the pool of transcripts occurring only in healthy tissue. At the same time, altered presentation of HLA class I epitopes...... is frequently observed in various types of cancer. Down-regulation of genes related to HLA class I antigen processing has been observed in several cancer types, leading to fewer HLA class I antigens on the cell surface. Here, we use a peptidome wide analysis of predicted alternative splice forms, based...... on a publicly available database, to show that peptides over-represented in cancer splice variants comprise significantly fewer predicted HLA class I epitopes compared to peptides from normal transcripts. Peptides over-represented in cancer transcripts are in the case of the three most common HLA class I...

  18. Human monoclonal antibodies to a novel cluster of conformational epitopes on HCV E2 with resistance to neutralization escape in a genotype 2a isolate

    DEFF Research Database (Denmark)

    Keck, Zhen-yong; Xia, Jinming; Wang, Yong

    2012-01-01

    The majority of broadly neutralizing antibodies to hepatitis C virus (HCV) are against conformational epitopes on the E2 glycoprotein. Many of them recognize overlapping epitopes in a cluster, designated as antigenic domain B, that contains residues G530 and D535. To gain information on other reg...

  19. Serum CEA (carcino-embryonic antigen) monitoring after surgery for cancer of the rectum and colon

    International Nuclear Information System (INIS)

    Reginster, J.Y.; Desaive, C.; Collette, J.; Zangerle, P.F.; Denis, D.; Franchimont, P.

    1984-01-01

    Fifty four patients, operated for colorectal cancer have been followed up for 2 to 100 months after surgery by carcino-embryonic antigen (CEA) determinations and classical, clinical, biological, radiological, echographical, isotopical and tomoscanninvestigations. Each new serum sample has been assayed for CEA with previously collected samples within the same patients. This repetition of CEA on the same samples allows to check the good reproducibility of CEA radioimmunoassay (variation coefficient between assay is less than 10%) and to get a complete profile of CEA level evaluation within the same assay. There is a good correlation between clinical evolution and CEA levels. In 42 patients, CEA levels remained or became normal ( 20 ng ml) at the same time or before clinical and/or paraclinical evidences for metastases or local recurrence. These results showed CEA assay in a quantitative parameter to assess the follow-up of colorectal cancer complementary to clinical, biological, radiological, echographical and isotopical criterias [fr

  20. Immunisation With Immunodominant Linear B Cell Epitopes Vaccine of Manganese Transport Protein C Confers Protection against Staphylococcus aureus Infection.

    Directory of Open Access Journals (Sweden)

    Hui-Jie Yang

    Full Text Available Vaccination strategies for Staphylococcus aureus, particularly methicillin-resistant S. aureus (MRSA infections have attracted much research attention. Recent efforts have been made to select manganese transport protein C, or manganese binding surface lipoprotein C (MntC, which is a metal ion associated with pathogen nutrition uptake, as potential candidates for an S. aureus vaccine. Although protective humoral immune responses to MntC are well-characterised, much less is known about detailed MntC-specific B cell epitope mapping and particularly epitope vaccines, which are less-time consuming and more convenient. In this study, we generated a recombinant protein rMntC which induced strong antibody response when used for immunisation with CFA/IFA adjuvant. On the basis of the results, linear B cell epitopes within MntC were finely mapped using a series of overlapping synthetic peptides. Further studies indicate that MntC113-136, MntC209-232, and MntC263-286 might be the original linear B-cell immune dominant epitope of MntC, furthermore, three-dimensional (3-d crystal structure results indicate that the three immunodominant epitopes were displayed on the surface of the MntC antigen. On the basis of immunodominant MntC113-136, MntC209-232, and MntC263-286 peptides, the epitope vaccine for S. aureus induces a high antibody level which is biased to TH2 and provides effective immune protection and strong opsonophagocytic killing activity in vitro against MRSA infection. In summary, the study provides strong proof of the optimisation of MRSA B cell epitope vaccine designs and their use, which was based on the MntC antigen in the development of an MRSA vaccine.

  1. Programmed Death-1 expression on Epstein Barr virus specific CD8+ T cells varies by stage of infection, epitope specificity, and T-cell receptor usage.

    Directory of Open Access Journals (Sweden)

    Thomas C Greenough

    Full Text Available BACKGROUND: Programmed Death-1 (PD-1 is an inhibitory member of the CD28 family of molecules expressed on CD8+ T cells in response to antigenic stimulation. To better understand the role of PD-1 in antiviral immunity we examined the expression of PD-1 on Epstein-Barr virus (EBV epitope-specific CD8+ T cells during acute infectious mononucleosis (AIM and convalescence. METHODOLOGY/PRINCIPAL FINDINGS: Using flow cytometry, we observed higher frequencies of EBV-specific CD8+ T cells and higher intensity of PD-1 expression on EBV-specific CD8+ T cells during AIM than during convalescence. PD-1 expression during AIM directly correlated with viral load and with the subsequent degree of CD8+ T cell contraction in convalescence. Consistent differences in PD-1 expression were observed between CD8+ T cells with specificity for two different EBV lytic antigen epitopes. Similar differences were observed in the degree to which PD-1 was upregulated on these epitope-specific CD8+ T cells following peptide stimulation in vitro. EBV epitope-specific CD8+ T cell proliferative responses to peptide stimulation were diminished during AIM regardless of PD-1 expression and were unaffected by blocking PD-1 interactions with PD-L1. Significant variability in PD-1 expression was observed on EBV epitope-specific CD8+ T cell subsets defined by V-beta usage. CONCLUSIONS/SIGNIFICANCE: These observations suggest that PD-1 expression is not only dependent on the degree of antigen presentation, but also on undefined characteristics of the responding cell that segregate with epitope specificity and V-beta usage.

  2. Protein antigenic structures recognized by T cells: potential applications to vaccine design.

    Science.gov (United States)

    Berzofsky, J A; Cease, K B; Cornette, J L; Spouge, J L; Margalit, H; Berkower, I J; Good, M F; Miller, L H; DeLisi, C

    1987-08-01

    In summary, our results using the model protein antigen myoglobin indicated, in concordance with others, that helper T lymphocytes recognize a limited number of immunodominant antigenic sites of any given protein. Such immunodominant sites are the focus of a polyclonal response of a number of different T cells specific for distinct but overlapping epitopes. Therefore, the immunodominance does not depend on the fine specificity of any given clone of T cells, but rather on other factors, either intrinsic or extrinsic to the structure of the antigen. A major extrinsic factor is the MHC of the responding individual, probably due to a requirement for the immunodominant peptides to bind to the MHC of presenting cells in that individual. In looking for intrinsic factors, we noted that both immunodominant sites of myoglobin were amphipathic helices, i.e., helices having hydrophilic and hydrophobic residues on opposite sides. Studies with synthetic peptides indicated that residues on the hydrophilic side were necessary for T-cell recognition. However, unfolding of the native protein was shown to be the apparent goal of processing of antigen, presumably to expose something not already exposed on the native molecule, such as the hydrophobic sides of these helices. We propose that such exposure is necessary to interact with something on the presenting cell, such as MHC or membrane, where we have demonstrated the presence of antigenic peptides by blocking of presentation of biotinylated peptide with avidin. The membrane may serve as a short-term memory of peptides from antigens encountered by the presenting cell, for dynamic sampling by MHC molecules to be available for presentation to T cells. These ideas, together with the knowledge that T-cell recognition required only short peptides and therefore had to be based only on primary or secondary structure, not tertiary folding of the native protein, led us to propose that T-cell immunodominant epitopes may tend to be amphipathic

  3. Characterization of recombinant yellow fever-dengue vaccine viruses with human monoclonal antibodies targeting key conformational epitopes.

    Science.gov (United States)

    Lecouturier, Valerie; Berry, Catherine; Saulnier, Aure; Naville, Sophie; Manin, Catherine; Girerd-Chambaz, Yves; Crowe, James E; Jackson, Nicholas; Guy, Bruno

    2018-04-26

    The recombinant yellow fever-17D-dengue virus, live, attenuated, tetravalent dengue vaccine (CYD-TDV) is licensed in several dengue-endemic countries. Although the vaccine provides protection against dengue, the level of protection differs by serotype and warrants further investigation. We characterized the antigenic properties of each vaccine virus serotype using highly neutralizing human monoclonal antibodies (hmAbs) that bind quaternary structure-dependent epitopes. Specifically, we monitored the binding of dengue virus-1 (DENV-1; 1F4), DENV-2 (2D22) or DENV-3 (5J7) serotype-specific or DENV-1-4 cross-reactive (1C19) hmAbs to the four chimeric yellow fever-dengue vaccine viruses (CYD-1-4) included in phase III vaccine formulations using a range of biochemical and functional assays (dot blot, ELISA, surface plasmon resonance and plaque reduction neutralization assays). In addition, we used the "classic" live, attenuated DENV-2 vaccine serotype, immature CYD-2 viruses and DENV-2 virus-like particles as control antigens for anti-serotype-2 reactivity. The CYD vaccine serotypes were recognized by each hmAbs with the expected specificity, moreover, surface plasmon resonance indicated a high functional affinity interaction with the CYD serotypes. In addition, the hmAbs provided similar protection against CYD and wild-type dengue viruses in the in vitro neutralization assay. Overall, these findings demonstrate that the four CYD viruses used in clinical trials display key conformational and functional epitopes targeted by serotype-specific and/or cross-reactive neutralizing human antibodies. More specifically, we showed that CYD-2 displays serotype- specific epitopes present only on the mature virus. This indicates that the CYD-TDV has the ability to elicit antibody specificities which are similar to those induced by the wild type DENV. Future investigations will be needed to address the nature of CYD-TDV-induced responses after vaccine administration, and how these

  4. Identification of linear B-cell epitopes on goose parvovirus non-structural protein.

    Science.gov (United States)

    Yu, Tian-Fei; Ma, Bo; Wang, Jun-Wei

    2016-10-15

    Goose parvovirus (GPV) infection can cause a highly contagious and lethal disease in goslings and muscovy ducklings which is widespread in all major goose (Anser anser) and Muscovy duck (Cairina moschata) farming countries, leading to a huge economic loss. Humoral immune responses play a major role in GPV immune protection during GPV infection. However, it is still unknown for the localization and immunological characteristics of B-cell epitopes on GPV non-structural protein (NSP). Therefore, in this study, the epitopes on the NSP of GPV were identified by means of overlapping peptides expressed in Escherichia coli in combination with Western blot. The results showed that the antigenic epitopes on the GPV NSP were predominantly localized in the C-terminal (aa 485-627), and especially, the fragment NS (498-532) was strongly positive. These results may facilitate future investigations on the function of NSP of GPV and the development of immunoassays for the diagnosis of GPV infection. Copyright © 2016. Published by Elsevier B.V.

  5. Recognition of melanoma-derived antigens by CTL: possible mechanisms involved in down-regulating anti-tumor T-cell reactivity

    DEFF Research Database (Denmark)

    Rivoltini, L; Loftus, D J; Squarcina, P

    1998-01-01

    Several T cell-recognized epitopes presented by melanoma cells have been identified recently. Despite the large array of epitopes potentially available for clinical use, it is still unclear which of these antigens could be effective in mediating anti-tumor responses when used as a vaccine...

  6. Difference in TB10.4 T-cell epitope recognition following immunization with recombinant TB10.4, BCG or infection with Mycobacterium tuberculosis

    DEFF Research Database (Denmark)

    Billeskov, Rolf; Grandal, Michael V; Poulsen, Christian

    2010-01-01

    vaccine Ag, TB10.4, in a recombinant form, or when expressed by the pathogen Mycobacterium tuberculosis (M.tb), or by the current anti-tuberculosis vaccine, Mycobacterium bovis BCG. We showed that BCG and M.tb induced a similar CD4(+) T-cell specific TB10.4 epitope-pattern, which differed completely from...... that induced by recombinant TB10.4. This difference was not due to post-translational modifications of TB10.4 or because TB10.4 is secreted from BCG and M.tb as a complex with Rv0287. In addition, BCG and TB10.4/CAF01 were both taken up by DC and macrophages in vivo, and in vitro uptake experiments revealed...... that both TB10.4 and BCG were transported to Lamp(+)-compartments. BCG and TB10.4 however, were directed to different types of Lamp(+)-compartments in the same APC, which may lead to different epitope recognition patterns. In conclusion, we show that different vectors can induce completely different...

  7. Antigen antibody interactions

    CERN Document Server

    DeLisi, Charles

    1976-01-01

    1. 1 Organization of the Immune System One of the most important survival mechanisms of vertebrates is their ability to recognize and respond to the onslaught of pathogenic microbes to which they are conti- ously exposed. The collection of host cells and molecules involved in this recognition­ 12 response function constitutes its immune system. In man, it comprises about 10 cells 20 (lymphocytes) and 10 molecules (immunoglobulins). Its ontogenic development is c- strained by the requirement that it be capable of responding to an almost limitless variety of molecular configurations on foreign substances, while simultaneously remaining inert to those on self components. It has thus evolved to discriminate, with exquisite precision, between molecular patterns. The foreign substances which induce a response, called antigens, are typically large molecules such as proteins and polysaccharides. The portions of these with which immunoglobulins interact are called epitopes or determinants. A typical protein epitope m...

  8. Multi-level Strategy for Identifying Proteasome-Catalyzed Spliced Epitopes Targeted by CD8+ T Cells during Bacterial Infection

    Directory of Open Access Journals (Sweden)

    Anouk C.M. Platteel

    2017-08-01

    Full Text Available Proteasome-catalyzed peptide splicing (PCPS generates peptides that are presented by MHC class I molecules, but because their identification is challenging, the immunological relevance of spliced peptides remains unclear. Here, we developed a reverse immunology-based multi-level approach to identify proteasome-generated spliced epitopes. Applying this strategy to a murine Listeria monocytogenes infection model, we identified two spliced epitopes within the secreted bacterial phospholipase PlcB that primed antigen-specific CD8+ T cells in L. monocytogenes-infected mice. While reacting to the spliced epitopes, these CD8+ T cells failed to recognize the non-spliced peptide parts in the context of their natural flanking sequences. Thus, we here show that PCPS expands the CD8+ T cell response against L. monocytogenes by exposing spliced epitopes on the cell surface. Moreover, our multi-level strategy opens up opportunities to systematically investigate proteins for spliced epitope candidates and thus strategies for immunotherapies or vaccine design.

  9. Mature Epitope Density - A strategy for target selection based on immunoinformatics and exported prokaryotic proteins

    DEFF Research Database (Denmark)

    Santos, Anderson R; Pereira, Vanessa Bastos; Barbosa, Eudes

    2013-01-01

    . However, currently available tools do not account for the concentration of epitope products in the mature protein product and its relation to the reliability of target selection. RESULTS: We developed a computational strategy based on measuring the epitope's concentration in the mature protein, called...... Mature Epitope Density (MED). Our method, though simple, is capable of identifying promising vaccine targets. Our online software implementation provides a computationally light and reliable analysis of bacterial exoproteins and their potential for vaccines or diagnosis projects against pathogenic...... proteins were confirmed as related. There was no experimental evidence of antigenic or pathogenic contributions for three of the highest MED-scored Mtb proteins. Hence, these three proteins could represent novel putative vaccine and drug targets for Mtb. A web version of MED is publicly available online...

  10. Differential Antibody Responses to Conserved HIV-1 Neutralizing Epitopes in the Context of Multivalent Scaffolds and Native-Like gp140 Trimers

    Directory of Open Access Journals (Sweden)

    Charles D. Morris

    2017-02-01

    Full Text Available Broadly neutralizing antibodies (bNAbs have provided valuable insights into the humoral immune response to HIV-1. While rationally designed epitope scaffolds and well-folded gp140 trimers have been proposed as vaccine antigens, a comparative understanding of their antibody responses has not yet been established. In this study, we probed antibody responses to the N332 supersite and the membrane-proximal external region (MPER in the context of heterologous protein scaffolds and native-like gp140 trimers. Ferritin nanoparticles and fragment crystallizable (Fc regions were utilized as multivalent carriers to display scaffold antigens with grafted N332 and MPER epitopes, respectively. Trimeric scaffolds were also identified to stabilize the MPER-containing BG505 gp140.681 trimer in a native-like conformation. Following structural and antigenic evaluation, a subset of scaffold and trimer antigens was selected for immunization in BALB/c mice. Serum binding revealed distinct patterns of antibody responses to these two bNAb targets presented in different structural contexts. For example, the N332 nanoparticles elicited glycan epitope-specific antibody responses that could also recognize the native trimer, while a scaffolded BG505 gp140.681 trimer generated a stronger and more rapid antibody response to the trimer apex than its parent gp140.664 trimer. Furthermore, next-generation sequencing (NGS of mouse splenic B cells revealed expansion of antibody lineages with long heavy-chain complementarity-determining region 3 (HCDR3 loops upon activation by MPER scaffolds, in contrast to the steady repertoires primed by N332 nanoparticles and a soluble gp140.664 trimer. These findings will facilitate the future development of a coherent vaccination strategy that combines both epitope-focused and trimer-based approaches.

  11. High-Throughput Tools for Characterization of Antibody Epitopes

    DEFF Research Database (Denmark)

    Christiansen, Anders

    mapping. In Chapter 1, it was examined whether combining phage display, a traditional epitope mapping approach, with HTS would improve the method. The developed approach was successfully used to map Ara h 1 epitopes in sera from patients with peanut allergy. Notably, the sera represented difficult...... proliferation advantages. Finally, in Chapter 4, a different emerging technology, next-generation peptide microarrays, was applied for epitope mapping of major peanut allergens using sera from allergic patients. New developments in the peptide microarray have enabled a greatly increased throughput....... In this study, these improvements were utilized to characterize epitopes at high resolution, i.e. determine the importance of each residue for antibody binding, for all major peanut allergens. Epitope reactivity among patients often converged on known epitope hotspots, however the binding patterns were somewhat...

  12. Antigen processing influences HIV-specific cytotoxic T lymphocyte immunodominance

    DEFF Research Database (Denmark)

    Tenzer, Stefan; Wee, Edmund; Burgevin, Anne

    2009-01-01

    -associated antigen proteins p17 and p24 correlated with epitope abundance, which was strongly influenced by proteasomal digestion profiles, affinity for the transporter protein TAP, and trimming mediated by the endoplasmatic reticulum aminopeptidase ERAAP, and was moderately influenced by HLA affinity. Structural...

  13. The use of a synthetic antigen for the serological diagnosis of human trichinellosis

    Directory of Open Access Journals (Sweden)

    Bruschi F.

    2001-06-01

    Full Text Available Hosts infected with Trichinella produce antibodies specific for an epitope common to the TSL-1 family antigens. This epitope contained uncommon terminal 3, 6-dideoxy-D-arabinohexose (so called tyvelose residues. The disaccharide moiety was synthesized and an immunodiagnostic assay was developed, which was specific and sensitive in swine trichinellosis. We aimed to verify the specificity and sensitivity of this immunodiagnostic test in human trichinellosis. 15 sera from normal subjects, 12 from patients with other parasitic diseases and 50 from trichinellosis patients were tested. Indirect enzyme linked immunosorbent assay (ELISA for specific IgG and an amplified ELISA for specific IgE were performed using β-tyvelose-GalNAc-bovine serum albumin (BSA disaccharide conjugate or T. spiralis muscle larvae excretory/secretory (E/S products, as antigens. Neither control sera nor other parasitic infection sera resulted positive both for IgG and IgE when synthetic or E/S antigens were used. In trichinellosis patient sera, specific IgG were present in 100 % of cases, irrespective of the antigen used, but whereas specific IgE were detected in 78 % using E/S antigens, a 100% positivity rate was obtained, using the β-tyvelose- BSA conjugate.

  14. Identification of an antigenic domain on Mycobacterium leprae protein antigen 85B, which is specifically recognized by antibodies from patients with leprosy

    NARCIS (Netherlands)

    Filley, E.; Thole, J. E.; Rook, G. A.; Nagai, S.; Waters, M.; Drijfhout, J. W.; Rinke de Wit, T. F.; de Vries, R. R.; Abou-Zeid, C.

    1994-01-01

    Sixty-three overlapping 15-oligomer peptides covering the 30-kDa protein antigen 85B of Mycobacterium leprae were tested by ELISA to identify epitopes recognized by human antibodies. Serum samples from patients with lepromatous leprosy (LL) reacted mainly with peptides comprising amino acid regions

  15. From viral genome to specific peptide epitopes: methods for identifying porcine T cell epitopes based on in silico predictions, in vitro identification and ex vivo verification

    DEFF Research Database (Denmark)

    Pedersen, Lasse Eggers; Rasmussen, Michael; Harndah, Mikkel

    2013-01-01

    to predict likely candidates for peptide-SLA binding. These results were combined with binding predictions generated by the algorithm, NetMHCpan (http://www.cbs.dtu.dk/services/NetMHCpan/) in order to select peptide candidates for in vitro analysis. The correlation between high affinity and high stability.......000 peptides. T cell epitopes were identified using peptide-SLA complexes assembled into fluorescent tetramers to stain swine influenza specific CTLs derived from immunized animals and MHC-defined pigs vaccinated against foot-and-mouth disease virus. These results demonstrate the broad applicability of methods...... originally developed for analysis of human leukocyte antigen (HLA) presentation of peptides. The methods presented provide a timely and cost-effective approach to CTL epitope discovery that can be applied to diseases of swine and of other mammalian species of interest....

  16. Immunization against Rabies with Plant-Derived Antigen

    Science.gov (United States)

    Modelska, Anna; Dietzschold, Bernard; Sleysh, N.; Fu, Zhen Fang; Steplewski, Klaudia; Hooper, D. Craig; Koprowski, Hilary; Yusibov, Vidadi

    1998-03-01

    We previously demonstrated that recombinant plant virus particles containing a chimeric peptide representing two rabies virus epitopes stimulate virus neutralizing antibody synthesis in immunized mice. We show here that mice immunized intraperitoneally or orally (by gastric intubation or by feeding on virus-infected spinach leaves) with engineered plant virus particles containing rabies antigen mount a local and systemic immune response. After the third dose of antigen, given intraperitoneally, 40% of the mice were protected against challenge infection with a lethal dose of rabies virus. Oral administration of the antigen stimulated serum IgG and IgA synthesis and ameliorated the clinical signs caused by intranasal infection with an attenuated rabies virus strain.

  17. Immunization with a novel chimeric peptide representing B and T cell epitopes from HER2 extracellular domain (HER2 ECD) for breast cancer.

    Science.gov (United States)

    Mahdavi, Manijeh; Keyhanfar, Mehrnaz; Jafarian, Abbas; Mohabatkar, Hassan; Rabbani, Mohammad

    2014-12-01

    Because of direct stimulating immune system against disease, vaccination or active immunotherapy is preferable compared to passive immunotherapy. For this purpose, a newly designed chimeric peptide containing epitopes for both B and T cells from HER2 ECD subdomain III was proposed. To evaluate the effects of the active immunization, a discontinuous B cell epitope peptide was selected based on average antigenicity by bioinformatics analysis. The selected peptide was collinearly synthesized as a chimera with a T helper epitope from the protein sequence of measles virus fusion (208-302) using the GPSL linker. Three mice were immunized with the chimeric peptide. Reactive antibodies with HER2 protein in ELISA and immunofluorescence assays with no cross-reactivity were generated. The 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT) assay indicated that the anti-peptide sera had inhibitory effects on proliferation of SK-BR-3 cells. Hence, the newly designed, discontinuous chimeric peptide representing B and T cell epitopes from subdomain III of HER2-ECD can form the basis for future vaccines design, where these data can be applied for monoclonal antibody production targeting the distinct epitope of HER2 receptor compared to the two broadly used anti-HER2 monoclonal antibodies, Herceptin and pertuzumab.

  18. Insights into the biological features of the antigenic determinants recognized by four monoclonal antibodies in redia and adult stages of the liver fluke Fasciola hepatica.

    Science.gov (United States)

    Alba, Annia; Sánchez, Jorge; Hernández, Hilda; Mosqueda, Maryani; Rodríguez, Suanel Y; Capó, Virginia; Otero, Oscar; Alfonso, Carlos; Marcet, Ricardo; Sarracent, Jorge

    2016-09-01

    Fasciola hepatica is a digenean trematode which infects a wide variety of domestic animals and also humans. Previous studies have demonstrated that four monoclonal antibodies (Mabs) against the total extract of F. hepatica redia (named as 1E4, 6G11, 4E5 and 4G11) also recognized the excretion - secretion antigens (ES Ag) of adult parasites, which is a biologically-relevant mixture of molecules with functional roles during infection and immune evasion on definitive hosts. In the present report we describe the partial characterization of the epitopes recognized by these Mabs by heat treatment, mercaptoethanol reduction, pronase proteolysis and sodium peryodate oxidation, which suggested their predominant protein and conformational nature. Also, a comparative study using immunodetection assays on crude extracts and on histological sections of both rediae and adults of F. hepatica were performed to explore the expression pattern of the antigenic determinants in these developmental stages. From these experiments it was found that the Mabs reacted most likely with the same proteins of approximately 64 and 105 kDa present on both rediae and adult's extracts. However, the 1E4, 6G11 and 4E5 Mabs also recognized other molecules of the total extract of F. hepatica adults, a fact that constitutes an evidence of the antigenic variation between both stages and points at a certain biological relevance of the recognized antigenic determinants. Immunolocalization studies on histological sections revealed that all Mabs reacted with the tegument of F. hepatica in both rediae and adults stages, while the epitopes recognized by 1E4, 6G11 and 4E5 antibodies were also preferentially localized in the intestinal caeca and in different organs of the reproductive system of adult specimens. The immunogenicity of these antigenic determinants, their conserved status among different stages of the life cycle of F. hepatica and their presence in both tegument and ES Ag of adult parasites

  19. Generation of HER2 monoclonal antibodies using epitopes of a rabbit polyclonal antibody.

    Science.gov (United States)

    Hu, Francis Jingxin; Uhlen, Mathias; Rockberg, Johan

    2014-01-25

    One of the issues in using polyclonal antibodies is the limited amount of reagent available from an immunisation, leading to batch-to-batch variation and difficulties in obtaining the same antibody performance when the same antigen is re-immunised into several separate animals. This led to the development of hybridoma technology allowing, at least theoretically, for an unlimited production of a specific binder. Nevertheless, polyclonal antibodies are widely used in research and diagnostics and there exists a need for robust methods to convert a polyclonal antibody with good binding performance into a renewable monoclonal with identical or similar binding specificity. Here we have used precise information regarding the functional recognition sequence (epitope) of a rabbit polyclonal antibody with attractive binding characteristics as the basis for generation of a renewable mouse monoclonal antibody. First, the original protein fragment antigen was used for immunisation and generation of mouse hybridoma, without obtaining binders to the same epitope region. Instead a peptide designed using the functional epitope and structural information was synthesised and used for hybridoma production. Several of the monoclonal antibodies generated were found to have similar binding characteristics to those of the original polyclonal antibody. These monoclonal antibodies detected native HER2 on cell lines and were also able to stain HER2 in immunohistochemistry using xenografted mice, as well as human normal and cancer tissues. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. TANTIGEN: a comprehensive database of tumor T cell antigens

    DEFF Research Database (Denmark)

    Olsen, Lars Rønn; Tongchusak, Songsak; Lin, Honghuang

    2017-01-01

    Tumor T cell antigens are both diagnostically and therapeutically valuable molecules. A large number of new peptides are examined as potential tumor epitopes each year, yet there is no infrastructure for storing and accessing the results of these experiments. We have retroactively cataloged more ...

  1. High-throughput immuno-profiling of mamba (Dendroaspis) venom toxin epitopes using high-density peptide microarrays

    DEFF Research Database (Denmark)

    Engmark, Mikael; Andersen, Mikael Rørdam; Laustsen, Andreas Hougaard

    2016-01-01

    Snakebite envenoming is a serious condition requiring medical attention and administration of antivenom. Current antivenoms are antibody preparations obtained from the plasma of animals immunised with whole venom(s) and contain antibodies against snake venom toxins, but also against other antigens....... In order to better understand the molecular interactions between antivenom antibodies and epitopes on snake venom toxins, a high-throughput immuno-profiling study on all manually curated toxins from Dendroaspis species and selected African Naja species was performed based on custom-made high......-density peptide microarrays displaying linear toxin fragments. By detection of binding for three different antivenoms and performing an alanine scan, linear elements of epitopes and the positions important for binding were identified. A strong tendency of antivenom antibodies recognizing and binding to epitopes...

  2. Conserved antigenic sites between MERS-CoV and Bat-coronavirus are revealed through sequence analysis.

    Science.gov (United States)

    Sharmin, Refat; Islam, Abul B M M K

    2016-01-01

    MERS-CoV is a newly emerged human coronavirus reported closely related with HKU4 and HKU5 Bat coronaviruses. Bat and MERS corona-viruses are structurally related. Therefore, it is of interest to estimate the degree of conserved antigenic sites among them. It is of importance to elucidate the shared antigenic-sites and extent of conservation between them to understand the evolutionary dynamics of MERS-CoV. Multiple sequence alignment of the spike (S), membrane (M), enveloped (E) and nucleocapsid (N) proteins was employed to identify the sequence conservation among MERS and Bat (HKU4, HKU5) coronaviruses. We used various in silico tools to predict the conserved antigenic sites. We found that MERS-CoV shared 30 % of its S protein antigenic sites with HKU4 and 70 % with HKU5 bat-CoV. Whereas 100 % of its E, M and N protein's antigenic sites are found to be conserved with those in HKU4 and HKU5. This sharing suggests that in case of pathogenicity MERS-CoV is more closely related to HKU5 bat-CoV than HKU4 bat-CoV. The conserved epitopes indicates their evolutionary relationship and ancestry of pathogenicity.

  3. Design and synthesis of an antigenic mimic of the Ebola glycoprotein

    OpenAIRE

    Rutledge, Ryan D.; Huffman, Brian J.; Cliffel, David E.; Wright, David W.

    2008-01-01

    An antigenic mimic of the Ebola glycoprotein was synthesized and tested for its ability to be recognized by an anti-Ebola glycoprotein antibody. Epitope-mapping procedures yielded a suitable epitope that, when presented on the surface of a nanoparticle, forms a structure that is recognized by an antibody specific for the native protein. This mimic-antibody interaction has been quantitated through ELISA and QCM-based methods and yielded an affinity (Kd = 12 × 10−6 M) within two orders of magni...

  4. Rabies virus glycoprotein as a carrier for anthrax protective antigen

    International Nuclear Information System (INIS)

    Smith, Mary Ellen; Koser, Martin; Xiao Sa; Siler, Catherine; McGettigan, James P.; Calkins, Catherine; Pomerantz, Roger J.; Dietzschold, Bernhard; Schnell, Matthias J.

    2006-01-01

    Live viral vectors expressing foreign antigens have shown great promise as vaccines against viral diseases. However, safety concerns remain a major problem regarding the use of even highly attenuated viral vectors. Using the rabies virus (RV) envelope protein as a carrier molecule, we show here that inactivated RV particles can be utilized to present Bacillus anthracis protective antigen (PA) domain-4 in the viral membrane. In addition to the RV glycoprotein (G) transmembrane and cytoplasmic domains, a portion of the RV G ectodomain was required to express the chimeric RV G anthrax PA on the cell surface. The novel antigen was also efficiently incorporated into RV virions. Mice immunized with the inactivated recombinant RV virions exhibited seroconversion against both RV G and anthrax PA, and a second inoculation greatly increased these responses. These data demonstrate that a viral envelope protein can carry a bacterial protein and that a viral carrier can display whole polypeptides compared to the limited epitope presentation of previous viral systems

  5. Characterization of HIV-Specific CD4+T Cell Responses against Peptides Selected with Broad Population and Pathogen Coverage

    DEFF Research Database (Denmark)

    Buggert, Marcus; Norstrom, Melissa M.; Czarnecki, Chris

    2012-01-01

    for the identification of HIV-specific CD4+ T cells targeting broadly reactive epitopes in populations with diverse ethnic background stems from the vast genomic variation of HIV and the diversity of the host cellular immune system. Here, we describe a novel epitope selection strategy, PopCover, that aims to resolve...... this challenge, and identify a set of potential HLA class II-restricted HIV epitopes that in concert will provide optimal viral and host coverage. Using this selection strategy, we identified 64 putative epitopes (peptides) located in the Gag, Nef, Env, Pol and Tat protein regions of HIV. In total, 73...... II-restricted epitopes. All together, selection strategies, such as PopCover, might with success be used for the evaluation of antigen-specific CD4+ T cell responses and design of future vaccines....

  6. Prediction of linear B-cell epitopes of hepatitis C virus for vaccine development

    Science.gov (United States)

    2015-01-01

    proposes an interpretable rule mining system IRMS-BE for extracting interpretable rules using informative physicochemical properties and a web server Bcell-HCV for predicting linear B-cell epitopes of HCV. IRMS-BE may also apply to predict B-cell epitopes for other viruses, which benefits the improvement of vaccines development of these viruses without significant modification. Bcell-HCV is useful for identifying B-cell epitopes of HCV antigen to help vaccine development, which is available at http://e045.life.nctu.edu.tw/BcellHCV. PMID:26680271

  7. HIV-1 vaccine-induced T-cell responses cluster in epitope hotspots that differ from those induced in natural infection with HIV-1.

    Science.gov (United States)

    Hertz, Tomer; Ahmed, Hasan; Friedrich, David P; Casimiro, Danilo R; Self, Steven G; Corey, Lawrence; McElrath, M Juliana; Buchbinder, Susan; Horton, Helen; Frahm, Nicole; Robertson, Michael N; Graham, Barney S; Gilbert, Peter

    2013-01-01

    Several recent large clinical trials evaluated HIV vaccine candidates that were based on recombinant adenovirus serotype 5 (rAd-5) vectors expressing HIV-derived antigens. These vaccines primarily elicited T-cell responses, which are known to be critical for controlling HIV infection. In the current study, we present a meta-analysis of epitope mapping data from 177 participants in three clinical trials that tested two different HIV vaccines: MRKAd-5 HIV and VRC-HIVAD014-00VP. We characterized the population-level epitope responses in these trials by generating population-based epitope maps, and also designed such maps using a large cohort of 372 naturally infected individuals. We used these maps to address several questions: (1) Are vaccine-induced responses randomly distributed across vaccine inserts, or do they cluster into immunodominant epitope hotspots? (2) Are the immunodominance patterns observed for these two vaccines in three vaccine trials different from one another? (3) Do vaccine-induced hotspots overlap with epitope hotspots induced by chronic natural infection with HIV-1? (4) Do immunodominant hotspots target evolutionarily conserved regions of the HIV genome? (5) Can epitope prediction methods be used to identify these hotspots? We found that vaccine responses clustered into epitope hotspots in all three vaccine trials and some of these hotspots were not observed in chronic natural infection. We also found significant differences between the immunodominance patterns generated in each trial, even comparing two trials that tested the same vaccine in different populations. Some of the vaccine-induced immunodominant hotspots were located in highly variable regions of the HIV genome, and this was more evident for the MRKAd-5 HIV vaccine. Finally, we found that epitope prediction methods can partially predict the location of vaccine-induced epitope hotspots. Our findings have implications for vaccine design and suggest a framework by which different

  8. Competitive Enzyme-Linked Immunosorbent Assay Based on a Rhoptry-Associated Protein 1 Epitope Specifically Identifies Babesia bovis-Infected Cattle

    Science.gov (United States)

    Goff, Will L.; McElwain, Terry F.; Suarez, Carlos E.; Johnson, Wendell C.; Brown, Wendy C.; Norimine, Junzo; Knowles, Donald P.

    2003-01-01

    The competitive enzyme-linked immunosorbent assay (cELISA) format has proven to be an accurate, reliable, easily standardized, and high-throughput method for detecting hemoparasite infections. In the present study, a species-specific, broadly conserved, and tandemly repeated B-cell epitope within the C terminus of the rhoptry-associated protein 1 of the hemoparasite Babesia bovis was cloned and expressed as a histidine-tagged thioredoxin fusion peptide and used as antigen in a cELISA. The assay was optimized with defined negative and positive bovine sera, where positive sera inhibited the binding of the epitope-specific monoclonal antibody BABB75A4. The cELISA accurately differentiated animals with B. bovis-specific antibodies from uninfected animals and from animals with antibodies against other tick-borne hemoparasites (98.7% specificity). In addition, B. bovis-specific sera from Australia, Argentina, Bolivia, Puerto Rico, and Morocco inhibited the binding of BABB75A4, confirming conservation of the epitope. The assay first detected experimentally infected animals between 13 and 17 days postinfection, and with sera from naturally infected carrier cattle, was comparable to indirect immunofluorescence (98.3% concordance). The assay appears to have the characteristics necessary for an epidemiologic and disease surveillance tool. PMID:12522037

  9. Merkel Cell Polyomavirus Small T Antigen Induces Cancer and Embryonic Merkel Cell Proliferation in a Transgenic Mouse Model.

    Science.gov (United States)

    Shuda, Masahiro; Guastafierro, Anna; Geng, Xuehui; Shuda, Yoko; Ostrowski, Stephen M; Lukianov, Stefan; Jenkins, Frank J; Honda, Kord; Maricich, Stephen M; Moore, Patrick S; Chang, Yuan

    2015-01-01

    Merkel cell polyomavirus (MCV) causes the majority of human Merkel cell carcinomas (MCC) and encodes a small T (sT) antigen that transforms immortalized rodent fibroblasts in vitro. To develop a mouse model for MCV sT-induced carcinogenesis, we generated transgenic mice with a flox-stop-flox MCV sT sequence homologously recombined at the ROSA locus (ROSAsT), allowing Cre-mediated, conditional MCV sT expression. Standard tamoxifen (TMX) administration to adult UbcCreERT2; ROSAsT mice, in which Cre is ubiquitously expressed, resulted in MCV sT expression in multiple organs that was uniformly lethal within 5 days. Conversely, most adult UbcCreERT2; ROSAsT mice survived low-dose tamoxifen administration but developed ear lobe dermal hyperkeratosis and hypergranulosis. Simultaneous MCV sT expression and conditional homozygous p53 deletion generated multi-focal, poorly-differentiated, highly anaplastic tumors in the spleens and livers of mice after 60 days of TMX treatment. Mouse embryonic fibroblasts from these mice induced to express MCV sT exhibited anchorage-independent cell growth. To examine Merkel cell pathology, MCV sT expression was also induced during mid-embryogenesis in Merkel cells of Atoh1CreERT2/+; ROSAsT mice, which lead to significantly increased Merkel cell numbers in touch domes at late embryonic ages that normalized postnatally. Tamoxifen administration to adult Atoh1CreERT2/+; ROSAsT and Atoh1CreERT2/+; ROSAsT; p53flox/flox mice had no effects on Merkel cell numbers and did not induce tumor formation. Taken together, these results show that MCV sT stimulates progenitor Merkel cell proliferation in embryonic mice and is a bona fide viral oncoprotein that induces full cancer cell transformation in the p53-null setting.

  10. Mapping the stem cell state: eight novel human embryonic stem and embryonal carcinoma cell antibodies

    DEFF Research Database (Denmark)

    Wright, A; Andrews, N; Bardsley, K

    2011-01-01

    The antigenic profile of human embryonic stem (ES) and embryonal carcinoma (EC) cells has served as a key element of their characterization, with a common panel of surface and intracellular markers now widely used. Such markers have been used to identify cells within the 'undifferentiated state...... of reactivity for all antibodies against both ES and EC cells, suggesting that these markers will afford recognition of unique sub-states within the undifferentiated stem cell compartment....... and EC cells, and herein describe their characterization. The reactivity of these antibodies against a range of cell lines is reported, as well as their developmental regulation, basic biochemistry and reactivity in immunohistochemistry of testicular germ cell tumours. Our data reveal a range...

  11. Immunization with Hexon modified adenoviral vectors integrated with gp83 epitope provides protection against Trypanosoma cruzi infection.

    Directory of Open Access Journals (Sweden)

    Anitra L Farrow

    2014-08-01

    Full Text Available Trypanosoma cruzi is the causative agent of Chagas disease. Chagas disease is an endemic infection that affects over 8 million people throughout Latin America and now has become a global challenge. The current pharmacological treatment of patients is unsuccessful in most cases, highly toxic, and no vaccines are available. The results of inadequate treatment could lead to heart failure resulting in death. Therefore, a vaccine that elicits neutralizing antibodies mediated by cell-mediated immune responses and protection against Chagas disease is necessary.The "antigen capsid-incorporation" strategy is based upon the display of the T. cruzi epitope as an integral component of the adenovirus' capsid rather than an encoded transgene. This strategy is predicted to induce a robust humoral immune response to the presented antigen, similar to the response provoked by native Ad capsid proteins. The antigen chosen was T. cruzi gp83, a ligand that is used by T. cruzi to attach to host cells to initiate infection. The gp83 epitope, recognized by the neutralizing MAb 4A4, along with His6 were incorporated into the Ad serotype 5 (Ad5 vector to generate the vector Ad5-HVR1-gp83-18 (Ad5-gp83. This vector was evaluated by molecular and immunological analyses. Vectors were injected to elicit immune responses against gp83 in mouse models. Our findings indicate that mice immunized with the vector Ad5-gp83 and challenged with a lethal dose of T. cruzi trypomastigotes confer strong immunoprotection with significant reduction in parasitemia levels, increased survival rate and induction of neutralizing antibodies.This data demonstrates that immunization with adenovirus containing capsid-incorporated T. cruzi antigen elicits a significant anti-gp83-specific response in two different mouse models, and protection against T. cruzi infection by eliciting neutralizing antibodies mediated by cell-mediated immune responses, as evidenced by the production of several Ig isotypes

  12. Epigenetic mechanisms regulate MHC and antigen processing molecules in human embryonic and induced pluripotent stem cells.

    Directory of Open Access Journals (Sweden)

    Beatriz Suárez-Alvarez

    2010-04-01

    Full Text Available Human embryonic stem cells (hESCs are an attractive resource for new therapeutic approaches that involve tissue regeneration. hESCs have exhibited low immunogenicity due to low levels of Mayor Histocompatibility Complex (MHC class-I and absence of MHC class-II expression. Nevertheless, the mechanisms regulating MHC expression in hESCs had not been explored.We analyzed the expression levels of classical and non-classical MHC class-I, MHC class-II molecules, antigen-processing machinery (APM components and NKG2D ligands (NKG2D-L in hESCs, induced pluripotent stem cells (iPSCs and NTera2 (NT2 teratocarcinoma cell line. Epigenetic mechanisms involved in the regulation of these genes were investigated by bisulfite sequencing and chromatin immunoprecipitation (ChIP assays. We showed that low levels of MHC class-I molecules were associated with absent or reduced expression of the transporter associated with antigen processing 1 (TAP-1 and tapasin (TPN components in hESCs and iPSCs, which are involved in the transport and load of peptides. Furthermore, lack of beta2-microglobulin (beta2m light chain in these cells limited the expression of MHC class I trimeric molecule on the cell surface. NKG2D ligands (MICA, MICB were observed in all pluripotent stem cells lines. Epigenetic analysis showed that H3K9me3 repressed the TPN gene in undifferentiated cells whilst HLA-B and beta2m acquired the H3K4me3 modification during the differentiation to embryoid bodies (EBs. Absence of HLA-DR and HLA-G expression was regulated by DNA methylation.Our data provide fundamental evidence for the epigenetic control of MHC in hESCs and iPSCs. Reduced MHC class I and class II expression in hESCs and iPSCs can limit their recognition by the immune response against these cells. The knowledge of these mechanisms will further allow the development of strategies to induce tolerance and improve stem cell allograft acceptance.

  13. Epigenetic Mechanisms Regulate MHC and Antigen Processing Molecules in Human Embryonic and Induced Pluripotent Stem Cells

    Science.gov (United States)

    Suárez-Álvarez, Beatriz; Rodriguez, Ramón M.; Calvanese, Vincenzo; Blanco-Gelaz, Miguel A.; Suhr, Steve T.; Ortega, Francisco; Otero, Jesus; Cibelli, Jose B.; Moore, Harry; Fraga, Mario F.; López-Larrea, Carlos

    2010-01-01

    Background Human embryonic stem cells (hESCs) are an attractive resource for new therapeutic approaches that involve tissue regeneration. hESCs have exhibited low immunogenicity due to low levels of Mayor Histocompatibility Complex (MHC) class-I and absence of MHC class-II expression. Nevertheless, the mechanisms regulating MHC expression in hESCs had not been explored. Methodology/Principal Findings We analyzed the expression levels of classical and non-classical MHC class-I, MHC class-II molecules, antigen-processing machinery (APM) components and NKG2D ligands (NKG2D-L) in hESCs, induced pluripotent stem cells (iPSCs) and NTera2 (NT2) teratocarcinoma cell line. Epigenetic mechanisms involved in the regulation of these genes were investigated by bisulfite sequencing and chromatin immunoprecipitation (ChIP) assays. We showed that low levels of MHC class-I molecules were associated with absent or reduced expression of the transporter associated with antigen processing 1 (TAP-1) and tapasin (TPN) components in hESCs and iPSCs, which are involved in the transport and load of peptides. Furthermore, lack of β2-microglobulin (β2m) light chain in these cells limited the expression of MHC class I trimeric molecule on the cell surface. NKG2D ligands (MICA, MICB) were observed in all pluripotent stem cells lines. Epigenetic analysis showed that H3K9me3 repressed the TPN gene in undifferentiated cells whilst HLA-B and β2m acquired the H3K4me3 modification during the differentiation to embryoid bodies (EBs). Absence of HLA-DR and HLA-G expression was regulated by DNA methylation. Conclusions/Significance Our data provide fundamental evidence for the epigenetic control of MHC in hESCs and iPSCs. Reduced MHC class I and class II expression in hESCs and iPSCs can limit their recognition by the immune response against these cells. The knowledge of these mechanisms will further allow the development of strategies to induce tolerance and improve stem cell allograft acceptance

  14. Expression and Antigenic Evaluation of VacA Antigenic Fragment of Helicobacter Pylori

    Science.gov (United States)

    Hasanzadeh, Leila; Ghaznavi-Rad, Ehsanollah; Soufian, Safieh; Farjadi, Vahideh; Abtahi, Hamid

    2013-01-01

    Objective(s) : Helicobacter pylori, a human specific gastric pathogen is a causative agent of chronic active gastritis. The vacuolating cytotoxin (VacA) is an effective virulence factor involved in gastric injury. The aim of this study was to construct a recombinant protein containing antigenic region of VacA gene and determine its antigenicity. Materials and Methods: The antigenic region of VacA gene was detected by bioinformatics methods. The polymerase chain reaction method was used to amplify a highly antigenic region of VacA gene from chromosomal DNA of H. pylori. The eluted product was cloned into the prokaryotic expression vector pET32a. The target protein was expressed in the Escherichia coli BL21 (DE3) pLysS. The bacteria including pET32a-VacA plasmids were induced by IPTG. The antigenicity was finally studied by western blotting using sera of 15 H. pylori infected patients after purification. Results: Enzyme digestion analysis, PCR and DNA sequencing results showed that the target gene was inserted correctly into the recombinant vector. The expressed protein was purified successfully via affinity chromatography. Data indicated that antigenic region of VacA protein from Helicobacter pylori was recognized by all 15 patient’s sera. Conclusion : Our data showed that antigenic region of VacA protein can be expressed by in E. co.li. This protein was recognized by sera patients suffering from H. pylori infection. the recombinant protein has similar epitopes and close antigenic properties to the natural form of this antigen. Recombinant antigenic region of VacA protein also seems to be a promising antigen for protective and serologic diagnosis . PMID:23997913

  15. Expression and Antigenic Evaluation of VacA Antigenic Fragment of Helicobacter Pylori

    Directory of Open Access Journals (Sweden)

    Leila Hasanzadeh

    2013-07-01

    Full Text Available Objective(s: Helicobacter pylori, a human specific gastric pathogen is a causative agent of chronic active gastritis. The vacuolating cytotoxin (VacA is an effective virulence factor involved in gastric injury. The aim of this study was to construct a recombinant protein containing antigenic region of VacA gene and determine its antigenicity.   Materials and Methods: The antigenic region of VacA gene was detected by bioinformatics methods. The polymerase chain reaction method was used to amplify a highly antigenic region of VacA gene from chromosomal DNA of H. pylori. The eluted product was cloned into the prokaryotic expression vector pET32a. The target protein was expressed in the Escherichia coli BL21 (DE3 pLysS. The bacteria including pET32a-VacA plasmids were induced by IPTG. The antigenicity was finally studied by western blotting using sera of 15 H. pylori infected patients after purification. Results: Enzyme digestion analysis, PCR and DNA sequencing results showed that the target gene was inserted correctly into the recombinant vector. The expressed protein was purified successfully via affinity chromatography. Data indicated that antigenic region of VacA protein from Helicobacter pylori was recognized by all 15 patient’s sera. Conclusion : Our data showed that antigenic region of VacA protein can be expressed by in E. co.li. This protein was recognized by sera patients suffering from H. pylori infection. the recombinant protein has similar epitopes and close antigenic properties to the natural form of this antigen. Recombinant antigenic region of VacA protein also seems to be a promising antigen for protective and serologic diagnosis .

  16. HIV-1 Adaptation to Antigen Processing Results in Population-Level Immune Evasion and Affects Subtype Diversification

    DEFF Research Database (Denmark)

    Tenzer, Stefan; Crawford, Hayley; Pymm, Phillip

    2014-01-01

    these regions encode epitopes presented by ~30 more common HLA variants. By combining epitope processing and computational analyses of the two HIV subtypes responsible for ~60% of worldwide infections, we identified a hitherto unrecognized adaptation to the antigen-processing machinery through substitutions...... of intrapatient adaptations, is predictable, facilitates viral subtype diversification, and increases global HIV diversity. Because low epitope abundance is associated with infrequent and weak T cell responses, this most likely results in both population-level immune evasion and inadequate responses in most...

  17. Characterization of a Proteasome and TAP-independent Presentation of Intracellular Epitopes by HLA-B27 Molecules

    KAUST Repository

    Magnacca, A.; Persiconi, I.; Nurzia, E.; Caristi, S.; Meloni, F.; Barnaba, V.; Paladini, F.; Raimondo, D.; Fiorillo, M. T.; Sorrentino, R.

    2012-01-01

    -presentation by the HLA-B27 molecules was proteasome and TAP-independent and not restricted to Antigen-Presenting Cells (APC). Here, using these chimeric proteins as epitope suppliers, we compared with each other and with the HLA-A2 molecules, the two HLA-B*2705 and B

  18. Identification of two Th1 cell epitopes on the Babesia bovis-encoded 77-kilodalton merozoite protein (Bb-1) by use of truncated recombinant fusion proteins.

    Science.gov (United States)

    Brown, W C; Zhao, S; Woods, V M; Tripp, C A; Tetzlaff, C L; Heussler, V T; Dobbelaere, D A; Rice-Ficht, A C

    1993-01-01

    Previous studies have demonstrated the serologic and T-cell immunogenicity for cattle of a recombinant form of the apical complex-associated 77-kDa merozite protein of Babesia bovis, designated Bb-1. The present study characterizes the immunogenic epitopes of the Bb-1 protein. A series of recombinant truncated fusion proteins spanning the majority of the Bb-1 protein were expressed in Escherichia coli, and their reactivities with bovine peripheral blood mononuclear cells and T-cell clones derived from B. bovis-immune cattle and with rabbit antibodies were determined. Lymphocytes from two immune cattle were preferentially stimulated by the N-terminal half of the Bb-1 protein (amino acids 23 to 266, termed Bb-1A), localizing the T-cell epitopes to the Bb-1A portion of the molecule. CD4+ T-cell clones derived by stimulation with the intact Bb-1 fusion protein were used to identify two T-cell epitopes in the Bb-1A protein, consisting of amino acids SVVLLSAFSGN VWANEAEVSQVVK and FSDVDKTKSTEKT (residues 23 to 46 and 82 to 94). In contrast, rabbit antiserum raised against the intact fusion protein reacted only with the C-terminal half of the protein (amino acids 267 to 499, termed Bb-1B), which contained 28 tandem repeats of the tetrapeptide PAEK or PAET. Biological assays and Northern (RNA) blot analyses for cytokines revealed that following activation with concanavalin A, T-cell clones reactive against the two Bb-1A epitopes produced interleukin-2, gamma interferon, and tumor necrosis factors beta and alpha, but not interleukin-4, suggesting that the Bb-1 antigen preferentially stimulates the Th1 subset of CD4+ T cells in cattle. The studies described here report for the first time the characterization, by cytokine production, of the Th1 subset of bovine T cells and show that, as in mice, protozoal antigens can induce Th1 cells in ruminants. This first demonstration of B. bovis-encoded Th1 cell epitopes provides a rationale for incorporation of all or part of the Bb-1

  19. Antigenic characterization of a formalin-inactivated poliovirus vaccine derived from live-attenuated Sabin strains.

    Science.gov (United States)

    Tano, Yoshio; Shimizu, Hiroyuki; Martin, Javier; Nishimura, Yorihiro; Simizu, Bunsiti; Miyamura, Tatsuo

    2007-10-10

    A candidate inactivated poliovirus vaccine derived from live-attenuated Sabin strains (sIPV), which are used in the oral poliovirus vaccine (OPV), was prepared in a large-production scale. The modification of viral antigenic epitopes during the formalin inactivation process was investigated by capture ELISA assays using type-specific and antigenic site-specific monoclonal antibodies (MoAbs). The major antigenic site 1 was modified during the formalin inactivation of Sabin 1. Antigenic sites 1-3 were slightly modified during the formalin inactivation of Sabin 2 strain. Sites 1 and 3 were altered on inactivated Sabin 3 virus. These alterations were different to those shown by wild-type Saukett strain, used in conventional IPV (cIPV). It has been previously reported that type 1 sIPV showed higher immunogenicity to type 1 cIPV whereas types 2 and 3 sIPV induced lower level of immunogenicity than their cIPV counterparts. Our results suggest that the differences in epitope structure after formalin inactivation may account, at least in part, for the observed differences in immunogenicity between Sabin and wild-type inactivated poliovaccines.

  20. Antigenic and functional characterization of p57 produced by Renibacterium salmoninarum

    Science.gov (United States)

    Weins, G.; Chien, M.S.; Winton, J.R.; Kaatari, S.L.

    1999-01-01

    Renibacterium salmoninarum, the causative agent of bacterial kidney disease, produces large quantities of a 57-58 kDa protein (p57) during growth in broth culture and during infection of salmonid fish. Biological activities of secreted p57 include agglutination of salrnonid leucocytes and rabbit erythrocytes. We define the location of epitopes on p57 recognized by agglutination-blocking monoclonal antibodies (MAbs) 4Cl1, 4H8 and 4D3, and demonstrate that the majority of secreted p57 is a nlonomer that retains salrnonid leucocyte agglutinat~ng activity. The 3 MAbs bound a recombinant, amino-terminal fragment of p57 (211 aa) but not a carboxy-terminal fragment (315 aa) demonstrating that the neutralizing epitopes are located within the amino-terminal portion of p57. When combinations of the MAbs were used in an antigen capture ELISA. the epitopes recognized by the 3 MAbs were shown to be sterically separate. However, when the same MAb was used as both the coating and detection MAb, binding of the biotinylated detection MAb was not observed. These data indicate that the epitopes recognized by the 3 agglutination-blocking antibodies are functionally available only once per molecule and that native p57 exists as a monomer Similar ELISA results were obtained when kidney tissues from 3 naturally infected chinook salmon were assayed. Finally, a p57 monomer was purified using anion exchange and size exclusion chromatography that retained in vitro agglutinating activity. A model in which p57 is released from R. salmoninarum as a biologically active monomer during infection of salmonid fish is proposed.

  1. Limited antigenic variation in the Trypanosoma cruzi candidate vaccine antigen TSA-1.

    Science.gov (United States)

    Knight, J M; Zingales, B; Bottazzi, M E; Hotez, P; Zhan, B

    2014-12-01

    Chagas disease (American trypanosomiasis caused by Trypanosoma cruzi) is one of the most important neglected tropical diseases in the Western Hemisphere. The toxicities and limited efficacies of current antitrypanosomal drugs have prompted a search for alternative technologies such as a therapeutic vaccine comprised of T. cruzi antigens, including a recombinant antigen encoding the N-terminal 65 kDa portion of Trypomastigote surface antigen-1 (TSA-1). With at least six known genetically distinct T. cruzi lineages, variability between the different lineages poses a unique challenge for the development of broadly effective therapeutic vaccine. The variability across the major lineages in the current vaccine candidate antigen TSA-1 has not previously been addressed. To assess the variation in TSA-1, we cloned and sequenced TSA-1 from several different T. cruzi strains representing three of the most clinically relevant lineages. Analysis of the different alleles showed limited variation in TSA-1 across the different strains and fit with the current theory for the evolution of the different lineages. Additionally, minimal variation in known antigenic epitopes for the HLA-A 02 allele suggests that interlineage variation in TSA-1 would not impair the range and efficacy of a vaccine containing TSA-1. © 2014 John Wiley & Sons Ltd.

  2. GPS-MBA: computational analysis of MHC class II epitopes in type 1 diabetes.

    Science.gov (United States)

    Cai, Ruikun; Liu, Zexian; Ren, Jian; Ma, Chuang; Gao, Tianshun; Zhou, Yanhong; Yang, Qing; Xue, Yu

    2012-01-01

    As a severe chronic metabolic disease and autoimmune disorder, type 1 diabetes (T1D) affects millions of people world-wide. Recent advances in antigen-based immunotherapy have provided a great opportunity for further treating T1D with a high degree of selectivity. It is reported that MHC class II I-A(g7) in the non-obese diabetic (NOD) mouse and human HLA-DQ8 are strongly linked to susceptibility to T1D. Thus, the identification of new I-A(g7) and HLA-DQ8 epitopes would be of great help to further experimental and biomedical manipulation efforts. In this study, a novel GPS-MBA (MHC Binding Analyzer) software package was developed for the prediction of I-A(g7) and HLA-DQ8 epitopes. Using experimentally identified epitopes as the training data sets, a previously developed GPS (Group-based Prediction System) algorithm was adopted and improved. By extensive evaluation and comparison, the GPS-MBA performance was found to be much better than other tools of this type. With this powerful tool, we predicted a number of potentially new I-A(g7) and HLA-DQ8 epitopes. Furthermore, we designed a T1D epitope database (TEDB) for all of the experimentally identified and predicted T1D-associated epitopes. Taken together, this computational prediction result and analysis provides a starting point for further experimental considerations, and GPS-MBA is demonstrated to be a useful tool for generating starting information for experimentalists. The GPS-MBA is freely accessible for academic researchers at: http://mba.biocuckoo.org.

  3. MHC-I-restricted epitopes conserved among variola and other related orthopoxviruses are recognized by T cells 30 years after vaccination

    DEFF Research Database (Denmark)

    Tang, Sheila Tuyet; Wang, M.; Lamberth, K.

    2008-01-01

    It is many years since the general population has been vaccinated against smallpox virus. Here, we report that human leukocyte antigen (HLA) class I restricted T cell epitopes can be recognized more than 30 years after vaccination. Using bioinformatic methods, we predicted 177 potential cytotoxic T...... lymphocyte epitopes. Eight epitopes were confirmed to stimulate IFN-gamma release by T cells in smallpox-vaccinated subjects. The epitopes were restricted by five supertypes (HLA-A1, -A2, -A24 -A26 and -B44). Significant T cell responses were detected against 8 of 45 peptides with an HLA class I affinity...... of K(D) less than or equal to 5 nM, whereas no T cell responses were detected against 60 peptides with an HLA affinity of K(D) more than 5 nM. All epitopes were fully conserved in seven variola, vaccinia and cowpox strains. Knowledge of the long-term response to smallpox vaccination may lead...

  4. Epitopes recognized by CBV4 responding T cells: effect of type 1 diabetes and associated HLA-DR-DQ haplotypes

    International Nuclear Information System (INIS)

    Marttila, Jane; Hyoety, Heikki; Naentoe-Salonen, Kirsti; Simell, Olli; Ilonen, Jorma

    2004-01-01

    The present study aimed at characterizing the epitopes recognized by coxsackievirus B4 (CBV4)-specific T-cell lines established from 23 children with type 1 diabetes (T1D) and 29 healthy children with T1D risk-associated HLA genotypes. Responsiveness to VP1 region was dependent on the specific infection history as 55% of the T-cell lines from donors with neutralizing antibodies to CBV serotypes responded to VP1 peptides compared to none of the T-cell lines from other donors (P = 0.01). The pattern of recognized peptides was dependent of the HLA genotype. Forty-two percent of the T-cell lines from donors carrying the HLA-(DR4)-DQB1*0302 haplotype responded to VP1 peptides 71-80 compared to none of the T-cell lines from donors without this haplotype (P = 0.02). No evidence for the existence of diabetes-specific epitopes was found. Only few epitopes were exclusive recognized by T cells from diabetic children, and in each case only one or two T-cell lines were responding

  5. Critical epitopes in the nucleocapsid protein of SFTS virus recognized by a panel of SFTS patients derived human monoclonal antibodies.

    Directory of Open Access Journals (Sweden)

    Li Yu

    Full Text Available BACKGROUND: SFTS virus (SFTSV is a newly discovered pathogen to cause severe fever with thrombocytopenia syndrome (SFTS in human. Successful control of SFTSV epidemic requires better understanding of the antigen target in humoral immune responses to the new bunyavirus infection. METHODOLOGY/PRINCIPAL FINDINGS: We have generated a combinatorial Fab antibody phage library from two SFTS patients recovered from SFTSV infection. To date, 94 unique human antibodies have been generated and characterized from over 1200 Fab antibody clones obtained by screening the library with SFTS purified virions. All those monoclonal antibodies (MAbs recognized the nucleocapsid (N protein of SFTSV while none of them were reactive to the viral glycoproteins Gn or Gc. Furthermore, over screening 1000 mouse monoclonal antibody clones derived from SFTSV virions immunization, 462 clones reacted with N protein, while only 16 clones were reactive to glycoprotein. Furthermore, epitope mapping of SFTSV N protein was performed through molecular simulation, site mutation and competitive ELISA, and we found that at least 4 distinct antigenic epitopes within N protein were recognized by those human and mouse MAbs, in particular mutation of Glu10 to Ala10 abolished or significantly reduced the binding activity of nearly most SFTS patients derived MAbs. CONCLUSIONS/SIGNIFICANCE: The large number of human recombinant MAbs derived from SFTS patients recognized the viral N protein indicated the important role of the N protein in humoral responses to SFTSV infection, and the critical epitopes we defined in this study provided molecular basis for detection and diagnosis of SFTSV infection.

  6. Epitope mapping of the U1 small nuclear ribonucleoprotein particle in patients with systemic lupus erythematosus and mixed connective tissue disease.

    Science.gov (United States)

    Somarelli, J A; Mesa, A; Rodriguez, R; Avellan, R; Martinez, L; Zang, Y J; Greidinger, E L; Herrera, R J

    2011-03-01

    Systemic lupus erythematosus (SLE) and mixed connective tissue disease (MCTD) are autoimmune illnesses characterized by the presence of high titers of autoantibodies directed against a wide range of 'self ' antigens. Proteins of the U1 small nuclear ribonucleoprotein particle (U1 snRNP) are among the most immunogenic molecules in patients with SLE and MCTD. The recent release of a crystallized U1 snRNP provides a unique opportunity to evaluate the effects of tertiary and quaternary structures on autoantigenicity within the U1 snRNP. In the present study, an epitope map was created using the U1 snRNP crystal structure. A total of 15 peptides were tested in a cohort of 68 patients with SLE, 29 with MCTD and 26 healthy individuals and mapped onto the U1 snRNP structure. Antigenic sites were detected in a variety of structures and appear to include RNA binding domains, but mostly exclude regions necessary for protein-protein interactions. These data suggest that while some autoantibodies may target U1 snRNP proteins as monomers or apoptosis-induced, protease-digested fragments, others may recognize epitopes on assembled protein subcomplexes of the U1 snRNP. Although nearly all of the peptides are strong predictors of autoimmune illness, none were successful at distinguishing between SLE and MCTD. The antigenicity of some peptides significantly correlated with several clinical symptoms. This investigation implicitly highlights the complexities of autoimmune epitopes, and autoimmune illnesses in general, and demonstrates the variability of antigens in patient populations, all of which contribute to difficult clinical diagnoses.

  7. Breaking tolerance in hepatitis B surface antigen (HBsAg) transgenic mice by vaccination with cross-reactive, natural HBsAg variants

    DEFF Research Database (Denmark)

    Schirmbeck, Reinhold; Dikopoulos, Nektarios; Kwissa, Marcin

    2003-01-01

    Processing exogenous hepatitis B surface antigen (HBsAg) of the hepatitis B virus (HBV) generates the K(b)-binding S(208-215) epitope 1; processing endogenous HBsAg generates the K(b)-binding S(190-197) epitope 2. Cross-reactive CD8(+) T cell responses were primed to epitope 1 but not epitope 2...... HBs-tg mice showed reduced antigenemia. Hence, vaccination with natural HBsAg variants from different HBV sero/genotypes can prime cross-reactive, specific CD8(+) T cell immunity that breaks tolerance to HBsAg....

  8. Comparing Proteolytic Fingerprints of Antigen-Presenting Cells during Allergen Processing.

    Science.gov (United States)

    Hofer, Heidi; Weidinger, Tamara; Briza, Peter; Asam, Claudia; Wolf, Martin; Twaroch, Teresa E; Stolz, Frank; Neubauer, Angela; Dall, Elfriede; Hammerl, Peter; Jacquet, Alain; Wallner, Michael

    2017-06-08

    Endolysosomal processing has a critical influence on immunogenicity as well as immune polarization of protein antigens. In industrialized countries, allergies affect around 25% of the population. For the rational design of protein-based allergy therapeutics for immunotherapy, a good knowledge of T cell-reactive regions on allergens is required. Thus, we sought to analyze endolysosomal degradation patterns of inhalant allergens. Four major allergens from ragweed, birch, as well as house dust mites were produced as recombinant proteins. Endolysosomal proteases were purified by differential centrifugation from dendritic cells, macrophages, and B cells, and combined with allergens for proteolytic processing. Thereafter, endolysosomal proteolysis was monitored by protein gel electrophoresis and mass spectrometry. We found that the overall proteolytic activity of specific endolysosomal fractions differed substantially, whereas the degradation patterns of the four model allergens obtained with the different proteases were extremely similar. Moreover, previously identified T cell epitopes were assigned to endolysosomal peptides and indeed showed a good overlap with known T cell epitopes for all four candidate allergens. Thus, we propose that the degradome assay can be used as a predictor to determine antigenic peptides as potential T cell epitopes, which will help in the rational design of protein-based allergy vaccine candidates.

  9. Prediction and identification of T cell epitopes in the H5N1 influenza virus nucleoprotein in chicken.

    Directory of Open Access Journals (Sweden)

    Yanxia Hou

    Full Text Available T cell epitopes can be used for the accurate monitoring of avian influenza virus (AIV immune responses and the rational design of vaccines. No T cell epitopes have been previously identified in the H5N1 AIV virus nucleoprotein (NP in chickens. For the first time, this study used homology modelling techniques to construct three-dimensional structures of the peptide-binding domains of chicken MHC class Ι molecules for four commonly encountered unique haplotypes, i.e., B4, B12, B15, and B19. H5N1 AIV NP was computationally parsed into octapeptides or nonapeptides according to the peptide-binding motifs of MHC class I molecules of the B4, B12, B15 and B19 haplotypes. Seventy-five peptide sequences were modelled and their MHC class I molecule-binding abilities were analysed by molecular docking. Twenty-five peptides (Ten for B4, six for B12, two for B15, and seven for B19 were predicted to be potential T cell epitopes in chicken. Nine of these peptides and one unrelated peptide were manually synthesized and their T cell responses were tested in vitro. Spleen lymphocytes were collected from SPF chickens that had been immunised with a NP-expression plasmid, pCAGGS-NP, and they were stimulated using the synthesized peptides. The secretion of chicken IFN-γ and the proliferation of CD8(+ T cells were tested using an ELISA kit and flow cytometry, respectively. The significant secretion of chicken IFN-γ and proliferation of CD8(+ T lymphocytes increased by 13.7% and 11.9% were monitored in cells stimulated with peptides NP(89-97 and NP(198-206, respectively. The results indicate that peptides NP(89-97 (PKKTGGPIY and NP(198-206 (KRGINDRNF are NP T cell epitopes in chicken of certain haplotypes. The method used in this investigation is applicable to predicting T cell epitopes for other antigens in chicken, while this study also extends our understanding of the mechanisms of the immune response to AIV in chicken.

  10. Antigenicity of peptides comprising the immunosuppressive domain of the retroviral envelope glycoprotein [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Bryony Jenkins

    2016-12-01

    Full Text Available To achieve persistent infection of the host, viruses often subvert or suppress host immunity through mechanisms that are not entirely understood. The envelope glycoprotein of several retroviruses is thought to possess potent immunosuppressive activity, mapped to a 17-amino acid residue conserved domain. Synthetic peptides corresponding to this immunosuppressive domain can inhibit lymphocyte activation, whereas mutation of key domain residues can increase the lymphocyte response to linked antigenic epitopes. Using three T cell receptors (TCRs of defined specificity, we examine the effect of the immunosuppressive domain on the T cell response to their respective antigenic peptides. We find that fusion of a T cell epitope to the immunosuppressive domain can greatly modulate its potency. However, the effects heavily depend on the particular combination of TCR and peptide-major histocompatibility complex class II (pMHC II, and are mimicked by sequence-scrambled peptides of similar length, suggesting they operate at the level of TCR-pMHC interaction. These results offer an alternative explanation for the immunogenicity of T cell epitopes comprising the putative immunosuppressive domain, which is more consistent with an effect on peptide antigenicity than true immunosuppressive activity.

  11. Antigenicity of peptides comprising the immunosuppressive domain of the retroviral envelope glycoprotein [version 2; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Bryony Jenkins

    2017-02-01

    Full Text Available To achieve persistent infection of the host, viruses often subvert or suppress host immunity through mechanisms that are not entirely understood. The envelope glycoprotein of several retroviruses is thought to possess potent immunosuppressive activity, mapped to a 17-amino acid residue conserved domain. Synthetic peptides corresponding to this immunosuppressive domain can inhibit lymphocyte activation, whereas mutation of key domain residues can increase the lymphocyte response to linked antigenic epitopes. Using three T cell receptors (TCRs of defined specificity, we examine the effect of the immunosuppressive domain on the T cell response to their respective antigenic peptides. We find that fusion of a T cell epitope to the immunosuppressive domain can greatly modulate its potency. However, the effects heavily depend on the particular combination of TCR and peptide-major histocompatibility complex class II (pMHC II, and are mimicked by sequence-scrambled peptides of similar length, suggesting they operate at the level of pMHC formation or TCR-pMHC interaction. These results offer an alternative explanation for the immunogenicity of T cell epitopes comprising the putative immunosuppressive domain, which is more consistent with an effect on peptide antigenicity than true immunosuppressive activity.

  12. Genetically modified anthrax lethal toxin safely delivers whole HIV protein antigens into the cytosol to induce T cell immunity

    Science.gov (United States)

    Lu, Yichen; Friedman, Rachel; Kushner, Nicholas; Doling, Amy; Thomas, Lawrence; Touzjian, Neal; Starnbach, Michael; Lieberman, Judy

    2000-07-01

    Bacillus anthrax lethal toxin can be engineered to deliver foreign proteins to the cytosol for antigen presentation to CD8 T cells. Vaccination with modified toxins carrying 8-9 amino acid peptide epitopes induces protective immunity in mice. To evaluate whether large protein antigens can be used with this system, recombinant constructs encoding several HIV antigens up to 500 amino acids were produced. These candidate HIV vaccines are safe in animals and induce CD8 T cells in mice. Constructs encoding gag p24 and nef stimulate gag-specific CD4 proliferation and a secondary cytotoxic T lymphocyte response in HIV-infected donor peripheral blood mononuclear cells in vitro. These results lay the foundation for future clinical vaccine studies.

  13. Cryptic nature of a conserved, CD4-inducible V3 loop neutralization epitope in the native envelope glycoprotein oligomer of CCR5-restricted, but not CXCR4-using, primary human immunodeficiency virus type 1 strains.

    Science.gov (United States)

    Lusso, Paolo; Earl, Patricia L; Sironi, Francesca; Santoro, Fabio; Ripamonti, Chiara; Scarlatti, Gabriella; Longhi, Renato; Berger, Edward A; Burastero, Samuele E

    2005-06-01

    The external subunit of the human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein (Env), gp120, contains conserved regions that mediate sequential interactions with two cellular receptor molecules, CD4 and a chemokine receptor, most commonly CCR5 or CXCR4. However, antibody accessibility to such regions is hindered by diverse protective mechanisms, including shielding by variable loops, conformational flexibility and extensive glycosylation. For the conserved neutralization epitopes hitherto described, antibody accessibility is reportedly unrelated to the viral coreceptor usage phenotype. Here, we characterize a novel, conserved gp120 neutralization epitope, recognized by a murine monoclonal antibody (MAb), D19, which is differentially accessible in the native HIV-1 Env according to its coreceptor specificity. The D19 epitope is contained within the third variable (V3) domain of gp120 and is distinct from those recognized by other V3-specific MAbs. To study the reactivity of MAb D19 with the native oligomeric Env, we generated a panel of PM1 cells persistently infected with diverse primary HIV-1 strains. The D19 epitope was conserved in the majority (23/29; 79.3%) of the subtype-B strains tested, as well as in selected strains from other genetic subtypes. Strikingly, in CCR5-restricted (R5) isolates, the D19 epitope was invariably cryptic, although it could be exposed by addition of soluble CD4 (sCD4); epitope masking was dependent on the native oligomeric structure of Env, since it was not observed with the corresponding monomeric gp120 molecules. By contrast, in CXCR4-using strains (X4 and R5X4), the epitope was constitutively accessible. In accordance with these results, R5 isolates were resistant to neutralization by MAb D19, becoming sensitive only upon addition of sCD4, whereas CXCR4-using isolates were neutralized regardless of the presence of sCD4. Other V3 epitopes examined did not display a similar divergence in accessibility based on

  14. An anti-phospholipase A2 receptor quantitative immunoassay and epitope analysis in membranous nephropathy reveals different antigenic domains of the receptor.

    Directory of Open Access Journals (Sweden)

    Astrid Behnert

    Full Text Available The phospholipase A2 receptor (PLA2R was recently discovered as a target autoantigen in patients with idiopathic membranous nephropathy (IMN. Published evidence suggests that the autoantibodies directed towards a conformation dependent epitope are currently effectively detected by a cell based assay (CBA utilizing indirect immunofluorescence (IIF on tissue culture cells transfected with the PLA2R cDNA. Limitations of such IIF-CBA assays include observer dependent subjective evaluation of semi-quantitative test results and the protocols are not amenable to high throughput diagnostic testing. We developed a quantitative, observer independent, high throughput capture immunoassay for detecting PLA2R autoantibodies on an addressable laser bead immunoassay (ALBIA platform. Since reactive domains of PLA2R (i.e. epitopes could be used to improve diagnostic tests by using small peptides in various high throughput diagnostic platforms, we identified PLA2R epitopes that bound autoantibodies of IMN patients. These studies confirmed that inter-molecular epitope spreading occurs in IMN but use of the cognate synthetic peptides in immunoassays was unable to conclusively distinguish between IMN patients and normal controls. However, combinations of these peptides were able to effectively absorb anti-PLA2R reactivity in IIF-CBA and an immunoassay that employed a lysate derived from HEK cells tranfected with and overexpressing PLA2R. While we provide evidence of intermolecular epitope spreading, our data indicates that in addition to conformational epitopes, human anti-PLA2R reactivity in a commercially available CBA and an addressable laser bead immunoassay is significantly absorbed by peptides representing epitopes of PLA2R.

  15. Effector CD4+ T cells recognize intravascular antigen presented by patrolling monocytes.

    Science.gov (United States)

    Westhorpe, Clare L V; Norman, M Ursula; Hall, Pam; Snelgrove, Sarah L; Finsterbusch, Michaela; Li, Anqi; Lo, Camden; Tan, Zhe Hao; Li, Songhui; Nilsson, Susan K; Kitching, A Richard; Hickey, Michael J

    2018-02-21

    Although effector CD4 + T cells readily respond to antigen outside the vasculature, how they respond to intravascular antigens is unknown. Here we show the process of intravascular antigen recognition using intravital multiphoton microscopy of glomeruli. CD4 + T cells undergo intravascular migration within uninflamed glomeruli. Similarly, while MHCII is not expressed by intrinsic glomerular cells, intravascular MHCII-expressing immune cells patrol glomerular capillaries, interacting with CD4 + T cells. Following intravascular deposition of antigen in glomeruli, effector CD4 + T-cell responses, including NFAT1 nuclear translocation and decreased migration, are consistent with antigen recognition. Of the MHCII + immune cells adherent in glomerular capillaries, only monocytes are retained for prolonged durations. These cells can also induce T-cell proliferation in vitro. Moreover, monocyte depletion reduces CD4 + T-cell-dependent glomerular inflammation. These findings indicate that MHCII + monocytes patrolling the glomerular microvasculature can present intravascular antigen to CD4 + T cells within glomerular capillaries, leading to antigen-dependent inflammation.

  16. Epitope prediction methods

    DEFF Research Database (Denmark)

    Karosiene, Edita

    Analysis. The chapter provides detailed explanations on how to use different methods for T cell epitope discovery research, explaining how input should be given as well as how to interpret the output. In the last chapter, I present the results of a bioinformatics analysis of epitopes from the yellow fever...... peptide-MHC interactions. Furthermore, using yellow fever virus epitopes, we demonstrated the power of the %Rank score when compared with the binding affinity score of MHC prediction methods, suggesting that this score should be considered to be used for selecting potential T cell epitopes. In summary...... immune responses. Therefore, it is of great importance to be able to identify peptides that bind to MHC molecules, in order to understand the nature of immune responses and discover T cell epitopes useful for designing new vaccines and immunotherapies. MHC molecules in humans, referred to as human...

  17. Improving Multi-Epitope Long Peptide Vaccine Potency by Using a Strategy that Enhances CD4+ T Help in BALB/c Mice.

    Directory of Open Access Journals (Sweden)

    Haniyeh Ghaffari-Nazari

    Full Text Available Peptide-based vaccines are attractive approaches for cancer immunotherapy; but the success of these vaccines in clinical trials have been limited. Our goal is to improve immune responses and anti-tumor effects against a synthetic, multi-epitope, long peptide from rat Her2/neu (rHer2/neu using the help of CD4+ T cells and appropriate adjuvant in a mouse tumor model. Female BALB/c mice were vaccinated with P5+435 multi-epitope long peptide that presents epitopes for cytotoxic T lymphocytes (CTL in combination with a universal Pan DR epitope (PADRE or CpG-oligodeoxynucleotides (CpG-ODNs as a Toll-like receptor agonist adjuvant. The results show that vaccination with the multi-epitope long peptide in combination with the PADRE peptide and CpG-ODN induced expansion of subpopulations of CD4+ and CD8+ cells producing IFN-γ, the average tumor size in the vaccinated mice was less than that of the other groups, and tumor growth was inhibited in 40% of the mice in the vaccinated group. The mean survival time was 82.6 ± 1.25 days in mice vaccinated with P5+435 + CpG+ PADRE. Our results demonstrate that inclusion of PADRE and CpG with the peptide vaccine enhanced significant tumor specific-immune responses in vaccinated mice.

  18. Identification, characterization, and synthesis of peptide epitopes and a recombinant six-epitope protein for Trichomonas vaginalis serodiagnosis

    Directory of Open Access Journals (Sweden)

    Alderete JF

    2013-08-01

    Full Text Available J F Alderete, Calvin J NeaceSchool of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, USAAbstract: There is a need for a rapid, accurate serodiagnostic test useful for both women and men infected by Trichomonas vaginalis, which causes the number one sexually transmitted infection (STI. Women and men exposed to T. vaginalis make serum antibody to fructose-1,6-bisphosphate aldolase (ALD, α-enolase (ENO, and glyceraldehyde-3-phosphate dehydrogenase (GAP. We identified, by epitope mapping, the common and distinct epitopes of each protein detected by the sera of women patients with trichomonosis and by the sera of men highly seropositive to the immunogenic protein α-actinin (positive control sera. We analyzed the amino acid sequences to determine the extent of identity of the epitopes of each protein with other proteins in the databanks. This approach identified epitopes unique to T. vaginalis, indicating these peptide-epitopes as possible targets for a serodiagnostic test. Individual or combinations of 15-mer peptide epitopes with low to no identity with other proteins were reactive with positive control sera from both women and men but were unreactive with negative control sera. These analyses permitted the synthesis of a recombinant His6 fusion protein of 111 amino acids with an Mr of ~13.4 kDa, which consisted of 15-mer peptides of two distinct epitopes each for ALD, ENO, and GAP. This recombinant protein was purified by affinity chromatography. This composite protein was detected by enzyme-linked immunosorbent assay (ELISA, dot blots, and immunoblots, using positive control sera from women and men. These data indicate that it is possible to identify epitopes and that either singly, in combination, or as a composite protein represent targets for a point-of-care serodiagnostic test for T. vaginalis.Keywords: diagnostics, point-of-care, targets, trichomonosis

  19. Analysis of the DosR regulon genes to select cytotoxic T lymphocyte epitope specific vaccine candidates using a reverse vaccinology approach

    Directory of Open Access Journals (Sweden)

    Kirti Pandey

    2016-01-01

    Conclusion: Our study has generated several promiscuous antigenic peptides capable of binding to major histocompatibility complex class I with high affinity. These epitopes can become part of a postexposure multivalent subunit vaccine upon experimental validation.

  20. Covalent decoration of adenovirus vector capsids with the carbohydrate epitope αGal does not improve vector immunogenicity, but allows to study the in vivo fate of adenovirus immunocomplexes.

    Science.gov (United States)

    Kratzer, Ramona F; Espenlaub, Sigrid; Hoffmeister, Andrea; Kron, Matthias W; Kreppel, Florian

    2017-01-01

    Adenovirus-based vectors are promising tools for genetic vaccination. However, several obstacles have to be overcome prior to a routine clinical application of adenovirus-based vectors as efficacious vectored vaccines. The linear trisaccharide epitope αGal (alpha-Gal) with the carbohydrate sequence galactose-α-1,3-galactosyl-β-1,4-N-acetylglucosamine has been described as a potent adjuvant for recombinant or attenuated vaccines. Humans and α-1,3-galactosyltransferase knockout mice do not express this epitope. Upon exposure of α-1,3-galactosyltransferase-deficient organisms to αGal in the environment, large amounts of circulating anti-Gal antibodies are produced consistently. Immunocomplexes formed between recombinant αGal-decorated vaccines and anti-Gal antibodies exhibit superior immunogenicity. We studied the effects of the trisaccharide epitope on CD8 T cell responses that are directed specifically to vector-encoded transgenic antigens. For that, covalently αGal-decorated adenovirus vectors were delivered to anti-Gal α-1,3-galactosyltransferase knockout mice. We generated replication-defective, E1-deleted adenovirus type 5 vectors that were decorated with αGal at the hexon hypervariable regions 1 or 5, at fiber knob, or at penton base. Surprisingly, none of the adenovirus immunocomplexes being formed from αGal-decorated adenovirus vectors and anti-Gal immunoglobulins improved the frequencies of CD8 T cell responses against the transgenic antigen ovalbumin. Humoral immunity directed to the adenovirus vector was neither increased. However, our data indicated that decoration of Ad vectors with the αGal epitope is a powerful tool to analyze the fate of adenovirus immunocomplexes in vivo.

  1. High-throughput identification of potential minor histocompatibility antigens by MHC tetramer-based screening

    DEFF Research Database (Denmark)

    Hombrink, Pleun; Hadrup, Sine R; Bakker, Arne

    2011-01-01

    the technical feasibility of high-throughput analysis of antigen-specific T-cell responses in small patient samples. However, the high-sensitivity of this approach requires the use of potential epitope sets that are not solely based on MHC binding, to prevent the frequent detection of T-cell responses that lack......T-cell recognition of minor histocompatibility antigens (MiHA) plays an important role in the graft-versus-tumor (GVT) effect of allogeneic stem cell transplantation (allo-SCT). However, the number of MiHA identified to date remains limited, making clinical application of MiHA reactive T......MHC-tetramer-based enrichment and multi-color flow cytometry. Using this approach, 71 peptide-reactive T-cell populations were generated. The isolation of a T-cell line specifically recognizing target cells expressing the MAP4K1(IMA) antigen demonstrates that identification of MiHA through this approach is in principle...

  2. New insights into non-conventional epitopes as T cell targets: The missing link for breaking immune tolerance in autoimmune disease?

    Science.gov (United States)

    Harbige, James; Eichmann, Martin; Peakman, Mark

    2017-11-01

    The mechanism by which immune tolerance is breached in autoimmune disease is poorly understood. One possibility is that post-translational modification of self-antigens leads to peripheral recognition of neo-epitopes against which central and peripheral tolerance is inadequate. Accumulating evidence points to multiple mechanisms through which non-germline encoded sequences can give rise to these non-conventional epitopes which in turn engage the immune system as T cell targets. In particular, where these modifications alter the rules of epitope engagement with MHC molecules, such non-conventional epitopes offer a persuasive explanation for associations between specific HLA alleles and autoimmune diseases. In this review article, we discuss current understanding of mechanisms through which non-conventional epitopes may be generated, focusing on several recently described pathways that can transpose germline-encoded sequences. We contextualise these discoveries around type 1 diabetes, the prototypic organ-specific autoimmune disease in which specific HLA-DQ molecules confer high risk. Non-conventional epitopes have the potential to act as tolerance breakers or disease drivers in type 1 diabetes, prompting a timely re-evaluation of models of a etiopathogenesis. Future studies are required to elucidate the disease-relevance of a range of potential non-germline epitopes and their relationship to the natural peptide repertoire. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Induction of antibodies against epitopes inaccessible on the HIV type 1 envelope oligomer by immunization with recombinant monomeric glycoprotein 120

    DEFF Research Database (Denmark)

    Schønning, Kristian; Bolmstedt, A; Novotny, J

    1998-01-01

    An N-glycan (N306) at the base of the V3 loop of HIV-BRU gp120 is shielding a linear neutralization epitope at the tip of the V3 loop on oligomeric Env. In contrast, this epitope is readily antigenic on monomeric gp120. Immunization with recombinant monomeric HIV-BRU gp120 may thus be expected...... immunogenic structures inaccessible on the envelope oligomer. The limited ability of recombinant gp120 vaccines to induce neutralizing antibodies against primary isolates may thus not exclusively reflect genetic variation....

  4. Derivation and characterization of novel nonhuman primate embryonic stem cell lines from in vitro-fertilized baboon preimplantation embryos.

    Science.gov (United States)

    Chang, Tien-Cheng; Liu, Ya-Guang; Eddy, Carlton A; Jacoby, Ethan S; Binkley, Peter A; Brzyski, Robert G; Schenken, Robert S

    2011-06-01

    The development of nonhuman primate (NHP) embryonic stem cell (ESC) models holds great promise for cell-mediated treatment of debilitating diseases and to address numerous unanswered questions regarding the therapeutic efficacy of ESCs while supplanting ethical considerations involved with human studies. Here we report successful establishment and characterization of 3 novel baboon (Papio cynocephalus) ESC lines from the inner cell mass of intracytoplasmic sperm injection-derived blastocysts. Embryos were cultured in an improved baboon embryo in vitro culture protocol. The inner cell mass of blastocyst was laser-dissected and plated on mouse embryonic fibroblast feeder cell monolayer in the NHP ESC culture medium. Three cell lines with characteristic ESC morphology have been cultured through an extended period (>14 months), with 2 male cell lines (UT-1 and -2) and 1 female cell line (UT-3) displaying normal baboon karyotypes. Reverse transcription-polymerase chain reaction analysis confirmed that all 3 lines express primate ESC pluripotency markers, including OCT-4, NANOG, SOX-2, TERT, TDGF, LEFTYA, and REX-1. All 3 lines demonstrated positive immunocytochemical staining for OCT-4, stage-specific embryonic antigen-3, stage-specific embryonic antigen-4, TRA-1-60, and TRA-1-81. Baboon ESCs injected into NOD/SCID mice formed teratomas with all 3 germ layers. In addition, embryoid body-like spherical structures were derived and initial outgrowth was observed when embedded into extracellular matrix Matrigel. The ESC lines established in this NHP model have the potential to extend our knowledge in the fields of developmental biology, regenerative medicine, and future applications, including preclinical safety assessment of in vivo stem cell therapy.

  5. Structural Simulation of MHC-peptide Interactions using T-cell Epitope in Iron-acquisition Protein of N. meningitides for Vaccine Design

    Directory of Open Access Journals (Sweden)

    Namrata Mishra

    2010-12-01

    Full Text Available The present work uses a structural simulation approach to identify the potential target vaccine candidates or T cell epitopes (antigenic region that can activate T cell response in two iron acquisition proteins from Neisseria. An iron regulated outer membrane protein frpB: extracellular, [NMB1988], and a Major ferric Iron-binding protein fbpA: periplasmic, [NMB0634] critical for the survival of the pathogen in the host were used. Ten novel promiscuous epitopes from the two iron acquisition proteins were identified using bioinformatics interface. Of these epitopes, 630VQKAVGSIL638 present on frpB with high binding affinity for allele HLA*DR1 was identified with an anchor position at P2, an aliphatic residue at P4 and glycine at P6 making it thereby a potential quality choice for linking peptide-loaded MHC dynamics to T-cell activation and vaccine constructs. The feasibility and structural binding of predicted peptide to the respective HLA allele was investigated by molecular modeling and template-based structural simulation. The conformational properties of the linear peptide were investigated by molecular dynamics using GROMOS96 package and Swiss PDB viewer.

  6. Theileria parva antigens recognized by CD8+ T cells show varying degrees of diversity in buffalo-derived infected cell lines.

    Science.gov (United States)

    Sitt, Tatjana; Pelle, Roger; Chepkwony, Maurine; Morrison, W Ivan; Toye, Philip

    2018-05-06

    The extent of sequence diversity among the genes encoding 10 antigens (Tp1-10) known to be recognized by CD8+ T lymphocytes from cattle immune to Theileria parva was analysed. The sequences were derived from parasites in 23 buffalo-derived cell lines, three cattle-derived isolates and one cloned cell line obtained from a buffalo-derived stabilate. The results revealed substantial variation among the antigens through sequence diversity. The greatest nucleotide and amino acid diversity were observed in Tp1, Tp2 and Tp9. Tp5 and Tp7 showed the least amount of allelic diversity, and Tp5, Tp6 and Tp7 had the lowest levels of protein diversity. Tp6 was the most conserved protein; only a single non-synonymous substitution was found in all obtained sequences. The ratio of non-synonymous: synonymous substitutions varied from 0.84 (Tp1) to 0.04 (Tp6). Apart from Tp2 and Tp9, we observed no variation in the other defined CD8+ T cell epitopes (Tp4, 5, 7 and 8), indicating that epitope variation is not a universal feature of T. parva antigens. In addition to providing markers that can be used to examine the diversity in T. parva populations, the results highlight the potential for using conserved antigens to develop vaccines that provide broad protection against T. parva.

  7. Expression and stability of foreign epitopes introduced into 3A nonstructural protein of foot-and-mouth disease virus.

    Directory of Open Access Journals (Sweden)

    Pinghua Li

    Full Text Available Foot-and-mouth disease virus (FMDV is an aphthovirus that belongs to the Picornaviridae family and causes one of the most important animal diseases worldwide. The capacity of other picornaviruses to express foreign antigens has been extensively reported, however, little is known about FMDV. To explore the potential of FMDV as a viral vector, an 11-amino-acid (aa HSV epitope and an 8 aa FLAG epitope were introduced into the C-terminal different regions of 3A protein of FMDV full-length infectious cDNA clone. Recombinant viruses expressing the HSV or FLAG epitope were successfully rescued after transfection of both modified constructs. Immunofluorescence assay, Western blot and sequence analysis showed that the recombinant viruses stably maintained the foreign epitopes even after 11 serial passages in BHK-21 cells. The 3A-tagged viruses shared similar plaque phenotypes and replication kinetics to those of the parental virus. In addition, mice experimentally infected with the epitope-tagged viruses could induce tag-specific antibodies. Our results demonstrate that FMDV can be used effectively as a viral vector for the delivery of foreign tags.

  8. Expression and Stability of Foreign Epitopes Introduced into 3A Nonstructural Protein of Foot-and-Mouth Disease Virus

    Science.gov (United States)

    Li, Pinghua; Bai, Xingwen; Cao, Yimei; Han, Chenghao; Lu, Zengjun; Sun, Pu; Yin, Hong; Liu, Zaixin

    2012-01-01

    Foot-and-mouth disease virus (FMDV) is an aphthovirus that belongs to the Picornaviridae family and causes one of the most important animal diseases worldwide. The capacity of other picornaviruses to express foreign antigens has been extensively reported, however, little is known about FMDV. To explore the potential of FMDV as a viral vector, an 11-amino-acid (aa) HSV epitope and an 8 aa FLAG epitope were introduced into the C-terminal different regions of 3A protein of FMDV full-length infectious cDNA clone. Recombinant viruses expressing the HSV or FLAG epitope were successfully rescued after transfection of both modified constructs. Immunofluorescence assay, Western blot and sequence analysis showed that the recombinant viruses stably maintained the foreign epitopes even after 11 serial passages in BHK-21 cells. The 3A-tagged viruses shared similar plaque phenotypes and replication kinetics to those of the parental virus. In addition, mice experimentally infected with the epitope-tagged viruses could induce tag-specific antibodies. Our results demonstrate that FMDV can be used effectively as a viral vector for the delivery of foreign tags. PMID:22848509

  9. Production of mouse monoclonal antibody against Streptococcus dysgalactiae GapC protein and mapping its conserved B-cell epitope.

    Science.gov (United States)

    Zhang, Limeng; Zhang, Hua; Fan, Ziyao; Zhou, Xue; Yu, Liquan; Sun, Hunan; Wu, Zhijun; Yu, Yongzhong; Song, Baifen; Ma, Jinzhu; Tong, Chunyu; Zhu, Zhanbo; Cui, Yudong

    2015-02-01

    Streptococcus dysgalactiae (S. dysgalactiae) GapC protein is a protective antigen that induces partial immunity against S. dysgalactiae infection in animals. To identify the conserved B-cell epitope of S. dysgalactiae GapC, a mouse monoclonal antibody 1E11 (mAb1E11) against GapC was generated and used to screen a phage-displayed 12-mer random peptide library (Ph.D.-12). Eleven positive clones recognized by mAb1E11 were identified, most of which matched the consensus motif TGFFAKK. Sequence of the motif exactly matched amino acids 97-103 of the S. dysgalactiae GapC. In addition, the epitope (97)TGFFAKK(103) showed high homology among different streptococcus species. Site-directed mutagenic analysis further confirmed that residues G98, F99, F100 and K103 formed the core of (97)TGFFAKK(103), and this core motif was the minimal determinant of the B-cell epitope recognized by the mAb1E11. Collectively, the identification of conserved B-cell epitope within S. dysgalactiae GapC highlights the possibility of developing the epitope-based vaccine. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Plasticity and Epitope Exposure of the HIV-1 Envelope Trimer.

    Science.gov (United States)

    Powell, Rebecca L R; Totrov, Maxim; Itri, Vincenza; Liu, Xiaomei; Fox, Alisa; Zolla-Pazner, Susan

    2017-09-01

    We recently showed that mutations in the HIV-1 envelope (Env) destabilize the V3 loop, rendering neutralization-resistant viruses sensitive to V3-directed monoclonal antibodies (MAbs). Here, we investigated the propagation of this effect on other Env epitopes, with special emphasis on V2 loop exposure. Wild-type JR-FL and 19 mutant JR-FL pseudoviruses were tested for neutralization sensitivity to 21 MAbs specific for epitopes in V2, the CD4 binding site (CD4bs), and the CD4-induced (CD4i) region. Certain glycan mutants, mutations in the gp120 hydrophobic core, and mutations in residues involved in intraprotomer interactions exposed epitopes in the V2i region (which overlies the α4β7 integrin binding site) and the V3 crown, suggesting general destabilization of the distal region of the trimer apex. In contrast, other glycan mutants, mutations affecting interprotomer interactions, and mutations affecting the CD4bs exposed V3 but not V2i epitopes. These data indicate for the first time that V3 can move independently of V2, with V3 pivoting out from its "tucked" position in the trimer while apparently leaving the V2 apex intact. Notably, none of the mutations exposed V2 epitopes without also exposing V3, suggesting that movement of V2 releases V3. Most mutations increased sensitivity to CD4bs-directed MAbs without exposure of the CD4i epitope, implying these mutations facilitate the trimers' maintenance of an intermediate energy state between open and closed conformations. Taken together, these data indicate that several transient Env epitopes can be rendered more accessible to antibodies (Abs) via specific mutations, and this may facilitate the design of V1V2-targeting immunogens. IMPORTANCE Many epitopes of the HIV envelope (Env) spike are relatively inaccessible to antibodies (Abs) compared to their exposure in the open Env conformation induced by receptor binding. However, the reduced infection rate that resulted from the vaccine used in the RV144 HIV-1 vaccine

  11. Participation of L3T4 in T cell activation in the absence of class II major histocompatibility complex antigens. Inhibition by anti-L3T4 antibodies is a function both of epitope density and mode of presentation of anti-receptor antibody

    DEFF Research Database (Denmark)

    Owens, T; Fazekas de St Groth, B

    1987-01-01

    two monoclonal antibodies, KJ16-133.18 and F23.1, that recognize a determinant encoded by the T cell receptor V beta 8 gene family. These antibodies were used to select two clones of T cells with surface phenotype Thy-1.2+, L3T4+, Lyt-2-, KJ16-133.18+, F23.1+, IA-, IE-. One of these clones (E9.D4......The recognition of many class II major histocompatibility complex (MHC)-associated antigens by T cells requires the participation of the L3T4 molecule. It has been proposed that this molecule acts to stabilize low affinity binding to antigen in association with MHC and thereby increases the avidity...... of T cell/antigen interactions. By using antibodies against the T cell antigen receptor (TCR) to activate T cells, thereby circumventing the requirement for antigen presenting cells and MHC-associated antigen, we have been able to study the function of L3T4 in the absence of class II MHC. We have used...

  12. Artificially synthesized helper/killer-hybrid epitope long peptide (H/K-HELP): preparation and immunological analysis of vaccine efficacy.

    Science.gov (United States)

    Masuko, Kazutaka; Wakita, Daiko; Togashi, Yuji; Kita, Toshiyuki; Kitamura, Hidemitsu; Nishimura, Takashi

    2015-01-01

    To elucidate the immunologic mechanisms of artificially synthesized helper/killer-hybrid epitope long peptide (H/K-HELP), which indicated a great vaccine efficacy in human cancers, we prepared ovalbumin (OVA)-H/K-HELP by conjugating killer and helper epitopes of OVA-model tumor antigen via a glycine-linker. Vaccination of C57BL/6 mice with OVA-H/K-HELP (30 amino acids) but not with short peptides mixture of class I-binding peptide (8 amino-acids) and class II-binding peptide (17 amino-acids) combined with adjuvant CpG-ODN (cytosine-phosphorothioate-guanine oligodeoxynucleotides), induced higher numbers of OVA-tetramer-positive CTL with concomitant activation of IFN-γ-producing CD4(+) Th1 cells. However, replacement of glycine-linker of OVA-H/K-HELP with other peptide-linker caused a significant decrease of vaccine efficacy of OVA-H/K-HELP. In combination with adjuvant CpG-ODN, OVA-H/KHELP exhibited greater vaccine efficacy compared with short peptides vaccine, in both preventive and therapeutic vaccine models against OVA-expressing EG-7 tumor. The elevated vaccine efficacy of OVAH/K-HELP might be derived from the following mechanisms: (i) selective presentation by only professional dendritic cells (DC) in vaccinated draining lymph node (dLN); (ii) a long-term sustained antigen presentation exerted by DC to stimulate both CTL and Th1 cells; (iii) formation of three cells interaction among DC, Th and CTL. In comparative study, H/K-HELP indicated stronger therapeutic vaccine efficacy compared with that of extended class I synthetic long peptide, indicating that both the length of peptide and the presence of Th epitope peptide were crucial aspects for preparing artificially synthesized H/K-HELP vaccine. Copyright © 2014 European Federation of Immunological Societies. Published by Elsevier B.V. All rights reserved.

  13. Development of a new in vivo kit for detection of prostate specific antigen in human serum using immunoradiometric assay method

    International Nuclear Information System (INIS)

    Babaei, M. H.; Behradkia, P.; Shafii, M.; Movla, M.; Forutan, H.; Najafi, R.

    2006-01-01

    Prostate is a leading site for the cancer incidence, accounted for 31.0% of new cancer cases in men. Prostate-specific antigen is widely used in the detection and monitoring of the prostate cancer. Currently, immunoassay is used to detect Prostate-specific antigen in human serum. This technique is based on the interaction between antibody and antigen. The varied immunoassay formats and equipment to run the assays allow the users to measure the analytes rapidly, with the flexibility to run a small or a large number of samples. Among different immunoassay methods, immunoradiometric assay is a more sensitive and valuable detection approach. This study has been made in 4 parts: (1) purification of Prostate-specific antigen from seminal fluid; (2) preparation of hybridoma cells which secrete monoclonal antibody (mAb) against Prostate-specific antigen , (3) selection of pair monoclonal antibody among those antibodies, and finally (4) design of an immunoradiometric assay kit and it's quality control . The results of this study were: (1) obtaining a huge amount of Prostate-specific antigen as semi-purified and purified, that is a valuable material for preparation of standard kits; (2) preparation of 8 kinds of monoclonal antibodies; (3) finding 4 pairs of monoclonal antibodies which react with different epitopes on Prostate-specific antigen molecule; and (4) preparation of immunoradiometric assay kit for measuring Prostate-specific antigen concentration in human serum

  14. A transgenic plant cell-suspension system for expression of epitopes on chimeric Bamboo mosaic virus particles.

    Science.gov (United States)

    Muthamilselvan, Thangarasu; Lee, Chin-Wei; Cho, Yu-Hsin; Wu, Feng-Chao; Hu, Chung-Chi; Liang, Yu-Chuan; Lin, Na-Sheng; Hsu, Yau-Heiu

    2016-01-01

    We describe a novel strategy to produce vaccine antigens using a plant cell-suspension culture system in lieu of the conventional bacterial or animal cell-culture systems. We generated transgenic cell-suspension cultures from Nicotiana benthamiana leaves carrying wild-type or chimeric Bamboo mosaic virus (BaMV) expression constructs encoding the viral protein 1 (VP1) epitope of foot-and-mouth disease virus (FMDV). Antigens accumulated to high levels in BdT38 and BdT19 transgenic cell lines co-expressing silencing suppressor protein P38 or P19. BaMV chimeric virus particles (CVPs) were subsequently purified from the respective cell lines (1.5 and 2.1 mg CVPs/20 g fresh weight of suspended biomass, respectively), and the resulting CVPs displayed VP1 epitope on the surfaces. Guinea pigs vaccinated with purified CVPs produced humoral antibodies. This study represents an important advance in the large-scale production of immunopeptide vaccines in a cost-effective manner using a plant cell-suspension culture system. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  15. The Challenges and Opportunities for Development of a T-Cell Epitope-Based Herpes Simplex Vaccine

    Science.gov (United States)

    Kuo, Tiffany; Wang, Christine; Badakhshan, Tina; Chilukuri, Sravya; BenMohamed, Lbachir

    2014-01-01

    The infections with herpes simplex virus type 1 and type 2 (HSV-1 & HSV-2) have been prevalent since the ancient Greek times. To this day, they still affect a staggering number of over a half billion individuals worldwide. HSV-2 infections cause painful genital herpes, encephalitis, and death in newborns. HSV-1 infections are more prevalent than HSV-2 infections and cause potentially blinding ocular herpes, oro-facial herpes and encephalitis. While genital herpes in mainly caused by HSV-2 infections, in recent years, there is an increase in the proportion of genital herpes caused by HSV-1 infections in young adults, which reach 50% in some western societies. While prophylactic and therapeutic HSV vaccines remain urgently needed for centuries their development has been notoriously difficult. During the most recent National Institute of Health (NIH) workshop titled "Next Generation Herpes Simplex Virus Vaccines: The Challenges and Opportunities", basic researchers, funding agencies, and pharmaceutical representatives gathered: (i) to assess the status of herpes vaccine research; and (ii) to identify the gaps and propose alternative approaches in developing a safe and efficient herpes vaccine. One “common denominator” among previously failed clinical herpes vaccine trials is that they either used a whole virus or whole viral proteins, which contain both pathogenic “symptomatic” and protective “asymptomatic” antigens/epitopes. In this report, we continue to advocate that using an “asymptomatic” epitope-based vaccine strategy that selectively incorporates protective epitopes which: (i) are exclusively recognized, in vitro, by effector memory CD4+ and CD8+ TEM cells from “naturally” protected seropositive asymptomatic individuals; and (ii) protect, in vivo, human leukocyte antigen (HLA) transgenic animal models from ocular and genital herpes infections and diseases, could be the answer to many of the scientific challenges facing HSV vaccine

  16. Venom allergen-like protein 28 in Clonorchis sinensis: four epitopes on its surface and the potential role of Cys124 for its conformational stability.

    Science.gov (United States)

    Lee, Myoung-Ro; Yoo, Won Gi; Kim, Yu Jung; Chung, Eun Ju; Cho, Shin-Hyeong; Ju, Jung-Won

    2018-06-06

    Venom allergen-like (VAL) proteins are important to host-parasite interactions. We previously demonstrated that a Clonorchis sinensis VAL (CsVAL) protein-derived synthetic peptide suppresses allergic and inflammatory responses. However, little is known regarding the physicochemical and antigenic properties of CsVAL proteins. Here, we identified a novel 194 amino acid VAL protein, named C. sinensis VAL 28 (CsVAL28), and characterized its functional motifs and structural details as a new member of the CAP superfamily. Unlike members of the Schistosoma mansoni VAL (SmVAL) family, CsVAL28 has a single CAP1 motif and six highly conserved disulfide bond-forming cysteines. Tertiary models of wild-type CsVAL28 and mutants were built using SmVAL4 as template via homology modeling. Normal mode analysis predicted that disulfide bond breaking by mutation of cysteine 124 to serine would greatly affect protein mobility. Four major immunoreactive linear epitopes were identified in the surface-exposed region or its vicinity via epitope mapping, using sera from clonorchiasis patients and healthy controls. Our findings provide in-depth knowledge on the structure-function properties of VAL proteins and may help determine highly antigenic regions for developing new diagnostic approaches.

  17. Immunochemical characterization of the O antigens of two Proteus strains, O8-related antigen of Proteus mirabilis 12 B-r and O2-related antigen of Proteus genomospecies 5/6 12 B-k, infecting a hospitalized patient in Poland.

    Science.gov (United States)

    Drzewiecka, Dominika; Shashkov, Alexander S; Arbatsky, Nikolay P; Knirel, Yuriy A

    2016-05-01

    A hospitalized 73-year-old woman was infected with a Proteus mirabilis strain, 12 B-r, isolated from the place of injection of a blood catheter. Another strain, 12 B-k, recognized as Proteus genomospecies 5 or 6, was isolated from the patient's faeces, which was an example of a nosocomial infection rather than an auto-infection. Serological investigation using ELISA and Western blotting showed that strain 12 B-k from faeces belonged to the Proteus O2 serogroup. Strain 12 B-r from the wound displayed cross-reactions with several Proteus O serogroups due to common epitopes on the core or O-specific parts of the lipopolysaccharide. Studies of the isolated 12 B-r O-specific polysaccharide by NMR spectroscopy revealed its close structural similarity to that of Proteus O8. The only difference in 12 B-r was the presence of an additional GlcNAc-linked phosphoethanolamine residue, which creates a putative epitope responsible for the cross-reactivity with Pt. mirabilis O16. The new O-antigen form could appear as a result of adaptation of the bacterium to a changing environment. On the basis of the data obtained, we suggest division of the O8 serogroup into two subgroups: O8a for strains of various Proteus species that have been previously classified into the O8 serogroup, and O8a,b for Pt. mirabilis 12 B-r, where 'a' is a common epitope and 'b' is a phosphoethanolamine-associated epitope. These findings further confirm serological and structural heterogeneity of O antigens of Proteus strains isolated lately from patients in Poland.

  18. Pep-3D-Search: a method for B-cell epitope prediction based on mimotope analysis.

    Science.gov (United States)

    Huang, Yan Xin; Bao, Yong Li; Guo, Shu Yan; Wang, Yan; Zhou, Chun Guang; Li, Yu Xin

    2008-12-16

    The prediction of conformational B-cell epitopes is one of the most important goals in immunoinformatics. The solution to this problem, even if approximate, would help in designing experiments to precisely map the residues of interaction between an antigen and an antibody. Consequently, this area of research has received considerable attention from immunologists, structural biologists and computational biologists. Phage-displayed random peptide libraries are powerful tools used to obtain mimotopes that are selected by binding to a given monoclonal antibody (mAb) in a similar way to the native epitope. These mimotopes can be considered as functional epitope mimics. Mimotope analysis based methods can predict not only linear but also conformational epitopes and this has been the focus of much research in recent years. Though some algorithms based on mimotope analysis have been proposed, the precise localization of the interaction site mimicked by the mimotopes is still a challenging task. In this study, we propose a method for B-cell epitope prediction based on mimotope analysis called Pep-3D-Search. Given the 3D structure of an antigen and a set of mimotopes (or a motif sequence derived from the set of mimotopes), Pep-3D-Search can be used in two modes: mimotope or motif. To evaluate the performance of Pep-3D-Search to predict epitopes from a set of mimotopes, 10 epitopes defined by crystallography were compared with the predicted results from a Pep-3D-Search: the average Matthews correlation coefficient (MCC), sensitivity and precision were 0.1758, 0.3642 and 0.6948. Compared with other available prediction algorithms, Pep-3D-Search showed comparable MCC, specificity and precision, and could provide novel, rational results. To verify the capability of Pep-3D-Search to align a motif sequence to a 3D structure for predicting epitopes, 6 test cases were used. The predictive performance of Pep-3D-Search was demonstrated to be superior to that of other similar programs

  19. Identification of Rotavirus VP6-Specific CD4+ T Cell Epitopes in a G1P[8] Human Rotavirus-Infected Rhesus Macaque

    Directory of Open Access Journals (Sweden)

    Wei Zhao

    2008-01-01

    Full Text Available A non-human primate model was used to evaluate its potential for identification of rotavirus viral protein 6 (VP6 CD4+ T cell epitopes. Four juvenile rhesus macaques were inoculated with a mixed inoculum (G1P[8] and G9P[8] of human rotaviruses. Infection accompanied by G1P[8] shedding was achieved in the two macaques that had no rotavirus immunoglobulin A (IgA in plasma. To measure the interferon gamma (IFN-γ and tumor necrosis factor (TNF anti-viral cytokines produced by peripheral CD4+ cells that recognize VP6 epitopes, whole blood cells from one infected macaque were stimulated in vitro with VP6 peptides. Stimulation with peptide pools derived from the simian rotavirus VP6 161–395 region revealed reactivity of CD4+ T cells with the VP6 281–331 domain. A VP6 301–315 region was identified as the epitope responsible for IFN-γ production while a broader VP6 293–327 domain was linked to TNF production. These results suggest that human rotavirus-infected macaques can be used for identification of additional epitopes and domains to address specific questions related to the development of pediatric vaccines.

  20. Targeting of non-dominant antigens as a vaccine strategy to broaden T-cell responses during chronic viral infection

    DEFF Research Database (Denmark)

    Holst, Peter Johannes; Jensen, Benjamin Anderschou Holbech; Ragonnaud, Emeline

    2015-01-01

    In this study, we compared adenoviral vaccine vectors with the capacity to induce equally potent immune responses against non-dominant and immunodominant epitopes of murine lymphocytic choriomeningitis virus (LCMV). Our results demonstrate that vaccination targeting non-dominant epitopes facilita......In this study, we compared adenoviral vaccine vectors with the capacity to induce equally potent immune responses against non-dominant and immunodominant epitopes of murine lymphocytic choriomeningitis virus (LCMV). Our results demonstrate that vaccination targeting non-dominant epitopes...... was lost over time in T cells specific for the dominant T cell epitopes, and these cells were fully capable of expanding in response to a new viral challenge. Overall, our data suggests a potential for broadening of the antiviral CD8+ T-cell response by selecting non-dominant antigens to be targeted...

  1. Molecular characterization of HIV-1 CRF01_AE in Mekong Delta, Vietnam, and impact of T-cell epitope mutations on HLA recognition (ANRS 12159.

    Directory of Open Access Journals (Sweden)

    Estibaliz Lazaro

    Full Text Available BACKGROUND: To date, 11 HIV-1 subtypes and 48 circulating recombinant forms have been described worldwide. The underlying reason why their distribution is so heterogeneous is not clear. Host genetic factors could partly explain this distribution. The aim of this study was to describe HIV-1 strains circulating in an unexplored area of Mekong Delta, Vietnam, and to assess the impact of optimal epitope mutations on HLA binding. METHODS: We recruited 125 chronically antiretroviral-naive HIV-1-infected subjects from five cities in the Mekong Delta. We performed high-resolution DNA typing of HLA class I alleles, sequencing of Gag and RT-Prot genes and phylogenetic analysis of the strains. Epitope mutations were analyzed in patients bearing the HLA allele restricting the studied epitope. Optimal wild-type epitopes from the Los Alamos database were used as reference. T-cell epitope recognition was predicted using the immune epitope database tool according to three different scores involved in antigen processing (TAP and proteasome scores and HLA binding (MHC score. RESULTS: All sequences clustered with CRF01_AE. HLA class I genotyping showed the predominance of Asian alleles as A*11:01 and B*46:01 with a Vietnamese specificity held by two different haplotypes. The percentage of homology between Mekong and B consensus HIV-1 sequences was above 85%. Divergent epitopes had TAP and proteasome scores comparable with wild-type epitopes. MHC scores were significantly lower in divergent epitopes with a mean of 2.4 (±0.9 versus 2 (±0.7 in non-divergent ones (p<0.0001. CONCLUSIONS: Our study confirms the wide predominance of CRF01_AE in the Mekong Delta where patients harbor a specific HLA pattern. Moreover, it demonstrates the lower MHC binding affinity among divergent epitopes. This weak immune pressure combined with a narrow genetic diversity favors immune escape and could explain why CRF01_AE is still predominant in Vietnam, particularly in the Mekong area.

  2. In Silico Identification of Highly Conserved Epitopes of Influenza A H1N1, H2N2, H3N2, and H5N1 with Diagnostic and Vaccination Potential

    Directory of Open Access Journals (Sweden)

    José Esteban Muñoz-Medina

    2015-01-01

    Full Text Available The unpredictable, evolutionary nature of the influenza A virus (IAV is the primary problem when generating a vaccine and when designing diagnostic strategies; thus, it is necessary to determine the constant regions in viral proteins. In this study, we completed an in silico analysis of the reported epitopes of the 4 IAV proteins that are antigenically most significant (HA, NA, NP, and M2 in the 3 strains with the greatest world circulation in the last century (H1N1, H2N2, and H3N2 and in one of the main aviary subtypes responsible for zoonosis (H5N1. For this purpose, the HMMER program was used to align 3,016 epitopes reported in the Immune Epitope Database and Analysis Resource (IEDB and distributed in 34,294 stored sequences in the Pfam database. Eighteen epitopes were identified: 8 in HA, 5 in NA, 3 in NP, and 2 in M2. These epitopes have remained constant since they were first identified (~91 years and are present in strains that have circulated on 5 continents. These sites could be targets for vaccination design strategies based on epitopes and/or as markers in the implementation of diagnostic techniques.

  3. Ovarian carcinoma glyco-antigen targeted by human IgM antibody.

    Directory of Open Access Journals (Sweden)

    Yi Chen

    Full Text Available Epithelial Ovarian Cancer (EOC cells expression of a novel carbohydrate antigen was defined using a human VH4-34 encoded IgM monoclonal antibody (mAb216. MAb216 binds to a poly N-acetyllactosamine epitope expressed on B cells and kills normal and malignant B cells in vitro and in vivo. EOC patient ascites and EOC cell lines were used to study the anti tumor effect of mAb216. Various assays were used to characterize the epitope and demonstrate antibody-mediated binding and cytotoxicity in EOC. Drug and antibody combination effects were determined by calculating the combination index values using the Chou and Talalay method. MAb216 displays direct antibody mediated cytotoxicity on a population of human EOC tumor and ascites samples and EOC cell lines, which express high amounts of poly N-acetyllactosamine epitope, carried by CD147/CD98. Eighty four percent of patient samples, including platin resistant, had a tumor population that bound the monoclonal antibody. The binding pattern of mAb216 and mechanism of cytotoxicity was similar to that seen on normal and malignant B cells with unique general membrane disruption and "pore" formation. In vitro incubation with mAb216 and cisplatin enhanced killing of OVCAR3 cell line. In EOC cell lines percent cytotoxicity correlated with percent expression of epitope. Although in vitro data shows specific EOC cytotoxicity, for possible treatment of EOC MAb216 would need to be evaluated in a clinical trial with or without chemotherapy.

  4. Emergence of CD4+ and CD8+ Polyfunctional T Cell Responses Against Immunodominant Lytic and Latent EBV Antigens in Children With Primary EBV Infection

    Directory of Open Access Journals (Sweden)

    Janice K. P. Lam

    2018-03-01

    Full Text Available Long term carriers were shown to generate robust polyfunctional T cell (PFC responses against lytic and latent antigens of Epstein-Barr virus (EBV. However, the time of emergence of PFC responses against EBV antigens, pattern of immunodominance and difference between CD4+ and CD8+ T cell responses during various stages of EBV infection are not clearly understood. A longitudinal study was performed to assess the development of antigen-specific PFC responses in children diagnosed to have primary symptomatic (infectious mononucleosis [IM] and asymptomatic (AS EBV infection. Evaluation of IFN-γ secreting CD8+ T cell responses upon stimulation by HLA class I-specific peptides of EBV lytic and latent proteins by ELISPOT assay followed by assessment of CD4+ and CD8+ PFC responses upon stimulation by a panel of overlapping EBV peptides for co-expression of IFN-γ, TNF-α, IL-2, perforin and CD107a by flow cytometry were performed. Cytotoxicity of T cells against autologous lymphoblastoid cell lines (LCLs as well as EBV loads in PBMC and plasma were also determined. Both IM and AS patients had elevated PBMC and plasma viral loads which declined steadily during a 12-month period from the time of diagnosis whilst decrease in the magnitude of CD8+ T cell responses toward EBV lytic peptides in contrast to increase toward latent peptides was shown with no significant difference between those of IM and AS patients. Both lytic and latent antigen-specific CD4+ and CD8+ T cells demonstrated polyfunctionality (defined as greater or equal to three functions concurrent with enhanced cytotoxicity against autologous LCLs and steady decrease in plasma and PBMC viral loads over time. Immunodominant peptides derived from BZLF1, BRLF1, BMLF1 and EBNA3A-C proteins induced the highest proportion of CD8+ as well as CD4+ PFC responses. Diverse functional subtypes of both CD4+ and CD8+ PFCs were shown to emerge at 6–12 months. In conclusion, EBV antigen-specific CD4+ and CD

  5. Cationic liposomes promote antigen cross-presentation in dendritic cells by alkalizing the lysosomal pH and limiting the degradation of antigens

    Directory of Open Access Journals (Sweden)

    Gao J

    2017-02-01

    Full Text Available Jie Gao,1–3 Lukasz J Ochyl,1,3 Ellen Yang,4 James J Moon1,3,5 1Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA; 2Department of Pharmaceutical Sciences, School of Pharmacy, Second Military Medical University, Shanghai, People’s Republic of China; 3Biointerfaces Institute, 4Department of Chemistry, 5Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA Abstract: Cationic liposomes (CLs have been widely examined as vaccine delivery nanoparticles since they can form complexes with biomacromolecules, promote delivery of antigens and adjuvant molecules to antigen-presenting cells (APCs, and mediate cellular uptake of vaccine components. CLs are also known to trigger antigen cross-presentation – the process by which APCs internalize extracellular protein antigens, degrade them into minimal CD8+ T-cell epitopes, and present them in the context of major histocompatibility complex-I (MHC-I. However, the precise mechanisms behind CL-mediated induction of cross-presentation and cross-priming of CD8+ T-cells remain to be elucidated. In this study, we have developed two distinct CL systems and examined their impact on the lysosomal pH in dendritic cells (DCs, antigen degradation, and presentation of peptide:MHC-I complexes to antigen-specific CD8+ T-cells. To achieve this, we have used 3β-[N-(N',N'-dimethylaminoethane-carbamoyl] cholesterol (DC-Chol and 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP as the prototypical components of CLs with tertiary amine groups and compared the effect of CLs and anionic liposomes on lysosomal pH, antigen degradation, and cross-presentation by DCs. Our results showed that CLs, but not anionic liposomes, elevated the lysosomal pH in DCs and reduced antigen degradation, thereby promoting cross-presentation and cross-priming of CD8+ T-cell responses. These studies shed new light on CL-mediated cross-presentation and suggest that intracellular fate of vaccine

  6. Chemoselective ligation and antigen vectorization.

    Science.gov (United States)

    Gras-Masse, H

    2001-01-01

    The interest in cocktail-lipopeptide vaccines has now been confirmed by phase I clinical trials: highly diversified B-, T-helper or cytotoxic T-cell epitopes can be combined with a lipophilic vector for the induction of B- and T-cell responses of predetermined specificity. With the goal of producing an improved vaccine that should ideally induce a multispecific response in non-selected populations, increasing the diversity of the immunizing mixture represents one of the most obvious strategies.The selective delivery of antigens to professional antigen-presenting cells represents another promising approach for the improvement of vaccine efficacy. In this context, the mannose-receptor represents an attractive entry point for the targeting to dendritic cells of antigens linked to clustered glycosides or glycomimetics. In all cases, highly complex but fully characterized molecules must be produced. To develop a modular and flexible strategy which could be generally applicable to a large set of peptide antigens, we elected to explore the potentialities of chemoselective ligation methods. The hydrazone bond was found particularly reliable and fully compatible with sulphide ligation. Hydrazone/thioether orthogonal ligation systems could be developed to account for the nature of the antigens and the solubility of the vector systems. Copyright 2001 The International Association for Biologicals.

  7. Identification of epitopes within integrin β4 for binding of auto-antibodies in ocular cicatricial and mucous membrane pemphigoid: preliminary report.

    Science.gov (United States)

    Rashid, Khwaja Aftab; Foster, C Stephen; Ahmed, A Razzaque

    2013-11-19

    To identify the epitopes on human β4 integrin to which the sera of patients with ocular cicatricial pemphigoid (OCP) and mucous membrane pemphigoid (MMP) without ocular involvement bind. Fragments of the intracellular domain of the β4 molecule were cloned, expressed, purified and peptides were synthesized. Antibodies to various fragments and peptides were produced in rabbits. Binding specificity was determined via Western blot and blocking experiments. Test sera and controls were injected into neonatal BALB/c mice for in vivo passive transfer. Sera from patients with OCP, MMP, and both OCP and MMP were bound to cloned fragments of IC3.0. Its subcloned fragments IC3.4 (1489 aa-1572 aa) and IC3.4.1 (1489 aa-1510 aa) were bound with the sera from patients with OCP only. Subcloned fragments IC3.6 (1573 aa-1822 aa) and IC3.6.1 (1689 aa-1702 aa) were bound with MMP sera only. No cross-reactivity in binding was observed. Immuno-affinity-purified sera from patients with OCP, MMP, and rabbit antibodies to IC3.0, IC3.4, IC3.4.1, IC3.6, and IC3.6.1, when injected in neonatal BALB/c mice, produced subepidermal blisters in their skin. These preliminary observations identified IC3.4.1 as the possible epitope for the binding of OCP auto-antibody and IC3.6.1 as the possible epitope for the binding of MMP auto-antibody without ocular disease. Antibodies specific to these peptides produced blisters when injected in mice. Still-unidentified epitopes may exist. These observations may enhance our understanding of the role of β4 integrin in the pathobiology of OCP and MMP. Early diagnosis may be possible if serologic tests with specificity and sensitivity can be developed.

  8. A recombinant dromedary antibody fragment (VHH or nanobody) directed against human Duffy antigen receptor for chemokines.

    Science.gov (United States)

    Smolarek, Dorota; Hattab, Claude; Hassanzadeh-Ghassabeh, Gholamreza; Cochet, Sylvie; Gutiérrez, Carlos; de Brevern, Alexandre G; Udomsangpetch, Rachanee; Picot, Julien; Grodecka, Magdalena; Wasniowska, Kazimiera; Muyldermans, Serge; Colin, Yves; Le Van Kim, Caroline; Czerwinski, Marcin; Bertrand, Olivier

    2010-10-01

    Fy blood group antigens are carried by the Duffy antigen receptor for chemokines (DARC), a red cells receptor for Plasmodium vivax broadly implicated in human health and diseases. Recombinant VHHs, or nanobodies, the smallest intact antigen binding fragment derivative from the heavy chain-only antibodies present in camelids, were prepared from a dromedary immunized against DARC N-terminal extracellular domain and selected for DARC binding. A described VHH, CA52, does recognize native DARC on cells. It inhibits P. vivax invasion of erythrocytes and displaces interleukin-8 bound to DARC. The targeted epitope overlaps the well-defined DARC Fy6 epitope. K (D) of CA52-DARC equilibrium is sub-nanomolar, hence ideal to develop diagnostic or therapeutic compounds. Immunocapture by immobilized CA52 yielded highly purified DARC from engineered K562 cells. This first report on a VHH with specificity for a red blood cell protein exemplifies VHHs' potentialities to target, to purify, and to modulate the function of cellular markers.

  9. Identification of swine influenza virus epitopes and analysis of multiple specificities expressed by cytotoxic T cell subsets

    DEFF Research Database (Denmark)

    Pedersen, Lasse Eggers; Breum, Solvej Østergaard; Riber, Ulla

    2014-01-01

    Background: Major histocompatibility complex (MHC) class I peptide binding and presentation are essential for antigen-specific activation of cytotoxic T lymphocytes (CTLs) and swine MHC class I molecules, also termed swine leukocyte antigens (SLA), thus play a crucial role in the process that leads...... to elimination of viruses such as swine influenza virus (SwIV). This study describes the identification of SLA-presented peptide epitopes that are targets for a swine CTL response, and further analyses multiple specificities expressed by SwIV activated CTL subsets. Findings: Four SwIV derived peptides were...

  10. T cell recognition of breast cancer antigens

    DEFF Research Database (Denmark)

    Petersen, Nadia Viborg; Andersen, Sofie Ramskov; Andersen, Rikke Sick

    Recent studies are encouraging research of breast cancer immunogenicity to evaluate the applicability ofimmunotherapy as a treatment strategy. The epitope landscape in breast cancer is minimally described, thus it is necessary to identify T cell targets to develop immune mediated therapies.......This project investigates four proteins commonly upregulated in breast cancer and thus probable tumor associated antigens (TAAs). Aromatase, prolactin, NEK3, and PIAS3 contribute to increase growth, survival, and motility of malignant cells. Aspiring to uncover novel epitopes for cytotoxic T cells, a reverse...... recognition utilizing DNA barcode labeled MHC multimers to screen peripheral blood lymphocytes from breast cancer patients and healthy donor samples. Signif-icantly more TAA specific T cell responses were detected in breast cancer patients than healthy donors for both HLA-A*0201 (P

  11. Next-generation ELISA diagnostic assay for Chagas Disease based on the combination of short peptidic epitopes.

    Directory of Open Access Journals (Sweden)

    Juan Mucci

    2017-10-01

    Full Text Available Chagas Disease, caused by the protozoan Trypanosoma cruzi, is a major health and economic problem in Latin America for which no vaccine or appropriate drugs for large-scale public health interventions are yet available. Accurate diagnosis is essential for the early identification and follow up of vector-borne cases and to prevent transmission of the disease by way of blood transfusions and organ transplantation. Diagnosis is routinely performed using serological methods, some of which require the production of parasite lysates, parasite antigenic fractions or purified recombinant antigens. Although available serological tests give satisfactory results, the production of reliable reagents remains laborious and expensive. Short peptides spanning linear B-cell epitopes have proven ideal serodiagnostic reagents in a wide range of diseases. Recently, we have conducted a large-scale screening of T. cruzi linear B-cell epitopes using high-density peptide chips, leading to the identification of several hundred novel sequence signatures associated to chronic Chagas Disease. Here, we performed a serological assessment of 27 selected epitopes and of their use in a novel multipeptide-based diagnostic method. A combination of 7 of these peptides were finally evaluated in ELISA format against a panel of 199 sera samples (Chagas-positive and negative, including sera from Leishmaniasis-positive subjects. The multipeptide formulation displayed a high diagnostic performance, with a sensitivity of 96.3% and a specificity of 99.15%. Therefore, the use of synthetic peptides as diagnostic tools are an attractive alternative in Chagas' disease diagnosis.

  12. Structure-Based Design of Hepatitis C Virus Vaccines That Elicit Neutralizing Antibody Responses to a Conserved Epitope

    Energy Technology Data Exchange (ETDEWEB)

    Pierce, Brian G.; Boucher, Elisabeth N.; Piepenbrink, Kurt H.; Ejemel, Monir; Rapp, Chelsea A.; Thomas, William D.; Sundberg, Eric J.; Weng, Zhiping; Wang, Yang; Diamond, Michael S.

    2017-08-09

    is the target of broadly neutralizing antibodies.In vivoresults in mice indicated that these antigens elicited epitope-specific neutralizing antibodies, with various degrees of potency and breadth. These promising results suggest that a rational design approach can be used to generate an effective vaccine for this virus.

  13. Determining the Epitope Dominance on the Capsid of a Serotype SAT2 Foot-and-Mouth Disease Virus by Mutational Analyses

    Science.gov (United States)

    Opperman, Pamela A.; Rotherham, Lia S.; Esterhuysen, Jan; Charleston, Bryan; Juleff, Nicholas; Capozzo, Alejandra V.; Theron, Jacques

    2014-01-01

    ABSTRACT Monoclonal-antibody (MAb)-resistant mutants were used to map antigenic sites on foot-and-mouth disease virus (FMDV), which resulted in the identification of neutralizing epitopes in the flexible βG-βH loop in VP1. For FMDV SAT2 viruses, studies have shown that at least two antigenic sites exist. By use of an infectious SAT2 cDNA clone, 10 structurally exposed and highly variable loops were identified as putative antigenic sites on the VP1, VP2, and VP3 capsid proteins of SAT2/Zimbabwe (ZIM)/7/83 (topotype II) and replaced with the corresponding regions of SAT2/Kruger National Park (KNP)/19/89 (topotype I). Virus neutralization assays using convalescent-phase antisera raised against the parental virus, SAT2/ZIM/7/83, indicated that the mutant virus containing the TQQS-to-ETPV mutation in the N-terminal part of the βG-βH loop of VP1 showed not only a significant increase in the neutralization titer but also an increase in the index of avidity to the convalescent-phase antisera. Furthermore, antigenic profiling of the epitope-replaced and parental viruses with nonneutralizing SAT2-specific MAbs led to the identification of two nonneutralizing antigenic regions. Both regions were mapped to incorporate residues 71 to 72 of VP2 as the major contact point. The binding footprint of one of the antigenic regions encompasses residues 71 to 72 and 133 to 134 of VP2 and residues 48 to 50 of VP1, and the second antigenic region encompasses residues 71 to 72 and 133 to 134 of VP2 and residues 84 to 86 and 109 to 11 of VP1. This is the first time that antigenic regions encompassing residues 71 to 72 of VP2 have been identified on the capsid of a SAT2 FMDV. IMPORTANCE Monoclonal-antibody-resistant mutants have traditionally been used to map antigenic sites on foot-and-mouth disease virus (FMDV). However, for SAT2-type viruses, which are responsible for most of the FMD outbreaks in Africa and are the most varied of all seven serotypes, only two antigenic sites have been

  14. Identification of CD4+ T-cell Epitopes on Mycobacterium Tuberculosis- Secreted MPB51 Protein in C57BL/6 Mice

    Directory of Open Access Journals (Sweden)

    A.R. Rafiei

    2006-01-01

    Full Text Available Introduction & Objective: Both CD4+ type 1 helper (Th1 cells and CD8+ T cells play effective roles in protection against Mycobacterium tuberculosis infection. DNA vaccine encoding MPB51 can induce Th1-type immune responses and protective immunity upon challenge with M.tuberculosis. This study address to identify T-cell immunodominant epitopes on MPB51 in C57BL/6 mice.Materials & Methods : We cloned DNA encoding MPB51 molecule in pCI plasmid. After constructing MPB51 DNA-covered gold cartridge, C57BL/6 mice were immunized by using a gene gun system. Two weeks after the last immunization, the immune spleen cells were cultured in the presence of a synthetic overlapping library peptides covering the mature MPB51 sequence or medium alone. Intracellular and cell culture supernatant gamma interferon (IFN- production was analyzed using flow cytometry and ELISA, respectively.Results : Mapping of T-cell epitopes on MPB51 molecule was performed in the spleen lymphocytes restimulated by 20-mer overlapping synthetic peptides of mature MPB51 sequence. Flow cytometric analysis with intracellular IFN- and the T-cell phenotype revealed that P171-190 and P191-210 peptides contain immunodominant CD4+ T-cell epitopes. Further analysis by using T-cell subset depletion and serial peptide dilution revealed that P171 and p191 are H2-Ab-restricted dominant and subdominant CD4+ T cell epitopes, respectively. Conclusion: This study proved that vaccination with plasmid DNA encoding M. tuberculosis-secreted MPB51 protein not only induce CD4+ T cells immune response but also is an appropriate method for identifying immunogenic peptides.

  15. Anterior Visceral Endoderm SMAD4 Signaling Specifies Anterior Embryonic Patterning and Head Induction in Mice

    Science.gov (United States)

    Li, Cuiling; Li, Yi-Ping; Fu, Xin-Yuan; Deng, Chu-Xia

    2010-01-01

    SMAD4 serves as a common mediator for signaling of TGF-β superfamily. Previous studies illustrated that SMAD4-null mice die at embryonic day 6.5 (E6.5) due to failure of mesoderm induction and extraembryonic defects; however, functions of SMAD4 in each germ layer remain elusive. To investigate this, we disrupted SMAD4 in the visceral endoderm and epiblast, respectively, using a Cre-loxP mediated approach. We showed that mutant embryos lack of SMAD4 in the visceral endoderm (Smad4Co/Co;TTR-Cre) died at E7.5-E9.5 without head-fold and anterior embryonic structures. We demonstrated that TGF-β regulates expression of several genes, such as Hex1, Cer1, and Lim1, in the anterior visceral endoderm (AVE), and the failure of anterior embryonic development in Smad4Co/Co;TTR-Cre embryos is accompanied by diminished expression of these genes. Consistent with this finding, SMAD4-deficient embryoid bodies showed impaired responsiveness to TGF-β-induced gene expression and morphological changes. On the other hand, embryos carrying Cre-loxP mediated disruption of SMAD4 in the epiblasts exhibited relatively normal mesoderm and head-fold induction although they all displayed profound patterning defects in the later stages of gastrulation. Cumulatively, our data indicate that SMAD4 signaling in the epiblasts is dispensable for mesoderm induction although it remains critical for head patterning, which is significantly different from SMAD4 signaling in the AVE, where it specifies anterior embryonic patterning and head induction. PMID:20941375

  16. Designed ankyrin repeat proteins: a new approach to mimic complex antigens for diagnostic purposes?

    Directory of Open Access Journals (Sweden)

    Stefanie Hausammann

    Full Text Available Inhibitory antibodies directed against coagulation factor VIII (FVIII can be found in patients with acquired and congenital hemophilia A. Such FVIII-inhibiting antibodies are routinely detected by the functional Bethesda Assay. However, this assay has a low sensitivity and shows a high inter-laboratory variability. Another method to detect antibodies recognizing FVIII is ELISA, but this test does not allow the distinction between inhibitory and non-inhibitory antibodies. Therefore, we aimed at replacing the intricate antigen FVIII by Designed Ankyrin Repeat Proteins (DARPins mimicking the epitopes of FVIII inhibitors. As a model we used the well-described inhibitory human monoclonal anti-FVIII antibody, Bo2C11, for the selection on DARPin libraries. Two DARPins were selected binding to the antigen-binding site of Bo2C11, which mimic thus a functional epitope on FVIII. These DARPins inhibited the binding of the antibody to its antigen and restored FVIII activity as determined in the Bethesda assay. Furthermore, the specific DARPins were able to recognize the target antibody in human plasma and could therefore be used to test for the presence of Bo2C11-like antibodies in a large set of hemophilia A patients. These data suggest, that our approach might be used to isolate epitopes from different sets of anti-FVIII antibodies in order to develop an ELISA-based screening assay allowing the distinction of inhibitory and non-inhibitory anti-FVIII antibodies according to their antibody signatures.

  17. Ontogeny and localization of γ-crystallin antigen in the developing pigeon (Columba livia) lens

    NARCIS (Netherlands)

    Brahma, S.K.; Rabaey, M.; Doorenmaalen, W.J. van

    Ontogeny and localization of the lens γ-crystallin antigen were investigated in the embryonic and post-embryonic pigeon lenses by the indirect immunofluorescence with antiserum from rabbit immunized with isolated pigeon lens γ-crystallin. The results show that γ-crystallin appears for the first time

  18. Ex vivo detection of adenovirus specific CD4+ T-cell responses to HLA-DR-epitopes of the Hexon protein show a contracted specificity of THELPER cells following stem cell transplantation

    International Nuclear Information System (INIS)

    Serangeli, Celine; Bicanic, Oliver; Scheible, Michael H.; Wernet, Dorothee; Lang, Peter; Rammensee, Hans-Georg; Stevanovic, Stefan; Handgretinger, Rupert; Feuchtinger, Tobias

    2010-01-01

    Human adenovirus (HAdV) is a cause of significant morbidity and mortality in immunocompromised patients, especially after stem cell transplantation (SCT). Viral clearance has been attributed to CD4 + T-cell responses against the Hexon-protein, but the frequency of specific T HELPER cells is extremely low or not detectable ex vivo and preference for different CD4 + T-cell epitopes is variable among individuals. We therefore analyzed 44 healthy donors and 6 SCT-recipients for Hexon-specific CD4 + -responses ex vivo, to identify epitopes which would be broadly applicable. We selected 19 candidate epitopes with predicted restriction to HLA-DR1/DR3/DR4/DR7; 16 were located within the highly conserved regions, indicating cross-reactivity of T cells among HAdV-subspecies. Ten epitopes induced CD4 + -proliferation in >50% of individuals, confirmed by intracellular IFN-γ detection. Three SCT recipients who recovered from an infection with HAdV displayed reactivity towards only a single hexon epitope, whereas healthy individuals were responsive to two to eight epitopes (median 3). The ex vivo detection of Hexon-specific CD4 + T-cells, without any long-term culture in vitro, enables the detection and generation of HAdV-specific CD4 + T cells for adoptive T-cell transfer against HAdV-infection post SCT.

  19. Bat Caliciviruses and Human Noroviruses Are Antigenically Similar and Have Overlapping Histo-Blood Group Antigen Binding Profiles.

    Science.gov (United States)

    Kocher, Jacob F; Lindesmith, Lisa C; Debbink, Kari; Beall, Anne; Mallory, Michael L; Yount, Boyd L; Graham, Rachel L; Huynh, Jeremy; Gates, J Edward; Donaldson, Eric F; Baric, Ralph S

    2018-05-22

    Emerging zoonotic viral diseases remain a challenge to global public health. Recent surveillance studies have implicated bats as potential reservoirs for a number of viral pathogens, including coronaviruses and Ebola viruses. Caliciviridae represent a major viral family contributing to emerging diseases in both human and animal populations and have been recently identified in bats. In this study, we blended metagenomics, phylogenetics, homology modeling, and in vitro assays to characterize two novel bat calicivirus (BtCalV) capsid sequences, corresponding to strain BtCalV/A10/USA/2009, identified in Perimyotis subflavus near Little Orleans, MD, and bat norovirus. We observed that bat norovirus formed virus-like particles and had epitopes and receptor-binding patterns similar to those of human noroviruses. To determine whether these observations stretch across multiple bat caliciviruses, we characterized a novel bat calicivirus, BtCalV/A10/USA/2009. Phylogenetic analysis revealed that BtCalV/A10/USA/2009 likely represents a novel Caliciviridae genus and is most closely related to "recoviruses." Homology modeling revealed that the capsid sequences of BtCalV/A10/USA/2009 and bat norovirus resembled human norovirus capsid sequences and retained host ligand binding within the receptor-binding domains similar to that seen with human noroviruses. Both caliciviruses bound histo-blood group antigens in patterns that overlapped those seen with human and animal noroviruses. Taken together, our results indicate the potential for bat caliciviruses to bind histo-blood group antigens and overcome a significant barrier to cross-species transmission. Additionally, we have shown that bat norovirus maintains antigenic epitopes similar to those seen with human noroviruses, providing further evidence of evolutionary descent. Our results reiterate the importance of surveillance of wild-animal populations, especially of bats, for novel viral pathogens. IMPORTANCE Caliciviruses are

  20. Native IgG2a(b) is barely antigenic to major histocompatibility complex class II-restricted T cells owing to inefficient internalization by professional antigen-presenting cells.

    Science.gov (United States)

    Bartnes, K; Hannestad, K

    2000-04-01

    Peptide epitopes derived from immunoglobulin variable regions represent tumour-specific antigens on B-cell neoplasms and can be recognized by syngeneic, major histocompatibility complex (MHC) class II-restricted T cells. Immunoglobulin peptide/MHC class II complexes may also be involved in autoimmunity and CD4+ T-cell-mediated B-cell regulation. Thus, the IgG2a(b) H-chain allopeptide gamma2a(b) 435-451 presented on I-Ad mimics the epitope implicated in herpes simplex virus-induced autoimmune stromal keratitis and is the target of T helper 1 (Th1) clones that suppress IgG2a(b) production in vivo. We here report that spleen and thymus cells constitutively present the autologous gamma2a(b) epitope to a gamma2a(b) 435-451/I-A(d) reactive T-cell hybridoma as a function of the animal housing conditions (specific pathogen-free or not) and the serum levels of IgG2a(b). Constitutive presentation in the spleen was predominantly performed by dendritic cells. Whereas spleen cells poorly presented native IgG2a(b) to a gamma2a(b) 435-451/I-A(d) reactive T-cell hybridoma, IgG2a(b) in the form of immune complexes were presented > 200-fold more efficiently owing to internalization via low-affinity FcgammaR on macrophages. The antigenicity could also be improved by homotypic aggregation and by targeting IgG2a(b) to complement receptors on the A20 B-cell lymphoma. Mice without detectable IgG2a(b)-containing immune complexes typically exhibited minimal constitutive presentation. Nevertheless, native IgG2a(b) can sensitize antigen-presenting cells in vivo, as mice that were devoid of immune complexes and carried an IgG2a(b)-producing tumour did present constitutively, even at physiological IgG2a(b) serum levels. Whereas the amounts of IgG released from most B-cell lymphomas may be too low to allow spontaneous priming of tumour-specific MHC class II-restricted T cells, administration of tumour immunoglobulin in aggregated form might improve the efficacy of idiotype vaccination.

  1. The rescue and evaluation of FLAG and HIS epitope-tagged Asia 1 type foot-and-mouth disease viruses.

    Science.gov (United States)

    Yang, Bo; Yang, Fan; Zhang, Yan; Liu, Huanan; Jin, Ye; Cao, Weijun; Zhu, Zixiang; Zheng, Haixue; Yin, Hong

    2016-02-02

    The VP1 G-H loop of the foot-and-mouth disease virus (FMDV) contains the primary antigenic site, as well as an Arg-Gly-Asp (RGD) binding motif for the αv-integrin family of cell surface receptors. We anticipated that introducing a foreign epitope tag sequence downstream of the RGD motif would be tolerated by the viral capsid and would not destroy the antigenic site of FMDV. In this study, we have designed, generated, and characterized two recombinant FMDVs with a FLAG tag or histidine (HIS) inserted in the VP1 G-H loop downstream of the RGD motif +9 position. The tagged viruses were genetically stable and exhibited similar growth properties with their parental virus. What is more, the recombinant viruses rFMDV-FLAG and rFMDV-HIS showed neutralization sensitivity to FMDV type Asia1-specific mAbs, as well as to polyclonal antibodies. Additionally, the r1 values of the recombinant viruses were similar to that of the parental virus, indicating that the insertion of FLAG or HIS tag sequences downstream of the RGD motif +9 position do not eradicate the antigenic site of FMDV and do not affect its antigenicity. These results indicated that the G-H loop of Asia1 FMDV is able to effectively display the foreign epitopes, making this a potential approach for novel FMDV vaccines development. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Epitope-dependent functional effects of celiac disease autoantibodies on transglutaminase 2

    DEFF Research Database (Denmark)

    Hnida, Kathrin; Stamnaes, Jorunn; du Pré, M Fleur

    2016-01-01

    Transglutaminase 2 (TG2) is a Ca(2+)-dependent cross-linking enzyme involved in the pathogenesis of CD. We have previously characterized a panel of anti-TG2 mAbs generated from gut plasma cells of celiac patients and identified four epitopes (epitopes 1-4) located in the N-terminal part of TG2...... of epitope 1-targeting B cells to keep TG2 active and protected from oxidation might explain why generation of epitope 1-targeting plasma cells seems to be favored in celiac patients....

  3. The preferred substrates for transglutaminase 2 in a complex wheat gluten digest are Peptide fragments harboring celiac disease T-cell epitopes.

    Directory of Open Access Journals (Sweden)

    Siri Dørum

    Full Text Available BACKGROUND: Celiac disease is a T-cell mediated chronic inflammatory disorder of the gut that is induced by dietary exposure to gluten proteins. CD4+ T cells of the intestinal lesion recognize gluten peptides in the context of HLA-DQ2.5 or HLA-DQ8 and the gluten derived peptides become better T-cell antigens after deamidation catalyzed by the enzyme transglutaminase 2 (TG2. In this study we aimed to identify the preferred peptide substrates of TG2 in a heterogeneous proteolytic digest of whole wheat gluten. METHODS: A method was established to enrich for preferred TG2 substrates in a complex gluten peptide mixture by tagging with 5-biotinamido-pentylamine. Tagged peptides were isolated and then identified by nano-liquid chromatography online-coupled to tandem mass spectrometry, database searching and final manual data validation. RESULTS: We identified 31 different peptides as preferred substrates of TG2. Strikingly, the majority of these peptides were harboring known gluten T-cell epitopes. Five TG2 peptide substrates that were predicted to bind to HLA-DQ2.5 did not contain previously characterized sequences of T-cell epitopes. Two of these peptides elicited T-cell responses when tested for recognition by intestinal T-cell lines of celiac disease patients, and thus they contain novel candidate T-cell epitopes. We also found that the intact 9mer core sequences of the respective epitopes were not present in all peptide substrates. Interestingly, those epitopes that were represented by intact forms were frequently recognized by T cells in celiac disease patients, whereas those that were present in truncated versions were infrequently recognized. CONCLUSION: TG2 as well as gastrointestinal proteolysis play important roles in the selection of gluten T-cell epitopes in celiac disease.

  4. The Preferred Substrates for Transglutaminase 2 in a Complex Wheat Gluten Digest Are Peptide Fragments Harboring Celiac Disease T-Cell Epitopes

    Science.gov (United States)

    Dørum, Siri; Arntzen, Magnus Ø.; Qiao, Shuo-Wang; Holm, Anders; Koehler, Christian J.; Thiede, Bernd; Sollid, Ludvig M.; Fleckenstein, Burkhard

    2010-01-01

    Background Celiac disease is a T-cell mediated chronic inflammatory disorder of the gut that is induced by dietary exposure to gluten proteins. CD4+ T cells of the intestinal lesion recognize gluten peptides in the context of HLA-DQ2.5 or HLA-DQ8 and the gluten derived peptides become better T-cell antigens after deamidation catalyzed by the enzyme transglutaminase 2 (TG2). In this study we aimed to identify the preferred peptide substrates of TG2 in a heterogeneous proteolytic digest of whole wheat gluten. Methods A method was established to enrich for preferred TG2 substrates in a complex gluten peptide mixture by tagging with 5-biotinamido-pentylamine. Tagged peptides were isolated and then identified by nano-liquid chromatography online-coupled to tandem mass spectrometry, database searching and final manual data validation. Results We identified 31 different peptides as preferred substrates of TG2. Strikingly, the majority of these peptides were harboring known gluten T-cell epitopes. Five TG2 peptide substrates that were predicted to bind to HLA-DQ2.5 did not contain previously characterized sequences of T-cell epitopes. Two of these peptides elicited T-cell responses when tested for recognition by intestinal T-cell lines of celiac disease patients, and thus they contain novel candidate T-cell epitopes. We also found that the intact 9mer core sequences of the respective epitopes were not present in all peptide substrates. Interestingly, those epitopes that were represented by intact forms were frequently recognized by T cells in celiac disease patients, whereas those that were present in truncated versions were infrequently recognized. Conclusion TG2 as well as gastrointestinal proteolysis play important roles in the selection of gluten T-cell epitopes in celiac disease. PMID:21124911

  5. Routinely used immunoassays do not detect circulating anti-GBM antibodies against native NC1 hexamer and EA epitope of the α3 chain of type IV collagen.

    Science.gov (United States)

    Clavarino, Giovanna; Gauthier, Arnaud; Hellmark, Thomas; Carron, Pierre-Louis; Giovannini, Diane; Colliard, Sophie; Dragon-Durey, Marie-Agnès; Segelmark, Mårten; Cesbron, Jean-Yves; Dumestre-Pérard, Chantal

    2018-04-12

    Detection of circulating anti-GBM antibodies has a key role for the diagnosis of Goodpasture syndrome but immunoassays using purified or recombinant alpha3(IV)NC1 as antigen do not recognize all anti-GBM antibodies. We show that anti-GBM antibodies directed against epitopes in their native conformation or cryptic epitopes are detected by indirect immunofluorescence. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Effects of Co60 gamma radiation on the immunogenic and antigenic properties of Bothrops jararacussu venom

    International Nuclear Information System (INIS)

    Spencer, Patrick J.; Nascimento, Nanci do; Rogero, Jose R.

    1997-01-01

    Ionizing radiation has been successfully employed to attenuate animals toxins and venoms for immunizing antisera producing animals. However, the radiation effects on antigenicity and immunogenecity have not yet been elucidated. In the present work, we investigated the effects of gamma rays on the antigenic and immunogenicity have not yet been elucidated. In the present work, we investigated the effects of gamma rays on the antigenic and immunogenic behaviour of Bothrops jararacussu venon. Venom samples (2mg/ml in 150 mM NaCl) were irradiated with 500, 1000 and 2000 Gy of 60 Co gamma rays. These samples were submitted to antigen capture ELISA on plates coated with commercial bothropic antiserum. Results suggest a loss of reactivity of the 1000 and 2000 Gy irradiated samples. Antibodies against native and 2000 Gy irradiated venoms were produced in rabbits. Both sera able to bind native venom with a slightly higher titer for anti-irradiated serum. These data suggest that radiation promoted structural modification on the antigen molecules. However since the antibodies produced against irradiated antivenom were able to recognize native venom, there must have been preservation of some antigenic determinants. It has already been demosntrated that irradiation of proteins leads to structural modifications and unfolding of the molecules. Our data suggest that irradiation led to conformational epitopes destruction with preservation of linear epitopes and that the response against irradiated venom may be attributed to these linear antigenic determinants. (author). 8 refs., 3 figs

  7. Direct ex vivo detection of HLA-DR3-restricted cytomegalovirus- and Mycobacterium tuberculosis-specific CD4+ T cells.

    Science.gov (United States)

    Bronke, Corine; Palmer, Nanette M; Westerlaken, Geertje H A; Toebes, Mireille; van Schijndel, Gijs M W; Purwaha, Veenu; van Meijgaarden, Krista E; Schumacher, Ton N M; van Baarle, Debbie; Tesselaar, Kiki; Geluk, Annemieke

    2005-09-01

    In order to detect epitope-specific CD4+ T cells in mycobacterial or viral infections in the context of human class II major histocompatibility complex protein human leukocyte antigen (HLA)-DR3, two HLA-DR3 tetrameric molecules were successfully produced. One contained an immunodominant HLA-DR3-restricted T-cell epitope derived from the 65-kDa heat-shock protein of Mycobacterium tuberculosis, peptide 1-13. For the other tetramer, we used an HLA-DR3-restricted T-cell epitope derived from cytomegalovirus (CMV) pp65 lower matrix protein, peptide 510-522, which induced high levels of interferon (IFN)-gamma-producing CD4+ T cells in three of four HLA-DR3-positive CMV-seropositive individuals up to 0.84% of CD4+ T cells by intracellular cytokine staining. In peripheral blood mononuclear cells from M. tuberculosis-exposed, Mycobacterium bovis bacille Calmette-Guérin (BCG)-vaccinated, or CMV-seropositive individuals, we were able to directly detect with both tetramers epitope-specific T cells up to 0.62% and 0.45% of the CD4+ T-cell population reactive to M. tuberculosis and CMV, respectively. After a 6-day culture with peptide p510-522, the frequency of CMV-specific tetramer-binding T cells was expanded up to 9.90% tetramer+ CFSElow (5,6-carboxyfluorescein diacetate succinimidyl ester) cells within the CD4+ T-cell population, further confirming the specificity of the tetrameric molecules. Thus, HLA-DR3/peptide tetrameric molecules can be used to investigate HLA-DR3-restricted antigen-specific CD4+ T cells in clinical disease or after vaccination.

  8. Immunologic properties and therapeutic efficacy of a multivalent epitope-based vaccine against four Helicobacter pylori adhesins (urease, Lpp20, HpaA, and CagL) in Mongolian gerbils.

    Science.gov (United States)

    Guo, Le; Yin, Runting; Xu, Guangxian; Gong, Xiaojuan; Chang, Zisong; Hong, Dantong; Liu, Hongpeng; Ding, Shuqin; Han, Xuebo; Li, Yuan; Tang, Feng; Liu, Kunmei

    2017-12-01

    Therapeutic vaccination is a desirable alternative for controlling Helicobacter pylori (H. pylori) infection. Attachment to the gastric mucosa is the first step in establishing bacterial colonization, and adhesins, which are on the surface of H. pylori, play a pivotal role in binding to human gastric mucosa. In the present study, we constructed a multivalent epitope-based vaccine named CFAdE with seven carefully selected antigenic fragments from four H. pylori adhesins (urease, Lpp20, HpaA and CagL). The specificity, immunogenicity and ability to produce neutralizing antibodies of CFAdE were evaluated in BALB/c mice. After that, its therapeutic efficacy and protective immune mechanisms were explored in H. pylori-infected Mongolian gerbils. The results indicated that CFAdE could induce comparatively high levels of specific antibodies against urease, Lpp20, HpaA and CagL. Additionally, oral therapeutic immunization with CFAdE plus polysaccharide adjuvant (PA) significantly decreased H. pylori colonization compared with oral immunization with urease plus PA, and the protection was correlated with IgG and sIgA antibody and antigen-specific CD4 + T cells. This study indicated that the multivalent epitope-based vaccine, which targeted multiple adhesins in adherence of H. pylori to the gastric mucosa, is more effective than the univalent vaccine targeting urease only. This multivalent epitope-based vaccine may be a promising therapeutic candidate vaccine against H. pylori infection. © 2017 John Wiley & Sons Ltd.

  9. Vaccination and the TAP-independent antigen processing pathways.

    Science.gov (United States)

    López, Daniel; Lorente, Elena; Barriga, Alejandro; Johnstone, Carolina; Mir, Carmen

    2013-09-01

    The cytotoxic CD8(+) T lymphocyte-mediated cellular response is important for the elimination of virus-infected cells and requires the prior recognition of short viral peptide antigens previously translocated to the endoplasmic reticulum by the transporter associated with antigen processing (TAP). However, individuals with nonfunctional TAP complexes or infected cells with TAP molecules blocked by specific viral proteins, such as the cowpoxvirus, a component of the first source of early empirical vaccination against smallpox, are still able to present several HLA class I ligands generated by the TAP-independent antigen processing pathways to specific cytotoxic CD8(+) T lymphocytes. Currently, bioterrorism and emerging infectious diseases have renewed interest in poxviruses. Recent works that have identified HLA class I ligands and epitopes in virus-infected TAP-deficient cells have implications for the study of both the effectiveness of early empirical vaccination and the analysis of HLA class I antigen processing in TAP-deficient subjects.

  10. Distinct activation phenotype of a highly conserved novel HLA-B57-restricted epitope during dengue virus infection.

    Science.gov (United States)

    Townsley, Elizabeth; Woda, Marcia; Thomas, Stephen J; Kalayanarooj, Siripen; Gibbons, Robert V; Nisalak, Ananda; Srikiatkhachorn, Anon; Green, Sharone; Stephens, Henry A F; Rothman, Alan L; Mathew, Anuja

    2014-01-01

    Variation in the sequence of T-cell epitopes between dengue virus (DENV) serotypes is believed to alter memory T-cell responses during second heterologous infections. We identified a highly conserved, novel, HLA-B57-restricted epitope on the DENV NS1 protein. We predicted higher frequencies of B57-NS1(26-34) -specific CD8(+) T cells in peripheral blood mononuclear cells from individuals undergoing secondary rather than primary DENV infection. However, high tetramer-positive T-cell frequencies during acute infection were seen in only one of nine subjects with secondary infection. B57-NS1(26-34) -specific and other DENV epitope-specific CD8(+) T cells, as well as total CD8(+) T cells, expressed an activated phenotype (CD69(+) and/or CD38(+)) during acute infection. In contrast, expression of CD71 was largely limited to DENV epitope-specific CD8(+) T cells. In vitro stimulation of cell lines indicated that CD71 expression was differentially sensitive to stimulation by homologous and heterologous variant peptides. CD71 may represent a useful marker of antigen-specific T-cell activation. © 2013 John Wiley & Sons Ltd.

  11. Dog Erythrocyte Antigen 1 (DEA 1): Mode of Inheritance and Initial Characterization

    Science.gov (United States)

    Polak, Klaudia; Acierno, Michelle; Raj, Karthik; Mizukami, Keijiro; Siegel, Don L.; Giger, Urs

    2015-01-01

    Background The Dog Erythrocyte Antigen (DEA) 1 blood group system remains poorly defined. Objectives The purpose of the study was to determine the DEA 1 mode of inheritance and to characterize the DEA 1 antigen and alloantibodies. Animals Canine research colony families, clinic canine patients, and DEA 1.2+ blood bank dogs were studied. Methods Canine blood was typed by flow cytometry and immunochromatographic strips using anti-DEA 1 monoclonal antibodies. Gel column experiments with polyclonal and immunoblotting with monoclonal anti-DEA 1 antibodies were performed to analyze select samples. Cross-reactivity of human typing reagents against canine RBCs and one monoclonal anti-DEA 1 antibody against human RBC panels was assessed. Results Typing of 12 families comprising 144 dogs indicated an autosomal dominant inheritance with ≥4 alleles: DEA 1− (0) and DEA 1+ weak (1+), intermediate (2+) and strong (3+ and 4+). Samples from 6 dogs previously typed as DEA 1.2+ were typed as DEA 1+ or DEA 1− using monoclonal antibodies. Human typing reagents produced varied reactions in tube agglutination experiments against DEA 1+ and DEA 1− RBCs. Polypeptide bands were not detected on immunoblots using a monoclonal anti-DEA 1 antibody, therefore the anti-DEA 1 antibody may be specific for conformational epitopes lost during denaturation. Conclusions The autosomal dominant inheritance of DEA 1 with ≥4 alleles indicates a complex blood group system; the antigenicity of each DEA 1+ type will need to be determined. The biochemical nature of the DEA 1 antigen(s) appears different from human blood group systems tested. PMID:26291052

  12. Shared epitopes of glycoprotein A and protein 4.1 defined by antibody NaM10-3C10.

    Science.gov (United States)

    Rasamoelisolo, M; Czerwinski, M; Willem, C; Blanchard, D

    1998-06-01

    We have produced the murine monoclonal antibody (MAb) NaM70-3C10 (IgM) from splenocytes of mice immunized with human red blood cells (RBCs). The MAb agglutinated untreated as well as trypsin, chymotrypsin, neuraminidase, or ficin-treated RBCs from controls. In contrast, control RBCs treated with papaine or bromelaine were not agglutinated. On immunoblots, the MAb bound to glycophorin A (GPA) and to a 80 kDa protein identified as protein 4.1. Analysis by agglutination of variant RBCs carrying hybrid glycophorins made of the N-terminus (amino acids 1-58) of GPA and of the C-terminus (amino acids 27-72) of glycophorin B (GPB) and competition-inhibition test using purified GPA and a synthetic peptide corresponding to the amino acid sequence 48-58 of GPA demonstrated that the epitope is located within residues 48-58 of GPA. Epitope analysis with immobilized peptides showed that the MAb recognizes the sequence 53Pro-Pro-Glu-Glu-GIu58 of GPA. A homologous sequence is also present within amino acids 395 to 405 of protein 4.1. Finally, the MAb bound to 16 kDa chymotryptic peptide of protein 4.1, which carries the above amino acid sequence. In conclusion, it may be assumed that NaM70-3C10 specifically recognizes a common epitope on the extracellular domain of GPA and on the intracellular protein 4.1; this specificity explains the persistence of the 80 kDa band on blots when RBCs are treated with papain.

  13. Identification and characterization of B-cell epitopes in the DBL4e domain of VAR2CSA

    DEFF Research Database (Denmark)

    Ditlev, Sisse B; Nielsen, Morten A; Resende, Mafalda

    2012-01-01

    and is the leading candidate for a placental malaria vaccine. Antibodies induced in rats against the recombinant DBL4e domain of VAR2CSA inhibit the binding of a number of laboratory and field parasite isolates to CSA. In this study, we used a DBL4e peptide-array to identify epitopes targeted by DBL4e...... might be involved in the induction of inhibitory antibodies induced by the recombinant DBL4e domain....

  14. Carrier protein influences immunodominance of a known epitope: implication in peptide vaccine design.

    Science.gov (United States)

    Ghosh, Moumita; Solanki, Ashish K; Roy, Koushik; Dhoke, Reema R; Ashish; Roy, Syamal

    2013-09-23

    We investigated how the processing of a given antigen by antigen presenting cells (APC) is dictated by the conformation of the antigen and how this governs the immunodominance hierarchy. To address the question, a known immunodominant sequence of bacteriophage lambda repressor N-terminal sequence 12-26 [λR(12-26)] was engineered at the N and C termini of a heterologous leishmanial protein, Kinetoplastid membrane protein-11 (KMP-11); the resulting proteins were defined as N-KMP-11 and C-KMP-11 respectively. The presence of λR(12-26) in N-KMP-11 and C-KMP-11 was established by western blot analysis with antibody to λR(12-26) peptide. N-KMP-11 but not C-KMP-11 could stimulate the anti λR(12-26) T-cell clonal population very efficiently in the presence of APCs. Priming of BALB/c mice with N-KMP-11 or C-KMP-11 generated similar levels of anti-KMP-11 IgG, but anti-λR(12-26) specific IgG was observed only upon priming with N-KMP-11. Interestingly, uptake of both N-KMP-11 and C-KMP-11 by APCs was similar but catabolism of N-KMP-11 but not C-KMP-11 was biphasic and fast at the initial time point. Kratky plots of small angle X-ray scattering showed that while N-KMP-11 adopts flexible Gaussian type of topology, C-KMP-11 prefers Globular nature. To show that KMP-11 is not unique as a carrier protein, an epitope (SPITBTNLBTMBK) of Plasmodium yoelii (PY) apical membrane protein 1[AMA-1 (136-148)], is placed at the C and N terminals of a dominant T-cell epitope of ovalbumin protein OVA(323-339) and the resulting peptides are defined as PY-OVA and OVA-PY respectively. Interestingly, only OVA-PY could stimulate anti-OVA T-cells and produce IgG response upon priming of BALB/c mice with it. Thus for rational design of peptide vaccine it is important to place the dominant epitope appropriately in the context of the carrier protein. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Gelatin–PMVE/MA composite scaffold promotes expansion of embryonic stem cells

    International Nuclear Information System (INIS)

    Chhabra, Hemlata; Gupta, Priyanka; Verma, Paul J.; Jadhav, Sameer; Bellare, Jayesh R.

    2014-01-01

    We introduce a new composite scaffold of gelatin and polymethyl vinyl ether-alt-maleic anhydride (PMVE/MA) for expansion of embryonic stem cells (ESCs) in an in vitro environment. To optimize the scaffold, we prepared a gelatin scaffold (G) and three composite scaffolds namely GP-1, GP-2, and GP-3 with varying PMVE/MA concentrations (0.2–1%) and characterized them by scanning electron microscopy (SEM), swelling study, compression testing and FTIR. SEM micrographs revealed interconnected porous structure in all the scaffolds. The permissible hemolysis ratio and activation of platelets by scaffolds confirmed the hemocompatibility of scaffolds. Initial biocompatibility assessment of scaffolds was conducted using hepatocarcinoma (Hep G2) cells and adhesion, proliferation and infiltration of Hep G2 cells in depth of scaffolds were observed, proving the scaffold's biocompatibility. Further Oct4B2 mouse embryonic stem cells (mESCs), which harbor a green fluorescence protein transgene under regulatory control of the Oct4 promotor, were examined for expansion on scaffolds with MTT assay. The GP-2 scaffold demonstrated the best cell proliferation and was further explored for ESC adherence and infiltration in depth (SEM and confocal), and pluripotent state of mESCs was assessed with the expression of Oct4-GFP and stage-specific embryonic antigen-1 (SSEA-1). This study reports the first demonstration of biocompatibility of gelatin–PMVE/MA composite scaffold and presents this scaffold as a promising candidate for embryonic stem cell based tissue engineering. - Highlights: • Composite scaffolds of gelatin and PMVE/MA were prepared by freeze-drying method. • SEM micrographs showed porous structure in all scaffolds of varying pore dimension. • GP-2 composite exhibited better cellular response in comparison to other scaffolds. • mESCs proliferated and expressed Oct-4 and SSEA-1, when cultured on GP-2 scaffold

  16. Gelatin–PMVE/MA composite scaffold promotes expansion of embryonic stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Chhabra, Hemlata [Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai (India); Gupta, Priyanka [Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai (India); IITB-Monash Research Academy, Mumbai (India); Department of Chemical Engineering, Monash University, Melbourne (Australia); Verma, Paul J. [Turretfield Research Centre, South Australian Research and Development Institute, Rosedale, South Australia (Australia); Jadhav, Sameer; Bellare, Jayesh R. [Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai (India)

    2014-04-01

    We introduce a new composite scaffold of gelatin and polymethyl vinyl ether-alt-maleic anhydride (PMVE/MA) for expansion of embryonic stem cells (ESCs) in an in vitro environment. To optimize the scaffold, we prepared a gelatin scaffold (G) and three composite scaffolds namely GP-1, GP-2, and GP-3 with varying PMVE/MA concentrations (0.2–1%) and characterized them by scanning electron microscopy (SEM), swelling study, compression testing and FTIR. SEM micrographs revealed interconnected porous structure in all the scaffolds. The permissible hemolysis ratio and activation of platelets by scaffolds confirmed the hemocompatibility of scaffolds. Initial biocompatibility assessment of scaffolds was conducted using hepatocarcinoma (Hep G2) cells and adhesion, proliferation and infiltration of Hep G2 cells in depth of scaffolds were observed, proving the scaffold's biocompatibility. Further Oct4B2 mouse embryonic stem cells (mESCs), which harbor a green fluorescence protein transgene under regulatory control of the Oct4 promotor, were examined for expansion on scaffolds with MTT assay. The GP-2 scaffold demonstrated the best cell proliferation and was further explored for ESC adherence and infiltration in depth (SEM and confocal), and pluripotent state of mESCs was assessed with the expression of Oct4-GFP and stage-specific embryonic antigen-1 (SSEA-1). This study reports the first demonstration of biocompatibility of gelatin–PMVE/MA composite scaffold and presents this scaffold as a promising candidate for embryonic stem cell based tissue engineering. - Highlights: • Composite scaffolds of gelatin and PMVE/MA were prepared by freeze-drying method. • SEM micrographs showed porous structure in all scaffolds of varying pore dimension. • GP-2 composite exhibited better cellular response in comparison to other scaffolds. • mESCs proliferated and expressed Oct-4 and SSEA-1, when cultured on GP-2 scaffold.

  17. A Supercluster of Neutralizing Epitopes at the Interface of Ricin’s Enzymatic (RTA and Binding (RTB Subunits

    Directory of Open Access Journals (Sweden)

    Amanda Y. Poon

    2017-11-01

    Full Text Available As part of an effort to engineer ricin antitoxins and immunotherapies, we previously produced and characterized a collection of phage-displayed, heavy chain-only antibodies (VHHs from alpacas that had been immunized with ricin antigens. In our initial screens, we identified nine VHHs directed against ricin toxin’s binding subunit (RTB, but only one, JIZ-B7, had toxin-neutralizing activity. Linking JIZ-B7 to different VHHs against ricin’s enzymatic subunit (RTA resulted in several bispecific antibodies with potent toxin-neutralizing activity in vitro and in vivo. JIZ-B7 may therefore be an integral component of a future VHH-based neutralizing agent (VNA for ricin toxin. In this study, we now localize, using competitive ELISA, JIZ-B7’s epitope to a region of RTB’s domain 2 sandwiched between the high-affinity galactose/N-acetylgalactosamine (Gal/GalNAc-binding site and the boundary of a neutralizing hotspot on RTA known as cluster II. Analysis of additional RTB (n = 8- and holotoxin (n = 4-specific VHHs from a recent series of screens identified a “supercluster” of neutralizing epitopes at the RTA-RTB interface. Among the VHHs tested, toxin-neutralizing activity was most closely associated with epitope proximity to RTA, and not interference with RTB’s ability to engage Gal/GalNAc receptors. We conclude that JIZ-B7 is representative of a larger group of potent toxin-neutralizing antibodies, possibly including many described in the literature dating back several decades, that recognize tertiary and possibly quaternary epitopes located at the RTA-RTB interface and that target a region of vulnerability on ricin toxin.

  18. Epitopes associated with MHC restriction site of T cells. III. I-J epitope on MHC-restricted T helper cells

    International Nuclear Information System (INIS)

    Asano, Y.; Nakayama, T.; Kubo, M.; Yagi, J.; Tada, T.

    1987-01-01

    I-J epitopes were found to be associated with the functional site of the class II MHC-restricted helper T (Th) cells: Virtually all of the H-2k-restricted Th cell function of H-2kxbF1 T cells was inhibited by the anti-I-Jk mAb, leaving the H-2b-restricted function unaffected. The I-Jk epitope was inducible in Th cells of different genotype origin according to the environmental class II antigens present in the early ontogeny of T cells. Although above results suggested that I-J is the structure reflecting the inducible MHC restriction specificity, further studies revealed some interesting controversies: First, the I-J phenotype did not always correlate with the class II restriction specificity, e.g., I-Ab-restricted Th from 5R was I-Jk-positive, whereas I-Ak-restricted Th of 4R was not. Second, there was no trans expression of parental I-J phenotypes and restriction specificities in F1 Th, e.g., the I-J phenotype was detected only on I-Ab-restricted Th of (4R X 5R)F1, whereas it was absent on I-Ak-restricted Th. This strict linkage between the restriction specificity and I-J phenotype was also found on Th cells developed in bone marrow chimera constructed with intra-H-2-recombinant mice. The expression of I-Jk was always associated with the restriction specificity of the relevant host. Thus, the restriction specificity of Th cells followed the host type, and the I-J expression on Th was exactly the same as that expressed by the host haplotype. These results indicate that I-J is an isomorphic structure adaptively expressed on Th cells that is involved in the unidirectional regulatory cell interactions, and that the polymorphism cannot be explained merely by the restriction specificity of the conventional T cell receptor heterodimer

  19. Design and evaluation of protein expression in a recombinant plasmid encoding epitope gp 350/220 of the Epstein-Barr virus (EBV)

    Science.gov (United States)

    Himmah, Karimatul; Dluha, Nurul; Anyndita, Nadya V. M.; Rifa'i, Muhaimin; Widodo

    2017-05-01

    The Epstein - Barr virus (EBV) causes severe infections that may lead to cancers such as nasopharyngeal carcinoma. Development of effective EBV vaccines is necessary to prevent the virus spreading throughout the community. TheEBV has a surface protein gp 350/220, which serves as an antigen to help interact with host cells. Epitopes of the protein can potentially serve as bases for a vaccine. In a previous study, we have found a conserved epitope of gp 350/220 from all strains EBV through an in silico approach. The aim of this study is to design and overproduce a recombinant peptide of epitope gp 350/220 in E. coli. DNA encoding the conserved epitope was synthesized and cloned into plasmid pET-22b(+); the recombinant plasmid was transformed into E. coli strains DH5α and BL21. The transformed plasmid DNA was isolated and confirmed by restriction using XbaI and PstI enzymes followed by DNA sequencing. Protein expression was induced by isopropyl-D-thiogalactopyranoside (IPTG) with final concentrations of 0.1, 0.2, 1, and 2 mM in consecutive times. An osmotic shock method was used to isolate protein from periplasmic fraction of E. coli DH5α and BL21. The SDS-PAGE analysis was carried out to detect peptide target (3.4 kDa). Based on this result, the induction process did not work properly, and thus needs further investigation.

  20. Significado do epitope spreading na patogênese dos pênfigos vulgar e foliáceo Significance of epitope spreading in the pathogenesis of pemphigus vulgaris and foliaceus

    Directory of Open Access Journals (Sweden)

    Valéria Aoki

    2008-04-01

    Full Text Available Os pênfigos são dermatoses bolhosas auto-imunes, em que há a produção de auto-anticorpos direcionados contra moléculas de adesão dos epitélios, levando à perda da coesão celular. A produção de auto-anticorpos ocorre quando os pacientes desenvolvem um desequilíbrio da resposta imune (quebra da tolerância imunológica, passando a reconhecer antígenos próprios. A resposta é geralmente direcionada contra um único epítopo alvo; entretanto, como conseqüência da resposta inflamatória do processo primário e do extenso dano tecidual ocasionado, pode haver exposição de componentes protéicos ocultos, levando à produção de diferentes auto-anticorpos. Assim, é possível que surja uma nova doença cutânea auto-imune, em decorrência do fenômeno intra ou intermolecular de epitope spreading. São revistos os principais conceitos desse fenômeno e sua ocorrência nas dermatoses bolhosas auto-imunes, com ênfase nos pênfigos, grupo de dermatoses bolhosas autoimunes mais prevalente no Brasil.Pemphigus comprises autoimmune blistering skin diseases in which autoantibodies directed against antigens (epithelial adhesion molecules are found, leading to loss of cell cohesion. The production of autoantibodies occurs due to an immune imbalance (break of immune tolerance driving to recognition of self- antigens. The response is usually directed against an exclusive target epitope; however, due to the inflammatory response and to the extensive tissue damage, it is possible that the exposure of hidden protein components leads to distinct autoantibody production. Hence, a new autoimmune disease may occur in consequence of an intra- or intermolecular epitope spreading phenomenon. The authors review the main concepts of this phenomenon, and its occurrence in autoimmune blistering diseases, with emphasis on pemphigus, the most prevalent disease of this group in our country.

  1. Synthesis and expression of CDw75 antigen in human colorectal cancer

    International Nuclear Information System (INIS)

    Costa-Nogueira, Clotilde; Villar-Portela, Susana; Cuevas, Elisa; Gil-Martín, Emilio; Fernández-Briera, Almudena

    2009-01-01

    Increased ST6Gal I activity has been associated with the α(2,6)sialylation enhancement of membrane glycoconjugates observed in metastatic colorectal carcinomas (CRC). Siaα(2,6)Galβ(1,4)GlcNAc sequence, known as CDw75, is a sialylated carbohydrate determinant generated by the ST6Gal I. This epitope has been reported to be associated with the progression of gastric and colorectal tumours, hence there are only a few conclusive studies to date. By radioisotopic techniques we evaluated the ST6Gal I activity in healthy, transitional and tumour tissues from 43 patients with CRC. By immunohistochemistry we assessed the CDw75 expression in 25 colorectal adenomas, 43 tumours, 13 transitional and 28 healthy tissues of CRC patients. ST6Gal I activity was likewise found to be statistically higher in tumour tissue respect to healthy tissue from CRC patients. CDw75 expression was positive in 20% of colorectal adenomas. Furthermore, 70% of tumour specimens and 8.3% of transitional specimens were positive for CDw75 expression, whereas none of the healthy ones showed the presence of the epitope. The major contribution of this study is the inclusion of data from transitional tissue and the analysis of CDw75 antigen expression in CRC and in colorectal adenomas, little known so far. ST6Gal I activity and CDw75 antigen expression were increased in CRC. Although their comparison did not reach the statistical significance, a great extent of patients showed both, an enhanced tumour ST6Gal I activity and an increased CDw75 expression in the tumour tissue. So, these two variables may play a role in malignant transformation. The expression of CDw75 in colorectal adenomas suggests that this antigen may be a tumour marker in CRC

  2. Cytotoxic T lymphocytes and CD4 epitope mutations in the pre-core/core region of hepatitis B virus in chronic hepatitis B carriers in Northeast Iran.

    Science.gov (United States)

    Zhand, Sareh; Tabarraei, Alijan; Nazari, Amineh; Moradi, Abdolvahab

    2017-07-01

    Hepatitis B virus (HBV) is vulnerable to many various mutations. Those within epitopes recognized by sensitized T cells may influence the re-emergence of the virus. This study was designed to investigate the mutation in immune epitope regions of HBV pre-core/core among chronic HBV patients of Golestan province, Northeast Iran. In 120 chronic HBV carriers, HBV DNA was extracted from blood plasma samples and PCR was done using specific primers. Direct sequencing and alignment of the pre-core/core region were applied using reference sequence from Gene Bank database (Accession Number AB033559). The study showed 27 inferred amino acid substitutions, 9 of which (33.3%) were in CD4 and 2 (7.4%) in cytotoxic T lymphocytes' (CTL) epitopes and 16 other mutations (59.2%) were observed in other regions. CTL escape mutations were not commonly observed in pre-core/core sequences of chronic HBV carriers in the locale of study. It can be concluded that most of the inferred amino acid substitutions occur in different immune epitopes other than CTL and CD4.

  3. A Quantitative Analysis of Complexity of Human Pathogen-Specific CD4 T Cell Responses in Healthy M. tuberculosis Infected South Africans.

    Directory of Open Access Journals (Sweden)

    Cecilia S Lindestam Arlehamn

    2016-07-01

    Full Text Available We performed a quantitative analysis of the HLA restriction, antigen and epitope specificity of human pathogen specific responses in healthy individuals infected with M. tuberculosis (Mtb, in a South African cohort as a test case. The results estimate the breadth of T cell responses for the first time in the context of an infection and human population setting. We determined the epitope repertoire of eleven representative Mtb antigens and a large panel of previously defined Mtb epitopes. We estimated that our analytic methods detected 50-75% of the total response in a cohort of 63 individuals. As expected, responses were highly heterogeneous, with responses to a total of 125 epitopes detected. The 66 top epitopes provided 80% coverage of the responses identified in our study. Using a panel of 48 HLA class II-transfected antigen-presenting cells, we determined HLA class II restrictions for 278 epitope/donor recognition events (36% of the total. The majority of epitopes were restricted by multiple HLA alleles, and 380 different epitope/HLA combinations comprised less than 30% of the estimated Mtb-specific response. Our results underline the complexity of human T cell responses at a population level. Efforts to capture and characterize this broad and highly HLA promiscuous Mtb-specific T cell epitope repertoire will require significant peptide multiplexing efforts. We show that a comprehensive "megapool" of Mtb peptides captured a large fraction of the Mtb-specific T cells and can be used to characterize this response.

  4. Case of rhesus antigen weak D type 4.2. (DAR category detection

    Directory of Open Access Journals (Sweden)

    L. L. Golovkina

    2015-01-01

    Full Text Available Serological methods of Rhesus antigens identification in humans cannot identify D-antigen variants. In this article the serological characteristics of Rhesus antigen D weak type 4.2. (Category DAR are described.

  5. Pep-3D-Search: a method for B-cell epitope prediction based on mimotope analysis

    OpenAIRE

    Huang, Yan Xin; Bao, Yong Li; Guo, Shu Yan; Wang, Yan; Zhou, Chun Guang; Li, Yu Xin

    2008-01-01

    Abstract Background The prediction of conformational B-cell epitopes is one of the most important goals in immunoinformatics. The solution to this problem, even if approximate, would help in designing experiments to precisely map the residues of interaction between an antigen and an antibody. Consequently, this area of research has received considerable attention from immunologists, structural biologists and computational biologists. Phage-displayed random peptide libraries are powerful tools...

  6. In vitro characterization of a human neural progenitor cell coexpressing SSEA4 and CD133

    DEFF Research Database (Denmark)

    Barraud, Perrine; Stott, Simon; Møllgård, Kjeld

    2007-01-01

    The stage-specific embryonic antigen 4 (SSEA4) is commonly used as a cell surface marker to identify the pluripotent human embryonic stem (ES) cells. Immunohistochemistry on human embryonic central nervous system revealed that SSEA4 is detectable in the early neuroepithelium, and its expression....... Therefore, we propose that SSEA4 associated with CD133 can be used for both the positive selection and the enrichment of neural stem/progenitor cells from human embryonic forebrain....... decreases as development proceeds. Flow cytometry analysis of forebrain-derived cells demonstrated that the SSEA4-expressing cells are enriched in the neural stem/progenitor cell fraction (CD133(+)), but are rarely codetected with the neural stem cell (NSC) marker CD15. Using a sphere-forming assay, we...

  7. Nanobodies targeting norovirus capsid reveal functional epitopes and potential mechanisms of neutralization.

    Directory of Open Access Journals (Sweden)

    Anna D Koromyslova

    2017-11-01

    Full Text Available Norovirus is the leading cause of gastroenteritis worldwide. Despite recent developments in norovirus propagation in cell culture, these viruses are still challenging to grow routinely. Moreover, little is known on how norovirus infects the host cells, except that histo-blood group antigens (HBGAs are important binding factors for infection and cell entry. Antibodies that bind at the HBGA pocket and block attachment to HBGAs are believed to neutralize the virus. However, additional neutralization epitopes elsewhere on the capsid likely exist and impeding the intrinsic structural dynamics of the capsid could be equally important. In the current study, we investigated a panel of Nanobodies in order to probe functional epitopes that could trigger capsid rearrangement and/ or interfere with HBGA binding interactions. The precise binding sites of six Nanobodies (Nano-4, Nano-14, Nano-26, Nano-27, Nano-32, and Nano-42 were identified using X-ray crystallography. We showed that these Nanobodies bound on the top, side, and bottom of the norovirus protruding domain. The impact of Nanobody binding on norovirus capsid morphology was analyzed using electron microscopy and dynamic light scattering. We discovered that distinct Nanobody epitopes were associated with varied changes in particle structural integrity and assembly. Interestingly, certain Nanobody-induced capsid morphological changes lead to the capsid protein degradation and viral RNA exposure. Moreover, Nanobodies employed multiple inhibition mechanisms to prevent norovirus attachment to HBGAs, which included steric obstruction (Nano-14, allosteric interference (Nano-32, and violation of normal capsid morphology (Nano-26 and Nano-85. Finally, we showed that two Nanobodies (Nano-26 and Nano-85 not only compromised capsid integrity and inhibited VLPs attachment to HBGAs, but also recognized a broad panel of norovirus genotypes with high affinities. Consequently, Nano-26 and Nano-85 have a great

  8. Nanobodies targeting norovirus capsid reveal functional epitopes and potential mechanisms of neutralization

    Science.gov (United States)

    2017-01-01

    Norovirus is the leading cause of gastroenteritis worldwide. Despite recent developments in norovirus propagation in cell culture, these viruses are still challenging to grow routinely. Moreover, little is known on how norovirus infects the host cells, except that histo-blood group antigens (HBGAs) are important binding factors for infection and cell entry. Antibodies that bind at the HBGA pocket and block attachment to HBGAs are believed to neutralize the virus. However, additional neutralization epitopes elsewhere on the capsid likely exist and impeding the intrinsic structural dynamics of the capsid could be equally important. In the current study, we investigated a panel of Nanobodies in order to probe functional epitopes that could trigger capsid rearrangement and/ or interfere with HBGA binding interactions. The precise binding sites of six Nanobodies (Nano-4, Nano-14, Nano-26, Nano-27, Nano-32, and Nano-42) were identified using X-ray crystallography. We showed that these Nanobodies bound on the top, side, and bottom of the norovirus protruding domain. The impact of Nanobody binding on norovirus capsid morphology was analyzed using electron microscopy and dynamic light scattering. We discovered that distinct Nanobody epitopes were associated with varied changes in particle structural integrity and assembly. Interestingly, certain Nanobody-induced capsid morphological changes lead to the capsid protein degradation and viral RNA exposure. Moreover, Nanobodies employed multiple inhibition mechanisms to prevent norovirus attachment to HBGAs, which included steric obstruction (Nano-14), allosteric interference (Nano-32), and violation of normal capsid morphology (Nano-26 and Nano-85). Finally, we showed that two Nanobodies (Nano-26 and Nano-85) not only compromised capsid integrity and inhibited VLPs attachment to HBGAs, but also recognized a broad panel of norovirus genotypes with high affinities. Consequently, Nano-26 and Nano-85 have a great potential to

  9. Induction of protective immunity in swine by recombinant bamboo mosaic virus expressing foot-and-mouth disease virus epitopes

    Directory of Open Access Journals (Sweden)

    Lin Na-Sheng

    2007-09-01

    Full Text Available Abstract Background Plant viruses can be employed as versatile vectors for the production of vaccines by expressing immunogenic epitopes on the surface of chimeric viral particles. Although several viruses, including tobacco mosaic virus, potato virus X and cowpea mosaic virus, have been developed as vectors, we aimed to develop a new viral vaccine delivery system, a bamboo mosaic virus (BaMV, that would carry larger transgene loads, and generate better immunity in the target animals with fewer adverse environmental effects. Methods We engineered the BaMV as a vaccine vector expressing the antigenic epitope(s of the capsid protein VP1 of foot-and-mouth disease virus (FMDV. The recombinant BaMV plasmid (pBVP1 was constructed by replacing DNA encoding the 35 N-terminal amino acid residues of the BaMV coat protein with that encoding 37 amino acid residues (T128-N164 of FMDV VP1. Results The pBVP1 was able to infect host plants and to generate a chimeric virion BVP1 expressing VP1 epitopes in its coat protein. Inoculation of swine with BVP1 virions resulted in the production of anti-FMDV neutralizing antibodies. Real-time PCR analysis of peripheral blood mononuclear cells from the BVP1-immunized swine revealed that they produced VP1-specific IFN-γ. Furthermore, all BVP1-immunized swine were protected against FMDV challenge. Conclusion Chimeric BaMV virions that express partial sequence of FMDV VP1 can effectively induce not only humoral and cell-mediated immune responses but also full protection against FMDV in target animals. This BaMV-based vector technology may be applied to other vaccines that require correct expression of antigens on chimeric viral particles.

  10. Molecular basis of immunogenicity to botulinum neurotoxins and uses of the defined antigenic regions.

    Science.gov (United States)

    Atassi, M Z

    2015-12-01

    Intensive research in this laboratory over the last 19 years has aimed at understanding the molecular bases for immune recognition of botulinum neurotoxin, types A and B and the role of anti-toxin immune responses in defense against the toxin. Using 92 synthetic 19-residue peptides that overlapped by 5 residues and comprised an entire toxin (A or B) we determined the peptides' ability to bind anti-toxin Abs of human, mouse, horse and chicken. We also localized the epitopes recognized by Abs of cervical dystonia patients who developed immunoresistance to correlate toxin during treatment with BoNT/A or BoNT/B. For BoNT/A, patients' blocking Abs bound to 13 regions (5 on L and 8 on H subunit) on the surface and the response to each region was under separate MHC control. The responses were defined by the structure of the antigen and by the MHC of the host. The antigenic regions coincided or overlapped with synaptosomes (SNPS) binding regions. Antibody binding blocked the toxin's ability to bind to neuronal cells. In fact selected synthetic peptides were able to inhibit the toxin's action in vivo. A combination of three synthetic strong antigenic peptides detected blocking Abs in 88% of immunoresistant patients' sera. Administration of selected epitopes, pre-linked at their N(α) group to monomethoxyployethylene glycol, into mice with ongoing blocking anti-toxin Abs, reduced blocking Ab levels in the recipients. This may be suitable for clinical applications. Defined epitopes should also be valuable in synthetic vaccines design. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Chorionic villi derived mesenchymal like stem cells and expression of embryonic stem cells markers during long-term culturing.

    Science.gov (United States)

    Katsiani, E; Garas, A; Skentou, C; Tsezou, A; Messini, C I; Dafopoulos, K; Daponte, A; Messinis, I E

    2016-09-01

    Mesenchymal stem cells (MSCs) can be obtained from a variety of human tissues. MSCs derived from placental chorionic villi of the first trimester are likely to resemble, biologically, embryonic stem cells (ESC), due to the earlier development stage of placenta. In the present study long-term cultures of MSC-like cells were assessed in order to evaluate MSCs multipotent characteristics and molecular features during the period of culture. CV-cells obtained from 10 samples of chorionic villus displayed typical fibroblastoid morphology, undergone 20 passages during a period of 120 days, maintaining a stable karyotype throughout long term expansion. The cells were positive, for CD90, CD73, CD105, CD29, CD44, HLA ABC antigens and negative for CD14, CD34, AC133, and HLA DR antigens as resulted from the flow cytometry analysis. CV-cells were differentiated in adipocytes, osteoblasts, chondrocytes and neuronal cells under specific culture conditions. The expression of the ESC-gene markers POU5F1 (Oct-4) and NANOG was observed at earliest stages (4-12 passages) and not at the late stages (14-20 passages) by RT-PCR analysis. ZFP42 and SOX2 expression were not detected. Moreover, CV-cells were found to express GATA4 but not NES (Nestin). Chorionic villi-derived cells possess multipotent properties, display high proliferation rate and self-renew capacity, share common surface antigens with adult MSCs and express certain embryonics stem cells gene markers. These characteristics highlight chorionic villi as an attractive source of MSCs for the needs of regenerative medicine.

  12. Antigenic Fingerprinting following Primary RSV Infection in Young Children Identifies Novel Antigenic Sites and Reveals Unlinked Evolution of Human Antibody Repertoires to Fusion and Attachment Glycoproteins.

    Directory of Open Access Journals (Sweden)

    Sandra Fuentes

    2016-04-01

    Full Text Available Respiratory Syncytial Virus (RSV is the major cause of pneumonia among infants. Here we elucidated the antibody repertoire following primary RSV infection and traced its evolution through adolescence and adulthood. Whole genome-fragment phage display libraries (GFPDL expressing linear and conformational epitopes in the RSV fusion protein (F and attachment protein (G were used for unbiased epitope profiling of infant sera prior to and following RSV infection. F-GFPDL analyses demonstrated modest changes in the anti-F epitope repertoires post-RSV infection, while G-GFPDL analyses revealed 100-fold increase in number of bound phages. The G-reactive epitopes spanned the N- and C-terminus of the G ectodomain, along with increased reactivity to the central conserved domain (CCD. Panels of F and G antigenic sites were synthesized to evaluate sera from young children (<2 yr, adolescents (14-18 yr and adults (30-45 yr in SPR real-time kinetics assays. A steady increase in RSV-F epitope repertoires from young children to adults was observed using peptides and F proteins. Importantly, several novel epitopes were identified in pre-fusion F and an immunodominant epitope in the F-p27. In all age groups, antibody binding to pre-fusion F was 2-3 folds higher than to post-fusion form. For RSV-G, antibody responses were high following early RSV infection in children, but declined significantly in adults, using either G proteins or peptides. This study identified unlinked evolution of anti-F and anti G responses and supportive evidence for immune pressure driven evolution of RSV-G. These findings could help development of effective countermeasures including vaccines.

  13. Expression and purification of chimeric peptide comprising EGFR B-cell epitope and measles virus fusion protein T-cell epitope in Escherichia coli.

    Science.gov (United States)

    Wu, Meizhi; Zhao, Lin; Zhu, Lei; Chen, Zhange; Li, Huangjin

    2013-03-01

    Chimeric peptide MVF-EGFR(237-267), comprising a B-cell epitope from the dimerization interface of human epidermal growth factor receptor (EGFR) and a promiscuous T-cell epitope from measles virus fusion protein (MVF), is a promising candidate antigen peptide for therapeutic vaccine. To establish a high-efficiency preparation process of this small peptide, the coding sequence was cloned into pET-21b and pET-32a respectively, to be expressed alone or in the form of fusion protein with thioredoxin (Trx) and His(6)-tag in Escherichia coli BL21 (DE3). The chimeric peptide failed to be expressed alone, but over-expressed in the fusion form, which presented as soluble protein and took up more than 30% of total proteins of host cells. The fusion protein was seriously degraded during the cell disruption, in which endogenous metalloproteinase played a key role. Degradation of target peptide was inhibited by combined application of EDTA in the cell disruption buffer and a step of Source 30Q anion exchange chromatography (AEC) before metal-chelating chromatography (MCAC) for purifying His(6)-tagged fusion protein. The chimeric peptide was recovered from the purified fusion protein by enterokinase digestion at a yield of 3.0 mg/L bacteria culture with a purity of more than 95%. Immunogenicity analysis showed that the recombinant chimeric peptide was able to arouse more than 1×10(4) titers of specific antibody in BALB/c mice. Present work laid a solid foundation for the development of therapeutic peptide vaccine targeting EGFR dimerization and provided a convenient and low-cost preparation method for small peptides. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. Biological and immunological characterization of recombinant Yellow Fever 17D Viruses expressing a Trypanosoma cruzi Amastigote Surface Protein-2 CD8+ T cell epitope at two distinct regions of the genome

    Directory of Open Access Journals (Sweden)

    Bonaldo Myrna C

    2011-03-01

    Full Text Available Abstract Background The attenuated Yellow fever (YF 17D vaccine virus is one of the safest and most effective viral vaccines administered to humans, in which it elicits a polyvalent immune response. Herein, we used the YF 17D backbone to express a Trypanosoma cruzi CD8+ T cell epitope from the Amastigote Surface Protein 2 (ASP-2 to provide further evidence for the potential of this virus to express foreign epitopes. The TEWETGQI CD8+ T cell epitope was cloned and expressed based on two different genomic insertion sites: in the fg loop of the viral Envelope protein and the protease cleavage site between the NS2B and NS3. We investigated whether the site of expression had any influence on immunogenicity of this model epitope. Results Recombinant viruses replicated similarly to vaccine virus YF 17D in cell culture and remained genetically stable after several serial passages in Vero cells. Immunogenicity studies revealed that both recombinant viruses elicited neutralizing antibodies to the YF virus as well as generated an antigen-specific gamma interferon mediated T-cell response in immunized mice. The recombinant viruses displayed a more attenuated phenotype than the YF 17DD vaccine counterpart in mice. Vaccination of a mouse lineage highly susceptible to infection by T. cruzi with a homologous prime-boost regimen of recombinant YF viruses elicited TEWETGQI specific CD8+ T cells which might be correlated with a delay in mouse mortality after a challenge with a lethal dose of T. cruzi. Conclusions We conclude that the YF 17D platform is useful to express T. cruzi (Protozoan antigens at different functional regions of its genome with minimal reduction of vector fitness. In addition, the model T. cruzi epitope expressed at different regions of the YF 17D genome elicited a similar T cell-based immune response, suggesting that both expression sites are useful. However, the epitope as such is not protective and it remains to be seen whether expression

  15. The transition of mouse pluripotent stem cells from the naïve to the primed state requires Fas signaling through 3-O sulfated heparan sulfate structures recognized by the HS4C3 antibody

    International Nuclear Information System (INIS)

    Hirano, Kazumi; Van Kuppevelt, Toin H.; Nishihara, Shoko

    2013-01-01

    Highlights: ► Fas transcript increases during the transition from the naïve to the primed state. ► 3OST-5 transcript, the HS4C3 epitope synthesis gene, increases during the transition. ► Fas signaling regulates the transition from the naïve to the primed state. ► HS4C3-binding epitope regulates the transition from the naïve to the primed state. ► Fas signaling is regulated by the HS4C3 epitope during the transition. -- Abstract: The characteristics of pluripotent embryonic stem cells of human and mouse are different. The properties of human embryonic stem cells (hESCs) are similar to those of mouse epiblast stem cells (mEpiSCs), which are in a later developmental pluripotency state, the so-called “primed state” compared to mouse embryonic stem cells (mESCs) which are in a naïve state. As a result of the properties of the primed state, hESCs proliferate slowly, cannot survive as single cells, and can only be transfected with genes at low efficiency. Generating hESCs in the naïve state is necessary to overcome these problems and allow their application in regenerative medicine. Therefore, clarifying the mechanism of the transition between the naïve and primed states in pluripotent stem cells is important for the establishment of stable methods of generating naïve state hESCs. However, the signaling pathways which contribute to the transition between the naïve and primed states are still unclear. In this study, we carried out induction from mESCs to mEpiSC-like cells (mEpiSCLCs), and observed an increase in the activation of Fas signaling during the induction. The expression of Fgf5, an epiblast marker, was diminished by inhibition of Fas signaling using the caspase-8 and -3 blocking peptides, IETD and DEVD, respectively. Furthermore, during the induction, we observed increased expression of 3-O sulfated heparan sulfate (HS) structures synthesized by HS 3-O-sulfotransferase (3OST), which are recognized by the HS4C3 antibody (HS4C3-binding epitope

  16. The transition of mouse pluripotent stem cells from the naïve to the primed state requires Fas signaling through 3-O sulfated heparan sulfate structures recognized by the HS4C3 antibody

    Energy Technology Data Exchange (ETDEWEB)

    Hirano, Kazumi [Laboratory of Cell Biology, Department of Bioinformatics, Faculty of Engineering, Soka University, 1-236 Tangi-cho, Hachioji, Tokyo 192-8577 (Japan); Van Kuppevelt, Toin H. [Department of Biochemistry, Nijmegen Center for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, 280 P.O. Box 9101, 6500 HB Nijmegen (Netherlands); Nishihara, Shoko, E-mail: shoko@soka.ac.jp [Laboratory of Cell Biology, Department of Bioinformatics, Faculty of Engineering, Soka University, 1-236 Tangi-cho, Hachioji, Tokyo 192-8577 (Japan)

    2013-01-18

    Highlights: ► Fas transcript increases during the transition from the naïve to the primed state. ► 3OST-5 transcript, the HS4C3 epitope synthesis gene, increases during the transition. ► Fas signaling regulates the transition from the naïve to the primed state. ► HS4C3-binding epitope regulates the transition from the naïve to the primed state. ► Fas signaling is regulated by the HS4C3 epitope during the transition. -- Abstract: The characteristics of pluripotent embryonic stem cells of human and mouse are different. The properties of human embryonic stem cells (hESCs) are similar to those of mouse epiblast stem cells (mEpiSCs), which are in a later developmental pluripotency state, the so-called “primed state” compared to mouse embryonic stem cells (mESCs) which are in a naïve state. As a result of the properties of the primed state, hESCs proliferate slowly, cannot survive as single cells, and can only be transfected with genes at low efficiency. Generating hESCs in the naïve state is necessary to overcome these problems and allow their application in regenerative medicine. Therefore, clarifying the mechanism of the transition between the naïve and primed states in pluripotent stem cells is important for the establishment of stable methods of generating naïve state hESCs. However, the signaling pathways which contribute to the transition between the naïve and primed states are still unclear. In this study, we carried out induction from mESCs to mEpiSC-like cells (mEpiSCLCs), and observed an increase in the activation of Fas signaling during the induction. The expression of Fgf5, an epiblast marker, was diminished by inhibition of Fas signaling using the caspase-8 and -3 blocking peptides, IETD and DEVD, respectively. Furthermore, during the induction, we observed increased expression of 3-O sulfated heparan sulfate (HS) structures synthesized by HS 3-O-sulfotransferase (3OST), which are recognized by the HS4C3 antibody (HS4C3-binding epitope

  17. Characterization of Three Novel Linear Neutralizing B-Cell Epitopes in the Capsid Protein of Swine Hepatitis E Virus.

    Science.gov (United States)

    Chen, Yiyang; Liu, Baoyuan; Sun, Yani; Li, Huixia; Du, Taofeng; Nan, Yuchen; Hiscox, Julian A; Zhou, En-Min; Zhao, Qin

    2018-04-18

    Hepatitis E virus (HEV) causes liver disease in humans and is thought to be a zoonotic infection with domestic animals being a reservoir including swine and rabbits. One of the proteins encoded by the virus is the capsid protein. This is likely the major immune-dominant protein and a target for vaccination. Four monoclonal antibodies (MAbs); three novel; 1E4, 2C7, 2G9, and one previously characterized (1B5), were evaluated for binding to the capsid protein from genotype 4 (swine) hepatitis E virus (HEV). The results indicated that 625 DFCP 628 , 458 PSRPF 462 , and 407 EPTV 410 peptides on the capsid protein comprised minimal amino acid sequence motifs recognized by 1E4, 2C7, and 2G9, respectively. The data suggested that 2C7 and 2G9 epitopes were partially exposed on the surface of the capsid protein. Truncated genotype 4 swine HEV capsid protein (sp239, amino acids 368-606), can exist in multimeric forms. Pre-incubation of swine HEV with 2C7, 2G9, or 1B5 before addition to HepG2 cells partially blocked sp239 cell binding and inhibited swine HEV infection. The study indicated that 2C7, 2G9, and 1B5 partially blocked swine HEV infection of rabbits better than 1E4 or normal mouse IgG. The cross reactivity of antibodies suggested that capsid epitopes recognized by 2C7 and 2G9 are common to HEV strains infecting most host species. Collectively, MAbs 2C7, 2G9, and 1B5 were shown to recognize three novel linear neutralizing B-cell epitopes of genotype 4 HEV capsid protein. These results enhance understanding of HEV capsid protein structure to guide vaccine and anti-viral design. IMPORTANCE Genotype 3 and 4 HEVs are zoonotic viruses. Here, genotype 4 HEV was studied due to its prevalence in human populations and pig herds in China. To improve HEV disease diagnosis and prevention, a better understanding of antigenic structure and neutralizing epitopes of HEV capsid protein are needed. In this study, the locations of three novel linear B-cell recognition epitopes within

  18. Epitope structure and binding affinity of single chain llama anti-β-amyloid antibodies revealed by proteolytic excision affinity-mass spectrometry.

    Science.gov (United States)

    Paraschiv, Gabriela; Vincke, Cécile; Czaplewska, Paulina; Manea, Marilena; Muyldermans, Serge; Przybylski, Michael

    2013-01-01

    ß-Amyloid (Aß) immunotherapy has become a promising strategy for reducing the level of Aß in brain. New immunological approaches have been recently proposed for rapid, early diagnosis, and molecular treatment of neurodegenerative diseases related to Alzheimer's Disease (AD). The combination of proteolytic epitope excision and extraction and mass spectrometry using digestion with various proteases has been shown to be an efficient tool for the identification and molecular characterization of antigenic determinants. Here, we report the identification of the Aβ epitope recognized by the variable domain of single chain llama anti-Aβ-antibodies, termed Aβ-nanobodies, that have been discovered in the blood of camelids and found to be promising candidates for immunotherapy of AD. The epitope recognized by two Aβ-specific nanobodies was identified by proteolytic epitope extraction- and excision-mass spectrometry using a series of proteases (trypsin, chymotrypsin, GluC-protease, and LysC-protease). Matrix-assisted laser desorption ionization--mass spectrometric analysis of the affinity--elution fraction provided the epitope, Aβ(17-28), in the mid- to carboxy-terminal domain of Aβ, which has been shown to exert an Aß-fibril inhibiting effect. Affinity studies of the synthetic epitope confirmed that the Aβ(17-28) peptide is the minimal fragment that binds to the nanobodies. The interactions between the nanobodies and full length Aβ(1-40) or Aβ-peptides containing or lacking the epitope sequence were further characterized by enzyme linked immunosorbent assay and bioaffinity analysis. Determinations of binding affinities between the Aβ-nanobodies and Aβ(1-40) and the Aβ(17-28) epitope provided K(D) values of approximately 150 and 700 nmol, respectively. Thus, the knowledge of the epitope may be highly useful for future studies of Aβ-aggregation (oligomerization and fibril formation) and for designing new aggregation inhibitors. Copyright © 2012 John Wiley

  19. A Highly Conserved GEQYQQLR Epitope Has Been Identified in the Nucleoprotein of Ebola Virus by Using an In Silico Approach

    Directory of Open Access Journals (Sweden)

    Mohammad Tuhin Ali

    2015-01-01

    Full Text Available Ebola virus (EBOV is a deadly virus that has caused several fatal outbreaks. Recently it caused another outbreak and resulted in thousands afflicted cases. Effective and approved vaccine or therapeutic treatment against this virus is still absent. In this study, we aimed to predict B-cell epitopes from several EBOV encoded proteins which may aid in developing new antibody-based therapeutics or viral antigen detection method against this virus. Multiple sequence alignment (MSA was performed for the identification of conserved region among glycoprotein (GP, nucleoprotein (NP, and viral structural proteins (VP40, VP35, and VP24 of EBOV. Next, different consensus immunogenic and conserved sites were predicted from the conserved region(s using various computational tools which are available in Immune Epitope Database (IEDB. Among GP, NP, VP40, VP35, and VP30 protein, only NP gave a 100% conserved GEQYQQLR B-cell epitope that fulfills the ideal features of an effective B-cell epitope and could lead a way in the milieu of Ebola treatment. However, successful in vivo and in vitro studies are prerequisite to determine the actual potency of our predicted epitope and establishing it as a preventing medication against all the fatal strains of EBOV.

  20. Polymorphism of 41 kD Flagellin Gene and Its Human B-Cell Epitope in Borrelia burgdorferi Strains of China

    Directory of Open Access Journals (Sweden)

    Huixin Liu

    2016-01-01

    Full Text Available The 41 kD flagellin of Borrelia burgdorferi (B. burgdorferi is a major component of periplasmic flagellar filament core and a good candidate for serodiagnosis in early stage of Lyme disease. Here, we chose 89 B. burgdorferi strains in China, amplified the gene encoding the 41 kD flagellin, and compared the sequences. The results showed that genetic diversity presented in the 41 kD flagellin genes of all 89 strains among the four genotypes of B. burgdorferi, especially in the genotype of B. garinii. Some specific mutation sites for each genotype of the 41 kD flagellin genes were found, which could be used for genotyping B. burgdorferi strains in China. Human B-cell epitope analysis showed that thirteen of 15 nonsynonymous mutations occurred in the epitope region of 41 kD flagellin and thirty of 42 B-cell epitopes were altered due to all 13 nonsynonymous mutations in the epitope region, which may affect the function of the antigen. Nonsynonymous mutations and changed human B-cell epitopes exist in 41 kD flagellin of B. burgdorferi sensu lato strains; these changes should be considered in serodiagnosis of Lyme disease.

  1. Analysis of the T Cell Response to Zika Virus and Identification of a Novel CD8+ T Cell Epitope in Immunocompetent Mice.

    Directory of Open Access Journals (Sweden)

    Ryan D Pardy

    2017-02-01

    Full Text Available Zika virus (ZIKV is an emerging arbovirus of the Flaviviridae family. Although ZIKV infection is typically mild and self-limiting in healthy adults, infection has been associated with neurological symptoms such as Guillain-Barré syndrome, and a causal link has been established between fetal microcephaly and ZIKV infection during pregnancy. These risks, and the magnitude of the ongoing ZIKV pandemic, have created an urgent need for the development of animal models to study the immune response to ZIKV infection. Previous animal models have primarily focused on pathogenesis in immunocompromised mice. In this study, we provide a model of ZIKV infection in wild-type immunocompetent C57BL/6 mice, and have provided an analysis of the immune response to infection. We evaluated the activation of several innate immune cell types, and studied the kinetics, phenotype, and functionality of T cell responses to ZIKV infection. Our results demonstrate that ZIKV infection is mild in wild-type immunocompetent C57BL/6 mice, resulting in minimal morbidity. Our data establish that at the peak of the adaptive response, antigen-experienced CD4+ T cells polarize to a Th1 phenotype, and antigen-experienced CD8+ T cells exhibit an activated effector phenotype, producing both effector cytokines and cytolytic molecules. Furthermore, we have identified a novel ZIKV CD8+ T cell epitope in the envelope protein that is recognized by the majority of responding cells. Our model provides an important reference point that will help dissect the impact of polymorphisms in the circulating ZIKV strains on the immune response and ZIKV pathogenesis. In addition, the identification of a ZIKV epitope will allow for the design of tetramers to study epitope-specific T cell responses, and will have important implications for the design and development of ZIKV vaccine strategies.

  2. Characterization of Periplasmic Protein BP26 Epitopes of Brucella melitensis Reacting with Murine Monoclonal and Sheep Antibodies

    Science.gov (United States)

    Wu, Jingbo; Zhang, Hui; Wang, Yuanzhi; Qiao, Jun; Chen, Chuangfu; Gao, Goege F.; Allain, Jean-Pierre; Li, Chengyao

    2012-01-01

    More than 35,000 new cases of human brucellosis were reported in 2010 by the Chinese Center for Disease Control and Prevention. An attenuated B. melitensis vaccine M5-90 is currently used for vaccination of sheep and goats in China. In the study, a periplasmic protein BP26 from M5-90 was characterized for its epitope reactivity with mouse monoclonal and sheep antibodies. A total of 29 monoclonal antibodies (mAbs) against recombinant BP26 (rBP26) were produced, which were tested for reactivity with a panel of BP26 peptides, three truncated rBP26 and native BP26 containing membrane protein extracts (NMP) of B. melitensis M5-90 in ELISA and Western-Blot. The linear, semi-conformational and conformational epitopes from native BP26 were identified. Two linear epitopes recognized by mAbs were revealed by 28 of 16mer overlapping peptides, which were accurately mapped as the core motif of amino acid residues 93DRDLQTGGI101 (position 93 to 101) or residues 104QPIYVYPD111, respectively. The reactivity of linear epitope peptides, rBP26 and NMP was tested with 137 sheep sera by ELISAs, of which the two linear epitopes had 65–70% reactivity and NMP 90% consistent with the results of a combination of two standard serological tests. The results were helpful for evaluating the reactivity of BP26 antigen in M5-90. PMID:22457830

  3. CD4+ T cell epitopes of FliC conserved between strains of Burkholderia: implications for vaccines against melioidosis and cepacia complex in cystic fibrosis.

    Science.gov (United States)

    Musson, Julie A; Reynolds, Catherine J; Rinchai, Darawan; Nithichanon, Arnone; Khaenam, Prasong; Favry, Emmanuel; Spink, Natasha; Chu, Karen K Y; De Soyza, Anthony; Bancroft, Gregory J; Lertmemongkolchai, Ganjana; Maillere, Bernard; Boyton, Rosemary J; Altmann, Daniel M; Robinson, John H

    2014-12-15

    Burkholderia pseudomallei is the causative agent of melioidosis characterized by pneumonia and fatal septicemia and prevalent in Southeast Asia. Related Burkholderia species are strong risk factors of mortality in cystic fibrosis (CF). The B. pseudomallei flagellar protein FliC is strongly seroreactive and vaccination protects challenged mice. We assessed B. pseudomallei FliC peptide binding affinity to multiple HLA class II alleles and then assessed CD4 T cell immunity in HLA class II transgenic mice and in seropositive individuals in Thailand. T cell hybridomas were generated to investigate cross-reactivity between B. pseudomallei and the related Burkholderia species associated with Cepacia Complex CF. B. pseudomallei FliC contained several peptide sequences with ability to bind multiple HLA class II alleles. Several peptides were shown to encompass strong CD4 T cell epitopes in B. pseudomallei-exposed individuals and in HLA transgenic mice. In particular, the p38 epitope is robustly recognized by CD4 T cells of seropositive donors across diverse HLA haplotypes. T cell hybridomas against an immunogenic B. pseudomallei FliC epitope also cross-reacted with orthologous FliC sequences from Burkholderia multivorans and Burkholderia cenocepacia, important pathogens in CF. Epitopes within FliC were accessible for processing and presentation from live or heat-killed bacteria, demonstrating that flagellin enters the HLA class II Ag presentation pathway during infection of macrophages with B. cenocepacia. Collectively, the data support the possibility of incorporating FliC T cell epitopes into vaccination programs targeting both at-risk individuals in B. pseudomallei endemic regions as well as CF patients. Copyright © 2014 by The American Association of Immunologists, Inc.

  4. Exposure to occupational antigens might predispose to IgG4-related disease

    NARCIS (Netherlands)

    de Buy Wenniger, Lucas J. Maillette; Culver, Emma L.; Beuers, Ulrich

    2014-01-01

    Evidence is mounting that the immune system of patients with IgG4-related disease (IgG4-RD) shows indications of chronic antigenic stimulation. Hypothesizing a possible role for occupational antigenic exposure, we observed in two independent cohorts of patients with IgG4-RD that the majority had had

  5. Design and characterization of epitope-scaffold immunogens that present the motavizumab epitope from respiratory syncytial virus.

    Science.gov (United States)

    McLellan, Jason S; Correia, Bruno E; Chen, Man; Yang, Yongping; Graham, Barney S; Schief, William R; Kwong, Peter D

    2011-06-24

    Respiratory syncytial virus (RSV) is a major cause of respiratory tract infections in infants, but an effective vaccine has not yet been developed. An ideal vaccine would elicit protective antibodies while avoiding virus-specific T-cell responses, which have been implicated in vaccine-enhanced disease with previous RSV vaccines. We propose that heterologous proteins designed to present RSV-neutralizing antibody epitopes and to elicit cognate antibodies have the potential to fulfill these vaccine requirements, as they can be fashioned to be free of viral T-cell epitopes. Here we present the design and characterization of three epitope-scaffolds that present the epitope of motavizumab, a potent neutralizing antibody that binds to a helix-loop-helix motif in the RSV fusion glycoprotein. Two of the epitope-scaffolds could be purified, and one epitope-scaffold based on a Staphylococcus aureus protein A domain bound motavizumab with kinetic and thermodynamic properties consistent with the free epitope-scaffold being stabilized in a conformation that closely resembled the motavizumab-bound state. This epitope-scaffold was well folded as assessed by circular dichroism and isothermal titration calorimetry, and its crystal structure (determined in complex with motavizumab to 1.9 Å resolution) was similar to the computationally designed model, with all hydrogen-bond interactions critical for binding to motavizumab preserved. Immunization of mice with this epitope-scaffold failed to elicit neutralizing antibodies but did elicit sera with F binding activity. The elicitation of F binding antibodies suggests that some of the design criteria for eliciting protective antibodies without virus-specific T-cell responses are being met, but additional optimization of these novel immunogens is required. Published by Elsevier Ltd.

  6. Original antigenic sin responses to influenza viruses.

    Science.gov (United States)

    Kim, Jin Hyang; Skountzou, Ioanna; Compans, Richard; Jacob, Joshy

    2009-09-01

    Most immune responses follow Burnet's rule in that Ag recruits specific lymphocytes from a large repertoire and induces them to proliferate and differentiate into effector cells. However, the phenomenon of "original antigenic sin" stands out as a paradox to Burnet's rule of B cell engagement. Humans, upon infection with a novel influenza strain, produce Abs against older viral strains at the expense of responses to novel, protective antigenic determinants. This exacerbates the severity of the current infection. This blind spot of the immune system and the redirection of responses to the "original Ag" rather than to novel epitopes were described fifty years ago. Recent reports have questioned the existence of this phenomenon. Hence, we revisited this issue to determine the extent to which original antigenic sin is induced by variant influenza viruses. Using two related strains of influenza A virus, we show that original antigenic sin leads to a significant decrease in development of protective immunity and recall responses to the second virus. In addition, we show that sequential infection of mice with two live influenza virus strains leads to almost exclusive Ab responses to the first viral strain, suggesting that original antigenic sin could be a potential strategy by which variant influenza viruses subvert the immune system.

  7. Recombinant immunotoxin for cancer treatment with low immunogenicity by identification and silencing of human T-cell epitopes

    Science.gov (United States)

    Mazor, Ronit; Eberle, Jaime A.; Hu, Xiaobo; Vassall, Aaron N.; Onda, Masanori; Beers, Richard; Lee, Elizabeth C.; Kreitman, Robert J.; Lee, Byungkook; Baker, David; King, Chris; Hassan, Raffit; Benhar, Itai; Pastan, Ira

    2014-01-01

    Nonhuman proteins have valuable therapeutic properties, but their efficacy is limited by neutralizing antibodies. Recombinant immunotoxins (RITs) are potent anticancer agents that have produced many complete remissions in leukemia, but immunogenicity limits the number of doses that can be given to patients with normal immune systems. Using human cells, we identified eight helper T-cell epitopes in PE38, a portion of the bacterial protein Pseudomonas exotoxin A which consists of the toxin moiety of the RIT, and used this information to make LMB-T18 in which three epitopes were deleted and five others diminished by point mutations in key residues. LMB-T18 has high cytotoxic and antitumor activity and is very resistant to thermal denaturation. The new immunotoxin has a 93% decrease in T-cell epitopes and should have improved efficacy in patients because more treatment cycles can be given. Furthermore, the deimmunized toxin can be used to make RITs targeting other antigens, and the approach we describe can be used to deimmunize other therapeutically useful nonhuman proteins. PMID:24799704

  8. Expression, purification and epitope analysis of Pla a 2 allergen from Platanus acerifolia pollen.

    Science.gov (United States)

    Wang, De-Wang; Ni, Wei-Wei; Zhou, Yan-Jun; Huang, Wen; Cao, Meng-Da; Meng, Ling; Wei, Ji-Fu

    2018-01-01

    Platanus acerifolia is one of the major sources of outdoor allergens to humans, and can induce allergic asthma, rhinitis, dermatitis and other allergic diseases. Pla a 2 is a polygalacturonase and represents the major allergen identified in P. acerifolia pollen. The aim of the present study was to express and purify Pla a 2, and to predict B and T cell epitopes of Pla a 2. The gene encoding Pla a 2 was cloned into the pET28a vector and subsequently transfected into ArcticExpress™ (DE3) Escherichia coli cells; purified Pla a 2 was analyzed by western blot analysis. The results of the present study revealed that the Pla a 2 allergen has the ability to bind immunoglobulin E within the sera of patients allergic to P. acerifolia pollen. In addition, the B cell epitopes of Pla a 2 were predicted using the DNAStar Protean system, Bioinformatics Predicted Antigenic Peptides and BepiPred 1.0 software; T cell epitopes were predicted using NetMHCIIpan ‑3.0 and ‑2.2. In total, eight B cell epitopes (15‑24, 60‑66, 78‑86, 109‑124, 232‑240, 260‑269, 298‑306 and 315‑322) and five T cell epitopes (62‑67, 86‑91, 125‑132, 217‑222 and 343‑350) were predicted in the present study. These findings may be used to improve allergen immunotherapies and reduce the frequency of pollen‑associated allergic reactions.

  9. Eighteen-Year Cryopreservation Does Not Negatively Affect the Pluripotency of Human Embryos: Evidence from Embryonic Stem Cell Derivation

    Science.gov (United States)

    Rungsiwiwut, Ruttachuk; Numchaisrika, Pranee; Ahnonkitpanit, Vichuda; Isarasena, Nipan; Virutamasen, Pramuan

    2012-01-01

    Abstract Human embryonic stem (hES) cells are considered to be a potential source for the therapy of human diseases, drug screening, and the study of developmental biology. In the present study, we successfully derived hES cell lines from blastocysts developed from frozen and fresh embryos. Seventeen- to eighteen-year-old frozen embryos were thawed, cultured to the blastocyst stage, and induced to form hES cells using human foreskin fibroblasts. The Chula2.hES cell line and the Chula4.hES and Chula5.hES cell lines were derived from blastocysts developed from frozen and fresh embryos, respectively. The cell lines expressed pluripotent markers, including alkaline phosphatase (AP), Oct3/4, stage-specific embryonic antigen (SSEA)-4, and tumor recognition antigen (TRA)-1-60 and TRA-1-81 as detected with immunocytochemistry. The real-time polymerase chain reaction (RT-PCR) results showed that the cell lines expressed pluripotent genes, including OCT3/4, SOX2, NANOG, UTF, LIN28, REX1, NODAL, and E-Cadherin. In addition, the telomerase activities of the cell lines were higher than in the fibroblast cells. Moreover, the cell lines differentiated into all three germ layers both in vitro and in vivo. The cell lines had distinct identities, as revealed with DNA fingerprinting, and maintained their normal karyotype after a long-term culture. This study is the first to report the successful derivation of hES cell lines in Thailand and that frozen embryos maintained their pluripotency similar to fresh embryos, as shown by the success of hES cell derivation, even after years of cryopreservation. Therefore, embryos from prolonged cryopreservation could be an alternative source for embryonic stem cell research. PMID:23514952

  10. Targeting CD4(+) T-Helper Cells Improves the Induction of Antitumor Responses in Dendritic Cell-Based Vaccination

    NARCIS (Netherlands)

    Aarntzen, Erik H. J. G.; de Vries, I. Jolanda M.; Lesterhuis, W. Joost; Schuurhuis, Danita; Jacobs, Joannes F. M.; Bol, Kalijn; Schreibelt, Gerty; Mus, Roel; de Wilt, Johannes H. W.; Haanen, John B. A. G.; Schadendorf, Dirk; Croockewit, Alexandra; Blokx, Willeke A. M.; van Rossum, Michelle M.; Kwok, William W.; Adema, Gosse J.; Punt, Cornelis J. A.; Figdor, Carl G.

    2013-01-01

    To evaluate the relevance of directing antigen-specific CD4(+) T helper cells as part of effective anticancer immunotherapy, we investigated the immunologic and clinical responses to vaccination with dendritic cells (DC) pulsed with either MHC class I (MHC-I)-restricted epitopes alone or both MHC

  11. Screening of transgenic proteins expressed in transgenic food crops for the presence of short amino acid sequences identical to potential, IgE – binding linear epitopes of allergens

    Directory of Open Access Journals (Sweden)

    Peijnenburg Ad ACM

    2002-12-01

    Full Text Available Abstract Background Transgenic proteins expressed by genetically modified food crops are evaluated for their potential allergenic properties prior to marketing, among others by identification of short identical amino acid sequences that occur both in the transgenic protein and allergenic proteins. A strategy is proposed, in which the positive outcomes of the sequence comparison with a minimal length of six amino acids are further screened for the presence of potential linear IgE-epitopes. This double track approach involves the use of literature data on IgE-epitopes and an antigenicity prediction algorithm. Results Thirty-three transgenic proteins have been screened for identities of at least six contiguous amino acids shared with allergenic proteins. Twenty-two transgenic proteins showed positive results of six- or seven-contiguous amino acids length. Only a limited number of identical stretches shared by transgenic proteins (papaya ringspot virus coat protein, acetolactate synthase GH50, and glyphosate oxidoreductase and allergenic proteins could be identified as (part of potential linear epitopes. Conclusion Many transgenic proteins have identical stretches of six or seven amino acids in common with allergenic proteins. Most identical stretches are likely to be false positives. As shown in this study, identical stretches can be further screened for relevance by comparison with linear IgE-binding epitopes described in literature. In the absence of literature data on epitopes, antigenicity prediction by computer aids to select potential antibody binding sites that will need verification of IgE binding by sera binding tests. Finally, the positive outcomes of this approach warrant further clinical testing for potential allergenicity.

  12. T-Cell Therapy Using Interleukin-21-Primed Cytotoxic T-Cell Lymphocytes Combined With Cytotoxic T-Cell Lymphocyte Antigen-4 Blockade Results in Long-Term Cell Persistence and Durable Tumor Regression.

    Science.gov (United States)

    Chapuis, Aude G; Roberts, Ilana M; Thompson, John A; Margolin, Kim A; Bhatia, Shailender; Lee, Sylvia M; Sloan, Heather L; Lai, Ivy P; Farrar, Erik A; Wagener, Felecia; Shibuya, Kendall C; Cao, Jianhong; Wolchok, Jedd D; Greenberg, Philip D; Yee, Cassian

    2016-11-01

    Purpose Peripheral blood-derived antigen-specific cytotoxic T cells (CTLs) provide a readily available source of effector cells that can be administered with minimal toxicity in an outpatient setting. In metastatic melanoma, this approach results in measurable albeit modest clinical responses in patients resistant to conventional therapy. We reasoned that concurrent cytotoxic T-cell lymphocyte antigen-4 (CTLA-4) checkpoint blockade might enhance the antitumor activity of adoptively transferred CTLs. Patients and Methods Autologous MART1-specific CTLs were generated by priming with peptide-pulsed dendritic cells in the presence of interleukin-21 and enriched by peptide-major histocompatibility complex multimer-guided cell sorting. This expeditiously yielded polyclonal CTL lines uniformly expressing markers associated with an enhanced survival potential. In this first-in-human strategy, 10 patients with stage IV melanoma received the MART1-specific CTLs followed by a standard course of anti-CTLA-4 (ipilimumab). Results The toxicity profile of the combined treatment was comparable to that of ipilimumab monotherapy. Evaluation of best responses at 12 weeks yielded two continuous complete remissions, one partial response (PR) using RECIST criteria (two PRs using immune-related response criteria), and three instances of stable disease. Infused CTLs persisted with frequencies up to 2.9% of CD8 + T cells for as long as the patients were monitored (up to 40 weeks). In patients who experienced complete remissions, PRs, or stable disease, the persisting CTLs acquired phenotypic and functional characteristics of long-lived memory cells. Moreover, these patients also developed responses to nontargeted tumor antigens (epitope spreading). Conclusion We demonstrate that combining antigen-specific CTLs with CTLA-4 blockade is safe and produces durable clinical responses, likely reflecting both enhanced activity of transferred cells and improved recruitment of new responses

  13. Function of the PHA-4/FOXA transcription factor during C. elegans post-embryonic development

    Directory of Open Access Journals (Sweden)

    Chen Di

    2008-02-01

    Full Text Available Abstract Background pha-4 encodes a forkhead box (FOX A transcription factor serving as the C. elegans pharynx organ identity factor during embryogenesis. Using Serial Analysis of Gene Expression (SAGE, comparison of gene expression profiles between growing stages animals and long-lived, developmentally diapaused dauer larvae revealed that pha-4 transcription is increased in the dauer stage. Results Knocking down pha-4 expression by RNAi during post-embryonic development showed that PHA-4 is essential for dauer recovery, gonad and vulva development. daf-16, which encodes a FOXO transcription factor regulated by insulin/IGF-1 signaling, shows overlapping expression patterns and a loss-of-function post-embryonic phenotype similar to that of pha-4 during dauer recovery. pha-4 RNAi and daf-16 mutations have additive effects on dauer recovery, suggesting these two regulators may function in parallel pathways. Gene expression studies using RT-PCR and GFP reporters showed that pha-4 transcription is elevated under starvation, and a conserved forkhead transcription factor binding site in the second intron of pha-4 is important for the neuronal expression. The vulval transcription of lag-2, which encodes a ligand for the LIN-12/Notch lateral signaling pathway, is inhibited by pha-4 RNAi, indicating that LAG-2 functions downstream of PHA-4 in vulva development. Conclusion Analysis of PHA-4 during post-embryonic development revealed previously unsuspected functions for this important transcriptional regulator in dauer recovery, and may help explain the network of transcriptional control integrating organogenesis with the decision between growth and developmental arrest at the dauer entry and exit stages.

  14. A nanobody directed to a functional epitope on VEGF, as a novel strategy for cancer treatment

    International Nuclear Information System (INIS)

    Farajpour, Zahra; Rahbarizadeh, Fatemeh; Kazemi, Bahram; Ahmadvand, Davoud

    2014-01-01

    Highlights: • A novel nanobody directed to antigenic regions on VEGF was identified. • Our nanobody was successfully purified. • Our nanobody significantly inhibited VEGF-induced proliferation of HUVECs in a dose dependent manner. - Abstract: Compelling evidence suggests that vascular endothelial growth factor (VEGF), due to its essential role in angiogenesis, is a critical target for cancer treatment. Neutralizing monoclonal antibodies against VEGF are important class of drugs used in cancer therapy. However, the cost of production, large size, and immunogenicity are main drawbacks of conventional monoclonal therapy. Nanobodies are the smallest antigen-binding antibody fragments, which occur naturally in camelidae. Because of their remarkable features, we decided to use an immune library of nanobody to direct phage display to recognition of novel functional epitopes on VEGF. Four rounds of selection were performed and six phage-displayed nanobodies were obtained from an immune phage library. The most reactive clone in whole-cell ELISA experiments, was purified and assessed in proliferation inhibition assay. Purified ZFR-5 not only blocked interaction of VEGF with its receptor in cell ELISA experiments, but also was able to significantly inhibit proliferation response of human umbilical vein endothelial cells to VEGF in a dose-dependent manner. Taken together, our study demonstrates that by using whole-cell ELISA experiments, nanobodies against antigenic regions included in interaction of VEGF with its receptors can be directed. Because of unique and intrinsic properties of a nanobody and the ability of selected nanobody for blocking the epitope that is important for biological function of VEGF, it represents novel potential drug candidate

  15. A nanobody directed to a functional epitope on VEGF, as a novel strategy for cancer treatment

    Energy Technology Data Exchange (ETDEWEB)

    Farajpour, Zahra [Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran (Iran, Islamic Republic of); Rahbarizadeh, Fatemeh, E-mail: rahbarif@modares.ac.ir [Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran (Iran, Islamic Republic of); Kazemi, Bahram [Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran (Iran, Islamic Republic of); Ahmadvand, Davoud [School of Allied Medical Sciences, Iran University of Medical Sciences, Tehran (Iran, Islamic Republic of)

    2014-03-28

    Highlights: • A novel nanobody directed to antigenic regions on VEGF was identified. • Our nanobody was successfully purified. • Our nanobody significantly inhibited VEGF-induced proliferation of HUVECs in a dose dependent manner. - Abstract: Compelling evidence suggests that vascular endothelial growth factor (VEGF), due to its essential role in angiogenesis, is a critical target for cancer treatment. Neutralizing monoclonal antibodies against VEGF are important class of drugs used in cancer therapy. However, the cost of production, large size, and immunogenicity are main drawbacks of conventional monoclonal therapy. Nanobodies are the smallest antigen-binding antibody fragments, which occur naturally in camelidae. Because of their remarkable features, we decided to use an immune library of nanobody to direct phage display to recognition of novel functional epitopes on VEGF. Four rounds of selection were performed and six phage-displayed nanobodies were obtained from an immune phage library. The most reactive clone in whole-cell ELISA experiments, was purified and assessed in proliferation inhibition assay. Purified ZFR-5 not only blocked interaction of VEGF with its receptor in cell ELISA experiments, but also was able to significantly inhibit proliferation response of human umbilical vein endothelial cells to VEGF in a dose-dependent manner. Taken together, our study demonstrates that by using whole-cell ELISA experiments, nanobodies against antigenic regions included in interaction of VEGF with its receptors can be directed. Because of unique and intrinsic properties of a nanobody and the ability of selected nanobody for blocking the epitope that is important for biological function of VEGF, it represents novel potential drug candidate.

  16. Screening and identification of novel B cell epitopes of Toxoplasma gondii SAG1.

    Science.gov (United States)

    Wang, Yanhua; Wang, Guangxiang; Zhang, Delin; Yin, Hong; Wang, Meng

    2013-04-30

    The identification of protein epitopes is useful for diagnostic purposes and for the development of peptide vaccines. In this study, the epitopes of Toxoplasma gondii SAG1 were identified using synthetic peptide techniques with the aid of bioinformatics. Eleven peptides derived from T. gondii SAG1 were assessed by ELISA using pig sera from different time points after infection. Four (PS4, PS6, PS10 and PS11), out of the eleven peptides tested were recognized by all sera. Then, shorter peptides that were derived from PS4, PS6, PS10 and PS11 were predicted using bioinformatics and tested by experimentation. Four out of nine shorter peptides were identified successfully (amino acids 106-120, 166-180, 289-300 and 313-332). We have precisely located the epitopes of T. gondii SAG1 using pig sera collected at different time points after infection. The identified epitopes may be useful for the further study of epitope-based vaccines and diagnostic reagents.

  17. Mapping of epitopes on Poa p I and Lol p I allergens with monoclonal antibodies.

    Science.gov (United States)

    Lin, Z W; Ekramoddoullah, A K; Jaggi, K S; Dzuba-Fischer, J; Rector, E; Kisil, F T

    1990-01-01

    Allergen Poa p I isolated from the dialysed aqueous extract of Kentucky blue grass pollen by affinity chromatography with an anti-Lol p I murine monoclonal antibody (MAb) 290A-167 was previously shown to consist of a 35.8-kilodalton (kD) component with a pI of 6.4, designated as Poa p Ia, and a 33-kD component with a pI of 9.1, designated as Poa p Ib. The present study reports on the comparative antigenic analyses of these two components, using MAbs produced separately against Poa p I and Lol p I. Thus, anti-Poa p I MAbs 60 and 61 and anti-Lol p I MAb 290A-167 recognized Poa p Ia and Poa p Ib whereas anti-Poa p I MAbs 62, 63 and 64 and anti-Lol p I MAb 348A-6 recognized only Poa p Ia. The specificities of the MAbs were further resolved by comparing their respective abilities to inhibit the binding of 125I-Poa p I or 125I-Lol p I to the different MAbs prepared in the form of solid phase. These studies revealed that at least 4 distinct epitopes (designated as E1, E2, E3 and E4) were shared by both Poa p I and Lol p I. All 4 epitopes were present on Poa p Ia whereas only E1 and E3 were detected on Poa p Ib. E1 was recognized by MAbs 60 and 61, E2 by MAbs 62, 63 and 64, E3 by MAb 290A-167 and E4 by MAb 348A-6.(ABSTRACT TRUNCATED AT 250 WORDS)

  18. Antigenic profile of human recombinant PrP: generation and chracterization of a versatile polyclonal antiserum

    NARCIS (Netherlands)

    Sachsamanoglou, M.; Paspaltzis, I.; Petrakis, S.; Verghese-Nikolakaki, S.; Panagiotidis, C.H.; Voitlander, T.; Budka, H.; Langeveld, J.P.M.; Sklaviadis, T.

    2004-01-01

    We describe the quality of a rabbit polyclonal antiserum (Sal1) that was raised against mature human recombinant prion protein (rhuPrP). Epitope mapping demonstrated that the Sal1 antiserum recognized six to eight linear antigenic sites, depending on the animal species. The versatility of the

  19. Plasmodium vivax antigen discovery based on alpha-helical coiled coil protein motif.

    Directory of Open Access Journals (Sweden)

    Nora Céspedes

    Full Text Available Protein α-helical coiled coil structures that elicit antibody responses, which block critical functions of medically important microorganisms, represent a means for vaccine development. By using bioinformatics algorithms, a total of 50 antigens with α-helical coiled coil motifs orthologous to Plasmodium falciparum were identified in the P. vivax genome. The peptides identified in silico were chemically synthesized; circular dichroism studies indicated partial or high α-helical content. Antigenicity was evaluated using human sera samples from malaria-endemic areas of Colombia and Papua New Guinea. Eight of these fragments were selected and used to assess immunogenicity in BALB/c mice. ELISA assays indicated strong reactivity of serum samples from individuals residing in malaria-endemic regions and sera of immunized mice, with the α-helical coiled coil structures. In addition, ex vivo production of IFN-γ by murine mononuclear cells confirmed the immunogenicity of these structures and the presence of T-cell epitopes in the peptide sequences. Moreover, sera of mice immunized with four of the eight antigens recognized native proteins on blood-stage P. vivax parasites, and antigenic cross-reactivity with three of the peptides was observed when reacted with both the P. falciparum orthologous fragments and whole parasites. Results here point to the α-helical coiled coil peptides as possible P. vivax malaria vaccine candidates as were observed for P. falciparum. Fragments selected here warrant further study in humans and non-human primate models to assess their protective efficacy as single components or assembled as hybrid linear epitopes.

  20. 19-DEJ-1, a hemidesmosome-anchoring filament complex-associated monoclonal antibody. Definition of a new skin basement membrane antigenic defect in junctional and dystrophic epidermolysis bullosa

    DEFF Research Database (Denmark)

    Fine, J D; Horiguchi, Y; Couchman, J R

    1989-01-01

    A murine monoclonal antibody (19-DEJ-1) was recently produced that recognizes a unique antigenic epitope of human skin basement membrane localized to the midlamina lucida exclusively in those areas bordered by overlying hemidesmosomes. To determine whether the antigen defined by 19-DEJ-1 is norma...

  1. Detection of IgG1 and IgG4 subtypes reactive against potato apyrase in schistosomiasis patients

    Directory of Open Access Journals (Sweden)

    Priscila de Faria-Pinto

    2010-07-01

    Full Text Available In this paper, we showed for the first time that the conserved domains within Schistosoma mansoni ATP diphosphohydrolase isoforms, shared with potato apyrase, possess epitopes for the IgG1 and IgG4 subtypes, as 24 (80% of the 30 schistosomiasis patients were seropositive for this vegetable protein. The analyses for each patient cured (n = 14 after treatment (AT with praziquantel revealed variable IgG1 and IgG4 reactivity against potato apyrase. Different antigenic epitopes shared between the vegetable and parasite proteins could be involved in susceptibility or resistance to S. mansoni AT with praziquantel and these possibilities should be explored.

  2. The Immune Epitope Database 2.0

    DEFF Research Database (Denmark)

    Hoof, Ilka; Vita, R; Zarebski, L

    2010-01-01

    The Immune Epitope Database (IEDB, www.iedb.org) provides a catalog of experimentally characterized B and T cell epitopes, as well as data on Major Histocompatibility Complex (MHC) binding and MHC ligand elution experiments. The database represents the molecular structures recognized by adaptive...... immune receptors and the experimental contexts in which these molecules were determined to be immune epitopes. Epitopes recognized in humans, nonhuman primates, rodents, pigs, cats and all other tested species are included. Both positive and negative experimental results are captured. Over the course...

  3. Co-administration of α-GalCer analog and TLR4 agonist induces robust CD8+ T-cell responses to PyCS protein and WT-1 antigen and activates memory-like effector NKT cells

    Science.gov (United States)

    Coelho-dos-Reis, Jordana G.; Huang, Jing; Tsao, Tiffany; Pereira, Felipe V.; Funakoshi, Ryota; Nakajima, Hiroko; Sugiyama, Haruo; Tsuji, Moriya

    2016-01-01

    In the present study, the combined adjuvant effect of 7DW8-5, a potent α-GalCer-analog, and monophosphoryl lipid A (MPLA), a TLR4 agonist, on the induction of vaccine-induced CD8+ T-cell responses and protective immunity was evaluated. Mice were immunized with peptides corresponding to the CD8+ T-cell epitopes of a malaria antigen, a circumsporozoite protein of Plasmodium yoelii, and a tumor antigen, a Wilms Tumor antigen-1 (WT-1), together with 7DW8-5 and MPLA, as an adjuvant. These immunization regimens were able to induce higher levels of CD8+ T-cell responses and, ultimately, enhanced levels of protection against malaria and tumor challenges compared to the levels induced by immunization with peptides mixed with 7DW8-5 or MPLA alone. Co-administration of 7DW8-5 and MPLA induces activation of memory-like effector natural killer T (NKT) cells, i.e. CD44+CD62L−NKT cells. Our study indicates that 7DW8-5 greatly enhances important synergistic pathways associated to memory immune responses when co-administered with MPLA, thus rendering this combination of adjuvants a novel vaccine adjuvant formulation. PMID:27132023

  4. Cellular responses to modified Plasmodium falciparum MSP119 antigens in individuals previously exposed to natural malaria infection

    Directory of Open Access Journals (Sweden)

    Awobode Henrietta O

    2009-11-01

    Full Text Available Abstract Background MSP1 processing-inhibitory antibodies bind to epitopes on the 19 kDa C-terminal region of the Plasmodium falciparum merozoite surface protein 1 (MSP119, inhibiting erythrocyte invasion. Blocking antibodies also bind to this antigen but prevent inhibitory antibodies binding, allowing invasion to proceed. Recombinant MSP119 had been modified previously to allow inhibitory but not blocking antibodies to continue to bind. Immunization with these modified proteins, therefore, has the potential to induce more effective protective antibodies. However, it was unclear whether the modification of MSP119 would affect critical T-cell responses to epitopes in this antigen. Methods The cellular responses to wild-type MSP119 and a panel of modified MSP119 antigens were measured using an in-vitro assay for two groups of individuals: the first were malaria-naïve and the second had been naturally exposed to Plasmodium falciparum infection. The cellular responses to the modified proteins were examined using cells from malaria-exposed infants and adults. Results Interestingly, stimulation indices (SI for responses induced by some of the modified proteins were at least two-fold higher than those elicited by the wild-type MSP119. A protein with four amino acid substitutions (Glu27→Tyr, Leu31→Arg, Tyr34→Ser and Glu43→Leu had the highest stimulation index (SI up to 360 and induced large responses in 64% of the samples that had significant cellular responses to the modified proteins. Conclusion This study suggests that specific MSP119 variants that have been engineered to improve their antigenicity for inhibitory antibodies, retain T-cell epitopes and the ability to induce cellular responses. These proteins are candidates for the development of MSP1-based malaria vaccines.

  5. T-Cell Therapy Using Interleukin-21–Primed Cytotoxic T-Cell Lymphocytes Combined With Cytotoxic T-Cell Lymphocyte Antigen-4 Blockade Results in Long-Term Cell Persistence and Durable Tumor Regression

    Science.gov (United States)

    Chapuis, Aude G.; Roberts, Ilana M.; Thompson, John A.; Margolin, Kim A.; Bhatia, Shailender; Lee, Sylvia M.; Sloan, Heather L.; Lai, Ivy P.; Farrar, Erik A.; Wagener, Felecia; Shibuya, Kendall C.; Cao, Jianhong; Wolchok, Jedd D.; Greenberg, Philip D.

    2016-01-01

    Purpose Peripheral blood–derived antigen-specific cytotoxic T cells (CTLs) provide a readily available source of effector cells that can be administered with minimal toxicity in an outpatient setting. In metastatic melanoma, this approach results in measurable albeit modest clinical responses in patients resistant to conventional therapy. We reasoned that concurrent cytotoxic T-cell lymphocyte antigen-4 (CTLA-4) checkpoint blockade might enhance the antitumor activity of adoptively transferred CTLs. Patients and Methods Autologous MART1-specific CTLs were generated by priming with peptide-pulsed dendritic cells in the presence of interleukin-21 and enriched by peptide-major histocompatibility complex multimer-guided cell sorting. This expeditiously yielded polyclonal CTL lines uniformly expressing markers associated with an enhanced survival potential. In this first-in-human strategy, 10 patients with stage IV melanoma received the MART1-specific CTLs followed by a standard course of anti–CTLA-4 (ipilimumab). Results The toxicity profile of the combined treatment was comparable to that of ipilimumab monotherapy. Evaluation of best responses at 12 weeks yielded two continuous complete remissions, one partial response (PR) using RECIST criteria (two PRs using immune-related response criteria), and three instances of stable disease. Infused CTLs persisted with frequencies up to 2.9% of CD8+ T cells for as long as the patients were monitored (up to 40 weeks). In patients who experienced complete remissions, PRs, or stable disease, the persisting CTLs acquired phenotypic and functional characteristics of long-lived memory cells. Moreover, these patients also developed responses to nontargeted tumor antigens (epitope spreading). Conclusion We demonstrate that combining antigen-specific CTLs with CTLA-4 blockade is safe and produces durable clinical responses, likely reflecting both enhanced activity of transferred cells and improved recruitment of new responses

  6. A DNA vaccine encoding multiple HIV CD4 epitopes elicits vigorous polyfunctional, long-lived CD4+ and CD8+ T cell responses.

    Directory of Open Access Journals (Sweden)

    Daniela Santoro Rosa

    Full Text Available T-cell based vaccines against HIV have the goal of limiting both transmission and disease progression by inducing broad and functionally relevant T cell responses. Moreover, polyfunctional and long-lived specific memory T cells have been associated to vaccine-induced protection. CD4(+ T cells are important for the generation and maintenance of functional CD8(+ cytotoxic T cells. We have recently developed a DNA vaccine encoding 18 conserved multiple HLA-DR-binding HIV-1 CD4 epitopes (HIVBr18, capable of eliciting broad CD4(+ T cell responses in multiple HLA class II transgenic mice. Here, we evaluated the breadth and functional profile of HIVBr18-induced immune responses in BALB/c mice. Immunized mice displayed high-magnitude, broad CD4(+/CD8(+ T cell responses, and 8/18 vaccine-encoded peptides were recognized. In addition, HIVBr18 immunization was able to induce polyfunctional CD4(+ and CD8(+ T cells that proliferate and produce any two cytokines (IFNγ/TNFα, IFNγ/IL-2 or TNFα/IL-2 simultaneously in response to HIV-1 peptides. For CD4(+ T cells exclusively, we also detected cells that proliferate and produce all three tested cytokines simultaneously (IFNγ/TNFα/IL-2. The vaccine also generated long-lived central and effector memory CD4(+ T cells, a desirable feature for T-cell based vaccines. By virtue of inducing broad, polyfunctional and long-lived T cell responses against conserved CD4(+ T cell epitopes, combined administration of this vaccine concept may provide sustained help for CD8(+ T cells and antibody responses- elicited by other HIV immunogens.

  7. Current status of multiple antigen-presenting peptide vaccine systems: Application of organic and inorganic nanoparticles

    Directory of Open Access Journals (Sweden)

    Taguchi Hiroaki

    2011-08-01

    Full Text Available Abstract Many studies are currently investigating the development of safe and effective vaccines to prevent various infectious diseases. Multiple antigen-presenting peptide vaccine systems have been developed to avoid the adverse effects associated with conventional vaccines (i.e., live-attenuated, killed or inactivated pathogens, carrier proteins and cytotoxic adjuvants. Recently, two main approaches have been used to develop multiple antigen-presenting peptide vaccine systems: (1 the addition of functional components, e.g., T-cell epitopes, cell-penetrating peptides, and lipophilic moieties; and (2 synthetic approaches using size-defined nanomaterials, e.g., self-assembling peptides, non-peptidic dendrimers, and gold nanoparticles, as antigen-displaying platforms. This review summarizes the recent experimental studies directed to the development of multiple antigen-presenting peptide vaccine systems.

  8. Levels of HIV1 gp120 3D B-cell epitopes mutability and variability: searching for possible vaccine epitopes.

    Science.gov (United States)

    Khrustalev, Vladislav Victorovich

    2010-01-01

    We used a DiscoTope 1.2 (http://www.cbs.dtu.dk/services/DiscoTope/), Epitopia (http://epitopia.tau.ac.il/) and EPCES (http://www.t38.physik.tu-muenchen.de/programs.htm) algorithms to map discontinuous B-cell epitopes in HIV1 gp120. The most mutable nucleotides in HIV genes are guanine (because of G to A hypermutagenesis) and cytosine (because of C to U and C to A mutations). The higher is the level of guanine and cytosine usage in third (neutral) codon positions and the lower is their level in first and second codon positions of the coding region, the more stable should be an epitope encoded by this region. We compared guanine and cytosine usage in regions coding for five predicted 3D B-cell epitopes of gp120. To make this comparison we used GenBank resource: 385 sequences of env gene obtained from ten HIV1-infected individuals were studied (http://www.barkovsky.hotmail.ru/Data/Seqgp120.htm). The most protected from nonsynonymous nucleotide mutations of guanine and cytosine 3D B-cell epitope is situated in the first conserved region of gp120 (it is mapped from 66th to 86th amino acid residue). We applied a test of variability to confirm this finding. Indeed, the less mutable predicted B-cell epitope is the less variable one. MEGA4 (standard PAM matrix) was used for the alignments and "VVK Consensus" algorithm (http://www.barkovsky.hotmail.ru) was used for the calculations.

  9. Enhanced acquired antibodies to a chimeric Plasmodium falciparum antigen; UB05-09 is associated with protective immunity against malaria.

    Science.gov (United States)

    Dinga, J N; Gamua, S D; Titanji, V P K

    2017-08-01

    It has been shown that covalently linking two antigens could enhance the immunogenicity of the chimeric construct. To prioritize such a chimera for malaria vaccine development, it is necessary to demonstrate that naturally acquired antibodies against the chimera are associated with protection from malaria. Here, we probe the ability of a chimeric construct of UB05 and UB09 antigens (UB05-09) to better differentiate between acquired immune protection and susceptibility to malaria. In a cross-sectional study, recombinant UB05-09 chimera and the constituent antigens were used to probe for specific antibodies in the plasma from children and adults resident in a malaria-endemic zone, using the enzyme-linked immunosorbent assay (ELISA). Anti-UB05-09 antibody levels doubled that of its constituent antigens, UB09 and UB05, and this correlated with protection against malaria. The presence of enhanced UB05-09-specific antibody correlated with the absence of fever and parasitaemia, which are the main symptoms of malaria infection. The chimera is more effective in detecting and distinguishing acquired protective immunity against malaria than any of its constituents taken alone. Online B-cell epitope prediction tools confirmed the presence of B-cell epitopes in the study antigens. UB05-09 chimera is a marker of protective immunity against malaria that needs to be studied further. © 2017 John Wiley & Sons Ltd.

  10. Mass spectrometric characterization of circulating and functional antigens derived from piperacillin in patients with cystic fibrosis1

    Science.gov (United States)

    Whitaker, Paul; Meng, Xiaoli; Lavergne, Sidonie N.; El-Ghaiesh, Sabah; Monshi, Manal; Earnshaw, Caroline; Peckham, Daniel; Gooi, Jimmy; Conway, Steve; Pirmohamed, Munir; Jenkins, Rosalind E.; Naisbitt, Dean J.; Park, B. Kevin

    2011-01-01

    A mechanistic understanding of the relationship between the chemistry of drug antigen formation and immune function is lacking. Thus, mass spectrometric methods were employed to detect and fully characterize circulating antigens derived from piperacillin in patients undergoing therapy and the nature of the drug derived-epitopes on protein which can function as an antigen to stimulate T-cells. Albumin modification with piperacillin in vitro resulted in the formation of two distinct haptens, one formed directly from piperacillin and a second in which the dioxopiperazine ring had undergone hydrolysis. Modification was time- and concentration-dependent, with selective modification of Lys541 observed at low concentrations, whereas at higher concentrations up to 13/59 lysine residues were modified, four of which (Lys190, 195, 432 and 541) were detected in patients’ plasma. Piperacillin-specific T-lymphocyte responses (proliferation, cytokines and granzyme-B release) were detected ex vivo with cells from hypersensitive patients, and analysis of incubation medium showed that modification of the same lysine residues in albumin occurred in situ. The antigenicity of piperacillin-modified albumin was confirmed by stimulation of T-cells with characterized synthetic conjugates. Analysis of minimally-modified T-cell stimulatory albumin conjugates revealed peptide sequences incorporating Lys190, 432 and 541 as principal functional epitopes for T-cells. This study has characterized the multiple haptenic structures on albumin in patients, and showed that they constitute functional antigenic determinants for T-cells. PMID:21606251

  11. Diversity of T cell epitopes in Plasmodium falciparum circumsporozoite protein likely due to protein-protein interactions.

    Directory of Open Access Journals (Sweden)

    Nagesh R Aragam

    Full Text Available Circumsporozoite protein (CS is a leading vaccine antigen for falciparum malaria, but is highly polymorphic in natural parasite populations. The factors driving this diversity are unclear, but non-random assortment of the T cell epitopes TH2 and TH3 has been observed in a Kenyan parasite population. The recent publication of the crystal structure of the variable C terminal region of the protein allows the assessment of the impact of diversity on protein structure and T cell epitope assortment. Using data from the Gambia (55 isolates and Malawi (235 isolates, we evaluated the patterns of diversity within and between epitopes in these two distantly-separated populations. Only non-synonymous mutations were observed with the vast majority in both populations at similar frequencies suggesting strong selection on this region. A non-random pattern of T cell epitope assortment was seen in Malawi and in the Gambia, but structural analysis indicates no intramolecular spatial interactions. Using the information from these parasite populations, structural analysis reveals that polymorphic amino acids within TH2 and TH3 colocalize to one side of the protein, surround, but do not involve, the hydrophobic pocket in CS, and predominately involve charge switches. In addition, free energy analysis suggests residues forming and behind the novel pocket within CS are tightly constrained and well conserved in all alleles. In addition, free energy analysis shows polymorphic residues tend to be populated by energetically unfavorable amino acids. In combination, these findings suggest the diversity of T cell epitopes in CS may be primarily an evolutionary response to intermolecular interactions at the surface of the protein potentially counteracting antibody-mediated immune recognition or evolving host receptor diversity.

  12. A Comprehensive Study of Neutralizing Antigenic Sites on the Hepatitis E Virus (HEV) Capsid by Constructing, Clustering, and Characterizing a Tool Box*

    Science.gov (United States)

    Zhao, Min; Li, Xiao-Jing; Tang, Zi-Min; Yang, Fan; Wang, Si-Ling; Cai, Wei; Zhang, Ke; Xia, Ning-Shao; Zheng, Zi-Zheng

    2015-01-01

    The hepatitis E virus (HEV) ORF2 encodes a single structural capsid protein. The E2s domain (amino acids 459–606) of the capsid protein has been identified as the major immune target. All identified neutralizing epitopes are located on this domain; however, a comprehensive characterization of antigenic sites on the domain is lacking due to its high degree of conformation dependence. Here, we used the statistical software SPSS to analyze cELISA (competitive ELISA) data to classify monoclonal antibodies (mAbs), which recognized conformational epitopes on E2s domain. Using this novel analysis method, we identified various conformational mAbs that recognized the E2s domain. These mAbs were distributed into 6 independent groups, suggesting the presence of at least 6 epitopes. Twelve representative mAbs covering the six groups were selected as a tool box to further map functional antigenic sites on the E2s domain. By combining functional and location information of the 12 representative mAbs, this study provided a complete picture of potential neutralizing epitope regions and immune-dominant determinants on E2s domain. One epitope region is located on top of the E2s domain close to the monomer interface; the other is located on the monomer side of the E2s dimer around the groove zone. Besides, two non-neutralizing epitopes were also identified on E2s domain that did not stimulate neutralizing antibodies. Our results help further the understanding of protective mechanisms induced by the HEV vaccine. Furthermore, the tool box with 12 representative mAbs will be useful for studying the HEV infection process. PMID:26085097

  13. Conserved B-cell epitopes among human bocavirus species indicate potential diagnostic targets.

    Directory of Open Access Journals (Sweden)

    Zhuo Zhou

    Full Text Available BACKGROUND: Human bocavirus species 1-4 (HBoV1-4 have been associated with respiratory and enteric infections in children. However, the immunological mechanisms in response to HBoV infections are not fully understood. Though previous studies have shown cross-reactivities between HBoV species, the epitopes responsible for this phenomenon remain unknown. In this study, we used genomic and immunologic approaches to identify the reactive epitopes conserved across multiple HBoV species and explored their potential as the basis of a novel diagnostic test for HBoVs. METHODOLOGY/PRINCIPAL FINDINGS: We generated HBoV1-3 VP2 gene fragment phage display libraries (GFPDLs and used these libraries to analyze mouse antisera against VP2 protein of HBoV1, 2, and 3, and human sera positive for HBoVs. Using this approach, we mapped four epitope clusters of HBoVs and identified two immunodominant peptides--P1 (¹MSDTDIQDQQPDTVDAPQNT²⁰, and P2 (¹⁶²EHAYPNASHPWDEDVMPDL¹⁸⁰--that are conserved among HBoV1-4. To confirm epitope immunogenicity, we immunized mice with the immunodominant P1 and P2 peptides identified in our screen and found that they elicited high titer antibodies in mice. These two antibodies could only recognize the VP2 of HBoV 1-4 in Western blot assays, rather than those of the two other parvoviruses human parvovirus B19 and human parvovirus 4 (PARV4. Based on our findings, we evaluated epitope-based peptide-IgM ELISAs as potential diagnostic tools for HBoVs IgM antibodies. We found that the P1+P2-IgM ELISA showed a higher sensitivity and specificity in HBoVs IgM detection than the assays using a single peptide. CONCLUSIONS/SIGNIFICANCE: The identification of the conserved B-cell epitopes among human bocavirus species contributes to our understanding of immunological cross-reactivities of HBoVs, and provides important insights for the development of HBoV diagnostic tools.

  14. Identification of specific antigenic epitope at N-terminal segment of enterovirus 71 (EV-71) VP1 protein and characterization of its use in recombinant form for early diagnosis of EV-71 infection.

    Science.gov (United States)

    Zhang, Jianhua; Jiang, Bingfu; Xu, Mingjie; Dai, Xing; Purdy, Michael A; Meng, Jihong

    2014-08-30

    Human enterovirus 71 (EV-71) is the main etiologic agent of hand, foot and mouth disease (HFMD). We sought to identify EV-71 specific antigens and develop serologic assays for acute-phase EV-71 infection. A series of truncated proteins within the N-terminal 100 amino acids (aa) of EV-71 VP1 was expressed in Escherichia coli. Western blot (WB) analysis showed that positions around 11-21 aa contain EV-71-specific antigenic sites, whereas positions 1-5 and 51-100 contain epitopes shared with human coxsackievirus A16 (CV-A16) and human echovirus 6 (E-6). The N-terminal truncated protein of VP1, VP₁₆₋₄₃, exhibited good stability and was recognized by anti-EV-71 specific rabbit sera. Alignment analysis showed that VP₁₆₋₄₃ is highly conserved among EV-71 strains from different genotypes but was heterologous among other enteroviruses. When the GST-VP₁₆₋₄₃ fusion protein was incorporated as antibody-capture agent in a WB assay and an ELISA for detecting anti-EV-71 IgM in human sera, sensitivities of 91.7% and 77.8% were achieved, respectively, with 100% specificity for both. The characterized EV-71 VP1 protein truncated to positions 6-43 aa has potential as an antigen for detection of anti-EV-71 IgM for early diagnosis of EV-71 infection in a WB format. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. FULL-LENGTH PEPTIDE ASSAY OF ANTIGENIC PROFILE OF ENVELOPE PROTEINS FROM SIBERIAN ISOLATES OF HEPATITIS C VIRUS

    Directory of Open Access Journals (Sweden)

    A. A. Grazhdantseva

    2010-01-01

    Full Text Available Antigenic profiles of envelope glycoproteins of hepatitis C virus presented by three genotypes 1b, 2a/2c and 3a, which are most widespread in the territory of Russia and, in particular, in Novosibirsk, were studied using a panel of overlapping synthetic peptides. It was shown that highly immunogenic peptide epitopes of Е1 and Е2 proteins common for all HCV genotypes, are located in amino acid positions 250-260, 315-325 (Е1 protein, 390-400 (hypervariable region 1, 430-440, and 680-690 (Е2 protein. The greatest inter-genotypic differences were recorded in positions 280-290, 410-430 and 520-540. A novel antigenic determinant was detected in the region of aa 280-290 of the Е1 protein which was typical only for HCV 2a/2c genotype. A broad variation in the boundaries for the most epitopes suggests a high variability of the Е1 and Е2 viral proteins; however, a similar repertoire of antibodies induced by different HCV genotypes indicates to an opportunity of designing a new generation of cross-reactive HCV vaccines based on mapping of the E1 and E2 antigenic regions.

  16. Carbohydrates as T-cell antigens with implications in health and disease.

    Science.gov (United States)

    Sun, Lina; Middleton, Dustin R; Wantuch, Paeton L; Ozdilek, Ahmet; Avci, Fikri Y

    2016-10-01

    Glycosylation is arguably the most ubiquitous post-translational modification on proteins in microbial and mammalian cells. During the past few years, there has been intensive research demonstrating that carbohydrates, either in pure forms or in conjunction with proteins or lipids, evoke and modulate adaptive immune responses. We now know that carbohydrates can be directly recognized by T cells or participate in T-cell stimulation as components of T-cell epitopes. T-cell recognition of carbohydrate antigens takes place via their presentation by major histocompatibility complex pathways on antigen-presenting cells. In this review, we summarize studies on carbohydrates as T-cell antigens modulating adaptive immune responses. Through discussion of glycan-containing antigens, such as glycoproteins, glycolipids, zwitterionic polysaccharides and carbohydrate-based glycoconjugate vaccines, we will illustrate the key molecular and cellular interactions between carbohydrate antigens and T cells and the implications of these interactions in health and disease. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  17. Computational identification, characterization and validation of potential antigenic peptide vaccines from hrHPVs E6 proteins using immunoinformatics and computational systems biology approaches.

    Directory of Open Access Journals (Sweden)

    Abbas Khan

    Full Text Available High-risk human papillomaviruses (hrHPVs are the most prevalent viruses in human diseases including cervical cancers. Expression of E6 protein has already been reported in cervical cancer cases, excluding normal tissues. Continuous expression of E6 protein is making it ideal to develop therapeutic vaccines against hrHPVs infection and cervical cancer. Therefore, we carried out a meta-analysis of multiple hrHPVs to predict the most potential prophylactic peptide vaccines. In this study, immunoinformatics approach was employed to predict antigenic epitopes of hrHPVs E6 proteins restricted to 12 Human HLAs to aid the development of peptide vaccines against hrHPVs. Conformational B-cell and CTL epitopes were predicted for hrHPVs E6 proteins using ElliPro and NetCTL. The potential of the predicted peptides were tested and validated by using systems biology approach considering experimental concentration. We also investigated the binding interactions of the antigenic CTL epitopes by using docking. The stability of the resulting peptide-MHC I complexes was further studied by molecular dynamics simulations. The simulation results highlighted the regions from 46-62 and 65-76 that could be the first choice for the development of prophylactic peptide vaccines against hrHPVs. To overcome the worldwide distribution, the predicted epitopes restricted to different HLAs could cover most of the vaccination and would help to explore the possibility of these epitopes for adaptive immunotherapy against HPVs infections.

  18. Generation of neutralizing monoclonal antibodies against a conformational epitope of human adenovirus type 7 (HAdv-7 incorporated in capsid encoded in a HAdv-3-based vector.

    Directory of Open Access Journals (Sweden)

    Minglong Liu

    Full Text Available The generation of monoclonal antibodies (MAbs by epitope-based immunization is difficult because the immunogenicity of simple peptides is poor and T cells must be potently stimulated and immunological memory elicited. A strategy in which antigen is incorporated into the adenoviral capsid protein has been used previously to develop antibody responses against several vaccine targets and may offer a solution to this problem. In this study, we used a similar strategy to develop HAdv-7-neutralizing MAbs using rAdMHE3 virions into which hexon hypervariable region 5 (HVR5 of adenovirus type 7 (HAdv-7 was incorporated. The epitope mutant rAdMHE3 was generated by replacing HVR5 of Ad3EGFP, a recombinant HAdv-3-based vector expressing enhanced green fluorescence protein, with HVR5 of HAdv-7. We immunized BALB/c mice with rAdMHE3 virions and produced 22 different MAbs against them, four of which showed neutralizing activity against HAdv-7 in vitro. Using an indirect enzyme-linked immunosorbent assay (ELISA analysis and an antibody-binding-competition ELISA with Ad3EGFP, HAdv-7, and a series of chimeric adenoviral particles containing epitope mutants, we demonstrated that the four MAbs recognize the neutralization site within HVR5 of the HAdv-7 virion. Using an immunoblotting analysis and ELISA with HAdv-7, recombinant peptides, and a synthetic peptide, we also showed that the neutralizing epitope within HVR5 of the HAdv-7 virion is a conformational epitope. These findings suggest that it is feasible to use a strategy in which antigen is incorporated into the adenoviral capsid protein to generate neutralizing MAbs. This strategy may also be useful for developing therapeutic neutralizing MAbs and designing recombinant vector vaccines against HAdv-7, and in structural analysis of adenoviruses.

  19. HLA-A2 reactive antibodies in a patient who types as HLA-A2: The importance of high resolution typing and epitope-based antibody analysis.

    Science.gov (United States)

    Hahn, A B; Bravo-Egana, V; Jackstadt, J L; Conti, D J; Duquesnoy, R J

    2015-06-01

    This report describes a case of a highly sensitized patient who had serum antibodies reacting with HLA-A2 but whose phenotype included HLA-A2. The determination of HLA mismatch acceptability at the antigen level was problematic, but high-resolution HLA typing information and epitope-based antibody specificity analysis based on the nonself-self paradigm of HLA epitope immunogenicity have provided a solution. This case supports the concept that HLA typing at the allele level offers a better approach to identifying suitable donors for sensitized patients. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. The antigenic property of the H5N1 avian influenza viruses isolated in central China

    Directory of Open Access Journals (Sweden)

    Zou Wei

    2012-08-01

    Full Text Available Abstract Background Three influenza pandemics outbroke in the last century accompanied the viral antigen shift and drift, resulting in the change of antigenic property and the low cross protective ability of the existed antibody to the newly emerged pandemic virus, and eventually the death of millions of people. The antigenic characterizations of the viruses isolated in central China in 2004 and 2006–2007 were investigated in the present study. Results Hemagglutinin inhibition assay and neutralization assay displayed differential antigenic characteristics of the viruses isolated in central China in two periods (2004 and 2006–2007. HA genes of the viruses mainly located in two branches in phylogeny analysis. 53 mutations of the deduced amino acids of the HA genes were divided into 4 patterns. Mutations in pattern 2 and 3 showed the main difference between viruses isolated in 2004 and 2006–2007. Meanwhile, most amino acids in pattern 2 and 3 located in the globular head of the HA protein, and some of the mutations evenly distributed at the epitope sites. Conclusions The study demonstrated that a major antigenic drift had occurred in the viruses isolated in central China. And monitoring the antigenic property should be the priority in preventing the potential pandemic of H5N1 avian influenza virus.

  1. Mapping the antigenic structure of porcine parvovirus at the level of peptides

    DEFF Research Database (Denmark)

    Kamstrup, Søren; Langeveld, Jan; Bøtner, Anette

    1998-01-01

    The antigenic structure of the capsid proteins of porcine parvovirus (PPV) was investigated. A total of nine linear epitopes were identified by Pepscan using porcine or rabbit anti-PPV antisera. No sites were identified with a panel of neutralising monoclonal antibodies (MAbs). All epitopes were...... located in the region corresponding to the major capsid protein VP2. Based on this information, and on analogy to other autonomous parvoviruses, 24 different peptides were synthesised, coupled to keyhole limpet haemocyanin (KLH) and used to immunise rabbits. Most antisera were able to bind viral protein....... It is concluded that in PPV, the VP2 N-terminus is involved in virus neutralisation (VN) and peptides from this region are therefore primary targets for developing peptide-based vaccines against this virus....

  2. Vaccination of mice with plasmids expressing processed capsid protein of foot-and-mouth disease virus - Importance of dominant and subdominant epitopes for antigenicity and protection

    DEFF Research Database (Denmark)

    Frimann, Tine; Barfoed, Annette Malene; Aasted, Bent

    2007-01-01

    The capsid of foot-and-mouth disease virus (FMDV) displays several independent B cell epitopes, which stimulate the production of neutralising antibodies. Some of these epitopes are highly variable between virus strains, but dominate the immune response. The site A on VP1 is the most prominent...

  3. Expression of class 5 antigens by meningococcal strains obtained from patients in Brazil and evaluation of two new monoclonal antibodies

    Directory of Open Access Journals (Sweden)

    Elizabeth N. De Gaspari

    Full Text Available Determining the profile of antigen expression among meningococci is important for epidemiologic surveillance and vaccine development. To this end, two new mouse monoclonal antibodies (MAbs have been derived against Neisseria meningitidis proteins (class 5. The MAbs were reactive against outer membrane antigens and were bactericidal. Selected anti-class 5 MAbs [(5.1-3E6-2; (5.3-3BH4-C7; (5.4-1BG11-C7; (5.5-3DH-F5G9 also 5F1F4-T3(5.c], and the two new monoclonal antibodies C14F10Br2 (5.8 and 7F11B5Br3 (5.9, were then tested against different meningococcal strains, (63 strains of serogroup A, 60 strains of serogroup C (from 1972 to 1974; and 136 strains of serogroup B (from 1992 meningococci. Our results demonstrated that the expression of class 5 proteins in the N. meningitidis B Brazilian strains studied is highly heterogeneous. The serotypes and subtypes of B:4:P1.15, B:4:P1.9, B:4:P1.7, B:4:P1.3, B:4:P1.14, B:4:P1.16, B:4:NT, and B:NT:NT were detected in N. meningitidis B serogroups.The strains C:2a:P1.2 and A:4.21:P1.9 were dominant in the C and A serogroups, respectively. Serogroup B organisms expressed the class 5 epitopes 5.4 (18%, 5.5 (22%, 5.8 (3.6%, 5.9 (8.0% and 5c (38%. Serogroup C expressed class 5 epitopes 5.1 (81%, 5.4 (35%, 5.5 (33% and 5.9 (5.0%; and serogroup A showed reactivity directed at the class 5 protein 5c (47%; and reactivity was present with the new monoclonal antibody, 5.9 (5.5%. We conclude that the two new MAbs are useful in detecting important group B, class 5 antigens, and that a broad selection of serogroup B, class 5 proteins would be required for an effective vaccine based on the class 5 proteins.

  4. Analysis of the epitope structure of Plum pox virus coat protein.

    Science.gov (United States)

    Candresse, Thierry; Saenz, Pilar; García, Juan Antonio; Boscia, Donato; Navratil, Milan; Gorris, Maria Teresa; Cambra, Mariano

    2011-05-01

    Typing of the particular Plum pox virus (PPV) strain responsible in an outbreak has important practical implications and is frequently performed using strain-specific monoclonal antibodies (MAbs). Analysis in Western blots of the reactivity of 24 MAbs to a 112-amino-acid N-terminal fragment of the PPV coat protein (CP) expressed in Escherichia coli showed that 21 of the 24 MAbs recognized linear or denaturation-insensitive epitopes. A series of eight C-truncated CP fragments allowed the mapping of the epitopes recognized by the MAbs. In all, 14 of them reacted to the N-terminal hypervariable region, defining a minimum of six epitopes, while 7 reacted to the beginning of the core region, defining a minimum of three epitopes. Sequence comparisons allowed the more precise positioning of regions recognized by several MAbs, including those recognized by the 5B-IVIA universal MAb (amino acids 94 to 100) and by the 4DG5 and 4DG11 D serogroup-specific MAbs (amino acids 43 to 64). A similar approach coupled with infectious cDNA clone mutagenesis showed that a V74T mutation in the N-terminus of the CP abolished the binding of the M serogroup-specific AL MAb. Taken together, these results provide a detailed positioning of the epitopes recognized by the most widely used PPV detection and typing MAbs.

  5. AAV capsid CD8+ T-cell epitopes are highly conserved across AAV serotypes.

    Science.gov (United States)

    Hui, Daniel J; Edmonson, Shyrie C; Podsakoff, Gregory M; Pien, Gary C; Ivanciu, Lacramioara; Camire, Rodney M; Ertl, Hildegund; Mingozzi, Federico; High, Katherine A; Basner-Tschakarjan, Etiena

    2015-01-01

    Adeno-associated virus (AAV) has become one of the most promising vectors in gene transfer in the last 10 years with successful translation to clinical trials in humans and even market approval for a first gene therapy product in Europe. Administration to humans, however, revealed that adaptive immune responses against the vector capsid can present an obstacle to sustained transgene expression due to the activation and expansion of capsid-specific T cells. The limited number of peripheral blood mononuclear cells (PBMCs) obtained from samples within clinical trials allows for little more than monitoring of T-cell responses. We were able to identify immunodominant major histocompatibility complex (MHC) class I epitopes for common human leukocyte antigen (HLA) types by using spleens isolated from subjects undergoing splenectomy for non-malignant indications as a source of large numbers of lymphocytes and restimulating them with single AAV capsid peptides in vitro. Further experiments confirmed that these epitopes are naturally processed and functionally relevant. The design of more effective and less immunogenic AAV vectors, and precise immune monitoring of vector-infused subjects, are facilitated by these findings.

  6. Development of an epitope panel for consistent identification of antigen-specific T-cells in humans

    DEFF Research Database (Denmark)

    Fløe, Andreas; Løppke, Caroline; Hilberg, Ole

    2017-01-01

    Objective We aimed to establish a panel of MHC-peptide multimers suitable as a positive control in detection of HLA A*0201 restricted antigen specific T-cells (ASTC) by flow cytometry. Materials and methods MHC Dextramers were loaded with HLA A*0201 binding peptides from viral antigens and melano...

  7. Identification and characterization of two linear epitope motifs in hepatitis E virus ORF2 protein.

    Directory of Open Access Journals (Sweden)

    Heng Wang

    Full Text Available Hepatitis E virus (HEV is responsible for hepatitis E, which represents a global public health problem. HEV genotypes 3 and 4 are reported to be zoonotic, and animals are monitored for HEV infection in the interests of public hygiene and food safety. The development of novel diagnostic methods and vaccines for HEV in humans is thus important topics of research. Opening reading frame (ORF 2 of HEV includes both linear and conformational epitopes and is regarded as the primary candidate for vaccines and diagnostic tests. We investigated the precise location of the HEV epitopes in the ORF2 protein. We prepared four monoclonal antibodies (mAbs against genotype 4 ORF2 protein and identified two linear epitopes, G438IVIPHD444 and Y457DNQH461, corresponding to two of these mAbs using phage display biopanning technology. Both these epitopes were speculated to be universal to genotypes 1, 2, 3, 4, and avian HEVs. We also used two 12-mer fragments of ORF2 protein including these two epitopes to develop a peptide-based enzyme-linked immunosorbent assay (ELISA to detect HEV in serum. This assay demonstrated good specificity but low sensitivity compared with the commercial method, indicating that these two epitopes could serve as potential candidate targets for diagnosis. Overall, these results further our understanding of the epitope distribution of HEV ORF2, and provide important information for the development of peptide-based immunodiagnostic tests to detect HEV in serum.

  8. Immune hierarchy among HIV-1 CD8+ T cell epitopes delivered by dendritic cells depends on MHC-I binding irrespective of mode of loading and immunization in HLA-A*0201 mice

    DEFF Research Database (Denmark)

    Kloverpris, Henrik N; Karlsson, Ingrid; Thorn, Mette

    2009-01-01

    Recent human immunodeficiency virus type 1 (HIV-1) vaccination strategies aim at targeting a broad range of cytotoxic T lymphocyte (CTL) epitopes from different HIV-1 proteins by immunization with multiple CTL epitopes simultaneously. However, this may establish an immune hierarchical response......, where the immune system responds to only a small number of the epitopes administered. To evaluate the feasibility of such vaccine strategies, we used the human leukocyte antigen (HLA)-A*0201 transgenic (tg) HHD murine in vivo model and immunized with dendritic cells pulsed with seven HIV-1-derived HLA......-gamma)-producing CD8(+) T cells, mainly focused on two of seven administered epitopes. The magnitude of individual T-cell responses induced by immunization with multiple peptides correlated with their individual immunogenicity that depended on major histocompatibility class I binding and was not influenced by mode...

  9. Allergic aspergillosis and the antigens of Aspergillus fumigatus.

    Science.gov (United States)

    Singh, Bharat; Singh, Seema; Asif, Abdul R; Oellerich, Michael; Sharma, Gainda L

    2014-01-01

    Incidence of fungal infections has increased alarmingly in past few decades. Of the fungal pathogens, the Aspergillus fumigatus has been a major cause of allergic bronchopulmonary aspergillosis (ABPA) which has five main stages--the acute, remission, exacerbation, glucocorticoid dependent and fibrotic stage. The diagnosis of ABPA remains difficult due to its overlapping clinical and radiological features with tuberculosis and cystic fibrosis. From past few decades, the crude fractions of A. fumigatus have been used for immunodiagnosis of ABPA. Most of the detection kits based on crude fractions of A. fumigatus are quite sensitive but have low specificity. Till date 21 known and 25 predicted allergens of A. fumigatus have been identified. Of these allergens, only five recombinants (rAsp f1-f4 and f6) are commercially used for diagnosis of allergic aspergillosis. Remaining allergens of A. fumigatus have been restricted for use in specific diagnosis of ABPA, due to sharing of common antigenic epitopes with other allergens. Complete sequencing of A. fumigatus genome identified 9926 genes and the reports on the proteome of A. fumigatus have shown the presence of large number of their corresponding proteins in the pathogen. The analysis of immunoproteomes developed from crude fractions of A. fumigatus by IgG/IgE reactivity with ABPA patients and animal sera have identified the panel of new antigens. A brief description on the current status of A. fumigatus antigens is provided in this review. The implementation of advance recombinant expression and peptidomic approaches on the A. fumigatus antigens may help in the selection of appropriate molecules for the development of tools for more specific early diagnosis of ABPA, and desensitization therapies for patients of allergic disorders.

  10. Automatic Generation of Validated Specific Epitope Sets

    Directory of Open Access Journals (Sweden)

    Sebastian Carrasco Pro

    2015-01-01

    Full Text Available Accurate measurement of B and T cell responses is a valuable tool to study autoimmunity, allergies, immunity to pathogens, and host-pathogen interactions and assist in the design and evaluation of T cell vaccines and immunotherapies. In this context, it is desirable to elucidate a method to select validated reference sets of epitopes to allow detection of T and B cells. However, the ever-growing information contained in the Immune Epitope Database (IEDB and the differences in quality and subjects studied between epitope assays make this task complicated. In this study, we develop a novel method to automatically select reference epitope sets according to a categorization system employed by the IEDB. From the sets generated, three epitope sets (EBV, mycobacteria and dengue were experimentally validated by detection of T cell reactivity ex vivo from human donors. Furthermore, a web application that will potentially be implemented in the IEDB was created to allow users the capacity to generate customized epitope sets.

  11. Immunochemical identification of human trophoblast membrane antigens using monoclonal antibodies

    Energy Technology Data Exchange (ETDEWEB)

    Brown, P J; Molloy, C M; Johnson, P M [Liverpool Univ. (UK). Dept. of Immunology

    1983-11-01

    Human trophoblast membrane antigens recognised by monoclonal antibodies (H310, H315, H316 and H317) have been identified using combinations of radioimmunoprecipitation, SDS-PAGE, electroblotting, chromatographic and ELISA-type techniques. H317 is known to identify heat-stable placental-type alkaline phosphatase and accordingly was shown to react with a protein of subunit Msub(r) of 68000. H310 and H316 both recognise an antigen with a subunit Msub(r) of 34000 under reducing conditions. In non-reducing conditions, the H310/316 antigen gave oligomers of a component of Msub(r) 62000. It is unknown whether this 62000 dalton component is a dimer of the 34000 dalton protein with either itself or a second protein chain of presumed Msub(r) around 28000. H315 recognises an antigen with subunit Msub(r) of 36000; in non-reducing conditions this component readily associates to oligomeric structures. The epitope recognised by H315 may be sensitive to SDS. The two proteins recognised by H310/316 and H315 have been termed the p34 and p36 trophoblast membrane proteins, respectively.

  12. Identification of Schistosoma mansoni candidate antigens for diagnosis of schistosomiasis

    Directory of Open Access Journals (Sweden)

    Gardenia Braz Figueiredo Carvalho

    2011-11-01

    Full Text Available The development of a more sensitive diagnostic test for schistosomiasis is needed to overcome the limitations of the use of stool examination in low endemic areas. Using parasite antigens in enzyme linked immunosorbent assay is a promising strategy, however a more rational selection of parasite antigens is necessary. In this study we performed in silico analysis of the Schistosoma mansoni genome, using SchistoDB database and bioinformatic tools for screening immunogenic antigens. Based on evidence of expression in all parasite life stage within the definitive host, extracellular or plasmatic membrane localization, low similarity to human and other helminthic proteins and presence of predicted B cell epitopes, six candidates were selected: a glycosylphosphatidylinositol-anchored 200 kDa protein, two putative cytochrome oxidase subunits, two expressed proteins and one hypothetical protein. The recognition in unidimensional and bidimensional Western blot of protein with similar molecular weight and isoelectric point to the selected antigens by sera from S. mansoni infected mice indicate a good correlation between these two approaches in selecting immunogenic proteins.

  13. Rapid Screening for Potential Epitopes Reactive with a Polycolonal Antibody by Solution-Phase H/D Exchange Monitored by FT-ICR Mass Spectrometry

    Science.gov (United States)

    Zhang, Qian; Noble, Kyle A.; Mao, Yuan; Young, Nicolas L.; Sathe, Shridhar K.; Roux, Kenneth H.; Marshall, Alan G.

    2013-07-01

    The potential epitopes of a recombinant food allergen protein, cashew Ana o 2, reactive to polyclonal antibodies, were mapped by solution-phase amide backbone H/D exchange (HDX) coupled with Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS). Ana o 2 polyclonal antibodies were purified in the serum from a goat immunized with cashew nut extract. Antibodies were incubated with recombinant Ana o 2 (rAna o 2) to form antigen:polyclonal antibody (Ag:pAb) complexes. Complexed and uncomplexed (free) rAna o 2 were then subjected to HDX-MS analysis. Four regions protected from H/D exchange upon pAb binding are identified as potential epitopes and mapped onto a homologous model.

  14. Programmed death-1 expression on HIV-1-specific CD8+ T cells is shaped by epitope specificity, T-cell receptor clonotype usage and antigen load

    DEFF Research Database (Denmark)

    Kløverpris, Henrik N; McGregor, Reuben; McLaren, James E

    2014-01-01

    of differentiation on HIV-1-specific CD8+ T-cell populations(n = 128) spanning 11 different epitope targets. RESULTS: Expression levels of PD-1, but not CD244 or LAG-3, varied substantially across epitope specificities both within and between individuals. Differential expression of PD-1 on T-cell receptor (TCR...

  15. Monoclonal antibodies to molluskan hemocyanin from Concholepas concholepas demonstrate common and specific epitopes among subunits.

    Science.gov (United States)

    Oliva, Harold; Moltedo, Bruno; De Ioannes, Pablo; Faunes, Fernando; De Ioannes, Alfredo E; Becker, María Inés

    2002-10-01

    We studied the reactivity of mouse monoclonal antibodies (MAbs) against the hemocyanin from the Chilean marine gastropod Concholepas concholepas (CCH). This protein has been successfully used as a carrier to produce antibodies to haptens and peptides. All MAbs (13) belonging to IgG subclass exhibit dissociation constants (K(d)) from 1 x 10(-7) M to 1 x 10(-9) M. MAbs were characterized by enzyme-linked immunosorbant assay (ELISA) using CCH treated with different procedures, including dissociation into CCH-A and CCH-B subunits, Western blot, enzymatic digestion, chemical deglycosylation, and thermal denaturation. MAbs were classified into three categories, according to subunit specificity by ELISA. The epitope distribution shows that CCH subunits display common epitopes (group I, 5 MAbs, 1H5, 2A8, 3A5, 3B3, and 3E3), as well as specific epitopes for CCH-A subunits (group II, 3 MAbs, 1B8, 4D8, and 8E5) and for CCH-B subunits (group III, 5 MAbs, 1A4, 1E4, 2H10, 3B7, and 7B4). The results can be summarized as follows: (1). six antibodies react with thermal denatured CCH, suggesting that they recognize linear epitopes, whereas seven recognize conformational epitopes; (2). oxidation of carbohydrate moieties does not affect the binding of the MAbs; (3). enzymatic digestion of CCH decreases the reactivity of all antibodies irrespective of the protease used (elastase or trypsin); (4). bringing together the above data, in addition to epitopic complementarity analysis, we identified 12 different epitopes on the CCH molecule recognized by these MAbs. The anti-CCH MAbs presented here can be useful tools to understand the subunit organization of the CCH and its complex structure, which can explain its immunogenic and immunostimulating properties in mammals.

  16. Absence of autoreactive CD4+ T-cells targeting HLA-DQA1*01:02/DQB1*06:02 restricted hypocretin/orexin epitopes in narcolepsy type 1 when detected by EliSpot.

    Science.gov (United States)

    Kornum, Birgitte Rahbek; Burgdorf, Kristoffer Sølvsten; Holm, Anja; Ullum, Henrik; Jennum, Poul; Knudsen, Stine

    2017-08-15

    Narcolepsy type 1, a neurological sleep disorder strongly associated with Human Leukocyte Antigen (HLA-)DQB1*06:02, is caused by the loss of hypothalamic neurons producing the wake-promoting neuropeptide hypocretin (hcrt, also known as orexin). This loss is believed to be caused by an autoimmune reaction. To test whether hcrt itself could be a possible target in the autoimmune attack, CD4 + T-cell reactivity towards six different 15-mer peptides from prepro-hypocretin with high predicted affinity to the DQA1*01:02/DQB1*06:02 MHC class II dimer was tested using EliSpot in a cohort of 22 narcolepsy patients with low CSF hcrt levels, and 23 DQB1*06:02 positive healthy controls. Our ELISpot assay had a detection limit of 1:10,000 cells. We present data showing that autoreactive CD4 + T-cells targeting epitopes from the hcrt precursor in the context of MHC-DQA1*01:02/DQB1*06:02 are either not present or present in a frequency is <1:10,000 among peripheral CD4 + T-cells from narcolepsy type 1 patients. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Identification of SSEA-1 expressing enhanced reprogramming (SEER) cells in porcine embryonic fibroblasts

    DEFF Research Database (Denmark)

    Li, Dong; Secher, Jan Ole Bertelsen; Juhl, Morten

    2017-01-01

    Previous research has shown that a subpopulation of cells within cultured human dermal fibroblasts, termed multilineage-differentiating stress enduring (Muse) cells, are preferentially reprogrammed into induced pluripotent stem cells. However, controversy exists over whether these cells...... are the only cells capable of being reprogrammed from a heterogeneous population of fibroblasts. Similarly, there is little research to suggest such cells may exist in embryonic tissues or other species. To address if such a cell population exists in pigs, we investigated porcine embryonic fibroblast...... populations (pEFs) and identified heterogeneous expression of several key cell surface markers. Strikingly, we discovered a small population of stage-specific embryonic antigen 1 positive cells (SSEA-1+) in Danish Landrace and Göttingen minipig pEFs, which were absent in the Yucatan pEFs. Furthermore...

  18. A rapid one-step radiometric assay for hepatitis B surface antigen utilising monoclonal antibodies

    International Nuclear Information System (INIS)

    Goodall, A.H.; Meek, F.L.; Waters, J.A.; Miescher, G.C.; Janossy, G.; Thomas, H.C.

    1982-01-01

    A two-site antigen assay for HBsAg has been developed that employs 3 monoclonal antibodies. The antibodies were selected for their high affinity and their particular epitope specificity to establish an assay with a sensitivity for the antigen comparable with that of a conventional assay with heterologous antisera. In addition, by selecting a monoclonal antibody for use as a tracer which does not compete for antigenic binding sites with the solid-phase monoclonal antibodies, it has been possible to perform a two-site assay in a single 1 h incubation step, achieving the same degree of sensitivity. This principle of using monoclonal antibodies in a one-step assay therefore gives advantages of speed and simplicity over assays using heterologous antisera and would be applicable to a variety of antigen assays for which appropriate monoclonal antibodies are available. (Auth.)

  19. Immune epitope database analysis resource

    DEFF Research Database (Denmark)

    Kim, Yohan; Ponomarenko, Julia; Zhu, Zhanyang

    2012-01-01

    The immune epitope database analysis resource (IEDB-AR: http://tools.iedb.org) is a collection of tools for prediction and analysis of molecular targets of T- and B-cell immune responses (i.e. epitopes). Since its last publication in the NAR webserver issue in 2008, a new generation of peptide......, and the homology mapping tool was updated to enable mapping of discontinuous epitopes onto 3D structures. Furthermore, to serve a wider range of users, the number of ways in which IEDB-AR can be accessed has been expanded. Specifically, the predictive tools can be programmatically accessed using a web interface...

  20. Antigen Cross-Presentation of Immune Complexes

    Science.gov (United States)

    Platzer, Barbara; Stout, Madeleine; Fiebiger, Edda

    2014-01-01

    The ability of dendritic cells (DCs) to cross-present tumor antigens has long been a focus of interest to physicians, as well as basic scientists, that aim to establish efficient cell-based cancer immune therapy. A prerequisite for exploiting this pathway for therapeutic purposes is a better understanding of the mechanisms that underlie the induction of tumor-specific cytotoxic T-lymphocyte (CTL) responses when initiated by DCs via cross-presentation. The ability of humans DC to perform cross-presentation is of utmost interest, as this cell type is a main target for cell-based immunotherapy in humans. The outcome of a cross-presentation event is guided by the nature of the antigen, the form of antigen uptake, and the subpopulation of DCs that performs presentation. Generally, CD8α+ DCs are considered to be the most potent cross-presenting DCs. This paradigm, however, only applies to soluble antigens. During adaptive immune responses, immune complexes form when antibodies interact with their specific epitopes on soluble antigens. Immunoglobulin G (IgG) immune complexes target Fc-gamma receptors on DCs to shuttle exogenous antigens efficiently into the cross-presentation pathway. This receptor-mediated cross-presentation pathway is a well-described route for the induction of strong CD8+ T cell responses. IgG-mediated cross-presentation is intriguing because it permits the CD8− DCs, which are commonly considered to be weak cross-presenters, to efficiently cross-present. Engaging multiple DC subtypes for cross-presentation might be a superior strategy to boost CTL responses in vivo. We here summarize our current understanding of how DCs use IgG-complexed antigens for the efficient induction of CTL responses. Because of its importance for human cell therapy, we also review the recent advances in the characterization of cross-presentation properties of human DC subsets. PMID:24744762

  1. Anthrax lethal factor as an immune target in humans and transgenic mice and the impact of HLA polymorphism on CD4+ T cell immunity.

    Science.gov (United States)

    Ascough, Stephanie; Ingram, Rebecca J; Chu, Karen K; Reynolds, Catherine J; Musson, Julie A; Doganay, Mehmet; Metan, Gökhan; Ozkul, Yusuf; Baillie, Les; Sriskandan, Shiranee; Moore, Stephen J; Gallagher, Theresa B; Dyson, Hugh; Williamson, E Diane; Robinson, John H; Maillere, Bernard; Boyton, Rosemary J; Altmann, Daniel M

    2014-05-01

    Bacillus anthracis produces a binary toxin composed of protective antigen (PA) and one of two subunits, lethal factor (LF) or edema factor (EF). Most studies have concentrated on induction of toxin-specific antibodies as the correlate of protective immunity, in contrast to which understanding of cellular immunity to these toxins and its impact on infection is limited. We characterized CD4+ T cell immunity to LF in a panel of humanized HLA-DR and DQ transgenic mice and in naturally exposed patients. As the variation in antigen presentation governed by HLA polymorphism has a major impact on protective immunity to specific epitopes, we examined relative binding affinities of LF peptides to purified HLA class II molecules, identifying those regions likely to be of broad applicability to human immune studies through their ability to bind multiple alleles. Transgenics differing only in their expression of human HLA class II alleles showed a marked hierarchy of immunity to LF. Immunogenicity in HLA transgenics was primarily restricted to epitopes from domains II and IV of LF and promiscuous, dominant epitopes, common to all HLA types, were identified in domain II. The relevance of this model was further demonstrated by the fact that a number of the immunodominant epitopes identified in mice were recognized by T cells from humans previously infected with cutaneous anthrax and from vaccinated individuals. The ability of the identified epitopes to confer protective immunity was demonstrated by lethal anthrax challenge of HLA transgenic mice immunized with a peptide subunit vaccine comprising the immunodominant epitopes that we identified.

  2. The first human epitope map of the alphaviral E1 and E2 proteins reveals a new E2 epitope with significant virus neutralizing activity.

    Directory of Open Access Journals (Sweden)

    Ann R Hunt

    2010-07-01

    Full Text Available Venezuelan equine encephalitis virus (VEEV is responsible for VEE epidemics that occur in South and Central America and the U.S. The VEEV envelope contains two glycoproteins E1 (mediates cell membrane fusion and E2 (binds receptor and elicits virus neutralizing antibodies. Previously we constructed E1 and E2 epitope maps using murine monoclonal antibodies (mMAbs. Six E2 epitopes (E2(c,d,e,f,g,h bound VEEV-neutralizing antibody and mapped to amino acids (aa 182-207. Nothing is known about the human antibody repertoire to VEEV or epitopes that engage human virus-neutralizing antibodies. There is no specific treatment for VEE; however virus-neutralizing mMAbs are potent protective and therapeutic agents for mice challenged with VEEV by either peripheral or aerosol routes. Therefore, fully human MAbs (hMAbs with virus-neutralizing activity should be useful for prevention or clinical treatment of human VEE.We used phage-display to isolate VEEV-specific hFabs from human bone marrow donors. These hFabs were characterized by sequencing, specificity testing, VEEV subtype cross-reactivity using indirect ELISA, and in vitro virus neutralization capacity. One E2-specific neutralizing hFAb, F5n, was converted into IgG, and its binding site was identified using competitive ELISA with mMAbs and by preparing and sequencing antibody neutralization-escape variants.Using 11 VEEV-reactive hFabs we constructed the first human epitope map for the alphaviral surface proteins E1 and E2. We identified an important neutralization-associated epitope unique to the human immune response, E2 aa115-119. Using a 9 A resolution cryo-electron microscopy map of the Sindbis virus E2 protein, we showed the probable surface location of this human VEEV epitope.The VEEV-neutralizing capacity of the hMAb F5 nIgG is similar to that exhibited by the humanized mMAb Hy4 IgG. The Hy4 IgG has been shown to limit VEEV infection in mice both prophylactically and therapeutically. Administration

  3. The effect of adjuvants on the immune response induced by a DBL4e-ID4 VAR2CSA based Plasmodium falciparum vaccine against placental malaria

    DEFF Research Database (Denmark)

    Pinto, V V; Salanti, A; Joergensen, L M

    2012-01-01

    720, Alhydrogel(®) and CAF01. Antibodies induced against DBL4¿-ID4 in combination with these adjuvants inhibited parasite binding to CSA from 82% to 99%. Although, different epitope recognition patterns were obtained for the different formulations, all adjuvant combinations induced strong Th1 and Th2......¿-ID4 to induce binding-inhibitory antibodies when formulated with adjuvants approved for human use. We have characterized the immune response of DBL4¿-ID4 in combination with Freund's complete and incomplete adjuvant and with three adjuvants currently being used in clinical trials: Montanide(®) ISA...... type responses, resulting in IgG with similar binding strength, with to the DBL4¿-ID4 antigen. These results demonstrate that the DBL4¿-ID4 antigen is highly immunogenic and that binding inhibitory antibodies are induced when formulated with any of the tested adjuvants....

  4. Recombinant Protein Containing B-Cell Epitopes of Different Loxosceles Spider Toxins Generates Neutralizing Antibodies in Immunized Rabbits.

    Science.gov (United States)

    Lima, Sabrina de Almeida; Guerra-Duarte, Clara; Costal-Oliveira, Fernanda; Mendes, Thais Melo; Figueiredo, Luís F M; Oliveira, Daysiane; Machado de Avila, Ricardo A; Ferrer, Valéria Pereira; Trevisan-Silva, Dilza; Veiga, Silvio S; Minozzo, João C; Kalapothakis, Evanguedes; Chávez-Olórtegui, Carlos

    2018-01-01

    Loxoscelism is the most important form of araneism in South America. The treatment of these accidents uses heterologous antivenoms obtained from immunization of production animals with crude loxoscelic venom. Due to the scarcity of this immunogen, new alternatives for its substitution in antivenom production are of medical interest. In the present work, three linear epitopes for Loxosceles astacin-like protease 1 (LALP-1) (SLGRGCTDFGTILHE, ENNTRTIGPFDYDSIMLYGAY, and KLYKCPPVNPYPGGIRPYVNV) and two for hyaluronidase (LiHYAL) (NGGIPQLGDLKAHLEKSAVDI and ILDKSATGLRIIDWEAWR) from Loxosceles intermedia spider venom were identified by SPOT-synthesis technique. One formerly characterized linear epitope (DFSGPYLPSLPTLDA) of sphingomyelinase D (SMase D) SMase-I from Loxosceles laeta was also chosen to constitute a new recombinant multiepitopic protein. These epitopes were combined with a previously produced chimeric multiepitopic protein (rCpLi) composed by linear and conformational B-cell epitopes from SMase D from L. intermedia venom, generating a new recombinant multiepitopic protein derived from loxoscelic toxins (rMEPLox). We demonstrated that rMEPLox is non-toxic and antibodies elicited in rabbits against this antigen present reactivity in ELISA and immunoblot assays with Brazilian L. intermedia, L. laeta, L. gaucho , and L. similis spider venoms. In vivo and in vitro neutralization assays showed that anti-rMEPLox antibodies can efficiently neutralize the sphingomyelinase, hyaluronidase, and metalloproteinase activity of L. intermedia venom. This study suggests that this multiepitopic protein can be a suitable candidate for experimental vaccination approaches or for antivenom production against Loxosceles spp. venoms.

  5. Production, Characterization, and Epitope Mapping of Monoclonal Antibodies Against Different Subtypes of Rabbit Hemorrhagic Disease Virus (RHDV).

    Science.gov (United States)

    Kong, Desheng; Liu, Jiasen; Jiang, Qian; Yu, Zuo; Hu, Xiaoliang; Guo, Dongchun; Huang, Qianqian; Jiao, Meihui; Qu, Liandong

    2016-02-16

    In 2010, a new rabbit hemorrhagic disease virus (RHDV) variant, designated RHDV2, was identified for the first time in Italy. Studies have shown that RHDV2 differs from RHDV1 (traditional RHDV) in terms of its antigenic profile and genetic characteristics. The VP60 protein of RHDV is a structural protein that plays important roles in viral replication, assembly, and immunogenicity. In this study, we immunized BALB/c mice with recombinant VP60 proteins from different RHDV subtypes. After three rounds of subcloning, type-specific positive hybridoma clones of RHDV1 and RHDV2 were further identified by an enzyme-linked immunosorbent assay, Western blotting, and an indirect immunofluorescence assay. Finally, three monoclonal antibodies (MAbs) (1D6, 1H2, and 3F2) that only recognize RHDV1, and four MAbs (1G2, 2C1, 3B7, and 5D6) that only recognize RHDV2 were identified. The epitopes recognized by these MAbs were mapped by Western blotting. Sequence analysis showed that the epitope sequences recognized by 1D6, 1H2, and 3F2 are highly conserved (98%) among RHDV1 strains, whereas the epitope sequences recognized by 1G2, 2C1, 3B7, and 5D6 are 100% conserved among RHDV2 strains. The high conservation of the epitope sequence showed that the screened MAbs were type-specific, and that they could distinguish different RHDV subtypes.

  6. Recombinant Protein Containing B-Cell Epitopes of Different Loxosceles Spider Toxins Generates Neutralizing Antibodies in Immunized Rabbits

    Science.gov (United States)

    Lima, Sabrina de Almeida; Guerra-Duarte, Clara; Costal-Oliveira, Fernanda; Mendes, Thais Melo; Figueiredo, Luís F. M.; Oliveira, Daysiane; Machado de Avila, Ricardo A.; Ferrer, Valéria Pereira; Trevisan-Silva, Dilza; Veiga, Silvio S.; Minozzo, João C.; Kalapothakis, Evanguedes; Chávez-Olórtegui, Carlos

    2018-01-01

    Loxoscelism is the most important form of araneism in South America. The treatment of these accidents uses heterologous antivenoms obtained from immunization of production animals with crude loxoscelic venom. Due to the scarcity of this immunogen, new alternatives for its substitution in antivenom production are of medical interest. In the present work, three linear epitopes for Loxosceles astacin-like protease 1 (LALP-1) (SLGRGCTDFGTILHE, ENNTRTIGPFDYDSIMLYGAY, and KLYKCPPVNPYPGGIRPYVNV) and two for hyaluronidase (LiHYAL) (NGGIPQLGDLKAHLEKSAVDI and ILDKSATGLRIIDWEAWR) from Loxosceles intermedia spider venom were identified by SPOT-synthesis technique. One formerly characterized linear epitope (DFSGPYLPSLPTLDA) of sphingomyelinase D (SMase D) SMase-I from Loxosceles laeta was also chosen to constitute a new recombinant multiepitopic protein. These epitopes were combined with a previously produced chimeric multiepitopic protein (rCpLi) composed by linear and conformational B-cell epitopes from SMase D from L. intermedia venom, generating a new recombinant multiepitopic protein derived from loxoscelic toxins (rMEPLox). We demonstrated that rMEPLox is non-toxic and antibodies elicited in rabbits against this antigen present reactivity in ELISA and immunoblot assays with Brazilian L. intermedia, L. laeta, L. gaucho, and L. similis spider venoms. In vivo and in vitro neutralization assays showed that anti-rMEPLox antibodies can efficiently neutralize the sphingomyelinase, hyaluronidase, and metalloproteinase activity of L. intermedia venom. This study suggests that this multiepitopic protein can be a suitable candidate for experimental vaccination approaches or for antivenom production against Loxosceles spp. venoms. PMID:29666624

  7. Genotypic and epitope characteristics of group A porcine rotavirus strains circulating in Canada.

    Science.gov (United States)

    Naseer, Omer; Jarvis, Matthew C; Ciarlet, Max; Marthaler, Douglas G

    2017-07-01

    Surveillance of Rotavirus A (RVA) infections in North America swine populations are limited and not performed over a significant time period to properly assess the diversity of RVA strains in swine. The VP7 (G) and VP4 (P) genes of 32 Canadian RVA strains, circulating between 2009 and 2015 were sequenced, identifying the G3P[13], G5P[7], G9P[7], G9[13], and G9[19] genotype combinations. The Canadian RVA strains were compared to the RVA strains present in the swine ProSystems RCE rotavirus vaccine. The comparison revealed multiple amino acid differences in the G and P antigenic epitopes, regardless of the G and P genotypes but specifically in the Canadian G3, P[13] and P[19] genotypes. Our study further contributes to the characterization of RVA's evolution and disease mitigation among swine, which may optimize target vaccine design, thereby minimizing RVA disease in this economically important animal population. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Functional and Structural Characterization of a Novel HLA-DRB1*04:01-Restricted α-Enolase T Cell Epitope in Rheumatoid Arthritis

    Directory of Open Access Journals (Sweden)

    Christina Gerstner

    2016-11-01

    Full Text Available Antibodies to citrullinated proteins, common in rheumatoid arthritis (RA patients, are strongly associated to a specific set of HLA-DR alleles including HLA-DRB1*04:01, *04:04, and *01:01. Here, we first demonstrate that autoantibody levels toward the dominant citrullinated B cell epitope from α-enolase are significantly elevated in HLA-DRB1*04:01-positive RA patients. Furthermore, we identified α-enolase-derived T cell epitopes and demonstrated that native and citrullinated versions of several peptides bind with different affinities to HLA-DRB1*04:01, *04:04, and *01:01. The citrulline residues in the eight identified peptides are distributed throughout the entire length of the presented epitopes and more specifically, localized at peptide positions p-2, p2, p4, p6, p7, p10, and p11. Importantly, in contrast to its native version peptide 26 (TSKGLFRAAVPSGAS, the HLA-DRB1*04:01-restricted citrullinated peptide Cit26 (TSKGLFCitAAVPSGAS elicited significant functional T cell responses in primary cells from RA patients. Comparative analysis of the crystal structures of HLA-DRB1*04:01 in complex with peptide 26 or Cit26 demonstrated that the posttranslational modification did not alter the conformation of the peptide. And since citrullination is the only structural difference between the two complexes, this indicates that the neo-antigen Cit26 is recognized by T cells with high specificity to the citrulline residue.

  9. Mapping the epitopes of a neutralizing antibody fragment directed against the lethal factor of Bacillus anthracis and cross-reacting with the homologous edema factor.

    Directory of Open Access Journals (Sweden)

    Philippe Thullier

    Full Text Available The lethal toxin (LT of Bacillus anthracis, composed of the protective antigen (PA and the lethal factor (LF, plays an essential role in anthrax pathogenesis. PA also interacts with the edema factor (EF, 20% identity with LF to form the edema toxin (ET, which has a lesser role in anthrax pathogenesis. The first recombinant antibody fragment directed against LF was scFv 2LF; it neutralizes LT by blocking the interaction between PA and LF. Here, we report that scFv 2LF cross-reacts with EF and cross-neutralizes ET, and we present an in silico method taking advantage of this cross-reactivity to map the epitope of scFv 2LF on both LF and EF. This method identified five epitope candidates on LF, constituted of a total of 32 residues, which were tested experimentally by mutating the residues to alanine. This combined approach precisely identified the epitope of scFv 2LF on LF as five residues (H229, R230, Q234, L235 and Y236, of which three were missed by the consensus epitope candidate identified by pre-existing in silico methods. The homolog of this epitope on EF (H253, R254, E258, L259 and Y260 was experimentally confirmed to constitute the epitope of scFv 2LF on EF. Other inhibitors, including synthetic molecules, could be used to target these epitopes for therapeutic purposes. The in silico method presented here may be of more general interest.

  10. Multi-epitope chimeric antigen used as a serological marker to estimate Plasmodium falciparum transmission intensity in the border area of China-Myanmar.

    Science.gov (United States)

    Yao, Mei-Xue; Sun, Xiao-Dong; Gao, Yu-Hui; Cheng, Zhi-Bin; Deng, Wei-Wei; Zhang, Jia-Jia; Wang, Heng

    2016-09-07

    Following the decline of malaria transmission in many countries and regions, serological parameters have become particularly useful for estimating malaria transmission in low-intensity areas. This study evaluated a novel serological marker, Malaria Random Constructed Antigen-1 (M.RCAg-1), which contains 11 epitopes from eight Plasmodium falciparum antigens, as a tool for assessing malaria transmission intensity along the border area of China-Myanmar. Serum from Plasmodium falciparum and P. vivax patients was used to detect the properties of M.RCAg-1 and antibody responses. Cross-sectional surveys were conducted at the China-Myanmar border and in Hainan province in 2012 and 2013 using cluster sampling. Filter blood spot papers were collected from all participants. Antibodies against M.RCAg-1 were detected using indirect ELISA. The Mann-Whitney test and Spearman's rank correlation test were performed to analyze antibody data. P. falciparum malaria transmission intensity was estimated using a catalytic conversion model based on the maximum likelihood of generating a community seroconversion rate (SCR). M.RCAg-1 was well-recognized by the naturally acquired anti-malaria antibodies in P. falciparum patients and had very limited cross-reactivity with P. vivax infection. The total amount of IgG antibodies was decreased with the decrease in parasitemia after taking medication and lasted several weeks. In a population survey, the antibody levels were higher in residents living close to the China-Myanmar border than those living in non-epidemic areas (P < 0.0001), but no significant difference was observed between residents from Hainan and non-epidemic areas. The calculated SCR was 0.0128 for Jieyangka, 0.004 for Susuzhai, 0.0047 for Qiushan, and 0.043 for Kayahe. The estimated exposure rate obtained from the anti-M.RCAg-1 antibody level correlated with traditional measures of transmission intensity derived from altitude. Our study demonstrates that M.RCAg-1 is

  11. Research on the comparative value of radio-immunoanalyses of three embryonic antigens: alpha 1 foeto-protein ''α1FP'' alpha 2H-isoferritine ''α2HF'' and carcino-embryonnic antigen ''CEA'' for diagnonis and post-therapy observation

    International Nuclear Information System (INIS)

    Rimbaut, C.; Rudant, C.; Buffe, D.

    Alpha 1 foeto-protein, specific for 2 kinds of tumour (hepatoblastemo, teratoma), is useful in radio-immunoanalysis for the very early diagnosis of a tumour revival. Alpha 2 HF isoferritine and carcino-embryonic antigen, proteins non-specific to cancer, nevertheless possess in common the property of increasing in cases of tumours with liver metastases, though one is more specific to widespread secreting tumours while the other seems to be connected rather with an early reactivity of a tumour whatever its nature or origin. Finally a wide variation in these protein fractions is observed from one individual to another and it is therefore extremely important to make comparative determinations within a given series, the tendency of the evolution curve to rise or not being the important element in post-treatment supervision [fr

  12. Display of neutralizing epitopes of Canine parvovirus and a T-cell epitope of the fusion protein of Canine distemper virus on chimeric tymovirus-like particles and its use as a vaccine candidate both against Canine parvo and Canine distemper.

    Science.gov (United States)

    Chandran, Dev; Shahana, Pallichera Vijayan; Rani, Gudavelli Sudha; Sugumar, Parthasarthy; Shankar, Chinchkar Ramchandra; Srinivasan, Villuppanoor Alwar

    2009-12-10

    Expression of Physalis mottle tymovirus coat protein in Escherichia coli was earlier shown to self-assemble into empty capsids that were nearly identical to the capsids formed in vivo. Amino acid substitutions were made at the N-terminus of wild-type Physalis mottle virus coat protein with neutralizing epitopes of Canine parvovirus containing the antigenic sites 1-2, 4 and 6-7 and T-cell epitope of the fusion protein of Canine distemper virus in various combinations to yield PhMV1, PhMV2, PhMV3, PhMV4 and PhMV5. These constructs were cloned and expressed in E. coli. The chimeric proteins self-assembled into chimeric tymovirus-like particles (TVLPs) as determined by electron microscopy. The TVLPs were purified by ultracentrifugation and injected into guinea pigs and dogs to determine their immunogenicity. Initial immunogenicity studies in guinea pigs indicated that PhMV3 gave a higher response in comparison to the other TVLPs for both CPV and CDV and hence all further experiments in dogs were done with PhMV3. HI was done against different isolates obtained from various parts of the country. Protective titres indicated the broad spectrum of the vaccine. In conclusion the study indicated that the above chimeric VLP based vaccine could be used in dogs to generate a protective immune response against diseases caused by both Canine parvo and Canine distemper virus.

  13. Vaccination with an adenoviral vector encoding the tumor antigen directly linked to invariant chain induces potent CD4(+) T-cell-independent CD8(+) T-cell-mediated tumor control

    DEFF Research Database (Denmark)

    Sorensen, Maria R; Holst, Peter J; Pircher, Hanspeter

    2009-01-01

    of the vaccine antigen to invariant chain (Ii). To evaluate this strategy we used a mouse model, in which an immunodominant epitope (GP33) of the LCMV glycoprotein (GP) represents the tumor-associated neoantigen. Prophylactic vaccination of C57BL/6 mice with a replication-deficient human adenovirus 5 vector...... encoding GP linked to Ii (Ad-Ii-GP) resulted in complete protection against GP33-expressing B16.F10 tumors. Therapeutic vaccination with Ad-Ii-GP delayed tumor growth by more than 2 wk compared with sham vaccination. Notably, therapeutic vaccination with the linked vaccine was significantly better than...... the tumor degradation. Finally, Ad-Ii-GP but not Ad-GP vaccination can break the immunological non-reactivity in GP transgenic mice indicating that our vaccine strategy will prove efficient also against endogenous tumor antigens....

  14. Development of recombinant antigen array for simultaneous detection of viral antibodies.

    Directory of Open Access Journals (Sweden)

    Yi Liu

    Full Text Available Protein microarrays have been developed to study antibody reactivity against a large number of antigens, demonstrating extensive perspective for clinical application. We developed a viral antigen array by spotting four recombinant antigens and synthetic peptide, including glycoprotein G of herpes simplex virus (HSV type 1 and 2, phosphoprotein 150 of cytomegalovirus (CMV, Rubella virus (RV core plus glycoprotein E1 and E2 as well as a E1 peptide with the optimal concentrations on activated glass slides to simultaneously detect IgG and IgM against HSV1, HSV2, CMV and RV in clinical specimens of sera and cerebrospinal fluids (CSFs. The positive reference sera were initially used to measure the sensitivity and specificity of the array with the optimal conditions. Then clinical specimens of 144 sera and 93 CSFs were tested for IgG and IgM antibodies directed against HSV1, HSV2, CMV and RV by the antigen array. Specificity of the antigen array for viral antibodies detection was satisfying compared to commercial ELISA kits but sensitivity of the array varied relying on quality and antigenic epitopes of the spotting antigens. In short, the recombinant antigen array has potential to simultaneous detect multiple viral antibodies using minute amount (3 µl of samples, which holds the particularly advantage to detect viral antibodies in clinical CSFs being suspicious of neonatal meningitis and encephalitis.

  15. Co-administration of α-GalCer analog and TLR4 agonist induces robust CD8(+) T-cell responses to PyCS protein and WT-1 antigen and activates memory-like effector NKT cells.

    Science.gov (United States)

    Coelho-Dos-Reis, Jordana G; Huang, Jing; Tsao, Tiffany; Pereira, Felipe V; Funakoshi, Ryota; Nakajima, Hiroko; Sugiyama, Haruo; Tsuji, Moriya

    2016-07-01

    In the present study, the combined adjuvant effect of 7DW8-5, a potent α-GalCer-analog, and monophosphoryl lipid A (MPLA), a TLR4 agonist, on the induction of vaccine-induced CD8(+) T-cell responses and protective immunity was evaluated. Mice were immunized with peptides corresponding to the CD8(+) T-cell epitopes of a malaria antigen, a circumsporozoite protein of Plasmodium yoelii, and a tumor antigen, a Wilms Tumor antigen-1 (WT-1), together with 7DW8-5 and MPLA, as an adjuvant. These immunization regimens were able to induce higher levels of CD8(+) T-cell responses and, ultimately, enhanced levels of protection against malaria and tumor challenges compared to the levels induced by immunization with peptides mixed with 7DW8-5 or MPLA alone. Co-administration of 7DW8-5 and MPLA induces activation of memory-like effector natural killer T (NKT) cells, i.e. CD44(+)CD62L(-)NKT cells. Our study indicates that 7DW8-5 greatly enhances important synergistic pathways associated to memory immune responses when co-administered with MPLA, thus rendering this combination of adjuvants a novel vaccine adjuvant formulation. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Natural micropolymorphism in human leukocyte antigens provides a basis for genetic control of antigen recognition

    Energy Technology Data Exchange (ETDEWEB)

    Archbold, Julia K.; Macdonald, Whitney A.; Gras, Stephanie; Ely, Lauren K.; Miles, John J.; Bell, Melissa J.; Brennan, Rebekah M.; Beddoe, Travis; Wilce, Matthew C.J.; Clements, Craig S.; Purcell, Anthony W.; McCluskey, James; Burrows, Scott R.; Rossjohn, Jamie; (Monash); (Queensland Inst. of Med. Rsrch.); (Melbourne)

    2009-07-10

    Human leukocyte antigen (HLA) gene polymorphism plays a critical role in protective immunity, disease susceptibility, autoimmunity, and drug hypersensitivity, yet the basis of how HLA polymorphism influences T cell receptor (TCR) recognition is unclear. We examined how a natural micropolymorphism in HLA-B44, an important and large HLA allelic family, affected antigen recognition. T cell-mediated immunity to an Epstein-Barr virus determinant (EENLLDFVRF) is enhanced when HLA-B*4405 was the presenting allotype compared with HLA-B*4402 or HLA-B*4403, each of which differ by just one amino acid. The micropolymorphism in these HLA-B44 allotypes altered the mode of binding and dynamics of the bound viral epitope. The structure of the TCR-HLA-B*4405EENLLDFVRF complex revealed that peptide flexibility was a critical parameter in enabling preferential engagement with HLA-B*4405 in comparison to HLA-B*4402/03. Accordingly, major histocompatibility complex (MHC) polymorphism can alter the dynamics of the peptide-MHC landscape, resulting in fine-tuning of T cell responses between closely related allotypes.

  17. Purification and analyses of the specificity of two putative diagnostic antigens for larval cyathostomin infection in horses.

    Science.gov (United States)

    Dowdall, S M J; Proudman, C J; Love, S; Klei, T R; Matthews, J B

    2003-12-01

    Cyathostomins are important equine gastrointestinal parasites. Mass emergence of mucosal stage larvae causes a potentially fatal colitis. Mucosal stages are undetectable non-invasively. An assay that would estimate mucosal larval stage infection would greatly assist in treatment, control and prognosis. Previously, we identified two putative diagnostic antigens (20 and 25 kDa) in somatic larval preparations. Here, we describe their purification and antigen-specific IgG(T) responses to them. Western blots confirmed the purity of the antigens and showed that epitopes in the 20 kDa complex were specific to larval cyathostomins. No cross-reactive antigens appeared to be present in Parascaris equorum or Strongyloides westeri species. Low levels of cross-reactivity were observed in Strongylus edentatus and Strongylus vulgaris species. Use of purified antigens greatly reduced background binding in equine sera. These results indicate that both antigen complexes may be of use in a diagnostic assay.

  18. Therapeutic approaches for treating hemophilia A using embryonic stem cells.

    Science.gov (United States)

    Kasuda, Shogo; Tatsumi, Kohei; Sakurai, Yoshihiko; Shima, Midori; Hatake, Katsuhiko

    2016-06-01

    Hemophilia A is an X-linked rescessive bleeding disorder that results from F8 gene aberrations. Previously, we established embryonic stem (ES) cells (tet-226aa/N6-Ainv18) that secrete human factor VIII (hFVIII) by introducing the human F8 gene in mouse Ainv18 ES cells. Here, we explored the potential of cell transplantation therapy for hemophilia A using the ES cells. Transplant tet-226aa/N6-Ainv18 ES cells were injected into the spleens of severe combined immunodeficiency (SCID) mice, carbon tetrachloride (CCl4)-pretreated wild-type mice, and CCl4-pretreated hemophilia A mice. F8 expression was induced by doxycycline in drinking water, and hFVIII-antigen production was assessed in all cell transplantation experiments. Injecting the ES cells into SCID mice resulted in an enhanced expression of the hFVIII antigen; however, teratoma generation was confirmed in the spleen. Transplantation of ES cells into wild-type mice after CCl4-induced liver injury facilitated survival and engraftment of transplanted cells without teratoma formation, resulting in hFVIII production in the plasma. Although CCl4 was lethal to most hemophilia A mice, therapeutic levels of FVIII activity, as well as the hFVIII antigen, were detected in surviving hemophilia A mice after cell transplantation. Immunolocalization results for hFVIII suggested that transplanted ES cells might be engrafted at the periportal area in the liver. Although the development of a safer induction method for liver regeneration is required, our results suggested the potential for developing an effective ES-cell transplantation therapeutic model for treating hemophilia A in the future. Copyright © 2016 King Faisal Specialist Hospital & Research Centre. Published by Elsevier Ltd. All rights reserved.

  19. The role of CD4 in antigen-independent activation of isolated single T lymphocytes

    DEFF Research Database (Denmark)

    Kelso, A; Owens, T

    1988-01-01

    The membrane molecule CD4 (L3T4) is thought to facilitate activation of Class II H-2-restricted T cells by binding to Ia determinants on antigen-presenting cells. Recent reports suggest that CD4 can also contribute to antigen-independent activation by anti-T cell receptor (TCR) antibodies. An ass...

  20. Potential contribution of a novel Tax epitope-specific CD4+ T cells to graft-versus-Tax effect in adult T cell leukemia patients after allogeneic hematopoietic stem cell transplantation.

    Science.gov (United States)

    Tamai, Yotaro; Hasegawa, Atsuhiko; Takamori, Ayako; Sasada, Amane; Tanosaki, Ryuji; Choi, Ilseung; Utsunomiya, Atae; Maeda, Yasuhiro; Yamano, Yoshihisa; Eto, Tetsuya; Koh, Ki-Ryang; Nakamae, Hirohisa; Suehiro, Youko; Kato, Koji; Takemoto, Shigeki; Okamura, Jun; Uike, Naokuni; Kannagi, Mari

    2013-04-15

    Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is an effective treatment for adult T cell leukemia/lymphoma (ATL) caused by human T cell leukemia virus type 1 (HTLV-1). We previously reported that Tax-specific CD8(+) cytotoxic T lymphocyte (CTL) contributed to graft-versus-ATL effects in ATL patients after allo-HSCT. However, the role of HTLV-1-specific CD4(+) T cells in the effects remains unclear. In this study, we showed that Tax-specific CD4(+) as well as CD8(+) T cell responses were induced in some ATL patients following allo-HSCT. To further analyze HTLV-1-specific CD4(+) T cell responses, we identified a novel HLA-DRB1*0101-restricted epitope, Tax155-167, recognized by HTLV-1-specific CD4(+) Th1-like cells, a major population of HTLV-1-specific CD4(+) T cell line, which was established from an ATL patient at 180 d after allo-HSCT from an unrelated seronegative donor by in vitro stimulation with HTLV-1-infected cells from the same patient. Costimulation of PBMCs with both the identified epitope (Tax155-167) and known CTL epitope peptides markedly enhanced the expansion of Tax-specific CD8(+) T cells in PBMCs compared with stimulation with CTL epitope peptide alone in all three HLA-DRB1*0101(+) patients post-allo-HSCT tested. In addition, direct detection using newly generated HLA-DRB1*0101/Tax155-167 tetramers revealed that Tax155-167-specific CD4(+) T cells were present in all HTLV-1-infected individuals tested, regardless of HSCT. These results suggest that Tax155-167 may be the dominant epitope recognized by HTLV-1-specific CD4(+) T cells in HLA-DRB1*0101(+)-infected individuals and that Tax-specific CD4(+) T cells may augment the graft-versus-Tax effects via efficient induction of Tax-specific CD8(+) T cell responses.

  1. Therapeutic Vaccine Against HIV, Viral Variability, Cytotoxic T Lymphocyte Epitopes, and Genetics of Patients.

    Science.gov (United States)

    Fleury, Herve; Tumiotto, Camille; Bellecave, Pantxika; Recordon-Pinson, Patricia

    2018-01-01

    The scientific and medical community is seeking to cure HIV. Several pathways have been or are being explored including therapeutic vaccination. Viroimmunological studies on primary infection as well as on elite controllers have demonstrated the importance of the cytotoxic CD8 response and have mainly oriented research on vaccine constructs toward this type of response. The results of these trials are clearly not commensurate with the hope placed in them. Might there be one or more uncontrolled variables? The genetics of patients need to be taken into consideration, especially their human lymphocyte antigen (HLA) alleles. There is a need to find a balance between the conservation of cytotoxic T lymphocyte (CTL) epitopes and presentation by HLA alleles. The pathway is a narrow one between adaptation of the virus to HLA I restriction and the definition of conserved proviral CTL epitopes presentable by HLA I alleles. It is likely that the genetics of patients will need to be considered for HIV-1 vaccine studies and that multidisciplinary collaboration will be essential in this field of infectious diseases.

  2. Molecular cloning, expression, IgE binding activities and in silico epitope prediction of Per a 9 allergens of the American cockroach

    Science.gov (United States)

    Yang, Haiwei; Chen, Hao; Jin, Min; Xie, Hua; He, Shaoheng; Wei, Ji-Fu

    2016-01-01

    Per a 9 is a major allergen of the American cockroach (CR), which has been recognized as an important cause of imunoglobulin E-mediated type I hypersensitivity worldwide. However, it is not neasy to obtain a substantial quantity of this allergen for use in functional studies. In the present study, the Per a 9 gene was cloned and expressed in Escherichia coli (E. coli) systems. It was found that 13/16 (81.3%) of the sera from patients with allergies caused by the American CR reacted to Per a 9, as assessed by enzyme-linked immunosorbent assay, confirming that Per a 9 is a major allergen of CR. The induction of the expression of CD63 and CCR3 in passively sensitized basophils (from sera of patients with allergies caused by the American CR) by approximately 4.2-fold indicated that recombinant Per a 9 was functionally active. Three immunoinformatics tools, including the DNASTAR Protean system, Bioinformatics Predicted Antigenic Peptides (BPAP) system and the BepiPred 1.0 server were used to predict the potential B cell epitopes, while Net-MHCIIpan-2.0 and NetMHCII-2.2 were used to predict the T cell epitopes of Per a 9. As a result, we predicted 11 peptides (23–28, 39–46, 58–64, 91–118, 131–136, 145–154, 159–165, 176–183, 290–299, 309–320 and 338–344) as potential B cell linear epitopes. In T cell prediction, the Per a 9 allergen was predicted to have 5 potential T cell epitope sequences, 119–127, 194–202, 210–218, 239–250 and 279–290. The findings of our study may prove to be useful in the development of peptide-based vaccines to combat CR-induced allergies. PMID:27840974

  3. Essential role of the TFIID subunit TAF4 in murine embryogenesis and embryonic stem cell differentiation.

    Science.gov (United States)

    Langer, Diana; Martianov, Igor; Alpern, Daniel; Rhinn, Muriel; Keime, Céline; Dollé, Pascal; Mengus, Gabrielle; Davidson, Irwin

    2016-03-30

    TAF4 (TATA-binding protein-associated factor 4) and its paralogue TAF4b are components of the TFIID core module. We inactivated the murine Taf4a gene to address Taf4 function during embryogenesis. Here we show that Taf4a(-/-) embryos survive until E9.5 where primary germ layers and many embryonic structures are identified showing Taf4 is dispensable for their specification. In contrast, Taf4 is required for correct patterning of the trunk and anterior structures, ventral morphogenesis and proper heart positioning. Overlapping expression of Taf4a and Taf4b during embryogenesis suggests their redundancy at early stages. In agreement with this, Taf4a(-/-) embryonic stem cells (ESCs) are viable and comprise Taf4b-containing TFIID. Nevertheless, Taf4a(-/-) ESCs do not complete differentiation into glutamatergic neurons and cardiomyocytes in vitro due to impaired preinitiation complex formation at the promoters of critical differentiation genes. We define an essential role of a core TFIID TAF in differentiation events during mammalian embryogenesis.

  4. Characterization of a Proteasome and TAP-independent Presentation of Intracellular Epitopes by HLA-B27 Molecules

    KAUST Repository

    Magnacca, A.

    2012-07-17

    Nascent HLA-class I molecules are stabilized by proteasome-derived peptides in the ER and the new complexes proceed to the cell surface through the post-ER vesicles. It has been shown, however, that less stable complexes can exchange peptides in the Trans Golgi Network (TGN). HLA-B27 are the most studied HLA-class I molecules due to their association with Ankylosing Spondylitis (AS). Chimeric proteins driven by TAT of HIV have been exploited by us to deliver viral epitopes, whose cross-presentation by the HLA-B27 molecules was proteasome and TAP-independent and not restricted to Antigen-Presenting Cells (APC). Here, using these chimeric proteins as epitope suppliers, we compared with each other and with the HLA-A2 molecules, the two HLA-B*2705 and B*2709 alleles differing at residue 116 (D116H) and differentially associated with AS. We found that the antigen presentation by the two HLA-B27 molecules was proteasome-, TAP-, and APC-independent whereas the presentation by the HLA-A2 molecules required proteasome, TAP and professional APC. Assuming that such difference could be due to the unpaired, highly reactive Cys-67 distinguishing the HLA-B27 molecules, C67S mutants in HLA-B*2705 and B*2709 and V67C mutant in HLA-A*0201 were also analyzed. The results showed that this mutation did not influence the HLA-A2-restricted antigen presentation while it drastically affected the HLA-B27-restricted presentation with, however, remarkable differences between B*2705 and B*2709. The data, together with the occurrence on the cell surface of unfolded molecules in the case of C67S-B*2705 mutant but not in that of C67S-B*2709 mutant, indicates that Cys-67 has a more critical role in stabilizing the B*2705 rather than the B*2709 complexes.

  5. Localization of functional receptor epitopes on the structure of ciliary neurotrophic factor indicates a conserved, function-related epitope topography among helical cytokines.

    Science.gov (United States)

    Panayotatos, N; Radziejewska, E; Acheson, A; Somogyi, R; Thadani, A; Hendrickson, W A; McDonald, N Q

    1995-06-09

    By rational mutagenesis, receptor-specific functional analysis, and visualization of complex formation in solution, we identified individual amino acid side chains involved specifically in the interaction of ciliary neurotrophic factor (CNTF) with CNTFR alpha and not with the beta-components, gp130 and LIFR. In the crystal structure, the side chains of these residues, which are located in helix A, the AB loop, helix B, and helix D, are surface accessible and are clustered in space, thus constituting an epitope for CNTFR alpha. By the same analysis, a partial epitope for gp130 was also identified on the surface of helix A that faces away from the alpha-epitope. Superposition of the CNTF and growth hormone structures showed that the location of these epitopes on CNTF is analogous to the location of the first and second receptor epitopes on the surface of growth hormone. Further comparison with proposed binding sites for alpha- and beta-receptors on interleukin-6 and leukemia inhibitory factor indicated that this epitope topology is conserved among helical cytokines. In each case, epitope I is utilized by the specificity-conferring component, whereas epitopes II and III are used by accessory components. Thus, in addition to a common fold, helical cytokines share a conserved order of receptor epitopes that is function related.

  6. Novel CTL epitopes identified through a Y. pestis proteome-wide analysis in the search for vaccine candidates against plague.

    Science.gov (United States)

    Zvi, Anat; Rotem, Shahar; Zauberman, Ayelet; Elia, Uri; Aftalion, Moshe; Bar-Haim, Erez; Mamroud, Emanuelle; Cohen, Ofer

    2017-10-20

    The causative agent of Plague, Yersinia pestis, is a highly virulent pathogen and a potential bioweapon. Depending on the route of infection, two prevalent occurrences of the disease are known, bubonic and pneumonic. The latter has a high fatality rate. In the absence of a licensed vaccine, intense efforts to develop a safe and efficacious vaccine have been conducted, and humoral-driven subunit vaccines containing the F1 and LcrV antigens are currently under clinical trials. It is well known that a cellular immune response might have an essential additive value to immunity and protection against Y. pestis infection. Nevertheless, very few documented epitopes eliciting a protective T-cell response have been reported. Here, we present a combined high throughput computational and experimental effort towards identification of CD8 T-cell epitopes. All 4067 proteins of Y. pestis were analyzed with state-of-the-art recently developed prediction algorithms aimed at mapping potential MHC class I binders. A compilation of the results obtained from several prediction methods revealed a total of 238,000 peptide candidates, which necessitated downstream filtering criteria. Our previously established and proven approach for enrichment of true positive CTL epitopes, which relies on mapping clusters rich in tandem or overlapping predicted MHC binders ("hotspots"), was applied, as well as considerations of predicted binding affinity. A total of 1532 peptides were tested for their ability to elicit a specific T-cell response by following the production of IFNγ from splenocytes isolated from vaccinated mice. Altogether, the screen resulted in 178 positive responders (11.8%), all novel Y. pestis CTL epitopes. These epitopes span 113 Y. pestis proteins. Substantial enrichment of membrane-associated proteins was detected for epitopes selected from hotspots of predicted MHC binders. These results considerably expand the repertoire of known CTL epitopes in Y. pestis and pave the way to

  7. Rationalization and Design of the Complementarity Determining Region Sequences in an Antibody-Antigen Recognition Interface

    Science.gov (United States)

    Chen, Ing-Chien; Lee, Yu-Ching; Chen, Jun-Bo; Tsai, Keng-Chang; Chen, Ching-Tai; Chang, Jeng-Yih; Yang, Ei-Wen; Hsu, Po-Chiang; Jian, Jhih-Wei; Hsu, Hung-Ju; Chang, Hung-Ju; Hsu, Wen-Lian; Huang, Kai-Fa; Ma, Alex Che; Yang, An-Suei

    2012-01-01

    Protein-protein interactions are critical determinants in biological systems. Engineered proteins binding to specific areas on protein surfaces could lead to therapeutics or diagnostics for treating diseases in humans. But designing epitope-specific protein-protein interactions with computational atomistic interaction free energy remains a difficult challenge. Here we show that, with the antibody-VEGF (vascular endothelial growth factor) interaction as a model system, the experimentally observed amino acid preferences in the antibody-antigen interface can be rationalized with 3-dimensional distributions of interacting atoms derived from the database of protein structures. Machine learning models established on the rationalization can be generalized to design amino acid preferences in antibody-antigen interfaces, for which the experimental validations are tractable with current high throughput synthetic antibody display technologies. Leave-one-out cross validation on the benchmark system yielded the accuracy, precision, recall (sensitivity) and specificity of the overall binary predictions to be 0.69, 0.45, 0.63, and 0.71 respectively, and the overall Matthews correlation coefficient of the 20 amino acid types in the 24 interface CDR positions was 0.312. The structure-based computational antibody design methodology was further tested with other antibodies binding to VEGF. The results indicate that the methodology could provide alternatives to the current antibody technologies based on animal immune systems in engineering therapeutic and diagnostic antibodies against predetermined antigen epitopes. PMID:22457753

  8. The Antigenic Structure of Zika Virus and Its Relation to Other Flaviviruses: Implications for Infection and Immunoprophylaxis

    Science.gov (United States)

    Stiasny, Karin

    2017-01-01

    SUMMARY Zika virus was discovered ∼70 years ago in Uganda and maintained a low profile as a human disease agent in Africa and Asia. Only recently has it caused explosive outbreaks in previously unaffected regions, first in Oceania and then in the Americas since 2015. Of special concern is the newly identified link between congenital malformations (especially microcephaly) and Zika virus infections during pregnancy. At present, it is unclear whether Zika virus changed its pathogenicity or whether the huge number of infections allowed the recognition of a previously cryptic pathogenic property. The purpose of this review is to discuss recent data on the molecular antigenic structure of Zika virus in the context of antibody-mediated neutralization and antibody-dependent enhancement (ADE) of infection, a phenomenon that has been implicated in the development of severe disease caused by the related dengue viruses. Emphasis is given to epitopes of antibodies that potently neutralize Zika virus and also to epitopes that provide antigenic links to other important human-pathogenic flaviviruses such as dengue, yellow fever, West Nile, Japanese encephalitis, and tick-borne encephalitis viruses. The antigenic cross talk between Zika and dengue viruses appears to be of special importance, since they cocirculate in many regions of endemicity and sequential infections are likely to occur frequently. New insights into the molecular antigenic structure of Zika virus and flaviviruses in general have provided the foundation for great progress made in developing Zika virus vaccines and antibodies for passive immunization. PMID:28179396

  9. Identification of Immunodominant Responses to the Plasmodium falciparum Antigens PfUIS3, PfLSA1 and PfLSAP2 in Multiple Strains of Mice.

    Directory of Open Access Journals (Sweden)

    Rhea J Longley

    Full Text Available Malaria, caused by the Plasmodium parasite, remains a serious global public health concern. A vaccine could have a substantial impact on eliminating this disease, alongside other preventative measures. We recently described the development of three novel, viral vectored vaccines expressing either of the antigens PfUIS3, PfLSA1 and PfLSAP2. Each vaccination regimen provided high levels of protection against chimeric parasite challenge in a mouse model, largely dependent on CD8+ T cells. In this study we aimed to further characterize the induced cellular immune response to these vaccines. We utilized both the IFNγ enzyme-linked immunosorbent spot assay and intracellular cytokine staining to achieve this aim. We identified immunodominant peptide responses for CD4+ and CD8+ T cells for each of the antigens in BALB/c, C57BL/6 and HLA-A2 transgenic mice, creating a useful tool for researchers for subsequent study of these antigens. We also compared these immunodominant peptides with those generated from epitope prediction software, and found that only a small proportion of the large number of epitopes predicted by the software were identifiable experimentally. Furthermore, we characterized the polyfunctionality of the induced CD8+ T cell responses. These findings contribute to our understanding of the immunological mechanisms underlying these protective vaccines, and provide a useful basis for the assessment of these and related vaccines as clinical constructs.

  10. Development of peptide-based lineage-specific serology for chronic Chagas disease: geographical and clinical distribution of epitope recognition.

    Directory of Open Access Journals (Sweden)

    Tapan Bhattacharyya

    2014-05-01

    Full Text Available BACKGROUND: Chagas disease, caused by infection with the protozoan Trypanosoma cruzi, remains a serious public health issue in Latin America. Genetically diverse, the species is sub-divided into six lineages, known as TcI-TcVI, which have disparate geographical and ecological distributions. TcII, TcV, and TcVI are associated with severe human disease in the Southern Cone countries, whereas TcI is associated with cardiomyopathy north of the Amazon. T. cruzi persists as a chronic infection, with cardiac and/or gastrointestinal symptoms developing years or decades after initial infection. Identifying an individual's history of T. cruzi lineage infection directly by genotyping of the parasite is complicated by the low parasitaemia and sequestration in the host tissues. METHODOLOGY/PRINCIPAL FINDINGS: We have applied here serology against lineage-specific epitopes of the T. cruzi surface antigen TSSA, as an indirect approach to allow identification of infecting lineage. Chagasic sera from chronic patients from a range of endemic countries were tested by ELISA against synthetic peptides representing lineage-specific TSSA epitopes bound to avidin-coated ELISA plates via a biotin labelled polyethylene glycol-glycine spacer to increase rotation and ensure each amino acid side chain could freely interact with their antibodies. 79/113 (70% of samples from Brazil, Bolivia, and Argentina recognised the TSSA epitope common to lineages TcII/TcV/TcVI. Comparison with clinical information showed that a higher proportion of Brazilian TSSApep-II/V/VI responders had ECG abnormalities than non-responders (38% vs 17%; p<0.0001. Among northern chagasic sera 4/20 (20% from Ecuador reacted with this peptide; 1/12 Venezuelan and 1/34 Colombian samples reacted with TSSApep-IV. In addition, a proposed TcI-specific epitope, described elsewhere, was demonstrated here to be highly conserved across lineages and therefore not applicable to lineage-specific serology. CONCLUSIONS

  11. Development of peptide-based lineage-specific serology for chronic Chagas disease: geographical and clinical distribution of epitope recognition.

    Science.gov (United States)

    Bhattacharyya, Tapan; Falconar, Andrew K; Luquetti, Alejandro O; Costales, Jaime A; Grijalva, Mario J; Lewis, Michael D; Messenger, Louisa A; Tran, Trang T; Ramirez, Juan-David; Guhl, Felipe; Carrasco, Hernan J; Diosque, Patricio; Garcia, Lineth; Litvinov, Sergey V; Miles, Michael A

    2014-05-01

    Chagas disease, caused by infection with the protozoan Trypanosoma cruzi, remains a serious public health issue in Latin America. Genetically diverse, the species is sub-divided into six lineages, known as TcI-TcVI, which have disparate geographical and ecological distributions. TcII, TcV, and TcVI are associated with severe human disease in the Southern Cone countries, whereas TcI is associated with cardiomyopathy north of the Amazon. T. cruzi persists as a chronic infection, with cardiac and/or gastrointestinal symptoms developing years or decades after initial infection. Identifying an individual's history of T. cruzi lineage infection directly by genotyping of the parasite is complicated by the low parasitaemia and sequestration in the host tissues. We have applied here serology against lineage-specific epitopes of the T. cruzi surface antigen TSSA, as an indirect approach to allow identification of infecting lineage. Chagasic sera from chronic patients from a range of endemic countries were tested by ELISA against synthetic peptides representing lineage-specific TSSA epitopes bound to avidin-coated ELISA plates via a biotin labelled polyethylene glycol-glycine spacer to increase rotation and ensure each amino acid side chain could freely interact with their antibodies. 79/113 (70%) of samples from Brazil, Bolivia, and Argentina recognised the TSSA epitope common to lineages TcII/TcV/TcVI. Comparison with clinical information showed that a higher proportion of Brazilian TSSApep-II/V/VI responders had ECG abnormalities than non-responders (38% vs 17%; p<0.0001). Among northern chagasic sera 4/20 (20%) from Ecuador reacted with this peptide; 1/12 Venezuelan and 1/34 Colombian samples reacted with TSSApep-IV. In addition, a proposed TcI-specific epitope, described elsewhere, was demonstrated here to be highly conserved across lineages and therefore not applicable to lineage-specific serology. These results demonstrate the considerable potential for synthetic

  12. The variability of hepatitis B envelope is associated with HBs antigen persistence in either chronic or acute HBV genotype A infection.

    Science.gov (United States)

    Eschlimann, Marine; Malvé, Brice; Velay, Aurélie; Fenaux, Honorine; Berger, Sibel; Frippiat, Jean-Pol; Zoulim, Fabien; Bensenane, Mouni; Bronowicki, Jean-Pierre; Goehringer, François; May, Thierry; Jeulin, Hélène; Schvoerer, Evelyne

    2017-09-01

    More than 240 million people are chronically infected by hepatitis B virus (HBV) worldwide. Envelope proteins play a crucial role in viral cellular entry and immune recognition. The loss of HBs antigen (HBsAg) correlated with a good clinical prognosis is rarely achieved with or without treatment (3-16%). HBV envelope variability was investigated according to HBsAg persistence. The cohort consisted of 15 HBV genotype A-infected patients divided into "resolvers", with HBsAg clearance, and "non-resolvers", with HBsAg persistence and in subgroups: acute (n=5, AHBV) or chronic infection (n=4, CHBV) and HBV/HIV coinfection (n=6, CHBV/HIV). HBV S and preS sequences were studied by direct and ultra-deep sequencing. Amino acid sequences were analyzed with bioinformatics for predicted antigenicity. In S gene, the complexity was lower in AHBV than in chronic-infected patients (p=0.046). Major mutations, detected using direct sequencing, were more frequent in AHBV developing chronicity (p=0.01) than in AHBV resolvers. In the Major Hydrophilic Region, more frequent mutations were observed in non-resolvers versus resolvers (p=0.047) and non-resolvers tended to have more haplotypes with a reduced predicted antigenicity (p=0.07). Most of the mutations in preS/S region were found rather in epitopic than in non-epitopic areas (p=0.025). Interestingly, the mutation sY161F found in 3/8 non-resolvers was associated with a decrease in predicted antigenicity (28%; AnTheProt). HBsAg persistence was correlated with mutations and deletions in areas playing a key role in immune recognition. These data suggest that variability in HBV envelope could favor immune escape in various clinical settings of HBV genotype A-infected patients. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Preexisting CD4+ T-cell immunity in human population to avian influenza H7N9 virus: whole proteome-wide immunoinformatics analyses.

    Directory of Open Access Journals (Sweden)

    Venkata R Duvvuri

    Full Text Available In 2013, a novel avian influenza H7N9 virus was identified in human in China. The antigenically distinct H7N9 surface glycoproteins raised concerns about lack of cross-protective neutralizing antibodies. Epitope-specific preexisting T-cell immunity was one of the protective mechanisms in pandemic 2009 H1N1 even in the absence of cross-protective antibodies. Hence, the assessment of preexisting CD4+ T-cell immunity to conserved epitopes shared between H7N9 and human influenza A viruses (IAV is critical. A comparative whole proteome-wide immunoinformatics analysis was performed to predict the CD4+ T-cell epitopes that are commonly conserved within the proteome of H7N9 in reference to IAV subtypes (H1N1, H2N2, and H3N2. The CD4+ T-cell epitopes that are commonly conserved (∼ 556 were further screened against the Immune Epitope Database (IEDB to validate their immunogenic potential. This analysis revealed that 45.5% (253 of 556 epitopes are experimentally proven to induce CD4+ T-cell memory responses. In addition, we also found that 23.3% of CD4+ T-cell epitopes have ≥ 90% of sequence homology with experimentally defined CD8+ T-cell epitopes. We also conducted the population coverage analysis across different ethnicities using commonly conserved CD4+ T-cell epitopes and corresponding HLA-DRB1 alleles. Interestingly, the indigenous populations from Canada, United States, Mexico and Australia exhibited low coverage (28.65% to 45.62% when compared with other ethnicities (57.77% to 94.84%. In summary, the present analysis demonstrate an evidence on the likely presence of preexisting T-cell immunity in human population and also shed light to understand the potential risk of H7N9 virus among indigenous populations, given their high susceptibility during previous pandemic influenza events. This information is crucial for public health policy, in targeting priority groups for immunization programs.

  14. Detection of Burkholderia pseudomallei O-antigen serotypes in near-neighbor species

    Directory of Open Access Journals (Sweden)

    Stone Joshua K

    2012-11-01

    Full Text Available Abstract Background Burkholderia pseudomallei is the etiological agent of melioidosis and a CDC category B select agent with no available effective vaccine. Previous immunizations in mice have utilized the lipopolysaccharide (LPS as a potential vaccine target because it is known as one of the most important antigenic epitopes in B. pseudomallei. Complicating this strategy are the four different B. pseudomallei LPS O-antigen types: A, B, B2, and rough. Sero-crossreactivity is common among O-antigens of Burkholderia species. Here, we identified the presence of multiple B. pseudomallei O-antigen types and sero-crossreactivity in its near-neighbor species. Results PCR screening of O-antigen biosynthesis genes, phenotypic characterization using SDS-PAGE, and immunoblot analysis showed that majority of B. mallei and B. thailandensis strains contained the typical O-antigen type A. In contrast, most of B. ubonensis and B. thailandensis-like strains expressed the atypical O-antigen types B and B2, respectively. Most B. oklahomensis strains expressed a distinct and non-seroreactive O-antigen type, except strain E0147 which expressed O-antigen type A. O-antigen type B2 was also detected in B. thailandensis 82172, B. ubonensis MSMB108, and Burkholderia sp. MSMB175. Interestingly, B. thailandensis-like MSMB43 contained a novel serotype B positive O-antigen. Conclusions This study expands the number of species which express B. pseudomallei O-antigen types. Further work is required to elucidate the full structures and how closely these are to the B. pseudomallei O-antigens, which will ultimately determine the efficacy of the near-neighbor B serotypes for vaccine development.

  15. A nanobody directed to a functional epitope on VEGF, as a novel strategy for cancer treatment.

    Science.gov (United States)

    Farajpour, Zahra; Rahbarizadeh, Fatemeh; Kazemi, Bahram; Ahmadvand, Davoud

    2014-03-28

    Compelling evidence suggests that vascular endothelial growth factor (VEGF), due to its essential role in angiogenesis, is a critical target for cancer treatment. Neutralizing monoclonal antibodies against VEGF are important class of drugs used in cancer therapy. However, the cost of production, large size, and immunogenicity are main drawbacks of conventional monoclonal therapy. Nanobodies are the smallest antigen-binding antibody fragments, which occur naturally in camelidae. Because of their remarkable features, we decided to use an immune library of nanobody to direct phage display to recognition of novel functional epitopes on VEGF. Four rounds of selection were performed and six phage-displayed nanobodies were obtained from an immune phage library. The most reactive clone in whole-cell ELISA experiments, was purified and assessed in proliferation inhibition assay. Purified ZFR-5 not only blocked interaction of VEGF with its receptor in cell ELISA experiments, but also was able to significantly inhibit proliferation response of human umbilical vein endothelial cells to VEGF in a dose-dependent manner. Taken together, our study demonstrates that by using whole-cell ELISA experiments, nanobodies against antigenic regions included in interaction of VEGF with its receptors can be directed. Because of unique and intrinsic properties of a nanobody and the ability of selected nanobody for blocking the epitope that is important for biological function of VEGF, it represents novel potential drug candidate. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. B-1 cell immunoglobulin directed against oxidation-specific epitopes

    Directory of Open Access Journals (Sweden)

    Dimitrios eTsiantoulas

    2013-01-01

    Full Text Available Natural antibodies (NAbs are pre-existing antibodies with germline origin that arise in the absence of previous exposure to foreign antigens. NAbs are produced by B-1 lymphocytes and are primarily of the IgM isotype. There is accumulating evidence that - in addition to their role in antimicrobial host defense - NAbs exhibit important housekeeping functions by facilitating the non-immunogenic clearance of apoptotic cells as well as the removal of (neo-self antigens. These properties are largely mediated by the ability of NAbs to recognize highly conserved and endogenously generated structures, which are exemplified by so-called oxidation-specific epitopes (OSEs that are products of lipid peroxidation. The generation of OSEs as well as their interaction with the immune system have been studied extensively in the context of atherosclerosis, a chronic inflammatory disease of the vascular wall that is characterized by the accumulation of cellular debris and oxidized low-density lipoproteins (OxLDL. Both apoptotic cells as well as OxLDL carry OSEs that are targeted by NAbs. Therefore, OSEs represent stress-induced neo-self structures that mediate recognition of metabolic waste (e.g. cellular debris by NAbs, allowing its safe disposal, which has fundamental implications in health and disease.

  17. Potential elucidation of a novel CTL epitope in HIV-1 protease by the protease inhibitor resistance mutation L90M.

    Directory of Open Access Journals (Sweden)

    Werner Smidt

    Full Text Available The combination of host immune responses and use of antiretrovirals facilitate partial control of human immunodeficiency virus type 1 (HIV-1 infection and result in delayed progression to Acquired Immunodeficiency Syndrome (AIDS. Both treatment and host immunity impose selection pressures on the highly mutable HIV-1 genome resulting in antiretroviral resistance and immune escape. Researchers have shown that antiretroviral resistance mutations can shape cytotoxic T-lymphocyte immunity by altering the epitope repertoire of HIV infected cells. Here it was discovered that an important antiretroviral resistance mutation, L90M in HIV protease, occurs at lower frequencies in hosts that harbor the B*15, B*48 or A*32 human leukocyte antigen subtypes. A likely reason is the elucidation of novel epitopes by L90M. NetMHCPan predictions reveal increased affinity of the peptide spanning the HIV protease region, PR 89-97 and PR 90-99 to HLA-B*15/B*48 and HLA-A*32 respectively due to the L90M substitution. The higher affinity could increase the chance of the epitope being presented and recognized by Cytotoxic T-lymphocytes and perhaps provide additional immunological pressures in the presence of antiretroviral attenuating mutations. This evidence supports the notion that knowledge of HLA allotypes in HIV infected individuals could augment antiretroviral treatment by the elucidation of epitopes due to antiretroviral resistance mutations in HIV protease.

  18. Potential elucidation of a novel CTL epitope in HIV-1 protease by the protease inhibitor resistance mutation L90M.

    Science.gov (United States)

    Smidt, Werner

    2013-01-01

    The combination of host immune responses and use of antiretrovirals facilitate partial control of human immunodeficiency virus type 1 (HIV-1) infection and result in delayed progression to Acquired Immunodeficiency Syndrome (AIDS). Both treatment and host immunity impose selection pressures on the highly mutable HIV-1 genome resulting in antiretroviral resistance and immune escape. Researchers have shown that antiretroviral resistance mutations can shape cytotoxic T-lymphocyte immunity by altering the epitope repertoire of HIV infected cells. Here it was discovered that an important antiretroviral resistance mutation, L90M in HIV protease, occurs at lower frequencies in hosts that harbor the B*15, B*48 or A*32 human leukocyte antigen subtypes. A likely reason is the elucidation of novel epitopes by L90M. NetMHCPan predictions reveal increased affinity of the peptide spanning the HIV protease region, PR 89-97 and PR 90-99 to HLA-B*15/B*48 and HLA-A*32 respectively due to the L90M substitution. The higher affinity could increase the chance of the epitope being presented and recognized by Cytotoxic T-lymphocytes and perhaps provide additional immunological pressures in the presence of antiretroviral attenuating mutations. This evidence supports the notion that knowledge of HLA allotypes in HIV infected individuals could augment antiretroviral treatment by the elucidation of epitopes due to antiretroviral resistance mutations in HIV protease.

  19. Papaya ringspot virus coat protein gene for antigen presentation Escherichia coli

    Czech Academy of Sciences Publication Activity Database

    Chatchen, S.; Juříček, Miloslav; Rueda, P.; Kertbundit, Sunee

    2006-01-01

    Roč. 39, č. 1 (2006), s. 16-21 ISSN 1225-8687 Grant - others:Thai Research Fund(TH) BT-B-06-PG-14-4503 Institutional research plan: CEZ:AV0Z50380511 Source of funding: V - iné verejné zdroje Keywords : antigen presentation * canine parvo virus * epitope * papaya ringspot virus Subject RIV: EF - Botanics Impact factor: 1.465, year: 2006 http://www.jbmb.or.kr/view_article.php3?cont=jbmb&kid=174&mid=3&pid=3

  20. Screening hybridomas for anabolic androgenic steroids by steroid analog antigen microarray.

    Science.gov (United States)

    Du, Hongwu; Chen, Guangyu; Bian, Yongzhong; Xing, Cenzan; Ding, Xue; Zhu, Mengliang; Xun, Yiping; Chen, Peng; Zhou, Yabin; Li, Shaoxu

    2015-01-01

    Currently, dozens of anabolic androgenic steroids (AAS) are forbidden in the World Anti-Doping Agency Prohibited List, however, despite extensive investigation, there are still lots of AAS without corresponding monoclonal antibodies. A steroid analog antigen microarray made up of ten AAS was fabricated to screen the hybridoma and it was found an original unsuccessful clone turned out to be a candidate anti-boldenone antibody, without any cross-reactions with endogenous AAS or 44 different AAS standard reference materials tested. Our findings suggested that steroid analog antigen microarray could be a promising tool to screen and characterize new applications of antibodies for structure analogs, and this also exhibits the potential to fast identify effective epitopes of hybridomas in a single assay.